WorldWideScience

Sample records for burst host galaxies

  1. HOST GALAXIES AS GAMMA-RAY BURST DISTANCE INDICATORS

    Energy Technology Data Exchange (ETDEWEB)

    D. BAND; ET AL

    2001-01-01

    We calculate the distributions of the total burst energy, the peak luminosity and the X-ray afterglow energy using burst observations and distances to the associated host galaxies. To expand the sample, we include redshift estimates for host galaxies without spectroscopic redshifts. The methodology requires a model of the host galaxy population; we find that in the best model the burst rate is proportional to the host galaxy luminosity at the time of the burst.

  2. Statistical Properties of Gamma-Ray Burst Host Galaxies

    Indian Academy of Sciences (India)

    A statistical analysis of gamma-ray burst host galaxies is presented and a clear metallicity-stellar mass relation is found in our sample. A trend that a more massive host galaxy tends to have a higher star-formation rate is also found. No correlation is found between V and H. GRB host galaxies at a higher redshift also tend ...

  3. Associating Fast Radio Bursts with Their Host Galaxies

    Science.gov (United States)

    Eftekhari, T.; Berger, E.

    2017-11-01

    The first precise localization of a fast radio burst (FRB) sheds light on the nature of these mysterious bursts and the physical mechanisms that power them. Increasing the sample of FRBs with robust host galaxy associations is the key impetus behind ongoing and upcoming searches and facilities. Here, we quantify the robustness of FRB host galaxy associations as a function of localization area and galaxy apparent magnitude. We also explore the use of FRB dispersion measures to constrain the source redshift, thereby reducing the number of candidate hosts. We use these results to demonstrate that even in the absence of a unique association, a constraint can be placed on the maximum luminosity of a host galaxy as a function of localization and dispersion measure (DM). We find that localizations of ≲ 0.5\\text{'}\\text{'} are required for a chance coincidence probability of ≲ 1 % for dwarf galaxies at z≳ 0.1; if some hosts have luminosities of ∼ {L}\\ast , then localizations of up to ≈ 5\\prime\\prime may suffice at z∼ 0.1. Constraints on the redshift from the DM only marginally improve the association probability unless the DM is low, ≲ 400 pc cm‑3. This approach also relies on the determination of galaxy redshifts, which is challenging at z≳ 0.5 if the hosts are dwarf galaxies. Finally, interesting limits on the maximum host luminosity require localizations of ≲ 5\\prime\\prime at z≳ 0.1. Even a few such localizations will explain the nature of FRB progenitors, their possible diversity, and their use as cosmological tools.

  4. Host galaxies are the obscurers of Gamma-ray bursts

    Science.gov (United States)

    Buchner, Johannes; Schulze, Steve; Bauer, Franz E.

    2017-08-01

    The luminous, high-energy emission of gamma-ray bursts (GRBs) makes them efficient probes of the high-redshift universe. The origin of the obscuration of gamma-ray burst afterglow is still unclear. We study the afterglows metal column densities along the line-of-sight of all Swift-detected long GRBs with an improved hierarchical Bayesian analysis methodology. We characterise follow-up biases and side-step them using SHOALS, an unbiased sub-sample with highly complete follow-up. That survey also measures Spitzer host masses. Overall, the column densities shows little redshift evolution but a significant correlation with host stellar mass. A simple geometrical model explains the width and shape of the column density distribution and the trend with galaxy mass correlation. Our findings implicate the host's galaxy-scale metal gas as the dominant obscurer. From a galaxy evolution perspective, our study places new constraints on the metal gas mass inside galaxies at z=0.5-4. We compare these with modern cosmological simulations (Illustris and EAGLE) and discuss implications for the obscuration of other sources inside high redshift galaxies, such as active galactic nuclei.

  5. Large Host-galaxy Dispersion Measure of Fast Radio Bursts

    Science.gov (United States)

    Yang, Yuan-Pei; Luo, Rui; Li, Zhuo; Zhang, Bing

    2017-04-01

    Fast radio bursts (FRBs) have excessive dispersion measures (DMs) and an all-sky distribution, which point toward an extragalactic or even a cosmological origin. We develop a method to extract the mean host galaxy DM ( ) and the characterized luminosity (L) of FRBs using the observed DM-flux data, based on the assumption of a narrow luminosity distribution. Applying Bayesian inference to the data of 21 FRBs, we derive a relatively large mean host DM, i.e., ˜ 270 {pc} {{cm}}-3 with a large dispersion. A relatively large DMHG of FRBs is also supported by the millisecond scattering times of some FRBs and the relatively small redshift z = 0.19273 of FRB 121102 (which gives {{DM}}{HG,{loc}}˜ 210 {pc} {{cm}}-3). The large host galaxy DM may be contributed by the interstellar medium (ISM) or a near-source plasma in the host galaxy. If it is contributed by the ISM, the type of the FRB host galaxies would not be Milky Way-like, consistent with the detected host of FRB 121102. We also discuss the possibility of having a near-source supernova remnant, pulsar wind nebula, or H ii region that gives a significant contribution to the observed DMHG.

  6. Statistical Properties of Gamma-Ray Burst Host Galaxies Jie-Min ...

    Indian Academy of Sciences (India)

    Abstract. A statistical analysis of gamma-ray burst host galaxies is pre- sented and a clear metallicity-stellar mass relation is found in our sample. A trend that a more massive host galaxy tends to have a higher star- formation rate is also found. No correlation is found between AV and NH. GRB host galaxies at a higher ...

  7. GRB 021004: Tomography of a gamma-ray burst progenitor and its host galaxy

    NARCIS (Netherlands)

    Castro-Tirado, A.J.; Møller, P.; García-Segura, G.; Gorosabel, J.; Pérez, E.; de Ugarte Postigo, A.; Solano, E.; Barrado, D.; Klose, S.; Kann, D.A.; Castro Cerón, J.M.; Kouveliotou, C.; Fynbo, J.P.U.; Hjorth, J.; Pedersen, H.; Pian, E.; Rol, E.; Palazzi, E.; Masetti, N.; Tanvir, N.R.; Vreeswijk, P.M.; Andersen, M.I.; Fruchter, A.S.; Greiner, J.; Wijers, R.A.M.J.; van den Heuvel, E.P.J.

    2010-01-01

    Aims. We analyse the distribution of matter around the progenitor star of gamma-ray burst GRB 021004 and the properties of its host galaxy with high-resolution echelle and near-infrared spectroscopy. Methods. Observations were taken by the 8.2 m Very Large Telescope with the Ultraviolet and Visual

  8. The host galaxy and optical light curve of the gamma-ray burst GRB 980703

    DEFF Research Database (Denmark)

    Holland, S.; Fynbo, J.P.U.; Hjorth, J.

    2001-01-01

    -law decay having a slope of alpha = 1.37 +/-0.14. Due to the bright underlying host galaxy the late time properties of the light-curve are very poorly constrained. The decay of the optical light curve is consistent with a contribution from an underlying type Ic supernova like SN1998bw, or a dust echo......We present deep HST/STIS and ground-based photometry of the host galaxy of the gamma-ray burst GRB 980703 taken 17, 551, 710, and 716 days after the burst. We find that the host is a blue, slightly over-luminous galaxy with V-gal = 23.00 +/-0.10, (V - R)(gal) = 0.43 +/-0.13, and a centre...... that is approximate to0.2 mag bluer than the outer regions of the galaxy. The galaxy has a star-formation rate of 8-13 M-circle dot yr(-1), assuming no extinction in the host. We find that the galaxy is best fit by a Sersic R-1/n profile with n approximate to 1.0 and a half-light radius of 0." 13 (= 0:72h(100...

  9. From Enigma to Tool: Gamma-Ray Burst Reveals Secrets of Host Galaxy

    Science.gov (United States)

    2001-05-01

    Five years ago, astronomers knew almost nothing about Gamma Ray Bursts. Now, a team of observers using the National Science Foundation's Very Large Array (VLA) radio telescope has used a gamma-ray burst as a powerful tool to unveil the nature of the galaxy in which it occurred, more than 7 billion light-years away. VLA Images of GRB980703 Host Galaxy "We believe that gamma-ray bursts may become one of the best available tools for studying the history of star formation in the universe," said Edo Berger, a graduate student at Caltech. Berger worked with Caltech astronomy professor Shri Kulkarni and Dale Frail, an astronomer at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, to study a gamma-ray burst first seen on July 3, 1998. The astronomers presented their results at the American Astronomical Society's meeting in Pasadena, CA. "For the first time, we've seen the host galaxy of a gamma-ray burst with a radio telescope," Berger said. "Previously, gamma-ray-burst host galaxies have been seen with optical telescopes, but detecting this galaxy with a radio telescope has given us new clues about the nature of the galaxy itself -- clues we couldn't have gotten any other way," he added. For example, based on optical-telescope studies, astronomers estimated that new stars are forming in the host galaxy at the rate of about the mass equivalent of 20 suns per year. However, data from the radio observations show that the actual star-formation rate is 25 times greater -- the mass equivalent of 500 suns per year. "With the VLA, we are seeing the entire region of star formation in this galaxy, including the areas so dusty that visible light can't get out," said Frail. Gamma-ray bursts are the most powerful explosions since the Big Bang. First discovered in 1967 by a satellite launched to monitor compliance with the atmospheric nuclear test ban treaty, gamma-ray bursts remained one of astronomy's premier mysteries for 30 years. For three decades

  10. The Swift Gamma-Ray Burst Host Galaxy Legacy Survey. I. Sample Selection and Redshift Distribution

    Science.gov (United States)

    Perley, D. A.; Krühler, T.; Schulze, S.; de Ugarte Postigo, A.; Hjorth, J.; Berger, E.; Cenko, S. B.; Chary, R.; Cucchiara, A.; Ellis, R.; Fong, W.; Fynbo, J. P. U.; Gorosabel, J.; Greiner, J.; Jakobsson, P.; Kim, S.; Laskar, T.; Levan, A. J.; Michałowski, M. J.; Milvang-Jensen, B.; Tanvir, N. R.; Thöne, C. C.; Wiersema, K.

    2016-01-01

    We introduce the Swift Gamma-Ray Burst Host Galaxy Legacy Survey (“SHOALS”), a multi-observatory high-redshift galaxy survey targeting the largest unbiased sample of long-duration gamma-ray burst (GRB) hosts yet assembled (119 in total). We describe the motivations of the survey and the development of our selection criteria, including an assessment of the impact of various observability metrics on the success rate of afterglow-based redshift measurement. We briefly outline our host galaxy observational program, consisting of deep Spitzer/IRAC imaging of every field supplemented by similarly deep, multicolor optical/near-IR photometry, plus spectroscopy of events without preexisting redshifts. Our optimized selection cuts combined with host galaxy follow-up have so far enabled redshift measurements for 110 targets (92%) and placed upper limits on all but one of the remainder. About 20% of GRBs in the sample are heavily dust obscured, and at most 2% originate from z\\gt 5.5. Using this sample, we estimate the redshift-dependent GRB rate density, showing it to peak at z∼ 2.5 and fall by at least an order of magnitude toward low (z = 0) redshift, while declining more gradually toward high (z∼ 7) redshift. This behavior is consistent with a progenitor whose formation efficiency varies modestly over cosmic history. Our survey will permit the most detailed examination to date of the connection between the GRB host population and general star-forming galaxies, directly measure evolution in the host population over cosmic time and discern its causes, and provide new constraints on the fraction of cosmic star formation occurring in undetectable galaxies at all redshifts.

  11. The Swift Gamma-Ray Burst Host Galaxy Legacy Survey. I. Sample Selection and Redshift Distribution

    Science.gov (United States)

    Perley, D. A.; Kruhler, T.; Schulze, S.; Postigo, A. De Ugarte; Hjorth, J.; Berger, E.; Cenko, S. B.; Chary, R.; Cucchiara, A.; Ellis, R.; hide

    2016-01-01

    We introduce the Swift Gamma-Ray Burst Host Galaxy Legacy Survey (SHOALS), a multi-observatory high redshift galaxy survey targeting the largest unbiased sample of long-duration gamma-ray burst (GRB) hosts yet assembled (119 in total). We describe the motivations of the survey and the development of our selection criteria, including an assessment of the impact of various observability metrics on the success rate of afterglow-based redshift measurement. We briefly outline our host galaxy observational program, consisting of deep Spitzer/IRAC imaging of every field supplemented by similarly deep, multicolor optical/near-IR photometry, plus spectroscopy of events without preexisting redshifts. Our optimized selection cuts combined with host galaxy follow-up have so far enabled redshift measurements for 110 targets (92%) and placed upper limits on all but one of the remainder. About 20% of GRBs in the sample are heavily dust obscured, and at most 2% originate from z > 5.5. Using this sample, we estimate the redshift-dependent GRB rate density, showing it to peak at z approx. 2.5 and fall by at least an order of magnitude toward low (z = 0) redshift, while declining more gradually toward high (z approx. 7) redshift. This behavior is consistent with a progenitor whose formation efficiency varies modestly over cosmic history. Our survey will permit the most detailed examination to date of the connection between the GRB host population and general star-forming galaxies, directly measure evolution in the host population over cosmic time and discern its causes, and provide new constraints on the fraction of cosmic star formation occurring in undetectable galaxies at all redshifts.

  12. The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102

    Energy Technology Data Exchange (ETDEWEB)

    Tendulkar, S. P.; Kaspi, V. M. [Department of Physics and McGill Space Institute, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Bassa, C. G.; Adams, E. A. K.; Hessels, J. W. T.; Maddox, N. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, NL-7990 AA Dwingeloo (Netherlands); Cordes, J. M.; Chatterjee, S. [Cornell Center for Astrophysics and Planetary Science and Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Bower, G. C. [Academia Sinica Institute of Astronomy and Astrophysics, 645 N. A’ohoku Place, Hilo, HI 96720 (United States); Law, C. J. [Department of Astronomy and Radio Astronomy Lab, University of California, Berkeley, CA 94720 (United States); Bogdanov, S. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Burke-Spolaor, S.; Butler, B. J.; Demorest, P. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Lazio, T. J. W. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Marcote, B.; Paragi, Z. [Joint Institute for VLBI ERIC, Postbus 2, NL-7990 AA Dwingeloo (Netherlands); McLaughlin, M. A. [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506 (United States); Ransom, S. M. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Scholz, P., E-mail: shriharsh@physics.mcgill.ca, E-mail: bassa@astron.nl [National Research Council of Canada, Herzberg Astronomy and Astrophysics, Dominion Radio Astrophysical Observatory, P.O. Box 248, Penticton, BC V2A 6J9 (Canada); and others

    2017-01-10

    The precise localization of the repeating fast radio burst (FRB 121102) has provided the first unambiguous association (chance coincidence probability p ≲ 3 × 10{sup −4}) of an FRB with an optical and persistent radio counterpart. We report on optical imaging and spectroscopy of the counterpart and find that it is an extended (0.″6–0.″8) object displaying prominent Balmer and [O iii] emission lines. Based on the spectrum and emission line ratios, we classify the counterpart as a low-metallicity, star-forming, m{sub r′} = 25.1 AB mag dwarf galaxy at a redshift of z = 0.19273(8), corresponding to a luminosity distance of 972 Mpc. From the angular size, the redshift, and luminosity, we estimate the host galaxy to have a diameter ≲4 kpc and a stellar mass of M {sub *} ∼ (4–7) × 10{sup 7} M {sub ⊙}, assuming a mass-to-light ratio between 2 to 3 M {sub ⊙} L {sub ⊙} {sup −1}. Based on the H α flux, we estimate the star formation rate of the host to be 0.4 M {sub ⊙} yr{sup −1} and a substantial host dispersion measure (DM) depth ≲324 pc cm{sup −3}. The net DM contribution of the host galaxy to FRB 121102 is likely to be lower than this value depending on geometrical factors. We show that the persistent radio source at FRB 121102’s location reported by Marcote et al. is offset from the galaxy’s center of light by ∼200 mas and the host galaxy does not show optical signatures for AGN activity. If FRB 121102 is typical of the wider FRB population and if future interferometric localizations preferentially find them in dwarf galaxies with low metallicities and prominent emission lines, they would share such a preference with long gamma-ray bursts and superluminous supernovae.

  13. The Spitzer/Swift Gamma-Ray Burst Host Galaxy Legacy Survey

    Science.gov (United States)

    Perley, Daniel; Berger, Edo; Butler, Nathaniel; Cenko, S. Bradley; Chary, Ranga-Ram; Cucchiara, Antonino; Ellis, Richard; Fong, Wen-fai; Fruchter, Andrew; Fynbo, Johan; Gehrels, Neil; Graham, John; Greiner, Jochen; Hjorth, Jens; Hunt, Leslie; Jakobsson, Pall; Kruehler, Thomas; Laskar, Tanmoy; Le Floc'h, Emerich; Levan, Andrew; Levesque, Emily; Littlejohns, Owen; Malesani, Daniele; Michalowski, Michal; Milvang-Jensen, Bo; Prochaska, J. Xavier; Salvaterra, Ruben; Schulze, Steve; Schady, Patricia; Tanvir, Nial; de Ugarte Postigo, Antonio; Vergani, Susanna; Watson, Darach

    2016-08-01

    Long-duration gamma-ray bursts act as beacons to the sites of star-formation in the distant universe. GRBs reveal galaxies too faint and star-forming regions too dusty to characterize in detail using any other method, and provide a powerful independent constraint on the evolution of the cosmic star-formation rate density at high-redshift. However, a full understanding of the GRB phenomenon and its relation to cosmic star-formation requires connecting the observations obtained from GRBs to the properties of the galaxies hosting them. The large majority of GRBs originate at moderate to high redshift (z>1) and Spitzer has proven crucial for understanding the host population, given its unique ability to observe the rest-frame NIR and its unrivaled sensitivity and efficiency. We propose to complete a comprehensive public legacy survey of the Swift GRB host population to build on our earlier successes and push beyond the statistical limits of previous, smaller efforts. Our survey will enable a diverse range of GRB and galaxy science including: (1) to quantitatively and robustly map the connection between GRBs and cosmic star-formation to constrain the GRB progenitor and calibrate GRB rate-based measurements of the high-z cosmic star-formation rate; (2) to constrain the luminosity function of star-forming galaxies at the faint end and at high redshift; (3) to understand how the ISM properties seen in absorption in high-redshift galaxies unveiled by GRBs - metallicity, dust column, dust properties - connect to global properties of the host galaxies such as mass and age. Building on a decade of experience at both observatories, our observations will create an enduring joint Swift-Spitzer legacy sample - providing the definitive resource with which to examine all aspects of the GRB/galaxy connection for years to come and setting the stage for intensive JWST follow-up of the most interesting sources from our sample.

  14. The metallicity and dust content of a redshift 5 gamma-ray burst host galaxy

    DEFF Research Database (Denmark)

    Sparre, M.; Hartoog, O. E.; Krühler, T.

    2014-01-01

    Observations of the afterglows of long gamma-ray bursts (GRBs) allow the study of star-forming galaxies across most of cosmic history. Here we present observations of GRB 111008A from which we can measure metallicity, chemical abundance patterns, dust-to-metals ratio and extinction of the GRB host...... galaxy at z=5.0. The host absorption system is a damped Lyman-alpha absorber (DLA) with a very large neutral hydrogen column density of log N(HI)/cm^(-2) = 22.30 +/- 0.06, and a metallicity of [S/H]= -1.70 +/- 0.10. It is the highest redshift GRB with such a precise metallicity measurement. The presence...... of fine-structure lines confirms the z=5.0 system as the GRB host galaxy, and makes this the highest redshift where Fe II fine-structure lines have been detected. The afterglow is mildly reddened with A_V = 0.11 +/- 0.04 mag, and the host galaxy has a dust-to-metals ratio which is consistent with being...

  15. Massive stars formed in atomic hydrogen reservoirs: H i observations of gamma-ray burst host galaxies

    DEFF Research Database (Denmark)

    Michałowski, M. J.; Gentile, G.; Hjorth, J.

    2015-01-01

    Long gamma-ray bursts (GRBs), among the most energetic events in the Universe, are explosions of massive and short-lived stars, so they pinpoint locations of recent star formation. However, several GRB host galaxies have recently been found to be deficient in molecular gas (H2), believed to be th......Long gamma-ray bursts (GRBs), among the most energetic events in the Universe, are explosions of massive and short-lived stars, so they pinpoint locations of recent star formation. However, several GRB host galaxies have recently been found to be deficient in molecular gas (H2), believed......, implying high levels of atomic hydrogen (HI), which suggests that the connection between atomic gas and star formation is stronger than previously thought. In this case, it is possible that star formation is directly fuelled by atomic gas (or that the H1-to-H2 conversion is very efficient, which rapidly...

  16. The host galaxies and explosion sites of long-duration gamma ray bursts: Hubble Space Telescope near-infrared imaging

    Science.gov (United States)

    Lyman, J. D.; Levan, A. J.; Tanvir, N. R.; Fynbo, J. P. U.; McGuire, J. T. W.; Perley, D. A.; Angus, C. R.; Bloom, J. S.; Conselice, C. J.; Fruchter, A. S.; Hjorth, J.; Jakobsson, P.; Starling, R. L. C.

    2017-05-01

    We present the results of a Hubble Space Telescope WFC3/F160W Snapshot survey of the host galaxies of 39 long-duration gamma-ray bursts (LGRBs) at z evidence for evolution of the population of LGRB hosts towards lower luminosity, higher concentrated hosts at lower redshifts. Their half-light radii are consistent with other LGRB host samples where measurements were made on rest-frame UV observations. In agreement with recent work, we find their 80 per cent enclosed flux radii distribution to be more extended than previously thought, making them intermediate between core-collapse supernova (CCSN) and superluminous supernova (SLSN) hosts. The galactocentric projected-offset distribution confirms LGRBs as centrally concentrated, much more so than CCSNe and similar to SLSNe. LGRBs are strongly biased towards the brighter regions in their host light distributions, regardless of their offset. We find a correlation between the luminosity of the LGRB explosion site and the intrinsic column density, NH, towards the burst.

  17. A population of massive, luminous galaxies hosting heavily dust-obscured gamma-ray bursts: Implications for the use of GRBs as tracers of cosmic star formation

    Energy Technology Data Exchange (ETDEWEB)

    Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Levan, A. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Tanvir, N. R. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Cenko, S. B.; Bloom, J. S.; Filippenko, A. V.; Morgan, A. N. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Hjorth, J.; Krühler, T.; Fynbo, J. P. U.; Milvang-Jensen, B. [Dark Cosmology Centre, Niels Bohr Institute, Copenhagen (Denmark); Fruchter, A.; Kalirai, J. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Jakobsson, P. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavík (Iceland); Prochaska, J. X. [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Silverman, J. M., E-mail: dperley@astro.caltech.edu [Department of Astronomy, University of Texas, Austin, TX 78712 (United States)

    2013-12-01

    We present observations and analysis of the host galaxies of 23 heavily dust-obscured gamma-ray bursts (GRBs) observed by the Swift satellite during the years 2005-2009, representing all GRBs with an unambiguous host-frame extinction of A{sub V} > 1 mag from this period. Deep observations with Keck, Gemini, Very Large Telescope, Hubble Space Telescope, and Spitzer successfully detect the host galaxies and establish spectroscopic or photometric redshifts for all 23 events, enabling us to provide measurements of the intrinsic host star formation rates, stellar masses, and mean extinctions. Compared to the hosts of unobscured GRBs at similar redshifts, we find that the hosts of dust-obscured GRBs are (on average) more massive by about an order of magnitude and also more rapidly star forming and dust obscured. While this demonstrates that GRBs populate all types of star-forming galaxies, including the most massive, luminous systems at z ≈ 2, at redshifts below 1.5 the overall GRB population continues to show a highly significant aversion to massive galaxies and a preference for low-mass systems relative to what would be expected given a purely star-formation-rate-selected galaxy sample. This supports the notion that the GRB rate is strongly dependent on metallicity, and may suggest that the most massive galaxies in the universe underwent a transition in their chemical properties ∼9 Gyr ago. We also conclude that, based on the absence of unobscured GRBs in massive galaxies and the absence of obscured GRBs in low-mass galaxies, the dust distributions of the lowest-mass and the highest-mass galaxies are relatively homogeneous, while intermediate-mass galaxies (∼10{sup 9} M {sub ☉}) have diverse internal properties.

  18. The luminous, massive and solar metallicity galaxy hosting the Swift γ-ray burst GRB 160804A at z = 0.737

    Science.gov (United States)

    Heintz, K. E.; Malesani, D.; Wiersema, K.; Jakobsson, P.; Fynbo, J. P. U.; Savaglio, S.; Cano, Z.; Covino, S.; D'Elia, V.; Gomboc, A.; Hammer, F.; Kaper, L.; Milvang-Jensen, B.; Møller, P.; Piranomonte, S.; Selsing, J.; Rhodin, N. H. P.; Tanvir, N. R.; Thöne, C. C.; de Ugarte Postigo, A.; Vergani, S. D.; Watson, D.

    2018-02-01

    We here present the spectroscopic follow-up observations with VLT/X-shooter of the Swift long-duration gamma-ray burst GRB 160804A at z = 0.737. Typically, GRBs are found in low-mass, metal-poor galaxies that constitute the sub-luminous population of star-forming galaxies. For the host galaxy of the GRB presented here, we derive a stellar mass of log (M*/ M⊙) = 9.80 ± 0.07, a roughly solar metallicity (12 + log (O/H) = 8.74 ± 0.12) based on emission line diagnostics, and an infrared luminosity of M3.6/(1 + z) = -21.94 mag, but find it to be dust-poor (E(B - V) < 0.05 mag). This establishes the galaxy hosting GRB 160804A as one of the most luminous, massive and metal-rich GRB hosts at z < 1.5. Furthermore, the gas-phase metallicity is found to be representative of the physical conditions of the gas close to the explosion site of the burst. The high metallicity of the host galaxy is also observed in absorption, where we detect several strong Fe II transitions as well as Mg II and Mg I. Although host galaxy absorption features are common in GRB afterglow spectra, we detect absorption from strong metal lines directly in the host continuum (at a time when the afterglow was contributing to < 15 per cent). Finally, we discuss the possibility that the geometry and state of the absorbing and emitting gas are indicative of a galactic scale outflow expelled at the final stage of two merging galaxies.

  19. CONNECTING GRBs AND ULIRGs: A SENSITIVE, UNBIASED SURVEY FOR RADIO EMISSION FROM GAMMA-RAY BURST HOST GALAXIES AT 0 < z < 2.5

    Energy Technology Data Exchange (ETDEWEB)

    Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Perley, R. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Hjorth, J.; Malesani, D. [Dark Cosmology Centre, Niels Bohr Institute, DK-2100 Copenhagen (Denmark); Michałowski, M. J. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Cenko, S. B. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Jakobsson, P. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavík (Iceland); Krühler, T. [European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago 19 (Chile); Levan, A. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Tanvir, N. R., E-mail: dperley@astro.caltech.edu [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom)

    2015-03-10

    Luminous infrared galaxies and submillimeter galaxies contribute significantly to stellar mass assembly and provide an important test of the connection between the gamma-ray burst (GRB) rate and that of overall cosmic star formation. We present sensitive 3 GHz radio observations using the Karl G. Jansky Very Large Array of 32 uniformly selected GRB host galaxies spanning a redshift range from 0 < z < 2.5, providing the first fully dust- and sample-unbiased measurement of the fraction of GRBs originating from the universe's most bolometrically luminous galaxies. Four galaxies are detected, with inferred radio star formation rates (SFRs) ranging between 50 and 300 M {sub ☉} yr{sup –1}. Three of the four detections correspond to events consistent with being optically obscured 'dark' bursts. Our overall detection fraction implies that between 9% and 23% of GRBs between 0.5 < z < 2.5 occur in galaxies with S {sub 3GHz} > 10 μJy, corresponding to SFR > 50 M {sub ☉} yr{sup –1} at z ∼ 1 or >250 M {sub ☉} yr{sup –1} at z ∼ 2. Similar galaxies contribute approximately 10%-30% of all cosmic star formation, so our results are consistent with a GRB rate that is not strongly biased with respect to the total SFR of a galaxy. However, all four radio-detected hosts have stellar masses significantly lower than IR/submillimeter-selected field galaxies of similar luminosities. We suggest that the GRB rate may be suppressed in metal-rich environments but independently enhanced in intense starbursts, producing a strong efficiency dependence on mass but little net dependence on bulk galaxy SFR.

  20. Empirical Constraints on the Origin of Fast Radio Bursts: Volumetric Rates and Host Galaxy Demographics as a Test of Millisecond Magnetar Connection

    Science.gov (United States)

    Nicholl, M.; Williams, P. K. G.; Berger, E.; Villar, V. A.; Alexander, K. D.; Eftekhari, T.; Metzger, B. D.

    2017-07-01

    The localization of the repeating fast radio burst (FRB) 121102 to a low-metallicity dwarf galaxy at z = 0.193, and its association with a luminous quiescent radio source, suggests the possibility that FRBs originate from magnetars, formed by the unusual supernovae that occur in such galaxies. We investigate this possibility via a comparison of magnetar birth rates, the FRB volumetric rate, and host galaxy demographics. We calculate average volumetric rates of possible millisecond magnetar production channels, such as superluminous supernovae (SLSNe), long and short gamma-ray bursts (GRBs), and general magnetar production via core-collapse supernovae (CCSNe). For each channel, we also explore the expected host galaxy demographics using their known properties. We determine for the first time the number density of FRB emitters (the product of their volumetric birth rate and lifetime), {R}{FRB}τ ≈ {10}4 Gpc-3, assuming that FRBs are predominantly emitted from repetitive sources similar to FRB 121102 and adopting a beaming factor of 0.1. By comparing rates, we find that production via rare channels (SLSNe, GRBs) implies a typical FRB lifetime of ˜30-300 years, in good agreement with other lines of argument. The total energy emitted over this time is consistent with the available energy stored in the magnetic field. On the other hand, any relation to magnetars produced via normal CCSNe leads to a very short lifetime of ˜0.5 years, in conflict with both theory and observation. We demonstrate that due to the diverse host galaxy distributions of the different progenitor channels, many possible sources of FRB birth can be ruled out with ≲ 10 host galaxy identifications. Conversely, targeted searches of galaxies that have previously hosted decades-old SLSNe and GRBs may be a fruitful strategy for discovering new FRBs and related quiescent radio sources, and determining the nature of their progenitors.

  1. Hα Intensity Map of the Repeating Fast Radio Burst FRB 121102 Host Galaxy from Subaru/Kyoto 3DII AO-assisted Optical Integral-field Spectroscopy

    Science.gov (United States)

    Kokubo, Mitsuru; Mitsuda, Kazuma; Sugai, Hajime; Ozaki, Shinobu; Minowa, Yosuke; Hattori, Takashi; Hayano, Yutaka; Matsubayashi, Kazuya; Shimono, Atsushi; Sako, Shigeyuki; Doi, Mamoru

    2017-08-01

    We present the Hα intensity map of the host galaxy of the repeating fast radio burst FRB 121102 at a redshift of z = 0.193 obtained with the AO-assisted Kyoto 3DII optical integral-field unit mounted on the 8.2 m Subaru Telescope. We detected a compact Hα-emitting (I.e., star-forming) region in the galaxy, which has a much smaller angular size (universe as {{{Ω }}}{IGM}> 0.012. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  2. UV star-formation rates of GRB host galaxies

    DEFF Research Database (Denmark)

    Christensen, L.; Hjorth, J.; Gorosabel, J.

    2004-01-01

    We study a magnitude-limited sample of 10 gamma-ray burst (GRB) host galaxies with known spectroscopic redshifts (0.43......We study a magnitude-limited sample of 10 gamma-ray burst (GRB) host galaxies with known spectroscopic redshifts (0.43...

  3. The very red afterglow of GRB 000418: Further evidence for dust extinction in a gamma-ray burst host galaxy

    DEFF Research Database (Denmark)

    Klose, S.; Stecklum, B.; Masetti, N.

    2000-01-01

    We report near-infrared and optical follow-up observations of the afterglow of the GRB 000418 starting 2.5 days after the occurrence of the burst and extending over nearly 7 weeks. GRB 000418 represents the second case for which the afterglow was initially identified by observations in the near-i...

  4. Are long gamma-ray bursts biased tracers of star formation? Clues from the host galaxies of the Swift/BAT6 complete sample of bright LGRBs. II. Star formation rates and metallicities at z < 1

    Science.gov (United States)

    Japelj, J.; Vergani, S. D.; Salvaterra, R.; D'Avanzo, P.; Mannucci, F.; Fernandez-Soto, A.; Boissier, S.; Hunt, L. K.; Atek, H.; Rodríguez-Muñoz, L.; Scodeggio, M.; Cristiani, S.; Le Floc'h, E.; Flores, H.; Gallego, J.; Ghirlanda, G.; Gomboc, A.; Hammer, F.; Perley, D. A.; Pescalli, A.; Petitjean, P.; Puech, M.; Rafelski, M.; Tagliaferri, G.

    2016-05-01

    Aims: Long gamma-ray bursts (LGRBs) are associated with the deaths of massive stars and might therefore be a potentially powerful tool for tracing cosmic star formation. However, especially at low redshifts (zextinction, star formation rate (SFR), and nebular metallicity (Z) of the hosts and supplemented the data set with previously measured stellar masses M⋆. The distributions of the obtained properties and their interrelations (e.g. mass-metallicity and SFR-M⋆ relations) are compared to samples of field star-forming galaxies. Results: We find that LGRB hosts at zmass-metallicity relation at similar mean redshift and stellar masses. The cutoff against high metallicities (and high masses) can explain the low SFR values of LGRB hosts. We find a hint of an increased incidence of starburst galaxies in the Swift/BAT6 zmasses. Nevertheless, the limits on the completeness and metallicity availability of current surveys, coupled with the limited number of LGRB host galaxies, prevents us from investigating more quantitatively whether the starburst incidence is such as expected after taking into account the high-metallicity aversion of LGRB host galaxies. Based on observations at ESO, Program IDs: 077.D-0425, 177.A-0591, 080.D-0526, 081.A-0856, 082.D-0276, 083.D-0069, 084.A-0303, 084.A-0260, 086.A-0644, 086.B-0954, 089.A-0868, 090.A-0760, 095.D-0560.The reduced spectra are available in the ESO archive as Phase 3 data products and in the GTC archive.

  5. Closing in on a Short-Hard Burst Progenitor: Constraints From Early-Time Optical Imaging and Spectroscopy of a Possible Host Galaxy of GRB 050509b

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, Joshua S.; Prochaska, J.X.; Pooley, D.; Blake, C.W.; Foley, R.J.; Jha, S.; Ramirez-Ruiz, E.; Granot, J.; Filippenko, A.V.; Sigurdsson, S.; Barth, A.J.; Chen,; Cooper, M.C.; Falco, E.E.; Gal, R.R.; Gerke, B.F.; Gladders, M.D.; Greene, J.E.; Hennanwi, J.; Ho, L.C.; Hurley, K.; /UC, Berkeley, Astron. Dept. /Lick Observ.

    2005-06-07

    The localization of the short-duration, hard-spectrum gamma-ray burst GRB050509b by the Swift satellite was a watershed event. Never before had a member of this mysterious subclass of classic GRBs been rapidly and precisely positioned in a sky accessible to the bevy of ground-based follow-up facilities. Thanks to the nearly immediate relay of the GRB position by Swift, we began imaging the GRB field 8 minutes after the burst and have continued during the 8 days since. Though the Swift X-ray Telescope (XRT) discovered an X-ray afterglow of GRB050509b, the first ever of a short-hard burst, thus far no convincing optical/infrared candidate afterglow or supernova has been found for the object. We present a re-analysis of the XRT afterglow and find an absolute position of R.A. = 12h36m13.59s, Decl. = +28{sup o}59'04.9'' (J2000), with a 1{sigma} uncertainty of 3.68'' in R.A., 3.52'' in Decl.; this is about 4'' to the west of the XRT position reported previously. Close to this position is a bright elliptical galaxy with redshift z = 0.2248 {+-} 0.0002, about 1' from the center of a rich cluster of galaxies. This cluster has detectable diffuse emission, with a temperature of kT = 5.25{sub -1.68}{sup +3.36} keV. We also find several ({approx}11) much fainter galaxies consistent with the XRT position from deep Keck imaging and have obtained Gemini spectra of several of these sources. Nevertheless we argue, based on positional coincidences, that the GRB and the bright elliptical are likely to be physically related. We thus have discovered reasonable evidence that at least some short-duration, hard-spectra GRBs are at cosmological distances. We also explore the connection of the properties of the burst and the afterglow, finding that GRB050509b was underluminous in both of these relative to long-duration GRBs. However, we also demonstrate that the ratio of the blast-wave energy to the {gamma}-ray energy is consistent with that

  6. An HST study of three very faint GRB host galaxies

    DEFF Research Database (Denmark)

    Jaunsen, A.O.; Andersen, M.I.; Hjorth, J.

    2003-01-01

    . (2002). We obtain a revised and much higher probability that the galaxies identified as hosts indeed are related to the GRBs (P(n(chance))=0.69, following Bloom et al. 2002), thereby strengthening the conclusion that GRBs are preferentially located in star-forming regions in their hosts. Apart from......As part of the HST/STIS GRB host survey program we present the detection of three faint gamma-ray burst (GRB) host galaxies based on an accurate localisation using ground-based data of the optical afterglows (OAs). A common property of these three hosts is their extreme faintness. The location...... at which GRBs occur with respect to their host galaxies and surrounding environments are robust indicators of the nature of GRB progenitors. The bursts studied here are among the four most extreme outliers, in terms of relative distance from the host center, in the recent comprehensive study of Bloom et al...

  7. Star formation rates and stellar masses in z ~ 1 gamma-ray burst hosts

    DEFF Research Database (Denmark)

    Castro Cerón, José María; Michalowski, Michal; Hjorth, J.

    2006-01-01

    Cosmology: Observations, ISM: Dust, Extinction, Galaxies: High-Redshift, Galaxies: ISM, Gamma Rays: Bursts, Infrared: Galaxies Udgivelsesdato: Dec. 4......Cosmology: Observations, ISM: Dust, Extinction, Galaxies: High-Redshift, Galaxies: ISM, Gamma Rays: Bursts, Infrared: Galaxies Udgivelsesdato: Dec. 4...

  8. The Swift GRB Host Galaxy Legacy Survey

    Science.gov (United States)

    Perley, Daniel A.

    I will describe the Swift Host Galaxy Legacy Survey (SHOALS), a comprehensive multiwavelengthprogram to characterize the demographics of the GRB host population and its redshift evolution from z=0 to z=7.Using unbiased selection criteria we have designated a subset of 119 Swift gamma-ray bursts which are now beingtargeted with intensive observational follow-up. Deep Spitzer imaging of every field has already been obtained andanalyzed, with major programs ongoing at Keck, GTC, Gemini, VLT, and Magellan to obtain complementaryoptical/NIR photometry and spectroscopy to enable full SED modeling and derivation of fundamental physicalparameters such as mass, extinction, and star-formation rate. Using these data I will present an unbiasedmeasurement of the GRB host-galaxy luminosity and mass distributions and their evolution with redshift, compareGRB hosts to other star-forming galaxy populations, and discuss implications for the nature of the GRB progenitor andthe ability of GRBs to serve as tools for measuring and studying cosmic star-formation in the distant universe.

  9. GRB hosts through cosmic time. VLT/X-Shooter emission-line spectroscopy of 96 γ-ray-burst-selected galaxies at 0.1

    Science.gov (United States)

    Krühler, T.; Malesani, D.; Fynbo, J. P. U.; Hartoog, O. E.; Hjorth, J.; Jakobsson, P.; Perley, D. A.; Rossi, A.; Schady, P.; Schulze, S.; Tanvir, N. R.; Vergani, S. D.; Wiersema, K.; Afonso, P. M. J.; Bolmer, J.; Cano, Z.; Covino, S.; D'Elia, V.; de Ugarte Postigo, A.; Filgas, R.; Friis, M.; Graham, J. F.; Greiner, J.; Goldoni, P.; Gomboc, A.; Hammer, F.; Japelj, J.; Kann, D. A.; Kaper, L.; Klose, S.; Levan, A. J.; Leloudas, G.; Milvang-Jensen, B.; Nicuesa Guelbenzu, A.; Palazzi, E.; Pian, E.; Piranomonte, S.; Sánchez-Ramírez, R.; Savaglio, S.; Selsing, J.; Tagliaferri, G.; Vreeswijk, P. M.; Watson, D. J.; Xu, D.

    2015-09-01

    We present data and initial results from VLT/X-Shooter emission-line spectroscopy of 96 galaxies selected by long γ-ray bursts (GRBs) at 0.1 Swift and 76% are at 0.5 2 by ~0.4 dex. These properties of GRB hosts and their evolution with redshift can be understood in a cosmological context of star-forming galaxies and a picture in which the hosts' properties at low redshift are influenced by the tendency of GRBs to avoid the most metal-rich environments. Based on observations at ESO, Program IDs: 084.A-0260, 084.A-0303, 085.A-0009, 086.B-0954, 086.A-0533, 086.A-0874, 087.A-0055, 087.A-0451, 087.B-0737, 088.A-0051, 088.A-0644, 089.A-0067, 089.A-0120, 089.D-0256, 089.A-0868, 090.A-0088, 090.A-0760, 090.A-0825, 091.A-0342, 091.A-0703, 091.A-0877, 091.C-0934, 092.A-0076, 092.A-0124, 092.A-0231, 093.A-0069, 094.A-0593.Tables 1-4 and appendices are available in electronic form at http://www.aanda.orgThe reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/581/A125

  10. The blue host galaxy of the red GRB 000418

    DEFF Research Database (Denmark)

    Gorosabel, J.; Klose, S.; Christensen, L.

    2003-01-01

    We report on multi-band (UBVRIZJ(s)K(s)) observations of the host galaxy of the April 18, 2000 gamma-ray burst. The Spectral Energy Distribution (SED) is analysed by fitting empirical and synthetic spectral templates. We find that: (i) the best SED fit is obtained with a starburst template, (ii) ...

  11. Cosmic evolution and metal aversion in superluminous supernova host galaxies

    Science.gov (United States)

    Schulze, S.; Krühler, T.; Leloudas, G.; Gorosabel, J.; Mehner, A.; Buchner, J.; Kim, S.; Ibar, E.; Amorín, R.; Herrero-Illana, R.; Anderson, J. P.; Bauer, F. E.; Christensen, L.; de Pasquale, M.; de Ugarte Postigo, A.; Gallazzi, A.; Hjorth, J.; Morrell, N.; Malesani, D.; Sparre, M.; Stalder, B.; Stark, A. A.; Thöne, C. C.; Wheeler, J. C.

    2018-01-01

    The SUperluminous Supernova Host galaxIES survey aims to provide strong new constraints on the progenitors of superluminous supernovae (SLSNe) by understanding the relationship to their host galaxies. We present the photometric properties of 53 H-poor and 16 H-rich SLSN host galaxies out to z ∼ 4. We model their spectral energy distributions to derive physical properties, which we compare with other galaxy populations. At low redshift, H-poor SLSNe are preferentially found in very blue, low-mass galaxies with high average specific star formation rates. As redshift increases, the host population follows the general evolution of star-forming galaxies towards more luminous galaxies. After accounting for secular evolution, we find evidence for differential evolution in galaxy mass, but not in the B band and the far-ultraviolet luminosity (3σ confidence). Most remarkable is the scarcity of hosts with stellar masses above 1010 M⊙ for both classes of SLSNe. In case of H-poor SLSNe, we attribute this to a stifled production efficiency above ∼0.4 solar metallicity. However, we argue that, in addition to low metallicity, a short-lived stellar population is also required to regulate the SLSN production. H-rich SLSNe are found in a very diverse population of star-forming galaxies. Still, the scarcity of massive hosts suggests a stifled production efficiency above ∼0.8 solar metallicity. The large dispersion of the H-rich SLSNe host properties is in stark contrast to those of gamma-ray burst, regular core-collapse SN, and H-poor SLSNe host galaxies. We propose that multiple progenitor channels give rise to this subclass.

  12. A multi-colour study of the dark GRB 000210 host galaxy and its environment

    DEFF Research Database (Denmark)

    Gorosabel, J.; Christensen, Lise; Hjorth, J.

    2003-01-01

    We present UBVRIZJsHKs broad band photometry of the host galaxy of the dark gamma-ray burst (GRB) of February 10, 2000. These observations represent the most exhaustive photometry given to date of any GRB host galaxy. A grid of spectral templates have been fitted to the Spectral Energy Distribution...

  13. Gas Kinematics in GRB Host Galaxies

    DEFF Research Database (Denmark)

    Arabsalmani, Maryam

    The star formation history of the Universe is one of the most complex and interesting chapters in our quest to understand galaxy formation and evolution. Gamma Ray Bursts (GRBs) are beacons of actively star forming galaxies from redshifts near zero back to the cosmic dawn. In addition, they provide...

  14. Gamma-Ray Burst Afterglows as Probes of Environment and Blast Wave Physics. I. Absorption by Host-Galaxy Gas and Dust

    NARCIS (Netherlands)

    Starling, R.L.C.; Wijers, R.A.M.J.; Wiersema, K.; Rol, E.; Curran, P.A.; Kouveliotou, C.; van der Horst, A.J.; Heemskerk, M.H.M.

    2007-01-01

    We use a new approach to obtain limits on the absorbing columns toward an initial sample of 10 long gamma-ray bursts observed with BeppoSAX and selected on the basis of their good optical and near-infrared (NIR) coverage, from simultaneous fits to NIR, optical, and X-ray afterglow data, in count

  15. Host Galaxy Identification for Supernova Surveys

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; Spinka, Harold; Kessler, Richard; Goldstein, Daniel A.; Liotine, Camille; Pomian, Katarzyna; D’Andrea, Chris B.; Sullivan, Mark; Carretero, Jorge; Castander, Francisco J.; Nichol, Robert C.; Finley, David A.; Fischer, John A.; Foley, Ryan J.; Kim, Alex G.; Papadopoulos, Andreas; Sako, Masao; Scolnic, Daniel M.; Smith, Mathew; Tucker, Brad E.; Uddin, Syed; Wolf, Rachel C.; Yuan, Fang; Abbott, Tim M. C.; Abdalla, Filipe B.; Benoit-Lévy, Aurélien; Bertin, Emmanuel; Brooks, David; Rosell, Aurelio Carnero; Kind, Matias Carrasco; Cunha, Carlos E.; Costa, Luiz N. da; Desai, Shantanu; Doel, Peter; Eifler, Tim F.; Evrard, August E.; Flaugher, Brenna; Fosalba, Pablo; Gaztañaga, Enrique; Gruen, Daniel; Gruendl, Robert; James, David J.; Kuehn, Kyler; Kuropatkin, Nikolay; Maia, Marcio A. G.; Marshall, Jennifer L.; Miquel, Ramon; Plazas, Andrés A.; Romer, A. Kathy; Sánchez, Eusebio; Schubnell, Michael; Sevilla-Noarbe, Ignacio; Sobreira, Flávia; Suchyta, Eric; Swanson, Molly E. C.; Tarle, Gregory; Walker, Alistair R.; Wester, William

    2016-11-08

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope (LSST), which will discover SNe by the thousands. Spectroscopic resources are limited, so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.

  16. Fast radio burst tied to distant dwarf galaxy (Image 2)

    National Science Foundation

    2017-06-07

    Full Text Available Radio telescope at Arecibo only localized the fast radio burst to the area inside the two circles in this image, but the Very Large Array was able to pinpoint it as a dwarf galaxy within the square (shown at intersection of cross hairs in enlarged box)

  17. Stellar Populations of Quasar Host Galaxies Using WIYN

    Science.gov (United States)

    Mosby, Gregory; Moravec, E.; Kotulla, R. C.

    2013-06-01

    We now know that most galaxies have supermassive black holes (SMBH) in their centers, and somewhat unexpectedly, there are relationships—such as the M-sigma relation—between the mass of the central black hole and the velocity dispersion of the host galaxy's stellar spheroid (bulge), even though they lie outside the black hole's influence. Galaxy merger models show reasonable evidence for coevolution of the bulge and black hole since the merging process initiates simultaneous growth of the black hole and galaxy by supplying gas to the nucleus for accretion onto the black hole and triggering bursts of star formation. The merging process truncates the growth of both by removing the gas reservoir via feedback from these processes. But recently, it’s been shown that this relation could arise from central limit-like arguments alone. To really judge connections between SMBH and their host, it’s crucial to study these galaxies at the peak of black hole growth—during the quasar phase. Using 3-d spectroscopy methods, namely Sparsepak, an integral field units (IFU) on WIYN, it is possible to successfully recover information about the host galaxy's integrated star formation history that can be used to check merger-induced galaxy evolution predicted by the models. However, it is critical to have a robust and careful analysis of the stellar population modeling. The research presented in this poster focuses on new results from Sparsepak and preliminary WHIRC H-band light profiles of select quasar host galaxies. The stellar populations are derived using a new statistical method called diffusion k-means, and the WHIRC data are analyzed using a Python code written by Ralf Kotulla.

  18. THE OPTICALLY UNBIASED GAMMA-RAY BURST HOST (TOUGH) SURVEY. I. SURVEY DESIGN AND CATALOGS

    Energy Technology Data Exchange (ETDEWEB)

    Hjorth, Jens; Malesani, Daniele; Fynbo, Johan P. U.; Kruehler, Thomas; Milvang-Jensen, Bo; Watson, Darach [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Jakobsson, Pall; Schulze, Steve [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik (Iceland); Jaunsen, Andreas O. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Gorosabel, Javier [Instituto de Astrofisica de Andalucia (IAA-CSIC), P.O. Box 03004, E-18080 Granada (Spain); Levan, Andrew J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Michalowski, Michal J. [SUPA, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Moller, Palle [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching by Muenchen (Germany); Tanvir, Nial R., E-mail: jens@dark-cosmology.dk [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2012-09-10

    Long-duration gamma-ray bursts (GRBs) are powerful tracers of star-forming galaxies. We have defined a homogeneous subsample of 69 Swift GRB-selected galaxies spanning a very wide redshift range. Special attention has been devoted to making the sample optically unbiased through simple and well-defined selection criteria based on the high-energy properties of the bursts and their positions on the sky. Thanks to our extensive follow-up observations, this sample has now achieved a comparatively high degree of redshift completeness, and thus provides a legacy sample, useful for statistical studies of GRBs and their host galaxies. In this paper, we present the survey design and summarize the results of our observing program conducted at the ESO Very Large Telescope (VLT) aimed at obtaining the most basic properties of galaxies in this sample, including a catalog of R and K{sub s} magnitudes and redshifts. We detect the host galaxies for 80% of the GRBs in the sample, although only 42% have K{sub s} -band detections, which confirms that GRB-selected host galaxies are generally blue. The sample is not uniformly blue, however, with two extremely red objects detected. Moreover, galaxies hosting GRBs with no optical/NIR afterglows, whose identification therefore relies on X-ray localizations, are significantly brighter and redder than those with an optical/NIR afterglow. This supports a scenario where GRBs occurring in more massive and dusty galaxies frequently suffer high optical obscuration. Our spectroscopic campaign has resulted in 77% now having redshift measurements, with a median redshift of 2.14 {+-} 0.18. TOUGH alone includes 17 detected z > 2 Swift GRB host galaxies suitable for individual and statistical studies-a substantial increase over previous samples. Seven hosts have detections of the Ly{alpha} emission line and we can exclude an early indication that Ly{alpha} emission is ubiquitous among GRB hosts, but confirm that Ly{alpha} is stronger in GRB

  19. Bursts of star formation in computer simulations of dwarf galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Comins, N.F.

    1984-09-01

    A three-dimensional Stochastic Self-Propagating Star Formation (SSPSF) model of compact galacies is presented. Two phases of gas, active and inactive, are present, and permanent depletion of gas in the form of long lived, low mass stars and remnants occurs. Similarly, global infall of gas from a galactic halo or through galactic cannibalism is permitted. We base our parameters on the observed properties of the compact blue galaxy I Zw 36. Our results are that bursts of star formation occur much more frequently in these runs than continuous nonbursting star formation, suggesting that the blue compact galaxies are probably undergoing bursts rather than continuous, nonbursting low-level star formation activity.

  20. The host galaxy of GRB 990712

    DEFF Research Database (Denmark)

    Christensen, L.; Hjorth, J.; Gorosabel, J.

    2004-01-01

    galaxy types shows that the host is similar to a moderately kreddened starburst galaxy with a young stellar population. The estimated internal extinction in the host is A(V) = 0.15 +/- 0.1 and the star-formation rate (SFR) from the UV continuum is 1.3 +/- 0.3 M-circle dot yr(-1) (not corrected......We present a comprehensive study of the z = 0.43 host galaxy of GRB 990712, involving ground-based photometry, spectroscopy, and HST imaging. The broad-band UBVRIJHKs photometry is used to determine the global spectral energy distribution (SED) of the host galaxy. Comparison with that of known...... for the effects of extinction). Other galaxy template spectra than starbursts failed to reproduce the observed SED. We also present VLT spectra leading to the detection of Halpha from the GRB host galaxy. A SFR of 2.8 +/- 0.7 M-circle dot yr(-1) is inferred from the Halpha line flux, and the presence of a young...

  1. Circumnuclear Structures in Megamaser Host Galaxies

    Science.gov (United States)

    Pjanka, Patryk; Greene, Jenny E.; Seth, Anil C.; Braatz, James A.; Henkel, Christian; Lo, Fred K. Y.; Läsker, Ronald

    2017-08-01

    Using the Hubble Space Telescope, we identify circumnuclear (100-500 pc scale) structures in nine new H2O megamaser host galaxies to understand the flow of matter from kpc-scale galactic structures down to the supermassive black holes (SMBHs) at galactic centers. We double the sample analyzed in a similar way by Greene et al. and consider the properties of the combined sample of 18 sources. We find that disk-like structure is virtually ubiquitous when we can resolve hosts. We find marginal evidence that the disk-like nuclear structures show increasing misalignment from the kpc-scale host galaxy disk as the scale of the structure decreases. In turn, we find that the orientation of both the ˜100 pc scale nuclear structures and their host galaxy large-scale disks is consistent with random with respect to the orientation of their respective megamaser disks.

  2. Spatially-resolved dust properties of the GRB 980425 host galaxy

    DEFF Research Database (Denmark)

    Michałowski, Michał J.; Hunt, L. K.; Palazzi, E.

    2014-01-01

    ), located 800 pc away from the GRB position. The host is characterised by low dust content and high fraction of UV-visible star-formation, similar to other dwarf galaxies. Such galaxies are abundant in the local universe, so it is not surprising to find a GRB in one of them, assuming the correspondence......Gamma-ray bursts (GRBs) have been proposed as a tool to study star formation in the Universe, so it is crucial to investigate whether their host galaxies and immediate environments are in any way special compared with other star-forming galaxies. Here we present spatially resolved maps of dust...... emission of the host galaxy of the closest known GRB 980425 at z=0.0085 using our new high-resolution observations from Herschel, APEX, ALMA and ATCA. We modeled the spectral energy distributions of the host and of the star-forming region displaying the Wolf-Rayet signatures in the spectrum (WR region...

  3. Spectroscopy of superluminous supernova host galaxies

    DEFF Research Database (Denmark)

    Leloudas, G.; Kruehler, T.; Schulze, S

    2015-01-01

    Superluminous supernovae (SLSNe) are very bright explosions that were only discovered recently and that show a preference for occurring in faint dwarf galaxies. Understanding why stellar evolution yields different types of stellar explosions in these environments is fundamental in order to both...... uncover the elusive progenitors of SLSNe and to study star formation in dwarf galaxies. In this paper, we present the first results of our project to study SUperluminous Supernova Host galaxIES, focusing on the sample for which we have obtained spectroscopy. We show that SLSNe-I and SLSNe-R (hydrogen......-poor) often (~50% in our sample) occur in a class of galaxies that is known as Extreme Emission Line Galaxies (EELGs). The probability of this happening by chance is negligible and we therefore conclude that the extreme environmental conditions and the SLSN phenomenon are related. In contrast, SLSNe...

  4. Star Formation Quenching in Quasar Host Galaxies

    Directory of Open Access Journals (Sweden)

    Stefano Carniani

    2017-10-01

    Full Text Available Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN. In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s, which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M⊙ yr−1, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2 ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2 transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  5. Modeling The GRB Host Galaxy Mass Distribution: Are GRBs Unbiased Tracers of Star Formation?

    Energy Technology Data Exchange (ETDEWEB)

    Kocevski, Daniel; /KIPAC, Menlo Park; West, Andrew A.; /UC, Berkeley, Astron. Dept. /MIT, MKI; Modjaz, Maryam; /UC, Berkeley, Astron. Dept.

    2009-08-03

    We model the mass distribution of long gamma-ray burst (GRB) host galaxies given recent results suggesting that GRBs occur in low metallicity environments. By utilizing measurements of the redshift evolution of the mass-metallicity (M-Z) relationship for galaxies, along with a sharp host metallicity cut-off suggested by Modjaz and collaborators, we estimate an upper limit on the stellar mass of a galaxy that can efficiently produce a GRB as a function of redshift. By employing consistent abundance indicators, we find that sub-solar metallicity cut-offs effectively limit GRBs to low stellar mass spirals and dwarf galaxies at low redshift. At higher redshifts, as the average metallicity of galaxies in the Universe falls, the mass range of galaxies capable of hosting a GRB broadens, with an upper bound approaching the mass of even the largest spiral galaxies. We compare these predicted limits to the growing number of published GRB host masses and find that extremely low metallicity cut-offs of 0.1 to 0.5 Z{sub {circle_dot}} are effectively ruled out by a large number of intermediate mass galaxies at low redshift. A mass function that includes a smooth decrease in the efficiency of producing GRBs in galaxies of metallicity above 12+log(O/H){sub KK04} = 8.7 can, however, accommodate a majority of the measured host galaxy masses. We find that at z {approx} 1, the peak in the observed GRB host mass distribution is inconsistent with the expected peak in the mass of galaxies harboring most of the star formation. This suggests that GRBs are metallicity biased tracers of star formation at low and intermediate redshifts, although our model predicts that this bias should disappear at higher redshifts due to the evolving metallicity content of the universe.

  6. The optical afterglow and host galaxy of GRB 000926

    DEFF Research Database (Denmark)

    Fynbo, J.U.; Gorosabel, J.; Dall, T.H.

    2002-01-01

    In this paper we illustrate with the case of GRB 000926 how Gamma Ray Bursts (GRBs) can be used as cosmological lighthouses to identify and study star forming galaxies at high redshifts. The optical afterglow of the burst was located with optical imaging at the Nordic Optical Telescope 20.7 hours...

  7. Star Forming Galaxies and AGN Hosts: The Seagull Wings

    Science.gov (United States)

    Stasińska, Grazyna; Cid Fernandes, Roberto; Mateus, Abîlio; Sodré, Laerte; Asari, Natalia V.

    2007-05-01

    We discuss the spectral signatures of normal star forming (NSF) galaxies and of AGN hosts of and present physically motivated techniques to distinguish these two classes of galaxies. We have determined the emission line intensities for a complete sample of galaxies extracted from the Sloan Digital sky Survey, after subtracting the stellar continuum obtained from spectral synthesis. With the help of sequences of photoionization models, we explain why, in the famous [OIII]/Hbeta vs [NII]/Halpha diagram, NSF galaxies and AGN hosts form two separate sequences, which look like the open wings of a seagull. We also examine other techniques to distinguish star forming galaxies from AGN hosts. Finally, we propose a new diagnostic diagram which can be used with optical spectra of galaxies with redshifts up to z=1.3. This new diagram has also the advantage of allowing one to show all the galaxies of a sample in one plot, including passive galaxies.

  8. Deep Ly alpha imaging of two z=2.04 GRB host galaxy fields

    DEFF Research Database (Denmark)

    Fynbo, J.P.U.; Møller, Per; Thomsen, Bente

    2002-01-01

    We report on the results of deep narrow-band Lyalpha and broad-band U and I imaging of the fields of two Gamma-Ray bursts at redshift z = 2.04 (GRB 000301C and GRB 000926). We find that the host galaxy of GRB 000926 is an extended (more than 2 arcsec), strong Lyalpha emitter with a rest-frame equ......We report on the results of deep narrow-band Lyalpha and broad-band U and I imaging of the fields of two Gamma-Ray bursts at redshift z = 2.04 (GRB 000301C and GRB 000926). We find that the host galaxy of GRB 000926 is an extended (more than 2 arcsec), strong Lyalpha emitter with a rest...

  9. Tidal Disruption Event Host Galaxies in the Context of the Local Galaxy Population

    Science.gov (United States)

    Law-Smith, Jamie; Ramirez-Ruiz, Enrico; Ellison, Sara L.; Foley, Ryan J.

    2017-11-01

    We study the properties of tidal disruption event (TDE) host galaxies in the context of a catalog of ∼500,000 galaxies from the Sloan Digital Sky Survey. We explore whether selection effects can account for the overrepresentation of TDEs in E+A/post-starburst galaxies by creating matched galaxy samples. Accounting for possible selection effects due to black hole (BH) mass, redshift completeness, strong active galactic nucleus presence, bulge colors, and surface brightness can reduce the apparent overrepresentation of TDEs in E+A host galaxies by a factor of ∼4 (from ∼×100–190 to ∼×25–48), but cannot fully explain the preference. We find that TDE host galaxies have atypical photometric properties compared to similar, “typical” galaxies. In particular, TDE host galaxies tend to live in or near the “green valley” between star-forming and passive galaxies, and have bluer bulge colors ({{Δ }}(g-r)≈ 0.3 mag), lower half-light surface brightnesses (by ∼1 mag/arcsec2), higher Sérsic indices ({{Δ }}{n}{{g}}≈ 3), and higher bulge-to-total-light ratios ({{Δ }}B/T≈ 0.5) than galaxies with matched BH masses. We find that TDE host galaxies appear more centrally concentrated and that all have high galaxy Sérsic indices and B/T fractions—on average in the top 10% of galaxies of the same BH mass—suggesting a higher nuclear stellar density. We identify a region in the Sérsic index and BH mass parameter space that contains ∼2% of our reference catalog galaxies but ≥slant 60 % of TDE host galaxies. The unique photometric properties of TDE host galaxies may be useful for selecting candidate TDEs for spectroscopic follow-up observations in large transient surveys.

  10. Galaxy Zoo: evidence for rapid, recent quenching within a population of AGN host galaxies

    Science.gov (United States)

    Smethurst, R. J.; Lintott, C. J.; Simmons, B. D.; Schawinski, K.; Bamford, S. P.; Cardamone, C. N.; Kruk, S. J.; Masters, K. L.; Urry, C. M.; Willett, K. W.; Wong, O. I.

    2016-12-01

    We present a population study of the star formation history of 1244 Type 2 active galactic nuclei (AGN) host galaxies, compared to 6107 inactive galaxies. A Bayesian method is used to determine individual galaxy star formation histories, which are then collated to visualize the distribution for quenching and quenched galaxies within each population. We find evidence for some of the Type 2 AGN host galaxies having undergone a rapid drop in their star formation rate within the last 2 Gyr. AGN feedback is therefore important at least for this population of galaxies. This result is not seen for the quenching and quenched inactive galaxies whose star formation histories are dominated by the effects of downsizing at earlier epochs, a secondary effect for the AGN host galaxies. We show that histories of rapid quenching cannot account fully for the quenching of all the star formation in a galaxy's lifetime across the population of quenched AGN host galaxies, and that histories of slower quenching, attributed to secular (non-violent) evolution, are also key in their evolution. This is in agreement with recent results showing that both merger-driven and non-merger processes are contributing to the co-evolution of galaxies and supermassive black holes. The availability of gas in the reservoirs of a galaxy, and its ability to be replenished, appear to be the key drivers behind this co-evolution.

  11. Radio brightening of FRB 150418 host galaxy candidate

    Science.gov (United States)

    Williams, P. K. G.; Berger, E.; Chornock, R.

    2016-02-01

    Keane et al. (2016 Nature 530 453) reported a fading radio transient in the z=0.498 galaxy WISE J071634.59-190039.2 (WISE 0716-19; Williams & Berger, arxiv:1602.08434) that they associated with the fast radio burst FRB 150418.

  12. Searching for neutrino bursts in the galaxy: 36 years of exposure

    Science.gov (United States)

    Novoseltsev, Yu. F.; Boliev, M. M.; Volchenko, V. I.; Volchenko, G. V.; Dzaparova, I. M.; Kochkarov, M. M.; Novoseltseva, R. V.; Petkov, V. B.; Yanin, A. F.

    2017-07-01

    The Baksan Underground Scintillation Telescope has operated within the program of searching for neutrino bursts since the mid-1980s. We present the current status of the experiment and some results related to the investigation of background events and the stability of facility operation. Over the period from June 30, 1980, to December 31, 2016, the pure observation time was 31.27 years. No neutrino burst candidate event from the explosion of a core-collapse supernova in the Galaxy was recorded in this time. This sets an upper bound of 0.074 yr-1 on the mean frequency of gravitational stellar collapses in the Galaxy at a 90% confidence level.

  13. Average Spectral Properties of Type Ia Supernova Host Galaxies

    Science.gov (United States)

    Uddin, Syed A.; Mould, Jeremy; Wang, Lifan

    2017-12-01

    We construct the average spectra of host galaxies of slower, faster, bluer, and redder Type Ia supernovae (SNe Ia) from the SDSS-II supernova survey. The average spectrum of slower declining (broader light curve width or higher stretch) SN Ia hosts shows stronger emission lines compared to the average spectrum of faster declining (narrower light curve width or lower stretch) SN Ia hosts. Using pPXF, we find that hosts of slower declining SNe Ia have metallicities that are, on average, 0.24 dex lower than average metallicities of faster declining SN Ia hosts. Similarly, redder SN Ia hosts have slightly higher metallicities than bluer SN Ia hosts. Lick index analysis of metallic lines and Balmer lines shows that faster declining SN Ia hosts have relatively higher metal content and have relatively older stellar populations compared with slower declining SN Ia hosts. We calculate average {{{H}}}α star formation rate (SFR), stellar mass, and the specific SFR (sSFR) of host galaxies in these subgroups of SNe Ia. We find that slower declining SN Ia hosts have significantly higher (> 5σ ) sSFR than faster declining SN Ia hosts. A Kolmogorov-Smirnov test shows that these two types of hosts originate from different parent distributions. Our results, when compared with the models of Childress et al., indicate that slower declining SNe Ia, being hosted in actively star-forming galaxies, are young (prompt) SNe Ia, originating from similar progenitor age groups.

  14. Extreme Emission Line Galaxies in CANDELS: Broad-Band Selected, Star-Bursting Dwarf Galaxies at Z greater than 1

    Science.gov (United States)

    vanderWel, A.; Straughn, A. N.; Rix, H.-W.; Finkelstein, S. L.; Koekemoer, A. M.; Weiner, B. J.; Wuyts, S.; Bell, E. F.; Faber, S. M.; Trump, J. R.; hide

    2012-01-01

    We identify an abundant population of extreme emission line galaxies (EELGs) at redshift z approx. 1.7 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). 69 EELG candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared broad-band magnitudes. Supported by spectroscopic confirmation of strong [OIII] emission lines . with rest-frame equivalent widths approx. 1000A in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are galaxies with approx.10(exp 8) Solar Mass in stellar mass, undergoing an enormous starburst phase with M*/M* of only approx. 15 Myr. These bursts may cause outflows that are strong enough to produce cored dark matter profiles in low-mass galaxies. The individual star formation rates and the co-moving number density (3.7x10(exp -4) Mpc(sup -3) can produce in approx.4 Gyr much of the stellar mass density that is presently contained in 10(exp 8) - 10(exp 9) Solar Mass dwarf galaxies. Therefore, our observations provide a strong indication that many or even most of the stars in present-day dwarf galaxies formed in strong, short-lived bursts, mostly at z > 1.

  15. HOST GALAXIES OF X-SHAPED RADIO SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Springmann, A.; Cheung, C.

    2007-01-01

    Most radiation from galaxies containing active galactic nuclei (AGNs) is emitted not by the stars composing the galaxy, but from an active source at the galactic center, most likely a supermassive black hole. Of particular interest are radio galaxies, active galaxies that emit much of their radiation at radio wavelengths. Within each radio galaxy, an AGN powers a pair of collimated jets of relativistic particles, forming a pair of giant lobes at the end of the jets and thus giving a characteristic double-lobed appearance. A particular class of radio galaxies has an “X”-or winged-shaped morphology: in these, two pairs of lobes appear to originate from the galactic center, producing a distinctive X-shape. Two main mechanisms have been proposed to explain the X-shape morphology: one being a realignment of the black hole within the AGN and the second positing that the radio jets are expanding into an asymmetric medium, causing backflow and producing secondary wings. By analyzing radio host galaxy shapes, the distribution of the stellar mass is compared to the differing model expectations regarding the distribution of the surrounding gas and stellar material about the AGN. Results show elliptical host galaxies with an orthogonal offset between the semi-major axis of the host galaxy and the secondary radio wings, which lends support to the hydrodynamical model. However, results also show circular host galaxies with radio wings, making the realignment scenario a more likely model to describe the formation of these X-shaped radio sources.

  16. Neutrino Bursts from Fanaroff-Riley I Radio Galaxies

    CERN Document Server

    Anchordoqui, Luis A.; Halzen, Francis; Weiler, Thomas J.; Anchordoqui, Luis A.; Goldberg, Haim; Halzen, Francis; Weiler, Thomas J.

    2004-01-01

    On the basis of existing observations (at the 4.5 \\sigma level) of TeV gamma-ray outbursts from the Fanaroff-Riley I (FRI) radio galaxy Centaurus A, we estimate the accompanying neutrino flux in a scenario where both photons and neutrinos emerge from pion decay. We find a neutrino flux on Earth dF_{\

  17. Star-forming AGN host galaxies

    NARCIS (Netherlands)

    Barthel, P

    2001-01-01

    The symbiosis of nuclear activity and star-formation in galaxies, as manifested in their spectral energy distributions (SEDs) is reviewed. Attention is drawn to an Hertzsprung-Russell diagram - equivalent for such objects, as well as to the importance of the SEDs in cosmological context. (C) 2001

  18. The dark nature of GRB 130528A and its host galaxy

    Science.gov (United States)

    Jeong, S.; Castro-Tirado, A. J.; Bremer, M.; Winters, J. M.; Gorosabel, J.; Guziy, S.; Pandey, S. B.; Jelínek, M.; Sánchez-Ramírez, R.; Sokolov, Ilya V.; Orekhova, N. V.; Moskvitin, A. S.; Tello, J. C.; Cunniffe, R.; Lara-Gil, O.; Oates, S. R.; Pérez-Ramírez, D.; Bai, J.; Fan, Y.; Wang, C.; Park, I. H.

    2014-09-01

    Aims: We study the dark nature of GRB 130528A through multi-wavelength observations and conclude that the main reason for the optical darkness is local extinction inside of the host galaxy. Methods: Automatic observations were performed at the Burst Optical Observer and Transient Exploring System (BOOTES)-4/MET robotic telescope. We also triggered target of opportunity (ToO) observations at Observatorio de Sierra Nevada (OSN), IRAM Plateau de Bure Interferometer (PdBI) and Gran Telescopio Canarias (GTC + OSIRIS). The host galaxy photometric observations in optical to near-infrared (nIR) wavelengths were achieved through large ground-based aperture telescopes, such as 10.4 m Gran Telescopio Canarias (GTC), 4.2 m William Herschel Telescope (WHT), 6 m Bolshoi Teleskop Alt-azimutalnyi (BTA) telescope, and 2 m Liverpool Telescope (LT). Based on these observations, spectral energy distributions (SED) for the host galaxy and afterglow were constructed. Results: Thanks to millimetre (mm) observations at PdBI, we confirm the presence of a mm source within the XRT error circle that faded over the course of our observations and identify the host galaxy. However, we do not find any credible optical source within early observations with BOOTES-4/MET and 1.5 m OSN telescopes. Spectroscopic observation of this galaxy by GTC showed a single faint emission line that likely corresponds to [OII] 3727 Å at a redshift of 1.250 ± 0.001, implying a star formation rate (M⊙/yr) > 6.18 M⊙/yr without correcting for dust extinction. The probable line-of-sight extinction towards GRB 130528A is revealed through analysis of the afterglow SED, resulting in a value of A^GRBV≥ 0.9 at the rest frame; this is comparable to extinction levels found among other dark GRBs. The SED of the host galaxy is explained well (χ2/d.o.f. = 0.564) by a luminous (MB = -21.16), low-extinction (AV = 0, rest frame), and aged (2.6 Gyr) stellar population. We can explain this apparent contradiction in global and

  19. Simple stellar population modelling of low S/N galaxy spectra and quasar host galaxy applications

    Science.gov (United States)

    Mosby, G.; Tremonti, C. A.; Hooper, E. J.; Wolf, M. J.; Sheinis, A. I.; Richards, J. W.

    2015-02-01

    To study the effect of supermassive black holes (SMBHs) on their host galaxies it is important to study the hosts when the SMBH is near its peak activity. A method to investigate the host galaxies of high luminosity quasars is to obtain optical spectra at positions offset from the nucleus where the relative contribution of the quasar and host is comparable. However, at these extended radii the galaxy surface brightness is often low (20-22 mag arcsec-2) and the resulting spectrum might have such low signal-to-noise ratio (S/N) that it hinders analysis with standard stellar population modelling techniques. To address this problem, we have developed a method that can recover galaxy star formation histories (SFHs) from rest-frame optical spectra with S/N ˜ 5 Å-1. This method uses the statistical technique diffusion k-means to tailor the stellar population modelling basis set. Our diffusion k-means minimal basis set, composed of four broad age bins, is successful in recovering a range of galaxy SFHs. Additionally, using an analytic prescription for seeing conditions, we are able to simultaneously model scattered quasar light and the SFH of quasar host galaxies (QHGs). We use synthetic data to compare results of our novel method with previous techniques. We also present the modelling results on a previously published QHG and show that galaxy properties recovered from a diffusion k-means basis set are less sensitive to noise added to this QHG spectrum. Our new method has a clear advantage in recovering information from QHGs and could also be applied to the analysis of other low S/N galaxy spectra such as those typically obtained for high redshift objects or integral field spectroscopic surveys.

  20. A FAST RADIO BURST IN THE DIRECTION OF THE CARINA DWARF SPHEROIDAL GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, V. [School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia); Shannon, R. M. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia); Jameson, A., E-mail: v.vikram.ravi@gmail.com [Swinburne University of Technology, Centre for Astrophysics and Supercomputing, Mail H39, P.O. Box 218, VIC 3122 (Australia)

    2015-01-20

    We report the real-time discovery of a fast radio burst (FRB 131104) with the Parkes radio telescope in a targeted observation of the Carina dwarf spheroidal galaxy. The dispersion measure of the burst is 779 cm{sup –3} pc, exceeding predictions for the maximum line-of-sight Galactic contribution by a factor of 11. The temporal structure of the burst is characterized by an exponential scattering tail with a timescale of 2.0{sub −0.5}{sup +0.8} ms at 1582 MHz that scales as frequency to the power –4.4{sub −1.8}{sup +1.6} (all uncertainties represent 95% confidence intervals). We bound the intrinsic pulse width to be <0.64 ms due to dispersion smearing across a single spectrometer channel. Searches in 78 hr of follow-up observations with the Parkes telescope reveal no additional sporadic emission and no evidence for associated periodic radio emission. We hypothesize that the burst is associated with the Carina dwarf galaxy. Follow-up observations at other wavelengths are necessary to test this hypothesis.

  1. Host Galaxies of X-Shaped Radio Sources

    Energy Technology Data Exchange (ETDEWEB)

    Springmann, Alessondra; /Wellesley Coll. /SLAC

    2006-09-27

    The majority of radiation from galaxies containing active galactic nuclei (AGNs) is emitted not by the stars composing the galaxy, but from an active source at the galactic center, most likely a supermassive black hole. Of particular interest are radio galaxies, the active galaxies emitting much of their radiation at radio wavelengths. Within each radio galaxy, an AGN powers a pair of collimated jets of relativistic particles, forming a pair of giant lobes at the end of the jets and thus giving a characteristic double-lobed appearance. A particular class of radio galaxies have an ''X''-shaped morphology: in these, two pairs of lobes appear to originate from the galactic center, producing a distinctive X-shape. Two main mechanisms have been proposed to explain the X-shape morphology: one being through the merger of a binary supermassive black hole system and the second being that the radio jets are expanding into an asymmetric medium. By analyzing radio host galaxy shapes, we probe the distribution of the stellar mass to compare the differing model expectations regarding the distribution of the surrounding gas and stellar material about the AGN.

  2. Atomic Hydrogen Properties of AGN Host Galaxies: HI in 16 NUclei of GAlaxies (NUGA) Sources

    OpenAIRE

    S. de Haan; Schinnerer, E.; Mundell, C. G.; Garcia-Burillo, S.; Combes, F.

    2007-01-01

    We present a comprehensive spectroscopic imaging survey of the distribution and kinematics of atomic hydrogen (HI) in 16 nearby spiral galaxies hosting low luminosity AGN, observed with high spectral and spatial resolution (resolution: ~20 arcsec, 5 km/s) using the NRAO Very Large Array (VLA). The sample contains a range of nuclear types, ranging from Seyfert to star-forming nuclei and was originally selected for the NUclei of GAlaxies project (NUGA) - a spectrally and spatially resolved inte...

  3. Clustering of galaxies around gamma-ray burst sight-lines

    DEFF Research Database (Denmark)

    Sudilovsky, V.; Greiner, J.; Rau, A.

    2013-01-01

    There is evidence of an overdensity of strong intervening MgII absorption line systems distributed along the lines of sight toward gamma-ray burst (GRB) afterglows relative to quasar sight-lines. If this excess is real, one should also expect an overdensity of field galaxies around GRB sight......-lines, as strong MgII tends to trace these sources. In this work, we test this expectation by calculating the two point angular correlation function of galaxies within 120'' (~470 h Kpc470h71-1Kpc at z ~ 0.4) of GRB afterglows. We compare the gamma-ray burst optical and near-infrared detector (GROND) GRB afterglow...... sample-one of the largest and most homogeneous samples of GRB fields-with galaxies and active galactic nuclei found in the COSMOS-30 photometric catalog. We find no significant signal of anomalous clustering of galaxies at an estimated median redshift of z ~ 0.3 around GRB sight-lines, down to K

  4. Hubble space telescope observations of the afterglow, supernova, and host galaxy associated with the extremely bright GRB 130427A

    Energy Technology Data Exchange (ETDEWEB)

    Levan, A. J. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Tanvir, N. R.; Wiersema, K. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); Fruchter, A. S.; Hounsell, R. A.; Graham, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Hjorth, J.; Fynbo, J. P. U. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Pian, E. [INAF, Trieste Astronomical Observatory, via G.B. Tiepolo 11, I-34143 Trieste (Italy); Mazzali, P. [Astrophysics Research Institute, Liverpool John Moores University, IC2 Liverpool Science Park 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Cano, Z. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik (Iceland); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Kouveliotou, C. [Science and Technology Office, ZP12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Pe' er, A. [Department of Physics, University College Cork, Cork (Ireland); Misra, K., E-mail: a.j.levan@warwick.ac.uk [Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital-263 002 (India)

    2014-09-10

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst (GRB), GRB 130427A. At z = 0.34, this burst affords an excellent opportunity to study the supernova (SN) and host galaxy associated with an intrinsically extremely luminous burst (E {sub iso} > 10{sup 54} erg): more luminous than any previous GRB with a spectroscopically associated SN. We use the combination of the image quality, UV capability, and invariant point-spread function of HST to provide the best possible separation of the afterglow, host, and SN contributions to the observed light ∼17 rest-frame days after the burst, utilizing a host subtraction spectrum obtained one year later. Advanced Camera for Surveys grism observations show that the associated SN, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, v {sub ph} ∼ 15, 000 km s{sup –1}). The positions of the bluer features are better matched by the higher velocity SN 2010bh (v {sub ph} ∼ 30, 000 km s{sup –1}), but this SN is significantly fainter and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated ∼4 kpc from the nucleus of a moderately star forming (1 M {sub ☉} yr{sup –1}), possibly interacting disk galaxy. The absolute magnitude, physical size, and morphology of this galaxy, as well as the location of the GRB within it, are also strikingly similar to those of GRB 980425/SN 1998bw. The similarity of the SNe and environment from both the most luminous and least luminous GRBs suggests that broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  5. Hubble Space Telescope Observations of the Afterglow, Supernova and Host Galaxy Associated with the Extremely Bright GRB 130427A

    Science.gov (United States)

    Levan, A.J.; Tanvir, N. R.; Fruchter, A. S.; Hjorth, J.; Pian, E.; Mazzali, P.; Hounsell, R. A.; Perley, D. A.; Cano, Z.; Graham, J.; hide

    2014-01-01

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst, GRB 130427A. At z=0.34 this burst affords an excellent opportunity to study the supernova and host galaxy associated with an intrinsically extremely luminous burst (E(sub iso) greater than 10(exp 54) erg): more luminous than any previous GRB with a spectroscopically associated supernova. We use the combination of the image quality, UV capability and and invariant PSF of HST to provide the best possible separation of the afterglow, host and supernova contributions to the observed light approximately 17 rest-frame days after the burst utilising a host subtraction spectrum obtained 1 year later. Advanced Camera for Surveys (ACS) grism observations show that the associated supernova, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, vph approximately 15,000 kilometers per second). The positions of the bluer features are better matched by the higher velocity SN 2010bh (vph approximately 30,000 kilometers per second), but SN 2010bh (vph approximately 30,000 kilometers per second but this SN is significantly fainter, and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated approximately 4 kpc from the nucleus of a moderately star forming (1 Solar Mass yr(exp-1)), possibly interacting disc galaxy. The absolute magnitude, physical size and morphology of this galaxy, as well as the location of the GRB within it are also strikingly similar to those of GRB980425SN 1998bw. The similarity of supernovae and environment from both the most luminous and least luminous GRBs suggests broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  6. Spatially Resolved MaNGA Observations of the Host Galaxy of Superluminous Supernova 2017egm

    Science.gov (United States)

    Chen, Ting-Wan; Schady, Patricia; Xiao, Lin; Eldridge, J. J.; Schweyer, Tassilo; Lee, Chien-Hsiu; Yu, Po-Chieh; Smartt, Stephen J.; Inserra, Cosimo

    2017-11-01

    Superluminous supernovae (SLSNe) are found predominantly in dwarf galaxies, indicating that their progenitors have a low metallicity. However, the most nearby SLSN to date, SN 2017egm, occurred in the spiral galaxy NGC 3191, which has a relatively high stellar mass and correspondingly high metallicity. In this Letter, we present detailed analysis of the nearby environment of SN 2017egm using MaNGA IFU data, which provides spectral data on kiloparsec scales. From the velocity map we find no evidence that SN 2017egm occurred within some intervening satellite galaxy, and at the SN position most metallicity diagnostics yield a solar and above solar metallicity (12+{log}({{O}}/{{H}})˜ 8.8{--}9.1). Additionally, we measure a small Hα equivalent width (EW) at the SN position of just 34 Å, which is one of the lowest EWs measured at any SLSN or gamma-ray burst position, and indicative of the progenitor star being comparatively old. We also compare the observed properties of NGC 3191 with other SLSN host galaxies. The solar-metallicity environment at the position of SN 2017egm presents a challenge to our theoretical understanding, and our spatially resolved spectral analysis provides further constraints on the progenitors of SLSNe.

  7. A Local Baseline of the Black Hole Mass - Host Galaxy Scaling Relations for Active Galaxies

    Science.gov (United States)

    Bennert, Vardha

    2017-08-01

    The discovery of relations between supermassive black holes (BHs) and their host-galaxy properties has sparked many observational studies pertaining both to the local Universe and cosmic history. Nevertheless, a clear understanding of their origin and fundamental drivers still eludes us. Studying the evolution of these relations depends on our understanding of the slope and scatter of local relations for active galaxies (AGNs). We propose a SNAP program of a unique sample of 84 local type-1 AGNs, spanning a wide range of BH masses (MBH), morphologies, and stellar masses. The high resolution WFC3/F814W images are essential for a detailed decomposition of the host-galaxy in the presence of a bright AGN point source, resulting in precise measurements of the different host-galaxy components and AGN luminosity free of host-galaxy contamination for a robust determination of MBH. When complemented with spatially-resolved Keck spectra to determine stellar-velocity dispersion within bulge effective radius, this yields a most complete baseline of host-galaxy properties over the entire range of MBH scaling relations. A typical SNAP completion rate results in a sample of 30 objects which will be used to calibrate existing Gemini NIRI and SDSS images. We will study slope and scatter of the relations, dependencies and fundamental drivers. The frequency of pseudo-bulges, bars, and (minor) mergers will reveal the dominant growth mechanism of spheroids. The homogeneous sample will identify any selection biases in the reverberation-mapped AGN sample which serves as a MBH calibrator for the entire Universe. Results will be compared with state-of-the-art semi-analytical models.

  8. Revisiting The First Galaxies: The effects of Population III stars on their host galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Muratov, Alexander L. [U. Michigan, Dept. Astron.; Gnedin, Oleg Y. [U. Michigan, Dept. Astron.; Gnedin, Nickolay Y. [Chicago U., Astron. Astrophys. Ctr.; Zemp, Marcel [Beijing, KITPC

    2013-07-12

    We revisit the formation and evolution of the first galaxies using new hydrodynamic cosmological simulations with the adaptive refinement tree code. Our simulations feature a recently developed model for H2 formation and dissociation, and a star formation recipe that is based on molecular rather than atomic gas. Here, we develop and implement a recipe for the formation of metal-free Population III (Pop III) stars in galaxy-scale simulations that resolve primordial clouds with sufficiently high density. We base our recipe on the results of prior zoom-in simulations that resolved the protostellar collapse in pre-galactic objects. We find the epoch during which Pop III stars dominated the energy and metal budget of the first galaxies to be short-lived. Galaxies that host Pop III stars do not retain dynamical signatures of their thermal and radiative feedback for more than 108 years after the lives of the stars end in pair-instability supernovae, even when we consider the maximum reasonable efficiency of the feedback. Though metals ejected by the supernovae can travel well beyond the virial radius of the host galaxy, they typically begin to fall back quickly, and do not enrich a large fraction of the intergalactic medium. Galaxies with a total mass in excess of 3 × 106 M re-accrete most of their baryons and transition to metal-enriched Pop II star formation.

  9. VizieR Online Data Catalog: Properties of SN host galaxies (Kelly+, 2014)

    Science.gov (United States)

    Kelly, P. L.; Filippenko, A. V.; Modjaz, M.; Kocevski, D.

    2017-03-01

    We study the host galaxies of both nearby (zFactory (PTF); Rau et al., 2009PASP..121.1334R; Law et al., 2009PASP..121.1395L), which do not target specific potential hosts or zforming galaxies and SDSS photometry and spectroscopy to measure properties of both the sample of low-redshift star-forming galaxies and the host galaxies of the nearby SNe. For the host galaxies of z<1.2 LGRBs, we estimate host properties using published photometry and HST imaging. (2 data files).

  10. SUPERMASSIVE BLACK HOLES AND THEIR HOST SPHEROIDS. I. DISASSEMBLING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Savorgnan, G. A. D.; Graham, A. W., E-mail: gsavorgn@astro.swin.edu.au [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia)

    2016-01-15

    Several recent studies have performed galaxy decompositions to investigate correlations between the black hole mass and various properties of the host spheroid, but they have not converged on the same conclusions. This is because their models for the same galaxy were often significantly different and not consistent with each other in terms of fitted components. Using 3.6 μm Spitzer imagery, which is a superb tracer of the stellar mass (superior to the K band), we have performed state-of-the-art multicomponent decompositions for 66 galaxies with directly measured black hole masses. Our sample is the largest to date and, unlike previous studies, contains a large number (17) of spiral galaxies with low black hole masses. We paid careful attention to the image mosaicking, sky subtraction, and masking of contaminating sources. After a scrupulous inspection of the galaxy photometry (through isophotal analysis and unsharp masking) and—for the first time—2D kinematics, we were able to account for spheroids; large-scale, intermediate-scale, and nuclear disks; bars; rings; spiral arms; halos; extended or unresolved nuclear sources; and partially depleted cores. For each individual galaxy, we compared our best-fit model with previous studies, explained the discrepancies, and identified the optimal decomposition. Moreover, we have independently performed one-dimensional (1D) and two-dimensional (2D) decompositions and concluded that, at least when modeling large, nearby galaxies, 1D techniques have more advantages than 2D techniques. Finally, we developed a prescription to estimate the uncertainties on the 1D best-fit parameters for the 66 spheroids that takes into account systematic errors, unlike popular 2D codes that only consider statistical errors.

  11. The astrophysical consequences of intervening galaxy gas on fast radio bursts

    Science.gov (United States)

    Prochaska, J. Xavier; Neeleman, Marcel

    2018-02-01

    We adopt and analyze results on the incidence and physical properties of damped Ly$\\alpha$ systems (DLAs) to predict the astrophysical impact of gas in galaxies on observations of Fast Radio Bursts (FRBs). Three DLA measures form the basis of this analysis: (i) the HI column density distribution, parameterized as a double power-law; (ii) the incidence of DLAs with redshift (derived here), $\\ell(z)=A+B \\arctan(z-C)$ with $A=0.236_{-0.021}^{+0.016}, B=0.168_{-0.017}^{+0.010}, C=2.87_{-0.13}^{+0.17}$ and (iii) the electron density, parameterized as a log-normal deviate with mean $10^{-2.6} cm^{-3}$ and dispersion 0.3dex. Synthesizing these results, we estimate that the average rest-frame dispersion measure from the neutral medium of a single, intersecting galaxy is DM$^{NM}_{DLA}=0.25$ pc/cm^3. Analysis of AlIII and CII* absorption limits the putative warm ionized medium to contribute DM$^{WIM}_{DLA}<20$pc/cm^3. Given the low incidence of DLAs, we find that a population of FRBs at z=2 will incur DM(z=2)=0.01 pc/cm^3 on average, with a 99% c.l. upper bound of 0.22 pc/cm^3. Assuming that turbulence of the ISM in external galaxies is qualitatively similar to our Galaxy, we estimate that the angular broadening of an FRB by intersecting galaxies is negligible ($\\theta<0.1$mas). The temporal broadening is also predicted to be small, $\\tau \\approx 0.3$ms for a z=1 galaxy intersecting a z=2 FRB for an observing frequency of $\

  12. Dust extinction in high-z galaxies with gamma-ray burst afterglow spectroscopy

    DEFF Research Database (Denmark)

    Elíasdóttir, Á.; Fynbo, J. P. U.; Hjorth, J.

    2009-01-01

    in a GRB host galaxy, while several tens of optical afterglow spectra without the bump have been recorded in the past decade. The derived extinction curve gives AV = 0.8-1.5 depending on the assumed intrinsic slope. Of the three local extinction laws, a Large Magellanic Cloud (LMC) type extinction gives......, the spectrum of GRB 070802 is unique for a GRB spectrum in that it shows clear C I absorption features, leading us to propose a correlation between the presence of the bump and C I. The gas-to-dust ratio for the host galaxy is found to be significantly lower than that of other GRB hosts with N(H I)/AV = (2...

  13. Galaxy Formation

    DEFF Research Database (Denmark)

    Sparre, Martin

    galaxies form stars throughout the history of the Universe, and secondly it is shown that observations of gamma-ray bursts (GRBs) can be used to probe galaxies with active star formation in the early Universe. A conclusion from the hydrodynamical simulations is that the galaxies from the stateof......Galaxy formation is an enormously complex discipline due to the many physical processes that play a role in shaping galaxies. The objective of this thesis is to study galaxy formation with two different approaches: First, numerical simulations are used to study the structure of dark matter and how...... is important, since it helps constraining chemical evolution models at high redshift. A new project studying how the population of galaxies hosting GRBs relate to other galaxy population is outlined in the conclusion of this thesis. The core of this project will be to quantify how the stellar mass function...

  14. Host galaxies of high-redshift quasars with extreme outflows

    Science.gov (United States)

    Zakamska, Nadia

    2016-10-01

    Feedback from accreting supermassive black holes is now a standard ingredient in galaxy formation models. It has long been speculated that powerful quasars, triggered in major gas-rich mergers, had a profound impact on galaxy formation via quasar-driven winds. This process must have been at its peak during the epoch of most active galaxy formation and quasar activity at z=2-3, yet there is not yet any direct observational support for this long-hypothesized process. We have discovered a population of extremely luminous (L>1e47 erg/s) red quasars with peculiar line properties at z=2-3 which show unprecedented signatures of powerful v>2000 km/s outflows in their [OIII]5007A lines. We propose to image eleven of these objects with the HST in two filters, one probing rest-frame UV and one probing the rest-frame optical. The rest-frame optical observations will directly probe the dynamical state and extent of the hosts of luminous obscured quasars and search for companions and merger signatures. We will determine the masses of the stellar component to determine if the bulges of the quasar hosts have already become apparent in this epoch. Using the rest-frame UV observations, we will probe the distribution of the gas in quasar hosts by observing the morphology of ongoing star formation and scattered light from the central engine. Our targets are the best candidates to probe the long-speculated merger-driven scenario for quasar activity, and our proposed HST observations will definitively determine whether this process drives the evolution of massive galaxies.

  15. The Influence of Host Galaxies in Type Ia Supernova Cosmology

    Science.gov (United States)

    Uddin, Syed A.; Mould, Jeremy; Lidman, Chris; Ruhlmann-Kleider, Vanina; Zhang, Bonnie R.

    2017-10-01

    We use a sample of 1338 spectroscopically confirmed and photometrically classified Type Ia supernovae (SNe Ia) sourced from Carnegie Supernova Project, Center for Astrophysics Supernova Survey, Sloan Digital Sky Survey-II, and SuperNova Legacy Survey SN samples to examine the relationships between SNe Ia and the galaxies that host them. Our results provide confirmation with improved statistical significance that SNe Ia, after standardization, are on average more luminous in massive hosts (significance >5σ), and decline more rapidly in massive hosts (significance >9σ) and in hosts with low specific star formation rates (significance >8σ). We study the variation of these relationships with redshift and detect no evolution. We split SNe Ia into pairs of subsets that are based on the properties of the hosts and fit cosmological models to each subset. Including both systematic and statistical uncertainties, we do not find any significant shift in the best-fit cosmological parameters between the subsets. Among different SN Ia subsets, we find that SNe Ia in hosts with high specific star formation rates have the least intrinsic scatter (σ int = 0.08 ± 0.01) in luminosity after standardization.

  16. Simple Stellar Population Modeling of Quasar Host Galaxies with Diffusion K-Means Test Results

    Science.gov (United States)

    Mosby, Gregory; Moravec, E. A.; Tremonti, C. A.; Wolf, M. J.

    2013-01-01

    In the last decade, the correlation of the masses of supermassive black holes (SMBHs) and their host galaxy stellar spheroid velocity dispersions (the M-sigma relation) was greeted as clear evidence for the co-evolution of host galaxies and their SMBHs. However, studies in the last five years have posited that this relation could arise from central-limit properties of hierarchical formation alone. To address the question of whether and how often the SMBHs evolve with their host galaxies, it is necessary to look at galaxies whose SMBHs are actively growing—quasars—and determine the host galaxy properties. The central nuclei of quasar host galaxies complicate this type of study because their high luminosity tends to wash out their host galaxies. But, by using 3-D spectroscopy with the integral field unit (IFU) Sparsepak on the WIYN telescope, we have shown that the quasar light can be mostly isolated to one fiber in order to obtain the spectra of the quasar and the host galaxy concurrently. We can then model simultaneously the scattered quasar light and the stellar populations in the host galaxy fiber using a new simple stellar population (SSP) modeling method called diffusion k-means (DFK). The objectives of the research presented in this poster are to model synthetic quasar host galaxies using a DFK basis and a more traditional basis, compare the accuracy of both modeling methods, and test the affects of various prescriptions for masking the quasar lines in the host galaxy fiber. We present results from our SSP modeling and Markov Chain Monte Carlo (MCMC) results for DFK and traditional modeling schemes using synthetic data. By determining and then using the more robust stellar population modeling method, we can more confidently study quasar host galaxies to answer remaining questions in galaxy evolution. This work was partially supported by a National Science Foundation Graduate Fellowship (NSF Grant DGE-0718123) and through the NSF's REU program (NSF Award

  17. Black hole masses of tidal disruption event host galaxies

    Science.gov (United States)

    Wevers, Thomas; van Velzen, Sjoert; Jonker, Peter G.; Stone, Nicholas C.; Hung, Tiara; Onori, Francesca; Gezari, Suvi; Blagorodnova, Nadejda

    2017-10-01

    The mass of the central black hole in a galaxy that hosted a tidal disruption event (TDE) is an important parameter in understanding its energetics and dynamics. We present the first homogeneously measured black hole masses of a complete sample of 12 optically/UV-selected TDE host galaxies (down to ghost ≤ 22 mag and z = 0.37) in the Northern sky. The mass estimates are based on velocity dispersion measurements, performed on late time optical spectroscopic observations. We find black hole masses in the range of 3 × 105 M⊙ ≤ MBH ≤ 2 × 107 M⊙. The TDE host galaxy sample is dominated by low-mass black holes (∼ 106 M⊙), as expected from theoretical predictions. The blackbody peak luminosity of TDEs with MBH ≤ 107.1 M⊙ is consistent with the Eddington limit of the supermassive black hole (SMBH), whereas the two TDEs with MBH ≥ 107.1 M⊙ have peak luminosities below their SMBH Eddington luminosity, in line with the theoretical expectation that the fallback rate for MBH ≥ 107.1 M⊙ is sub-Eddington. In addition, our observations suggest that TDEs around lower mass black holes evolve faster. These findings corroborate the standard TDE picture in 106 M⊙ black holes. Our results imply an increased tension between observational and theoretical TDE rates. By comparing the blackbody emission radius with theoretical predictions, we conclude that the optical/UV emission is produced in a region consistent with the stream self-intersection radius of shallow encounters, ruling out a compact accretion disc as the direct origin of the blackbody radiation at peak brightness.

  18. HOST GALAXIES OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY

    Energy Technology Data Exchange (ETDEWEB)

    Childress, M.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Hsiao, E. Y.; Kim, A. G.; Loken, S. [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J. [Laboratoire de Physique Nucleaire et des Hautes Energies, Universite Pierre et Marie Curie Paris 6, Universite Paris Diderot Paris 7, CNRS-IN2P3, 4 place Jussieu, F-75252 Paris Cedex 05 (France); Baltay, C. [Department of Physics, Yale University, New Haven, CT 06250-8121 (United States); Buton, C.; Kerschhaggl, M.; Kowalski, M. [Physikalisches Institut, Universitaet Bonn, Nussallee 12, D-53115 Bonn (Germany); Chotard, N.; Copin, Y.; Gangler, E. [Universite de Lyon, F-69622, Lyon (France); Universite de Lyon 1, Villeurbanne (France); CNRS/IN2P3, Institut de Physique Nucleaire de Lyon (France); and others

    2013-06-20

    We present photometric and spectroscopic observations of galaxies hosting Type Ia supernovae (SNe Ia) observed by the Nearby Supernova Factory. Combining Galaxy Evolution Explorer (GALEX) UV data with optical and near-infrared photometry, we employ stellar population synthesis techniques to measure SN Ia host galaxy stellar masses, star formation rates (SFRs), and reddening due to dust. We reinforce the key role of GALEX UV data in deriving accurate estimates of galaxy SFRs and dust extinction. Optical spectra of SN Ia host galaxies are fitted simultaneously for their stellar continua and emission lines fluxes, from which we derive high-precision redshifts, gas-phase metallicities, and H{alpha}-based SFRs. With these data we show that SN Ia host galaxies present tight agreement with the fiducial galaxy mass-metallicity relation from Sloan Digital Sky Survey (SDSS) for stellar masses log(M{sub *}/M{sub Sun }) > 8.5 where the relation is well defined. The star formation activity of SN Ia host galaxies is consistent with a sample of comparable SDSS field galaxies, though this comparison is limited by systematic uncertainties in SFR measurements. Our analysis indicates that SN Ia host galaxies are, on average, typical representatives of normal field galaxies.

  19. Supernovae and their host galaxies - V. The vertical distribution of supernovae in disc galaxies

    Science.gov (United States)

    Hakobyan, A. A.; Barkhudaryan, L. V.; Karapetyan, A. G.; Mamon, G. A.; Kunth, D.; Adibekyan, V.; Aramyan, L. S.; Petrosian, A. R.; Turatto, M.

    2017-10-01

    We present an analysis of the height distributions of the different types of supernovae (SNe) from the plane of their host galaxies. We use a well-defined sample of 102 nearby SNe appearing inside high-inclined (i ≥ 85°), morphologically non-disturbed S0-Sd host galaxies from the Sloan Digital Sky Survey. For the first time, we show that in all the subsamples of spirals, the vertical distribution of core-collapse (CC) SNe is about twice closer to the plane of the host disc than the distribution of SNe Ia. In Sb-Sc hosts, the exponential scale height of CC SNe is consistent with those of the younger stellar population in the Milky Way (MW) thin disc, while the scale height of SNe Ia is consistent with those of the old population in the MW thick disc. We show that the ratio of scale lengths to scale heights of the distribution of CC SNe is consistent with those of the resolved young stars with ages from ∼10 up to ∼100 Myr in nearby edge-on galaxies and the unresolved stellar population of extragalactic thin discs. The corresponding ratio for SNe Ia is consistent with the same ratios of the two populations of resolved stars with ages from a few 100 Myr up to a few Gyr and from a few Gyr up to ∼10 Gyr, as well as with the unresolved population of the thick disc. These results can be explained considering the age-scale height relation of the distribution of stellar population and the mean age difference between Type Ia and CC SNe progenitors.

  20. THE SWIFT GRB HOST GALAXY LEGACY SURVEY. II. REST-FRAME NEAR-IR LUMINOSITY DISTRIBUTION AND EVIDENCE FOR A NEAR-SOLAR METALLICITY THRESHOLD

    Energy Technology Data Exchange (ETDEWEB)

    Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Tanvir, N. R. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); Hjorth, J.; Fynbo, J. P. U.; Krühler, T. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 København Ø (Denmark); Laskar, T.; Berger, E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chary, R. [US Planck Data Center, MS220-6, Pasadena, CA 91125 (United States); Postigo, A. de Ugarte [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, E-18008, Granada (Spain); Levan, A. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Michałowski, M. J. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Schulze, S., E-mail: dperley@dark-cosmology.dk [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 7820436 Macul, Santiago 22 (Chile)

    2016-01-20

    We present rest-frame near-IR (NIR) luminosities and stellar masses for a large and uniformly selected population of gamma-ray burst (GRB) host galaxies using deep Spitzer Space Telescope imaging of 119 targets from the Swift GRB Host Galaxy Legacy Survey spanning 0.03 < z < 6.3, and we determine the effects of galaxy evolution and chemical enrichment on the mass distribution of the GRB host population across cosmic history. We find a rapid increase in the characteristic NIR host luminosity between z ∼ 0.5 and z ∼ 1.5, but little variation between z ∼ 1.5 and z ∼ 5. Dust-obscured GRBs dominate the massive host population but are only rarely seen associated with low-mass hosts, indicating that massive star-forming galaxies are universally and (to some extent) homogeneously dusty at high redshift while low-mass star-forming galaxies retain little dust in their interstellar medium. Comparing our luminosity distributions with field surveys and measurements of the high-z mass–metallicity relation, our results have good consistency with a model in which the GRB rate per unit star formation is constant in galaxies with gas-phase metallicity below approximately the solar value but heavily suppressed in more metal-rich environments. This model also naturally explains the previously reported “excess” in the GRB rate beyond z ≳ 2; metals stifle GRB production in most galaxies at z < 1.5 but have only minor impact at higher redshifts. The metallicity threshold we infer is much higher than predicted by single-star models and favors a binary progenitor. Our observations also constrain the fraction of cosmic star formation in low-mass galaxies undetectable to Spitzer to be small at z < 4.

  1. Distance and Properties of NGC 4993 as the Host Galaxy of the Gravitational-wave Source GW170817

    Science.gov (United States)

    Im, Myungshin; Yoon, Yongmin; Lee, Seong-Kook J.; Lee, Hyung Mok; Kim, Joonho; Lee, Chung-Uk; Kim, Seung-Lee; Troja, Eleonora; Choi, Changsu; Lim, Gu; Ko, Jongwan; Shim, Hyunjin

    2017-11-01

    Recently, the optical counterpart of the gravitational-wave source GW170817 has been identified in the NGC 4993 galaxy. Together with evidence from observations in electromagnetic waves, the event has been suggested as a result of a merger of two neutron stars (NSs). We analyze the multi-wavelength data to characterize the host galaxy property and its distance to examine if the properties of NGC 4993 are consistent with this picture. Our analysis shows that NGC 4993 is a bulge-dominated galaxy with {r}{eff}˜ 2{--}3 {kpc} and a Sérsic index of n=3{--}4 for the bulge component. The spectral energy distribution from 0.15 to 24 μm indicates that this galaxy has no significant ongoing star formation, a mean stellar mass of (0.3{--}1.2)× {10}11 {M}⊙ , a mean stellar age greater than ˜3 Gyr, and a metallicity of about 20%-100% of solar abundance. Optical images reveal dust lanes and extended features that suggest a past merging activity. Overall, NGC 4993 has characteristics of normal, but slightly disturbed elliptical galaxies. Furthermore, we derive the distance to NGC 4993 with the fundamental plane relation using 17 parameter sets of 7 different filters and the central stellar velocity dispersion from the literature, finding an angular diameter distance of 37.7 ± 8.7 Mpc. NGC 4993 is similar to some host galaxies of short gamma-ray bursts (GRBs) but much different from those of long GRBs, supporting the picture of GW170817 as a result of the merger of two NSs.

  2. Distance and Properties of NGC 4993 as the Host Galaxy of the Gravitational-wave Source GW170817

    Science.gov (United States)

    Im, Myungshin; Yoon, Yongmin; Lee, Seong-Kook J.; Lee, Hyung Mok; Kim, Joonho; Lee, Chung-Uk; Kim, Seung-Lee; Troja, Eleonora; Choi, Changsu; Lim, Gu; Ko, Jongwan; Shim, Hyunjin

    2017-11-01

    Recently, the optical counterpart of the gravitational-wave source GW170817 has been identified in the NGC 4993 galaxy. Together with evidence from observations in electromagnetic waves, the event has been suggested as a result of a merger of two neutron stars (NSs). We analyze the multi-wavelength data to characterize the host galaxy property and its distance to examine if the properties of NGC 4993 are consistent with this picture. Our analysis shows that NGC 4993 is a bulge-dominated galaxy with {r}{eff}∼ 2{--}3 {kpc} and a Sérsic index of n=3{--}4 for the bulge component. The spectral energy distribution from 0.15 to 24 μm indicates that this galaxy has no significant ongoing star formation, a mean stellar mass of (0.3{--}1.2)× {10}11 {M}ȯ , a mean stellar age greater than ∼3 Gyr, and a metallicity of about 20%–100% of solar abundance. Optical images reveal dust lanes and extended features that suggest a past merging activity. Overall, NGC 4993 has characteristics of normal, but slightly disturbed elliptical galaxies. Furthermore, we derive the distance to NGC 4993 with the fundamental plane relation using 17 parameter sets of 7 different filters and the central stellar velocity dispersion from the literature, finding an angular diameter distance of 37.7 ± 8.7 Mpc. NGC 4993 is similar to some host galaxies of short gamma-ray bursts (GRBs) but much different from those of long GRBs, supporting the picture of GW170817 as a result of the merger of two NSs.

  3. Host Galaxy Spectra and Consequences for SN Typing from the SDSS SN Survey

    Energy Technology Data Exchange (ETDEWEB)

    Olmstead, Matthew D.; Brown, Peter J.; Sako, Masao; Bassett, Bruce; Bizyaev, Dmitry; Brinkmann, J.; Brownstein, Joel R.; Brewington, Howard; Campbell, Heather; D’Andrea, Chris B.; Dawson, Kyle S.; Ebelke, Garrett L.; Frieman, Joshua A.; Galbany, Lluís; Garnavich, Peter; Gupta, Ravi R.; Hlozek, Renee; Jha, Saurabh W.; Kunz, Martin; Lampeitl, Hubert; Malanushenko, Elena; Malanushenko, Viktor; Marriner, John; Miquel, Ramon; Montero-Dorta, Antonio D.; Nichol, Robert C.; Oravetz, Daniel J.; Pan, Kaike; Schneider, Donald P.; Simmons, Audrey E.; Smith, Mathew; Snedden, Stephanie A.

    2014-03-06

    We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey (BOSS), this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of supernova (SN) host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Following our suggested scheme, there are a total of 1166 photometrically classified SNe Ia when using a flat redshift prior and 1126 SNe Ia when the host spectroscopic redshift is assumed. For 1024 (87.8%) candidates classified as likely SNe Ia without redshift information, we find that the classification is unchanged when adding the host galaxy redshift. Using photometry from SDSS imaging data and the host galaxy spectra, we also report host galaxy properties for use in future nalysis of SN astrophysics. Finally, we investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. When using the SALT2 light curve fitter, we find a 21% increase in the number of fits that converge when using the spectroscopic redshift. Without host galaxy redshifts, we find that SALT2 light curve fits are systematically biased towards lower photometric redshift estimates and redder colors in the limit of low signal-to-noise data. The general improvements in performance of the light curve fitter and the increased diversity of the host galaxy sample highlights the importance of host galaxy spectroscopy for current photometric SN surveys such as the Dark Energy Survey and future surveys such as the Large Synoptic Survey Telescope.

  4. Understanding the Host Galaxies of Tidal Disruption Flares

    Science.gov (United States)

    Stone, Nicholas; Generozov, Aleksey; Vasiliev, Eugene; Metzger, Brian

    2018-01-01

    Recent observations suggest that stellar tidal disruption events (TDE) are strongly overrepresented in rare, post-starburst galaxies. Several dynamical mechanisms have been proposed to elevate their TDE rates, ranging from central stellar overdensities to the presence of supermassive black hole (SMBH) binaries. These, and other, dynamical hypotheses can be disentangled by comparing observations to theoretical predictions for the TDE delay time distribution (DTD). We show that SMBH binaries are a less plausible solution for the post-starburst preference, as they can only reproduce the observed DTD with extensive fine-tuning. The overdensity hypothesis produces a reasonable match to the observed DTD (based on the limited data currently available), provided that the initial stellar density profile created during the starburst, ρ(r), is exceptional in both steepness and normalization. In particular, explaining the post-starburst preference requires ρ∝r‑γ with γ>2.5, i.e. much steeper than the classic Bahcall-Wolf equilibrium profile of γ=7/4. Radial velocity anisotropies also represent a promising explanation, provided that initial anisotropy parameters of β0≈0.5 are sustainable against the radial orbit instability. As the sample of TDEs with well-studied host galaxies grows, the DTD will become a powerful tool for constraining the exceptional dynamical properties of post-starburst galactic nuclei.

  5. Gamma-ray burst interaction with dense interstellar medium

    OpenAIRE

    Barkov, Maxim; Bisnovatyi-Kogan, Gennady

    2004-01-01

    Interaction of cosmological gamma ray burst radiation with the dense interstellar medium of host galaxy is considered. Gas dynamical motion of interstellar medium driven by gamma ray burst is investigated in 2D approximation for different initial density distributions of host galaxy matter and different total energy of gamma ray burst. The maximum velocity of motion of interstellar medium is $1.8\\cdot10^4$ km/s. Light curves of gamma ray burst afterglow are calculated for set of non homogeneo...

  6. The Optically Unbiased GRB Host (TOUGH) Survey. VI. Radio Observations at z <~ 1 and Consistency with Typical Star-forming Galaxies

    Science.gov (United States)

    Michałowski, M. J.; Kamble, A.; Hjorth, J.; Malesani, D.; Reinfrank, R. F.; Bonavera, L.; Castro Cerón, J. M.; Ibar, E.; Dunlop, J. S.; Fynbo, J. P. U.; Garrett, M. A.; Jakobsson, P.; Kaplan, D. L.; Krühler, T.; Levan, A. J.; Massardi, M.; Pal, S.; Sollerman, J.; Tanvir, N. R.; van der Horst, A. J.; Watson, D.; Wiersema, K.

    2012-08-01

    The objective of this paper is to determine the level of obscured star formation activity and dust attenuation in a sample of gamma-ray burst (GRB) hosts, and to test the hypothesis that GRB hosts have properties consistent with those of the general star-forming galaxy populations. We present a radio continuum survey of all z 500 M ⊙ yr-1. For the undetected hosts the mean radio flux (~ 88% of the z <~ 1 GRB hosts have ultraviolet dust attenuation A UV < 6.7 mag (visual attenuation AV < 3 mag). Hence, we did not find evidence for large dust obscuration in a majority of GRB hosts. Finally, we found that the distributions of SFRs and A UV of GRB hosts are consistent with those of Lyman break galaxies, Hα emitters at similar redshifts, and of galaxies from cosmological simulations. The similarity of the GRB population with other star-forming galaxies is consistent with the hypothesis that GRBs, a least at z <~ 1, trace a large fraction of all star formation, and are therefore less biased indicators than once thought. Based on observations collected at the European Southern Observatory, Paranal, Chile (ESO Large Programme 177.A-0591), the Australian Telescope Compact Array, the Giant Metrewave Radio Telescope, the Very Large Array, and the Westerbork Synthesis Radio Telescope.

  7. EARLY-TYPE HOST GALAXIES OF TYPE Ia SUPERNOVAE. I. EVIDENCE FOR DOWNSIZING

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yijung; Kim, Young-Lo; Lim, Dongwook; Chung, Chul; Lee, Young-Wook, E-mail: ywlee2@yonsei.ac.kr [Center for Galaxy Evolution Research and Department of Astronomy, Yonsei University, Seoul 03722 (Korea, Republic of)

    2016-03-15

    Type Ia supernova (SN Ia) cosmology provides the most direct evidence for the presence of dark energy. This result is based on the assumption that the lookback time evolution of SN Ia luminosity, after light curve corrections, would be negligible. Recent studies show, however, that the Hubble residual (HR) of SN Ia is correlated with the mass and morphology of host galaxies, implying the possible dependence of SN Ia luminosity on host galaxy properties. In order to investigate this more directly, we have initiated a spectroscopic survey for early-type host galaxies, for which population age and metallicity can be more reliably determined from the absorption lines. In this first paper of the series, we present here the results from high signal-to-noise ratio (≳100 per pixel) spectra for 27 nearby host galaxies in the southern hemisphere. For the first time in host galaxy studies, we find a significant (∼3.9σ) correlation between host galaxy mass (velocity dispersion) and population age, which is consistent with the “downsizing” trend among non-host early-type galaxies. This result is rather insensitive to the choice of population synthesis models. Since we find no correlation with metallicity, our result suggests that stellar population age is mainly responsible for the relation between host mass and HR. If confirmed, this would imply that the luminosity evolution plays a major role in the systematic uncertainties of SN Ia cosmology.

  8. Type Ia Supernova Hubble Residuals and Host-Galaxy Properties

    Energy Technology Data Exchange (ETDEWEB)

    Nearby Supernova Factory; Kim, A. G.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Bongard, S.; Buton, C.; Canto, A.; Cellier-Holzem, F.; Childress, M.; Chotard, N.; Copin, Y.; Fakhouri, H. K.; Feindt, U.; Fleury, M.; Gangler, E.; Greskovic, P.; Guy, J.; Kowalski, M.; Lombardo, S.; Nordin, J.; Nugent, P.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigault, M.; Runge, K.; Saunders, C.; Scalzo, R.; Smadja, G.; Tao, C.; Thomas, R. C.; Weaver, B. A.

    2014-01-17

    Kim et al. (2013) [K13] introduced a new methodology for determining peak- brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spec- trophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ? 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at ? 1?, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement the Hubble residual step with host mass is 0.045 ? 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch param- eters: Steps at> 2? significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light- curve width and color around peak (similar to the∆m15 and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20 to 30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  9. Type Ia supernova Hubble residuals and host-galaxy properties

    Energy Technology Data Exchange (ETDEWEB)

    Kim, A. G.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K. [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Fleury, M.; Guy, J. [Laboratoire de Physique Nucléaire et des Hautes Énergies, Université Pierre et Marie Curie Paris 6, Université Paris Diderot Paris 7, CNRS-IN2P3, 4 place Jussieu, F-75252 Paris Cedex 05 (France); Baltay, C. [Department of Physics, Yale University, New Haven, CT 06250-8121 (United States); Buton, C.; Feindt, U.; Greskovic, P.; Kowalski, M. [Physikalisches Institut, Universität Bonn, Nußallee 12, D-53115 Bonn (Germany); Childress, M. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Chotard, N.; Copin, Y.; Gangler, E. [Université de Lyon, F-69622 Lyon (France); Université de Lyon 1, Villeurbanne (France); CNRS/IN2P3, Institut de Physique Nucléaire de Lyon (France); and others

    2014-03-20

    Kim et al. introduced a new methodology for determining peak-brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spectrophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ± 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at <<1σ, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement of the Hubble residual step with the host mass is 0.045 ± 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch parameters: steps at >2σ significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light-curve width and color around peak (similar to the Δm {sub 15} and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20-30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  10. The Effect of Host Galaxies on Type Ia Supernovae in the SDSS-II Supernova Survey

    Energy Technology Data Exchange (ETDEWEB)

    Lampeitl, Hubert; /Portsmouth U., ICG; Smith, Mathew; /Cape Town U. /Portsmouth U., ICG; Nichol, Robert C.; /Portsmouth U., ICG; Bassett, Bruce; /South African Astron. Observ. /Cape Town U.; Cinabro, David; /Wayne State U.; Dilday, Benjamin; /Rutgers U., Piscataway; Foley, Ryan J.; /Harvard-Smithsonian Ctr. Astrophys.; Frieman, Joshua A.; /Chicago U. /Fermilab; Garnavich, Peter M.; /Notre Dame U.; Goobar, Ariel; /Stockholm U., OKC; Im, Myungshin; /Seoul Natl. U. /Rutgers U., Piscataway

    2010-05-01

    We present an analysis of the host galaxy dependencies of Type Ia Supernovae (SNe Ia) from the full three year sample of the SDSS-II Supernova Survey. We re-discover, to high significance, the strong correlation between host galaxy type and the width of the observed SN light curve, i.e., fainter, quickly declining SNe Ia favor passive host galaxies, while brighter, slowly declining Ia's favor star-forming galaxies. We also find evidence (at between 2 to 3{sigma}) that SNe Ia are {approx_equal} 0.1 magnitudes brighter in passive host galaxies, than in star-forming hosts, after the SN Ia light curves have been standardized using the light curve shape and color variations: This difference in brightness is present in both the SALT2 and MCLS2k2 light curve fitting methodologies. We see evidence for differences in the SN Ia color relationship between passive and star-forming host galaxies, e.g., for the MLCS2k2 technique, we see that SNe Ia in passive hosts favor a dust law of R{sub V} {approx_equal} 1, while SNe Ia in star-forming hosts require R{sub V} {approx} 2. The significance of these trends depends on the range of SN colors considered. We demonstrate that these effects can be parameterized using the stellar mass of the host galaxy (with a confidence of > 4{sigma}) and including this extra parameter provides a better statistical fit to our data. Our results suggest that future cosmological analyses of SN Ia samples should include host galaxy information.

  11. The optical afterglow and host galaxy of GRB 000926

    DEFF Research Database (Denmark)

    Fynbo, J.U.; Gorosabel, J.; Dall, T.H.

    2001-01-01

    We present the discovery of the Optical Transient (OT) of the long-duration gamma-ray burst GRB 000926. The optical transient was detected independently with the Nordic Optical Telescope and at Calar Alto 22.2 hours after the burst. At this time the magnitude of the transient was R = 19.36. The t...

  12. ONGOING AND CO-EVOLVING STAR FORMATION IN zCOSMOS GALAXIES HOSTING ACTIVE GALACTIC NUCLEI

    NARCIS (Netherlands)

    Silverman, J. D.; Lamareille, F.; Maier, C.; Lilly, S. J.; Mainieri, V.; Brusa, M.; Cappelluti, N.; Hasinger, G.; Zamorani, G.; Scodeggio, M.; Bolzonella, M.; Contini, T.; Carollo, C. M.; Jahnke, K.; Kneib, J. -P.; Le Fevre, O.; Merloni, A.; Bardelli, S.; Bongiorno, A.; Brunner, H.; Caputi, K.; Civano, F.; Comastri, A.; Coppa, G.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Elvis, M.; Finoguenov, A.; Fiore, F.; Franzetti, P.; Garilli, B.; Gilli, R.; Iovino, A.; Kampczyk, P.; Knobel, C.; Kovac, K.; Le Borgne, J. -F.; Le Brun, V.; Mignoli, M.; Pello, R.; Peng, Y.; Montero, E. Perez; Ricciardelli, E.; Tanaka, M.; Tasca, L.; Tresse, L.; Vergani, D.; Vignali, C.; Zucca, E.; Bottini, D.; Cappi, A.; Cassata, P.; Fumana, M.; Griffiths, R.; Kartaltepe, J.; Koekemoer, A.; Marinoni, C.; McCracken, H. J.; Memeo, P.; Meneux, B.; Oesch, P.; Porciani, C.; Salvato, M.

    2009-01-01

    We present a study of the host galaxies of active galactic nucleus (AGN) selected from the zCOSMOS survey to establish if accretion onto supermassive black holes (SMBHs) and star formation are explicitly linked up to z similar to 1. We identify 152 galaxies that harbor AGN, based on their X-ray

  13. On the relation between the mass of Compact Massive Objects and their host galaxies

    Science.gov (United States)

    Capuzzo-Dolcetta, R.; Tosta e Melo, I.

    2017-12-01

    Supermassive black holes and/or very dense stellar clusters are found in the central regions of galaxies. Nuclear star clusters (NSCs) are present mainly in faint galaxies, while supermassive black holes are common in galaxies with masses ≥1010 M⊙. In the intermediate galactic mass range, both types of compact massive objects (CMOs) are found. Here, we present our collection of a huge set of NSC and massive black hole data that enlarges significantly already existing data bases useful to investigate for correlations of their absolute magnitudes, velocity dispersions and masses with structural parameters of their host galaxies. In particular, we directed our attention to some differences between the correlations of NSCs and massive black holes as subsets of CMOs with hosting galaxies. In this context, the mass-velocity dispersion relation plays a relevant role because it seems the one that shows a clearer difference between the supermassive black holes and NSCs. The MMBH-σ has a slope of 5.19 ± 0.28, while MNSC-σ has the much smaller slope of 1.84 ± 0.64. The slopes of the CMO mass-host galaxy B magnitude of the two types of CMOs are indistinguishable within the errors, while that of the NSC mass-host galaxy mass relation is significantly smaller than for supermassive black holes. Another important result is the clear depauperation of the NSC population in bright galaxy hosts, which reflects also in a clear flattening of the NSC mass versus host galaxy mass at high host masses.

  14. The Host Galaxies of Type Ia Supernovae Discovered by the Palomar Transient Factory

    Science.gov (United States)

    Pan, Y.-C.; Sullivan, M.; McGuire, K.; Hook, I. M.; Nugent, P. E.; Howell, D. A.; Arcavi, I.; Botyanszki, J.; Cenko, Stephen Bradley; DeRose, J.

    2013-01-01

    We present spectroscopic observations of the host galaxies of 82 low-redshift type Ia supernovae (SNe Ia) discovered by the Palomar Transient Factory (PTF). We determine star-formation rates, gas-phase stellar metallicities, and stellar masses and ages of these objects. As expected, strong correlations between the SN Ia light-curve width (stretch) and the host age mass metallicity are found: fainter, faster-declining events tend to be hosted by older massive metal-rich galaxies. There is some evidence that redder SNe Ia explode in higher metallicity galaxies, but we found no relation between the SN colour and host galaxy extinction based on the Balmer decrement, suggesting that the colour variation of these SNe does not primarily arise from this source. SNe Ia in higher-mass metallicity galaxies also appear brighter after stretch colour corrections than their counterparts in lower mass hosts, and the stronger correlation is with gas-phase metallicity suggesting this may be the more important variable. We also compared the host stellar mass distribution to that in galaxy targeted SN surveys and the high-redshift untargeted Supernova Legacy Survey (SNLS). SNLS has many more low mass galaxies, while the targeted searches have fewer. This can be explained by an evolution in the galaxy stellar mass function, coupled with a SN delay-time distribution proportional to t1. Finally, we found no significant difference in the mass--metallicity relation of our SN Ia hosts compared to field galaxies, suggesting any metallicity effect on the SN Ia rate is small.

  15. HOST GALAXY PROPERTIES AND HUBBLE RESIDUALS OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY

    Energy Technology Data Exchange (ETDEWEB)

    Childress, M.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Hsiao, E. Y.; Kim, A. G.; Loken, S. [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J. [Laboratoire de Physique Nucleaire et des Hautes Energies, Universite Pierre et Marie Curie Paris 6, Universite Paris Diderot Paris 7, CNRS-IN2P3, 4 place Jussieu, F-75252 Paris Cedex 05 (France); Baltay, C. [Department of Physics, Yale University, New Haven, CT 06250-8121 (United States); Buton, C.; Kerschhaggl, M.; Kowalski, M. [Physikalisches Institut, Universitaet Bonn, Nussallee 12, D-53115 Bonn (Germany); Chotard, N.; Copin, Y.; Gangler, E. [Universite de Lyon, F-69622, Lyon (France); Universite de Lyon 1, Villeurbanne (France); CNRS/IN2P3, Institut de Physique Nucleaire de Lyon (France); and others

    2013-06-20

    We examine the relationship between Type Ia supernova (SN Ia) Hubble residuals and the properties of their host galaxies using a sample of 115 SNe Ia from the Nearby Supernova Factory. We use host galaxy stellar masses and specific star formation rates fitted from photometry for all hosts, as well as gas-phase metallicities for a subset of 69 star-forming (non-active galactic nucleus) hosts, to show that the SN Ia Hubble residuals correlate with each of these host properties. With these data we find new evidence for a correlation between SN Ia intrinsic color and host metallicity. When we combine our data with those of other published SN Ia surveys, we find the difference between mean SN Ia brightnesses in low- and high-mass hosts is 0.077 {+-} 0.014 mag. When viewed in narrow (0.2 dex) bins of host stellar mass, the data reveal apparent plateaus of Hubble residuals at high and low host masses with a rapid transition over a short mass range (9.8 {<=} log (M{sub *}/M{sub Sun }) {<=} 10.4). Although metallicity has been a favored interpretation for the origin of the Hubble residual trend with host mass, we illustrate how dust in star-forming galaxies and mean SN Ia progenitor age both evolve along the galaxy mass sequence, thereby presenting equally viable explanations for some or all of the observed SN Ia host bias.

  16. Priming of the neutrophil respiratory burst: role in host defense and inflammation.

    Science.gov (United States)

    El-Benna, Jamel; Hurtado-Nedelec, Margarita; Marzaioli, Viviana; Marie, Jean-Claude; Gougerot-Pocidalo, Marie-Anne; Dang, Pham My-Chan

    2016-09-01

    Neutrophils are the major circulating white blood cells in humans. They play an essential role in host defense against pathogens. In healthy individuals, circulating neutrophils are in a dormant state with very low efficiency of capture and arrest on the quiescent endothelium. Upon infection and subsequent release of pro-inflammatory mediators, the vascular endothelium signals to circulating neutrophils to roll, adhere, and cross the endothelial barrier. Neutrophils migrate toward the infection site along a gradient of chemo-attractants, then recognize and engulf the pathogen. To kill this pathogen entrapped inside the vacuole, neutrophils produce and release high quantities of antibacterial peptides, proteases, and reactive oxygen species (ROS). The robust ROS production is also called 'the respiratory burst', and the NADPH oxidase or NOX2 is the enzyme responsible for the production of superoxide anion, leading to other ROS. In vitro, several soluble and particulate agonists induce neutrophil ROS production. This process can be enhanced by prior neutrophil treatment with 'priming' agents, which alone do not induce a respiratory burst. In this review, we will describe the priming process and discuss the beneficial role of controlled neutrophil priming in host defense and the detrimental effect of excessive neutrophil priming in inflammatory diseases. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Spatially resolved analysis of superluminous supernovae PTF 11hrq and PTF 12dam host galaxies

    Science.gov (United States)

    Cikota, Aleksandar; De Cia, Annalisa; Schulze, Steve; Vreeswijk, Paul M.; Leloudas, Giorgos; Gal-Yam, Avishay; Perley, Daniel A.; Cikota, Stefan; Kim, Sam; Patat, Ferdinando; Lunnan, Ragnhild; Quimby, Robert; Yaron, Ofer; Yan, Lin; Mazzali, Paolo A.

    2017-08-01

    Superluminous supernovae (SLSNe) are the most luminous supernovae in the Universe. They are found in extreme star-forming galaxies and are probably connected with the death of massive stars. One hallmark of very massive progenitors would be a tendency to explode in very dense, UV-bright and blue regions. In this paper, we investigate the resolved host galaxy properties of two nearby hydrogen-poor SLSNe, PTF 11hrq and PTF 12dam. For both galaxies Hubble Space Telescope multifilter images were obtained. Additionally, we perform integral field spectroscopy of the host galaxy of PTF 11hrq using the Very Large Telescope Multi Unit Spectroscopic Explorer (VLT/MUSE), and investigate the line strength, metallicity and kinematics. Neither PTF 11hrq nor PTF 12dam occurred in the bluest part of their host galaxies, although both galaxies have overall blue UV-to-optical colours. The MUSE data reveal a bright starbursting region in the host of PTF 11hrq, although far from the SN location. The SN exploded close to a region with disturbed kinematics, bluer colour, stronger [O iii] and lower metallicity. The host galaxy is likely interacting with a companion. PTF 12dam occurred in one of the brightest pixels, in a starbursting galaxy with a complex morphology and a tidal tail, where interaction is also very likely. We speculate that SLSN explosions may originate from stars generated during star formation episodes triggered by interaction. High-resolution imaging and integral field spectroscopy are fundamental for a better understanding of SLSNe explosion sites and how star formation varies across their host galaxies.

  18. Steep extinction towards GRB 140506A reconciled from host galaxy observations: Evidence that steep reddening laws are local

    Science.gov (United States)

    Heintz, K. E.; Fynbo, J. P. U.; Jakobsson, P.; Krühler, T.; Christensen, L.; Watson, D.; Ledoux, C.; Noterdaeme, P.; Perley, D. A.; Rhodin, H.; Selsing, J.; Schulze, S.; Tanvir, N. R.; Møller, P.; Goldoni, P.; Xu, D.; Milvang-Jensen, B.

    2017-05-01

    We present the spectroscopic and photometric late-time follow-up of the host galaxy of the long-duration Swift γ-ray burst GRB 140506A at z = 0.889. The optical and near-infrared afterglow of this GRB had a peculiar spectral energy distribution (SED) with a strong flux-drop at 8000 Å (4000 Å rest-frame) suggesting an unusually steep extinction curve. By analysing the contribution and physical properties of the host galaxy, we here aim at providing additional information on the properties and origin of this steep, non-standard extinction. We find that the strong flux-drop in the GRB afterglow spectrum at dependent only, further confirming that this type of reddening is present only at very local scales and that it is solely a consequence of the circumburst environment. Based on observations carried out under programme IDs 095.D-0043(A, C) and 095.A-0045(A) with the X-shooter spectrograph and the FOcal Reducer and low dispersion Spectrograph 2 (FORS2) installed at the Cassegrain Very Large Telescope (VLT), Unit 2 - Kueyen and Unit 1 - Antu, respectively, operated by the European Southern Observatory (ESO) on Cerro Paranal, Chile.The reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A83

  19. THE OPTICALLY UNBIASED GRB HOST (TOUGH) SURVEY. VI. RADIO OBSERVATIONS AT z {approx}< 1 AND CONSISTENCY WITH TYPICAL STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Michalowski, M. J.; Dunlop, J. S. [SUPA (Scottish Universities Physics Alliance), Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Kamble, A.; Kaplan, D. L. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Hjorth, J.; Malesani, D.; Fynbo, J. P. U.; Kruehler, T. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Reinfrank, R. F. [CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia); Bonavera, L. [Instituto de Fisica de Cantabria, CSIC-Universidad de Cantabria, Avda. de los Castros s/n, E-39005 Santander (Spain); Castro Ceron, J. M. [Department of Radio Astronomy, Madrid Deep Space Communications Complex (INTA-NASA/INSA), Ctra. M-531, km. 7, E-28.294 Robledo de Chavela (Madrid) (Spain); Ibar, E. [UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Garrett, M. A. [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo (Netherlands); Jakobsson, P. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik (Iceland); Levan, A. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Massardi, M. [INAF-Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Pal, S. [ICRAR, University of Western Australia, 35 Stirling Highway, Crawley, WA (Australia); Sollerman, J. [Oskar Klein Centre, Department of Astronomy, AlbaNova, Stockholm University, SE-10691 Stockholm (Sweden); Tanvir, N. R. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Van der Horst, A. J., E-mail: mm@roe.ac.uk [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Science Park 904, 1098XH Amsterdam (Netherlands); and others

    2012-08-20

    The objective of this paper is to determine the level of obscured star formation activity and dust attenuation in a sample of gamma-ray burst (GRB) hosts, and to test the hypothesis that GRB hosts have properties consistent with those of the general star-forming galaxy populations. We present a radio continuum survey of all z < 1 GRB hosts in The Optically Unbiased GRB Host (TOUGH) sample supplemented with radio data for all (mostly pre-Swift) GRB-SN hosts discovered before 2006 October. We present new radio data for 22 objects and have obtained a detection for three of them (GRB 980425, 021211, 031203; none in the TOUGH sample), increasing the number of radio-detected GRB hosts from two to five. The star formation rate (SFR) for the GRB 021211 host of {approx}825 M{sub Sun} yr{sup -1}, the highest ever reported for a GRB host, places it in the category of ultraluminous infrared galaxies. We found that at least {approx}63% of GRB hosts have SFR < 100 M{sub Sun} yr{sup -1} and at most {approx}8% can have SFR > 500 M{sub Sun} yr{sup -1}. For the undetected hosts the mean radio flux (<35 {mu}Jy 3{sigma}) corresponds to an average SFR < 15 M{sub Sun} yr{sup -1}. Moreover, {approx}> 88% of the z {approx}< 1 GRB hosts have ultraviolet dust attenuation A{sub UV} < 6.7 mag (visual attenuation A{sub V} < 3 mag). Hence, we did not find evidence for large dust obscuration in a majority of GRB hosts. Finally, we found that the distributions of SFRs and A{sub UV} of GRB hosts are consistent with those of Lyman break galaxies, H{alpha} emitters at similar redshifts, and of galaxies from cosmological simulations. The similarity of the GRB population with other star-forming galaxies is consistent with the hypothesis that GRBs, a least at z {approx}< 1, trace a large fraction of all star formation, and are therefore less biased indicators than once thought.

  20. Hubble Residuals of Nearby SN Ia Are Correlated with Host Galaxy Masses

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Patrick L.; /KIPAC, Menlo Park /SLAC; Hicken, Malcolm; /Harvard-Smithsonian Ctr. Astrophys.; Burke, David L.; /KIPAC, Menlo Park /SLAC; Mandel, Kaisey S.; Kirshner, Robert P.; /Harvard-Smithsonian Ctr. Astrophys.

    2010-05-03

    From Sloan Digital Sky Survey u{prime} g{prime} r{prime} i{prime} z{prime} imaging, we estimate the stellar masses of the host galaxies of 70 low redshift SN Ia (0.015 < z < 0.08) from the hosts absolute luminosities and mass-to-light ratios. These nearby SN were discovered largely by searches targeting luminous galaxies, and we find that their host galaxies are substantially more massive than the hosts of SN discovered by the flux-limited Supernova Legacy Survey. Testing four separate light curve fitters, we detect {approx}2.5{sigma} correlations of Hubble residuals with both host galaxy size and stellar mass, such that SN Ia occurring in physically larger, more massive hosts are {approx}10% brighter after light curve correction. The Hubble residual is the deviation of the inferred distance modulus to the SN, calculated from its apparent luminosity and light curve properties, away from the expected value at the SN redshift. Marginalizing over linear trends in Hubble residuals with light curve parameters shows that the correlations cannot be attributed to a light curve-dependent calibration error. Combining 180 higher-redshift ESSENCE, SNLS, and HigherZ SN with 30 nearby SN whose host masses are less than 10{sup 10.8} M{circle_dot} n a cosmology fit yields 1 + w = 0.22{sub -0.108}{sup +0.152}, while a combination where the 30 nearby SN instead have host masses greater than 10{sup 10.8} M{circle_dot} yields 1 + w = ?0.03{sub -0.143}{sup +0.217}. Progenitor metallicity, stellar population age, and dust extinction correlate with galaxy mass and may be responsible for these systematic effects. Host galaxy measurements will yield improved distances to SN Ia.

  1. Do Typical Galaxies in Adolescence Already Host Growing Black Holes?

    Science.gov (United States)

    Trump, Jonathan

    2012-10-01

    This archival grism proposal achieves a 100-fold gain in high-quality {5+sigma} information for discovering which properties of adolescent {0.7galaxies of typical mass and SFR are linked to AGN activity. We propose to analyze 147 WFC3 G141 and 111 ACS 800L pointings of 2-orbit grism data in the CANDELS fields, for a sample of 3000 galaxies reaching SFR 5 Msun/yr and stellar masses of log{M*/Msun} 9 at z 1.5. We will leverage spatially-resolved line ratios to uniquely distinguish a nuclear AGN from extended low-metallicity or shocked gas. Compared to our 30-galaxy published sample that hints at AGNs in low-mass z 2 galaxies {Trump et al. 2011}, this 3000 galaxy sample enables a 100-fold gain in divisions by galaxy morphology, SFR, and stellar mass to discover which galaxy properties correlate most with rapid SMBH growth. We will stack the deep {0.8-4 Ms} Chandra data available in these fields as an independent check of the grism AGN/SF diagnostics. The unique ancillary data in these fields also include ACS+WFC3 imaging for morphologies, deep multiwavelength data for well-sampled SEDs and stellar masses, and previous optical {and future near-IR} spectroscopy to supplement the G141 coverage. Based on discussions with the GOODS-N and 3D-HST teams, our proposed AGN science does not overlap with their proposed or funded science goals. As a value-added product for the community we will release, via the public Rainbow-CANDELS database server, an atlas of spatial maps of emission lines and line ratios {and associated errors} for the entire sample of 3000 galaxies.

  2. Multi-Wavelength Studies on H 2 O Maser Host Galaxies

    Indian Academy of Sciences (India)

    Our work in this field focusses on two projects: X-ray data analysis of individual maser source using X-ray penetrability to explore maser host obscured AGN; ... scale, we find that: (1) maser host galaxies tend to have higher nuclear radio luminosity; (2) the spectral index of both samples is comparable (∼ 0.6), within the error ...

  3. A statistical study of H i gas in nearby narrow-line AGN-hosting galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yi-Nan; Wu, Hong, E-mail: zyn@bao.ac.cn, E-mail: hwu@bao.ac.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2015-01-01

    As a quenching mechanism, active galactic nucleus (AGN) feedback could suppress on going star formation in host galaxies. On the basis of a sample of galaxies selected from the Arecibo Legacy Fast ALFA (ALFALFA) H i survey, the dependence of the H i mass (M{sub H} {sub i}), stellar mass (M{sub *}), and H i-to-stellar mass ratio (M{sub H} {sub i}/M{sub *}) on various tracers of AGN activity are presented and analyzed in this paper. Almost all the AGN hostings in this sample are gas-rich galaxies, and there is not any evidence to indicate that the AGN activity could increase or decrease either M{sub H} {sub i} or M{sub H} {sub i}/M{sub *}. The position of the cold neutral gas cannot be fixed accurately based only on available H i data, due to the large beam size of ALFALFA survey. In addition, even though AGN hostings are more easily detected by an H i survey compared with absorption line galaxies, these two types of galaxies show similar star formation history. If an AGN hosting would ultimately evolve into an old red galaxy with low cold gas, then when and how the gas has been exhausted must be solved by future hypotheses and observations.

  4. Radio Loudness of AGNs: Host Galaxy Morphology and the Spin Paradigm

    Energy Technology Data Exchange (ETDEWEB)

    Stawarz, L.; Sikora, M.; Lasota, J.-P.

    2007-10-15

    We investigate how the total radio luminosity of AGN-powered radio sources depends on their accretion luminosity and the central black hole mass. We find that AGNs form two distinct and well separated sequences on the radio-loudness -- Eddington-ratio plane. We argue that these sequences mark the real upper bounds of radio-loudness of two distinct populations of AGNs: those hosted respectively by elliptical and disk galaxies. Both sequences show the same dependence of the radio-loudness on the Eddington ratio (an increase with decreasing Eddington ratio), which suggests that another parameter in addition to the accretion rate must play a role in determining the jet production efficiency in active galactic nuclei, and that this parameter is related to properties of the host galaxy. The revealed host-related radio dichotomy breaks down at high accretion rates where the dominant fraction of luminous quasars hosted by elliptical galaxies is radio quiet. We argue that the huge difference between the radio-loudness reachable by AGNs in disc and elliptical galaxies can be explained by the scenario according to which the spin of a black hole determines the outflows power, and central black holes can reach large spins only in early type galaxies (following major mergers), and not (in a statistical sense) in spiral galaxies.

  5. Do Nuclear Star Clusters and Supermassive Black Holes Follow the Same Host-Galaxy Correlations?

    Directory of Open Access Journals (Sweden)

    Peter Erwin

    2012-01-01

    Full Text Available Studies have suggested that there is a strong correlation between the masses of nuclear star clusters (NSCs and their host galaxies, a correlation which is said to be an extension of the well-known correlations between supermassive black holes (SMBHs and their host galaxies. But careful analysis of disk galaxies—including 2D bulge/disk/bar decompositions—shows that while SMBHs correlate with the stellar mass of the bulge component of galaxies, the masses of NSCs correlate much better with the total galaxy stellar mass. In addition, the mass ratio MNSC/M⋆, tot for NSCs in spirals (at least those with Hubble types Sc and later is typically an order of magnitude smaller than the mass ratio MBH/M⋆, bul of SMBHs. The absence of a universal “central massive object” correlation argues against common formation and growth mechanisms for both SMBHs and NSCs. We also discuss evidence for a break in the NSC-host galaxy correlation, galaxies with Hubble types earlier than Sbc appear to host systematically more massive NSCs than do types Sc and later.

  6. The hydrogen-poor superluminous supernova iPTF 13ajg and its host galaxy in absorption and emission

    Energy Technology Data Exchange (ETDEWEB)

    Vreeswijk, Paul M.; Gal-Yam, Avishay; De Cia, Annalisa; Rubin, Adam; Yaron, Ofer; Tal, David; Ofek, Eran O. [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 7610001 (Israel); Savaglio, Sandra [Max Planck Institute for Extraterrestrial Physics, D-85748 Garching bei München (Germany); Quimby, Robert M. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8583 (Japan); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Cenko, S. Bradley; Filippenko, Alexei V.; Clubb, Kelsey I. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Perley, Daniel A.; Cao, Yi [Astronomy Department, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Taddia, Francesco; Sollerman, Jesper; Leloudas, Giorgos [Department of Astronomy, The Oskar Klein Center, Stockholm University, AlbaNova 10691 Stockholm (Sweden); Arcavi, Iair [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Kasliwal, Mansi M., E-mail: paul.vreeswijk@weizmann.ac.il [The Observatories, Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); and others

    2014-12-10

    We present imaging and spectroscopy of a hydrogen-poor superluminous supernova (SLSN) discovered by the intermediate Palomar Transient Factory, iPTF 13ajg. At a redshift of z = 0.7403, derived from narrow absorption lines, iPTF 13ajg peaked at an absolute magnitude of M {sub u,} {sub AB} = –22.5, one of the most luminous supernovae to date. The observed bolometric peak luminosity of iPTF 13ajg is 3.2 × 10{sup 44} erg s{sup –1}, while the estimated total radiated energy is 1.3 × 10{sup 51} erg. We detect narrow absorption lines of Mg I, Mg II, and Fe II, associated with the cold interstellar medium in the host galaxy, at two different epochs with X-shooter at the Very Large Telescope. From Voigt profile fitting, we derive the column densities log N(Mg I) =11.94 ± 0.06, log N(Mg II) =14.7 ± 0.3, and log N(Fe II) =14.25 ± 0.10. These column densities, as well as the Mg I and Mg II equivalent widths of a sample of hydrogen-poor SLSNe taken from the literature, are at the low end of those derived for gamma-ray bursts (GRBs) whose progenitors are also thought to be massive stars. This suggests that the environments of hydrogen-poor SLSNe and GRBs are different. From the nondetection of Fe II fine-structure absorption lines, we derive a lower limit on the distance between the supernova and the narrow-line absorbing gas of 50 pc. The neutral gas responsible for the absorption in iPTF 13ajg exhibits a single narrow component with a low velocity width, ΔV = 76 km s{sup –1}, indicating a low-mass host galaxy. No host galaxy emission lines are detected, leading to an upper limit on the unobscured star formation rate (SFR) of SFR{sub [O} {sub II]}<0.07M{sub ⊙}yr{sup −1}. Late-time imaging shows the iPTF 13ajg host galaxy to be faint, with g {sub AB} ≈ 27.0 and R {sub AB} ≥ 26.0 mag, corresponding to M {sub B,} {sub Vega} ≳ –17.7 mag.

  7. Active galactic nuclei vs. host galaxy properties in the COSMOS field

    Science.gov (United States)

    Lanzuisi, G.; Delvecchio, I.; Berta, S.; Brusa, M.; Comastri, A.; Gilli, R.; Gruppioni, C.; Marchesi, S.; Perna, M.; Pozzi, F.; Salvato, M.; Symeonidis, M.; Vignali, C.; Vito, F.; Volonteri, M.; Zamorani, G.

    2017-06-01

    Context. The coeval active galactic nuclei (AGN) and galaxy evolution, and the observed local relations between super massive black holes (SMBHs) and galaxy properties suggest some sort of connection or feedback between SMBH growth (I.e., AGN activity) and galaxy build-up (I.e., star formation history). Aims: We looked for correlations between average properties of X-ray detected AGN and their far-IR (FIR) detected, star forming host galaxies in order to find quantitative evidence for this connection, which has been highly debated in recent years. Methods: We exploited the rich multiwavelength data set (from X-ray to FIR) available in the COSMOS field for a large sample (692 sources) of AGN and their hosts in the redshift range 0.1 average host LIRSF has a flat distribution in bins of AGN LX, while the average AGN LX increases in bins of host LIRSF with logarithmic slope of 0.7 in the redshift range 0.4 average column density (NH) shows a clear positive correlation with the host M∗ at all redshifts, but not with the SFR (or LIRSF). This translates into a negative correlation with specific SFR at all redshifts. The same is true if the obscured fraction is computed. Conclusions: Our results are in agreement with the idea, introduced in recent galaxy evolutionary models, that SMBH accretion and SFRs are correlated, but occur with different variability time scales. Finally, the presence of a positive correlation between NH and host M∗ suggests that the column density that we observe in the X-rays is not entirely due to the circumnuclear obscuring torus, but may also include a significant contribution from the host galaxy. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A123

  8. The nuclear properties and extended morphologies of powerful radio galaxies: the roles of host galaxy and environment

    Science.gov (United States)

    Miraghaei, H.; Best, P. N.

    2017-04-01

    Powerful radio Galaxies exist as either compact or extended sources, with the extended sources traditionally classified by their radio morphologies as Fanaroff-Riley (FR) type I and II sources. FRI/FRII and compact radio galaxies have also been classified by their optical spectra into two different types: high excitation (HERG; quasar-mode) and low excitation (LERG; jet-mode). We present a catalogue of visual morphologies for a complete sample of >1000 1.4-GHz-selected extended radio sources from the Sloan Digital Sky Survey. We study the environment and host galaxy properties of FRI/FRII and compact sources, classified into HERG/LERG types, in order to separate and distinguish the factors that drive the radio morphological variations from those responsible for the spectral properties. Comparing FRI LERGs with FRII LERGs at fixed stellar mass and radio luminosity, we show that FRIs typically reside in richer environments and are hosted by smaller galaxies with higher mass surface density; this is consistent with extrinsic effects of jet disruption driving the Fanaroff-Riley (FR) dichotomy. Using matched samples of HERGs and LERGs, we show that HERG host galaxies are more frequently star forming, with more evidence for disc-like structure than LERGs, in accordance with currently favoured models of fundamentally different fuelling mechanisms. Comparing FRI/FRII LERGs with compact LERGs, we find the primary difference is that compact objects typically harbour less massive black holes. This suggests that lower mass black holes may be less efficient at launching stable radio jets, or do so for shorter times. Finally, we investigate rarer sub-classes: wide-angle-tailed, head-tail, FR-hybrid and double-double sources.

  9. Formation and evolution of star clusters and their host galaxies

    NARCIS (Netherlands)

    Kruijssen, J.M.D.

    2011-01-01

    The vast majority of galaxies contains large populations of stellar clusters, which are bound groups of a few tens to millions of stars. A cluster is formed from a single giant molecular cloud and therefore its stars share the same age and chemical composition. The formation and evolution of star

  10. CONNECTING THE GAMMA RAY BURST RATE AND THE COSMIC STAR FORMATION HISTORY: IMPLICATIONS FOR REIONIZATION AND GALAXY EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Brant E.; Ellis, Richard S., E-mail: brant@astro.caltech.edu [Astronomy Department, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States)

    2012-01-10

    The contemporary discoveries of galaxies and gamma ray bursts (GRBs) at high redshift have supplied the first direct information on star formation when the universe was only a few hundred million years old. The probable origin of long duration GRBs in the deaths of massive stars would link the universal GRB rate to the redshift-dependent star formation rate (SFR) density, although exactly how is currently unknown. As the most distant GRBs and star-forming galaxies probe the reionization epoch, the potential reward of understanding the redshift-dependent ratio {Psi}(z) of the GRB rate to SFR is significant and includes addressing fundamental questions such as incompleteness in rest-frame UV surveys for determining the SFR at high redshift and time variations in the stellar initial mass function. Using an extensive sample of 112 GRBs above a fixed luminosity limit drawn from the Second Swift Burst Alert Telescope catalog and accounting for uncertainty in their redshift distribution by considering the contribution of 'dark' GRBs, we compare the cumulative redshift distribution N(< z) of GRBs with the star formation density {rho}-dot{sub *}(z) measured from UV-selected galaxies over 0 < z <4. Strong evolution (e.g., {Psi}(z){proportional_to}(1 + z){sup 1.5}) is disfavored (Kolmogorov-Smirnov test P < 0.07). We show that more modest evolution (e.g., {Psi}(z){proportional_to}(1 + z){sup 0.5}) is consistent with the data (P Almost-Equal-To 0.9) and can be readily explained if GRBs occur primarily in low-metallicity galaxies which are proportionally more numerous at earlier times. If such trends continue beyond z {approx_equal} 4, we find that the discovery rate of distant GRBs implies an SFR density much higher than that inferred from UV-selected galaxies. While some previous studies of the GRB-SFR connection have concluded that GRB-inferred star formation at high redshift would be sufficient to maintain cosmic reionization over 6

  11. The host galaxies of active galactic nuclei with powerful relativistic jets

    Science.gov (United States)

    Olguín-Iglesias, A.; León-Tavares, J.; Kotilainen, J. K.; Chavushyan, V.; Tornikoski, M.; Valtaoja, E.; Añorve, C.; Valdés, J.; Carrasco, L.

    2016-08-01

    We present deep near-infrared (NIR) images of a sample of 19 intermediate-redshift (0.3 powerful relativistic jets (L1.4 GHz > 1027 W Hz-1), previously classified as flat-spectrum radio quasars. We also compile host galaxy and nuclear magnitudes for blazars from literature. The combined sample (this work and compilation) contains 100 radio-loud AGN with host galaxy detections and a broad range of radio luminosities L1.4 GHz ˜ 1023.7-1028.3 W Hz-1, allowing us to divide our sample into high-luminosity blazars (HLBs) and low-luminosity blazars (LLBs). The host galaxies of our sample are bright and seem to follow the μe-Reff relation for ellipticals and bulges. The two populations of blazars show different behaviours in the MK,nuclear -MK,bulge plane, where a statistically significant correlation is observed for HLBs. Although it may be affected by selection effects, this correlation suggests a close coupling between the accretion mode of the central supermassive black hole and its host galaxy, which could be interpreted in terms of AGN feedback. Our findings are consistent with semi-analytical models where low-luminosity AGN emit the bulk of their energy in the form of radio jets, producing a strong feedback mechanism, and high-luminosity AGN are affected by galaxy mergers and interactions, which provide a common supply of cold gas to feed both nuclear activity and star formation episodes.

  12. Spectroscopic Properties of Star-Forming Host Galaxies and Type Ia Supernova Hubble Residuals in a Nearly Unbiased Sample

    Energy Technology Data Exchange (ETDEWEB)

    D' Andrea, Chris B. [Univ. of Pennsylvania, Philadelphia, PA (United States); et al.

    2011-12-20

    We examine the correlation between supernova host galaxy properties and their residuals on the Hubble diagram. We use supernovae discovered during the Sloan Digital Sky Survey II - Supernova Survey, and focus on objects at a redshift of z < 0.15, where the selection effects of the survey are known to yield a complete Type Ia supernova sample. To minimize the bias in our analysis with respect to measured host-galaxy properties, spectra were obtained for nearly all hosts, spanning a range in magnitude of -23 < M_r < -17. In contrast to previous works that use photometric estimates of host mass as a proxy for global metallicity, we analyze host-galaxy spectra to obtain gas-phase metallicities and star-formation rates from host galaxies with active star formation. From a final sample of ~ 40 emission-line galaxies, we find that light-curve corrected Type Ia supernovae are ~ 0.1 magnitudes brighter in high-metallicity hosts than in low-metallicity hosts. We also find a significant (> 3{\\sigma}) correlation between the Hubble residuals of Type Ia supernovae and the specific star-formation rate of the host galaxy. We comment on the importance of supernova/host-galaxy correlations as a source of systematic bias in future deep supernova surveys.

  13. The Host Galaxy of the Low Mass Black Hole in UGC 06728

    Science.gov (United States)

    Bentz, Misty

    2017-08-01

    We propose to obtain high-resolution, multicolor imaging of the host-galaxy of UGC 06728, a nearby (z=0.0065) low-luminosity Seyfert. A recent reverberation-mapping campaign has constrained the black hole mass to 7x10^5 M_sun, but little is currently known about the host galaxy due to the lack of spatial resolution in existing, seeing-limited images. Based on the black hole mass and the bulge stellar velocity dispersion, it is likely that a black hole mass could also be derived from modeling the nuclear stellar dynamics of UGC 06728. The number of galaxies where comparison of stellar dynamics and reverberation mapping is possible is very small (time. They will also allow us to determine the central stellar surface brightness for follow-up AO-assisted near-IR integral field spectroscopy, accurately constrain the stellar mass-to-light ratio of the galaxy, and correct the AGN luminosity for starlight contamination (to include UGC 06728 at the low end of the AGN R-L relationship). We will also investigate the globular cluster population around the galaxy and the potential to determine its distance using the globular cluster luminosity function method. The proposed observations will facilitate the direct comparison of masses from reverberation mapping and stellar dynamics, which is critical to ensure that all black holes, from Local Group galaxies to z 7 quasars, are on the same mass scale.

  14. Nearby supernova host galaxies from the CALIFA Survey. I. Sample, data analysis, and correlation to star-forming regions

    NARCIS (Netherlands)

    Galbany, L.; Stanishev, V.; Mourão, A. M.; Rodrigues, M.; Flores, H.; García-Benito, R.; Mast, D.; Mendoza, M. A.; Sánchez, S. F.; Badenes, C.; Barrera-Ballesteros, J.; Bland-Hawthorn, J.; Falcón-Barroso, J.; García-Lorenzo, B.; Gomes, J. M.; González Delgado, R. M.; Kehrig, C.; Lyubenova, M.; López-Sánchez, A. R.; de Lorenzo-Cáceres, A.; Marino, R. A.; Meidt, S.; Mollá, M.; Papaderos, P.; Pérez-Torres, M. A.; Rosales-Ortega, F. F.; van de Ven, G.

    2014-01-01

    We use optical integral field spectroscopy (IFS) of nearby supernova (SN) host galaxies (0.005 2.4 Gyr, respectively) than the massive SN Ia hosts (0.04%, 2.01%, and 97.95% in these intervals). We estimate that the low-mass galaxies produce ten times fewer SNe Ia and three times fewer CC SNe than

  15. The Molecular ISM of Quasar Host Galaxies in the Early Universe

    Science.gov (United States)

    Riechers, D. A.

    2007-11-01

    Detailed studies of the molecular gas phase in the host galaxies of the highest redshift quasars are important for our understanding of the formation and evolution of quasars and their bulges, since the molecular gas is the prerequisite material for star formation. This investigation capitalizes on state-of-the-art observations in the radio/millimeter wavelength regime to study the key properties of the molecular interstellar medium in some of the most distant, gas-rich quasars. To search for evolutionary, luminosity-dependent, or galaxy type-dependent trends in the conditions under which star formation takes place, results are interpreted in the context of studies of nearby galaxies and high redshift galaxy populations. From the first high-resolution CO(J=1→0) spectroscopy of high-z quasars, the total molecular gas mass of their host galaxies is determined. By more than doubling the number of molecules known in the distant universe [from 2 (CO/HCN) to 5], it is found that multiple molecular probes of dense gas predict similar star formation rates within the dense molecular regions of high redshift galaxies, out to the first 2Gyr after the Big Bang. Together with other studies, these results indicate an increase in star formation efficiency toward the most luminous distant gas-rich systems, possibly due to a higher median gas density. In a connected, time consuming interferometric study, the host galaxies of three z>4 quasars are resolved, for the first time, both spatially (at up to 0.15", or 1.0 kpc) and in velocity space, revealing that the molecular reservoirs show a wealth of morphologies. The derived dynamical masses are large enough to account for both the central supermassive black holes and the full reservoirs of molecular gas, but do not leave much room for a stellar bulge as predicted by the local relation between black hole mass and bulge velocity dispersion. Quasar host galaxies are thus prime laboratories to study the coevolution of supermassive

  16. The extraordinarily bright optical afterglow of GRB 991208 and its host galaxy

    DEFF Research Database (Denmark)

    Castro-Tirado, A.J.; Sokolov, V.V.; Gorosabel, J.

    2001-01-01

    a massive star origin. The absolute magnitude of the galaxy is M-B = -18.2, well below the knee of the galaxy luminosity function and we derive a star-forming rate of (11.5 +/- 7.1) M-circle dot yr(-1), which is much larger than the present-day rate in our Galaxy. The quasi simultaneous broad...... that GRB 991208 is at 3.7 Gpc (for H-0 = 60 km s(-1) Mpc(-1), Omega (0) = 1 and Lambda (0) = 0), implying an isotropic energy release of 1.15 10(53) erg which may. be relaxed by beaming by a factor >10(2). Precise astrometry indicates that the GRB coincides within 0.2" with the host galaxy, thus supporting...

  17. The host galaxy of the gravitational wave recoiling black hole candidate 3C186

    Science.gov (United States)

    Chiaberge, Marco

    2017-08-01

    We discovered a gravitational wave (GW) recoiling black hole (BH) candidate in our HST WFC3 snapshot images of the radio-loud QSO 3C186. These events are expected to happen as a result of BH-BH mergers. This extremely energetic phenomenon leads to the production of an intense field of GWs, which in most cases are emitted anisotropically. As a result, the merged black hole may receive a kick and be displaced from the center of the host galaxy with velocities that can be as high as 4000 km/s. Depending on the relative orientation of the kick with respect to the line-of-sight, if the BH is active we expect to observe an offset QSO. Furthermore, the broad lines may be offset with respect to the narrow lines, which are emitted in the frame of the host. 3C186 shows all of the predicted observational features of a such an event. Spectra show offsets between narrow and broad emission lines of 2100km/s, and our HST image clearly shows that the QSO is offset by 1.3 with respect to the isophotal center of the host galaxy. Scenarios alternative to the GW kick as the origin for the observed features are unlikely, but still viable. Only HST allows us to obtain spatially resolved information, high sensitivity and stable PSF to better investigate the host galaxy properties. We will use ACS and WFC3 to obtain deep images and study the morphology of the host galaxy. We will unambiguously establish whether the host galaxy of 3C186 underwent a major merger and we will be able to set accurate constraints on the age of the merger. The proposed observations will have a tremendous impact on our knowledge of supermassive BH mergers and the associated emission of gravitational waves.

  18. Host galaxy properties of mergers of stellar binary black holes and their implications for advanced LIGO gravitational wave sources

    Science.gov (United States)

    Cao, Liang; Lu, Youjun; Zhao, Yuetong

    2018-03-01

    Understanding the host galaxy properties of stellar binary black hole (SBBH) mergers is important for revealing the origin of the SBBH gravitational wave sources detected by advanced LIGO and helpful for identifying their electromagnetic counterparts. Here, we present a comprehensive analysis of the host galaxy properties of SBBHs by implementing semi-analytical recipes for SBBH formation and merger into cosmological galaxy formation model. If the time delay between SBBH formation and merger ranges from ≲ Gyr to the Hubble time, SBBH mergers at redshift z ≲ 0.3 occur preferentially in big galaxies with stellar mass M* ≳ 2 × 1010 M⊙ and metallicities Z peaking at ˜0.6 Z⊙. However, the host galaxy stellar mass distribution of heavy SBBH mergers (M•• ≳ 50 M⊙) is bimodal with one peak at ˜109 M⊙ and the other peak at ˜2 × 1010 M⊙. The contribution fraction from host galaxies with Z ≲ 0.2 Z⊙ to heavy mergers is much larger than that to less heavy mergers. If SBBHs were formed in the early Universe (e.g. z > 6), their mergers detected at z ≲ 0.3 occur preferentially in even more massive galaxies with M* > 3 × 1010 M⊙ and in galaxies with metallicities mostly ≳ 0.2 Z⊙ and peaking at Z ˜ 0.6 Z⊙, due to later cosmic assembly and enrichment of their host galaxies. SBBH mergers at z ≲ 0.3 mainly occur in spiral galaxies, but the fraction of SBBH mergers that occur in elliptical galaxies can be significant if those SBBHs were formed in the early Universe; and about two-thirds of those mergers occur in the central galaxies of dark matter haloes. We also present results on the host galaxy properties of SBBH mergers at higher redshift.

  19. e-MERLIN, VLBA and Subaru astrometry of the proposed host galaxy of FRB 150418

    Science.gov (United States)

    Bassa, C.; Beswick, R.; Tingay, S. J.; Bhandari, S.; Johnston, S.; Keane, E. F.; Stappers, B. W.; Tominaga, N.; Totani, T.

    2016-04-01

    We have obtained e-MERLIN and VLBA observations (observation code BT136) of the radio source associated with FRB 150418 by Keane et al. (2016, Nature, 530, 453), previously detected at low angular resolution (host galaxy WISE J071634.59-190039.2 at z=0.492).

  20. Nearby supernova host galaxies from the CALIFA survey. II. Supernova environmental metallicity

    NARCIS (Netherlands)

    Galbany, L.; Stanishev, V.; Mourão, A. M.; Rodrigues, M.; Flores, H.; Walcher, C. J.; Sánchez, S. F.; García-Benito, R.; Mast, D.; Badenes, C.; González Delgado, R. M.; Kehrig, C.; Lyubenova, M.; Marino, R. A.; Mollá, M.; Meidt, S.; Pérez, E.; van de Ven, G.; Vílchez, J. M.

    2016-01-01

    The metallicity of a supernova progenitor, together with its mass, is one of the main parameters that can rule the progenitor's fate. We present the second study of nearby supernova (SN) host galaxies (0.005 ⊙) > 10 dex) by targeted searches. We neither found evidence that the metallicity at the SN

  1. Star formation in the hosts of GHz peaked spectrum and compact steep spectrum radio galaxies

    NARCIS (Netherlands)

    Labiano, A.; O'Dea, C. P.; Barthel, P. D.; Vries, W. H. de; Baum, S. A.

    2007-01-01

    Abstract: AIMS: Search for star formation regions in the hosts of potentially young radio galaxies (Gigahertz Peaked Spectrum and Compact Steep Spectrum sources). METHODS: Near-UV imaging with the Hubble Space Telescope Advanced Camera for Surveys.} RESULTS: We find near-UV light which could be the

  2. Star formation in the hosts of GHz peaked spectrum and compact steep spectrum radio galaxies

    NARCIS (Netherlands)

    Labiano, A.; O'Dea, C. P.; Barthel, P. D.; de Vries, W. H.; Baum, S. A.

    Aims. We are searching for star formation regions in the hosts of potentially young radio galaxies (gigahertz peaked spectrum and compact steep spectrum sources). Methods. We used near-UV imaging with the Hubble Space Telescope Advanced Camera for Surveys. Results. We find near-UV light could be the

  3. Hubble Space Telescope NICMOS observations of the host galaxies of powerful radio sources : Does size matter?

    NARCIS (Netherlands)

    de Vries, WH; O'Dea, CP; Barthel, PD; Fanti, C; Fanti, R; Lehnert, MD

    2000-01-01

    We present near-infrared J- and K-band imaging of a sample of powerful radio source host galaxies with the Hubble Space Telescope NICMOS2 camera. These sources have been selected on their double-lobed radio structure and include a wide range of projected radio source sizes. The largest projected

  4. On the mass-metallicity relation, velocity dispersion and gravitational well depth of GRB host galaxies

    DEFF Research Database (Denmark)

    Arabsalmani, Maryam; Møller, Palle; Fynbo, Johan P. U.

    2015-01-01

    the same underlying population. GRB host galaxies and QSO-DLAs are found to have different impact parameter distributions and we briefly discuss how this may affect statistical samples. The impact parameter distribution has two effects. First any metallicity gradient will shift the measured metallicity...

  5. Elemental gas-phase abundances of intermediate redshift type Ia supernova star-forming host galaxies

    Science.gov (United States)

    Moreno-Raya, ME; Galbany, L.; López-Sánchez, ÁR; Mollá, M.; González-Gaitán, S.; Vílchez, JM; Carnero, A.

    2018-01-01

    The maximum luminosity of type Ia supernovae (SNe Ia) depends on the oxygen abundance of the regions of the host galaxies where they explode. This metallicity dependence reduces the dispersion in the Hubble diagram (HD) when included with the traditional two-parameter calibration of SN Ia light-curve (LC) parameters and absolute magnitude. In this work, we use empirical calibrations to carefully estimate the oxygen abundance of galaxies hosting SNe Ia from the SDSS-II/SNe Survey at intermediate redshift, by measuring their emission line intensities. We also derive electronic temperature with the direct method for a small fraction of objects for consistency. We find a trend of decreasing oxygen abundance with increasing redshift for the most massive galaxies. Moreover, we study the dependence of the HD residuals (HR) with galaxy oxygen abundance obtaining a correlation in line with those found in other works. In particular, the HR vs oxygen abundance shows a slope of -0.186±0.123 mag dex-1 (1.52σ), in good agreement with theoretical expectations. This implies smaller distance modulii after corrections for SNe Ia in metal-rich galaxies. Based on our previous results on local SNe Ia, we propose this dependence to be due to the lower luminosity of the SNe Ia produced in more metal-rich environments.

  6. The host galaxy and environment of a bright QSO at z=7.54

    Science.gov (United States)

    Banados, Eduardo

    2017-08-01

    After almost a decade of intense search, our team has finally discovered a bright QSO well within the epoch of reionization, at z=7.54. This is by far the most distant QSO known (previous record: 7.08), at a cosmic age of 690 Myr, i.e., only 5% of our universe's current age. This is the first QSO whose spectrum shows clear evidence of an intergalactic medium that is >10% neutral and that reionization is underway. We propose deep HST ACS and WFC/IR imaging of this unique source with two main goals. (i) Unveil the rest-frame UV stellar light from the host galaxy to directly probe supermassive black hole/galaxy co-evolution at the highest accessible redshift. (ii) Search for galaxies physically associated with the QSO and test whether this object resides in one of the densest and most biased environment at the peak of the reionization epoch. HST observations are indispensable to address these topics for two reasons: (a) only HST provides the spatial resolution to separate the central bright light source from the underlying host galaxy and (b) at this record-redshift, only space-based imaging can provide the depths necessary to constrain the environment. These HST observations will provide key insights into the formation and evolution of the first super massive black holes, galaxies, and large-scale structure of the universe.

  7. Host galaxies and environments of compact extragalactic radio sources

    NARCIS (Netherlands)

    Labiano Ortega, Alvaro

    2006-01-01

    The main goal of this thesis is to study the interrelation of powerful radio sources with their hosts. The objects of study are GPS and CSS sources. Due to their small size, GPS/CSS sources are excellent probes of this relation. Furthermore, their young age allows us to compare them to the larger,

  8. X-RAY SELECTED AGN HOST GALAXIES ARE SIMILAR TO INACTIVE GALAXIES OUT TO z = 3: RESULTS FROM CANDELS/CDF-S

    Energy Technology Data Exchange (ETDEWEB)

    Rosario, D. J.; Wuyts, S.; Nandra, K. [Max-Planck-Institute for Extraterrestrial Physics, Garching, D-85748 (Germany); Mozena, M.; Faber, S. M.; Koo, D. C. [Astronomy Department and UCO-Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Koekemoer, A.; Ferguson, H.; Grogin, N. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); McGrath, E. [Department of Physics, Colby College, Waterville, ME 04901 (United States); Hathi, N. P. [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States); Dekel, A. [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Donley, J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Dunlop, J. S. [Institute for Astronomy, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Giavalisco, M.; Guo, Y. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003-9305 (United States); Kocevski, D. D. [Department of Physics and Astronomy, University of Kentucky, Lexington KY 40506-0055 (United States); Laird, E.; Rangel, C. [Department of Physics, Imperial College, London SW7 2AZ (United Kingdom); Newman, J. [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); and others

    2013-01-20

    We use multi-band spatially resolved photometry from the Cosmic Assembly Near-IR Deep Legacy Survey in the 4 Ms Chandra Deep Field-South to explore the nuclear and extended colors, color gradients, and stellar populations of the host galaxies of X-ray selected active galactic nuclei (AGNs) out to z = 3. Based on a study of their central light, we develop X-ray based criteria to exclude objects with strong AGN contamination. We use stellar masses from the FIREWORKS database to understand and account for stellar mass selection effects and carefully study, for the first time, the resolved host galaxy properties of AGNs at z {approx} 2 in their rest-frame optical light without substantial nuclear contamination. AGN hosts span a sizable range of stellar masses, colors, and color gradients at these redshifts. Their colors, color gradients, and stellar population properties are very similar to inactive galaxies of the same stellar mass. At z {approx} 1, we find a slightly narrower range in host colors compared to inactive galaxies, as well as hints of more recent star formation. These differences are weaker or non-existent among AGN hosts at z {approx} 2. We discuss the importance of AGN-driven feedback in the quenching of galaxies at z {approx}> 1 and speculate on possible evolution in the relationship between black hole accretion and the host galaxy toward high redshifts.

  9. Gas inflow and outflow in an interacting high-redshift galaxy. The remarkable host environment of GRB 080810 at z = 3.35

    Science.gov (United States)

    Wiseman, P.; Perley, D. A.; Schady, P.; Prochaska, J. X.; de Ugarte Postigo, A.; Krühler, T.; Yates, R. M.; Greiner, J.

    2017-11-01

    We reveal multiple components of an interacting galaxy system at z ≈ 3.35 through a detailed analysis of the exquisite high-resolution Keck/HIRES spectrum of the afterglow of a gamma-ray burst (GRB). Through Voigt-profile fitting of absorption lines from the Lyman series, we constrain the neutral hydrogen column density to NH I ≤ 1018.35 cm-2 for the densest of four distinct systems at the host redshift of GRB 080810, which is among the lowest NH I ever observed in a GRB host, even though the line of sight passes within a projected 5 kpc of the galaxy centres. By detailed analysis of the corresponding metal absorption lines, we derive chemical, ionic, and kinematic properties of the individual absorbing systems, and thus build a picture of the host as a whole. Striking differences between the systems imply that the line of sight passes through several phases of gas: the star-forming regions of the GRB host; enriched material in the form of a galactic outflow; the hot and ionised halo of a second interacting galaxy falling towards the host at a line-of-sight velocity of 700 km s-1; and a cool metal-poor cloud that may represent one of the best candidates yet for the inflow of metal-poor gas from the intergalactic medium. The reduced spectrum is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A107

  10. The host galaxy of the gamma-ray narrow-line Seyfert 1 galaxy 1H 0323+342

    Energy Technology Data Exchange (ETDEWEB)

    León Tavares, J.; Chavushyan, V.; Puerari, I.; Patiño-Alvarez, V.; Carramiñana, A.; Carrasco, L.; Guichard, J.; Olguín-Iglesias, A.; Valdes, J. [Instituto Nacional de Astrofísica Óptica y Electrónica (INAOE), Apartado Postal 51 y 216, 72000 Puebla (Mexico); Kotilainen, J. [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, FI-21500 Piikkiö (Finland); Añorve, C. [Facultad de Ciencias de la Tierra y del Espacio (FACITE) de la Universidad Autónoma de Sinaloa, Blvd. de la Americas y Av. Universitarios S/N, Ciudad Universitaria, C.P. 80010, Culiacán Sinaloa (Mexico); Cruz-González, I. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Ap. 70-264, 04510 DF (Mexico); Antón, S. [Instituto de Astrofísica de Andalucía-CSIC, E-18008 Granada (Spain); Karhunen, K.; Sanghvi, J., E-mail: leon.tavares@inaoep.mx [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, FI-20100 Turku (Finland)

    2014-11-01

    We present optical and near-infrared (NIR) imaging data of the radio-loud, narrow-line Seyfert 1 galaxy 1H 0323+342, which shows intense and variable gamma-ray activity discovered by the Fermi satellite with the Large Area Telescope. Near-infrared and optical images are used to investigate the structural properties of the host galaxy of 1H 0323+342; this together with optical spectroscopy allows us to examine its black hole mass. Based on two-dimensional (2D) multiwavelength surface-brightness modeling, we find that statistically, the best model fit is a combination of a nuclear component and a Sérsic profile (n ∼ 2.8). However, the presence of a disk component (with a small bulge n ∼ 1.2) also remains a possibility and cannot be ruled out with the present data. Although at first glance a spiral-arm-like structure is revealed in our images, a 2D Fourier analysis of the imagery suggests that this structure corresponds to an asymmetric ring, likely associated with a recent violent dynamical interaction. We discuss our results in the context of relativistic jet production and galaxy evolution.

  11. Ultraluminous X-ray bursts in two ultracompact companions to nearby elliptical galaxies.

    Science.gov (United States)

    Irwin, Jimmy A; Maksym, W Peter; Sivakoff, Gregory R; Romanowsky, Aaron J; Lin, Dacheng; Speegle, Tyler; Prado, Ian; Mildebrath, David; Strader, Jay; Liu, Jifeng; Miller, Jon M

    2016-10-20

    A flaring X-ray source was found near the galaxy NGC 4697 (ref. 1). Two brief flares were seen, separated by four years. During each flare, the flux increased by a factor of 90 on a timescale of about one minute. There is no associated optical source at the position of the flares, but if the source was at the distance of NGC 4697, then the luminosities of the flares were greater than 10 39 erg per second. Here we report the results of a search of archival X-ray data for 70 nearby galaxies looking for similar flares. We found two ultraluminous flaring sources in globular clusters or ultracompact dwarf companions of parent elliptical galaxies. One source flared once to a peak luminosity of 9 × 10 40 erg per second; the other flared five times to 10 40 erg per second. The rise times of all of the flares were less than one minute, and the flares then decayed over about an hour. When not flaring, the sources appear to be normal accreting neutron-star or black-hole X-ray binaries, but they are located in old stellar populations, unlike the magnetars, anomalous X-ray pulsars or soft γ repeaters that have repetitive flares of similar luminosities.

  12. Supermassive black holes and their host galaxies. II. The correlation with near-infrared luminosity revisited

    Energy Technology Data Exchange (ETDEWEB)

    Läsker, Ronald; Van de Ven, Glenn [Max-Planck Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Ferrarese, Laura [NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E2E7 (Canada); Shankar, Francesco, E-mail: laesker@mpia.de [GEPI Observatoire de Paris, CNRS, Univ. Paris Diderot, 5 Place Jules Janssen, F-92195 Meudon (France)

    2014-01-01

    We present an investigation of the scaling relations between supermassive black hole (SMBH) masses, M {sub •}, and their host galaxies' K-band bulge (L {sub bul}) and total (L {sub tot}) luminosities. The wide-field WIRCam imager at the Canada-France-Hawaii-Telescope was used to obtain the deepest and highest resolution near-infrared images available for a sample of 35 galaxies with securely measured M {sub •}, selected irrespective of Hubble type. For each galaxy, we derive bulge and total magnitudes using a two-dimensional image decomposition code that allows us to account, if necessary, for large- and small-scale disks, cores, bars, nuclei, rings, envelopes, and spiral arms. We find that the present-day M {sub •}-L {sub bul} and M {sub •}-L {sub tot} relations have consistent intrinsic scatter, suggesting that M {sub •} correlates equally well with bulge and total luminosity of the host. Our analysis provides only mild evidence of a decreased scatter if the fit is restricted to elliptical galaxies. The log-slopes of the M {sub •}-L {sub bul} and M {sub •}-L {sub tot} relations are 0.75 ± 0.10 and 0.92 ± 0.14, respectively. However, while the slope of the M {sub •}-L {sub bul} relation depends on the detail of the image decomposition, the characterization of M {sub •}-L {sub tot} does not. Given the difficulties and ambiguities of decomposing galaxy images into separate components, our results indicate that L {sub tot} is more suitable as a tracer of SMBH mass than L {sub bul}, and that the M {sub •}-L {sub tot} relation should be used when studying the co-evolution of SMBHs and galaxies.

  13. The Old Host-galaxy Environment of SSS17a, the First Electromagnetic Counterpart to a Gravitational-wave Source

    Science.gov (United States)

    Pan, Y.-C.; Kilpatrick, C. D.; Simon, J. D.; Xhakaj, E.; Boutsia, K.; Coulter, D. A.; Drout, M. R.; Foley, R. J.; Kasen, D.; Morrell, N.; Murguia-Berthier, A.; Osip, D.; Piro, A. L.; Prochaska, J. X.; Ramirez-Ruiz, E.; Rest, A.; Rojas-Bravo, C.; Shappee, B. J.; Siebert, M. R.

    2017-10-01

    We present an analysis of the host-galaxy environment of Swope Supernova Survey 2017a (SSS17a), the discovery of an electromagnetic counterpart to a gravitational-wave source, GW170817. SSS17a occurred 1.9 kpc (in projection; 10.″2) from the nucleus of NGC 4993, an S0 galaxy at a distance of 40 Mpc. We present a Hubble Space Telescope (HST) pre-trigger image of NGC 4993, Magellan optical spectroscopy of the nucleus of NGC 4993 and the location of SSS17a, and broadband UV-through-IR photometry of NGC 4993. The spectrum and broadband spectral-energy distribution indicate that NGC 4993 has a stellar mass of {log}(M/{M}⊙ )={10.49}-0.20+0.08 and star formation rate of 0.003 {M}⊙ yr-1, and the progenitor system of SSS17a likely had an age of >2.8 Gyr. There is no counterpart at the position of SSS17a in the HST pre-trigger image, indicating that the progenitor system had an absolute magnitude {M}V> -5.8 mag. We detect dust lanes extending out to almost the position of SSS17a and >100 likely globular clusters associated with NGC 4993. The offset of SSS17a is similar to many short gamma-ray-burst offsets, and its progenitor system was likely bound to NGC 4993. The environment of SSS17a is consistent with an old progenitor system such as a binary neutron star system. This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.

  14. Gamma-ray bursts

    CERN Document Server

    Wijers, Ralph A M J; Woosley, Stan

    2012-01-01

    Cosmic gamma ray bursts (GRBs) have fascinated scientists and the public alike since their discovery in the late 1960s. Their story is told here by some of the scientists who participated in their discovery and, after many decades of false starts, solved the problem of their origin. Fourteen chapters by active researchers in the field present a detailed history of the discovery, a comprehensive theoretical description of GRB central engine and emission models, a discussion of GRB host galaxies and a guide to how GRBs can be used as cosmological tools. Observations are grouped into three sets from the satellites CGRO, BeppoSAX and Swift, and followed by a discussion of multi-wavelength observations. This is the first edited volume on GRB astrophysics that presents a fully comprehensive review of the subject. Utilizing the latest research, Gamma-ray Bursts is an essential desktop companion for graduate students and researchers in astrophysics.

  15. Exploring the making of a galactic wind in the star-bursting dwarf irregular galaxy IC 10 with LOFAR

    Science.gov (United States)

    Heesen, V.; Rafferty, D. A.; Horneffer, A.; Beck, R.; Basu, A.; Westcott, J.; Hindson, L.; Brinks, E.; ChyŻy, K. T.; Scaife, A. M. M.; Brüggen, M.; Heald, G.; Fletcher, A.; Horellou, C.; Tabatabaei, F. S.; Paladino, R.; Nikiel-Wroczyński, B.; Hoeft, M.; Dettmar, R.-J.

    2018-02-01

    Low-mass galaxies are subject to strong galactic outflows, in which cosmic rays may play an important role; they can be best traced with low-frequency radio continuum observations, which are less affected by spectral ageing. We present a study of the nearby star burst dwarf irregular galaxy IC 10 using observations at 140 MHz with the LOw-Frequency ARray (LOFAR), at 1580 MHz with the Very Large Array (VLA) and at 6200 MHz with the VLA and the 100-m Effelsberg telescope. We find that IC 10 has a low-frequency radio halo, which manifests itself as a second component (thick disc) in the minor axis profiles of the non-thermal radio continuum emission at 140 and 1580 MHz. These profiles are then fitted with 1D cosmic-ray transport models for pure diffusion and advection. We find that a diffusion model fits best, with a diffusion coefficient of D = (0.4-0.8) × 1026(E/GeV)0.5 cm2 s-1, which is at least an order of magnitude smaller than estimates both from anisotropic diffusion and the diffusion length. In contrast, advection models, which cannot be ruled out due to the mild inclination, while providing poorer fits, result in advection speeds close to the escape velocity of ≈50 km s^{-1}, as expected for a cosmic-ray driven wind. Our favoured model with an accelerating wind provides a self-consistent solution, where the magnetic field is in energy equipartition with both the warm neutral and warm ionized medium with an important contribution from cosmic rays. Consequently, cosmic rays can play a vital role for the launching of galactic winds in the disc-halo interface.

  16. The effect of host cluster gravitational tidal forces on the internal dynamics of spiral galaxies

    Science.gov (United States)

    Mayer, Alexander

    2013-04-01

    New empirical observation by Bidin, Carraro, Mendez & Smith finds ``a lack of dark matter in the Solar neighborhood" (2012 ApJ 751, 30). This, and the discovery of a vast polar structure of Milky Way satellites by Pawlowski, Pflamm-Altenburg & Kroupa (2012 MNRAS 423, 1109), conflict with the prevailing interpretation of the measured Galactic rotation curve. Simulating the dynamical effects of host cluster tidal forces on galaxy disks reveals radial migration in a spiral structure and an orbital velocity that accelerates with increasing galactocentric radial coordinate. A virtual ``toy model,'' which is based on an Earth-orbiting system of particles and is physically realizable in principle, is available at GravitySim.net. Given the perturbing gravitational effect of the host cluster on a spiral galaxy disk and that a similar effect does not exist for the Solar System, the two systems represent distinct classes of gravitational dynamical systems. The observed `flat' and accelerating rotation curves of spiral galaxies can be attributed to gravitational interaction with the host cluster; no `dark matter halo' is required to explain the observable.

  17. DISSECTING THE QUASAR MAIN SEQUENCE: INSIGHT FROM HOST GALAXY PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jiayi [Tsinghua Center for Astrophysics, Department of Physics, Tsinghua University, Beijing 100084 (China); Shen, Yue [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2015-05-01

    The diverse properties of broad-line quasars appear to follow a well-defined main sequence along which the optical Fe ii strength increases. It has been suggested that this sequence is mainly driven by the Eddington ratio (L/L{sub Edd}) of the black hole (BH) accretion. Shen and Ho demonstrated with quasar clustering analysis that the average BH mass decreases with increasing Fe ii strength when quasar luminosity is fixed, consistent with this suggestion. Here we perform an independent test by measuring the stellar velocity dispersion σ{sub *} (hence, the BH mass via the M–σ{sub *} relation) from decomposed host spectra in low-redshift Sloan Digital Sky Survey quasars. We found that at fixed quasar luminosity, σ{sub *} systematically decreases with increasing Fe ii strength, confirming that the Eddington ratio increases with Fe ii strength. We also found that at fixed luminosity and Fe ii strength, there is little dependence of σ{sub *} on the broad Hβ FWHM. These new results reinforce the framework that the Eddington ratio and orientation govern most of the diversity seen in broad-line quasar properties.

  18. Towards a comprehensive picture of powerful quasars, their host galaxies and quasar winds at z ˜ 0.5

    Science.gov (United States)

    Wylezalek, Dominika; Zakamska, Nadia L.; Liu, Guilin; Obied, Georges

    2016-03-01

    Luminous type-2 quasars in which the glow from the central black hole is obscured by dust are ideal targets for studying their host galaxies and the quasars' effect on galaxy evolution. Such feedback appears ubiquitous in luminous obscured quasars where high-velocity-ionized nebulae have been found. We present rest-frame yellow-band (˜5000 Å) observations using the Hubble Space Telescope (HST) for a sample of 20 luminous quasar host galaxies at 0.2 host galaxy observations with geometric measurements of quasar illumination using blue-band HST observations and [O III] integral field unit observations probing the quasar winds. The HST images reveal bright merger signatures in about half the galaxies; a significantly higher fraction than in comparison inactive ellipticals. We show that the host galaxies are primarily bulge-dominated, with masses close to M*, but belong to host galaxies' high star formation rates and bright merger signatures, we suggest that this low-redshift outbreak of luminous quasar activity is triggered by recent minor mergers. Combining these novel observations, we present new quasar unification tests, which are in agreement with expectations of the orientation-based unification model for quasars.

  19. A Burst to See

    Science.gov (United States)

    2008-04-01

    On 19 March, Nature was particularly generous and provided astronomers with the wealth of four gamma-ray bursts on the same day. But that was not all: one of them is the most luminous object ever observed in the Universe. Despite being located in a distant galaxy, billions of light years away, it was so bright that it could have been seen, for a brief while, with the unaided eye. ESO PR Photo 08a/08 ESO PR Photo 08a/08 The REM Telescope and TORTORA Camera Gamma-ray bursts (GRBs) are short flashes of energetic gamma-rays lasting from less than a second to several minutes. They release a tremendous quantity of energy in this short time making them the most powerful events since the Big Bang. It is now widely accepted that the majority of the gamma-ray bursts signal the explosion of very massive, highly evolved stars that collapse into black holes. Gamma-ray bursts, which are invisible to our eyes, are discovered by telescopes in space. After releasing their intense burst of high-energy radiation, they become detectable for a short while in the optical and in the near-infrared. This 'afterglow' fades very rapidly, making detailed analysis possible for only a few hours after the gamma-ray detection. This analysis is important in particular in order to determine the GRB's distance and, hence, intrinsic brightness. The gamma-ray burst GRB 080319B was detected by the NASA/STFC/ASI Swift satellite. "It was so bright that it almost blinded the Swift instruments for a while," says Guido Chincarini, Italian principal investigator of the mission. A bright optical counterpart was soon identified in the Boötes Constellation (the "Bear Driver" or "Herdsman"). A host of ground-based telescopes reacted promptly to study this new object in the sky. In particular, the optical emission was detected by a few wide-field cameras on telescopes that constantly monitor a large fraction of the sky, including the TORTORA camera in symbiosis with the 0.6-m REM telescope located at La Silla

  20. Rapidly growing black holes and host galaxies in the distant Universe from the Herschel Radio Galaxy Evolution Project

    NARCIS (Netherlands)

    Drouart, G.; De Breuck, C.; Vernet, J.; Seymour, N.; Lehnert, M.; Barthel, P.; Bauer, F. E.; Ibar, E.; Galametz, A.; Haas, M.; Hatch, N.; Mullaney, J. R.; Nesvadba, N.; Rocca-Volmerange, B.; Röttgering, H. J. A.; Stern, D.; Wylezalek, D.

    2014-01-01

    We present results from a comprehensive survey of 70 radio galaxies at redshifts 1 2.5 are higher than the sSFR of typical star forming galaxies over the same redshift range, but are similar or perhaps lower than the galaxy population for radio galaxies at z<2.5. By comparing the sSFR and the

  1. Using diffusion k-means for simple stellar population modeling of low S/N quasar host galaxy spectra

    Science.gov (United States)

    Mosby, Gregory; Tremonti, Christina A.; Hooper, Eric; Wolf, Marsha J.; Sheinis, Andrew; Richards, Joseph

    2016-01-01

    Quasar host galaxies (QHGs) represent a unique stage in galaxy evolution that can provide a glimpse into the relationship between an active supermassive black hole (SMBH) and its host galaxy. However, observing the hosts of high luminosity, unobscured quasars in the optical is complicated by the large ratio of quasar to host galaxy light. One strategy in optical spectroscopy is to use offset longslit observations of the host galaxy. This method allows the centers of QHGs to be analyzed apart from other regions of their host galaxies. But light from the accreting black hole's point spread function still enters the host galaxy observations, and where the contrast between the host and intervening quasar light is favorable, the host galaxy is faint, producing low signal-to-noise (S/N) data. This stymies traditional stellar population methods that might rely on high S/N features in galaxy spectra to recover key galaxy properties like its star formation history (SFH). In response to this challenge, we have developed a method of stellar population modeling using diffusion k-means (DFK) that can recover SFHs from rest frame optical data with S/N ~ 5 Å^-1. Specifically, we use DFK to cultivate a reduced stellar population basis set. This DFK basis set of four broad age bins is able to recover a range of SFHs. With an analytic description of the seeing, we can use this DFK basis set to simultaneously model the SFHs and the intervening quasar light of QHGs as well. We compare the results of this method with previous techniques using synthetic data and find that our new method has a clear advantage in recovering SFHs from QHGs. On average, the DFK basis set is just as accurate and decisively more precise. This new technique could be used to analyze other low S/N galaxy spectra like those from higher redshift or integral field spectroscopy surveys.This material is based upon work supported by the National Science Foundation under grant no. DGE -0718123 and the Advanced

  2. Stellar Photometric Structures of the Host Galaxies of Nearby Type 1 Active Galactic Nuclei

    Science.gov (United States)

    Kim, Minjin; Ho, Luis C.; Peng, Chien Y.; Barth, Aaron J.; Im, Myungshin

    2017-10-01

    We present detailed image analysis of rest-frame optical images of 235 low-redshift (z ≲ 0.35) Type 1 active galactic nuclei (AGNs) observed with the Hubble Space Telescope. The high-resolution images enable us to perform rigorous two-dimensional image modeling to decouple the luminous central point source from the host galaxy, which, when warranted, is further decomposed into its principal structural components (bulge, bar, and disk). In many cases, care must be taken to account for structural complexities such as spiral arms, tidal features, and overlapping or interacting companion galaxies. We employ Fourier modes to characterize the degree of asymmetry of the light distribution of the stars as a quantitative measure of morphological distortion due to interactions or mergers. We examine the dependence of the physical parameters of the host galaxies on the properties of the AGNs, namely, radio-loudness and the width of the broad emission lines. In accordance with previous studies, narrow-line (Hβ FWHM ≤ 2000 km s-1) Type 1 AGNs, in contrast to their broad-line (Hβ FWHM > 2000 km s-1) counterparts, are preferentially hosted in later-type, lower-luminosity galaxies, which have a higher incidence of pseudo-bulges, are more frequently barred, and are less morphologically disturbed. This suggests that narrow-line Type 1 AGNs experienced a more quiescent evolutionary history driven primarily by internal secular evolution instead of external dynamical perturbations. The fraction of AGN hosts showing merger signatures is larger for more luminous sources. Radio-loud AGNs generally preferentially live in earlier-type (bulge-dominated), more massive hosts, although a minority of them appear to contain a significant disk component. We do not find convincing evidence for enhanced merger signatures in the radio-loud population. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute

  3. Quasar outflows at z ≥ 6: the impact on the host galaxies

    Science.gov (United States)

    Barai, Paramita; Gallerani, Simona; Pallottini, Andrea; Ferrara, Andrea; Marconi, Alessandro; Cicone, Claudia; Maiolino, Roberto; Carniani, Stefano

    2018-01-01

    We investigate quasar outflows at z ≥ 6 by performing zoom-in cosmological hydrodynamical simulations. By employing the smoothed particle hydrodynamics code GADGET-3, we zoom in the 2R200 region around a 2 × 1012 M⊙ halo at z = 6, inside a (500 Mpc)3 comoving volume. We compare the results of our active galactic nuclei (AGN) runs with a control simulation in which only stellar/SN feedback is considered. Seeding 105 M⊙ black holes (BHs) at the centres of 109 M⊙ haloes, we find the following results. BHs accrete gas at the Eddington rate over z = 9-6. At z = 6, our most-massive BH has grown to MBH = 4 × 109 M⊙. Fast (vr > 1000 km s-1), powerful (\\dot{M}_out ˜ 2000 M_{⊙} yr-1) outflows of shock-heated low-density gas form at z ∼ 7, and propagate up to hundreds kpc. Star formation is quenched over z = 8-6, and the total star formation rate (SFR surface density near the galaxy centre) is reduced by a factor of 5 (1000). We analyse the relative contribution of multiple physical process: (i) disrupting cosmic filamentary cold gas inflows, (ii) reducing central gas density, (iii) ejecting gas outside the galaxy; and find that AGN feedback has the following effects at z = 6. The inflowing gas mass fraction is reduced by ∼ 12 per cent, the high-density gas fraction is lowered by ∼ 13 per cent, and ∼ 20 per cent of the gas outflows at a speed larger than the escape velocity (500 km s-1). We conclude that quasar-host galaxies at z ≥ 6 are accreting non-negligible amount of cosmic gas, nevertheless AGN feedback quenches their star formation dominantly by powerful outflows ejecting gas out of the host galaxy halo.

  4. A tale of two feedbacks: Star formation in the host galaxies of radio AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Karouzos, Marios; Im, Myungshin; Jeon, Yiseul; Kim, Ji Hoon [CEOU-Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul (Korea, Republic of); Trichas, Markos [Airbus Defence and Space, Gunnels Wood Road, Stevenage SG1 2AS (United Kingdom); Goto, Tomo [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Malkan, Matt [Division of Astronomy and Astrophysics, 3-714 UCLA, CA 90095-1547 (United States); Ruiz, Angel [Inter-University Centre for Astronomy and Astrophysics (IUCAA), Post Bag 4, Ganeshkhind, 411 007 Pune (India); Lee, Hyung Mok; Kim, Seong Jin [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul (Korea, Republic of); Oi, Nagisa; Matsuhara, Hideo; Takagi, Toshinobu; Murata, K.; Wada, Takehiko; Wada, Kensuke [Institute of Space and Astronautical Science, JAXA, Yoshino-dai 3-1-1, Sagamihara, Kanagawa 229-8510 (Japan); Shim, Hyunjin [Department of Earth Science Education, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Hanami, Hitoshi [Physics Section, Faculty of Humanities, Iwate University, Ueda 3 chome, 18-34 Morioka, Morioka, Iwate 020-8550 (Japan); Serjeant, Stephen; White, Glenn J., E-mail: mkarouzos@astro.snu.ac.kr [Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes (United Kingdom); and others

    2014-04-01

    Several lines of argument support the existence of a link between activity at the nuclei of galaxies, in the form of an accreting supermassive black hole, and star formation activity in these galaxies. Radio jets have long been argued to be an ideal mechanism that allows active galactic nuclei (AGNs) to interact with their host galaxies and affect star formation. We use a sample of radio sources in the North Ecliptic Pole (NEP) field to study the nature of this putative link, by means of spectral energy distribution (SED) fitting. We employ the excellent spectral coverage of the AKARI infrared space telescope and the rich ancillary data available in the NEP to build SEDs extending from UV to far-IR wavelengths. We find a significant AGN component in our sample of relatively faint radio sources (host galaxy, independent of the radio luminosity. In contrast, for narrow redshift and AGN luminosity ranges, we find that increasing radio luminosity leads to a decrease in the specific star formation rate. The most radio-loud AGNs are found to lie on the main sequence of star formation for their respective redshifts. For the first time, we potentially see such a two-sided feedback process in the same sample. We discuss the possible suppression of star formation, but not total quenching, in systems with strong radio jets, that supports the maintenance nature of feedback from radio AGN jets.

  5. A Compact Group of Galaxies at z = 2.48 Hosting an AGN-driven Outflow

    Science.gov (United States)

    Shih, Hsin-Yi; Stockton, Alan

    2015-12-01

    We present observations of a remarkable compact group of galaxies at z = 2.48. Four galaxies, all within 40 kpc of each other, surround a powerful high-redshift radio source. This group comprises two compact red passive galaxies and a pair of merging galaxies. One of the red galaxies, with an apparent stellar mass of 3.6 × 1011M⊙ and an effective radius of 470 pc, is one of the most extreme examples of a massive quiescent compact galaxy found so far. One of the pair of merging galaxies hosts the active galactic nucleus (AGN) producing the large powerful radio structure. The merger is massive and enriched, consistent with the mass-metallicity relation expected at this redshift. Close to the merging nuclei, the emission lines exhibit broad and asymmetric profiles that suggest outflows powered either by a very young expanding radio jet or by AGN radiation. At ≳50 kpc from the system, we found a fainter extended-emission region that may be a part of a radio-jet-driven outflow. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The work is also based, in part, on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan, and on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  6. Detailed afterglow modelling and host galaxy properties of the dark GRB 111215A

    DEFF Research Database (Denmark)

    Horst, A. J. van der; Levan, A. J.; Pooley, G. G.

    2015-01-01

    , with the William Herschel Telescope and Nordic Optical Telescope in the nIR/optical, and with the Chandra X-ray Observatory. We have combined our data with the Swift X-Ray Telescope monitoring, and radio and millimeter observations from the literature to perform broadband modeling, and determined the macro......- and microphysical parameters of the GRB blast wave. By combining the broadband modeling results with our nIR upper limits we have put constraints on the extinction in the host galaxy. This is consistent with the optical extinction we have derived from the excess X-ray absorption, and higher than in other dark...

  7. Can supermassive black holes influence the evolution of their host galaxies?

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Reeves, J.; Braito, V.; Veilleux, S.; Reynolds, C.; Lobban, A.

    2016-06-01

    Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. A strong support of this "quasar mode" feedback came from the recent X-ray observation of a mildly relativistic accretion disk wind in an ultraluminous infrared galaxy and its connection with a large-scale molecular outflow observed in the IR with Herschel, suggesting a direct link between the SMBH and the gas out of which stars form. Spectroscopic observations, especially in the X-ray band, suggest that such accretion disk winds may be common in local AGN and quasars. However, their origin and characteristics are still not fully understood. Detailed theoretical models and simulations focused on radiation, magnetohydrodynamic (MHD) or a combination of these two processes, to investigate the possible acceleration mechanisms and dynamics of these winds. XMM-Newton provided a fundamental contribution to these studies and it will still provide the highest effective area in the critical Fe K band of the spectrum until the launch of Athena. Very important improvements are expected from the high energy resolution of the Hitomi X-ray Observatory.

  8. The host galaxies of ultra hard X-ray selected AGN

    Science.gov (United States)

    Koss, Michael J.

    One of the great mysteries surrounding active galactic nuclei (AGN) is their triggering mechanism. Since the discovery that almost all massive galaxies host nuclear supermassive black holes, it has become clear that a trigger mechanism is required to 'turn on' and continue to fuel the central black hole. While it is established that accretion processes are responsible for the energy emitted, the source of the accreting material is still controversial. Furthermore, the energy input from phases of black hole growth is thought to be a key regulator in the formation of galaxies and the establishment of various scaling relations. Theorists often invoke galaxy mergers as the violent mechanism to drive gas into the central regions and ignite luminous quasars, but among more common moderate luminosity AGN, there has been great controversy whether secular processes or mergers dominate AGN fueling. A survey in the ultra hard X-ray band (14--195 keV) is an important new way to answer the fundamental question of AGN fueling. This method is independent of selection effects such as dust extinction and obscuration that plague surveys at other wavelengths because of the ability of the primary continuum to easily pass through large columns of obscuring gas and dust (2 keV) imaging.

  9. The Spiral Host Galaxy of the Double Radio Source 0313-192

    Science.gov (United States)

    Keel, William C.; White, Raymond E., III; Owen, Frazer N.; Ledlow, Michael J.

    2006-12-01

    We present new Hubble Space Telescope (HST), Gemini South, and Chandra observations of the radio galaxy 0313-192, which hosts a 350 kpc double source and jets, even though previous data have suggested that it is a spiral galaxy. We measure the bulge scale and the luminosity, radial, and vertical profiles of disk starlight and consider the distributions of H II regions and absorbing dust. In each case the HST data confirm its classification as an edge-on spiral galaxy, the only such system known to produce such an extended radio source of this kind. The Gemini near-IR images and Chandra spectral fit reveal a strongly obscured central active galactic nucleus (AGN), seen through the entire interstellar medium path length of the disk and showing X-ray evidence of additional absorption from warm or dense material close to the central object. We consider several possible mechanisms for producing such a rare combination of AGN and host properties, some combination of which may be at work. These include an unusually luminous bulge (suggesting a black hole of mass ~8×108 Msolar), the orientation of the jets near the pole of the gas-rich disk, and some evidence of a weak gravitational interaction that has warped the disk and could have enhanced fueling of the central engine. We detect an X-ray counterpart of the kiloparsec-scale radio jet emerging to the south; jet/counterjet limits on both radio and X-ray regimes allow them to be symmetric if seen more than 15° from the plane of the sky, still consistent with the jet axes being within ~30° of the poles of the gas-rich galaxy disk. A linear or disklike emission-line structure is seen around the nucleus, inclined by ~20° to the stellar disk but nearly perpendicular to the jets; this may represent the aftermath of a galaxy encounter, in which gas is photoionized by a direct view of the nuclear continuum. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute

  10. Supermassive black holes and their host galaxies. I. Bulge luminosities from dedicated near-infrared data

    Energy Technology Data Exchange (ETDEWEB)

    Läsker, Ronald; Van de Ven, Glenn [Max-Planck Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Ferrarese, Laura, E-mail: laesker@mpia.de [NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E2E7 (Canada)

    2014-01-01

    In an effort to secure, refine, and supplement the relation between central supermassive black hole masses, M {sub •}, and the bulge luminosities of their host galaxies, L {sub bul}, we obtained deep, high spatial resolution K-band images of 35 nearby galaxies with securely measured M {sub •}, using the wide-field WIRCam imager at the Canada-France-Hawaii-Telescope. A dedicated data reduction and sky subtraction strategy was adopted to estimate the brightness and structure of the sky, a critical step when tracing the light distribution of extended objects in the near-infrared. From the final image product, bulge and total magnitudes were extracted via two-dimensional profile fitting. As a first order approximation, all galaxies were modeled using a simple Sérsic-bulge+exponential-disk decomposition. However, we found that such models did not adequately describe the structure that we observed in a large fraction of our sample galaxies which often include cores, bars, nuclei, inner disks, spiral arms, rings, and envelopes. In such cases, we adopted profile modifications and/or more complex models with additional components. The derived bulge magnitudes are very sensitive to the details and number of components used in the models, although total magnitudes remain almost unaffected. Usually, but not always, the luminosities and sizes of the bulges are overestimated when a simple bulge+disk decomposition is adopted in lieu of a more complex model. Furthermore, we found that some spheroids are not well fit when the ellipticity of the Sérsic model is held fixed. This paper presents the details of the image processing and analysis, while we discuss how model-induced biases and systematics in bulge magnitudes impact the M {sub •}-L {sub bul} relation in a companion paper.

  11. Matching Supernovae to Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    developed a new automated algorithm for matching supernovae to their host galaxies. Their work builds on currently existing algorithms and makes use of information about the nearby galaxies, accounts for the uncertainty of the match, and even includes a machine learning component to improve the matching accuracy.Gupta and collaborators test their matching algorithm on catalogs of galaxies and simulated supernova events to quantify how well the algorithm is able to accurately recover the true hosts.Successful MatchingThe matching algorithms accuracy (purity) as a function of the true supernova-host separation, the supernova redshift, the true hosts brightness, and the true hosts size. [Gupta et al. 2016]The authors find that when the basic algorithm is run on catalog data, it matches supernovae to their hosts with 91% accuracy. Including the machine learning component, which is run after the initial matching algorithm, improves the accuracy of the matching to 97%.The encouraging results of this work which was intended as a proof of concept suggest that methods similar to this could prove very practical for tackling future survey data. And the method explored here has use beyond matching just supernovae to their host galaxies: it could also be applied to other extragalactic transients, such as gamma-ray bursts, tidal disruption events, or electromagnetic counterparts to gravitational-wave detections.CitationRavi R. Gupta et al 2016 AJ 152 154. doi:10.3847/0004-6256/152/6/154

  12. STELLAR POPULATIONS OF ULTRAVIOLET-SELECTED ACTIVE GALACTIC NUCLEI HOST GALAXIES AT z {approx} 2-3

    Energy Technology Data Exchange (ETDEWEB)

    Hainline, Kevin N.; Shapley, Alice E. [Department of Astronomy, University of California, Los Angeles, 430 Portola Plaza, Los Angeles, CA 90024 (United States); Greene, Jenny E. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Steidel, Charles C. [Department of Astronomy, California Institute of Technology, MS 105-24, Pasadena, CA 91125 (United States); Reddy, Naveen A. [Department of Astronomy, University of California, Riverside, Riverside, CA 92521 (United States); Erb, Dawn K. [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201 (United States)

    2012-11-20

    We use stellar population synthesis modeling to analyze the host-galaxy properties of a sample of 33 UV-selected, narrow-lined active galactic nuclei (AGNs) at z {approx} 2-3. In order to quantify the contribution of AGN emission to host galaxy broadband spectral energy distributions (SEDs), we use the subsample of 11 AGNs with photometric coverage spanning from rest-frame UV through near-IR wavelengths. Modeling the SEDs of these objects with a linear combination of stellar population and AGN templates, we infer the effect of the AGN on derived stellar population parameters. We also estimate the typical bias in derived stellar populations for AGNs lacking rest-frame near-IR wavelength coverage, and develop a method for inferring the true host-galaxy properties. We compare AGN host-galaxy properties to those of a sample of UV-selected, star-forming non-AGNs in the same redshift range, including a subsample carefully matched in stellar mass. Although the AGNs have higher masses and star-formation rates than the full non-active sample, their stellar population properties are consistent with those of the mass-selected sample, suggesting that the presence of an AGN is not connected with the cessation of star formation activity in star-forming galaxies at z {approx} 2-3. We suggest that a correlation between M {sub BH} and galaxy stellar mass is already in place at this epoch. Assuming a roughly constant Eddington ratio for AGNs at all stellar masses, we are unable to detect the AGNs in low-mass galaxies because they are simply too faint.

  13. A New Clue in the Mystery of Fast Radio Bursts

    Science.gov (United States)

    Kohler, Susanna

    2017-06-01

    The origin of the mysterious fast radio bursts has eluded us for more than a decade. With the help of a particularly cooperative burst, however, scientists may finally be homing in on the answer to this puzzle.A Burst RepeatsThe host of FRB 121102 is placed in context in this Gemini image. [Gemini Observatory/AURA/NSF/NRC]More than 20 fast radio bursts rare and highly energetic millisecond-duration radio pulses have been observed since the first was discovered in 2007. FRB 121102, however, is unique in its behavior: its the only one of these bursts to repeat. The many flashes observed from FRB 121102 allowed us for the first time to follow up on the burst and hunt for its location.Earlier this year, this work led to the announcement that FRB 121102s host galaxy has been identified: a dwarf galaxy located at a redshift of z = 0.193 (roughly 3 billion light-years away). Now a team of scientists led by Cees Bassa (ASTRON, the Netherlands Institute for Radio Astronomy) has performed additional follow-up to learn more about this host and what might be causing the mysterious flashes.Hubble observation of the host galaxy. The object at the bottom right is a reference star. The blue ellipse marks the extended diffuse emission of the galaxy, the red circle marks the centroid of the star-forming knot, and the white cross denotes the location of FRB 121102 ad the associated persistent radio source. [Adapted from Bassa et al. 2017]Host ObservationsBassa and collaborators used the Hubble Space Telescope, the Spitzer Space Telecsope, and the Gemini North telecsope in Hawaii to obtain optical, near-infrared, and mid-infrared observations of FRB 121102s host galaxy.The authors determined that the galaxy is a dim, irregular, low-metallicity dwarf galaxy. Its resolved, revealing a bright star-forming region roughly 4,000 light-years across in the galaxys outskirts. Intriguingly, the persistent radio source associated with FRB 121102 falls directly within that star-forming knot

  14. Black Hole Growth Is Mainly Linked to Host-galaxy Stellar Mass Rather Than Star Formation Rate

    Science.gov (United States)

    Yang, G.; Chen, C.-T. J.; Vito, F.; Brandt, W. N.; Alexander, D. M.; Luo, B.; Sun, M. Y.; Xue, Y. Q.; Bauer, F. E.; Koekemoer, A. M.; Lehmer, B. D.; Liu, T.; Schneider, D. P.; Shemmer, O.; Trump, J. R.; Vignali, C.; Wang, J.-X.

    2017-06-01

    We investigate the dependence of black hole accretion rate (BHAR) on host-galaxy star formation rate (SFR) and stellar mass (M *) in the CANDELS/GOODS-South field in the redshift range of 0.5≤slant zteam through spectral energy distribution fitting. The average BHAR is correlated positively with both SFR and M *, and the BHAR-SFR and BHAR-M * relations can both be described acceptably by linear models with a slope of unity. However, BHAR appears to be correlated more strongly with M * than SFR. This result indicates that M * is the primary host-galaxy property related to supermassive black hole (SMBH) growth, and the apparent BHAR-SFR relation is largely a secondary effect due to the star-forming main sequence. Among our sources, massive galaxies ({M}* ≳ {10}10{M}⊙ ) have significantly higher BHAR/SFR ratios than less massive galaxies, indicating that the former have higher SMBH fueling efficiency and/or higher SMBH occupation fraction than the latter. Our results can naturally explain the observed proportionality between {M}{BH} and M * for local giant ellipticals and suggest that their {M}{BH}/{M}* is higher than that of local star-forming galaxies. Among local star-forming galaxies, massive systems might have higher {M}{BH}/{M}* compared to dwarfs.

  15. THE ACS VIRGO CLUSTER SURVEY. XVII. THE SPATIAL ALIGNMENT OF GLOBULAR CLUSTER SYSTEMS WITH EARLY-TYPE HOST GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qiushi; Peng, Eric W. [Department of Astronomy, Peking University, Beijing 100871 (China); Blakeslee, John P.; Cote, Patrick; Ferrarese, Laura [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Jordan, Andres [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Mei, Simona [University of Paris 7 Denis Diderot, F-75205 Paris Cedex 13 (France); West, Michael J., E-mail: peng@pku.edu.cn [Maria Mitchell Observatory, 4 Vestal Street, Nantucket, MA 02554 (United States)

    2013-06-01

    We study the azimuthal distribution of globular clusters (GCs) in early-type galaxies and compare them to their host galaxies using data from the ACS Virgo Cluster Survey. We find that in host galaxies with visible elongation ({epsilon} > 0.2) and intermediate to high luminosities (M{sub z} < -19), the GCs are preferentially aligned along the major axis of the stellar light. The red (metal-rich) GC subpopulations show strong alignment with the major axis of the host galaxy, which supports the notion that these GCs are associated with metal-rich field stars. The metal-rich GCs in lenticular galaxies show signs of being more strongly associated with disks rather than bulges. Surprisingly, we also find that the blue (metal-poor) GCs can also show the same correlation. If the metal-poor GCs are part of the early formation of the halo and built up through mergers, then our results support a picture where halo formation and merging occur anisotropically, and that the present-day major axis is an indicator of the preferred merging axis.

  16. Revealing the AGN-Host Galaxy Connection: Preliminary Results from an Arecibo Survey of HI Absorption in AGN

    Science.gov (United States)

    Jones, Kristen M.

    2018-01-01

    The presence of an Active Galactic Nucleus (AGN) can have an extensive effect on a host galaxy, most notably through powerful outflows or jets that it produces. Such outflows often deposit kinetic energy into the interstellar medium of the host galaxy at sub-kpc, kpc, and 10s of kpc scales. While this can ionize the gaseous material, studies of absorption of neutral hydrogen (HI) have also detected kinematic outflows with velocities ranging from 100s to 1000s of km/s. Such outflows can be difficult to detect due to the diffuse nature of the HI gas, especially in galaxies with low radio brightnesses. The sensitivity of the Arecibo Observatory 305m, however, makes such a study feasible. We present preliminary results of a survey of AGN-dominated sources in the Arecibo sky that has revealed complex HI absorption structures in several objects, revealing complex HI absorption structures in several objects.

  17. Is Black Hole Growth a Universal Process? Exploring Selection Effects in Measurements of AGN Accretion Rates and Host Galaxies.

    Science.gov (United States)

    Jones, Mackenzie

    2018-01-01

    At the center of essentially every massive galaxy is a monstrous black hole producing luminous radiation driven by the accretion of gas. By observing these active galactic nuclei (AGN) we may trace the growth of black holes across cosmic time. However, our knowledge of the full underlying AGN population is hindered by complex observational biases. My research aims to untangle these biases by using a novel approach to simulate the impact of selection effects on multiwavelength observations.The most statistically powerful studies of AGN to date come from optical spectroscopic surveys, with some reporting a complex relationship between AGN accretion rates and host galaxy characteristics. However, the optical waveband can be strongly influenced by selection effects and dilution from host galaxy star formation. I have shown that accounting for selection effects, the Eddington ratio distribution for optically-selected AGN is consistent with a broad power-law, as seen in the X-rays (Jones et al. 2016). This suggests that a universal Eddington ratio distribution may be enough to describe the full multiwavelength AGN population.Building on these results, I have expanded a semi-numerical galaxy formation simulation to include this straightforward prescription for AGN accretion and explicitly model selection effects. I have found that a simple model for AGN accretion can broadly reproduce the host galaxies and halos of X-ray AGN, and that different AGN selection techniques yield samples with very different host galaxy properties (Jones et al. 2017). Finally, I will discuss the capabilities of this simulation to build synthetic multiwavelength SEDs in order to explore what AGN populations would be detected with the next generation of observatories. This research is supported by a NASA Jenkins Graduate Fellowship under grant no. NNX15AU32H.

  18. A glimpse at quasar host galaxy far-UV emission using damped Lyα's as natural coronagraphs

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Zheng; Fan, Xiaohui; Wang, Ran; McGreer, Ian, E-mail: caize@arizona.edu [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Noterdaeme, Pasquier; Finley, Hayley; Petitjean, Patrick [Institut d' Astrophysique de Paris, CNRS-UPMC, UMR7095, 98bis bd Arago, F-75014 Paris (France); Carithers, Bill [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA (United States); Bian, Fuyan [Research School of Astronomy and Astrophysics, Australian National University, Canberra, Weston Creek, ACT, 2611 (Australia); Miralda-Escudé, Jordi [Institució Catalana de Recerca i Estudis Avançats, Barcelona (Spain); Pâris, Isabelle [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Zakamska, Nadia L. [Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 (United States); Ge, Jian [Department of Astronomy, University of Florida, Gainesville, FL (United States); Slosar, Anze [Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2014-10-01

    In merger-driven models of massive galaxy evolution, the luminous quasar phase is expected to be accompanied by vigorous star formation in quasar host galaxies. In this paper, we use high column density damped Lyα (DLA) systems along quasar sight lines as natural coronagraphs to directly study the far-UV (FUV) radiation from the host galaxies of luminous background quasars. We have stacked the spectra of ∼2000 DLA systems (N {sub H} {sub I} > 10{sup 20.6} cm{sup –2}) with a median absorption redshift (z) = 2.6 selected from quasars observed in the SDSS-III Baryon Oscillation Spectroscopic Survey. We detect residual flux in the dark troughs of the composite DLA spectra. The level of this residual flux significantly exceeds systematic errors in the Sloan Digital Sky Survey fiber sky subtraction; furthermore, the residual flux is strongly correlated with the continuum luminosity of the background quasar, while uncorrelated with DLA column density or metallicity. We conclude that the flux could be associated with the average FUV radiation from the background quasar host galaxies (with medium redshift (z) = 3.1) that is not blocked by the intervening DLA. Assuming that all of the detected flux originates from quasar hosts, for the highest quasar luminosity bin ((L) = 2.5 × 10{sup 13} L {sub ☉}), the host galaxy has an FUV intensity of 1.5 ± 0.2 × 10{sup 40} erg s{sup –1} Å{sup –1}; this corresponds to an unobscured UV star formation rate of 9 M {sub ☉} yr{sup –1}.

  19. Supermassive black holes in disc-dominated galaxies outgrow their bulges and co-evolve with their host galaxies

    Science.gov (United States)

    Simmons, B. D.; Smethurst, R. J.; Lintott, C.

    2017-09-01

    The deep connection between galaxies and their supermassive black holes is central to modern astrophysics and cosmology. The observed correlation between galaxy and black hole mass is usually attributed to the contribution of major mergers to both. We make use of a sample of galaxies whose disc-dominated morphologies indicate a major-merger-free history and show that such systems are capable of growing supermassive black holes at rates similar to quasars. Comparing black hole masses to conservative upper limits on bulge masses, we show that the black holes in the sample are typically larger than expected if processes creating bulges are also the primary driver of black hole growth. The same relation between black hole and total stellar mass of the galaxy is found for the merger-free sample as well as a sample that has experienced substantial mergers, indicating that major mergers do not play a significant role in controlling the co-evolution of galaxies and black holes. We suggest that more fundamental processes that contribute to galaxy assembly are also responsible for black hole growth.

  20. Co-evolution of Massive Black Holes and Their Host Galaxies

    Science.gov (United States)

    Chen, Y. M.

    2010-07-01

    A scenario of co-evolution of supermassive black holes (SMBHs) and galaxies has been clearly conducted by the important evidence from observational results of quasar host galaxies and the relation between spheroid and SMBH mass. There are a plenty of unresolved problems and questions, some being basic, to be addressed in this scenario. The main goal of the present thesis is focusing on the mysterious scenario including growth of primordial black holes, cosmological evolution of spins and duty cycle of SMBHs, and interaction between the SMBH activity and star formation in galaxies from low to high redshifts. We review the main progress of this field over the past decade since the discovery of Magorrian relation and present comments on some questions in light of our view of points. The key questions to be addressed in this thesis work are: (1) how does the fast growth of primordial black holes influence their evolution? (2) what is the equation to describe the co-evolution of SMBHs and galaxies? (3) what is the mechanism to control the co-evolution? (4) how to transport the fueling gas from kpc scale to the center? It has been suggested that fast growth of primordial black holes via super-Eddington accretion is a promising way to form SMBHs in high redshift universe. Neutrino cooling has been employed and expedites the growth. We consider the Compton heating of the surroundings of the primordial black holes. We find that the realistic accretion rate is only a few percent of the Eddington rate, and the accretion is episodic. It implies that the fast growth via super-Eddington is not feasible. These conclusions have been confirmed by the detailed numerical simulations of Milosavljevic et al. (2008). The difficulties of the fast growth via accretion of baryon particles make the formation of SMBHs elusive in high redshift universe. We developed a new formulation to calculate the duty cycle of SMBHs based on the Soltan argument. We show it can be expressed by the mass

  1. STAR FORMATION IN LINER HOST GALAXIES AT z {approx} 0.3

    Energy Technology Data Exchange (ETDEWEB)

    Tommasin, Silvia; Netzer, Hagai; Sternberg, Amiel [School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Nordon, Raanan; Lutz, Dieter; Berta, Stefano; Magnelli, Benjamin [MPE, Postfach 1312, 85741 Garching (Germany); Bongiorno, Angela [INAF-Oservatorio Astronomico di Roma, via Frascati 33, 00040 Monte Porzio Catone (Roma) (Italy); Le Floc' h, Emeric; Riguccini, Laurie [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, IRFU/Service d' Astrophysique, Bat 709, CEA-Saclay, 91191 Gif-sur-Yvette Cedex (France); Pozzi, Francesca [Dipartimento di Astronomia, Universita degli Studi di Bologna, via Ranzani 1, 40127 Bologna (Italy)

    2012-07-10

    We present the results of a Herschel-PACS study of a sample of 97 low-ionization nuclear emission-line regions (LINERs) at redshift z {approx} 0.3 selected from the zCOSMOS survey. Of these sources, 34 are detected in at least one PACS band, enabling reliable estimates of the far-infrared L{sub FIR} luminosities, and a comparison to the FIR luminosities of local LINERs. Many of our PACS-detected LINERs are also UV sources detected by GALEX. Assuming that the FIR is produced in young dusty star-forming regions, the typical star formation rates (SFRs) for the host galaxies in our sample are {approx}10 M{sub Sun} yr{sup -1}, 1-2 orders of magnitude larger than in many local LINERs. Given stellar masses inferred from optical/NIR photometry of the (unobscured) evolved stellar populations, we find that the entire sample lies close to the star-forming 'main sequence' for galaxies at redshift 0.3. For young star-forming regions, the H{alpha}- and UV-based estimates of the SFRs are much smaller than the FIR-based estimates, by factors {approx}30, even assuming that all of the H{alpha} emission is produced by O-star ionization rather than by the active galactic nuclei (AGNs). These discrepancies may be due to large (and uncertain) extinctions toward the young stellar systems. Alternatively, the H{alpha} and UV emissions could be tracing residual star formation in an older, less obscured population with decaying star formation. We also compare L{sub SF} and L(AGN) in local LINERs and in our sample. Finally, we comment on the problematic use of several line diagnostic diagrams in cases with an estimated obscuration similar to that in the sample under study.

  2. Long gamma-ray bursts and core-collapse supernovae have differentenvironments

    Energy Technology Data Exchange (ETDEWEB)

    Fruchter, A.S.; Levan, A.J.; Strolger, L.; Vreeswijk, P.M.; Thorsett, S.E.; Bersier, D.; Burud, I.; Castro Ceren, J.M.; Castro-Tirado, A.J.; Conselice, C.; Dahlen, T.; Ferguson, H.C.; Fynbo,J.P.U.; Garnavich, P.M.; Gibbons, R.A.; Gorosabel, J.; Gull, T.R.; Hjorth, J.; Holland, S.T.; Kouveliotou, C.; Levay, Z.; Livio, M.; Metzger, M.R.; Nugent, P.E.; Petro, L.; Pian, E.; Rhoads, J.E.; Riess,A.G.; Sahu, K.C.; Smette, A.; Tanvir, N.R.; Wijers, R.A.M.J.; Woosley, S.E.

    2006-05-01

    When massive stars exhaust their fuel they collapse andoften produce the extraordinarily bright explosions known ascore-collapse supernovae. On occasion, this stellar collapse also powersan even more brilliant relativistic explosion known as a long-durationgamma-ray burst. One would then expect that long gamma-ray bursts andcore-collapse supernovae should be found in similar galacticenvironments. Here we show that this expectation is wrong. We find thatthe long gamma-ray bursts are far more concentrated on the very brightestregions of their host galaxies than are the core-collapse supernovae.Furthermore, the host galaxies of the long gamma-ray bursts aresignificantly fainter and more irregular than the hosts of thecore-collapse supernovae. Together theseresults suggest thatlong-duration gamma-ray bursts are associated with the most massive starsand may be restricted to galaxies of limited chemical evolution. Ourresults directly imply that long gamma-ray bursts are relatively rare ingalaxies such as our own MilkyWay.

  3. Spatially Resolved Patchy Ly α Emission within the Central Kiloparsec of a Strongly Lensed Quasar Host Galaxy at z = 2.8

    Energy Technology Data Exchange (ETDEWEB)

    Bayliss, Matthew B.; Bordoloi, Rongmon [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Sharon, Keren; Runnoe, Jessie; Johnson, Traci; Paterno-Mahler, Rachel [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Acharyya, Ayan; Bian, Fuyan; Kewley, Lisa [RSAA, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Gladders, Michael D. [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Rigby, Jane R. [Astrophysics Science Division, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Dahle, Hakon [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); Florian, Michael, E-mail: mbayliss@mit.edu [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States)

    2017-08-20

    We report the detection of extended Ly α emission from the host galaxy of SDSS J2222+2745, a strongly lensed quasar at z = 2.8. Spectroscopic follow-up clearly reveals extended Ly α in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging and resolve spatial scales as small as ∼200 pc. In the source plane, we recover the host galaxy morphology to within a few hundred parsecs of the central AGN and map the extended Ly α emission to its physical origin on one side of the host galaxy at radii ∼0.5–2 kpc from the central AGN. There are clear morphological differences between the Ly α and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Ly α , host galaxy Ly α , and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong-lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.

  4. Spatially Resolved Patchy Lyα Emission within the Central Kiloparsec of a Strongly Lensed Quasar Host Galaxy at z = 2.8

    Science.gov (United States)

    Bayliss, Matthew B.; Sharon, Keren; Acharyya, Ayan; Gladders, Michael D.; Rigby, Jane R.; Bian, Fuyan; Bordoloi, Rongmon; Runnoe, Jessie; Dahle, Hakon; Kewley, Lisa; Florian, Michael; Johnson, Traci; Paterno-Mahler, Rachel

    2017-08-01

    We report the detection of extended Lyα emission from the host galaxy of SDSS J2222+2745, a strongly lensed quasar at z = 2.8. Spectroscopic follow-up clearly reveals extended Lyα in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging and resolve spatial scales as small as ˜200 pc. In the source plane, we recover the host galaxy morphology to within a few hundred parsecs of the central AGN and map the extended Lyα emission to its physical origin on one side of the host galaxy at radii ˜0.5-2 kpc from the central AGN. There are clear morphological differences between the Lyα and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Lyα, host galaxy Lyα, and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong-lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.

  5. Galactic-scale Feedback Observed in the 3C 298 Quasar Host Galaxy

    Science.gov (United States)

    Vayner, Andrey; Wright, Shelley A.; Murray, Norman; Armus, Lee; Larkin, James E.; Mieda, Etsuko

    2017-12-01

    We present high angular resolution multiwavelength data of the 3C 298 radio-loud quasar host galaxy (z = 1.439) taken using the W.M. Keck Observatory OSIRIS integral field spectrograph (IFS) with adaptive optics, the Atacama Large Millimeter/submillimeter Array (ALMA), the Hubble Space Telescope (HST) WFC3, and the Very Large Array (VLA). Extended emission is detected in the rest-frame optical nebular emission lines Hβ, [O III], Hα, [N II], and [S II], as well as in the molecular lines CO (J = 3‑2) and (J = 5‑4). Along the path of the relativistic jets of 3C 298, we detect conical outflows in ionized gas emission with velocities of up to 1700 {km} {{{s}}}-1 and an outflow rate of 450–1500 {M}ȯ {{yr}}-1 extended over 12 kpc. Near the spatial center of the conical outflow, CO (J = 3‑2) emission shows a molecular gas disk with a rotational velocity of ±150 {km} {{{s}}}-1 and total molecular mass ({M}{{{H}}2}) of 6.6+/- 0.36× {10}9 {M}ȯ . On the blueshifted side of the molecular disk, we observe broad extended emission that is due to a molecular outflow with a rate of 2300 {M}ȯ {{yr}}-1 and depletion timescale of 3 Myr. We detect no narrow Hα emission in the outflow regions, suggesting a limit on star formation of 0.3 {M}ȯ {{yr}}-1 {{kpc}}-2. Quasar-driven winds are evacuating the molecular gas reservoir, thereby directly impacting star formation in the host galaxy. The observed mass of the supermassive black hole is {10}9.37{--9.56} {M}ȯ , and we determine a dynamical bulge mass of {M}{bulge}=1{--}1.7× {10}10\\tfrac{R}{1.6 {kpc}} {M}ȯ . The bulge mass of 3C 298 lies 2–2.5 orders of magnitude below the expected value from the local galactic bulge—supermassive black hole mass ({M}{bulge}{--}{M}{BH}) relationship. A second galactic disk observed in nebular emission is offset from the quasar by 9 kpc, suggesting that the system is an intermediate-stage merger. These results show that galactic-scale negative feedback is occurring early in the merger

  6. THE HOST GALAXY OF THE SUPER-LUMINOUS SN 2010gx AND LIMITS ON EXPLOSIVE {sup 56}Ni PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ting-Wan; Smartt, Stephen J.; Kotak, Rubina; McCrum, Matt; Fraser, Morgan [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Bresolin, Fabio; Kudritzki, Rolf-Peter [Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Pastorello, Andrea [INAF-Osservatorio Astronomico di Padova, vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Valenti, Stefano [Las Cumbres Observatory Global Telescope Network, Inc., Santa Barbara, CA 93117 (United States)

    2013-02-01

    Super-luminous supernovae have a tendency to occur in faint host galaxies which are likely to have low mass and low metallicity. While these extremely luminous explosions have been observed from z = 0.1 to 1.55, the closest explosions allow more detailed investigations of their host galaxies. We present a detailed analysis of the host galaxy of SN 2010gx (z = 0.23), one of the best studied super-luminous type Ic supernovae. The host is a dwarf galaxy (M{sub g} = -17.42 {+-} 0.17) with a high specific star formation rate. It has a remarkably low metallicity of 12 + log (O/H) = 7.5 {+-} 0.1 dex as determined from the detection of the [O III] {lambda}4363 line. This is the first reliable metallicity determination of a super-luminous stripped-envelope supernova host. We collected deep multi-epoch imaging with Gemini + GMOS between 240 and 560 days after explosion to search for any sign of radioactive {sup 56}Ni, which might provide further insights on the explosion mechanism and the progenitor's nature. We reach griz magnitudes of m{sub AB} {approx} 26, but do not detect SN 2010gx at these epochs. The limit implies that any {sup 56}Ni production was similar to or below that of SN 1998bw (a luminous type Ic SN that produced around 0.4 M{sub Sun} of {sup 56}Ni). The low volumetric rates of these supernovae ({approx}10{sup -4} of the core-collapse population) could be qualitatively matched if the explosion mechanism requires a combination of low-metallicity (below 0.2 Z{sub Sun }), high progenitor mass (>60 M{sub Sun }) and high rotation rate (fastest 10% of rotators).

  7. AGN-host connection at 0.5 < z < 2.5: A rapid evolution of AGN fraction in red galaxies during the last 10 Gyr

    Science.gov (United States)

    Wang, Tao; Elbaz, D.; Alexander, D. M.; Xue, Y. Q.; Gabor, J. M.; Juneau, S.; Schreiber, C.; Zheng, X.-Z.; Wuyts, S.; Shi, Y.; Daddi, E.; Shu, X.-W.; Fang, G.-W.; Huang, J.-S.; Luo, B.; Gu, Q.-S.

    2017-05-01

    We explore the dependence of the incidence of moderate-luminosity (L0.5-8 keV = 1041.9-43.7 erg s-1) active galactic nuclei (AGNs) and the distribution of their accretion rates on host color at 0.5 mass-complete parent galaxy sample down to M∗ > 1010 M⊙. We use extinction-corrected rest-frame U-V colors to divide both AGN hosts and non-AGN galaxies into red sequence (red), green valley (green), and blue cloud (blue) populations. We find that the fraction of galaxies hosting an AGN at fixed X-ray luminosity increases with stellar mass and redshift for all the three galaxy populations, independent of their colors. However, both the AGN fraction at fixed stellar mass and its evolution with redshift are clearly dependent on host colors. Most notably, red galaxies have the lowest AGN fraction ( 5%) at z 1 yet with most rapid evolution with redshift, increasing by a factor of 5 (24%) at z 2. Green galaxies exhibit the highest AGN fraction across all redshifts, which is most pronounced at z 2 with more than half of them hosting an AGN at M∗ > 1010.6 M⊙. Together with the high AGN fraction in red galaxies at z 2, this indicates that (X-ray) AGNs could be important in both transforming (quenching) star-forming galaxies into quiescent ones and subsequently maintaining their quiescence at high redshift. Furthermore, consistent with previous studies at lower redshifts, we show that the probability of hosting an AGN for the total galaxy population can be characterized by a universal Eddington ratio (as approximated by LX/M∗) distribution (p(λEdd) λEdd-0.4), which is independent on host mass. Yet consistent with their different AGN fractions, galaxies with different colors appear to also have different p(λEdd) with red galaxies exhibiting more rapid redshift evolution compared with that for green and blue galaxies. Evidence for a steeper power-law distribution of p(λEdd) in red galaxies (p(λEdd) λEdd-0.6) is also presented, though larger samples are needed to

  8. X-Ray bright active galactic nuclei in massive galaxy clusters - II. The fraction of galaxies hosting active nuclei

    DEFF Research Database (Denmark)

    Ehlert, S.; von der Linden, A.; Allen, S. W.

    2013-01-01

    regions of the clusters that is~3 times lower than the field value. This fraction increases with clustercentric distance before becoming consistent with the field at ~2.5r500. Our data exhibit similar radial trends to those observed for star formation and optically selected AGN in cluster member galaxies...

  9. Blending bias impacts the host halo masses derived from a cross-correlation analysis of bright submillimetre galaxies

    Science.gov (United States)

    Cowley, William I.; Lacey, Cedric G.; Baugh, Carlton M.; Cole, Shaun; Wilkinson, Aaron

    2017-08-01

    Placing bright submillimetre galaxies (SMGs) within the broader context of galaxy formation and evolution requires accurate measurements of their clustering, which can constrain the masses of their host dark matter haloes. Recent work has shown that the clustering measurements of these galaxies may be affected by a 'blending bias', which results in the angular correlation function of the sources extracted from single-dish imaging surveys being boosted relative to that of the underlying galaxies. This is due to confusion introduced by the coarse angular resolution of the single-dish telescope and could lead to the inferred halo masses being significantly overestimated. We investigate the extent to which this bias affects the measurement of the correlation function of SMGs when it is derived via a cross-correlation with a more abundant galaxy population. We find that the blending bias is essentially the same as in the autocorrelation case and conclude that the best way to reduce its effects is to calculate the angular correlation function using SMGs in narrow redshift bins. Blending bias causes the inferred host halo masses of the SMGs to be overestimated by a factor of ∼6 when a redshift interval of δz = 3 is used. However, this reduces to a factor of ∼2 for δz = 0.5. The broadening of photometric redshift probability distributions with increasing redshift can therefore impart a mild halo 'downsizing' effect on to the inferred host halo masses, though this trend is not as strong as seen in recent observational studies.

  10. Detection of Lyman/alpha emission from a DLA galaxy

    DEFF Research Database (Denmark)

    Moller, P.; Fynbo, Johan Peter Uldall; Fall, S.M

    2004-01-01

    HIGH-REDSHIFT; BREAK GALAXIES; STARFORMATION; DISK GALAXIES; METAL ENRICHMENT; HOST GALAXY; ABSORPTION; ABSORBER; SYSTEMS; SPECTROSCOPY......HIGH-REDSHIFT; BREAK GALAXIES; STARFORMATION; DISK GALAXIES; METAL ENRICHMENT; HOST GALAXY; ABSORPTION; ABSORBER; SYSTEMS; SPECTROSCOPY...

  11. A gamma-ray burst at a redshift of z approximately 8.2.

    Science.gov (United States)

    Tanvir, N R; Fox, D B; Levan, A J; Berger, E; Wiersema, K; Fynbo, J P U; Cucchiara, A; Krühler, T; Gehrels, N; Bloom, J S; Greiner, J; Evans, P A; Rol, E; Olivares, F; Hjorth, J; Jakobsson, P; Farihi, J; Willingale, R; Starling, R L C; Cenko, S B; Perley, D; Maund, J R; Duke, J; Wijers, R A M J; Adamson, A J; Allan, A; Bremer, M N; Burrows, D N; Castro-Tirado, A J; Cavanagh, B; de Ugarte Postigo, A; Dopita, M A; Fatkhullin, T A; Fruchter, A S; Foley, R J; Gorosabel, J; Kennea, J; Kerr, T; Klose, S; Krimm, H A; Komarova, V N; Kulkarni, S R; Moskvitin, A S; Mundell, C G; Naylor, T; Page, K; Penprase, B E; Perri, M; Podsiadlowski, P; Roth, K; Rutledge, R E; Sakamoto, T; Schady, P; Schmidt, B P; Soderberg, A M; Sollerman, J; Stephens, A W; Stratta, G; Ukwatta, T N; Watson, D; Westra, E; Wold, T; Wolf, C

    2009-10-29

    Long-duration gamma-ray bursts (GRBs) are thought to result from the explosions of certain massive stars, and some are bright enough that they should be observable out to redshifts of z > 20 using current technology. Hitherto, the highest redshift measured for any object was z = 6.96, for a Lyman-alpha emitting galaxy. Here we report that GRB 090423 lies at a redshift of z approximately 8.2, implying that massive stars were being produced and dying as GRBs approximately 630 Myr after the Big Bang. The burst also pinpoints the location of its host galaxy.

  12. Is the metallicity of their host galaxies a good measure of the metallicity of Type Ia supernovae?

    OpenAIRE

    Bravo Guil, Eduardo; Badenes Montoliu, Carles

    2011-01-01

    The efficient use of Type Ia supernovae (SNIa) for cosmological studies requires knowledge of any parameter that can affect their luminosity in either systematic or statistical ways. Observational samples of SNIa commonly use the metallicity of the host galaxy, Zhost, as an estimator of the supernova progenitor metallicity, ZIa, that is one of the primary factors affecting SNIa magnitude. Here, we present a theoretical study of the relationship between ZIa and Zhost. We follow ...

  13. Gamma-Ray Bursts and Cosmology

    Science.gov (United States)

    Norris, Jay P.

    2003-01-01

    The unrivalled, extreme luminosities of gamma-ray bursts (GRBs) make them the favored beacons for sampling the high redshift Universe. To employ GRBs to study the cosmic terrain -- e.g., star and galaxy formation history -- GRB luminosities must be calibrated, and the luminosity function versus redshift must be measured or inferred. Several nascent relationships between gamma-ray temporal or spectral indicators and luminosity or total energy have been reported. These measures promise to further our understanding of GRBs once the connections between the luminosity indicators and GRB jets and emission mechanisms are better elucidated. The current distribution of 33 redshifts determined from host galaxies and afterglows peaks near z $\\sim$ 1, whereas for the full BATSE sample of long bursts, the lag-luminosity relation predicts a broad peak z $\\sim$ 1--4 with a tail to z $\\sim$ 20, in rough agreement with theoretical models based on star formation considerations. For some GRB subclasses and apparently related phenomena -- short bursts, long-lag bursts, and X-ray flashes -- the present information on their redshift distributions is sparse or entirely lacking, and progress is expected in Swift era when prompt alerts become numerous.

  14. SN 2010ay IS A LUMINOUS AND BROAD-LINED TYPE Ic SUPERNOVA WITHIN A LOW-METALLICITY HOST GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, N. E.; Soderberg, A. M.; Foley, R. J.; Chornock, R.; Chomiuk, L.; Berger, E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Valenti, S.; Smartt, S.; Botticella, M. T. [Astrophysics Research Centre, School of Maths and Physics, Queen' s University, Belfast BT7 1NN (United Kingdom); Hurley, K. [Space Sciences Laboratory, University of California Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Barthelmy, S. D.; Gehrels, N.; Cline, T. [NASA Goddard Space Flight Center, Code 661, Greenbelt, MD 20771 (United States); Levesque, E. M. [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Narayan, G. [Department of Physics, Harvard University, Cambridge, MA 02138 (United States); Briggs, M. S.; Connaughton, V. [CSPAR, University of Alabama in Huntsville, Huntsville, AL (United States); Terada, Y. [Department of Physics, Saitama University, Shimo-Okubo, Sakura-ku, Saitama-shi, Saitama 338-8570 (Japan); Golenetskii, S.; Mazets, E., E-mail: nsanders@cfa.harvard.edu [Ioffe Physico-Technical Institute, Laboratory for Experimental Astrophysics, 26 Polytekhnicheskaya, St. Petersburg 194021 (Russian Federation); and others

    2012-09-10

    We report on our serendipitous pre-discovery detection and follow-up observations of the broad-lined Type Ic supernova (SN Ic) 2010ay at z = 0.067 imaged by the Pan-STARRS1 3{pi} survey just {approx}4 days after explosion. The supernova (SN) had a peak luminosity, M{sub R} Almost-Equal-To -20.2 mag, significantly more luminous than known GRB-SNe and one of the most luminous SNe Ib/c ever discovered. The absorption velocity of SN 2010ay is v{sub Si} Almost-Equal-To 19 Multiplication-Sign 10{sup 3} km s{sup -1} at {approx}40 days after explosion, 2-5 times higher than other broad-lined SNe and similar to the GRB-SN 2010bh at comparable epochs. Moreover, the velocity declines {approx}2 times slower than other SNe Ic-BL and GRB-SNe. Assuming that the optical emission is powered by radioactive decay, the peak magnitude implies the synthesis of an unusually large mass of {sup 56}Ni, M{sub Ni} = 0.9 M{sub Sun }. Applying scaling relations to the light curve, we estimate a total ejecta mass, M{sub ej} Almost-Equal-To 4.7 M{sub Sun }, and total kinetic energy, E{sub K} Almost-Equal-To 11 Multiplication-Sign 10{sup 51} erg. The ratio of M{sub Ni} to M{sub ej} is {approx}2 times as large for SN 2010ay as typical GRB-SNe and may suggest an additional energy reservoir. The metallicity (log (O/H){sub PP04} + 12 = 8.19) of the explosion site within the host galaxy places SN 2010ay in the low-metallicity regime populated by GRB-SNe, and {approx}0.5(0.2) dex lower than that typically measured for the host environments of normal (broad-lined) SNe Ic. We constrain any gamma-ray emission with E{sub {gamma}} {approx}< 6 Multiplication-Sign 10{sup 48} erg (25-150 keV), and our deep radio follow-up observations with the Expanded Very Large Array rule out relativistic ejecta with energy E {approx}> 10{sup 48} erg. We therefore rule out the association of a relativistic outflow like those that accompanied SN 1998bw and traditional long-duration gamma-ray bursts (GRBs), but we place less

  15. Three intervening galaxy absorbers towards GRB 060418

    DEFF Research Database (Denmark)

    Ellison, S. L.; Vreeswijk, P.; Ledoux, C.

    2006-01-01

    Dust, extinction: galaxies: ISM: quasars: absorption lines: gamma-rays: bursts Udgivelsesdato: 10 August......Dust, extinction: galaxies: ISM: quasars: absorption lines: gamma-rays: bursts Udgivelsesdato: 10 August...

  16. An origin in the local Universe for some short gamma-ray bursts.

    Science.gov (United States)

    Tanvir, N R; Chapman, R; Levan, A J; Priddey, R S

    2005-12-15

    Gamma-ray bursts (GRBs) divide into two classes: 'long', which typically have initial durations of T90 > 2 s, and 'short', with durations of T90 origin of short bursts has remained mysterious until recently. A subsecond intense 'spike' of gamma-rays during a giant flare from the Galactic soft gamma-ray repeater, SGR 1806-20, reopened an old debate over whether some short GRBs could be similar events seen in galaxies out to approximately 70 Mpc (refs 6-10; redshift z approximately 0.016). Shortly after that, localizations of a few short GRBs (with optical afterglows detected in two cases) have shown an apparent association with a variety of host galaxies at moderate redshifts. Here we report a correlation between the locations of previously observed short bursts and the positions of galaxies in the local Universe, indicating that between 10 and 25 per cent of short GRBs originate at low redshifts (z < 0.025).

  17. Understanding the formation and evolution of early-type galaxies based on newly developed single-burst stellar population synthesis models in the infrared

    Science.gov (United States)

    Roeck, Benjamin

    2015-12-01

    The detailed study of the different stellar populations which can be observed in galaxies is one of the most promising methods to shed light on the evolutionary histories of galaxies. So far, stellar population analysis has been carried out mainly in the optical wavelength range. The infrared spectral range, on the other hand, has been poorly studied so far, although it provides very important insights, particularly into the cooler stellar populations which are present in galaxies. However, in the last years, space telescopes like the Spitzer Space Telescope or the Wide-field Infrared Survey Explorer and instruments like the spectrograph X-Shooter on the Very Large Telescope have collected more and more photometric and spectroscopic data in this wavelength range. In order to analyze these observations, it is necessary to dispose of reliable and accurate stellar population models in the infrared. Only a small number of stellar population models in the infrared exist in the literature. They are mostly based on theoretical stellar libraries and very often cover only the near-infrared wavelength range at a rather low resolution. Hence, we developed new single-burst stellar population models between 8150 and 50000Å which are exclusively based on 180 spectra from the empirical Infrared Telescope Facility stellar library. We computed our single stellar population models for two different sets of isochrones and various types of initial mass functions of different slopes. Since the stars of the Infrared Telescope Facility library present only a limited coverage of the stellar atmospheric parameter space, our models are of sufficient quality only for ages larger than 1 Gyr and metallicities between [Fe/H] = 0.40 and 0.26. By combining our single stellar population models in the infrared with the extended medium-resolution Isaac Newton Telescope library of empirical spectra in the optical spectral range, we created the first single stellar population models covering the

  18. Two γ-ray bursts from dusty regions with little molecular gas.

    Science.gov (United States)

    Hatsukade, B; Ohta, K; Endo, A; Nakanishi, K; Tamura, Y; Hashimoto, T; Kohno, K

    2014-06-12

    Long-duration γ-ray bursts are associated with the explosions of massive stars and are accordingly expected to reside in star-forming regions with molecular gas (the fuel for star formation). Previous searches for carbon monoxide (CO), a tracer of molecular gas, in burst host galaxies did not detect any emission. Molecules have been detected as absorption in the spectra of γ-ray burst afterglows, and the molecular gas is similar to the translucent or diffuse molecular clouds of the Milky Way. Absorption lines probe the interstellar medium only along the line of sight, so it is not clear whether the molecular gas represents the general properties of the regions where the bursts occur. Here we report spatially resolved observations of CO line emission and millimetre-wavelength continuum emission in two galaxies hosting γ-ray bursts. The bursts happened in regions rich in dust, but not particularly rich in molecular gas. The ratio of molecular gas to dust (forming regions of the Milky Way and nearby star-forming galaxies, suggesting that much of the dense gas where stars form has been dissipated by other massive stars.

  19. A Spatially Resolved Study of the GRB 020903 Host Complex

    OpenAIRE

    Thorp, Mallory; Levesque, Emily

    2017-01-01

    GRB 020903 is a long-duration gamma ray burst (LGRB) with a host galaxy close enough and extended enough for spatially-resolved observations, making it one of less than a dozen GRBs where such host studies are possible. GRB 020903 lies in a galaxy host complex that appears to consist of four interacting components. Here we present the results of spatially-resolved spectroscopic observations of the GRB 020903 host. By taking observations at two different position angles we were able to obtain ...

  20. Obscured Supermassive Black Hole Growth - Connections to Host Galaxies and Evolutionary Models

    Science.gov (United States)

    DiPompeo, Michael A.; Hickox, Ryan C.; Myers, Adam D.

    2017-08-01

    A large fraction of the supermassive black hole growth in the Universe is hidden from view behind thick columns of dust. The most heavily obscured quasars can be challenging to detect even with current high energy X-ray observatories such as NuSTAR - however with infrared observations that can detect the hot nuclear dust in even the most enshrouded systems, we are now beginning to characterize large populations of these hidden monsters.With roughly half-a-million quasars selected with WISE, we have found via clustering and CMB lensing cross-correlation measurements that obscured quasars reside in dark matter halos 0.5 dex more massive than unobscured quasars. This implies that obscuration is directly linked to host galaxy properties, and not simply the dust geometry around the quasar. Using cross-correlations we accurately characterize the redshift distribution of the obscured quasar population, confirming that it peaks at z = 1, and using long-wavelength bands find that it has a similar bolometric luminosity distribution as unobscured quasars as well. Finally, using a simple model based on empirical relationships between halo, stellar, and black hole masses, we show that an evolutionary sequence from obscured to unobscured quasar, combined with a flux limit, can predict the observed halo mass differences.Studies of the most obscured quasars provide valuable insights on the rapid growth of the most massive black holes in the Universe, and motivates future work with the next generation high energy observatories such as eROSITA, Athena, and Lynx.

  1. Gravitational wave sources from Pop III stars are preferentially located within the cores of their host Galaxies

    Science.gov (United States)

    Pacucci, Fabio; Loeb, Abraham; Salvadori, Stefania

    2017-10-01

    The detection of gravitational waves (GWs) generated by merging black holes has recently opened up a new observational window into the Universe. The mass of the black holes in the first and third Laser Interferometer Gravitational Wave Observatory (LIGO) detections (36-29 M⊙ and 32-19 M⊙) suggests low-metallicity stars as their most likely progenitors. Based on high-resolution N-body simulations, coupled with state-of-the-art metal enrichment models, we find that the remnants of Pop III stars are preferentially located within the cores of galaxies. The probability of a GW signal to be generated by Pop III stars reaches ∼90 per cent at ∼0.5 kpc from the galaxy centre, compared to a benchmark value of ∼5 per cent outside the core. The predicted merger rates inside bulges is ∼60 × βIII Gpc-3 yr-1 (βIII is the Pop III binarity fraction). To match the 90 per cent credible range of LIGO merger rates, we obtain: 0.03 < βIII < 0.88. Future advances in GW observatories and the discovery of possible electromagnetic counterparts could allow the localization of such sources within their host galaxies. The preferential concentration of GW events within the bulge of galaxies would then provide an indirect proof for the existence of Pop III stars.

  2. Gravitational wave sources from Pop III stars are preferentially located within the cores of their host Galaxies

    Science.gov (United States)

    Pacucci, Fabio; Loeb, Abraham; Salvadori, Stefania

    2017-10-01

    The detection of gravitational waves (GWs) generated by merging black holes has recently opened up a new observational window into the Universe. The mass of the black holes in the first and third LIGO detections, ($36-29 \\, \\mathrm{M_{\\odot}}$ and $32-19 \\, \\mathrm{M_{\\odot}}$), suggests low-metallicity stars as their most likely progenitors. Based on high-resolution N-body simulations, coupled with state-of-the-art metal enrichment models, we find that the remnants of Pop III stars are preferentially located within the cores of galaxies. The probability of a GW signal to be generated by Pop III stars reaches $\\sim 90\\%$ at $\\sim 0.5 \\, \\mathrm{kpc}$ from the galaxy center, compared to a benchmark value of $\\sim 5\\%$ outside the core. The predicted merger rates inside bulges is $\\sim 60 \\times \\beta_{III} \\, \\mathrm{Gpc^{-3} \\, yr^{-1}}$ ($\\beta_{III}$ is the Pop III binarity fraction). To match the $90\\%$ credible range of LIGO merger rates, we obtain: $0.03 < \\beta_{III} < 0.88$. Future advances in GW observatories and the discovery of possible electromagnetic counterparts could allow the localization of such sources within their host galaxies. The preferential concentration of GW events within the bulge of galaxies would then provide an indirect proof for the existence of Pop III stars.

  3. The Optically Unbiased GRB Host (TOUGH) Survey. VI. Radio Observations at z

    NARCIS (Netherlands)

    Michałowski, M.J.; Kamble, A.P.; Hjorth, J.; Malesani, D.; Reinfrank, R.F.; Bonavera, L.; Castro Cerón, J.M.; Ibar, E.; Dunlop, J.S.; Fynbo, J.P.U.; Garrett, M.A.; Jakobsson, P.; Kaplan, D.L.; Krühler, T.; Levan, A.J.; Massardi, M.; Pal, S.; Sollerman, J.; Tanvir, N.R.; van der Horst, A.J.; Watson, D.; Wiersema, K.

    2012-01-01

    The objective of this paper is to determine the level of obscured star formation activity and dust attenuation in a sample of gamma-ray burst (GRB) hosts, and to test the hypothesis that GRB hosts have properties consistent with those of the general star-forming galaxy populations. We present a

  4. H0LiCOW VII: cosmic evolution of the correlation between black hole mass and host galaxy luminosity

    Science.gov (United States)

    Ding, Xuheng; Treu, Tommaso; Suyu, Sherry H.; Wong, Kenneth C.; Morishita, Takahiro; Park, Daeseong; Sluse, Dominique; Auger, Matthew W.; Agnello, Adriano; Bennert, Vardha N.; Collett, Thomas E.

    2017-11-01

    Strongly lensed active galactic nuclei (AGN) provide a unique opportunity to make progress in the study of the evolution of the correlation between the mass of supermassive black holes (M_BH) and their host galaxy luminosity (Lhost). We demonstrate the power of lensing by analysing two systems for which state-of-the-art lens modelling techniques have been applied to deep Hubble Space Telescope imaging data. We use (i) the reconstructed images to infer the total and bulge luminosity of the host and (ii) published broad-line spectroscopy to estimate M_BH using the so-called virial method. We then enlarge our sample with new calibration of previously published measurements to study the evolution of the correlation out to z ∼ 4.5. Consistent with previous work, we find that without taking into account passive luminosity evolution, the data points lie on the local relation. Once the passive luminosity evolution is taken into account, we find that black holes in the more distant Universe reside in less luminous galaxies than today. Fitting this offset as M_BH/Lhost ∝ (1 + z)γ, and taking into account selection effects, we obtain γ = 0.6 ± 0.1 and 0.8 ± 0.1 for the case of M_BH-Lbulge and M_BH-Ltotal, respectively. To test for systematic uncertainties and selection effects we also consider a reduced sample that is homogeneous in data quality. We find consistent results but with considerably larger uncertainty due to the more limited sample size and redshift coverage (γ = 0.7 ± 0.4 and 0.2 ± 0.5 for M_BH-Lbulge and M_BH-Ltotal, respectively), highlighting the need to gather more high-quality data for high-redshift lensed quasar hosts. Our result is consistent with a scenario where the growth of the black hole predates that of the host galaxy.

  5. The Type Ia Supernova Color-Magnitude Relation and Host Galaxy Dust: A Simple Hierarchical Bayesian Model

    Science.gov (United States)

    Mandel, Kaisey S.; Scolnic, Daniel M.; Shariff, Hikmatali; Foley, Ryan J.; Kirshner, Robert P.

    2017-06-01

    Conventional Type Ia supernova (SN Ia) cosmology analyses currently use a simplistic linear regression of magnitude versus color and light curve shape, which does not model intrinsic SN Ia variations and host galaxy dust as physically distinct effects, resulting in low color-magnitude slopes. We construct a probabilistic generative model for the dusty distribution of extinguished absolute magnitudes and apparent colors as the convolution of an intrinsic SN Ia color-magnitude distribution and a host galaxy dust reddening-extinction distribution. If the intrinsic color-magnitude (M B versus B - V) slope {β }{int} differs from the host galaxy dust law R B , this convolution results in a specific curve of mean extinguished absolute magnitude versus apparent color. The derivative of this curve smoothly transitions from {β }{int} in the blue tail to R B in the red tail of the apparent color distribution. The conventional linear fit approximates this effective curve near the average apparent color, resulting in an apparent slope {β }{app} between {β }{int} and R B . We incorporate these effects into a hierarchical Bayesian statistical model for SN Ia light curve measurements, and analyze a data set of SALT2 optical light curve fits of 248 nearby SNe Ia at z< 0.10. The conventional linear fit gives {β }{app}≈ 3. Our model finds {β }{int}=2.3+/- 0.3 and a distinct dust law of {R}B=3.8+/- 0.3, consistent with the average for Milky Way dust, while correcting a systematic distance bias of ˜0.10 mag in the tails of the apparent color distribution. Finally, we extend our model to examine the SN Ia luminosity-host mass dependence in terms of intrinsic and dust components.

  6. Gamma ray bursts, supernovae and metallicity in the intergalactic medium

    CERN Document Server

    Dado, S; De Rújula, Alvaro; Dado, Shlomo; Dar, Arnon

    2007-01-01

    The mean iron abundance observed in the intracluster medium of galaxy clusters is consistent with the mean amount of iron injected in the universe per unit volume by standard supernova (SN) explosions with a rate proportional to the cosmic star-formation rate. But very little is known about field SNe at high red-shifts. Such SNe could have occurred primarily in highly obscured environments, avoiding detection. Supporting evidence for field SNe is provided by SNe associated with gamma ray bursts (GRBs) without a host galaxy and by the ratio of well localized GRBs with and without a host galaxy. A direct test of the field-SN origin of iron in the intergalactic medium would require the measurement of their rate per comoving unit volume as function of red-shift. This is feasible with IR telescopes, such as the Spitzer Space Telescope.

  7. High-mass X-ray binaries and the cosmic 21-cm signal: impact of host galaxy absorption

    Science.gov (United States)

    Das, Arpan; Mesinger, Andrei; Pallottini, Andrea; Ferrara, Andrea; Wise, John H.

    2017-07-01

    By heating the intergalactic medium (IGM) before reionization, X-rays are expected to play a prominent role in the early Universe. The cosmic 21-cm signal from this 'epoch of heating' (EoH) could serve as a clean probe of high-energy processes inside the first galaxies. Here, we improve on prior estimates of this signal by using high-resolution hydrodynamic simulations to calculate the X-ray absorption due to the interstellar medium (ISM) of the host galaxy, typically residing in haloes with mass 107.5-8.5 M⊙ at z ˜ 8-15. X-rays absorbed inside the host galaxy are unable to escape into the IGM and contribute to the EoH. We find that the X-ray opacity through these galaxies can be approximated by a metal-free ISM with a typical column density of log [N_{H I}/cm^{-2}] = 21.4^{+0.40}_{-0.65}. We compute the resulting 21-cm signal by combining these ISM opacities with public spectra of high-mass X-ray binaries (thought to be important X-ray sources in the early Universe). Our results support 'standard scenarios' in which the X-ray heating of the IGM is inhomogeneous, and occurs before the bulk of reionization. The large-scale (k ˜ 0.1 Mpc-1) 21-cm power reaches a peak of ≈100 mK2 at z ˜ 10-15, with the redshift depending on the cosmic star formation history. Our main results can be reproduced by approximating the X-ray emission from high-mass X-ray binaries by a power law with energy index α ≈ 1, truncated at energies below 0.5 keV.

  8. GRB 980425 host: [C II], [O I], and CO lines reveal recent enhancement of star formation due to atomic gas inflow

    DEFF Research Database (Denmark)

    Michałowski, M. J.; Castro Cerón, J. M.; Wardlow, J. L.

    2016-01-01

    Context. Accretion of gas from the intergalactic medium is required to fuel star formation in galaxies. We have recently suggested that this process can be studied using host galaxies of gamma-ray bursts (GRBs). Aims. Our aim is to test this possibility by studying in detail the properties of gas...

  9. Nuclear Gas Dynamics of NGC2110: A Black Hole Offset from the Host Galaxy Mass Center?

    Science.gov (United States)

    Mundell, C. G.; Ferruit, P.; Nagar, N.; Wilson, A. S.

    2004-01-01

    It has been suggested that the central regions of many galaxies are unlikely to be in a static steady state, with instabilities caused by sinking satellites, the influence of a supermassive black hole or residuals of galaxy formation, resulting in the nuclear black hole orbiting the galaxy center. The observational signature of such an orbiting black hole is an offset of the active nucleus (AGN) from the kinematic center defined by the galaxy rotation curve. This orbital motion may provide fuel for the AGN, as the hole 'grazes' on the ISM, and bent radio jets, due to the motion of their source. The early type (E/SO) Seyfert galaxy, NGC2210, with its striking twin, 'S'-shaped radio jets, is a unique and valuable test case for the offset-nucleus phenomenon since, despite its remarkably normal rotation curve, its kinematically-measured mass center is displaced both spatially (260 pc) and kinematically (170 km/s) from the active nucleus located in optical and radio studies. However, the central kinematics, where the rotation curve rises most steeply, have been inaccessible with ground-based resolutions. We present new, high resolution WFPC2 imaging and long-slit STIS spectroscopy of the central 300 pc of NGC2110. We discuss the structure and kinematics of gas moving in the galactic potential on subarcsecond scales and the reality of the offset between the black hole and the galaxy mass center.

  10. EmpiriciSN: Re-sampling Observed Supernova/Host Galaxy Populations Using an XD Gaussian Mixture Model

    Energy Technology Data Exchange (ETDEWEB)

    Holoien, Thomas W.-S.; /Ohio State U., Dept. Astron. /Ohio State U., CCAPP /KIPAC, Menlo Park /SLAC; Marshall, Philip J.; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC

    2017-05-11

    We describe two new open-source tools written in Python for performing extreme deconvolution Gaussian mixture modeling (XDGMM) and using a conditioned model to re-sample observed supernova and host galaxy populations. XDGMM is new program that uses Gaussian mixtures to perform density estimation of noisy data using extreme deconvolution (XD) algorithms. Additionally, it has functionality not available in other XD tools. It allows the user to select between the AstroML and Bovy et al. fitting methods and is compatible with scikit-learn machine learning algorithms. Most crucially, it allows the user to condition a model based on the known values of a subset of parameters. This gives the user the ability to produce a tool that can predict unknown parameters based on a model that is conditioned on known values of other parameters. EmpiriciSN is an exemplary application of this functionality, which can be used to fit an XDGMM model to observed supernova/host data sets and predict likely supernova parameters using a model conditioned on observed host properties. It is primarily intended to simulate realistic supernovae for LSST data simulations based on empirical galaxy properties.

  11. EmpiriciSN: Re-sampling Observed Supernova/Host Galaxy Populations Using an XD Gaussian Mixture Model

    Science.gov (United States)

    Holoien, Thomas W.-S.; Marshall, Philip J.; Wechsler, Risa H.

    2017-06-01

    We describe two new open-source tools written in Python for performing extreme deconvolution Gaussian mixture modeling (XDGMM) and using a conditioned model to re-sample observed supernova and host galaxy populations. XDGMM is new program that uses Gaussian mixtures to perform density estimation of noisy data using extreme deconvolution (XD) algorithms. Additionally, it has functionality not available in other XD tools. It allows the user to select between the AstroML and Bovy et al. fitting methods and is compatible with scikit-learn machine learning algorithms. Most crucially, it allows the user to condition a model based on the known values of a subset of parameters. This gives the user the ability to produce a tool that can predict unknown parameters based on a model that is conditioned on known values of other parameters. EmpiriciSN is an exemplary application of this functionality, which can be used to fit an XDGMM model to observed supernova/host data sets and predict likely supernova parameters using a model conditioned on observed host properties. It is primarily intended to simulate realistic supernovae for LSST data simulations based on empirical galaxy properties.

  12. AGNs and Their Host Galaxies in the Local Universe: Two Mass-independent Eddington Ratio Distribution Functions Characterize Black Hole Growth

    Science.gov (United States)

    Weigel, Anna K.; Schawinski, Kevin; Caplar, Neven; Wong, O. Ivy; Treister, Ezequiel; Trakhtenbrot, Benny

    2017-08-01

    We use a phenomenological model to show that black hole growth in the local universe (z≲ 0.1) can be described by two separate, mass-independent Eddington ratio distribution functions (ERDFs). We assume that black holes can be divided into two independent groups: those with radiatively efficient accretion, primarily hosted by optically blue and green galaxies, and those with radiatively inefficient accretion, which are mainly found in red galaxies. With observed galaxy stellar mass functions as input, we show that the observed active galactic nucleus (AGN) luminosity functions can be reproduced by using mass-independent, broken power-law-shaped ERDFs. We use the observed hard X-ray and 1.4 GHz radio luminosity functions to constrain the ERDF for radiatively efficient and inefficient AGNs, respectively. We also test alternative ERDF shapes and mass-dependent models. Our results are consistent with a mass-independent AGN fraction and AGN hosts being randomly drawn from the galaxy population. We argue that the ERDF is not shaped by galaxy-scale effects, but by how efficiently material can be transported from the inner few parsecs to the accretion disc. Our results are incompatible with the simplest form of mass quenching where massive galaxies host higher accretion rate AGNs. Furthermore, if reaching a certain Eddington ratio is a sufficient condition for maintenance mode, it can occur in all red galaxies, not just the most massive ones.

  13. STATISTICAL PROPERTIES OF GRB AFTERGLOW PARAMETERS AS EVIDENCE OF COSMOLOGICAL EVOLUTION OF THEIR HOST GALAXIES

    Directory of Open Access Journals (Sweden)

    Gregory Beskin

    2014-08-01

    Full Text Available The results of a study of 43 peaked R-band light curves of optical counterparts of gamma-ray bursts with known redshifts are presented. The parameters of optical transients were calculated in the comoving frame, and then a search for pair correlations between them was conducted. A statistical analysis showed a strong correlation between the peak luminosity and the redshift both for pure afterglows and for events with residual gamma activity, which cannot be explained as an effect of observational selection.This suggests a cosmological evolution of the parameters of the local interstellar medium around the sources of the gamma-ray burst. In the models of forward and reverse shock waves, a relation between the density of the interstellar medium and the redshift was built for gamma-ray burst afterglows, leading to a power-law dependence of the star-formation rate at regions around GRBs on redshift with a slope of about 6.

  14. Probing Intrinsic Properties of Short Gamma-Ray Bursts with Gravitational Waves

    Science.gov (United States)

    Fan, Xilong; Messenger, Christopher; Heng, Ik Siong

    2017-11-01

    Progenitors of short gamma-ray bursts are thought to be neutron stars coalescing with their companion black hole or neutron star, which are one of the main gravitational wave sources. We have devised a Bayesian framework for combining gamma-ray burst and gravitational wave information that allows us to probe short gamma-ray burst luminosities. We show that combined short gamma-ray burst and gravitational wave observations not only improve progenitor distance and inclination angle estimates, they also allow the isotropic luminosities of short gamma-ray bursts to be determined without the need for host galaxy or light-curve information. We characterize our approach by simulating 1000 joint short gamma-ray burst and gravitational wave detections by Advanced LIGO and Advanced Virgo. We show that ˜90 % of the simulations have uncertainties on short gamma-ray burst isotropic luminosity estimates that are within a factor of two of the ideal scenario, where the distance is known exactly. Therefore, isotropic luminosities can be confidently determined for short gamma-ray bursts observed jointly with gravitational waves detected by Advanced LIGO and Advanced Virgo. Planned enhancements to Advanced LIGO will extend its range and likely produce several joint detections of short gamma-ray bursts and gravitational waves. Third-generation gravitational wave detectors will allow for isotropic luminosity estimates for the majority of the short gamma-ray burst population within a redshift of z ˜1 .

  15. Active Galaxies

    DEFF Research Database (Denmark)

    Kilerci Eser, Ece

    one is related to the mass estimates of supermassive black holes (SMBHs). Mass estimates of SMBHs are important to understand the formation and evolution of SMBHs and their host galaxies. Black hole masses in Type 1 AGN are measured with the reverberation mapping (RM) technique. Reverberation mapping......Galaxy formation and evolution is one of the main research themes of modern astronomy. Active galaxies such as Active Galactic Nuclei (AGN) and Ultraluminous Infrared Galaxies (ULIRGs) are important evolutionary stages of galaxies. The ULIRG stage is mostly associated with galaxy mergers...... and interactions. During the interactions of gas-rich galaxies, the gas inflows towards the centers of the galaxies and can trigger both star formation and AGN activity. The ULIRG stage includes rapid star formation activity and fast black hole growth that is enshrouded by dust. Once the AGN emission...

  16. The Carnegie Supernova Project I. Methods to estimate host-galaxy reddening of stripped-envelope supernovae

    Science.gov (United States)

    Stritzinger, M. D.; Taddia, F.; Burns, C. R.; Phillips, M. M.; Bersten, M.; Contreras, C.; Folatelli, G.; Holmbo, S.; Hsiao, E. Y.; Hoeflich, P.; Leloudas, G.; Morrell, N.; Sollerman, J.; Suntzeff, N. B.

    2018-02-01

    We aim to improve upon contemporary methods to estimate host-galaxy reddening of stripped-envelope (SE) supernovae (SNe). To this end the Carnegie Supernova Project (CSP-I) SE SN photometry data release, consisting of nearly three dozen objects, is used to identify a minimally reddened sub-sample for each traditionally defined spectroscopic sub-type (i.e., SNe IIb, SNe Ib, SNe Ic). Inspection of the optical and near-infrared (NIR) colors and color evolution of the minimally reddened sub-samples reveals a high degree of homogeneity, particularly between 0 d to +20 d relative to B-band maximum. This motivated the construction of intrinsic color-curve templates, which when compared to the colors of reddened SE SNe, yields an entire suite of optical and NIR color excess measurements. Comparison of optical/optical vs. optical/NIR color excess measurements indicates the majority of the CSP-I SE SNe suffer relatively low amounts of reddening (i.e., E(B-V)host 0.20 mag) objects with the Fitzpatrick (1999, PASP, 111, 63) reddening law model provides robust estimates of the host visual-extinction AVhost and RVhost. In the case of the SE SNe with relatively low amounts of reddening, a preferred value of RVhost is adopted for each sub-type, resulting in estimates of AVhost through Fitzpatrick (1999) reddening law model fits to the observed color excess measurements. Our analysis suggests SE SNe reside in galaxies characterized by a range of dust properties. We also find evidence that SNe Ic are more likely to occur in regions characterized by larger RVhost values compared to SNe IIb/Ib and they also tend to suffer more extinction. The later finding is consistent with work in the literature suggesting SNe Ic tend to occur in regions of on-going star formation. Based on observations collected at Las Campanas Observatory.

  17. NEAR-INFRARED IMAGING OF A z = 6.42 QUASAR HOST GALAXY WITH THE HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3

    Energy Technology Data Exchange (ETDEWEB)

    Mechtley, M.; Windhorst, R. A.; Cohen, S. H.; Jansen, R. A.; Scannapieco, E. [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287 (United States); Ryan, R. E.; Koekemoer, A. M. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Schneider, G.; Fan, X. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Hathi, N. P. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Keel, W. C. [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 (United States); Roettgering, H. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA, Leiden (Netherlands); Schneider, D. P. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Strauss, M. A. [Princeton University Observatory, Princeton, NJ 08544 (United States); Yan, H. J. [Department of Physics and Astronomy, The University of Missouri, 701 South College Ave, Columbia, MO 65211 (United States)

    2012-09-10

    We report on deep near-infrared F125W (J) and F160W (H) Hubble Space Telescope Wide Field Camera 3 images of the z = 6.42 quasar J1148+5251 to attempt to detect rest-frame near-ultraviolet emission from the host galaxy. These observations included contemporaneous observations of a nearby star of similar near-infrared colors to measure temporal variations in the telescope and instrument point-spread function (PSF). We subtract the quasar point source using both this direct PSF and a model PSF. Using direct subtraction, we measure an upper limit for the quasar host galaxy of m{sub J} > 22.8 and m{sub H} > 23.0 AB mag (2 {sigma}). After subtracting our best model PSF, we measure a limiting surface brightness from 0.''3 to 0.''5 radius of {mu}{sub J} > 23.5 and {mu}{sub H} > 23.7 AB mag arcsec{sup -2} (2 {sigma}). We test the ability of the model subtraction method to recover the host galaxy flux by simulating host galaxies with varying integrated magnitude, effective radius, and Sersic index, and conducting the same analysis. These models indicate that the surface brightness limit ({mu}{sub J} > 23.5 AB mag arcsec{sup -2}) corresponds to an integrated upper limit of m{sub J} > 22-23 AB mag, consistent with the direct subtraction method. Combined with existing far-infrared observations, this gives an infrared excess log (IRX) > 1.0 and corresponding ultraviolet spectral slope {beta} > -1.2 {+-} 0.2. These values match those of most local luminous infrared galaxies, but are redder than those of almost all local star-forming galaxies and z {approx_equal} 6 Lyman break galaxies.

  18. Investigating the host galaxies of luminous AGN in the local universe with integral field spectroscopy

    Science.gov (United States)

    McElroy, Rebecca; Croom, Scott; Husemann, Bernd; Close AGN Reference Survey; SAMI Galaxy Survey

    2017-01-01

    This thesis investigates how galaxies and their super massive black holes coevolve. We use integral field spectroscopy to search for evidence of AGN feedback and triggering. We demonstrate that outflows are ubiquitous among luminous local type 2 AGN using observations from the AAT's SPIRAL instrument. Using multiple component Gaussian emission line decomposition we are able to disentangle the kinematic and ionisation properties of these winds. This allows us to argue that the outflows from these AGN are directly impacting the surrounding ISM within the galaxies. We search for evidence of AGN triggering using data from The Close AGN Reference Survey (CARS). CARS aims to provide a detailed multi-wavelength view of 40 nearby (0.01 physics behind AGN spectral types.

  19. Structural Transition in the NGC 6251 Jet: an Interplay with the Supermassive Black Hole and Its Host Galaxy

    Science.gov (United States)

    Tseng, Chih-Yin; Asada, Keiichi; Nakamura, Masanori; Pu, Hung-Yi; Algaba, Juan-Carlos; Lo, Wen-Ping

    2016-12-01

    The structure of the NGC 6251 jet on the milliarcsecond scale is investigated using images taken with the European VLBI Network and the Very Long Baseline Array. We detect a structural transition of the jet from a parabolic to a conical shape at a distance of (1-2) × 105 times the Schwarzschild radius from the central engine, which is close to the sphere of gravitational influence of the supermassive black hole (SMBH). We also examine the jet pressure profiles with the synchrotron minimum energy assumption to discuss the physical origin of the structural transition. The NGC 6251 jet, together with the M87 jet, suggests a fundamental process of structural transition in the jets of active galactic nuclei (AGNs). Collimated AGN jets are characterized by their external galactic medium, showing that AGN jets interplay with the SMBH and its host galaxy.

  20. The Radius-Luminosity Relationship for Active Galactic Nuclei: The Effect of Host-Galaxy Starlight on Luminosity Measurements. II. The Full Sample of Reverberation-Mapped AGNs

    DEFF Research Database (Denmark)

    Bentz, Misty C.; Peterson, Bradley M.; Netzer, Hagai

    2009-01-01

    We present high-resolution Hubble Space Telescope images of all 35 active galactic nuclei (AGNs) with optical reverberation-mapping results, which we have modeled to create a nucleus-free image of each AGN host galaxy. From the nucleus-free images, we determine the host-galaxy contribution...... by the uncertainties. This is consistent with our previous findings, and thus still consistent with the naive assumption that all AGNs are simply luminosity-scaled versions of each other. We discuss various consistency checks relating to the galaxy modeling and starlight contributions, as well as possible systematic...... errors in the current set of reverberation measurements from which we determine the form of the R BLR-L relationship....

  1. Water Vapor Emission Reveals a Highly Obscured, Star-forming Nuclear Region in the QSO Host Galaxy APM 08279+5255 at z = 3.9

    NARCIS (Netherlands)

    van der Werf, Paul P.; Berciano Alba, A.; Spaans, M.; Loenen, A. F.; Meijerink, Rowin; Riechers, D. A.; Cox, P.; Weiß, A.; Walter, F.

    2011-01-01

    We present the detection of four rotational emission lines of water vapor, from energy levels E-u/k = 101-454 K, in the gravitationally lensed z = 3.9 QSO host galaxy APM 08279+5255. While the lowest H2O lines are collisionally excited in clumps of warm, dense gas (density of hydrogen nuclei n(H) =

  2. Type Ia Supernova Properties as a Function of the Distance to the Host Galaxy in the SDSS-II SN Survey

    Energy Technology Data Exchange (ETDEWEB)

    Galbany, Lluis [Institut de Fisica d' Altes Energies (IFAE), Barcelona (Spain); et al.

    2012-08-20

    We use type-Ia supernovae (SNe Ia) discovered by the SDSS-II SN Survey to search for dependencies between SN Ia properties and the projected distance to the host galaxy center, using the distance as a proxy for local galaxy properties (local star-formation rate, local metallicity, etc.). The sample consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at redshifts below 0.25. The sample is split into two groups depending on the morphology of the host galaxy. We fit light-curves using both MLCS2k2 and SALT2, and determine color (AV, c) and light-curve shape (delta, x1) parameters for each SN Ia, as well as its residual in the Hubble diagram. We then correlate these parameters with both the physical and the normalized distances to the center of the host galaxy and look for trends in the mean values and scatters of these parameters with increasing distance. The most significant (at the 4-sigma level) finding is that the average fitted AV from MLCS2k2 and c from SALT2 decrease with the projected distance for SNe Ia in spiral galaxies. We also find indications that SNe in elliptical galaxies tend to have narrower light-curves if they explode at larger distances, although this may be due to selection effects in our sample. We do not find strong correlations between the residuals of the distance moduli with respect to the Hubble flow and the galactocentric distances, which indicates a limited correlation between SN magnitudes after standardization and local host metallicity.

  3. The host of the Type I SLSN 2017egm. A young, sub-solar metallicity environment in a massive spiral galaxy

    Science.gov (United States)

    Izzo, L.; Thöne, C. C.; García-Benito, R.; de Ugarte Postigo, A.; Cano, Z.; Kann, D. A.; Bensch, K.; Della Valle, M.; Galadí-Enríquez, D.; Hedrosa, R. P.

    2018-02-01

    Context. Type I superluminous supernova (SLSN) host galaxies are predominantly low-metallicity, highly star-forming (SF) dwarfs. One of the current key questions is whether Type I SLSNe can only occur in such environments and hosts. Aims: Here we present an integral-field study of the massive, high-metallicity spiral NGC 3191, the host of SN 2017egm, the closest Type I SLSN known to date. We use data from PMAS/CAHA and the public MaNGA survey to shed light on the properties of the SLSN site and the origin of star formation in this non-starburst spiral galaxy. Methods: We map the physical properties of different H II regions throughout the galaxy and characterise their stellar populations using the STARLIGHT fitting code. Kinematical information allows us to study a possible interaction with its neighbouring galaxy as the origin of recent star formation activity which could have caused the SLSN. Results: NGC 3191 shows intense star formation in the western part with three large SF regions of low metallicity. Taking only the properties of emitting gas, the central regions of the host have a higher metallicity, a lower specific star formation rate, and lower ionisation. Modelling the stellar populations gives a different picture: the SLSN region has two dominant stellar populations with different ages, the younger one with an age of 2-10 Myr and lower metallicity, likely the population from which the SN progenitor originated. Emission line kinematics of NGC 3191 show indications of interaction with its neighbour MCG+08-19-017 at 45 kpc, which might be responsible for the recent starburst. In fact, this galaxy pair has hosted a total of four SNe, 1988B (Type Ia), SN 2003ds (Type Ic in MCG+08-19-017), PTF10bgl (Type II), and 2017egm, underlying the enhanced SF in both galaxies due to interaction. Conclusions: Our study shows that care should be taken when interpreting global host and even gas properties without looking at the stellar population history of the region

  4. Morphology of Seyfert Galaxies

    OpenAIRE

    Chen, Yen-Chen; Hwang, Chorng-Yuan

    2017-01-01

    We probed the relation between properties of Seyfert nuclei and morphology of their host galaxies. We selected Seyfert galaxies from the Sloan Digital Sky Survey with redshifts less 0.2 identified by the V\\'{e}ron Catalog (13th). We used the "{\\it{FracDev}}" parameter from SDSS galaxy fitting models to represent the bulge fractions of the Seyfert host galaxies. We found that the host galaxies of Seyfert 1 and Seyfert 2 are dominated by large bulge fractions, and Seyfert 2 galaxies are more li...

  5. Globular clusters as tracers of the host galaxy mass distribution: the Fornax dSph test case

    Science.gov (United States)

    Arca-Sedda, M.; Capuzzo-Dolcetta, R.

    2016-10-01

    The Fornax dwarf spheroidal galaxy is the most massive satellites of the Milky Way, claimed to be embedded in a huge dark matter halo, and the only among the Milky Way satellites hosting five globular clusters. Interestingly, their estimated masses, ages and positions seem hardly compatible with the presence of a significant dark matter component, as expected in the ΛCDM scheme. Indeed, if Fornax would have a CDM halo with a standard density profile, all its globular clusters should have sunk to the galactic centre many Gyr ago due to dynamical friction. Due to this, some authors proposed that the most massive clusters may have formed out of Fornax and later tidally captured. In this paper, we investigate the past evolution of the Fornax GC system by using both a recently developed, semi-analytical treatment of dynamical friction and direct N-body simulations of the orbital evolution of the globular clusters within Fornax and of Fornax galaxy around the Milky Way. Our results suggest that an `in situ' origin for all the clusters is likely if their observed positions are close to their spatial ones and their orbits are almost circular. Moreover, the Milky Way seems to accelerate the GC decay reducing the decay time of 15 per cent. Nevertheless, our results indicate that the GCs survival probability exceeds 50 per cent, even in the case of cuspy density profiles. We conclude that more detailed data are required to shed light on the Fornax dark matter content, to distinguish between a cuspy or a cored profile.

  6. A Tidal Disruption Event in a Nearby Galaxy Hosting an Intermediate Mass Black Hole

    Science.gov (United States)

    Donato, D; Cenko, S. B.; Covino, S.; Troja, E.; Pursimo, T.; Cheung, C. C.; Fox, O.; Kutyrev, A.; Campana, S.; Fugazza, D.; hide

    2014-01-01

    We report the serendipitous discovery of a bright point source flare in the Abell cluster A1795 with archival EUVE and Chandra observations. Assuming the EUVE emission is associated with the Chandra source, the X-ray 0.5-7 kiloelectronvolt flux declined by a factor of approximately 2300 over a time span of 6 years, following a power-law decay with index approximately equal to 2.44 plus or minus 0.40. The Chandra data alone vary by a factor of approximately 20. The spectrum is well fit by a blackbody with a constant temperature of kiloteslas approximately equal to 0.09 kiloelectronvolts (approximately equal to 10 (sup 6) Kelvin). The flare is spatially coincident with the nuclear region of a faint, inactive galaxy with a photometric redshift consistent at the 1 sigma level with the cluster (redshift = 0.062476).We argue that these properties are indicative of a tidal disruption of a star by a black hole (BH) with log(M (sub BH) / M (sub 1 solar mass)) approximately equal to 5.5 plus or minus 0.5. If so, such a discovery indicates that tidal disruption flares may be used to probe BHs in the intermediate mass range, which are very difficult to study by other means.

  7. Host galaxy identification for binary black hole mergers with long baseline gravitational wave detectors

    Science.gov (United States)

    Howell, E. J.; Chan, M. L.; Chu, Q.; Jones, D. H.; Heng, I. S.; Lee, H.-M.; Blair, D.; Degallaix, J.; Regimbau, T.; Miao, H.; Zhao, C.; Hendry, M.; Coward, D.; Messenger, C.; Ju, L.; Zhu, Z.-H.

    2018-03-01

    The detection of black hole binary coalescence events by Advanced LIGO allows the science benefits of future detectors to be evaluated. In this paper, we report the science benefits of one or two 8 km arm length detectors based on the doubling of key parameters in an Advanced LIGO-type detector, combined with realizable enhancements. It is shown that the total detection rate for sources similar to those already detected would increase to ˜ 103-105 per year. Within 0.4 Gpc, we find that around 10 of these events would be localizable to within ˜10-1 deg2. This is sufficient to make unique associations or to rule out a direct association with the brightest galaxies in optical surveys (at r-band magnitudes of 17 or above) or for deeper limits (down to r-band magnitudes of 20) yield statistically significant associations. The combination of angular resolution and event rate would benefit precision testing of formation models, cosmic evolution, and cosmological studies.

  8. Are There Multiple Populations of Fast Radio Bursts?

    Science.gov (United States)

    Palaniswamy, Divya; Li, Ye; Zhang, Bing

    2018-02-01

    The repeating FRB 121102 (the “repeater”) shows repetitive bursting activities and was localized in a host galaxy at z = 0.193. On the other hand, despite dozens of hours of telescope time spent on follow-up observations, no other fast radio bursts (FRBs) have been observed to repeat. Yet, it has been speculated that the repeater is the prototype of FRBs, and that other FRBs should show similar repeating patterns. Using the published data, we compare the repeater with other FRBs in the observed time interval (Δt)–flux ratio (S i /S i+1) plane. We find that whereas other FRBs occupy the upper (large S i /S i+1) and right (large Δt) regions of the plane due to the non-detections of other bursts, some of the repeater bursts fall into the lower left region of the plot (short interval and small flux ratio) excluded by the non-detection data of other FRBs. The trend also exists even if one only selects those bursts detectable by the Parkes radio telescope. If other FRBs were similar to the repeater, our simulations suggest that the probability that none of them have been detected to repeat with the current searches would be ∼(10‑4–10‑3). We suggest that the repeater is not representative of the entire FRB population, and that there is strong evidence of more than one population of FRBs.

  9. A Precise Distance to the Host Galaxy of the Binary Neutron Star Merger GW170817 Using Surface Brightness Fluctuations

    Science.gov (United States)

    Cantiello, Michele; Jensen, J. B.; Blakeslee, J. P.; Berger, E.; Levan, A. J.; Tanvir, N. R.; Raimondo, G.; Brocato, E.; Alexander, K. D.; Blanchard, P. K.; Branchesi, M.; Cano, Z.; Chornock, R.; Covino, S.; Cowperthwaite, P. S.; D’Avanzo, P.; Eftekhari, T.; Fong, W.; Fruchter, A. S.; Grado, A.; Hjorth, J.; Holz, D. E.; Lyman, J. D.; Mandel, I.; Margutti, R.; Nicholl, M.; Villar, V. A.; Williams, P. K. G.

    2018-02-01

    The joint detection of gravitational waves (GWs) and electromagnetic radiation from the binary neutron star (BNS) merger GW170817 has provided unprecedented insight into a wide range of physical processes: heavy element synthesis via the r-process; the production of relativistic ejecta; the equation of state of neutron stars and the nature of the merger remnant; the binary coalescence timescale; and a measurement of the Hubble constant via the “standard siren” technique. In detail, all of these results depend on the distance to the host galaxy of the merger event, NGC 4993. In this Letter we measure the surface brightness fluctuation (SBF) distance to NGC 4993 in the F110W and F160W passbands of the Wide Field Camera 3 Infrared Channel (WFC3/IR) on the Hubble Space Telescope (HST). For the preferred F110W passband we derive a distance modulus of (m-M) =33.05+/- 0.08+/- 0.10 mag, or a linear distance d = 40.7 ± 1.4 ± 1.9 Mpc (random and systematic errors, respectively); a virtually identical result is obtained from the F160W data. This is the most precise distance to NGC 4993 available to date. Combining our distance measurement with the corrected recession velocity of NGC 4993 implies a Hubble constant H 0 = 71.9 ± 7.1 km s‑1 Mpc‑1. A comparison of our result to the GW-inferred value of H 0 indicates a binary orbital inclination of i ≳ 137°. The SBF technique can be applied to early-type host galaxies of BNS mergers to ∼100 Mpc with HST and possibly as far as ∼300 Mpc with the James Webb Space Telescope, thereby helping to break the inherent distance-inclination degeneracy of the GW data at distances where many future BNS mergers are likely to be detected. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with Program #15329 (PI: E

  10. Optical, Near-IR, and X-Ray Observations of SN 2015J and Its Host Galaxy

    Science.gov (United States)

    Nucita, A. A.; De Paolis, F.; Saxton, R.; Testa, V.; Strafella, F.; Read, A.; Licchelli, D.; Ingrosso, G.; Convenga, F.; Boutsia, K.

    2017-12-01

    SN 2015J was discovered on 2015 April 27th and is classified as an SN IIn. At first, it appeared to be an orphan SN candidate, I.e., without any clear identification of its host galaxy. Here, we present an analysis of the observations carried out by the VLT 8 m class telescope with the FORS2 camera in the R band and the Magellan telescope (6.5 m) equipped with the IMACS Short-Camera (V and I filters) and the FourStar camera (Ks filter). We show that SN 2015J resides in what appears to be a very compact galaxy, establishing a relation between the SN event and its natural host. We also present and discuss archival and new X-ray data centered on SN 2015J. At the time of the supernova explosion, Swift/XRT observations were made and a weak X-ray source was detected at the location of SN 2015J. Almost one year later, the same source was unambiguously identified during serendipitous observations by Swift/XRT and XMM-Newton, clearly showing an enhancement of the 0.3-10 keV band flux by a factor ≃ 30 with respect to the initial state. Swift/XRT observations show that the source is still active in the X-rays at a level of ≃ 0.05 counts s-1. The unabsorbed X-ray luminosity derived from the XMM-Newton slew and SWIFT observations, {L}x≃ 5× {10}41 erg s-1, places SN 2015J among the brightest young supernovae in X-rays. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA, with ESO Telescopes at the La Silla-Paranal Observatory under program ID 298.D-5016(A), and with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. We also acknowledge the use of public data from the Swift data archive.

  11. PROVIDING STRINGENT STAR FORMATION RATE LIMITS OF z ∼ 2 QSO HOST GALAXIES AT HIGH ANGULAR RESOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Vayner, Andrey; Wright, Shelley A. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4 (Canada); Do, Tuan [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4 (Canada); Larkin, James E. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Armus, Lee [Spitzer Science Center, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Gallagher, S. C. [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada)

    2016-04-10

    We present integral field spectrograph (IFS) with laser guide star adaptive optics (LGS-AO) observations of z ∼ 2 quasi-stellar objects (QSOs) designed to resolve extended nebular line emission from the host galaxy. Our data was obtained with W. M. Keck and Gemini North Observatories, using OSIRIS and NIFS coupled with the LGS-AO systems, respectively. We have conducted a pilot survey of five QSOs, three observed with NIFS+AO and two observed with OSIRIS+AO at an average redshift of z = 2.2. We demonstrate that the combination of AO and IFSs provides the necessary spatial and spectral resolutions required to separate QSO emission from its host. We present our technique for generating a point-spread function (PSF) from the broad-line region of the QSO and performing PSF subtraction of the QSO emission to detect the host galaxy emission at a separation of ∼0.″2 (∼1.4 kpc). We detect Hα narrow-line emission for two sources, SDSS J1029+6510 (z{sub Hα} = 2.182) and SDSS J0925+0655 (z{sub Hα} = 2.197), that have evidence for both star formation and extended narrow-line emission. Assuming that the majority of narrow-line Hα emission is from star formation, we infer a star formation rate (SFR) for SDSS J1029+6510 of 78.4 M{sub ⊙} yr{sup −1} originating from a compact region that is kinematically offset by 290–350 km s{sup −1}. For SDSS J0925+0655 we infer a SFR of 29 M{sub ⊙} yr{sup −1} distributed over three clumps that are spatially offset by ∼7 kpc. The null detections on three of the QSOs are used to infer surface brightness limits and we find that at 1.4 kpc from the QSO the un-reddened star formation limit is ≲0.3 M{sub ⊙} yr{sup −1} kpc{sup −2}. If we assume typical extinction values for z = 2 type-1 QSOs, the dereddened SFR for our null detections would be ≲0.6 M{sub ⊙} yr{sup −1} kpc{sup −2}. These IFS observations indicate that while the central black hole is accreting mass at 10%–40% of the Eddington rate, if

  12. A Wide Dispersion in Star Formation Rate and Dynamical Mass of 108 Solar Mass Black Hole Host Galaxies at Redshift 6

    Science.gov (United States)

    Willott, Chris J.; Bergeron, Jacqueline; Omont, Alain

    2017-11-01

    Atacama Large Millimeter Array [C II] line and continuum observations of five redshift z> 6 quasars are presented. This sample was selected to probe quasars with lower black hole mass than most previous studies. We find a wide dispersion in properties with CFHQS J0216-0455, a low-luminosity quasar with absolute magnitude {M}1450=-22.2, remaining undetected implying a limit on the star formation rate in the host galaxy of ≲ 10 {M}⊙ {{yr}}-1, whereas other host galaxies have star formation rates up to hundreds of solar masses per year. Two other quasars have particularly interesting properties. VIMOS2911 is one of the least luminous z> 6 quasars known with {M}1450=-23.1, yet its host galaxy is experiencing a very powerful starburst. PSO J167-13 has a broad and luminous [C II] line and a neighboring galaxy a projected distance of 5 kpc away that is also detected in the [C II] line and continuum. Combining with similar observations from the literature, we study the ratio of the [C II] line to the far-infrared luminosity, finding that this ratio increases at high redshift at a fixed far-infrared luminosity, likely due to lower dust content, lower metallicity and/or higher gas masses. We compile a sample of 21 high-redshift quasars with dynamical masses and investigate the relationship between black hole mass and dynamical mass. The new observations presented here reveal dynamical masses consistent with the relationship defined by local galaxies. However, the full sample shows a very wide scatter across the black hole mass-dynamical mass plane, whereas both the local relationship and simulations of high-redshift quasars show a much lower dispersion in dynamical mass.

  13. The Dependence of Type Ia Supernova Luminosity on Host Galaxy Properties from a Sample without the Local-Global Difference in Star Formation

    Science.gov (United States)

    Kim, Younglo; Smith, Mathew; Sullivan, Mark; Lee, Young-Wook

    2018-01-01

    Recent studies suggest that the difference between local and global properties of galaxies might play an important role in the Type Ia supernova (SN Ia) host galaxy studies. Obtaining local spectroscopic measurements for hosts at high redshift, however, is difficult. Here we will introduce a more efficient way to infer the local properties from global galaxy measurements. We find that when the globally star-forming galaxies are restricted to a low-mass subset (≤ 10^10 M⊙), a sample without the local-global difference in star formation is efficiently selected. From this sample, we confirm that SNe Ia in locally star-forming environments are 0.080 ± 0.018 mag fainter (4.4 σ) than those in locally passive environments. Our results are, however, statistically more significant than previous results, because of ~5 times larger sample across a wider redshift range. Considering the significant difference in the mean stellar population age between these environments, the result would imply a possible luminosity evolution of SNe Ia.

  14. Multiple Supernova Explosions in a Forming Galaxy

    National Research Council Canada - National Science Library

    Masayuki Umemura; Andrea Ferrara

    2004-01-01

    Ultra-high resolution hydrodynamic simulations using 1024 3 grid points are performed of a very large supernova burst in a forming galaxy, with properties similar to those inferred for Lyman Break Galaxies (LBGs...

  15. The ``Christmas burst'' GRB 101225A revisited

    Science.gov (United States)

    Thöne, C. C.; de Ugarte Postigo, A.; Fryer, C. L.; Kann, D. A.

    2015-03-01

    Long GRBs are related to the death of massive stars and reveal themselves through synchrotron emission from highly relativistic jets. The `Christmas Burst' GRB 101225A was an exceptionally long GRB with a thermal afterglow, very different from the standard GRB. Initially, no spectroscopic redshift could be obtained and SED modeling yielded z=0.33. A plausible model was a He-NS star merger where the He-star had ejected part of its envelope in the common envelope phase during inspiral. The interaction between the jet and the previously ejected shell can explains the thermal emission. We obtained deep spectroscopy of the host galaxy which leads to a correction of the redshift to z=0.847. Despite the higher redshift, our model is still valid and theoretically better justified than the alternative suggestion of a blue supergiant progenitor proposed by Levan et al. (2014) for several ``ultra-long'' GRBs.

  16. The 7 Ms Chandra Deep Field-South Survey: Cosmic Black-Hole Growth is Mainly Linked to Host-Galaxy Stellar Mass

    Science.gov (United States)

    Brandt, W. Niel; Yang, Guang; Chen, Chien-Ting; Vito, Fabio

    2017-08-01

    The Chandra exposure on the Chandra Deep Field-South (CDF-S) has recently been increased to 7 Ms, allowing unmatched X-ray and multiwavelength characterization of cosmic black-hole growth in active galactic nuclei (AGNs). We have used these data to investigate the dependence of black-hole accretion rate (BHAR) on host-galaxy star formation rate (SFR) and stellar mass (M*) at z = 0.5-2. Our sample consists of 18,000 galaxies with SFR and M* measurements, and we use sample-mean BHAR for these galaxies to approximate their long-term average BHAR. Our sample-mean BHARs are derived from the CDF-S observations via both direct spectral analysis and stacking. The average BHAR is correlated positively with both SFR and M*, and the BHAR-SFR and BHAR-M* relations can both be described acceptably by linear models with a slope of unity. However, according to partial-correlation analyses, BHAR is correlated more strongly with M* than SFR. This result indicates that M* is the primary host-galaxy property related to black-hole growth, and the well-known BHAR-SFR relation is largely a secondary effect due to the "star-forming main sequence". Among our sources, massive galaxies have significantly higher BHAR/SFR ratios than less-massive galaxies, indicating the former have higher black-hole fueling efficiency and/or higher SMBH occupation fraction than the latter; e.g., the deeper potential wells in higher mass galaxies may promote black-hole accretion and counteract AGN/supernova feedback. Our results can naturally explain the observed proportionality between MBH and M* for local giant ellipticals, and suggest their MBH/M* ratios are higher than those of local star-forming galaxies. Finally, prospects for extending this work will be discussed; e.g., by further investigating the redshift evolution of the primary BHAR-M* relation and measuring this relation for even higher values of M*, above ~ 1011 solar masses, using wide-field X-ray surveys.

  17. A Fast Radio Burst Every Second?

    Science.gov (United States)

    Kohler, Susanna

    2017-09-01

    How frequently do fast radio busts occur in the observable universe? Two researchers have now developed a new estimate.Extragalactic SignalsIn 2007, scientists looking through archival pulsar data discovered a transient radio pulse a flash that lasted only a few milliseconds. Since then, weve found another 22 such fast radio bursts (FRBs), yet we still dont know what causes these energetic signals.Artists illustration of the Very Large Array pinpointing the location of FRB 121102. [Bill Saxton/NRAO/AUI/NSF/Hubble Legacy Archive/ESA/NASA]Recently, some clues have finally come from FRB 121102, the only FRB ever observed to repeat. The multiple pulses detected from this source over the last five years have allowed us to confirm its extragalactic origin and pinpoint an origin for this FRB: a small, low-mass, metal-poor dwarf galaxy located about three billion light-years away.Is FRB 121102 typical? How frequently do such bursts occur, and how frequently can we hope to be able to detect them in the future? And what might these rates tell us about their origins? Two scientists from the Harvard-Smithsonian Center for Astrophysics, Anastasia Fialkov and Abraham Loeb, have now taken a phenomenological approach to answering these questions.Influencing FactorsFialkov and Loeb arguethat there are three main factors that influence the rate of observable FRBs in the universe:The spectral shape of the individual FRBsFRB 121102 had a Gaussian-like spectral profile, which means it peaks in a narrow range of frequencies and may not be detectable outside of that band. If this is typical for FRBs, then signals of distant FRBs may become redshifted to outside of the frequency band that we observe, making them undetectable.FRB detection rates in the 1.253.5GHz band predicted by the authors models (red and blue solid and dashed lines), as a function of the flux limit for detection (top) and as a function of the FRB hosts redshift (bottom). Grey circles mark our detections of FRBs thus

  18. Identifying gamma-ray bursts at very high redshifts

    Science.gov (United States)

    Tanvir, Nial

    2017-08-01

    Gamma-ray bursts are bright enough to be seen to very great distances and their afterglows can provide redshifts and positions for their host galaxies, and in some cases details of the ISM and the IGM close to the burst, irrespective of the host magnitude itself. Thus GRBs, despite their small numbers, offer a unique and powerful tracer of early star formation and the galaxy populations in the era of reionization. Our efforts to identify high-z GRBs have been rewarded with the discoveries of GRB 090423 and GRB 120923A at spectroscopic redshifts of 8.2 and 7.8 respectively. However, it remains the case that some good candidate high-z GRBs cannot be followed up quickly or deeply enough with ground-based IR spectroscopy, and indeed for others the Ly-alpha break may fall in regions of the IR spectrum difficult to access from the ground. GRB 090429B is an example, which had a photo-z of 9.4, but for which spectroscopy was curtailed due to bad weather. WFC3/IR on HST can obtain redshifts based on the location of the Ly-alpha break via slitless grism spectroscopy to considerably deeper limits (and hence later times) than is possible from the ground, thus offering a solution to this problem. This proposal aims to continue to build the sample of z>7 GRBs by obtaining spectroscopy for up to two candidates for which photometry suggests a very high redshift, but where the redshift could not be secured from the ground. This will provide an important legacy of host galaxy targets with known redshifts for future studies with JWST. The low rate of z>7 GRBs leads us to request a long-term ToO program, spanning cycles 25 and 26.

  19. Multirhythmic bursting

    Science.gov (United States)

    Butera, Robert J.

    1998-03-01

    A complex modeled bursting neuron [C. C. Canavier, J. W. Clark, and J. H. Byrne, J. Neurophysiol. 66, 2107-2124 (1991)] has been shown to possess seven coexisting limit cycle solutions at a given parameter set [Canavier et al., J. Neurophysiol 69, 2252-2259 (1993); 72, 872-882 (1994)]. These solutions are unique in that the limit cycles are concentric in the space of the slow variables. We examine the origin of these solutions using a minimal 4-variable bursting cell model. Poincaré maps are constructed using a saddle-node bifurcation of a fast subsystem such as our Poincaré section. This bifurcation defines a threshold between the active and silent phases of the burst cycle in the space of the slow variables. The maps identify parameter spaces with single limit cycles, multiple limit cycles, and two types of chaotic bursting. To investigate the dynamical features which underlie the unique shape of the maps, the maps are further decomposed into two submaps which describe the solution trajectories during the active and silent phases of a single burst. From these findings we postulate several necessary criteria for a bursting model to possess multiple stable concentric limit cycles. These criteria are demonstrated in a generalized 3-variable model. Finally, using a less direct numerical procedure, similar return maps are calculated for the original complex model [C. C. Canavier, J. W. Clark, and J. H. Byrne, J. Neurophysiol. 66, 2107-2124 (1991)], with the resulting mappings appearing qualitatively similar to those of our 4-variable model. These multistable concentric bursting solutions cannot occur in a bursting model with one slow variable. This type of multistability arises when a bursting system has two or more slow variables and is viewed as an essentially second-order system which receives discrete perturbations in a state-dependent manner.

  20. Galaxy Evolution in the Cluster Abell 85: New Insights from the Dwarf Population

    Science.gov (United States)

    Habas, Rebecca; Fadda, Dario; Marleau, Francine R.; Biviano, Andrea; Durret, Florence

    2018-01-01

    We present the first results of a new spectroscopic survey of the cluster Abell 85 targeting 1466 candidate cluster members within the central ˜1 deg2 of the cluster and having magnitudes mr cluster members or part of an infalling population. A significant fraction are low mass; the median stellar mass of the sample is 109.6 M⊙, and 25% have stellar masses below 109 M⊙ (i.e. 133 dwarf galaxies). We also identify seven active galactic nuclei (AGN), four of which reside in dwarf host galaxies. We probe the evolution of star formation rates, based on Hα emission and continuum modeling, as a function of both mass and environment. We find that more star forming galaxies are observed at larger clustercentric distances, while infalling galaxies show evidence for recently enhanced star forming activity. Main sequence galaxies, defined by their continuum star formation rates, show different evolutionary behavior based on their mass. At the low mass end, the galaxies have had their star formation recently quenched, while more massive galaxies show no significant change. The timescales probed here favor fast quenching mechanisms, such as ram-pressure stripping. Galaxies within the green valley, defined similarly, do not show evidence of quenching. Instead, the low mass galaxies maintain their levels of star forming activity, while the more massive galaxies have experienced a recent burst.

  1. GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Leo P.; Cenko, S. Bradley; Gehrels, Neil; Cannizzo, John [Astroparticle Physics Laboratory, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Chen, Hsin-Yu; Holz, Daniel E.; Farr, Ben [Department of Physics, Enrico Fermi Institute, and Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Farr, Will M.; Veitch, John; Berry, Christopher P. L.; Mandel, Ilya [School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT (United Kingdom); Price, Larry R.; Raymond, Vivien [LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Kasliwal, Mansi M. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Nissanke, Samaya [Institute of Mathematics, Astrophysics and Particle Physics, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Coughlin, Michael [Department of Physics and Astronomy, Harvard University, Cambridge, MA 02138 (United States); Urban, Alex L. [Leonard E. Parker Center for Gravitation, Cosmology, and Astrophysics, University of Wisconsin–Milwaukee, Milwaukee, WI 53201 (United States); Vitale, Salvatore; Mohapatra, Satya [LIGO Laboratory, Massachusetts Institute of Technology, 185 Albany Street, Cambridge, MA 02139 (United States); Graff, Philip [Department of Physics, University of Maryland, College Park, MD 20742 (United States)

    2016-09-20

    The Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) discovered gravitational waves (GWs) from a binary black hole merger in 2015 September and may soon observe signals from neutron star mergers. There is considerable interest in searching for their faint and rapidly fading electromagnetic (EM) counterparts, though GW position uncertainties are as coarse as hundreds of square degrees. Because LIGO’s sensitivity to binary neutron stars is limited to the local universe, the area on the sky that must be searched could be reduced by weighting positions by mass, luminosity, or star formation in nearby galaxies. Since GW observations provide information about luminosity distance, combining the reconstructed volume with positions and redshifts of galaxies could reduce the area even more dramatically. A key missing ingredient has been a rapid GW parameter estimation algorithm that reconstructs the full distribution of sky location and distance. We demonstrate the first such algorithm, which takes under a minute, fast enough to enable immediate EM follow-up. By combining the three-dimensional posterior with a galaxy catalog, we can reduce the number of galaxies that could conceivably host the event by a factor of 1.4, the total exposure time for the Swift X-ray Telescope by a factor of 2, the total exposure time for a synoptic optical survey by a factor of 2, and the total exposure time for a narrow-field optical telescope by a factor of 3. This encourages us to suggest a new role for small field of view optical instruments in performing targeted searches of the most massive galaxies within the reconstructed volumes.

  2. EDGE: Explorer of diffuse emission and gamma-ray burst explosions

    DEFF Research Database (Denmark)

    Piro, L; den Herder, J W; Ohashi, T

    2009-01-01

    resolution. This enables the study of their star-forming and host galaxy environments and the use of GRBs as back lights of large scale cosmological structures; (b) observing and surveying extended sources (galaxy clusters, WHIM) with high sensitivity using two wide field of view X-ray telescopes (one......How structures of various scales formed and evolved from the early Universe up to present time is a fundamental question of astrophysical cosmology. EDGE (Piro et al., 2007) will trace the cosmic history of the baryons from the early generations of massive stars by Gamma-Ray Burst (GRB) explosions......, through the period of galaxy cluster formation, down to the very low redshift Universe, when between a third and one half of the baryons are expected to reside in cosmic filaments undergoing gravitational collapse by dark matter (the so-called warm hot intragalactic medium). In addition EDGE, with its...

  3. Spectroscopy of the short-hard GRB 130603B: The host galaxy and environment of a compact object merger

    NARCIS (Netherlands)

    de Ugarte Postigo, A.; Thöne, C.C.; Rowlinson, A.; García-Benito, R.; Levan, A.J.; Gorosabel, J.; Goldoni, P.; Schulze, S.; Zafar, T.; Wiersema, K.; Sánchez-Ramírez, R.; Melandri, A.; D’Avanzo, P.; Oates, S.; D’Elia, V.; de Pasquale, M.; Krühler, T.; van der Horst, A.J.; Xu, D.; Watson, D.; Piranomonte, S.; Vergani, S.D.; Milvang-Jensen, B.; Kaper, L.; Malesani, D.; Fynbo, J.P.U.; Cano, Z.; Covino, S.; Flores, H.; Greiss, S.; Hammer, F.; Hartoog, O.E.; Hellmich, S.; Heuser, C.; Hjorth, J.; Jakobsson, P.; Mottola, S.; Sparre, M.; Sollerman, J.; Tagliaferri, G.; Tanvir, N.R.; Vestergaard, M.; Wijers, R.A.M.J.

    2014-01-01

    Context. Short duration gamma-ray bursts (SGRBs) are thought to be related to the violent merger of compact objects, such as neutron stars or black holes, which makes them promising sources of gravitational waves. The detection of a "kilonova"-likesignature associated to the Swift-detected

  4. On the Origin of the Scatter Broadening of Fast Radio Burst Pulses and Astrophysical Implications

    Science.gov (United States)

    Xu, Siyao; Zhang, Bing

    2016-12-01

    Fast radio bursts (FRBs) have been identified as extragalactic sources that can probe turbulence in the intergalactic medium (IGM) and their host galaxies. To account for the observed millisecond pulses caused by scatter broadening, we examine a variety of possible electron density fluctuation models in both the IGM and the host galaxy medium. We find that a short-wave-dominated power-law spectrum of density, which may arise in highly supersonic turbulence with pronounced local dense structures of shock-compressed gas in the host interstellar medium (ISM), can produce the required density enhancements at sufficiently small scales to interpret the scattering timescale of FRBs. This implies that an FRB residing in a galaxy with efficient star formation in action tends to have a broadened pulse. The scaling of the scattering time with the dispersion measure (DM) in the host galaxy varies in different turbulence and scattering regimes. The host galaxy can be the major origin of scatter broadening, but contributes to a small fraction of the total DM. We also find that the sheet-like structure of the density in the host ISM associated with folded magnetic fields in a viscosity-dominated regime of magnetohydrodynamic (MHD) turbulence cannot give rise to strong scattering. Furthermore, valuable insights into the IGM turbulence concerning the detailed spatial structure of density and magnetic field can be gained from the observed scattering timescale of FRBs. Our results favor the suppression of micro-plasma instabilities and the validity of the collisional-MHD description of turbulence properties in the collisionless IGM.

  5. Galaxy clusters: Falling into line

    Science.gov (United States)

    Sifón, Cristóbal

    2017-07-01

    Analysis of Hubble Space Telescope observations shows that the well-known alignment between the central galaxy of a galaxy cluster and its host cluster has been in place for at least ten billion years.

  6. Redshift determination of the BL Lac object 3C 66A by the detection of its host galaxy cluster at z = 0.340

    Science.gov (United States)

    Torres-Zafra, Juanita; Cellone, Sergio A.; Buzzoni, Alberto; Andruchow, Ileana; Portilla, José G.

    2018-03-01

    The BL Lac object 3C 66A is one of the most luminous extragalactic sources at TeV γ-rays (very high energy, i.e. E > 100 GeV). Since TeV γ-ray radiation is absorbed by the extragalactic background light (EBL), it is crucial to know the redshift of the source in order to reconstruct its original spectral energy distribution, as well as to constrain EBL models. However, the optical spectrum of this BL Lac is almost featureless, so a direct measurement of z is very difficult; in fact, the published redshift value for this source (z = 0.444) has been strongly questioned. Based on EBL absorption arguments, several constraints to its redshift, in the range 0.096 type galaxies that are members of groups or clusters, we have analysed spectro-photometrically the environment of 3C 66A, with the goal of finding the galaxy group hosting this blazar. This study was made using optical images of a 5.5 × 5.5 arcmin2 field centred on the blazar, and spectra of 24 sources obtained with Gemini/GMOS-N multi-object spectroscopy. We found spectroscopic evidence of two galaxy groups along the blazar's line of sight: one at z ≃ 0.020 and the second one at z ≃ 0.340. The first one is consistent with a known foreground structure, while the second group presented here has six spectroscopically confirmed members. Their location along a red sequence in the colour-magnitude diagram allows us to identify 34 additional candidate members of the more distant group. The blazar's spectrum shows broad absorption features that we identify as arising in the intergalactic medium, thus allowing us to tentatively set a redshift lower limit at z_3C66A ≳ 0.33. As a consequence, we propose that 3C 66A is hosted in a galaxy that belongs to a cluster at z = 0.340.

  7. Theoretical Re-evaluations of Scaling Relations between SMBHs and Their Host Galaxies - 1. Effect of Seed BH Mass

    Science.gov (United States)

    Shirakata, Hikari; Kawaguchi, Toshihiro; Okamoto, Takashi; Makiya, Ryu; Ishiyama, Tomoaki; Matsuoka, Yoshiki; Nagashima, Masahiro; Enoki, Motohiro; Oogi, Taira; Kobayashi, Masakazu A. R.

    2017-09-01

    We explore the effect of varying the mass of a seed black hole on the resulting black hole mass - bulge mass relation at z ˜ 0, using a semi-analytic model of galaxy formation combined with large cosmological N-body simulations. When the mass of the seed is set at 10^5 M_⊙, we find that the model results become inconsistent with recent observational results of the black hole mass - bulge mass relation for dwarf galaxies. On the other hand, when we employ seed black holes of 10^3 M_⊙ or select their mass randomly within a 10^{3 -5} M_⊙ range, the resulting relation is consistent with observational results including the dispersion. We also find that black hole mass - bulge mass relations for less massive bulges at z ˜ 0 put stronger constraints on the seed BH mass than the relations at higher redshifts.

  8. Light Dawns on Dark Gamma-ray Bursts

    Science.gov (United States)

    2010-12-01

    [1] Gamma-ray bursts lasting longer than two seconds are referred to as long bursts and those with a shorter duration are known as short bursts. Long bursts, which were observed in this study, are associated with the supernova explosions of massive young stars in star-forming galaxies. Short bursts are not well understood, but are thought to originate from the merger of two compact objects such as neutron stars. [2] The Gamma-Ray burst Optical and Near-infrared Detector (GROND) was designed and built at the Max-Planck Institute for Extraterrestrial Physics in collaboration with the Tautenburg Observatory, and has been fully operational since August 2007. [3] Other studies relating to dark gamma-ray bursts have been released. Early this year, astronomers used the Subaru Telescope to observe a single gamma-ray burst, from which they hypothesised that dark gamma-ray bursts may indeed be a separate sub-class that form through a different mechanism, such as the merger of binary stars. In another study published last year using the Keck Telescope, astronomers studied the host galaxies of 14 dark GRBs, and based on the derived low redshifts they infer dust as the likely mechanism to create the dark bursts. In the new work reported here, 39 GRBs were studied, including nearly 20 dark bursts, and it is the only study in which no prior assumptions have been made and the amount of dust has been directly measured. [4] Because the afterglow light of very distant bursts is redshifted due to the expansion of the Universe, the light that left the object was originally bluer than the light we detect when it gets to Earth. Since the reduction of light intensity by dust is greater for blue and ultraviolet light than for red, this means that the overall dimming effect of dust is greater for the more distant gamma-ray bursts. This is why GROND's ability to observe near-infrared radiation makes such a difference. More information This research is presented in a paper to appear in the

  9. Cepheids in External Galaxies. I. The Maser-Host Galaxy NGC 4258 and the Metallicity Dependence of Period-Luminosity and Period-Wesenheit Relations

    Science.gov (United States)

    Bono, G.; Caputo, F.; Fiorentino, G.; Marconi, M.; Musella, I.

    2008-09-01

    We perform a detailed analysis of Cepheids in NGC 4258, the Magellanic Clouds, and Milky Way in order to verify the reliability of the theoretical scenario based on a large set of nonlinear convective pulsation models. We derive Wesenheit functions from the synthetic BVI magnitudes of the pulsators, and we show that the sign and the extent of the metallicity effect on the predicted period-Wesenheit (P - W) relations change according to the adopted passbands. These P - W relations are applied to measured BVI magnitudes of NGC 4258, Magellanic, and Galactic Cepheids available in the literature. We find that Magellanic and Galactic Cepheids agree with the metallicity dependence of the predicted P - W relations. Concerning the NGC 4258 Cepheids, the results strongly depend on the adopted metallicity gradient across the galactic disk. The most recent nebular oxygen abundances support a shallower gradient and provide a metallicity dependence that agrees well with current pulsation predictions. Moreover, the comparison of Cepheid distances based on VI magnitudes with distance estimates based on the revised TRGB method for external galaxies, on the HST trigonometric parallaxes for Galactic Cepheids, and on eclipsing binaries in the Magellanic Clouds seems to favor the metallicity correction predicted by pulsation models. The sign and the extent of the metallicity dependence of the P - W and of the period-luminosity (P - L) relations change according to the adopted passbands. Therefore, distances based on different methods and/or bands should not be averaged. The use of extragalactic Cepheids to constrain the metallicity effect requires new accurate and extensive nebular oxygen measurements.

  10. A tight relation between the age distributions of stellar clusters and the properties of the interstellar medium in the host galaxy

    Science.gov (United States)

    Miholics, Meghan; Kruijssen, J. M. Diederik; Sills, Alison

    2017-09-01

    The age distributions of stellar cluster populations have long been proposed to probe the recent formation history of the host galaxy. However, progress is hampered by the limited understanding of cluster disruption by evaporation and tidal shocks. We study the age distributions of clusters in smoothed particle hydrodynamics simulations of isolated disc galaxies, which include a self-consistent, physical model for the formation and dynamical evolution of the cluster population and account for the variation of cluster disruption in time and space. We show that the downward slope of the cluster age distribution due to disruption cannot be reproduced with a single functional form, because the disruption rate exhibits systematic trends with cluster age (the 'cruel cradle effect'). This problem is resolved by using the median cluster age to trace cluster disruption. Across 120 independent galaxy snapshots and simulated cluster populations, we perform two-dimensional power-law fits of the median cluster age to various macroscopic physical quantities and find that it scales as t_med∝ Σ ^{-0.51± 0.03}σ _1D^{-0.85± 0.10}M_min^γ, for the gas surface density Σ, gas velocity dispersion σ1D, and minimum cluster mass Mmin. This scaling accurately describes observed cluster populations and indicates disruption by impulsive tidal shocks from the interstellar medium. The term M_min^γ provides a model-independent way to measure the mass dependence of the cluster disruption time γ. Finally, the ensemble-average cluster lifetime depends on the gas density less strongly than the instantaneous disruption time of single clusters. These results reflect the variation of cluster disruption in time and space. We provide quantitative ways of accounting for these physics in cluster population studies.

  11. An actively accreting massive black hole in the dwarf starburst galaxy Henize 2-10.

    Science.gov (United States)

    Reines, Amy E; Sivakoff, Gregory R; Johnson, Kelsey E; Brogan, Crystal L

    2011-02-03

    Supermassive black holes are now thought to lie at the heart of every giant galaxy with a spheroidal component, including our own Milky Way. The birth and growth of the first 'seed' black holes in the earlier Universe, however, is observationally unconstrained and we are only beginning to piece together a scenario for their subsequent evolution. Here we report that the nearby dwarf starburst galaxy Henize 2-10 (refs 5 and 6) contains a compact radio source at the dynamical centre of the galaxy that is spatially coincident with a hard X-ray source. From these observations, we conclude that Henize 2-10 harbours an actively accreting central black hole with a mass of approximately one million solar masses. This nearby dwarf galaxy, simultaneously hosting a massive black hole and an extreme burst of star formation, is analogous in many ways to galaxies in the infant Universe during the early stages of black-hole growth and galaxy mass assembly. Our results confirm that nearby star-forming dwarf galaxies can indeed form massive black holes, and that by implication so can their primordial counterparts. Moreover, the lack of a substantial spheroidal component in Henize 2-10 indicates that supermassive black-hole growth may precede the build-up of galaxy spheroids.

  12. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VII. Properties of the Host Galaxy and Constraints on the Merger Timescale

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, P. K.; Berger, E.; Fong, W.; Nicholl, M.; Leja, J.; Conroy, C.; Alexander, K. D.; Margutti, R.; Williams, P. K. G.; Doctor, Z.; Chornock, R.; Villar, V. A.; Cowperthwaite, P. S.; Annis, J.; Brout, D.; Brown, D. A.; Chen, H. -Y.; Eftekhari, T.; Frieman, J. A.; Holz, D. E.; Metzger, B. D.; Rest, A.; Sako, M.; Soares-Santos, M.

    2017-10-16

    We present the properties of NGC 4993, the host galaxy of GW170817, the first gravitational wave (GW) event from the merger of a binary neutron star (BNS) system and the first with an electromagnetic (EM) counterpart. We use both archival photometry and new optical/near-IR imaging and spectroscopy, together with stellar population synthesis models to infer the global properties of the host galaxy. We infer a star formation history peaked at $\\gtrsim 10$ Gyr ago, with subsequent exponential decline leading to a low current star formation rate of 0.01 M$_{\\odot}$ yr$^{-1}$, which we convert into a binary merger timescale probability distribution. We find a median merger timescale of $11.2^{+0.7}_{-1.4}$ Gyr, with a 90% confidence range of $6.8-13.6$ Gyr. This in turn indicates an initial binary separation of $\\approx 4.5$ R$_{\\odot}$, comparable to the inferred values for Galactic BNS systems. We also use new and archival $Hubble$ $Space$ $Telescope$ images to measure a projected offset of the optical counterpart of $2.1$ kpc (0.64$r_{e}$) from the center of NGC 4993 and to place a limit of $M_{r} \\gtrsim -7.2$ mag on any pre-existing emission, which rules out the brighter half of the globular cluster luminosity function. Finally, the age and offset of the system indicates it experienced a modest natal kick with an upper limit of $\\sim 200$ km s$^{-1}$. Future GW$-$EM observations of BNS mergers will enable measurement of their population delay time distribution, which will directly inform their viability as the dominant source of $r$-process enrichment in the Universe.

  13. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VII. Properties of the Host Galaxy and Constraints on the Merger Timescale

    Science.gov (United States)

    Blanchard, P. K.; Berger, E.; Fong, W.; Nicholl, M.; Leja, J.; Conroy, C.; Alexander, K. D.; Margutti, R.; Williams, P. K. G.; Doctor, Z.; Chornock, R.; Villar, V. A.; Cowperthwaite, P. S.; Annis, J.; Brout, D.; Brown, D. A.; Chen, H.-Y.; Eftekhari, T.; Frieman, J. A.; Holz, D. E.; Metzger, B. D.; Rest, A.; Sako, M.; Soares-Santos, M.

    2017-10-01

    We present the properties of NGC 4993, the host galaxy of GW170817, the first gravitational-wave (GW) event from the merger of a binary neutron star (BNS) system and the first with an electromagnetic (EM) counterpart. We use both archival photometry and new optical/near-IR imaging and spectroscopy, together with stellar population synthesis models to infer the global properties of the host galaxy. We infer a star formation history peaked at ≳ 10 {Gyr} ago, with subsequent exponential decline leading to a low current star formation rate of 0.01 {M}⊙ yr-1, which we convert into a binary merger timescale probability distribution. We find a median merger timescale of {11.2}-1.4+0.7 Gyr, with a 90% confidence range of 6.8{--}13.6 {Gyr}. This in turn indicates an initial binary separation of ≈ 4.5 {R}⊙ , comparable to the inferred values for Galactic BNS systems. We also use new and archival Hubble Space Telescope images to measure a projected offset of the optical counterpart of 2.1 kpc (0.64r e ) from the center of NGC 4993 and to place a limit of {M}r≳ -7.2 mag on any pre-existing emission, which rules out the brighter half of the globular cluster luminosity function. Finally, the age and offset of the system indicates it experienced a modest natal kick with an upper limit of ˜200 km s-1. Future GW-EM observations of BNS mergers will enable measurement of their population delay time distribution, which will directly inform their viability as the dominant source of r-process enrichment in the universe.

  14. Gamma-ray bursts and their use as cosmic probes

    Science.gov (United States)

    Schady, Patricia

    2017-07-01

    Since the launch of the highly successful and ongoing Swift mission, the field of gamma-ray bursts (GRBs) has undergone a revolution. The arcsecond GRB localizations available within just a few minutes of the GRB alert has signified the continual sampling of the GRB evolution through the prompt to afterglow phases revealing unexpected flaring and plateau phases, the first detection of a kilonova coincident with a short GRB, and the identification of samples of low-luminosity, ultra-long and highly dust-extinguished GRBs. The increased numbers of GRB afterglows, GRB-supernova detections, redshifts and host galaxy associations has greatly improved our understanding of what produces and powers these immense, cosmological explosions. Nevertheless, more high-quality data often also reveal greater complexity. In this review, I summarize some of the milestones made in GRB research during the Swift era, and how previous widely accepted theoretical models have had to adapt to accommodate the new wealth of observational data.

  15. Gamma-ray bursts and their use as cosmic probes.

    Science.gov (United States)

    Schady, Patricia

    2017-07-01

    Since the launch of the highly successful and ongoing Swift mission, the field of gamma-ray bursts (GRBs) has undergone a revolution. The arcsecond GRB localizations available within just a few minutes of the GRB alert has signified the continual sampling of the GRB evolution through the prompt to afterglow phases revealing unexpected flaring and plateau phases, the first detection of a kilonova coincident with a short GRB, and the identification of samples of low-luminosity, ultra-long and highly dust-extinguished GRBs. The increased numbers of GRB afterglows, GRB-supernova detections, redshifts and host galaxy associations has greatly improved our understanding of what produces and powers these immense, cosmological explosions. Nevertheless, more high-quality data often also reveal greater complexity. In this review, I summarize some of the milestones made in GRB research during the Swift era, and how previous widely accepted theoretical models have had to adapt to accommodate the new wealth of observational data.

  16. CGM-GRB: A survey of the CircumGalactic Medium around GRB hosts

    Science.gov (United States)

    Gatkine, Pradip; Veilleux, Sylvain; Cucchiara, Antonino; Cenko, Bradley

    2018-01-01

    Recent space- and ground-based studies of the circumgalactic medium around galaxies have revealed the dynamic interplay between the galaxy ecosystem and surrounding CGM using bright background quasars. Here, we extend this investigation of the CGM to higher redshifts by using the bright afterglows of gamma-ray bursts as background sources. This provides a unique opportunity to probe the host galaxy ISM and its surrounding CGM together. We compiled a sample of 25 high-resolution (R > 8000) and high-quality (typical S/N ~ 20) rest-frame UV spectra of GRB afterglows with a redshift range (1.5 kinematics and physical properties of the ISM and CGM of these GRB hosts are presented here.

  17. The Double Firing Burst

    Science.gov (United States)

    2008-09-01

    this nearly head-on alignment to occur is only about once a decade," added his colleague Cristiano Guidorzi. GRB 080319B was detected by the NASA/STFC/ASI Swift satellite towards the constellation of Boötes, the "Herdsman". A host of ground-based telescopes reacted promptly to study this new object in the sky, including ESO's Very Large Telescope, which was the first to provide the distance of the object, 7.5 billion light-years. The visible light from the burst was detected by a handful of wide-field cameras worldwide that are mounted on telescopes constantly monitoring a large fraction of the sky. One of these was the TORTORA camera mounted on the 0.6-m REM telescope at ESO's La Silla Observatory (ESO 26/07). TORTORA's rapid imaging provides the most detailed look yet at the visible light associated with the initial blast of a gamma-ray burst. "We've been waiting a long time for this one," says TORTORA senior scientist Grigory Beskin of Russia's Special Astrophysical Observatory. The data collected simultaneously by TORTORA and the Swift satellite allowed astronomers to explain the properties of this burst.

  18. A kiloparsec-scale hyper-starburst in a quasar host less than 1 gigayear after the Big Bang.

    Science.gov (United States)

    Walter, Fabian; Riechers, Dominik; Cox, Pierre; Neri, Roberto; Carilli, Chris; Bertoldi, Frank; Weiss, Axel; Maiolino, Roberto

    2009-02-05

    The host galaxy of the quasar SDSS J114816.64+525150.3 (at redshift z = 6.42, when the Universe was less than a billion years old) has an infrared luminosity of 2.2 x 10(13) times that of the Sun, presumably significantly powered by a massive burst of star formation. In local examples of extremely luminous galaxies, such as Arp 220, the burst of star formation is concentrated in a relatively small central region of <100 pc radius. It is not known on which scales stars are forming in active galaxies in the early Universe, at a time when they are probably undergoing their initial burst of star formation. We do know that at some early time, structures comparable to the spheroidal bulge of the Milky Way must have formed. Here we report a spatially resolved image of [C ii] emission of the host galaxy of J114816.64+525150.3 that demonstrates that its star-forming gas is distributed over a radius of about 750 pc around the centre. The surface density of the star formation rate averaged over this region is approximately 1,000 year(-1) kpc(-2). This surface density is comparable to the peak in Arp 220, although about two orders of magnitude larger in area. This vigorous star-forming event is likely to give rise to a massive spheroidal component in this system.

  19. Galaxy rotation and supermassive black hole binary evolution

    Science.gov (United States)

    Mirza, M. A.; Tahir, A.; Khan, F. M.; Holley-Bockelmann, H.; Baig, A. M.; Berczik, P.; Chishtie, F.

    2017-09-01

    Supermassive black hole (SMBH) binaries residing at the core of merging galaxies are recently found to be strongly affected by the rotation of their host galaxies. The highly eccentric orbits that form when the host is counterrotating emit strong bursts of gravitational waves that propel rapid SMBH binary coalescence. Most prior work, however, focused on planar orbits and a uniform rotation profile, an unlikely interaction configuration. However, the coupling between rotation and SMBH binary evolution appears to be such a strong dynamical process that it warrants further investigation. This study uses direct N-body simulations to isolate the effect of galaxy rotation in more realistic interactions. In particular, we systematically vary the SMBH orbital plane with respect to the galaxy rotation axis, the radial extent of the rotating component, and the initial eccentricity of the SMBH binary orbit. We find that the initial orbital plane orientation and eccentricity alone can change the inspiral time by an order of magnitude. Because SMBH binary inspiral and merger is such a loud gravitational wave source, these studies are critical for the future gravitational wave detector, Laser Interferometer Space Antenna, an ESA/NASA mission currently set to launch by 2034.

  20. REDSHIFT 6.4 HOST GALAXIES OF 10{sup 8} SOLAR MASS BLACK HOLES: LOW STAR FORMATION RATE AND DYNAMICAL MASS

    Energy Technology Data Exchange (ETDEWEB)

    Willott, Chris J. [Herzberg Institute of Astrophysics, National Research Council, 5071 West Saanich Rd, Victoria, BC V9E 2E7 (Canada); Omont, Alain; Bergeron, Jacqueline, E-mail: chris.willott@nrc.ca [UPMC Univ Paris 06 and CNRS, UMR7095, Institut d' Astrophysique de Paris, F-75014 Paris (France)

    2013-06-10

    We present Atacama Large Millimeter Array observations of rest-frame far-infrared continuum and [C II] line emission in two z = 6.4 quasars with black hole masses of Almost-Equal-To 10{sup 8} M{sub Sun }. CFHQS J0210-0456 is detected in the continuum with a 1.2 mm flux of 120 {+-} 35 {mu}Jy, whereas CFHQS J2329-0301 is undetected at a similar noise level. J2329-0301 has a star formation rate limit of <40 M{sub Sun} yr{sup -1}, considerably below the typical value at all redshifts for this bolometric luminosity. Through comparison with hydro simulations, we speculate that this quasar is observed at a relatively rare phase where quasar feedback has effectively shut down star formation in the host galaxy. [C II] emission is also detected only in J0210-0456. The ratio of [C II] to far-infrared luminosity is similar to that of low-redshift galaxies of comparable luminosity, suggesting that the previous finding of an offset in the relationships between this ratio and far-infrared luminosity at low and high redshifts may be partially due to a selection effect due to the limited sensitivity of previous continuum data. The [C II] line of J0210-0456 is relatively narrow (FWHM = 189 {+-} 18 km s{sup -1}), indicating a dynamical mass substantially lower than expected from the local black hole-velocity dispersion correlation. The [C II] line is marginally resolved at 0.''7 resolution with the blue and red wings spatially offset by 0.''5 (3 kpc) and a smooth velocity gradient of 100 km s{sup -1} across a scale of 6 kpc, possibly due to the rotation of a galaxy-wide disk. These observations are consistent with the idea that stellar mass growth lags black hole accretion for quasars at this epoch with respect to more recent times.

  1. Photon Mass Limits from Fast Radio Bursts

    CERN Document Server

    Bonetti, Luca; Mavromatos, Nikolaos E.; Sakharov, Alexander S.; Sarkisyan-Grinbaum, Edward K.G.; Spallicci, Alessandro D.A.M.

    2016-06-10

    The frequency-dependent time delays in fast radio bursts (FRBs) can be used to constrain the photon mass, if the FRB redshifts are known, but the similarity between the frequency dependences of dispersion due to plasma effects and a photon mass complicates the derivation of a limit on $m_\\gamma$. The redshift of FRB 150418 has been measured to $\\sim 2$% and its dispersion measure (DM) is known to $\\sim 0.1$%, but the strength of the constraint on $m_\\gamma$ is limited by uncertainties in the modelling of the host galaxy and the Milky Way, as well as possible inhomogeneities in the intergalactic medium (IGM). Allowing for these uncertainties, the recent data on FRB 150418 indicate that $m_\\gamma \\lesssim 1.7 \\times 10^{-14}$ eV c$^{-2}$ ($4.6 \\times 10^{-50}$ kg). In the future, the different redshift dependences of the plasma and photon mass contributions to DM can be used to improve the sensitivity to $m_\\gamma$ if more FRB redshifts are measured. For a fixed fractional uncertainty in the extra-galactic cont...

  2. Massive stars in the Sagittarius Dwarf Irregular Galaxy

    Science.gov (United States)

    Garcia, Miriam

    2018-02-01

    Low metallicity massive stars hold the key to interpret numerous processes in the past Universe including re-ionization, starburst galaxies, high-redshift supernovae, and γ-ray bursts. The Sagittarius Dwarf Irregular Galaxy [SagDIG, 12+log(O/H) = 7.37] represents an important landmark in the quest for analogues accessible with 10-m class telescopes. This Letter presents low-resolution spectroscopy executed with the Gran Telescopio Canarias that confirms that SagDIG hosts massive stars. The observations unveiled three OBA-type stars and one red supergiant candidate. Pending confirmation from high-resolution follow-up studies, these could be the most metal-poor massive stars of the Local Group.

  3. Impact of seeing and host galaxy into the analysis of photo-polarimetric microvariability in blazars. Case study of the nearby blazars 1ES 1959+650 and HB89 2201+044

    Science.gov (United States)

    Sosa, M. S.; von Essen, C.; Andruchow, I.; Cellone, S. A.

    2017-11-01

    Blazars, a type of Active Galactic Nuclei, present a particular orientation of their jets close to the line of sight. Their radiation is thus relativistically beamed, giving rise to extreme behaviors, specially strong variability on very short timescales (I.e., microvariability). Here we present simultaneous photometric and polarimetric observations of two relatively nearby blazars, 1ES 1959+650 and HB89 2201+044, that were obtained using the Calar Alto Faint Object Spectrograph mounted at the 2.2 m telescope in Calar Alto, Spain. An outstanding characteristic of these two blazars is the presence of well resolved host galaxies. This particular feature allows us to produce a study of their intrinsic polarization, a measurement of the polarization state of the galactic nucleus unaffected by the host galaxy. To carry out this work, we computed photometric fluxes from which we calculated the degree and orientation of the blazars polarization. Then, we analyzed the depolarizing effect introduced by the host galaxy with the main goal to recover the intrinsic polarization of the galactic nucleus, carefully taking into consideration the spurious polarimetric variability introduced by changes in seeing along the observing nights. We find that the two blazars do not present intra-night photo-polarimetric variability, although we do detect a significant inter-night variability. Comparing polarimetric values before and after accounting for the host galaxies, we observe a significant difference in the polarization degree of about 1% in the case of 1ES 1959+650, and 0.3% in the case of HB89 2201+044, thus evidencing the non-negligible impact introduced by the host galaxies. We note that this host galaxy effect depends on the waveband, and varies with changing seeing conditions, so it should be particularly considered when studying frequency-dependent polarization in blazars. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated

  4. Mass and metallicity scaling relations of high-redshift star-forming galaxies selected by GRBs

    Science.gov (United States)

    Arabsalmani, M.; Møller, P.; Perley, D. A.; Freudling, W.; Fynbo, J. P. U.; Le Floc'h, E.; Zwaan, M. A.; Schulze, S.; Tanvir, N. R.; Christensen, L.; Levan, A. J.; Jakobsson, P.; Malesani, D.; Cano, Z.; Covino, S.; D'Elia, V.; Goldoni, P.; Gomboc, A.; Heintz, K. E.; Sparre, M.; de Ugarte Postigo, A.; Vergani, S. D.

    2018-01-01

    We present a comprehensive study of the relations between gas kinematics, metallicity and stellar mass in a sample of 82 gamma-ray burst (GRB)-selected galaxies using absorption and emission methods. We find the velocity widths of both emission and absorption profiles to be a proxy of stellar mass. We also investigate the velocity-metallicity correlation and its evolution with redshift. Using 33 GRB hosts with measured stellar mass and metallicity, we study the mass-metallicity relation for GRB host galaxies in a stellar mass range of 108.2-1011.1 M⊙ and a redshift range of z ∼ 0.3-3.4. The GRB-selected galaxies appear to track the mass-metallicity relation of star-forming galaxies but with an offset of 0.15 towards lower metallicities. This offset is comparable with the average error bar on the metallicity measurements of the GRB sample and also the scatter on the mass-metallicity relation of the general population. It is hard to decide whether this relatively small offset is due to systematic effects or the intrinsic nature of GRB hosts. We also investigate the possibility of using absorption-line metallicity measurements of GRB hosts to study the mass-metallicity relation at high redshifts. Our analysis shows that the metallicity measurements from absorption methods can significantly differ from emission metallicities and assuming identical measurements from the two methods may result in erroneous conclusions.

  5. Spitzer ToO observations of a short gamma-ray burst

    Science.gov (United States)

    Hurley, Kevin; Bloom, Joshua; Butler, Nathaniel; Falco, Emilio; Foley, Ryan; Granot, Jonathan; Kocevski, Daniel; Lee, William; Li, Weidong; Mahoney, William; Pahre, Michael; Panaitescu, Alin; Perley, Daniel; Prochaska, Jason; Ramirez-Ruiz, Enrico; Smith, Ian; Squires, Gordon

    2008-03-01

    An understanding of the origin of the short gamma-ray bursts remains an elusive and exciting pursuit. A great leap forward has been made over the past three years with the first rapid localizations and afterglow detections of such events, but follow-up has yet to reveal a detailed understanding of the progenitors and the nature of the afterglow light. We propose an ambitious multiwavelength approach to the problem, leveraging Spitzer with Chandra as well as numerous ground-based telescopes. By measuring the broad-band spectrum of the afterglow and any concurrent 'mini-supernova ' over a wide range of wavelengths at several epochs, we can distinguish between models proposed to explain this type of burst. We will constrain the energetics of the explosion and the short GRB bursting rate (an important number for gravitational wave observatories), and measure with unprecedented detail the stellar content of a short burst host galaxy. Given the high impact nature of these observations and the rarity of short bursts, we are requesting multiepoch Target of Opportunity observations on a single event in Cycle 5. The wavelengths observed by Spitzer, when used in coordination with these other instruments, can make a crucial contribution to understanding the nature of short duration GRBs, particularly by removing the degeneracies among the models due to dust extinction. This is a resubmission of our AO-4 ToO proposal, which has not been called yet. However, even if that observation is carried out, we are requesting an AO-5 observation, because so little is known about the short bursts that each new detection adds a very significant amount of information. Harvey Tananbaum has agreed to grant us Chandra ToO time through November 2008 (the end of Chandra AO-9) if Spitzer observations are carried out. Following that, we will submit a Chandra AO-10 proposal for ToO time; if warranted, we will request Chandra Director's Discretionary Time to support our Spitzer observations.

  6. The Host Galaxies of X-Ray Selected Active Galactic Nuclei to z - 2.5: Structure, Star-Formation and Their Relationships from CANDELS and Herschel/Pacs

    Science.gov (United States)

    Rosario, D.J.; McIntosh, D. H.; van der Wel, A.; Kartaltepe, J.; Lang, P.; Santini, P.; Wuyts, S.; Lutz, D.; Rafelski, M.; Villforth, C.; hide

    2014-01-01

    We study the relationship between the structure and star-formation rate (SFR) of X-ray selected low and moderate luminosity active galactic nuclei (AGNs) in the two Chandra Deep Fields, using Hubble Space Telescope imaging from the Cosmic Assembly Near Infrared Extragalactic Legacy Survey (CANDELS) and deep far-infrared maps from the PEP+GOODS-Herschel survey. We derive detailed distributions of structural parameters and FIR luminosities from carefully constructed control samples of galaxies, which we then compare to those of the AGNs. At z is approximately 1, AGNs show slightly diskier light profiles than massive inactive (non-AGN) galaxies, as well as modestly higher levels of gross galaxy disturbance (as measured by visual signatures of interactions and clumpy structure). In contrast, at z 2, AGNs show similar levels of galaxy disturbance as inactive galaxies, but display a red central light enhancement, which may arise due to a more pronounced bulge in AGN hosts or due to extinguished nuclear light. We undertake a number of tests of both these alternatives, but our results do not strongly favour one interpretation over the other. The mean SFR and its distribution among AGNs and inactive galaxies are similar at z greater than 1.5. At z less than 1, however, clear and significant enhancements are seen in the SFRs of AGNs with bulge-dominated light profiles. These trends suggest an evolution in the relation between nuclear activity and host properties with redshift towards a minor role for mergers and interactions at z greater than 15

  7. Possible role of gamma ray bursts on life extinction in the universe.

    Science.gov (United States)

    Piran, Tsvi; Jimenez, Raul

    2014-12-05

    As a copious source of gamma rays, a nearby galactic gamma ray burst (GRB) can be a threat to life. Using recent determinations of the rate of GRBs, their luminosity function, and properties of their host galaxies, we estimate the probability that a life-threatening (lethal) GRB would take place. Amongst the different kinds of GRBs, long ones are most dangerous. There is a very good chance (but no certainty) that at least one lethal GRB took place during the past 5 gigayears close enough to Earth as to significantly damage life. There is a 50% chance that such a lethal GRB took place during the last 500×10^{6}  years, causing one of the major mass extinction events. Assuming that a similar level of radiation would be lethal to life on other exoplanets hosting life, we explore the potential effects of GRBs to life elsewhere in the Galaxy and the Universe. We find that the probability of a lethal GRB is much larger in the inner Milky Way (95% within a radius of 4 kpc from the galactic center), making it inhospitable to life. Only at the outskirts of the Milky Way, at more than 10 kpc from the galactic center, does this probability drop below 50%. When considering the Universe as a whole, the safest environments for life (similar to the one on Earth) are the lowest density regions in the outskirts of large galaxies, and life can exist in only ≈10% of galaxies. Remarkably, a cosmological constant is essential for such systems to exist. Furthermore, because of both the higher GRB rate and galaxies being smaller, life as it exists on Earth could not take place at z>0.5. Early life forms must have been much more resilient to radiation.

  8. The Most Remote Gamma-Ray Burst

    Science.gov (United States)

    2000-10-01

    years, the look-back time indicates that the explosion took place around the time our own galaxy, the Milky Way, was formed and at least 6,000 million years before the solar system was born. GRB 000131 and other gamma-ray bursts are believed to have taken place in remote galaxies. However, due to the huge distance, it has not yet been possible to see the galaxy in which the GRB 000131 event took place (the "host" galaxy). From the observed fading of the afterglow it is possible to estimate that the maximum brightness of this explosion was at least 10,000 times brighter than the host galaxy. Future studies of gamma-ray bursts The present team of astronomers has now embarked upon a detailed study of the surroundings of GRB 000131 with the VLT. A main goal is to observe the properties of the host galaxy. From the observations of about twenty optical counterparts of gamma-ray bursts identified until now, it is becoming increasingly clear that these very rare events are somehow related to the death of massive, short-lived stars . But despite the accumulating amount of excellent data, the details of the mechanism that leads to such dramatic explosions still remain a puzzle to astrophysicists. The detection and present follow-up observations of GRB 000131 highlight the new possibilities for studies of the extremely distant (and very early) Universe, now possible by means of gamma-ray bursts. When observed with the powerful instruments at a large ground-based telescope like the VLT, this incredibly bright class of cosmological objects may throw light on the fundamental processes of star formation in the infant universe. Of no less interest is the opportunity to analyse the chemical composition of the gas clouds at the epoch galaxies formed, by means of the imprints of the corresponding absorption lines on the afterglow spectrum. Waiting for the opportunity In this context, it would be extremely desirable to obtain very detailed (high-dispersion) spectra of the afterglow of a

  9. Black Holes Are The Rhythm at The Heart of Galaxies

    Science.gov (United States)

    2008-11-01

    The powerful black holes at the center of massive galaxies and galaxy clusters act as hearts to the systems, pumping energy out at regular intervals to regulate the growth of the black holes themselves, as well as star formation, according to new data from NASA's Chandra X-Ray Observatory. People Who Read This Also Read... Milky Way’s Giant Black Hole Awoke from Slumber 300 Years Ago A New Way To Weigh Giant Black Holes Discovery of Most Recent Supernova in Our Galaxy NASA Unveils Cosmic Images Book in Braille for Blind Readers Scientists from the University of Michigan, the Max-Planck Institute for Extraterrestrial Physics in Germany, the University of Maryland, Baltimore County (UMBC), the Harvard-Smithsonian Center for Astrophysics and Jacobs University in Germany contributed to the results. The gravitational pull of black holes is so strong that not even light can escape from them. Supermassive black holes with masses of more than a billion suns have been detected at the center of large galaxies. The material falling on the black holes causes sporadic or isolated bursts of energy, by which black holes are capable of influencing the fate of their host galaxies. The insight gained by this new research shows that black holes can pump energy in a gentler and rhythmic fashion, rather then violently. The scientists observed and simulated how the black hole at the center of elliptical galaxy M84 dependably sends bubbles of hot plasma into space, heating up interstellar space. This heat is believed to slow both the formation of new stars and the growth of the black hole itself, helping the galaxy remain stable. Interstellar gases only coalesce into new stars when the gas is cool enough. The heating is more efficient at the sites where it is most needed, the scientists say. Alexis Finoguenov, of UMBC and the Max-Planck Institute for Extraterrestrial Physics in Germany, compares the central black hole to a heart muscle. "Just like our hearts periodically pump our

  10. Millisecond Magnetar Birth Connects FRB 121102 to Superluminous Supernovae and Long-duration Gamma-Ray Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Brian D.; Margalit, Ben [Columbia Astrophysics Laboratory, New York, NY 10027 (United States); Berger, Edo [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-05-20

    Subarcsecond localization of the repeating fast radio burst FRB 121102 revealed its coincidence with a dwarf host galaxy and a steady (“quiescent”) nonthermal radio source. We show that the properties of the host galaxy are consistent with those of long-duration gamma-ray bursts (LGRB) and hydrogen-poor superluminous supernovae (SLSNe-I). Both LGRBs and SLSNe-I were previously hypothesized to be powered by the electromagnetic spin-down of newly formed, strongly magnetized neutron stars with millisecond birth rotation periods (“millisecond magnetars”). This motivates considering a scenario whereby the repeated bursts from FRB 121102 originate from a young magnetar remnant embedded within a young hydrogen-poor supernova (SN) remnant. Requirements on the gigahertz free–free optical depth through the expanding SN ejecta (accounting for photoionization by the rotationally powered magnetar nebula), energetic constraints on the bursts, and constraints on the size of the quiescent source all point to an age of less than a few decades. The quiescent radio source can be attributed to synchrotron emission from the shock interaction between the fast outer layer of the supernova ejecta with the surrounding wind of the progenitor star, or the radio source can from deeper within the magnetar wind nebula as outlined in Metzger et al. Alternatively, the radio emission could be an orphan afterglow from an initially off-axis LGRB jet, though this might require the source to be too young. The young age of the source can be tested by searching for a time derivative of the dispersion measure and the predicted fading of the quiescent radio source. We propose future tests of the SLSNe-I/LGRB/FRB connection, such as searches for FRBs from nearby SLSNe-I/LGRBs on timescales of decades after their explosions.

  11. Galaxies at High Redshift

    Science.gov (United States)

    Bauer, F. E.

    2014-10-01

    Recent years have seen tremendous progress in finding and charactering star-forming galaxies at high redshifts across the electromagnetic spectrum, giving us a more complete picture of how galaxies evolve, both in terms of their stellar and gas content, as well as the growth of their central supermassive black holes. A wealth of studies now demonstrate that star formation peaked at roughly half the age of the Universe and drops precariously as we look back to very early times, and that their central monsters apparently growth with them. At the highest-redshifts, we are pushing the boundaries via deep surveys at optical, X-ray, radio wavelengths, and more recently using gamma-ray bursts. I will review some of our accomplishments and failures. Telescope have enabled Lyman break galaxies to be robustly identified, but the UV luminosity function and star formation rate density of this population at z = 6 - 8 seems to be much lower than at z = 2 - 4. High escape fractions and a large contribution from faint galaxies below our current detection limits would be required for star-forming galaxies to reionize the Universe. We have also found that these galaxies have blue rest-frame UV colours, which might indicate lower dust extinction at z > 5. There has been some spectroscopic confirmation of these Lyman break galaxies through Lyman-α emission, but the fraction of galaxies where we see this line drops at z > 7, perhaps due to the onset of the Gunn-Peterson effect (where the IGM is opaque to Lyman-α).

  12. ASKAP Joins the Hunt for Mysterious Bursts

    Science.gov (United States)

    Kohler, Susanna

    2017-05-01

    A new telescope, the Australian Square Kilometre Array Pathfinder (ASKAP), has joined the search for energetic and elusive fast radio bursts. And in just a few days of looking, its already had success!Elusive TransientsThe Parkes radio telescope, which has detected all but five of the fast radio bursts published to date, has a very narrow field of view. [CSIRO]Fast radio bursts are mysterious millisecond-duration radio pulses that were first discovered around a decade ago. Since that time particularly in recent years weve made some progress toward the goal of localizing them. Were now fairly convinced that fast radio bursts come from outside of the galaxy, and yet theyre enormously bright orders of magnitude more luminous than any pulse seen from the Milky Way.Better identification of where these mysterious bursts come from would help us to determine what they are. But so far, weve discovered only around 30 such bursts, despite the fact that theyre estimated to occur at a rate of 3,000 events per day across the whole sky.Why are they so hard to find? Due to their short duration, effective detection would require instantaneous coverage of a very large fraction of the sky. The Parkes radio telescope which has detected all but five of the fast radio bursts published to date has a field of view spanning less than a square degree,significantly limiting our ability to rapidly survey for these transients.FRB 170107s band-averaged pulse (top) and dynamic spectrum (bottom). [Bannister et al. 2017]A New Array in TownA new player is now on the scene, however, and its already had huge success. ASKAP is a wide-field radio telescope made up of an array of 12-meter antennas. Using phased-array-feed technology, ASKAP is able to instantaneously observe an effective area of 160 square degrees an enormous field compared to Parkes 0.6 square degrees! This capability significantly increases our chances of being able to detect fast radio bursts.In a new study led by Keith Bannister

  13. The impact of star formation and gamma-ray burst rates at high redshift on cosmic chemical evolution and reionization

    Science.gov (United States)

    Vangioni, Elisabeth; Olive, Keith A.; Prestegard, Tanner; Silk, Joseph; Petitjean, Patrick; Mandic, Vuk

    2015-03-01

    Recent observations in the total luminosity density have led to significant progress in establishing the star formation rate (SFR) at high redshift. Concurrently observed gamma-ray burst rates have also been used to extract the SFR at high redshift. The SFR in turn can be used to make a host of predictions concerning the ionization history of the Universe, the chemical abundances, and supernova rates. We compare the predictions made using a hierarchical model of cosmic chemical evolution based on three recently proposed SFRs: two based on extracting the SFR from the observed gamma-ray burst rate at high redshift, and one based on the observed galaxy luminosity function at high redshift. Using the WMAP/Planck data on the optical depth and epoch of reionization, we find that only the SFR inferred from gamma-ray burst data at high redshift suffices to allow a single mode (in the initial mass function - IMF) of star formation which extends from z = 0 to redshifts >10. For the case of the SFR based on the observed galaxy luminosity function, the reionization history of the Universe requires a bimodal IMF which includes at least a coeval high- (or intermediate-) mass mode of star formation at high redshift (z > 10). Therefore, we also consider here a more general bimodal case which includes an early-forming high-mass mode as a fourth model to test the chemical history of the Universe. We conclude that observational constraints on the global metallicity and optical depth at high redshift favour unseen faint but active star-forming galaxies as pointed out in many recent studies.

  14. On the Polarization of Gamma Ray Bursts and their Optical Afterglows

    CERN Document Server

    Dado, S; De Rújula, Alvaro; Dado, Shlomo; Dar, Arnon

    2004-01-01

    The polarization of the optical afterglow (AG) of Gamma-Ray Bursts (GRBs) has only been measured in a few instances at various times after the GRB. In all cases except the best measured one (GRB 030329) the observed polarization and its evolution are simple and easy to explain in the most naive version of the "Cannonball'' model of GRBs: the "intrinsic" AG polarization is small and the observations reflect the "foreground" effects of the host galaxy and ours. The polarization observed in GRB 030329 behaves chaotically, its understanding requires reasonable but ad-hoc ingredients. The polarization of the gamma rays of a GRB has only been measured in the case of GRB 021206. The result is debated, but similar measurements would be crucial to the determination of the GRB-generating mechanism.

  15. Adaptive Optical Burst Switching

    OpenAIRE

    Bonald, Thomas; Indre, Raluca-Maria; Oueslati, Sara

    2012-01-01

    International audience; We propose a modified version of Optical Burst Switching (OBS) that adapts the size of switched data units to the network load. Specifically, we propose a two-way reservation OBS scheme in which every active source-destination pair attempts to reserve a lightpath and for every successful reservation, transmits an optical burst whose size is proportional to the number of active data flows. We refer to this technique as Adaptive Optical Burst Switching. We prove that the...

  16. AGN feedback in galaxy formation

    CERN Document Server

    Antonuccio-Delogu, Vincenzo

    2010-01-01

    During the past decade, convincing evidence has been accumulated concerning the effect of active galactic nuclei (AGN) activity on the internal and external environment of their host galaxies. Featuring contributions from well-respected researchers in the field, and bringing together work by specialists in both galaxy formation and AGN, this volume addresses a number of key questions about AGN feedback in the context of galaxy formation. The topics covered include downsizing and star-formation time scales in massive elliptical galaxies, the connection between the epochs of supermassive black h

  17. Mysterious Blob Galaxies Revealed

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2Figure 3 This image composite shows a giant galactic blob (red, figure 2) and the three merging galaxies NASA's Spitzer Space Telescope discovered within it (yellow, figure 3). Blobs are intensely glowing clouds of hot hydrogen gas that envelop faraway galaxies. They are about 10 times as large as the galaxies they surround. Visible-light images like the one shown in figure 2, reveal the vast extent of blobs, but don't provide much information about their host galaxies. Using its heat-seeking infrared eyes, Spitzer was able to see the dusty galaxies tucked inside one well-known blob located 11 billion light-years away. The findings reveal three monstrously bright galaxies, trillions of times brighter than the Sun, in the process of merging together (figure 3). Spitzer also observed three other blobs located in the same cosmic neighborhood, all of which were found to be glaringly bright. One of these blobs is also known to be a galactic merger, only between two galaxies instead of three. It remains to be seen whether the final two blobs studied also contain mergers. The Spitzer data were acquired by its multiband imaging photometer. The visible-light image was taken by the Blanco Telescope at the Cerro Tololo Inter-American Observatory, Chile.

  18. Tracking Galaxy Evolution Through Low-Frequency Radio ...

    Indian Academy of Sciences (India)

    Galaxies: active—galaxies: evolution—galaxies: individual: Speca—galaxies: individual: NGC ..... AGN-heated hot gas bubbles is nearly 1056 ergs and that is comparable to ener- getic impact of low-power ..... the probability may be, can create the central engines capable of launching massive energy feedback to the host ...

  19. Occurrence of LINER galaxies within the galaxy group environment

    Science.gov (United States)

    Coldwell, Georgina V.; Pereyra, Luis; Alonso, Sol; Donoso, Emilio; Duplancic, Fernanda

    2017-05-01

    We study the properties of a sample of 3967 low-ionization nuclear emission-line region (LINER) galaxies selected from SDSS-DR7, with respect to their proximity to galaxy groups. The host galaxies of LINERs have been analysed and compared with a well-defined control sample of 3841 non-LINER galaxies matched in redshift, luminosity, colour, morphology, age and stellar mass content. We find no difference between LINER and control galaxies in terms of the colour and age of stellar population as a function of the virial mass and distance to the geometric centre of the group. However, we find that LINERs are more likely to populate low-density environments in spite of their morphology, which is typical of high-density regions such as rich galaxy clusters. For rich (poor) galaxy groups, the occurrence of LINERs is approximately two times lower (higher) than the occurrence of matched, non-LINER galaxies. Moreover, LINER hosts do not seem to follow the expected morphology-density relation in groups of high virial mass. The high frequency of LINERs in low-density regions could be due to the combination of a sufficient gas reservoir to power the low-ionization emission and/or enhanced galaxy interaction rates benefiting the gas flow towards their central regions.

  20. Jets in Active Galaxies

    Indian Academy of Sciences (India)

    tended regions of emission. These jets, which occur across the electromagnetic spectrum, are powered by supermassive black holes in the centres of the host galaxies. Jets are seen on the scale of parsecs in the nuclear regions to those which power the giant radio sources extending over several mega- parsecs. These jets ...

  1. Transient optical emission from the error box of the gamma-ray burst of 28 February 1997

    DEFF Research Database (Denmark)

    van Paradijs, J.; Groot, P.J.; Galama, T.

    1997-01-01

    For almost a quarter of a century(1), the origin of gamma-ray bursts-brief, energetic bursts of high-energy photons-has remained unknown. The detection of a counterpart at another wavelength has long been thought to be a key to understanding the nature of these bursts (see, for example, ref. 2......), but intensive searches have not revealed such a counterpart. The distribution and properties of the bursts(3) are explained naturally if they lie at cosmological distances (a few Gpc)(4), but there is a countervailing view that they are relatively local objects(5), perhaps distributed in a very large halo...... around our Galaxy. Here we report the detection of a transient and fading optical source in the error box associated with the burst GRB970228, less than 21 hours after the burst(6,7). The optical transient appears to be associated with a faint galaxy(7,8), suggesting that the burst occurred...

  2. The co-evolution of the obscured quasar PKS 1549-79 and its host galaxy : evidence for a high accretion rate and warm outflow

    NARCIS (Netherlands)

    Holt, J.; Tadhunter, C. N.; Morganti, R.; Bellamy, M.; González-Delgado, R. M.; Tzioumis, A.; Inskip, K. J.

    2006-01-01

    We use deep optical, infrared and radio observations to explore the symbiosis between nuclear activity and galaxy evolution in the southern compact radio source PKS 1549-79 (z = 0.1523). The optical imaging observations reveal the presence of tidal tail features which provide strong evidence that

  3. The first interferometric detections of fast radio bursts

    Science.gov (United States)

    Caleb, M.; Flynn, C.; Bailes, M.; Barr, E. D.; Bateman, T.; Bhandari, S.; Campbell-Wilson, D.; Farah, W.; Green, A. J.; Hunstead, R. W.; Jameson, A.; Jankowski, F.; Keane, E. F.; Parthasarathy, A.; Ravi, V.; Rosado, P. A.; van Straten, W.; Venkatraman Krishnan, V.

    2017-07-01

    We present the first interferometric detections of fast radio bursts (FRBs), an enigmatic new class of astrophysical transient. In a 180-d survey of the Southern sky, we discovered three FRBs at 843 MHz with the UTMOST array, as a part of commissioning science during a major ongoing upgrade. The wide field of view of UTMOST (≈9 deg2) is well suited to FRB searches. The primary beam is covered by 352 partially overlapping fan-beams, each of which is searched for FRBs in real time with pulse widths in the range 0.655-42 ms, and dispersion measures ≤2000 pc cm-3. Detections of FRBs with the UTMOST array place a lower limit on their distances of ≈104 km (limit of the telescope near-field) supporting the case for an astronomical origin. Repeating FRBs at UTMOST or an FRB detected simultaneously with the Parkes radio telescope and UTMOST would allow a few arcsec localization, thereby providing an excellent means of identifying FRB host galaxies, if present. Up to 100 h of followup for each FRB has been carried out with the UTMOST, with no repeating bursts seen. From the detected position, we present 3σ error ellipses of 15 arcsec × 8.4° on the sky for the point of origin for the FRBs. We estimate an all-sky FRB rate at 843 MHz above a fluence F_lim of 11 Jy ms of ˜78 events sky-1 d-1 at the 95 per cent confidence level. The measured rate of FRBs at 843 MHz is two times higher than we had expected, scaling from the FRB rate at the Parkes radio telescope, assuming that FRBs have a flat spectral index and a uniform distribution in Euclidean space. We examine how this can be explained by FRBs having a steeper spectral index and/or a flatter logN-logF distribution than expected for a Euclidean Universe.

  4. Gamma-ray bursts as cosmological probes

    Science.gov (United States)

    Vergani, S. D.

    2013-11-01

    Gamma-ray bursts (GRBs) are short, intense burstsof gamma-rays which during seconds to minutes outshine all other sources of gamma-ray emission in the sky.Following the prompt gamma-ray emission, an `afterglow' of emission from the X-ray range to radio wavelengthspersists up to months after the initial burst. The association of the class of long GRBs with the explosion of broad-line type Ic SNe GRBs allow galaxies to be selected independently oftheir emission properties (independently of dust obscuration and, uniquely, independently of their brightnesses atany wavelength) and they also permit the study of the gas in the interstellar medium (ISM) systematically and at anyredshift by the absorption lines present in the afterglow spectra. Moreover, the fading nature of GRBs and theprecise localization of the afterglow allow a detailed investigation of the emission properties of the GRB hostgalaxy once the afterglow has vanished. GRBs therefore constitute a unique tool to understand the link between theproperties of the ISM in the galaxy and the star formation activity, and this at any redshift. This is a unique wayto reveal the physical processes that trigger galaxy formation. The SVOM space mission project is designed to improve the use GRBs as cosmological probes.

  5. Powerful Radio Burst Indicates New Astronomical Phenomenon

    Science.gov (United States)

    2007-09-01

    Astronomers studying archival data from an Australian radio telescope have discovered a powerful, short-lived burst of radio waves that they say indicates an entirely new type of astronomical phenomenon. Region of Strong Radio Burst Visible-light (negative greyscale) and radio (contours) image of Small Magellanic Cloud and area where burst originated. CREDIT: Lorimer et al., NRAO/AUI/NSF Click on image for high-resolution file ( 114 KB) "This burst appears to have originated from the distant Universe and may have been produced by an exotic event such as the collision of two neutron stars or the death throes of an evaporating black hole," said Duncan Lorimer, Assistant Professor of Physics at West Virginia University (WVU) and the National Radio Astronomy Observatory (NRAO). The research team led by Lorimer consists of Matthew Bailes of Swinburne University in Australia, Maura McLaughlin of WVU and NRAO, David Narkevic of WVU, and Fronefield Crawford of Franklin and Marshall College in Lancaster, Pennsylvania. The astronomers announced their findings in the September 27 issue of the online journal Science Express. The startling discovery came as WVU undergraduate student David Narkevic re-analyzed data from observations of the Small Magellanic Cloud made by the 210-foot Parkes radio telescope in Australia. The data came from a survey of the Magellanic Clouds that included 480 hours of observations. "This survey had sought to discover new pulsars, and the data already had been searched for the type of pulsating signals they produce," Lorimer said. "We re-examined the data, looking for bursts that, unlike the usual ones from pulsars, are not periodic," he added. The survey had covered the Magellanic Clouds, a pair of small galaxies in orbit around our own Milky Way Galaxy. Some 200,000 light-years from Earth, the Magellanic Clouds are prominent features in the Southern sky. Ironically, the new discovery is not part of these galaxies, but rather is much more distant

  6. The Drift Burst Hypothesis

    DEFF Research Database (Denmark)

    Christensen, Kim; Oomen, Roel; Renò, Roberto

    The Drift Burst Hypothesis postulates the existence of short-lived locally explosive trends in the price paths of financial assets. The recent US equity and Treasury flash crashes can be viewed as two high profile manifestations of such dynamics, but we argue that drift bursts of varying magnitude....... We then develop a non-parametric test statistic that allows for the identification of drift bursts from noisy high-frequency data. We apply this methodology to a comprehensive set of tick data and show that drift bursts form an integral part of the price dynamics across equities, fixed income......, currencies and commodities. We find that the majority of identified drift bursts are accompanied by strong price reversals and these can therefore be regarded as “flash crashes” that span brief periods of severe market disruption without any material longer term price impacts....

  7. Detection of an optical transient following the 13 March 2000 short/hard gamma-ray burst

    DEFF Research Database (Denmark)

    Castro-Tirado, A.J.; Ceron, J.M.C.; Gorosabel, J.

    2002-01-01

    We imaged the error box of a gamma-ray burst of the short (0.5 s), hard type (GRB 000313), with the BOOTES-1 experiment in southern Spain, starting 4 min after the gamma-ray event, in the I-band. A bright optical transient (OT 000313) with I = 9.4 +/- 0.1 was found in the BOOTES-1 image, close...... to the error box (3sigma) provided by BATSE. Late time VRI K'-band deep observations failed to reveal an underlying host galaxy. If the OT 000313 is related to the short, hard GRB 000313, this would be the first optical counterpart ever found for this kind of events (all counterparts to date have been found...... for bursts of the long, soft type). The fact that only prompt optical emission has been detected (but no afterglow emission at all, as supported by theoretical models) might explain why no optical counterparts have ever been found for short, hard GRBs. This fact suggests that most short bursts might occur...

  8. REFLECTION-DOMINATED NUCLEAR X-RAY EMISSION IN THE EARLY-TYPE GALAXY ESO 565-G019

    Energy Technology Data Exchange (ETDEWEB)

    Gandhi, P.; Takahashi, T. [Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Terashima, Y. [Department of Physics, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577 (Japan); Yamada, S. [Cosmic Radiation Laboratory, Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198 (Japan); Mushotzky, R. F. [Department of Astronomy, University of Maryland College Park, College Park, MD 20742 (United States); Ueda, Y. [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Baumgartner, W. H. [NASA/Goddard Space Flight Center, Astrophysics Science Division, Greenbelt, MD 20771 (United States); Alexander, D. M.; Done, C. [Department of Physics, Durham University, Durham DH1-3LE (United Kingdom); Malzac, J. [Universite de Toulouse, UPS-OMP, IRAP, F-31028 Toulouse (France); Vaghmare, K. [IUCAA, Post Bag 4, Ganeshkhind, Pune 411007 (India)

    2013-08-10

    We present the discovery of a reflection-dominated active galactic nucleus (AGN) in the early-type radio-quiet galaxy ESO 565-G019 with Suzaku and Swift/Burst Alert Telescope. The source X-ray spectrum below 10 keV is characteristic of other Compton-thick (CT) AGNs, clearly showing an inverted continuum and prodigious fluorescence iron emission above {approx}3 keV. A Compton shoulder to the neutral Fe K{alpha} line also appears to be present. There is evidence for long-term hard X-ray flux variability that we associate with changes in the intrinsic AGN power law. More of such reflection-dominated AGNs should be uncovered in the near future with the increased sensitivity of ongoing and new hard X-ray surveys. ESO 565-G019 is hosted in an early-type galaxy whose morphology has been variously classified as either type E or type S0. Only about 20 bona fide CT-AGNs have been identified in the local universe so far, and all exist in host galaxies with late Hubble types (S0 or later). CT columns of nuclear obscuring gas are uncommon in early-type galaxies in the local universe, so confirmation of the exact morphological class of ESO 565-G019 is important. Infrared photometry also shows the presence of large quantities of cool dust in the host, indicative of significant ongoing star formation. ESO 565-G019 may be the first identified local example of minor-merger-driven CT-AGN growth in an early-type host, or may be the result of interaction with its neighboring galaxy ESO 565-G018 in a wide pair.

  9. Radio Galaxy Zoo: A Search for Hybrid Morphology Radio Galaxies

    Science.gov (United States)

    Kapińska, A. D.; Terentev, I.; Wong, O. I.; Shabala, S. S.; Andernach, H.; Rudnick, L.; Storer, L.; Banfield, J. K.; Willett, K. W.; de Gasperin, F.; Lintott, C. J.; López-Sánchez, Á. R.; Middelberg, E.; Norris, R. P.; Schawinski, K.; Seymour, N.; Simmons, B.

    2017-12-01

    Hybrid morphology radio sources (HyMoRS) are a rare type of radio galaxy that display different Fanaroff-Riley classes on opposite sides of their nuclei. To enhance the statistical analysis of HyMoRS, we embarked on a large-scale search of these sources within the international citizen science project, Radio Galaxy Zoo (RGZ). Here, we present 25 new candidate hybrid morphology radio galaxies. Our selected candidates are moderate power radio galaxies ({L}{median}=4.7× {10}24 W Hz-1 sr-1) at redshifts 0.14 1 Mpc) radio galaxies, one resides at the center of a galaxy cluster, and one is hosted by a rare green bean galaxy. Although the origin of the hybrid morphology radio galaxies is still unclear, this type of radio source starts depicting itself as a rather diverse class. We discuss hybrid radio morphology formation in terms of the radio source environment (nurture) and intrinsically occurring phenomena (nature; activity cessation and amplification), showing that these peculiar radio galaxies can be formed by both mechanisms. While high angular resolution follow-up observations are still necessary to confirm our candidates, we demonstrate the efficacy of the RGZ in the pre-selection of these sources from all-sky radio surveys, and report the reliability of citizen scientists in identifying and classifying complex radio sources.

  10. Gamma-ray bursts

    National Research Council Canada - National Science Library

    Gehrels, Neil; Mészáros, Péter

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma rays coming from the cosmos. They occur roughly once per day, typically last for tens of seconds, and are the most luminous events in the universe...

  11. Fire within the Antennae Galaxies

    Science.gov (United States)

    2004-01-01

    This false-color image composite from NASA's Spitzer Space Telescope reveals hidden populations of newborn stars at the heart of the colliding 'Antennae' galaxies. These two galaxies, known individually as NGC 4038 and 4039, are located around 68 million light-years away and have been merging together for about the last 800 million years. The latest Spitzer observations provide a snapshot of the tremendous burst of star formation triggered in the process of this collision, particularly at the site where the two galaxies overlap. The image is a composite of infrared data from Spitzer and visible-light data from Kitt Peak National Observatory, Tucson, Ariz. Visible light from stars in the galaxies (blue and green) is shown together with infrared light from warm dust clouds heated by newborn stars (red). The two nuclei, or centers, of the merging galaxies show up as yellow-white areas, one above the other. The brightest clouds of forming stars lie in the overlap region between and left of the nuclei. Throughout the sky, astronomers have identified many of these so-called 'interacting' galaxies, whose spiral discs have been stretched and distorted by their mutual gravity as they pass close to one another. The distances involved are so large that the interactions evolve on timescales comparable to geologic changes on Earth. Observations of such galaxies, combined with computer models of these collisions, show that the galaxies often become forever bound to one another, eventually merging into a single, spheroidal-shaped galaxy. Wavelengths of 0.44 microns are represented in blue, .70 microns in green and 8.0 microns in red. This image was taken on Dec. 24, 2003.

  12. The HIX galaxy survey II: HI kinematics of HI eXtreme galaxies

    Science.gov (United States)

    Lutz, K. A.; Kilborn, V. A.; Koribalski, B. S.; Catinella, B.; Józsa, G. I. G.; Wong, O. I.; Stevens, A. R. H.; Obreschkow, D.; Dénes, H.

    2018-02-01

    By analysing a sample of galaxies selected from the HI Parkes All Sky Survey (HIPASS) to contain more than 2.5 times their expected HI content based on their optical properties, we investigate what drives these HI eXtreme (HIX) galaxies to be so HI-rich. We model the H I kinematics with the Tilted Ring Fitting Code TiRiFiC and compare the observed HIX galaxies to a control sample of galaxies from HIPASS as well as simulated galaxies built with the semi-analytic model DARK SAGE. We find that (1) H I discs in HIX galaxies are more likely to be warped and more likely to host H I arms and tails than in the control galaxies, (2) the average H I and average stellar column density of HIX galaxies is comparable to the control sample, (3) HIX galaxies have higher H I and baryonic specific angular momenta than control galaxies, (4) most HIX galaxies live in higher-spin haloes than most control galaxies. These results suggest that HIX galaxies are H I-rich because they can support more H I against gravitational instability due to their high specific angular momentum. The majority of the HIX galaxies inherits their high specific angular momentum from their halo. The H I content of HIX galaxies might be further increased by gas-rich minor mergers. This paper is based on data obtained with the Australia Telescope Compact Array (ATCA) through the large program C 2705.

  13. Gamma-ray Burst Formation Environment: Comparison of Redshift Distributions of GRB Afterglows

    Directory of Open Access Journals (Sweden)

    Sung-Eun Kim

    2005-12-01

    Full Text Available Since gamma-ray bursts(GRBs have been first known to science societites in 1973, many scientists are involved in their studies. Observations of GRB afterglows provide us with much information on the environment in which the observed GRBs are born. Study of GRB afterglows deals with longer timescale emissions in lower energy bands (e.g., months or even up to years than prompt emissions in gamma-rays. Not all the bursts accompany afterglows in whole ranges of wavelengths. It has been suggested as a reason for that, for instance, that radio and/or X-ray afterglows are not recorded mainly due to lower sensitivity of detectors, and optical afterglows due to extinctions in intergalactic media or self-extinctions within a host galaxy itself. Based on the idea that these facts may also provide information on the GRB environment, we analyze statistical properties of GRB afterglows. We first select samples of the redshift-known GRBs according to the wavelength of afterglow they accompanied. We then compare their distributions as a function of redshift, using statistical methods. As a results, we find that the distribution of the GRBs with X-ray afterglows is consistent with that of the GRBs with optical afterglows. We, therefore, conclude that the lower detection rate of optical afterglows is not due to extinctions in intergalactic media.

  14. Star formation in blue compact dwarf Galaxies

    Science.gov (United States)

    Ramya, S.; Prabhu, T. P.; Sahu, D. K.

    Blue compact dwarf galaxies (BCDGs) are dwarfs undergoing current burst of star formation (SF). In our work, we determine the ages of the underlying old stellar population to be ˜4 Gyr that is dominating the mass of the galaxy, underlying the current burst of SF. An intermediate population of ˜500 Myr which dominates the stellar light from the galaxy is also detected. The burst of SF at the present epoch spans ˜10 Myr as estimated from various age estimators like Hα, diagnostic diagrams and colour-colour diagrams. BCDGs undergo a burst of SF for a longer duration (of about a few 100 Myr to a Gyr) followed by a short/long quiescence. The amount of column density of localized neutral hydrogen required for the current burst to occur seems to be 10^{21} cm^{-2}. This could be the threshold required for SF. Radio continuum emission reveals that the emission is coincident with the star forming regions. The star formation rates (SFR) estimated from Hα match well with the SFR estimated using non-thermal radio emission for individual star forming regions, but are ˜6-7 times less as compared to the SFR calculated from far-IR (FIR) emission.

  15. Integral field observations of the blue compact galaxy Haro14. Star formation and feedback in dwarf galaxies

    Science.gov (United States)

    Cairós, L. M.; González-Pérez, J. N.

    2017-04-01

    Context. Low-luminosity, gas-rich blue compact galaxies (BCG) are ideal laboratories to investigate the triggering and propagation of star formation in galaxies, the effects of massive stellar feedback within a shallow gravitational potential, and the enrichment of the interstellar medium. Aims: We aim to probe the morphology, stellar content, and kinematics, along with the nebular excitation and ionization mechanism, in the BCG Haro 14 by means of integral field observations. Methods: We observed Haro 14 at the Very Large Telescope, working with the Visible Multi-Object Spectrograph. From these data we build maps in continuum and in the brighter emission lines, produce line-ratio maps (interstellar extinction, density, and diagnostic-line ratios), and obtain the velocity and velocity dispersion fields. We also generate the integrated spectrum of the major H II regions and young stellar clusters identified in the maps to determine reliable physical parameters and oxygen abundances. Results: We find as follows: I) the current star formation in Haro 14 is spatially extended with the major H II regions placed along a linear (chain-like) structure, elongated in the north-south direction, and in a horseshoe-like curvilinear feature that extends about 760 pc eastward; the continuum emission is more concentrated and peaks close to the galaxy center; II) two different episodes of star formation are present in the central galaxy regions: the recent starburst, with ages ≤6 Myr and the intermediate-age clusters, with ages between 10 and 30 Myr; these stellar components rest on a several Gyr old underlying host galaxy; III) the Hα/Hβ pattern is inhomogeneous, with excess color values varying from E(B-V) = 0.04 up to E(B-V) = 1.09; iv) shocks play a significant role in the galaxy; and v) the velocity field displays a complicated pattern with regions of material moving toward us in the east and north galaxy areas. Conclusions: The morphology of Haro 14, its irregular

  16. Bidimensional spectroscopy of interacting galaxies

    Science.gov (United States)

    Chatzichristou, E. T.

    We have undertaken a program of studying the central few kpc regions of interacting/merger candidates, that were specifically chosen to have a range of nuclear activity, IR properties and strength of interaction. Here we present data obtained using the integral field spectrograph ARGUS, on the CFHT for few of these objects. Unlike slit spectroscopy, these data provide a direct two-dimensional picture of the wavelength-dependant emission and absorption line properties of these galaxies. The main conclusions are: (1) Mkn 789 is a recent merger product, undergoing a strong burst of star formation, while the older stellar component did not have yet the time to relax. It has no compact nuclear structure and its strong star formation powers a large scale outflow ("superwind"), which gives characteristic multiple profiles. Mkn 463 on the other hand, appears at an intermediate merging stage where at least one of its two visible nuclei had time to become activated, showing a Seyfert-like spectrum. The distinct kinematic feature here is a strongly blueshifted component that is interpreted in terms of bowshocks driven by a radio jet into the ambient gas. (2) UGC 3995 is the brightest member of a pair of interacting spirals, has a low-ionization, Seyfert-like spectrum. The velocity field is smooth, characteristic of a retrogradely rotating disk, but we find rotation of the kinematic axis with wavelength, that correspond to isophotal distortions and an obvious line profile substructure. It seems that this is a distinct kinematic feature in Seyfert-like nuclei independently of their interaction stage, indicating radial gas motions that might be related to the activation of the central engine. (3) Both mergers (Mkn 463, Mkn 789) have higher IR activity, as expressed by the LFIR excess and "warm" far-IR colours, among the objects in our sample. This seems to be independent of the nature of the central engine. On the other hand, the 25 microns characteristic excess emission of

  17. Growing Galaxies Gently

    Science.gov (United States)

    2010-10-01

    of the flow of pristine gas from the surrounding space and the associated formation of new stars. They were very careful to make sure that their specimen galaxies had not been disturbed by interactions with other galaxies. The selected galaxies were very regular, smoothly rotating discs, similar to the Milky Way, and they were seen about two billion years after the Big Bang (at a redshift of around three). In galaxies in the modern Universe the heavy elements [1] are more abundant close to the centre. But when Cresci's team mapped their selected distant galaxies with the SINFONI spectrograph on the VLT [2] they were excited to see that in all three cases there was a patch of the galaxy, close to the centre, with fewer heavy elements, but hosting vigorously forming stars, suggesting that the material to fuel the star formation was coming from the surrounding pristine gas that is low in heavy elements. This was the smoking gun that provided the best evidence yet of young galaxies accreting primitive gas and using it to form new generations of stars. As Cresci concludes: "This study has only been possible because of the outstanding performance of the SINFONI instrument on the VLT. It has opened a new window for studying the chemical properties of very distant galaxies. SINFONI provides information not only in two spatial dimensions, but also in a third, spectral dimension, which allows us to see the internal motions inside galaxies and study the chemical composition of the interstellar gas." Notes [1] The gas filling the early Universe was almost all hydrogen and helium. The first generations of stars processed this primitive material to create heavier elements such as oxygen, nitrogen and carbon by nuclear fusion. When this material was subsequently spewed back into space by intense particle winds from massive young stars and supernova explosions the amounts of heavy elements in the galaxy gradually increased. Astronomers refer to elements other than hydrogen and

  18. Lopsided Collections of Satellite Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    You might think that small satellite galaxies would be distributed evenly around their larger galactic hosts but local evidence suggests otherwise. Are satellite distributions lopsided throughout the universe?Satellites in the Local GroupThe distribution of the satellite galaxies orbiting Andromeda, our neighboring galaxy, is puzzling: 21 out of 27 ( 80%) of its satellites are on the side of Andromeda closest to us. In a similar fashion, 4 of the 11 brightest Milky Way satellites are stacked on the side closest to Andromeda.It seems to be the case, then, that satellites around our pair of galaxies preferentially occupy the space between the two galaxies. But is this behavior specific to the Local Group? Or is it commonplace throughout the universe? In a recent study, a team of scientists led by Noam Libeskind (Leibniz Institute for Astrophysics Potsdam, Germany) set out to answer this question.Properties of the galaxies included in the authors sample. Left: redshifts for galaxy pairs. Right: Number of satellite galaxies around hosts. [Adapted from Libeskind et al. 2016]Asymmetry at LargeLibeskind and collaborators tested whether this behavior is common by searching through Sloan Digital Sky Survey observations for galaxy pairs that are similar to the Milky Way/Andromeda pair. The resulting sample consists of 12,210 pairs of galaxies, which have 46,043 potential satellites among them. The team then performed statistical tests on these observations to quantify the anisotropic distribution of the satellites around the host galaxies.Libeskind and collaborators find that roughly 8% more galaxies are seen within a 15 angle facing the other galaxy of a pair than would be expected in a uniform distribution. The odds that this asymmetric behavior is randomly produced, they show, are lower than 1 in 10 million indicating that the lopsidedness of satellites around galaxies in pairs is a real effect and occurs beyond just the Local Group.Caution for ModelingProbability that

  19. Galaxy Disks

    NARCIS (Netherlands)

    van der Kruit, P. C.; Freeman, K. C.

    The disks of disk galaxies contain a substantial fraction of their baryonic matter and angular momentum, and much of the evolutionary activity in these galaxies, such as the formation of stars, spiral arms, bars and rings, and the various forms of secular evolution, takes place in their disks. The

  20. The Assembly of Galaxy Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Berrier, Joel C.; Stewart, Kyle R.; Bullock, James S.; Purcell, Chris W.; Barton, Elizabeth J.; Wechsler, Risa H.

    2008-05-16

    We study the formation of fifty-three galaxy cluster-size dark matter halos (M = 10{sup 14.0-14.76} M{sub {circle_dot}}) formed within a pair of cosmological {Lambda}CDM N-body simulations, and track the accretion histories of cluster subhalos with masses large enough to host {approx} 0.1L{sub *} galaxies. By associating subhalos with cluster galaxies, we find the majority of galaxies in clusters experience no 'pre-processing' in the group environment prior to their accretion into the cluster. On average, {approx} 70% of cluster galaxies fall into the cluster potential directly from the field, with no luminous companions in their host halos at the time of accretion; and less than {approx} 12% are accreted as members of groups with five or more galaxies. Moreover, we find that cluster galaxies are significantly less likely to have experienced a merger in the recent past ({approx}< 6 Gyr) than a field halo of the same mass. These results suggest that local, cluster processes like ram-pressure stripping, galaxy harassment, or strangulation play the dominant role in explaining the difference between cluster and field populations at a fixed stellar mass; and that pre-evolution or past merging in the group environment is of secondary importance for setting cluster galaxy properties for most clusters. The accretion times for z = 0 cluster members are quite extended, with {approx} 20% incorporated into the cluster halo more than 7 Gyr ago and {approx} 20% within the last 2 Gyr. By comparing the observed morphological fractions in cluster and field populations, we estimate an approximate time-scale for late-type to early-type transformation within the cluster environment to be {approx} 6 Gyr.

  1. Demise of faint satellites around isolated early-type galaxies

    Science.gov (United States)

    Park, Changbom; Hwang, Ho Seong; Park, Hyunbae; Lee, Jong Chul

    2018-02-01

    The hierarchical galaxy formation scenario in the Cold Dark Matter cosmology with a non-vanishing cosmological constant Λ and geometrically flat space (ΛCDM) has been very successful in explaining the large-scale distribution of galaxies. However, there have been claims that ΛCDM over-predicts the number of satellite galaxies associated with massive galaxies compared with observations—the missing satellite galaxy problem1-3. Isolated groups of galaxies hosted by passively evolving massive early-type galaxies are ideal laboratories for identifying the missing physics in the current theory4-11. Here, we report—based on a deep spectroscopic survey—that isolated massive and passive early-type galaxies without any signs of recent wet mergers or accretion episodes have almost no satellite galaxies fainter than the r-band absolute magnitude of about Mr = -14. If only early-type satellites are used, the cutoff is at the somewhat brighter magnitude of about Mr = -15. Such a cutoff has not been found in other nearby satellite galaxy systems hosted by late-type galaxies or those with merger features. Various physical properties of satellites depend strongly on the host-centric distance. Our observations indicate that the satellite galaxy luminosity function is largely determined by the interaction of satellites with the environment provided by their host.

  2. The Fermi-GBM Three-year X-Ray Burst Catalog

    Science.gov (United States)

    Jenke, P. A.; Linares, M.; Connaughton, V.; Beklen, E.; Camero-Arranz, A.; Finger, M. H.; Wilson-Hodge, C. A.

    2016-08-01

    The Fermi Gamma-ray Burst Monitor (GBM) is an all-sky gamma-ray monitor well known in the gamma-ray burst (GRB) community. Although GBM excels in detecting the hard, bright extragalactic GRBs, its sensitivity above 8 keV and its all-sky view make it an excellent instrument for the detection of rare, short-lived Galactic transients. In 2010 March, we initiated a systematic search for transients using GBM data. We conclude this phase of the search by presenting a three-year catalog of 1084 X-ray bursts. Using spectral analysis, location, and spatial distributions we classified the 1084 events into 752 thermonuclear X-ray bursts, 267 transient events from accretion flares and X-ray pulses, and 65 untriggered gamma-ray bursts. All thermonuclear bursts have peak blackbody temperatures broadly consistent with photospheric radius expansion (PRE) bursts. We find an average rate of 1.4 PRE bursts per day, integrated over all Galactic bursters within about 10 kpc. These include 33 and 10 bursts from the ultra-compact X-ray binaries 4U 0614+09 and 2S 0918-549, respectively. We discuss these recurrence times and estimate the total mass ejected by PRE bursts in our Galaxy.

  3. Submillimeter Galaxies as Progenitors of Compact Quiescent Galaxies

    Science.gov (United States)

    Toft, S.; Smolcic, V.; Magnelli, B.; Karim, A.; Zirm, A.; Michalowski, M.; Capak, P.; Sheth, K.; Schawinski, K.; Krogager, J.-K.; hide

    2014-01-01

    Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts.With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3-6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42(sup+40) -29 Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.

  4. Submillimeter galaxies as progenitors of compact quiescent galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Toft, S.; Zirm, A.; Krogager, J.-K.; Man, A. W. S. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Mariesvej 30, DK-2100 Copenhagen (Denmark); Smolčić, V.; Krpan, J. [Physics Department, University of Zagreb, Bijenička cesta 32, 10002 Zagreb (Croatia); Magnelli, B.; Karim, A. [Argelander Institute for Astronomy, Auf dem Hügel 71, Bonn, D-53121 (Germany); Michalowski, M. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Capak, P. [Spitzer Science Center, 314-6 Caltech, 1201 East California Boulevard, Pasadena, CA 91125 (United States); Sheth, K. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Schawinski, K. [ETH Zurich, Institute for Astronomy, Department of Physics, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Wuyts, S.; Lutz, D.; Staguhn, J.; Berta, S. [MPE, Postfach 1312, D-85741 Garching (Germany); Sanders, D. [Institute for Astronomy, 2680 Woodlawn Drive, University of Hawaii, Honolulu, HI 96822 (United States); Mccracken, H. [Institut dAstrophysique de Paris, UMR7095 CNRS, Universite Pierre et Marie Curie, 98 bis Boulevard Arago, F-75014 Paris (France); Riechers, D., E-mail: sune@dark-cosmology.dk [Department of Astronomy, Cornell University, 220 Space Sciences Building, Ithaca, NY 14853 (United States)

    2014-02-20

    Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts. With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3-6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42{sub −29}{sup +40} Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.

  5. Low-Metallicity Star Formation: From the First Stars to Dwarf Galaxies

    Science.gov (United States)

    Hunt, Leslie K.; Madden, Suzanne C.; Schneider, Raffaella

    2008-12-01

    'Shea and Michael L. Norman; 16. Damped Lyα systems as probes of chemical evolution over cosmological timescales Miroslava Dessauges-Zavadsky; 17. Connecting high-redshift galaxy populations through observations of local damped Lyman alpha dwarf galaxies Regina E. Schulte-Ladbeck; 18. Chemical enrichment and feedback in low metallicity environments: constraints on galaxy formation Francesca Matteucci; 19. Effects of reionization on dwarf galaxy formation Massimo Ricotti; 20. The importance of following the evolution of the dust in galaxies on their SEDs A. Schurer, F. Calura, L. Silva, A. Pipino, G. L. Granato, F. Matteucci and R. Maiolino; 21. About the chemical evolution of dSphs (and the peculiar globular cluster ωCen) Andrea Marcolini and Annibale D'Ercole; 22. Young star clusters in the small Magellanic cloud: impact of local and global conditions on star formation Elena Sabbi, Linda J. Smith, Lynn R. Carlson, Antonella Nota, Monca Tosi, Michele Cignoni, Jay S. Gallagher III, Marco Sirianni and Margaret Meixner; 23. Modeling the ISM properties of metal-poor galaxies and gamma-ray burst hosts Emily M. Levesque, Lisa J. Kewley, Kirsten Larson and Leonie Snijders; 24. Dwarf galaxies and the magnetisation of the IGM Uli Klein; Session III. Explosive Events in Low-Metallicity Environments: 25. Supernovae and their evolution in a low metallicity ISM Roger A. Chevalier; 26. First stars - type Ib supernovae connection Ken'ichi Nomoto, Masaomi Tanaka, Yasuomi Kamiya, Nozomu Tominaga and Keiichi Maeda; 27. Supernova nucleosynthesis in the early universe Nozomu Tominaga, Hideyuki Umeda, Keiichi Maeda, Ken'ichi Nomoto and Nobuyuki Iwamoto; 28. Powerful explosions at Z = 0? Sylvia Ekström, Georges Meynet, Raphael Hirschi and André Maeder; 29. Wind anisotropy and stellar evolution Cyril Georgy, Georges Meynet and André Maeder; 30. Low-mass and metal-poor gamma-ray burst

  6. DISCOVERY OF A PSEUDOBULGE GALAXY LAUNCHING POWERFUL RELATIVISTIC JETS

    Energy Technology Data Exchange (ETDEWEB)

    Kotilainen, Jari K.; Olguín-Iglesias, Alejandro [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, FI-21500 Piikkiö (Finland); León-Tavares, Jonathan; Baes, Maarten [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281-S9, B-9000 Gent (Belgium); Anórve, Christopher [Facultad de Ciencias de la Tierra y del Espacio de la Universidad Autónoma de Sinaloa, Blvd. de la Americas y Av. Universitarios S/N, Ciudad Universitaria, C.P. 80010, Culiacán Sinaloa, México (Mexico); Chavushyan, Vahram; Carrasco, Luis, E-mail: jarkot@utu.fi [Instituto Nacional de Astrofísica Óptica y Electrónica (INAOE), Apartado Postal 51 y 216, 72000 Puebla (Mexico)

    2016-12-01

    Supermassive black holes launching plasma jets at close to the speed of light, producing gamma-rays, have ubiquitously been found to be hosted by massive elliptical galaxies. Since elliptical galaxies are generally believed to be built through galaxy mergers, active galactic nuclei (AGN) launching relativistic jets are associated with the latest stages of galaxy evolution. We have discovered a pseudobulge morphology in the host galaxy of the gamma-ray AGN PKS 2004-447. This is the first gamma-ray emitter radio-loud AGN found to have been launched from a system where both the black hole and host galaxy have been actively growing via secular processes. This is evidence of an alternative black hole–galaxy co-evolutionary path to develop powerful relativistic jets, which is not merger driven.

  7. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VIII. A Comparison to Cosmological Short-duration Gamma-Ray Bursts

    Science.gov (United States)

    Fong, W.; Berger, E.; Blanchard, P. K.; Margutti, R.; Cowperthwaite, P. S.; Chornock, R.; Alexander, K. D.; Metzger, B. D.; Villar, V. A.; Nicholl, M.; Eftekhari, T.; Williams, P. K. G.; Annis, J.; Brout, D.; Brown, D. A.; Chen, H.-Y.; Doctor, Z.; Diehl, H. T.; Holz, D. E.; Rest, A.; Sako, M.; Soares-Santos, M.

    2017-10-01

    We present a comprehensive comparison of the properties of the radio through X-ray counterpart of GW170817 and the properties of short-duration gamma-ray bursts (GRBs). For this effort, we utilize a sample of 36 short GRBs spanning a redshift range of z≈ 0.12{--}2.6 discovered over 2004-2017. We find that the counterpart to GW170817 has an isotropic-equivalent luminosity that is ≈ 3000 times less than the median value of on-axis short GRB X-ray afterglows, and ≳104 times less than that for detected short GRB radio afterglows. Moreover, the allowed jet energies and particle densities inferred from the radio and X-ray counterparts to GW170817 and on-axis short GRB afterglows are remarkably similar, suggesting that viewing angle effects are the dominant, and perhaps only, difference in their observed radio and X-ray behavior. From comparison to previous claimed kilonovae following short GRBs, we find that the optical and near-infrared (NIR) counterpart to GW170817 is comparatively under-luminous by a factor of ≈ 3{--}5, indicating a range of kilonova luminosities and timescales. A comparison of the optical limits following short GRBs on ≲ 1 day timescales also rules out a “blue” kilonova of comparable optical isotropic-equivalent luminosity in one previous short GRB. Finally, we investigate the host galaxy of GW170817, NGC 4993, in the context of short GRB host galaxy stellar population properties. We find that NGC 4993 is superlative in terms of its large luminosity, old stellar population age, and low star formation rate compared to previous short GRB hosts. Additional events within the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo volume will be crucial in delineating the properties of the host galaxies of neutron star-neutron star (NS-NS) mergers, and connecting them to their cosmological counterparts.

  8. GALAXY EVOLUTION. An over-massive black hole in a typical star-forming galaxy, 2 billion years after the Big Bang.

    Science.gov (United States)

    Trakhtenbrot, Benny; Urry, C Megan; Civano, Francesca; Rosario, David J; Elvis, Martin; Schawinski, Kevin; Suh, Hyewon; Bongiorno, Angela; Simmons, Brooke D

    2015-07-10

    Supermassive black holes (SMBHs) and their host galaxies are generally thought to coevolve, so that the SMBH achieves up to about 0.2 to 0.5% of the host galaxy mass in the present day. The radiation emitted from the growing SMBH is expected to affect star formation throughout the host galaxy. The relevance of this scenario at early cosmic epochs is not yet established. We present spectroscopic observations of a galaxy at redshift z = 3.328, which hosts an actively accreting, extremely massive BH, in its final stages of growth. The SMBH mass is roughly one-tenth the mass of the entire host galaxy, suggesting that it has grown much more efficiently than the host, contrary to models of synchronized coevolution. The host galaxy is forming stars at an intense rate, despite the presence of a SMBH-driven gas outflow. Copyright © 2015, American Association for the Advancement of Science.

  9. Globular Clusters - Guides to Galaxies

    CERN Document Server

    Richtler, Tom; Joint ESO-FONDAP Workshop on Globular Clusters

    2009-01-01

    The principal question of whether and how globular clusters can contribute to a better understanding of galaxy formation and evolution is perhaps the main driving force behind the overall endeavour of studying globular cluster systems. Naturally, this splits up into many individual problems. The objective of the Joint ESO-FONDAP Workshop on Globular Clusters - Guides to Galaxies was to bring together researchers, both observational and theoretical, to present and discuss the most recent results. Topics covered in these proceedings are: internal dynamics of globular clusters and interaction with host galaxies (tidal tails, evolution of cluster masses), accretion of globular clusters, detailed descriptions of nearby cluster systems, ultracompact dwarfs, formations of massive clusters in mergers and elsewhere, the ACS Virgo survey, galaxy formation and globular clusters, dynamics and kinematics of globular cluster systems and dark matter-related problems. With its wide coverage of the topic, this book constitute...

  10. A repeating fast radio burst

    Science.gov (United States)

    Spitler, L. G.; Scholz, P.; Hessels, J. W. T.; Bogdanov, S.; Brazier, A.; Camilo, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J.; Ferdman, R. D.; Freire, P. C. C.; Kaspi, V. M.; Lazarus, P.; Lynch, R.; Madsen, E. C.; McLaughlin, M. A.; Patel, C.; Ransom, S. M.; Seymour, A.; Stairs, I. H.; Stappers, B. W.; van Leeuwen, J.; Zhu, W. W.

    2016-03-01

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.

  11. Radio light curve of the galaxy possibly associated with FRB 150418

    Science.gov (United States)

    Johnston, S.; Keane, E. F.; Bhandari, S.; Macquart, J.-P.; Tingay, S. J.; Barr, E.; Bassa, C. G.; Beswick, R.; Burgay, M.; Chandra, P.; Honma, M.; Kramer, M.; Petroff, E.; Possenti, A.; Stappers, B. W.; Sugai, H.

    2017-02-01

    We present observations made with the Australia Telescope Compact Array (ATCA), the Jansky Very Large Array (JVLA) and the Giant Metre-Wave Telescope of the radio source within the galaxy WISE J071634.59-190039.2, claimed to be host of FRB 150418 by Keane et al. We have established a common flux density scale between the ATCA and JVLA observations, the main result of which is to increase the flux densities obtained by Keane et al. At a frequency of 5.5 GHz, the source has a mean flux density of 140 μJy and is variable on short time-scales with a modulation index of 0.36. Statistical analysis of the flux densities shows that the variations seen are consistent with the refractive interstellar scintillation of the weak active galactic nucleus at the centre of the galaxy. It may therefore be the case that the fast radio burst (FRB) and the galaxy are not associated. However, taking into account the rarity of highly variable sources in the radio sky, and our lack of knowledge of the progenitors of FRBs as a class, the association between WISE J071634.59-190039.2 and FRB 150418 remains a possibility.

  12. Galaxy Formation

    CERN Document Server

    Longair, Malcolm S

    2008-01-01

    This second edition of Galaxy Formation is an up-to-date text on astrophysical cosmology, expounding the structure of the classical cosmological models from a contemporary viewpoint. This forms the background to a detailed study of the origin of structure and galaxies in the Universe. The derivations of many of the most important results are derived by simple physical arguments which illuminate the results of more advanced treatments. A very wide range of observational data is brought to bear upon these problems, including the most recent results from WMAP, the Hubble Space Telescope, galaxy surveys like the Sloan Digital Sky Survey and the 2dF Galaxy Redshift Survey, studies of Type 1a supernovae, and many other observations.

  13. Cosmic Collisions The Hubble Atlas of Merging Galaxies

    CERN Document Server

    Christensen, Lars Lindberg; Martin, Davide

    2009-01-01

    Lars Lindberg Christensen, Raquel Yumi Shida & Davide De Martin Cosmic Collisions: The Hubble Atlas of Merging Galaxies Like majestic ships in the grandest night, galaxies can slip ever closer until their mutual gravitational interaction begins to mold them into intricate figures that are finally, and irreversibly, woven together. It is an immense cosmic dance, choreographed by gravity. Cosmic Collisions contains a hundred new, many thus far unpublished, images of colliding galaxies from the NASA/ESA Hubble Space Telescope. It is believed that many present-day galaxies, including the Milky Way, were assembled from such a coalescence of smaller galaxies, occurring over billions of years. Triggered by the colossal and violent interaction between the galaxies, stars form from large clouds of gas in firework bursts, creating brilliant blue star clusters. The importance of these cosmic encounters reaches far beyond the stunning Hubble images. They may, in fact, be among the most important processes that shape ...

  14. Detection of GRB 060927 at zeta = 5.47: Implications for the Use of Gamma-Ray Bursts as Probes of the End of the Dark Ages

    Science.gov (United States)

    Ruiz-Velasco, A. E.; Swan, H.; Troja, E.; Malesani, D.; Fynbo, J. P. U.; Sterling, R. L. C.; Xu, D.; Aharonian, F.; Akerlof, C.; Andersen, M. I.; hide

    2007-01-01

    We report on follow-up observations of the gamma-ray burst GRB 060927 using the robotic ROTSE-IIIa telescope and a suite of larger aperture groundbased telescopes. An optical afterglow was detected 20 s after the burst, the earliest rest-frame detection of optical emission from any GRB. Spectroscopy performed with the VLT about 13 hours after the trigger shows a continuum break at lambda approx. equals 8070 A, produced by neutral hydrogen absorption at zeta = 5.6. We also detect an absorption line at 8158 A which we interpret as Si II lambda 1260 at zeta = 5.467. Hence, GRB 060927 is the second most distant GRB with a spectroscopically measured redshift. The shape of the red wing of the spectral break can be fitted by a damped Ly(alpha) profile with a column density with log(N(sub HI)/sq cm) = 22.50 +/- 0.15. We discuss the implications of this work for the use of GRBs as probes of the end of the dark ages and draw three main conclusions: i) GRB afterglows originating from zeta greater than or approx. equal to 6 should be relatively easy to detect from the ground, but rapid near-infrared monitoring is necessary to ensure that they are found; ii) The presence of large H I column densities in some GRBs host galaxies at zeta > 5 makes the use of GRBs to probe the reionization epoch via spectroscopy of the red damping wing challenging; iii) GRBs appear crucial to locate typical star-forming galaxies at zeta > 5 and therefore the type of galaxies responsible for the reionization of the universe.

  15. Optothermally actuated capillary burst valve

    Science.gov (United States)

    Eriksen, Johan; Bilenberg, Brian; Kristensen, Anders; Marie, Rodolphe

    2017-04-01

    We demonstrate the optothermal actuation of individual capillary burst valves in an all-polymer microfluidic device. The capillary burst valves are realised in a planar design by introducing a fluidic constriction in a microfluidic channel of constant depth. We show that a capillary burst valve can be burst by raising the temperature due to the temperature dependence of the fluid surface tension. We address individual valves by using a local heating platform based on a thin film of near infrared absorber dye embedded in the lid used to seal the microfluidic device [L. H. Thamdrup et al., Nano Lett. 10, 826-832 (2010)]. An individual valve is burst by focusing the laser in its vicinity. We demonstrate the capture of single polystyrene 7 μm beads in the constriction triggered by the bursting of the valve.

  16. Observing a Burst with Sunglasses

    Science.gov (United States)

    2003-11-01

    Unique Five-Week VLT Study of the Polarisation of a Gamma-Ray Burst Afterglow "Gamma-ray bursts (GRBs)" are certainly amongst the most dramatic events known in astrophysics. These short flashes of energetic gamma-rays, first detected in the late 1960's by military satellites, last from less than one second to several minutes. GRBs have been found to be situated at extremely large ("cosmological") distances. The energy released in a few seconds during such an event is larger than that of the Sun during its entire lifetime of more than 10,000 million years. The GRBs are indeed the most powerful events since the Big Bang known in the Universe, cf. ESO PR 08/99 and ESO PR 20/00. During the past years circumstantial evidence has mounted that GRBs signal the collapse of extremely massive stars, the so-called hypernovae. This was finally demonstrated some months ago when astronomers, using the FORS instrument on ESO's Very Large Telescope (VLT), documented in unprecedented detail the changes in the spectrum of the light source ("the optical afterglow") of the gamma-ray burst GRB 030329 (cf. ESO PR 16/03). A conclusive and direct link between cosmological gamma-ray bursts and explosions of very massive stars was provided on this occasion. Gamma-Ray Burst GRB 030329 was discovered on March 29, 2003 by NASA's High Energy Transient Explorer spacecraft. Follow-up observations with the UVES spectrograph at the 8.2-m VLT KUEYEN telescope at the Paranal Observatory (Chile) showed the burst to have a redshift of 0.1685 [1]. This corresponds to a distance of about 2,650 million light-years, making GRB 030329 the second-nearest long-duration GRB ever detected. The proximity of GRB 030329 resulted in very bright afterglow emission, permitting the most extensive follow-up observations of any afterglow to date. A team of astronomers [2] led by Jochen Greiner of the Max-Planck-Institut für extraterrestrische Physik (Germany) decided to make use of this unique opportunity to study the

  17. Introduction to Optical Burst Switching

    OpenAIRE

    KERNÁCS János; Szilágyi, Szabolcs

    2010-01-01

    Optical Burst Switching (OBS) isconsidered a popular switching paradigm for therealization of all-optical networks due to the balance itoffers between the coarse-grained Optical CircuitSwitching (OSC) and fine-grained Optical PacketSwitching (OPS). Given that the data are switched allopticallyat the burst level, Optical Burst Switchingcombines the transparency of Optical CircuitSwitching with the benefits of statistical multiplexingin Optical Packet Switching.

  18. EDGE: explorer of diffuse emission and gamma-ray burst explosions

    NARCIS (Netherlands)

    den Herder, J.W.; Piro, L.; Ohashi, T.; Amati, L.; Atteia, J.; Barthelmy, S.D.; Barbera, M.; Barret, D.; Basso, S.; de Boer, M.; Borgani, S.; Boyarskiy, O.; Branchini, E.; Branduardi-Raymont, G.; Briggs, M.; Brunetti, G.; Budtz-Jorgensenf, C.; Burrows, D.N.; Campana, S.; Caroli, E.; Chincarini, G.; Christensen, F.; Cocchi, M.; Comastri, A.; Corsi, A.; Cotroneo, V.; Conconi, P.; Colasanti, L.; Cusamano, G.; Rosa, A.; Del Santo, M.; Ettori, S.; Ezoe, Y.; Ferrari, L.; Feroci, M.; Finger, M.; Fishman, G.; Fujimoto, R.; Galeazzi, M.; Galli, A.; Gatti, F.; Gehrels, N.; Gendre, B.; Ghirlanda, G.; Ghisellini, G.; Giommi, P.; Girardi, M.; Guzzo, L.; Haardt, F.; Hepburn, I.; Hermsen, W.; Hoevers, H.; Holland, A.; in 't Zand, J.J.M.; Ishisaki, Y.; Kawahara, H.; Kawai, N.; Kaastra, J.; Kippen, M.; de Korte, P.A.J.; Kouveliotou, C.; Kusenko, A.; Labanti, C.; Lieu, R.; Macculi, C.; Makishima, K.; Matt, G.; Mazotta, P.; McCammon, D.; Méndez, M.; Mineo, T.; Mitchell, S.; Mitsuda, K.; Molendi, S.; Moscardini, L.; Mushotzky, R.; Natalucci, L.; Nicastro, F.; O'Brien, P.; Osborne, J.; Paerels, F.; Page, M.; Paltani, S.; Pareschi, G.; Perinati, E.; Perola, C.; Ponman, T.; Rasmussen, A.; Roncarelli, M.; Rosati, P.; Ruchayskiy, O.; Quadrini, E.; Sakurai, I.; Salvaterra, R.; Sasaki, S.; Wijers, R.; et al., [Unknown

    2007-01-01

    How structures of various scales formed and evolved from the early Universe up to present time is a fundamental question of astrophysics. EDGE will trace the cosmic history of the baryons from the early generations of massive stars by Gamma-Ray Burst (GRB) explosions, through the period of galaxy

  19. Gamma-ray bursts.

    Science.gov (United States)

    Gehrels, Neil; Mészáros, Péter

    2012-08-24

    Gamma-ray bursts (GRBs) are bright flashes of gamma rays coming from the cosmos. They occur roughly once per day, typically last for tens of seconds, and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this Review, we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglow.

  20. AGN feedback in dwarf galaxies?

    Science.gov (United States)

    Dashyan, Gohar; Silk, Joseph; Mamon, Gary A.; Dubois, Yohan; Hartwig, Tilman

    2018-02-01

    Dwarf galaxy anomalies, such as their abundance and cusp-core problems, remain a prime challenge in our understanding of galaxy formation. The inclusion of baryonic physics could potentially solve these issues, but the efficiency of stellar feedback is still controversial. We analytically explore the possibility of feedback from active galactic nuclei (AGNs) in dwarf galaxies and compare AGN and supernova (SN) feedback. We assume the presence of an intermediate-mass black hole within low-mass galaxies and standard scaling relations between the relevant physical quantities. We model the propagation and properties of the outflow and explore the critical condition for global gas ejection. Performing the same calculation for SNe, we compare the ability of AGNs and SNe to drive gas out of galaxies. We find that a critical halo mass exists below which AGN feedback can remove gas from the host halo and that the critical halo mass for an AGN is greater than the equivalent for SNe in a significant part of the parameter space, suggesting that an AGN could provide an alternative and more successful source of negative feedback than SNe, even in the most massive dwarf galaxies.

  1. Morphology of Dwarf Galaxies in Isolated Satellite Systems

    Science.gov (United States)

    Ann, Hong Bae

    2017-08-01

    The environmental dependence of the morphology of dwarf galaxies in isolated satellite systems is analyzed to understand the origin of the dwarf galaxy morphology using the visually classified morphological types of 5836 local galaxies with z ≲ 0.01. We consider six sub-types of dwarf galaxies, dS0, dE, dE_{bc}, dSph, dE_{blue}, and dI, of which the first four sub-types are considered as early-type and the last two as late-type. The environmental parameters we consider are the projected distance from the host galaxy (r_{p}), local and global background densities, and the host morphology. The spatial distributions of dwarf satellites of early-type galaxies are much different from those of dwarf satellites of late-type galaxies, suggesting the host morphology combined with r_{p} plays a decisive role on the morphology of the dwarf satellite galaxies. The local and global background densities play no significant role on the morphology of dwarfs in the satellite systems hosted by early-type galaxies. However, in the satellite system hosted by late-type galaxies, the global background densities of dE and dSph satellites are significantly different from those of dE_{bc}, dE_{blue}, and dI satellites. The blue-cored dwarf satellites (dE_{bc}) of early-type galaxies are likely to be located at r_{p} > 0.3 Mpc to keep their cold gas from the ram pressure stripping by the hot corona of early-type galaxies. The spatial distribution of dE_{bc} satellites of early-type galaxies and their global background densities suggest that their cold gas is intergalactic material accreted before they fall into the satellite systems.

  2. Secular Evolution in Disk Galaxies

    Science.gov (United States)

    Kormendy, John

    2013-10-01

    bulges because the latter retain a `memory' of their disky origin. That is, they have one or more characteristics of disks: (1) flatter shapes than those of classical bulges, (2) correspondingly large ratios of ordered to random velocities, (3) small velocity dispersions with respect to the Faber-Jackson correlation between velocity dispersion and bulge luminosity, (4) spiral structure or nuclear bars in the `bulge' part of the light profile, (5) nearly exponential brightness profiles and (6) starbursts. So the cleanest examples of pseudobulges are recognisable. However, pseudo and classical bulges can coexist in the same galaxy. I review two important implications of secular evolution: (1) The existence of pseudobulges highlights a problem with our theory of galaxy formation by hierarchical clustering. We cannot explain galaxies that are completely bulgeless. Galaxy mergers are expected to happen often enough so that every giant galaxy should have a classical bulge. But we observe that bulgeless giant galaxies are common in field environments. We now realise that many dense centres of galaxies that we used to think are bulges were not made by mergers; they were grown out of disks. So the challenge gets more difficult. This is the biggest problem faced by our theory of galaxy formation. (2) Pseudobulges are observed to contain supermassive black holes (BHs), but they do not show the well-known, tight correlations between BH mass and the mass and velocity dispersion of the host bulge. This leads to the suggestion that there are two fundamentally different BH feeding processes. Rapid global inward gas transport in galaxy mergers leads to giant BHs that correlate with host ellipticals and classical bulges, whereas local and more stochastic feeding of small BHs in largely bulgeless galaxies evidently involves too little energy feedback to result in BH-host coevolution. It is an important success of the secular evolution picture that morphological differences can be used to

  3. Probing Pre-Galactic Metal Enrichment with High-Redshift Gamma-Ray Bursts

    Science.gov (United States)

    Wang, F. Y.; Bromm, Volker; Greif, Thomas H.; Stacy, Athena; Dai, Z. G.; Loeb, Abraham; Cheng, K. S.

    2012-01-01

    We explore high-redshift gamma-ray bursts (GRBs) as promising tools to probe pre-galactic metal enrichment. We utilize the bright afterglow of a Population III (Pop III) GRB exploding in a primordial dwarf galaxy as a luminous background source, and calculate the strength of metal absorption lines that are imprinted by the first heavy elements in the intergalactic medium (IGM). To derive the GRB absorption line diagnostics, we use an existing highly resolved simulation of the formation of a first galaxy which is characterized by the onset of atomic hydrogen cooling in a halo with virial temperature approximately greater than10(exp 4) K.We explore the unusual circumburst environment inside the systems that hosted Pop III stars, modeling the density evolution with the self-similar solution for a champagne flow. For minihalos close to the cooling threshold, the circumburst density is roughly proportional to (1 + z) with values of about a few cm(exp -3). In more massive halos, corresponding to the first galaxies, the density may be larger, n approximately greater than100 cm(exp -3). The resulting afterglow fluxes are weakly dependent on redshift at a fixed observed time, and may be detectable with the James Webb Space Telescope and Very Large Array in the near-IR and radio wavebands, respectively, out to redshift z approximately greater than 20. We predict that the maximum of the afterglow emission shifts from near-IR to millimeter bands with peak fluxes from mJy to Jy at different observed times. The metal absorption line signature is expected to be detectable in the near future. GRBs are ideal tools for probing the metal enrichment in the early IGM, due to their high luminosities and featureless power-law spectra. The metals in the first galaxies produced by the first supernova (SN) explosions are likely to reside in low-ionization stages (C II, O I, Si II and Fe II). We show that, if the afterglow can be observed sufficiently early, analysis of the metal lines may

  4. S0 galaxies in Formax

    DEFF Research Database (Denmark)

    Bedregal...[], A. G.; Aragón-Salamanca, A.; Merrifield, M. R.

    2006-01-01

    Galaxies: elliptical and lenticular, cD: galaxies: kinematics and dynamics Udgivelsesdato: Oct.1......Galaxies: elliptical and lenticular, cD: galaxies: kinematics and dynamics Udgivelsesdato: Oct.1...

  5. Dust reddening and extinction curves toward gamma-ray bursts at z > 4

    Science.gov (United States)

    Bolmer, J.; Greiner, J.; Krühler, T.; Schady, P.; Ledoux, C.; Tanvir, N. R.; Levan, A. J.

    2018-01-01

    Context. Dust is known to be produced in the envelopes of asymptotic giant branch (AGB) stars, the expanded shells of supernova (SN) remnants, and in situ grain growth within the interstellar medium (ISM), although the corresponding efficiency of each of these dust formation mechanisms at different redshifts remains a topic of debate. During the first Gyr after the Big Bang, it is widely believed that there was not enough time to form AGB stars in high numbers, hence the dust at this epoch is expected to be purely from SNe or subsequent grain growth in the ISM. The time period corresponding to z 5-6 is thus expected to display the transition from SN-only dust to a mixture of both formation channels as is generally recognized at present. Aims: Here we aim to use afterglow observations of gamma-ray bursts (GRBs) at redshifts larger than z > 4 to derive host galaxy dust column densities along their line of sight and to test if a SN-type dust extinction curve is required for some of the bursts. Methods: We performed GRB afterglow observations with the seven-channel Gamma-Ray Optical and Near-infrared Detector (GROND) at the 2.2 m MPI telescope in La Silla, Chile (ESO), and we combined these observations with quasi-simultaneous data gathered with the XRT telescope on board the Swift satellite. Results: We increase the number of measured AV values for GRBs at z > 4 by a factor of 2-3 and find that, in contrast to samples at mostly lower redshift, all of the GRB afterglows have a visual extinction of AV date.

  6. NEW BURST ASSEMBLY AND SCHEDULING TECHNIQUE FOR OPTICAL BURST SWITCHING NETWORKS

    OpenAIRE

    Kavitha, V.; V.Palanisamy

    2013-01-01

    The Optical Burst Switching is a new switching technology that efficiently utilizes the bandwidth in the optical layer. The key areas to be concentrated in Optical Burst Switching (OBS) networks are the burst assembly and burst scheduling i.e., assignment of wavelengths to the incoming bursts. This study presents a New Burst Assembly and Scheduling (NBAS) technique in a simultaneous multipath transmission for burst loss recovery in OBS networks. A Redundant Burst Segmentation (RBS) is used fo...

  7. Galaxy evolution. Isolated compact elliptical galaxies: stellar systems that ran away.

    Science.gov (United States)

    Chilingarian, Igor; Zolotukhin, Ivan

    2015-04-24

    Compact elliptical galaxies form a rare class of stellar system (~30 presently known) characterized by high stellar densities and small sizes and often harboring metal-rich stars. They were thought to form through tidal stripping of massive progenitors, until two isolated objects were discovered where massive galaxies performing the stripping could not be identified. By mining astronomical survey data, we have now found 195 compact elliptical galaxies in all types of environment. They all share similar dynamical and stellar population properties. Dynamical analysis for nonisolated galaxies demonstrates the feasibility of their ejection from host clusters and groups by three-body encounters, which is in agreement with numerical simulations. Hence, isolated compact elliptical and isolated quiescent dwarf galaxies are tidally stripped systems that ran away from their hosts. Copyright © 2015, American Association for the Advancement of Science.

  8. GMRT H I study of giant low surface brightness galaxies

    Science.gov (United States)

    Mishra, A.; Kantharia, N. G.; Das, M.; Omar, A.; Srivastava, D. C.

    2017-01-01

    We present H I observations of four giant low surface brightness (GLSB) galaxies UGC 1378, UGC 1922, UGC 4422 and UM 163 using the Giant Meterwave Radio Telescope. We include H I results on UGC 2936, UGC 6614 and Malin 2 from literature. H I is detected from all the galaxies and the extent is roughly twice the optical size; in UM 163, H I is detected along a broken disc encircling the optical galaxy. We combine our results with those in literature to further understand these systems. The main results are the following: (1) the peak H I surface densities in GLSB galaxies are several times 1021 cm-2. The H I mass is between 0.3 and 4 × 1010 M⊙; dynamical mass ranges from a few times 1011 M⊙ to a few times 1012 M⊙. (2) The rotation curves of GLSB galaxies are flat to the outermost measured point with rotation velocities of the seven GLSB galaxies being between 225 and 432 km s-1. (3) Recent star formation traced by near-ultraviolet emission in five GLSB galaxies in our sample appears to be located in rings around the galaxy centre. We suggest that this could be due to a stochastic burst of star formation at one location in the galaxy being propagated along a ring over a rotation period. (4) The H I is correlated with recent star formation in five of the seven GLSB galaxies.

  9. Color correlations between paired galaxies - The Holmberg effect

    Science.gov (United States)

    Demin, V. V.; Zasov, A. V.; Dibaj, E. A.; Tomov, A. N.

    1984-08-01

    The colors of paired galaxies are analyzed, using the U, B, V photometry of Tomov (1973). It is shown that in most of the double elliptical (EE) and spiral (SS) galaxies, the components have integrated corrected color indices with a color differential of no less than 0.10 from B to V. A similarity in metal abundances is used to explain the observed blue color match of EE components. It is suggested that the colors of ES pairs may be correlated, and that the color match observed in most SS galaxies may be the result of periodic bursts of star formation occurring simultaneously in both components.

  10. Short duration gamma ray bursts

    Indian Academy of Sciences (India)

    Abstract. After a short review of gamma ray bursts (GRBs), we discuss the physical implications of strong statistical correlations seen among some of the parameters of short duration bursts (90 < 2 s). Finally, we conclude with a brief sketch of a new unified model for long and short GRBs.

  11. Short duration gamma ray bursts

    Indian Academy of Sciences (India)

    Gamma ray bursts (GRBs) are transient extragalactic events appearing randomly in the sky as localized flashes of electromagnetic radiation, consisting predominantly of photons with energy in the range of ~0.1–1 MeV. These sporadic bursts, occurring at the rate of ~600 per year, are isotropically distributed in the sky, ...

  12. The SAMI Galaxy Survey: disc-halo interactions in radio-selected star-forming galaxies

    Science.gov (United States)

    Leslie, S. K.; Bryant, J. J.; Ho, I.-T.; Sadler, E. M.; Medling, A. M.; Groves, B.; Kewley, L. J.; Bland-Hawthorn, J.; Croom, S. M.; Wong, O. I.; Brough, S.; Tescari, E.; Sweet, S. M.; Sharp, R.; Green, A. W.; López-Sánchez, Á. R.; Allen, J. T.; Fogarty, L. M. R.; Goodwin, M.; Lawrence, J. S.; Konstantopoulos, I. S.; Owers, M. S.; Richards, S. N.

    2017-10-01

    In this paper, we compare the radio emission at 1.4 GHz with optical outflow signatures of edge-on galaxies. We report observations of six edge-on star-forming galaxies in the Sydney-AAO Multiobject Integral-field spectrograph Galaxy Survey with 1.4 GHz luminosities >1 × 1021 W Hz-1. Extended minor axis optical emission is detected with enhanced [N II]/H α line ratios and velocity dispersions consistent with galactic winds in three of six galaxies. These galaxies may host outflows driven by a combination of thermal and cosmic ray processes. We find that galaxies with the strongest wind signatures have extended radio morphologies. Our results form a baseline for understanding the driving mechanisms of galactic winds.

  13. EXTREME EMISSION-LINE GALAXIES IN CANDELS: BROADBAND-SELECTED, STARBURSTING DWARF GALAXIES AT z > 1

    Energy Technology Data Exchange (ETDEWEB)

    Van der Wel, A.; Rix, H.-W.; Jahnke, K. [Max-Planck Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Straughn, A. N. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Finkelstein, S. L.; Salmon, B. W. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Koekemoer, A. M.; Ferguson, H. C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Weiner, B. J. [Steward Observatory, 933 N. Cherry St., University of Arizona, Tucson, AZ 85721 (United States); Wuyts, S. [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Bell, E. F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Faber, S. M.; Trump, J. R.; Koo, D. C. [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Scarlata, C. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church St. S.E. Minneapolis, MN 55455 (United States); Hathi, N. P. [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States); Dunlop, J. S. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Newman, J. A. [Department of Physics and Astronomy, University of Pittsburgh, 3941 O' Hara Street, Pittsburgh, PA 15260 (United States); Dickinson, M. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); De Mello, D. F., E-mail: vdwel@mpia.de [Department of Physics, The Catholic University of America, Washington, DC 20064 (United States); and others

    2011-12-01

    We identify an abundant population of extreme emission-line galaxies (EELGs) at redshift z {approx} 1.7 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). Sixty-nine EELG candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared broadband magnitudes. Supported by spectroscopic confirmation of strong [O III] emission lines-with rest-frame equivalent widths {approx}1000 A-in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are galaxies with {approx}10{sup 8} M{sub Sun} in stellar mass, undergoing an enormous starburst phase with M{sub *}/ M-dot{sub *} of only {approx}15 Myr. These bursts may cause outflows that are strong enough to produce cored dark matter profiles in low-mass galaxies. The individual star formation rates and the comoving number density (3.7 Multiplication-Sign 10{sup -4} Mpc{sup -3}) can produce in {approx}4 Gyr much of the stellar mass density that is presently contained in 10{sup 8}-10{sup 9} M{sub Sun} dwarf galaxies. Therefore, our observations provide a strong indication that many or even most of the stars in present-day dwarf galaxies formed in strong, short-lived bursts, mostly at z > 1.

  14. The HIX Galaxy Survey: The Most HI Rich Galaxies In The Southern Hemisphere

    Science.gov (United States)

    Lutz, Katharina

    2016-10-01

    When comparing the gas content of galaxies with their current star formation rate, it has been found that the gas consumption time scale is much smaller than the age of galaxies. In addition, the metallicity within galaxies is much smaller than expected from closed box modelling of galaxies. These discrepancies suggest that galaxies must replenish their gas reservoirs by accretion of metal-poor gas from the intergalactic medium.In order to investigate this process of gas accretion in more detail we target local galaxies that host an atomic hydrogen (HI) disc at least 2.5 times more massive than expected from their optical properties using scaling relations. For this sample of galaxies, we have been collecting a multiwavelength data set consisting of deep ATCA HI interferometry, ANU SSO 2.3m WiFeS optical integral field spectroscopy and publicly available photometry from GALEX (ultraviolet), WISE and 2MASS (both infrared).We find that these galaxies are normal star-forming spiral galaxies. However, their specific angular momentum is higher than in control galaxies, which allows these galaxies to support a massive HI disc.With the help of the HI interferometry and the optical IFU spectra, we are searching for signs of recent gas accretion. These signs may include among other things non-circular motion of HI, warped or lopsided HI discs, both of which can be identified through tilted-ring modelling of the HI disc or inhomogeneities in the IFU-based metallicity maps.In my talk I will first compare the HI rich galaxies to the control sample and the general galaxy population. I will then move on to the most HI massive galaxy in our sample and discuss its HI kinematics and its gas-phase oxygen abundance distribution in more detail. To conclude I will give an outlook on the more detailed HI kinematics of the remaining HI rich sample.

  15. HI observations of the starburst galaxy NGC 2146

    NARCIS (Netherlands)

    Taramopoulos, A; Payne, H; Briggs, FH

    NGC 2146 is a peculiar spiral galaxy which is currently undergoing a major burst of star formation and is immersed in a extended HT structure that has morphological and kinematical resemblence to a strong tidal interaction. This paper reports aperture synthesis observations carried out in the 21 cm

  16. Bursts de raios gama

    Science.gov (United States)

    Braga, J.

    2003-02-01

    Nos últimos anos, graças principalmente aos dados obtidos pelo Compton Gamma-Ray Observatory e pelo satélite ítalo-holandês BeppoSAX, grandes avanços foram obtidos no nosso conhecimento sobre os fascinantes e enigmáticos fenômenos conhecidos por "bursts"de raios gama. Neste trabalho é feita uma revisão sobre a fenomenologia desses misteriosos objetos e são apresentados os desenvolvimentos recentes nessa área palpitante da astrofísica moderna, ressaltando tanto os resultados observacionais obtidos até o momento quanto os modelos teóricos propostos para explixá-los.

  17. Monolithic View of Galaxy Formation and Evolution

    Directory of Open Access Journals (Sweden)

    Cesare Chiosi

    2014-07-01

    Full Text Available We review and critically discuss the current understanding of galaxy formation and evolution limited to Early Type Galaxies (ETGs as inferred from the observational data and briefly contrast the hierarchical and quasi-monolithic paradigms of formation and evolution. Since in Cold Dark Matter (CDM cosmogony small scale structures typically collapse early and form low-mass haloes that subsequently can merge to assembly larger haloes, galaxies formed in the gravitational potential well of a halo are also expected to merge thus assembling their mass hierarchically. Mergers should occur all over the Hubble time and large mass galaxies should be in place only recently. However, recent observations of high redshift galaxies tell a different story: massive ETGs are already in place at high redshift. To this aim, we propose here a revision of the quasi-monolithic scenario as an alternative to the hierarchical one, in which mass assembling should occur in early stages of a galaxy lifetime and present recent models of ETGs made of Dark and Baryonic Matter in a Λ-CDM Universe that obey the latter scheme. The galaxies are followed from the detachment from the linear regime and Hubble flow at z ≥ 20 down to the stage of nearly complete assembly of the stellar content (z ∼ 2 − 1 and beyond.  It is found that the total mass (Mh = MDM + MBM and/or initial over-density of the proto-galaxy drive the subsequent star formation histories (SFH. Massive galaxies (Mh ~ _1012M⊙ experience a single, intense burst of star formation (with rates ≥ 103M⊙/yr at early epochs, consistently with observations, with a weak dependence on the initial over-density; intermediate mass haloes (Mh~_ 1010 − 1011M⊙ have star formation histories that strongly depend on their initial over-density; finally, low mass haloes (Mh ~_ 109M⊙ always have erratic, burst-like star forming histories. The present-day properties (morphology, structure, chemistry and photometry of the

  18. Massive relic galaxies prefer dense environments

    Science.gov (United States)

    Peralta de Arriba, Luis; Quilis, Vicent; Trujillo, Ignacio; Cebrián, María; Balcells, Marc

    2016-09-01

    We study the preferred environments of z ∼ 0 massive relic galaxies (M⋆ ≳ 1010 M⊙ galaxies with little or no growth from star formation or mergers since z ∼ 2). Significantly, we carry out our analysis on both a large cosmological simulation and an observed galaxy catalogue. Working on the Millennium I-WMAP7 simulation we show that the fraction of today massive objects which have grown less than 10 per cent in mass since z ∼ 2 is ∼0.04 per cent for the whole massive galaxy population with M⋆ ≳ 1010 M⊙. This fraction rises to ∼0.18 per cent in galaxy clusters, confirming that clusters help massive galaxies remain unaltered. Simulations also show that massive relic galaxies tend to be closer to cluster centres than other massive galaxies. Using the New York University Value-Added Galaxy Catalogue, and defining relics as M⋆ ≳ 1010 M⊙ early-type galaxies with colours compatible with single-stellar population ages older than 10 Gyr, and which occupy the bottom 5-percentile in the stellar mass-size distribution, we find 1.11 ± 0.05 per cent of relics among massive galaxies. This fraction rises to 2.4 ± 0.4 per cent in high-density environments. Our findings point in the same direction as the works by Poggianti et al. and Stringer et al. Our results may reflect the fact that the cores of the clusters are created very early on, hence the centres host the first cluster members. Near the centres, high-velocity dispersions and harassment help cluster core members avoid the growth of an accreted stellar envelope via mergers, while a hot intracluster medium prevents cold gas from reaching the galaxies, inhibiting star formation.

  19. Quantum key based burst confidentiality in optical burst switched networks.

    Science.gov (United States)

    Balamurugan, A M; Sivasubramanian, A

    2014-01-01

    The optical burst switching (OBS) is an emergent result to the technology concern that could achieve a feasible network in future. They are endowed with the ability to meet the bandwidth requirement of those applications that require intensive bandwidth. There are more domains opening up in the OBS that evidently shows their advantages and their capability to face the future network traffic. However, the concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution, and quality of service (QoS). This paper deals with employing RC4 (stream cipher) to encrypt and decrypt bursts thereby ensuring the confidentiality of the burst. Although the use of AES algorithm has already been proposed for the same issue, by contrasting the two algorithms under the parameters of burst encryption and decryption time, end-to-end delay, it was found that RC4 provided better results. This paper looks to provide a better solution for the confidentiality of the burst in OBS networks.

  20. Quantum Key Based Burst Confidentiality in Optical Burst Switched Networks

    Directory of Open Access Journals (Sweden)

    A. M. Balamurugan

    2014-01-01

    Full Text Available The optical burst switching (OBS is an emergent result to the technology concern that could achieve a feasible network in future. They are endowed with the ability to meet the bandwidth requirement of those applications that require intensive bandwidth. There are more domains opening up in the OBS that evidently shows their advantages and their capability to face the future network traffic. However, the concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution, and quality of service (QoS. This paper deals with employing RC4 (stream cipher to encrypt and decrypt bursts thereby ensuring the confidentiality of the burst. Although the use of AES algorithm has already been proposed for the same issue, by contrasting the two algorithms under the parameters of burst encryption and decryption time, end-to-end delay, it was found that RC4 provided better results. This paper looks to provide a better solution for the confidentiality of the burst in OBS networks.

  1. Bayesian framework to constrain the photon mass with a catalog of fast radio bursts

    Science.gov (United States)

    Shao, Lijing; Zhang, Bing

    2017-06-01

    A hypothetical photon mass, mγ, gives an energy-dependent light speed in a Lorentz-invariant theory. Such a modification causes an additional time delay between photons of different energies when they travel through a fixed distance. Fast radio bursts (FRBs), with their short time duration and cosmological propagation distance, are excellent astrophysical objects to constrain mγ. Here for the first time we develop a Bayesian framework to study this problem with a catalog of FRBs. Those FRBs with and without redshift measurement are both useful in this framework, and can be combined in a Bayesian way. A catalog of 21 FRBs (including 20 FRBs without redshift measurement, and one, FRB 121102, with a measured redshift z =0.19273 ±0.00008 ) give a combined limit mγ≤8.7 ×10-51 kg , or equivalently mγ≤4.9 ×10-15 eV /c2 (mγ≤1.5 ×10-50 kg , or equivalently mγ≤8.4 ×10-15 eV /c2 ) at 68% (95%) confidence level, which represents the best limit that comes purely from kinematics. The framework proposed here will be valuable when FRBs are observed daily in the future. Increment in the number of FRBs, and refinement in the knowledge about the electron distributions in the Milky Way, the host galaxies of FRBs, and the intergalactic medium, will further tighten the constraint.

  2. The HIX galaxy survey I: Study of the most gas rich galaxies from HIPASS

    Science.gov (United States)

    Lutz, K. A.; Kilborn, V. A.; Catinella, B.; Koribalski, B. S.; Brown, T. H.; Cortese, L.; Dénes, H.; Józsa, G. I. G.; Wong, O. I.

    2017-05-01

    We present the H I eXtreme (HIX) galaxy survey targeting some of the most H I rich galaxies in the Southern hemisphere. The 13 HIX galaxies have been selected to host the most massive H I discs at a given stellar luminosity. We compare these galaxies to a control sample of average galaxies detected in the H I Parkes All Sky Survey (HIPASS). As the control sample is matched in stellar luminosity, we find that the stellar properties of HIX galaxies are similar to the control sample. Furthermore, the specific star formation rate and optical morphology do not differ between HIX and control galaxies. We find, however, the HIX galaxies to be less efficient in forming stars. For the most H I massive galaxy in our sample (ESO075-G006, log M_{H I} [M⊙] = (10.8 ± 0.1)), the kinematic properties are the reason for inefficient star formation and H I excess. Examining the Australian Telescope Compact Array (ATCA) H I imaging and Wide Field Spectrograph (WiFeS) optical spectra of ESO075-G006 reveals an undisturbed galaxy without evidence for recent major, violent accretion events. A tilted ring fitted to the H I disc together with the gas-phase oxygen abundance distribution supports the scenario that gas has been constantly accreted on to ESO075-G006 but the high specific angular momentum makes ESO075-G006 very inefficient in forming stars. Thus, a massive H I disc has been built up.

  3. Multi-band Observations of Gamma Ray Bursts

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. This talk focuses on the various aspects we learnt from multi- band observations of GRBs both, before and during the afterglow era. A statistical analysis to estimate the probable redshifts of host galaxies using the luminosity function of GRBs compatible with both the afterglow redshift data as well as the overall ...

  4. Multi-band Observations of Gamma Ray Bursts

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... This talk focuses on the various aspects we learnt from multiband observations of GRBs both, before and during the afterglow era. A statistical analysis to estimate the probable redshifts of host galaxies using the luminosity function of GRBs compatible with both the afterglow redshift data as well as the ...

  5. Terrestrial Ozone Depletion Due to a Milky Way Gamma-Ray Burst

    Science.gov (United States)

    Thomas, Brian C.; Jackman, Charles H.; Melott, Adrian L.; Laird, Claude M.; Stolarski, Richard S.; Gehrels, Neil; Cannizzo, John K.; Hogan, Daniel P.

    2005-01-01

    Based on cosmological rates, it is probable that at least once in the last Gy the Earth has been irradiated by a gamma-ray burst in our Galaxy from within 2 kpc. Using a two-dimensional atmospheric model we have computed the effects upon the Earth's atmosphere of one such burst. A ten second burst delivering 100 kJ/sq m to the Earth results in globally averaged ozone depletion of 35%, with depletion reaching 55% at some latitudes. Significant global depletion persists for over 5 years after the burst. This depletion would have dramatic implications for life since a 50% decrease in ozone column density results in approximately three times the normal UVB flux. Widespread extinctions are likely, based on extrapolation from UVB sensitivity of modern organisms.

  6. Burst Oscillation Studies with NICER

    Science.gov (United States)

    Mahmoodifar, Simin; Strohmayer, Tod E.

    2017-08-01

    Type I X-ray bursts are thermonuclear flashes observed from the surfaces of accreting neutron stars in Low Mass X-ray Binaries. Oscillations have been observed during the rise and/or decay of some of these X-ray bursts. Those seen during the rise can be well explained by a spreading hot spot model, but large amplitude oscillations in the decay phase remain mysterious because of the absence of a clear-cut source of asymmetry. Here we present the results of our computations of the light curves and amplitudes of oscillations in X-ray burst models that realistically account for both flame spreading and subsequent cooling. For the cooling phase of the burst we use two simple phenomenological models. The first considers asymmetric cooling that can achieve high amplitudes in the tail. The second considers a sustained temperature pattern on the stellar surface that is produced by r-modes propagating in the surface fluid ocean of the star. We will present some simulated burst light curves/spectra using these models and NICER response files, and will show the capabilities of NICER to detect and study burst oscillations. NICER will enable us to study burst oscillations in the energy band below ~3 keV, where there has been no previous measurements of these phenomena.

  7. Dwarf spheroidal galaxies: Keystones of galaxy evolution

    Science.gov (United States)

    Gallagher, John S., III; Wyse, Rosemary F. G.

    1994-01-01

    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark-matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  8. Reading the Chemical Evolution of Stellar Populations in Dwarf Galaxies

    OpenAIRE

    Hendricks, Benjamin Thomas

    2015-01-01

    In this thesis I present observations and analyses addressed to understand the individual evolution of dwarf galaxies and the interdependency with their local environment. My study focuses on the Fornax dwarf spheroidal galaxy, which is the most massive galaxy of its type in the Local Group, hosting stars with a broad range in age and metallicity. Additionally, it is the only intact dwarf spheroidal with an own globular cluster system. Therefore, it provides a superb laboratory to...

  9. AO Observations of Three Powerful Radio Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    de Vries, W; van Bruegel, W; Quirrenbach, A

    2002-08-01

    The host galaxies of powerful radio sources are ideal laboratories to study active galactic nuclei (AGN). The galaxies themselves are among the most massive systems in the universe, and are believed to harbor supermassive black holes (SMBH). If large galaxies are formed in a hierarchical way by multiple merger events, radio galaxies at low redshift represent the end-products of this process. However, it is not clear why some of these massive ellipticals have associated radio emission, while others do not. Both are thought to contain SMBHs, with masses proportional to the total luminous mass in the bulge. It either implies every SMBH has recurrent radio-loud phases, and the radio-quiet galaxies happen to be in the ''low'' state, or that the radio galaxy nuclei are physically different from radio-quiet ones, i.e. by having a more massive SMBH for a given bulge mass. Here we present the first results from our adaptive optics imaging and spectroscopy pilot program on three nearby powerful radio galaxies. Initiating a larger, more systematic AO survey of radio galaxies (preferentially with Laser Guide Star equipped AO systems) has the potential of furthering our understanding of the physical properties of radio sources, their triggering, and their subsequent evolution.

  10. Dwarf Galaxies in the Chandra COSMOS Legacy Survey

    Science.gov (United States)

    Civano, Francesca Maria; Mezcua, Mar; Fabbiano, Giuseppina; Marchesi, Stefano; Suh, Hyewon; Volonteri, Marta; cyrille

    2018-01-01

    The existence of intermediate mass black holes (100 7. While detecting these seed black holes in the young Universe is observationally challenging, the nuclei of local dwarf galaxies are among the best places where to look for them as these galaxies resemble in mass and metallicity the first galaxies and they have not significantly grown through merger and accretion processes. We present a sample of 40 AGN in dwarf galaxies (107 Legacy survey. Once the star formation contribution to the X-ray emission is subtracted, the AGN luminosities of the 40 dwarf galaxies are in the range L(0.5-10 keV)~1039 - 1044 erg/s. With 12 sources at z > 0.5, our sample constitutes the highest-redshift discovery of AGN in dwarf galaxies. One of the dwarf galaxies is the least massive galaxy (M* = 6.6x107 Msun) found so far to host an active BH. We also present for the first time the evolution of the AGN fraction with stellar mass, X-ray luminosity, and redshift in dwarf galaxies out to z = 0.7, finding that it decreases with X-ray luminosity and stellar mass. Unlike massive galaxies, the AGN fraction is found to decrease with redshift, suggesting that AGN in dwarf galaxies evolve differently than those in high-mass galaxies.

  11. Alignments of galaxies within cosmic filaments from SDSS DR7

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Youcai; Yang, Xiaohu [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Nandan Road 80, Shanghai 200030 (China); Wang, Huiyuan [Key Laboratory for Research in Galaxies and Cosmology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang, Lei [Purple Mountain Observatory, the Partner Group of MPI für Astronomie, 2 West Beijing Road, Nanjing 210008 (China); Mo, H. J. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003-9305 (United States); Van den Bosch, Frank C., E-mail: yczhang@shao.ac.cn, E-mail: xyang@sjtu.edu.cn [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States)

    2013-12-20

    Using a sample of galaxy groups selected from the Sloan Digital Sky Survey Data Release 7, we examine the alignment between the orientation of galaxies and their surrounding large-scale structure in the context of the cosmic web. The latter is quantified using the large-scale tidal field, reconstructed from the data using galaxy groups above a certain mass threshold. We find that the major axes of galaxies in filaments tend to be preferentially aligned with the directions of the filaments, while galaxies in sheets have their major axes preferentially aligned parallel to the plane of the sheets. The strength of this alignment signal is strongest for red, central galaxies, and in good agreement with that of dark matter halos in N-body simulations. This suggests that red, central galaxies are well aligned with their host halos, in quantitative agreement with previous studies based on the spatial distribution of satellite galaxies. There is a luminosity and mass dependence that brighter and more massive galaxies in filaments and sheets have stronger alignment signals. We also find that the orientation of galaxies is aligned with the eigenvector associated with the smallest eigenvalue of the tidal tensor. These observational results indicate that galaxy formation is affected by large-scale environments and strongly suggest that galaxies are aligned with each other over scales comparable to those of sheets and filaments in the cosmic web.

  12. Alignments of Galaxies within Cosmic Filaments from SDSS DR7

    Science.gov (United States)

    Zhang, Youcai; Yang, Xiaohu; Wang, Huiyuan; Wang, Lei; Mo, H. J.; van den Bosch, Frank C.

    2013-12-01

    Using a sample of galaxy groups selected from the Sloan Digital Sky Survey Data Release 7, we examine the alignment between the orientation of galaxies and their surrounding large-scale structure in the context of the cosmic web. The latter is quantified using the large-scale tidal field, reconstructed from the data using galaxy groups above a certain mass threshold. We find that the major axes of galaxies in filaments tend to be preferentially aligned with the directions of the filaments, while galaxies in sheets have their major axes preferentially aligned parallel to the plane of the sheets. The strength of this alignment signal is strongest for red, central galaxies, and in good agreement with that of dark matter halos in N-body simulations. This suggests that red, central galaxies are well aligned with their host halos, in quantitative agreement with previous studies based on the spatial distribution of satellite galaxies. There is a luminosity and mass dependence that brighter and more massive galaxies in filaments and sheets have stronger alignment signals. We also find that the orientation of galaxies is aligned with the eigenvector associated with the smallest eigenvalue of the tidal tensor. These observational results indicate that galaxy formation is affected by large-scale environments and strongly suggest that galaxies are aligned with each other over scales comparable to those of sheets and filaments in the cosmic web.

  13. THE BURST CLUSTER: DARK MATTER IN A CLUSTER MERGER ASSOCIATED WITH THE SHORT GAMMA-RAY BURST, GRB 050509B

    Energy Technology Data Exchange (ETDEWEB)

    Dahle, H. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); Sarazin, C. L. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Lopez, L. A. [MIT-Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, 37-664H, Cambridge, MA 02139 (United States); Kouveliotou, C. [Space Science Office, ZP12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Patel, S. K. [Optical Sciences Corporation, 6767 Old Madison Pike, Suite 650, Huntsville, AL 35806 (United States); Rol, E.; Van der Horst, A. J.; Wijers, R. A. M. J. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam (Netherlands); Fynbo, J.; Michalowski, M. J. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries vej 30, DK-2100 Copenhagen (Denmark); Burrows, D. N.; Grupe, D. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Gehrels, N. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ramirez-Ruiz, E., E-mail: hdahle@astro.uio.no [Department of Astronomy and Astrophysics, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95060 (United States)

    2013-07-20

    We have identified a merging galaxy cluster with evidence of two distinct subclusters. The X-ray and optical data suggest that the subclusters are presently moving away from each other after closest approach. This cluster merger was discovered from observations of the first well-localized short-duration gamma-ray burst (GRB), GRB 050509B. The Swift/Burst Alert Telescope error position of the source is coincident with a cluster of galaxies ZwCl 1234.0+02916, while the subsequent Swift/X-Ray Telescope localization of the X-ray afterglow found the GRB coincident with 2MASX J12361286+2858580, a giant red elliptical galaxy in the cluster. Deep multi-epoch optical images were obtained in this field to constrain the evolution of the GRB afterglow, including a total of 27,480 s exposure in the F814W band with Hubble Space Telescope Advanced Camera for Surveys, among the deepest imaging ever obtained toward a known galaxy cluster in a single passband. We perform a weak gravitational lensing analysis based on these data, including mapping of the total mass distribution of the merger system with high spatial resolution. When combined with Chandra X-ray Observatory Advanced CCD Imaging Spectrometer and Swift/XRT observations, we are able to investigate the dynamical state of the merger to better understand the nature of the dark matter component. Our weak gravitational lensing measurements reveal a separation of the X-ray centroid of the western subcluster from the center of the mass and galaxy light distributions, which is somewhat similar to that of the famous 'Bullet cluster', and we conclude that this 'Burst cluster' adds another candidate to the previously known merger systems for determining the nature of dark matter, as well as for studying the environment of a short GRB. Finally, we discuss potential connections between the cluster dynamical state and/or matter composition, and compact object mergers, which is currently the leading model for the

  14. 30 CFR 57.3461 - Rock bursts.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons to...

  15. Fossil evidence for spin alignment of SDSS galaxies in filaments

    NARCIS (Netherlands)

    Jones, Bernard J.T.; Weygaert, Rien van de; Arag´on-Calvo, Miguel A.

    2010-01-01

    We search for and find fossil evidence that the distribution of the spin axes of galaxies in cosmic web filaments relative to their host filaments are not randomly distributed. This would indicate that the action of large scale tidal torques effected the alignments of galaxies located in cosmic

  16. Galaxy Zoo: Observing secular evolution through bars

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Edmond; Faber, S. M.; Koo, David C. [Department of Astronomy and Astrophysics, 1156 High Street, University of California, Santa Cruz, CA 95064 (United States); Athanassoula, E.; Bosma, A. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388, Marseille (France); Masters, Karen L.; Nichol, Robert C.; Melvin, Thomas [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth, PO1 3FX (United Kingdom); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Lintott, Chris [Oxford Astrophysics, Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Schawinski, Kevin [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Skibba, Ramin A. [Center for Astrophysics and Space Sciences, Department of Physics, 9500 Gilman Drive, University of California, San Diego, CA 92093 (United States); Willett, Kyle W., E-mail: ec2250@gmail.com [School of Physics and Astronomy, University of Minnesota, MN 55455 (United States)

    2013-12-20

    In this paper, we use the Galaxy Zoo 2 data set to study the behavior of bars in disk galaxies as a function of specific star formation rate (SSFR) and bulge prominence. Our sample consists of 13,295 disk galaxies, with an overall (strong) bar fraction of 23.6% ± 0.4%, of which 1154 barred galaxies also have bar length (BL) measurements. These samples are the largest ever used to study the role of bars in galaxy evolution. We find that the likelihood of a galaxy hosting a bar is anticorrelated with SSFR, regardless of stellar mass or bulge prominence. We find that the trends of bar likelihood and BL with bulge prominence are bimodal with SSFR. We interpret these observations using state-of-the-art simulations of bar evolution that include live halos and the effects of gas and star formation. We suggest our observed trends of bar likelihood with SSFR are driven by the gas fraction of the disks, a factor demonstrated to significantly retard both bar formation and evolution in models. We interpret the bimodal relationship between bulge prominence and bar properties as being due to the complicated effects of classical bulges and central mass concentrations on bar evolution and also to the growth of disky pseudobulges by bar evolution. These results represent empirical evidence for secular evolution driven by bars in disk galaxies. This work suggests that bars are not stagnant structures within disk galaxies but are a critical evolutionary driver of their host galaxies in the local universe (z < 1).

  17. Stellar Population Synthesis of Star-forming Clumps in Galaxy Pairs and Non-interacting Spiral Galaxies

    Science.gov (United States)

    Zaragoza-Cardiel, Javier; Smith, Beverly J.; Rosado, Margarita; Beckman, John E.; Bitsakis, Theodoros; Camps-Fariña, Artemi; Font, Joan; Cox, Isaiah S.

    2018-02-01

    We have identified 1027 star-forming complexes in a sample of 46 galaxies from the Spirals, Bridges, and Tails (SB&T) sample of interacting galaxies, and 693 star-forming complexes in a sample of 38 non-interacting spiral (NIS) galaxies in 8 μm observations from the Spitzer Infrared Array Camera. We have used archival multi-wavelength UV-to IR observations to fit the observed spectral energy distribution of our clumps with the Code Investigating GALaxy Emission using a double exponentially declined star formation history. We derive the star formation rates (SFRs), stellar masses, ages and fractions of the most recent burst, dust attenuation, and fractional emission due to an active galactic nucleus for these clumps. The resolved star formation main sequence holds on 2.5 kpc scales, although it does not hold on 1 kpc scales. We analyzed the relation between SFR, stellar mass, and age of the recent burst in the SB&T and NIS samples, and we found that the SFR per stellar mass is higher in the SB&T galaxies, and the clumps are younger in the galaxy pairs. We analyzed the SFR radial profile and found that the SFR is enhanced through the disk and in the tidal features relative to normal spirals.

  18. Decameter Type III-Like Bursts

    Science.gov (United States)

    Melnik, V. N.; Konovalenko, A. A.; Rutkevych, B. P.; Rucker, H. O.; Dorovskyy, V. V.; Abranin, E. P.; Lecacheux, A.; Brazhenko, A. I.; Stanislavskyy, A. A.

    2007-12-01

    Starting from 1960s Type III-like bursts (Type III bursts with high drift rates) in a wide frequency range from 300 to 950MHz have been observed. These new bursts observed at certain frequency being compared to the usual Type III bursts at the same frequency show similar behaviour but feature frequency drift 2-6 times higher than the normal bursts. In this paper we report the first observations of Type III-like bursts in decameter range, carried out during summer campaigns 2002 - 2004 at UTR-2 radio telescope. The circular polarization of the bursts was measured by the radio telescope URAN-2 in 2004. The observed bursts are analyzed and compared with usual Type III bursts in the decameter range. From the analysis of over 1100 Type III-like bursts, their main parameters have been found. Characteristic feature of the observed bursts is similar to Type III-like bursts at other frequencies, i.e. measured drift rates (5-10 MHz/s) of this bursts are few times larger than that for usual Type III bursts, and their durations (1-2 s) are few times smaller than that for usual Type III bursts in this frequency band.

  19. The unusual γ-ray burst GRB 101225A from a helium star/neutron star merger at redshift 0.33.

    Science.gov (United States)

    Thöne, C C; de Ugarte Postigo, A; Fryer, C L; Page, K L; Gorosabel, J; Aloy, M A; Perley, D A; Kouveliotou, C; Janka, H T; Mimica, P; Racusin, J L; Krimm, H; Cummings, J; Oates, S R; Holland, S T; Siegel, M H; De Pasquale, M; Sonbas, E; Im, M; Park, W-K; Kann, D A; Guziy, S; García, L Hernández; Llorente, A; Bundy, K; Choi, C; Jeong, H; Korhonen, H; Kubànek, P; Lim, J; Moskvitin, A; Muñoz-Darias, T; Pak, S; Parrish, I

    2011-11-30

    Long γ-ray bursts (GRBs) are the most dramatic examples of massive stellar deaths, often associated with supernovae. They release ultra-relativistic jets, which produce non-thermal emission through synchrotron radiation as they interact with the surrounding medium. Here we report observations of the unusual GRB 101225A. Its γ-ray emission was exceptionally long-lived and was followed by a bright X-ray transient with a hot thermal component and an unusual optical counterpart. During the first 10 days, the optical emission evolved as an expanding, cooling black body, after which an additional component, consistent with a faint supernova, emerged. We estimate its redshift to be z = 0.33 by fitting the spectral-energy distribution and light curve of the optical emission with a GRB-supernova template. Deep optical observations may have revealed a faint, unresolved host galaxy. Our proposed progenitor is a merger of a helium star with a neutron star that underwent a common envelope phase, expelling its hydrogen envelope. The resulting explosion created a GRB-like jet which became thermalized by interacting with the dense, previously ejected material, thus creating the observed black body, until finally the emission from the supernova dominated. An alternative explanation is a minor body falling onto a neutron star in the Galaxy.

  20. Galaxy Mergers Moulding the CGM

    Science.gov (United States)

    Hani, Maan H.; Sparre, Martin; Ellison, Sara L.; Torrey, Paul; Vogelsberger, Mark

    2017-07-01

    Galaxies are surrounded by sizeable gas reservoirs which host a significant amount of metals: the circum-galactic medium (CGM). The CGM acts as a mediator between the galaxy and the extra-galactic medium. However, our understanding of how galaxy mergers, a major evolutionary transformation, impact the CGM remains deficient. We present a theoretical study of the effect of galaxy mergers on the CGM: We use hydrodynamical cosmological zoom-in simulations of a major merger selected from the Illustris project such that the z=0 descendant is a Milky Way-like galaxy, and then re-simulated at a 40 times higher mass resolution. We include post-processing ionization modelling. This work demonstrates the effect the merger has on the characteristic size of the CGM, its metallicity and the predicted covering fraction of various commonly observed gas-phase species, such as H I, C IV and O VI. We show that merger-induced outflows can increase the CGM metallicity by 0.2-0.3 dex within 0.5 Gyr post-merger. These effects last up to 6 Gyr post-merger. While the merger increases the total metal covering fractions by factors of 2-3, the covering fractions of commonly observed UV ions decrease due to the hard ionizing radiation from the active galactic nucleus. The case study of the single simulated major merger presented in this work demonstrates the significant impact that a galaxy interaction can have on the size, metallicity and observed column densities of the CGM (Hani et al. in prep).

  1. Merging Galaxies Create a Binary Quasar

    Science.gov (United States)

    2010-02-01

    Astronomers have found the first clear evidence of a binary quasar within a pair of actively merging galaxies. Quasars are the extremely bright centers of galaxies surrounding super-massive black holes, and binary quasars are pairs of quasars bound together by gravity. Binary quasars, like other quasars, are thought to be the product of galaxy mergers. Until now, however, binary quasars have not been seen in galaxies that are unambiguously in the act of merging. But images of a new binary quasar from the Carnegie Institution's Magellan telescope in Chile show two distinct galaxies with "tails" produced by tidal forces from their mutual gravitational attraction. "This is really the first case in which you see two separate galaxies, both with quasars, that are clearly interacting," says Carnegie astronomer John Mulchaey who made observations crucial to understanding the galaxy merger. Most, if not all, large galaxies, such as our galaxy the Milky Way, host super-massive black holes at their centers. Because galaxies regularly interact and merge, astronomers have assumed that binary super-massive black holes have been common in the Universe, especially during its early history. Black holes can only be detected as quasars when they are actively accreting matter, a process that releases vast amounts of energy. A leading theory is that galaxy mergers trigger accretion, creating quasars in both galaxies. Because most such mergers would have happened in the distant past, binary quasars and their associated galaxies are very far away and therefore difficult for most telescopes to resolve. The binary quasar, labeled SDSS J1254+0846, was initially detected by the Sloan Digital Sky Survey, a large scale astronomical survey of galaxies and over 120,000 quasars. Further observations by Paul Green of the Harvard-Smithsonian Center for Astrophysics and colleagues* using NASA's Chandra's X-ray Observatory and telescopes at Kitt Peak National Observatory in Arizona and Palomar

  2. Massive Black Holes in Central Cluster Galaxies

    Science.gov (United States)

    Volonteri, Marta; Ciotti, Luca

    2013-05-01

    We explore how the co-evolution of massive black holes (MBHs) and galaxies is affected by environmental effects, addressing in particular MBHs hosted in the central cluster galaxies (we will refer to these galaxies in general as "CCGs"). Recently, the sample of MBHs in CCGs with dynamically measured masses has increased, and it has been suggested that these MBH masses (M BH) deviate from the expected correlations with velocity dispersion (σ) and mass of the bulge (M bulge) of the host galaxy: MBHs in CCGs appear to be "overmassive." This discrepancy is more pronounced when considering the M BH-σ relation than the M BH-M bulge one. We show that this behavior stems from a combination of two natural factors: (1) CCGs experience more mergers involving spheroidal galaxies and their MBHs and (2) such mergers are preferentially gas poor. We use a combination of analytical and semi-analytical models to investigate the MBH-galaxy co-evolution in different environments and find that the combination of these two factors is in accordance with the trends observed in current data sets.

  3. MASSIVE BLACK HOLES IN CENTRAL CLUSTER GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Volonteri, Marta [Institut d' Astrophysique de Paris, 98bis Bd. Arago, F-75014 Paris (France); Ciotti, Luca [Dipartimento di Fisica e Astronomia, Universita di Bologna, via Ranzani 1, I-40127 Bologna (Italy)

    2013-05-01

    We explore how the co-evolution of massive black holes (MBHs) and galaxies is affected by environmental effects, addressing in particular MBHs hosted in the central cluster galaxies (we will refer to these galaxies in general as ''CCGs''). Recently, the sample of MBHs in CCGs with dynamically measured masses has increased, and it has been suggested that these MBH masses (M{sub BH}) deviate from the expected correlations with velocity dispersion ({sigma}) and mass of the bulge (M{sub bulge}) of the host galaxy: MBHs in CCGs appear to be ''overmassive''. This discrepancy is more pronounced when considering the M{sub BH}-{sigma} relation than the M{sub BH}-M{sub bulge} one. We show that this behavior stems from a combination of two natural factors: (1) CCGs experience more mergers involving spheroidal galaxies and their MBHs and (2) such mergers are preferentially gas poor. We use a combination of analytical and semi-analytical models to investigate the MBH-galaxy co-evolution in different environments and find that the combination of these two factors is in accordance with the trends observed in current data sets.

  4. Ultramassive black hole feedback in compact galaxies

    Science.gov (United States)

    Ishibashi, W.; Fabian, A. C.

    2017-12-01

    Recent observations confirm the existence of ultra-massive black holes (UMBH) in the nuclei of compact galaxies, with physical properties similar to NGC 1277. The nature of these objects poses a new puzzle to the `black hole-host galaxy co-evolution' scenario. We discuss the potential link between UMBH and galaxy compactness, possibly connected via extreme active galactic nucleus (AGN) feedback at early times ($z > 2$). In our picture, AGN feedback is driven by radiation pressure on dust. We suggest that early UMBH feedback blows away all the gas beyond a $\\sim$kpc or so, while triggering star formation at inner radii, eventually leaving a compact galaxy remnant. Such extreme UMBH feedback can also affect the surrounding environment on larger scales, e.g. the outflowing stars may form a diffuse stellar halo around the compact galaxy, or even escape into the intergalactic or intracluster medium. On the other hand, less massive black holes will drive less powerful feedback, such that the stars formed within the AGN feedback-driven outflow remain bound to the host galaxy, and contribute to its size growth over cosmic time.

  5. Globular Clusters for Faint Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    .The most striking feature of these galaxies, however, is that they are surrounded by a large number of compact objects that appear to be globular clusters. From the observations, Van Dokkum and collaborators estimate that Dragonfly 44 and DFX1 have approximately 74 and 62 globulars, respectively significantly more than the low numbers expected for galaxies of this luminosity.Armed with this knowledge, the authors went back and looked at archival observations of 14 other UDGs also located in the Coma cluster. They found that these smaller and fainter galaxies dont host quite as many globular clusters as Dragonfly 44 and DFX1, but more than half also show significant overdensities of globulars.Main panel: relation between the number of globular clusters and total absolute magnitude for Coma UDGs (solid symbols) compared to normal galaxies (open symbols). Top panel: relation between effective radius and absolute magnitude. The UDGs are significantly larger and have more globular clusters than normal galaxies of the same luminosity. [van Dokkum et al. 2017]Evidence of FailureIn general, UDGs appear to have more globular clusters than other galaxies of the same total luminosity, by a factor of nearly 7. These results are consistent with the scenario in which UDGs are failed galaxies: they likely have the halo mass to have formed a large number of globular clusters, but they were quenched before they formed a disk and bulge. Because star formation never got going in UDGs, they are now much dimmer than other galaxies of the same size.The authors suggest that the next step is to obtain dynamical measurements of the UDGs to determine whether these faint galaxies really do have the halo mass suggested by their large numbers of globulars. Future observations will continue to help us pin down the origin of these dim giants.CitationPieter van Dokkum et al 2017 ApJL 844 L11. doi:10.3847/2041-8213/aa7ca2

  6. Heterogeneity in Short Gamma-Ray Bursts

    Science.gov (United States)

    Norris, Jay P.; Gehrels Neil; Scargle, Jeffrey D.

    2011-01-01

    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample comprises 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales - durations, pulse structure widths, and peak intervals - for EE bursts are factors of approx 2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts - the anti-correlation of pulse intensity and width - continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/XRT. The median flux of the initial XRT detections for EE bursts (approx 6 X 10(exp -10) erg / sq cm/ s) is approx > 20 x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts (approx 60,000 s) is approx 30 x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into more dense environments than non-EE bursts, or that the sometimes-dominant EE component efficiently p()wers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

  7. Infrared observations of the possible X-ray counterpart to the 1992 May 1 gamma-ray burst

    NARCIS (Netherlands)

    Blaes, O; Hurt, T; Antonucci, R; Hurley, K; Smette, A

    1997-01-01

    We present the results of deep infrared imaging in J, H, and K of the quiescent X-ray source located within the 1992 May 1 gamma-ray burst error box. The field is crowded, containing both stars and galaxies, and we discuss the Likelihood that they are associated with the X-ray source. Two objects

  8. A Unified Model for Repeating and Non-repeating Fast Radio Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Bagchi, Manjari, E-mail: manjari@imsc.res.in [The Institute of Mathematical Sciences (IMSc-HBNI), 4th Cross Road, CIT Campus, Taramani, Chennai 600113 (India)

    2017-04-01

    The model that fast radio bursts (FRBs) are caused by plunges of asteroids onto neutron stars can explain both repeating and non-repeating bursts. If a neutron star passes through an asteroid belt around another star, there would be a series of bursts caused by a series of asteroid impacts. Moreover, the neutron star would cross the same belt repetitively if it were in a binary with the star hosting the asteroid belt, leading to a repeated series of bursts. I explore the properties of neutron star binaries that could lead to the only known repeating FRB so far (FRB121102). In this model, the next two epochs of bursts are expected around 2017 February 27 and 2017 December 18. On the other hand, if the asteroid belt is located around the neutron star itself, then a chance fall of an asteroid from that belt onto the neutron star would lead to a non-repeating burst. Even a neutron star grazing an asteroid belt can lead to a non-repeating burst caused by just one asteroid plunge during the grazing. This is possible even when the neutron star is in a binary with the asteroid-hosting star, if the belt and the neutron star orbit are non-coplanar.

  9. Structure and substructure analysis of DAFT/FADA galaxy clusters in the [0.4-0.9] redshift range

    Science.gov (United States)

    Guennou, L.; Adami, C.; Durret, F.; Lima Neto, G. B.; Ulmer, M. P.; Clowe, D.; LeBrun, V.; Martinet, N.; Allam, S.; Annis, J.; Basa, S.; Benoist, C.; Biviano, A.; Cappi, A.; Cypriano, E. S.; Gavazzi, R.; Halliday, C.; Ilbert, O.; Jullo, E.; Just, D.; Limousin, M.; Márquez, I.; Mazure, A.; Murphy, K. J.; Plana, H.; Rostagni, F.; Russeil, D.; Schirmer, M.; Slezak, E.; Tucker, D.; Zaritsky, D.; Ziegler, B.

    2014-01-01

    show the same general behaviour as regular cluster galaxies; however, in substructures, there is a deficiency of both late type and old stellar population galaxies. Late type galaxies with recent bursts of star formation seem to be missing in the substructures close to the bottom of the host cluster potential well. However, our sample would need to be increased to allow a more robust analysis. Tables 1, 2, 4 and Appendices A-C are available in electronic form at http://www.aanda.org

  10. EDGE: Explorer of diffuse emission and gamma-ray burst explosions

    DEFF Research Database (Denmark)

    Den Herder, J.W.; Hermsen, W.; Hoevers, H.

    2007-01-01

    How structures of various scales formed and evolved from the early Universe up to present time is a fundamental question of astrophysics. EDGE1 will trace the cosmic history of the baryons from the early generations of massive stars by Gamma-Ray Burst (GRB) explosions, through the period of galaxy......). This enables the study of their (star-forming) environment and the use of GRBs as back lights of large scale cosmological structures; (b) observing and surveying extended sources (galaxy clusters, WHIM) with high sensitivity using two wide field of view X-ray telescopes (one with a high angular resolution...

  11. Dwarf Galaxies in Voids: Dark Matter Halos and Gas Cooling

    Directory of Open Access Journals (Sweden)

    Matthias Hoeft

    2010-01-01

    Full Text Available Galaxy surveys have shown that luminous galaxies are mainly distributed in large filaments and galaxy clusters. The remaining large volumes are virtually devoid of luminous galaxies. This is in concordance with the formation of the large-scale structure in the universe as derived from cosmological simulations. However, the numerical results indicate that cosmological voids are abundantly populated with dark matter haloes which may in principle host dwarf galaxies. Observational efforts have in contrast revealed that voids are apparently devoid of dwarf galaxies. We investigate the formation of dwarf galaxies in voids by hydrodynamical cosmological simulations. Due to the cosmic ultraviolet background radiation low-mass haloes show generally a reduced baryon fraction. We determine the characteristic mass below which dwarf galaxies are baryon deficient. We show that the circular velocity below which the accretion of baryons is suppressed is approximately 40 kms−1. The suppressed baryon accretion is caused by the photo-heating due to the UV background. We set up a spherical halo model and show that the effective equation of the state of the gas in the periphery of dwarf galaxies determines the characteristic mass. This implies that any process which heats the gas around dwarf galaxies increases the characteristic mass and thus reduces the number of observable dwarf galaxies.

  12. In Pursuit of the Least Luminous Galaxies

    Directory of Open Access Journals (Sweden)

    Beth Willman

    2010-01-01

    Full Text Available The dwarf galaxy companions to the Milky Way are unique cosmological laboratories. With luminosities as low as 10−7LMW, they inhabit the lowest mass dark matter halos known to host stars and are presently the most direct tracers of the distribution, mass spectrum, and clustering scale of dark matter. Their resolved stellar populations also facilitate detailed studies of their history and mass content. To fully exploit this potential requires a well-defined census of virtually invisible galaxies to the faintest possible limits and to the largest possible distances. I review the past and present impacts of survey astronomy on the census of Milky Way dwarf galaxy companions and discuss the future of finding ultra-faint dwarf galaxies around the Milky Way and beyond in wide-field survey data.

  13. Spontaneous formation of double bars in dark matter dominated galaxies

    OpenAIRE

    Saha, Kanak; Maciejewski, Witold

    2013-01-01

    Although nearly one-third of barred galaxies host an inner, secondary bar, the formation and evolution of double barred galaxies remain unclear. We show here an example model of a galaxy, dominated by a live dark matter halo, in which double bars form naturally, without requiring gas, and we follow its evolution for a Hubble time. The inner bar in our model galaxy rotates almost as slowly as the outer bar, and it can reach up to half of its length. The route to the formation of a double bar m...

  14. Jet-induced star formation in gas-rich galaxies

    OpenAIRE

    Gaibler, Volker; Khochfar, Sadegh; Krause, Martin; Silk, Joseph

    2011-01-01

    Feedback from active galactic nuclei (AGN) has become a major component in simulations of galaxy evolution, in particular for massive galaxies. AGN jets have been shown to provide a large amount of energy and are capable of quenching cooling flows. Their impact on the host galaxy, however, is still not understood. Subgrid models of AGN activity in a galaxy evolution context so far have been mostly focused on the quenching of star formation. To shed more light on the actual physics of the "rad...

  15. Bursts in intermittent aeolian saltation

    CERN Document Server

    Carneiro, M V; Herrmann, H J

    2014-01-01

    Close to the onset of Aeolian particle transport through saltation we find in wind tunnel experiments a regime of intermittent flux characterized by bursts of activity. Scaling laws are observed in the time delay between each burst and in the measurements of the wind fluctuations at the critical Shields number $\\theta_c$. The time delay between each burst decreases on average with the increase of the Shields number until saltation becomes non-intermittent and the sand flux becomes continuous. A numerical model for saltation including the wind-entrainment from the turbulent fluctuations can reproduce these observations and gives insight about their origin. We present here also for the first time measurements showing that with feeding it becomes possible to sustain intermittent flux even below the threshold $\\theta_c$ for natural saltation initiation.

  16. The dark side of galaxy colour: evidence from new SDSS measurements of galaxy clustering and lensing

    Energy Technology Data Exchange (ETDEWEB)

    Hearin, Andrew P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). Fermilab Center for Particle Astrophysics; Watson, Douglas F. [Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); Becker, Matthew R. [Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); KICP, Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Reyes, Reinabelle [Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); Berlind, Andreas A. [Vanderbilt Univ., Nashville, TN (United States). Dept. of Physics and Astronomy; Zentner, Andrew R. [Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (PITT PACC), PA (United States)

    2014-08-12

    The age matching model has recently been shown to predict correctly the luminosity L and g-r color of galaxies residing within dark matter halos. The central tenet of the model is intuitive: older halos tend to host galaxies with older stellar populations. In this paper, we demonstrate that age matching also correctly predicts the g-r color trends exhibited in a wide variety of statistics of the galaxy distribution for stellar mass M* threshold samples. In particular, we present new measurements of the galaxy two-point correlation function and the galaxy-galaxy lensing signal as a function of M* and g-r color from the Sloan Digital Sky Survey, and show that age matching exhibits remarkable agreement with these and other statistics of low-redshift galaxies. In so doing, we also demonstrate good agreement between the galaxy-galaxy lensing observed by SDSS and the signal predicted by abundance matching, a new success of this model. We describe how age matching is a specific example of a larger class of Conditional Abundance Matching models (CAM), a theoretical framework we introduce here for the first time. CAM provides a general formalism to study correlations at fixed mass between any galaxy property and any halo property. The striking success of our simple implementation of CAM provides compelling evidence that this technique has the potential to describe the same set of data as alternative models, but with a dramatic reduction in the required number of parameters. CAM achieves this reduction by exploiting the capability of contemporary N-body simulations to determine dark matter halo properties other than mass alone, which distinguishes our model from conventional approaches to the galaxy-halo connection.

  17. Galaxy Evolution with Stellar Disks, Halos, and Streams in Nearby Galaxies

    Science.gov (United States)

    Staudaher, Shawn M.

    This thesis begins with a deep-dive into the stellar properties of the nearby spiral galaxy, M 63, a member of the EDGES (Extended Disk Galaxy Exploration Science) survey. Deep ( 28 AB mag arcsec-2) 3.6 mum imaging from the Spitzer Space Telescope reveals that the spiral structure of this galaxy is enveloped by an extended stellar halo, the result of the accretion of smaller galaxies. The mass of this stellar halo agrees well with results from the latest large scale LambdaCDM based galaxy evolution models. M 63 is also host to a tidal stream, an actively accreting satellite. The mass of the progenitor satellite is large enough that only sixteen similarly sized accretion events would account for the mass in the stellar halo. In addition, the majority of satellite accretion must have happened in the past as the average accretion rate derived from the stellar halo is significantly larger than the average accretion rate derived from the more recent tidal stream. The scope of the thesis is then extended to include the full sample of 92 nearby galaxies from EDGES. This is the largest Spitzer Space Telescope survey to probe the extended stellar properties of nearby galaxies. The surface brightness profiles of EDGES galaxies contain an unprecedented number of breaks (transitions from one galactic component to the next) given the sample size of EDGES, proving that studies of break statistics are incomplete without significantly deep imaging. The surface brightness profiles are decomposed into their individual components and the stellar mass for each component is measured. Seven galaxies contain strong evidence for the presence of stellar halos, and the masses of these halos agree with predictions from LambdaCDM based galaxy evolution models. However, the lack of stellar halos in general may be evidence that simulations continue to suffer from the so-called "missing satellite problem", where the number of satellite galaxies is overpredicted compared to observations.

  18. Age bimodality in the central region of pseudo-bulges in S0 galaxies

    Science.gov (United States)

    Mishra, Preetish K.; Barway, Sudhanshu; Wadadekar, Yogesh

    2017-11-01

    We present evidence for bimodal stellar age distribution of pseudo-bulges of S0 galaxies as probed by the Dn(4000) index. We do not observe any bimodality in age distribution for pseudo-bulges in spiral galaxies. Our sample is flux limited and contains 2067 S0 and 2630 spiral galaxies drawn from the Sloan Digital Sky Survey. We identify pseudo-bulges in S0 and spiral galaxies, based on the position of the bulge on the Kormendy diagram and their central velocity dispersion. Dividing the pseudo-bulges of S0 galaxies into those containing old and young stellar populations, we study the connection between global star formation and pseudo-bulge age on the u - r colour-mass diagram. We find that most old pseudo-bulges are hosted by passive galaxies while majority of young bulges are hosted by galaxies that are star forming. Dividing our sample of S0 galaxies into early-type S0s and S0/a galaxies, we find that old pseudo-bulges are mainly hosted by early-type S0 galaxies while most of the pseudo-bulges in S0/a galaxies are young. We speculate that morphology plays a strong role in quenching of star formation in the disc of these S0 galaxies, which stops the growth of pseudo-bulges, giving rise to old pseudo-bulges and the observed age bimodality.

  19. Mid-Infrared Properties of the Swift Burst Alert Telescope Active Galactic Nuclei Sample of the Local Universe. 1. Emission-Line Diagnostics

    Science.gov (United States)

    2010-06-20

    sample of different sources, including our BAT AGNs, LINERs, starburst galaxies , H ii galaxies , and blue compact dwarf from high-resolution Spitzer...populations; however, six newly discovered BAT AGNs are under-luminous in [O iv], most likely the result of dust extinction in the host galaxy . The...forming galaxies , and LINERs. We find that the BAT AGN sample falls into a distinc- tive region when comparing the [Ne iii]/[Ne ii] and the [O iv]/[Ne

  20. VLBA Locates Origin of Superenergetic Bursts Near Giant Black Hole

    Science.gov (United States)

    2009-07-01

    Using a worldwide combination of diverse telescopes, astronomers have discovered that a giant galaxy's bursts of very high energy gamma rays are coming from a region very close to the supermassive black hole at its core. The discovery provides important new information about the mysterious workings of the powerful "engines" in the centers of innumerable galaxies throughout the Universe. M87 Zooming in on the powerful core of the galaxy M87 CREDIT: Bill Saxton, NRAO/AUI/NSF Full Page of Graphics The galaxy M87, 50 million light-years from Earth, harbors at its center a black hole more than six billion times more massive than the Sun. Black holes are concentrations of matter so dense that not even light can escape their gravitational pull. The black hole is believed to draw material from its surroundings -- material that, as it falls toward the black hole, forms a tightly-rotating disk. Processes near this accretion disk, powered by the immense gravitational energy of the black hole, propel energetic material outward for thousands of light-years. This produces the "jets" seen emerging from many galaxies. In 1998, astronomers found that M87 also was emitting flares of gamma rays a trillion times more energetic than visible light. However, the telescopes that discovered these bursts of very high energy gamma rays could not determine exactly where in the galaxy they originated. In 2007 and 2008, the astronomers using these gamma-ray telescopes combined forces with a team using the National Science Foundation's continent-wide Very Long Baseline Array (VLBA), a radio telescope with extremely high resolving power, or ability to see fine detail. "Combining the gamma-ray observations with the supersharp radio 'vision' of the VLBA allowed us to see that the gamma rays are coming from a region very near the black hole itself," said Craig Walker, of the National Radio Astronomy Observatory (NRAO). "Pinning down this location addresses what was an open question and provides

  1. Combining Galaxy-Galaxy Lensing and Galaxy Clustering

    Energy Technology Data Exchange (ETDEWEB)

    Park, Youngsoo [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Krause, Elisabeth [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Dodelson, Scott [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Jain, Bhuvnesh [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Amara, Adam [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Becker, Matt [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bridle, Sarah [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Clampitt, Joseph [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Crocce, Martin [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Honscheid, Klaus [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gaztanaga, Enrique [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Sanchez, Carles [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Wechsler, Risa [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-01-01

    Combining galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth rate of large scale structure, a quantity that will shed light on the mechanism driving the acceleration of the Universe. The Dark Energy Survey (DES) is a prime candidate for such an analysis, with its measurements of both the distribution of galaxies on the sky and the tangential shears of background galaxies induced by these foreground lenses. By constructing an end-to-end analysis that combines large-scale galaxy clustering and small-scale galaxy-galaxy lensing, we also forecast the potential of a combined probes analysis on DES datasets. In particular, we develop a practical approach to a DES combined probes analysis by jointly modeling the assumptions and systematics affecting the different components of the data vector, employing a shared halo model, HOD parametrization, photometric redshift errors, and shear measurement errors. Furthermore, we study the effect of external priors on different subsets of these parameters. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/ optimistically constraining the growth function to 8%/4.9% with its first-year data covering 1000 square degrees, and to 4%/2.3% with its full five-year data covering 5000 square degrees.

  2. EXIST's Gamma-Ray Burst Sensitivity

    Science.gov (United States)

    Band, D. L.; Grindlay, J. E.; Hong, J.; Fishman, G.; Hartmann, D. H.; Garson, A., III; Krawczynski, H.; Barthelmy, S.; Gehrels, N.; Skinner, G.

    2008-02-01

    We use semianalytic techniques to evaluate the burst sensitivity of designs for the EXIST hard X-ray survey mission. Applying these techniques to the mission design proposed for the Beyond Einstein program, we find that with its very large field of view and faint gamma-ray burst detection threshold, EXIST will detect and localize approximately two bursts per day, a large fraction of which may be at high redshift. We estimate that EXIST's maximum sensitivity will be ~4 times greater than that of Swift's Burst Alert Telescope. Bursts will be localized to better than 40'' at threshold, with a burst position as good as a few arcseconds for strong bursts. EXIST's combination of three different detector systems will provide spectra from 3 keV to more than 10 MeV. Thus, EXIST will enable a major leap in the understanding of bursts, their evolution, environment, and utility as cosmological probes.

  3. Optothermally actuated capillary burst valve

    DEFF Research Database (Denmark)

    Eriksen, Johan; Bilenberg, Brian; Kristensen, Anders

    2017-01-01

    be burst by raising the temperature due to the temperature dependence of the fluid surface tension. We address individual valves by using a local heating platform based on a thin film of near infrared absorber dye embedded in the lid used to seal the microfluidic device [L. H. Thamdrup et al., Nano Lett...

  4. Respiratory burst oxidase of fertilization.

    Science.gov (United States)

    Heinecke, J W; Shapiro, B M

    1989-02-01

    Partially reduced oxygen species are toxic, yet sea urchin eggs synthesize H2O2 in a "respiratory burst" at fertilization, as an extracellular oxidant to crosslink their protective surface envelopes. To study the biochemical mechanism for H2O2 production, we have isolated an NADPH-specific oxidase fraction from homogenates of unfertilized Strongylocentrotus purpuratus eggs that produces H2O2 when stimulated with Ca2+ and MgATP2-. Concentrations of free Ca2+ previously implicated in regulation of egg activation modulate the activity of the oxidase. Inhibitors were used to test the relevance of this oxidase to the respiratory burst of fertilization. Procaine, two phenothiazines, and N-ethylmaleimide (but not iodoacetamide) inhibited H2O2 production by the oxidase fraction and oxygen consumption by activated eggs. The ATP requirement suggested that protein kinase activity might regulate the respiratory burst of fertilization; consonant with this hypothesis, H-7 and staurosporine were inhibitory. The respiratory burst oxidase of fertilization is an NADPH:O2 oxidoreductase that appears to be regulated by a protein kinase; although it bears a remarkable resemblance to the neutrophil oxidase, unlike the latter it does not form O2- as its initial product.

  5. FERMIGBRST - Fermi GBM Burst Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — This table lists all of the triggers observed by a subset of the 14 GBM detectors (12 NaI and 2 BGO) which have been classified as gamma-ray bursts (GRBs). Note that...

  6. Perspectives of observing the color indices of optical afterglows of gamma-ray bursts with ESA Gaia

    Science.gov (United States)

    Šimon, Vojtěch; Hudec, René; Pizzichini, Graziella

    2017-10-01

    We propose a strategy for detecting and analyzing optical afterglows (OAs) of long gamma-ray bursts (GRBs) without the need to obtain their light curves. This approach is useful for the Gaia satellite, which provides sampled optical ultra-low-dispersion spectroscopic observations of the sky. For this purpose, we show that most OAs of long GRBs display specific values of some of their color indices, representing synchrotron emission of the jet. They are stable in time during the event. These indices, which can be determined from the spectra, are very similar for the ensemble of OAs with redshift z Gaia instruments also gives us a hope to search for the so-called orphan afterglows, which, according to some authors, can be considerably more numerous than OAs of the observed GRBs. We also show how to resolve OAs from other transients in the Gaia data. The color indices and the properties of the quiescent sources (host galaxies of OAs detectable later by the large ground-based telescopes at the co-ordinates of the OA determined by Gaia) would tell us which one, among transients detected by Gaia, is a GRB OA.

  7. A Zoo of Galaxies

    Science.gov (United States)

    Masters, Karen L.

    2015-03-01

    We live in a universe filled with galaxies with an amazing variety of sizes and shapes. One of the biggest challenges for astronomers working in this field is to understand how all these types relate to each other in the background of an expanding universe. Modern astronomical surveys (like the Sloan Digital Sky Survey) have revolutionised this field of astronomy, by providing vast numbers of galaxies to study. The sheer size of the these databases made traditional visual classification of the types galaxies impossible and in 2007 inspired the Galaxy Zoo project (www.galaxyzoo.org); starting the largest ever scientific collaboration by asking members of the public to help classify galaxies by type and shape. Galaxy Zoo has since shown itself, in a series of now more than 30 scientific papers, to be a fantastic database for the study of galaxy evolution. In this Invited Discourse I spoke a little about the historical background of our understanding of what galaxies are, of galaxy classification, about our modern view of galaxies in the era of large surveys. I finish with showcasing some of the contributions galaxy classifications from the Galaxy Zoo project are making to our understanding of galaxy evolution.

  8. Detecting pipe bursts by monitoring water demand

    NARCIS (Netherlands)

    Bakker, M.; Vreeburg, J.H.G.; Van der Roer, M.; Sperber, V.

    2012-01-01

    An algorithm which compares measured and predicted water demands to detect pipe bursts was developed and tested on three data sets of water demand and reported pipe bursts of three years. The algorithm proved to be able to detect bursts where the water loss exceeds 30% of the average water demand in

  9. Hubble's Menagerie of Galaxies

    Indian Academy of Sciences (India)

    Srimath

    typ es form an evolutionary sequence: does one type of galaxy evolve into another? 1. T he D iscovery of G alaxies. A stronom ers began to ponder these issues only after they discovered w hat w as m eant by a galaxy. It w as in the 1920s that astronom ers realised that w e live in a separate galaxy, and that other galaxies w ...

  10. Q-3D: Imaging Spectroscopy of Quasar Hosts with JWST Analyzed with a Powerful New PSF Decomposition and Spectral Analysis Package

    Science.gov (United States)

    Wylezalek, Dominika; Veilleux, Sylvain; Zakamska, Nadia; Barrera-Ballesteros, J.; Luetzgendorf, N.; Nesvadba, N.; Rupke, D.; Sun, A.

    2017-11-01

    In the last few years, optical and near-IR IFU observations from the ground have revolutionized extragalactic astronomy. The unprecedented infrared sensitivity, spatial resolution, and spectral coverage of the JWST IFUs will ensure high demand from the community. For a wide range of extragalactic phenomena (e.g. quasars, starbursts, supernovae, gamma ray bursts, tidal disruption events) and beyond (e.g. nebulae, debris disks around bright stars), PSF contamination will be an issue when studying the underlying extended emission. We propose to provide the community with a PSF decomposition and spectral analysis package for high dynamic range JWST IFU observations allowing the user to create science-ready maps of relevant spectral features. Luminous quasars, with their bright central source (quasar) and extended emission (host galaxy), are excellent test cases for this software. Quasars are also of high scientific interest in their own right as they are widely considered to be the main driver in regulating massive galaxy growth. JWST will revolutionize our understanding of black hole-galaxy co-evolution by allowing us to probe the stellar, gas, and dust components of nearby and distant galaxies, spatially and spectrally. We propose to use the IFU capabilities of NIRSpec and MIRI to study the impact of three carefully selected luminous quasars on their hosts. Our program will provide (1) a scientific dataset of broad interest that will serve as a pathfinder for JWST science investigations in IFU mode and (2) a powerful new data analysis tool that will enable frontier science for a wide swath of astrophysical research.

  11. Accretion by the Galaxy

    NARCIS (Netherlands)

    Binney, J.; Fraternali, F.; Reylé, C.; Robin, A.; Schultheis, M.

    Cosmology requires at least half of the baryons in the Universe to be in the intergalactic medium, much of which is believed to form hot coronae around galaxies. Star-forming galaxies must be accreting from their coronae. Hi observations of external galaxies show that they have Hi halos associated

  12. The Fastest Galaxy Evolution in an Unbiased Compact Group Sample with WISE

    Science.gov (United States)

    Lee, Gwang-Ho; Hwang, Ho Seong; Sohn, Jubee; Lee, Myung Gyoon

    2017-02-01

    We study the mid-infrared (MIR) properties of galaxies in compact groups and their environmental dependence using the Wide-field Infrared Survey Explorer (WISE) data. We use a volume-limited sample of 670 compact groups and their 2175 member galaxies with {M}rSohn et al., which were identified using a friends-of-friends algorithm. Among the 2175 galaxies, 1541 galaxies are detected at WISE 12 μ {{m}} with a signal-to-noise ratio greater than 3. Among the 1541 galaxies, 433 AGN-host galaxies are identified by using both optical and MIR classification schemes. Using the remaining 1108 non-AGN galaxies, we find that the MIR [3.4]-[12] colors of compact group early-type galaxies are on average bluer than those of cluster early-type galaxies. When compact groups have both early- and late-type member galaxies, the MIR colors of the late-type members in those compact groups are bluer than the MIR colors of cluster late-type galaxies. As compact groups are located in denser regions, they tend to have larger early-type galaxy fractions and bluer MIR color galaxies. These trends are also seen for neighboring galaxies around compact groups. However, compact group member galaxies always have larger early-type galaxy fractions and bluer MIR colors than their neighboring galaxies. Our findings suggest that the properties of compact group galaxies depend on both internal and external environments of compact groups, and that galaxy evolution is faster in compact groups than in the central regions of clusters.

  13. On the morphological dichotomies observed in the powerful radio galaxies

    Science.gov (United States)

    Miraghaei, H.; Best, P. N.

    2017-06-01

    We study environment and host galaxy properties of powerful radio galaxies with different radio morphologies from compact sources to very extended double lobed radio galaxies and with different optical spectra classified as high excitation (HERG; quasar-mode) and low excitation (LERG; jet-mode) radio galaxies. We use a complete sample of morphologically classified radio sources from [1] and perform three different analyses: i) we compare compact radio sources with the extended sources from the same class of excitation. ii) we compare HERGs with the LERGs using a combined sample of compact and extended sources. iii) we investigate the origin of different morphologies observed in the very extended powerful radio galaxies, historically classified as Fanaroff-Riley (FR) radio galaxies of type I and type II by comparing a sample of FRIs with the FRIIs from the same excitation class. We discuss the results and what causes the differences in each comparison. The role of host galaxy and the central super massive black hole, and the galaxy interactions are all investigated.

  14. Stellar-to-halo mass relation of cluster galaxies

    Science.gov (United States)

    Niemiec, Anna; Jullo, Eric; Limousin, Marceau; Giocoli, Carlo; Erben, Thomas; Hildebrant, Hendrik; Kneib, Jean-Paul; Leauthaud, Alexie; Makler, Martin; Moraes, Bruno; Pereira, Maria E. S.; Shan, Huanyuan; Rozo, Eduardo; Rykoff, Eli; Van Waerbeke, Ludovic

    2017-10-01

    In the formation of galaxy groups and clusters, the dark matter haloes containing satellite galaxies are expected to be tidally stripped in gravitational interactions with the host. We use galaxy-galaxy weak lensing to measure the average mass of dark matter haloes of satellite galaxies as a function of projected distance to the centre of the host, since stripping is expected to be greater for satellites closer to the centre of the cluster. We further classify the satellites according to their stellar mass: Assuming that the stellar component of the galaxy is less disrupted by tidal stripping, stellar mass can be used as a proxy of the infall mass. We study the stellar-to-halo mass relation of satellites as a function of the cluster-centric distance to measure tidal stripping. We use the shear catalogues of the Dark Energy Survey (DES) science verification archive, the Canada-France-Hawaii Lensing Survey (CFHTLenS) and the CFHT Stripe 82 surveys, and we select satellites from the redMaPPer catalogue of clusters. For galaxies located in the outskirts of clusters, we find a stellar-to- halo mass relation in good agreement with the theoretical expectations from Moster et al. for central galaxies. In the centre of the cluster, we find that this relation is shifted to smaller halo mass for a given stellar mass. We interpret this finding as further evidence for tidal stripping of dark matter haloes in high-density environments.

  15. Brightest galaxies as halo centre tracers in SDSS DR7

    Science.gov (United States)

    Lange, Johannes U.; van den Bosch, Frank C.; Hearin, Andrew; Campbell, Duncan; Zentner, Andrew R.; Villarreal, Antonio; Mao, Yao-Yuan

    2018-01-01

    Determining the positions of halo centres in large-scale structure surveys is crucial for many cosmological studies. A common assumption is that halo centres correspond to the location of their brightest member galaxies. In this paper, we study the dynamics of brightest galaxies with respect to other halo members in the Sloan Digital Sky Survey DR7. Specifically, we look at the line-of-sight velocity and spatial offsets between brightest galaxies and their neighbours. We compare those to detailed mock catalogues, constructed from high-resolution, dark-matter-only N-body simulations, in which it is assumed that satellite galaxies trace dark matter subhaloes. This allows us to place constraints on the fraction fBNC of haloes in which the brightest galaxy is not the central. Compared to previous studies, we explicitly take into account the unrelaxed state of the host haloes, velocity offsets of halo cores and correlations between fBNC and the satellite occupation. We find that fBNC strongly decreases with the luminosity of the brightest galaxy and increases with the mass of the host halo. Overall, in the halo mass range 1013-1014.5 h- 1M⊙ we find fBNC ∼ 30 per cent, in good agreement with a previous study by Skibba et al. We discuss the implications of these findings for studies inferring the galaxy-halo connection from satellite kinematics, models of the conditional luminosity function and galaxy formation in general.

  16. Revisiting The First Galaxies: The Epoch of Population III Stars

    Science.gov (United States)

    Muratov, Alexander; Gnedin, O. Y.; Gnedin, N. Y.; Zemp, M. K.

    2013-01-01

    We study the formation of the first galaxies using new hydrodynamic cosmological simulations with the ART code. Our simulations feature a recently developed model for dust-based formation of molecular gas. Here, we develop and implement a new recipe for the formation of metal-free Pop III stars. We reach a spatial resolution of 2 pc at z=10 and resolve star-forming galaxies with the masses above 10^6 solar masses. We find the epoch during which Pop III stars dominate the energy and metal budget of the universe to be short-lived. While these stars seed their host galaxies with metals, they cannot drive significant outflows to enrich the IGM in our simulations. Feedback from pair instability supernovae causes Pop III star formation to self-terminate within their host galaxies, but is not strong enough to suppress star formation in external galaxies. Within any individual galaxy, Pop II stars overtake Pop III stars within ~50-150 Myr. A threshold of M = 3 * 10^6 solar masses separates galaxies that lose a significant fraction of their baryons due to Pop III feedback from those that do not. Understanding the nature of the transition between Pop III and Pop II star formation is of key importance for studying the dawn of galaxy formation.

  17. The 999th Swift gamma-ray burst: Some like it thermal. A multiwavelength study of GRB 151027A

    Science.gov (United States)

    Nappo, F.; Pescalli, A.; Oganesyan, G.; Ghirlanda, G.; Giroletti, M.; Melandri, A.; Campana, S.; Ghisellini, G.; Salafia, O. S.; D'Avanzo, P.; Bernardini, M. G.; Covino, S.; Carretti, E.; Celotti, A.; D'Elia, V.; Nava, L.; Palazzi, E.; Poppi, S.; Prandoni, I.; Righini, S.; Rossi, A.; Salvaterra, R.; Tagliaferri, G.; Testa, V.; Venturi, T.; Vergani, S. D.

    2017-02-01

    We present a multiwavelength study of GRB 151027A. This is the 999th gamma-ray burst detected by the Swift satellite and it has a densely sampled emission in the X-ray and optical band and has been observed and detected in the radio up to 140 days after the prompt. The multiwavelength light curve from 500 s to 140 days can be modelled through a standard forward shock afterglow, but it requires an additional emission component to reproduce the early X-ray and optical emission. We present optical observations performed with the Telescopio Nazionale Galileo (TNG) and the Large Binocular Telescope (LBT) 19.6, 33.9, and 92.3 days after the trigger which show a bump with respect to a standard afterglow flux decay and are interpreted as possibly due to the underlying supernova and host galaxy (at a level of 0.4 μJy in the optical R band, RAB 25). Radio observations, performed with the Sardinia Radio Telescope (SRT) and Medicina in single-dish mode and with the European Very Long Baseline Interferometer (VLBI) Network and the Very Long Baseline Array (VLBA), between day 4 and 140 suggest that the burst exploded in an environment characterized by a density profile scaling with the distance from the source (wind profile). A remarkable feature of the prompt emission is the presence of a bright flare 100 s after the trigger, lasting 70 s in the soft X-ray band, which was simultaneously detected from the optical band up to the MeV energy range. By combining Swift-BAT/XRT and Fermi-GBM data, the broadband (0.3-1000 keV) time resolved spectral analysis of the flare reveals the coexistence of a non-thermal (power law) and thermal blackbody components. The blackbody component contributes up to 35% of the luminosity in the 0.3-1000 keV band. The γ-ray emission observed in Swift-BAT and Fermi-GBM anticipates and lasts less than the soft X-ray emission as observed by Swift-XRT, arguing against a Comptonization origin. The blackbody component could either be produced by an outflow

  18. Selections from 2016: A Very Dark Galaxy

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    Editors note:In these last two weeks of 2016, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume after the AAS winter meeting.A High Stellar Velocity Dispersion and 100 Globular Clusters for the Ultra-Diffuse Galaxy Dragonfly 44Published August2016Main takeaway:Using the Keck Observatory and the Gemini North telescope in Hawaii, a team led by Pieter van Dokkum (Yale University) discovered the very dim galaxy Dragonfly 44, located in the Coma cluster. The team estimated the center of this galaxys disk to be a whopping 98% dark matter.Why its interesting:Dragonfly 44, though dim, was discovered to host around 100 globular clusters. Measuring the dynamics of these clusters allowed van Dokkum and collaborators to estimate the mass of Dragonfly 44: roughly a trillion times the mass of the Sun. This is similar to the mass of the Milky Way, and yet the Milky Way has over a hundred times more stars than this intriguing galaxy. Its very unexpected to find a galaxy this massive that has a dark-matter fraction this high.What we can learn from this:How do ultra-faint galaxies like these form? One theory is that theyre failed normal galaxies: they have the sizes, dark-matter content, and globular cluster systems of much more luminous galaxies, but they were prevented from building up a normal stellar population. So far, Dragonfly 44s properties seem consistent with this picture.CitationPieter van Dokkum et al 2016 ApJL 828 L6. doi:10.3847/2041-8205/828/1/L6

  19. Respiratory burst oxidase of fertilization.

    OpenAIRE

    Heinecke, J W; Shapiro, B M

    1989-01-01

    Partially reduced oxygen species are toxic, yet sea urchin eggs synthesize H2O2 in a "respiratory burst" at fertilization, as an extracellular oxidant to crosslink their protective surface envelopes. To study the biochemical mechanism for H2O2 production, we have isolated an NADPH-specific oxidase fraction from homogenates of unfertilized Strongylocentrotus purpuratus eggs that produces H2O2 when stimulated with Ca2+ and MgATP2-. Concentrations of free Ca2+ previously implicated in regulation...

  20. On the neutron bursts origin.

    CERN Document Server

    Stenkin, Yu V

    2002-01-01

    The origin of the neutron bursts in Extensive Air Showers (EAS) is explained using results of the experiments and CORSIKA based Monte-Carlo simulations. It is shown that events with very high neutron multiplicity observed last years in neutron monitors as well as in surrounding detectors, are caused by usual EAS core with primary energies > 1 PeV. No exotic processes were needed for the explanation.

  1. Black Hole Caught Zapping Galaxy into Existence?

    Science.gov (United States)

    2009-11-01

    Which come first, the supermassive black holes that frantically devour matter or the enormous galaxies where they reside? A brand new scenario has emerged from a recent set of outstanding observations of a black hole without a home: black holes may be "building" their own host galaxy. This could be the long-sought missing link to understanding why the masses of black holes are larger in galaxies that contain more stars. "The 'chicken and egg' question of whether a galaxy or its black hole comes first is one of the most debated subjects in astrophysics today," says lead author David Elbaz. "Our study suggests that supermassive black holes can trigger the formation of stars, thus 'building' their own host galaxies. This link could also explain why galaxies hosting larger black holes have more stars." To reach such an extraordinary conclusion, the team of astronomers conducted extensive observations of a peculiar object, the nearby quasar HE0450-2958 (see eso0523 for a previous study of this object), which is the only one for which a host galaxy has not yet been detected [1]. HE0450-2958 is located some 5 billion light-years away. Until now, it was speculated that the quasar's host galaxy was hidden behind large amounts of dust, and so the astronomers used a mid-infrared instrument on ESO's Very Large Telescope for the observations [2]. At such wavelengths, dust clouds shine very brightly, and are readily detected. "Observing at these wavelengths would allow us to trace dust that might hide the host galaxy," says Knud Jahnke, who led the observations performed at the VLT. "However, we did not find any. Instead we discovered that an apparently unrelated galaxy in the quasar's immediate neighbourhood is producing stars at a frantic rate." These observations have provided a surprising new take on the system. While no trace of stars is revealed around the black hole, its companion galaxy is extremely rich in bright and very young stars. It is forming stars at a rate

  2. Satellite Dwarf Galaxies in a Hierarchical Universe: The Prevalence of Dwarf-Dwarf Major Mergers

    OpenAIRE

    Deason, Alis; Wetzel, Andrew; Garrison-Kimmel, Shea

    2014-01-01

    Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ~10% of satellite dwarf galaxies with M_star > 10^6 M_sun that are within the host...

  3. INDUCED SCATTERING LIMITS ON FAST RADIO BURSTS FROM STELLAR CORONAE

    Energy Technology Data Exchange (ETDEWEB)

    Lyubarsky, Yuri [Physics Department, Ben-Gurion University, P.O.B. 653, Beer-Sheva 84105 (Israel); Ostrovska, Sofiya [Department of Mathematics, Atilim University, Incek 06836, Ankara (Turkey)

    2016-02-10

    The origin of fast radio bursts remains a puzzle. Suggestions have been made that they are produced within the Earth’s atmosphere, in stellar coronae, in other galaxies, or at cosmological distances. If they are extraterrestrial, the implied brightness temperature is very high, and therefore the induced scattering places constraints on possible models. In this paper, constraints are obtained on flares from coronae of nearby stars. It is shown that the radio pulses with the observed power could not be generated if the plasma density within and in the nearest vicinity of the source is as high as is necessary to provide the observed dispersion measure. However, one cannot exclude the possibility that the pulses are generated within a bubble with a very low density and pass through the dense plasma only in the outer corona.

  4. Chemical evolution of galaxies

    CERN Document Server

    Matteucci, Francesca

    2012-01-01

    The term “chemical evolution of galaxies” refers to the evolution of abundances of chemical species in galaxies, which is due to nuclear processes occurring in stars and to gas flows into and out of galaxies. This book deals with the chemical evolution of galaxies of all morphological types (ellipticals, spirals and irregulars) and stresses the importance of the star formation histories in determining the properties of stellar populations in different galaxies. The topic is approached in a didactical and logical manner via galaxy evolution models which are compared with observational results obtained in the last two decades: The reader is given an introduction to the concept of chemical abundances and learns about the main stellar populations in our Galaxy as well as about the classification of galaxy types and their main observables. In the core of the book, the construction and solution of chemical evolution models are discussed in detail, followed by descriptions and interpretations of observations of ...

  5. A whirling plane of satellite galaxies around Centaurus A challenges cold dark matter cosmology

    Science.gov (United States)

    Müller, Oliver; Pawlowski, Marcel S.; Jerjen, Helmut; Lelli, Federico

    2018-02-01

    Massive galaxies like our Milky Way are orbited by satellite dwarf galaxies. Standard cosmological simulations of galaxy formation predict that these satellites should move randomly around their host. Müller et al. examined the satellites of the nearby elliptical galaxy Centaurus A (see the Perspective by Boylan-Kolchin). They found that the satellites are distributed in a planar arrangement, and the members of the plane are orbiting in a coherent direction. This is inconsistent with more than 99% of comparable galaxies in simulations. Centaurus A, the Milky Way, and Andromeda all have highly statistically unlikely satellite systems. This observational evidence suggests that something is wrong with standard cosmological simulations.

  6. COMPARING H{alpha} AND H I SURVEYS AS MEANS TO A COMPLETE LOCAL GALAXY CATALOG IN THE ADVANCED LIGO/VIRGO ERA

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Brian D. [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08542 (United States); Kaplan, David L. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Berger, Edo, E-mail: bmetzger@astro.princeton.edu, E-mail: kaplan@uwm.edu, E-mail: eberger@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-02-20

    Identifying the electromagnetic counterparts of gravitational wave (GW) sources detected by upcoming networks of advanced ground-based interferometers will be challenging, due in part to the large number of unrelated astrophysical transients within the {approx}10-100 deg{sup 2} sky localizations. A potential way to greatly reduce the number of such false positives is to limit detailed follow-up to only those candidates near galaxies within the GW sensitivity range of {approx}200 Mpc for binary neutron star mergers. Such a strategy is currently hindered by the fact that galaxy catalogs are grossly incomplete within this volume. Here, we compare two methods for completing the local galaxy catalog: (1) a narrowband H{alpha} imaging survey and (2) an H I emission line radio survey. Using H{alpha} fluxes, stellar masses (M {sub *}), and star formation rates (SFRs) from galaxies in the Sloan Digital Sky Survey (SDSS), combined with H I data from the GALEX Arecibo SDSS Survey and the Herschel Reference Survey, we estimate that an H{alpha} survey with a luminosity sensitivity of L {sub H{alpha}} = 10{sup 40} erg s{sup -1} at 200 Mpc could achieve a completeness of f {sup H{alpha}} {sub SFR} Almost-Equal-To 75% with respect to total SFR, but only f{sub M* Star-Operator }{sup H{alpha}} approx. 33% with respect to M {sub *} (due to lack of sensitivity to early-type galaxies). These numbers are significantly lower than those achieved by an idealized spectroscopic survey due to the loss of H{alpha} flux resulting from resolving out nearby galaxies and the inability to correct for the underlying stellar continuum. An H I survey with sensitivity similar to the proposed WALLABY survey on ASKAP could achieve f{sub SFR}{sup H{sub I}} Almost-Equal-To 80% and f{sub M Star-Operator }{sup H{sub I}} Almost-Equal-To 50%, somewhat higher than that of the H{alpha} survey. Finally, both H{alpha} and H I surveys should achieve {approx}> 50% completeness with respect to the host galaxies of

  7. ESA's Integral detects closest cosmic gamma-ray burst

    Science.gov (United States)

    2004-08-01

    5 August 2004 A gamma-ray burst detected by ESA's Integral gamma-ray observatory on 3 December 2003 has been thoroughly studied for months by an armada of space and ground-based observatories. Astronomers have now concluded that this event, called GRB 031203, is the closest cosmic gamma-ray burst on record, but also the faintest. This also suggests that an entire population of sub-energetic gamma-ray bursts has so far gone unnoticed... Gamma ray burst model hi-res Size hi-res: 22 KB Credits: CXC/M. Weiss Artist impression of a low-energy gamma-ray burst This illustration describes a model for a gamma-ray burst, like the one detected by Integral on 3 December 2003 (GRB 031203). A jet of high-energy particles from a rapidly rotating black hole interacts with surrounding matter. Observations with Integral on 3 December 2003 and data on its afterglow, collected afterwards with XMM-Newton, Chandra and the Very Large Array telescope, show that GRB 031203 radiated only a fraction of the energy of normal gamma-ray bursts. Like supernovae, gamma-ray bursts are thought to be produced by the collapse of the core of a massive star. However, while the process leading to supernovae is relatively well understood, astronomers still do not know what happens when a core collapses to form a black hole. The discovery of 'under-energetic' gamma-ray bursts, like GRB 031203, should provide valuable clues as to links between supernovae, black holes and gamma-ray bursts. Lo-res JPG (22 Kb) Hi-res TIFF (5800 Kb) Cosmic gamma-ray bursts (GRBs) are flashes of gamma rays that can last from less than a second to a few minutes and occur at random positions in the sky. A large fraction of them is thought to result when a black hole is created from a dying star in a distant galaxy. Astronomers believe that a hot disc surrounding the black hole, made of gas and matter falling onto it, somehow emits an energetic beam parallel to the axis of rotation. According to the simplest picture, all GRBs

  8. ALMA Examines a Distant Quasar Host

    Science.gov (United States)

    Kohler, Susanna

    2017-04-01

    The dust continuum (top) and the [CII] emission (bottom) maps for the region around J1120+0641. [Adapted from Venemans et al. 2017]A team of scientists has used the Atacama Large Millimeter/submillimeter Array (ALMA) to explore the host galaxy of the most distant quasar known. Their observations may help us to build a picture of how the first supermassive black holes in the universe formed and evolved.Faraway Monsters and Their GalaxiesWe know that quasars the incredibly luminous and active centers of some distant galaxies are powered by accreting, supermassive black holes. These monstrous powerhouses have been detected out to redshifts of z 7, when the universe was younger than a billion years old.Though weve observed over a hundred quasars at high redshift, we still dont understand how these early supermassive black holes formed, or whether the black holes and the galaxies that host them co-evolved. In order to answer questions like these, however, we first need to gather information about the properties and behavior of various supermassive black holes and their host galaxies.A team of scientists led by Bram Venemans (Max-Planck Institute for Astronomy, Germany) recently used the unprecedented sensitivity and angular resolution of ALMA as well as the Very Large Array and the IRAM Plateau de Bure Interferometer to examine the most distant quasar currently known, J1120+0641, located at a redshift of z = 7.1.A High-Resolution LookThe teams observations of the dust and gas emission from the quasars host galaxy revealed a number of intriguing things:The red and blue sides of the [CII] emission line are shown here as contours, demonstrating that theres no ordered rotational motion of the gas on kpc scales. [Adapted from Venemans et al. 2017]The majority of the galaxys emission is very compact. Around 80% of the observed flux came from a region of only 11.5 kpc in diameter.Despite the fact that the 2.4-billion-solar-mass black hole at the galaxys center is accreting at

  9. Fuzzy-Based Adaptive Hybrid Burst Assembly Technique for Optical Burst Switched Networks

    Directory of Open Access Journals (Sweden)

    Abubakar Muhammad Umaru

    2014-01-01

    Full Text Available The optical burst switching (OBS paradigm is perceived as an intermediate switching technology for future all-optical networks. Burst assembly that is the first process in OBS is the focus of this paper. In this paper, an intelligent hybrid burst assembly algorithm that is based on fuzzy logic is proposed. The new algorithm is evaluated against the traditional hybrid burst assembly algorithm and the fuzzy adaptive threshold (FAT burst assembly algorithm via simulation. Simulation results show that the proposed algorithm outperforms the hybrid and the FAT algorithms in terms of burst end-to-end delay, packet end-to-end delay, and packet loss ratio.

  10. STAR-FORMING GALAXY EVOLUTION IN NEARBY RICH CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, K. D.; Rieke, G. H. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Bai, L. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street Room 101, Toronto, Ontario M5S 3H4 (Canada)

    2013-08-20

    Dense environments are known to quench star formation in galaxies, but it is still unknown what mechanism(s) are directly responsible. In this paper, we study the star formation of galaxies in A2029 and compare it to that of Coma, combining indicators at 24 {mu}m, H{alpha}, and UV down to rates of 0.03 M{sub Sun} yr{sup -1}. We show that A2029's star-forming galaxies follow the same mass-SFR relation as the field. The Coma cluster, on the other hand, has a population of galaxies with star formation rates (SFRs) significantly lower than the field mass-SFR relation, indicative of galaxies in the process of being quenched. Over half of these galaxies also host active galactic nuclei. Ram-pressure stripping and starvation/strangulation are the most likely mechanisms for suppressing the star formation in these galaxies, but we are unable to disentangle which is dominating. The differences we see between the two clusters' populations of star-forming galaxies may be related to their accretion histories, with A2029 having accreted its star-forming galaxies more recently than Coma. Additionally, many early-type galaxies in A2029 are detected at 24 {mu}m and/or in the far-UV, but this emission is not directly related to star formation. Similar galaxies have probably been classified as star forming in previous studies of dense clusters, possibly obscuring some of the effects of the cluster environment on true star-forming galaxies.

  11. ECO and RESOLVE: Galaxy Disk Growth in Environmental Context

    Science.gov (United States)

    Moffett, Amanda J.; Kannappan, Sheila J.; Berlind, Andreas A.; Eckert, Kathleen D.; Stark, David V.; Hendel, David; Norris, Mark A.; Grogin, Norman A.

    2015-10-01

    We study the relationships between galaxy environments and galaxy properties related to disk (re)growth, considering two highly complete samples that are approximately baryonic mass limited into the high-mass dwarf galaxy regime, the Environmental COntext catalog (data release herein) and the B-semester region of the REsolved Spectroscopy Of a Local VolumE survey. We quantify galaxy environments using both group identification and smoothed galaxy density field methods. We use by-eye and quantitative morphological classifications plus atomic gas content measurements and estimates. We find that blue early-type (E/S0) galaxies, gas-dominated galaxies, and UV-bright disk host galaxies all become distinctly more common below group halo mass ˜ {10}11.5 {M}⊙ , implying that this low group halo mass regime may be a preferred regime for significant disk growth activity. We also find that blue early-type and blue late-type galaxies inhabit environments of similar group halo mass at fixed baryonic mass, consistent with a scenario in which blue early-types can regrow late-type disks. In fact, we find that the only significant difference in the typical group halo mass inhabited by different galaxy classes is for satellite galaxies with different colors, where at fixed baryonic mass red early- and late-types have higher typical group halo masses than blue early- and late-types. More generally, we argue that the traditional morphology-environment relation (i.e., that denser environments tend to have more early-types) can be largely attributed to the morphology-galaxy mass relation for centrals and the color-environment relation for satellites.

  12. Which Galaxies Are the Most Habitable?

    Science.gov (United States)

    Kohler, Susanna

    2015-09-01

    Habitable zones are a hot topic in exoplanet studies: where, around a given star, could a planet exist that supports life? But if you scale this up, you get a much less common question: which type of galaxy is most likely to host complex life in the universe? A team of researchers from the UK believes it has the answer.Criteria for HabitabilityLed by Pratika Dayal of the University of Durham, the authors of this study set out to estimate the habitability of a large population of galaxies. The first step in this process is to determine what elements contribute to a galaxys habitability. The authors note three primary factors:Total number of starsMore stars means more planets!Metallicity of the starsPlanets are more likely to form in stellar vicinities with higher metallicities, since planet formation requires elements heavier than iron.Likelihood of Type II supernovae nearbyPlanets that are located out of range of supernovae have a higher probability of being habitable, since a major dose of cosmic radiation is likely to cause mass extinctions or delay evolution of complex life. Galaxies supernova rates can be estimated from their star formation rates (the two are connected via the initial mass function).Hospitable Cosmic GiantsLower panel: the number of Earth-like habitable planets (given by the color bar, which shows the log ratio relative to the Milky Way) increases in galaxies with larger stellar mass and lower star formation rates. Upper panel: the larger stellar-mass galaxies tend to be elliptical (blue line) rather than spiral (red line). Click for larger view. [Dayal et al. 2015]Interestingly, these three conditions have previously been shown to be linked via something termed the fundamental metallicity relation, which relates the total stellar masses, metallicities, and star formation rates of galaxies. By using this relation, the authors were able to create predictions for the number of habitable planets in more than 100,000 galaxies in the local universe

  13. The morphological transformation of red sequence galaxies in clusters since z ˜ 1

    Science.gov (United States)

    Cerulo, P.; Couch, W. J.; Lidman, C.; Demarco, R.; Huertas-Company, M.; Mei, S.; Sánchez-Janssen, R.; Barrientos, L. F.; Muñoz, R.

    2017-11-01

    The study of galaxy morphology is fundamental to understand the physical processes driving the structural evolution of galaxies. It has long been known that dense environments host high fractions of early-type galaxies and low fractions of late-type galaxies, indicating that the environment affects the structural evolution of galaxies. In this paper, we present an analysis of the morphological composition of red sequence galaxies in a sample of nine galaxy clusters at 0.8 WINGS) and ESO Distant Cluster Survey (EDisCS). We find that, while the HCS red sequence is dominated by elliptical galaxies at all luminosities and stellar masses, the WINGS red sequence is dominated by elliptical galaxies only at its bright end (MV WINGS) and high (HCS) redshift samples, although their fraction increases up to 40 per cent at 0.4 < z < 0.8 (EDisCS). We find a 20 per cent increase in the fraction of S0 galaxies from z ∼ 1.5 to 0.05 on the red sequence. These results suggest that elliptical and S0 galaxies follow different evolutionary histories and, in particular, that S0 galaxies result, at least at intermediate luminosities (-22.0 < MV < -20.0), from the morphological transformation of quiescent spiral galaxies.

  14. Companions of Bright Barred Shapley Ames Galaxies

    OpenAIRE

    Garcia-Barreto, J. Antonio; Carrillo, Rene; Vera-Villamizar, Nelson

    2003-01-01

    Companion galaxy environment for a subset of 78 bright and nearby barred galaxies from the Shapley Ames Catalog is presented. Among spiral barred galaxies there are Seyfert galaxies, galaxies with circumnuclear structures, galaxies not associated with any large scale galaxy cloud structure, galaxies with peculiar disk morphology (crooked arms) and galaxies with normal disk morphology; the list includes all Hubble types. The companion galaxy list includes number of companion galaxies within 20...

  15. Early-type galaxies with extended HI reservoirs

    Science.gov (United States)

    Donovan Meyer, Jennifer

    2018-01-01

    I will present observations of NGC 404 and ESO 381-47, both early-type galaxies known for hosting extended HI rings and recent star formation in their outskirts. Thanks to the Green Bank Telescope, an instrument uniquely suited to observing diffuse, low column density HI around nearby galaxies, we report new measurements of the extent of the disk around NGC 404 as well as the presence of a large, coherent HI filament which appears to be accreting onto the ring surrounding the galaxy. We compare the environments of the two systems and interpret the potential utility of such gas-bearing field early-type galaxies as tracers of galaxy accretion and growth.

  16. Dispersion Measure Variation of Repeating Fast Radio Burst Sources

    Science.gov (United States)

    Yang, Yuan-Pei; Zhang, Bing

    2017-09-01

    The repeating fast radio burst (FRB) 121102 was recently localized in a dwarf galaxy at a cosmological distance. The dispersion measure (DM) derived for each burst from FRB 121102 so far has not shown significant evolution, even though an apparent increase was recently seen with newly detected VLA bursts. It is expected that more repeating FRB sources may be detected in the future. In this work, we investigate a list of possible astrophysical processes that might cause DM variation of a particular FRB source. The processes include (1) cosmological scale effects such as Hubble expansion and large-scale structure fluctuations; (2) FRB local effects such as gas density fluctuation, expansion of a supernova remnant (SNR), a pulsar wind nebula, and an H ii region; and (3) the propagation effect due to plasma lensing. We find that the DM variations contributed by the large-scale structure are extremely small, and any observable DM variation is likely caused by the plasma local to the FRB source. In addition to mechanisms that decrease DM over time, we suggest that an FRB source in an expanding SNR around a nearly neutral ambient medium during the deceleration (Sedov-Taylor and snowplow) phases or in a growing H ii region can increase DM. Some effects (e.g., an FRB source moving in an H ii region or plasma lensing) can produce either positive or negative DM variations. Future observations of DM variations of FRB 121102 and other repeating FRB sources can provide important clues regarding the physical origin of these sources.

  17. Dwarf elliptical galaxies with kinematically decoupled cores

    Science.gov (United States)

    De Rijcke, S.; Dejonghe, H.; Zeilinger, W. W.; Hau, G. K. T.

    2004-10-01

    We present, for the first time, photometric and kinematical evidence, obtained with FORS2 on the VLT, for the existence of kinematically decoupled cores (KDCs) in two dwarf elliptical galaxies; FS76 in the NGC 5044 group and FS373 in the NGC 3258 group. Both kinematically peculiar subcomponents rotate in the same sense as the main body of their host galaxy but betray their presence by a pronounced bump in the rotation velocity profiles at a radius of about 1''. The KDC in FS76 rotates at 10 ± 3 km s-1, with the host galaxy rotating at 15 ± 6 km s-1; the KDC in FS373 has a rotation velocity of 6 ± 2 km s-1 while the galaxy itself rotates at 20 ± 5 km s-1. FS373 has a very complex rotation velocity profile with the velocity changing sign at 1.5 Re. The velocity and velocity dispersion profiles of FS76 are asymmetric at larger radii. This could be caused by a past gravitational interaction with the giant elliptical NGC 5044, which is at a projected distance of 50 kpc. We argue that these decoupled cores are most likely not produced by mergers in a group or cluster environment because of the prohibitively large relative velocities. A plausible alternative is offered by flyby interactions between a dwarf elliptical or its disky progenitor and a massive galaxy. The tidal forces during an interaction at the relative velocities and impact parameters typical for a group environment exert a torque on the dwarf galaxy that, according to analytical estimates, transfers enough angular momentum to its stellar envelope to explain the observed peculiar kinematics.

  18. Rapid Formation of Supermassive Black Hole Binaries in Galaxy Mergers with Gas

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, L.; /Zurich U. /Zurich, ETH; Kazantzidis, S.; /KIPAC, Menlo Park; Madau, P.; /UC, Santa Cruz /Garching, Max Planck Inst.; Colpi, M.; /Milan Bicocca U.; Quinn, T.; /Washington U., Seattle; Wadsley, J.; /McMaster U.

    2008-03-24

    Supermassive black holes (SMBHs) are a ubiquitous component of the nuclei of galaxies. It is normally assumed that, following the merger of two massive galaxies, a SMBH binary will form, shrink due to stellar or gas dynamical processes and ultimately coalesce by emitting a burst of gravitational waves. However, so far it has not been possible to show how two SMBHs bind during a galaxy merger with gas due to the difficulty of modeling a wide range of spatial scales. Here we report hydrodynamical simulations that track the formation of a SMBH binary down to scales of a few light years following the collision between two spiral galaxies. A massive, turbulent nuclear gaseous disk arises as a result of the galaxy merger. The black holes form an eccentric binary in the disk in less than a million years as a result of the gravitational drag from the gas rather than from the stars.

  19. Hardness/intensity correlations among BATSE bursts

    Science.gov (United States)

    Paciesas, William S.; Pendleton, Geoffrey N.; Kouveliotou, Chryssa; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.

    1992-01-01

    Conclusions about the nature of gamma-ray bursts derived from the size-frequency distribution may be altered if a significant correlation exists between burst intensity and spectral shape. Moreover, if gamma-ray bursts have a cosmological origin, such a correlation may be expected to result from the expansion of the universe. We have performed a rudimentary search of the BATSE bursts for hardness/intensity correlations. The range of spectral shapes was determined for each burst by computing the ratio of the intensity in the range 100-300 keV to that in 55-300 keV. We find weak evidence for the existence of a correlation, the strongest effect being present when comparing the maximum hardness ratio for each burst with its maximum rate.

  20. The Merger-Free Growth of Galaxies and Supermassive Black Holes

    Science.gov (United States)

    Simmons, Brooke; Smethurst, Rebecca; Lintott, Chris; Martin, Garreth; Kaviraj, Sugata; Devriendt, Julien; Galaxy Zoo Team

    2018-01-01

    There is now clear evidence that the merger-driven pathway to black hole and galaxy growth is only half the story. Merger-free evolution contributes roughly equally to the overall growth of black holes in the Universe and is also responsible for a significant amount of galaxy growth over cosmic time. A recent study examining the growth of black holes in unambiguously disk-dominated galaxies shows these black holes reach quasar-like luminosities and black hole masses typical of those hosted in bulge-dominated and elliptical galaxies with major mergers in their evolutionary histories. However, while there appears to be no correlation between the size of the black hole and upper limits on the host galaxy bulges, the fitted correlation between black hole mass and total galaxy stellar mass in these merger-free systems is fully consistent with the canonical relationship based on merger-driven systems. There is further evidence via comparison between observed populations and cosmological simulations confirming that bulgeless systems are generally consistent with having merger-free histories. If bulgeless and disk-dominated galaxies are indeed signatures of systems with no violent mergers in their formation histories, the same correlation between black hole and galaxy in these systems versus that seen in elliptical galaxy samples indicates the black hole-galaxy connection must originate with a process more fundamental than the dynamical configuration of a galaxy's stars.

  1. Feeding, Feedback and the Growth of Galaxies - Molecules as Tools for Probing Galaxy Evolution

    Science.gov (United States)

    Aalto, Susanne

    2017-06-01

    Cold gas plays a central role in feeding and regulating star formation and growth of supermassive black holes (SMBH) in galaxy nuclei. Particularly powerful activity occurs when interactions of gas-rich galaxies funnel large amounts of gas and dust into nuclei of luminous and ultra luminous infrared galaxies (LIRGs/ULIRGs). These dusty objects are of key importance to galaxy mass assembly over cosmic time. Some (U)LIRGS have deeply embedded galaxy nuclei that harbour a very active evolutionary stage of AGNs and/or starbursts. The nuclear activity will often drive mechanical feedback in the form of molecular winds, jets and outflows. This feedback can for example remove baryons from low-mass galaxies, prevent overgrowth of galaxies, be linked to the M_{BH}-σ relation, and explain "red-and dead" properties of local ellipticals. With the ALMA and NOEMA telescopes we can use molecules as diagnostic tools to probe the properties of dust-enshrouded galaxy nuclei and their associated cold winds and outflows. Their morphology, velocity structure, physical conditions and even chemistry can be studied at unprecedented sensitivity and resolution, opening new avenues to further our understanding of the growth of galaxies. I will give a brief review of the ALMA/NOEMA view of AGN and starburst radiative and mechanical feedback, and how it is linked to the properties of the nuclear power source. I will discuss the use of molecules (e.g. H_2O, H_3O^{+}, HCN, HCO^+, H_2S) for studying dusty nuclei and the nature of the embedded activity. We can, for example, investigate ionization rates and the impact of cosmic ray-, X-ray- and PDR-chemistry and the onset of outflows and winds. Interestingly, in some deeply obscured nuclei the chemistry shows strong similarities to that of Galactic hot cores. Finally I will show peculiar molecular jets and very recent ALMA observations at resolutions of tens of milli-arcseconds (few pc) of vibrationally excited HCN in opaque nuclei. These regions

  2. Mosfire Spectroscopy Of Galaxies In Cosmic Noon

    Science.gov (United States)

    Nanayakkara, Themiya

    2017-07-01

    The recent development of sensitive, multiplexed near infra-red instruments has presented astronomers the unique opportunity to survey mass/magnitude complete samples of galaxies at Cosmic Noon, a time period where ˜ 80% of the observed baryonic mass is generated and galaxies are actively star-forming and evolving rapidly. This thesis takes advantage of the recently commissioned MOSFIRE spectrograph on Keck, to conduct a survey (ZFIRE) of galaxies at 1.5 frame optical colours. I present a thorough analysis of stellar population properties of the ZFIRE sample via multiple synthetic stellar population models and stellar libraries. Due to an excess of high Hα-EW galaxies that are up to 0.3-0.5 dex above the Salpeter locus, the Hα-EW distribution is much broader (10-500˚A) than can be explained by a simple monotonic SFH with a standard Salpeter-slope IMF. This result is robust against uncertainties in dust correction and observational bias, and no single IMF (i.e. non-Salpeter slope) can explain the distribution. Starburst models cannot explain the Hα-EW distribution because: 1) spectral stacking still shows an excess Hα-EW in composite populations and 2) Monte Carlo burst models show that the timescale for high Hα-EW is too short to explain their abundance in the ZFIRE sample. Other possible physical mechanisms that could produce excess ionising photons for a given star-formation rate, and hence high equivalent widths, including models with variations in stellar rotation, binary star evolution, metallicity, and upper mass cutoff of the IMF are investigated and ruled out. IMF variation is one possible explanation for the high Hα-EWs. However, the highest Hα-EW values would require very shallow slopes (Γ > -1.0) and no single IMF change can explain the large variation in Hα-EWs. Instead the IMF would have to vary stochastically. Therefore, currently there is no simple physical model to explain the large variation in Hα-EWs at z ˜ 2, but the distinct

  3. Influence of suspension on the oxidative burst by rat neutrophils

    Science.gov (United States)

    Miller, E. S.; Koebel, D. A.; Davis, S. A.; Klein, J. B.; McLeish, K. R.; Goldwater, D.; Sonnenfeld, G.

    1994-01-01

    The influence of spaceflight on the oxidative burst of neutrophils is not known. The present study was designed to evaluate the influence of antiorthostatic suspension, a ground-based modeling system designed to simulate certain aspects of weightlessness that occur after spaceflight, on the capacity of rat neutrophils to express the oxidative burst, an important host defense mechanism against microbial pathogens. Rats were suspended in whole body harnesses in the antiorthostatic orientation for a 3- or 7-day period. Control rats were suspended orthostatically or allowed to remain in vivarium cages without the attachment of any suspension materials. After suspension, peripheral blood was harvested and neutrophils were isolated by density gradient centrifugation. The enriched neutrophil preparations were stimulated with N-formyl-methionyl-leucine-phenylalanine and phorbol myristic acid to induce the oxidative burst. It was found that neutrophils isolated from suspended animals released the same levels of superoxide anion as did vivarium control animals that were not suspended, indicating that whole body suspension did not alter this aspect of rat neutrophil function.

  4. STELLAR, GAS, AND DARK MATTER CONTENT OF BARRED GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes Sodi, Bernardo, E-mail: b.cervantes@crya.unam.mx [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Campus Morelia, A.P. 3-72, C.P. 58089 Michoacán, México (Mexico)

    2017-01-20

    We select a sample of galaxies from the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7) where galaxies are classified, through visual inspection, as hosting strong bars, weak bars, or as unbarred galaxies, and make use of H i mass and kinematic information from the Arecibo Legacy Fast ALFA survey catalog, to study the stellar, atomic gas, and dark matter content of barred disk galaxies. We find, in agreement with previous studies, that the bar fraction increases with increasing stellar mass. A similar trend is found with total baryonic mass, although the dependence is not as strong as with stellar mass, due to the contribution of gas. The bar fraction shows a decrease with increasing gas mass fraction. This anticorrelation between the likelihood of a galaxy hosting a bar with the gas richness of the galaxy results from the inhibiting effect the gas has in the formation of bars. We also find that for massive galaxies with stellar masses larger than 10{sup 10} M {sub ⊙}, at fixed stellar mass, the bar fraction decreases with increasing global halo mass (i.e., halo mass measured up to a radius of the order of the H i disk extent).

  5. Properties of Active Galaxies Deduced from H I Observations

    Science.gov (United States)

    Ho, Luis C.; Darling, Jeremy; Greene, Jenny E.

    2008-07-01

    We have completed a new survey for H I emission for a large, well-defined sample of 154 nearby (zlesssim 0.1) galaxies with type 1 (broad-line) active galactic nuclei (AGNs). We make use of the extensive database of H I and optical parameters, presented in a companion paper, to perform a comprehensive appraisal of the cold gas content in active galaxies and to seek new strategies to investigate the global properties of the host galaxies and their relationship to their central black holes. After excluding objects with kinematically anomalous line profiles, which occur with high frequency in the sample, we show that the black hole mass obeys a strong, roughly linear relation with the host galaxy's dynamical mass, calculated by combining the H I line width and the optical size of the galaxy. Black hole mass follows a looser, though still highly significant, correlation with the maximum rotation velocity of the galaxy, as expected from the known scaling between rotation velocity and central velocity dispersion. Neither of these H I-based correlations is as tight as the more familiar relations between black hole mass and bulge luminosity or velocity dispersion, but they offer the advantage of being insensitive to the glare of the nucleus and therefore are promising new tools for probing the host galaxies of both nearby and distant AGNs. We present evidence for substantial ongoing black hole growth in the most actively accreting AGNs. In these nearby systems, black hole growth appears to be delayed with respect to the assembly of the host galaxy but otherwise has left no detectable perturbation to its mass-to-light ratio, as judged from the Tully-Fisher relation, or its global gas content. The host galaxies of type 1 AGNs, including those luminous enough to qualify as quasars, are generally gas-rich systems, possessing a cold interstellar medium reservoir at least as abundant as that in inactive galaxies of the same morphological type. This calls into question current

  6. Observations of Gamma-Ray Bursts

    Science.gov (United States)

    Fishman, Gerald J.

    1999-01-01

    Gamma-ray bursts are now generally believed to originate from cosmological distances and represent the largest known explosions in the Universe. These lectures will describe the temporal and spectral characteristic of gamma-ray bursts, their intensity and sky distribution, and other observed characteristics in the gamma-ray region, primarily from data obtained with the BATSE experiment on the Compton Observatory. A summary of recent discoveries and observations in other wavelength regions will also be presented, along with their implications for models of the burst emission mechanism. Various possibilities and models for the energy source(s) of gamma-ray bursts will be described.

  7. Galaxy formation and evolution

    CERN Document Server

    Mo, Houjun; White, Simon

    2010-01-01

    The rapidly expanding field of galaxy formation lies at the interface between astronomy, particle physics, and cosmology. Covering diverse topics from these disciplines, all of which are needed to understand how galaxies form and evolve, this book is ideal for researchers entering the field. Individual chapters explore the evolution of the Universe as a whole and its particle and radiation content; linear and nonlinear growth of cosmic structure; processes affecting the gaseous and dark matter components of galaxies and their stellar populations; the formation of spiral and elliptical galaxies; central supermassive black holes and the activity associated with them; galaxy interactions; and the intergalactic medium. Emphasizing both observational and theoretical aspects, this book provides a coherent introduction for astronomers, cosmologists, and astroparticle physicists to the broad range of science underlying the formation and evolution of galaxies.

  8. Classic Galaxy with Glamour

    Science.gov (United States)

    2005-01-01

    This color composite image of nearby NGC 300 combines the visible-light pictures from Carnegie Institution of Washington's 100-inch telescope at Las Campanas Observatory (colored red and yellow), with ultraviolet views from NASA's Galaxy Evolution Explorer. Galaxy Evolution Explorer detectors image far ultraviolet light (colored blue). This composite image traces star formation in progress. Young hot blue stars dominate the outer spiral arms of the galaxy, while the older stars congregate in the nuclear regions which appear yellow-green. Gases heated by hot young stars and shocks due to winds from massive stars and supernova explosions appear in pink, as revealed by the visible-light image of the galaxy. Located nearly 7 million light years away, NGC 300 is a member of a nearby group of galaxies known as the Sculptor Group. It is a spiral galaxy like our own Milky Way.

  9. An over-massive black hole in the compact lenticular galaxy NGC 1277.

    Science.gov (United States)

    van den Bosch, Remco C E; Gebhardt, Karl; Gültekin, Kayhan; van de Ven, Glenn; van der Wel, Arjen; Walsh, Jonelle L

    2012-11-29

    Most massive galaxies have supermassive black holes at their centres, and the masses of the black holes are believed to correlate with properties of the host-galaxy bulge component. Several explanations have been proposed for the existence of these locally established empirical relationships, including the non-causal, statistical process of galaxy-galaxy merging, direct feedback between the black hole and its host galaxy, and galaxy-galaxy merging and the subsequent violent relaxation and dissipation. The empirical scaling relations are therefore important for distinguishing between various theoretical models of galaxy evolution, and they furthermore form the basis for all black-hole mass measurements at large distances. Observations have shown that the mass of the black hole is typically 0.1 per cent of the mass of the stellar bulge of the galaxy. Until now, the galaxy with the largest known fraction of its mass in its central black hole (11 per cent) was the small galaxy NGC 4486B. Here we report observations of the stellar kinematics of NGC 1277, which is a compact, lenticular galaxy with a mass of 1.2 × 10(11) solar masses. From the data, we determine that the mass of the central black hole is 1.7 × 10(10) solar masses, or 59 per cent of its bulge mass. We also show observations of five other compact galaxies that have properties similar to NGC 1277 and therefore may also contain over-massive black holes. It is not yet known if these galaxies represent a tail of a distribution, or if disk-dominated galaxies fail to follow the usual black-hole mass scaling relations.

  10. (Almost) Dark Galaxies in the ALFALFA Survey: HI-bearing Ultra-Diffuse Galaxies, and Beyond

    Science.gov (United States)

    Leisman, Luke; Haynes, Martha P.; Giovanelli, Riccardo; ALFALFA Almost Darks Team

    2017-01-01

    Scaling relations between HI and stars in galaxies suggest strong ties between their atomic gas content and star formation laws. The Arecibo Legacy Fast ALFA (ALFALFA) blind extragalactic HI survey is well positioned to locate very low surface brightness sources that lie off these relations, the most extreme of which may fall below optical detection limits. Thus, the ALFALFA (Almost) Darks Project has been investigating extreme outliers from these relations by studying the ~1% of ALFALFA sources without apparent stellar counterparts in major optical surveys. We have obtained deep HI and optical imaging of 25 of these candidate "dark" sources. We find that most "dark" sources are not extreme "(almost) dark" galaxies. A few are rare OH Megamasers, redshifted into the ALFALFA bandpass, and many are part of large galactic plumes, stretching as far as 600 kpc from their host galaxy. However, a small handful of sources appear to be galaxies with extreme stellar systems. We find multiple systems with HI mass to stellar mass ratios an order of magnitude larger than typical gas rich dwarfs. Further, we find an isolated population of HI-bearing "ultra diffuse" galaxies (UDGs), with stellar masses of dwarfs, but HI and optical radii of L* galaxies. We suggest that these sources may be related to recently reported gas poor, quiescent UDGs.

  11. A vast, thin plane of corotating dwarf galaxies orbiting the Andromeda galaxy.

    Science.gov (United States)

    Ibata, Rodrigo A; Lewis, Geraint F; Conn, Anthony R; Irwin, Michael J; McConnachie, Alan W; Chapman, Scott C; Collins, Michelle L; Fardal, Mark; Ferguson, Annette M N; Ibata, Neil G; Mackey, A Dougal; Martin, Nicolas F; Navarro, Julio; Rich, R Michael; Valls-Gabaud, David; Widrow, Lawrence M

    2013-01-03

    Dwarf satellite galaxies are thought to be the remnants of the population of primordial structures that coalesced to form giant galaxies like the Milky Way. It has previously been suspected that dwarf galaxies may not be isotropically distributed around our Galaxy, because several are correlated with streams of H I emission, and may form coplanar groups. These suspicions are supported by recent analyses. It has been claimed that the apparently planar distribution of satellites is not predicted within standard cosmology, and cannot simply represent a memory of past coherent accretion. However, other studies dispute this conclusion. Here we report the existence of a planar subgroup of satellites in the Andromeda galaxy (M 31), comprising about half of the population. The structure is at least 400 kiloparsecs in diameter, but also extremely thin, with a perpendicular scatter of less than 14.1 kiloparsecs. Radial velocity measurements reveal that the satellites in this structure have the same sense of rotation about their host. This shows conclusively that substantial numbers of dwarf satellite galaxies share the same dynamical orbital properties and direction of angular momentum. Intriguingly, the plane we identify is approximately aligned with the pole of the Milky Way's disk and with the vector between the Milky Way and Andromeda.

  12. The Fueling of Active Galaxies: A Near-Infrared Imaging Survey of Seyfert and Normal Galaxies

    Science.gov (United States)

    Kundu, A.; Mulchaey, J. S.; Regan, M. W.

    1996-12-01

    Galactic bars are frequently invoked as a candidate for facilitating the transfer of mass from the interstellar medium of active galaxies to their central engines. However, studies of large Seyfert samples show little evidence that Seyferts occur preferentially in barred systems. The failure to find evidence for bars in many Seyfert galaxies may be due to the fact that most studies have concentrated on optical wavelengths where the presence of extinction or a young stellar population might mask any bar structures. In contrast, the near-infrared is expected to be a good place to study the host galaxy of Seyferts because neither dust nor young stars strongly affect the observed emission at these wavelengths. To study the role bars play in the fueling of active galaxies, we have obtained K' images of a large sample of nearby Seyfert and `` normal'' \\ galaxies, matched in redshift, Hubble type, inclination and blue luminosity. We use these images to compare the incidence of bars in Seyfert and normal galaxies and constrain the importance of bars in the fueling of nuclear activity.

  13. Near-ultraviolet signatures of environment-driven galaxy quenching in Sloan Digital Sky Survey groups

    Science.gov (United States)

    Crossett, Jacob P.; Pimbblet, Kevin A.; Jones, D. Heath; Brown, Michael J. I.; Stott, John P.

    2017-01-01

    We have investigated the effect of group environment on residual star formation in galaxies, using Galaxy Evolution Explorer near-ultraviolet (NUV) galaxy photometry with the Sloan Digital Sky Survey group catalogue of Yang et al. We compared the (NUV - r) colours of grouped and non-grouped galaxies, and find a significant increase in the fraction of red sequence galaxies with blue (NUV - r) colours outside of groups. When comparing galaxies in mass-matched samples of satellite (non-central), and non-grouped galaxies, we found a >4σ difference in the distribution of (NUV - r) colours, and an (NUV - r) blue fraction >3σ higher outside groups. A comparison of satellite and non-grouped samples has found the NUV fraction is a factor of ˜2 lower for satellite galaxies between 1010.5 and 10^{10.7} M_{⊙}, showing that higher mass galaxies are more likely to have residual star formation when not influenced by a group potential. There was a higher (NUV - r) blue fraction of galaxies with lower Sérsic indices (n < 3) outside of groups, not seen in the satellite sample. We have used stellar population models of Bruzual & Charlot with multiple burst, or exponentially declining star formation histories to find that many of the (NUV - r) blue non-grouped galaxies can be explained by a slow (˜2 Gyr) decay of star formation, compared to the satellite galaxies. We suggest that taken together, the difference in (NUV - r) colours between samples can be explained by a population of secularly evolving, non-grouped galaxies, where star formation declines slowly. This slow channel is less prevalent in group environments where more rapid quenching can occur.

  14. Galaxy evolution. Galactic paleontology.

    Science.gov (United States)

    Tolstoy, Eline

    2011-07-08

    Individual low-mass stars have very long lives, comparable to the age of the universe, and can thus be used to probe ancient star formation. At present, such stars can be identified and studied only in the Milky Way and in the very closest of our neighboring galaxies, which are predominantly small dwarf galaxies. These nearby ancient stars are a fossil record that can provide detailed information about the physical processes that dominated the epoch of galaxy formation and subsequent evolution.

  15. Galaxies: The Long Wavelength View

    National Research Council Canada - National Science Library

    Fischer, J

    2000-01-01

    ... (more than 2 orders of magnitude) in the [C II]/FIR ratios in galaxies extending from blue compact dwarfs, to normal and starburst galaxies, down to elliptical and ultraluminous galaxies (ULICs...

  16. Selection Effects in the Study of High-Redshift Galaxy Morphology

    Science.gov (United States)

    Elmegreen, Debra M.; Elmegreen, B.

    2010-05-01

    Selection effects from bandshifting, angular resolution limitations, surface brightness dimming, and intergalactic absorption skew our view of high redshift galaxies so that we primarily see those that are extremely bright, massive, and star-bursting. Bandshifting shows a galaxy in its restframe NUV or FUV at z>1, and also biases the determination of age from BViz colors to lower values. The rapid increase in resolvable physical size with redshift for zUDF) noise by redshift z 2. Intergalactic absorption further decreases the brightness of galaxies by factors of a few at this z. These effects combine to make the average star formation rate in an observable clump increase as (1+z)8 for z<1. None of these selection effects directly causes the clump mass to increase with redshift in clumpy galaxies, however. Clumps are well separated from each other and they show up over a wide range of wavelengths. The increase in clump mass with redshift is mostly from an increase in observable galaxy mass. This is because there is a nearly constant ratio of clump mass to galaxy luminosity and the primary selection effect is for bright galaxies, considering that the intrinsic surface brightness for anything observable increases sharply with z. Redshifted versions of local grand design, multiple arm, and flocculent spiral galaxies, along with dwarf irregulars and interacting galaxies, will be shown to indicate which features are observable at high redshift.

  17. Outflows in low-mass galaxies at z >1

    Science.gov (United States)

    Maseda, Michael V.; MUSE GTO Consortium

    2017-03-01

    Star formation histories of local dwarf galaxies, derived through resolved stellar populations, appear complex and varied. The general picture derived from hydrodynamical simulations is one of cold gas accretion and bursty star formation, followed by feedback from supernovae and winds that heat and eject the central gas reservoirs. This ejection halts star formation until the material cools and re-accretes, resulting in an episodic SFH, particularly at stellar masses below ~ 109 M⊙. Such feedback has often been cited as the driving force behind the observed slowly-rising rotation curves in local dwarfs, due to an under-density of dark matter compared to theoretical models, which is one of the primary challenges to LCDM cosmology. However, these events have not yet been directly observed at high-redshift. Recently, using HST imaging and grism spectroscopy, we have uncovered an abundant population of low-mass galaxies (M* < 109 M⊙) at z = 1 - 2 that are undergoing strong bursts of star formation, in agreement with the theoretical predictions. These Extreme Emission Line Galaxies, with high specific SFRs and shallow gravitational potential wells, are ideal places to test the theoretical prediction of strong feedback-driven outflows. Here we use deep MUSE spectroscopy to search these galaxies for signatures of outflowing material, namely kinematic offsets between absorption lines (in the restframe optical and UV), which trace cool gas, and the nebular emission lines, which define the systemic redshift of the galaxy. Although the EELGs are intrinsically very faint, stacked spectra reveal blueshifted velocity centroids for Fe II absorption, which is indicative of outflowing cold gas. This represents the first constraint on outflows in M* < 109 M⊙ galaxies at z = 1 - 2. These outflows should regulate the star formation histories of low-mass galaxies at early cosmic times and thus play a crucial role in galaxy growth and evolution.

  18. A Repeating Fast Radio Burst: Radio and X-ray Follow-up Observations of FRB 121102

    Science.gov (United States)

    Scholz, Paul; Spitler, Laura; Hessels, Jason; Bogdanov, Slavko; Brazier, Adam; Camilo, Fernando; Chatterjee, Shami; Cordes, James M.; Crawford, Fronefield; Deneva, Julia S.; Ferdman, Robert; Freire, Paulo; Kaspi, Victoria M.; Lazarus, Patrick; Lynch, Ryan; Madsen, Erik; McLaughlin, Maura; Patel, Chitrang; Ransom, Scott M.; Seymour, Andrew; Stairs, Ingrid H.; Stappers, Benjamin; van Leeuwen, Joeri; Zhu, Weiwei

    2016-04-01

    A new phenomenon has emerged in high-energy astronomy in the past few years: the Fast Radio Burst. Fast Radio Bursts (FRBs) are millisecond-duration radio bursts whose dispersion measures imply that they originate from far outside of the Galaxy. Their origin is as yet unknown; their durations and energetics imply that they involve compact objects, such as neutron stars or black holes. Due to their extreme luminosities implied by their distances and the previous absence of any repeat burst in follow-up observations, many potential explanations involve one-time cataclysmic events. However, in our Arecibo telescope follow-up observations of FRB 121102 (discovered in the PALFA survey; Spitler et al. 2014), we find additional bursts at the same location and dispersion measure as the original burst. We also present the results of Swift and Chandra X-ray observations of the field. This result shows that, for at least a sub-set of the FRB population, the source can repeat and thus cannot be explained by a cataclysmic origin.

  19. How do galaxies build up their spin in the cosmic web?

    Science.gov (United States)

    Welker, Charlotte; Dubois, Yohan; Pichon, Christophe; Devriendt, Julien; Peirani, Sebastien

    2016-10-01

    Using the Horizon-AGN simulation we find a mass dependent spin orientation trend for galaxies: the spin of low-mass, rotation-dominated, blue, star-forming galaxies are preferentially aligned with their closest filament, whereas high-mass, velocity dispersion- supported, red quiescent galaxies tend to possess a spin perpendicular to these filaments. We explore the physical mechanisms driving galactic spin swings and quantify how much mergers and smooth accretion re-orient them relative to their host filaments.

  20. The SAMI Galaxy Survey: kinematics of dusty early-type galaxies

    Science.gov (United States)

    Bassett, R.; Bekki, K.; Cortese, L.; Couch, W. J.; Sansom, A. E.; van de Sande, J.; Bryant, J. J.; Foster, C.; Croom, S. M.; Brough, S.; Sweet, S. M.; Medling, A. M.; Owers, M. S.; Driver, S. P.; Davies, L. J. M.; Wong, O. I.; Groves, B. A.; Bland-Hawthorn, J.; Richards, S. N.; Goodwin, M.; Konstantopoulos, I. S.; Lawrence, J. S.

    2017-09-01

    Recently, large samples of visually classified early-type galaxies (ETGs) containing dust have been identified using space-based infrared observations with the Herschel Space Telescope. The presence of large quantities of dust in massive ETGs is peculiar as X-ray haloes of these galaxies are expected to destroy dust in ˜107 yr (or less). This has sparked a debate regarding the origin of the dust: Is it internally produced by asymptotic giant branch stars, or is it accreted externally through mergers? We examine the 2D stellar and ionized gas kinematics of dusty ETGs using integral field spectroscopy observations from the SAMI Galaxy Survey, and integrated star formation rates, stellar masses and dust masses from the GAMA survey. Only 8 per cent (4/49) of visually classified ETGs are kinematically consistent with being dispersion-supported systems. These 'dispersion-dominated galaxies' exhibit discrepancies between stellar and ionized gas kinematics, either offsets in the kinematic position angle or large differences in the rotational velocity, and are outliers in star formation rate at a fixed dust mass compared to normal star-forming galaxies. These properties are suggestive of recent merger activity. The remaining ˜90 per cent of dusty ETGs have low velocity dispersions and/or large circular velocities, typical of 'rotation-dominated galaxies'. These results, along with the general evidence of published works on X-ray emission in ETGs, suggest that they are unlikely to host hot, X-ray gas consistent with their low M* when compared to dispersion-dominated galaxies. This means that dust will be long-lived and thus these galaxies do not require external scenarios for the origin of their dust content.

  1. Dwarf Galaxies from Deep Fields to the Near Field

    Science.gov (United States)

    Boylan-Kolchin, Michael

    2017-08-01

    We propose to use cosmological hydrodynamical simulations - both zoom-in and large-volume - to study the connections between the faintest observable galaxies in the high-redshift Universe and dwarf galaxies locally.Studies of the likely descendants of very faint HUDF / Frontier Field galaxies will provide a powerful complement to direct observations at z 8 for investigating the physical processes in the high-redshift Universe and, in connection with properties of low-mass galaxies in the nearby Universe, will produce strong constraints on reionization scenarios and dark matter models. Understanding the relationship between high-redshift and local galaxy populations through simulations requires an accurate knowledge of the links between galaxy populations at cosmic dawn and those locally. All existing results on this topic either suffer from poor statistics or are unable to resolve the hosts of Frontier Field galaxies, however. Our program will address this shortcoming by combining a series of zoom-in hydrodynamical simulations with the next generation of large-volume hydrodynamical simulations of the galaxy population from the Illustris project.HST has made unique and invaluable contributions to surveys of galaxies at high redshifts and to detailed, resolved-star studies of individual galaxies in the very nearby Universe. Our study will help cement links between these two HST legacies. We will quantify the relationships between faint populations at low and high redshifts, characterize the merger histories of dwarf galaxies (both forward and backward in time), and test the validity of various popular models such as abundance matching based on UV luminosity functions.

  2. EARLY-TYPE GALAXIES WITH TIDAL DEBRIS AND THEIR SCALING RELATIONS IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taehyun; Sheth, Kartik; Munoz-Mateos, Juan-Carlos [National Radio Astronomy Observatory/NAASC, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Hinz, Joannah L.; Zaritsky, Dennis [Steward Observatory University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Lee, Myung Gyoon [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Gadotti, Dimitri A. [European Southern Observatory, Casilla 19001, Santiago 19 (Chile); Knapen, Johan H. [Instituto de Astrofisica de Canarias, E-38200 La Laguna, Tenerife (Spain); Schinnerer, Eva [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg (Germany); Ho, Luis C.; Madore, Barry F. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Laurikainen, Eija; Salo, Heikki [Division of Astronomy, Department of Physical Sciences, University of Oulu, Oulu FIN-90014 (Finland); Athanassoula, E.; Bosma, Albert [Laboratoire d' Astrophysique de Marseille (LAM), UMR6110, Universite de Provence/CNRS, Technopole de Marseille Etoile, 38 rue Frederic Joliot Curie, 13388 Marseille Cedex 20 (France); De Swardt, Bonita [South African Astronomical Observatory, Observatory 7935, Cape Town (South Africa); Comeron, Sebastien [Korea Astronomy and Space Science Institute, 61-1 Hwaamdong, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Regan, Michael W. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Menendez-Delmestre, Karin [Observatorio do Valongo, Universidade Federal do Rio de Janeiro, Ladeira Pedro Antonio, 43, Saude CEP 20080-090 Rio de Janeiro, RJ (Brazil); De Paz, Armando Gil [Departamento de Astrofisica, Universidad Complutense de Madrid, E-28040 Madrid (Spain); and others

    2012-07-01

    Tidal debris around galaxies can yield important clues on their evolution. We have identified tidal debris in 11 early-type galaxies (T {<=} 0) from a sample of 65 early types drawn from the Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G). The tidal debris includes features such as shells, ripples, and tidal tails. A variety of techniques, including two-dimensional decomposition of galactic structures, were used to quantify the residual tidal features. The tidal debris contributes {approx}3%-10% to the total 3.6 {mu}m luminosity of the host galaxy. Structural parameters of the galaxies were estimated using two-dimensional profile fitting. We investigate the locations of galaxies with tidal debris in the fundamental plane and Kormendy relation. We find that galaxies with tidal debris lie within the scatter of early-type galaxies without tidal features. Assuming that the tidal debris is indicative of recent gravitational interaction or merger, this suggests that these galaxies have either undergone minor merging events so that the overall structural properties of the galaxies are not significantly altered, or they have undergone a major merging events but already have experienced sufficient relaxation and phase mixing so that their structural properties become similar to those of the non-interacting early-type galaxies.

  3. Coupling and noise induced spiking-bursting transition in a parabolic bursting model

    Science.gov (United States)

    Ji, Lin; Zhang, Jia; Lang, Xiufeng; Zhang, Xiuhui

    2013-03-01

    The transition from tonic spiking to bursting is an important dynamic process that carry physiologically relevant information. In this work, coupling and noise induced spiking-bursting transition is investigated in a parabolic bursting model with specific discussion on their cooperation effects. Fast/slow analysis shows that weak coupling may help to induce the bursting by changing the geometric property of the fast subsystem so that the original unstable periodical solution are stabilized. It turned out that noise can play the similar stabilization role and induce bursting at appropriate moderate intensity. However, their cooperation may either strengthen or weaken the overall effect depending on the choice of noise level.

  4. Photospheric radius expansion during magnetar bursts

    NARCIS (Netherlands)

    Watts, A.L.; Kouveliotou, C.; van der Horst, A.J.; Göğüş, E.; Kaneko, Y.; van der Klis, M.; Wijers, R.A.M.J.; Harding, A.K.; Baring, M.G.

    2010-01-01

    On 2008 August 24 the new magnetar SGR 0501+4516 (discovered by Swift) emitted a bright burst with a pronounced double-peaked structure in hard X-rays, reminiscent of the double-peaked temporal structure seen in some bright thermonuclear bursts on accreting neutron stars. In the latter case this is

  5. A theory of gamma-ray bursts

    NARCIS (Netherlands)

    Brown, G.E.; Lee, C.-H.; Wijers, R.A.M.J.; Lee, H.K.; Israelian, G.; Bethe, H.A.

    2000-01-01

    Recent observations and theoretical considerations have linked gamma-ray bursts with ultra-bright type Ibc supernovae (`hypernovae'). We here work out a specific scenario for this connection. Based on earlier work, we argue that especially the longest bursts must be powered by the Blandford-Znajek

  6. Galaxy evolution in merging clusters: The passive core of the "Train Wreck" cluster of galaxies, A 520

    Science.gov (United States)

    Deshev, Boris; Finoguenov, Alexis; Verdugo, Miguel; Ziegler, Bodo; Park, Changbom; Hwang, Ho Seong; Haines, Christopher; Kamphuis, Peter; Tamm, Antti; Einasto, Maret; Hwang, Narae; Park, Byeong-Gon

    2017-11-01

    Aims: The mergers of galaxy clusters are the most energetic events in the Universe after the Big Bang. With the increased availability of multi-object spectroscopy and X-ray data, an ever increasing fraction of local clusters are recognised as exhibiting signs of recent or past merging events on various scales. Our goal is to probe how these mergers affect the evolution and content of their member galaxies. We specifically aim to answer the following questions: is the quenching of star formation in merging clusters enhanced when compared with relaxed clusters? Is the quenching preceded by a (short-lived) burst of star formation? Methods: We obtained optical spectroscopy of >400 galaxies in the field of the merging cluster Abell 520. We combine these observations with archival data to obtain a comprehensive picture of the state of star formation in the members of this merging cluster. Finally, we compare these observations with a control sample of ten non-merging clusters at the same redshift from The Arizona Cluster Redshift Survey (ACReS). We split the member galaxies into passive, star forming or recently quenched depending on their spectra. Results: The core of the merger shows a decreased fraction of star forming galaxies compared to clusters in the non-merging sample. This region, dominated by passive galaxies, is extended along the axis of the merger. We find evidence of rapid quenching of the galaxies during the core passage with no signs of a star burst on the time scales of the merger (≲0.4 Gyr). Additionally, we report the tentative discovery of an infalling group along the main filament feeding the merger, currently at 2.5 Mpc from the merger centre. This group contains a high fraction of star forming galaxies as well as approximately two thirds of all the recently quenched galaxies in our survey. The reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc

  7. Searching for giga-Jansky fast radio bursts from the Milky Way with a global array of low-cost radio receivers

    Science.gov (United States)

    Maoz, Dan; Loeb, Abraham

    2017-06-01

    If fast radio bursts (FRBs) originate from galaxies at cosmological distances, then their all-sky rate implies that the Milky Way may host an FRB every 30-1500 yr, on average. If many FRBs persistently repeat for decades or more, a local giant FRB could be active now, with 1 GHz radio pulses of flux ˜3 × 1010 Jy, comparable with the fluxes and frequencies detectable by cellular communication devices (cell phones, Wi-Fi and GPS). We propose searching for Galactic FRBs using a global array of low-cost radio receivers. One possibility is the ˜1 GHz communication channel in cellular phones, through a Citizens-Science downloadable application. Participating phones would continuously listen for and record candidate FRBs and would periodically upload information to a central data-processing website which will identify the signature of a real, globe-encompassing, FRB from an astronomical distance. Triangulation of the GPS-based pulse arrival times reported from different Earth locations will provide the FRB sky position, potentially to arcsecond accuracy. Pulse arrival times versus frequency, from reports from phones operating at diverse frequencies, or from fast signal de-dispersion by the application, will yield the dispersion measure (DM). Compared to a Galactic DM model, it will indicate the source distance within the Galaxy. A variant approach uses the built-in ˜100 MHz FM-radio receivers present in cell phones for an FRB search at lower frequencies. Alternatively, numerous 'software-defined radio' devices, costing ˜$10 US each, could be deployed and plugged into USB ports of personal computers (particularly in radio-quiet locations) to establish the global network of receivers.

  8. A CENSUS OF BROAD-LINE ACTIVE GALACTIC NUCLEI IN NEARBY GALAXIES: COEVAL STAR FORMATION AND RAPID BLACK HOLE GROWTH

    Energy Technology Data Exchange (ETDEWEB)

    Trump, Jonathan R.; Fang, Jerome J.; Faber, S. M.; Koo, David C.; Kocevski, Dale D. [University of California Observatories/Lick Observatory and Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Hsu, Alexander D. [The Harker School, 500 Saratoga Avenue, San Jose, CA 95129 (United States)

    2013-02-15

    We present the first quantified, statistical map of broad-line active galactic nucleus (AGN) frequency with host galaxy color and stellar mass in nearby (0.01 < z < 0.11) galaxies. Aperture photometry and z-band concentration measurements from the Sloan Digital Sky Survey are used to disentangle AGN and galaxy emission, resulting in estimates of uncontaminated galaxy rest-frame color, luminosity, and stellar mass. Broad-line AGNs are distributed throughout the blue cloud and green valley at a given stellar mass, and are much rarer in quiescent (red sequence) galaxies. This is in contrast to the published host galaxy properties of weaker narrow-line AGNs, indicating that broad-line AGNs occur during a different phase in galaxy evolution. More luminous broad-line AGNs have bluer host galaxies, even at fixed mass, suggesting that the same processes that fuel nuclear activity also efficiently form stars. The data favor processes that simultaneously fuel both star formation activity and rapid supermassive black hole accretion. If AGNs cause feedback on their host galaxies in the nearby universe, the evidence of galaxy-wide quenching must be delayed until after the broad-line AGN phase.

  9. Fossil evidence for spin alignment of Sloan Digital Sky Survey galaxies in filaments

    NARCIS (Netherlands)

    Jones, Bernard J. T.; van de Weijgaert, Marinus; Aragon-Calvo, Miguel A.

    2010-01-01

    We search for and find fossil evidence that the spin axes of galaxies in cosmic web filaments relative to their host filaments are not randomly distributed. This indicates the fact that the action of large-scale tidal torques affected the alignments of galaxies located in cosmic filaments. To this

  10. Cold gas & mergers: fundamental difference in HI properties of different types of radio galaxies?

    NARCIS (Netherlands)

    Emonts, Bjorn; Morganti, Raffaella; Oosterloo, Tom; van Gorkom, Jacqueline

    2008-01-01

    We present results of a study of large-scale neutral hydrogen (HI) gas in nearby radio galaxies. We find that the early-type host galaxies of different types of radio sources (compact, FR-I and FR-II) appear to contain fundamentally different large-scale HI properties: enormous regular rotating

  11. Lopsided spiral galaxies

    Indian Academy of Sciences (India)

    Lopsided spiral galaxies · Outline of the talk: · Collaborators · Background : · Lopsided distribution highlighted first: Baldwin, Lynden-Bell, & Sancisi (1980) · Lopsidedness also seen in an edge-on galaxy : NGC 891 · Slide 7 · Origin of m=1 disk distribution? Early Theoretical models: · Disk response to a lopsided halo ...

  12. Galaxies in Fligh t

    Indian Academy of Sciences (India)

    In the constellation of Corona Borealis, for example, there is a cluster containing some 400 galaxies. Our Milky Way is a member of a small cluster which embraces among others, the Andromeda Nebula and the two galaxies known as the Magellanic Clouds, which are of a relatively rare type that has no well- defined shape.

  13. NUCLEAR ACTIVITY IS MORE PREVALENT IN STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Rosario, D. J.; Lutz, D.; Berta, S.; Popesso, P.; Genzel, R.; Saintonge, A.; Tacconi, L.; Wuyts, S., E-mail: rosario@mpe.mpg.de, E-mail: lutz@mpe.mpg.de, E-mail: berta@mpe.mpg.de, E-mail: popesso@mpe.mpg.de, E-mail: genzel@mpe.mpg.de, E-mail: amelie@mpe.mpg.de, E-mail: linda@mpe.mpg.de, E-mail: swuyts@mpe.mpg.de [Max-Planck-Institut fuer Extraterrestrische Physik (MPE), Postfach 1312, D-85741 Garching (Germany); and others

    2013-07-01

    We explore the question of whether low and moderate luminosity active galactic nuclei (AGNs) are preferentially found in galaxies that are undergoing a transition from active star formation (SF) to quiescence. This notion has been suggested by studies of the UV-optical colors of AGN hosts, which find them to be common among galaxies in the so-called Green Valley, a region of galaxy color space believed to be composed mostly of galaxies undergoing SF quenching. Combining the deepest current X-ray and Herschel/PACS far-infrared (FIR) observations of the two Chandra Deep Fields with redshifts, stellar masses, and rest-frame photometry derived from the extensive and uniform multi-wavelength data in these fields, we compare the rest-frame U - V color distributions and star formation rate distributions of AGNs and carefully constructed samples of inactive control galaxies. The UV-to-optical colors of AGNs are consistent with equally massive inactive galaxies at redshifts out to z {approx} 2, but we show that such colors are poor tracers of SF. While the FIR distributions of both star-forming AGNs and star-forming inactive galaxies are statistically similar, we show that AGNs are preferentially found in star-forming host galaxies, or, in other words, AGNs are less likely to be found in weakly star-forming or quenched galaxies. We postulate that, among X-ray-selected AGNs of low and moderate accretion luminosities, the supply of cold gas primarily determines the accretion rate distribution of the nuclear black holes.

  14. STAR FORMATION IN ULTRA-FAINT DWARFS: CONTINUOUS OR SINGLE-AGE BURSTS?

    Energy Technology Data Exchange (ETDEWEB)

    Webster, David; Bland-Hawthorn, Joss [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Sutherland, Ralph, E-mail: d.webster@physics.usyd.edu.au [Research School of Astronomy and Astrophysics, Australian National University, Cotter Rd, Weston, ACT 2611 (Australia)

    2015-01-30

    We model the chemical evolution of six ultra-faint dwarfs (UFDs): Bootes I, Canes Venatici II, Coma Berenices, Hercules, Leo IV, and Ursa Major I based on their recently determined star formation histories. We show that two single-age bursts cannot explain the observed [α/Fe] versus [Fe/H] distribution in these galaxies and that some self-enrichment is required within the first burst. An alternative scenario is modeled, in which star formation is continuous except for short interruptions when one or more supernovae temporarily blow the dense gas out from the center of the system. This model allows for self-enrichment and can reproduce the chemical abundances of the UFDs in which the second burst is only a trace population. We conclude that the most likely star formation history is one or two extended periods of star formation, with the first burst lasting for at least 100 Myr. As found in earlier work, the observed properties of UFDs can be explained by formation at a low mass (M{sub vir}∼10{sup 7} M{sub ⊙}), rather than being stripped remnants of much larger systems.

  15. Star Formation in Ultrafaint Dwarfs: Continuous or Single-Age Bursts?

    Science.gov (United States)

    Webster, David; Bland-Hawthorn, Joss; Sutherland, Ralph

    2015-02-01

    We model the chemical evolution of six ultra-faint dwarfs (UFDs): Bootes I, Canes Venatici II, Coma Berenices, Hercules, Leo IV, and Ursa Major I based on their recently determined star formation histories. We show that two single-age bursts cannot explain the observed [α/Fe] versus [Fe/H] distribution in these galaxies and that some self-enrichment is required within the first burst. An alternative scenario is modeled, in which star formation is continuous except for short interruptions when one or more supernovae temporarily blow the dense gas out from the center of the system. This model allows for self-enrichment and can reproduce the chemical abundances of the UFDs in which the second burst is only a trace population. We conclude that the most likely star formation history is one or two extended periods of star formation, with the first burst lasting for at least 100 Myr. As found in earlier work, the observed properties of UFDs can be explained by formation at a low mass ({{M}vir}∼ {{10}7} M⊙), rather than being stripped remnants of much larger systems.

  16. On Spatial Distribution of Short Gamma-Ray Bursts from Extragalactic Magnetar Flares

    Directory of Open Access Journals (Sweden)

    Heon-Young Chang

    2002-03-01

    Full Text Available Recently, one interesting possibility is proposed that a magnetar can be a progenitor of short and hard gamma-ray bursts (GRBs. If this is true, one may expect that the short and hard GRBs, at least some of GRBs in this class, are distributed in the Euclidean space and that the angular position of these GRBs is correlated with galaxy clusters. Even though it is reported that the correlation is statistically marginal, the observed value of deviates from the Euclidean value. The latter fact is often used as evidence against a local extragalactic origin for short GRB class. We demonstrate that GRB sample of which the value of deviates from the Euclidean value can be spatially confined within the low value of z. We select very short bursts (T90 of the short bursts is 0.4459. Considering a conic-beam and a cylindrical beam for the luminosity function, we deduce the corresponding spatial distribution of the GRB sources. We also calculate the fraction of bursts whose redshifts are larger than a certain redshift {z'}, i.e. f> z'. We find that GRBs may be distributed near to us, despite the non-Euclidean value of . A broad and uniform beam pattern seems compatible with the magnetar model in that the magnetar model requires a small zmax.

  17. MULTIPLE GALAXY COLLISIONS

    Science.gov (United States)

    2002-01-01

    Here is a sampling of 15 ultraluminous infrared galaxies viewed by NASA's Hubble Space Telescope. Hubble's sharp vision reveals more complexity within these galaxies, which astronomers are interpreting as evidence of a multiple-galaxy pileup. These images, taken by the Wide Field and Planetary Camera 2, are part of a three-year study of 123 galaxies within 3 billion light-years of Earth. The study was conducted in 1996, 1997, and 1999. False colors were assigned to these photos to enhance fine details within these coalescing galaxies. Credits: NASA, Kirk Borne (Raytheon and NASA Goddard Space Flight Center, Greenbelt, Md.), Luis Colina (Instituto de Fisica de Cantabria, Spain), and Howard Bushouse and Ray Lucas (Space Telescope Science Institute, Baltimore, Md.)

  18. Gas accretion onto galaxies

    CERN Document Server

    Davé, Romeel

    2017-01-01

    This edited volume presents the current state of gas accretion studies from both observational and theoretical perspectives, and charts our progress towards answering the fundamental yet elusive question of how galaxies get their gas. Understanding how galaxies form and evolve has been a central focus in astronomy for over a century. These studies have accelerated in the new millennium, driven by two key advances: the establishment of a firm concordance cosmological model that provides the backbone on which galaxies form and grow, and the recognition that galaxies grow not in isolation but within a “cosmic ecosystem” that includes the vast reservoir of gas filling intergalactic space. This latter aspect in which galaxies continually exchange matter with the intergalactic medium via inflows and outflows has been dubbed the “baryon cycle”. The topic of this book is directly related to the baryon cycle, in particular its least well constrained aspect, namely gas accretion. Accretion is a rare area of ast...

  19. Photometric characteristics of paired E and S0 galaxies

    Science.gov (United States)

    Demin, V. V.

    1984-12-01

    The properties of type EE and ES double galaxies are studied, using Tomov's UBV photoelectric photometry. Paired early-type galaxies have different color/absolute-magnitude diagrams from those belonging to groups. Since the (U-V)t0 colors of paired E, S0 galaxies are wholly uncorrelated with their absolute magnitude M(v), pair members evolve differently from group and cluster members. The same conclusion is drawn from comparison of the integrated photometric properties of the E, S0 galaxies in EE and in ES pairs: their color dispersion is greater than for group and cluster members, while the Holmberg color match and the M(v) correlation between pair components depend on morphological type, dynamical and kinematic behavior, and whether interaction is present. Thus the evolution of paired galaxies is controlled less by their intrinsic properties than by external factors. Star-formation bursts may alternate in the two pair components, accompanying active mass-exchange processes, but the evolution of the pairs in the sample studied will not be significantly affected by dynamical friction.

  20. The galaxy ancestor problem

    Science.gov (United States)

    Disney, M. J.; Lang, R. H.

    2012-11-01

    The Hubble Space Telescope (HST) findsgalaxies whose Tolman dimming exceeds 10 mag. Could evolution alone explain these as our ancestor galaxies or could they be representatives of quite a different dynasty whose descendants are no longer prominent today? We explore the latter hypothesis and argue that surface brightness selection effects naturally bring into focus quite different dynasties from different redshifts. Thus, the HST z = 7 galaxies could be examples of galaxies whose descendants are both too small and too choked with dust to be recognizable in our neighbourhood easily today. Conversely, the ancestors of the Milky Way and its obvious neighbours would have completely sunk below the sky at z > 1.2, unless they were more luminous in the past, although their diffused light could account for the missing re-ionization flux. This Succeeding Prominent Dynasties Hypothesis (SPDH) fits the existing observations both naturally and well even without evolution, including the bizarre distributions of galaxy surface brightness found in deep fields, the angular size ˜(1 + z)-1 law, 'downsizing' which turns out to be an 'illusion' in the sense that it does not imply evolution, 'infant mortality', that is, the discrepancy between stars born and stars seen, the existence of 'red nuggets', and finally the recently discovered and unexpected excess of quasar absorption line damped Lyα systems at high redshift. If galaxies were not significantly brighter in the past and the SPDH were true, then a large proportion of galaxies could remain sunk from sight, possibly at all redshifts, and these sunken galaxies could supply the missing re-ionization flux. We show that fishing these sunken galaxies out of the sky by their optical emissions alone is practically impossible, even when they are nearby. More ingenious methods are needed to detect them. It follows that disentangling galaxy evolution through studying ever higher redshift galaxies may be a forlorn hope because one could

  1. LOFAR MSSS: Discovery of a 2.56 Mpc giant radio galaxy associated with a disturbed galaxy group

    Science.gov (United States)

    Clarke, A. O.; Heald, G.; Jarrett, T.; Bray, J. D.; Hardcastle, M. J.; Cantwell, T. M.; Scaife, A. M. M.; Brienza, M.; Bonafede, A.; Breton, R. P.; Broderick, J. W.; Carbone, D.; Croston, J. H.; Farnes, J. S.; Harwood, J. J.; Heesen, V.; Horneffer, A.; van der Horst, A. J.; Iacobelli, M.; Jurusik, W.; Kokotanekov, G.; McKean, J. P.; Morabito, L. K.; Mulcahy, D. D.; Nikiel-Wroczyñski, B. S.; Orrú, E.; Paladino, R.; Pandey-Pommier, M.; Pietka, M.; Pizzo, R.; Pratley, L.; Riseley, C. J.; Rottgering, H. J. A.; Rowlinson, A.; Sabater, J.; Sendlinger, K.; Shulevski, A.; Sridhar, S. S.; Stewart, A. J.; Tasse, C.; van Velzen, S.; van Weeren, R. J.; Wise, M. W.

    2017-05-01

    We report on the discovery in the LOFAR Multifrequency Snapshot Sky Survey (MSSS) of a giant radio galaxy (GRG) with a projected size of 2.56 ± 0.07 Mpc projected on the sky. It is associated with the galaxy triplet UGC 9555, within which one is identified as a broad-line galaxy in the Sloan Digital Sky Survey (SDSS) at a redshift of 0.05453 ± 1 × 10-5, and with a velocity dispersion of 215.86 ± 6.34 km s-1. From archival radio observations we see that this galaxy hosts a compact flat-spectrum radio source, and we conclude that it is the active galactic nucleus (AGN) responsiblefor generating the radio lobes. The radio luminosity distribution of the jets, and the broad-line classification of the host AGN, indicate this GRG is orientated well out of the plane of the sky, making its physical size one of the largest known for any GRG. Analysis of the infrared data suggests that the host is a lenticular type galaxy with a large stellar mass (log M/M⊙ = 11.56 ± 0.12), and a moderate star formation rate (1.2 ± 0.3 M⊙/ year). Spatially smoothing the SDSS images shows the system around UGC 9555 to be significantly disturbed, with a prominent extension to the south-east. Overall, the evidence suggests this host galaxy has undergone one or more recent moderate merger events and is also experiencing tidal interactions with surrounding galaxies, which have caused the star formation and provided the supply of gas to trigger and fuel the Mpc-scale radio lobes.

  2. Core-Collapse Supernovae and Gamma-Ray Bursts in TMT Era SB ...

    Indian Academy of Sciences (India)

    WFOS-TMT kind of instrument to obtain rest-frame far-UV emission-line detec- tions, spectral properties and inferred kinematics of z > 2 Type IIn SNe and host galaxies. The rest-frame far-UV light would be red-shifted to optical wavelengths for 2 < z < 6 SNe and enables photometric detection in existing, and future, deep.

  3. The Broad-Lined Type Ic SN 2012ap and the Nature of Relativistic Supernovae Lacking a Gamma-Ray Burst Detection

    Science.gov (United States)

    Milisavljevic, D.; Margutti, R.; Parrent, J. T.; Soderberg, A. M.; Fesen, R. A.; Mazzali, P.; Maeda, K.; Sanders, N. E.; Cenko, S. B.; Silverman, J. M.

    2014-01-01

    We present ultraviolet, optical, and near-infrared observations of SN2012ap, a broad-lined Type Ic supernova in the galaxy NGC 1729 that produced a relativistic and rapidly decelerating outflow without a gamma-ray burst signature. Photometry and spectroscopy follow the flux evolution from -13 to +272 days past the B-band maximum of -17.4 +/- 0.5 mag. The spectra are dominated by Fe II, O I, and Ca II absorption lines at ejecta velocities of v approx. 20,000 km s(exp. -1) that change slowly over time. Other spectral absorption lines are consistent with contributions from photospheric He I, and hydrogen may also be present at higher velocities (v approx. greater than 27,000 km s(exp. -1)). We use these observations to estimate explosion properties and derive a total ejecta mass of 2.7 Solar mass, a kinetic energy of 1.0×1052 erg, and a (56)Ni mass of 0.1-0.2 Solar mass. Nebular spectra (t > 200 d) exhibit an asymmetric double-peaked [O I] lambda lambda 6300, 6364 emission profile that we associate with absorption in the supernova interior, although toroidal ejecta geometry is an alternative explanation. SN2012ap joins SN2009bb as another exceptional supernova that shows evidence for a central engine (e.g., black-hole accretion or magnetar) capable of launching a non-negligible portion of ejecta to relativistic velocities without a coincident gamma-ray burst detection. Defining attributes of their progenitor systems may be related to notable properties including above-average environmental metallicities of Z approx. greater than Solar Z, moderate to high levels of host-galaxy extinction (E(B -V ) > 0.4 mag), detection of high-velocity helium at early epochs, and a high relative flux ratio of [Ca II]/[O I] > 1 at nebular epochs. These events support the notion that jet activity at various energy scales may be present in a wide range of supernovae.

  4. THE BROAD-LINED Type Ic SN 2012ap AND THE NATURE OF RELATIVISTIC SUPERNOVAE LACKING A GAMMA-RAY BURST DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Milisavljevic, D.; Margutti, R.; Parrent, J. T.; Soderberg, A. M.; Sanders, N. E.; Kamble, A.; Chakraborti, S.; Drout, M. R.; Kirshner, R. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Fesen, R. A. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Mazzali, P. [Astrophysics Research Institute, Liverpool John Moores University, Liverpool L3 5RF (United Kingdom); Maeda, K. [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Silverman, J. M. [University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Filippenko, A. V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Pickering, T. E. [Southern African Large Telescope, P.O. Box 9, Observatory 7935, Cape Town (South Africa); Kawabata, K. [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Hattori, T. [Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); Hsiao, E. Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Stritzinger, M. D., E-mail: dmilisav@cfa.harvard.edu [Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C (Denmark); and others

    2015-01-20

    We present ultraviolet, optical, and near-infrared observations of SN 2012ap, a broad-lined Type Ic supernova in the galaxy NGC 1729 that produced a relativistic and rapidly decelerating outflow without a gamma-ray burst signature. Photometry and spectroscopy follow the flux evolution from –13 to +272 days past the B-band maximum of –17.4 ± 0.5 mag. The spectra are dominated by Fe II, O I, and Ca II absorption lines at ejecta velocities of v ≈ 20,000 km s{sup –1} that change slowly over time. Other spectral absorption lines are consistent with contributions from photospheric He I, and hydrogen may also be present at higher velocities (v ≳ 27,000 km s{sup –1}). We use these observations to estimate explosion properties and derive a total ejecta mass of ∼2.7 M {sub ☉}, a kinetic energy of ∼1.0 × 10{sup 52} erg, and a {sup 56}Ni mass of 0.1-0.2 M {sub ☉}. Nebular spectra (t > 200 days) exhibit an asymmetric double-peaked [O I] λλ6300, 6364 emission profile that we associate with absorption in the supernova interior, although toroidal ejecta geometry is an alternative explanation. SN 2012ap joins SN 2009bb as another exceptional supernova that shows evidence for a central engine (e.g., black hole accretion or magnetar) capable of launching a non-negligible portion of ejecta to relativistic velocities without a coincident gamma-ray burst detection. Defining attributes of their progenitor systems may be related to notable observed properties including environmental metallicities of Z ≳ Z {sub ☉}, moderate to high levels of host galaxy extinction (E(B – V) > 0.4 mag), detection of high-velocity helium at early epochs, and a high relative flux ratio of [Ca II]/[O I] >1 at nebular epochs. These events support the notion that jet activity at various energy scales may be present in a wide range of supernovae.

  5. Too Fast, Too Furious: A Galaxy's Fatal Plunge

    Science.gov (United States)

    2004-01-01

    the galaxy looks unusually clumpy with many young star clusters and chaotic dust features. Besides the disrupted features in the galaxy's disk, HST also showed that the light in the tail is mostly attributed to recent star formation, providing a direct link to the stripping of the galaxy as it passed through the cluster core. Gas compressed along the galaxy's leading edge, like snow before a plow, ignited a firestorm of new star birth. Evidence of recent star formation also comes from the optical spectrum obtained at the 10-meter Gemini North telescope in Hawaii. The spectrum allows the researchers to estimate the time since the most recent burst of star formation. This conclusion was further bolstered when the Mosaic camera on Kitt Peak's Mayall telescope found a very long tail of extended gas coming off the galaxy. The tail was apparently generated in part by a hurricane of stellar winds boiling off the new star-birth regions and being blown backwards as the galaxy streaks through the surrounding hot gas of the cluster. Spectroscopic observations with the Gemini telescope allowed astronomers to age-date the starburst. They find that 90 percent of C153's blue light is from a population of stars that are 100 million years old. This age corresponds to the time the galaxy should have gone careening through the densest gas in the cluster core. The Gemini spectroscopic observations show the stars are in a regular pattern of orbital motion around the center, as usual for disk galaxies. However, there are multiple widespread clouds of gas moving independently of the stars. "This is an important clue that something beyond gravitational forces must be at work, since stars and gas respond the same way to purely gravitational forces," says Keel. "In other words, the galaxy's gas doesn't know what the stars are doing." NASA's Chandra X-ray Observatory discovered that the cooler clouds detected with optical telescopes and an associated radio feature are embedded in a much larger

  6. The Influence of Galaxy Environment on the Stellar Initial Mass Function of Early-Type Galaxies

    Science.gov (United States)

    Rosani, Giulio; Pasquali, Anna; La Barbera, Francesco; Ferreras, Ignacio; Vazdekis, Alexandre

    2018-02-01

    In this paper we investigate whether the stellar initial mass function of early-type galaxies depends on their host environment. To this purpose, we have selected a sample of early-type galaxies from the SPIDER catalogue, characterized their environment through the group catalogue of Wang et al. and used their optical SDSS spectra to constrain the IMF slope, through the analysis of IMF-sensitive spectral indices. To reach a high enough signal-to-noise ratio, we have stacked spectra in velocity dispersion (σ0) bins, on top of separating the sample by galaxy hierarchy and host halo mass, as proxies for galaxy environment. In order to constrain the IMF, we have compared observed line strengths to predictions of MIUSCAT/EMILES synthetic stellar population models, with varying age, metallicity, and "bimodal" (low-mass tapered) IMF slope (Γ _b). Consistent with previous studies, we find that Γ _b increases with σ0, becoming bottom-heavy (i.e. an excess of low-mass stars with respect to the Milky-Way-like IMF) at high σ0. We find that this result is robust against the set of isochrones used in the stellar population models, as well as the way the effect of elemental abundance ratios is taken into account. We thus conclude that it is possible to use currently state-of-the-art stellar population models and intermediate resolution spectra to consistently probe IMF variations. For the first time, we show that there is no dependence of Γb on environment or galaxy hierarchy, as measured within the 3″ SDSS fibre, thus leaving the IMF as an intrinsic galaxy property, possibly set already at high redshift.

  7. Neutral Hydrogen Radio Propperties of ASAS-SN Supernovae Hosts

    Science.gov (United States)

    Ross, Timothy W.; Salter, Chris; Ghosh, Tapasi; Minchin, Robert; Jones, Kristen; All-Sky Automated Survey for Supernovae (ASAS-SN)

    2018-01-01

    We compiled properties of the galaxies containing recent supernovae. The galaxies were observed in the Hydrogen 21-cm region using the Arecibo 305-m Radio Telescope, and the supernovae were found by the All-Sky Automated Survey for Supernovae (ASAS-SN) project. We were able to detect the neutral hydrogen hyperfine transition in 50 new galaxies to date, and retrieved information on 52 host galaxies with previous detections. Including archival detections, the detection rates of Type CC SNe was 96.9%, that of Type Ia was 76.3%, while no Tidal Disruption Events (TDEs) had detections. In all we calculated the integrated HI flux of 102 host galaxies in the Arecibo sky. With the integrated HI flux we calculated mass values. The median HI mass, log [MHI/(h‑2C M⊙)], with h =.73, for all SN host galaxies was 9.47±0.02, with the median for Type Ia hosts being 9.55±0.02 and the median for Type CC being 9.30±0.02.

  8. The gravitational dynamics of galaxies

    Indian Academy of Sciences (India)

    one could arrive at the number of galaxies of this size in the observable Universe – again around 1011. A few galaxies are bigger and brighter than our own, but many more are smaller, going down to dwarf galaxies which could be ten thousand times less luminous. Nevertheless, galaxies do form a distinct and unique unit ...

  9. EXIST: Probing the Epoch of Reionization with Gamma-Ray Bursts

    Science.gov (United States)

    Bloom, Joshua; Grindlay, Jonathan

    The EXIST mission will transform the way that gamma-ray bursts (GRBs) are studied and the ways in which the universe will be probed. Here, we review the EXIST "GRBs a probes" science objectives in light of recent discoveries. EXIST will not only discover dozens of z ¿ 7 GRBs but obtain the necessary followup onboard -with the X-ray imager and optical-IR imaging spectrograph -to probe the nature of metal enrichment in nascent galaxies and the reionization history of the universe.

  10. GALAXY SPIN ALIGNMENT IN FILAMENTS AND SHEETS: OBSERVATIONAL EVIDENCE

    Energy Technology Data Exchange (ETDEWEB)

    Tempel, Elmo [Tartu Observatory, Observatooriumi 1, 61602 Tõravere (Estonia); Libeskind, Noam I., E-mail: elmo@to.ee, E-mail: nlibeskind@aip.de [Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany)

    2013-10-01

    The properties of galaxies are known to be affected by their environment. One important question is how their angular momentum reflects the surrounding cosmic web. We use the Sloan Digital Sky Survey to investigate the spin axes of spiral and elliptical galaxies relative to their surrounding filament/sheet orientations. To detect filaments, a marked point process with interactions (the {sup B}isous model{sup )} is used. Sheets are found by detecting 'flattened' filaments. The minor axes of ellipticals are found to be preferentially perpendicular to hosting filaments. A weak correlation is found with sheets. These findings are consistent with the notion that elliptical