WorldWideScience

Sample records for burst grb 000301c

  1. The afterglow of the short/intermediate-duration gamma-ray burst GRB 000301C: A jet at z=2.04

    DEFF Research Database (Denmark)

    Jensen, B.L.; Fynbo, J.U.; Gorosabel, J.

    2001-01-01

    was subsequently discovered with the Nordic Optical Telescope (NOT) about 42 h after the burst. The GRB lies at the border between the long-soft and the short-hard classes of GRBs. If GRB 000301C belongs to the latter class, this would be the first detection of an afterglow to a short-hard burst. We present UBRI...... the burst. The optical light curve is consistent with bring achromatic from 2 to 11 days after the burst and exhibits a break. A broken power-law fit yields a shallow pre-break decay power-law slope of alpha (1) = -0.72 +/- 0.06, a break time of t(break) = 4.39 +/- 0.26 days after the burst, and a post.......0404 +/- 0.0008. We find evidence for a curved shape of the spectral energy distribution of the observed afterglow. It is best fitted with a power-law spectral distribution with index beta similar to -0.7 reddened by an SMC-like extinction law with A(v) similar to 0.1 mag. Based on the Ly alpha absorption...

  2. Hubble Space Telescope STIS Observations of GRB 000301C: CCD Imaging and Near-Ultraviolet MAMA Spectroscopy

    NARCIS (Netherlands)

    Smette, A.; Fruchter, A.S.; Gull, Th.R.; Sahu, K.C.; Petro, L.; Ferguson, H.; Rhoads, J.; Lindler, D.J.; Wijers, R.A.M.J.

    2001-01-01

    We present Space Telescope Imaging Spectrograph observations of the optical transient (OT) counterpart of the gamma-ray burster GRB 000301C obtained 5 days after the burst, on 2000 March 6. CCD clear-aperture imaging reveals a R~=21.50+/-0.15 source with no apparent host galaxy. An 8000 s, 1150

  3. Hubble Space Telescope STIS observations of GRB 000301C: CCD imaging and near-ultraviolet MAMA spectroscopy

    DEFF Research Database (Denmark)

    Smette, A.; Fruchter, A.S.; Gull, T.R.

    2001-01-01

    We present Space Telescope Imaging Spectrograph observations of the optical transient (OT) counterpart of the c-ray burster GRB 000301C obtained 5 days after the burst, on 2000 March 6. CCD clear-aperture imaging reveals a R similar or equal to 21.50 +/- 0.15 source with no apparent host galaxy. ...

  4. Deep Ly alpha imaging of two z=2.04 GRB host galaxy fields

    DEFF Research Database (Denmark)

    Fynbo, J.P.U.; Møller, Per; Thomsen, Bente

    2002-01-01

    We report on the results of deep narrow-band Lyalpha and broad-band U and I imaging of the fields of two Gamma-Ray bursts at redshift z = 2.04 (GRB 000301C and GRB 000926). We find that the host galaxy of GRB 000926 is an extended (more than 2 arcsec), strong Lyalpha emitter with a rest-frame equ......We report on the results of deep narrow-band Lyalpha and broad-band U and I imaging of the fields of two Gamma-Ray bursts at redshift z = 2.04 (GRB 000301C and GRB 000926). We find that the host galaxy of GRB 000926 is an extended (more than 2 arcsec), strong Lyalpha emitter with a rest...

  5. The ``Christmas burst'' GRB 101225A revisited

    Science.gov (United States)

    Thöne, C. C.; de Ugarte Postigo, A.; Fryer, C. L.; Kann, D. A.

    2015-03-01

    Long GRBs are related to the death of massive stars and reveal themselves through synchrotron emission from highly relativistic jets. The `Christmas Burst' GRB 101225A was an exceptionally long GRB with a thermal afterglow, very different from the standard GRB. Initially, no spectroscopic redshift could be obtained and SED modeling yielded z=0.33. A plausible model was a He-NS star merger where the He-star had ejected part of its envelope in the common envelope phase during inspiral. The interaction between the jet and the previously ejected shell can explains the thermal emission. We obtained deep spectroscopy of the host galaxy which leads to a correction of the redshift to z=0.847. Despite the higher redshift, our model is still valid and theoretically better justified than the alternative suggestion of a blue supergiant progenitor proposed by Levan et al. (2014) for several ``ultra-long'' GRBs.

  6. A trio of gamma-ray burst supernovae:. GRB 120729A, GRB 130215A/SN 2013ez, and GRB 130831A/SN 2013fu

    NARCIS (Netherlands)

    Cano, Z.; et al., [Unknown; Hartoog, O.

    2014-01-01

    We present optical and near-infrared (NIR) photometry for three gamma-ray burst supernovae (GRB-SNe): GRB 120729A, GRB 130215A/SN 2013ez, and GRB 130831A/SN 2013fu. For GRB 130215A/SN 2013ez, we also present optical spectroscopy at t − t0 = 16.1 d, which covers rest-frame 3000-6250 Å. Based on Fe ii

  7. The GRB 060218/SN 2006aj event in the context of other gamma-ray burst supernovae

    DEFF Research Database (Denmark)

    Ferrero, P.; Kann, D. A.; Zeh, A.

    2006-01-01

    Gamma rays: bursts: X-rays: individuals: GRB 060218, supernovae: individual: SN 2006aj Udgivelsesdato: Oct.......Gamma rays: bursts: X-rays: individuals: GRB 060218, supernovae: individual: SN 2006aj Udgivelsesdato: Oct....

  8. UNUSUAL CENTRAL ENGINE ACTIVITY IN THE DOUBLE BURST GRB 110709B

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Binbin; Burrows, David N.; Meszaros, Peter; Falcone, Abraham D. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Zhang Bing [Department of Physics, University of Nevada, Las Vegas, NV 89154 (United States); Wang Xiangyu [Department of Astronomy, Nanjing University, Nanjing 210093 (China); Stratta, Giulia; D' Elia, Valerio [ASI-Science Data Center, Via Galileo Galilei, I-00044 Frascati (Italy); Frederiks, Dmitry; Golenetskii, Sergey [Ioffe Physico-Technical Institute, Laboratory for Experimental Astrophysics, 26 Polytekhnicheskaya, St Petersburg 194021 (Russian Federation); Cummings, Jay R.; Barthelmy, Scott D.; Gehrels, Neil [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Norris, Jay P., E-mail: bbzhang@psu.edu [Physics Department, Boise State University, 1910 University Drive, Boise, ID 83725 (United States)

    2012-04-01

    The double burst, GRB 110709B, triggered the Swift/Burst Alert Telescope (BAT) twice at 21:32:39 UT and 21:43:45 UT, respectively, on 2011 July 9. This is the first time we observed a gamma-ray burst (GRB) with two BAT triggers. In this paper, we present simultaneous Swift and Konus-WIND observations of this unusual GRB and its afterglow. If the two events originated from the same physical progenitor, their different time-dependent spectral evolution suggests they must belong to different episodes of the central engine, which may be a magnetar-to-BH accretion system.

  9. VLT identification of the optical afterglow of the gamma-ray burst GRB 000131 at z=4.50

    DEFF Research Database (Denmark)

    Andersen, M. I.; Hjorth, J.; Pedersen, H.

    2000-01-01

    We report the discovery of the gamma-ray burst GRB 000131 and its optical afterglow. The optical identification was made with the VLT 84 hours after the burst following a BATSE detection and an Inter Planetary Network localization. GRB 000131 was a bright, long-duration GRB, with an apparent prec...

  10. VLT identification of the optical afterglow of the gamma-ray burst GRB000131 at z=4.50

    DEFF Research Database (Denmark)

    Andersen, M.I.; Hjorth, J.; Jesen, B.L.

    2000-01-01

    We report the discovery of the gamma-ray burst GRB 000131 and its optical afterglow. The optical identification was made with the VLT 84 hours after the burst following a BATSE detection and an Inter Planetary Network localization. GRB 000131 was a bright, long-duration GRB, with an apparent prec...

  11. GRB 161219B / SN 2016jca: A low-redshift gamma-ray burst supernova powered by radioactive heating

    DEFF Research Database (Denmark)

    Cano, Z.; Izzo, L.; De Ugarte Postigo, A.

    2017-01-01

    Since the first discovery of a broad-lined type Ic supernova (SN) with a long-duration gamma-ray burst (GRB) in 1998, fewer than fifty gamma-ray burst supernovae (GRB-SNe) have been discovered. The intermediate-luminosity Swift GRB 161219B and its associated supernova SN 2016jca, which occurred a...

  12. Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Asano, K.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; hide

    2013-01-01

    The observations of the exceptionally bright gamma-ray burst (GRB) 130427A by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope provide constraints on the nature of these unique astrophysical sources. GRB 130427A had the largest fluence, highest-energy photon (95 GeV), longest gamma-ray duration (20 hours), and one of the largest isotropic energy releases ever observed from a GRB. Temporal and spectral analyses of GRB 130427A challenge the widely accepted model that the nonthermal high-energy emission in the afterglow phase of GRBs is synchrotron emission radiated by electrons accelerated at an external shock.

  13. Fermi-LAT observations of the gamma-ray burst GRB 130427A.

    Science.gov (United States)

    Ackermann, M; Ajello, M; Asano, K; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Bechtol, K; Bellazzini, R; Bissaldi, E; Bonamente, E; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Burgess, J Michael; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cecchi, C; Chaplin, V; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Chiaro, G; Ciprini, S; Claus, R; Cleveland, W; Cohen-Tanugi, J; Collazzi, A; Cominsky, L R; Connaughton, V; Conrad, J; Cutini, S; D'Ammando, F; de Angelis, A; DeKlotz, M; de Palma, F; Dermer, C D; Desiante, R; Diekmann, A; Di Venere, L; Drell, P S; Drlica-Wagner, A; Favuzzi, C; Fegan, S J; Ferrara, E C; Finke, J; Fitzpatrick, G; Focke, W B; Franckowiak, A; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Gibby, M; Giglietto, N; Giles, M; Giordano, F; Giroletti, M; Godfrey, G; Granot, J; Grenier, I A; Grove, J E; Gruber, D; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Horan, D; Hughes, R E; Inoue, Y; Jogler, T; Jóhannesson, G; Johnson, W N; Kawano, T; Knödlseder, J; Kocevski, D; Kuss, M; Lande, J; Larsson, S; Latronico, L; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Mayer, M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mizuno, T; Moiseev, A A; Monzani, M E; Moretti, E; Morselli, A; Moskalenko, I V; Murgia, S; Nemmen, R; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orienti, M; Paneque, D; Pelassa, V; Perkins, J S; Pesce-Rollins, M; Petrosian, V; Piron, F; Pivato, G; Porter, T A; Racusin, J L; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Ritz, S; Roth, M; Ryde, F; Sartori, A; Parkinson, P M Saz; Scargle, J D; Schulz, A; Sgrò, C; Siskind, E J; Sonbas, E; Spandre, G; Spinelli, P; Tajima, H; Takahashi, H; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Winer, B L; Wood, K S; Yamazaki, R; Younes, G; Yu, H-F; Zhu, S J; Bhat, P N; Briggs, M S; Byrne, D; Foley, S; Goldstein, A; Jenke, P; Kippen, R M; Kouveliotou, C; McBreen, S; Meegan, C; Paciesas, W S; Preece, R; Rau, A; Tierney, D; van der Horst, A J; von Kienlin, A; Wilson-Hodge, C; Xiong, S; Cusumano, G; La Parola, V; Cummings, J R

    2014-01-03

    The observations of the exceptionally bright gamma-ray burst (GRB) 130427A by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope provide constraints on the nature of these unique astrophysical sources. GRB 130427A had the largest fluence, highest-energy photon (95 GeV), longest γ-ray duration (20 hours), and one of the largest isotropic energy releases ever observed from a GRB. Temporal and spectral analyses of GRB 130427A challenge the widely accepted model that the nonthermal high-energy emission in the afterglow phase of GRBs is synchrotron emission radiated by electrons accelerated at an external shock.

  14. Gamma-Ray Burst at the Extreme: "The Naked-Eye Burst" GRB 080319B

    Science.gov (United States)

    Woźniak, P. R.; Vestrand, W. T.; Panaitescu, A. D.; Wren, J. A.; Davis, H. R.; White, R. R.

    2009-01-01

    On 2008 March 19, the northern sky was the stage of a spectacular optical transient that for a few seconds remained visible to the naked eye. The transient was associated with GRB 080319B, a gamma-ray burst (GRB) at a luminosity distance of about 6 Gpc (standard cosmology), making it the most luminous optical object ever recorded by humankind. We present comprehensive sky monitoring and multicolor optical follow-up observations of GRB 080319B collected by the RAPTOR telescope network covering the development of the explosion and the afterglow before, during, and after the burst. The extremely bright prompt optical emission revealed features that are normally not detectable. The optical and gamma-ray variability during the explosion are correlated, but the optical flux is much greater than can be reconciled with single-emission mechanism and a flat gamma-ray spectrum. This extreme optical behavior is best understood as synchrotron self-Compton model (SSC). After a gradual onset of the gamma-ray emission, there is an abrupt rise of the prompt optical flux, suggesting that variable self-absorption dominates the early optical light curve. Our simultaneous multicolor optical light curves following the flash show spectral evolution consistent with a rapidly decaying red component due to large-angle emission and the emergence of a blue forward-shock component from interaction with the surrounding environment. While providing little support for the reverse shock that dominates the early afterglow, these observations strengthen the case for the universal role of the SSC mechanism in generating GRBs.

  15. Detection of the optical afterglow of GRB 000630: Implications for dark bursts

    DEFF Research Database (Denmark)

    Fynbo, J.U.; Jensen, B.L.; Gorosabel, J.

    2001-01-01

    We present the discovery of the optical transient of the long-duration gamma-ray burst GRB 000630. The optical transient was detected with the Nordic Optical Telescope 21.1 hours after the burst. At the time of discovery the magnitude of the transient was R = 23.04 +/- 0.08. The transient display...

  16. Probing the Nature of Short Swift Bursts via Deep INTEGRAL Monitoring of GRB 050925

    Science.gov (United States)

    Sakamoto, T.; Barbier, L.; Barthelmy, S. D.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Krimm, H. A.; Markwardt, C. B.; Palmer, D. M.; Parsons, A. M.; hide

    2010-01-01

    We present results from Swift, XMM-Newton, and deep INTEGRAL monitoring in the region of GRB 050925. This short Swift burst is a candidate for a newly discovered soft gamma-ray repeater (SGR) with the following observational burst properties: 1) galactic plane (b=-0.1 deg) localization, 2) 150 msec duration, and 3) a blackbody rather than a simple power-law spectral shape (with a significance level of 97%). We found two possible X-ray counterparts of GRB 050925 by comparing the X-ray images from Swift XRT and XMM-Newton. Both X-ray sources show the transient behavior with a power-law decay index shallower than -1. We found no hard X-ray emission nor any additional burst from the location of GRB 050925 in approximately 5 Ms of INTEGRAL data. We discuss about the three BATSE short bursts which might be associated with GRB 050925, based on their location and the duration. Assuming GRB 050925 is associated with the H(sub II), regions (W 58) at the galactic longitude of 1=70 deg, we also discuss the source frame properties of GRB 050925.

  17. Constraints on an Optical Afterglow and on Supernova Light Following the Short Burst GRB 050813

    NARCIS (Netherlands)

    Ferrero, P.; Sanchez, S.F.; Kann, D.A.; Klose, S.; Greiner, J.; Gorosabel, J.; Hartmann, D.H.; Henden, A.A.; Møller, P.; Palazzi, E.; Rau, A.; Stecklum, B.; Castro-Tirado, A.J.; Fynbo, J.P.U.; Hjorth, J.; Jakobsson, P.; Kouveliotou, C.; Masetti, N.; Pian, E.; Tanvir, N.R.; Wijers, R.A.M.J.

    2007-01-01

    We report early follow-up observations of the error box of the short burst GRB 050813 using the telescopes at Calar Alto and Observatorio Sierra Nevada, followed by deep VLT FORS2 I-band observations obtained under very good seeing conditions 5.7 and 11.7 days after the event. Neither a fading

  18. GRB 021004: Tomography of a gamma-ray burst progenitor and its host galaxy

    NARCIS (Netherlands)

    Castro-Tirado, A.J.; Møller, P.; García-Segura, G.; Gorosabel, J.; Pérez, E.; de Ugarte Postigo, A.; Solano, E.; Barrado, D.; Klose, S.; Kann, D.A.; Castro Cerón, J.M.; Kouveliotou, C.; Fynbo, J.P.U.; Hjorth, J.; Pedersen, H.; Pian, E.; Rol, E.; Palazzi, E.; Masetti, N.; Tanvir, N.R.; Vreeswijk, P.M.; Andersen, M.I.; Fruchter, A.S.; Greiner, J.; Wijers, R.A.M.J.; van den Heuvel, E.P.J.

    2010-01-01

    Aims. We analyse the distribution of matter around the progenitor star of gamma-ray burst GRB 021004 and the properties of its host galaxy with high-resolution echelle and near-infrared spectroscopy. Methods. Observations were taken by the 8.2 m Very Large Telescope with the Ultraviolet and Visual

  19. Rapid optical variability of the gamma-ray burst grb 080319b and its central engine

    Science.gov (United States)

    Beskin, G.; Karpov, S.; Bondar, S.; Guarnieri, A.; Bartolini, C.; Greco, D.; Piccioni, A.

    2010-07-01

    The results of observations of the optical emission that accompanied the gamma-ray burst GRB 080319B are reported. Observations were made using the TORTORA fast wide-field camera mounted on the REM robotic telescope in Chile. The behavior of the light curve before, during, and after the gamma-ray burst is described. The light curve consists of four, possibly periodic, 5-7 s long peaks 8-9 s apart. The behavior of the burst in the gamma and optical energy ranges are compared and the results of the theoretical interpretation of this comparison are reported.

  20. The very red afterglow of GRB 000418: Further evidence for dust extinction in a gamma-ray burst host galaxy

    DEFF Research Database (Denmark)

    Klose, S.; Stecklum, B.; Masetti, N.

    2000-01-01

    We report near-infrared and optical follow-up observations of the afterglow of the GRB 000418 starting 2.5 days after the occurrence of the burst and extending over nearly 7 weeks. GRB 000418 represents the second case for which the afterglow was initially identified by observations in the near-i...

  1. INTEGRAL and XMM-Newton observations of the weak gamma-ray burst GRB 030227

    DEFF Research Database (Denmark)

    Mereghetti, S.; Gotz, D.; Tiengo, A.

    2003-01-01

    We present International Gamma-Ray Astrophysical Laboratory ( INTEGRAL) and XMM-Newton observations of the prompt gamma-ray emission and the X-ray afterglow of GRB 030227, the first gamma-ray burst for which the quick localization obtained with the INTEGRAL Burst Alert System has led to the disco......We present International Gamma-Ray Astrophysical Laboratory ( INTEGRAL) and XMM-Newton observations of the prompt gamma-ray emission and the X-ray afterglow of GRB 030227, the first gamma-ray burst for which the quick localization obtained with the INTEGRAL Burst Alert System has led...... to the discovery of X-ray and optical afterglows. GRB 030227 had a duration of about 20 s and a peak flux of similar to1.1 photons cm(-2) s(-1) in the 20-200 keV energy range. The time-averaged spectrum can be fitted by a single power law with photon index similar to2, and we find some evidence for a hard......-to-soft spectral evolution. The X-ray afterglow has been detected starting only 8 hr after the prompt emission, with a 0.2-10 keV flux decreasing as t(-1) from 1.3 x 10(-12) to 5 x 10(-13) ergs cm(-2) s(-1). The afterglow spectrum is well described by a power law with photon index modified by a 1.94 +/- 0...

  2. Gamma-ray Burst Formation Environment: Comparison of Redshift Distributions of GRB Afterglows

    Directory of Open Access Journals (Sweden)

    Sung-Eun Kim

    2005-12-01

    Full Text Available Since gamma-ray bursts(GRBs have been first known to science societites in 1973, many scientists are involved in their studies. Observations of GRB afterglows provide us with much information on the environment in which the observed GRBs are born. Study of GRB afterglows deals with longer timescale emissions in lower energy bands (e.g., months or even up to years than prompt emissions in gamma-rays. Not all the bursts accompany afterglows in whole ranges of wavelengths. It has been suggested as a reason for that, for instance, that radio and/or X-ray afterglows are not recorded mainly due to lower sensitivity of detectors, and optical afterglows due to extinctions in intergalactic media or self-extinctions within a host galaxy itself. Based on the idea that these facts may also provide information on the GRB environment, we analyze statistical properties of GRB afterglows. We first select samples of the redshift-known GRBs according to the wavelength of afterglow they accompanied. We then compare their distributions as a function of redshift, using statistical methods. As a results, we find that the distribution of the GRBs with X-ray afterglows is consistent with that of the GRBs with optical afterglows. We, therefore, conclude that the lower detection rate of optical afterglows is not due to extinctions in intergalactic media.

  3. The Supercritical Pile Gamma-Ray Burst Model: The GRB Afterglow Steep Decline and Plateau Phase

    Science.gov (United States)

    Sultana, Joseph; Kazanas, D.; Mastichiadis, A.

    2013-01-01

    We present a process that accounts for the steep decline and plateau phase of the Swift X-Ray Telescope (XRT) light curves, vexing features of gamma-ray burst (GRB) phenomenology. This process is an integral part of the "supercritical pile" GRB model, proposed a few years ago to account for the conversion of the GRB kinetic energy into radiation with a spectral peak at E(sub pk) is approx. m(sub e)C(exp 2). We compute the evolution of the relativistic blast wave (RBW) Lorentz factor Gamma to show that the radiation-reaction force due to the GRB emission can produce an abrupt, small (approx. 25%) decrease in Gamma at a radius that is smaller (depending on conditions) than the deceleration radius R(sub D). Because of this reduction, the kinematic criticality criterion of the "supercritical pile" is no longer fulfilled. Transfer of the proton energy into electrons ceases and the GRB enters abruptly the afterglow phase at a luminosity smaller by approx. m(sub p)/m(sub e) than that of the prompt emission. If the radius at which this slow-down occurs is significantly smaller than R(sub D), the RBW internal energy continues to drive the RBW expansion at a constant (new) Gamma and its X-ray luminosity remains constant until R(sub D) is reached, at which point it resumes its more conventional decay, thereby completing the "unexpected" XRT light curve phase. If this transition occurs at R is approx. equal to R(sub D), the steep decline is followed by a flux decrease instead of a "plateau," consistent with the conventional afterglow declines. Besides providing an account of these peculiarities, the model suggests that the afterglow phase may in fact begin before the RBW reaches R is approx. equal to R(sub D), thus providing novel insights into GRB phenomenology.

  4. THE BURST CLUSTER: DARK MATTER IN A CLUSTER MERGER ASSOCIATED WITH THE SHORT GAMMA-RAY BURST, GRB 050509B

    Energy Technology Data Exchange (ETDEWEB)

    Dahle, H. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); Sarazin, C. L. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Lopez, L. A. [MIT-Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, 37-664H, Cambridge, MA 02139 (United States); Kouveliotou, C. [Space Science Office, ZP12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Patel, S. K. [Optical Sciences Corporation, 6767 Old Madison Pike, Suite 650, Huntsville, AL 35806 (United States); Rol, E.; Van der Horst, A. J.; Wijers, R. A. M. J. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam (Netherlands); Fynbo, J.; Michalowski, M. J. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries vej 30, DK-2100 Copenhagen (Denmark); Burrows, D. N.; Grupe, D. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Gehrels, N. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ramirez-Ruiz, E., E-mail: hdahle@astro.uio.no [Department of Astronomy and Astrophysics, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95060 (United States)

    2013-07-20

    We have identified a merging galaxy cluster with evidence of two distinct subclusters. The X-ray and optical data suggest that the subclusters are presently moving away from each other after closest approach. This cluster merger was discovered from observations of the first well-localized short-duration gamma-ray burst (GRB), GRB 050509B. The Swift/Burst Alert Telescope error position of the source is coincident with a cluster of galaxies ZwCl 1234.0+02916, while the subsequent Swift/X-Ray Telescope localization of the X-ray afterglow found the GRB coincident with 2MASX J12361286+2858580, a giant red elliptical galaxy in the cluster. Deep multi-epoch optical images were obtained in this field to constrain the evolution of the GRB afterglow, including a total of 27,480 s exposure in the F814W band with Hubble Space Telescope Advanced Camera for Surveys, among the deepest imaging ever obtained toward a known galaxy cluster in a single passband. We perform a weak gravitational lensing analysis based on these data, including mapping of the total mass distribution of the merger system with high spatial resolution. When combined with Chandra X-ray Observatory Advanced CCD Imaging Spectrometer and Swift/XRT observations, we are able to investigate the dynamical state of the merger to better understand the nature of the dark matter component. Our weak gravitational lensing measurements reveal a separation of the X-ray centroid of the western subcluster from the center of the mass and galaxy light distributions, which is somewhat similar to that of the famous 'Bullet cluster', and we conclude that this 'Burst cluster' adds another candidate to the previously known merger systems for determining the nature of dark matter, as well as for studying the environment of a short GRB. Finally, we discuss potential connections between the cluster dynamical state and/or matter composition, and compact object mergers, which is currently the leading model for the

  5. The redshift and afterglow of the extremely energetic gamma-ray burst GRB 080916C

    CERN Document Server

    Greiner, J.; Kruehler, T.; Kienlin, A.v.; Rau, A.; Sari, R.; Fox, Derek B.; Kawai, N.; Afonso, P.; Ajello, M.; Berger, E.; Cenko, S.B.; Cucchiara, A.; Filgas, R.; Klose, S.; Yoldas, A.Kuepue; Lichti, G.G.; Loew, S.; McBreen, S.; Nagayama, T.; Rossi, A.; Sato, S.; Szokoly, G.; Yoldas, A.; Zhang, X.-L.

    2009-01-01

    The detection of GeV photons from gamma-ray bursts (GRBs) has important consequences for the interpretation and modelling of these most-energetic cosmological explosions. The full exploitation of the high-energy measurements relies, however, on the accurate knowledge of the distance to the events. Here we report on the discovery of the afterglow and subsequent redshift determination of GRB 080916C, the first GRB detected by the Fermi Gamma-Ray Space Telescope with high significance detection of photons at >0.1 GeV. Observations were done with 7-channel imager GROND at the 2.2m MPI/ESO telescope, the SIRIUS instrument at the Nagoya-SAAO 1.4m telescope in South Africa, and the GMOS instrument at Gemini-S. The afterglow photometric redshift of z=4.35+-0.15, based on simultaneous 7-filter observations with the Gamma-Ray Optical and Near-infrared Detector (GROND), places GRB 080916C among the top 5% most distant GRBs, and makes it the most energetic GRB known to date. The detection of GeV photons from such a dista...

  6. THE UNUSUAL RADIO AFTERGLOW OF THE ULTRA-LONG GAMMA-RAY BURST GRB 130925A

    Energy Technology Data Exchange (ETDEWEB)

    Horesh, Assaf [Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Perley, Daniel A.; Kulkarni, S. R.; Hallinan, Gregg; Bellm, Eric [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-10-10

    GRB 130925A is one of the recent additions to the growing family of ultra-long gamma-ray bursts (GRBs; T90 ≳1000 s). While the X-ray emission of ultra-long GRBs have been studied extensively in the past, no comprehensive radio data set has been obtained so far. We report here the early discovery of an unusual radio afterglow associated with the ultra-long GRB 130925A. The radio emission peaks at low-frequencies (∼7 GHz) at early times, only 2.2 days after the burst occurred. More notably, the radio spectrum at frequencies above 10 GHz exhibits a rather steep cut-off, compared to other long GRB radio afterglows. This cut-off can be explained if the emitting electrons are either mono-energetic or originate from a rather steep, dN/dE ∝ E{sup −4}, power-law energy distribution. An alternative electron acceleration mechanism may be required to produce such an electron energy distribution. Furthermore, the radio spectrum exhibits a secondary underlying and slowly varying component. This may hint that the radio emission we observed is comprised of emission from both a reverse and a forward shock. We discuss our results in comparison with previous works that studied the unusual X-ray spectrum of this event and discuss the implications of our findings on progenitor scenarios.

  7. Use of water-Cherenkov detectors to detect Gamma Ray Bursts at the Large Aperture GRB Observatory (LAGO)

    Energy Technology Data Exchange (ETDEWEB)

    Allard, D. [APC, CNRS et Universite Paris 7 (France); Allekotte, I. [Centro Atomico Bariloche, Instituto Balseiro (Argentina); Alvarez, C. [Facultad de Ciencias Fisico-Matematicas de la BUAP (Mexico); Asorey, H. [Centro Atomico Bariloche, Instituto Balseiro (Argentina); Barros, H. [Laboratorio de Fisica Nuclear, Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of); Bertou, X. [Centro Atomico Bariloche, Instituto Balseiro (Argentina)], E-mail: bertou@cab.cnea.gov.ar; Burgoa, O. [Instituto de Investigaciones Fisicas, UMSA (Bolivia); Gomez Berisso, M. [Centro Atomico Bariloche, Instituto Balseiro (Argentina); Martinez, O. [Facultad de Ciencias Fisico-Matematicas de la BUAP (Mexico); Miranda Loza, P. [Instituto de Investigaciones Fisicas, UMSA (Bolivia); Murrieta, T.; Perez, G. [Facultad de Ciencias Fisico-Matematicas de la BUAP (Mexico); Rivera, H. [Instituto de Investigaciones Fisicas, UMSA (Bolivia); Rovero, A. [Instituto de Astronomia y Fisica del Espacio (Argentina); Saavedra, O. [Dipartimento di Fisica Generale and INFN, Torino (Italy); Salazar, H. [Facultad de Ciencias Fisico-Matematicas de la BUAP (Mexico); Tello, J.C. [Laboratorio de Fisica Nuclear, Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of); Ticona Peralda, R.; Velarde, A. [Instituto de Investigaciones Fisicas, UMSA (Bolivia); Villasenor, L. [Facultad de Ciencias Fisico-Matematicas de la BUAP (Mexico); Instituto de Fisica y Matematicas, Universidad de Michoacan (Mexico)

    2008-09-21

    The Large Aperture GRB Observatory (LAGO) project aims at the detection of high energy photons from Gamma Ray Bursts (GRB) using the single particle technique in ground-based water-Cherenkov detectors (WCD). To reach a reasonable sensitivity, high altitude mountain sites have been selected in Mexico (Sierra Negra, 4550 m a.s.l.), Bolivia (Chacaltaya, 5300 m a.s.l.) and Venezuela (Merida, 4765 m a.s.l.). We report on detector calibration and operation at high altitude, search for bursts in 4 months of preliminary data, as well as search for signal at ground level when satellites report a burst.

  8. The superluminal motion of Gamma-Ray-Burst sources and the complex afterglow of GRB 030329

    CERN Document Server

    Dado, S; De Rújula, Alvaro; Dado, Shlomo; Dar, Arnon

    2004-01-01

    The source of the very bright Gamma-Ray Burst GRB 030329 is close enough to us for there to be a hope to measure or significantly constrain its putative superluminal motion. Such a phenomenon is expected in the ``Cannonball'' (CB) model of GRBs. Recent precise data on the optical and radio afterglow of this GRB --which demonstrated its very complex structure-- allow us to pin down the CB-model's prediction for the afterglow-source position as a function of time. It has been stated that (the unpublished part of) the new radio data ``unequivocably disprove'' the CB model. We show how greatly exaggerated that obituary announcement was, and how precise a refined analysis of the data would have to be, to be still of interest.

  9. An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi -GBM Detection of GRB 170817A

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, A.; Roberts, O. J.; Connaughton, V. [Science and Technology Institute, Universities Space Research Association, Huntsville, AL 35805 (United States); Veres, P.; Briggs, M. S.; Hamburg, R.; Preece, R. D.; Poolakkil, S. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Burns, E.; Racusin, J.; Canton, T. Dal [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kocevski, D.; Wilson-Hodge, C. A.; Hui, C. M.; Littenberg, T. [Astrophysics Office, ST12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Kienlin, A. von [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Christensen, N.; Broida, J. [Physics and Astronomy, Carleton College, MN 55057 (United States); Siellez, K. [Center for Relativistic Astrophysics and School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Blackburn, L., E-mail: Adam.M.Goldstein@nasa.gov [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); and others

    2017-10-20

    On 2017 August 17 at 12:41:06 UTC the Fermi Gamma-ray Burst Monitor (GBM) detected and triggered on the short gamma-ray burst (GRB) 170817A. Approximately 1.7 s prior to this GRB, the Laser Interferometer Gravitational-wave Observatory triggered on a binary compact merger candidate associated with the GRB. This is the first unambiguous coincident observation of gravitational waves and electromagnetic radiation from a single astrophysical source and marks the start of gravitational-wave multi-messenger astronomy. We report the GBM observations and analysis of this ordinary short GRB, which extraordinarily confirms that at least some short GRBs are produced by binary compact mergers.

  10. The afterglow and complex environment of the optically dim burst GRB 980613

    DEFF Research Database (Denmark)

    Hjorth, J.; Thomsen, Bente; Nielsen, S.R.

    2002-01-01

    not exhibit an unusually rapid decay (power-law decay slope alpha X-ray spectral index (beta(RX) approximate to 0.6), indicating a maximal reddening of the afterglow of approximate to0.45 mag in R. Hence, the dimness......We report the identification of the optical afterglow of GRB 980613 in R- and I-band images obtained between 16 and 48 hr after the gamma-ray burst. Early near-infrared (NIR) H and K' observations are also reported. The afterglow was optically faint (R approximate to 23) at discovery but did...

  11. Detection of GRB 060927 at z = 5.47: Implications for the Use of Gamma-Ray Bursts as Probes of the End of the Dark Ages

    NARCIS (Netherlands)

    Ruiz-Velasco, A.E.; Swan, H.; Troja, E.; Malesani, D.; Fynbo, J.P.U.; Starling, R.L.C.; Xu, D.; Aharonian, F.; Akerlof, C.; Andersen, M.I.; Ashley, M.C.B.; Barthelmy, S.D.; Bersier, D.F.; Cerón, J.M.; Castro-Tirado, A.J.; Gehrels, N.; Gögüs, E.; Gorosabel, J.; Guidorzi, C.; Güver, T.; Hjorth, J.; Horns, D.; Huang, K.Y.; Jakobsson, P.; Jensen, B.L.; Kiziloglu, Ü.; Kouveliotou, C.; Krimm, H.A.; Ledoux, C.; Levan, A.J.; Marsh, T.; McKay, T.; Melandri, A.; Milvang-Jensen, B.; Mundell, C.G.; O'Brien, P.T.; Özel, M.; Phillips, A.; Quimby, R.; Rowell, G.; Rujopakarn, W.; Rykoff, E.S.; Schaefer, B.E.; Sollerman, J.; Tanvir, N.R.; Thöne, C.C.; Urata, Y.; Vestrand, W.T.; Vreeswijk, P.M.; Watson, D.; Wheeler, J.C.; Wijers, R.A.M.J.; Wren, J.; Yost, S.A.; Yuan, F.; Zhai, M.; Zheng, W.K.

    2007-01-01

    We report on follow-up observations of the gamma-ray burst GRB 060927 using the robotic ROTSE-IIIa telescope and a suite of larger aperture ground-based telescopes. An optical afterglow was detected 20 s after the burst, the earliest rest-frame detection of optical emission from any GRB.

  12. Magnetars in Ultra-Long Gamma-Ray Bursts and GRB 111209A

    Science.gov (United States)

    Gompertz, B.; Fruchter, A.

    2017-04-01

    Supernova 2011kl, associated with the ultra-long gamma-ray burst (ULGRB) 111209A, exhibited a higher-than-normal peak luminosity, placing it in the parameter space between regular supernovae and super-luminous supernovae. Its light curve can only be matched by an abnormally high fraction of 56Ni that appears inconsistent with the observed spectrum, and as a result it has been suggested that the supernova, and by extension the gamma-ray burst, are powered by the spin-down of a highly magnetized millisecond pulsar, known as a magnetar. We investigate the broadband observations of ULGRB 111209A and find two independent measures that suggest a high density circumburst environment. However, the light curve of the GRB afterglow shows no evidence of a jet break (the steep decline that would be expected as the jet slows due to the resistance of the external medium) out to three weeks after trigger, implying a wide jet. Combined with the high isotropic energy of the burst, this implies that only a magnetar with a spin period of ˜1 ms or faster can provide enough energy to power both ULGRB 111209A and Supernova 2011kl.

  13. Infrared Emission from Kilonovae: The Case of the Nearby Short Hard Burst GRB 160821B

    Energy Technology Data Exchange (ETDEWEB)

    Kasliwal, Mansi M.; Lau, Ryan M. [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Korobkin, Oleg; Wollaeger, Ryan; Fryer, Christopher L. [Computational Methods Group (CCS-2), Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545 (United States)

    2017-07-10

    We present constraints on Ks-band emission from one of the nearest short hard gamma-ray bursts, GRB 160821B, at z = 0.16, at three epochs. We detect a red relativistic afterglow from the jetted emission in the first epoch but do not detect any excess kilonova emission in the second two epochs. We compare upper limits obtained with Keck I/MOSFIRE to multi-dimensional radiative transfer models of kilonovae, that employ composition-dependent nuclear heating and LTE opacities of heavy elements. We discuss eight models that combine toroidal dynamical ejecta and two types of wind and one model with dynamical ejecta only. We also discuss simple, empirical scaling laws of predicted emission as a function of ejecta mass and ejecta velocity. Our limits for GRB 160821B constrain the ejecta mass to be lower than 0.03 M {sub ⊙} for velocities greater than 0.1 c. At the distance sensitivity range of advanced LIGO, similar ground-based observations would be sufficiently sensitive to the full range of predicted model emission including models with only dynamical ejecta. The color evolution of these models shows that I – K color spans 7–16 mag, which suggests that even relatively shallow infrared searches for kilonovae could be as constraining as optical searches.

  14. Broadband observations of the naked-eye gamma-ray burst GRB 080319B.

    Science.gov (United States)

    Racusin, J L; Karpov, S V; Sokolowski, M; Granot, J; Wu, X F; Pal'shin, V; Covino, S; van der Horst, A J; Oates, S R; Schady, P; Smith, R J; Cummings, J; Starling, R L C; Piotrowski, L W; Zhang, B; Evans, P A; Holland, S T; Malek, K; Page, M T; Vetere, L; Margutti, R; Guidorzi, C; Kamble, A P; Curran, P A; Beardmore, A; Kouveliotou, C; Mankiewicz, L; Melandri, A; O'Brien, P T; Page, K L; Piran, T; Tanvir, N R; Wrochna, G; Aptekar, R L; Barthelmy, S; Bartolini, C; Beskin, G M; Bondar, S; Bremer, M; Campana, S; Castro-Tirado, A; Cucchiara, A; Cwiok, M; D'Avanzo, P; D'Elia, V; Valle, M Della; de Ugarte Postigo, A; Dominik, W; Falcone, A; Fiore, F; Fox, D B; Frederiks, D D; Fruchter, A S; Fugazza, D; Garrett, M A; Gehrels, N; Golenetskii, S; Gomboc, A; Gorosabel, J; Greco, G; Guarnieri, A; Immler, S; Jelinek, M; Kasprowicz, G; La Parola, V; Levan, A J; Mangano, V; Mazets, E P; Molinari, E; Moretti, A; Nawrocki, K; Oleynik, P P; Osborne, J P; Pagani, C; Pandey, S B; Paragi, Z; Perri, M; Piccioni, A; Ramirez-Ruiz, E; Roming, P W A; Steele, I A; Strom, R G; Testa, V; Tosti, G; Ulanov, M V; Wiersema, K; Wijers, R A M J; Winters, J M; Zarnecki, A F; Zerbi, F; Mészáros, P; Chincarini, G; Burrows, D N

    2008-09-11

    Long-duration gamma-ray bursts (GRBs) release copious amounts of energy across the entire electromagnetic spectrum, and so provide a window into the process of black hole formation from the collapse of massive stars. Previous early optical observations of even the most exceptional GRBs (990123 and 030329) lacked both the temporal resolution to probe the optical flash in detail and the accuracy needed to trace the transition from the prompt emission within the outflow to external shocks caused by interaction with the progenitor environment. Here we report observations of the extraordinarily bright prompt optical and gamma-ray emission of GRB 080319B that provide diagnostics within seconds of its formation, followed by broadband observations of the afterglow decay that continued for weeks. We show that the prompt emission stems from a single physical region, implying an extremely relativistic outflow that propagates within the narrow inner core of a two-component jet.

  15. VLT identification of the optical afterglow of the gamma-ray burst GRB 000131 at z=4.50

    DEFF Research Database (Denmark)

    Andersen, M.I.; Hjorth, J.; Pedersen, H.

    2000-01-01

    Angstrom. This places GRB 000131 at a redshift of 4.500 +/- 0.015. The inferred isotropic energy release in gamma rays alone was similar to 10(54) erg (depending on the assumed cosmology). The rapid power-law decay of the afterglow (index alpha = 2.25, similar to bursts with a prior break in the lightcurve......We report the discovery of the gamma-ray burst GRB 000131 and its optical afterglow. The optical identification was made with the VLT 84 hours after the burst following a BATSE detection and an Inter Planetary Network localization. GRB 000131 was a bright, long-duration GRB, with an apparent...... precursor signal 62 s prior to trigger. The afterglow was detected in ESO VLT, NTT, and DK1.54m follow-up observations. Broad-band and spectroscopic observations of the spectral energy distribution reveals a sharp break at optical wavelengths which is interpreted as a Ly alpha absorption edge at 6700...

  16. GRB 081029: A Gamma-Ray Burst with a Multi-Component Afterglow

    Science.gov (United States)

    Holland, Stephen T.; De Pasquale, Massimiliano; Mao, Jirong; Sakamoto, Takanori; Schady, Patricia; Covino, Stefano; Fan, Yi-Zhong; Jin, Zhi-Ping; D'Avanzo, Paolo; Antonelli, Angelo; hide

    2012-01-01

    We present an analysis of the unusual optical light curve of the gamma-ray burst GRB 081029, a long-soft burst with a redshift of z = 3.8479. We combine X-ray and optical observations from the Swift X-Ray Telescope and the Swift Ultra Violet/Optical Telescope with ground-based optical and infrared data obtained using the REM, ROTSE, and CTIO 1.3-m telescopes to construct a detailed data set extending from 86 s to approx.100,000 s after the BAT trigger. Our data covers a wide energy range, from 10 keV to 0.77 eV (1.24 A to 16000 A). The X-ray afterglow shows a shallow initial decay followed by a rapid decay starting at about 18,000 s. The optical and infrared afterglow, however, shows an uncharacteristic rise at about 3000 s that does not correspond to any feature in the X-ray light curve. Our data are not consistent with synchrotron radiation from a jet interacting with an external medium, a two-component jet, or continuous energy injection from the central engine. We find that the optical light curves can be broadly explained by a collision between two ejecta shells within a two-component jet. A growing number of gamma-ray burst afterglows are consistent with complex jets, which suggests that some (or all) gamma-ray burst jets are complex and will require detailed modelling to fully understand them.injection

  17. The host galaxy and optical light curve of the gamma-ray burst GRB 980703

    DEFF Research Database (Denmark)

    Holland, S.; Fynbo, J.P.U.; Hjorth, J.

    2001-01-01

    -law decay having a slope of alpha = 1.37 +/-0.14. Due to the bright underlying host galaxy the late time properties of the light-curve are very poorly constrained. The decay of the optical light curve is consistent with a contribution from an underlying type Ic supernova like SN1998bw, or a dust echo......We present deep HST/STIS and ground-based photometry of the host galaxy of the gamma-ray burst GRB 980703 taken 17, 551, 710, and 716 days after the burst. We find that the host is a blue, slightly over-luminous galaxy with V-gal = 23.00 +/-0.10, (V - R)(gal) = 0.43 +/-0.13, and a centre...... that is approximate to0.2 mag bluer than the outer regions of the galaxy. The galaxy has a star-formation rate of 8-13 M-circle dot yr(-1), assuming no extinction in the host. We find that the galaxy is best fit by a Sersic R-1/n profile with n approximate to 1.0 and a half-light radius of 0." 13 (= 0:72h(100...

  18. A New Model for Iron Emission Lines and Re-Burst in GRB X-Ray Afterglows

    OpenAIRE

    Gao, W. H.; Wei, D. M.

    2005-01-01

    Recently iron emission features have been observed in several X-ray afterglows of GRBs. It is found that the energy obtained from the illuminating continuum which produces the emission lines is much higher than that of the main burst.The observation of SN-GRB association indicates a fallback disk should be formed after the supernovae explosion. The disk is optically thick and advection-dominated and dense. We suggest that the delayed injection energy after the initial main burst, much higher ...

  19. GRB 120521C at z ∼ 6 and the properties of high-redshift γ-ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Laskar, Tanmoy; Berger, Edo; Zauderer, B. Ashley; Margutti, Raffaella; Fong, Wen-fai [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Tanvir, Nial; Wiersema, Klaas [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Levan, Andrew [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Perley, Daniel [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Menten, Karl [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Hrudkova, Marie [Isaac Newton Group of Telescopes, Apartado de Correos 321, E-387 00 Santa Cruz de la Palma, Canary Islands (Spain)

    2014-01-20

    We present optical, near-infrared, and radio observations of the afterglow of GRB 120521C. By modeling the multi-wavelength data set, we derive a photometric redshift of z ≈ 6.0, which we confirm with a low signal-to-noise ratio spectrum of the afterglow. We find that a model with a constant-density environment provides a good fit to the afterglow data, with an inferred density of n ≲ 0.05 cm{sup –3}. The radio observations reveal the presence of a jet break at t {sub jet} ≈ 7 d, corresponding to a jet opening angle of θ{sub jet} ≈ 3°. The beaming-corrected γ-ray and kinetic energies are E {sub γ} ≈ E{sub K} ≈ 3 × 10{sup 50} erg. We quantify the uncertainties in our results using a detailed Markov Chain Monte Carlo analysis, which allows us to uncover degeneracies between the physical parameters of the explosion. To compare GRB 120521C to other high-redshift bursts in a uniform manner we re-fit all available afterglow data for the two other bursts at z ≳ 6 with radio detections (GRBs 050904 and 090423). We find a jet break at t {sub jet} ≈ 15 d for GRB 090423, in contrast to previous work. Based on these three events, we find that γ-ray bursts (GRBs) at z ≳ 6 appear to explode in constant-density environments, and exhibit a wide range of energies and densities that span the range inferred for lower redshift bursts. On the other hand, we find a hint for narrower jets in the z ≳ 6 bursts, potentially indicating a larger true event rate at these redshifts. Overall, our results indicate that long GRBs share a common progenitor population at least to z ∼ 8.

  20. GRB 051022: Physical Parameters and Extinction of a Prototype Dark Burst

    NARCIS (Netherlands)

    Rol, E.; Horst, A. van der; Wiersema, K.; Patel, S.K.; Levan, A.; Nysewander, M.; Kouveliotou, C.; Wijers, R.A.M.J.; Tanvir, N.; Reichart, D.; Fruchter, A.S.; Graham, J.; Ovaldsen, J.-E.; Jaunsen, A.O.; Jonker, P.G.; Ham, W.C.P. van; Hjorth, J.; Starling, R.L.C.; O'Brien, P.T.; Fynbo, J.; Burrows, D.N.; Strom, R.

    2007-01-01

    GRB 051022 was undetected to deep limits in early optical observations, but precise astrometry from radio and X-rays showed that it most likely originated in a galaxy at z~0.8. We report radio, optical, near-infrared, and X-ray observations of GRB 051022. Using the available X-ray and radio data, we

  1. GRB 051008

    DEFF Research Database (Denmark)

    Volnova, A. A.; Pozanenko, A. S.; Gorosabel, J.

    2014-01-01

    We present observations of the dark gamma-ray burst GRB 051008 provided by Swift/BAT, Swift/XRT, Konus-WIND, INTEGRAL/SPI-ACS in the high-energy domain and the Shajn, Swift/UVOT, Tautenburg, NOT, Gemini and Keck I telescopes in the optical and near-infrared bands. The burst was detected only in g...

  2. GRB 161219B/SN 2016jca: A low-redshift gamma-ray burst supernova powered by radioactive heating

    Science.gov (United States)

    Cano, Z.; Izzo, L.; de Ugarte Postigo, A.; Thöne, C. C.; Krühler, T.; Heintz, K. E.; Malesani, D.; Geier, S.; Fuentes, C.; Chen, T.-W.; Covino, S.; D'Elia, V.; Fynbo, J. P. U.; Goldoni, P.; Gomboc, A.; Hjorth, J.; Jakobsson, P.; Kann, D. A.; Milvang-Jensen, B.; Pugliese, G.; Sánchez-Ramírez, R.; Schulze, S.; Sollerman, J.; Tanvir, N. R.; Wiersema, K.

    2017-09-01

    Since the first discovery of a broad-lined type Ic supernova (SN) with a long-duration gamma-ray burst (GRB) in 1998, fewer than fifty GRB-supernovae (SNe) have been discovered. The intermediate-luminosity Swift GRB 161219B and its associated supernova SN 2016jca, which occurred at a redshift of z = 0.1475, represents only the seventh GRB-SN to have been discovered within 1 Gpc, and hence provides an excellent opportunity to investigate the observational and physical properties of these very elusive and rare type of SN. As such, we present optical to near-infrared photometry and optical spectroscopy of GRB 161219B and SN 2016jca, spanning the first three months since its discovery. GRB 161219B exploded in the disk of an edge-on spiral galaxy at a projected distance of 3.4 kpc from the galactic centre. GRB 161219B itself is an outlier in the Ep,I - Eγ,iso plane, while SN 2016jca had a rest-frame, peak absolute V-band magnitude of MV = - 19.0 ± 0.1, which it reached after 12.3 ± 0.7 rest-frame days. We find that the bolometric properties of SN 2016jca are inconsistent with being powered solely by a magnetar central engine, and demonstrate that it was likely powered exclusively by energy deposited by the radioactive decay of nickel and cobalt into their daughter products, which were nucleosynthesised when its progenitor underwent core collapse. We find that 0.22 ± 0.08M⊙ of nickel is required to reproducethe peak luminosity of SN 2016jca, and we constrain an ejecta mass of 5.8 ± 0.3M⊙ and a kinetic energy of 5.1 ± 0.8 × 1052 erg. Finally, we report on a chromatic, pre-maximum bump in the g-band light curve, and discuss its possible origin.

  3. A Search for gravitational waves associated with the gamma ray burst GRB030329 using the LIGO detectors

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, B.; Abbott, R.; Adhikari, R.; Ageev, A.; Allen, B.; Amin, R.; Anderson, S.B.; Anderson, W.G.; Araya, M.; Armandula, H.; Ashley, M.; Asiri, F.; Aufmuth, P.; Aulbert, C.; Babak, S.; Balasubramanian, R.; Ballmer, S.; Barish, B.C.; Barker, C.; Barker, D.; Barnes, M.; /Potsdam, Max Planck Inst. /Hannover, Max Planck Inst. Grav. /Australian

    2005-01-01

    We have performed a search for bursts of gravitational waves associated with the very bright Gamma Ray Burst GRB030329, using the two detectors at the LIGO Hanford Observatory. Our search covered the most sensitive frequency range of the LIGO detectors (approximately 80-2048 Hz), and we specifically targeted signals shorter than {approx_equal}150 ms. Our search algorithm looks for excess correlated power between the two interferometers and thus makes minimal assumptions about the gravitational waveform. We observed no candidates with gravitational wave signal strength larger than a pre-determined threshold. We report frequency dependent upper limits on the strength of the gravitational waves associated with GRB030329. Near the most sensitive frequency region, around {approx_equal}250 Hz, our root-sum-square (RSS) gravitational wave strain sensitivity for optimally polarized bursts was better than h{sub RSS} {approx_equal} 6 x 10{sup -21} Hz{sup -1/2}. Our result is comparable to the best published results searching for association between gravitational waves and GRBs.

  4. The unusual gamma-ray burst GRB 101225A explained as a minor body falling onto a neutron star.

    Science.gov (United States)

    Campana, S; Lodato, G; D'Avanzo, P; Panagia, N; Rossi, E M; Della Valle, M; Tagliaferri, G; Antonelli, L A; Covino, S; Ghirlanda, G; Ghisellini, G; Melandri, A; Pian, E; Salvaterra, R; Cusumano, G; D'Elia, V; Fugazza, D; Palazzi, E; Sbarufatti, B; Vergani, S D

    2011-11-30

    The tidal disruption of a solar-mass star around a supermassive black hole has been extensively studied analytically and numerically. In these events, the star develops into an elongated banana-shaped structure. After completing an eccentric orbit, the bound debris falls into the black hole, forming an accretion disk and emitting radiation. The same process may occur on planetary scales if a minor body passes too close to its star. In the Solar System, comets fall directly into our Sun or onto planets. If the star is a compact object, the minor body can become tidally disrupted. Indeed, one of the first mechanisms invoked to produce strong gamma-ray emission involved accretion of comets onto neutron stars in our Galaxy. Here we report that the peculiarities of the 'Christmas' gamma-ray burst (GRB 101225A) can be explained by a tidal disruption event of a minor body around an isolated Galactic neutron star. This would indicate either that minor bodies can be captured by compact stellar remnants more frequently than occurs in the Solar System or that minor-body formation is relatively easy around millisecond radio pulsars. A peculiar supernova associated with a gamma-ray burst provides an alternative explanation.

  5. Afterglows and Kilonovae Associated with Nearby Low-luminosity Short-duration Gamma-Ray Bursts: Application to GW170817/GRB 170817A

    Science.gov (United States)

    Xiao, Di; Liu, Liang-Duan; Dai, Zi-Gao; Wu, Xue-Feng

    2017-12-01

    Very recently, the gravitational-wave (GW) event GW170817 was discovered to be associated with the short gamma-ray burst (GRB) 170817A. Multi-wavelength follow-up observations were carried out, and X-ray, optical, and radio counterparts to GW170817 were detected. The observations undoubtedly indicate that GRB 170817A originates from a binary neutron star merger. However, the GRB falls into the low-luminosity class that could have a higher statistical occurrence rate and detection probability than the normal (high-luminosity) class. This implies the possibility that GRB 170817A is intrinsically powerful, but we are off-axis and only observe its side emission. In this Letter, we provide a timely modeling of the multi-wavelength afterglow emission from this GRB and the associated kilonova signal from the merger ejecta, under the assumption of a structured jet, a two-component jet, and an intrinsically less-energetic quasi-isotropic fireball, respectively. Comparing the afterglow properties with the multi-wavelength follow-up observations, we can distinguish between these three models. Furthermore, a few model parameters (e.g., the ejecta mass and velocity) can be constrained.

  6. An optical study of the GRB 970111 field beginning 19 hours after the gamma-ray burst

    DEFF Research Database (Denmark)

    Gorosabel, J.; Castro-Tirado, A.J.; Wolf, Christian

    1998-01-01

    We present the results of the monitoring of the GRB 970111 field that started 19 hours after the event. This observation represents the fastest ground-based follow-up performed for GRB 970111 in all wavelengths. As soon as the detection of the possible GRB 970111 X-ray afterglow was reported...... with B perform...... multicolour photometry for objects in the GRB 970111 error box. The colour-colour diagrams do not show any object with unusual colours. We applied a photometric classification method to the objects inside the GRB error box, that can distinguish stars from galaxies and estimate redshifts. We were able...

  7. A 'kilonova' associated with the short-duration γ-ray burst GRB 130603B

    DEFF Research Database (Denmark)

    Tanvir, N. R.; Levan, A. J.; Fruchter, A. S.

    2013-01-01

    Short-duration γ-ray bursts are intense flashes of cosmic γ-rays, lasting less than about two seconds, whose origin is unclear. The favoured hypothesis is that they are produced by a relativistic jet created by the merger of two compact stellar objects (specifically two neutron stars or a neutron...... detection of gravitational waves....

  8. Closing in on a Short-Hard Burst Progenitor: Constraints From Early-Time Optical Imaging and Spectroscopy of a Possible Host Galaxy of GRB 050509b

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, Joshua S.; Prochaska, J.X.; Pooley, D.; Blake, C.W.; Foley, R.J.; Jha, S.; Ramirez-Ruiz, E.; Granot, J.; Filippenko, A.V.; Sigurdsson, S.; Barth, A.J.; Chen,; Cooper, M.C.; Falco, E.E.; Gal, R.R.; Gerke, B.F.; Gladders, M.D.; Greene, J.E.; Hennanwi, J.; Ho, L.C.; Hurley, K.; /UC, Berkeley, Astron. Dept. /Lick Observ.

    2005-06-07

    The localization of the short-duration, hard-spectrum gamma-ray burst GRB050509b by the Swift satellite was a watershed event. Never before had a member of this mysterious subclass of classic GRBs been rapidly and precisely positioned in a sky accessible to the bevy of ground-based follow-up facilities. Thanks to the nearly immediate relay of the GRB position by Swift, we began imaging the GRB field 8 minutes after the burst and have continued during the 8 days since. Though the Swift X-ray Telescope (XRT) discovered an X-ray afterglow of GRB050509b, the first ever of a short-hard burst, thus far no convincing optical/infrared candidate afterglow or supernova has been found for the object. We present a re-analysis of the XRT afterglow and find an absolute position of R.A. = 12h36m13.59s, Decl. = +28{sup o}59'04.9'' (J2000), with a 1{sigma} uncertainty of 3.68'' in R.A., 3.52'' in Decl.; this is about 4'' to the west of the XRT position reported previously. Close to this position is a bright elliptical galaxy with redshift z = 0.2248 {+-} 0.0002, about 1' from the center of a rich cluster of galaxies. This cluster has detectable diffuse emission, with a temperature of kT = 5.25{sub -1.68}{sup +3.36} keV. We also find several ({approx}11) much fainter galaxies consistent with the XRT position from deep Keck imaging and have obtained Gemini spectra of several of these sources. Nevertheless we argue, based on positional coincidences, that the GRB and the bright elliptical are likely to be physically related. We thus have discovered reasonable evidence that at least some short-duration, hard-spectra GRBs are at cosmological distances. We also explore the connection of the properties of the burst and the afterglow, finding that GRB050509b was underluminous in both of these relative to long-duration GRBs. However, we also demonstrate that the ratio of the blast-wave energy to the {gamma}-ray energy is consistent with that

  9. Detection of GRB 060927 at zeta = 5.47: Implications for the Use of Gamma-Ray Bursts as Probes of the End of the Dark Ages

    Science.gov (United States)

    Ruiz-Velasco, A. E.; Swan, H.; Troja, E.; Malesani, D.; Fynbo, J. P. U.; Sterling, R. L. C.; Xu, D.; Aharonian, F.; Akerlof, C.; Andersen, M. I.; hide

    2007-01-01

    We report on follow-up observations of the gamma-ray burst GRB 060927 using the robotic ROTSE-IIIa telescope and a suite of larger aperture groundbased telescopes. An optical afterglow was detected 20 s after the burst, the earliest rest-frame detection of optical emission from any GRB. Spectroscopy performed with the VLT about 13 hours after the trigger shows a continuum break at lambda approx. equals 8070 A, produced by neutral hydrogen absorption at zeta = 5.6. We also detect an absorption line at 8158 A which we interpret as Si II lambda 1260 at zeta = 5.467. Hence, GRB 060927 is the second most distant GRB with a spectroscopically measured redshift. The shape of the red wing of the spectral break can be fitted by a damped Ly(alpha) profile with a column density with log(N(sub HI)/sq cm) = 22.50 +/- 0.15. We discuss the implications of this work for the use of GRBs as probes of the end of the dark ages and draw three main conclusions: i) GRB afterglows originating from zeta greater than or approx. equal to 6 should be relatively easy to detect from the ground, but rapid near-infrared monitoring is necessary to ensure that they are found; ii) The presence of large H I column densities in some GRBs host galaxies at zeta > 5 makes the use of GRBs to probe the reionization epoch via spectroscopy of the red damping wing challenging; iii) GRBs appear crucial to locate typical star-forming galaxies at zeta > 5 and therefore the type of galaxies responsible for the reionization of the universe.

  10. The luminous, massive and solar metallicity galaxy hosting the Swift γ-ray burst GRB 160804A at z = 0.737

    Science.gov (United States)

    Heintz, K. E.; Malesani, D.; Wiersema, K.; Jakobsson, P.; Fynbo, J. P. U.; Savaglio, S.; Cano, Z.; Covino, S.; D'Elia, V.; Gomboc, A.; Hammer, F.; Kaper, L.; Milvang-Jensen, B.; Møller, P.; Piranomonte, S.; Selsing, J.; Rhodin, N. H. P.; Tanvir, N. R.; Thöne, C. C.; de Ugarte Postigo, A.; Vergani, S. D.; Watson, D.

    2018-02-01

    We here present the spectroscopic follow-up observations with VLT/X-shooter of the Swift long-duration gamma-ray burst GRB 160804A at z = 0.737. Typically, GRBs are found in low-mass, metal-poor galaxies that constitute the sub-luminous population of star-forming galaxies. For the host galaxy of the GRB presented here, we derive a stellar mass of log (M*/ M⊙) = 9.80 ± 0.07, a roughly solar metallicity (12 + log (O/H) = 8.74 ± 0.12) based on emission line diagnostics, and an infrared luminosity of M3.6/(1 + z) = -21.94 mag, but find it to be dust-poor (E(B - V) < 0.05 mag). This establishes the galaxy hosting GRB 160804A as one of the most luminous, massive and metal-rich GRB hosts at z < 1.5. Furthermore, the gas-phase metallicity is found to be representative of the physical conditions of the gas close to the explosion site of the burst. The high metallicity of the host galaxy is also observed in absorption, where we detect several strong Fe II transitions as well as Mg II and Mg I. Although host galaxy absorption features are common in GRB afterglow spectra, we detect absorption from strong metal lines directly in the host continuum (at a time when the afterglow was contributing to < 15 per cent). Finally, we discuss the possibility that the geometry and state of the absorbing and emitting gas are indicative of a galactic scale outflow expelled at the final stage of two merging galaxies.

  11. GRB 090313

    DEFF Research Database (Denmark)

    de Ugarte Postigo...[}, A.; Goldoni, P.; Thöne, Christina

    2010-01-01

    Context. X-shooter is the first second-generation instrument to become operative at the ESO Very Large Telescope (VLT). It is a broad-band medium-resolution spectrograph designed with gamma-ray burst (GRB) afterglow spectroscopy as one of its main science drivers. Aims. During the first commissio......Context. X-shooter is the first second-generation instrument to become operative at the ESO Very Large Telescope (VLT). It is a broad-band medium-resolution spectrograph designed with gamma-ray burst (GRB) afterglow spectroscopy as one of its main science drivers. Aims. During the first...... commissioning night on sky with the instrument fully assembled, X-shooter observed the afterglow of GRB¿090313 as a demonstration of the instrument's capabilities. Methods. GRB¿090313 was observed almost two days after the burst onset, when the object had already faded to R ~ 21.6. Furthermore, the 90......% illuminated Moon was just 30 degrees away from the field. In spite of the adverse conditions, we obtained a spectrum that, for the first time in GRB research, simultaneously covers the range from 5700 to 23¿000 Å. Results. The spectrum shows multiple absorption features at a redshift of 3.3736, which we...

  12. The 999th Swift gamma-ray burst: Some like it thermal. A multiwavelength study of GRB 151027A

    Science.gov (United States)

    Nappo, F.; Pescalli, A.; Oganesyan, G.; Ghirlanda, G.; Giroletti, M.; Melandri, A.; Campana, S.; Ghisellini, G.; Salafia, O. S.; D'Avanzo, P.; Bernardini, M. G.; Covino, S.; Carretti, E.; Celotti, A.; D'Elia, V.; Nava, L.; Palazzi, E.; Poppi, S.; Prandoni, I.; Righini, S.; Rossi, A.; Salvaterra, R.; Tagliaferri, G.; Testa, V.; Venturi, T.; Vergani, S. D.

    2017-02-01

    We present a multiwavelength study of GRB 151027A. This is the 999th gamma-ray burst detected by the Swift satellite and it has a densely sampled emission in the X-ray and optical band and has been observed and detected in the radio up to 140 days after the prompt. The multiwavelength light curve from 500 s to 140 days can be modelled through a standard forward shock afterglow, but it requires an additional emission component to reproduce the early X-ray and optical emission. We present optical observations performed with the Telescopio Nazionale Galileo (TNG) and the Large Binocular Telescope (LBT) 19.6, 33.9, and 92.3 days after the trigger which show a bump with respect to a standard afterglow flux decay and are interpreted as possibly due to the underlying supernova and host galaxy (at a level of 0.4 μJy in the optical R band, RAB 25). Radio observations, performed with the Sardinia Radio Telescope (SRT) and Medicina in single-dish mode and with the European Very Long Baseline Interferometer (VLBI) Network and the Very Long Baseline Array (VLBA), between day 4 and 140 suggest that the burst exploded in an environment characterized by a density profile scaling with the distance from the source (wind profile). A remarkable feature of the prompt emission is the presence of a bright flare 100 s after the trigger, lasting 70 s in the soft X-ray band, which was simultaneously detected from the optical band up to the MeV energy range. By combining Swift-BAT/XRT and Fermi-GBM data, the broadband (0.3-1000 keV) time resolved spectral analysis of the flare reveals the coexistence of a non-thermal (power law) and thermal blackbody components. The blackbody component contributes up to 35% of the luminosity in the 0.3-1000 keV band. The γ-ray emission observed in Swift-BAT and Fermi-GBM anticipates and lasts less than the soft X-ray emission as observed by Swift-XRT, arguing against a Comptonization origin. The blackbody component could either be produced by an outflow

  13. The unusual γ-ray burst GRB 101225A from a helium star/neutron star merger at redshift 0.33.

    Science.gov (United States)

    Thöne, C C; de Ugarte Postigo, A; Fryer, C L; Page, K L; Gorosabel, J; Aloy, M A; Perley, D A; Kouveliotou, C; Janka, H T; Mimica, P; Racusin, J L; Krimm, H; Cummings, J; Oates, S R; Holland, S T; Siegel, M H; De Pasquale, M; Sonbas, E; Im, M; Park, W-K; Kann, D A; Guziy, S; García, L Hernández; Llorente, A; Bundy, K; Choi, C; Jeong, H; Korhonen, H; Kubànek, P; Lim, J; Moskvitin, A; Muñoz-Darias, T; Pak, S; Parrish, I

    2011-11-30

    Long γ-ray bursts (GRBs) are the most dramatic examples of massive stellar deaths, often associated with supernovae. They release ultra-relativistic jets, which produce non-thermal emission through synchrotron radiation as they interact with the surrounding medium. Here we report observations of the unusual GRB 101225A. Its γ-ray emission was exceptionally long-lived and was followed by a bright X-ray transient with a hot thermal component and an unusual optical counterpart. During the first 10 days, the optical emission evolved as an expanding, cooling black body, after which an additional component, consistent with a faint supernova, emerged. We estimate its redshift to be z = 0.33 by fitting the spectral-energy distribution and light curve of the optical emission with a GRB-supernova template. Deep optical observations may have revealed a faint, unresolved host galaxy. Our proposed progenitor is a merger of a helium star with a neutron star that underwent a common envelope phase, expelling its hydrogen envelope. The resulting explosion created a GRB-like jet which became thermalized by interacting with the dense, previously ejected material, thus creating the observed black body, until finally the emission from the supernova dominated. An alternative explanation is a minor body falling onto a neutron star in the Galaxy.

  14. A GRB tool shed

    Science.gov (United States)

    Haglin, David J.; Roiger, Richard J.; Hakkila, Jon; Pendleton, Geoffrey; Mallozzi, Robert

    2000-09-01

    We describe the design of a suite of software tools to allow users to query Gamma Ray Burst (GRB) data and perform data mining expeditions. We call this suite of tools a shed (SHell for Expeditions using Datamining). Our schedule is to have a completed prototype (funded via the NASA AISRP) by February, 2002. Meanwhile, interested users will find a partially functioning tool shed at http:/grb.mankato.msus.edu. .

  15. How Special Is GRB 170817A?

    Science.gov (United States)

    Yue, Chuan; Hu, Qian; Zhang, Fu-Wen; Liang, Yun-Feng; Jin, Zhi-Ping; Zou, Yuan-Chuan; Fan, Yi-Zhong; Wei, Da-Ming

    2018-01-01

    GRB 170817A is the first short gamma-ray burst (GRB) with direct detection of the gravitational-wave radiation and also the spectroscopically identified macronova emission (i.e., AT 2017gfo). The prompt emission of this burst, however, is underluminous in comparison with the other short GRBs with known redshift. In this work, we examine whether GRB 170817A is indeed unique. We first show that GRB 130603B/macronova may be the on-axis “analogs” of GRB 170817A/AT 2017gfo, and the extremely dim but long-lasting afterglow emission of GRB 170817A may suggest a low number density (∼ {10}-5 {{cm}}-3) of its circumburst medium and a structured outflow. We then discuss whether GRB 070923, GRB 080121, GRB 090417A, GRB 111005A, and GRB 170817A form a new group of very nearby underluminous GRBs originated from neutron star mergers. If the short events GRB 070923, GRB 080121, and GRB 090417A are indeed at a redshift of ∼ 0.076, 0.046, 0.088, respectively, their isotropic energies of the prompt emission are ∼ {10}47 erg and thus comparable to the other two events. The non-detection of optical counterparts of GRB 070923, GRB 080121, GRB 090417A, and GRB 111005A, however, strongly suggests that the macronovae from neutron star mergers are significantly diverse in luminosities or, alternatively, there is another origin channel (for instance, the white dwarf and black hole mergers). We finally suggest that GW170817/GRB 170817A are likely not alone and similar events will be detected by the upgraded/upcoming gravitational-wave detectors and the electromagnetic monitors.

  16. GRB 091208B: FIRST DETECTION OF THE OPTICAL POLARIZATION IN EARLY FORWARD SHOCK EMISSION OF A GAMMA-RAY BURST AFTERGLOW

    Energy Technology Data Exchange (ETDEWEB)

    Uehara, T.; Chiyonobu, S.; Fukazawa, Y.; Ikejiri, Y.; Itoh, R.; Komatsu, T.; Miyamoto, H.; Nagae, O.; Sakimoto, K.; Sasada, M.; Tanaka, H.; Yamanaka, M. [Department of Physical Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526 (Japan); Toma, K. [Department of Earth and Space Science, Osaka University, Toyonaka 560-0043 (Japan); Kawabata, K. S.; Mizuno, T.; Ohsugi, T.; Uemura, M. [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Inoue, T.; Yamashita, T. [Department of Physics and Mathematics, Aoyama Gakuin University, Fuchinobe, Chuou-ku, Sagamihara 252-5258 (Japan); Nakaya, H., E-mail: uehara@hep01.hepl.hiroshima-u.ac.jp [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); and others

    2012-06-10

    We report that the optical polarization in the afterglow of GRB 091208B is measured at t = 149-706 s after the burst trigger, and the polarization degree is P = 10.4( {+-} 2.5%. The optical light curve at this time shows a power-law decay with index -0.75 {+-} 0.02, which is interpreted as the forward shock synchrotron emission, and thus this is the first detection of the early-time optical polarization in the forward shock (rather than that in the reverse shock reported by Steele et al.). This detection disfavors the afterglow model in which the magnetic fields in the emission region are random on the plasma skin depth scales, such as those amplified by the plasma instabilities, e.g., Weibel instability. We suggest that the fields are amplified by the magnetohydrodynamic instabilities, which would be tested by future observations of the temporal changes of the polarization degrees and angles for other bursts.

  17. THE SPECTRAL SN-GRB CONNECTION: SYSTEMATIC SPECTRAL COMPARISONS BETWEEN TYPE Ic SUPERNOVAE AND BROAD-LINED TYPE Ic SUPERNOVAE WITH AND WITHOUT GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Modjaz, Maryam; Liu, Yuqian Q.; Bianco, Federica B.; Graur, Or, E-mail: mmodjaz@nyu.edu [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)

    2016-12-01

    We present the first systematic investigation of spectral properties of 17 Type Ic Supernovae (SNe Ic), 10 broad-lined SNe Ic (SNe Ic-bl) without observed gamma-ray bursts (GRBs), and 11 SNe Ic-bl with GRBs (SN-GRBs) as a function of time in order to probe their explosion conditions and progenitors. Using a number of novel methods, we analyze a total of 407 spectra, which were drawn from published spectra of individual SNe as well as from the densely time-sampled spectra of Modjaz et al (2014). In order to quantify the diversity of the SN spectra as a function of SN subtype, we construct average spectra of SNe Ic, SNe Ic-bl without GRBs, and SNe Ic-bl with GRBs. We find that SN 1994I is not a typical SN Ic, contrasting the general view, while the spectra of SN 1998bw/GRB 980425 are representative of mean spectra of SNe Ic-bl. We measure the ejecta absorption and width velocities using a new method described here and find that SNe Ic-bl with GRBs, on average, have quantifiably higher absorption velocities, as well as broader line widths than SNe without observed GRBs. In addition, we search for correlations between SN-GRB spectral properties and the energies of their accompanying GRBs. Finally, we show that the absence of clear He lines in optical spectra of SNe Ic-bl, and in particular of SN-GRBs, is not due to them being too smeared-out due to the high velocities present in the ejecta. This implies that the progenitor stars of SN-GRBs are probably free of the He-layer, in addition to being H-free, which puts strong constraints on the stellar evolutionary paths needed to produce such SN-GRB progenitors at the observed low metallicities.

  18. GRB 120422A/SN 2012bz: Bridging the gap between low- and high-luminosity gamma-ray bursts

    NARCIS (Netherlands)

    Schulze, S.; et al., [Unknown; Ellerbroek, L.E.; Kaper, L.; Hartoog, O.E.

    2014-01-01

    Context. At low redshift, a handful of gamma-ray bursts (GRBs) have been discovered with luminosities that are substantially lower (Liso ≲ 1048.5 erg s-1) than the average of more distant ones (Liso ≳ 1049.5 erg s-1). It has been suggested that the properties of several low-luminosity (low-L) GRBs

  19. MASTER Prompt and Follow-Up GRB Observations

    Directory of Open Access Journals (Sweden)

    Nataly Tyurina

    2010-01-01

    Full Text Available We presented the results of last years GRB observations obtained on the MASTER robotic telescope, which is the only telescope of its kind in Russia. These results include 5 prompt observations of GRB in 2008 and 2009, follow-up observations of 15 other GRBs in 2008-2009, the first observations in different polarization angles of optical emission from the gamma-ray bursts GRB091020, and observations in different polarization angles for GRB091127 and GRB090820.

  20. Short GRB afterglows observed with GROND

    DEFF Research Database (Denmark)

    Nicuesa Guelbenzu, A.; Klose, S.; Rossi, A.

    2013-01-01

    cases: GRBs 090305, 090426, 090510, 090927, and 100117A. Three of the aforementioned six bursts with optical light curves show a break: GRBs 090426 and 090510 as well as GRB 090305. For GRB 090927, no break is seen in the optical/X-ray light curve until about 150 ks/600 ks after the burst. A decay slope...... of short bursts. In three cases, GROND was on target within less than 10 min after the trigger, leading to the discovery of the afterglow of GRB 081226A and its faint underlying host galaxy. In addition, GROND was able to image the optical afterglow and follow the light curve evolution in five further...

  1. Study of WATCH GRB error boxes

    DEFF Research Database (Denmark)

    Gorosabel, J.; Castro-Tirado, A. J.; Lund, Niels

    1995-01-01

    We have studied the first WATCH GRB Catalogue ofγ-ray Bursts in order to find correlations between WATCH GRB error boxes and a great variety of celestial objects present in 33 different catalogues. No particular class of objects has been found to be significantly correlated with the WATCH GRBs....

  2. GRB 100816

    DEFF Research Database (Denmark)

    Malesani, Daniele; Xu, Dong; Fynbo, Johan Peter Uldall

    2011-01-01

    We observed the field of GRB 100816A (Oates et al., GCN 11102) with the NOT equipped with ALFOSC. Observations were carried out in the R band. The mid point of the observation is August 17.04 UT (24.3 hr after the GRB). We clearly detect both the optical afterglow (Oates et al., GCN 11102...

  3. GRB 030227: The first multiwavelength afterglow of an INTEGRAL GRB

    DEFF Research Database (Denmark)

    Castro-Tirado, A.J.; Gorosabel, J.; Guziy, S.

    2003-01-01

    We present multiwavelength observations of a gamma-ray burst detected by INTEGRAL (GRB 030227) between 5.3 hours and similar to1.7 days after the event. Here we report the discovery of a dim optical afterglow (OA) that would not have been detected by many previous searches due to its faintess (R...

  4. GRB Simulations in GLAST

    Energy Technology Data Exchange (ETDEWEB)

    Omodei, Nicola; /INFN, Pisa; Battelino, Milan; /Stockholm Observ.; Komin, Nukri; /Montpellier U.; Longo, Francesco; /INFN, Trieste /Trieste U.; McEnery, Julie; /NASA, Goddard; Ryde, Felix; /Denver U.

    2007-10-22

    The Gamma-ray Large Area Space Telescope (GLAST), scheduled to be launched in fall of 2007, is the next generation satellite for high-energy gamma-ray astronomy. The Large Area Telescope (LAT) is a pair conversion telescope built with a high precision silicon tracker, a segmented CsI electromagnetic calorimeter and a plastic anticoincidence shield. The LAT will survey the sky in the energy range between 20 MeV to more than 300 GeV, shedding light on many issues left open by its highly successful predecessor EGRET. LAT will observe Gamma-Ray Bursts (GRB) in an energy range never explored before; to tie these frontier observations to the better-known properties at lower energies, a second instrument, the GLAST Burst Monitor (GBM) will provide important spectra and timing in the 10 keV to 30 MeV range. We briefly present the instruments onboard the GLAST satellite, their synergy in the GRB observations and the work done so far by the collaboration in simulation, analysis, and GRB sensitivity estimation.

  5. UV star-formation rates of GRB host galaxies

    DEFF Research Database (Denmark)

    Christensen, L.; Hjorth, J.; Gorosabel, J.

    2004-01-01

    We study a magnitude-limited sample of 10 gamma-ray burst (GRB) host galaxies with known spectroscopic redshifts (0.43......We study a magnitude-limited sample of 10 gamma-ray burst (GRB) host galaxies with known spectroscopic redshifts (0.43...

  6. GRB 111005A at z = 0.0133 and the Prospect of Establishing Long-Short GRB/GW Association

    Science.gov (United States)

    Wang, Yuan-Zhu; Huang, Yong-Jia; Liang, Yun-Feng; Li, Xiang; Jin, Zhi-Ping; Zhang, Fu-Wen; Zou, Yuan-Chuan; Fan, Yi-Zhong; Wei, Da-Ming

    2017-12-01

    GRB 111005A, a long-duration gamma-ray burst (GRB) that occurred within a metal-rich environment that lacks massive stars with {M}{ZAMS}≥slant 15 {M}⊙ , is not coincident with supernova emission down to a stringent limit and thus should be classified as a “long-short” GRB (lsGRB; also known as an SN-less long GRB or hybrid GRB), like GRB 060505 and GRB 060614. In this work, we show that in the neutron star merger model the non-detection of the optical/infrared emission of GRB 111005A requires sub-relativistic neutron-rich ejecta with a mass of ≤slant 0.01 {M}⊙ , which is (significantly) less massive than that of GRB 130603B, GRB 060614, GRB 050709, and GRB 170817A. The lsGRBs are found to have a high rate density and the neutron star merger origin model can be unambiguously tested by the joint observations of the second-generation gravitational-wave (GW) detectors and the full-sky gamma-ray monitors such as Fermi-GBM and the proposed GECAM. If no lsGRB/GW association is observed in the 2020s, alternative scenarios have to be systematically investigated. With the detailed environmental information achievable for the nearby events, a novel kind of merger or explosion origin may be identified.

  7. GRB 100814A

    DEFF Research Database (Denmark)

    Malesani, Daniele; Fynbo, Johan Peter Uldall; Xu, Dong

    2010-01-01

    We observed the optical afterglow of GRB 100814A (Schaefer et al., GCN 11086; Beardmore et al., GCN 11087) with the NOT equipped with ALFOSC. Observations were carried out in the R band, with a mean time August 17.13 UT (2.97 days after the burst). The optical afterglow is well detected, with R=19.......5 compared to several USNO stars in the field. The error is about 0.3 mag, completely due to the scatter in the calibration stars....

  8. Spitzer Observations of the Naked Eye GRB080319B

    Science.gov (United States)

    Kulkarni, Shrinivas; Rau, Arne; Berger, Edo; Fox, Derek; Ofek, Eran; Werner, Michael

    2008-03-01

    We request a single epoch of IRS blue peak-up imaging of GRB080319B, the brightest optical counterpart to a gamma-ray burst ever detected. The peak optical magnitude observed from GRB080319B, R ~ 6 mag, implies the event was (briefly) visible to the naked eye and almost 3 magnitudes brighter than the previous record holder, GRB990123. Like GRB990123, GRB080319B shows a dramatic rise and fall at early times indicative that we are probing the shocked ejecta of the outflow via reverse shock emission. Spitzer infrared imaging, when coupled with our broadband optical, X-ray, and radio campaign, should help unravel what underlying properties distinguish events like GRB080319B and GRB990123 from the majority of GRB afterglows.

  9. GRB 050319

    DEFF Research Database (Denmark)

    Fynbo, J.P.U; Hjorth, J.; Jakobsson, P.

    2005-01-01

    "Using ALFOSC on the Nordic Optical Telescope (NOT) we have obtained spectra of the afterglow of GRB 050319 (GCN 3116, 3117) on 2005, March 20 UT. We find several absorption features, including strong Lyman-alpha, OI+SiII, SiIV and CIV, corresponding to a redshift of z=3.24."......"Using ALFOSC on the Nordic Optical Telescope (NOT) we have obtained spectra of the afterglow of GRB 050319 (GCN 3116, 3117) on 2005, March 20 UT. We find several absorption features, including strong Lyman-alpha, OI+SiII, SiIV and CIV, corresponding to a redshift of z=3.24."...

  10. Prompt ROTSE Response to GRB05031

    Science.gov (United States)

    Yost, S. A.; Rykoff, E. S.; Quimby, R.; Schaefer, B.; Aharonian, F.; Akerlof, C. W.; Ashley, M. C. B.; Bizyaev, D.; Casperson, D.; Guver, T.; Horns, D.; Kiziloglu, U.; McKay, T. A.; Ozel, M. E.; Phillips, M. A.; Smith, D. A.; Swan, H. F.; Vestrand, W. T.; Wheeler, J. C.; Wren, J.

    2005-05-01

    ROTSE is a network of 4 robotic 0.45m optical telescopes designed to look for early optical emission from gamma-ray bursts (GRBs) by rapidly responding to automated Internet alerts. It has a typical response of ˜8s from the generation of the trigger and, with the Swift satellite's realtime alerts, ROTSE's speed allows it to explore a unique time window of GRB behavior. In the case of GRB 050319, ROTSE began observations at 27s following the initial rise of gamma-ray emission, 13s after the end of the gamma-ray burst, and one minute before the Swift satellite completed its automatic repositioning to begin its optical observations. We detected a fading transient, confirmed to be the GRB counterpart. We present our early lightcurve of the GRB 050319 afterglow.

  11. GRB 130427A: a nearby ordinary monster.

    Science.gov (United States)

    Maselli, A; Melandri, A; Nava, L; Mundell, C G; Kawai, N; Campana, S; Covino, S; Cummings, J R; Cusumano, G; Evans, P A; Ghirlanda, G; Ghisellini, G; Guidorzi, C; Kobayashi, S; Kuin, P; La Parola, V; Mangano, V; Oates, S; Sakamoto, T; Serino, M; Virgili, F; Zhang, B-B; Barthelmy, S; Beardmore, A; Bernardini, M G; Bersier, D; Burrows, D; Calderone, G; Capalbi, M; Chiang, J; D'Avanzo, P; D'Elia, V; De Pasquale, M; Fugazza, D; Gehrels, N; Gomboc, A; Harrison, R; Hanayama, H; Japelj, J; Kennea, J; Kopac, D; Kouveliotou, C; Kuroda, D; Levan, A; Malesani, D; Marshall, F; Nousek, J; O'Brien, P; Osborne, J P; Pagani, C; Page, K L; Page, M; Perri, M; Pritchard, T; Romano, P; Saito, Y; Sbarufatti, B; Salvaterra, R; Steele, I; Tanvir, N; Vianello, G; Wiegand, B; Weigand, B; Wiersema, K; Yatsu, Y; Yoshii, T; Tagliaferri, G

    2014-01-03

    Long-duration gamma-ray bursts (GRBs) are an extremely rare outcome of the collapse of massive stars and are typically found in the distant universe. Because of its intrinsic luminosity (L ~ 3 × 10(53) ergs per second) and its relative proximity (z = 0.34), GRB 130427A reached the highest fluence observed in the γ-ray band. Here, we present a comprehensive multiwavelength view of GRB 130427A with Swift, the 2-meter Liverpool and Faulkes telescopes, and by other ground-based facilities, highlighting the evolution of the burst emission from the prompt to the afterglow phase. The properties of GRB 130427A are similar to those of the most luminous, high-redshift GRBs, suggesting that a common central engine is responsible for producing GRBs in both the contemporary and the early universe and over the full range of GRB isotropic energies.

  12. Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Becsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, M.J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, J.G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderon; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, Laura; Cuoco, E.; Dal Canton, T.; Dalya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Costa, C. F. Da Silva; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.A.; Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M. Di; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Alvarez, M. Dovale; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Galiana, A. Fernandez; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fong, H.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, A.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, Idelmis G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.A.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jimenez-Forteza, F.; Johnson, W.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kefelian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.E.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y.M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kaermer, C.; Kringel, V.; Krishnan, B.; Krolak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lueck, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath Hoareau, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P.G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Gutierrez-Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Castro-Perez, J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romie, J. H.; Rosinska, D.; Rowan, S.; Ruediger, A.; Ruggi, P.; Ryan, K.; Sachdev, Perminder S; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schoenbeck, A.; Schreiber, K.E.C.; Schuette, D.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, António Dias da; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, R. J. E.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson-Moore, P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Szolgyen, A.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tapai, M.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Toyra, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; Van Beuzekom, Martin; van den Brand, J. F. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasuth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Vicere, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J.L.; Wu, D.S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrozny, A.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; Aptekar, R. L.; Frederiks, D. D.; Golenetskii, S. V.; Golovin, D. V.; Hurley, K.; Litvak, M. L.; Mitrofanov, I. G.; Rau, A.; Sanin, A. B.; Svinkin, D. S.; von Kienlin, A.; Zhang, X.

    2017-01-01

    We present the results of the search for gravitational waves (GWs) associated with gamma-ray bursts detected during the first observing run of the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO). We find no evidence of a GW signal for any of the 41 gamma-ray bursts for which LIGO

  13. A trio of gamma-ray burst supernovae

    DEFF Research Database (Denmark)

    Cano, Z.; Ugarte Postigo, Antonio de; Pozanenko, A.

    2014-01-01

    We present optical and near-infrared (NIR) photometry for three gamma-ray burst supernovae (GRB-SNe): GRB 120729A, GRB 130215A / SN 2013ez and GRB 130831A / SN 2013fu. In the case of GRB 130215A / SN 2013ez, we also present optical spectroscopy at t-t0=16.1 d, which covers rest-frame 3000...

  14. GRB Prompt Optical Observations by Master and Lomonosov

    Science.gov (United States)

    Gorbovskoy, Evgeny

    We present the results of the prompt, early and afterglow optical observations of five γ-ray bursts (GRBs): GRB 100901A, GRB 100902A, GRB 100905A, GRB 100906A and GRB 101020A. These observations were made with the Mobile Astronomical System of TElescope-Robots in Russia (MASTER-II Net), the 1.5-m telescope of the Sierra Nevada Observatory and the 2.56-m Nordic Optical Telescope. For two sources, GRB 100901A and GRB 100906A, we detected optical counterparts and obtained light curves starting before the cessation of γ-ray emission, at 113 and 48 s after the trigger, respectively. Observations of GRB 100906A were conducted in two polarizing filters. Observations of the other three bursts gave the upper limits on the optical flux; their properties are briefly discussed. A more detailed analysis of GRB 100901A and GRB 100906A, supplemented by Swift data, provides the following results and indicates different origins for the prompt optical radiation in the two bursts. The light-curve patterns and spectral distributions suggest that there is a common production site for the prompt optical and high-energy emission in GRB 100901A. The results of the spectral fits for GRB 100901A in the range from optical to X-ray favour power-law energy distributions and a consistent value of the optical extinction in the host galaxy. GRB 100906A produced a smoothly peaking optical light curve, suggesting that the prompt optical radiation in this GRB originated in a front shock. This is supported by a spectral analysis. We have found that the Amati and Ghirlanda relations are satisfied for GRB 100906A. We obtain an upper limit on the value of the optical extinction on the host of GRB 100906A. Also we consider prompt observation of dark gamma ray bursts for which on very widefield cameras MASTER-VWF and MASTER-II telescopes upper limits were received. We represent SHOCK experiment onboard the spacecraft Lomonosov.

  15. The Ultra-Fast Flash Observatory’s space GRB mission and science

    DEFF Research Database (Denmark)

    Lim, H.; Ahmad, S.; Barrillon, P.

    2012-01-01

    Abstract. The Ultra-Fast Flash Observatory (UFFO) is a space mission to detect the early moments of an explosion from Gamma-ray bursts (GRBs), thus enhancing our understanding of the GRB mechanism. It consists of the UFFO Burst & Trigger telescope (UBAT) for the recognition of GRB positions using...

  16. GRB hosts through cosmic time. VLT/X-Shooter emission-line spectroscopy of 96 γ-ray-burst-selected galaxies at 0.1

    Science.gov (United States)

    Krühler, T.; Malesani, D.; Fynbo, J. P. U.; Hartoog, O. E.; Hjorth, J.; Jakobsson, P.; Perley, D. A.; Rossi, A.; Schady, P.; Schulze, S.; Tanvir, N. R.; Vergani, S. D.; Wiersema, K.; Afonso, P. M. J.; Bolmer, J.; Cano, Z.; Covino, S.; D'Elia, V.; de Ugarte Postigo, A.; Filgas, R.; Friis, M.; Graham, J. F.; Greiner, J.; Goldoni, P.; Gomboc, A.; Hammer, F.; Japelj, J.; Kann, D. A.; Kaper, L.; Klose, S.; Levan, A. J.; Leloudas, G.; Milvang-Jensen, B.; Nicuesa Guelbenzu, A.; Palazzi, E.; Pian, E.; Piranomonte, S.; Sánchez-Ramírez, R.; Savaglio, S.; Selsing, J.; Tagliaferri, G.; Vreeswijk, P. M.; Watson, D. J.; Xu, D.

    2015-09-01

    We present data and initial results from VLT/X-Shooter emission-line spectroscopy of 96 galaxies selected by long γ-ray bursts (GRBs) at 0.1 Swift and 76% are at 0.5 2 by ~0.4 dex. These properties of GRB hosts and their evolution with redshift can be understood in a cosmological context of star-forming galaxies and a picture in which the hosts' properties at low redshift are influenced by the tendency of GRBs to avoid the most metal-rich environments. Based on observations at ESO, Program IDs: 084.A-0260, 084.A-0303, 085.A-0009, 086.B-0954, 086.A-0533, 086.A-0874, 087.A-0055, 087.A-0451, 087.B-0737, 088.A-0051, 088.A-0644, 089.A-0067, 089.A-0120, 089.D-0256, 089.A-0868, 090.A-0088, 090.A-0760, 090.A-0825, 091.A-0342, 091.A-0703, 091.A-0877, 091.C-0934, 092.A-0076, 092.A-0124, 092.A-0231, 093.A-0069, 094.A-0593.Tables 1-4 and appendices are available in electronic form at http://www.aanda.orgThe reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/581/A125

  17. The ultraluminous GRB 110918A

    Energy Technology Data Exchange (ETDEWEB)

    Frederiks, D. D.; Svinkin, D. S.; Pal' shin, V. D.; Aptekar, R. L.; Golenetskii, S. V.; Mazets, E. P.; Oleynik, Ph. P.; Tsvetkova, A. E.; Ulanov, M. V.; Kokomov, A. A. [Ioffe Physical-Technical Institute, Politekhnicheskaya 26, St. Petersburg 194021 (Russian Federation); Hurley, K. [Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley, CA 94720-7450 (United States); Mangano, V.; Burrows, D. N.; Sbarufatti, B.; Siegel, M. H. [Pennsylvania State University, Department of Astronomy and Astrophysics, College Park, PA 16801 (United States); Oates, S. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom); Cline, T. L.; Krimm, H. A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Pagani, C. [University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Mitrofanov, I. G., E-mail: fred@mail.ioffe.ru [Space Research Institute, Profsoyuznaya 84/32, Moscow 117997 (Russian Federation); and others

    2013-12-20

    GRB 110918A is the brightest long gamma-ray burst (GRB) detected by Konus-WIND during its almost 19 yr of continuous observations and the most luminous GRB ever observed since the beginning of the cosmological era in 1997. We report on the final Interplanetary Network localization of this event and its detailed multiwavelength study with a number of space-based instruments. The prompt emission is characterized by a typical duration, a moderate peak energy of the time-integrated spectrum, and strong hard-to-soft evolution. The high observed energy fluence yields, at z = 0.984, a huge isotropic-equivalent energy release E {sub iso} = (2.1 ± 0.1) × 10{sup 54} erg. The record-breaking energy flux observed at the peak of the short, bright, hard initial pulse results in an unprecedented isotropic-equivalent luminosity L {sub iso} = (4.7 ± 0.2) × 10{sup 54} erg s{sup –1}. A tail of the soft γ-ray emission was detected with temporal and spectral behavior typical of that predicted by the synchrotron forward-shock model. The Swift/X-Ray Telescope and the Swift/Ultraviolet Optical Telescope observed the bright afterglow from 1.2 to 48 days after the burst and revealed no evidence of a jet break. The post-break scenario for the afterglow is preferred from our analysis, with a hard underlying electron spectrum and interstellar-medium-like circumburst environment implied. We conclude that, among the multiple reasons investigated, the tight collimation of the jet must have been a key ingredient to produce this unusually bright burst. The inferred jet opening angle of 1.°7-3.°4 results in reasonable values of the collimation-corrected radiated energy and the peak luminosity, which, however, are still at the top of their distributions for such tightly collimated events. We estimate a detection horizon for a similar ultraluminous GRB of z ∼ 7.5 for Konus-WIND and z ∼ 12 for the Swift/Burst Alert Telescope, which stresses the importance of GRBs as probes of the early

  18. The optical afterglow and host galaxy of GRB 000926

    DEFF Research Database (Denmark)

    Fynbo, J.U.; Gorosabel, J.; Dall, T.H.

    2001-01-01

    We present the discovery of the Optical Transient (OT) of the long-duration gamma-ray burst GRB 000926. The optical transient was detected independently with the Nordic Optical Telescope and at Calar Alto 22.2 hours after the burst. At this time the magnitude of the transient was R = 19.36. The t...

  19. The optical afterglow and host galaxy of GRB 000926

    DEFF Research Database (Denmark)

    Fynbo, J.U.; Gorosabel, J.; Dall, T.H.

    2002-01-01

    In this paper we illustrate with the case of GRB 000926 how Gamma Ray Bursts (GRBs) can be used as cosmological lighthouses to identify and study star forming galaxies at high redshifts. The optical afterglow of the burst was located with optical imaging at the Nordic Optical Telescope 20.7 hours...

  20. CONSTRAINTS ON VERY HIGH ENERGY EMISSION FROM GRB 130427A

    Energy Technology Data Exchange (ETDEWEB)

    Aliu, E.; Errando, M. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Aune, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Barnacka, A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Beilicke, M.; Buckley, J. H.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W.; Cerruti, M. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Berger, K. [Department of Physics and Astronomy and the Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States); Biteau, J. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Cardenzana, J. V; Dickinson, H. J.; Eisch, J. D. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Chen, X. [Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm (Germany); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Connaughton, V. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Cui, W. [Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907 (United States); Falcone, A., E-mail: aune@astro.ucla.edu, E-mail: sjzhu@umd.edu, E-mail: veres@email.gwu.edu [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); and others

    2014-11-01

    Prompt emission from the very fluent and nearby (z = 0.34) gamma-ray burst GRB 130427A was detected by several orbiting telescopes and by ground-based, wide-field-of-view optical transient monitors. Apart from the intensity and proximity of this GRB, it is exceptional due to the extremely long-lived high-energy (100 MeV to 100 GeV) gamma-ray emission, which was detected by the Large Area Telescope on the Fermi Gamma-Ray Space Telescope for ∼70 ks after the initial burst. The persistent, hard-spectrum, high-energy emission suggests that the highest-energy gamma rays may have been produced via synchrotron self-Compton processes though there is also evidence that the high-energy emission may instead be an extension of the synchrotron spectrum. VERITAS, a ground-based imaging atmospheric Cherenkov telescope array, began follow-up observations of GRB 130427A ∼71 ks (∼20 hr) after the onset of the burst. The GRB was not detected with VERITAS; however, the high elevation of the observations, coupled with the low redshift of the GRB, make VERITAS a very sensitive probe of the emission from GRB 130427A for E > 100 GeV. The non-detection and consequent upper limit derived place constraints on the synchrotron self-Compton model of high-energy gamma-ray emission from this burst.

  1. Observations of the Prompt Optical Emission of GRB 160625B with Mini-MegaTORTORA

    Science.gov (United States)

    Karpov, S.; Beskin, G.; Biryukov, A.; Bondar, S.; Ivanov, E.; Katkova, E.; Orekhova, N.; Perkov, A.; Sasyuk, V.

    2017-06-01

    Here we report our observations of bright optical flash coincident with Fermi GRB160625B using Mini-MegaTORTORA wide-field monitoring system. The prompt optical emission is correlated with gamma one and lags behind it for about 3 seconds, that suggests that optical and gamma emission are formed in different regions of the burst. The multiwavelength properties of this burst are very similar to ones of Naked-Eye Burst, GRB080319B, we detected earlier with TORTORA camera.

  2. Confronting GRB prompt emission with a model for subphotospheric dissipation

    Science.gov (United States)

    Ahlgren, Björn; Larsson, Josefin; Nymark, Tanja; Ryde, Felix; Pe'er, Asaf

    2015-11-01

    The origin of the prompt emission in gamma-ray bursts (GRBs) is still an unsolved problem and several different mechanisms have been suggested. Here, we fit Fermi GRB data with a photospheric emission model which includes dissipation of the jet kinetic energy below the photosphere. The resulting spectra are dominated by Comptonization and contain no significant contribution from synchrotron radiation. In order to fit to the data, we span a physically motivated part of the model's parameter space and create DREAM (Dissipation with Radiative Emission as A table Model), a table model for XSPEC. We show that this model can describe different kinds of GRB spectra, including GRB 090618, representing a typical Band function spectrum, and GRB 100724B, illustrating a double peaked spectrum, previously fitted with a Band+blackbody model, suggesting they originate from a similar scenario. We suggest that the main difference between these two types of bursts is the optical depth at the dissipation site.

  3. Gamma-ray bursts

    CERN Document Server

    Wijers, Ralph A M J; Woosley, Stan

    2012-01-01

    Cosmic gamma ray bursts (GRBs) have fascinated scientists and the public alike since their discovery in the late 1960s. Their story is told here by some of the scientists who participated in their discovery and, after many decades of false starts, solved the problem of their origin. Fourteen chapters by active researchers in the field present a detailed history of the discovery, a comprehensive theoretical description of GRB central engine and emission models, a discussion of GRB host galaxies and a guide to how GRBs can be used as cosmological tools. Observations are grouped into three sets from the satellites CGRO, BeppoSAX and Swift, and followed by a discussion of multi-wavelength observations. This is the first edited volume on GRB astrophysics that presents a fully comprehensive review of the subject. Utilizing the latest research, Gamma-ray Bursts is an essential desktop companion for graduate students and researchers in astrophysics.

  4. Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

    DEFF Research Database (Denmark)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.

    2017-01-01

    On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gam...

  5. GRB 110731A within the IGC paradigm

    Directory of Open Access Journals (Sweden)

    Primorac Daria

    2018-01-01

    Full Text Available Bright gamma-ray burst (GRB 110731A was simultaneously observed by Fermi and Swift observatories, with a follow up optical observation which inferred the redshift of z = 2.83. Thus, available data are spanning from optical to high energy (GeV emission. We analyze these data within the induced gravitational collapse (IGC paradigm, recently introduced to explain temporal coincidence of some long GRBs with type Ic supernovae. The case of binary-driven hypcrnova (BdHN assumes a close system, which starts as an evolved core - neutron star binary. After the core-collapse event, the new NS - black hole system is formed, emitting the GRB in the process. We performed the time-resolved and time-integrated analysis of the Fermi data. Preliminary results gave isotropic energy Eiso = 6.05 × 1053 erg and the total P-GRB energy of Ep–GRB = 3.7 × 1052 erg. At transparency point we found a Lorentz factor Γ ~ 2.17 × 103 laboratory radius of 8.33 x 1013 cm, P-GRB observed temperature of 168 keV and a baryon load B = 4.35 × 10-4. Simulated light-curve and prompt emission spectra showed the average circum burst medium density to be n ~ 0.03 particles per cm3. We reproduced the X-ray light-curve within the rest-frame of the source, finding the common late power-law behavior, with α = –1.22. Considering these results, we interpret GRB 110731A as a member of a BdHNe group.

  6. GRB 110731A within the IGC paradigm

    Science.gov (United States)

    Primorac, Daria; Ruffini, Remo; Pisani, Giovanni Battista; Aimuratov, Yerlan; Biancol, Carlo Luciano; Karlica, Mile; Melon Fuksman, Julio David; Moradi, Rahim; Muccino, Marco; Penacchioni, Ana Virginia; Rueda, Jorge Armando; Wang, Yu

    2018-01-01

    Bright gamma-ray burst (GRB) 110731A was simultaneously observed by Fermi and Swift observatories, with a follow up optical observation which inferred the redshift of z = 2.83. Thus, available data are spanning from optical to high energy (GeV) emission. We analyze these data within the induced gravitational collapse (IGC) paradigm, recently introduced to explain temporal coincidence of some long GRBs with type Ic supernovae. The case of binary-driven hypcrnova (BdHN) assumes a close system, which starts as an evolved core - neutron star binary. After the core-collapse event, the new NS - black hole system is formed, emitting the GRB in the process. We performed the time-resolved and time-integrated analysis of the Fermi data. Preliminary results gave isotropic energy Eiso = 6.05 × 1053 erg and the total P-GRB energy of Ep-GRB = 3.7 × 1052 erg. At transparency point we found a Lorentz factor Γ 2.17 × 103 laboratory radius of 8.33 x 1013 cm, P-GRB observed temperature of 168 keV and a baryon load B = 4.35 × 10-4. Simulated light-curve and prompt emission spectra showed the average circum burst medium density to be n 0.03 particles per cm3. We reproduced the X-ray light-curve within the rest-frame of the source, finding the common late power-law behavior, with α = -1.22. Considering these results, we interpret GRB 110731A as a member of a BdHNe group.

  7. The width of the gamma-ray burst luminosity function

    NARCIS (Netherlands)

    Ulmer, A.; Wijers, R.A.M.J.

    1995-01-01

    We examine the width of the gamma-ray burst (GRB) luminosity function through the distribution of GRB peak count rates, Cpeak, as detected by Burst and Transient Source Experiment (BATSE) (1993). In the context of Galactic corona spatial distribution models, we attempt to place constaints on the

  8. A Spatially Resolved Study of the GRB 020903 Host Complex

    OpenAIRE

    Thorp, Mallory; Levesque, Emily

    2017-01-01

    GRB 020903 is a long-duration gamma ray burst (LGRB) with a host galaxy close enough and extended enough for spatially-resolved observations, making it one of less than a dozen GRBs where such host studies are possible. GRB 020903 lies in a galaxy host complex that appears to consist of four interacting components. Here we present the results of spatially-resolved spectroscopic observations of the GRB 020903 host. By taking observations at two different position angles we were able to obtain ...

  9. Spectral Lag Evolution among -Ray Burst Pulses

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We analyse the spectral lag evolution of -ray burst (GRB) pulses with observations by CGRO/BATSE. No universal spectral lag evolution feature and pulse luminosity-lag relation within a GRB is observed.Our results suggest that the spectral lag would be due to radiation physics and dynamics of a given ...

  10. The Supernova associated with GRB 030329

    CERN Document Server

    Dado, S; De Rújula, Alvaro; Dado, Shlomo; Dar, Arnon; Rujula, Alvaro De

    2003-01-01

    The relative proximity of the recent gamma ray burst (GRB) 030329 resulted in a large gamma-ray fluence and in the brightest-ever afterglow (AG), hours after the burst, in the radio, optical and X-ray bands, permitting precise AG measurements, sensitive tests of models and an excellent occasion to investigate the association of GRBs with supernovae (SNe). The Cannonball (CB) model provides a good, simple and universal description of all AGs of GRBs of known redshift, so that it is straightforward to use it to predict what the expected SN signatures are. In the case of GRB 030329, 10 days after burst the AG should begin to reveal the lightcurve, spectrum and polarization of an underlying SN --akin to SN1998bw-- which will peak in the NIR/optical band around day 15. These effects will be easily observable if indeed SN1998bw is a good ``standard candle'' for GRB-associated SNe and if the so far unknown extinction in the host galaxy is not too large.

  11. Supernovae and gamma-ray bursts connection

    Energy Technology Data Exchange (ETDEWEB)

    Valle, Massimo Della [INAF-Napoli, Capodimonte Observatory, Salita Moiariello, 16, I-80131 Napoli (Italy); International Center for Relativistic Astrophysics Network, Piazzale della Repubblica 10, I-65122, Pescara (Italy)

    2015-12-17

    I’ll review the status of the Supernova/Gamma-Ray Burst connection. Several pieces of evidence suggest that long duration Gamma-ray Bursts are associated with bright SNe-Ic. However recent works suggest that GRBs might be produced in tight binary systems composed of a massive carbon-oxygen cores and a neutron star companion. Current estimates of the SN and GRB rates yield a ratio GRB/SNe-Ibc in the range ∼ 0.4% − 3%.

  12. The Early Optical Brightening in the GRB 071010B

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J H; Schwamb, M E; Huang, K Y; Wen, C Y; Zhang, Z W; Wang, S Y; Chen, W P; Bianco, F B; Dave, R; Lehner, M J; Marshall, S L; Porrata, R; Alcock, C; Byun, Y I; Cook, K H; King, S K; Lee, T; Urata, Y

    2008-04-08

    We report the detection of early (60-230 s) optical emission of the gamma-ray burst afterglow of GRB071010B. No significant correlation with the prompt {gamma}-ray emission was found. Our high time-resolution data combining with other measurements within 2 days after the burst indicate that GRB071010B is composed of a weak early brightening ({alpha} {approx} 0.6), probably caused by the peak frequency passing through the optical wavelengths, followed by a decay ({alpha} {approx} -0.51), attributed to continuous energy injection by patchy jets.

  13. The Optically Unbiased GRB Host (TOUGH) Survey. VI. Radio Observations at z

    NARCIS (Netherlands)

    Michałowski, M.J.; Kamble, A.P.; Hjorth, J.; Malesani, D.; Reinfrank, R.F.; Bonavera, L.; Castro Cerón, J.M.; Ibar, E.; Dunlop, J.S.; Fynbo, J.P.U.; Garrett, M.A.; Jakobsson, P.; Kaplan, D.L.; Krühler, T.; Levan, A.J.; Massardi, M.; Pal, S.; Sollerman, J.; Tanvir, N.R.; van der Horst, A.J.; Watson, D.; Wiersema, K.

    2012-01-01

    The objective of this paper is to determine the level of obscured star formation activity and dust attenuation in a sample of gamma-ray burst (GRB) hosts, and to test the hypothesis that GRB hosts have properties consistent with those of the general star-forming galaxy populations. We present a

  14. A multi-colour study of the dark GRB 000210 host galaxy and its environment

    DEFF Research Database (Denmark)

    Gorosabel, J.; Christensen, Lise; Hjorth, J.

    2003-01-01

    We present UBVRIZJsHKs broad band photometry of the host galaxy of the dark gamma-ray burst (GRB) of February 10, 2000. These observations represent the most exhaustive photometry given to date of any GRB host galaxy. A grid of spectral templates have been fitted to the Spectral Energy Distribution...

  15. A metal-rich molecular cloud surrounds GRB 050904 at redshift 6.3

    NARCIS (Netherlands)

    Campana, S.; Lazzati, D.; Ripamonti, Emanuele; Perna, R.; Covino, S.; Tagliaferri, G.; Moretti, A.; Romano, P.; Cusumano, G.; Chincarini, G.

    2007-01-01

    GRB 050904 is the gamma-ray burst with the highest measured redshift. We performed time-resolved X-ray spectroscopy of the late GRB and early afterglow emission. We find robust evidence for a decrease with time of the soft X-ray-absorbing column. We model the evolution of the column density due to

  16. Pulsar kicks and γ-ray burst

    Science.gov (United States)

    Cui, X. H.; Wang, H. G.; Xu, R. X.; Qiao, G. J.

    2007-09-01

    Aims:We use the supernova-GRB (γ-ray burst) association and assume that the GRB asymmetric explosions produce pulsars in order to test the consistency of distributions of modeled and observed pulsar-kick velocities. Methods: The deduced distribution of kick velocity from the model of GRB and the observed kick distribution of radio pulsars are checked by a K-S test. Results: These two distributions are found to come from the same parent population. Conclusions: This result may indicate that GRBs could really be related to supernova and that the asymmetry of GRB associated with supernova would cause the pulsar kick.

  17. The First Unambiguous Electromagnetic Counterpart to a Gravitational-Wave Signal: GRB 170817A and GW170817

    Science.gov (United States)

    Goldstein, Adam

    2018-01-01

    On 2017 August 17 at 12:41:06 UTC the Fermi Gamma-ray Burst Monitor (GBM) detected and triggered on the short gamma-ray burst (GRB) 170817A. Approximately 2 s prior to this GRB, the LIGO gravitational-wave observatory triggered on a binary compact merger candidate associated with the GRB. This is the first unambiguous coincident observation of gravitational waves and electromagnetic radiation from a single astrophysical source and marks the start of gravitational-wave multi-messenger astronomy. We report the GBM observations and analysis of this short GRB and the joint science that results from this discovery.

  18. What we learn from the afterglow of GRB 021211

    CERN Document Server

    Dado, S; De Rújula, Alvaro; Dado, Shlomo; Dar, Arnon; Rujula, Alvaro De

    2003-01-01

    The behaviour of the afterglow (AG) of gamma-ray bursts (GRBs) directly provides, in the cannonball (CB) model, information about the environment of their progenitor stars. The well observed early temporal decline of the AG of GRB 021211 is precisely the one predicted in the presence of a progenitor's ``wind'' which resulted in a density profile $\\propto 1/r^2$ around the star. The subsequent fast fading --which makes this GRB ``quasi-dark''-- is the one anticipated if, further away, the interstellar density is roughly constant and relatively high. The CB-model fit to the AG clearly shows the presence of an associated supernova akin to SN1998bw, and allows even for the determination of the broad-band spectrum of the host galaxy. GRB 990123 and GRB 021004, whose AGs were also measured very early, are also discussed.

  19. The Swift GRB Host Galaxy Legacy Survey

    Science.gov (United States)

    Perley, Daniel A.

    I will describe the Swift Host Galaxy Legacy Survey (SHOALS), a comprehensive multiwavelengthprogram to characterize the demographics of the GRB host population and its redshift evolution from z=0 to z=7.Using unbiased selection criteria we have designated a subset of 119 Swift gamma-ray bursts which are now beingtargeted with intensive observational follow-up. Deep Spitzer imaging of every field has already been obtained andanalyzed, with major programs ongoing at Keck, GTC, Gemini, VLT, and Magellan to obtain complementaryoptical/NIR photometry and spectroscopy to enable full SED modeling and derivation of fundamental physicalparameters such as mass, extinction, and star-formation rate. Using these data I will present an unbiasedmeasurement of the GRB host-galaxy luminosity and mass distributions and their evolution with redshift, compareGRB hosts to other star-forming galaxy populations, and discuss implications for the nature of the GRB progenitor andthe ability of GRBs to serve as tools for measuring and studying cosmic star-formation in the distant universe.

  20. An HST study of three very faint GRB host galaxies

    DEFF Research Database (Denmark)

    Jaunsen, A.O.; Andersen, M.I.; Hjorth, J.

    2003-01-01

    . (2002). We obtain a revised and much higher probability that the galaxies identified as hosts indeed are related to the GRBs (P(n(chance))=0.69, following Bloom et al. 2002), thereby strengthening the conclusion that GRBs are preferentially located in star-forming regions in their hosts. Apart from......As part of the HST/STIS GRB host survey program we present the detection of three faint gamma-ray burst (GRB) host galaxies based on an accurate localisation using ground-based data of the optical afterglows (OAs). A common property of these three hosts is their extreme faintness. The location...... at which GRBs occur with respect to their host galaxies and surrounding environments are robust indicators of the nature of GRB progenitors. The bursts studied here are among the four most extreme outliers, in terms of relative distance from the host center, in the recent comprehensive study of Bloom et al...

  1. On the constraining observations of the dark GRB 001109 and the properties of a z=0.398 radio selected starburst galaxy contained in its error box

    DEFF Research Database (Denmark)

    Ceron, J.M.C.; Gorosabel, J.; Castro-Tirado, A.J.

    2004-01-01

    We present optical and NIR (near infrared) follow up observations of the GRB 001109 from 1 to 300 days after the burst. No transient emission was found at these wavelengths within this GRB's (Gamma Ray Burst) 50" radius BeppoSAX error box. Strong limits (3sigma) are set with: Rgreater than or sim...

  2. The Peculiar Physics of GRB 170817A and Their Implications for Short GRBs

    Science.gov (United States)

    Bégué, D.; Burgess, J. Michael; Greiner, J.

    2017-12-01

    The unexpected nearby gamma-ray burst (GRB) GRB 170817A associated with the Laser Interferometer Gravitational-Wave Observatory binary neutron star merger event GW170817 presents a challenge to the current understanding of the emission physics of short GRBs. The event’s low luminosity but similar peak energy compared to standard short GRBs are difficult to explain with current models, challenging our understanding of the GRB emission process. Emission models invoking synchrotron radiation from electrons accelerated in shocks and photospheric emission are particularly challenging explanations for this burst.

  3. Physics of the GRB 030328 afterglow and its environment

    NARCIS (Netherlands)

    Maiorano, E.; Masetti, N.; Palazzi, E.; Savaglio, S.; Rol, E.; Vreeswijk, P.M.; Pian, E.; Price, P.A.; Peterson, B.A.; Jelínek, M.; Amati, L.; Andersen, M.I.; Castro-Tirado, A.J.; Castro Cerón, J.M.; de Ugarte Postigo, A.; Frontera, F.; Fruchter, A.S.; Fynbo, J.P.U.; Gorosabel, J.; Henden, A.A.; Hjorth, J.; Jensen, B.L.; Klose, S.; Kouveliotou, C.; Masi, G.; Møller, P.; Nicastro, L.; Ofek, E.O.; Pandey, S.B.; Rhoads, J.E.; Tanvir, N.R.; Wijers, R.A.M.J.; van den Heuvel, E.P.J.

    2006-01-01

    Aims.To investigate the physical nature of the afterglow emission. We report on the photometric, spectroscopic and polarimetric observations of the optical afterglow of Gamma-Ray Burst (GRB) 030328 detected by HETE-2. Methods.Photometric, spectroscopic and polarimetric monitoring of the optical

  4. Search for correlations of GRB and cosmic rays

    Science.gov (United States)

    Jędrzejczak, K.; Kasztelan, M.; Mankiewicz, L.; Molak, M.; Nawrocki, K.; Piotrowski, L. W.; Sokołowski, M.; Szabelska, B.; Szabelski, J.; Wibig, T.; Wolfendale, A. W.; Wrochna, G.

    2007-06-01

    It is possible that violent processes resulting in Gamma Ray Bursts produce also high energy photons and cosmic rays. The possible correlations of very short GRB with, e.g., CMB, cosmic rays is briefly discussed. We have also begun preparation of the experiment correlating in real time data from Maze cosmic ray detector and Pi of the Sky robotic telescope.

  5. Early danish GRB experiments - And some for the future?

    DEFF Research Database (Denmark)

    Lund, Niels

    2013-01-01

    By 1975 the hunt for GRB counterparts had been on for almost ten years without success. Gamma burst instruments of that day provided little or no directional data in themselves. Positions could be extracted only using the time delay technique - potentially accurate but very slow. Triggered by a j...... for rare, bright events. © EAS, EDP Sciences 2013....

  6. Spectroscopy of the short-hard GRB 130603B

    DEFF Research Database (Denmark)

    Postigo, A. de Ugarte; Thoene, C. C.; Rowlinson, A.

    2014-01-01

    Short duration gamma-ray bursts (SGRBs) are thought to be related to the violent merger of compact objects, such as neutron stars or black holes, which makes them promising sources of gravitational waves. The detection of a 'kilonova'-like signature associated to the Swift-detected GRB 130603B has...

  7. On Gamma-Ray Bursts

    Science.gov (United States)

    Ruffini, R.; Bernardini, M. G.; Bianco, C. L.; Caito, L.; Chardonnet, P.; Cherubini, C.; Dainotti, M. G.; Fraschetti, F.; Geralico, A.; Guida, R.; Patricelli, B.; Rotondo, M.; Rueda Hernandez, J. A.; Vereshchagin, G.; Xue, S.-S.

    2008-09-01

    We show by example how the uncoding of Gamma-Ray Bursts (GRBs) offers unprecedented possibilities to foster new knowledge in fundamental physics and in astrophysics. After recalling some of the classic work on vacuum polarization in uniform electric fields by Klein, Sauter, Heisenberg, Euler and Schwinger, we summarize some of the efforts to observe these effects in heavy ions and high energy ion collisions. We then turn to the theory of vacuum polarization around a Kerr-Newman black hole, leading to the extraction of the blackholic energy, to the concept of dyadosphere and dyadotorus, and to the creation of an electron-positron-photon plasma. We then present a new theoretical approach encompassing the physics of neutron stars and heavy nuclei. It is shown that configurations of nuclear matter in bulk with global charge neutrality can exist on macroscopic scales and with electric fields close to the critical value near their surfaces. These configurations may represent an initial condition for the process of gravitational collapse, leading to the creation of an electron-positron-photon plasma: the basic self-accelerating system explaining both the energetics and the high energy Lorentz factor observed in GRBs. We then turn to recall the two basic interpretational paradigms of our GRB model: 1) the Relative Space-Time Transformation (RSTT) paradigm and 2) the Interpretation of the Burst Structure (IBS) paradigm. These paradigms lead to a "canonical" GRB light curve formed from two different components: a Proper-GRB (P-GRB) and an extended afterglow comprising a raising part, a peak, and a decaying tail. When the P-GRB is energetically predominant we have a "genuine" short GRB, while when the afterglow is energetically predominant we have a so-called long GRB or a "fake" short GRB. We compare and contrast the description of the relativistic expansion of the electron-positron plasma within our approach and within the other ones in the current literature. We then turn

  8. Gamma-ray bursts and their use as cosmic probes

    Science.gov (United States)

    Schady, Patricia

    2017-07-01

    Since the launch of the highly successful and ongoing Swift mission, the field of gamma-ray bursts (GRBs) has undergone a revolution. The arcsecond GRB localizations available within just a few minutes of the GRB alert has signified the continual sampling of the GRB evolution through the prompt to afterglow phases revealing unexpected flaring and plateau phases, the first detection of a kilonova coincident with a short GRB, and the identification of samples of low-luminosity, ultra-long and highly dust-extinguished GRBs. The increased numbers of GRB afterglows, GRB-supernova detections, redshifts and host galaxy associations has greatly improved our understanding of what produces and powers these immense, cosmological explosions. Nevertheless, more high-quality data often also reveal greater complexity. In this review, I summarize some of the milestones made in GRB research during the Swift era, and how previous widely accepted theoretical models have had to adapt to accommodate the new wealth of observational data.

  9. Gamma-ray bursts and their use as cosmic probes.

    Science.gov (United States)

    Schady, Patricia

    2017-07-01

    Since the launch of the highly successful and ongoing Swift mission, the field of gamma-ray bursts (GRBs) has undergone a revolution. The arcsecond GRB localizations available within just a few minutes of the GRB alert has signified the continual sampling of the GRB evolution through the prompt to afterglow phases revealing unexpected flaring and plateau phases, the first detection of a kilonova coincident with a short GRB, and the identification of samples of low-luminosity, ultra-long and highly dust-extinguished GRBs. The increased numbers of GRB afterglows, GRB-supernova detections, redshifts and host galaxy associations has greatly improved our understanding of what produces and powers these immense, cosmological explosions. Nevertheless, more high-quality data often also reveal greater complexity. In this review, I summarize some of the milestones made in GRB research during the Swift era, and how previous widely accepted theoretical models have had to adapt to accommodate the new wealth of observational data.

  10. Circular polarization in the optical afterglow of GRB 121024A.

    Science.gov (United States)

    Wiersema, K; Covino, S; Toma, K; van der Horst, A J; Varela, K; Min, M; Greiner, J; Starling, R L C; Tanvir, N R; Wijers, R A M J; Campana, S; Curran, P A; Fan, Y; Fynbo, J P U; Gorosabel, J; Gomboc, A; Götz, D; Hjorth, J; Jin, Z P; Kobayashi, S; Kouveliotou, C; Mundell, C; O'Brien, P T; Pian, E; Rowlinson, A; Russell, D M; Salvaterra, R; di Serego Alighieri, S; Tagliaferri, G; Vergani, S D; Elliott, J; Fariña, C; Hartoog, O E; Karjalainen, R; Klose, S; Knust, F; Levan, A J; Schady, P; Sudilovsky, V; Willingale, R

    2014-05-08

    Gamma-ray bursts (GRBs) are most probably powered by collimated relativistic outflows (jets) from accreting black holes at cosmological distances. Bright afterglows are produced when the outflow collides with the ambient medium. Afterglow polarization directly probes the magnetic properties of the jet when measured minutes after the burst, and it probes the geometric properties of the jet and the ambient medium when measured hours to days after the burst. High values of optical polarization detected minutes after the burst of GRB 120308A indicate the presence of large-scale ordered magnetic fields originating from the central engine (the power source of the GRB). Theoretical models predict low degrees of linear polarization and no circular polarization at late times, when the energy in the original ejecta is quickly transferred to the ambient medium and propagates farther into the medium as a blast wave. Here we report the detection of circularly polarized light in the afterglow of GRB 121024A, measured 0.15 days after the burst. We show that the circular polarization is intrinsic to the afterglow and unlikely to be produced by dust scattering or plasma propagation effects. A possible explanation is to invoke anisotropic (rather than the commonly assumed isotropic) electron pitch-angle distributions, and we suggest that new models are required to produce the complex microphysics of realistic shocks in relativistic jets.

  11. VizieR Online Data Catalog: GRB prompt emission fitted with the DREAM model (Ahlgren+, 2015)

    Science.gov (United States)

    Ahlgren, B.; Larsson, J.; Nymark, T.; Ryde, F.; Pe'Er, A.

    2018-01-01

    We illustrate the application of the DREAM model by fitting it to two different, bright Fermi GRBs; GRB 090618 and GRB 100724B. While GRB 090618 is well fitted by a Band function, GRB 100724B was the first example of a burst with a significant additional BB component (Guiriec et al. 2011ApJ...727L..33G). GRB 090618 is analysed using Gamma-ray Burst Monitor (GBM) data (Meegan et al. 2009ApJ...702..791M) from the NaI and BGO detectors. For GRB 100724B, we used GBM data from the NaI and BGO detectors as well as Large Area Telescope Low Energy (LAT-LLE) data. For both bursts we selected NaI detectors seeing the GRB at an off-axis angle lower than 60° and the BGO detector as being the best aligned of the two BGO detectors. The spectra were fitted in the energy ranges 8-1000 keV (NaI), 200-40000 keV (BGO) and 30-1000 MeV (LAT-LLE). (2 data files).

  12. The Structure and Dynamics of GRB Jets

    Energy Technology Data Exchange (ETDEWEB)

    Granot, Jonathan; /KIPAC, Menlo Park

    2006-10-25

    There are several lines of evidence which suggest that the relativistic outflows in gamma-ray bursts (GRBs) are collimated into narrow jets. The jet structure has important implications for the true energy release and the event rate of GRBs, and can constrain the mechanism responsible for the acceleration and collimation of the jet. Nevertheless, the jet structure and its dynamics as it sweeps up the external medium and decelerates, are not well understood. In this review I discuss our current understanding of GRB jets, stressing their structure and dynamics.

  13. The NuSTAR View of Gamma Ray Bursts

    Science.gov (United States)

    Kouveliotou, C.

    2014-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission was launched June 13, 2012. During the next two pears NuSTAR observed two Gamma Ray Bursts, GRBs 130427A and 130925A. I will describe here the NuSTAR GRB results and discuss their implications on the GRB field.

  14. CGM-GRB: A survey of the CircumGalactic Medium around GRB hosts

    Science.gov (United States)

    Gatkine, Pradip; Veilleux, Sylvain; Cucchiara, Antonino; Cenko, Bradley

    2018-01-01

    Recent space- and ground-based studies of the circumgalactic medium around galaxies have revealed the dynamic interplay between the galaxy ecosystem and surrounding CGM using bright background quasars. Here, we extend this investigation of the CGM to higher redshifts by using the bright afterglows of gamma-ray bursts as background sources. This provides a unique opportunity to probe the host galaxy ISM and its surrounding CGM together. We compiled a sample of 25 high-resolution (R > 8000) and high-quality (typical S/N ~ 20) rest-frame UV spectra of GRB afterglows with a redshift range (1.5 kinematics and physical properties of the ISM and CGM of these GRB hosts are presented here.

  15. Radioactive decay of GRB-SNe at late-times

    Science.gov (United States)

    Misra, Kuntal; Fruchter, A. S.

    2017-02-01

    We present the late-time Hubble Space Telescope observations of two Gamma Ray Burst (GRB) associated supernovae (SNe), GRB 030329/SN 2003dh and XRF 060218/SN 2006aj. Using the multi-color data up to ~320 days after the burst, we constrain the late-time decay nature of these SNe. The decay rates of SN 2003dh are steeper than SN 2006aj. A comparison with two other GRB SNe, GRB 980425/SN 1998bw and the SN associated with XRF 020903, shows that the decay rates of SN 2003dh are similar to XRF 020903 and those of SN 2006aj are similar to SN 1998bw. The late-time decay rates are steeper than the 56Co->56Fe radioactive decay rate indicating that there is some leakage of gamma-rays. We also compare the late-time decay rates of nine type Ic SNe, including the SNe of long GRBs, Ic broad lined and normal Ics. The decay rates of the SNe sample show a remarkable similarity in I band at late-times with a scatter of ~10%.

  16. Time resolved spectroscopy of GRB 030501 using INTEGRAL

    DEFF Research Database (Denmark)

    Beckmann, V.; Borkowski, J.; Courvoisier, T.J.L.

    2003-01-01

    The gamma-ray instruments on-board INTEGRAL offer an unique opportunity to perform time resolved analysis on GRBs. The imager IBIS allows accurate positioning of GRBs and broad band spectral analysis, while SPI provides high resolution spectroscopy. GRB 030501 was discovered by the INTEGRAL Burst...... Alert System in the ISGRI field of view. Although the burst was fairly weak (fluence F20-200 keV similar or equal to 3.5x10(-6) erg cm(-2)) it was possible to perform time resolved spectroscopy with a resolution of a few seconds. The GRB shows a spectrum in the 20-400 keV range which is consistent...

  17. GRB 090423 at a redshift of z approximately 8.1.

    Science.gov (United States)

    Salvaterra, R; Valle, M Della; Campana, S; Chincarini, G; Covino, S; D'Avanzo, P; Fernández-Soto, A; Guidorzi, C; Mannucci, F; Margutti, R; Thöne, C C; Antonelli, L A; Barthelmy, S D; De Pasquale, M; D'Elia, V; Fiore, F; Fugazza, D; Hunt, L K; Maiorano, E; Marinoni, S; Marshall, F E; Molinari, E; Nousek, J; Pian, E; Racusin, J L; Stella, L; Amati, L; Andreuzzi, G; Cusumano, G; Fenimore, E E; Ferrero, P; Giommi, P; Guetta, D; Holland, S T; Hurley, K; Israel, G L; Mao, J; Markwardt, C B; Masetti, N; Pagani, C; Palazzi, E; Palmer, D M; Piranomonte, S; Tagliaferri, G; Testa, V

    2009-10-29

    Gamma-ray bursts (GRBs) are produced by rare types of massive stellar explosion. Their rapidly fading afterglows are often bright enough at optical wavelengths that they are detectable at cosmological distances. Hitherto, the highest known redshift for a GRB was z = 6.7 (ref. 1), for GRB 080913, and for a galaxy was z = 6.96 (ref. 2). Here we report observations of GRB 090423 and the near-infrared spectroscopic measurement of its redshift, z = 8.1(-0.3)(+0.1). This burst happened when the Universe was only about 4 per cent of its current age. Its properties are similar to those of GRBs observed at low/intermediate redshifts, suggesting that the mechanisms and progenitors that gave rise to this burst about 600,000,000 years after the Big Bang are not markedly different from those producing GRBs about 10,000,000,000 years later.

  18. The Macronova in GRB 050709 and the GRB-macronova connection.

    Science.gov (United States)

    Jin, Zhi-Ping; Hotokezaka, Kenta; Li, Xiang; Tanaka, Masaomi; D'Avanzo, Paolo; Fan, Yi-Zhong; Covino, Stefano; Wei, Da-Ming; Piran, Tsvi

    2016-09-23

    GRB 050709 was the first short Gamma-ray Burst (sGRB) with an identified optical counterpart. Here we report a reanalysis of the publicly available data of this event and the discovery of a Li-Paczynski macronova/kilonova that dominates the optical/infrared signal at t>2.5 days. Such a signal would arise from 0.05 r-process material launched by a compact binary merger. The implied mass ejection supports the suggestion that compact binary mergers are significant and possibly main sites of heavy r-process nucleosynthesis. Furthermore, we have reanalysed all afterglow data from nearby short and hybrid GRBs (shGRBs). A statistical study of shGRB/macronova connection reveals that macronova may have taken place in all these GRBs, although the fraction as low as 0.18 cannot be ruled out. The identification of two of the three macronova candidates in the I-band implies a more promising detection prospect for ground-based surveys.

  19. GRB060602B = Swift J1749.4−2807: an unusual transiently accreting neutron-star X-ray binary

    NARCIS (Netherlands)

    Wijnands, R.; Rol, E.; Cackett, E.; Starling, R.L.C.; Remillard, R.A.

    2009-01-01

    We present an analysis of the Swift Burst Alert Telescope (BAT) and X-ray telescope (XRT) data of GRB060602B, which is most likely an accreting neutron star in a binary system and not a gamma-ray burst. Our analysis shows that the BAT burst spectrum is consistent with a thermonuclear flash (type I

  20. Gamma-ray bursts.

    Science.gov (United States)

    Gehrels, Neil; Mészáros, Péter

    2012-08-24

    Gamma-ray bursts (GRBs) are bright flashes of gamma rays coming from the cosmos. They occur roughly once per day, typically last for tens of seconds, and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this Review, we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglow.

  1. Slope evolution of GRB correlations and cosmology

    Science.gov (United States)

    Dainotti, M. G.; Cardone, V. F.; Piedipalumbo, E.; Capozziello, S.

    2013-11-01

    Gamma-ray bursts (GRBs) observed up to redshifts z > 9.4 can be used as possible probes to test cosmological models. Here we show how changes of the slope of the luminosity L^*_X-break time T^*_a correlation in GRB afterglows, hereafter the LT correlation, affect the determination of the cosmological parameters. With a simulated data set of 101 GRBs with a central value of the correlation slope that differs on the intrinsic one by a 5σ factor, we find an overestimated value of the matter density parameter, ΩM, compared to the value obtained with Type Ia supernovae, while the Hubble constant, H0, best-fitting value is still compatible in 1σ compared to other probes. We show that this compatibility of H0 is due to the large intrinsic scatter associated with the simulated sample. Instead, if we consider a subsample of high-luminosity GRBs (High L), we find that the evaluation of both H0 and ΩM is not more compatible in 1σ and ΩM is underestimated by 13 per cent. However, the High L sample choice reduces dramatically the intrinsic scatter of the correlation, thus possibly identifying this sample as the standard canonical `GRBs' confirming previous results presented by Dainotti et al. Here, we consider the LT correlation as an example, but this reasoning can also be extended for all other GRB correlations. In the literature so far, GRB correlations are not corrected for redshift evolution and selection biases; therefore, we are not aware of their intrinsic slopes and consequently how far the use of the observed correlations can influence the derived `best' cosmological settings. Therefore, we conclude that any approach that involves cosmology should take into consideration only intrinsic correlations and not the observed ones.

  2. A Burst to See

    Science.gov (United States)

    2008-04-01

    On 19 March, Nature was particularly generous and provided astronomers with the wealth of four gamma-ray bursts on the same day. But that was not all: one of them is the most luminous object ever observed in the Universe. Despite being located in a distant galaxy, billions of light years away, it was so bright that it could have been seen, for a brief while, with the unaided eye. ESO PR Photo 08a/08 ESO PR Photo 08a/08 The REM Telescope and TORTORA Camera Gamma-ray bursts (GRBs) are short flashes of energetic gamma-rays lasting from less than a second to several minutes. They release a tremendous quantity of energy in this short time making them the most powerful events since the Big Bang. It is now widely accepted that the majority of the gamma-ray bursts signal the explosion of very massive, highly evolved stars that collapse into black holes. Gamma-ray bursts, which are invisible to our eyes, are discovered by telescopes in space. After releasing their intense burst of high-energy radiation, they become detectable for a short while in the optical and in the near-infrared. This 'afterglow' fades very rapidly, making detailed analysis possible for only a few hours after the gamma-ray detection. This analysis is important in particular in order to determine the GRB's distance and, hence, intrinsic brightness. The gamma-ray burst GRB 080319B was detected by the NASA/STFC/ASI Swift satellite. "It was so bright that it almost blinded the Swift instruments for a while," says Guido Chincarini, Italian principal investigator of the mission. A bright optical counterpart was soon identified in the Boötes Constellation (the "Bear Driver" or "Herdsman"). A host of ground-based telescopes reacted promptly to study this new object in the sky. In particular, the optical emission was detected by a few wide-field cameras on telescopes that constantly monitor a large fraction of the sky, including the TORTORA camera in symbiosis with the 0.6-m REM telescope located at La Silla

  3. Radio Afterglows of Gamma Ray Bursts

    Indian Academy of Sciences (India)

    Lekshmi Resmi

    2017-09-12

    Sep 12, 2017 ... Gamma Ray Bursts (GRBs) were serendipitously discovered in late 1960s by the Vela military satel- lites. In the following years, dedicated scanning instru- ments on-board high energy missions like BeppoSAX1,. CGRO2, HETE3, Swift4 and Fermi5 have increased the number of GRB detections to several ...

  4. Happy Birthday Swift: Ultra-long GRB 141121A and Its Broadband Afterglow

    Science.gov (United States)

    Cucchiara, A.; Veres, P.; Corsi, A.; Cenko, S. B.; Perley, D. A.; Lien, A.; Marshall, F. E.; Pagani, C.; Toy, V. L.; Capone, J. I.; Frail, D. A.; Horesh, A.; Modjaz, M.; Butler, N. R.; Littlejohns, O. M.; Watson, A. M.; Kutyrev, A. S.; Lee, W. H.; Richer, M. G.; Klein, C. R.; Fox, O. D.; Prochaska, J. X.; Bloom, J. S.; Troja, E.; Ramirez-Ruiz, E.; de Diego, J. A.; Georgiev, L.; González, J.; Román-Zúñiga, C. G.; Gehrels, N.; Moseley, H.

    2015-10-01

    We present our extensive observational campaign on the Swift-discovered GRB 141121A, almost 10 years after its launch. Our observations cover radio through X-rays and extend for more than 30 days after discovery. The prompt phase of GRB 141121A lasted 1410 s and, at the derived redshift of z = 1.469, the isotropic energy is Eγ,iso = 8.0 × 1052 erg. Due to the long prompt duration, GRB 141121A falls into the recently discovered class of ultra-long GRBs (UL-GRBs). Peculiar features of this burst are (1) a flat early-time optical light curve and (2) a radio-to-X-ray rebrightening around three days after the burst. The latter is followed by a steep optical-to-X-ray decay and a much shallower radio fading. We analyze GRB 141121A in the context of the standard forward-reverse shock (FS, RS) scenario and we disentangle the FS and RS contributions. Finally, we comment on the puzzling early-time (t ≲ 3 days) behavior of GRB 141121A, and suggest that its interpretation may require a two-component jet model. Overall, our analysis confirms that the class of UL-GRBs represents our best opportunity to firmly establish the prominent emission mechanisms in action during powerful gamma-ray burst explosions, and future missions (like SVOM, XTiDE, or ISS-Lobster) will provide many more of such objects.

  5. HAPPY BIRTHDAY SWIFT: ULTRA-LONG GRB 141121A AND ITS BROADBAND AFTERGLOW

    Energy Technology Data Exchange (ETDEWEB)

    Cucchiara, A. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Veres, P. [The George Washington University, Department of Physics, 725 21st, NW Washington, DC 20052 (United States); Corsi, A. [Physics Department, Texas Tech University, Box 41051, Lubbock, TX 79409 (United States); Cenko, S. B.; Marshall, F. E.; Kutyrev, A. S. [Astrophysics Science Division, NASA Goddard Space Flight Center, MC 661, Greenbelt, MD 20771 (United States); Perley, D. A.; Horesh, A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Lien, A. [Center for Research and Exploration in Space Science and Technology (CRESST) and NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Pagani, C. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Toy, V. L.; Capone, J. I. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Frail, D. A. [National Radio Astronomy Observatory P.O. Box 0. Socorro, NM (United States); Modjaz, M. [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Butler, N. R.; Littlejohns, O. M. [School of Earth and Space Exploration, Arizona State University, AZ 85287 (United States); Watson, A. M.; Lee, W. H.; Richer, M. G. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 70-264, 04510 México, D. F., México (Mexico); Klein, C. R., E-mail: antonino.cucchiara@nasa.gov [Astronomy Department, University of California, Berkeley, CA 94720-7450 (United States); and others

    2015-10-20

    We present our extensive observational campaign on the Swift-discovered GRB 141121A, almost 10 years after its launch. Our observations cover radio through X-rays and extend for more than 30 days after discovery. The prompt phase of GRB 141121A lasted 1410 s and, at the derived redshift of z = 1.469, the isotropic energy is E{sub γ,iso} = 8.0 × 10{sup 52} erg. Due to the long prompt duration, GRB 141121A falls into the recently discovered class of ultra-long GRBs (UL-GRBs). Peculiar features of this burst are (1) a flat early-time optical light curve and (2) a radio-to-X-ray rebrightening around three days after the burst. The latter is followed by a steep optical-to-X-ray decay and a much shallower radio fading. We analyze GRB 141121A in the context of the standard forward–reverse shock (FS, RS) scenario and we disentangle the FS and RS contributions. Finally, we comment on the puzzling early-time (t ≲ 3 days) behavior of GRB 141121A, and suggest that its interpretation may require a two-component jet model. Overall, our analysis confirms that the class of UL-GRBs represents our best opportunity to firmly establish the prominent emission mechanisms in action during powerful gamma-ray burst explosions, and future missions (like SVOM, XTiDE, or ISS-Lobster) will provide many more of such objects.

  6. The H.E.S.S. II GRB observation scheme

    Science.gov (United States)

    Parsons, R. D.; Schüssler, F.; Garrigoux, T.; Balzer, A.; Füssling, M.; Hoischen, C.; Holler, M.; Mitchell, A.; Pühlhofer, G.; Rowell, G.; Wagner, S.; Bissaldi, E.; O'Brien, P.; Tam, P. H. T.; H.E.S.S. Collaboration

    2017-01-01

    Gamma-ray bursts (GRBs) are some of the Universe's most enigmatic and exotic events. However, at energies above 10 GeV their behaviour remains largely unknown. Although space based telescopes such as the Fermi-LAT have been able to detect GRBs in this energy range, their photon statistics are limited by the small detector size. Such limitations are not present in ground based gamma-ray telescopes such as the H.E.S.S. experiment, which has now entered its second phase with the addition of a large 600 m2 telescope to the centre of the array. Such a large telescope allows H.E.S.S. to access the sub 100-GeV energy range while still maintaining a large effective collection area, helping to potentially probe the short timescale emission of these events. We present a description of the H.E.S.S. GRB observation programme, summarising the performance of the rapid GRB repointing system and the conditions under which GRB observations are initiated. Additionally we will report on the GRB follow-ups made during the 2014-15 observation campaigns.

  7. On the true energy budget of GRB970508 and GRB971214

    Science.gov (United States)

    Mitra, Abhas

    1998-12-01

    We emphasize the already known idea that since GRB970508 released an energy of Q_>~mma~ 10(51) delta Omega ergs in soft gamma rays alone, where delta Omega is the solid angle of the beam, the actual energy of the e(+e^-) p fireball driving the blast wave could be considerably higher than this value, QFB >Q_>~mma. We further argue that, for reasonably large values of delta Omega , as is probably suggested by the radio observations, the value of QFB ~ 5. 10(51) t_m(3) n_1 erg, for GRB970508; where n_1 is the number density of the ambient medium in units of 1 proton/cm(3) and t_m is the epoch in months when the associated radio-blastwave degrades to become mildly relativistic. Thus the value of QFB for GRB970508 could be as large as 10(53) erg or even much higher. This idea is corroborated by GRB971214 for which the value of Q_>~mma ~ 2. 10(52) delta Omega is much higher than the corresponding value for GRB970508. It is likely that GRB971214 has a correspondingly higher value of QFB. We discuss that it is unlikely that this energy, QFB ~ 10(53) erg was liberated by the central engine by a direct electromagnetic mode. On the other hand, as conceived by several previous authors and as is suggested by supernova theories, the e(+e^-) p fireball (FB) driving the blast wave is likely to be preceded by a much stronger neutrino burst: nu +{bar nu } -> e(+) +e(-) . Although, the efficiency for e(+) e(-) production by this latter route is usually found to be as low as eta_ +/- ~ 10(-3) , we point out that for very high values of neutrino energy release Q_nu >QFB, it is possible that, the value of eta_ +/- increses substantially. By considering that, the value of QFB for such GRBs is indeed ~ 10(53) erg, we envisage that the energy of the actual neutrino burst/wind could be as high as ~ 10(54) -10(55) erg (here we ignore likely loss of energy by gravitational energy mode). This energy might be had from general relativistic collapse of a massive stellar core having initial

  8. Faint High-energy Gamma-Ray Photon Emission of GRB 081006A from Fermi Observations

    Science.gov (United States)

    Zheng, WeiKang; Akerlof, Carl W.; Pandey, Shashi B.; McKay, Timothy A.; Zhang, BinBin; Zhang, Bing

    2012-01-01

    Since the launch of the Fermi Gamma-ray Space Telescope on 2008 June 11, the Large Area Telescope (LAT) instrument has firmly detected more than 20 gamma-ray bursts (GRBs) with high-energy photon emission above 100 MeV. Using the matched filter technique, three more GRBs have also shown evidence of correlation with high-energy photon emission as demonstrated by Akerlof et al. In this paper, we present another GRB, GRB 081006A, unambiguously detected by the matched filter technique. This event is associated with more than 13 high-energy photons above 100 MeV. The likelihood analysis code provided by the Fermi Science Support Center generated an independent verification of this detection using a comparison of the test statistics value with similar calculations for random LAT data fields. We have performed detailed temporal and spectral analysis of photons from 8 keV up to 0.8 GeV from the Gamma-ray Burst Monitor and the LAT. The properties of GRB 081006A can be compared to those of the other two long-duration GRBs detected at similar significance, GRB 080825C and GRB 090217A. We find that GRB 081006A is more similar to GRB 080825C with comparable appearances of late high-energy photon emission. As demonstrated previously, there appears to be a surprising dearth of faint LAT GRBs, with only one additional GRB identified in a sample of 74. In this unique period when both Swift and Fermi are operational, there is some urgency to explore this aspect of GRBs as fully as possible.

  9. FAINT HIGH-ENERGY GAMMA-RAY PHOTON EMISSION OF GRB 081006A FROM FERMI OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Weikang; Akerlof, Carl W.; Pandey, Shashi B.; McKay, Timothy A. [Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI 48109 (United States); Zhang Binbin; Zhang Bing, E-mail: zwk@umich.edu [Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154 (United States)

    2012-01-20

    Since the launch of the Fermi Gamma-ray Space Telescope on 2008 June 11, the Large Area Telescope (LAT) instrument has firmly detected more than 20 gamma-ray bursts (GRBs) with high-energy photon emission above 100 MeV. Using the matched filter technique, three more GRBs have also shown evidence of correlation with high-energy photon emission as demonstrated by Akerlof et al. In this paper, we present another GRB, GRB 081006A, unambiguously detected by the matched filter technique. This event is associated with more than 13 high-energy photons above 100 MeV. The likelihood analysis code provided by the Fermi Science Support Center generated an independent verification of this detection using a comparison of the test statistics value with similar calculations for random LAT data fields. We have performed detailed temporal and spectral analysis of photons from 8 keV up to 0.8 GeV from the Gamma-ray Burst Monitor and the LAT. The properties of GRB 081006A can be compared to those of the other two long-duration GRBs detected at similar significance, GRB 080825C and GRB 090217A. We find that GRB 081006A is more similar to GRB 080825C with comparable appearances of late high-energy photon emission. As demonstrated previously, there appears to be a surprising dearth of faint LAT GRBs, with only one additional GRB identified in a sample of 74. In this unique period when both Swift and Fermi are operational, there is some urgency to explore this aspect of GRBs as fully as possible.

  10. Spectrophotometric analysis of gamma-ray burst afterglow extinction curves with X-Shooter

    NARCIS (Netherlands)

    Japelj, J.; Covino, S.; Gomboc, A.; Vergani, S.D.; Goldoni, P.; Selsing, J.; Cano, Z.; D’Elia, V.; Flores, H.; Fynbo, J.P.U.; Hammer, F.; Hjorth, J.; Jakobsson, P.; Kaper, L.; Kopač, D.; Krühler, T.; Melandri, A.; Piranomonte, S.; Sánchez-Ramírez, R.; Tagliaferri, G.; Tanvir, N.R.; de Ugarte Postigo, A.; Watson, D.; Wijers, R.A.M.J.

    2015-01-01

    We use gamma-ray burst (GRB) afterglow spectra observed with the VLT/X-Shooter spectrograph to measure rest-frame extinction in GRB lines-of-sight by modelling the broadband near-infrared (NIR) to X-ray afterglow spectral energy distributions (SEDs). Our sample consists of nine Swift GRBs, of which

  11. Smooth Optical Self-similar Emission of Gamma-Ray Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Lipunov, Vladimir; Simakov, Sergey; Gorbovskoy, Evgeny; Vlasenko, Daniil, E-mail: lipunov2007@gmail.com [Lomonosov Moscow State University, Sternberg Astronomical Institute, Universitetsky prospect, 13, 119992, Moscow (Russian Federation)

    2017-08-10

    We offer a new type of calibration for gamma-ray bursts (GRB), in which some class of GRB can be marked and share a common behavior. We name this behavior Smooth Optical Self-similar Emission (SOS-similar Emission) and identify this subclasses of GRBs with optical light curves described by a universal scaling function.

  12. Optical and near-infrared observations of the GRB 970616 error box

    DEFF Research Database (Denmark)

    Gorosabel, J.; Castro-Tirado, A.J.; Pedersen, Henrik

    1999-01-01

    We report on near-infrared and optical observations of the GRB 970616 error box and of the X-ray sources discovered by ASCA and ROSAT in the region. No optical transient was found either within the IPN band or in the X-ray error boxes, similarly to other bursts, and we suggest that either...

  13. The origin of the early-time optical emission of Swift GRB 080310

    NARCIS (Netherlands)

    Littlejohns, O.M.; Willingale, R.; O'Brien, P.T.; Beardmore, A.P.; Covino, S.; Perley, D.A.; Tanvir, N.R.; Rol, E.; Yuan, F.; Akerlof, C.; D'Avanzo, P.; Bersier, D.F.; Castro-Tirado, A.J.; Christian, P.; Cobb, B.E.; Evans, P.A.; Filippenko, A.V.; Flewelling, H.; Fugazza, D.; Hoversten, E.A.; Kamble, A.P.; Kobayashi, S.; Li, W.; Morgan, A.N.; Mundell, C.G.; Page, K.; Palazzi, E.; Quimby, R.M.; Schulze, S.; Steele, I.A.; de Ugarte Postigo, A.

    2012-01-01

    We present broad-band multiwavelength observations of GRB 080310 at redshift z= 2.43. This burst was bright and long-lived, and unusual in having extensive optical and near-infrared (IR) follow-up during the prompt phase. Using these data we attempt to simultaneously model the gamma-ray, X-ray,

  14. Multiwavelength observations of the energetic GRB 080810: detailed mapping of the broad-band spectral evolution

    NARCIS (Netherlands)

    Page, K.L.; Willingale, R.; Bissaldi, E.; de Ugarte Postigo, A.; Holland, S.T.; McBreen, S.; O'Brien, P.T.; Osborne, J.P.; Prochaska, J.X.; Rol, E.; Rykoff, E.S.; Starling, R.L.C.; Tanvir, N.R.; van der Horst, A.J.; Wiersema, K.; Zhang, B.; Aceituno, F.J.; Akerlof, C.; Beardmore, A.P.; Briggs, M.S.; Burrows, D.N.; Castro-Tirado, A.J.; Connaughton, V.; Evans, P.A.; Fynbo, J.P.U.; Gehrels, N.; Guidorzi, C.; Howard, A.W.; Kennea, J.A.; Kouveliotou, C.; Pagani, C.; Preece, R.; Perley, D.; Steele, I.A.; Yuan, F.

    2009-01-01

    GRB 080810 was one of the first bursts to trigger both Swift and the Fermi Gamma-ray Space Telescope. It was subsequently monitored over the X-ray and UV/optical bands by Swift, in the optical by Robotic Optical Transient Search Experiment (ROTSE) and a host of other telescopes, and was detected in

  15. Preliminary Results on VLT K-band Imaging Observations of GRB ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. We have obtained K-band imaging observations of Gamma-. Ray Burst (GRB) host galaxies with the near-infrared spectro-imager. ISAAC installed on the Very Large Telescope at Paranal (Chile). The derived K magnitudes, combined with other photometric data taken from the literature, are used to investigate the ...

  16. GRB 010220, optical observations

    Czech Academy of Sciences Publication Activity Database

    Castro-Tirado, A.J.; Castro Cerón, J.; Mateo Sanguino, T. J.; Hudec, René; Soldán, Jan; Páta, P.; Bernas, M.; Berná, J. A.; Corosabel, J.; de la Morena, B.; Torres Riera, J.

    č. 957 (2001), s. 1 R&D Projects: GA AV ČR IAA3003206; GA MŠk ME 002 Institutional research plan: CEZ:AV0Z1003909 Keywords : gamma-ray bursts Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  17. GRB 000313, optical observations

    Czech Academy of Sciences Publication Activity Database

    Castro-Tirado, A.J.; Soldán, Jan; Hudec, René; Páta, P.; Bernas, M.; Gorosabel, J.; Castro Cerón, J. M.; Mateo Sanguino, T. J.; de Ugarte, A.; Angel Berna, J.; Henden, A.; Vrba, F.; Canzian, B.; Harris, H.; Delfosse, X.; Barthelmy, S. D.

    č. 612 (2000), s. 1 R&D Projects: GA AV ČR IAA3003206; GA MŠk ME 002 Institutional research plan: CEZ:AV0Z1003909 Keywords : gamma-ray bursts Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  18. Gamma-Ray Bursts The Brightest Explosions in the Universe

    CERN Document Server

    Vedrenne, Gilbert

    2009-01-01

    Since their discovery was first announced in 1973, gamma-ray bursts (GRBs) have been among the most fascination objects in the universe. While the initial mystery has gone, the fascination continues, sustained by the close connection linking GRBs with some of the most fundamental topics in modern astrophysics and cosmology. Both authors have been active in GRB observations for over two decades and have produced an outstanding account on both the history and the perspectives of GRB research.

  19. The Double Firing Burst

    Science.gov (United States)

    2008-09-01

    Astronomers from around the world combined data from ground- and space-based telescopes to paint a detailed portrait of the brightest explosion ever seen. The observations reveal that the jets of the gamma-ray burst called GRB 080319B were aimed almost directly at the Earth. Uncovering the disc ESO PR Photo 28/08 A Gamma-Ray Burst with Two Jets Read more on this illuminating blast in the additional story. GRB 080319B was so intense that, despite happening halfway across the Universe, it could have been seen briefly with the unaided eye (ESO 08/08). In a paper to appear in the 11 September issue of Nature, Judith Racusin of Penn State University, Pennsylvania (USA), and a team of 92 co-authors report observations across the electromagnetic spectrum that began 30 minutes before the explosion and followed it for months afterwards. "We conclude that the burst's extraordinary brightness arose from a jet that shot material almost directly towards Earth at almost the speed of light - the difference is only 1 part in 20 000," says Guido Chincarini, a member of the team. Gamma-ray bursts are the Universe's most luminous explosions. Most occur when massive stars run out of fuel. As a star collapses, it creates a black hole or neutron star that, through processes not fully understood, drives powerful gas jets outward. As the jets shoot into space, they strike gas previously shed by the star and heat it, thereby generating bright afterglows. The team believes the jet directed toward Earth contained an ultra-fast component just 0.4 degrees across (this is slightly smaller than the apparent size of the Full Moon). This jet is contained within another slightly less energetic jet about 20 times wider. The broad component is more typical of other bursts. "Perhaps every gamma-ray burst has a narrow jet, but astronomers miss it most of the time," says team member Stefano Covino. "We happened to view this monster down the barrel of the very narrow and energetic jet, and the chance for

  20. Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Aloy, M. A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D’Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Kastaun, W.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O’Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O’Reilly, B.; Ormiston, R.; Ortega, L. F.; O’Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; (LIGO Scientific Collaboration; Virgo Collaboration; Burns, E.; Veres, P.; Kocevski, D.; Racusin, J.; Goldstein, A.; Connaughton, V.; Briggs, M. S.; Blackburn, L.; Hamburg, R.; Hui, C. M.; von Kienlin, A.; McEnery, J.; Preece, R. D.; Wilson-Hodge, C. A.; Bissaldi, E.; Cleveland, W. H.; Gibby, M. H.; Giles, M. M.; Kippen, R. M.; McBreen, S.; Meegan, C. A.; Paciesas, W. S.; Poolakkil, S.; Roberts, O. J.; Stanbro, M.; Gamma-ray Burst Monitor, (Fermi; Savchenko, V.; Ferrigno, C.; Kuulkers, E.; Bazzano, A.; Bozzo, E.; Brandt, S.; Chenevez, J.; Courvoisier, T. J.-L.; Diehl, R.; Domingo, A.; Hanlon, L.; Jourdain, E.; Laurent, P.; Lebrun, F.; Lutovinov, A.; Mereghetti, S.; Natalucci, L.; Rodi, J.; Roques, J.-P.; Sunyaev, R.; Ubertini, P.; (INTEGRAL

    2017-10-01

    On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is 5.0× {10}-8. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of (+1.74+/- 0.05) {{s}} between GRB 170817A and GW170817 to: (I) constrain the difference between the speed of gravity and the speed of light to be between -3× {10}-15 and +7× {10}-16 times the speed of light, (II) place new bounds on the violation of Lorentz invariance, (III) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1–1.4 per year during the 2018–2019 observing run and 0.3–1.7 per year at design sensitivity.

  1. An Artificial Intelligence Classification Tool and Its Application to Gamma-Ray Bursts

    Science.gov (United States)

    Hakkila, Jon; Haglin, David J.; Roiger, Richard J.; Giblin, Timothy; Paciesas, William S.; Pendleton, Geoffrey N.; Mallozzi, Robert S.

    2004-01-01

    Despite being the most energetic phenomenon in the known universe, the astrophysics of gamma-ray bursts (GRBs) has still proven difficult to understand. It has only been within the past five years that the GRB distance scale has been firmly established, on the basis of a few dozen bursts with x-ray, optical, and radio afterglows. The afterglows indicate source redshifts of z=1 to z=5, total energy outputs of roughly 10(exp 52) ergs, and energy confined to the far x-ray to near gamma-ray regime of the electromagnetic spectrum. The multi-wavelength afterglow observations have thus far provided more insight on the nature of the GRB mechanism than the GRB observations; far more papers have been written about the few observed gamma-ray burst afterglows in the past few years than about the thousands of detected gamma-ray bursts. One reason the GRB central engine is still so poorly understood is that GRBs have complex, overlapping characteristics that do not appear to be produced by one homogeneous process. At least two subclasses have been found on the basis of duration, spectral hardness, and fluence (time integrated flux); Class 1 bursts are softer, longer, and brighter than Class 2 bursts (with two second durations indicating a rough division). A third GRB subclass, overlapping the other two, has been identified using statistical clustering techniques; Class 3 bursts are intermediate between Class 1 and Class 2 bursts in brightness and duration, but are softer than Class 1 bursts. We are developing a tool to aid scientists in the study of GRB properties. In the process of developing this tool, we are building a large gamma-ray burst classification database. We are also scientifically analyzing some GRB data as we develop the tool. Tool development thus proceeds in tandem with the dataset for which it is being designed. The tool invokes a modified KDD (Knowledge Discovery in Databases) process, which is described as follows.

  2. Gamma Ray Burst and Soft Gamma Repeaters. Spinning, Precessing Gamma Jets

    OpenAIRE

    Fargion, Daniele

    1999-01-01

    Gamma Ray Bursts as recent GRB990123 and GRB990510 are observed to occur in cosmic volumes with a corresponding output reaching, for isotropic explosions, energies as large as two solar masses annihilation. These energies are underestimated because of the neglected role of comparable ejected neutrinos bursts. These extreme power cannot be explained with any standard spherically symmetric Fireball model. A too heavy black hole or Star would be unable to coexist with the shortest millisecond ti...

  3. BATSE Observations of Gamma-Ray Burst Tails

    Science.gov (United States)

    Connaughton, Valerie

    2002-01-01

    With the observation of low-energy radiation coming from the site of gamma-ray bursts in the hours to weeks after the initial gamma ray burst, it appears that astronomers have discovered a cosmological imprint made by the burster on its surroundings. This paper discusses the phenomenon of postburst emission in Burst and Transient Source Experiment (BATSE) gamma-ray bursts at energies usually associated with prompt emission. After summing up the background-subtracted signals from hundreds of bursts, it is found that tails out to hundreds of seconds after the trigger could be a common feature of events of a duration greater than 2 seconds, and perhaps of the shorter bursts at a lower and shorter-lived level. The tail component may be softer and seems independent of the duration (within the long-GRB sample) and brightness of the prompt burst emission. Some individual bursts have visible tails at gamma-ray energies, and the spectrum in a few cases differs from that of the prompt emission. For one of these bursts, GRB 991216, afterglow at lower energies was detected, which raised the possibility of seeing afterglow observations over large energy ranges using the next generation of GRB detectors in addition to sensitive space- or ground-based telescopes.

  4. Cosmology with Gamma-Ray Bursts Using k-correction

    Directory of Open Access Journals (Sweden)

    A. Kovács

    2011-01-01

    Full Text Available In the case of Gamma Ray Bursts with measured redshift, we can calculate the k-correction to get the fluence and energy that were actually produced in the comoving system of the GRB. To achieve this we have to use well-fitted parameters of GRB spectrum, available in the GCN database. The output of the calculations is the comoving isotropic energy Eiso, but this is not the endpoint: this data can be useful forestimating the ΩM parameter of the Universe and for making a GRB Hubble diagram usig Amati’s relation.

  5. Probing the Cosmic Gamma-Ray Burst Rate with Trigger Simulations of the Swift Burst Alert Telescope

    Science.gov (United States)

    Lien, Amy; Sakamoto, Takanori; Gehrels, Neil; Palmer, David M.; Barthelmy, Scott D.; Graziani, Carlo; Cannizzo, John K.

    2013-01-01

    The gamma-ray burst (GRB) rate is essential for revealing the connection between GRBs, supernovae and stellar evolution. Additionally, the GRB rate at high redshift provides a strong probe of star formation history in the early universe. While hundreds of GRBs are observed by Swift, it remains difficult to determine the intrinsic GRB rate due to the complex trigger algorithm of Swift. Current studies of the GRB rate usually approximate the Swift trigger algorithm by a single detection threshold. However, unlike the previously own GRB instruments, Swift has over 500 trigger criteria based on photon count rate and additional image threshold for localization. To investigate possible systematic biases and explore the intrinsic GRB properties, we develop a program that is capable of simulating all the rate trigger criteria and mimicking the image threshold. Our simulations show that adopting the complex trigger algorithm of Swift increases the detection rate of dim bursts. As a result, our simulations suggest bursts need to be dimmer than previously expected to avoid over-producing the number of detections and to match with Swift observations. Moreover, our results indicate that these dim bursts are more likely to be high redshift events than low-luminosity GRBs. This would imply an even higher cosmic GRB rate at large redshifts than previous expectations based on star-formation rate measurements, unless other factors, such as the luminosity evolution, are taken into account. The GRB rate from our best result gives a total number of 4568 +825 -1429 GRBs per year that are beamed toward us in the whole universe.

  6. LEAP - A Large Area GRB Polarimeter for the ISS

    Science.gov (United States)

    McConnell, Mark L.; Baring, Matthew G.; Bloser, Peter F.; Briggs, Michael Stephen; Connaughton, Valerie; Dwyer, Joseph; Gaskin, Jessica; Grove, J. Eric; Gunji, Shuichi; Hartmann, Dieter; Hayashida, Kiyoshi; Hill, Joanne E.; Kippen, R. Marc; Kishimoto, Shunji; Kishimoto, Yuji; Krizmanic, John F.; Lundman, Christoffer; Mattingly, David; McBreen, Sheila; Meegan, Charles A.; Mihara, Tatehiro; Nakamori, Takeshi; Pearce, Mark; Phlips, Bernard; Preece, Robert D.; Produit, Nicolas; Ryan, James M.; Ryde, Felix; Sakamoto, Takanori; Strickman, Mark Samuel; Sturner, Steven J.; Takahashi, Hiromitsu; Toma, Kenji; Vestrand, W. Thomas; Wilson-Hodge, Colleen A.; yatsu, Yoichi; Yonetoku, Daisuke; Zhang, Bing

    2017-08-01

    The LargE Area burst Polarimeter (LEAP) is a mission concept for a wide FOV Compton scatter polarimeter instrument that would be mounted as an external payload on the International Space Station (ISS) in 2022. It has recently been proposed as an astrophysics Mission of Opportunity (MoO), with the primary objective of measuring polarization of the prompt emission of Gamma Ray Bursts (GRBs). It will achieve its science objectives with a simple mission design that features a single instrument based entirely on well-established, flight-proven scintillator-photomultiplier tube (PMT) technologies. LEAP will provide GRB polarization measurements from 30-500 keV and GRB spectroscopy from 5 keV up to 5 MeV, and will self-sufficiently provide the source localization that is required for analysis of the polarization data. The instrument consists of 9 independent polarimeter modules and associated electronics. Each module is a 12 x 12 array of independent plastic and CsI(Tl) scintillator elements, each with individual PMT readout, to identify and measure Compton scatter events. It will provide coverage of GRB spectra over a range that includes most values of Ep. With a total geometric scintillator area of 5000 cm2, LEAP will provide a total effective area for polarization (double scatter) events of ~500 cm2. LEAP will trigger on >200 GRBs within its FOV during a two-year mission. At least 120 GRBs will have sufficient counts to enable localization with an error of 50%, as suggested by published results, LEAP will provide definitive polarization measurements on ~100 GRBs. These data will allow LEAP to differentiate between the intrinsic and geometric classes of GRB models and further distinguish between two geometric models at the 95% confidence level. Detailed time-resolved and/or energy-resolved studies will be conducted for the brightest GRBs.

  7. What is the difference between an ultra-long GRB and a long GRB?

    Science.gov (United States)

    Joyce, Quianah T.; Gendre, Bruce; Orange, N. Brice; Boër, Michel; Atteia, Jean-Luc; Stratta, Giulia; Morris, David

    2018-01-01

    The new class of ultra-long gamma-ray bursts is a fascinating class of events, where the very long duration of these events theoretically allows for pointing sensitive instruments during the prompt phase. However, this is complicated by the initially uncertain nature of the event. How to predict that an event will be an ultralong GRB, i.e. duration more than 3 hours, while high-energy detectors are recording only the first tens of seconds? We present here our study about potential discriminators that can distinguish ultra-long GRBs from normal long ones during the first minute of the prompt event. This would allow for the observation of the source with a large set of detectors at various energies.

  8. VLT/X-shooter spectroscopy of the GRB 120327A afterglow

    DEFF Research Database (Denmark)

    D'Elia, V.; Fynbo, Johan Peter Uldall; Goldoni, P.

    2014-01-01

    -25000AA) of the optical afterglow of GRB 120327A, taken with X-shooter at the VLT 2.13 and 27.65 hr after the GRB trigger. The first epoch spectrum shows that the ISM in the GRB host galaxy at z = 2.8145 is extremely rich in absorption features, with three components contributing to the line profiles...... we used to derive information on the distance between the host absorbing gas and the site of the GRB explosion. The variability of the FeI\\lambda2396 excited line between the two epochs proves that these features are excited by the GRB UV flux. Moreover, the distance of component I is found to be d......We present a study of the environment of the Swift long gamma-ray burst GRB 120327A at z ~2.8 through optical spectroscopy of its afterglow. We analyzed medium-resolution, multi-epoch spectroscopic observations (~7000 - 12000, corresponding to ~ 15 - 23 km/s, S/N = 15- 30 and wavelength range 3000...

  9. A MISSING-LINK IN THE SUPERNOVA–GRB CONNECTION: THE CASE OF SN 2012ap

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborti, Sayan; Soderberg, Alicia; Kamble, Atish; Margutti, Raffaella; Milisavljevic, Dan; Dittmann, Jason [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chomiuk, Laura [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Yadav, Naveen; Ray, Alak [Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005 (India); Hurley, Kevin [Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley, CA 94720 (United States); Bietenholz, Michael [Department of Physics and Astronomy, York University, 4700 Keele St., M3J 1P3 Ontario (Canada); Brunthaler, Andreas [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Pignata, Giuliano [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Pian, Elena [Scuola Normale Superiore, Piazza Dei Cavalieri 7—I-56126 Pisa (Italy); Mazzali, Paolo [Liverpool John Moores University, IC2, 146 Brownlow Hill, Liverpool (United Kingdom); Fransson, Claes [Department of Astronomy, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Bartel, Norbert [Hartebeesthoek Radio Astronomy Observatory, PO Box 443, Krugersdrop, 1740 (South Africa); Hamuy, Mario [Departamento de Astronoma, Universidad de Chile (Chile); Levesque, Emily [University of Colorado, C327A, Boulder, CO 80309 (United States); MacFadyen, Andrew, E-mail: schakraborti@fas.harvard.edu [New York University, 4 Washington Place, New York, NY 10003 (United States); and others

    2015-06-01

    Gamma-ray bursts (GRBs) are characterized by ultra-relativistic outflows, while supernovae are generally characterized by non-relativistic ejecta. GRB afterglows decelerate rapidly, usually within days, because their low-mass ejecta rapidly sweep up a comparatively larger mass of circumstellar material. However, supernovae with heavy ejecta can be in nearly free expansion for centuries. Supernovae were thought to have non-relativistic outflows except for a few relativistic ones accompanied by GRBs. This clear division was blurred by SN 2009bb, the first supernova with a relativistic outflow without an observed GRB. However, the ejecta from SN 2009bb was baryon loaded and in nearly free expansion for a year, unlike GRBs. We report the first supernova discovered without a GRB but with rapidly decelerating mildly relativistic ejecta, SN 2012ap. We discovered a bright and rapidly evolving radio counterpart driven by the circumstellar interaction of the relativistic ejecta. However, we did not find any coincident GRB with an isotropic fluence of more than one-sixth of the fluence from GRB 980425. This shows for the first time that central engines in SNe Ic, even without an observed GRB, can produce both relativistic and rapidly decelerating outflows like GRBs.

  10. A Peculiar GRB 110731A: Lorentz Factor, Jet Composition, Central Engine, and Progenitor

    Science.gov (United States)

    Lü, HouJun; Wang, XiangGao; Lu, RuiJing; Lan, Lin; Gao, He; Liang, EnWei; Graham, Melissa L.; Zheng, WeiKang; Filippenko, Alexei V.; Zhang, Bing

    2017-07-01

    The jet compositions, central engines, and progenitors of gamma-ray bursts (GRBs) remain open questions in GRB physics. Applying broadband observations, including GRB prompt emission and afterglow properties derived from Fermi and Swift data, as well as from Keck host-galaxy observations, we address these questions for the peculiar, bright GRB 110731A. By using the pair-opacity method, we derive Γ0 > 190 during the prompt emission phase. Alternatively, we derive Γ0 ≈ 580 and Γ0 ≈ 154 by invoking the early-afterglow phase within the homogeneous density and wind cases, respectively. On the other hand, nondetection of a thermal component in the spectra suggests that the prompt emission is likely powered by dissipation of a Poynting-flux-dominated jet leading to synchrotron radiation in an optically thin region. The nondetection of a jet break in the X-ray and optical bands allows us to place a lower limit on the jet opening angle θ j > 5.°5. Within a millisecond magnetar central engine scenario, we derive the period P 0 and polar magnetic field strength B p, which have extreme (but still allowed) values. The moderately short observed duration (7.3 s) and relatively large redshift (z = 2.83) place the burst as a “rest-frame short” GRB, so the progenitor of the burst is subject to debate. Its relatively large {f}{eff,z} parameter (ratio of the 1 s peak flux of a pseudo-GRB and the background flux) and a large physical offset from a potential host galaxy suggest that the progenitor of GRB 110731A may be a compact-star merger.

  11. Fermi Observations of high-energy gamma-ray emissions from GRB 080916C

    CERN Document Server

    Abdo, A A; Arimoto, M; Asano, K; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Band, D L; Barbiellini, Guido; Baring, Matthew G; Bastieri, Denis; Battelino, M; Baughman, B M; Bechtol, K; Bellardi, F; Bellazzini, R; Berenji, B; Bhat, P N; Bissaldi, E; Blandford, R D; Bloom, Elliott D; Bogaert, G; Bogart, J R; Bonamente, E; Bonnell, J; Borgland, A W; Bouvier, A; Bregeon, J; Brez, A; Briggs, M S; Brigida, M; Bruel, P; Burnett, Thompson H; Burrows, David N; Busetto, Giovanni; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Ceccanti, M; Cecchi, C; Celotti, Annalisa; Charles, E; Chekhtman, A; Cheung, C.C.Teddy; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, Johann; Cominsky, Lynn R; Connaughton, V; Conrad, J; Costamante, L; Cutini, S; DeKlotz, M; Dermer, C D; De Angelis, Alessandro; de Palma, F; Digel, S W; Dingus, B L; do Couto e Silva, Eduardo; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Evans, P A; Fabiani, D; Farnier, C; Favuzzi, C; Finke, Justin D; Fishman, G; Focke, W B; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, Thomas Lynn; Godfrey, Gary L; Goldstein, A; Granot, J; Greiner, J; Grenier, I A; Grondin, M H; Grove, J.Eric; Guillemot, L; Guiriec, S; Haller, G; Hanabata, Y; Harding, Alice K; Hayashida, M; Hays, Elizabeth A; Hernando Morata, J A; Hoover, A; Hughes, R E; Johannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, Tsuneyoshi; Katagiri, H; Kataoka, J; Kavelaars, A; Kawai, N; Kelly, H; Kennea, J; Kerr, M; Kippen, R M; Knodlseder, J; Kocevski, D; Kocian, M L; Komin, N; Kouveliotou, C; Kuehn, Frederick Gabriel Ivar; Kuss, Michael; Lande, J; Landriu, D; Larsson, S; Latronico, L; Lavalley, C; Lee, B; Lee, S H; Lemoine-Goumard, M; Lichti, G G; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, Pasquale; Madejski, G M; Makeev, A; Marangelli, B; Mazziotta, M N; McBreen, Sheila; McEnery, J E; McGlynn, S; Meegan, C; Miszaros, P; Meurer, C; Michelson, P F; Minuti, M; Mirizzi, N; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Moretti, E; Morselli, A; Moskalenko, Igor Vladimirovich; Murgia, Simona; Nakamori, T; Nelson, D; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, Takashi; Okumura, Akira; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paciesas, W S; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Perri, M; Pesce-Rollins, M; Petrosian, Vahe; Pinchera, M; Piron, F; Porter, Troy A; Preece, R; Rainr, S; Ramirez-Ruiz, E; Rando, R; Rapposelli, E; Razzano, M; Razzaque, Soebur; Rea, N; Reimer, A; Reimer, O; Reposeur, Thierry; Reyes, Luis C; Ritz, S; Rochester, L S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F W; Sanchez, D; Sander, A; Parkinson, P.M.Saz; Scargle, J D; Schalk, T L; Segal, K N; Sgro, C; Shimokawabe, T; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stamatikos, M; Starck, Jean-Luc; Stecker, Floyd William; Steinle, H; Stephens, T E; Strickman, M S; Suson, Daniel J; Tagliaferri, G.; Tajima, Hiroyasu; Takahashi, H; Takahashi, T; Tanaka, T; Tenze, A; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, Diego F; Tosti, G; Tramacere, A; Turri, M; Tuvi, S; Usher, T L; van der Horst, A J; Vigiani, L; Vilchez, N; Vitale, V; von Kienlin, A; Waite, A P; Williams, D A; Wilson-Hodge, C; Winer, B L; Wood, K S; Wu, X F; Yamazaki, R; Ylinen, T; Ziegler, M

    2009-01-01

    Gamma-ray bursts (GRBs) are highly energetic explosions signaling the death of massive stars in distant galaxies. The Gamma-ray Burst Monitor and Large Area Telescope onboard the Fermi Observatory together record GRBs over a broad energy range spanning about 7 decades of gammaray energy. In September 2008, Fermi observed the exceptionally luminous GRB 080916C, with the largest apparent energy release yet measured. The high-energy gamma rays are observed to start later and persist longer than the lower energy photons. A simple spectral form fits the entire GRB spectrum, providing strong constraints on emission models. The known distance of the burst enables placing lower limits on the bulk Lorentz factor of the outflow and on the quantum gravity mass.

  12. Fermi observations of high-energy gamma-ray emission from GRB 080916C.

    Science.gov (United States)

    Abdo, A A; Ackermann, M; Arimoto, M; Asano, K; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Band, D L; Barbiellini, G; Baring, M G; Bastieri, D; Battelino, M; Baughman, B M; Bechtol, K; Bellardi, F; Bellazzini, R; Berenji, B; Bhat, P N; Bissaldi, E; Blandford, R D; Bloom, E D; Bogaert, G; Bogart, J R; Bonamente, E; Bonnell, J; Borgland, A W; Bouvier, A; Bregeon, J; Brez, A; Briggs, M S; Brigida, M; Bruel, P; Burnett, T H; Burrows, D; Busetto, G; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Ceccanti, M; Cecchi, C; Celotti, A; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Connaughton, V; Conrad, J; Costamante, L; Cutini, S; Deklotz, M; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Dingus, B L; do Couto E Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Evans, P A; Fabiani, D; Farnier, C; Favuzzi, C; Finke, J; Fishman, G; Focke, W B; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, T; Godfrey, G; Goldstein, A; Granot, J; Greiner, J; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Haller, G; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hernando Morat, J A; Hoover, A; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kavelaars, A; Kawai, N; Kelly, H; Kennea, J; Kerr, M; Kippen, R M; Knödlseder, J; Kocevski, D; Kocian, M L; Komin, N; Kouveliotou, C; Kuehn, F; Kuss, M; Lande, J; Landriu, D; Larsson, S; Latronico, L; Lavalley, C; Lee, B; Lee, S-H; Lemoine-Goumard, M; Lichti, G G; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Marangelli, B; Mazziotta, M N; McBreen, S; McEnery, J E; McGlynn, S; Meegan, C; Mészáros, P; Meurer, C; Michelson, P F; Minuti, M; Mirizzi, N; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Moretti, E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nelson, D; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paciesas, W S; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Perri, M; Pesce-Rollins, M; Petrosian, V; Pinchera, M; Piron, F; Porter, T A; Preece, R; Rainò, S; Ramirez-Ruiz, E; Rando, R; Rapposelli, E; Razzano, M; Razzaque, S; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Reyes, L C; Ritz, S; Rochester, L S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Segal, K N; Sgrò, C; Shimokawabe, T; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stamatikos, M; Starck, J-L; Stecker, F W; Steinle, H; Stephens, T E; Strickman, M S; Suson, D J; Tagliaferri, G; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Tenze, A; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Turri, M; Tuvi, S; Usher, T L; van der Horst, A J; Vigiani, L; Vilchez, N; Vitale, V; von Kienlin, A; Waite, A P; Williams, D A; Wilson-Hodge, C; Winer, B L; Wood, K S; Wu, X F; Yamazaki, R; Ylinen, T; Ziegler, M

    2009-03-27

    Gamma-ray bursts (GRBs) are highly energetic explosions signaling the death of massive stars in distant galaxies. The Gamma-ray Burst Monitor and Large Area Telescope onboard the Fermi Observatory together record GRBs over a broad energy range spanning about 7 decades of gammaray energy. In September 2008, Fermi observed the exceptionally luminous GRB 080916C, with the largest apparent energy release yet measured. The high-energy gamma rays are observed to start later and persist longer than the lower energy photons. A simple spectral form fits the entire GRB spectrum, providing strong constraints on emission models. The known distance of the burst enables placing lower limits on the bulk Lorentz factor of the outflow and on the quantum gravity mass.

  13. On the Polarization of Gamma Ray Bursts and their Optical Afterglows

    CERN Document Server

    Dado, S; De Rújula, Alvaro; Dado, Shlomo; Dar, Arnon

    2004-01-01

    The polarization of the optical afterglow (AG) of Gamma-Ray Bursts (GRBs) has only been measured in a few instances at various times after the GRB. In all cases except the best measured one (GRB 030329) the observed polarization and its evolution are simple and easy to explain in the most naive version of the "Cannonball'' model of GRBs: the "intrinsic" AG polarization is small and the observations reflect the "foreground" effects of the host galaxy and ours. The polarization observed in GRB 030329 behaves chaotically, its understanding requires reasonable but ad-hoc ingredients. The polarization of the gamma rays of a GRB has only been measured in the case of GRB 021206. The result is debated, but similar measurements would be crucial to the determination of the GRB-generating mechanism.

  14. Absorption lines of High Redshift GRB 130606A observed by Subaru FOCAS

    Science.gov (United States)

    Kurita, Shin; Kawai, Nobuyuki; Saito, Yoshihiko; Aoki, Kentaro; Kosugi, George; Hattori, Takashi; Totani, Tomonori

    We observed the optical afterglow of a Swift GRB 130606A using Subaru FOCAS. GRB 130606A has a redshift 5.91, the 5th highest redshift among the GRBs observed so far. The observation started 10.3 hours after the burst for 13.3 hours. We obtained the optical spectrum with a high S/N and detected ~40 absorption lines. Especially, absorption lines which have large equivalent widths shows their velocity. In some lines with high statistics, we study their velocity structures.

  15. Gamma-Ray Bursts and Cosmology

    Science.gov (United States)

    Norris, Jay P.

    2003-01-01

    The unrivalled, extreme luminosities of gamma-ray bursts (GRBs) make them the favored beacons for sampling the high redshift Universe. To employ GRBs to study the cosmic terrain -- e.g., star and galaxy formation history -- GRB luminosities must be calibrated, and the luminosity function versus redshift must be measured or inferred. Several nascent relationships between gamma-ray temporal or spectral indicators and luminosity or total energy have been reported. These measures promise to further our understanding of GRBs once the connections between the luminosity indicators and GRB jets and emission mechanisms are better elucidated. The current distribution of 33 redshifts determined from host galaxies and afterglows peaks near z $\\sim$ 1, whereas for the full BATSE sample of long bursts, the lag-luminosity relation predicts a broad peak z $\\sim$ 1--4 with a tail to z $\\sim$ 20, in rough agreement with theoretical models based on star formation considerations. For some GRB subclasses and apparently related phenomena -- short bursts, long-lag bursts, and X-ray flashes -- the present information on their redshift distributions is sparse or entirely lacking, and progress is expected in Swift era when prompt alerts become numerous.

  16. A Unified Model for GRB Prompt Emission from Optical to Gamma-Rays; Exploring GRBs as Standard Candles

    Science.gov (United States)

    Guiriec, S.; Kouveliotou, C.; Hartmann, D. H.; Granot, J.; Asano, K.; Meszaros, P.; Gill, R.; Gehrels, N.; McEnery, J.

    2016-01-01

    The origin of prompt emission from gamma-ray bursts (GRBs) remains to be an open question. Correlated prompt optical and gamma-ray emission observed in a handful of GRBs strongly suggests a common emission region, but failure to adequately fit the broadband GRB spectrum prompted the hypothesis of different emission mechanisms for the low- and high-energy radiations. We demonstrate that our multi-component model for GRB -ray prompt emission provides an excellent fit to GRB 110205A from optical to gamma-ray energies. Our results show that the optical and highest gamma-ray emissions have the same spatial and spectral origin, which is different from the bulk of the X- and softest gamma-ray radiation. Finally, our accurate redshift estimate for GRB 110205A demonstrates promise for using GRBs as cosmological standard candles.

  17. A UNIFIED MODEL FOR GRB PROMPT EMISSION FROM OPTICAL TO γ -RAYS; EXPLORING GRBs AS STANDARD CANDLES

    Energy Technology Data Exchange (ETDEWEB)

    Guiriec, S.; Kouveliotou, C. [Department of Physics, The George Washington University, 725 21st Street NW, Washington, DC 20052 (United States); Hartmann, D. H. [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Granot, J.; Gill, R. [Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Raanana 4353701 (Israel); Asano, K. [Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582 (Japan); Mészáros, P. [Department of Astronomy and Astrophysics and Department of Physics, Center for Particle and Gravitational Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Gehrels, N.; McEnery, J., E-mail: sylvain.guiriec@nasa.gov [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-11-01

    The origin of prompt emission from gamma-ray bursts (GRBs) remains to be an open question. Correlated prompt optical and γ -ray emission observed in a handful of GRBs strongly suggests a common emission region, but failure to adequately fit the broadband GRB spectrum prompted the hypothesis of different emission mechanisms for the low- and high-energy radiations. We demonstrate that our multi-component model for GRB γ -ray prompt emission provides an excellent fit to GRB 110205A from optical to γ -ray energies. Our results show that the optical and highest γ -ray emissions have the same spatial and spectral origin, which is different from the bulk of the X- and softest γ -ray radiation. Finally, our accurate redshift estimate for GRB 110205A demonstrates promise for using GRBs as cosmological standard candles.

  18. VizieR Online Data Catalog: GRB 080810 Keck/HIRES spectrum (Wiseman+, 2017)

    Science.gov (United States)

    Wiseman, P.; Perley, D. A.; Schady, P.; Prochaska, J. X.; de Ugarte Postigo, A.; Kruehler, T.; Yates, R. M.; Greiner, J.

    2017-07-01

    On 2008-08-10 at T0=13:10:12 UT, the Burst Alert Telescope on board Swift triggered on GRB 080810 2008), which at T0+80s was detected as a bright source in Swift's X-ray Telescope (XRT) and Ultra-violet and Optical Telescope (UVOT). Starting 37.6 minutes after the trigger at 13:47:50 UT, GRB 080810 was observed with the High Resolution Echelle Spectrometer (HIRES) mounted on the 10-metre Keck I telescope of the W. M Keck Observatory located at the summit of Mauna Kea, Hawaii. A series of two exposures of 1000 s each were taken using the C5 decker, providing a FWHM spectral resolution of ~8km/s. The normalised reduced Keck/HIRES spectrum of GRB 080810 in ASCII format. The respective FITS header appears first, and is commented out with #. (2 data files).

  19. EVIDENCE OF BULK ACCELERATION OF THE GRB X-RAY FLARE EMISSION REGION

    Energy Technology Data Exchange (ETDEWEB)

    Uhm, Z. Lucas; Zhang, Bing, E-mail: uhm@physics.unlv.edu [Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154 (United States)

    2016-06-10

    Applying our recently developed generalized version of the high-latitude emission theory to the observations of X-ray flares in gamma-ray bursts (GRBs), here we present clear observational evidence that the X-ray flare emission region is undergoing rapid bulk acceleration as the photons are emitted. We show that both the observed X-ray flare light curves and the photon index evolution curves can be simultaneously reproduced within a simple physical model invoking synchrotron radiation in an accelerating emission region far from the GRB central engine. Such an acceleration process demands an additional energy dissipation source other than kinetic energy, which points toward a significant Poynting flux in the emission region of X-ray flares. As the X-ray flares are believed to share a similar physical mechanism as the GRB prompt emission, our finding here hints that the GRB prompt emission jets may also carry a significant Poynting flux in their emitting region.

  20. Spatially-resolved dust properties of the GRB 980425 host galaxy

    DEFF Research Database (Denmark)

    Michałowski, Michał J.; Hunt, L. K.; Palazzi, E.

    2014-01-01

    ), located 800 pc away from the GRB position. The host is characterised by low dust content and high fraction of UV-visible star-formation, similar to other dwarf galaxies. Such galaxies are abundant in the local universe, so it is not surprising to find a GRB in one of them, assuming the correspondence......Gamma-ray bursts (GRBs) have been proposed as a tool to study star formation in the Universe, so it is crucial to investigate whether their host galaxies and immediate environments are in any way special compared with other star-forming galaxies. Here we present spatially resolved maps of dust...... emission of the host galaxy of the closest known GRB 980425 at z=0.0085 using our new high-resolution observations from Herschel, APEX, ALMA and ATCA. We modeled the spectral energy distributions of the host and of the star-forming region displaying the Wolf-Rayet signatures in the spectrum (WR region...

  1. The VLT/X-shooter GRB afterglow legacy survey

    Science.gov (United States)

    Kaper, Lex; Fynbo, Johan P. U.; Pugliese, Vanna; van Rest, Daan

    2017-11-01

    The Swift satellite allows us to use gamma-ray bursts (GRBs) to peer through the hearts of star forming galaxies through cosmic time. Our open collaboration, representing most of the active European researchers in this field, builds a public legacy sample of GRB X-shooter spectroscopy while Swift continues to fly. To date, our spectroscopy of more than 100 GRB afterglows covers a redshift range from 0.059 to about 8 (Tanvir et al. 2009, Nature 461, 1254), with more than 20 robust afterglow-based metallicity measurements (over a redshift range from 1.7 to 5.9). With afterglow spectroscopy (throughout the electromagnetic spectrum from X-rays to the sub-mm) we can hence characterize the properties of star-forming galaxies over cosmic history in terms of redshift, metallicity, molecular content, ISM temperature, UV-flux density, etc.. These observations provide key information on the final evolution of the most massive stars collapsing into black holes, with the potential of probing the epoch of the formation of the first (very massive) stars. VLT/X-shooter (Vernet et al. 2011, A&A 536, A105) is in many ways the ideal GRB follow-up instrument and indeed GRB follow-up was one of the primary science cases behind the instrument design and implementation. Due to the wide wavelength coverage of X-shooter, in the same observation one can detect molecular H2 absorption near the atmospheric cut-off and many strong emission lines from the host galaxy in the near-infrared (e.g., Friis et al. 2015, MNRAS 451, 167). For example, we have measured a metallicity of 0.1 Z ⊙ for GRB 100219A at z = 4.67 (Thöne et al. 2013, MNRAS 428, 3590), 0.02 Z ⊙ for GRB 111008A at z = 4.99 (Sparre et al. 2014, ApJ 785, 150) and 0.05 Z ⊙ for GRB 130606A at z = 5.91 (Hartoog et al. 2015, A&A 580, 139). In the latter, the very high value of [Al/Fe]=2.40 +/- 0.78 might be due to a proton capture process and may be a signature of a previous generation of massive (perhaps even the first) stars

  2. ON THE NEUTRINO NON-DETECTION OF GRB 130427A

    Energy Technology Data Exchange (ETDEWEB)

    Gao Shan; Kashiyama, Kazumi; Meszaros, Peter, E-mail: sxg324@psu.edu, E-mail: kzk15@psu.edu, E-mail: pmeszaros@astro.psu.edu [Department of Physics, Department of Astronomy and Astrophysics, Center for Particle Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

    2013-07-20

    The recent gamma-ray burst GRB 130427A has an isotropic electromagnetic energy E{sup iso} {approx} 10{sup 54} erg, suggesting an ample supply of target photons for photo-hadronic interactions, which at its low redshift of z {approx} 0.34 would appear to make it a promising candidate for neutrino detection. However, the IceCube collaboration has reported a null result based on a search during the prompt emission phase. We show that this neutrino non-detection can provide valuable information about this gamma-ray burst's (GRB's) key physical parameters such as the emission radius R{sub d} , the bulk Lorentz factor {Gamma}, and the energy fraction converted into cosmic rays {epsilon}{sub p}. The results are discussed both in a model-independent way and in the specific scenarios of an internal shock (IS) model, a baryonic photospheric (BPH) model, and a magnetic photospheric (MPH) model. We find that the constraints are most stringent for the MPH model considered, but the constraints on the IS and the BPH models are fairly modest.

  3. Spatial Distribution of Gamma-Ray Burst Sources

    Science.gov (United States)

    Shirokov, S. I.; Raikov, A. A.; Baryshev, Yu. V.

    2017-12-01

    The spatial distribution of sources of gamma-ray bursts (GRB) with known red shifts is analyzed by the conditional density and pairwise distance methods. The sample of GRB is based on data from the Swift program and contains fluxes, coordinates, and red shifts for 384 GRB sources. Selection effects that distort the true source distribution are taken into account by comparing the observed distribution with fractal and uniform model catalogs. The Malmqvist effect is modeled using an approximation for the visible luminosity function of the GRB. The case of absorption in the galactic plane is also examined. This approach makes it possible to study the spatial structure of the entire sample at one time without artificial truncations. The estimated fractal dimensionality is D = 2.55 ± 0.06 on scales of 2-6 Gpc.

  4. High-energy Emission Components in the Short GRB 090510

    Science.gov (United States)

    Corsi, Alessandra; Guetta, Dafne; Piro, Luigi

    2010-09-01

    We investigate the origin of the prompt and delayed emission observed in the short GRB 090510. We use the broadband data to test whether the most popular theoretical models for gamma-ray burst emission can accommodate the observations for this burst. We first attempt to explain the soft-to-hard spectral evolution associated with the delayed onset of a GeV tail with the hypothesis that the prompt burst and the high-energy tail both originate from a single process, namely, synchrotron emission from internal shocks (IS). Considerations on the compactness of the source imply that the high-energy tail should be produced in a late-emitted shell, characterized by a Lorentz factor greater than the one generating the prompt burst. However, in this hypothesis, the predicted evolution of the synchrotron peak frequency does not agree with the observed soft-to-hard evolution. Given the difficulties of a single-mechanism hypothesis, we test two alternative double-component scenarios. In the first, the prompt burst is explained as synchrotron radiation from IS and the high-energy emission (up to about 1 s following the trigger) as IS synchrotron-self-Compton. In the second scenario, in view of its long duration (~100 s), the high-energy tail is decoupled from the prompt burst and has an external shock origin. In this case, we show that a reasonable choice of parameters does indeed exist to accommodate the optical-to-GeV data, provided the Lorentz factor of the shocked shell is sufficiently high. Finally, we attempt to explain the chromatic break observed around ~103 s with a structured jet model. We find that this might be a viable explanation and that it lowers the high value of the burst energy derived by assuming isotropy, ~1053 erg, below ~1049 erg, which is more compatible with the energetics from a binary merger progenitor.

  5. Polarized Emission from Gamma-Ray Burst Jets

    Directory of Open Access Journals (Sweden)

    Shiho Kobayashi

    2017-11-01

    Full Text Available I review how polarization signals have been discussed in the research field of Gamma-Ray Bursts (GRBs. I mainly discuss two subjects in which polarimetry enables us to study the nature of relativistic jets. (1 Jet breaks: Gamma-ray bursts are produced in ultra-relativistic jets. Due to the relativistic beaming effect, the emission can be modeled in a spherical model at early times. However, as the jet gradually slows down, we begin to see the edge of the jet together with polarized signals at some point. (2 Optical flash: later time afterglow is known to be insensitive to the properties of the original ejecta from the GRB central engine. However, a short-lived, reverse shock emission would enable us to study the nature of of GRB jets. I also briefly discuss the recent detection of optical circular polarization in GRB afterglow.

  6. Testing Einstein's Equivalence Principle With Fast Radio Bursts.

    Science.gov (United States)

    Wei, Jun-Jie; Gao, He; Wu, Xue-Feng; Mészáros, Peter

    2015-12-31

    The accuracy of Einstein's equivalence principle (EEP) can be tested with the observed time delays between correlated particles or photons that are emitted from astronomical sources. Assuming as a lower limit that the time delays are caused mainly by the gravitational potential of the Milky Way, we prove that fast radio bursts (FRBs) of cosmological origin can be used to constrain the EEP with high accuracy. Taking FRB 110220 and two possible FRB/gamma-ray burst (GRB) association systems (FRB/GRB 101011A and FRB/GRB 100704A) as examples, we obtain a strict upper limit on the differences of the parametrized post-Newtonian parameter γ values as low as [γ(1.23  GHz)-γ(1.45  GHz)]GRBs.

  7. CONSTRAINING THE GRB-MAGNETAR MODEL BY MEANS OF THE GALACTIC PULSAR POPULATION

    Energy Technology Data Exchange (ETDEWEB)

    Rea, N. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, NL-1090 GE Amsterdam (Netherlands); Gullón, M.; Pons, J. A.; Miralles, J. A. [Departament de Fisica Aplicada, Universitat d’Alacant, Ap. Correus 99, E-03080 Alacant (Spain); Perna, R. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Dainotti, M. G. [Physics Department, Stanford University, Via Pueblo Mall 382, Stanford, CA (United States); Torres, D. F. [Instituto de Ciencias de l’Espacio (ICE, CSIC-IEEC), Campus UAB, Carrer Can Magrans s/n, E-08193 Barcelona (Spain)

    2015-11-10

    A large fraction of Gamma-ray bursts (GRBs) displays an X-ray plateau phase within <10{sup 5} s from the prompt emission, proposed to be powered by the spin-down energy of a rapidly spinning newly born magnetar. In this work we use the properties of the Galactic neutron star population to constrain the GRB-magnetar scenario. We re-analyze the X-ray plateaus of all Swift GRBs with known redshift, between 2005 January and 2014 August. From the derived initial magnetic field distribution for the possible magnetars left behind by the GRBs, we study the evolution and properties of a simulated GRB-magnetar population using numerical simulations of magnetic field evolution, coupled with Monte Carlo simulations of Pulsar Population Synthesis in our Galaxy. We find that if the GRB X-ray plateaus are powered by the rotational energy of a newly formed magnetar, the current observational properties of the Galactic magnetar population are not compatible with being formed within the GRB scenario (regardless of the GRB type or rate at z = 0). Direct consequences would be that we should allow the existence of magnetars and “super-magnetars” having different progenitors, and that Type Ib/c SNe related to Long GRBs form systematically neutron stars with higher initial magnetic fields. We put an upper limit of ≤16 “super-magnetars” formed by a GRB in our Galaxy in the past Myr (at 99% c.l.). This limit is somewhat smaller than what is roughly expected from Long GRB rates, although the very large uncertainties do not allow us to draw strong conclusion in this respect.

  8. Optical polarimetric observations of GRB prompt emissions by MASTER robots-telescopes net.

    Science.gov (United States)

    Gorbovskoy, Evgeny; Lipunov, Vladimir; Kornilov, Victor; Shatskij, Nikolaj; Kuvshi-Nov, Dmitry; Tyurina, Nataly; Belinski, Alexander; Krylov, Alexander; Balanutsa, Pavel; Chazov, Vadim; Kuznetsov, Artem; Zimnuhov, Dmitry; Balanutsa, Pavel; Kortunov, Petr; Sankovich, Anatoly; Tlatov, An-Drey; Parkhomenko, A.; Krushinsky, Vadim; Zalozhnyh, Ivan; Popov, A.; Kopytova, Taisia; Ivanov, Kirill; Yazev, Sergey; Yurkov, Vladimir

    The main goal of the MASTER-Net project is to produce a unique fast sky survey with all sky observed over a single night down to a limiting magnitude of 19 -20mag. Such a survey will make it possible to address a number of fundamental problems: search for dark energy via the discovery and photometry of supernovas (including SNIa), search for exoplanets, microlensing effects, discovery of minor bodies in the Solar System and space-junk monitoring. All MASTER telescopes can be guided by alerts, and we plan to observe prompt optical emission from gamma-ray bursts synchronously in several filters and in several polarization planes. Observations on telescopes capable to observ polarisation of GRB prompt emission have been begun in the summer of 2009. Since summer of 2009 an observations of several GRB have been made. In particular for GRB0910 and GRB091127 optical polarisation has been measured. So, for GRB091127 which supervision have begun all through 91 sec polarisation at level of several tens percent has been registered. (GCN 10231, GCN 10052, GCN 10203)

  9. Rossi Prize Lecture: Gamma Ray Bursts: Origins and Consequences

    Science.gov (United States)

    Meszaros, P.

    2000-12-01

    Some of the major stepping stones towards uncovering the mystery of gamma ray bursts will be discussed. This is an unfinished process, new observations being expected in the near future. I will review the current observational status, and discuss the present theoretical understanding of GRB, as well as the possible impact of future missions and experiments.

  10. Evolution of gamma-ray burst progenitors at low metallicity

    NARCIS (Netherlands)

    Yoon, S.C.; Langer, N.

    2005-01-01

    Despite the growing evidence that long Gamma-Ray Bursts (GRBs) are associated with deaths of Wolf-Rayet stars, the evolutionary path of massive stars to GRBs and the exact nature of GRB progenitors remain poorly known. However, recent massive star evolutionary models indicate that — for sufficiently

  11. Statistical Properties of Gamma-Ray Burst Host Galaxies

    Indian Academy of Sciences (India)

    A statistical analysis of gamma-ray burst host galaxies is presented and a clear metallicity-stellar mass relation is found in our sample. A trend that a more massive host galaxy tends to have a higher star-formation rate is also found. No correlation is found between V and H. GRB host galaxies at a higher redshift also tend ...

  12. Concluding Remarks: The Current Status and Future Prospects for GRB Astronomy

    Science.gov (United States)

    Gehrels, Neil

    2009-01-01

    We are in a remarkable period of discovery in GRB astronomy. The current satellites including Swift, Fermi. AGILE and INTEGRAL are detecting and observing bursts of all varieties. Increasing capabilities for follow-up observations on the ground and in space are leading to rapid and deep coverage across the electromagnetic spectrum, The future will see continued operation of the current experiments and with future missions like SVOM plus possible rni_Ssions like JANUS and EXIST. An exciting expansion of capabilities is occurring in areas of gravitational waves and neutrinos that could open new windows on the GRB phenomenon. Increased IR capabilities on the ground and with missions like JWST will enable further exploration of high redshift bursts. The future is bright.

  13. Hubble space telescope observations of the afterglow, supernova, and host galaxy associated with the extremely bright GRB 130427A

    Energy Technology Data Exchange (ETDEWEB)

    Levan, A. J. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Tanvir, N. R.; Wiersema, K. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); Fruchter, A. S.; Hounsell, R. A.; Graham, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Hjorth, J.; Fynbo, J. P. U. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Pian, E. [INAF, Trieste Astronomical Observatory, via G.B. Tiepolo 11, I-34143 Trieste (Italy); Mazzali, P. [Astrophysics Research Institute, Liverpool John Moores University, IC2 Liverpool Science Park 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Cano, Z. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik (Iceland); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Kouveliotou, C. [Science and Technology Office, ZP12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Pe' er, A. [Department of Physics, University College Cork, Cork (Ireland); Misra, K., E-mail: a.j.levan@warwick.ac.uk [Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital-263 002 (India)

    2014-09-10

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst (GRB), GRB 130427A. At z = 0.34, this burst affords an excellent opportunity to study the supernova (SN) and host galaxy associated with an intrinsically extremely luminous burst (E {sub iso} > 10{sup 54} erg): more luminous than any previous GRB with a spectroscopically associated SN. We use the combination of the image quality, UV capability, and invariant point-spread function of HST to provide the best possible separation of the afterglow, host, and SN contributions to the observed light ∼17 rest-frame days after the burst, utilizing a host subtraction spectrum obtained one year later. Advanced Camera for Surveys grism observations show that the associated SN, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, v {sub ph} ∼ 15, 000 km s{sup –1}). The positions of the bluer features are better matched by the higher velocity SN 2010bh (v {sub ph} ∼ 30, 000 km s{sup –1}), but this SN is significantly fainter and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated ∼4 kpc from the nucleus of a moderately star forming (1 M {sub ☉} yr{sup –1}), possibly interacting disk galaxy. The absolute magnitude, physical size, and morphology of this galaxy, as well as the location of the GRB within it, are also strikingly similar to those of GRB 980425/SN 1998bw. The similarity of the SNe and environment from both the most luminous and least luminous GRBs suggests that broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  14. Observations of gamma-ray burst afterglows with the AEOS Burst Camera

    Science.gov (United States)

    Flewelling, Heather Anne

    Gamma-ray bursts (GRBs), are variable bursts of gamma-ray radiation, that lasts from milliseconds to hundreds of seconds. These bursts of gamma rays are detected in other wavelengths (optical, IR, radio, X-ray), because the afterglow lasts much longer, and this enables us to learn more about GRBs. The AEOS Burst Camera (ABC) is a 6'x6' field of view camera designed to observe the optical afterglows of GRBs, and is mounted on the 3.67m Advanced Electro- Optical System (AEOS) telescope, located at 10,000ft on Haleakala, Hawaii. There are 45 hours of Target of Opportunity (ToO) time to observe GRBs detected by Swift and other GRB satellites. Observations are started within minutes after a suitable GRB is detected, and continue for an hour or two. During this project, 21 GRBs were observed, and of those, 10 had detected afterglows, and 4 had interesting limits. About half of the bursts fit the fireball model, and half did not, which is similar to what ROTSE has found. Roughly half of the ABC bursts fall in the dark category, with b ox Akerlof Sr, Swan (2007) found, that roughly 70% of all GRBs brighter than 22nd mag at 1000s should be detectable.

  15. Detection prospects for GeV neutrinos from collisionally heated gamma-ray bursts with IceCube/DeepCore.

    Science.gov (United States)

    Bartos, I; Beloborodov, A M; Hurley, K; Márka, S

    2013-06-14

    Jet reheating via nuclear collisions has recently been proposed as the main mechanism for gamma-ray burst (GRB) emission. In addition to producing the observed gamma rays, collisional heating must generate 10-100 GeV neutrinos, implying a close relation between the neutrino and gamma-ray luminosities. We exploit this theoretical relation to make predictions for possible GRB detections by IceCube + DeepCore. To estimate the expected neutrino signal, we use the largest sample of bursts observed by the Burst and Transient Source Experiment in 1991-2000. GRB neutrinos could have been detected if IceCube + DeepCore operated at that time. Detection of 10-100 GeV neutrinos would have significant implications, shedding light on the composition of GRB jets and their Lorentz factors. This could be an important target in designing future upgrades of the IceCube + DeepCore observatory.

  16. Broadening of the thermal component of the prompt GRB emission due to rapid temperature evolution

    Science.gov (United States)

    Bharali, Priya; Sahayanathan, Sunder; Misra, Ranjeev; Boruah, Kalyanee

    2017-08-01

    The observations of the prompt emission of gamma ray bursts (GRB) by GLAST Burst Monitor (GBM), on board Fermi Gamma-ray Space Telescope, suggest the presence of a significant thermal spectral component, whose origin is not well understood. Recently, it has been shown that for long duration GRBs, the spectral width as defined as the logarithm of the ratio of the energies at which the spectrum falls to half its peak value, lie in the range of 0.84-1.3 with a median value of 1.07. Thus, while most of the GRB spectra are found to be too narrow to be explained by synchrotron emission from an electron distribution, they are also significantly broader than a blackbody spectrum whose width should be 0.54. Here, we consider the possibility that an intrinsic thermal spectrum from a fire-ball like model, may be observed to be broadened if the system undergoes a rapid temperature evolution. We construct a toy-model to show that for bursts with durations in the range 5-70 s, the widths of their 1 second time-averaged spectra can be at the most ≲ 0.557. Thus, while rapid temperature variation can broaden the detected spectral shape, the observed median value of ˜ 1.07 requires that there must be significant sub-photospheric emission and/or an anisotropic explosion to explain the broadening for most GRB spectra.

  17. CONSTRAINTS ON THE BULK LORENTZ FACTORS OF GRB X-RAY FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Shuang-Xi; Wang, Fa-Yin; Dai, Zi-Gao [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Wu, Xue-Feng, E-mail: dzg@nju.edu.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2015-07-01

    X-ray flares were discovered in the afterglow phase of gamma-ray bursts (GRBs) by the Swift satellite a decade ago and are known as a canonical component in GRB X-ray afterglows. In this paper, we constrain the Lorentz factors of GRB X-ray flares using two different methods. For the first method, we estimate the lower limit on the bulk Lorentz factor with the flare duration and jet break time. In the second method, the upper limit on the Lorentz factor is derived by assuming that the X-ray flare jet has undergone saturated acceleration. We also re-estimate the initial Lorentz factor with GRB afterglow onsets, and find the coefficient of the theoretical Lorentz factor is 1.67 rather than the commonly used 2 for the interstellar medium (ISM) and 1.44 for the wind case. We find that the correlation between the limited Lorentz factor and the isotropic radiation energy of X-ray flares in the ISM case is more consistent with that of prompt emission than the wind case in a statistical sense. For a comparison, the lower limit on the Lorentz factor is statistically larger than the extrapolation from prompt bursts in the wind case. Our results indicate that X-ray flares and prompt bursts are produced by the same physical mechanism.

  18. Very high column density and small reddening toward GRB 020124 at z=3.20

    DEFF Research Database (Denmark)

    Hjorth, J.; Møller, Per; Gorosabel, J.

    2003-01-01

    We present optical and near-infrared observations of the dim afterglow of GRB 020124, obtained between 2 and 68 hr after the gamma-ray burst. The burst occurred in a very faint (Rgreater than or similar to29.5) damped Lyalpha absorber (DLA) at a redshift of z=3.198+/-0.004. The derived column den...... density of neutral hydrogen is log(N-Hi)=21.7+/-0.2, and the rest-frame reddening is constrained to be E(B-V)...

  19. GRANAT/WATCH catalogue of cosmic gamma-ray bursts: December 1989 to September 1994

    DEFF Research Database (Denmark)

    Sazonov, S.Y.; Sunyaev, R.A.; Terekhov, O.V.

    1998-01-01

    or by their detection with other GRB experiments. For each burst its time history and information on its intensity in the two energy ranges 8-20 keV and 30-60 keV are presented, Most events show hardening of the energy spectrum near the burst peak. In part of the bursts an X-ray precursor or a tail is seen at 8-20 ke...

  20. Effects of Goldstone bosons on gamma-ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Huitzu; Ng, Kin-Wang, E-mail: huitzu2@gate.sinica.edu.tw, E-mail: nkw@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, 128 Sec. 2, Academia Rd., Nankang, Taipei 11529, Taiwan (China)

    2016-03-01

    Gamma-ray bursts (GRBs) are the most energetic explosion events in the universe. An amount of gravitational energy of the order of the rest-mass energy of the Sun is released from a small region within a short time. This should lead to the formation of a fireball of temperature in the MeV range, consisting of electrons/positrons, photons, and a small fraction of baryons. We exploit the potential of GRB fireballs for being a laboratory for testing particle physics beyond the Standard Model, where we find that Weinberg's Higgs portal model serves as a good candidate for this purpose. Due to the resonance effects, the Goldstone bosons can be rapidly produced by electron-positron annihilation process in the initial fireballs of the gamma-ray bursts. On the other hand, the mean free path of the Goldstone bosons is larger than the size of the GRB initial fireballs, so they are not coupled to the GRB's relativistic flow and can lead to significant energy loss. Using generic values for the GRB initial fireball energy, temperature, radius, expansion rate, and baryon number density, we find that the GRB bounds on the parameters of Weinberg's Higgs portal model are indeed competitive to current laboratory constraints.

  1. Spectral Lag Evolution among γ-Ray Burst Pulses Lan-Wei Jia1 ...

    Indian Academy of Sciences (India)

    GRBs (e.g., Norris et al. 2000; Chen et al. 2005; Yi et al. 2006), but it is not the case in short γ-ray bursts (Yi et al. 2006). The evolution of the spectral lag for pulses in a given GRB may shed light on the physical origin of the lag. We present a systematical analysis of the spectral lag evolution of GRB pulses with observations.

  2. Ultra-Fast Flash Observatory for observation of early photons from gamma ray bursts

    DEFF Research Database (Denmark)

    Park, I. H.; Ahmad, S.; Barrillon, P.

    2012-01-01

    We describe the space project of Ultra-Fast Flash Observatory (UFFO) which will observe early optical photons from gamma-ray bursts (GRBs) with a sub-second optical response, for the first time. The UFFO will probe the early optical rise of GRBs, opening a completely new frontier in GRB and trans...... of GRB mechanisms, and potentially open up the z<10 universe to study via GRB as point source emission probes.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only....

  3. Prompt Optical Observations of Gamma-Ray Bursts.

    Science.gov (United States)

    Akerlof; Balsano; Barthelmy; Bloch; Butterworth; Casperson; Cline; Fletcher; Frontera; Gisler; Heise; Hills; Hurley; Kehoe; Lee; Marshall; McKay; Pawl; Piro; Szymanski; Wren

    2000-03-20

    The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure simultaneous and early afterglow optical emission from gamma-ray bursts (GRBs). A search for optical counterparts to six GRBs with localization errors of 1 deg2 or better produced no detections. The earliest limiting sensitivity is mROTSE>13.1 at 10.85 s (5 s exposure) after the gamma-ray rise, and the best limit is mROTSE>16.0 at 62 minutes (897 s exposure). These are the most stringent limits obtained for the GRB optical counterpart brightness in the first hour after the burst. Consideration of the gamma-ray fluence and peak flux for these bursts and for GRB 990123 indicates that there is not a strong positive correlation between optical flux and gamma-ray emission.

  4. Localization of Gamma-Ray Bursts using the Fermi Gamma-Ray Burst Monitor

    OpenAIRE

    Connaughton, V.; Briggs, M. S.; Goldstein, A.; Meegan, C. A.; Paciesas, W. S.; Preece, R. D.; Wilson-Hodge, C.A.; Gibby, M. H.; Greiner, J.; Gruber, D.; Jenke, P.; Kippen, R. M.; Pelassa, V.; Xiong, S.; Yu, H-F

    2014-01-01

    The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 Gamma-Ray Bursts (GRBs) since it began science operations in July, 2008. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the InterPlanetary Network (IPN), to analyze the accuracy of GBM GRB localizations. We find that the reported statistical uncertainties on GBM localizations, which can be as small as 1 degree, underestimat...

  5. Exploring the Pulse Structure of the Gamma-Ray Bursts from the Swift Burst Alert Telescop

    Science.gov (United States)

    Martinez, Juan-Carlos; Team 1: Jon Hakkila, Amy Lien, Judith, Racusin, Team 2: Antonino Cucchiara, David Morris

    2018-01-01

    Gamma-ray bursts (GRBs) are one of the brightest and most intense explosions in our universe. For this project, we studied the shape of 400 single pulse GRBs using data gathered from Swift's Burst Alert Telescope (BAT). Hakkila et al. (2015) have discovered a mathematical Model that describes the GRB’s pulse shapes. Following the method in Hakkila et al. (2015), we fit GRB pulses with the Norris function and examined the residual in the fitting, to see whether the results are consistent with the one reported in Hakkila et al. (2015).

  6. GRB 080503 LATE AFTERGLOW RE-BRIGHTENING: SIGNATURE OF A MAGNETAR-POWERED MERGER-NOVA

    Energy Technology Data Exchange (ETDEWEB)

    Gao, He; Ding, Xuan; Wu, Xue-Feng [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Dai, Zi-Gao [School of Astronomy and Space Science, Nanjing University, Nanjing 2100093 (China); Zhang, Bing, E-mail: hug18@psu.edu, E-mail: xfwu@pmo.ac.cn, E-mail: dzg@nju.edu.cn, E-mail: zhang@physics.unlv.edu [Department of Physics and Astronomy, University of Nevada Las Vegas, NV 89154 (United States)

    2015-07-10

    GRB 080503 is a short gamma-ray burst (GRB) detected by Swift and has been classified as a GRB originating from a compact star merger. The soft extended emission and the simultaneous late re-brightening in both the X-ray and optical afterglow light curves raise interesting questions regarding its physical origin. We show that the broadband data of GRB 080503 can be well explained within the framework of the double neutron star merger model, provided that the merger remnant is a rapidly rotating massive neutron star with an extremely high magnetic field (i.e., a millisecond magnetar). We show that the late optical re-brightening is consistent with the emission from a magnetar-powered “merger-nova.” This adds one more case to the growing sample of merger-novae associated with short GRBs. The soft extended emission and the late X-ray excess emission are well connected through a magnetar dipole spin-down luminosity evolution function, suggesting that direct magnetic dissipation is the mechanism to produce these X-rays. The X-ray emission initially leaks from a hole in the merger ejecta pierced by the short GRB jet. The hole subsequently closes after the magnetar spins down and the magnetic pressure drops below ram pressure. The X-ray photons are then trapped behind the merger-nova ejecta until the ejecta becomes optically thin at a later time. This explains the essentially simultaneous re-brightening in both the optical and X-ray light curves. Within this model, future gravitational-wave sources could be associated with a bright X-ray counterpart along with the merger-nova, even if the short GRB jet beams away from Earth.

  7. A Large Catalog of Homogeneous Ultra-Violet/Optical GRB Afterglows: Temporal and Spectral Evolution

    Science.gov (United States)

    Roming, Peter W. A.; Koch, T. Scott; Oates, Samantha R.; Porterfield, Blair L.; Bayless, Amanda J.; Breeveld, Alice A.; Gronwall, Caryl; Kuin, N. P. M.; Page, Mat J.; de Pasquale, Massimiliano; Siegel, Michael H.; Swenson, Craig A.; Tobler, Jennifer M.

    2017-02-01

    We present the second Swift Ultra-Violet/Optical Telescope (UVOT) gamma-ray burst (GRB) afterglow catalog, greatly expanding on the first Swift UVOT GRB afterglow catalog. The second catalog is constructed from a database containing over 120,000 independent UVOT observations of 538 GRBs first detected by Swift, the High Energy Transient Explorer 2 (HETE2), the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), the Interplanetary Network (IPN), Fermi, and Astro-rivelatore Gamma a Immagini Leggero (AGILE). The catalog covers GRBs discovered from 2005 January 17 to 2010 December 25. Using photometric information in three UV bands, three optical bands, and a “white” or open filter, the data are optimally coadded to maximize the number of detections and normalized to one band to provide a detailed light curve. The catalog provides positional, temporal, and photometric information for each burst, as well as Swift Burst Alert Telescope and X-ray Telescope (XRT) GRB parameters. Temporal slopes are provided for each UVOT filter. The temporal slope per filter of almost half the GRBs are fit with a single power law, but one to three breaks are required in the remaining bursts. Morphological comparisons with the X-ray reveal that ˜ 75 % of the UVOT light curves are similar to one of the four morphologies identified by Evans et al. (2009). The remaining ˜ 25 % have a newly identified morphology. For many bursts, redshift- and extinction-corrected UV/optical spectral slopes are also provided at 2 × 103, 2 × 104, and 2 × 105 s.

  8. GRO: Black hole models for gamma-ray bursts

    Science.gov (United States)

    Shaham, Jacob

    1994-01-01

    The possibility of creating gamma ray bursts (GRB's) from accretion flows on to black holes is investigated. The mechanism of initial energy release in the form of a burst is not understood yet. The typical time scales involved in this energy release and the initial distribution of photons as a function of energy are studied. As a first step the problem is formulated in the Minkowski spacetime for a homogeneous and isotropic burst. For an arbitrary initial distribution of photons, the equations of relativistic kinetic theory are formulated for nonequilibrium plasmas which can take into account various particle creation and annihilation processes and various scattering processes.

  9. The Konus-Wind Catalog of Gamma-Ray Bursts with Known Redshifts. I. Bursts Detected in the Triggered Mode

    Science.gov (United States)

    Tsvetkova, A.; Frederiks, D.; Golenetskii, S.; Lysenko, A.; Oleynik, P.; Pal'shin, V.; Svinkin, D.; Ulanov, M.; Cline, T.; Hurley, K.; Aptekar, R.

    2017-12-01

    In this catalog, we present the results of a systematic study of gamma-ray bursts (GRBs) with reliable redshift estimates detected in the triggered mode of the Konus-Wind (KW) experiment during the period from 1997 February to 2016 June. The sample consists of 150 GRBs (including 12 short/hard bursts) and represents the largest set of cosmological GRBs studied to date over a broad energy band. From the temporal and spectral analyses of the sample, we provide the burst durations, the spectral lags, the results of spectral fits with two model functions, the total energy fluences, and the peak energy fluxes. Based on the GRB redshifts, which span the range 0.1≤slant z≤slant 5, we estimate the rest-frame, isotropic-equivalent energy, and peak luminosity. For 32 GRBs with reasonably constrained jet breaks, we provide the collimation-corrected values of the energetics. We consider the behavior of the rest-frame GRB parameters in the hardness-duration and hardness-intensity planes, and confirm the “Amati” and “Yonetoku” relations for Type II GRBs. The correction for the jet collimation does not improve these correlations for the KW sample. We discuss the influence of instrumental selection effects on the GRB parameter distributions and estimate the KW GRB detection horizon, which extends to z˜ 16.6, stressing the importance of GRBs as probes of the early universe. Accounting for the instrumental bias, we estimate the KW GRB luminosity evolution, luminosity and isotropic-energy functions, and the evolution of the GRB formation rate, which are in general agreement with those obtained in previous studies.

  10. Observations of Supernovae Associated with Gamma-Ray Burst

    Science.gov (United States)

    Volnova, Alina; Pozanenko, Alexei; Pruzhinskaya, Maria; Blinnikov, Sergei; Mazaeva, Elena; Inasaridze, Raguli; Ayvazyan, Vova; Inasaridze, Gulnazi; Reva, Inna; Burkhonov, Otabek; Ehgamberdiev, Shukhrat; Kvaratskhelia, Otari; Rumyantsev, Vasilij; Krugly, Yuri; Klunko, Evgeny; Molotov, Igor

    In this paper, we present an overview of the observational properties of supernovae (SNe) associated with long-duration gamma- ray bursts (GRBs). We summarise the statistics of GRB-SNe physical properties and consider different modelling methods. We report the results of the numerical modelling of the GRB 130702A/SN 2013dx multicolour light curve using a spherically symmetrical multi-group radiation hydrodynamics code STELLA. We have obtained main bolometric parameters of the SN and compare our results with those of analytical modelling.

  11. Gamma Ray Bursts in the Swift-Fermi Era

    Science.gov (United States)

    Gehrels, Neil; Razzaque, Soebur

    2013-01-01

    Gamma-ray bursts (GRBs) are among the most violent occurrences in the universe. They are powerful explosions, visible to high redshift, and thought to be the signature of black hole birth. They are highly luminous events and provide excellent probes of the distant universe. GRB research has greatly advanced over the past 10 years with the results from Swift, Fermi and an active follow-up community. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  12. Very High Energy Neutrinos from nearby long GRB Afterglows

    Science.gov (United States)

    Thomas, Jessymol K.; Moharana, Reetanjali; Razzaque, Soebur

    2017-09-01

    Long duration Gamma Ray Bursts (GRBs) are well-motivated sources of Ultra High Energy Cosmic Rays (UHECRs) and neutrinos. During the afterglow phase these particles can be produced as a result of acceleration and interaction there in. We have modeled afterglow spectra and light curves from synchrotron cooling of accelerated electrons. We have fitted data of 17 long GRBs detected within redshift 0.5 in case of the GRB blastwave evolving in a wind and constant density interstellar medium. The afterglow photons can interact with the shock accelerated protons to produce very high energy neutrinos. We have calculated the neutrino flux for photo-pion interactions for all these GRBs. As IceCube have been detecting very high energy neutrinos for the last four years and a larger future extension called Gen 2 is planned, this calculation will help in understanding more about GRB neutrino production. Calculation of flux and estimation of events for Northern Hemisphere GRBs are done for the upcoming neutrino observatory KM3NeT.

  13. Time-dependent thermal effects in GRB afterglows

    Energy Technology Data Exchange (ETDEWEB)

    Postnov, K.A.; Blinnikov, S.I.; Kosenko, D.I.; Sorokina, E.I

    2004-06-01

    Time-dependent thermal effects should accompany standard non-thermal afterglows of GRB when {gamma}-rays pass through inhomogeneous surroundings of the GRB site. Thermal relaxation of an optically thin plasma is calculated using time-dependent collisional ionization of the plasma ion species. X-ray emission lines are similar to those found in the fading X-ray afterglow of GRB 011211. Thermal relaxation of clouds or shells around the GRB site could also contribute to the varying late optical GRB afterglows, such as in GRB 021004 and GRB 030329.

  14. Unveiling the Secrets of Metallicity and Massive Star Formation Using DLAs Along Gamma-Ray Bursts

    Science.gov (United States)

    Cucchiara, A.; Fumagalli, M.; Rafelski, M.; Kocevski, D.; Prochaska, J. X.; Cooke, R. J.; Becker, G. D.

    2015-01-01

    We present the largest, publicly available, sample of Damped Lyman-alpha systems (DLAs) along Swift discovered Gamma-ray Bursts (GRB) line of sights in order to investigate the environmental properties of long GRB hosts in the z = 1.8 - 6 redshift range. Compared with the most recent quasar DLAs sample (QSO-DLA), our analysis shows that GRB-DLAs probe a more metal enriched environment at z approximately greater than 3, up to [X/H] approximately -0.5. In the z = 2 - 3 redshift range, despite the large number of lower limits, there are hints that the two populations may be more similar (only at 90% significance level) than at higher redshifts. Also, at high-z, the GRB-DLA average metallicity seems to decline at a shallower rate than the QSO-DLAs: GRB-DLA hosts may be polluted with metals at least as far as approximately 2 kpc from the GRB explosion site, probably due to previous star-formation episodes and/or supernovae explosions. This shallow metallicity trend, extended now up to z approximately 5, confirms previous results that GRB hosts are star-forming and have, on average, higher metallicity than the general QSO-DLA population. Finally, our host metallicity measurements are broadly consistent with the predictions derived from the hypothesis of two channels of GRB progenitors, one of which is mildly affected by a metallicity bias, although more data are needed to constrain the models at z approximately greater than 4.

  15. THE OPTICALLY UNBIASED GRB HOST (TOUGH) SURVEY. VI. RADIO OBSERVATIONS AT z {approx}< 1 AND CONSISTENCY WITH TYPICAL STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Michalowski, M. J.; Dunlop, J. S. [SUPA (Scottish Universities Physics Alliance), Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Kamble, A.; Kaplan, D. L. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Hjorth, J.; Malesani, D.; Fynbo, J. P. U.; Kruehler, T. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Reinfrank, R. F. [CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia); Bonavera, L. [Instituto de Fisica de Cantabria, CSIC-Universidad de Cantabria, Avda. de los Castros s/n, E-39005 Santander (Spain); Castro Ceron, J. M. [Department of Radio Astronomy, Madrid Deep Space Communications Complex (INTA-NASA/INSA), Ctra. M-531, km. 7, E-28.294 Robledo de Chavela (Madrid) (Spain); Ibar, E. [UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Garrett, M. A. [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo (Netherlands); Jakobsson, P. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik (Iceland); Levan, A. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Massardi, M. [INAF-Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Pal, S. [ICRAR, University of Western Australia, 35 Stirling Highway, Crawley, WA (Australia); Sollerman, J. [Oskar Klein Centre, Department of Astronomy, AlbaNova, Stockholm University, SE-10691 Stockholm (Sweden); Tanvir, N. R. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Van der Horst, A. J., E-mail: mm@roe.ac.uk [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Science Park 904, 1098XH Amsterdam (Netherlands); and others

    2012-08-20

    The objective of this paper is to determine the level of obscured star formation activity and dust attenuation in a sample of gamma-ray burst (GRB) hosts, and to test the hypothesis that GRB hosts have properties consistent with those of the general star-forming galaxy populations. We present a radio continuum survey of all z < 1 GRB hosts in The Optically Unbiased GRB Host (TOUGH) sample supplemented with radio data for all (mostly pre-Swift) GRB-SN hosts discovered before 2006 October. We present new radio data for 22 objects and have obtained a detection for three of them (GRB 980425, 021211, 031203; none in the TOUGH sample), increasing the number of radio-detected GRB hosts from two to five. The star formation rate (SFR) for the GRB 021211 host of {approx}825 M{sub Sun} yr{sup -1}, the highest ever reported for a GRB host, places it in the category of ultraluminous infrared galaxies. We found that at least {approx}63% of GRB hosts have SFR < 100 M{sub Sun} yr{sup -1} and at most {approx}8% can have SFR > 500 M{sub Sun} yr{sup -1}. For the undetected hosts the mean radio flux (<35 {mu}Jy 3{sigma}) corresponds to an average SFR < 15 M{sub Sun} yr{sup -1}. Moreover, {approx}> 88% of the z {approx}< 1 GRB hosts have ultraviolet dust attenuation A{sub UV} < 6.7 mag (visual attenuation A{sub V} < 3 mag). Hence, we did not find evidence for large dust obscuration in a majority of GRB hosts. Finally, we found that the distributions of SFRs and A{sub UV} of GRB hosts are consistent with those of Lyman break galaxies, H{alpha} emitters at similar redshifts, and of galaxies from cosmological simulations. The similarity of the GRB population with other star-forming galaxies is consistent with the hypothesis that GRBs, a least at z {approx}< 1, trace a large fraction of all star formation, and are therefore less biased indicators than once thought.

  16. Multirhythmic bursting

    Science.gov (United States)

    Butera, Robert J.

    1998-03-01

    A complex modeled bursting neuron [C. C. Canavier, J. W. Clark, and J. H. Byrne, J. Neurophysiol. 66, 2107-2124 (1991)] has been shown to possess seven coexisting limit cycle solutions at a given parameter set [Canavier et al., J. Neurophysiol 69, 2252-2259 (1993); 72, 872-882 (1994)]. These solutions are unique in that the limit cycles are concentric in the space of the slow variables. We examine the origin of these solutions using a minimal 4-variable bursting cell model. Poincaré maps are constructed using a saddle-node bifurcation of a fast subsystem such as our Poincaré section. This bifurcation defines a threshold between the active and silent phases of the burst cycle in the space of the slow variables. The maps identify parameter spaces with single limit cycles, multiple limit cycles, and two types of chaotic bursting. To investigate the dynamical features which underlie the unique shape of the maps, the maps are further decomposed into two submaps which describe the solution trajectories during the active and silent phases of a single burst. From these findings we postulate several necessary criteria for a bursting model to possess multiple stable concentric limit cycles. These criteria are demonstrated in a generalized 3-variable model. Finally, using a less direct numerical procedure, similar return maps are calculated for the original complex model [C. C. Canavier, J. W. Clark, and J. H. Byrne, J. Neurophysiol. 66, 2107-2124 (1991)], with the resulting mappings appearing qualitatively similar to those of our 4-variable model. These multistable concentric bursting solutions cannot occur in a bursting model with one slow variable. This type of multistability arises when a bursting system has two or more slow variables and is viewed as an essentially second-order system which receives discrete perturbations in a state-dependent manner.

  17. Gamma Ray Bursts Observations and Theoretical Conjectures

    CERN Document Server

    Alagoz, E; Carrillo, C; Golup, G T; Grimes, M; Herrera, Mora C; Gallo, Palomino J L; López, Vega A; Wicht, J

    2008-01-01

    Gamma Ray Bursts (GRBs) are short bursts of very high energy photons which were discovered in the late 1960s. Ever since their discovery, scientists have wondered about their origin. Nowadays it is known that they originate outside the Milky Way because of their high red shift rst measured in the afterglows thanks to the Beppo-SAX satellite and ground-based observations. However, theoreticians still do not agree about the mechanism that generates the bursts, and different competing models are animatedly debated. Current GRB experiments include the Swift satellite and the Pierre Auger Observatory that could detect GRBs with an increase of the background. A forthcoming dedicated experiment is GLAST, a satellite observatory for detecting gamma rays with energies up to 300 GeV, whose launch is scheduled for early 2008.

  18. Determining the Lorentz Factor and Viewing Angle of GRB 170817A

    Science.gov (United States)

    Zou, Yuan-Chuan; Wang, Fei-Fei; Moharana, Reetanjali; Liao, Bin; Chen, Wei; Wu, Qingwen; Lei, Wei-Hua; Wang, Fa-Yin

    2018-01-01

    The weak short gamma-ray burst (GRB) 170817A was accompanied by the GW170817 gravitational-wave event and is believed to have been produced by an off-beam relativistic jet. Here, we use the {E}{{p},{{i}}}{--}{E}{iso} and {{Γ }}{--}{E}{iso} relations to determine its Lorentz factor Γ and the viewing angle from the edge of the jet {θ }{obs}{\\prime } of GRB 170817A. Our results indicate that {{Γ }}={13.4}-5.5+9.8 and {θ }{obs}{\\prime }=4\\buildrel{\\circ}\\over{.} {3}-1.5+1.8, corresponding to an on-axis {E}{{p},{{i}}}={415}-167+361 {keV} and {E}{iso}=({2.4}-1.9+1.6)× {10}47 erg. Therefore, the GRB was an intrinsically weak short GRB. We also find that the afterglow emission was in good agreement with the follow-up multiband observations and that the radio emissions at around 20 days may have come from the off-axis jet. Interestingly, the Doppler factor and luminosity follow a universal relation for GRBs and blazars, thus suggesting that they may share a similar radiation mechanism.

  19. Hubble Space Telescope Observations of the Afterglow, Supernova and Host Galaxy Associated with the Extremely Bright GRB 130427A

    Science.gov (United States)

    Levan, A.J.; Tanvir, N. R.; Fruchter, A. S.; Hjorth, J.; Pian, E.; Mazzali, P.; Hounsell, R. A.; Perley, D. A.; Cano, Z.; Graham, J.; hide

    2014-01-01

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst, GRB 130427A. At z=0.34 this burst affords an excellent opportunity to study the supernova and host galaxy associated with an intrinsically extremely luminous burst (E(sub iso) greater than 10(exp 54) erg): more luminous than any previous GRB with a spectroscopically associated supernova. We use the combination of the image quality, UV capability and and invariant PSF of HST to provide the best possible separation of the afterglow, host and supernova contributions to the observed light approximately 17 rest-frame days after the burst utilising a host subtraction spectrum obtained 1 year later. Advanced Camera for Surveys (ACS) grism observations show that the associated supernova, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, vph approximately 15,000 kilometers per second). The positions of the bluer features are better matched by the higher velocity SN 2010bh (vph approximately 30,000 kilometers per second), but SN 2010bh (vph approximately 30,000 kilometers per second but this SN is significantly fainter, and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated approximately 4 kpc from the nucleus of a moderately star forming (1 Solar Mass yr(exp-1)), possibly interacting disc galaxy. The absolute magnitude, physical size and morphology of this galaxy, as well as the location of the GRB within it are also strikingly similar to those of GRB980425SN 1998bw. The similarity of supernovae and environment from both the most luminous and least luminous GRBs suggests broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  20. The 3rd Fermi GBM Gamma-Ray Burst Catalog: The First Six Years

    OpenAIRE

    Bhat, P. Narayana; Meegan, Charles A.; von Kienlin, Andreas; Paciesas, William S.; Briggs, Michael S.; Burgess, J. Michael; Burns, Eric; Chaplin, Vandiver; Cleveland, William H.; Collazzi, Andrew C.; Connaughto, Valerie; Diekmann, Anne M.; Fitzpatrick, Gerard; Gibby, Melissa H.; Giles, Misty M.

    2016-01-01

    Since its launch in 2008, the Fermi Gamma-ray Burst Monitor (GBM) has triggered and located on average approximately two gamma-ray bursts (GRB) every three days. Here we present the third of a series of catalogs of GRBs detected by GBM, extending the second catalog by two more years, through the middle of July 2014. The resulting list includes 1405 triggers identified as GRBs. The intention of the GBM GRB catalog is to provide information to the community on the most important observables of ...

  1. Radio and X-ray observations of the Ultra-long GRB 150518A

    Science.gov (United States)

    Johnson, Louis; Kamble, Atish; Margutti, Raffaella; Soderberg, Alicia Margarita; Supernova Forensics

    2016-01-01

    Gamma Ray Burst (GRB) 150518A, discovered on 2015 May 18 by the MAXI and KONUS-Wind satellites, lasted for about 1000s, making it an important addition to the recently established class of very long duration GRBs. We report on the JVLA radio observations of the afterglow of GRB 150518A. Additionally, we report the analysis of Xray afterglow observations by Swift-XRT. Multi-band light curves of the radio afterglow display an unusual, conspicuous rise around 10 days after the burst, possibly due to enhanced mass-loss from the progenitor in the final stages of evolution before the GRB. The X-ray afterglow spectrum is significantly soft (photon index Γx > 3) and heavily absorbed (NHx,i > 8 × 10^{21}/cm^2). These properties suggest peculiar behavior that is different from the predictions of the standard fireball model of GRBs. In the light of these properties, we compare different models of progenitors for very long duration GRBs. This work was supported in part by the NSF REU and DoD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.

  2. Search for high-energy muon neutrinos from the "naked-eye" GRB 080319B with the IceCube neutrino telescope

    DEFF Research Database (Denmark)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.

    2009-01-01

    We report on a search with the IceCube detector for high-energy muon neutrinos from GRB 080319B, one of the brightest gamma-ray bursts (GRBs) ever observed. The fireball model predicts that a mean of 0.1 events should be detected by IceCube for a bulk Lorentz boost of the jet of 300. In both...

  3. SEARCH FOR GAMMA-RAYS FROM THE UNUSUALLY BRIGHT GRB 130427A WITH THE HAWC GAMMA-RAY OBSERVATORY

    Energy Technology Data Exchange (ETDEWEB)

    Abeysekara, A. U. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI (United States); Alfaro, R. [Instituto de Física, Universidad Nacional Autónoma de México, México D. F. (Mexico); Alvarez, C.; Arceo, R. [CEFyMAP, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas (Mexico); Álvarez, J. D.; Arteaga-Velázquez, J. C.; Cotti, U.; De León, C. [Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán (Mexico); Solares, H. A. Ayala [Department of Physics, Michigan Technological University, Houghton, MI (United States); Barber, A. S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT (United States); Baughman, B. M.; Braun, J. [Department of Physics, University of Maryland, College Park, MD (United States); Bautista-Elivar, N. [Universidad Politécnica de Pachuca, Municipio de Zempoala, Hidalgo (Mexico); BenZvi, S. Y. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Rosales, M. Bonilla; Carramiñana, A. [Instituto Nacional de Astrofísica, Óptica y Electrónica, Tonantzintla, Puebla (Mexico); Caballero-Mora, K. S. [Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México D. F. (Mexico); Castillo, M.; Cotzomi, J. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla (Mexico); De la Fuente, E., E-mail: dirk.lennarz@gatech.edu [Departamento de Física, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara (Mexico); Collaboration: HAWC collaboration; and others

    2015-02-20

    The first limits on the prompt emission from the long gamma-ray burst (GRB) 130427A in the >100 GeV energy band are reported. GRB 130427A was the most powerful burst ever detected with a redshift z ≲ 0.5 and featured the longest lasting emission above 100 MeV. The energy spectrum extends at least up to 95 GeV, clearly in the range observable by the High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory, a new extensive air shower detector currently under construction in central Mexico. The burst occurred under unfavorable observation conditions, low in the sky and when HAWC was running 10% of the final detector. Based on the observed light curve at MeV-GeV energies, eight different time periods have been searched for prompt and delayed emission from this GRB. In all cases, no statistically significant excess of counts has been found and upper limits have been placed. It is shown that a similar GRB close to zenith would be easily detected by the full HAWC detector, which will be completed soon. The detection rate of the full HAWC detector may be as high as one to two GRBs per year. A detection could provide important information regarding the high energy processes at work and the observation of a possible cut-off beyond the Fermi Large Area Telescope energy range could be the signature of gamma-ray absorption, either in the GRB or along the line of sight due to the extragalactic background light.

  4. When Do Internal Shocks End and External Shocks Begin? Early-Time Broadband Modeling of GRB 051111

    Science.gov (United States)

    Butler, N. R.; Li, W.; Perley, D.; Huang, K. Y.; Urata, Y.; Prochaska, J. X.; Bloom, J. S.; Filippenko, A. V.; Foley, R. J.; Kocevski, D.; Chen, H.-W.; Qiu, Y.; Kuo, P. H.; Huang, F. Y.; Ip, W. H.; Tamagawa, T.; Onda, K.; Tashiro, M.; Makishima, K.; Nishihara, S.; Sarugaku, Y.

    2006-12-01

    Even with the renaissance in gamma-ray burst (GRB) research fostered by the Swift satellite, few bursts have both contemporaneous observations at long wavelengths and exquisite observations at later times across the electromagnetic spectrum. We present here contemporaneous imaging with the KAIT robotic optical telescope, dense optical sampling with Lulin, supplemented with infrared data from PAIRITEL and radio to gamma-ray data from the literature. For the first time, we can test the constancy of microphysical parameters in the internal-external shock paradigm and carefully trace the flow of energy from the GRB to the surrounding medium. KAIT data taken change is apparent in observations beginning ~1.5 minutes after the GRB and lasting for the first hour after the burst. There are achromatic flux modulations about the best-fit model at late (t~104 s) times, possibly due to variations in the external density. We find that the host galaxy extinction is well fit by a curve similar to that of the Small Magellanic Cloud. Low visual extinction, AV~0.2 mag, combined with high column densities determined from the X-ray and optical spectroscopy (NH>1021 cm-2), indicate a low dust-to-metals ratio and a possible overabundance of the light metals. An apparent small ratio of total to selective extinction (RV~2) argues against dust destruction by the GRB. Time constancy of both the IR/optical/UV spectral energy distribution and the soft X-ray absorption suggests that the absorbing material is not local to the GRB.

  5. Linear Polarization, Circular Polarization, and Depolarization of Gamma-ray Bursts: A Simple Case of Jitter Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Jirong; Wang, Jiancheng, E-mail: jirongmao@mail.ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, 650011 Kunming, Yunnan Province (China)

    2017-04-01

    Linear and circular polarizations of gamma-ray bursts (GRBs) have been detected recently. We adopt a simplified model to investigate GRB polarization characteristics in this paper. A compressed two-dimensional turbulent slab containing stochastic magnetic fields is considered, and jitter radiation can produce the linear polarization under this special magnetic field topology. Turbulent Faraday rotation measure (RM) of this slab makes strong wavelength-dependent depolarization. The jitter photons can also scatter with those magnetic clumps inside the turbulent slab, and a nonzero variance of the Stokes parameter V can be generated. Furthermore, the linearly and circularly polarized photons in the optical and radio bands may suffer heavy absorptions from the slab. Thus we consider the polarized jitter radiation transfer processes. Finally, we compare our model results with the optical detections of GRB 091018, GRB 121024A, and GRB 131030A. We suggest simultaneous observations of GRB multi-wavelength polarization in the future.

  6. LOCALIZATION OF GAMMA-RAY BURSTS USING THE FERMI GAMMA-RAY BURST MONITOR

    Energy Technology Data Exchange (ETDEWEB)

    Connaughton, V.; Briggs, M. S.; Burgess, J. M. [CSPAR and Physics Department, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Goldstein, A.; Wilson-Hodge, C. A. [Astrophysics Office, ZP12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Meegan, C. A.; Jenke, P.; Pelassa, V.; Xiong, S.; Bhat, P. N. [CSPAR, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Paciesas, W. S. [Universities Space Research Association, Huntsville, AL (United States); Preece, R. D. [Department of Space Science, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Gibby, M. H. [Jacobs Technology, Inc., Huntsville, AL (United States); Greiner, J.; Yu, H.-F. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Gruber, D. [Planetarium Südtirol, Gummer 5, I-39053 Karneid (Italy); Kippen, R. M. [Los Alamos National Laboratory, NM 87545 (United States); Byrne, D.; Fitzpatrick, G.; Foley, S., E-mail: valerie@nasa.gov [School of Physics, University College Dublin, Belfield, Stillorgan Road, Dublin 4 (Ireland); and others

    2015-02-01

    The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 gamma-ray bursts (GRBs) since it began science operations in 2008 July. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the InterPlanetary Network, to analyze the accuracy of GBM GRB localizations. We find that the reported statistical uncertainties on GBM localizations, which can be as small as 1°, underestimate the distance of the GBM positions to the true GRB locations and we attribute this to systematic uncertainties. The distribution of systematic uncertainties is well represented (68% confidence level) by a 3.°7 Gaussian with a non-Gaussian tail that contains about 10% of GBM-detected GRBs and extends to approximately 14°. A more complex model suggests that there is a dependence of the systematic uncertainty on the position of the GRB in spacecraft coordinates, with GRBs in the quadrants on the Y axis better localized than those on the X axis.

  7. Localization of Gamma-Ray Bursts Using the Fermi Gamma-Ray Burst Monitor

    Science.gov (United States)

    Connaughton, V.; Briggs, M. S.; Goldstein, A.; Meegan, C. A.; Paciesas, W. S.; Preece, R. D.; Wilson-Hodge, C. A.; Gibby, M. H.; Greiner, J.; Gruber, D.; Jenke, P.; Kippen, R. M.; Pelassa, V.; Xiong, S.; Yu, H.-F.; Bhat, P. N.; Burgess, J. M.; Byrne, D.; Fitzpatrick, G.; Foley, S.; Giles, M. M.; Guiriec, S.; van der Horst, A. J.; von Kienlin, A.; McBreen, S.; McGlynn, S.; Tierney, D.; Zhang, B.-B.

    2015-02-01

    The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 gamma-ray bursts (GRBs) since it began science operations in 2008 July. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the InterPlanetary Network, to analyze the accuracy of GBM GRB localizations. We find that the reported statistical uncertainties on GBM localizations, which can be as small as 1°, underestimate the distance of the GBM positions to the true GRB locations and we attribute this to systematic uncertainties. The distribution of systematic uncertainties is well represented (68% confidence level) by a 3.°7 Gaussian with a non-Gaussian tail that contains about 10% of GBM-detected GRBs and extends to approximately 14°. A more complex model suggests that there is a dependence of the systematic uncertainty on the position of the GRB in spacecraft coordinates, with GRBs in the quadrants on the Y axis better localized than those on the X axis.

  8. Clustering of galaxies around gamma-ray burst sight-lines

    DEFF Research Database (Denmark)

    Sudilovsky, V.; Greiner, J.; Rau, A.

    2013-01-01

    There is evidence of an overdensity of strong intervening MgII absorption line systems distributed along the lines of sight toward gamma-ray burst (GRB) afterglows relative to quasar sight-lines. If this excess is real, one should also expect an overdensity of field galaxies around GRB sight......-lines, as strong MgII tends to trace these sources. In this work, we test this expectation by calculating the two point angular correlation function of galaxies within 120'' (~470 h Kpc470h71-1Kpc at z ~ 0.4) of GRB afterglows. We compare the gamma-ray burst optical and near-infrared detector (GROND) GRB afterglow...... sample-one of the largest and most homogeneous samples of GRB fields-with galaxies and active galactic nuclei found in the COSMOS-30 photometric catalog. We find no significant signal of anomalous clustering of galaxies at an estimated median redshift of z ~ 0.3 around GRB sight-lines, down to K

  9. Surprise in simplicity: an unusual spectral evolution of a single pulse GRB 151006A

    Science.gov (United States)

    Basak, R.; Iyyani, S.; Chand, V.; Chattopadhyay, T.; Bhattacharya, D.; Rao, A. R.; Vadawale, S. V.

    2017-11-01

    We present a detailed analysis of GRB 151006A, the first gamma-ray burst (GRB) detected by AstroSat Cadmium-Zinc-Telluride Imager (CZTI). We study the long-term spectral evolution by exploiting the capabilities of Fermi and Swift satellites at different phases, which is complemented by the polarization measurement with the CZTI. While the light curve of the GRB in different energy bands shows a simple pulse profile, the spectrum shows an unusual evolution. The first phase exhibits a hard-to-soft evolution until ∼16-20 s, followed by a sudden increase in the spectral peak reaching a few MeV. Such a dramatic change in the spectral evolution in the case of a single pulse burst is reported for the first time. This is captured by all models we used namely, Band function, blackbody+Band and two blackbodies+power law. Interestingly, the Fermi Large Area Telescope also detects its first photon (>100 MeV) during this time. This new injection of energy may be associated with either the beginning of afterglow phase, or a second hard pulse of the prompt emission itself that, however, is not seen in the otherwise smooth pulse profile. By constructing Bayesian blocks and studying the hardness evolution we find a good evidence for a second hard pulse. The Swift data at late epochs (>T90 of the GRB) also show a significant spectral evolution consistent with the early second phase. The CZTI data (100-350 keV), though having low significance (1σ), show high values of polarization in the two epochs (77-94 per cent), in agreement with our interpretation.

  10. Modeling The GRB Host Galaxy Mass Distribution: Are GRBs Unbiased Tracers of Star Formation?

    Energy Technology Data Exchange (ETDEWEB)

    Kocevski, Daniel; /KIPAC, Menlo Park; West, Andrew A.; /UC, Berkeley, Astron. Dept. /MIT, MKI; Modjaz, Maryam; /UC, Berkeley, Astron. Dept.

    2009-08-03

    We model the mass distribution of long gamma-ray burst (GRB) host galaxies given recent results suggesting that GRBs occur in low metallicity environments. By utilizing measurements of the redshift evolution of the mass-metallicity (M-Z) relationship for galaxies, along with a sharp host metallicity cut-off suggested by Modjaz and collaborators, we estimate an upper limit on the stellar mass of a galaxy that can efficiently produce a GRB as a function of redshift. By employing consistent abundance indicators, we find that sub-solar metallicity cut-offs effectively limit GRBs to low stellar mass spirals and dwarf galaxies at low redshift. At higher redshifts, as the average metallicity of galaxies in the Universe falls, the mass range of galaxies capable of hosting a GRB broadens, with an upper bound approaching the mass of even the largest spiral galaxies. We compare these predicted limits to the growing number of published GRB host masses and find that extremely low metallicity cut-offs of 0.1 to 0.5 Z{sub {circle_dot}} are effectively ruled out by a large number of intermediate mass galaxies at low redshift. A mass function that includes a smooth decrease in the efficiency of producing GRBs in galaxies of metallicity above 12+log(O/H){sub KK04} = 8.7 can, however, accommodate a majority of the measured host galaxy masses. We find that at z {approx} 1, the peak in the observed GRB host mass distribution is inconsistent with the expected peak in the mass of galaxies harboring most of the star formation. This suggests that GRBs are metallicity biased tracers of star formation at low and intermediate redshifts, although our model predicts that this bias should disappear at higher redshifts due to the evolving metallicity content of the universe.

  11. Relativistic Hydrodynamics and Spectral Evolution of GRB Jets

    Science.gov (United States)

    Cuesta-Martínez, C.

    2017-09-01

    In this thesis we study the progenitor systems of long gamma-ray bursts (GRBs) using numerical models of their dynamics and the electromagnetic emission. Of all the possible classes of events, we focus on those showing a prominent component of thermal emission, which might be generated due to the interaction of a relativistic jet with the medium into which it is propagating. The main part of the thesis is devoted to modelling GRBs from two different clases of progenitors: ultra-long GRBs dominated by blackbody emission and GRBs associated with core-collapse supernovae (SNe). The study of GRB jets and their radiative emission has been basically divided into two steps. First, the dynamical evolution of relativistic jets can be simulated by means of multidimensional special relativistic hydrodynamic simulations which have been performed with the MRGENESIS code. Second, the synthetic emission from such jets is computed with the relativistic radiative transfer code SPEV in a post-processing stage assuming different radiative processes in which we follow the temporal and spectral evolution of the emitted radiation. An instrumental part of this project consisted in extending SPEV to include thermal processes, such as thermal bremsstrahlung, in order to account for the thermal signal that may arise in some GRBs. In the first part of this thesis, we extend an existing theoretical model to explain the class of blackbody-dominated GRBs (BBD-GRBs), i.e., long lasting events characterized by the presence of a notable thermal component trailing the GRB prompt emission, and a rather weak traditional afterglow. GRB 101225A, the "Christmas burst", is the most prominent member of this class. It has been suggested that BBD-GRBs could result from the merger of a binary system formed by a neutron star and the Helium core of an evolved, massive star. We model in 2D the propagation of ultrarelativistic jets through the environments created by such mergers. We outline the most relevant

  12. Relativistic Hydrodynamics and Spectral Evolution of GRB Jets

    Science.gov (United States)

    Cuesta-Martínez, C.

    2017-09-01

    In this thesis we study the progenitor systems of long gamma-ray bursts (GRBs) using numerical models of their dynamics and the electromagnetic emission. Of all the possible classes of events, we focus on those showing a prominent component of thermal emission, which might be generated due to the interaction of a relativistic jet with the medium into which it is propagating. The main part of the thesis is devoted to modelling GRBs from two different clases of progenitors: ultra-long GRBs dominated by blackbody emission and GRBs associated with core-collapse supernovae (SNe). The study of GRB jets and their radiative emission has been basically divided into two steps. First, the dynamical evolution of relativistic jets can be simulated by means of multidimensional special relativistic hydrodynamic simulations which have been performed with the MRGENESIS code. Second, the synthetic emission from such jets is computed with the relativistic radiative transfer code SPEV in a post-processing stage assuming different radiative processes in which we follow the temporal and spectral evolution of the emitted radiation. An instrumental part of this project consisted in extending SPEV to include thermal processes, such as thermal bremsstrahlung, in order to account for the thermal signal that may arise in some GRBs. In the first part of this thesis, we extend an existing theoretical model to explain the class of blackbody-dominated GRBs (BBD-GRBs), i.e., long lasting events characterized by the presence of a notable thermal component trailing the GRB prompt emission, and a rather weak traditional afterglow. GRB 101225A, the "Christmas burst", is the most prominent member of this class. It has been suggested that BBD-GRBs could result from the merger of a binary system formed by a neutron star and the Helium core of an evolved, massive star. We model in 2D the propagation of ultrarelativistic jets through the environments created by such mergers. We outline the most relevant

  13. Colour variations in the GRB 120327A afterglow

    Science.gov (United States)

    Melandri, A.; Covino, S.; Zaninoni, E.; Campana, S.; Bolmer, J.; Cobb, B. E.; Gorosabel, J.; Kim, J.-W.; Kuin, P.; Kuroda, D.; Malesani, D.; Mundell, C. G.; Nappo, F.; Sbarufatti, B.; Smith, R. J.; Steele, I. A.; Topinka, M.; Trotter, A. S.; Virgili, F. J.; Bernardini, M. G.; D'Avanzo, P.; D'Elia, V.; Fugazza, D.; Ghirlanda, G.; Gomboc, A.; Greiner, J.; Guidorzi, C.; Haislip, J. B.; Hanayama, H.; Hanlon, L.; Im, M.; Ivarsen, K. M.; Japelj, J.; Jelínek, M.; Kawai, N.; Kobayashi, S.; Kopac, D.; LaCluyzé, A. P.; Martin-Carrillo, A.; Murphy, D.; Reichart, D. E.; Salvaterra, R.; Salafia, O. S.; Tagliaferri, G.; Vergani, S. D.

    2017-10-01

    Aims: We present a comprehensive temporal and spectral analysis of the long Swift GRB 120327A afterglow data to investigate possible causes of the observed early-time colour variations. Methods: We collected data from various instruments and telescopes in X-ray, ultraviolet, optical, and near-infrared bands, and determined the shapes of the afterglow early-time light curves. We studied the overall temporal behaviour and the spectral energy distributions from early to late times. Results: The ultraviolet, optical, and near-infrared light curves can be modelled with a single power-law component between 200 and 2 × 104 s after the burst event. The X-ray light curve shows a canonical steep-shallow-steep behaviour that is typical of long gamma-ray bursts. At early times a colour variation is observed in the ultraviolet/optical bands, while at very late times a hint of a re-brightening is visible. The observed early-time colour change can be explained as a variation in the intrinsic optical spectral index, rather than an evolution of the optical extinction. Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A29

  14. Fireballs and cannonballs confront the afterglow of GRB 991208

    CERN Document Server

    Dado, S; De Rújula, Alvaro; Dado, Shlomo; Dar, Arnon; Rujula, Alvaro De

    2003-01-01

    Galama et al. have recently reported their follow-up measurements of the radio afterglow (AG) of the Gamma Ray Burst (GRB) 991208, up to 293 days after burst, and their reanalysis of the broad-band AG, in the framework of standard fireball models. They advocate a serious revision of their prior analysis and conclusions, based on optical data and on their earlier observations during the first two weeks of the AG. We comment on their work and fill a lacuna: these authors have overlooked the possibility of comparing their new data to the available predictions of the cannonball (CB) model, based --like their incorrect predictions-- on the first round of data. The new data are in good agreement with these CB-model predictions. This is in spite of the fact that, in comparison to the fireball models, the CB model is much simpler, much more predictive, has many fewer parameters, practically no free choices... and it describes well --on a universal basis-- all the measured AGs of GRBs of known redshift.

  15. Gamma-ray bursts, a puzzle being resolved

    CERN Multimedia

    Piran, T

    1999-01-01

    Gamma Ray Bursts (GRBs), short and intense bursts of Gamma-Rays, have puzzled astrophysicists since their accidental discovery in the seventies. BATSE, launched in 1991, has established the cosmological origin of GRBs and has shown that they involve energies much higher than previously expected, corresponding to the most powerful explosions known in the Universe. The fireball model, which has been developed during the last ten years, explains most of the observed features of GRBs . According to this model, GRBs are produced in internal collisions of ejected matter flowing at ultra-relativistic energy. This ultra-relativistic motion reaches Lorentz factors of order 100 or more, higher than seen elsewhere in the Universe. The GRB afterglow was discovered in 1997. It was predicted by this model and it takes place when this relativistic flow is slowed down by the surrounding material. This model was confirmed recently with the discovery last January of the predicted prompt optical emission from GRB 990123. Unfort...

  16. The unusual X-ray emission of the short Swift GRB 090515: evidence for the formation of a magnetar?

    OpenAIRE

    Rowlinson, A.; O, P. T.; Tanvir, N. R.; Zhang, B.; Evans, P. A.; Lyons, N.; Levan, A. J.; Willingale, R.; Page, K. L.; Onal, O.; Burrows, D. N.; Beardmore, A. P.; Ukwatta, T. N.; Berger, Edo; Hjorth, J.

    2010-01-01

    The majority of short gamma-ray bursts (SGRBs) are thought to originate from the merger of compact binary systems collapsing directly to form a black hole. However, it has been proposed that both SGRBs and long gamma-ray bursts (LGRBs) may, on rare occasions, form an unstable millisecond pulsar (magnetar) prior to final collapse. GRB 090515, detected by the Swift satellite was extremely short, with a T_90 of 0.036 +/- 0.016 s, and had a very low fluence of 2 x 10^-8 erg cm^-2 and faint optica...

  17. Observing a Burst with Sunglasses

    Science.gov (United States)

    2003-11-01

    Unique Five-Week VLT Study of the Polarisation of a Gamma-Ray Burst Afterglow "Gamma-ray bursts (GRBs)" are certainly amongst the most dramatic events known in astrophysics. These short flashes of energetic gamma-rays, first detected in the late 1960's by military satellites, last from less than one second to several minutes. GRBs have been found to be situated at extremely large ("cosmological") distances. The energy released in a few seconds during such an event is larger than that of the Sun during its entire lifetime of more than 10,000 million years. The GRBs are indeed the most powerful events since the Big Bang known in the Universe, cf. ESO PR 08/99 and ESO PR 20/00. During the past years circumstantial evidence has mounted that GRBs signal the collapse of extremely massive stars, the so-called hypernovae. This was finally demonstrated some months ago when astronomers, using the FORS instrument on ESO's Very Large Telescope (VLT), documented in unprecedented detail the changes in the spectrum of the light source ("the optical afterglow") of the gamma-ray burst GRB 030329 (cf. ESO PR 16/03). A conclusive and direct link between cosmological gamma-ray bursts and explosions of very massive stars was provided on this occasion. Gamma-Ray Burst GRB 030329 was discovered on March 29, 2003 by NASA's High Energy Transient Explorer spacecraft. Follow-up observations with the UVES spectrograph at the 8.2-m VLT KUEYEN telescope at the Paranal Observatory (Chile) showed the burst to have a redshift of 0.1685 [1]. This corresponds to a distance of about 2,650 million light-years, making GRB 030329 the second-nearest long-duration GRB ever detected. The proximity of GRB 030329 resulted in very bright afterglow emission, permitting the most extensive follow-up observations of any afterglow to date. A team of astronomers [2] led by Jochen Greiner of the Max-Planck-Institut für extraterrestrische Physik (Germany) decided to make use of this unique opportunity to study the

  18. The Optically Unbiased GRB Host (TOUGH) Survey. VI. Radio Observations at z <~ 1 and Consistency with Typical Star-forming Galaxies

    Science.gov (United States)

    Michałowski, M. J.; Kamble, A.; Hjorth, J.; Malesani, D.; Reinfrank, R. F.; Bonavera, L.; Castro Cerón, J. M.; Ibar, E.; Dunlop, J. S.; Fynbo, J. P. U.; Garrett, M. A.; Jakobsson, P.; Kaplan, D. L.; Krühler, T.; Levan, A. J.; Massardi, M.; Pal, S.; Sollerman, J.; Tanvir, N. R.; van der Horst, A. J.; Watson, D.; Wiersema, K.

    2012-08-01

    The objective of this paper is to determine the level of obscured star formation activity and dust attenuation in a sample of gamma-ray burst (GRB) hosts, and to test the hypothesis that GRB hosts have properties consistent with those of the general star-forming galaxy populations. We present a radio continuum survey of all z 500 M ⊙ yr-1. For the undetected hosts the mean radio flux (~ 88% of the z <~ 1 GRB hosts have ultraviolet dust attenuation A UV < 6.7 mag (visual attenuation AV < 3 mag). Hence, we did not find evidence for large dust obscuration in a majority of GRB hosts. Finally, we found that the distributions of SFRs and A UV of GRB hosts are consistent with those of Lyman break galaxies, Hα emitters at similar redshifts, and of galaxies from cosmological simulations. The similarity of the GRB population with other star-forming galaxies is consistent with the hypothesis that GRBs, a least at z <~ 1, trace a large fraction of all star formation, and are therefore less biased indicators than once thought. Based on observations collected at the European Southern Observatory, Paranal, Chile (ESO Large Programme 177.A-0591), the Australian Telescope Compact Array, the Giant Metrewave Radio Telescope, the Very Large Array, and the Westerbork Synthesis Radio Telescope.

  19. GRB 091127: The Cooling Break Race on Magnetic Fuel

    Science.gov (United States)

    Filgas, R.; Greiner, J.; Schady, P.; Kruhler, T.; Updike, A. C.; Klose, S.; Nardini, M.; Kann, D. A.; Rossi, A.; Sudilovsky, V.; hide

    2011-01-01

    Using high-quality, broad-band afterglow data for GRB 091127, we investigate the validity of the synchrotron fireball model for gamma-ray bursts, and infer physical parameters of the ultra-relativistic outflow. Methods. We used multi-wavelength (NIR to X-ray) follow-up observations obtained with GROND simultaneously in the g' r' t' i' z' JH filters and the XRT onboard the Swift satellite in the 0.3 to 10 keY energy range. The resulting afterglow light curve is of excellent accuracy with relative photometric errors as low as 1 %, and the spectral energy distribution (SED) is well-sampled over 5 decades in energy. These data present one of the most comprehensive observing campaigns for a single GRB afterglow and allow us to test several proposed emission models and outflow characteristics in unprecedented detail. Results. Both the multi-color light curve and the broad-band SED of the afterglow of GRB 091127 show evidence of a cooling break moving from high to lower energies. The early light curve is well described by a broken power-law, where the initial decay in the optical/NlR wavelength range is considerably flatter than at X-rays. Detailed fitting of the time-resolved SED shows that the break is very smooth with a sharpness index of 2.2 +/- 0.2, and evolves towards lower frequencies as a power-law with index -1.23 +/- 0.06. These are the first accurate and contemporaneous measurements of both the sharpness of the spectral break and its time evolution. Conclusions. The measured evolution of the cooling break (V(sub c) varies as t(sup -1.2) is not consistent with the predictions of the standard model, wherein V(sub c) varies as t(sup -05) is expected. A possible explanation for the observed behavior is a time dependence of the microphysical parameters, in particular the fraction of the total energy in the magnetic field epsilon(sub Beta). This conclusion provides further evidence that the standard fireball model is too simplistic, and time-dependent micro

  20. Testing and Performance of UFFO Burst Alert & Trigger Telescope

    DEFF Research Database (Denmark)

    Rípa, Jakub; Bin Kim, Min; Lee, Jik

    2014-01-01

    The Ultra-Fast Flash Observatory pathfinder (UFFO-p) is a new space mission dedicated to detect Gamma-Ray Bursts (GRBs) and rapidly follow their afterglows in order to provide early optical/ultraviolet measurements. A GRB location is determined in a few seconds by the UFFO Burst Alert & Trigger...... telescope (UBAT) employing the coded mask imaging technique and the detector combination of Yttrium Oxyorthosilicate (YSO) scintillating crystals and multi-anode photomultiplier tubes. The results of the laboratory tests of UBAT’s functionality and performance are described in this article. The detector...

  1. GRO: Black hole models for gamma ray bursts

    Science.gov (United States)

    Shaham, Jacob

    1993-01-01

    This grant deals with the production of gamma-ray bursts (GRB's) close to horizons of black holes (BH's), mainly via accretion of small chunks of matter onto extreme Kerr BH's. In the past year, we laid the ground work for actual calculations close to Kerr BH's. Because of technical reasons, actual work has only started very recently. Following the detailed list of research subprojects as per our original proposal, we have performed research in the following areas: spectrum calculation; burst dynamics; tidal capture and primordial cloud collapse; halo density profile; and capture of other objects.

  2. Supernovae and Gamma-Ray Bursts

    Science.gov (United States)

    Livio, Mario; Panagia, Nino; Sahu, Kailash

    2001-07-01

    Participants; Preface; Gamma-ray burst-supernova relation B. Paczynski; Observations of gamma-ray bursts G. Fishman; Fireballs T. Piran; Gamma-ray mechanisms M. Rees; Prompt optical emission from gamma-ray bursts R. Kehoe, C. Akerlof, R. Balsano, S. Barthelmy, J. Bloch, P. Butterworth, D. Casperson, T. Cline, S. Fletcher, F. Frontera, G. Gisler, J. Heise, J. Hills, K. Hurley, B. Lee, S. Marshall, T. McKay, A. Pawl, L. Piro, B. Priedhorsky, J. Szymanski and J. Wren; X-ray afterglows of gamma-ray bursts L. Piro; The first year of optical-IR observations of SN1998bw I. Danziger, T. Augusteijn, J. Brewer, E. Cappellaro, V. Doublier, T. Galama, J. Gonzalez, O. Hainaut, B. Leibundgut, C. Lidman, P. Mazzali, K. Nomoto, F. Patat, J. Spyromilio, M. Turatto, J. Van Paradijs, P. Vreeswijk and J. Walsh; X-ray emission of Supernova 1998bw in the error box of GRB980425 E. Pian; Direct analysis of spectra of type Ic supernovae D. Branch; The interaction of supernovae and gamma-ray bursts with their surroundings R. Chevalier; Magnetars, soft gamma-ray repeaters and gamma-ray bursts A. Harding; Super-luminous supernova remnants Y. -H. Chu, C. -H. Chen and S. -P. Lai; The properties of hypernovae: SNe Ic 1998bw, 1997ef, and SN IIn 1997cy K. Nomoto, P. Mazzali, T. Nakamura, K. Iwanmoto, K. Maeda, T. Suzuki, M. Turatto, I. Danziger and F. Patat; Collapsars, Gamma-Ray Bursts, and Supernovae S. Woosley, A. MacFadyen and A. Heger; Pre-supernova evolution of massive stars N. Panagia and G. Bono; Radio supernovae and GRB 980425 K. Weiler, N. Panagia, R. Sramek, S. Van Dyk, M. Montes and C. Lacey; Models for Ia supernovae and evolutionary effects P. Hoflich and I. Dominguez; Deflagration to detonation A. Khokhlov; Universality in SN Iae and the Phillips relation D. Arnett; Abundances from supernovae F. -K. Thielemann, F. Brachwitz, C. Freiburghaus, S. Rosswog, K. Iwamoto, T. Nakamura, K. Nomoto, H. Umeda, K. Langanke, G. Martinez-Pinedo, D. Dean, W. Hix and M. Strayer; Sne, GRBs, and the

  3. GRB 060714: No Clear Dividing Line Between Prompt Emission and X-Ray Flares

    Energy Technology Data Exchange (ETDEWEB)

    Krimm, Hans A.; /NASA, Goddard /Universities Space Research Assoc.; Granot, J.; /KIPAC, Menlo Park; Marshal, F.; /NASA, Goddard; Perri, M.; /ASDC, Frascati; Barthelmy, S.D.; /NASA, Goddard; Burrows, D.N.; /Penn State U., Astron. Astrophys.; Gehrels, N.; /NASA, Goddard; Meszaros, P.; Morris, D.; /Penn State U., Astron. Astrophys.

    2007-02-26

    The long gamma-ray burst GRB 060714 was observed to exhibit a series of five X-ray flares beginning {approx} 70 s after the burst trigger T{sub 0} and continuing until {approx} T{sub 0} + 200 s. The first two flares were detected by the Burst Alert Telescope (BAT) on the Swift satellite, before Swift had slewed to the burst location, while the last three flares were strongly detected by the X-Ray Telescope (XRT) but only weakly detected by the BAT. This burst provides an unusual opportunity to track a complete sequence of flares over a wide energy range. The flares were very similar in their light curve morphology, showing power-law rise and fall components, and in most cases significant sub-structure. The flares also showed strong evolution with time, both spectrally and temporally. The small time scale and large amplitude variability observed are incompatible with an external shock origin for the flares, and support instead late time sporadic activity either of the central source or of localized dissipation events within the outflow. We show that the flares in GRB 060714 cannot be the result of internal shocks in which the contrast in the Lorentz factor of the colliding shells is very small, and that this mechanism faces serious difficulties in most Swift GRBs. The morphological similarity of the flares and the prompt emission and the gradual and continual evolution of the flares with time makes it difficult and arbitrary to draw a dividing line between the prompt emission and the flares.

  4. Luminosity--time and luminosity--luminosity correlations for GRB prompt and afterglow plateau emissions

    OpenAIRE

    Dainotti, M. G.; Petrosian, V.; Willingale, R.; P. O'Brien(Univ. Leicester); Ostrowski, M.; Nagataki, S.

    2015-01-01

    We present an analysis of 123 Gamma-ray bursts (GRBs) with known redshifts possessing an afterglow plateau phase. We reveal that $L_a-T^{*}_a$ correlation between the X-ray luminosity $L_a$ at the end of the plateau phase and the plateau duration, $T^*_a$, in the GRB rest frame has a power law slope different, within more than 2 $\\sigma$, from the slope of the prompt $L_{f}-T^{*}_{f}$ correlation between the isotropic pulse peak luminosity, $L_{f}$, and the pulse duration, $T^{*}_{f}$, from t...

  5. Observations of GRBs: Current Research and Planning for a Next Generation GRB Observatory

    Science.gov (United States)

    Fishman, Gerald J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The basic observed properties of GRBs in the hard x-ray and gamma-ray region will be reviewed, primarily using analyses from BATSE data. Summaries of new BATSE observations that are presented in this symposium and other work in progress are given. Finally, a framework will be described-for the planning of a Next Generation Burst Observatory. This Observatory, using Swift as a pathfinder mission, would study early star formation and early galaxy formation at very high redshifts through observations of thousands of GRBs, their afterglows and environments. It is suggested that the international GRB community should begin some initial studies for such an observatory.

  6. ESA's Integral detects closest cosmic gamma-ray burst

    Science.gov (United States)

    2004-08-01

    5 August 2004 A gamma-ray burst detected by ESA's Integral gamma-ray observatory on 3 December 2003 has been thoroughly studied for months by an armada of space and ground-based observatories. Astronomers have now concluded that this event, called GRB 031203, is the closest cosmic gamma-ray burst on record, but also the faintest. This also suggests that an entire population of sub-energetic gamma-ray bursts has so far gone unnoticed... Gamma ray burst model hi-res Size hi-res: 22 KB Credits: CXC/M. Weiss Artist impression of a low-energy gamma-ray burst This illustration describes a model for a gamma-ray burst, like the one detected by Integral on 3 December 2003 (GRB 031203). A jet of high-energy particles from a rapidly rotating black hole interacts with surrounding matter. Observations with Integral on 3 December 2003 and data on its afterglow, collected afterwards with XMM-Newton, Chandra and the Very Large Array telescope, show that GRB 031203 radiated only a fraction of the energy of normal gamma-ray bursts. Like supernovae, gamma-ray bursts are thought to be produced by the collapse of the core of a massive star. However, while the process leading to supernovae is relatively well understood, astronomers still do not know what happens when a core collapses to form a black hole. The discovery of 'under-energetic' gamma-ray bursts, like GRB 031203, should provide valuable clues as to links between supernovae, black holes and gamma-ray bursts. Lo-res JPG (22 Kb) Hi-res TIFF (5800 Kb) Cosmic gamma-ray bursts (GRBs) are flashes of gamma rays that can last from less than a second to a few minutes and occur at random positions in the sky. A large fraction of them is thought to result when a black hole is created from a dying star in a distant galaxy. Astronomers believe that a hot disc surrounding the black hole, made of gas and matter falling onto it, somehow emits an energetic beam parallel to the axis of rotation. According to the simplest picture, all GRBs

  7. A New Population of Ultra-long Duration Gamma-Ray Bursts

    NARCIS (Netherlands)

    Levan, A.J.; Tanvir, N.R.; Starling, R.L.C.; Wiersema, K.; Page, K.L.; Perley, D.A.; Schulze, S.; Wynn, G.A.; Chornock, R.; Hjorth, J.; Cenko, S.B.; Fruchter, A.S.; O'Brien, P.T.; Brown, G.C.; Tunnicliffe, R.L.; Malesani, D.; Jakobsson, P.; Watson, D.; Berger, E.; Bersier, D.; Cobb, B.E.; Covino, S.; Cucchiara, A.; de Ugarte Postigo, A.; Fox, D.B.; Gal-Yam, A.; Goldoni, P.; Gorosabel, J.; Kaper, L.; Krühler, T.; Karjalainen, R.; Osborne, J.P.; Pian, E.; Sánchez-Ramírez, R.; Schmidt, B.; Skillen, I.; Tagliaferri, G.; Thöne, C.; Vaduvescu, O.; Wijers, R.A.M.J.; Zauderer, B.A.

    2014-01-01

    We present comprehensive multiwavelength observations of three gamma-ray bursts (GRBs) with durations of several thousand seconds. We demonstrate that these events are extragalactic transients; in particular, we resolve the long-standing conundrum of the distance of GRB 101225A (the "Christmas-day

  8. Gamma-ray bursts from stellar remnants - Probing the universe at high redshift

    NARCIS (Netherlands)

    Wijers, R.A.M.J.; Bloom, J.S.; Bagla, J.S.; Natarajan, P.

    1998-01-01

    A gamma-ray burst (GRB) releases an amount of energy similar to that of a supernova explosion, which combined with its rapid variability suggests an origin related to neutron stars or black holes. Since these compact stellar remnants form from the most massive stars not long after their birth, GRBs

  9. Statistical Properties of Gamma-Ray Burst Host Galaxies Jie-Min ...

    Indian Academy of Sciences (India)

    Abstract. A statistical analysis of gamma-ray burst host galaxies is pre- sented and a clear metallicity-stellar mass relation is found in our sample. A trend that a more massive host galaxy tends to have a higher star- formation rate is also found. No correlation is found between AV and NH. GRB host galaxies at a higher ...

  10. Forming a constant density medium close to long gamma-ray burst

    NARCIS (Netherlands)

    Marle, A.J.; Langer, N.; Achterberg, A; Garia-Segura, G.

    2006-01-01

    Aims. The progenitor stars of long Gamma-Ray Bursts (GRBs) are thought to be Wolf-Rayet stars, which generate a massive and energetic wind. Nevertheless, about 25 percent of all GRB afterglows light curves indicate a constant density medium close to the exploding star. We explore various ways to

  11. EDGE: explorer of diffuse emission and gamma-ray burst explosions

    NARCIS (Netherlands)

    den Herder, J.W.; Piro, L.; Ohashi, T.; Amati, L.; Atteia, J.; Barthelmy, S.D.; Barbera, M.; Barret, D.; Basso, S.; de Boer, M.; Borgani, S.; Boyarskiy, O.; Branchini, E.; Branduardi-Raymont, G.; Briggs, M.; Brunetti, G.; Budtz-Jorgensenf, C.; Burrows, D.N.; Campana, S.; Caroli, E.; Chincarini, G.; Christensen, F.; Cocchi, M.; Comastri, A.; Corsi, A.; Cotroneo, V.; Conconi, P.; Colasanti, L.; Cusamano, G.; Rosa, A.; Del Santo, M.; Ettori, S.; Ezoe, Y.; Ferrari, L.; Feroci, M.; Finger, M.; Fishman, G.; Fujimoto, R.; Galeazzi, M.; Galli, A.; Gatti, F.; Gehrels, N.; Gendre, B.; Ghirlanda, G.; Ghisellini, G.; Giommi, P.; Girardi, M.; Guzzo, L.; Haardt, F.; Hepburn, I.; Hermsen, W.; Hoevers, H.; Holland, A.; in 't Zand, J.J.M.; Ishisaki, Y.; Kawahara, H.; Kawai, N.; Kaastra, J.; Kippen, M.; de Korte, P.A.J.; Kouveliotou, C.; Kusenko, A.; Labanti, C.; Lieu, R.; Macculi, C.; Makishima, K.; Matt, G.; Mazotta, P.; McCammon, D.; Méndez, M.; Mineo, T.; Mitchell, S.; Mitsuda, K.; Molendi, S.; Moscardini, L.; Mushotzky, R.; Natalucci, L.; Nicastro, F.; O'Brien, P.; Osborne, J.; Paerels, F.; Page, M.; Paltani, S.; Pareschi, G.; Perinati, E.; Perola, C.; Ponman, T.; Rasmussen, A.; Roncarelli, M.; Rosati, P.; Ruchayskiy, O.; Quadrini, E.; Sakurai, I.; Salvaterra, R.; Sasaki, S.; Wijers, R.; et al., [Unknown

    2007-01-01

    How structures of various scales formed and evolved from the early Universe up to present time is a fundamental question of astrophysics. EDGE will trace the cosmic history of the baryons from the early generations of massive stars by Gamma-Ray Burst (GRB) explosions, through the period of galaxy

  12. SROSS C-2 Detections of Gamma Ray Bursts and the SGR 1627-41

    Indian Academy of Sciences (India)

    The GRB monitor (GRBM) on board the Indian SROSS C-2 satellite has detected 53 classical gamma ray bursts since its launch in May, 1994 till its re-entry in July, 2001. For a subset of 26 events, locations were obtained from simultaneous observations by other gamma-ray detectors in space. The sky distribution of these ...

  13. Ultra-Fast Flash Observatory (uffo) for Observation of Early Photons from Gamma Ray Bursts

    DEFF Research Database (Denmark)

    Park, I. H.; Ahmad, S.; Barrillon, P.

    2013-01-01

    of the burst mechanism, shock breakouts in core-collapse supernovae, tidal disruptions around black holes, test Lorentz violation, be the electromagnetic counterpart to neutrino and gravitational wave signatures of the violent universe, and verify the prospect of GRB as a new standard candle potentially...

  14. THERMAL EMISSIONS SPANNING THE PROMPT AND THE AFTERGLOW PHASES OF THE ULTRA-LONG GRB 130925A

    Energy Technology Data Exchange (ETDEWEB)

    Basak, Rupal [Nicolaus Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warsaw (Poland); Rao, A. R., E-mail: rupal@camk.edu.pl, E-mail: arrao@tifr.res.in [Tata Institute of Fundamental Research, Mumbai-400005, India. (India)

    2015-07-01

    GRB 130925A is an ultra-long gamma-ray burst (GRB), and it shows clear evidence for thermal emission in the soft X-ray data of the Swift/X-ray Telescope (XRT; ∼0.5 keV), lasting until the X-ray afterglow phase. Due to the long duration of the GRB, the burst could be studied in hard X-rays with high-resolution focusing detectors (NuSTAR). The blackbody temperature, as measured by the Swift/XRT, shows a decreasing trend until the late phase (Piro et al.) whereas the high-energy data reveal a significant blackbody component during the late epochs at an order of magnitude higher temperature (∼5 keV) compared to contemporaneous low energy data (Bellm et al.). We resolve this apparent contradiction by demonstrating that a model with two black bodies and a power law (2BBPL) is consistent with the data right from the late prompt emission to the afterglow phase. Both blackbodies show a similar cooling behavior up to late times. We invoke a structured jet, having a fast spine and a slower sheath layer, to identify the location of these blackbodies. Independent of the physical interpretation, we propose that the 2BBPL model is a generic feature of the prompt emission of all long GRBs, and the thermal emission found in the afterglow phase of different GRBs reflects the lingering thermal component of the prompt emission with different timescales. We strengthen this proposal by pointing out a close similarity between the spectral evolutions of this GRB and GRB 090618, a source with significant wide band data during the early afterglow phase.

  15. Discovery and Redshift of an Optical Afterglow in 71 deg2: iPTF13bxl and GRB 130702A

    Science.gov (United States)

    Singer, Leo P.; Cenko, S. Bradley; Kasliwal, Mansi M.; Perley, Daniel A.; Ofek, Eran O.; Brown, Duncan A.; Nugent, Peter E.; Kulkarni, S. R.; Corsi, Alessandra; Frail, Dale A.; Bellm, Eric; Mulchaey, John; Arcavi, Iair; Barlow, Tom; Bloom, Joshua S.; Cao, Yi; Gehrels, Neil; Horesh, Assaf; Masci, Frank J.; McEnery, Julie; Rau, Arne; Surace, Jason A.; Yaron, Ofer

    2013-10-01

    We report the discovery of the optical afterglow of the γ-ray burst (GRB) 130702A, identified upon searching 71 deg2 surrounding the Fermi Gamma-ray Burst Monitor (GBM) localization. Discovered and characterized by the intermediate Palomar Transient Factory, iPTF13bxl is the first afterglow discovered solely based on a GBM localization. Real-time image subtraction, machine learning, human vetting, and rapid response multi-wavelength follow-up enabled us to quickly narrow a list of 27,004 optical transient candidates to a single afterglow-like source. Detection of a new, fading X-ray source by Swift and a radio counterpart by CARMA and the Very Large Array confirmed the association between iPTF13bxl and GRB 130702A. Spectroscopy with the Magellan and Palomar 200 inch telescopes showed the afterglow to be at a redshift of z = 0.145, placing GRB 130702A among the lowest redshift GRBs detected to date. The prompt γ-ray energy release and afterglow luminosity are intermediate between typical cosmological GRBs and nearby sub-luminous events such as GRB 980425 and GRB 060218. The bright afterglow and emerging supernova offer an opportunity for extensive panchromatic follow-up. Our discovery of iPTF13bxl demonstrates the first observational proof-of-principle for ~10 Fermi-iPTF localizations annually. Furthermore, it represents an important step toward overcoming the challenges inherent in uncovering faint optical counterparts to comparably localized gravitational wave events in the Advanced LIGO and Virgo era.

  16. Synchrotron cooling in energetic gamma-ray bursts observed by the Fermi Gamma-Ray Burst Monitor

    OpenAIRE

    Yu, Hoi Fung; Greiner, Jochen; van Eerten, Hendrik; Burgess, J. Michael; P. Narayana Bhat; Briggs, Michael S.; Connaughton, Valerie; Diehl, Roland; Goldstein, Adam; Gruber, David; Jenke, Peter A.; von Kienlin, Andreas; Kouveliotou, Chryssa; Paciesas, William S.; Pelassa, Veronique

    2015-01-01

    Context. We study the time-resolved spectral properties of energetic gamma-ray bursts (GRBs) with good high-energy photon statistics observed by the Gamma-Ray Burst Monitor (GBM) onboard the Fermi Gamma-Ray Space Telescope. Aims. We aim to constrain in detail the spectral properties of GRB prompt emission on a time-resolved basis and to discuss the theoretical implications of the fitting results in the context of various prompt emission models. Methods. Our sample comprises eight GRBs observe...

  17. A complete sample of long bright Swift gamma ray bursts.

    Science.gov (United States)

    Tagliaferri, Gianpiero; Salvaterra, Ruben; Campana, Sergio; Covino, Stefano; D'Avanzo, Paolo; Fugazza, Dino; Ghirlanda, Giancarlo; Ghisellini, Gabriele; Melandri, Andrea; Nava, Lara; Sbarufatti, Boris; Vergani, Susanna

    2013-06-13

    Complete samples are the basis of any population study. To this end, we selected a complete subsample of Swift long bright gamma ray bursts (GRBs). The sample, made up of 58 bursts, was selected by considering bursts with favourable observing conditions for ground-based follow-up observations and with the 15-150 keV 1 s peak flux above a flux threshold of 2.6 photons cm(-2) s(-1). This sample has a redshift completeness level higher than 90 per cent. Using this complete sample, we investigate the properties of long GRBs and their evolution with cosmic time, focusing in particular on the GRB luminosity function, the prompt emission spectral-energy correlations and the nature of dark bursts.

  18. Transition from fireball to Poynting-flux-dominated outflow in the three-episode GRB 160625B

    Science.gov (United States)

    Zhang, B.-B.; Zhang, B.; Castro-Tirado, A. J.; Dai, Z. G.; Tam, P.-H. T.; Wang, X.-Y.; Hu, Y.-D.; Karpov, S.; Pozanenko, A.; Zhang, F.-W.; Mazaeva, E.; Minaev, P.; Volnova, A.; Oates, S.; Gao, H.; Wu, X.-F.; Shao, L.; Tang, Q.-W.; Beskin, G.; Biryukov, A.; Bondar, S.; Ivanov, E.; Katkova, E.; Orekhova, N.; Perkov, A.; Sasyuk, V.; Mankiewicz, L.; Żarnecki, A. F.; Cwiek, A.; Opiela, R.; ZadroŻny, A.; Aptekar, R.; Frederiks, D.; Svinkin, D.; Kusakin, A.; Inasaridze, R.; Burhonov, O.; Rumyantsev, V.; Klunko, E.; Moskvitin, A.; Fatkhullin, T.; Sokolov, V. V.; Valeev, A. F.; Jeong, S.; Park, I. H.; Caballero-García, M. D.; Cunniffe, R.; Tello, J. C.; Ferrero, P.; Pandey, S. B.; Jelínek, M.; Peng, F. K.; Sánchez-Ramrez, R.; Castellón, A.

    2018-01-01

    The ejecta composition is an open question in gamma-ray burst (GRB) physics1. Some GRBs possess a quasi-thermal spectral component in the time-resolved spectral analysis2, suggesting a hot fireball origin. Others show a featureless non-thermal spectrum known as the Band function3-5, consistent with a synchrotron radiation origin5,6 and suggesting that the jet is Poynting-flux dominated at the central engine and probably in the emission region as well7,8. There are also bursts showing a sub-dominant thermal component and a dominant synchrotron component9, suggesting a probable hybrid jet composition10. Here, we report an extraordinarily bright GRB 160625B, simultaneously observed in gamma-ray and optical wavelengths, whose prompt emission consists of three isolated episodes separated by long quiescent intervals, with the durations of each sub-burst being approximately 0.8 s, 35 s and 212 s, respectively. Its high brightness (with isotropic peak luminosity Lp,iso ≈ 4 × 1053 erg s-1) allows us to conduct detailed time-resolved spectral analysis in each episode, from precursor to main burst and to extended emission. The spectral properties of the first two sub-bursts are distinctly different, allowing us to observe the transition from thermal to non-thermal radiation between well-separated emission episodes within a single GRB. Such a transition is a clear indication of the change of jet composition from a fireball to a Poynting-flux-dominated jet.

  19. Extremely Bright GRB 160625B with Multiple Emission Episodes: Evidence for Long-term Ejecta Evolution

    Science.gov (United States)

    Lü, Hou-Jun; Lü, Jing; Zhong, Shu-Qing; Huang, Xiao-Li; Zhang, Hai-Ming; Lan, Lin; Xie, Wei; Lu, Rui-Jing; Liang, En-Wei

    2017-11-01

    GRB 160625B is an extremely bright GRB with three distinct emission episodes. By analyzing its data observed with the Gamma-Ray Burst Monitor (GBM) and Large Area Telescope (LAT) on board the Fermi mission, we find that a multicolor blackbody (mBB) model can be used to fit very well the spectra of the initial short episode (Episode I) within the hypothesis of photosphere emission of a fireball model. The time-resolved spectra of its main episode (Episode II), which was detected with both GBM and LAT after a long quiescent stage (∼180 s) following the initial episode, can be fitted with a model comprising an mBB component plus a cutoff power-law (CPL) component. This GRB was detected again in the GBM and LAT bands with a long extended emission (Episode III) after a quiescent period of ∼300 s. The spectrum of Episode III is adequately fitted with CPL plus single power-law models, and no mBB component is required. These features may imply that the emission of the three episodes are dominated by distinct physics processes, i.e., Episode I is possible from the cocoon emission surrounding the relativistic jet, Episode II may be from photosphere emission and internal shock of the relativistic jet, and Episode III is contributed by internal and external shocks of the relativistic jet. On the other hand, both X-ray and optical afterglows are consistent with the standard external shocks model.

  20. Three intervening galaxy absorbers towards GRB 060418

    DEFF Research Database (Denmark)

    Ellison, S. L.; Vreeswijk, P.; Ledoux, C.

    2006-01-01

    Dust, extinction: galaxies: ISM: quasars: absorption lines: gamma-rays: bursts Udgivelsesdato: 10 August......Dust, extinction: galaxies: ISM: quasars: absorption lines: gamma-rays: bursts Udgivelsesdato: 10 August...

  1. MASTER and unsolved GRB observational and theoretical problems

    Science.gov (United States)

    Lipunov, V. M.

    The observations of GRBs over many years are discussed. The main key steps in GRB investigations are the following: the first simultaneous observations of GRB720117 (Cosmos-461 and Vela); the first bimodal distribution's discussion in 1981 by Mazets, Golenetskii; the first GRB with optical afterglow investigations GRB970228 (BATSE); the first prompt observations of GRB by Akerlof (GRB990123, ROTSE-I response to BATSE alert) are demonstrated. The evolution of the coalescence rate of double neutron stars and neutron star-black hole binaries were first computed by Lipunov et al. in 1995. We also discuss scenarios for long and short GRBs. And there are some results of MASTER Global Robotic Net GRB observations.

  2. Observações das explosões cósmicas de raios gama GRB021004 e GRB021211 com o satélite HETE

    Science.gov (United States)

    Braga, J.; Ricker, G.; Hurley, K.; Lamb, D.; Grew, G.; et al.

    2003-08-01

    O High Energy Transient Explorer (HETE) é o primeiro satélite inteiramente dedicado ao estudo das explosões cósmicas de raios gama (ECRGs). Lançado em 9 de outubro de 2000, o HETE possui instrumentação capaz de observar as ECRGs desde o UV até raios gama e localizá-las com precisão de ~ 1-10 minutos de arco. As localizações das ECRGs detectadas são disseminadas rapidamente (em alguns segundos) pela Internet através de uma rede de estações de recepção ao longo do equador. A participação brasileira nesse projeto se dá através da montagem e operação de uma estação de recepção em Natal, RN, e da participação na equipe científica da missão. Neste trabalho são apresentados resultados da observação pelo HETE de duas ECRGs: GRB 021004 e GRB 021211. A GRB021004 foi detectada em raios gama pelo HETE em 4 de outubro de 2002 e localizada em raios-X em apenas 48 s, quando a emissão de raios gama ainda estava se processando. A explosão, relativamente brilhante e longa, durou aproximadamente 100 s. Um transiente óptico de magnitude 15 foi detectado no local da explosão nove minutos após o evento, e observações realizadas após 7 horas determinaram um desvio para o vermelho de absorção de 1,6. O GRB021004 foi o burst mais bem observado até o momento e suas observações em vários comprimentos de onda têm sido fundamentais para o aprimoramento dos modelos de ECRGs. O GRB21211, um burst brilhante e rico em raios-X, foi detectado em 11 de dezembro de 2002 e localizado em raios-X em 22 s após o início do evento. A duração do burst foi de 2,3 s em altas energias (85 a 400 keV) e de 8,5 s em baixas energias (2 a 10 keV). Caso essa explosão não tivesse sido rapidamente localizada pelo HETE, ela teria sido classificada como "opticamente escura", já que o transiente óptico decaiu rapidamente de R < 14 a R»19 dentro dos primeiros 20 minutos e já estava mais fraco do que R»23 depois de 24 horas da ocorrência do burst. Ser

  3. Optical and Near-Infrared Observations of SN 2013DX Associated with GRB 130702A

    Science.gov (United States)

    Toy, V. L.; Cenko, S. B.; Silverman, J. M.; Butler, N. R.; Cucchiara, A.; Watson, A. M.; Bersier, D.; Perley, D. A.; Margutti, R.; Bellm, E.; hide

    2016-01-01

    We present optical and near-infrared (NIR) light curves and optical spectra of SN 2013dx, associated with the nearby (redshift 0.145) gamma-ray burst GRB 130702A. The prompt isotropic gamma-ray energy released from GRB 130702A is measured to be E(sub gamma, iso) = 6.4(+1.3/-1.0) x 10(exp 50) erg (1 keV to 10 MeV in the rest frame), placing it intermediate between low-luminosity GRBs like GRB 980425/SN 1998bw and the broader cosmological population. We compare the observed g'r'i'z' light curves of SN 2013dx to a SN 1998bw template, finding that SN 2013dx evolves approx. 20% faster (steeper rise time), with a comparable peak luminosity. Spectroscopically, SN 2013dx resembles other broad-lined SNe Ic, both associated with (SN 2006aj and SN 1998bw) and lacking (SN 1997ef, SN 2007I, and SN 2010ah) gamma-ray emission, with photospheric velocities around peak of approx. 21,000 km/s. We construct a quasi-bolometric (g'r'z'yJ) light curve for SN 2013dx, only the fifth GRB-associated SN with extensive NIR coverage and the third with a bolometric light curve extending beyond (Delta)t > 40 days. Together with the measured photospheric velocity, we derive basic explosion parameters using simple analytic models. We infer a Ni-56 mass of M(sub Ni) = 0.37+/- 0.01 Stellar Mass, an ejecta mass of M(sub ej) = 3.1+/- 0.1 Stellar Mass, and a kinetic energy of E(sub K) = (8.2+/- 0.43) x 10(exp 51) erg (statistical uncertainties only), consistent with previous GRB-associated supernovae. When considering the ensemble population of GRB-associated supernovae, we find no correlation between the mass of synthesized Ni-56 and high-energy properties, despite clear predictions from numerical simulations that M(sub Ni) should correlate with the degree of asymmetry. On the other hand, M(sub Ni) clearly correlates with the kinetic energy of the supernova ejecta across a wide range of core-collapse events.

  4. Wide-Field Gamma-Spectrometer BDRG: GRB Monitor On-Board the Lomonosov Mission

    Science.gov (United States)

    Svertilov, S. I.; Panasyuk, M. I.; Bogomolov, V. V.; Amelushkin, A. M.; Barinova, V. O.; Galkin, V. I.; Iyudin, A. F.; Kuznetsova, E. A.; Prokhorov, A. V.; Petrov, V. L.; Rozhkov, G. V.; Yashin, I. V.; Gorbovskoy, E. S.; Lipunov, V. M.; Park, I. H.; Jeong, S.; Kim, M. B.

    2018-02-01

    The study of GRB prompt emissions (PE) is one of the main goals of the Lomonosov space mission. The payloads of the GRB monitor (BDRG) with the wide-field optical cameras (SHOK) and the ultra-fast flash observatory (UFFO) onboard the Lomonosov satellite are intended for the observation of GRBs, and in particular, their prompt emissions. The BDRG gamma-ray spectrometer is designed to obtain the temporal and spectral information of GRBs in the energy range of 10-3000 keV as well as to provide GRB triggers on several time scales (10 ms, 1 s and 20 s) for ground and space telescopes, including the UFFO and SHOK. The BDRG instrument consists of three identical detector boxes with axes shifted by 90° from each other. This configuration allows us to localize a GRB source in the sky with an accuracy of ˜ 2°. Each BDRG box contains a phoswich NaI(Tl)/CsI(Tl) scintillator detector. A thick CsI(Tl) crystal in size of \\varnothing 130 × 17 mm is placed underneath the NaI(Tl) as an active shield in the soft energy range and as the main detector in the hard energy range. The ratio of the CsI(Tl) to NaI(Tl) event rates at varying energies can be employed as an independent metric to distinguish legitimate GRB signals from false positives originating from electrons in near-Earth vicinities. The data from three detectors are collected in a BA BDRG information unit, which generates a GRB trigger and a set of data frames in output format. The scientific data output is ˜ 500 Mb per day, including ˜ 180 Mb of continuous data for events with durations in excess of 100 ms for 16 channels in each detector, detailed energy spectra, and sets of frames with ˜ 5 Mb of detailed information for each burst-like event. A number of pre-flight tests including those for the trigger algorithm and calibration were carried out to confirm the reliability of the BDRG for operation in space.

  5. A Unified Model for GRB Prompt Emission from Optical to Gamma-Rays: Exploring GRBs as Standard Candles

    Science.gov (United States)

    Guiriec, Sylvain

    2018-01-01

    The Band function traditionally used for Gamma Ray Bursts (GRB) often fails to fit their prompt emission spectra. Our new model composed of three separate components provides an excellent description of the time-resolved prompt emission: a thermal-like and two non-thermal components. For the first time, analysis of GRBs with correlated optical and gamma-ray prompt emission show that our new model describes very accurately the whole broadband spectrum from the optical regime to higher energy gamma rays. In addition, this new model enables anew luminosity/hardness relation intrinsic to one of the non-thermal components showing that GRBs may be standard candles. If statistically confirmed, this relation will be used to (i) constrain the mechanisms powering GRB jets, (ii) estimate GRB distances, (iii) probe the early Universe, and (iv) constrain the cosmological parameters. I will present this new unified model using analysis of GRBs detected with various observatories and instruments such as Fermi, CGRO/BATSE and the combination of the three instruments on board Swift and Suzaku/WAM. I will discuss here the striking similarities of GRB spectral shapes, whose components inform on the nature of the prompt emission, as well as the possible universality of the proposed luminosity/hardness relation in the context of our new model.

  6. ASTROSAT CZT IMAGER OBSERVATIONS OF GRB 151006A: TIMING, SPECTROSCOPY, AND POLARIZATION STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Rao, A. R.; Chand, Vikas; Hingar, M. K.; Iyyani, S.; Khanna, Rakesh; Kutty, A. P. K.; Malkar, J. P.; Paul, D. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai (India); Bhalerao, V. B.; Bhattacharya, D.; Dewangan, G. C.; Pawar, Pramod; Vibhute, A. M. [Inter University Center for Astronomy and Astrophysics, Pune (India); Chattopadhyay, T.; Mithun, N. P. S.; Vadawale, S. V.; Vagshette, N. [Physical Research Laboratory, Ahmedabad (India); Basak, R. [Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw (Poland); Pradeep, P.; Samuel, Essy, E-mail: arrao@tifr.res.in [Vikram Sarabhai Space Centre, Thiruvananthapuram (India); and others

    2016-12-10

    AstroSat is a multi-wavelength satellite launched on 2015 September 28. The CZT Imager of AstroSat on its very first day of operation detected a long duration gamma-ray burst (GRB), namely GRB 151006A. Using the off-axis imaging and spectral response of the instrument, we demonstrate that the CZT Imager can localize this GRB correctly to about a few degrees, and it can provide, in conjunction with Swift , spectral parameters similar to those obtained from Fermi /GBM. Hence, the CZT Imager would be a useful addition to the currently operating GRB instruments ( Swift and Fermi ). Specifically, we argue that the CZT Imager will be most useful for the short hard GRBs by providing localization for those detected by Fermi and spectral information for those detected only by Swift . We also provide preliminary results on a new exciting capability of this instrument: the CZT Imager is able to identify Compton scattered events thereby providing polarization information for bright GRBs. GRB 151006A, in spite of being relatively faint, shows hints of a polarization signal at 100–300 keV (though at a low significance level). We point out that the CZT Imager should provide significant time resolved polarization measurements for GRBs that have fluence three times higher than that of GRB 151006A. We estimate that the number of such bright GRBs detectable by the CZT Imager is five to six per year. The CZT Imager can also act as a good hard X-ray monitoring device for possible electromagnetic counterparts of gravitational wave events.

  7. Search for high-energy muon neutrinos from the"naked-eye" GRB080319B with the IceCube neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    IceCube Collaboration; R. Abbasi

    2009-02-01

    We report on a search with the IceCube detector for high-energy muon neutrinos from GRB080319B, one of the brightest gamma-ray bursts (GRBs) ever observed. The fireball model predicts that a mean of 0.12 events should be detected by IceCube for a bulk Lorentz boost of the jet of 300. In both the direct on-time window of 66 s and an extended window of about 300 s around the GRB, there was no excess found above the background. The 90% C.L. upper limit on the number of track-like events from the GRB is 2.7, corresponding to a muon neutrino fluence limit of 9.0 x 10{sup -3} erg cm{sup -2} in the energy range between 145 TeV and 2.1 PeV, which contains 90% of the expected events.

  8. A strong test for the forward shock model in GRBs: the 90 Ms follow up of the X-ray afterglow of GRB 130427A.

    Science.gov (United States)

    De Pasquale, M.; Page, M.; Kann, D.; Oates, S.; Schulze, S.; Zhang, B.; Cano, Z.; Malesani, D.; Troja, E.; Piro, L.

    2017-10-01

    GRB 130427A was the brightest gamma-ray burst detected in 30 years. With an isotropic energy output of 8.5×10^{53} erg and redshift of 0.34, it combined a very high energy release with a relative proximity to Earth in an unprecedented fashion. Sensitive X-ray observatories such as XMM-Newton and Chandra have detected the afterglow of this event for a record-breaking baseline of 90 million seconds. The light curve shows a simple power-law decay over more than three decades in time. In this presentation, we explore the consequences of this result for the scenarios proposed to interpret GRB 130427A, the implication of this outcome in the context of the forward shock model (beaming angle, energetics, surrounding medium), and the scientific prospects of extending GRB afterglow observations for several hundreds of Ms with Athena.

  9. The Observer’s Guide to the Gamma-Ray Burst Supernova Connection

    Directory of Open Access Journals (Sweden)

    Zach Cano

    2017-01-01

    Full Text Available We present a detailed report of the connection between long-duration gamma-ray bursts (GRBs and their accompanying supernovae (SNe. The discussion presented here places emphasis on how observations, and the modelling of observations, have constrained what we know about GRB-SNe. We discuss their photometric and spectroscopic properties, their role as cosmological probes, including their measured luminosity–decline relationships, and how they can be used to measure the Hubble constant. We present a statistical summary of their bolometric properties and use this to determine the properties of the “average” GRB-SN. We discuss their geometry and consider the various physical processes that are thought to power the luminosity of GRB-SNe and whether differences exist between GRB-SNe and the SNe associated with ultra-long-duration GRBs. We discuss how observations of their environments further constrain the physical properties of their progenitor stars and give a brief overview of the current theoretical paradigms of their central engines. We then present an overview of the radioactively powered transients that have been photometrically associated with short-duration GRBs, and we conclude by discussing what additional research is needed to further our understanding of GRB-SNe, in particular the role of binary-formation channels and the connection of GRB-SNe with superluminous SNe.

  10. ESTIMATING LONG GRB JET OPENING ANGLES AND REST-FRAME ENERGETICS

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, Adam [Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Connaughton, Valerie [Science and Technology Institute, Universities Space Research Association, Huntsville, AL 35805 (United States); Briggs, Michael S.; Burns, Eric, E-mail: adam.m.goldstein@nasa.gov [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States)

    2016-02-10

    We present a method to estimate the jet opening angles of long duration gamma-ray bursts (GRBs) using the prompt gamma-ray energetics and an inversion of the Ghirlanda relation, which is a correlation between the time-integrated peak energy of the GRB prompt spectrum and the collimation-corrected energy in gamma-rays. The derived jet opening angles using this method and detailed assumptions match well with the corresponding inferred jet opening angles obtained when a break in the afterglow is observed. Furthermore, using a model of the predicted long GRB redshift probability distribution observable by the Fermi Gamma-ray Burst Monitor (GBM), we estimate the probability distributions for the jet opening angle and rest-frame energetics for a large sample of GBM GRBs for which the redshifts have not been observed. Previous studies have only used a handful of GRBs to estimate these properties due to the paucity of observed afterglow jet breaks, spectroscopic redshifts, and comprehensive prompt gamma-ray observations, and we potentially expand the number of GRBs that can be used in this analysis by more than an order of magnitude. In this analysis, we also present an inferred distribution of jet breaks which indicates that a large fraction of jet breaks are not observable with current instrumentation and observing strategies. We present simple parameterizations for the jet angle, energetics, and jet break distributions so that they may be used in future studies.

  11. The X-Ray Light Curve in GRB 170714A: Evidence for a Quark Star?

    Science.gov (United States)

    Hou, Shu-Jin; Liu, Tong; Xu, Ren-Xin; Mu, Hui-Jun; Song, Cui-Ying; Lin, Da-Bin; Gu, Wei-Min

    2018-02-01

    Two plateaus and a following bump in the X-ray light curve of GRB 170714A have been detected by the Swift/X-ray Telescope, which could be very significant for the central engine of gamma-ray bursts (GRBs), implying that the origin of this burst might be different from those of other ultra-long GRBs. We propose that merging two neutron stars into a hyper-massive quark star (QS) and then collapsing into a black hole (BH), with a delay time around 104 s, could be responsible for these X-ray components. The hyper-massive QS is initially in a fluid state, being turbulent and differentially rotating, but would solidify and release its latent heat, injecting it into the GRB fireball (lasting about 103 s during the liquid–solid phase transition). A magnetic field as high as ∼1015 G can be created by dynamo action of the newborn liquid QS, and a magnetar-like central engine (after solidification) supplies significant energy for the second plateau. More energy could be released during a fall-back accretion after the post-merger QS collapses to a BH, and the X-ray bump forms. This post-merger QS model could be tested by future observations, with either advanced gravitational wave detectors (e.g., advanced LIGO and VIRGO) or X-ray/optical telescopes.

  12. Prompt Emission of GRB 121217A from Gamma-Rays to the Near-Infrared

    Science.gov (United States)

    Elliott, J.; Yu, H.-F.; Schmidl, S.; Greiner, J.; Gruber, D.; Oates, S.; Kobayashi, S.; Zhang, B.; Cummings, J. R.; Filgas, R.; hide

    2014-01-01

    The mechanism that causes the prompt-emission episode of gamma-ray bursts (GRBs) is still widely debated despite there being thousands of prompt detections. The favoured internal shock model relates this emission to synchrotron radiation. However, it does not always explain the spectral indices of the shape of the spectrum, which is often fit with empirical functions, such as the Band function. Multi-wavelength observations are therefore required to help investigate the possible underlying mechanisms that causes the prompt emission. We present GRB 121217A, for which we were able to observe its near-infrared (NIR) emission during a secondary prompt-emission episode with the Gamma-Ray burst Optical Near-infrared Detector (GROND) in combination with the Swift and Fermi satellites, which cover an energy range of 5 orders of magnitude (10(exp -3) keV to 100 keV). We determine a photometric redshift of z = 3.1 +/- 0.1 with a line-of-sight with little or no extinction (AV approx. 0 mag) utilising the optical/NIR SED. From the afterglow, we determine a bulk Lorentz factor of Gamma(sub 0) approx. 250 and an emission radius of R ray emission, which rebrightens by a factor of approx. 100. This suggests an afterglow component is dominating the emission. We present GRB 121217A, one of the few GRBs that has multi-wavelength observations of the prompt-emission period and shows that it can be understood with a synchrotron radiation model. However, due to the complexity of the GRB's emission, other mechanisms that result in Band-like spectra cannot be ruled out.

  13. A Search for TeV Counterparts to BATSE Gamma-Ray Bursts

    Science.gov (United States)

    Connanughton, V.; Akerlof, C. W.; Barthelmy, S.; Biller, S.; Boyle, P.; Fishman, G. J.; Meegan, C. A.

    1997-01-01

    Intense effort has gone into the observation of optical, radio, and X-ray gamma-ray burst (GRB) counterparts, either simultaneous to the burst or as quasi-steady lingering remnants. Here we report on a similar study at higher energies of 250 GeV and above using ground-based telescopes. The recent technical advances represented by the atmospheric Cherenkov imaging technique (Cawley & Weekes 1995) have opened up the field of gamma-ray astronomy above 250 GeV and raised the possibility that these techniques can be used with excellent fluence sensitivity in exploring the GRB phenomenon. Observations by the Whipple collaboration of nine BATSE positions, one acquired within 2 minutes of the reported BATSE burst time, using coordinates distributed through the BATSE Coordinates Distribution Network (BACODINE) are reported. No evidence of TeV emission is found, and upper limits to the high-energy delayed or extended emission of observed candidates are calculated.

  14. High-redshift gamma-ray bursts: observational signatures of superconducting cosmic strings?

    Science.gov (United States)

    Cheng, K S; Yu, Yun-Wei; Harko, T

    2010-06-18

    The high-redshift gamma-ray bursts (GRBs), GRBs 080913 and 090423, challenge the conventional GRB progenitor models by their short durations, typical for short GRBs, and their high energy releases, typical for long GRBs. Meanwhile, the GRB rate inferred from high-redshift GRBs also remarkably exceeds the prediction of the collapsar model, with an ordinary star formation history. We show that all these contradictions could be eliminated naturally, if we ascribe some high-redshift GRBs to electromagnetic bursts of superconducting cosmic strings. High-redshift GRBs could become a reasonable way to test the superconducting cosmic string model because the event rate of cosmic string bursts increases rapidly with increasing redshifts, whereas the collapsar rate decreases.

  15. An External Shock Origin of GRB 141028A

    Science.gov (United States)

    Burgess, Michael; Bégué, Damien

    2016-07-01

    The prompt emission of the long, smooth, and single-pulsed gamma-ray burst, GRB 141028A, is analyzed under the guise of an external shock model. First, we fit the γ-ray spectrum with a two-component photon model, namely synchrotron+blackbody, and then fit the recovered evolution of the synchrotron ν F_{ν} peak to an analytic model derived considering the emission of a relativistic blast-wave expanding into an external medium. The prediction of the model for the ν F_{ν} peak evolution matches well with the observations. We observe the blast-wave transitioning into the deceleration phase. Further we assume the expansion of the magnetic field deduced from the observations. This allows us to recover within an order of magnitude the flux density at the ν F_{ν} peak, which is remarkable considering the simplicity of the analytic model. Under this scenario we argue that the distinction between prompt and afterglow emission is superfluous as both early and late time emission emanate from the same source. While the external shock model is clearly not a universal solution, this analysis opens the possibility that at least some fraction of GRBs can be explained with an external shock origin of their prompt phase.

  16. GRB physics and cosmology with peak energy-intensity correlations

    Energy Technology Data Exchange (ETDEWEB)

    Sawant, Disha, E-mail: sawant@fe.infn.it [University of Ferrara, Via Saragat-1, Block C, Ferrara 44122 (Italy); University of Nice, 28 Avenue Valrose, Nice 06103 (France); IRAP Erasmus PhD Program, European Union and INAF - IASF Bologna, Via P. Gobetti 101, Bologna 41125 (Italy); Amati, Lorenzo, E-mail: amati@iasfbo.inaf.it [INAF - IASF Bologna, Via P. Gobetti 101, Bologna 41125 (Italy); ICRANet, Piazzale Aldo Moro-5, Rome 00185 (Italy)

    2015-12-17

    Gamma Ray Bursts (GRBs) are immensely energetic explosions radiating up to 10{sup 54} erg of energy isotropically (E{sub iso}) and they are observed within a wide range of redshift (from ∼ 0.01 up to ∼ 9). Such enormous power and high redshift point at these phenomena being highly favorable to investigate the history and evolution of our universe. The major obstacle in their application as cosmological study-tools is to find a way to standardize the GRBs, for instance similar to SNe Ia. With respect to this goal, the correlation between spectral peak energy (E{sub p,i}) and the “intensity” is a positively useful and investigated criterion. Moreover, it has been demonstrated that, through the E{sub p,i} – E{sub iso} correlation, the current data set of GRBs can already contribute to the independent evidence of the matter density Ω{sub M} being ∼ 0.3 for a flat universe scenario. We try to inspect and compare the correlations of E{sub p,i} with different intensity indicators (e.g., radiated energy, average and peak luminosity, bolometric vs. monochromatic quantities, etc.) both in terms of intrinsic dispersion and precise estimation of Ω{sub M}. The outcome of such studies are further analyzed in verifying the reliability of the correlations for both GRB physics and their standardization for cosmology.

  17. AN EXTERNAL SHOCK ORIGIN OF GRB 141028A

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, J. Michael; Bégué, Damien; Ryde, Felix [The Oskar Klein Centre for Cosmoparticle Physics, AlbaNova, SE-106 91 Stockholm (Sweden); Omodei, Nicola [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Pe’er, Asaf [Physics Department, University College Cork, Cork (Ireland); Racusin, J. L.; Cucchiara, A., E-mail: jamesb@kth.se, E-mail: damienb@kth.se [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-05-10

    The prompt emission of the long, smooth, and single-pulsed gamma-ray burst, GRB 141028A, is analyzed under the guise of an external shock model. First, we fit the γ -ray spectrum with a two-component photon model, namely, synchrotron+blackbody, and then fit the recovered evolution of the synchrotron νF{sub ν} peak to an analytic model derived considering the emission of a relativistic blast wave expanding into an external medium. The prediction of the model for the νF{sub ν} peak evolution matches well with the observations. We observe the blast wave transitioning into the deceleration phase. Furthermore, we assume the expansion of the blast wave to be nearly adiabatic, motivated by the low magnetic field deduced from the observations. This allows us to recover within an order of magnitude the flux density at the νF{sub ν} peak, which is remarkable considering the simplicity of the analytic model. Under this scenario we argue that the distinction between prompt and afterglow emission is superfluous as both early-time emission and late-time emission emanate from the same source. While the external shock model is clearly not a universal solution, this analysis opens the possibility that at least some fraction of GRBs can be explained with an external shock origin of their prompt phase.

  18. MODELING THE EARLY MULTIWAVELENGTH EMISSION IN GRB 130427A

    Energy Technology Data Exchange (ETDEWEB)

    Fraija, N.; Lee, W. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 70-264, Cd. Universitaria, DF 04510, México (Mexico); Veres, P., E-mail: nifraija@astro.unam.mx, E-mail: wlee@astro.unam.mx, E-mail: pv0004@uah.edu [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2016-02-20

    One of the most powerful gamma-ray bursts, GRB 130427A was swiftly detected from GeV γ-rays to optical wavelengths. In the GeV band, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope observed the highest-energy photon ever recorded of 95 GeV and a bright peak in the early phase followed by emission temporally extended for more than 20 hr. In the optical band, a bright flash with a magnitude of 7.03 ± 0.03 in the time interval from 9.31 to 19.31 s after the trigger was reported by RAPTOR in r band. We study the origin of the GeV γ-ray emission, using the multiwavelength observation detected in X-ray and optical bands. The origin of the temporally extended LAT, X-ray, and optical flux is naturally interpreted as synchrotron radiation, and the 95 GeV photon and the integral flux upper limits placed by the high-altitude water Cerenkov observatory are consistent with synchrotron self-Compton from an adiabatic forward shock propagating into the stellar wind of its progenitor. The extreme LAT peak and the bright optical flash are explained through synchrotron self-Compton and synchrotron emission from the reverse shock, respectively, when the ejecta evolves in the thick-shell regime and carries a significant magnetic field.

  19. Modeling the Early Multiwavelength Emission in GRB130427A

    Science.gov (United States)

    Fraija, N.; Lee, W.; Veres, P.

    2016-02-01

    One of the most powerful gamma-ray bursts, GRB 130427A was swiftly detected from GeV γ-rays to optical wavelengths. In the GeV band, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope observed the highest-energy photon ever recorded of 95 GeV and a bright peak in the early phase followed by emission temporally extended for more than 20 hr. In the optical band, a bright flash with a magnitude of 7.03 ± 0.03 in the time interval from 9.31 to 19.31 s after the trigger was reported by RAPTOR in r band. We study the origin of the GeV γ-ray emission, using the multiwavelength observation detected in X-ray and optical bands. The origin of the temporally extended LAT, X-ray, and optical flux is naturally interpreted as synchrotron radiation, and the 95 GeV photon and the integral flux upper limits placed by the high-altitude water Cerenkov observatory are consistent with synchrotron self-Compton from an adiabatic forward shock propagating into the stellar wind of its progenitor. The extreme LAT peak and the bright optical flash are explained through synchrotron self-Compton and synchrotron emission from the reverse shock, respectively, when the ejecta evolves in the thick-shell regime and carries a significant magnetic field.

  20. Ideal engine durations for gamma-ray-burst-jet launch

    Science.gov (United States)

    Hamidani, Hamid; Takahashi, Koh; Umeda, Hideyuki; Okita, Shinpei

    2017-08-01

    Aiming to study gamma-ray-burst (GRB) engine duration, we present numerical simulations to investigate collapsar jets. We consider typical explosion energy (1052 erg) but different engine durations, in the widest domain to date from 0.1 to 100 s. We employ an adaptive mesh refinement 2D hydrodynamical code. Our results show that engine duration strongly influences jet nature. We show that the efficiency of launching and collimating relativistic outflow increases with engine duration, until the intermediate engine range where it is the highest, past this point to long engine range, the trend is slightly reversed; we call this point where acceleration and collimation are the highest 'sweet spot' (∼10-30 s). Moreover, jet energy flux shows that variability is also high in this duration domain. We argue that not all engine durations can produce the collimated, relativistic and variable long GRB jets. Considering a typical progenitor and engine energy, we conclude that the ideal engine duration to reproduce a long GRB is ∼10-30 s, where the launch of relativistic, collimated and variable jets is favoured. We note that this duration domain makes a good link with a previous study suggesting that the bulk of Burst and Transient Source Experiment's long GRBs is powered by ∼10-20 s collapsar engines.

  1. Results from GROCSE I: A real-time search for gamma ray burst optical counterparts

    Science.gov (United States)

    Lee, B.; Akerlof, C.; Ables, E.; Bionta, R. M.; Ott, L.; Park, H. S.; Parker, E.; Barthelmy, S.; Butterworth, P.; Cline, T.

    1995-01-01

    The GROCSE I experiment (Gamma-Ray Optical Counterpart Search Experiment) is a rapid slewing wide field of view optical telescope at Lawrence Livermore National Laboratory which responds to triggers from the BATSE GRB data telemetry stream that have been processed and distributed by the BACODINE network. GROCSE 1 has been in continuous automated operation since January 1994. As of October 1995, sky images for 22 GRB triggers have been recorded, in some cases while the burst was still emitting gamma rays. The preliminary analysis of eight of these events are presented here. No optical counterparts have yet been detected. Limits for optical emission are given.

  2. Gamma-Ray Burst Formation Rate Inferred from the Spectral Peak EnergyndashPeak Luminosity Relation

    OpenAIRE

    Yonetoku, D.; Murakami, T.; Nakamura, T.; Yamazaki, Ryo; Inoue, A.K.; Ioka, K.

    2004-01-01

    We estimate a gamma-ray burst (GRB) formation rate based on the new relation between the spectral peak energy (Ep) and the peak luminosity. The new relation is derived by combining the data of Ep and the peak luminosities by BeppoSAX and BATSE, and it looks considerably tighter and more reliable than the relations suggested by the previous works. Using the new Ep-luminosity relation, we estimate redshifts of the 689 GRBs without known distances in the BATSE catalog and derive a GRB formation ...

  3. The 'Supercritical Pile' GRB Model: Afterglows and GRB, XRR, XRF Unification

    Science.gov (United States)

    Kazanas, D.

    2007-01-01

    We present the general notions and observational consequences of the "Supercritical Pile" GRB model; the fundamental feature of this model is a detailed process for the conversion of the energy stored in relativistic protons in the GRB Relativistic Blast Waves (RBW) into relativistic electrons and then into radiation. The conversion is effected through the $p \\, \\gamma \\rightarrow p \\, e circumflex + e circumflex -$ reaction, whose kinematic threshold is imprinted on the GRB spectra to provide a peak of their emitted luminosity at energy \\Ep $\\sim 1$ MeV in the lab frame. We extend this model to include, in addition to the (quasi--)thermal relativistic post-shock protons an accelerated component of power law form. This component guarantees the production of $e circumflex +e circumflex- - $pairs even after the RBW has slowed down to the point that its (quasi-) thermal protons cannot fulfill the threshold of the above reaction. We suggest that this last condition marks the transition from the prompt to the afterglow GRB phase. We also discuss conditions under which this transition is accompanied by a significant drop in the flux and could thus account for several puzzling, recent observations. Finally, we indicate that the same mechanism applied to the late stages of the GRB evolution leads to a decrease in \\Ep $\\propto \\Gamma circumflex 2(t)\\propto t circumflex {-3/4}$, a feature amenable to future observational tests.

  4. Transient optical emission from the error box of the gamma-ray burst of 28 February 1997

    DEFF Research Database (Denmark)

    van Paradijs, J.; Groot, P.J.; Galama, T.

    1997-01-01

    For almost a quarter of a century(1), the origin of gamma-ray bursts-brief, energetic bursts of high-energy photons-has remained unknown. The detection of a counterpart at another wavelength has long been thought to be a key to understanding the nature of these bursts (see, for example, ref. 2......), but intensive searches have not revealed such a counterpart. The distribution and properties of the bursts(3) are explained naturally if they lie at cosmological distances (a few Gpc)(4), but there is a countervailing view that they are relatively local objects(5), perhaps distributed in a very large halo...... around our Galaxy. Here we report the detection of a transient and fading optical source in the error box associated with the burst GRB970228, less than 21 hours after the burst(6,7). The optical transient appears to be associated with a faint galaxy(7,8), suggesting that the burst occurred...

  5. The GW170817/GRB 170817A/AT 2017gfo Association: Some Implications for Physics and Astrophysics

    Science.gov (United States)

    Wang, Hao; Zhang, Fu-Wen; Wang, Yuan-Zhu; Shen, Zhao-Qiang; Liang, Yun-Feng; Li, Xiang; Liao, Neng-Hui; Jin, Zhi-Ping; Yuan, Qiang; Zou, Yuan-Chuan; Fan, Yi-Zhong; Wei, Da-Ming

    2017-12-01

    On 2017 August 17, a gravitational-wave event (GW170817) and an associated short gamma-ray burst (GRB 170817A) from a binary neutron star merger had been detected. The follow-up optical/infrared observations also identified the macronova/kilonova emission (AT 2017gfo). In this work, we discuss some implications of the remarkable GW170817/GRB 170817A/AT 2017gfo association. We show that the ∼1.7 s time delay between the gravitational-wave (GW) and GRB signals imposes very tight constraints on the superluminal movement of gravitational waves (i.e., the relative departure of GW velocity from the speed of light is ≤slant 4.3× {10}-16) or the possible violation of the weak equivalence principle (i.e., the difference of the gamma-ray and GW trajectories in the gravitational field of the galaxy and the local universe should be within a factor of ∼ 3.4× {10}-9). The so-called Dark Matter Emulators and a class of contender models for cosmic acceleration (“Covariant Galileon”) are ruled out as well. The successful identification of lanthanide elements in the macronova/kilonova spectrum also excludes the possibility that the progenitors of GRB 170817A are a binary strange star system. The high neutron star merger rate (inferred from both the local sGRB data and the gravitational-wave data) together with the significant ejected mass strongly suggest that such mergers are the prime sites of heavy r-process nucleosynthesis.

  6. DISCOVERY OF THE BROAD-LINED TYPE Ic SN 2013cq ASSOCIATED WITH THE VERY ENERGETIC GRB 130427A

    Energy Technology Data Exchange (ETDEWEB)

    Xu, D.; Krühler, T.; Hjorth, J.; Malesani, D.; Fynbo, J. P. U.; Watson, D. J.; Geier, S. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 København Ø (Denmark); De Ugarte Postigo, A.; Thöne, C. C.; Sánchez-Ramírez, R. [Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía s/n, E-18008 Granada (Spain); Leloudas, G. [The Oskar Klein Centre, Department of Physics, Stockholm University, AlbaNova, SE-10691 Stockholm (Sweden); Cano, Z.; Jakobsson, P. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, IS-107 Reykjavik (Iceland); Schulze, S. [Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Kaper, L. [Astronomical Institute Anton Pannekoek, University of Amsterdam, Science Park 904, NL-1098 XH Amsterdam (Netherlands); Sollerman, J. [The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-10691 Stockholm (Sweden); Cabrera-Lavers, A. [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Cao, C. [Department of Space Science and Physics, Shandong University at Weihai, Weihai, Shandong 264209 (China); Covino, S. [INAF/Brera Astronomical Observatory, via Bianchi 46, I-23807 Merate (Italy); Flores, H., E-mail: dong@dark-cosmology.dk [Laboratoire Galaxies Etoiles Physique et Instrumentation, Observatoire de Paris, 5 place Jules Janssen, F-92195 Meudon (France); and others

    2013-10-20

    Long-duration gamma-ray bursts (GRBs) at z < 1 are found in most cases to be accompanied by bright, broad-lined Type Ic supernovae (SNe Ic-BL). The highest-energy GRBs are mostly located at higher redshifts, where the associated SNe are hard to detect observationally. Here, we present early and late observations of the optical counterpart of the very energetic GRB 130427A. Despite its moderate redshift, z = 0.3399 ± 0.0002, GRB 130427A is at the high end of the GRB energy distribution, with an isotropic-equivalent energy release of E{sub iso} ∼ 9.6 × 10{sup 53} erg, more than an order of magnitude more energetic than other GRBs with spectroscopically confirmed SNe. In our dense photometric monitoring, we detect excess flux in the host-subtracted r-band light curve, consistent with that expected from an emerging SN, ∼0.2 mag fainter than the prototypical SN 1998bw. A spectrum obtained around the time of the SN peak (16.7 days after the GRB) reveals broad undulations typical of SNe Ic-BL, confirming the presence of an SN, designated SN 2013cq. The spectral shape and early peak time are similar to those of the high expansion velocity SN 2010bh associated with GRB 100316D. Our findings demonstrate that high-energy, long-duration GRBs, commonly detected at high redshift, can also be associated with SNe Ic-BL, pointing to a common progenitor mechanism.

  7. Automated rapid follow-up of Swift gamma-ray burst alerts at 15 GHz with the AMI Large Array

    NARCIS (Netherlands)

    Staley, T.D.; Titterington, D.J.; Fender, R.P.; Swinbank, J.D.; van der Horst, A.J.; Rowlinson, A.; Scaife, A.M.M.; Grainge, K.J.B.; Pooley, G.G.

    2013-01-01

    We present 15-GHz follow-up radio observations of 11 Swift gamma-ray burst (GRB) sources, obtained with the Arcminute Microkelvin Imager Large Array (AMI-LA). The initial follow-up observation for each source was made in a fully automated fashion; as a result four observations were initiated within

  8. Strategies for Studying the Sources of Gamma Ray Bursts

    Science.gov (United States)

    Cline, T. L.; Norris, J. P.; Hurley, K. C.

    2003-01-01

    The study of gamma ray bursts (GRBs) has rapidly evolved in recent years with the discovery of their cosmological nature and with BATSE, BeppoSAX, HETE and the IPN enabling a wide variety of associated . afterglow measurements. Multiwavelength observations ranging through the radio, optical, soft and hard x-ray, and gamma-ray regimes have exploded the field of GRB interpretation. Also, the Amanda, Milagro and LIGO experiments can search for related neutrino, cosmic-ray photon, and gravitational radiation events, even with the delayed alerts, such as from the IPN. The infrared region, where the optical emissions from sources at the extreme distances may be shifted, will become important but is undersubscribed. The soon-to-be launched Swift mission will greatly broaden the GRB discipline, and a strategy for associated ground-based measurements is outlined. The need for the improved global distribution of all instruments, in particular, robotic infrared detectors, is cited.

  9. High Energy (MeV) Characteristics of GRB 990123 as Measured by CGRO-COMPTEL

    Science.gov (United States)

    Young, C. A.; Connors, A.; McConnell, M.; Ryan, J. M.; Williams, O. R.; Winkler, C.; Bennett, K.; Hermsen, W.; Kuiper, L.; Collmar, W.; Schoenfelder, V.; Kippen, R. M.; CGRO-COMPTEL Team

    1999-04-01

    GRB 990123 was well-observed from MeV gamma-rays through soft X-rays by all instruments on CGRO and by BeppoSAX. Spectacularly, it was also the first to be detected in the optical during the main burst itself (Akerlof and McKay et al., GCN 205), becoming as bright as 9th magnitude in the middle of the event. It was suficiently bright above one MeV that CGRO-COMPTEL imaged the event and broadcast its position world-wide within 10 minutes of burst onset, despite its being nearly 60 degrees from the telescope's pointing direction. Here we report on its MeV properties as seen by CGRO-COMPTEL. Although much has been made of its gamma-ray/X-ray intensity (Djorgovski et al. GCN 216) in fact its high energy properties do not appear to be all that unusual. Its gamma-ray fluence (1E-4+/-.5E-4 ergs/cm(2) , 0.7-30 MeV) was clearly within the range of other bursts observed over the past 7 years by CGRO-COMPTEL (2E-4 -- 3E-6 ergs/cm(2) , 0.7-30 MeV). The burst was softer than average (consistent with OSSE findings; Matz et al GCN 231), with a photon power-law index of -3.+/-0.5 (compared to our sample average of 2.4 +/- 0.6). Again this is within the range of all bursts in the COMPTEL burst catalog. It appears to show the usual general trend of hard-to-soft spectral evolution: above 3 MeV the first peak is clearly significant, with a weak second peak roughly 10 s later; in 1-3 MeV two peaks are strongly visible with a total duration of about 28 s; in the 0.1-1 MeV one finds, in addition, a softer 44 second tail. A slightly unusual feature is the 18 s delay between the start of the softer gamma-ray emission on which BATSE triggered; and the rising edge of the main burst as seen by COMPTEL (and on which BeppoSAX triggered; Piro et al. GCN 199). In sum, our data are consistent with the hypothesis that it was this delay (plus recently improved instrumentation), rather than unprecedented properties of this gamma-ray burst, that allowed this first detection of a startlingly bright

  10. Gamma-ray-burst beaming and gravitational-wave observations.

    Science.gov (United States)

    Chen, Hsin-Yu; Holz, Daniel E

    2013-11-01

    Using the observed rate of short-duration gamma-ray bursts (GRBs) it is possible to make predictions for the detectable rate of compact binary coalescences in gravitational-wave detectors. We show that the nondetection of mergers in the existing LIGO/Virgo data constrains the beaming angles and progenitor masses of gamma-ray bursts, although these limits are fully consistent with existing expectations. We make predictions for the rate of events in future networks of gravitational-wave observatories, finding that the first detection of a neutron-star-neutron-star binary coalescence associated with the progenitors of short GRBs is likely to happen within the first 16 months of observation, even in the case of only two observatories (e.g., LIGO-Hanford and LIGO-Livingston) operating at intermediate sensitivities (e.g., advanced LIGO design sensitivity, but without signal recycling mirrors), and assuming a conservative distribution of beaming angles (e.g., all GRBs beamed within θ(j) = 30°). Less conservative assumptions reduce the waiting time until first detection to a period of weeks to months, with an event detection rate of >/~10/yr. Alternatively, the compact binary coalescence model of short GRBs can be ruled out if a binary is not seen within the first two years of operation of a LIGO-Hanford, LIGO-Livingston, and Virgo network at advanced design sensitivity. We also demonstrate that the gravitational wave detection rate of GRB triggered sources (i.e., those seen first in gamma rays) is lower than the rate of untriggered events (i.e., those seen only in gravitational waves) if θ(j)≲30°, independent of the noise curve, network configuration, and observed GRB rate. The first detection in gravitational waves of a binary GRB progenitor is therefore unlikely to be associated with the observation of a GRB.

  11. On the Structure of the Burst and Afterglow of Gamma-Ray Bursts I

    Science.gov (United States)

    Ruffini, Remo; Bianco, Carlo Luciano; Xue, She-Sheng; Chardonnet, Pascal; Fraschetti, Federico

    We have recently proposed three paradigms for the theoretical interpretation of gamma-ray bursts (GRBs). (1) The relative space time transformation (RSTT) paradigm emphasizes how the knowledge of the entire world-line of the source from the moment of gravitational collapse is a necessary condition in order to interpret GRB data.1 (2) The interpretation of the burst structure (IBS) paradigm differentiates in all GRBs between an injector phase and a beam-target phase.2 (3) The GRB-supernova time sequence (GSTS) paradigm introduces the concept of induced supernova explosion in the supernovae-GRB association.3 The RSTT and IBS paradigms are enunciated and illustrated using our theory based on the vacuum polarization process occurring around an electromagnetic black hole (EMBH) theory. The results are summarized using figures, diagrams and a complete table with the space time grid, the fundamental parameters and the corresponding values of the Lorentz gamma factor for GRB 991216 used as a prototype. In the following sections the detailed treatment of the EMBH theory needed to understand the results of the three above paradigms is presented. We start from the considerations on the dyadosphere formation. We then review the basic hydrodynamic and rate equations, the equations leading to the relative space time transformations as well as the adopted numerical integration techniques. We then illustrate the five fundamental eras of the EMBH theory: the self acceleration of the e+e- pair-electromagnetic plasma (PEM pulse), its interaction with the baryonic remnant of the progenitor star, the further self acceleration of the e+e- pair-electromagnetic radiation and baryon plasma (PEMB pulse). We then study the approach of the PEMB pulse to transparency, the emission of the proper GRB (P-GRB) and its relation to the "short GRBs". Particular attention is given to the free parameters of the theory and to the values of the thermodynamical quantities at transparency. Finally

  12. GRB 110709A, 111117A, AND 120107A: FAINT HIGH-ENERGY GAMMA-RAY PHOTON EMISSION FROM FERMI-LAT OBSERVATIONS AND DEMOGRAPHIC IMPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Weikang; Akerlof, Carl W.; McKay, Timothy A. [Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI 48109 (United States); Pandey, Shashi B. [Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital 263129 (India); Zhang Binbin [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Zhang Bing [Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154 (United States); Sakamoto, Takanori, E-mail: zwk@umich.edu [Center for Research and Exploration in Space Science and Technology (CRESST), NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-09-01

    Launched on 2008 June 11, the Large Area Telescope (LAT) instrument on board the Fermi Gamma-ray Space Telescope has provided a rare opportunity to study high-energy photon emission from gamma-ray bursts (GRBs). Although the majority of such events (27) have been identified by the Fermi-LAT Collaboration, four were uncovered by using more sensitive statistical techniques. In this paper, we continue our earlier work by finding three more GRBs associated with high-energy photon emission, GRB 110709A, 111117A, and 120107A. To systematize our matched filter approach, a pipeline has been developed to identify these objects in nearly real time. GRB 120107A is the first product of this analysis procedure. Despite the reduced threshold for identification, the number of GRB events has not increased significantly. This relative dearth of events with low photon number prompted a study of the apparent photon number distribution. We find an extremely good fit to a simple power law with an exponent of -1.8 {+-} 0.3 for the differential distribution. As might be expected, there is a substantial correlation between the number of lower energy photons detected by the Gamma-ray Burst Monitor (GBM) and the number observed by LAT. Thus, high-energy photon emission is associated with some but not all of the brighter GBM events. Deeper studies of the properties of the small population of high-energy emitting bursts may eventually yield a better understanding of these entire phenomena.

  13. On Spatial Distribution of Short Gamma-Ray Bursts from Extragalactic Magnetar Flares

    Directory of Open Access Journals (Sweden)

    Heon-Young Chang

    2002-03-01

    Full Text Available Recently, one interesting possibility is proposed that a magnetar can be a progenitor of short and hard gamma-ray bursts (GRBs. If this is true, one may expect that the short and hard GRBs, at least some of GRBs in this class, are distributed in the Euclidean space and that the angular position of these GRBs is correlated with galaxy clusters. Even though it is reported that the correlation is statistically marginal, the observed value of deviates from the Euclidean value. The latter fact is often used as evidence against a local extragalactic origin for short GRB class. We demonstrate that GRB sample of which the value of deviates from the Euclidean value can be spatially confined within the low value of z. We select very short bursts (T90 of the short bursts is 0.4459. Considering a conic-beam and a cylindrical beam for the luminosity function, we deduce the corresponding spatial distribution of the GRB sources. We also calculate the fraction of bursts whose redshifts are larger than a certain redshift {z'}, i.e. f> z'. We find that GRBs may be distributed near to us, despite the non-Euclidean value of . A broad and uniform beam pattern seems compatible with the magnetar model in that the magnetar model requires a small zmax.

  14. Sensitivity of the High Altitude Water Cherenkov Experiment to observe Gamma-Ray Bursts

    Science.gov (United States)

    González, M. M.

    Ground based telescopes have marginally observed very high energy emission (>100GeV) from gamma-ray bursts(GRB). For instance, Milagrito observed GRB970417a with a significance of 3.7 sigmas over the background. Milagro have not yet observed TeV emission from a GRB with its triggered and untriggered searches or GeV emission with a triggered search using its scalers. These results suggest the need of new observatories with higher sensitivity to transient sources. The HAWC (High Altitute Water Cherenkov) observatory is proposed as a combination of the Milagro tecnology with a very high altitude (>4000m over see level) site. The expected HAWC sensitivity for GRBs is at least >10 times the Milagro sensitivity. In this work HAWC sensitivity for GRBs is discussed for different detector configurations such as altitude, distance between PMTs, depth under water of PMTs, number of PMTs required for a trigger, etc.

  15. Measurements with the resonant gravitational wave detector EXPLORER during the gamma-ray burst 980425

    CERN Document Server

    Amati, L; Bassan, M; Bonifazi, P; Carelli, P; Coccia, E; Cosmelli, C; Costa, E; Fafone, V; Feroci, M; Frasca, S; Frontera, F; Longo, F; Mauceli, E; Minenkov, Y; Modena, I; Modestino, G; Moleti, A; Orlandini, M; Pallottino, G V; Piro, L; Pizzella, G; Preger, B; Salemi, F; Terenzi, R; Visco, M

    1999-01-01

    We report on the operation of the resonant gravitational wave (GW) detector EXPLORER of the Rome group (M=2300 kg, T=2.6 K, located at CERN) at the time of the gamma-ray burst GRB 980425 (April 25.90915 UT, 1998), which is probably associated with the supernova SN 1998bw. We present the data of the detector (with sensitivity h/sub c/=8*10 /sup -19/ for a 1 ms pulse), and use the BeppoSAX data to estimate the initial time of the GRB: a basic parameter for any correlation analysis. The GW data exhibit no significant time signature around the GRB 980425. We remark on the importance of making use, in spite of the present low sensitivity, of the data collected with GW detectors, that can be regarded as active observatories, in coincidence with the BeppoSAX data. (15 refs).

  16. Prospects for Gamma-Ray Burst detection by the Cherenkov Telescope Array

    Directory of Open Access Journals (Sweden)

    Bissaldi E.

    2017-01-01

    Full Text Available The Large Area Telescope (LAT on the Fermi satellite is expected to publish a catalogue with more than 100 Gamma-Ray Bursts (GRBs detected above 100 MeV thanks to a new detection algorithm and a new event reconstruction. This work aims at revising the prospects for GRB alerts with the Cherenkov Telescope Array (CTA based on the new LAT results. We start considering the simulation of the observations with the full CTA of two extremely bright events, the long GRB 130427A and the short GRB 090510, then we investigate how these GRBs would be observed by a particular configuration of the array with the telescopes pointing to different directions in what is called the “coupled divergent mode”.

  17. RADIO FLARES FROM GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J. [Astrophysics Research Institute, Liverpool John Moores University, Liverpool, L3 5RF (United Kingdom); Harrison, R. [Department of Astrophysics, School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel); Japelj, J.; Gomboc, A. [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana (Slovenia); Guidorzi, C. [Department of Physics and Earth Sciences, University of Ferrara, Via Saragat, 1, I-44122 Ferrara (Italy); Melandri, A., E-mail: D.Kopac@ljmu.ac.uk [INAF/Brera Astronomical Observatory, via Bianchi 46, I-23807, Merate (Italy)

    2015-06-20

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1–1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time.

  18. The Arcminute Microkelvin Imager catalogue of gamma-ray burst afterglows at 15.7 GHz

    Science.gov (United States)

    Anderson, G. E.; Staley, T. D.; van der Horst, A. J.; Fender, R. P.; Rowlinson, A.; Mooley, K. P.; Broderick, J. W.; Wijers, R. A. M. J.; Rumsey, C.; Titterington, D. J.

    2018-01-01

    We present the Arcminute Microkelvin Imager (AMI) Large Array catalogue of 139 gamma-ray bursts (GRBs). AMI observes at a central frequency of 15.7 GHz and is equipped with a fully automated rapid-response mode, which enables the telescope to respond to high-energy transients detected by Swift. On receiving a transient alert, AMI can be on-target within 2 min, scheduling later start times if the source is below the horizon. Further AMI observations are manually scheduled for several days following the trigger. The AMI GRB programme probes the early-time (GRBs, and has obtained some of the earliest radio detections (GRB 130427A at 0.36 and GRB 130907A at 0.51 d post-burst). As all Swift GRBs visible to AMI are observed, this catalogue provides the first representative sample of GRB radio properties, unbiased by multiwavelength selection criteria. We report the detection of six GRB radio afterglows that were not previously detected by other radio telescopes, increasing the rate of radio detections by 50 per cent over an 18-month period. The AMI catalogue implies a Swift GRB radio detection rate of ≳ 15 per cent, down to ∼0.2 mJy beam-1. However, scaling this by the fraction of GRBs AMI would have detected in the Chandra & Frail sample (all radio-observed GRBs between 1997 and 2011), it is possible ∼ 44-56 per cent of Swift GRBs are radio bright, down to ∼0.1-0.15 mJy beam-1. This increase from the Chandra & Frail rate (∼30 per cent) is likely due to the AMI rapid-response mode, which allows observations to begin while the reverse-shock is contributing to the radio afterglow.

  19. TORTORA discovery of Naked-Eye Burst fast optical variability

    Science.gov (United States)

    Beskin, Grigory; Karpov, Sergey; Bondar, Sergey; Greco, Giuseppe; Guarnieri, Adriano; Bartolini, Corrado; Piccioni, Adalberto; Molinari, Emilio; Chincarini, Guido

    2008-10-01

    Features characterizing gamma-ray bursts in the different spectral bands may be a clue for the nature of their inner engine. Up to now, only several bursts have been observed in optical band during the gamma activity, and the only one-GRB080319B-was covered from rise till fall with high temporal resolution. Here we discuss these data, acquired with TORTORA fast wide-field monitoring optical camera, as well as results of its analysis. The camera observed the position of Naked-Eye Burst, GRB080318B, before, during and after the trigger. It detected the fast rise of optical emission, which reached the peak of V 5.3 at the eighteenth second, had a complex evolution till T+43s and monotonously faded then. The brightest part of the light curve contains two 15-20 s segments with different fluxes, each having two clearly-seen peaks of 5-8 s duration; all four peaks look quasi-periodic with separation of 9 s. There is no clear evidence of any sub-second variability. However, there are signs of quasi-periodic variability on 1s time scale at around the last peak (T+40 till T+50). The general properties of the optical light curve and its variability time scales look similar to the gamma one, but there is no clear correlation between them. This raises serious problems in interpretation of mechanisms generating such variability.

  20. Phosphorylation of Grb14 BPS domain by GSK-3 correlates with complex forming of Grb14 and insulin receptor.

    Science.gov (United States)

    Taira, Junichi; Higashimoto, Yuichiro

    2014-06-01

    Growth factor receptor-bound protein 14 (Grb14) interacts with insulin receptor (IR) through the between PH and SH2 (BPS) domain. Grb14-IR complex formation is initiated by insulin stimulation, and the binding event results in the inhibition of insulin signalling. Thus, Grb14 is regarded as an endogenous suppressor of insulin signal transduction; however, there are no studies describing the mechanism whereby Grb14-IR complex formation is suppressed in the absence of insulin stimulation. In the present study, multiple phosphorylation motifs for glycogen synthase kinase 3 (GSK-3) were identified within the Grb14 BPS domain (Ser(358), Ser(362) and Ser(366) of human Grb14). Pharmacological inhibition as well as knockdown of GSK-3 facilitated complex formation between Grb14 and IR, implicating GSK-3 activity in regulating Grb14-IR binding. In situ proximity ligation assay and in vitro kinase assays of phosphopeptides suggested that serine residues in the BPS domain would be substrates for GSK-3. The kinase assays also indicated phosphoserine 370 (in human Grb14) was required for the phosphorylation of Ser(358), Ser(362) and Ser(366) by GSK-3. Grb14-IR binding was also facilitated by replacement of the serines with Ala. We also observed that Ser(366) of endogenous Grb14 in Hep G2 cell was phosphorylated and the phosphorylation was influenced by treatments with insulin, as well as the GSK-3 inhibitor. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  1. Gamma-Ray Burst Prompt Correlations

    Directory of Open Access Journals (Sweden)

    M. G. Dainotti

    2018-01-01

    Full Text Available The mechanism responsible for the prompt emission of gamma-ray bursts (GRBs is still a debated issue. The prompt phase-related GRB correlations can allow discriminating among the most plausible theoretical models explaining this emission. We present an overview of the observational two-parameter correlations, their physical interpretations, and their use as redshift estimators and possibly as cosmological tools. The nowadays challenge is to make GRBs, the farthest stellar-scaled objects observed (up to redshift z=9.4, standard candles through well established and robust correlations. However, GRBs spanning several orders of magnitude in their energetics are far from being standard candles. We describe the advances in the prompt correlation research in the past decades, with particular focus paid to the discoveries in the last 20 years.

  2. UBAT of UFFO/ Lomonosov: The X-Ray Space Telescope to Observe Early Photons from Gamma-Ray Bursts

    Science.gov (United States)

    Jeong, S.; Panasyuk, M. I.; Reglero, V.; Connell, P.; Kim, M. B.; Lee, J.; Rodrigo, J. M.; Ripa, J.; Eyles, C.; Lim, H.; Gaikov, G.; Jeong, H.; Leonov, V.; Chen, P.; Castro-Tirado, A. J.; Nam, J. W.; Svertilov, S.; Yashin, I.; Garipov, G.; Huang, M.-H. A.; Huang, J.-J.; Kim, J. E.; Liu, T.-C.; Petrov, V.; Bogomolov, V.; Budtz-Jørgensen, C.; Brandt, S.; Park, I. H.

    2018-02-01

    The Ultra-Fast Flash Observatory (UFFO) Burst Alert and Trigger Telescope (UBAT) has been designed and built for the localization of transient X-ray sources such as Gamma Ray Bursts (GRBs). As one of main instruments in the UFFO payload onboard the Lomonosov satellite (hereafter UFFO/ Lomonosov), the UBAT's roles are to monitor the X-ray sky, to rapidly locate and track transient sources, and to trigger the slewing of a UV/optical telescope, namely Slewing Mirror Telescope (SMT). The SMT, a pioneering application of rapid slewing mirror technology has a line of sight parallel to the UBAT, allowing us to measure the early UV/optical GRB counterpart and study the extremely early moments of GRB evolution. To detect X-rays, the UBAT utilizes a 191.1 cm2 scintillation detector composed of Yttrium Oxyorthosilicate (YSO) crystals, Multi-Anode Photomultiplier Tubes (MAPMTs), and associated electronics. To estimate a direction vector of a GRB source in its field of view, it employs the well-known coded aperture mask technique. All functions are written for implementation on a field programmable gate array to enable fast triggering and to run the device's imaging algorithms. The UFFO/ Lomonosov satellite was launched on April 28, 2016, and is now collecting GRB observation data. In this study, we describe the UBAT's design, fabrication, integration, and performance as a GRB X-ray trigger and localization telescope, both on the ground and in space.

  3. GRB Flares: A New Detection Algorithm, Previously Undetected Flares, and Implications on GRB Physics

    Science.gov (United States)

    Swenson, Craig A.; Roming, P.

    2013-04-01

    Flares in GRB light curves have been observed since shortly after the discovery of the first GRB afterglow. However, it was not until the launch of the Swift satellite that it was realized how common flares are, appearing in nearly 50% of all X-ray afterglows as observed by the XRT instrument. The majority of these observed X-ray flares are easily distinguishable by eye and have been measured to have up to as much fluence as the original prompt emission. Through studying large numbers of these X-ray flares it has been determined that they likely result from a distinct emission source different than that powering the GRB afterglow. These findings could be confirmed if similar results were found using flares in other energy ranges. However, until now, the UVOT instrument on Swift seemed to have observed far fewer flares in the uv/optical than were seen in the X-ray. This was primarily due to poor sampling and data being spread across multiple filters, but a new optimal co-addition and normalization of the UVOT data has allowed us to search for flares in the uv/optical that have previously gone undetected. Using a flare finding algorithm based on the Bayesian Information Criterion, we have analyzed the light curves in the Second UVOT GRB Catalog and present the finding of at least 118 unique flares detected in 68 GRB afterglows. We have also analyzed the XRT observed afterglows from the same time period using the flare finding algorithm, in an attempt to find smaller, previously unreported X-ray flares. Here we report our initial findings of this analysis on the X-ray afterglows and the number of flares detected. The cross-correlation of these two flare catalogs will better constrain the precise origin of flares, and also lead to a better understanding of the nature of the central engine, one of the likely origin candidates.

  4. DISCOVERY AND REDSHIFT OF AN OPTICAL AFTERGLOW IN 71 deg{sup 2}: iPTF13bxl AND GRB 130702A

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Leo P.; Brown, Duncan A. [LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Bradley Cenko, S.; Gehrels, Neil; McEnery, Julie [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Kasliwal, Mansi M.; Mulchaey, John [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St, Pasadena, CA 91101 (United States); Perley, Daniel A.; Kulkarni, S. R.; Bellm, Eric; Barlow, Tom; Cao, Yi; Horesh, Assaf [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Ofek, Eran O.; Arcavi, Iair [Benoziyo Center for Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Nugent, Peter E.; Bloom, Joshua S. [Department of Astronomy, University of California Berkeley, B-20 Hearst Field Annex 3411, Berkeley, CA 94720-3411 (United States); Corsi, Alessandra [George Washington University, Corcoran Hall, Washington, DC 20052 (United States); Frail, Dale A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Masci, Frank J., E-mail: lsinger@caltech.edu [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); and others

    2013-10-20

    We report the discovery of the optical afterglow of the γ-ray burst (GRB) 130702A, identified upon searching 71 deg{sup 2} surrounding the Fermi Gamma-ray Burst Monitor (GBM) localization. Discovered and characterized by the intermediate Palomar Transient Factory, iPTF13bxl is the first afterglow discovered solely based on a GBM localization. Real-time image subtraction, machine learning, human vetting, and rapid response multi-wavelength follow-up enabled us to quickly narrow a list of 27,004 optical transient candidates to a single afterglow-like source. Detection of a new, fading X-ray source by Swift and a radio counterpart by CARMA and the Very Large Array confirmed the association between iPTF13bxl and GRB 130702A. Spectroscopy with the Magellan and Palomar 200 inch telescopes showed the afterglow to be at a redshift of z = 0.145, placing GRB 130702A among the lowest redshift GRBs detected to date. The prompt γ-ray energy release and afterglow luminosity are intermediate between typical cosmological GRBs and nearby sub-luminous events such as GRB 980425 and GRB 060218. The bright afterglow and emerging supernova offer an opportunity for extensive panchromatic follow-up. Our discovery of iPTF13bxl demonstrates the first observational proof-of-principle for ∼10 Fermi-iPTF localizations annually. Furthermore, it represents an important step toward overcoming the challenges inherent in uncovering faint optical counterparts to comparably localized gravitational wave events in the Advanced LIGO and Virgo era.

  5. The Fermi-GBM Three-year X-Ray Burst Catalog

    Science.gov (United States)

    Jenke, P. A.; Linares, M.; Connaughton, V.; Beklen, E.; Camero-Arranz, A.; Finger, M. H.; Wilson-Hodge, C. A.

    2016-08-01

    The Fermi Gamma-ray Burst Monitor (GBM) is an all-sky gamma-ray monitor well known in the gamma-ray burst (GRB) community. Although GBM excels in detecting the hard, bright extragalactic GRBs, its sensitivity above 8 keV and its all-sky view make it an excellent instrument for the detection of rare, short-lived Galactic transients. In 2010 March, we initiated a systematic search for transients using GBM data. We conclude this phase of the search by presenting a three-year catalog of 1084 X-ray bursts. Using spectral analysis, location, and spatial distributions we classified the 1084 events into 752 thermonuclear X-ray bursts, 267 transient events from accretion flares and X-ray pulses, and 65 untriggered gamma-ray bursts. All thermonuclear bursts have peak blackbody temperatures broadly consistent with photospheric radius expansion (PRE) bursts. We find an average rate of 1.4 PRE bursts per day, integrated over all Galactic bursters within about 10 kpc. These include 33 and 10 bursts from the ultra-compact X-ray binaries 4U 0614+09 and 2S 0918-549, respectively. We discuss these recurrence times and estimate the total mass ejected by PRE bursts in our Galaxy.

  6. The Observer's Guide to the Gamma-Ray Burst-Supernova Connection

    Science.gov (United States)

    Cano, Z.

    2016-10-01

    In this review we present a progress report of the connection between long-duration gamma-ray bursts (GRBs) and their accompanying supernovae (SNe). The analysis is from the point of view of an observer, with much of the emphasis placed on how observations, and the modelling of observations, have constrained what we known about GRB-SNe. We discuss their photometric and spectroscopic properties, their role as cosmological probes, including their measured luminosity-decline relationships, and how they can be used to measure the Hubble constant. We present a statistical analysis of their bolometric properties, and use this to determine the properties of the "average" GRB-SNe: which has a kinetic energy of EK≈2.5×10^52 erg, an ejecta mass of Mej≈6 M⊙, a nickel mass of MNi≈0.4 M⊙, a peak photospheric velocity of vph≈21,000 km s-1, a peak bolometric luminosity of Lp≈1×10^43 erg s-1, and it reaches peak bolometric light in tp≈13 days. We discuss their geometry, consider the various physical processes that are thought to power the luminosity of GRB-SNe, and whether differences exist between GRB-SNe and the SNe associated with ultra-long duration GRBs. We discuss how observations of the environments of GRB-SNe further constrain the physical properties of their progenitor stars, and give an overview of the current theoretical paradigms of their suspected central engines. We also present an overview of the radioactively powered transients that have been photometrically associated with short-duration GRBs. We conclude the review by discussing what additional research is needed to further our understanding of GRB-SNe, in particular the role of binary-formation channels and the connection of GRB-SNe with superluminous SNe (abridged).

  7. The GRB-SLSN Connection: mis-aligned magnetars, weak jet emergence, and observational signatures

    Science.gov (United States)

    Margalit, Ben; Metzger, Brian D.; Thompson, Todd A.; Nicholl, Matt; Sukhbold, Tuguldur

    2018-01-01

    Multiple lines of evidence support a connection between hydrogen-poor superluminous supernovae (SLSNe) and long duration gamma-ray bursts (GRBs). Both classes of events require a powerful central energy source, usually attributed to a millisecond magnetar or an accreting black hole. The GRB-SLSN link raises several theoretical questions: What distinguishes the engines responsible for these different phenomena? Can a single engine power both a GRB and a luminous SN in the same event? We propose a unifying model for magnetar thermalization and jet formation: misalignment between the rotation (Ω) and magnetic dipole (μ) axes dissipates a fraction of the spindown power by reconnection in the striped equatorial wind, providing a guaranteed source of "thermal" emission to power the supernova. The remaining un-thermalized power energizes a relativistic jet. We show that even weak relativistic jets of luminosity ˜1046 erg s-1 can escape the expanding SN ejecta implying that escaping relativistic jets may accompany many SLSNe. We calculate the observational signature of these jets. We show that they may produce transient UV cocoon emission lasting a few hours when the jet breaks out of the ejecta surface. A longer-lived optical/UV signal may originate from a mildly-relativistic wind driven from the interface between the jet and the ejecta walls, which could explain the secondary early-time maximum observed in some SLSNe light curves, such as LSQ14bdq. Our scenario predicts a population of GRB from on-axis jets with extremely long durations, potentially similar to the population of "jetted tidal disruption events", in coincidence with a small subset of SLSNe.

  8. The Most Remote Gamma-Ray Burst

    Science.gov (United States)

    2000-10-01

    ESO Telescopes Observe "Lightning" in the Young Universe Summary Observations with telescopes at the ESO La Silla and Paranal observatories (Chile) have enabled an international team of astronomers [1] to measure the distance of a "gamma-ray burst", an extremely violent, cosmic explosion of still unknown physical origin. It turns out to be the most remote gamma-ray burst ever observed . The exceedingly powerful flash of light from this event was emitted when the Universe was very young, less than about 1,500 million years old, or only 10% of its present age. Travelling with the speed of light (300,000 km/sec) during 11,000 million years or more, the signal finally reached the Earth on January 31, 2000. The brightness of the exploding object was enormous, at least 1,000,000,000,000 times that of our Sun, or thousands of times that of the explosion of a single, heavy star (a "supernova"). The ESO Very Large Telescope (VLT) was also involved in trail-blazing observations of another gamma-ray burst in May 1999, cf. ESO PR 08/99. PR Photo 28a/00 : Sky field near GRB 000131 . PR Photo 28b/00 : The fading optical counterpart of GRB 000131 . PR Photo 28c/00 : VLT spectrum of GRB 000131 . What are Gamma-Ray Bursts? One of the currently most active fields of astrophysics is the study of the mysterious events known as "gamma-ray bursts" . They were first detected in the late 1960's by instruments on orbiting satellites. These short flashes of energetic gamma-rays last from less than a second to several minutes. Despite much effort, it is only within the last few years that it has become possible to locate the sites of some of these events (e.g. with the Beppo-Sax satellite ). Since the beginning of 1997, astronomers have identified about twenty optical sources in the sky that are associated with gamma-ray bursts. They have been found to be situated at extremely large (i.e., "cosmological") distances. This implies that the energy release during a gamma-ray burst within a few

  9. A Collapsar Model with Disk Wind: Implications for Supernovae Associated with Gamma-Ray Bursts

    Science.gov (United States)

    Hayakawa, Tomoyasu; Maeda, Keiichi

    2018-02-01

    We construct a simple but self-consistent collapsar model for gamma-ray bursts (GRBs) and SNe associated with GRBs (GRB-SNe). Our model includes a black hole, an accretion disk, and the envelope surrounding the central system. The evolutions of the different components are connected by the transfer of the mass and angular momentum. To address properties of the jet and the wind-driven SNe, we consider competition of the ram pressure from the infalling envelope and those from the jet and wind. The expected properties of the GRB jet and the wind-driven SN are investigated as a function of the progenitor mass and angular momentum. We find two conditions that should be satisfied if the wind-driven explosion is to explain the properties of the observed GRB-SNe: (1) the wind should be collimated at its base, and (2) it should not prevent further accretion even after the launch of the SN explosion. Under these conditions, some relations seen in the properties of the GRB-SNe could be reproduced by a sequence of different angular momentum in the progenitors. Only the model with the largest angular momentum could explain the observed (energetic) GRB-SNe, and we expect that the collapsar model can result in a wide variety of observational counterparts, mainly depending on the angular momentum of the progenitor star.

  10. UFFO/ Lomonosov: The Payload for the Observation of Early Photons from Gamma Ray Bursts

    Science.gov (United States)

    Park, I. H.; Panasyuk, M. I.; Reglero, V.; Chen, P.; Castro-Tirado, A. J.; Jeong, S.; Bogomolov, V.; Brandt, S.; Budtz-Jørgensen, C.; Chang, S.-H.; Chang, Y. Y.; Chen, C.-R.; Chen, C.-W.; Choi, H. S.; Connell, P.; Eyles, C.; Gaikov, G.; Garipov, G.; Huang, J.-J.; Huang, M.-H. A.; Jeong, H. M.; Kim, J. E.; Kim, M. B.; Kim, S.-W.; Lee, H. K.; Lee, J.; Lim, H.; Lin, C.-Y.; Liu, T.-C.; Nam, J. W.; Petrov, V.; Ripa, J.; Rodrigo, J. M.; Svertilov, S.; Wang, M.-Z.; Yashin, I.

    2018-02-01

    The payload of the UFFO (Ultra-Fast Flash Observatory)-pathfinder now onboard the Lomonosov spacecraft (hereafter UFFO/ Lomonosov) is a dedicated instrument for the observation of GRBs. Its primary aim is to capture the rise phase of the optical light curve, one of the least known aspects of GRBs. Fast response measurements of the optical emission of GRB will be made by a Slewing Mirror Telescope (SMT), a key instrument of the payload, which will open a new frontier in transient studies by probing the early optical rise of GRBs with a response time in seconds for the first time. The SMT employs a rapidly slewing mirror to redirect the optical axis of the telescope to a GRB position prior determined by the UFFO Burst Alert Telescope (UBAT), the other onboard instrument, for the observation and imaging of X-rays. UFFO/Lomonosov was launched successfully from Vostochny, Russia on April 28, 2016, and will begin GRB observations after completion of functional checks of the Lomonosov spacecraft. The concept of early GRB photon measurements with UFFO was reported in 2012. In this article, we will report in detail the first mission, UFFO/Lomonosov, for the rapid response to GRB observations.

  11. THE SWIFT GRB HOST GALAXY LEGACY SURVEY. II. REST-FRAME NEAR-IR LUMINOSITY DISTRIBUTION AND EVIDENCE FOR A NEAR-SOLAR METALLICITY THRESHOLD

    Energy Technology Data Exchange (ETDEWEB)

    Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Tanvir, N. R. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); Hjorth, J.; Fynbo, J. P. U.; Krühler, T. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 København Ø (Denmark); Laskar, T.; Berger, E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chary, R. [US Planck Data Center, MS220-6, Pasadena, CA 91125 (United States); Postigo, A. de Ugarte [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, E-18008, Granada (Spain); Levan, A. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Michałowski, M. J. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Schulze, S., E-mail: dperley@dark-cosmology.dk [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 7820436 Macul, Santiago 22 (Chile)

    2016-01-20

    We present rest-frame near-IR (NIR) luminosities and stellar masses for a large and uniformly selected population of gamma-ray burst (GRB) host galaxies using deep Spitzer Space Telescope imaging of 119 targets from the Swift GRB Host Galaxy Legacy Survey spanning 0.03 < z < 6.3, and we determine the effects of galaxy evolution and chemical enrichment on the mass distribution of the GRB host population across cosmic history. We find a rapid increase in the characteristic NIR host luminosity between z ∼ 0.5 and z ∼ 1.5, but little variation between z ∼ 1.5 and z ∼ 5. Dust-obscured GRBs dominate the massive host population but are only rarely seen associated with low-mass hosts, indicating that massive star-forming galaxies are universally and (to some extent) homogeneously dusty at high redshift while low-mass star-forming galaxies retain little dust in their interstellar medium. Comparing our luminosity distributions with field surveys and measurements of the high-z mass–metallicity relation, our results have good consistency with a model in which the GRB rate per unit star formation is constant in galaxies with gas-phase metallicity below approximately the solar value but heavily suppressed in more metal-rich environments. This model also naturally explains the previously reported “excess” in the GRB rate beyond z ≳ 2; metals stifle GRB production in most galaxies at z < 1.5 but have only minor impact at higher redshifts. The metallicity threshold we infer is much higher than predicted by single-star models and favors a binary progenitor. Our observations also constrain the fraction of cosmic star formation in low-mass galaxies undetectable to Spitzer to be small at z < 4.

  12. Gravitational waves and neutrinos from gamma-ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Fryer, Christopher Lee [Los Alamos National Laboratory

    2010-01-01

    Gamma-Ray Bursts (GRBs) are not only strong sources of gammaray emission, but also of neutrinos and gravitational waves (GWs). Observat.ions of these particles can provide a good deal of insight into the progenitor and engine behind these outbursts. But to do so, these particles must be detected . Here we review the different phases of GW and neutrino emission from a range of GRB progenitors, outlining the features and detectability of these phases. Unfortunately, except for a few cases, the detection of non-photon emission is very difficult. But the potential gain from any detection make understanding these sources critically important.

  13. A Large Catalog of Multiwavelength GRB Afterglows. I. Color Evolution and Its Physical Implication

    Science.gov (United States)

    Li, Liang; Wang, Yu; Shao, Lang; Wu, Xue-Feng; Huang, Yong-Feng; Zhang, Bing; Ryde, Felix; Yu, Hoi-Fung

    2018-02-01

    The spectrum of gamma-ray burst (GRB) afterglows can be studied with color indices. Here, we present a large comprehensive catalog of 70 GRBs with multiwavelength optical transient data on which we perform a systematic study to find the temporal evolution of color indices. We categorize them into two samples based on how well the color indices are evaluated. The Golden sample includes 25 bursts mostly observed by GROND, and the Silver sample includes 45 bursts observed by other telescopes. For the Golden sample, we find that 96% of the color indices do not vary over time. However, the color indices do vary during short periods in most bursts. The observed variations are consistent with effects of (i) the cooling frequency crossing the studied energy bands in a wind medium (43%) and in a constant-density medium (30%), (ii) early dust extinction (12%), (iii) transition from reverse-shock to forward-shock emission (5%), or (iv) an emergent SN emission (10%). We also study the evolutionary properties of the mean color indices for different emission episodes. We find that 86% of the color indices in the 70 bursts show constancy between consecutive ones. The color index variations occur mainly during the late GRB–SN bump, the flare, and early reverse-shock emission components. We further perform a statistical analysis of various observational properties and model parameters (spectral index {β }o{CI}, electron spectral indices p CI, etc.) using color indices. Overall, we conclude that ∼90% of colors are constant in time and can be accounted for by the simplest external forward-shock model, while the varying color indices call for more detailed modeling.

  14. A Neutron Star Binary Merger Model for GW170817/GRB 170817A/SSS17a

    Science.gov (United States)

    Murguia-Berthier, A.; Ramirez-Ruiz, E.; Kilpatrick, C. D.; Foley, R. J.; Kasen, D.; Lee, W. H.; Piro, A. L.; Coulter, D. A.; Drout, M. R.; Madore, B. F.; Shappee, B. J.; Pan, Y.-C.; Prochaska, J. X.; Rest, A.; Rojas-Bravo, C.; Siebert, M. R.; Simon, J. D.

    2017-10-01

    The merging neutron star gravitational-wave event GW170817 has been observed throughout the entire electromagnetic spectrum from radio waves to γ-rays. The resulting energetics, variability, and light curves are shown to be consistent with GW170817 originating from the merger of two neutron stars, in all likelihood followed by the prompt gravitational collapse of the massive remnant. The available γ-ray, X-ray, and radio data provide a clear probe for the nature of the relativistic ejecta and the non-thermal processes occurring within, while the ultraviolet, optical, and infrared emission are shown to probe material torn during the merger and subsequently heated by the decay of freshly synthesized r-process material. The simplest hypothesis, that the non-thermal emission is due to a low-luminosity short γ-ray burst (sGRB), seems to agree with the present data. While low-luminosity sGRBs might be common, we show here that the collective prompt and multi-wavelength observations are also consistent with a typical, powerful sGRB seen off-axis. Detailed follow-up observations are thus essential before we can place stringent constraints on the nature of the relativistic ejecta in GW170817.

  15. A Neutron Star Binary Merger Model for GW170817/GRB 170817A/SSS17a

    Energy Technology Data Exchange (ETDEWEB)

    Murguia-Berthier, A.; Ramirez-Ruiz, E.; Kilpatrick, C. D.; Foley, R. J.; Coulter, D. A.; Pan, Y.-C.; Prochaska, J. X.; Rojas-Bravo, C.; Siebert, M. R. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Kasen, D. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lee, W. H. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Circuito Exterior, C.U., A. Postal 70-264, 04510 Cd. de México, México (Mexico); Piro, A. L.; Drout, M. R.; Madore, B. F.; Shappee, B. J.; Simon, J. D. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Rest, A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2017-10-20

    The merging neutron star gravitational-wave event GW170817 has been observed throughout the entire electromagnetic spectrum from radio waves to γ -rays. The resulting energetics, variability, and light curves are shown to be consistent with GW170817 originating from the merger of two neutron stars, in all likelihood followed by the prompt gravitational collapse of the massive remnant. The available γ -ray, X-ray, and radio data provide a clear probe for the nature of the relativistic ejecta and the non-thermal processes occurring within, while the ultraviolet, optical, and infrared emission are shown to probe material torn during the merger and subsequently heated by the decay of freshly synthesized r -process material. The simplest hypothesis, that the non-thermal emission is due to a low-luminosity short γ -ray burst (sGRB), seems to agree with the present data. While low-luminosity sGRBs might be common, we show here that the collective prompt and multi-wavelength observations are also consistent with a typical, powerful sGRB seen off-axis. Detailed follow-up observations are thus essential before we can place stringent constraints on the nature of the relativistic ejecta in GW170817.

  16. Spectral analysis of the Crab Nebula and GRB 160530A with the Compton Spectrometer and Imager

    Science.gov (United States)

    Sleator, Clio; Boggs, Steven E.; Chiu, Jeng-Lun; Kierans, Carolyn; Lowell, Alexander; Tomsick, John; Zoglauer, Andreas; Amman, Mark; Chang, Hsiang-Kuang; Tseng, Chao-Hsiung; Yang, Chien-Ying; Lin, Chih H.; Jean, Pierre; von Ballmoos, Peter

    2017-08-01

    The Compton Spectrometer and Imager (COSI) is a balloon-borne soft gamma-ray (0.2-5 MeV) telescope designed to study astrophysical sources including gamma-ray bursts and compact objects. As a compact Compton telescope, COSI has inherent sensitivity to polarization. COSI utilizes 12 germanium detectors to provide excellent spectral resolution. On May 17, 2016, COSI was launched from Wanaka, New Zealand and completed a successful 46-day flight on NASA’s new Superpressure balloon. To perform spectral analysis with COSI, we have developed an accurate instrument model as required for the response matrix. With carefully chosen background regions, we are able to fit the background-subtracted spectra in XSPEC. We have developed a model of the atmosphere above COSI based on the NRLMSISE-00 Atmosphere Model to include in our spectral fits. The Crab and GRB 160530A are among the sources detected during the 2016 flight. We present spectral analysis of these two point sources. Our GRB 160530A results are consistent with those from other instruments, confirming COSI’s spectral abilities. Furthermore, we discuss prospects for measuring the Crab polarization with COSI.

  17. LIMITS ON OPTICAL POLARIZATION DURING THE PROMPT PHASE OF GRB 140430A

    Energy Technology Data Exchange (ETDEWEB)

    Kopac, D.; Mundell, C. G.; Arnold, D. M.; Steele, I. A.; Kobayashi, S.; Lamb, G. P.; Smith, R. J.; Virgili, F. J. [Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool, L3 5RF (United Kingdom); Japelj, J.; Gomboc, A. [Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana (Slovenia); Guidorzi, C.; Dichiara, S. [Department of Physics and Earth Sciences, University of Ferrara, via Saragat 1, I-44122, Ferrara (Italy); Harrison, R. M. [Department of Astrophysics, School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel); Melandri, A. [INAF—Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Italy); Castro-Tirado, A. J.; Gorosabel, J.; Sánchez-Ramírez, R.; Oates, S. R. [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomia s/n, E-18008 Granada (Spain); Järvinen, A. [AIP—Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Jelínek, M., E-mail: drejc.kopac@fmf.uni-lj.si [ASU-CAS—Astronomical Institute of the Czech Academy of Sciences, Fričova 298, 251 65 Ondřejov (Czech Republic)

    2015-11-01

    Gamma-ray burst GRB 140430A was detected by the Swift satellite and observed promptly with the imaging polarimeter RINGO3 mounted on the Liverpool Telescope, with observations beginning while the prompt γ-ray emission was still ongoing. In this paper, we present densely sampled (10-s temporal resolution) early optical light curves (LCs) in 3 optical bands and limits to the degree of optical polarization. We compare optical, X-ray, and gamma-ray properties and present an analysis of the optical emission during a period of high-energy flaring. The complex optical LC cannot be explained merely with a combination of forward and reverse shock emission from a standard external shock, implying additional contribution of emission from internal shock dissipation. We estimate an upper limit for time averaged optical polarization during the prompt phase to be as low as P < 12% (1σ). This suggests that the optical flares and early afterglow emission in this GRB are not highly polarized. Alternatively, time averaging could mask the presence of otherwise polarized components of distinct origin at different polarization position angles.

  18. A NARROW SHORT-DURATION GRB JET FROM A WIDE CENTRAL ENGINE

    Energy Technology Data Exchange (ETDEWEB)

    Duffell, Paul C.; Quataert, Eliot [Astronomy Department and Theoretical Astrophysics Center, University of California, Berkeley, CA 94720 (United States); MacFadyen, Andrew I., E-mail: duffell@berkeley.edu [Center for Cosmology and Particle Physics, New York University (United States)

    2015-11-01

    We use two-dimensional relativistic hydrodynamic numerical calculations to show that highly collimated relativistic jets can be produced in neutron star merger models of short-duration gamma-ray bursts (GRBs) without the need for a highly directed engine or a large net magnetic flux. Even a hydrodynamic engine generating a very wide sustained outflow on small scales can, in principle, produce a highly collimated relativistic jet, facilitated by a dense surrounding medium that provides a cocoon surrounding the jet core. An oblate geometry to the surrounding gas significantly enhances the collimation process. Previous numerical simulations have shown that the merger of two neutron stars produces an oblate, expanding cloud of dynamical ejecta. We show that this gas can efficiently collimate the central engine power much like the surrounding star does in long-duration GRB models. For typical short-duration GRB central engine parameters, we find jets with opening angles of an order of 10° in which a large fraction of the total outflow power of the central engine resides in highly relativistic material. These results predict large differences in the opening angles of outflows from binary neutron star mergers versus neutron star–black hole mergers.

  19. Short GRB and binary black hole standard sirens as a probe of dark energy

    Science.gov (United States)

    Dalal, Neal; Holz, Daniel E.; Hughes, Scott A.; Jain, Bhuvnesh

    2006-09-01

    Observations of the gravitational radiation from well-localized, inspiraling compact-object binaries can measure absolute source distances with high accuracy. When coupled with an independent determination of redshift through an electromagnetic counterpart, these standard sirens can provide an excellent probe of the expansion history of the Universe and the dark energy. Short γ-ray bursts, if produced by merging neutron star binaries, would be standard sirens with known redshifts detectable by ground-based gravitational wave (GW) networks such as Advanced Laser Interferometer Gravitational-wave Observatory (LIGO), Virgo, and Australian International Gravitational Observatory (AIGO). Depending upon the collimation of these GRBs, the measurement of about 10 GW-GRB events (corresponding to about 1 yr of observation with an advanced GW detector network and an all-sky GRB monitor) can measure the Hubble constant h to ˜2 3%. When combined with measurement of the absolute distance to the last scattering surface of the cosmic microwave background, this determines the dark energy equation of state parameter w to ˜9%. Similarly, supermassive binary black hole inspirals will be standard sirens detectable by Laser Interferometer Space Antenna (LISA). Depending upon the precise redshift distribution, ˜100 sources could measure w at the ˜4% level.

  20. Theoretical Description of GRB 160625B with Wind-to-ISM Transition and Implications for a Magnetized Outflow

    Science.gov (United States)

    Fraija, N.; Veres, P.; Zhang, B. B.; Barniol Duran, R.; Becerra, R. L.; Zhang, B.; Lee, W. H.; Watson, A. M.; Ordaz-Salazar, C.; Galvan-Gamez, A.

    2017-10-01

    GRB 160625B, one of the brightest bursts in recent years, was simultaneously observed by Fermi and Swift satellites, and ground-based optical telescopes in three different events separated by long periods of time. In this paper, the non-thermal multiwavelength observations of GRB 160625B are described and a transition phase from wind-type-like medium to interstellar medium (ISM) between the early (event II) and the late (event III) afterglow is found. The multiwavelength observations of the early afterglow are consistent with the afterglow evolution starting at ∼150 s in a stellar wind medium, whereas the observations of the late afterglow are consistent with the afterglow evolution in ISM. The wind-to-ISM transition is calculated to be at ∼ 8× {10}3 s when the jet has decelerated, at a distance of ∼1 pc from the progenitor. Using the standard external shock model, the synchrotron and synchrotron self-Compton emission from reverse shock is required to model the GeV γ-ray and optical observations in the early afterglow, and synchrotron radiation from the adiabatic forward shock to describe the X-ray and optical observations in the late afterglow. The derived values of the magnetization parameter, the slope of the fast decay of the optical flash, and the inferred magnetic fields suggest that Poynting flux-dominated jet models with arbitrary magnetization could account for the spectral properties exhibited by GRB 160625B.

  1. Steep extinction towards GRB 140506A reconciled from host galaxy observations: Evidence that steep reddening laws are local

    Science.gov (United States)

    Heintz, K. E.; Fynbo, J. P. U.; Jakobsson, P.; Krühler, T.; Christensen, L.; Watson, D.; Ledoux, C.; Noterdaeme, P.; Perley, D. A.; Rhodin, H.; Selsing, J.; Schulze, S.; Tanvir, N. R.; Møller, P.; Goldoni, P.; Xu, D.; Milvang-Jensen, B.

    2017-05-01

    We present the spectroscopic and photometric late-time follow-up of the host galaxy of the long-duration Swift γ-ray burst GRB 140506A at z = 0.889. The optical and near-infrared afterglow of this GRB had a peculiar spectral energy distribution (SED) with a strong flux-drop at 8000 Å (4000 Å rest-frame) suggesting an unusually steep extinction curve. By analysing the contribution and physical properties of the host galaxy, we here aim at providing additional information on the properties and origin of this steep, non-standard extinction. We find that the strong flux-drop in the GRB afterglow spectrum at dependent only, further confirming that this type of reddening is present only at very local scales and that it is solely a consequence of the circumburst environment. Based on observations carried out under programme IDs 095.D-0043(A, C) and 095.A-0045(A) with the X-shooter spectrograph and the FOcal Reducer and low dispersion Spectrograph 2 (FORS2) installed at the Cassegrain Very Large Telescope (VLT), Unit 2 - Kueyen and Unit 1 - Antu, respectively, operated by the European Southern Observatory (ESO) on Cerro Paranal, Chile.The reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A83

  2. Emission from accelerating jets in gamma-ray bursts: radiation-dominated flows with increasing mass outflow rates

    Science.gov (United States)

    Ryde, Felix; Lundman, Christoffer; Acuner, Zeynep

    2017-12-01

    We study the narrowest spectra expected from gamma-ray bursts. We present an analytical function for the spectrum that is emitted from the photosphere of a radiation-dominated flow that is under acceleration. This is the narrowest possible spectrum and it differs from a Planck function. We also present numerical spectra from photospheres occurring during the transition into the coasting phase of the flow. Using these spectral models, we reanalyse Fermi observations of GRB 100507 and GRB 101219, which both have been reported to have very narrow spectra. The bursts can be fitted by the spectral models: for GRB 101219 the spectrum is consistent with the photosphere occurring below or close to the saturation radius, while for GRB 100507 the photosphere position relative to the saturation radius can be determined as a function of time. In the latter case, we find that the photosphere initially occurs in the acceleration phase and thereafter transitions into the coasting phase. We also find that this transition occurs at the same time as the change in observed cooling behaviour: the temperature is close to constant before the break and decays after. We argue that such a transition can be explained by an increasing mass outflow rate. Both analysed bursts thus give strong evidence that the jets are (initially) radiation dominated.

  3. The host galaxy of GRB 990712

    DEFF Research Database (Denmark)

    Christensen, L.; Hjorth, J.; Gorosabel, J.

    2004-01-01

    galaxy types shows that the host is similar to a moderately kreddened starburst galaxy with a young stellar population. The estimated internal extinction in the host is A(V) = 0.15 +/- 0.1 and the star-formation rate (SFR) from the UV continuum is 1.3 +/- 0.3 M-circle dot yr(-1) (not corrected......We present a comprehensive study of the z = 0.43 host galaxy of GRB 990712, involving ground-based photometry, spectroscopy, and HST imaging. The broad-band UBVRIJHKs photometry is used to determine the global spectral energy distribution (SED) of the host galaxy. Comparison with that of known...... for the effects of extinction). Other galaxy template spectra than starbursts failed to reproduce the observed SED. We also present VLT spectra leading to the detection of Halpha from the GRB host galaxy. A SFR of 2.8 +/- 0.7 M-circle dot yr(-1) is inferred from the Halpha line flux, and the presence of a young...

  4. X-ray spectral components observed in the afterglow of GRB 130925A

    DEFF Research Database (Denmark)

    Bellm, Eric C.; Barrière, Nicolas M.; Bhalerao, Varun

    2014-01-01

    We have identified spectral features in the late-time X-ray afterglow of the unusually long, slow-decaying GRB 130925A using NuSTAR, Swift/X-Ray Telescope, and Chandra. A spectral component in addition to an absorbed power law is required at >4σ significance, and its spectral shape varies between...... two observation epochs at 2 × 105 and 106 s after the burst. Several models can fit this additional component, each with very different physical implications. A broad, resolved Gaussian absorption feature of several keV width improves the fit, but it is poorly constrained in the second epoch....... An additive blackbody or second power-law component provide better fits. Both are challenging to interpret: the blackbody radius is near the scale of a compact remnant (108 cm), while the second power-law component requires an unobserved high-energy cutoff in order to be consistent with the non...

  5. The First Pulse of the Extremely Bright GRB 130427A: A Test Lab for Synchrotron Shocks

    Science.gov (United States)

    Preece, R.; Burgess, J. Michael; von Kienlin, A.; Bhat, P. N.; Briggs, M. S.; Byrne, D.; Chaplin, V.; Cleveland, W.; Collazzi, A. C.; Connaughton, V.; Diekmann, A.; Fitzpatrick, G.; Foley, S.; Gibby, M.; Giles, M.; Goldstein, A.; Greiner, J.; Gruber, D.; Jenke, P.; Kippen, R. M.; Kouveliotou, C.; McBreen, S.; Meegan, C.; Paciesas, W. S.; Pelassa, V.; Tierney, D.; van der Horst, A. J.; Wilson-Hodge, C.; Xiong, S.; Younes, G.; Yu, H.-F.; Ackermann, M.; Ajello, M.; Axelsson, M.; Baldini, L.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Bonamente, E.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Desiante, R.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Favuzzi, C.; Franckowiak, A.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Godfrey, G.; Granot, J.; Grenier, I. A.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Iyyani, S.; Jogler, T.; Jóhannesson, G.; Kawano, T.; Knödlseder, J.; Kocevski, D.; Kuss, M.; Lande, J.; Larsson, J.; Larsson, S.; Latronico, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Mayer, M.; Mazziotta, M. N.; Michelson, P. F.; Mizuno, T.; Monzani, M. E.; Moretti, E.; Morselli, A.; Murgia, S.; Nemmen, R.; Nuss, E.; Nymark, T.; Ohno, M.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orienti, M.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Ritz, S.; Roth, M.; Ryde, F.; Sartori, A.; Scargle, J. D.; Schulz, A.; Sgrò, C.; Siskind, E. J.; Spandre, G.; Spinelli, P.; Suson, D. J.; Tajima, H.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Tibaldo, L.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Werner, M.; Winer, B. L.; Wood, K. S.; Zhu, S.

    2014-01-01

    Gamma-ray burst (GRB) 130427A is one of the most energetic GRBs ever observed. The initial pulse up to 2.5 seconds is possibly the brightest well-isolated pulse observed to date. A fine time resolution spectral analysis shows power-law decays of the peak energy from the onset of the pulse, consistent with models of internal synchrotron shock pulses. However, a strongly correlated power-law behavior is observed between the luminosity and the spectral peak energy that is inconsistent with curvature effects arising in the relativistic outflow. It is difficult for any of the existing models to account for all of the observed spectral and temporal behaviors simultaneously.

  6. The first pulse of the extremely bright GRB 130427A: a test lab for synchrotron shocks.

    Science.gov (United States)

    Preece, R; Burgess, J Michael; von Kienlin, A; Bhat, P N; Briggs, M S; Byrne, D; Chaplin, V; Cleveland, W; Collazzi, A C; Connaughton, V; Diekmann, A; Fitzpatrick, G; Foley, S; Gibby, M; Giles, M; Goldstein, A; Greiner, J; Gruber, D; Jenke, P; Kippen, R M; Kouveliotou, C; McBreen, S; Meegan, C; Paciesas, W S; Pelassa, V; Tierney, D; van der Horst, A J; Wilson-Hodge, C; Xiong, S; Younes, G; Yu, H-F; Ackermann, M; Ajello, M; Axelsson, M; Baldini, L; Barbiellini, G; Baring, M G; Bastieri, D; Bellazzini, R; Bissaldi, E; Bonamente, E; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cecchi, C; Charles, E; Chekhtman, A; Chiang, J; Chiaro, G; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; D'Ammando, F; de Angelis, A; de Palma, F; Dermer, C D; Desiante, R; Digel, S W; Di Venere, L; Drell, P S; Drlica-Wagner, A; Favuzzi, C; Franckowiak, A; Fukazawa, Y; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Godfrey, G; Granot, J; Grenier, I A; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Iyyani, S; Jogler, T; Jóhannesson, G; Kawano, T; Knödlseder, J; Kocevski, D; Kuss, M; Lande, J; Larsson, J; Larsson, S; Latronico, L; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Mayer, M; Mazziotta, M N; Michelson, P F; Mizuno, T; Monzani, M E; Moretti, E; Morselli, A; Murgia, S; Nemmen, R; Nuss, E; Nymark, T; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orienti, M; Paneque, D; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Porter, T A; Racusin, J L; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Ritz, S; Roth, M; Ryde, F; Sartori, A; Scargle, J D; Schulz, A; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Suson, D J; Tajima, H; Takahashi, H; Thayer, J G; Thayer, J B; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Werner, M; Winer, B L; Wood, K S; Zhu, S

    2014-01-03

    Gamma-ray burst (GRB) 130427A is one of the most energetic GRBs ever observed. The initial pulse up to 2.5 seconds is possibly the brightest well-isolated pulse observed to date. A fine time resolution spectral analysis shows power-law decays of the peak energy from the onset of the pulse, consistent with models of internal synchrotron shock pulses. However, a strongly correlated power-law behavior is observed between the luminosity and the spectral peak energy that is inconsistent with curvature effects arising in the relativistic outflow. It is difficult for any of the existing models to account for all of the observed spectral and temporal behaviors simultaneously.

  7. EXIST (Energetic X-ray Imaging Survey Telescope): The Next Large GRB Observatory

    Science.gov (United States)

    Fishman, G. J.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Studies have begun on the EXIST (Energetic X-ray Imaging Survey Telescope) Mission. It is planned as a very wide-field, sensitive coded aperture telescope with a sensitive area of the order of 6-8 m^2 and having a positional accuracy for GRBs (Gamma ray bursts) better than one arc-minute. EXIST will use SWIFT as a pathfinder mission; the findings of SWIFT will refine the scientific objectives of EXIST and will help to determine many of its design parameters. It would study early star formation and early galaxy formation at very high redshifts through observations of thousands of GRBs, their afterglows and environments. It is intended that the international GRB community will play as large role in EXIST through direct participation as well as with complementary observational programs, both space-based and ground-based. Some preliminary design features and capabilities of the EXIST Mission will be presented.

  8. Repeated Bifurcation of Relativistic Magnetic Pulse and Cosmic Gamma-Ray Bursts

    OpenAIRE

    Liang, Edison; Nishimura, Kazumi

    2003-01-01

    The diverse and complex light curves of gamma-ray bursts (GRBs) remain an outstanding astrophysical mystery. Here we report the results of 2-1/2-dimensional particle-in-cell (PIC) simulations of the relativistic expansion of magnetized electron-positron plasmas. When the simulation is carried to >150 light-crossing time of the initial plasma, the plasma pulse reproduces many of the GRB features. Remarkably, the plasma pulse bifurcates repeatedly, leading to a complex, multi-peak structure at ...

  9. The Maximum Isotropic Energy of Gamma-ray Bursts

    Science.gov (United States)

    Atteia, J.-L.; Heussaff, V.; Dezalay, J.-P.; Klotz, A.; Turpin, D.; Tsvetkova, A. E.; Frederiks, D. D.; Zolnierowski, Y.; Daigne, F.; Mochkovitch, R.

    2017-03-01

    The most energetic gamma-ray bursts (GRBs) are remarkable sources releasing huge amounts of energy on short timescales. Their prompt emission, which usually lasts a few seconds, is so bright that it is visible across the whole observable universe. Studying these extreme events may provide clues on the nature of GRB progenitors and on the physical processes at work in relativistic jets. In this paper, we study the bright end of the isotropic energy distribution of long GRBs. We use two samples of long GRBs with redshift detected by Fermi/GBM or Konus-Wind, two instruments that measure the spectral shape and the energetics of the prompt emission accurately. We focus on GRBs within a range of redshifts z = 1-5, a volume that contains a large number of energetic GRBs, and we propose a simple method to reconstruct the bright end of the GRB energy distribution from the observed one. We find that the GRB energy distribution cannot be described by a simple power law but requires a strong cutoff above 1{--}3× {10}54 erg. We attribute this feature to an intrinsic limit on the energy per unit of solid angle radiated by GRBs.

  10. The Correlation of Spectral Lag Evolution with Prompt Optical Emission in GRB 080319B

    Science.gov (United States)

    Stamatikos, Michael; Ukwatta, Tilan N.; Sakamoto, Takanori; Dhuga, Kalvir S.; Toma, Kenji; Pe'Er, Asaf; Mészáros, Peter; Band, David L.; Norris, Jay P.; Barthelmy, Scott D.; Gehrels, Neil

    2009-05-01

    We report on observations of correlated behavior between the prompt γ-ray and optical emission from GRB 080319B, which confirm that (i) they occurred within the same astrophysical source region and (ii) their respective radiation mechanisms were dynamically coupled. Our results, based upon a new cross-correlation function (CCF) methodology for determining the time-resolved spectral lag, are summarized as follows. First, the evolution in the arrival offset of prompt γ-ray photon counts between Swift-BAT 15-25 keV and 50-100 keV energy bands (intrinsic γ-ray spectral lag) appears to be anti-correlated with the arrival offset between prompt 15-350 keV γ-rays and the optical emission observed by TORTORA (extrinsic optical/γ-ray spectral lag), thus effectively partitioning the burst into two main episodes at ~T+28+/-2 sec. Second, the rise and decline of prompt optical emission at ~T+10+/-1 sec and ~T+50+/-1 sec, respectively, both coincide with discontinuities in the hard to soft evolution of the photon index for a power law fit to 15-150 keV Swift-BAT data at ~T+8+/-2 sec and ~T+48+/-1 sec. These spectral energy changes also coincide with intervals whose time-resolved spectral lag values are consistent with zero, at ~T+12+/-2 sec and ~T+50+/-2 sec. These results, which are robust across heuristic permutations of Swift-BAT energy channels and varying temporal bin resolution, have also been corroborated via independent analysis of Konus-Wind data. This potential discovery may provide the first observational evidence for an implicit connection between spectral lags and GRB emission mechanisms in the context of canonical fireball phenomenology. Future work includes exploring a subset of bursts with prompt optical emission to probe the unique or ubiquitous nature of this result.

  11. Fast-response optical and near-infrared GRB science with RATIR and RIMAS

    Science.gov (United States)

    Capone, John; RIMAS Collaboration, RATIR project Team

    2016-01-01

    As the Universe's most luminous transient events, long gamma-ray bursts (GRBs) are observed at cosmological distances. The afterglow emission generated by the burst's interaction with the surrounding medium presents the opportunity to study the local environment, as well as intervening systems. The transient nature of these events requires observations starting within minutes of the GRB to maximize the scientific opportunities.This dissertation work comprises efforts to advance the field with a new instrument, the Rapid Infrared Imager and Spectrograph (RIMAS). The optical design is complicated by the broad band coverage (0.97 to 2.39 microns) and the necessity of transmissive optics due to space and weight limitations on the telescope. Additionally, the entire optical system must be cooled to cryogenic temperatures to decrease the background from thermal emission. The completed instrument will be permanently installed on Lowell Observatory's new 4.3 meter Discovery Channel Telescope (DCT) located in Happy Jack, Arizona. The fast slew time of the telescope, combined with the instrument's ability to image in two bands simultaneously and switch to spectroscopic configurations in under a minute will allow observers to obtain photometric data within minutes and spectra within ~ ten minutes.In addition to instrumentation work on RIMAS's optics, early time photometric light curves have been studied primarily using data from the Reionization and Transients Infrared/Optical Project (RATIR). Early time photometric data in six optical and near-infrared (NIR) bands has allowed a study of color evolution in the early to late time SEDs. This study probes possible impacts of the GRB on the local medium as well as intrinsic changes in the afterglow emission.This work is made possible by the RATIR and RIMAS collaborations as well as financial support by the NSF.

  12. Significant and variable linear polarization during the prompt optical flash of GRB 160625B.

    Science.gov (United States)

    Troja, E; Lipunov, V M; Mundell, C G; Butler, N R; Watson, A M; Kobayashi, S; Cenko, S B; Marshall, F E; Ricci, R; Fruchter, A; Wieringa, M H; Gorbovskoy, E S; Kornilov, V; Kutyrev, A; Lee, W H; Toy, V; Tyurina, N V; Budnev, N M; Buckley, D A H; González, J; Gress, O; Horesh, A; Panasyuk, M I; Prochaska, J X; Ramirez-Ruiz, E; Lopez, R Rebolo; Richer, M G; Román-Zúñiga, C; Serra-Ricart, M; Yurkov, V; Gehrels, N

    2017-07-26

    Newly formed black holes of stellar mass launch collimated outflows (jets) of ionized matter that approach the speed of light. These outflows power prompt, brief and intense flashes of γ-rays known as γ-ray bursts (GRBs), followed by longer-lived afterglow radiation that is detected across the electromagnetic spectrum. Measuring the polarization of the observed GRB radiation provides a direct probe of the magnetic fields in the collimated jets. Rapid-response polarimetric observations of newly discovered bursts have probed the initial afterglow phase, and show that, minutes after the prompt emission has ended, the degree of linear polarization can be as high as 30 per cent-consistent with the idea that a stable, globally ordered magnetic field permeates the jet at large distances from the central source. By contrast, optical and γ-ray observations during the prompt phase have led to discordant and often controversial results, and no definitive conclusions have been reached regarding the origin of the prompt radiation or the configuration of the magnetic field. Here we report the detection of substantial (8.3 ± 0.8 per cent from our most conservative simulation), variable linear polarization of a prompt optical flash that accompanied the extremely energetic and long-lived prompt γ-ray emission from GRB 160625B. Our measurements probe the structure of the magnetic field at an early stage of the jet, closer to its central black hole, and show that the prompt phase is produced via fast-cooling synchrotron radiation in a large-scale magnetic field that is advected from the black hole and distorted by dissipation processes within the jet.

  13. Radio Flares and the Magnetic Field Structure in GRB Outflows

    Energy Technology Data Exchange (ETDEWEB)

    Granot, J.

    2005-01-05

    The magnetic field structure in GRB outflows is of great interest as it can provide valuable clues that can help pin down the mechanism responsible for the acceleration and collimation of GRB jets. The most promising way of probing it is through polarization measurements of the synchrotron emission from the GRB ejecta, which includes the gamma-ray emission and the reverse shock emission. Measuring polarization in gamma-rays with current instruments is extremely difficult: so far there is only one claim of detection (in GRB 021206) which despite the favorable conditions remains very controversial. The emission from the reverse shock that propagates into the ejecta as it is decelerated by the ambient medium peaks in the optical after tens of seconds (the ''optical flash'') and dominates the optical emission up to about ten minutes after the GRB. Unfortunately, no polarization measurements of this optical emission have been made to date. However, after the reverse shock finishes crossing the shell of GRB ejecta, the shocked ejecta cools adiabatically and radiates at lower and lower frequencies, peaking in the radio after {approx}1 day (the ''radio flare''). We use VLA data of radio flares from GRBs to constrain the polarization of this emission. We find only upper limits for both linear and circular polarization. Our best limits are for GRB 991216, for which we find 3{sigma} upper limits on the linear and circular polarization of 7% and 9%, respectively. These limits provide interesting constraints on existing GRB models. Specifically, our results are hard to reconcile with a predominantly ordered toroidal magnetic field in the GRB outflow together with a ''structured'' jet, where the energy per solid angle drops as the inverse square of the angle from the jet axis, that is expected in models where the outflow is Poynting flux dominated.

  14. GRB 170817A Associated with GW170817: Multi-frequency Observations and Modeling of Prompt Gamma-Ray Emission

    Science.gov (United States)

    Pozanenko, A. S.; Barkov, M. V.; Minaev, P. Yu.; Volnova, A. A.; Mazaeva, E. D.; Moskvitin, A. S.; Krugov, M. A.; Samodurov, V. A.; Loznikov, V. M.; Lyutikov, M.

    2018-01-01

    We present our observations of electromagnetic transients associated with GW170817/GRB 170817A using optical telescopes of Chilescope observatory and Big Scanning Antenna (BSA) of Pushchino Radio Astronomy Observatory at 110 MHz. The Chilescope observatory detected an optical transient of ∼19m on the third day in the outskirts of the galaxy NGC 4993; we continued observations following its rapid decrease. We put an upper limit of 1.5 × 104 Jy on any radio source with a duration of 10–60 s, which may be associated with GW170817/GRB 170817A. The prompt gamma-ray emission consists of two distinctive components—a hard short pulse delayed by ∼2 s with respect to the LIGO signal and softer thermal pulse with T ∼ 10 keV lasting for another ∼2 s. The appearance of a thermal component at the end of the burst is unusual for short GRBs. Both the hard and the soft components do not satisfy the Amati relation, making GRB 170817A distinctively different from other short GRBs. Based on gamma-ray and optical observations, we develop a model for the prompt high-energy emission associated with GRB 170817A. The merger of two neutron stars creates an accretion torus of ∼10‑2 M ⊙, which supplies the black hole with magnetic flux and confines the Blandford–Znajek-powered jet. We associate the hard prompt spike with the quasispherical breakout of the jet from the disk wind. As the jet plows through the wind with subrelativistic velocity, it creates a radiation-dominated shock that heats the wind material to tens of kiloelectron volts, producing the soft thermal component.

  15. THE HIGHLY ENERGETIC EXPANSION OF SN 2010bh ASSOCIATED WITH GRB 100316D

    Energy Technology Data Exchange (ETDEWEB)

    Bufano, Filomena [INAF-Osservatorio Astronomico di Catania, Via Santa Sofia, I-95123, Catania (Italy); Pian, Elena; Turatto, Massimo [INAF-Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, I-34143 Trieste (Italy); Sollerman, Jesper [Oskar Klein Centre, Department of Astronomy, AlbaNova, SE-106 91 Stockholm (Sweden); Benetti, Stefano; Valenti, Stefano; Cappellaro, Enrico; Mazzali, Paolo A. [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Pignata, Giuliano [Departamento de Ciencias Fisicas, Universidad Andres Bello, Av. Republica 252, Santiago (Chile); Covino, Stefano; D' Avanzo, Paolo; Vergani, Susanna D. [INAF-Osservatorio Astronomico di Brera, Via Emilio Bianchi 46, Merate I-23807 (Italy); Malesani, Daniele; Fynbo, Johan; Hjorth, Jens [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Della Valle, Massimo [INAF-Osservatorio Astronomico di Capodimonte, Salita Moiariello, 16, I-8013 Napoli (Italy); Reichart, Daniel E. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Campus Box 3255, Chapel Hill, NC 27599-3255 (United States); Starling, Rhaana L. C.; Wiersema, Klass [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Amati, Lorenzo [INAF-Istituto di Astrofisica Spaziale e Fisica cosmica, Via Gobetti 101, I-40129 Bologna (Italy); and others

    2012-07-01

    We present the spectroscopic and photometric evolution of the nearby (z = 0.059) spectroscopically confirmed Type Ic supernova, SN 2010bh, associated with the soft, long-duration gamma-ray burst (X-ray flash) GRB 100316D. Intensive follow-up observations of SN 2010bh were performed at the ESO Very Large Telescope (VLT) using the X-shooter and FORS2 instruments. Thanks to the detailed temporal coverage and the extended wavelength range (3000-24800 A), we obtained an unprecedentedly rich spectral sequence among the hypernovae, making SN 2010bh one of the best studied representatives of this SN class. We find that SN 2010bh has a more rapid rise to maximum brightness (8.0 {+-} 1.0 rest-frame days) and a fainter absolute peak luminosity (L{sub bol} Almost-Equal-To 3 Multiplication-Sign 10{sup 42} erg s{sup -1}) than previously observed SN events associated with GRBs. Our estimate of the ejected {sup 56}Ni mass is 0.12 {+-} 0.02 M{sub Sun }. From the broad spectral features, we measure expansion velocities up to 47,000 km s{sup -1}, higher than those of SNe 1998bw (GRB 980425) and 2006aj (GRB 060218). Helium absorption lines He I {lambda}5876 and He I 1.083 {mu}m, blueshifted by {approx}20,000-30,000 km s{sup -1} and {approx}28,000-38,000 km s{sup -1}, respectively, may be present in the optical spectra. However, the lack of coverage of the He I 2.058 {mu}m line prevents us from confirming such identifications. The nebular spectrum, taken at {approx}186 days after the explosion, shows a broad but faint [O I] emission at 6340 A. The light curve shape and photospheric expansion velocities of SN 2010bh suggest that we witnessed a highly energetic explosion with a small ejected mass (E{sub k} Almost-Equal-To 10{sup 52} erg and M{sub ej} Almost-Equal-To 3 M{sub Sun }). The observed properties of SN 2010bh further extend the heterogeneity of the class of GRB SNe.

  16. Design and Fabrication of Detector Module for UFFO Burst Alert & Trigger Telescope

    DEFF Research Database (Denmark)

    Jung, A.; Ahmad, S.; Ahn, K. -B.

    2011-01-01

    The Ultra-Fast Flash Observatory (UFFO) pathfinder is a space mission devoted to the measurement of Gamma-Ray Bursts (GRBs), especially their early light curves which will give crucial information on the progenitor stars and central engines of the GRBs. It consists of two instruments: the UFFO...... Burst Alert & Trigger telescope (UBAT) for the detection of GRB locations and the Slewing Mirror Telescope (SMT) for the UV/optical afterglow observations, upon triggering by UBAT. The UBAT employs a coded-mask {\\gamma}/X-ray camera with a wide field of view (FOV), and is comprised of three parts...

  17. A gamma-ray burst at a redshift of z approximately 8.2.

    Science.gov (United States)

    Tanvir, N R; Fox, D B; Levan, A J; Berger, E; Wiersema, K; Fynbo, J P U; Cucchiara, A; Krühler, T; Gehrels, N; Bloom, J S; Greiner, J; Evans, P A; Rol, E; Olivares, F; Hjorth, J; Jakobsson, P; Farihi, J; Willingale, R; Starling, R L C; Cenko, S B; Perley, D; Maund, J R; Duke, J; Wijers, R A M J; Adamson, A J; Allan, A; Bremer, M N; Burrows, D N; Castro-Tirado, A J; Cavanagh, B; de Ugarte Postigo, A; Dopita, M A; Fatkhullin, T A; Fruchter, A S; Foley, R J; Gorosabel, J; Kennea, J; Kerr, T; Klose, S; Krimm, H A; Komarova, V N; Kulkarni, S R; Moskvitin, A S; Mundell, C G; Naylor, T; Page, K; Penprase, B E; Perri, M; Podsiadlowski, P; Roth, K; Rutledge, R E; Sakamoto, T; Schady, P; Schmidt, B P; Soderberg, A M; Sollerman, J; Stephens, A W; Stratta, G; Ukwatta, T N; Watson, D; Westra, E; Wold, T; Wolf, C

    2009-10-29

    Long-duration gamma-ray bursts (GRBs) are thought to result from the explosions of certain massive stars, and some are bright enough that they should be observable out to redshifts of z > 20 using current technology. Hitherto, the highest redshift measured for any object was z = 6.96, for a Lyman-alpha emitting galaxy. Here we report that GRB 090423 lies at a redshift of z approximately 8.2, implying that massive stars were being produced and dying as GRBs approximately 630 Myr after the Big Bang. The burst also pinpoints the location of its host galaxy.

  18. A Jet Break in the X-ray Light Curve of Short GRB 111020A: Implications for Energetics and Rates

    Science.gov (United States)

    Fong, W.; Berger, E.; Margutti, R.; Zauderer, B. A.; Troja, E.; Czekala, I.; Chornock, R.; Gehrels, N.; Sakamoto, T.; Fox, D. B.; hide

    2012-01-01

    We present broadband observations of the afterglow and environment of the short GRB 111020A. An extensive X-ray light curve from Swift/XRT, XMM-Newton, and Chandra, spanning approx.100 s to 10 days after the burst, reveals a significant break at (delta)t approx. = 2 days with pre- and post-break decline rates of (alpha)X,1 approx. = -0.78 and (alpha)X,2 break, we infer a collimated outflow with an opening angle of (theta)j approx. = 3deg - 8deg. The resulting beaming-corrected gamma-ray (10-1000 keV band) and blast-wave kinetic energies are (2-3) x 10(exp 48) erg and (0.3-2) x 10(exp 49) erg, respectively, with the range depending on the unknown redshift of the burst. We report a radio afterglow limit of or approx.24.4 mag at 18 hr after the burst and reveal a potential host galaxy with i approx. = 24.3 mag. The subarcsecond localization from Chandra provides a precise offset of 0".80+/-0".11 (1(sigma))from this galaxy corresponding to an offset of 5.7 kpc for z = 0.5-1.5. We find a high excess neutral hydrogen column density of (7.5+/-2.0) x 10(exp 21)/sq cm (z = 0). Our observations demonstrate that a growing fraction of short gamma-ray bursts (GRBs) are collimated, which may lead to a true event rate of > or approx.100-1000 Gpc(sup -3)/yr, in good agreement with the NS-NS merger rate of approx. = 200-3000 Gpc(sup -3)/ yr. This consistency is promising for coincident short GRB-gravitational wave searches in the forthcoming era of Advanced LIGO/VIRGO.

  19. A search for Gamma Ray Burst Neutrinos in AMANDA

    Science.gov (United States)

    Duvoort, M. R.

    2009-11-01

    To date, no neutrinos with energies in or above the GeV range have been identified from astrophysical objects. The aim of the two analyses described in this dissertation is to observe high-energy muon neutrinos from Gamma Ray Bursts (GRBs). GRBs are distant sources, which were discovered by satellites recording their flashes of high-energy electromagnetic radiation. In some cases, the gamma-ray flashes are followed by lower energy radiation. GRBs are observed to have a well localized position and a short duration. This allows us to reduce the background in searching the data of the AMANDA/IceCube detector for a possible signal. As no detection of those highly energetic neutrinos has succeeded so far, we aim to analyze our data in a rather unbiased way and limit the dependence on theoretical modelling of the GRB engine. To this end we filter the data using parameters which depend only weakly on the neutrino energy spectrum (unlike a previous analysis in Achterberg et al. (2007)). Besides this, we allow for a possible time di erence between the arrival time of the prompt photon emission and the neutrino signal: our analyses are sensitive to signals arriving within one hour of the satellite trigger time (whereas previous analyses followed an approach which is only sensitive for signals within ten minutes centered around the arrival of the prompt -s (Achterberg et al. 2008)). The two separate analyses presented here di er in one important aspect: in the analysis of the specific burst GRB080319B we analyze the data of one single GRB event for the presence of neutrinos from this GRB. The central assumption is that this ”brightest GRB observed to date” might produce a high-energy neutrino flux which is significantly higher than the average GRB neutrino flux. (This approach was also followed in the analysis of the data of GRB030329 (Stamatikos & et al. 2005).) The second analysis we present is based on stacking the data of multiple GRBs (with average properties) to

  20. Starlight beneath the waves : in search of TeV photon emission from Gamma-Ray Bursts with the ANTARES Neutrino Telescope

    NARCIS (Netherlands)

    Astraatmadja, Tri Laksmana

    2013-01-01

    At any given time, cosmic rays constantly shower the Earth from all direction. The origin of cosmic rays is still a mystery as their paths are deflected by magnetic fields to random directions. The most likely sources of cosmic rays are Gamma-Ray Bursts (GRB). As the most energetic events known in

  1. Polarization measurements of gamma ray bursts and axion like particles

    CERN Document Server

    Rubbia, André

    2008-01-01

    A polarized gamma ray emission spread over a sufficiently wide energy band from a strongly magnetized astrophysical object like gamma ray bursts (GRBs) offers an opportunity to test the hypothesis of axion like particles (ALPs). Based on evidences of polarized gamma ray emission detected in several gamma ray bursts we estimated the level of ALPs induced dichroism, which could take place in the magnetized fireball environment of a GRB. This allows to estimate the sensitivity of polarization measurements of GRBs to the ALP-photon coupling. This sensitivity $\\gag\\le 2.2\\cdot 10^{-11} {\\rm GeV^{-1}}$ calculated for the ALP mass $m_a=10^{-3}~{\\rm eV}$ and MeV energy spread of gamma ray emission is competitive with the sensitivity of CAST and becomes even stronger for lower ALPs masses.

  2. The Central Engine of GRB 130831A and the Energy Breakdown of a Relativistic Explosion

    Science.gov (United States)

    Pasquale, M. De; Oates, S. R.; Racusin, J. L.; Kann, D. A.; Zhang, B.; Pozanenko, A.; Volnova, A.A.; Trotter, A.; Frank, N.; Cucchiara, A.

    2014-01-01

    Gamma-ray bursts (GRBs) are the most luminous explosions in the Universe, yet the nature and physical properties of their energy sources are far from understood. Very important clues, however, can be inferred by studying the afterglows of these events. We present optical and X-ray observations of GRB 130831A obtained by Swift, Chandra, Skynet, Reionization And Transients Infra-Red camera, Maidanak, International Scientific Optical-Observation Network, Nordic Optical Telescope, Liverpool Telescope and Gran Telescopio Canarias. This burst shows a steep drop in the X-ray light curve at asymptotically equal to 10(exp 5) s after the trigger, with a power-law decay index of alpha that is approximately 6. Such a rare behaviour cannot be explained by the standard forward shock (FS) model and indicates that the emission, up to the fast decay at 10(exp 5) s, must be of internal origin, produced by a dissipation process within an ultrarelativistic outflow. We propose that the source of such an outflow, which must produce the X-ray flux for an asymptotically equal to 1 d in the cosmological rest frame, is a newly born magnetar or black hole. After the drop, the faint X-ray afterglow continues with a much shallower decay. The optical emission, on the other hand, shows no break across the X-ray steep decrease, and the late-time decays of both the X-ray and optical are consistent. Using both the X-ray and optical data, we show that the emission after an asymptotically equal to 10(exp 5) scan be explained well by the FS model. We model our data to derive the kinetic energy of the ejecta and thus measure the efficiency of the central engine of a GRB with emission of internal origin visible for a long time. Furthermore, we break down the energy budget of this GRB into the prompt emission, the late internal dissipation, the kinetic energy of the relativistic ejecta,and compare it with the energy of the associated supernova, SN 2013 fu.

  3. The Fermi-GBM Gamma-Ray Burst Catalogs: The First Six Years

    Directory of Open Access Journals (Sweden)

    Bissaldi E.

    2017-01-01

    Full Text Available Since its launch in 2008, the Fermi Gamma-ray Burst Monitor (GBM has triggered and located on average approximately two gamma-ray bursts (GRBs every three days. Here we present the main results from the latest two catalogs provided by the Fermi-GBM science team, namely the third GBM GRB catalog [1] and the first GBM time-resolved spectral catalog [2]. The intention of the GBM GRB catalog is to provide information to the community on the most important observables of the GBM detected bursts. It comprises 1405 triggers identified as GRBs. For each one, location and main characteristics of the prompt emission, the duration, the peak flux and the fluence are derived. The GBM time-resolved spectral catalog presents high-quality time-resolved spectral analysis with high temporal and spectral resolution of the brightest bursts observed by Fermi GBM in a shorter period than the former catalog, namely four years. It comprises 1491 spectra from 81 bursts. Distributions of parameters, statistics of the parameter populations, parameter-parameter and parameter-uncertainty correlations, and their exact values are obtained.

  4. Measuring Cosmological Parameters with Gamma Ray Bursts

    Science.gov (United States)

    Amati, Lorenzo; Della Valle, Massimo

    2013-12-01

    In a few dozen seconds, gamma ray bursts (GRBs) emit up to 1054 erg in terms of an equivalent isotropically radiated energy Eiso, so they can be observed up to z 10. Thus, these phenomena appear to be very promising tools to describe the expansion rate history of the universe. Here, we review the use of the Ep,i-Eiso correlation of GRBs to measure the cosmological density parameter ΩM. We show that the present data set of GRBs, coupled with the assumption that we live in a flat universe, can provide independent evidence, from other probes, that ΩM 0.3. We show that current (e.g. Swift, Fermi/GBM, Konus-WIND) and forthcoming gamma ray burst (GRB) experiments (e.g. CALET/GBM, SVOM, Lomonosov/UFFO, LOFT/WFM) will allow us to constrain ΩM with an accuracy comparable to that currently exhibited by Type Ia supernovae (SNe-Ia) and to study the properties of dark energy and their evolution with time.

  5. Gamma-ray bursts as cosmological probes

    Science.gov (United States)

    Vergani, S. D.

    2013-11-01

    Gamma-ray bursts (GRBs) are short, intense burstsof gamma-rays which during seconds to minutes outshine all other sources of gamma-ray emission in the sky.Following the prompt gamma-ray emission, an `afterglow' of emission from the X-ray range to radio wavelengthspersists up to months after the initial burst. The association of the class of long GRBs with the explosion of broad-line type Ic SNe GRBs allow galaxies to be selected independently oftheir emission properties (independently of dust obscuration and, uniquely, independently of their brightnesses atany wavelength) and they also permit the study of the gas in the interstellar medium (ISM) systematically and at anyredshift by the absorption lines present in the afterglow spectra. Moreover, the fading nature of GRBs and theprecise localization of the afterglow allow a detailed investigation of the emission properties of the GRB hostgalaxy once the afterglow has vanished. GRBs therefore constitute a unique tool to understand the link between theproperties of the ISM in the galaxy and the star formation activity, and this at any redshift. This is a unique wayto reveal the physical processes that trigger galaxy formation. The SVOM space mission project is designed to improve the use GRBs as cosmological probes.

  6. Gamma-Ray Bursts: Characteristics and Prospects

    Science.gov (United States)

    Azzam, W. J.; Zitouni, H.; Guessoum, N.

    2017-06-01

    Gamma-ray bursts (GRBs) are the most powerful explosions in the universe. They have remained the object of intense research ever since their discovery was declassified in the early 1970s. Several space-borne missions have been dedicated to their study, including the Compton Gamma-Ray Burst Observatory (CGRO) in the 1990s and the current Swift and Fermi satellites. However, despite several decades of focused research, the precise mechanisms behind these enigmatic explosions have not been fully established. In the first part of this paper, we review what is currently known about GRBs. This includes: GRB light-curves and spectra; the different progenitor models, i.e., the "collapsar" and "merger" models; and the afterglow characteristics, including external shocks and the surrounding medium. In the second part of the paper, we present our work, which focuses on utilizing GRBs as cosmological probes. GRBs are ideal cosmological tools, because they have been observed to great distances (redshifts up to z = 9.4) and their radiation is unencumbered by any intervening dust. Although GRBs are not standard candles, the discovery of several energy and luminosity correlations, like the Amati relation which correlates the intrinsic spectral peak energy, Ep,i to the equivalent isotropic energy, Eiso , has ushered in a new era in which GRBs are used to investigate cosmological issues like the star formation rate and the value of the matter-density parameter, ΩM.

  7. Constraints on millisecond magnetars as the engines of prompt emission in gamma-ray bursts

    Science.gov (United States)

    Beniamini, Paz; Giannios, Dimitrios; Metzger, Brian D.

    2017-12-01

    We examine millisecond magnetars as central engines of gamma-ray bursts' (GRBs) prompt emission. Using the protomagnetar wind model of Metzger et al., we estimate the temporal evolution of the magnetization and power injection at the base of the GRB jet and apply these to different prompt emission models to make predictions for the GRB energetics, spectra and light curves. We investigate both shock and magnetic reconnection models for the particle acceleration, as well as the effects of energy dissipation across optically thick and thin regions of the jet. The magnetization at the base of the jet, σ0, is the main parameter driving the GRB evolution in the magnetar model and the emission is typically released for 100 ≲σ0 ≲3000. Given the rapid increase in σ0 as the protomagnetar cools and its neutrino-driven mass loss subsides, the GRB duration is typically limited to ≲100 s. This low baryon loading at late times challenges magnetar models for ultralong GRBs, though black hole models likely run into similar difficulties without substantial entrainment from the jet walls. The maximum radiated gamma-ray energy is ≲5 × 1051 erg, significantly less than the magnetar's total initial rotational energy and in strong tension with the high end of the observed GRB energy distribution. However, the gradual magnetic dissipation model applied to a magnetar central engine, naturally explains several key observables of typical GRBs, including energetics, durations, stable peak energies, spectral slopes and a hard to soft evolution during the burst.

  8. Identifying gamma-ray bursts at very high redshifts

    Science.gov (United States)

    Tanvir, Nial

    2017-08-01

    Gamma-ray bursts are bright enough to be seen to very great distances and their afterglows can provide redshifts and positions for their host galaxies, and in some cases details of the ISM and the IGM close to the burst, irrespective of the host magnitude itself. Thus GRBs, despite their small numbers, offer a unique and powerful tracer of early star formation and the galaxy populations in the era of reionization. Our efforts to identify high-z GRBs have been rewarded with the discoveries of GRB 090423 and GRB 120923A at spectroscopic redshifts of 8.2 and 7.8 respectively. However, it remains the case that some good candidate high-z GRBs cannot be followed up quickly or deeply enough with ground-based IR spectroscopy, and indeed for others the Ly-alpha break may fall in regions of the IR spectrum difficult to access from the ground. GRB 090429B is an example, which had a photo-z of 9.4, but for which spectroscopy was curtailed due to bad weather. WFC3/IR on HST can obtain redshifts based on the location of the Ly-alpha break via slitless grism spectroscopy to considerably deeper limits (and hence later times) than is possible from the ground, thus offering a solution to this problem. This proposal aims to continue to build the sample of z>7 GRBs by obtaining spectroscopy for up to two candidates for which photometry suggests a very high redshift, but where the redshift could not be secured from the ground. This will provide an important legacy of host galaxy targets with known redshifts for future studies with JWST. The low rate of z>7 GRBs leads us to request a long-term ToO program, spanning cycles 25 and 26.

  9. Gamma-ray Burst and Gravitational Wave Counterpart Prospects in the MeV Band with AMEGO

    Science.gov (United States)

    Racusin, Judith; AMEGO Team

    2018-01-01

    The All-sky Medium Energy Gamma-ray Observatory (AMEGO) Probe mission concept is uniquely suited to address open questions in Gamma-ray Burst (GRB) science including the search for counterparts to gravitational-wave events. AMEGO is a wide field of view instrument (~60 deg radius) with a broad energy range (~200 keV to >10 GeV) and excellent continuum sensitivity. The sensitivity improvement will allow for probes of GRB emission mechanisms and jet composition in ways that have not been accessible with previous instruments. Potential for polarization measurement may also have profound impacts on the understanding of GRB mechanisms. AMEGO will also be an excellent facility for the search for gravitational wave counterparts to binary mergers including at least one neutron star, which are thought to produce short duration GRBs. This poster will describe how the AMEGO will advance these fields.

  10. Gamma-ray Burst and Gravitational Wave Counterpart Prospects in the MeV Band with AMEGO

    Science.gov (United States)

    Racusin, Judith L.

    2017-08-01

    The All-sky Medium Energy Gamma-ray Observatory (AMEGO) Probe mission concept is uniquely suited to address open questions in Gamma-ray Burst (GRB) science including the search for counterparts to gravitational-wave events. AMEGO is a wide field of view instrument (~60 deg radius) with a broad energy range (~200 keV to >10 GeV) and excellent continuum sensitivity. The sensitivity improvement will allow for probes of GRB emission mechanisms and jet composition in ways that have not been accessible with previous instruments. Potential for polarization measurement may also have profound impacts on the understanding of GRB mechanisms. AMEGO will also be an excellent facility for the search for gravitational wave counterparts to binary mergers including at least one neutron star, which are thought to produce short duration GRBs. This poster will describe how the AMEGO will advance these fields.

  11. Gas Kinematics in GRB Host Galaxies

    DEFF Research Database (Denmark)

    Arabsalmani, Maryam

    The star formation history of the Universe is one of the most complex and interesting chapters in our quest to understand galaxy formation and evolution. Gamma Ray Bursts (GRBs) are beacons of actively star forming galaxies from redshifts near zero back to the cosmic dawn. In addition, they provide...

  12. The Spitzer/Swift Gamma-Ray Burst Host Galaxy Legacy Survey

    Science.gov (United States)

    Perley, Daniel; Berger, Edo; Butler, Nathaniel; Cenko, S. Bradley; Chary, Ranga-Ram; Cucchiara, Antonino; Ellis, Richard; Fong, Wen-fai; Fruchter, Andrew; Fynbo, Johan; Gehrels, Neil; Graham, John; Greiner, Jochen; Hjorth, Jens; Hunt, Leslie; Jakobsson, Pall; Kruehler, Thomas; Laskar, Tanmoy; Le Floc'h, Emerich; Levan, Andrew; Levesque, Emily; Littlejohns, Owen; Malesani, Daniele; Michalowski, Michal; Milvang-Jensen, Bo; Prochaska, J. Xavier; Salvaterra, Ruben; Schulze, Steve; Schady, Patricia; Tanvir, Nial; de Ugarte Postigo, Antonio; Vergani, Susanna; Watson, Darach

    2016-08-01

    Long-duration gamma-ray bursts act as beacons to the sites of star-formation in the distant universe. GRBs reveal galaxies too faint and star-forming regions too dusty to characterize in detail using any other method, and provide a powerful independent constraint on the evolution of the cosmic star-formation rate density at high-redshift. However, a full understanding of the GRB phenomenon and its relation to cosmic star-formation requires connecting the observations obtained from GRBs to the properties of the galaxies hosting them. The large majority of GRBs originate at moderate to high redshift (z>1) and Spitzer has proven crucial for understanding the host population, given its unique ability to observe the rest-frame NIR and its unrivaled sensitivity and efficiency. We propose to complete a comprehensive public legacy survey of the Swift GRB host population to build on our earlier successes and push beyond the statistical limits of previous, smaller efforts. Our survey will enable a diverse range of GRB and galaxy science including: (1) to quantitatively and robustly map the connection between GRBs and cosmic star-formation to constrain the GRB progenitor and calibrate GRB rate-based measurements of the high-z cosmic star-formation rate; (2) to constrain the luminosity function of star-forming galaxies at the faint end and at high redshift; (3) to understand how the ISM properties seen in absorption in high-redshift galaxies unveiled by GRBs - metallicity, dust column, dust properties - connect to global properties of the host galaxies such as mass and age. Building on a decade of experience at both observatories, our observations will create an enduring joint Swift-Spitzer legacy sample - providing the definitive resource with which to examine all aspects of the GRB/galaxy connection for years to come and setting the stage for intensive JWST follow-up of the most interesting sources from our sample.

  13. Bounds on spectral dispersion from Fermi-detected gamma ray bursts.

    Science.gov (United States)

    Nemiroff, Robert J; Connolly, Ryan; Holmes, Justin; Kostinski, Alexander B

    2012-06-08

    Data from four Fermi-detected gamma-ray bursts (GRBs) are used to set limits on spectral dispersion of electromagnetic radiation across the Universe. The analysis focuses on photons recorded above 1 GeV for Fermi-detected GRB 080916C, GRB 090510A, GRB 090902B, and GRB 090926A because these high-energy photons yield the tightest bounds on light dispersion. It is shown that significant photon bunches in GRB 090510A, possibly classic GRB pulses, are remarkably brief, an order of magnitude shorter in duration than any previously claimed temporal feature in this energy range. Although conceivably a>3σ fluctuation, when taken at face value, these pulses lead to an order of magnitude tightening of prior limits on photon dispersion. Bound of Δc/c<6.94×10(-21) is thus obtained. Given generic dispersion relations where the time delay is proportional to the photon energy to the first or second power, the most stringent limits on the dispersion strengths were k1<1.61×10(-5)  sec Gpc(-1) GeV(-1) and k2<3.57×10(-7)  sec Gpc(-1) GeV(-2), respectively. Such limits constrain dispersive effects created, for example, by the spacetime foam of quantum gravity. In the context of quantum gravity, our bounds set M1c(2) greater than 525 times the Planck mass, suggesting that spacetime is smooth at energies near and slightly above the Planck mass.

  14. Possible role of gamma ray bursts on life extinction in the universe.

    Science.gov (United States)

    Piran, Tsvi; Jimenez, Raul

    2014-12-05

    As a copious source of gamma rays, a nearby galactic gamma ray burst (GRB) can be a threat to life. Using recent determinations of the rate of GRBs, their luminosity function, and properties of their host galaxies, we estimate the probability that a life-threatening (lethal) GRB would take place. Amongst the different kinds of GRBs, long ones are most dangerous. There is a very good chance (but no certainty) that at least one lethal GRB took place during the past 5 gigayears close enough to Earth as to significantly damage life. There is a 50% chance that such a lethal GRB took place during the last 500×10^{6}  years, causing one of the major mass extinction events. Assuming that a similar level of radiation would be lethal to life on other exoplanets hosting life, we explore the potential effects of GRBs to life elsewhere in the Galaxy and the Universe. We find that the probability of a lethal GRB is much larger in the inner Milky Way (95% within a radius of 4 kpc from the galactic center), making it inhospitable to life. Only at the outskirts of the Milky Way, at more than 10 kpc from the galactic center, does this probability drop below 50%. When considering the Universe as a whole, the safest environments for life (similar to the one on Earth) are the lowest density regions in the outskirts of large galaxies, and life can exist in only ≈10% of galaxies. Remarkably, a cosmological constant is essential for such systems to exist. Furthermore, because of both the higher GRB rate and galaxies being smaller, life as it exists on Earth could not take place at z>0.5. Early life forms must have been much more resilient to radiation.

  15. Adaptive Optical Burst Switching

    OpenAIRE

    Bonald, Thomas; Indre, Raluca-Maria; Oueslati, Sara

    2012-01-01

    International audience; We propose a modified version of Optical Burst Switching (OBS) that adapts the size of switched data units to the network load. Specifically, we propose a two-way reservation OBS scheme in which every active source-destination pair attempts to reserve a lightpath and for every successful reservation, transmits an optical burst whose size is proportional to the number of active data flows. We refer to this technique as Adaptive Optical Burst Switching. We prove that the...

  16. Time evolution of the spectral break in the high-energy extra component of GRB 090926A

    Science.gov (United States)

    Yassine, M.; Piron, F.; Mochkovitch, R.; Daigne, F.

    2017-10-01

    Aims: The prompt light curve of the long GRB 090926A reveals a short pulse 10 s after the beginning of the burst emission, which has been observed by the Fermi observatory from the keV to the GeV energy domain. During this bright spike, the high-energy emission from GRB 090926A underwent a sudden hardening above 10 MeV in the form of an additional power-law component exhibiting a spectral attenuation at a few hundreds of MeV. This high-energy break has been previously interpreted in terms of gamma-ray opacity to pair creation and has been used to estimate the bulk Lorentz factor of the outflow. In this article, we report on a new time-resolved analysis of the GRB 090926A broadband spectrum during its prompt phase and on its interpretation in the framework of prompt emission models. Methods: We characterized the emission from GRB 090926A at the highest energies with Pass 8 data from the Fermi Large Area Telescope (LAT), which offer a greater sensitivity than any data set used in previous studies of this burst, particularly in the 30-100 MeV energy band. Then, we combined the LAT data with the Fermi Gamma-ray Burst Monitor (GBM) in joint spectral fits to characterize the time evolution of the broadband spectrum from keV to GeV energies. We paid careful attention to the systematic effects that arise from the uncertainties on the LAT response. Finally, we performed a temporal analysis of the light curves and we computed the variability timescales from keV to GeV energies during and after the bright spike. Results: Our analysis confirms and better constrains the spectral break, which has been previously reported during the bright spike. Furthermore, it reveals that the spectral attenuation persists at later times with an increase of the break characteristic energy up to the GeV domain until the end of the prompt phase. We discuss these results in terms of keV-MeV synchroton radiation of electrons accelerated during the dissipation of the jet energy and inverse Compton

  17. THE PEAK ENERGY-DURATION CORRELATION AND POSSIBLE IMPLICATIONS ON GAMMA RAY BURST PROGENITOR

    Directory of Open Access Journals (Sweden)

    Heon-Young Chang

    2006-09-01

    Full Text Available We investigate the correlation between the peak energy and the burst duration using available long GRB data with known redshift, whose circumburst medium type has been suggested via afterglow light curve modeling. We find that the peak energy and the burst duration of the observed GRBs are correlated both in the observer frame and in the GRB rest frame. For our total sample we obtain, for instance, the Spearman rank-order correlation values sim 0.75 and sim 0.65 with the chance probabilities P=1.0 times 10^{-3} and P=6.0 times 10^{-3} in the observer frame and in the GRB rest frame, respectively. We note that taking the effects of the expanding universe into account reduces the value a bit. We further attempt to separate our GRB sample into the ``ISM'' GRBs and the ``WIND'' GRBs according to environment models inferred from the afterglow light curves and apply statistical tests, as one may expect that clues on the progenitor of GRBs can be deduced directly from prompt emission properties other than from the ambient environment surrounding GRBs. We find that two subsamples of GRBs show different correlation coefficients. That is, the Spearman rank-order correlation are sim 0.65 and sim 0.57 for the ``ISM'' GRBs and ``WIND'' GRBs, respectively, after taking the effects of the expanding universe into account. It is not yet, however, statistically very much significant that the GRBS in two types of circumburst media show statistically characteristic behaviors, from which one may conclude that all the long bursts are not originated from a single progenitor population. A larger size of data is required to increase the statistical significance.

  18. What did we learn from gamma-ray burst 080319B?

    Energy Technology Data Exchange (ETDEWEB)

    Panaitescu, Alin [Los Alamos National Laboratory; Kumar, Pawan [UNIV OF TEXAS

    2008-01-01

    The optical and gamma-ray observations of GRB 080319B allow us to provide a broad-brush picture for this remarkable burst. The data indicate that the prompt optical and gamma-ray photons were possibly produced at the same location but by different radiation processes: synchrotron and synchrotron self-Compton, respectively (but we note that this interpretation of the gamma-ray data faces some difficulties). We find that the burst prompt optical emission was produced at a distance of 10{sup 16.3} cm by an ultrarelativistic source moving at Lorentz factor of -500. A straightforward inference is that about 10 times more energy must have been radiated at tens of GeV than that released at 1 MeV. Assuming that the GRB outflow was baryonic and the gamma-ray source was shock-heated plasma, the collimation-corrected kinetic energy of the jet powering GRB 080319B was larger than 10{sup 52.3} erg. The decay of the early afterglow optical emission (up to 1 ks) is too fast to be attributed to the reverse-shock crossing the GRB ejecta but is consistent with the expectations for the 'large-angle' emission released during the burst. The pure power-law decay of the optical afterglow flux from 1 ks to 10 d is most naturally identified with the (synchrotron) emission from the shock propagating into a wind-like medium. However, the X-ray afterglow requires a departure from the standard blast-wave model.

  19. Chandra Helps Put The Pieces Together On Gamma-Ray Bursts

    Science.gov (United States)

    2000-11-01

    NASA’s Chandra X-ray Observatory has detected never-before-seen properties in the X-ray afterglow of a gamma-ray burst. This discovery strengthens the case for a “hypernova” model, where massive collapsed stars generate these mysterious blasts of high-energy radiation believed to be the most powerful explosions in the universe. An international team of scientists used Chandra to observe iron emission lines from ejected material surrounding the gamma-ray burst (GRB) known as GRB991216. This is the first time emission lines associated with GRBs have been unambiguously detected and their properties precisely measured at X-ray wavelengths. Astronomers have long debated how GRBs originate. One theory contends that GRBs result when two “compact objects,” that is, neutron stars or black holes, collide and coalesce. Another theory speculates that a “hypernova,” a gigantic star collapsing on itself under its own weight, could cause these extremely energetic outbursts. “The discovery of iron lines in the X-ray spectrum is an important clue to our understanding of GRBs,” said Luigi Piro, lead author of the paper that appeared in the November 3 issue of the journal Science. “Studying the immediate area around the GRB tells us a great deal about the origin of the GRB itself.” A shift in the wavelength, or energy, of the detected iron line emission (relative to what would be seen in a laboratory) tells the researchers the distance to the GRB. The Chandra team determined that it has taken roughly 8 billion years for the X rays from GRB991216 to reach the Earth, in agreement with an independent estimate from an absorption feature in the optical light from the host galaxy. From the distance and the intensities of the detected X-ray emission lines, the investigators deduced the properties of the ejected material and its relationship to the GRB. The team was able to determine the mass of the medium within a light day or two of the GRB as approximately equivalent

  20. What can we learn from "internal plateaus"? The peculiar afterglow of GRB 070110

    Science.gov (United States)

    Beniamini, P.; Mochkovitch, R.

    2017-09-01

    Context. The origin of the prompt emission of gamma-ray bursts is highly debated. Proposed scenarios involve various dissipation processes (shocks, magnetic reconnection, and inelastic collisions) above or below the photosphere of an ultra-relativistic outflow. Aims: We search for observational features that could help to favour one scenario over the others by constraining the dissipation radius, the magnetization of the outflow, or by indicating the presence of shocks. Bursts showing peculiar behaviours can emphasize the role of a specific physical ingredient, which becomes more apparent under certain circumstances. Methods: We study GRB 070110, which exhibited several remarkable features during its early afterglow; I.e. a very flat plateau terminated by an extremely steep drop and immediately followed by a bump. We modelled the plateau as the photospheric emission from a long-lasting outflow of moderate Lorentz factor (Γ 20), which lags behind an ultra-relativistic (Γ > 100) ejecta that is responsible for the prompt emission. We computed the dissipation of energy in the forward and reverse shocks resulting from the deceleration of this ejecta by the external medium (uniform or stellar wind). Results: We find that photospheric emission from the long-lasting outflow can account for the plateau properties (luminosity and spectrum) assuming that some dissipation takes place in the flow. The geometrical timescale at the photospheric radius is so short that the observed decline at the end of the plateau likely corresponds to the actual shutdown of the activity in the central engine. The bump that follows results from the power dissipated in the reverse shock, which develops when the material making the plateau catches up with the initially fast shell in front, after the fast shell has decelerated. Conclusions: The proposed interpretation suggests that the prompt phase results from dissipation above the photosphere while the plateau has a photospheric origin. If the

  1. INTEGRAL Results on Gamma-Ray Bursts

    Science.gov (United States)

    Hurley, Kevin C.

    2008-03-01

    Prompt, precise localizations of gamma-ray bursts imaged by IBIS are being disseminated at a rate of about 10 per year (49 to date). The INTEGRAL Burst Alert System (IBAS) produces automated alerts within 10's of seconds, giving positions which are accurate to several arcminutes for events as weak as 5.7 x 10-8 erg cm-2. IBIS is also a very sensitive detector of soft gamma repeaters (SGRs). It has detected well over 200 bursts from SGR1806-20, down to a fluence of 7×10-9 erg cm-2. An unexpected discovery is that the quiescent X-ray emission of this source and SGR 1900+14 is considerably harder than previous measurements indicated, and extends to 200 keV, a property which SGRs share with the AXP's. In addition, the SPI anti-coincidence shield (ACS) system is an extremely useful component of the interplanetary network. With its isotropic response, it detects about 66 confirmed bursts/year ( 450 to date) down to a threshold of 4.8×10-8 erg cm-2, many of which can be localized by triangulation. Most of these events are not detected by Swift or IBIS due to their limited fields of view. The triangulation results are currently being used to search for coincident neutrino emission, for gravitational radiation simultaneous with GRBs, and for coincidences between Type Ic supernovae and bursts, among other things. The SPI ACS has recently played a key role in localizing and identifying two events which are believed to be extragalactic giant magnetar flares (EMFs), from M81 and M31. LIGO was operating at the time of one of these events, and their observations support the EMF hypothesis. SPI is also being used as a Compton-scatter polarimeter for GRBs. Kalemci et al. (2007) and McGlynn et al. (2007) studied its response to GRB041219a, and obtained polarizations of 98% +/- 33%, and 63% (+31%,-30%) respectively.

  2. Prompt Neutrino Emission of Gamma-ray Bursts in the Dissipative Photospheric Scenario Revisited: Possible Contributions from Cocoons

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Di; Dai, Zi-Gao [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Mészáros, Peter, E-mail: dzg@nju.edu.cn [Center for Particle and Gravitational Astrophysics, Department of Physics, Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2017-07-01

    High-energy neutrinos are expected to originate from different stages in a gamma-ray burst (GRB) event. In this work, we revisit the dissipative photospheric scenario, in which the GRB prompt emission is produced around the photospheric radius. Meanwhile, possible dissipation mechanisms (e.g., internal shocks or magnetic reconnection) could accelerate cosmic-rays (CRs) to ultra-high energies and then produce neutrinos via hadronuclear and photohadronic processes, which are referred to as prompt neutrinos . In this paper, we obtain the prompt neutrino spectrum of a single GRB within a self-consistent analytical framework, in which the jet-cocoon structure and possible collimation effects are included. We investigate a possible neutrino signal from the cocoon, which has been ignored in the previous studies. We show that if a GRB event happens at a distance of the order of Mpc, there is a great chance to observe the neutrino emission from the cocoon by IceCube, which is even more promising than jet neutrinos, as the opening angle of the cocoon is much larger. We also determine the diffuse neutrino flux of GRB cocoons and find that it could be comparable with that of the jets. Our results are consistent with the latest result reported by the IceCube collaboration that no significant correlation between neutrino events and observed GRBs is seen in the new data.

  3. DISCOVERY OF SMOOTHLY EVOLVING BLACKBODIES IN THE EARLY AFTERGLOW OF GRB 090618: EVIDENCE FOR A SPINE–SHEATH JET?

    Energy Technology Data Exchange (ETDEWEB)

    Basak, Rupal; Rao, A. R., E-mail: rupalb@tifr.res.in, E-mail: arrao@tifr.res.in [Tata Institute of Fundamental Research, Mumbai—400005 (India)

    2015-10-20

    GRB 090618 is a bright gamma-ray burst (GRB) with multiple pulses. It shows evidence of thermal emission in the initial pulses as well as in the early afterglow phase. Because high-resolution spectral data from the Swift/X-ray Telescope (XRT) are available for the early afterglow, we investigate the shape and evolution of the thermal component in this phase using data from the Swift/Burst Alert Telescope (BAT), the Swift/XRT, and the Fermi/Gamma-ray Burst Monitor detectors. An independent fit to the BAT and XRT data reveals two correlated blackbodies with monotonically decreasing temperatures. Hence, we investigated the combined data with a model consisting of two blackbodies and a power law (2BBPL), a model suggested for several bright GRBs. We elicit the following interesting features of the 2BBPL model: (1) the same model is applicable from the peak of the last pulse in the prompt emission to the afterglow emission, (2) the ratio of temperatures and the fluxes of the two blackbodies remains constant throughout the observations, (3) the blackbody temperatures and fluxes show a monotonic decrease with time, with the BB fluxes dropping about a factor of two faster than that of the power-law (PL) emission, and (4) attributing the blackbody emission to photospheric emissions, we find that the photospheric radii increase very slowly with time, and the lower-temperature blackbody shows a larger emitting radius than that of the higher-temperature blackbody. We find some evidence that the underlying shape of the nonthermal emission is a cutoff power law rather than a PL. We sketch a spine–sheath jet model to explain our observations.

  4. CGRO/BATSE Data Support the New Paradigm For GRB Prompt Emission and the New L-i(nTh)-E-peak,i(nTh,rest) Relation

    Science.gov (United States)

    Guiriec, S.; Gonzalez, M.M.; Sacahui, J.R.; Kouveliotou, C.; Gehrels, N.; McEnery, J.

    2016-01-01

    The paradigm for gamma-ray burst (GRB) prompt emission is changing. Since early in the Compton Gamma RayObservatory (CGRO) era, the empirical Band function has been considered a good description of the keV-MeV-gamma-ray prompt emission spectra despite the fact that its shape was very often inconsistent with the theoretical predictions, especially those expected in pure synchrotron emission scenarios. We have recently established a new observational model analyzing data of the NASA Fermi Gamma-ray Space Telescope. In this model, GRB prompt emission would be a combination of three main emission components: (i) a thermal-like component that we have interpreted so far as emission from the jet photosphere, (ii) a non-thermal component that we have interpreted so far as either synchrotron radiation from the propagating and accelerated charged particles within the jet or reprocessed jet photospheric emission, and (iii) an additional non-thermal (cutoff) power law (PL) extending from low to high energies in gamma-rays and most likely of inverse Compton origin. In this article we reanalyze some of the bright GRBs, namely GRBs 941017, 970111, and 990123, observed with the Burst And Transient Source Experiment (BATSE) on board CGRO with the new model. We conclude that BATSE data for these three GRBs are fully consistent with the recent results obtained with Fermi: some bright BATSE GRBs exhibit three separate components during the prompt phase with similar spectral parameters as those reported from Fermi data. In addition, the analysis of the BATSE GRBs with the new prompt emission model results in a relation between the time-resolved energy flux of the non-thermal component, F(in)(Th), and its corresponding nuFnu spectral peak energy,Epeak,inTh (i.e., FinThEpeak,inTh ), which has a similar index when fitted to a PL as the one initially derived from Fermi data. For GRBs with known redshifts (z) this results in a possible universal relation between the luminosity of the non

  5. The Properties of Short Gamma-Ray Burst Jets Triggered by Neutron Star Mergers

    Energy Technology Data Exchange (ETDEWEB)

    Murguia-Berthier, Ariadna; Ramirez-Ruiz, Enrico; Montes, Gabriela [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); De Colle, Fabio [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A. P. 70-543 04510 D. F. (Mexico); Rezzolla, Luciano; Takami, Kentaro [Institute for Theoretical Physics, Goethe University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Rosswog, Stephan [Astronomy and Oskar Klein Centre, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Perego, Albino [Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Lee, William H. [Instituto de Astronomía, Universidad Nacional Autónoma de México, A. P. 70-264 04510 D. F. (Mexico)

    2017-02-01

    The most popular model for short gamma-ray bursts (sGRBs) involves the coalescence of binary neutron stars. Because the progenitor is actually hidden from view, we must consider under which circumstances such merging systems are capable of producing a successful sGRB. Soon after coalescence, winds are launched from the merger remnant. In this paper, we use realistic wind profiles derived from global merger simulations in order to investigate the interaction of sGRB jets with these winds using numerical simulations. We analyze the conditions for which these axisymmetric winds permit relativistic jets to break out and produce an sGRB. We find that jets with luminosities comparable to those observed in sGRBs are only successful when their half-opening angles are below ≈20°. This jet collimation mechanism leads to a simple physical interpretation of the luminosities and opening angles inferred for sGRBs. If wide, low-luminosity jets are observed, they might be indicative of a different progenitor avenue such as the merger of a neutron star with a black hole. We also use the observed durations of sGRB to place constraints on the lifetime of the wind phase, which is determined by the time it takes the jet to break out. In all cases we find that the derived limits argue against completely stable remnants for binary neutron star mergers that produce sGRBs.

  6. The metallicity and dust content of a redshift 5 gamma-ray burst host galaxy

    DEFF Research Database (Denmark)

    Sparre, M.; Hartoog, O. E.; Krühler, T.

    2014-01-01

    Observations of the afterglows of long gamma-ray bursts (GRBs) allow the study of star-forming galaxies across most of cosmic history. Here we present observations of GRB 111008A from which we can measure metallicity, chemical abundance patterns, dust-to-metals ratio and extinction of the GRB host...... galaxy at z=5.0. The host absorption system is a damped Lyman-alpha absorber (DLA) with a very large neutral hydrogen column density of log N(HI)/cm^(-2) = 22.30 +/- 0.06, and a metallicity of [S/H]= -1.70 +/- 0.10. It is the highest redshift GRB with such a precise metallicity measurement. The presence...... of fine-structure lines confirms the z=5.0 system as the GRB host galaxy, and makes this the highest redshift where Fe II fine-structure lines have been detected. The afterglow is mildly reddened with A_V = 0.11 +/- 0.04 mag, and the host galaxy has a dust-to-metals ratio which is consistent with being...

  7. PROSPECTS FOR JOINT GRAVITATIONAL WAVE AND SHORT GAMMA-RAY BURST OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Clark, J.; Evans, H.; Fairhurst, S.; Harry, I. W.; Macdonald, E.; Macleod, D.; Sutton, P. J.; Williamson, A. R. [School of Physics and Astronomy, Cardiff University, Cardiff (United Kingdom)

    2015-08-10

    We present a detailed evaluation of the expected rate of joint gravitational-wave (GW) and short gamma-ray burst (GRB) observations over the coming years. We begin by evaluating the improvement in distance sensitivity of the GW search that arises from using the GRB observation to restrict the time and sky location of the source. We argue that this gives a 25% increase in sensitivity when compared to an all-sky, all-time search, corresponding to more than double the number of detectable GW signals associated with GRBs. Using this, we present the expected rate of joint observations with the advanced LIGO and Virgo instruments, taking into account the expected evolution of the GW detector network. We show that in the early advanced GW detector observing runs, from 2015 to 2017, there is only a small chance of a joint observation. However, as the detectors approach their design sensitivities, there is a good chance of joint observations, provided wide field GRB satellites, such as Fermi and the Inter planetary Network, continue operation. The rate will also depend critically upon the nature of the progenitor, with neutron star-black hole systems observable to greater distances than double neutron star systems. The relative rate of binary mergers and GRBs will depend upon the jet opening angle of GRBs. Consequently, joint observations, as well as accurate measurement of both the GRB rate and binary merger rates, will allow for an improved estimation of the opening angle of GRBs.

  8. GRB INVESTIGATIONS BY ESA GAIA AND LOFT

    Directory of Open Access Journals (Sweden)

    René Hudec

    2013-12-01

    Full Text Available The possibility of studying GRBs with the ESA Gaia and LOFT missions is briefly addressed. The ESA Gaia satellite to be launched in November 2013 will focus on high precision astrometry of stars and all objects down to limiting magnitude 20. The satellite will also provide photometric and spectral information and hence important inputs for various branches of astrophysics, including the study of GRBs and related optical afterglows (OAs and optical transients (OTs. The strength of Gaia in GRB analyses will be the fine spectral resolution (spectro-photometry and ultra-low dispersion spectroscopy, which will allow the correct classication of related triggers. An interesting feature of Gaia BP and RP instruments will be the study of highly redshifted triggers. Similarly, the low dispersion spectroscopy provided by various plate surveys can also supply valuable data for investigations of high-energy sources. The ESA LOFT candidate mission, now in the assessment study phase, will also be able to detect and be used in the study of GRBs, with emphasis on low-energy (X-ray emission.

  9. EXIST: The Next Large GRB Observatory

    Science.gov (United States)

    Fishman, Gerald J.

    2003-01-01

    Studies have begun on the EXIST (Energetic X-ray Imaging Survey Telescope) Mission as a Black Hole Survey 'Einstein Probe', a major element in the new NASA Beyond Einstein Program in the Office of Space Science. This program was approved by the US Congress, in February 2003 as part of the NASA FY2004 NASA budget. EXIST is planned as a very wide-field coded aperture telescope and a positional accuracy for GRBs better than one arc-minute. The baseline detectors are Cadmium-Zinc-Telluride (CZT), with a total sensitive area of approximately 8 m2. EXIST will use SWIFT as a pathfinder mission; the findings of SWIFT will refine the scientific objectives of EXIST and will help to determine many of its design parameters. EXIST will study early star and galaxy formation at high redshifts through observations of thousands of GRBs, their afterglows and host galaxies. It is intended that the international GRB community will play a large role in EXIST through direct participation as well as with complementary observational programs, both space-based and ground-based. Some preliminary design features and capabilities of the EXIST Mission will be presented.

  10. Central Engine Memory of Gamma-Ray Bursts and Soft Gamma-Ray Repeaters

    Science.gov (United States)

    Zhang, Bin-Bin; Zhang, Bing; Castro-Tirado, Alberto J.

    2016-04-01

    Gamma-ray bursts (GRBs) are bursts of γ-rays generated from relativistic jets launched from catastrophic events such as massive star core collapse or binary compact star coalescence. Previous studies suggested that GRB emission is erratic, with no noticeable memory in the central engine. Here we report a discovery that similar light curve patterns exist within individual bursts for at least some GRBs. Applying the Dynamic Time Warping method, we show that similarity of light curve patterns between pulses of a single burst or between the light curves of a GRB and its X-ray flare can be identified. This suggests that the central engine of at least some GRBs carries “memory” of its activities. We also show that the same technique can identify memory-like emission episodes in the flaring emission in soft gamma-ray repeaters (SGRs), which are believed to be Galactic, highly magnetized neutron stars named magnetars. Such a phenomenon challenges the standard black hole central engine models for GRBs, and suggest a common physical mechanism behind GRBs and SGRs, which points toward a magnetar central engine of GRBs.

  11. CENTRAL ENGINE MEMORY OF GAMMA-RAY BURSTS AND SOFT GAMMA-RAY REPEATERS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bin-Bin; Castro-Tirado, Alberto J. [Instituto de Astrofísica de Andalucá (IAA-CSIC), P.O. Box 03004, E-18080 Granada (Spain); Zhang, Bing, E-mail: zhang.grb@gmail.com [Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154 (United States)

    2016-04-01

    Gamma-ray bursts (GRBs) are bursts of γ-rays generated from relativistic jets launched from catastrophic events such as massive star core collapse or binary compact star coalescence. Previous studies suggested that GRB emission is erratic, with no noticeable memory in the central engine. Here we report a discovery that similar light curve patterns exist within individual bursts for at least some GRBs. Applying the Dynamic Time Warping method, we show that similarity of light curve patterns between pulses of a single burst or between the light curves of a GRB and its X-ray flare can be identified. This suggests that the central engine of at least some GRBs carries “memory” of its activities. We also show that the same technique can identify memory-like emission episodes in the flaring emission in soft gamma-ray repeaters (SGRs), which are believed to be Galactic, highly magnetized neutron stars named magnetars. Such a phenomenon challenges the standard black hole central engine models for GRBs, and suggest a common physical mechanism behind GRBs and SGRs, which points toward a magnetar central engine of GRBs.

  12. Machine-z: Rapid Machine-Learned Redshift Indicator for Swift Gamma-Ray Bursts

    Science.gov (United States)

    Ukwatta, T. N.; Wozniak, P. R.; Gehrels, N.

    2016-01-01

    Studies of high-redshift gamma-ray bursts (GRBs) provide important information about the early Universe such as the rates of stellar collapsars and mergers, the metallicity content, constraints on the re-ionization period, and probes of the Hubble expansion. Rapid selection of high-z candidates from GRB samples reported in real time by dedicated space missions such as Swift is the key to identifying the most distant bursts before the optical afterglow becomes too dim to warrant a good spectrum. Here, we introduce 'machine-z', a redshift prediction algorithm and a 'high-z' classifier for Swift GRBs based on machine learning. Our method relies exclusively on canonical data commonly available within the first few hours after the GRB trigger. Using a sample of 284 bursts with measured redshifts, we trained a randomized ensemble of decision trees (random forest) to perform both regression and classification. Cross-validated performance studies show that the correlation coefficient between machine-z predictions and the true redshift is nearly 0.6. At the same time, our high-z classifier can achieve 80 per cent recall of true high-redshift bursts, while incurring a false positive rate of 20 per cent. With 40 per cent false positive rate the classifier can achieve approximately 100 per cent recall. The most reliable selection of high-redshift GRBs is obtained by combining predictions from both the high-z classifier and the machine-z regressor.

  13. Massive stars formed in atomic hydrogen reservoirs: H i observations of gamma-ray burst host galaxies

    DEFF Research Database (Denmark)

    Michałowski, M. J.; Gentile, G.; Hjorth, J.

    2015-01-01

    Long gamma-ray bursts (GRBs), among the most energetic events in the Universe, are explosions of massive and short-lived stars, so they pinpoint locations of recent star formation. However, several GRB host galaxies have recently been found to be deficient in molecular gas (H2), believed to be th......Long gamma-ray bursts (GRBs), among the most energetic events in the Universe, are explosions of massive and short-lived stars, so they pinpoint locations of recent star formation. However, several GRB host galaxies have recently been found to be deficient in molecular gas (H2), believed......, implying high levels of atomic hydrogen (HI), which suggests that the connection between atomic gas and star formation is stronger than previously thought. In this case, it is possible that star formation is directly fuelled by atomic gas (or that the H1-to-H2 conversion is very efficient, which rapidly...

  14. The Drift Burst Hypothesis

    DEFF Research Database (Denmark)

    Christensen, Kim; Oomen, Roel; Renò, Roberto

    The Drift Burst Hypothesis postulates the existence of short-lived locally explosive trends in the price paths of financial assets. The recent US equity and Treasury flash crashes can be viewed as two high profile manifestations of such dynamics, but we argue that drift bursts of varying magnitude....... We then develop a non-parametric test statistic that allows for the identification of drift bursts from noisy high-frequency data. We apply this methodology to a comprehensive set of tick data and show that drift bursts form an integral part of the price dynamics across equities, fixed income......, currencies and commodities. We find that the majority of identified drift bursts are accompanied by strong price reversals and these can therefore be regarded as “flash crashes” that span brief periods of severe market disruption without any material longer term price impacts....

  15. Pair creation by very high-energy photons in gamma-ray bursts a unified picture for the energetics of GRBs

    CERN Document Server

    Totani, T

    1999-01-01

    The extreme energetics of the gamma-ray burst (GRB) 990123 have revealed that some GRBs emit quite a large amount of energy, and the total energy release from GRBs seems to change from burst to burst by a factor of 10/sup 2/-10/sup $9 3/ as E/sub gamma , iso/~10/sup 52-55/ erg, where E/sub gamma , iso/ is the observed GRB energy when the radiation is isotropic. If all GRBs are triggered by similar events, such a wide dispersion in energy release seems odd. The $9 author proposes a unified picture for the energetics of GRBs, in which all GRB events release roughly the same amount of energy E/sub iso/~10 /sup 55-56/ erg relativistic motion, with the baryon load problem almost resolved. A mild $9 dispersion in the initial Lorentz factor ( Gamma ) results in a difference of E/sub gamma , iso/ by up to a factor of m/sub p//m/sub e/~10/sup 3/. Protons work as `a hidden energy reservoir' of the total GRB energy, and E/sub gamma , $9 iso/ depends on the energy transfer efficiency from protons into electrons (or posit...

  16. Cooling of young neutron stars in GRB associated to supernovae

    Science.gov (United States)

    Negreiros, R.; Ruffini, R.; Bianco, C. L.; Rueda, J. A.

    2012-04-01

    Context. The traditional study of neutron star cooling has been generally applied to quite old objects such as the Crab Pulsar (957 years) or the central compact object in Cassiopeia A (330 years) with an observed surface temperature ~106 K. However, recent observations of the late (t = 108-109 s) emission of the supernovae (SNe) associated to GRBs (GRB-SN) show a distinctive emission in the X-ray regime consistent with temperatures ~107-108 K. Similar features have been also observed in two Type Ic SNe SN 2002ap and SN 1994I that are not associated to GRBs. Aims: We advance the possibility that the late X-ray emission observed in GRB-SN and in isolated SN is associated to a hot neutron star just formed in the SN event, here defined as a neo-neutron star. Methods: We discuss the thermal evolution of neo-neutron stars in the age regime that spans from ~1 min (just after the proto-neutron star phase) all the way up to ages atmosphere for young neutron stars. In this way we match the neo-neutron star luminosity to the observed late X-ray emission of the GRB-SN events: URCA-1 in GRB980425-SN1998bw, URCA-2 in GRB030329-SN2003dh, and URCA-3 in GRB031203-SN2003lw. Results: We identify the major role played by the neutrino emissivity in the thermal evolution of neo-neutron stars. By calibrating our additional heating source at early times to ~1012-1015 erg/g/s, we find a striking agreement of the luminosity obtained from the cooling of a neo-neutron stars with the prolonged (t = 108-109 s) X-ray emission observed in GRB associated with SN. It is therefore appropriate a revision of the boundary conditions usually used in the thermal cooling theory of neutron stars, to match the proper conditions of the atmosphere at young ages. The traditional thermal processes taking place in the crust might be enhanced by the extreme high-temperature conditions of a neo-neutron star. Additional heating processes that are still not studied within this context, such as e+e- pair creation by

  17. Cosmic Forensics Confirms Gamma-Ray Burst And Supernova Connection

    Science.gov (United States)

    2003-03-01

    Scientists announced today that they have used NASA's Chandra X-ray Observatory to confirm that a gamma-ray burst was connected to the death of a massive star. This result is an important step in understanding the origin of gamma-ray bursts, the most violent events in the present-day universe. "If a gamma-ray burst were a crime, then we now have strong circumstantial evidence that a supernova explosion was at the scene," said Nathaniel Butler of Massachusetts Institute of Technology in Cambridge, lead author of a paper presented today at the meeting of the High Energy Division of the American Astronomical Society. Chandra was able to obtain an unusually long observation (approximately 21 hours) of the afterglow of GRB 020813 (so named because the High-Energy Transient Explorer, HETE, discovered it on August 13, 2002.) A grating spectrometer aboard Chandra revealed an overabundance of elements characteristically dispersed in a supernova explosion. Narrow lines, or bumps, due to silicon and sulfur ions (atoms stripped of most of their electrons) were clearly identified in the X-ray spectrum of GRB 020813. "Our observation of GRB 020813 supports two of the most important features of the popular supra-nova model for gamma-ray bursts," said Butler. "An extremely massive star likely exploded less than two months prior to the gamma-ray burst, and the radiation from the gamma-ray burst was beamed into a narrow cone." An analysis of the data showed that the ions were moving away from the site of the gamma-ray burst at a tenth the speed of light, probably as part of a shell of matter ejected in the supernova explosion. The line features were observed to be sharply peaked, indicating that they were coming from a narrow region of the expanding shell. This implies that only a small fraction of the shell was illuminated by the gamma-ray burst, as would be expected if the burst was beamed into a narrow cone. The observed duration of the afterglow suggests a delay of about 60 days

  18. Search for muon neutrinos from Gamma-Ray Bursts with the IceCube neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    IceCube Collaboration; Abbasi, R

    2010-01-19

    We present the results of searches for high-energy muon neutrinos from 41 gamma- ray bursts (GRBs) in the northern sky with the IceCube detector in its 22-string con-figuration active in 2007/2008. The searches cover both the prompt and a possible precursor emission as well as a model-independent, wide time window of -1 h to +3 haround each GRB. In contrast to previous searches with a large GRB population, we do not utilize a standard Waxman?Bahcall GRB flux for the prompt emission but calcu- late individual neutrino spectra for all 41 GRBs from the burst parameters measured by satellites. For all three time windows the best estimate for the number of signal events is zero. Therefore, we place 90percent CL upper limits on the fluence from the prompt phase of 3.7 x 10-3 erg cm-2 (72TeV - 6.5 PeV) and on the fluence from the precursor phase of 2.3 x 10-3 erg cm-2 (2.2TeV - 55TeV), where the quoted energy ranges contain 90percent of the expected signal events in the detector. The 90percent CL upper limit for the wide time window is 2.7 x 10-3 erg cm-2 (3TeV - 2.8 PeV) assuming an E-2 flux.

  19. SHORT GAMMA-RAY BURSTS FROM THE MERGER OF TWO BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Perna, Rosalba [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794 (United States); Lazzati, Davide [Department of Physics, Oregon State University, 301 Weniger Hall, Corvallis, OR 97331 (United States); Giacomazzo, Bruno [Physics Department, University of Trento, via Sommarive 14, I-38123 Trento (Italy)

    2016-04-10

    Short gamma-ray bursts (GRBs) are explosions of cosmic origins believed to be associated with the merger of two compact objects, either two neutron stars or a neutron star and a black hole (BH). The presence of at least one neutron star has long been thought to be an essential element of the model: its tidal disruption provides the needed baryonic material whose rapid accretion onto the post-merger BH powers the burst. The recent tentative detection by the Fermi satellite of a short GRB in association with the gravitational wave signal GW150914 produced by the merger of two BHs has challenged this standard paradigm. Here, we show that the evolution of two high-mass, low-metallicity stars with main-sequence rotational speeds a few tens of percent of the critical speed eventually undergoing a weak supernova explosion can produce a short GRB. The outer layers of the envelope of the last exploding star remain bound and circularize at large radii. With time, the disk cools and becomes neutral, suppressing the magnetorotational instability, and hence the viscosity. The disk remains “long-lived dead” until tidal torques and shocks during the pre-merger phase heat it up and re-ignite accretion, rapidly consuming the disk and powering the short GRB.

  20. PROPAGATION OF RELATIVISTIC, HYDRODYNAMIC, INTERMITTENT JETS IN A ROTATING, COLLAPSING GRB PROGENITOR STAR

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Jin-Jun [School of Astronomy and Space Science, Nanjing University, Nanjing 210046 (China); Zhang, Bing [Department of Physics and Astronomy, University of Nevada Las Vegas, NV 89154 (United States); Kuiper, Rolf, E-mail: gengjinjun@gmail.com, E-mail: zhang@physics.unlv.edu [Institute of Astronomy and Astrophysics, University of Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen (Germany)

    2016-12-10

    The prompt emission of gamma-ray bursts (GRBs) is characterized by rapid variabilities, which may be a direct reflection of the unsteady central engine. We perform a series of axisymmetric 2.5-dimensional simulations to study the propagation of relativistic, hydrodynamic, intermittent jets through the envelope of a GRB progenitor star. A realistic rapidly rotating star is incorporated as the background of jet propagation, and the star is allowed to collapse due to the gravity of the central black hole. By modeling the intermittent jets with constant-luminosity pulses with equal on and off durations, we investigate how the half period, T , affects the jet dynamics. For relatively small T values (e.g., 0.2 s), the jet breakout time t {sub bo} depends on the opening angle of the jet, with narrower jets more penetrating and reaching the surface at shorter times. For T  ≤ 1 s, the reverse shock (RS) crosses each pulse before the jet penetrates through the stellar envelope. As a result, after the breakout of the first group of pulses at t {sub bo}, several subsequent pulses vanish before penetrating the star, causing a quiescent gap. For larger half periods ( T = 2.0 and 4.0 s), all the pulses can successfully penetrate through the envelope, since each pulse can propagate through the star before the RS crosses the shell. Our results may interpret the existence of a weak precursor in some long GRBs, given that the GRB central engine injects intermittent pulses with a half period T  ≤ 1 s. The observational data seem to be consistent with such a possibility.

  1. External Shock in a Multi-bursting Gamma-Ray Burst: Energy Injection Phase Induced by the Later Launched Ejecta

    Science.gov (United States)

    Lin, Da-Bin; Huang, Bao-Quan; Liu, Tong; Gu, Wei-Min; Mu, Hui-Jun; Liang, En-Wei

    2018-01-01

    Central engines of gamma-ray bursts (GRBs) may be intermittent and launch several episodes of ejecta separated by a long quiescent interval. In this scenario, an external shock is formed due to the propagation of the first launched ejecta into the circum-burst medium and the later launched ejecta may interact with the external shock at a later period. Owing to the internal dissipation, the later launched ejecta may be observed at a later time (t jet). In this paper, we study the relation of t b and t jet, where t b is the collision time of the later launched ejecta with the formed external shock. It is found that the relation of t b and t jet depends on the bulk Lorentz factor (Γjet) of the later launched ejecta and the density (ρ) of the circum-burst medium. If the value of Γjet or ρ is low, the t b would be significantly larger than t jet. However, the t b ∼ t jet can be found if the value of Γjet or ρ is significantly large. Our results can explain the large lag of the optical emission relative to the γ-ray/X-ray emission in GRBs, e.g., GRB 111209A. For GRBs with a precursor, our results suggest that the energy injection into the external shock and thus more than one external-reverse shock may appear in the main prompt emission phase. According to our model, we estimate the Lorentz factor of the second launched ejecta in GRB 160625B.

  2. BurstCube: A CubeSat for Gravitational Wave Counterparts

    Science.gov (United States)

    Perkins, Jeremy S.; Racusin, Judith; Briggs, Michael; de Nolfo, Georgia; Caputo, Regina; Krizmanic, John; McEnery, Julie E.; Shawhan, Peter; Morris, David; Connaughton, Valerie; Kocevski, Dan; Wilson-Hodge, Colleen A.; Hui, Michelle; Mitchell, Lee; McBreen, Sheila

    2018-01-01

    We present BurstCube, a novel CubeSat that will detect and localize Gamma-ray Bursts (GRBs). BurstCube is a selected mission that will detect long GRBs, attributed to the collapse of massive stars, short GRBs (sGRBs), resulting from binary neutron star mergers, as well as other gamma-ray transients in the energy range 10-1000 keV. sGRBs are of particular interest because they are predicted to be the counterparts of gravitational wave (GW) sources soon to be detectable by LIGO/Virgo. BurstCube contains 4 CsI scintillators coupled with arrays of compact low-power Silicon photomultipliers (SiPMs) on a 6U Dellingr bus, a flagship modular platform that is easily modifiable for a variety of 6U CubeSat architectures. BurstCube will complement existing facilities such as Swift and Fermi in the short term, and provide a means for GRB detection, localization, and characterization in the interim time before the next generation future gamma-ray mission flies, as well as space-qualify SiPMs and test technologies for future use on larger gamma-ray missions. The ultimate configuration of BurstCube is to have a set of ~10 BurstCubes to provide all-sky coverage to GRBs for substantially lower cost than a full-scale mission.

  3. The dark nature of GRB 130528A and its host galaxy

    Science.gov (United States)

    Jeong, S.; Castro-Tirado, A. J.; Bremer, M.; Winters, J. M.; Gorosabel, J.; Guziy, S.; Pandey, S. B.; Jelínek, M.; Sánchez-Ramírez, R.; Sokolov, Ilya V.; Orekhova, N. V.; Moskvitin, A. S.; Tello, J. C.; Cunniffe, R.; Lara-Gil, O.; Oates, S. R.; Pérez-Ramírez, D.; Bai, J.; Fan, Y.; Wang, C.; Park, I. H.

    2014-09-01

    Aims: We study the dark nature of GRB 130528A through multi-wavelength observations and conclude that the main reason for the optical darkness is local extinction inside of the host galaxy. Methods: Automatic observations were performed at the Burst Optical Observer and Transient Exploring System (BOOTES)-4/MET robotic telescope. We also triggered target of opportunity (ToO) observations at Observatorio de Sierra Nevada (OSN), IRAM Plateau de Bure Interferometer (PdBI) and Gran Telescopio Canarias (GTC + OSIRIS). The host galaxy photometric observations in optical to near-infrared (nIR) wavelengths were achieved through large ground-based aperture telescopes, such as 10.4 m Gran Telescopio Canarias (GTC), 4.2 m William Herschel Telescope (WHT), 6 m Bolshoi Teleskop Alt-azimutalnyi (BTA) telescope, and 2 m Liverpool Telescope (LT). Based on these observations, spectral energy distributions (SED) for the host galaxy and afterglow were constructed. Results: Thanks to millimetre (mm) observations at PdBI, we confirm the presence of a mm source within the XRT error circle that faded over the course of our observations and identify the host galaxy. However, we do not find any credible optical source within early observations with BOOTES-4/MET and 1.5 m OSN telescopes. Spectroscopic observation of this galaxy by GTC showed a single faint emission line that likely corresponds to [OII] 3727 Å at a redshift of 1.250 ± 0.001, implying a star formation rate (M⊙/yr) > 6.18 M⊙/yr without correcting for dust extinction. The probable line-of-sight extinction towards GRB 130528A is revealed through analysis of the afterglow SED, resulting in a value of A^GRBV≥ 0.9 at the rest frame; this is comparable to extinction levels found among other dark GRBs. The SED of the host galaxy is explained well (χ2/d.o.f. = 0.564) by a luminous (MB = -21.16), low-extinction (AV = 0, rest frame), and aged (2.6 Gyr) stellar population. We can explain this apparent contradiction in global and

  4. On the Prospects of Gamma-Ray Burst Detection in the TeV Band

    Science.gov (United States)

    Vurm, Indrek; Beloborodov, Andrei M.

    2017-09-01

    A gamma-ray burst (GRB) jet running into an external medium is expected to generate luminous GeV-TeV emission lasting from minutes to several hours. The high-energy emission results from inverse Compton upscattering of prompt and afterglow photons by shock-heated thermal plasma. At its peak the high-energy radiation carries a significant fraction of the power dissipated at the forward shock. We discuss in detail the expected TeV luminosity, using a robust “minimal” emission model. Then, using the statistical properties of the GRB population (luminosity function, redshift distribution, afterglow energy), we simulate the expected detection rates of GRBs by current and upcoming atmospheric Cherenkov instruments. We find that GRBs exploding into a low-density interstellar medium must produce TeV emission that would have already been detected by the currently operating Cherenkov telescopes. The absence of detections is consistent with explosions into a dense wind of the GRB progenitor. If, as suggested by the recent analysis of Fermi LAT data, the typical environment of long GRBs is a Wolf-Rayet progenitor wind with the density parameter A˜ {10}11 g cm-1, then 10%-20% of the bursts that trigger the space-borne detectors should also be detectable by the upcoming Cherenkov Telescope Array (CTA) under favorable observing conditions. Since absorption by the extragalactic background light limits the detectability above 0.1 TeV for all but the most nearby bursts (z≲ 1), the reduced energy threshold of CTA is the key improvement over current instruments, which should increase the number of detectable bursts by at least a factor of 3 compared with currently operating facilities.

  5. On the true energy budget of GRB970508 and 981214

    OpenAIRE

    Mitra, Abhas

    1998-01-01

    We emphasize a that since GRB970508 released an energy of Q_g~10^{51} \\Omega ergs in soft gamma rays alone, the actual energy of the e^+e^- p FB driving the blast wave could be considerably higher than this value, Q_{FB} >Q_g. For reasonably large values of \\Omega, as is probably suggested by the radio observations, the value of Q_{FB} ~ 5.10^{51}~t_m^3~n_1 erg, for GRB970508; here t_m is the epoch in months when the associated radio-blastwave degrades to become mildly relativistic. We discus...

  6. Constraining Magnetization of Gamma-Ray Bursts Outflows Using Prompt Emission Fluence

    Science.gov (United States)

    Pe'er, Asaf

    2017-12-01

    Considered here is the acceleration and heating of relativistic outflow by local magnetic energy dissipation process in Poynting-flux dominated outflow. Adopting the standard assumption that the reconnection rate scales with the Alfvén speed, I show here that the fraction of energy dissipated as thermal photons cannot exceed {(13\\hat{γ }-14)}-1=30 % (for adiabatic index \\hat{γ }=4/3) of the kinetic energy at the photosphere. Even in the most radiatively efficient scenario, the energy released as non-thermal photons during the prompt phase is at most equal to the kinetic energy of the outflow. These results imply that calorimetry of the kinetic energy that can be done during the afterglow phase could be used to constrain the magnetization of gamma-ray bursts (GRB) outflows. I discuss the recent observational status and its implications on constraining the magnetization in GRB outflows.

  7. Gamma-ray bursts

    National Research Council Canada - National Science Library

    Gehrels, Neil; Mészáros, Péter

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma rays coming from the cosmos. They occur roughly once per day, typically last for tens of seconds, and are the most luminous events in the universe...

  8. The bright gamma-ray burst of 2000 February 10: A case study of an optically dark gamma-ray burst

    DEFF Research Database (Denmark)

    Piro, L.; Frail, D.A.; Gorosabel, J.

    2002-01-01

    The gamma-ray burst GRB 000210 had the highest gamma-ray peak flux of any event localized by BeppoSAX as yet, but it did not have a detected optical afterglow, despite prompt and deep searches down to R-lim approximate to 23.5. It is therefore one of the events recently classified as dark GRBs, w...... therefore that the optical flux is extinguished by Lyalpha forest clouds), but we conclude that the X-ray absorbing medium would have to be substantially thicker from that observed in GRBs with optical afterglows....

  9. NEAR-EXTREMAL BLACK HOLES AS INITIAL CONDITIONS OF LONG GRB SUPERNOVAE AND PROBES OF THEIR GRAVITATIONAL WAVE EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Van Putten, Maurice H. P. M. [Astronomy and Space Science, Sejong University, 98 Gunja-Dong Gwangin-gu, Seoul 143-747 (Korea, Republic of)

    2015-09-01

    Long gamma-ray bursts (GRBs) associated with supernovae and short GRBs with extended emission (SGRBEE) from mergers are probably powered by black holes as a common inner engine, as their prompt GRB emission satisfies the same Amati correlation in the E{sub p,i}–E{sub iso} plane. We introduce modified Bardeen equations to identify hyper-accretion driving newly formed black holes in core-collapse supernovae to near-extremal spin as a precursor to prompt GRB emission. Subsequent spin-down is observed in the BATSE catalog of long GRBs. Spin-down provides a natural unification of long durations associated with the lifetime of black hole spin for normal long GRBs and SGRBEEs, given the absence of major fallback matter in mergers. The results point to major emissions unseen in high frequency gravitational waves. A novel matched filtering method is described for LIGO–Virgo and KAGRA broadband probes of nearby core-collapse supernovae at essentially maximal sensitivity.

  10. Search for the signatures of a new-born black hole from the collapse of a supra-massive millisecond magnetar in short GRB light curves

    Science.gov (United States)

    Zhang, Q.; Lei, W. H.; Zhang, B. B.; Chen, W.; Xiong, S. L.; Song, L. M.

    2018-03-01

    `Internal plateau' followed by a sharp decay is commonly seen in short gamma-ray burst (GRB) light curves. The plateau component is usually interpreted as the dipole emission from a supra-massive magnetar, and the sharp decay may imply the collapse of the magnetar to a black hole (BH). Fall-back accretion on to the new-born BH could produce long-lasting activities via the Blandford-Znajek (BZ) process. The magnetic flux accumulated near the BH would be confined by the accretion discs for a period of time. As the accretion rate decreases, the magnetic flux is strong enough to obstruct gas infall, leading to a magnetically arrested disc. Within this scenario, we show that the BZ process could produce two types of typical X-ray light curves: type I exhibits a long-lasting plateau, followed by a power-law (PL) decay with slopes ranging from 5/3 to 40/9; type II shows roughly a single PL decay with a slope of 5/3. The former requires low magnetic field strength, while the latter corresponds to relatively high values. We search for such signatures of the new-born BH from a sample of short GRBs with an internal plateau, and find two candidates: GRB 101219A and GRB 160821B, corresponding to type II and type I light curves, respectively. It is shown that our model can explain the data very well.

  11. Modelling the luminosity function of long gamma-ray bursts using Swift and Fermi

    Science.gov (United States)

    Paul, Debdutta

    2018-01-01

    I have used a sample of long gamma-ray bursts (GRBs) common to both Swift and Fermi to re-derive the parameters of the Yonetoku correlation. This allowed me to self-consistently estimate pseudo-redshifts of all the bursts with unknown redshifts. This is the first time such a large sample of GRBs from these two instruments is used, both individually and in conjunction, to model the long GRB luminosity function. The GRB formation rate is modelled as the product of the cosmic star formation rate and a GRB formation efficiency for a given stellar mass. An exponential cut-off power-law luminosity function fits the data reasonably well, with ν = 0.6 and Lb = 5.4 × 1052 ergs- 1, and does not require a cosmological evolution. In the case of a broken power law, it is required to incorporate a sharp evolution of the break given by Lb ∼ 0.3 × 1052(1 + z)2.90 erg s- 1, and the GRB formation efficiency (degenerate up to a beaming factor of GRBs) decreases with redshift as ∝ (1 + z)-0.80. However, it is not possible to distinguish between the two models. The derived models are then used as templates to predict the distribution of GRBs detectable by CZT Imager onboard AstroSat as a function of redshift and luminosity. This demonstrates that via a quick localization and redshift measurement of even a few CZT Imager GRBs, AstroSat will help in improving the statistics of GRBs both typical and peculiar.

  12. Luminosity Correlations for Gamma-Ray Bursts and Implications for Their Prompt and Afterglow Emission Mechanisms

    Science.gov (United States)

    Sultana, J.; Kazanas, D.; Fukumura, K

    2013-01-01

    We present the relation between the (z- and k-corrected) spectral lags, tau, for the standard Swift energy bands 50 - 100 keV and 100 - 200 keV and the peak isotropic luminosity, L(sub iso) (a relation reported first by Norris et al.), for a subset of 12 long Swift GRBs taken from a recent study of this relation by Ukwatta et al. The chosen GRBs are also a subset of the Dainotti et al. sample, a set of Swift GRBs of known redshift, employed in establishing a relation between the (GRB frame) luminosity, L(sub x), of the shallow (or constant) flux portion of the typical XRT GRB-afterglow light curve and the (GRB frame) time of transition to the normal decay rate, T(sub brk). We also present the L(sub x) - T(sub brk) relation using only the bursts common in the two samples. The two relations exhibit a significant degree of correlation (rho = -0.65 for the L(sub iso) - tao and rho = -0.88 for the L(sub x) -T(sub brk) relation) and have surprisingly similar best-fit power law indices (-1.19 +/- 0.17 for L(sub iso) - tau and -1.10 +/- 0.03 for L(sub x) - T(sub brk)). Even more surprisingly, we noted that although tau and T(sub brk) represent different GRB time variables, it appears that the first relation (L(sub iso) - tao) extrapolates into the second one for timescales tau similar to T(sub brk) This fact suggests that these two relations have a common origin, which we conjecture to be kinematic. This relation adds to the recently discovered relations between properties of the prompt and afterglow GRB phases, indicating a much more intimate relation between these two phases than hitherto considered.

  13. Grb7 gene amplification and protein expression by FISH and IHC in ovarian cancer.

    Science.gov (United States)

    Zeng, Manman; Yang, Zhu; Hu, Xiaoyu; Liu, Yi; Yang, Xiaotao; Ran, Hailong; Li, Yanan; Li, Xu; Yu, Qiubo

    2015-01-01

    Overexpression of growth factor receptor-bound protein 7 (Grb7) has been found in numerous human cancers. The aim of this study was to evaluate the correlation between Grb7 gene amplification and protein expression in ovarian cancer (OC). We use Tissue Microarray (TMA) respectively to detect the gene amplification and protein expression of Grb7 in 90 cases OC and 10 control specimens of normal ovarian tissues by IHC and FISH. The Grb7 protein expression by IHC analysis was observed in 52/90 (57.8%) OC with 3 cases (3.3%) scored 3(+) and 9 cases (10%) scored 2(+) Grb7 gene amplification by FISH analysis was successfully detectable in 6 specimens with a positive rate of 6.8% (6/88) in which immunostaining 3(+), 2(+) and negative (1(+)/0) expressions of Grb7 were 100.0% (3/3), 11.1% (1/9) and 2.6% (2/76), respectively. Our data exhibited that the IHC and FISH results had a good consistency between Grb7 gene amplification and Grb7 protein expression (Kappa = 0.651, P IHC and FISH revealed that Grb7 did not seem to have a role in OC clinicopathology. There is a close relationship between Grb7 gene amplification and GRB7 protein overexpression in human OC. IHC might have limited diagnostic value especially in these tumors and especially in characterizing genetically diverse borderline cases, FISH could be superior to IHC.

  14. HOW ELSE CAN WE DETECT FAST RADIO BURSTS?

    Energy Technology Data Exchange (ETDEWEB)

    Lyutikov, Maxim [Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907-2036 (United States); Lorimer, Duncan R., E-mail: lyutikov@purdue.edu [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506-6315 (United States)

    2016-06-20

    We discuss possible electromagnetic signals accompanying Fast Radio Bursts (FRBs) that are expected in the scenario where FRBs originate in neutron star magnetospheres. For models involving Crab-like giant pulses, no appreciable contemporaneous emission is expected at other wavelengths. However, magnetar giant flares, driven by the reconfiguration of the magnetosphere, can produce both contemporaneous bursts at other wavelengths as well as afterglow-like emission. We conclude that the best chances are: (i) prompt short GRB-like emission, (ii) a contemporaneous optical flash that can reach naked eye peak luminosity (but only for a few milliseconds), and (iii) a high-energy afterglow emission. Case (i) could be tested by coordinated radio and high-energy experiments. Case (ii) could be seen in a coordinated radio-optical surveys, e.g., by the Palomar Transient Factory in a 60 s frame as a transient object of m = 15–20 mag with an expected optical detection rate of about 0.1 hr{sup −1}, an order of magnitude higher than in radio. Shallow, but large-area sky surveys such as ASAS-SN and EVRYSCOPE could also detect prompt optical flashes from the more powerful Lorimer-burst clones. The best constraints on the optical to radio power for this kind of emission could be provided by future observations with facilities like Large Synoptic Survey Telescope. Case (iii) might be seen in relatively rare cases that the relativistically ejected magnetic blob is moving along the line of sight.

  15. The bright optical afterglow of the long GRB 001007

    DEFF Research Database (Denmark)

    Ceron, J.M.C.; Castro-Tirado, A.J.; Gorosabel, J.

    2002-01-01

    We present optical follow up observations of the long GRB 001007 between 6.14 hours and similar to468 days after the event. An unusually bright optical afterglow (OA) was seen to decline following a steep power law decay with index alpha = -2.03 +/- 0.11, possibly indicating a break in the light ...

  16. The Supercritical Pile GRB Model: The Prompt to Afterglow Evolution

    Science.gov (United States)

    Mastichiadis, A.; Kazanas, D.

    2009-01-01

    The "Supercritical Pile" is a very economical GRB model that provides for the efficient conversion of the energy stored in the protons of a Relativistic Blast Wave (RBW) into radiation and at the same time produces - in the prompt GRB phase, even in the absence of any particle acceleration - a spectral peak at energy approx. 1 MeV. We extend this model to include the evolution of the RBW Lorentz factor Gamma and thus follow its spectral and temporal features into the early GRB afterglow stage. One of the novel features of the present treatment is the inclusion of the feedback of the GRB produced radiation on the evolution of Gamma with radius. This feedback and the presence of kinematic and dynamic thresholds in the model can be the sources of rich time evolution which we have began to explore. In particular. one can this may obtain afterglow light curves with steep decays followed by the more conventional flatter afterglow slopes, while at the same time preserving the desirable features of the model, i.e. the well defined relativistic electron source and radiative processes that produce the proper peak in the (nu)F(sub nu), spectra. In this note we present the results of a specific set of parameters of this model with emphasis on the multiwavelength prompt emission and transition to the early afterglow.

  17. Fermi and Swift Gamma-Ray Burst Afterglow Population Studies

    Science.gov (United States)

    Racusin, Judith L.; Oates, S. R.; Schady, P.; Burrows, D. N.; dePasquale, M.; Donato, D.; Gehrels, N.; Koch, S.; McEnery, J.; Piran, T.; hide

    2011-01-01

    The new and extreme population of GRBs detected by Fermi -LAT shows several new features in high energy gamma-rays that are providing interesting and unexpected clues into GRB prompt and afterglow emission mechanisms. Over the last 6 years, it has been Swift that has provided the robust dataset of UV/optical and X-ray afterglow observations that opened many windows into components of GRB emission structure. The relationship between the LAT detected GRBs and the well studied, fainter, less energetic GRBs detected by Swift -BAT is only beginning to be explored by multi-wavelength studies. We explore the large sample of GRBs detected by BAT only, BAT and Fermi -GBM, and GBM and LAT, focusing on these samples separately in order to search for statistically significant differences between the populations, using only those GRBs with measured redshifts in order to physically characterize these objects. We disentangle which differences are instrumental selection effects versus intrinsic properties, in order to better understand the nature of the special characteristics of the LAT bursts.

  18. A cannonball model of gamma-ray bursts superluminal signatures

    CERN Document Server

    Dar, Arnon; Dar, Arnon; Rujula, Alvaro De

    2000-01-01

    Recent observations suggest that the long-duration gamma ray bursts (GRBs) and their afterglows are produced by highly relativistic jets emitted in supernova explosions. We propose that the result of the event is not just a compact object plus the ejecta: within a day, a fraction of the parent star falls back to produce a thick accretion disk. The subsequent accretion generates jets and constitutes the GRB ``engine'', as in the observed ejection of relativistic ``cannonballs'' of plasma by microquasars and active galactic nuclei. The GRB is produced as the jetted cannonballs exit the supernova shell reheated by the collision, re-emitting their own radiation and boosting the light of the shell. They decelerate by sweeping up interstellar matter, which is accelerated to cosmic-ray energies and emits synchrotron radiation: the afterglow. We emphasize here a smoking-gun signature of this model of GRBs: the superluminal motion of the afterglow, that can be searched for ---the sooner the better--- in the particular...

  19. A “Cosmic Comb” Model of Fast Radio Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bing [Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154 (United States)

    2017-02-20

    Recent observations of fast radio bursts (FRBs) indicate a perplexing, inconsistent picture. We propose a unified scenario to interpret diverse FRBs observed. A regular pulsar, otherwise unnoticeable at a cosmological distance, may produce a bright FRB if its magnetosphere is suddenly “combed” by a nearby, strong plasma stream toward the anti-stream direction. If the Earth is to the night side of the stream, the combed magnetic sheath would sweep across the direction of Earth and make a detectable FRB. The stream could be an AGN flare, a GRB or supernova blastwave, a tidal disruption event, or even a stellar flare. Since it is the energy flux received by the pulsar rather than the luminosity of the stream origin that defines the properties of the FRB, this model predicts a variety of counterparts of FRBs, including a possible connection between FRB 150418 and an AGN flare, a possible connection between FRB 131104 and a weak GRB, a steady radio nebula associated with the repeating FRB 121102, and probably no bright counterparts for some FRBs.

  20. Statistical Distributions of Optical Flares from Gamma-Ray Bursts

    Science.gov (United States)

    Yi, Shuang-Xi; Yu, Hai; Wang, F. Y.; Dai, Zi-Gao

    2017-07-01

    We statistically study gamma-ray burst (GRB) optical flares from the Swift/UVOT catalog. We compile 119 optical flares, including 77 flares with redshift measurements. Some tight correlations among the timescales of optical flares are found. For example, the rise time is correlated with the decay time, and the duration time is correlated with the peak time of optical flares. These two tight correlations indicate that longer rise times are associated with longer decay times of optical flares and also suggest that broader optical flares peak at later times, which are consistent with the corresponding correlations of X-ray flares. We also study the frequency distributions of optical flare parameters, including the duration time, rise time, decay time, peak time, and waiting time. Similar power-law distributions for optical and X-ray flares are found. Our statistic results imply that GRB optical flares and X-ray flares may share the similar physical origin, and both of them are possibly related to central engine activities.

  1. Where are the missing gamma-ray burst redshifts?

    Science.gov (United States)

    Coward, D. M.; Guetta, D.; Burman, R. R.; Imerito, A.

    2008-05-01

    In the redshift range z = 0-1, the gamma-ray burst (GRB) redshift distribution should increase rapidly because of increasing differential volume sizes and strong evolution in the star formation rate (SFR). This feature is not observed in the Swift redshift distribution and to account for this discrepancy a dominant bias, independent of the Swift sensitivity, is required. Furthermore, despite rapid localization, about 50 per cent of Swift and pre-Swift GRBs do not have an observed optical afterglow and 60-70 per cent of GRBs are lacking redshifts. We employ a heuristic technique to extract this redshift bias using 69 GRBs localized by Swift with redshifts determined from absorption or emission spectroscopy. For the Swift and HETE + BeppoSAX redshift distributions, the best model fit to the bias at z bias cancels this rate increase. We find that the same bias is affecting both Swift and HETE + BeppoSAX measurements similarly at z bias model constrained at a 98 per cent Kolmogorov-Smirnov (KS) probability, we find that 72 per cent of GRBs at z 2. To achieve this high KS probability requires increasing the GRB rate density at small z compared to the high-z rate. This provides further evidence for a low-luminosity population of GRBs that are observed in only a small volume because of their faintness.

  2. Towards a complete theory of Gamma Ray Bursts

    CERN Document Server

    Dar, Arnon; Dar, Arnon

    2004-01-01

    Gamma Ray Bursts (GRBs) are notorious for their diversity. Yet, they have a series of common features. The typical energy of their $\\gamma$ rays is a fraction of an MeV. The energy distributions are well described by a ``Band spectrum'', with ``peak energies'' spanning a surprisingly narrow range. The time structure of a GRB consists of pulses, superimposed or not, rising and decreasing fast. The number of photons in a pulse, the pulses' widths and their total energy vary within broad but given ranges. Within a pulse, the energy spectrum softens with increasing time. The duration of a pulse decreases at higher energies and its peak intensity shifts to earlier time. Many other correlations between pairs of GRB observables have been identified. Last (and based on one measured event!) the $\\gamma$-ray polarization is very large. A satisfactory theory of GRBs should naturally and very simply explain, among others, all these facts. We show that the "cannonball" (CB) model does it. In the CB model the process leadi...

  3. The observation of gamma ray bursts and terrestrial gamma-ray flashes with AGILE

    Science.gov (United States)

    Del Monte, E.; Barbiellini, G.; Fuschino, F.; Giuliani, A.; Longo, F.; Marisaldi, M.; Mereghetti, S.; Moretti, E.; Trifoglio, M.; Vianello, G.; Costa, E.; Donnarumma, I.; Evangelista, Y.; Feroci, M.; Gallil, M.; Lapshov, I.; Lazzarotto, F.; Lipari, P.; Pacciani, L.; Rapisarda, M.; Soffitta, P.; Tavani, M.; Vercellone, S.; Cutini, S.; Boffelli, F.; Bulgarelli, A.; Caraveo, P.; Cattaneo, P. W.; Chen, A.; Di Cocco, G.; Gianotti, F.; Labanti, C.; Morselli, A.; Pellizzoni, A.; Perotti, F.; Piano, G.; Picozza, P.; Pilia, M.; Prest, M.; Pucella, G.; Rappoldi, A.; Sabatini, S.; Striani, E.; Trois, A.; Vallazza, E.; Vittorini, V.; Antonelli, L. A.; Pittori, C.; Preger, B.; Santolamazza, P.; Verrecchia, F.; Giommi, P.; Salotti, L.

    2011-02-01

    Since its early phases of operation, the AGILE mission is successfully observing Gamma Ray Bursts (GRBs) in the hard X-ray band with the SuperAGILE imager and in the MeV range with the Mini-Calorimeter. Up to now, three firm GRB detections were obtained above 25 MeV and some bursts were detected with lower statistical confidence in the same energy band. When a GRB is localized, either by SuperAGILE or Swift/BAT or INTEGRAL/IBIS or Fermi/GBM or IPN, inside the field of view of the Gamma Ray Imager of AGILE, a detection is searched for in the gamma ray band or an upper limit is provided. A promising result of AGILE is the detection of very short gamma ray transients, a few ms in duration and possibly identified with Terrestrial Gamma-ray Flashes. In this paper we show the current status of the observation of Gamma Ray Bursts and Terrestrial Gamma-ray Flashes with AGILE.

  4. The Swift Gamma-ray Burst Explorer Mission at Penn State

    Science.gov (United States)

    Nousek, J.; Burrows, D.; Chester, M.; Roming, P.; Gehrels, N.; Swift Team

    2000-12-01

    The Swift GRB Explorer mission is designed to discover ~ 1000 new gamma-ray bursts in its three year planned life, and immediately (within tens of seconds) to start simultaneous X-ray, optical and ultraviolet observations of the GRB afterglow. After its planned launch in September, 2003, it will collect an impressive database of gamma ray bursts (reaching more sensitive limits than BATSE); uniform X-ray/UV/optical monitoring of afterglows (with a dedicated weatherless observatory with broad multi-wavelength imaging capability); and rapid followup by other observatories (utilizing a continuous ground link with burst alerts and data posted immediately to the GCN). The Penn State Swift responsibilities include development of the X-ray Telescope (with CCDs from the University of Leicester and X-ray mirrors from OAB); the UV/Optical Telescope (with instrument fabrication at MSSL and SwRI); and development of the Mission Operations Center at PSU (with support from Omitron Corp.). After launch Swift will be operated from Penn State, with data analysis pipelines and data archives at Goddard Space Flight Center, Leicester and the Italian Science Data Center. The mission, lead by Neil Gehrels of GSFC, has successfully concluded the Preliminary Design Review process, including the spacecraft to be built by SpectrumAstro. We show the current status of the PSU lead portions of the mission. Funding for the Swift project at PSU is provided by NASA Contract NAS5-00136.

  5. Gas inflow and outflow in an interacting high-redshift galaxy. The remarkable host environment of GRB 080810 at z = 3.35

    Science.gov (United States)

    Wiseman, P.; Perley, D. A.; Schady, P.; Prochaska, J. X.; de Ugarte Postigo, A.; Krühler, T.; Yates, R. M.; Greiner, J.

    2017-11-01

    We reveal multiple components of an interacting galaxy system at z ≈ 3.35 through a detailed analysis of the exquisite high-resolution Keck/HIRES spectrum of the afterglow of a gamma-ray burst (GRB). Through Voigt-profile fitting of absorption lines from the Lyman series, we constrain the neutral hydrogen column density to NH I ≤ 1018.35 cm-2 for the densest of four distinct systems at the host redshift of GRB 080810, which is among the lowest NH I ever observed in a GRB host, even though the line of sight passes within a projected 5 kpc of the galaxy centres. By detailed analysis of the corresponding metal absorption lines, we derive chemical, ionic, and kinematic properties of the individual absorbing systems, and thus build a picture of the host as a whole. Striking differences between the systems imply that the line of sight passes through several phases of gas: the star-forming regions of the GRB host; enriched material in the form of a galactic outflow; the hot and ionised halo of a second interacting galaxy falling towards the host at a line-of-sight velocity of 700 km s-1; and a cool metal-poor cloud that may represent one of the best candidates yet for the inflow of metal-poor gas from the intergalactic medium. The reduced spectrum is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A107

  6. An r−process macronova/kilonova in GRB 060614: evidence for the merger of a neutron star-black hole binary

    Directory of Open Access Journals (Sweden)

    Jin Zhi-Ping

    2016-01-01

    Full Text Available After the jet break at t ~ 1.4 days, the optical afterglow emission of the long-short burst GRB 060614 can be divided into two components. One is the power-law decaying forward shock afterglow emission. The other is an excess of flux in several multi-band photometric observations, which emerges at ~4 days after the burst, significantly earlier than that observed for a supernova associated with a long-duration GRB. At t > 13.6 days, the F814W-band flux drops faster than t−3.2. Moreover, the spectrum of the excess component is very soft and the luminosity is extremely low. These observed signals are incompatible with those from weak supernovae, but the ejection of ~ 0.1 M⊙ of r−process material from a black hole-neutron star merger, as recently found in some numerical simulations, can produce it. If this interpretation is correct, it represents the first time that a multi-epoch/band lightcurve of a Li-Paczynski macronova (also known as kilonova has been obtained and black hole-neutron star mergers are sites of significant production of r−process elements.

  7. Deletion of the Imprinted Gene Grb10 Promotes Hematopoietic Stem Cell Self-Renewal and Regeneration.

    Science.gov (United States)

    Yan, Xiao; Himburg, Heather A; Pohl, Katherine; Quarmyne, Mamle; Tran, Evelyn; Zhang, Yurun; Fang, Tiancheng; Kan, Jenny; Chao, Nelson J; Zhao, Liman; Doan, Phuong L; Chute, John P

    2016-11-01

    Imprinted genes are differentially expressed by adult stem cells, but their functions in regulating adult stem cell fate are incompletely understood. Here we show that growth factor receptor-bound protein 10 (Grb10), an imprinted gene, regulates hematopoietic stem cell (HSC) self-renewal and regeneration. Deletion of the maternal allele of Grb10 in mice (Grb10m/+ mice) substantially increased HSC long-term repopulating capacity, as compared to that of Grb10+/+ mice. After total body irradiation (TBI), Grb10m/+ mice demonstrated accelerated HSC regeneration and hematopoietic reconstitution, as compared to Grb10+/+ mice. Grb10-deficient HSCs displayed increased proliferation after competitive transplantation or TBI, commensurate with upregulation of CDK4 and Cyclin E. Furthermore, the enhanced HSC regeneration observed in Grb10-deficient mice was dependent on activation of the Akt/mTORC1 pathway. This study reveals a function for the imprinted gene Grb10 in regulating HSC self-renewal and regeneration and suggests that the inhibition of Grb10 can promote hematopoietic regeneration in vivo. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Quantum-Spacetime Scenarios and Soft Spectral Lags of the Remarkable GRB130427A

    Directory of Open Access Journals (Sweden)

    Giovanni Amelino-Camelia

    2014-01-01

    Full Text Available We process the Fermi LAT data on GRB130427A using the Fermi Science Tools, and we summarize some of the key facts that render this observation truly remarkable. We then perform a search of spectral lags, of the type that has been of interest for its relevance in quantum-spacetime research. We do find some evidence of systematic soft spectral lags: when confining the analysis to photons of energies greater than 5 GeV there is an early hard development of minibursts within the burst. The effect is well characterized by a linear dependence, within such a miniburst, of the detection time on energy. We also observe that some support for these features is noticeable also in earlier Fermi-LAT GRBs. Some aspects of the comparison of these features for GRBs at different redshifts could be described within a quantum-spacetime picture, but taking into account results previously obtained by other studies we favour the interpretation as intrinsic properties of GRBs. Even if our spectral lags do turn out to have astrophysical origin their understanding will be important for quantum-spacetime research, since any attempt to reveal minute quantum-spacetime-induced spectral lags evidently requires a good understanding of intrinsic mechanisms at the sources that can produce spectral lags.

  9. Method for detecting neutrinos from internal shocks in GRB fireballs with AMANDA

    CERN Document Server

    Stamatikos, M

    2004-01-01

    Neutrino-based astronomy provides a new window on the most energetic processes in the universe. The discovery of high-energy (E >or= 10 /sup 14/ eV) muonic neutrinos (v/sub mu /) from gamma-ray bursts (GRBs) would confirm hadronic acceleration in the relativistic GRB- wind, validate the phenomenology of the canonical fireball model and possibly reveal an acceleration mechanism for the highest energy cosmic rays (CRs). The Antarctic Muon and Neutrino Detector Array (AMANDA) is the world's largest operational neutrino telescope with a PeV muon effective area (averaged over zenith angle) ~ 50,000 m/sup 2 /. AMANDA uses the natural ice at the geographic South Pole as a Cherenkov medium and has been successfully calibrated on the signal of atmospheric neutrinos (v/sub atm/). Contrary to previous diffuse searches, we describe an analysis based upon confronting AMANDA observations of individual GRBs, adequately modeled by fireball phenomenology, with the predictions of the canonical fireball model. The expected neut...

  10. A New Era of Submillimeter GRB Afterglow Follow-Ups with the Greenland Telescope

    Directory of Open Access Journals (Sweden)

    Yuji Urata

    2015-01-01

    Full Text Available Planned rapid submillimeter (submm gamma-ray-bursts (GRBs follow-up observations conducted using the Greenland Telescope (GLT are presented. The GLT is a 12-m submm telescope to be located at the top of the Greenland ice sheet, where the high altitude and dry weather porvide excellent conditions for observations at submm wavelengths. With its combination of wavelength window and rapid responding system, the GLT will explore new insights on GRBs. Summarizing the current achievements of submm GRB follow-ups, we identify the following three scientific goals regarding GRBs: (1 systematic detection of bright submm emissions originating from reverse shock (RS in the early afterglow phase, (2 characterization of forward shock and RS emissions by capturing their peak flux and frequencies and performing continuous monitoring, and (3 detections of GRBs at a high redshift as a result of the explosion of first generation stars through systematic rapid follow-ups. The light curves and spectra calculated by available theoretical models clearly show that the GLT could play a crucial role in these studies.

  11. A METHOD TO CONSTRAIN MASS AND SPIN OF GRB BLACK HOLES WITHIN THE NDAF MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tong; Xue, Li [Department of Astronomy, Xiamen University, Xiamen, Fujian 361005 (China); Zhao, Xiao-Hong; Zhang, Fu-Wen [Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China); Zhang, Bing, E-mail: lixue@xmu.edu.cn, E-mail: tongliu@xmu.edu.cn, E-mail: zhang@physics.unlv.edu [Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154 (United States)

    2016-04-20

    Black holes (BHs) hide themselves behind various astronomical phenomena and their properties, i.e., mass and spin, are usually difficult to constrain. One leading candidate for the central engine model of gamma-ray bursts (GRBs) invokes a stellar mass BH and a neutrino-dominated accretion flow (NDAF), with the relativistic jet launched due to neutrino-anti-neutrino annihilations. Such a model gives rise to a matter-dominated fireball, and is suitable to interpret GRBs with a dominant thermal component with a photospheric origin. We propose a method to constrain BH mass and spin within the framework of this model and apply the method to the thermally dominant GRB 101219B, whose initial jet launching radius, r {sub 0}, is constrained from the data. Using our numerical model of NDAF jets, we estimate the following constraints on the central BH: mass M {sub BH} ∼ 5–9 M {sub ⊙}, spin parameter a {sub *} ≳ 0.6, and disk mass 3 M {sub ⊙} ≲ M {sub disk} ≲ 4 M {sub ⊙}. Our results also suggest that the NDAF model is a competitive candidate for the central engine of GRBs with a strong thermal component.

  12. EDGE: Explorer of diffuse emission and gamma-ray burst explosions

    DEFF Research Database (Denmark)

    Den Herder, J.W.; Hermsen, W.; Hoevers, H.

    2007-01-01

    How structures of various scales formed and evolved from the early Universe up to present time is a fundamental question of astrophysics. EDGE1 will trace the cosmic history of the baryons from the early generations of massive stars by Gamma-Ray Burst (GRB) explosions, through the period of galaxy......). This enables the study of their (star-forming) environment and the use of GRBs as back lights of large scale cosmological structures; (b) observing and surveying extended sources (galaxy clusters, WHIM) with high sensitivity using two wide field of view X-ray telescopes (one with a high angular resolution...

  13. Short versus Long Gamma-Ray Bursts: spectra, energetics, and luminosities

    OpenAIRE

    Ghirlanda, G.; Nava, L.; Ghisellini, G.; Celotti, A.; Firmani, C.

    2009-01-01

    We compare the spectral properties of 79 short and 79 long Gamma-Ray Bursts (GRBs) detected by BATSE and selected with the same limiting peak flux. Short GRBs have a low-energy spectral component harder and a peak energy slightly higher than long GRBs, but no difference is found when comparing short GRB spectra with those of the first 1-2 sec emission of long GRBs. These results confirm earlier findings for brighter GRBs. The bolometric peak flux of short GRBs correlates with their peak energ...

  14. The LOFT contribution to GRB science

    Energy Technology Data Exchange (ETDEWEB)

    Amati, L., E-mail: amati@iasfbo.inaf.it [INAF – IASF Bologna, via P. Gobetti 101, 40129 Bologna (Italy); Del Monte, E. [INAF – IAPS, via Fosso del Cavaliere 100, 00133 Roma (Italy); D' Elia, V.; Gendre, B. [ASI Science Data Center (ASDC), via Galileo Galilei, 00044 Frascati (Italy); Salvaterra, R. [INAF – IASF Milano, via E. Bassini 15, I-20133 Milano (Italy); Stratta, G. [ASI Science Data Center (ASDC), via Galileo Galilei, 00044 Frascati (Italy)

    2013-06-15

    LOFT is a satellite mission currently in Assessment Phase for the ESA M3 selection. The payload is composed of the Large Area Detector (LAD), with 2–50 keV energy band, a peak effective area of about 10m{sup 2} and an energy resolution better than 260 eV, and the Wide Field Monitor (WFM), a coded mask imager with a FOV of several steradians, an energy resolution of about 300 eV and a point source location accuracy of 1 arcmin in the 2–30 keV energy range. Based on preliminary considerations and estimates, we show how the scientific performances of the WFM are particularly suited to investigate the most relevant open issues in the study of GRBs: the physics of the prompt emission, the spectral absorption features by circum-burst material (and hence the nature of the progenitors), the population and properties of XRFs, and the detection and rate of high-z GRBs. Measurements of the early afterglow emission with the Large Area Detector (LAD) may also be possible depending on the mission slewing capabilities and TOO observations policy.

  15. A subpopulation of nearby, low luminosity, short gamma-ray bursts as triggers for subthreshold transient gravitational wave searches

    Science.gov (United States)

    Siellez, Karelle; LIGO

    2018-01-01

    Two years ago, LIGO opened the new area of gravitational wave astrophysics with the detection of the coalescence of two black holes. Neutron star mergers (either double neutron star or neutron star - black hole systems) will be the next key target for gravitational wave observatories such as Advanced-Virgo (AdV), Advanced-LIGO (aLIGO) and the future Einstein Telescope (ET). Those binary compact objects are also thought to be the progenitor of short Gamma-Ray Bursts (GRB). A coincident detection of Gravitational Waves (GW) and the electromagnetic emission would extend the new window in astrophysics: the multimessager era.Using the most reliable sample of short GRB with known redshift, we have identified a new population of low luminous short GRBs at low redshift. This population was reproduced using realistic Monte Carlo simulations accounting for both GW and GRB selection effects. In this talk, we will discuss the properties of the progenitors that are supposed to produce this class of short GRBs. We will also present an estimation of the detection rate of such events, that could be seen both by a GRB satellite and AdV/aLIGO/ET. We will then present the offline refined analysis of LIGO, introducing the different method used to achieve this goal. We will discuss future aLIGO/AdV running.

  16. Overview of the SVOM Gamma-Ray Burst mission under development with a focus on its Trigger system

    Science.gov (United States)

    Schanne, Stephane

    2017-08-01

    The SVOM mission (Space-based Variable Objects Monitor) is a Chinese-French satellite mission under development, devoted to collecting a complete sample of Gamma-Ray Bursts (GRBs) observed at multi-wavelengths with a high fraction of redshift determinations. In January 2017 the mission entered Phase C, starting officially construction, and the launch is foreseen in 2021. The SVOM satellite is equipped with 4 instruments, 2 of which cover the prompt GRB phase. The ECLAIRs coded-mask imager surveys a 2-sr large portion of the sky in the 4-150 keV energy range, well suited for the detection of X-ray rich and highly redshifted GRBs. The ECLAIRs trigger system continuously searches for GRBs using two algorithms, a count-rate trigger for short time scales and an image trigger for long time scales. In case of a localized new GRB candidate or a bright outburst of a known source, it promptly requests a satellite slew and sends an alert to ground. The onboard GRM (Gamma-Ray Monitor) extends the prompt energy coverage up to 5 MeV. After slew, 2 more onboard instruments study the GRB afterglow and refine the GRB localization: the MXT (Multi-pore optics X-ray Telescope) and the VT (Visible Telescope). Two types of ground telescopes are dedicated to SVOM. The GFTs (Ground Follow-up Telescopes) repoint autonomously to GRB alerts, refine their localization and provide photometric redshift. The SVOM observing strategy with roughly antisolar pointing combined with Galactic plane avoidance, ensures that most GRBs are quickly visible by the GFTs and large spectroscopic telescopes. The GWAC (Ground Wide Angle Camera) will observe the sky simultaneously with ECLAIRs to detect prompt optical GRB emissions. Today part of the GWAC is already operational. The SVOM GRB program is complemented by pre-planned target observations and ground-commanded targets of opportunity, e.g. to search for electromagnetic counterparts of gravity-wave events. On behalf of the SVOM and ECLAIRs teams, this

  17. A New Measurement of the Spectral Lag of Gamma-Ray Bursts and its Implications for Spectral Evolution Behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Lang; Wang, Fu-Ri; Cheng, Ye-Hao; Zhang, Xi; Yu, Bang-Yao; Xi, Bao-Jia; Wang, Xue; Feng, Huan-Xue; Zhang, Meng, E-mail: lshao@hebtu.edu.cn [Department of Space Sciences and Astronomy, Hebei Normal University, Shijiazhuang 050024 (China); Zhang, Bin-Bin [Instituto de Astrofísica de Andalucá (IAA-CSIC), P.O. Box 03004, E-18080 Granada (Spain); Wu, Xue-Feng [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Xu, Dong [Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2017-08-01

    We carry out a systematical study of the spectral lag properties of 50 single-pulsed gamma-ray bursts (GRBs) detected by the Fermi Gamma-Ray Burst Monitor. By dividing the light curves into multiple consecutive energy channels, we provide a new measurement of the spectral lag that is independent of energy channel selections. We perform a detailed statistical study of our new measurements. We find two similar power-law energy dependencies of both the pulse arrival time and pulse width. Our new results on the power-law indices would favor the relativistic geometric effects for the origin of spectral lag. However, a complete theoretical framework that can fully account for the diverse energy dependencies of both arrival time and pulse width revealed in this work is still lacking. We also study the spectral evolution behaviors of the GRB pulses. We find that a GRB pulse with negligible spectral lag would usually have a shorter pulse duration and would appear to have a “hardness-intensity tracking” behavior, and a GRB pulse with a significant spectral lag would usually have a longer pulse duration and would appear to have a “hard-to-soft” behavior.

  18. Collapsar γ-ray bursts: how the luminosity function dictates the duration distribution

    Science.gov (United States)

    Petropoulou, Maria; Barniol Duran, Rodolfo; Giannios, Dimitrios

    2017-12-01

    Jets in long-duration γ-ray bursts (GRBs) have to drill through the collapsing star in order to break out of it and produce the γ-ray signal while the central engine is still active. If the breakout time is shorter for more powerful engines, then the jet-collapsar interaction acts as a filter of less luminous jets. We show that the observed broken power-law GRB luminosity function is a natural outcome of this process. For a theoretically motivated breakout time that scales with jet luminosity as L-χ with χ ∼ 1/3-1/2, we show that the shape of the γ-ray duration distribution can be uniquely determined by the GRB luminosity function and matches the observed one. This analysis has also interesting implications about the supernova-central engine connection. We show that not only successful jets can deposit sufficient energy in the stellar envelope to power the GRB-associated supernovae, but also failed jets may operate in all Type Ib/c supernovae.

  19. Some statistical remarks on the giant GRB ring

    Science.gov (United States)

    Balázs, Lajos G.; Rejtő, Lídia; Tusnády, Gábor

    2018-01-01

    We studied some statistical properties of the spatial point process displayed by GRBs of known redshift. To find ring-like point patterns we developed an algorithm and defined parameters to characterize the level of compactness and regularity of the rings found in this procedure. Applying this algorithm to the GRB sample we identified three more ring-like point patterns. Although, they had the same regularity but much less level of compactness than the original GRB ring. Assuming a stochastic independence of the angular and radial positions of the GRBs we obtained 1502 additional samples, altogether 542 222 data points, by bootstrapping the original one. None of these data points participated in rings having similar level of compactness and regularity as the original one. Using an appropriate kernel we estimated the joint probability density of the angular and radial variables of the GRBs. Performing MCMC simulations we obtained 1502 new samples, altogether 542 222 data points. Among these data points only three represented ring-like patterns having similar parameters as the original one. By defining a new statistical variable we tested the independence of the angular and radial variables of the GRBs. We concluded that despite the existence of local irregularities in the GRBs' spatial distribution (e.g. the GGR) one cannot reject the Cosmological Principle, based on their spatial distribution as a whole. We pointed out the large-scale spatial pattern of the GRB activity does not necessarily reflects the large-scale distribution of the cosmic matter.

  20. Calibration and Simulation of the GRB trigger detector of the Ultra Fast Flash Observatory

    DEFF Research Database (Denmark)

    Huang, M.-H.A.; Ahmad, S.; Barrillon, P.

    2013-01-01

    of the GRB and then alerts the Slewing Mirror Telescope (SMT) to turn in the direction of the GRB and record the optical photon fluxes. This report details the calibration of the two components: the MAPMTs and the YSO crystals and simulations of the UBAT. The results shows that this design can observe a GRB...... within a field of view of ±35° and can trigger in a time scale as short as 0.2 – 1.0 s after the appearance of a GRB X-ray spike....

  1. Grb7 gene amplification and protein expression by FISH and IHC in ovarian cancer

    OpenAIRE

    ZENG, MANMAN; Yang, Zhu; Hu, Xiaoyu; LIU, Yi; YANG, XIAOTAO; Ran, Hailong; Li, Yanan; Li, Xu; YU, QIUBO

    2015-01-01

    Objective: Overexpression of growth factor receptor-bound protein 7 (Grb7) has been found in numerous human cancers. The aim of this study was to evaluate the correlation between Grb7 gene amplification and protein expression in ovarian cancer (OC). Methods: We use Tissue Microarray (TMA) respectively to detect the gene amplification and protein expression of Grb7 in 90 cases OC and 10 control specimens of normal ovarian tissues by IHC and FISH. Results: The Grb7 protein expression by IHC ana...

  2. THE OPTICALLY UNBIASED GAMMA-RAY BURST HOST (TOUGH) SURVEY. I. SURVEY DESIGN AND CATALOGS

    Energy Technology Data Exchange (ETDEWEB)

    Hjorth, Jens; Malesani, Daniele; Fynbo, Johan P. U.; Kruehler, Thomas; Milvang-Jensen, Bo; Watson, Darach [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Jakobsson, Pall; Schulze, Steve [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik (Iceland); Jaunsen, Andreas O. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Gorosabel, Javier [Instituto de Astrofisica de Andalucia (IAA-CSIC), P.O. Box 03004, E-18080 Granada (Spain); Levan, Andrew J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Michalowski, Michal J. [SUPA, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Moller, Palle [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching by Muenchen (Germany); Tanvir, Nial R., E-mail: jens@dark-cosmology.dk [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2012-09-10

    Long-duration gamma-ray bursts (GRBs) are powerful tracers of star-forming galaxies. We have defined a homogeneous subsample of 69 Swift GRB-selected galaxies spanning a very wide redshift range. Special attention has been devoted to making the sample optically unbiased through simple and well-defined selection criteria based on the high-energy properties of the bursts and their positions on the sky. Thanks to our extensive follow-up observations, this sample has now achieved a comparatively high degree of redshift completeness, and thus provides a legacy sample, useful for statistical studies of GRBs and their host galaxies. In this paper, we present the survey design and summarize the results of our observing program conducted at the ESO Very Large Telescope (VLT) aimed at obtaining the most basic properties of galaxies in this sample, including a catalog of R and K{sub s} magnitudes and redshifts. We detect the host galaxies for 80% of the GRBs in the sample, although only 42% have K{sub s} -band detections, which confirms that GRB-selected host galaxies are generally blue. The sample is not uniformly blue, however, with two extremely red objects detected. Moreover, galaxies hosting GRBs with no optical/NIR afterglows, whose identification therefore relies on X-ray localizations, are significantly brighter and redder than those with an optical/NIR afterglow. This supports a scenario where GRBs occurring in more massive and dusty galaxies frequently suffer high optical obscuration. Our spectroscopic campaign has resulted in 77% now having redshift measurements, with a median redshift of 2.14 {+-} 0.18. TOUGH alone includes 17 detected z > 2 Swift GRB host galaxies suitable for individual and statistical studies-a substantial increase over previous samples. Seven hosts have detections of the Ly{alpha} emission line and we can exclude an early indication that Ly{alpha} emission is ubiquitous among GRB hosts, but confirm that Ly{alpha} is stronger in GRB

  3. A repeating fast radio burst

    Science.gov (United States)

    Spitler, L. G.; Scholz, P.; Hessels, J. W. T.; Bogdanov, S.; Brazier, A.; Camilo, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J.; Ferdman, R. D.; Freire, P. C. C.; Kaspi, V. M.; Lazarus, P.; Lynch, R.; Madsen, E. C.; McLaughlin, M. A.; Patel, C.; Ransom, S. M.; Seymour, A.; Stairs, I. H.; Stappers, B. W.; van Leeuwen, J.; Zhu, W. W.

    2016-03-01

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.

  4. The AMANDA search for high energy neutrinos from gamma ray bursts

    CERN Document Server

    Hardtke, R

    2004-01-01

    We have searched three and a half years of AMANDA data for high energy muon neutrinos from gamma-ray bursts (GRBs). The data were recorded from 1997 through 1999 by the AMANDA-BIO detector and in 2000 by the AMANDA-II detector. AMANDA is a Cerenkov detector embedded 1.5 to 2 km deep in the transparent ice of the South Polar plateau. We searched for neutrino candidates from the direction of, and coincident with, GRBs detected by the Burst and Transient Source Experiment (BATSE). The current result is consistent with no signal. A preliminary event upper limit for GRB neutrino emission is presented as well as a description of AMANDA's cubic-kilometer successor, IceCube.

  5. Machine Learning Search for Gamma-Ray Burst Afterglows in Optical Images

    Science.gov (United States)

    Topinka, M.

    2016-06-01

    Thanks to the advances in robotic telescopes, time domain astronomy leads to a large number of transient events detected in images every night. Data mining and machine learning tools used for object classification are presented. The goal is to automatically classify transient events for both further follow-up by a larger telescope and for statistical studies of transient events. Special attention is given to the identification of gamma-ray burst afterglows. Machine learning techniques are used to identify GROND gamma-ray burst afterglow among the astrophysical objects present in the SDSS archival images based on the g'-r', r'-i' and i'-z' color indices. The performance of the support vector machine, random forest and neural network algorithms is compared. A joint meta-classifier, built on top of the individual classifiers, can identify GRB afterglows with the overall accuracy of ≳ 90%.

  6. Searching gamma-ray bursts for gravitational lensing echoes - Implications for compact dark matter

    Science.gov (United States)

    Nemiroff, R. J.; Norris, J. P.; Wickramasinghe, W. A. D. T.; Horack, J. M.; Kouveliotou, C.; Fishman, G. J.; Meegan, C. A.; Wilson, R. B.; Paciesas, W. S.

    1993-01-01

    The first available 44 gamma-ray bursts (GRBs) detected by the Burst and Transient Source Experiment on board the Compton Gamma-Ray Observatory have been inspected for echo signals following shortly after the main signal. No significant echoes have been found. Echoes would have been expected were the GRBs distant enough and the universe populated with a sufficient density of compact objects composing the dark matter. Constraints on dark matter abundance and GRB redshifts from the present data are presented and discussed. Based on these preliminary results, a universe filled to critical density of compact objects between 10 exp 6.5 and 10 exp 8.1 solar masses are now marginally excluded, or the most likely cosmological distance paradigm for GRBs is not correct. We expect future constraints to be able either to test currently popular cosmological dark matter paradigms or to indicate that GRBs do not lie at cosmological distances.

  7. TeV-PeV neutrinos from low-power gamma-ray burst jets inside stars.

    Science.gov (United States)

    Murase, Kohta; Ioka, Kunihito

    2013-09-20

    We study high-energy neutrino production in collimated jets inside progenitors of gamma-ray bursts (GRBs) and supernovae, considering both collimation and internal shocks. We obtain simple, useful constraints, using the often overlooked point that shock acceleration of particles is ineffective at radiation-mediated shocks. Classical GRBs may be too powerful to produce high-energy neutrinos inside stars, which is consistent with IceCube nondetections. We find that ultralong GRBs avoid such constraints and detecting the TeV signal will support giant progenitors. Predictions for low-power GRB classes including low-luminosity GRBs can be consistent with the astrophysical neutrino background IceCube may detect, with a spectral steepening around PeV. The models can be tested with future GRB monitors.

  8. The First FERMI-LAT Gamma-Ray Burst Catalog

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Asano, K.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; hide

    2013-01-01

    In three years of observations since the beginning of nominal science operations in 2008 August, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope has observed high-energy great than (20 MeV) gamma-ray emission from 35 gamma-ray bursts (GRBs). Among these, 28 GRBs have been detected above 100 MeV and 7 GRBs above approximately 20 MeV. The first Fermi-LAT catalog of GRBs is a compilation of these detections and provides a systematic study of high-energy emission from GRBs for the first time. To generate the catalog, we examined 733 GRBs detected by the Gamma-Ray Burst Monitor (GBM) on Fermi and processed each of them using the same analysis sequence. Details of the methodology followed by the LAT collaboration for the GRB analysis are provided. We summarize the temporal and spectral properties of the LAT-detected GRBs. We also discuss characteristics of LAT-detected emission such as its delayed onset and longer duration compared with emission detected by the GBM, its power-law temporal decay at late times, and the fact that it is dominated by a power-law spectral component that appears in addition to the usual Band model.

  9. THE FIRST FERMI-LAT GAMMA-RAY BURST CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Asano, K. [Interactive Research Center of Science, Tokyo Institute of Technology, Meguro City, Tokyo 152-8551 (Japan); Axelsson, M. [Department of Astronomy, Stockholm University, SE-106 91 Stockholm (Sweden); Baldini, L. [Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d' Astrophysique, CEA Saclay, 91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bechtol, K.; Bloom, E. D. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bhat, P. N. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Bissaldi, E. [Institut für Astro- und Teilchenphysik and Institut für Theoretische Physik, Leopold-Franzens-Universität Innsbruck, A-6020 Innsbruck (Austria); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Bonnell, J.; Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bouvier, A., E-mail: nicola.omodei@stanford.edu, E-mail: giacomov@slac.stanford.edu [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); and others

    2013-11-01

    In three years of observations since the beginning of nominal science operations in 2008 August, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope has observed high-energy (∼> 20 MeV) γ-ray emission from 35 gamma-ray bursts (GRBs). Among these, 28 GRBs have been detected above 100 MeV and 7 GRBs above ∼20 MeV. The first Fermi-LAT catalog of GRBs is a compilation of these detections and provides a systematic study of high-energy emission from GRBs for the first time. To generate the catalog, we examined 733 GRBs detected by the Gamma-Ray Burst Monitor (GBM) on Fermi and processed each of them using the same analysis sequence. Details of the methodology followed by the LAT collaboration for the GRB analysis are provided. We summarize the temporal and spectral properties of the LAT-detected GRBs. We also discuss characteristics of LAT-detected emission such as its delayed onset and longer duration compared with emission detected by the GBM, its power-law temporal decay at late times, and the fact that it is dominated by a power-law spectral component that appears in addition to the usual Band model.

  10. The optical luminosity function of gamma-ray bursts deduced from ROTSE-III observations

    Energy Technology Data Exchange (ETDEWEB)

    Cui, X. H.; Wu, X. F.; Wei, J. J. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Yuan, F. [Research School of Astronomy and Astrophysics, The Australian National University, Weston Creek, ACT 2611 (Australia); Zheng, W. K. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Liang, E. W. [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Akerlof, C. W.; McKay, T. A. [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Ashley, M. C. B. [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Flewelling, H. A. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Göǧüş, E. [Sabancı University, Orhanlı-Tuzla, 34956 İstanbul (Turkey); Güver, T. [Department of Astronomy and Space Sciences, Istanbul University Science Faculty, 34119 Istanbul (Turkey); Kızıloǧlu, Ü. [Middle East Technical University, 06531 Ankara (Turkey); Pandey, S. B. [ARIES, Manora Peak, Nainital 263129, Uttarakhand (India); Rykoff, E. S. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Rujopakarn, W. [Department of Physics, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330 (Thailand); Schaefer, B. E. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Wheeler, J. C. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Yost, S. A., E-mail: xhcui@bao.ac.cn, E-mail: xfwu@pmo.ac.cn, E-mail: jjwei@pmo.ac.cn, E-mail: fang.yuan@anu.edu.au, E-mail: zwk@astro.berkeley.edu, E-mail: lew@gxu.edu.cn [Department of Physics, College of St. Benedict, St. John' s University, Collegeville, MN 56321 (United States)

    2014-11-10

    We present the optical luminosity function (LF) of gamma-ray bursts (GRBs) estimated from a uniform sample of 58 GRBs from observations with the Robotic Optical Transient Search Experiment III (ROTSE-III). Our GRB sample is divided into two sub-samples: detected afterglows (18 GRBs) and those with upper limits (40 GRBs). We derive R-band fluxes for these two sub-samples 100 s after the onset of the burst. The optical LFs at 100 s are fitted by assuming that the co-moving GRB rate traces the star formation rate. While fitting the optical LFs using Monte Carlo simulations, we take into account the detection function of ROTSE-III. We find that the cumulative distribution of optical emission at 100 s is well described by an exponential rise and power-law decay, a broken power law,and Schechter LFs. A single power-law (SPL) LF, on the other hand, is ruled out with high confidence.

  11. The long, the short and the weak: the origin of gamma-ray bursts.

    Science.gov (United States)

    Piran, Tsvi; Bromberg, Omer; Nakar, Ehud; Sari, Re'em

    2013-06-13

    The origin of gamma-ray bursts (GRBs) is one of the most interesting puzzles in recent astronomy. During the last decade a consensus has formed that long GRBs (LGRBs) arise from the collapse of massive stars, and that short GRBs (SGRBs) have a different origin, most likely neutron star mergers. A key ingredient of the collapsar model that explains how the collapse of massive stars produces a GRB is the emergence of a relativistic jet that penetrates the stellar envelope. The condition that the emerging jet penetrates the envelope imposes strong constraints on the system. Using these constraints we show the following. (i) Low-luminosity GRBs (llGRBs), a subpopulation of GRBs with very low luminosities (and other peculiar properties: single-peaked, smooth and soft), cannot be formed by collapsars. llGRBs must have a different origin (most likely a shock breakout). (ii) On the other hand, regular LGRBs must be formed by collapsars. (iii) While for BATSE the dividing line between collapsars and non-collapsars is indeed at approximately 2 s, the dividing line is different for other GRB detectors. In particular, most Swift bursts longer than 0.8 s are of a collapsar origin. This last result requires a revision of many conclusions concerning the origin of Swift SGRBs, which were based on the commonly used 2 s limit.

  12. The Optical Luminosity Function of Gamma-Ray Bursts Deduced from ROTSE-III Observations

    Science.gov (United States)

    Cui, X. H.; Wu, X. F.; Wei, J. J.; Yuan, F.; Zheng, W. K.; Liang, E. W.; Akerlof, C. W.; Ashley, M. C. B.; Flewelling, H. A.; Göǧüş, E.; Güver, T.; Kızıloǧlu, Ü.; McKay, T. A.; Pandey, S. B.; Rykoff, E. S.; Rujopakarn, W.; Schaefer, B. E.; Wheeler, J. C.; Yost, S. A.

    2014-11-01

    We present the optical luminosity function (LF) of gamma-ray bursts (GRBs) estimated from a uniform sample of 58 GRBs from observations with the Robotic Optical Transient Search Experiment III (ROTSE-III). Our GRB sample is divided into two sub-samples: detected afterglows (18 GRBs) and those with upper limits (40 GRBs). We derive R-band fluxes for these two sub-samples 100 s after the onset of the burst. The optical LFs at 100 s are fitted by assuming that the co-moving GRB rate traces the star formation rate. While fitting the optical LFs using Monte Carlo simulations, we take into account the detection function of ROTSE-III. We find that the cumulative distribution of optical emission at 100 s is well described by an exponential rise and power-law decay, a broken power law,and Schechter LFs. A single power-law (SPL) LF, on the other hand, is ruled out with high confidence.

  13. The Swift Gamma-Ray Burst Host Galaxy Legacy Survey. I. Sample Selection and Redshift Distribution

    Science.gov (United States)

    Perley, D. A.; Krühler, T.; Schulze, S.; de Ugarte Postigo, A.; Hjorth, J.; Berger, E.; Cenko, S. B.; Chary, R.; Cucchiara, A.; Ellis, R.; Fong, W.; Fynbo, J. P. U.; Gorosabel, J.; Greiner, J.; Jakobsson, P.; Kim, S.; Laskar, T.; Levan, A. J.; Michałowski, M. J.; Milvang-Jensen, B.; Tanvir, N. R.; Thöne, C. C.; Wiersema, K.

    2016-01-01

    We introduce the Swift Gamma-Ray Burst Host Galaxy Legacy Survey (“SHOALS”), a multi-observatory high-redshift galaxy survey targeting the largest unbiased sample of long-duration gamma-ray burst (GRB) hosts yet assembled (119 in total). We describe the motivations of the survey and the development of our selection criteria, including an assessment of the impact of various observability metrics on the success rate of afterglow-based redshift measurement. We briefly outline our host galaxy observational program, consisting of deep Spitzer/IRAC imaging of every field supplemented by similarly deep, multicolor optical/near-IR photometry, plus spectroscopy of events without preexisting redshifts. Our optimized selection cuts combined with host galaxy follow-up have so far enabled redshift measurements for 110 targets (92%) and placed upper limits on all but one of the remainder. About 20% of GRBs in the sample are heavily dust obscured, and at most 2% originate from z\\gt 5.5. Using this sample, we estimate the redshift-dependent GRB rate density, showing it to peak at z∼ 2.5 and fall by at least an order of magnitude toward low (z = 0) redshift, while declining more gradually toward high (z∼ 7) redshift. This behavior is consistent with a progenitor whose formation efficiency varies modestly over cosmic history. Our survey will permit the most detailed examination to date of the connection between the GRB host population and general star-forming galaxies, directly measure evolution in the host population over cosmic time and discern its causes, and provide new constraints on the fraction of cosmic star formation occurring in undetectable galaxies at all redshifts.

  14. On the Origin of GeV Emission in Gamma-Ray Bursts

    Science.gov (United States)

    Beloborodov, Andrei M.; Hascoët, Romain; Vurm, Indrek

    2014-06-01

    The most common progenitors of gamma-ray bursts (GRBs) are massive stars with strong stellar winds. We show that the GRB blast wave in the wind should emit a bright GeV flash. It is produced by inverse-Compton cooling of the thermal plasma behind the forward shock. The main part of the flash is shaped by scattering of the prompt MeV radiation (emitted at smaller radii) which streams through the external blast wave. The inverse-Compton flash is bright due to the huge e ± enrichment of the external medium by the prompt radiation ahead of the blast wave. At late times, the blast wave switches to normal synchrotron-self-Compton cooling. The mechanism is demonstrated by a detailed transfer simulation. The observed prompt MeV radiation is taken as an input of the simulation; we use GRB 080916C as an example. The result reproduces the GeV flash observed by the Fermi telescope. It explains the delayed onset, the steep rise, the peak flux, the time of the peak, the long smooth decline, and the spectral slope of GeV emission. The wind density required to reproduce all these features is typical of Wolf-Rayet stars. Our simulation predicts strong TeV emission 1 minute after the burst trigger; then a cutoff in the observed high-energy spectrum is expected from absorption by extragalactic background light. In addition, a bright optical counterpart of the GeV flash is predicted for plausible values of the magnetic field; such a double (optical+GeV) flash has been observed in GRB 130427A.

  15. The Swift Gamma-Ray Burst Host Galaxy Legacy Survey. I. Sample Selection and Redshift Distribution

    Science.gov (United States)

    Perley, D. A.; Kruhler, T.; Schulze, S.; Postigo, A. De Ugarte; Hjorth, J.; Berger, E.; Cenko, S. B.; Chary, R.; Cucchiara, A.; Ellis, R.; hide

    2016-01-01

    We introduce the Swift Gamma-Ray Burst Host Galaxy Legacy Survey (SHOALS), a multi-observatory high redshift galaxy survey targeting the largest unbiased sample of long-duration gamma-ray burst (GRB) hosts yet assembled (119 in total). We describe the motivations of the survey and the development of our selection criteria, including an assessment of the impact of various observability metrics on the success rate of afterglow-based redshift measurement. We briefly outline our host galaxy observational program, consisting of deep Spitzer/IRAC imaging of every field supplemented by similarly deep, multicolor optical/near-IR photometry, plus spectroscopy of events without preexisting redshifts. Our optimized selection cuts combined with host galaxy follow-up have so far enabled redshift measurements for 110 targets (92%) and placed upper limits on all but one of the remainder. About 20% of GRBs in the sample are heavily dust obscured, and at most 2% originate from z > 5.5. Using this sample, we estimate the redshift-dependent GRB rate density, showing it to peak at z approx. 2.5 and fall by at least an order of magnitude toward low (z = 0) redshift, while declining more gradually toward high (z approx. 7) redshift. This behavior is consistent with a progenitor whose formation efficiency varies modestly over cosmic history. Our survey will permit the most detailed examination to date of the connection between the GRB host population and general star-forming galaxies, directly measure evolution in the host population over cosmic time and discern its causes, and provide new constraints on the fraction of cosmic star formation occurring in undetectable galaxies at all redshifts.

  16. Relativistic simulations of long-lived reverse shocks in stratified ejecta: the origin of flares in GRB afterglows

    Science.gov (United States)

    Lamberts, A.; Daigne, F.

    2018-02-01

    The X-ray light curves of the early afterglow phase from gamma-ray bursts (GRBs) present a puzzling variability, including flares. The origin of these flares is still debated, and often associated with a late activity of the central engine. We discuss an alternative scenario where the central engine remains short-lived and flares are produced by the propagation of a long-lived reverse shock in a stratified ejecta. Here we focus on the hydrodynamics of the shock interactions. We perform one-dimensional ultrarelativistic hydrodynamic simulations with different initial internal structure in the GRB ejecta. We use them to extract bolometric light curves and compare with a previous study based on a simplified ballistic model. We find a good agreement between both approaches, with similar slopes and variability in the light curves, but identify several weaknesses in the ballistic model: the density is underestimated in the shocked regions, and more importantly, late shock reflections are not captured. With accurate dynamics provided by our hydrodynamic simulations, we confirm that internal shocks in the ejecta lead to the formation of dense shells. The interaction of the long-lived reverse shock with a dense shell then produces a fast and intense increase of the dissipated power. Assuming that the emission is due to the synchrotron radiation from shock-accelerated electrons, and that the external forward shock is radiatively inefficient, we find that this results in a bright flare in the X-ray light curve, with arrival times, shapes, and duration in agreement with the observed properties of X-ray flares in GRB afterglows.

  17. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VIII. A Comparison to Cosmological Short-duration Gamma-Ray Bursts

    Science.gov (United States)

    Fong, W.; Berger, E.; Blanchard, P. K.; Margutti, R.; Cowperthwaite, P. S.; Chornock, R.; Alexander, K. D.; Metzger, B. D.; Villar, V. A.; Nicholl, M.; Eftekhari, T.; Williams, P. K. G.; Annis, J.; Brout, D.; Brown, D. A.; Chen, H.-Y.; Doctor, Z.; Diehl, H. T.; Holz, D. E.; Rest, A.; Sako, M.; Soares-Santos, M.

    2017-10-01

    We present a comprehensive comparison of the properties of the radio through X-ray counterpart of GW170817 and the properties of short-duration gamma-ray bursts (GRBs). For this effort, we utilize a sample of 36 short GRBs spanning a redshift range of z≈ 0.12{--}2.6 discovered over 2004-2017. We find that the counterpart to GW170817 has an isotropic-equivalent luminosity that is ≈ 3000 times less than the median value of on-axis short GRB X-ray afterglows, and ≳104 times less than that for detected short GRB radio afterglows. Moreover, the allowed jet energies and particle densities inferred from the radio and X-ray counterparts to GW170817 and on-axis short GRB afterglows are remarkably similar, suggesting that viewing angle effects are the dominant, and perhaps only, difference in their observed radio and X-ray behavior. From comparison to previous claimed kilonovae following short GRBs, we find that the optical and near-infrared (NIR) counterpart to GW170817 is comparatively under-luminous by a factor of ≈ 3{--}5, indicating a range of kilonova luminosities and timescales. A comparison of the optical limits following short GRBs on ≲ 1 day timescales also rules out a “blue” kilonova of comparable optical isotropic-equivalent luminosity in one previous short GRB. Finally, we investigate the host galaxy of GW170817, NGC 4993, in the context of short GRB host galaxy stellar population properties. We find that NGC 4993 is superlative in terms of its large luminosity, old stellar population age, and low star formation rate compared to previous short GRB hosts. Additional events within the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo volume will be crucial in delineating the properties of the host galaxies of neutron star-neutron star (NS-NS) mergers, and connecting them to their cosmological counterparts.

  18. Optothermally actuated capillary burst valve

    Science.gov (United States)

    Eriksen, Johan; Bilenberg, Brian; Kristensen, Anders; Marie, Rodolphe

    2017-04-01

    We demonstrate the optothermal actuation of individual capillary burst valves in an all-polymer microfluidic device. The capillary burst valves are realised in a planar design by introducing a fluidic constriction in a microfluidic channel of constant depth. We show that a capillary burst valve can be burst by raising the temperature due to the temperature dependence of the fluid surface tension. We address individual valves by using a local heating platform based on a thin film of near infrared absorber dye embedded in the lid used to seal the microfluidic device [L. H. Thamdrup et al., Nano Lett. 10, 826-832 (2010)]. An individual valve is burst by focusing the laser in its vicinity. We demonstrate the capture of single polystyrene 7 μm beads in the constriction triggered by the bursting of the valve.

  19. Early-time observations of gamma-ray burst error boxes with the Livermore optical transient imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G G

    2000-08-01

    Despite the enormous wealth of gamma-ray burst (GRB) data collected over the past several years the physical mechanism which causes these extremely powerful phenomena is still unknown. Simultaneous and early time optical observations of GRBs will likely make an great contribution t o our understanding. LOTIS is a robotic wide field-of-view telescope dedicated to the search for prompt and early-time optical afterglows from gamma-ray bursts. LOTIS began routine operations in October 1996 and since that time has responded to over 145 gamma-ray burst triggers. Although LOTIS has not yet detected prompt optical emission from a GRB its upper limits have provided constraints on the theoretical emission mechanisms. Super-LOTIS, also a robotic wide field-of-view telescope, can detect emission 100 times fainter than LOTIS is capable of detecting. Routine observations from Steward Observatory's Kitt Peak Station will begin in the immediate future. During engineering test runs under bright skies from the grounds of Lawrence Livermore National Laboratory Super-LOTIS provided its first upper limits on the early-time optical afterglow of GRBs. This dissertation provides a summary of the results from LOTIS and Super-LOTIS through the time of writing. Plans for future studies with both systems are also presented.

  20. Detection of an optical transient following the 13 March 2000 short/hard gamma-ray burst

    DEFF Research Database (Denmark)

    Castro-Tirado, A.J.; Ceron, J.M.C.; Gorosabel, J.

    2002-01-01

    We imaged the error box of a gamma-ray burst of the short (0.5 s), hard type (GRB 000313), with the BOOTES-1 experiment in southern Spain, starting 4 min after the gamma-ray event, in the I-band. A bright optical transient (OT 000313) with I = 9.4 +/- 0.1 was found in the BOOTES-1 image, close...... to the error box (3sigma) provided by BATSE. Late time VRI K'-band deep observations failed to reveal an underlying host galaxy. If the OT 000313 is related to the short, hard GRB 000313, this would be the first optical counterpart ever found for this kind of events (all counterparts to date have been found...... for bursts of the long, soft type). The fact that only prompt optical emission has been detected (but no afterglow emission at all, as supported by theoretical models) might explain why no optical counterparts have ever been found for short, hard GRBs. This fact suggests that most short bursts might occur...

  1. Introduction to Optical Burst Switching

    OpenAIRE

    KERNÁCS János; Szilágyi, Szabolcs

    2010-01-01

    Optical Burst Switching (OBS) isconsidered a popular switching paradigm for therealization of all-optical networks due to the balance itoffers between the coarse-grained Optical CircuitSwitching (OSC) and fine-grained Optical PacketSwitching (OPS). Given that the data are switched allopticallyat the burst level, Optical Burst Switchingcombines the transparency of Optical CircuitSwitching with the benefits of statistical multiplexingin Optical Packet Switching.

  2. Expression of Grb2, MMP-3, and MMP-9 in cholangiocarcinoma and its significance

    Directory of Open Access Journals (Sweden)

    ZHAO Tingkuan

    2015-07-01

    Full Text Available Objective To investigate the expression of growth factor receptor-bound protein-2 (Grb2, matrix metalloproteinase-3 (MMP-3, and MMP-9 in cholangiocarcinoma and its significance. Methods The expression of Grb2, MMP-3, and MMP-9 in cholangiocarcinoma tissues of 47 cases and normal tissues was measured using immunohistochemistry, and the correlations of Grb2 expression with clinical pathology and MMP-3 and MMP-9 expression were analyzed. Comparison of continuous data was made using t test, and the correlation of Grb2 expression with MMP-3 and MMP-9 expression was analyzed using the multivariate linear regression model. Results The expression of Grb2 in cholangiocarcinoma tissues was significantly higher than that in normal bile duct tissues (t=5.935, P<0.001; the expression of Grb2 in cholangiocarcinoma tissues and normal bile duct tissues showed no significant correlation with age, sex, and differentiation level; the expression of Grb2 in cholangiocarcinoma tissues with lymph node or distant metastasis was significantly higher than that in cholangiocarcinoma tissues without metastasis (t=3.882, P=0.003. The expression of Grb2 was positively correlated with the expression of MMP-3 and MMP-9 (r2=0.3667, P=0.018; r2=0.5133, P=0.007. Conclusion The expression of Grb2 in cholangiocarcinoma tissues is higher than that in normal bile duct tissues, and it is closely related to the invasion and metastasis of carcinoma. Further study shows that the expression of Grb2 is positively correlated with the expression of MMP-3 and MMP-9.

  3. Evidence for a Canonical GRB Afterglow Light Curve in the Swift/XRT Data

    Energy Technology Data Exchange (ETDEWEB)

    Nousek, J.A.; Kouveliotou, C.; Grupe, D.; Page, K.; Granot, J.; Ramirez-Ruiz, E.; Patel, S.K.; Burrows, D.N.; Mangano, V.; Barthelmy, S.; Beardmore, A.P.; Campana, S.; Capalbi, M.; Chincarini, G.; Cusumano, G.; Falcone, A.D.; Gehrels, N.; Giommi, P.; Goad, M.; Godet, O.; Hurkett, C.; /Penn State U., Astron. Astrophys. /NASA, Marshall /Leicester

    2005-08-17

    We present new observations of the early X-ray afterglows of the first 27 gamma-ray bursts (GRBs) detected with the Swift X-ray Telescope (XRT). The early X-ray afterglows show a canonical behavior, where the light curve broadly consists of three distinct power law segments: (1) an initial very steep decay ({infinity} t{sup -a} with 3 {approx}< a{sub 1} {approx}< 5) , followed by (2) a very shallow decay (0.2 {approx}< a{sub 2} {approx}< 0.8), and finally (3) a somewhat steeper decay (1 {approx}< a{sub 3} {approx}< 1.5). These power law segments are separated by two corresponding break times, 300 s {approx}< t{sub break,1} {approx}< 500 s and 10{sup 3} s {approx}< t{sub break,2} {approx}< 10{sup 4} s. On top of this canonical behavior of the early X-ray light curve, many events have superimposed X-ray flares, which are most likely caused by internal shocks due to long lasting sporadic activity of the central engine, up to several hours after the GRB. We find that the initial steep decay is consistent with it being the tail of the prompt emission, from photons that are radiated at large angles relative to our line of sight. The first break in the light curve (t{sub break,1}) takes place when the forward shock emission becomes dominant, with the intermediate shallow flux decay (a{sub 2}) likely caused by the continuous energy injection into the external shock. When this energy injection stops, a second break is then observed in the light curve (t{sub break,2}). This energy injection increases the energy of the afterglow shock by at least a factor of f {approx}> 4, and augments the already severe requirements for the efficiency of the prompt gamma-ray emission.

  4. Newly Proposed To EXIST: Full-sky AGN And High-z GRB Survey With Redshifts

    Science.gov (United States)

    Grindlay, Jonathan E.; EXIST Team

    2008-03-01

    A new concept for the Energetic X-ray Imaging Survey Telescope (EXIST) has been proposed (for AMCS) as the Black Hole Finder Probe. Its primary science goals remain a full-sky survey for obscured AGN to further constrain the accretion luminosity of the Universe, and an "ultimate sensitivity" survey for Gamma-ray Bursts (GRBs) to both understand the birth of black holes as well as to use GRBs as cosmic probes of the high redshift Universe. By reducing total field of view, but preserving total area ( 4.7m2) of imaging CZT in the (7-600 keV) High Energy Telescope (HET), higher sensitivity and angular resolution are achieved with a 50% reduction in total payload mass and mission volume. This allows the addition of a secondary instrument: a low-cost 1.1m aperture IR telescope (IRT), with imaging and objective prism (or slit grism) spectroscopy simultaneously (with dichroic) in the optical (0.25-1.0μm) and IR (0.9 - 2.5 μm). Rapid slews ( 100sec) to 7. By radiatively cooling (-30C) the IRT optics, R 15 spectra at H 24 in 1000sec exposures are obtained, sufficient to measure redshifts of GRBs 8mag fainter than GRB050904 at z = 6.3. After the first 2y of full-sky scanning (with 2-3 GRBs and redshifts per day) to catalog 50,000 AGN, the mission would be predominantly pointed (but still slew to GRBs) to measure redshifts and hard X-ray spectra and variability of a significant fraction of the AGN sample. An overview of the mission science and concept will be described.

  5. High-energy emission from bright gamma-ray bursts using Fermi

    Energy Technology Data Exchange (ETDEWEB)

    Bissaldi, Elisabetta

    2010-05-25

    Among the scientific objectives of one of the present NASA missions, the Fermi Gamma-ray Space Telescope (FGST), is the study of gamma-ray bursts (GRBs). Fermi's payload comprises two science instruments, the Large Area Telescope (LAT) and the Gamma-Ray Burst Monitor (GBM). GBM was designed to detect and localize bursts for the Fermi mission. By means of an array of 12 NaI(Tl) (8 keV to 1 MeV) and two BGO (0.2 to 40 MeV) scintillation detectors, GBM extends the energy range (20 MeV to > 300 GeV) of the LAT instrument into the traditional range of current GRB databases. The physical detector response of the GBM instrument to GRBs has been determined with the help of Monte Carlo simulations, which are supported and verified by on-ground individual detector calibration measurements. The GBM detectors have been calibrated from 10 keV to 17.5 MeV using various gamma sources, and the detector response has been derived by simulations over the entire energy range (8 keV to 40 MeV) using GEANT. The GBM instrument has been operating successfully in orbit since June 11, 2008. The total trigger count from the time GBM triggering was enabled in July 2008 through December 2009 is 655, and about 380 of these triggers were classified as GRBs. Moreover, GBM detected several bursts in common with the LAT. These amazing detections mainly fulfill the primary science goal of GBM, which is the joint analysis of spectra and time histories of GRBs observed by both Fermi instruments. For every trigger, GBM provides near-real time on-board burst locations to permit repointing of the spacecraft and to obtain LAT observations of delayed emission from bursts. GBM and LAT refined locations are rapidly disseminated to the scientific community, often permitting extensive multiwavelength follow-up observations by NASA's Swift mission or other space- based observatories, and by numerous ground-based telescopes, thus allowing redshift determinations. Calculations of LAT upper limits are

  6. NEW BURST ASSEMBLY AND SCHEDULING TECHNIQUE FOR OPTICAL BURST SWITCHING NETWORKS

    OpenAIRE

    Kavitha, V.; V.Palanisamy

    2013-01-01

    The Optical Burst Switching is a new switching technology that efficiently utilizes the bandwidth in the optical layer. The key areas to be concentrated in Optical Burst Switching (OBS) networks are the burst assembly and burst scheduling i.e., assignment of wavelengths to the incoming bursts. This study presents a New Burst Assembly and Scheduling (NBAS) technique in a simultaneous multipath transmission for burst loss recovery in OBS networks. A Redundant Burst Segmentation (RBS) is used fo...

  7. Circular polarization in the optical afterglow of GRB 121024A

    DEFF Research Database (Denmark)

    Wiersema, K.; Covino, S.; Toma, K.

    2014-01-01

    Gamma-ray bursts (GRBs) are most probably powered by collimated relativistic outflows (jets) from accreting black holes at cosmological distances. Bright afterglows are produced when the outflow collides with the ambient medium. Afterglow polarization directly probes the magnetic properties...

  8. Investigation on the Bimodal Distribution of the Duration of Gamma-ray Bursts from BATSE Light Curves

    OpenAIRE

    Yu, Wenfei; Li, Tipei; Wu, Mei

    1999-01-01

    We have investigated the bimodal distribution of the duration of BATSE gamma-ray bursts (GRBs) by analyzing light curves of 64 ms time resolution. We define the average pulse width of GRBs from the auto-correlation function of GRB profiles. The distribution of the average pulse width of GRBs is bimodal, suggesting that GRBs are composed of long-pulse GRBs and short-pulse GRBs. The average pulse width of long-pulse GRBs appears correlated with the peak flux, consistent with the time dilation e...

  9. IceCube and GRB neutrinos propagating in quantum spacetime

    Directory of Open Access Journals (Sweden)

    Giovanni Amelino-Camelia

    2016-10-01

    Full Text Available Two recent publications have reported intriguing analyses, tentatively suggesting that some aspects of IceCube data might be manifestations of quantum-gravity-modified laws of propagation for neutrinos. We here propose a strategy of data analysis which has the advantage of being applicable to several alternative possibilities for the laws of propagation of neutrinos in a quantum spacetime. In all scenarios here of interest one should find a correlation between the energy of an observed neutrino and the difference between the time of observation of that neutrino and the trigger time of a GRB. We select accordingly some GRB-neutrino candidates among IceCube events, and our data analysis finds a rather strong such correlation. This sort of study naturally lends itself to the introduction of a “false alarm probability”, which for our analysis we estimate conservatively to be of 1%. We therefore argue that our findings should motivate a vigorous program of investigation following the strategy here advocated.

  10. Statistical significance of spectral lag transition in GRB 160625B

    Science.gov (United States)

    Ganguly, Shalini; Desai, Shantanu

    2017-09-01

    Recently Wei et al.[1] have found evidence for a transition from positive time lags to negative time lags in the spectral lag data of GRB 160625B. They have fit these observed lags to a sum of two components: an assumed functional form for intrinsic time lag due to astrophysical mechanisms and an energy-dependent speed of light due to quadratic and linear Lorentz invariance violation (LIV) models. Here, we examine the statistical significance of the evidence for a transition to negative time lags. Such a transition, even if present in GRB 160625B, cannot be due to an energy dependent speed of light as this would contradict previous limits by some 3-4 orders of magnitude, and must therefore be of intrinsic astrophysical origin. We use three different model comparison techniques: a frequentist test and two information based criteria (AIC and BIC). From the frequentist model comparison test, we find that the evidence for transition in the spectral lag data is favored at 3.05σ and 3.74σ for the linear and quadratic models respectively. We find that ΔAIC and ΔBIC have values ≳ 10 for the spectral lag transition that was motivated as being due to quadratic Lorentz invariance violating model pointing to ;decisive evidence;. We note however that none of the three models (including the model of intrinsic astrophysical emission) provide a good fit to the data.

  11. GRB Probes of the High-z Universe with EXIST

    Science.gov (United States)

    Grindlay, Jonathan; EXIST Team

    2009-05-01

    The Energetic X-ray Imaging Survey Telescope (EXIST) mission concept was selected for further study under the Astrophysics Strategic Mission Concept Study (ASMCS) program. The mission design is optimized for study of high-z GRBs as probes of the early Universe. With a 4.5 m2 imaging 5-600 keV (CZT) detector imaging a 90°×70° (>10% coding fraction) field of view with 2' resolution and 5σ sources, EXIST will perform rapid (exist, and spectra for studies of the host galaxy and local re-ionization bubble as well as intervening cosmic structure. With ~600 GRBs/yr expected, EXIST will open a new era in studies of the early Universe as well as carry out a rich program of AGN and transient-source science. An overview of the GRB science objectives and a brief discussion of the overall mission design and operations is given, and example high-z GRB spectra are shown. EXIST is being proposed to the Astro2010 Decadal Survey as a Medium Class mission that could be launched as early as 2017.

  12. Short duration gamma ray bursts

    Indian Academy of Sciences (India)

    Abstract. After a short review of gamma ray bursts (GRBs), we discuss the physical implications of strong statistical correlations seen among some of the parameters of short duration bursts (90 < 2 s). Finally, we conclude with a brief sketch of a new unified model for long and short GRBs.

  13. Short duration gamma ray bursts

    Indian Academy of Sciences (India)

    Gamma ray bursts (GRBs) are transient extragalactic events appearing randomly in the sky as localized flashes of electromagnetic radiation, consisting predominantly of photons with energy in the range of ~0.1–1 MeV. These sporadic bursts, occurring at the rate of ~600 per year, are isotropically distributed in the sky, ...

  14. Grb2 is regulated by foxd3 and has roles in preventing accumulation and aggregation of mutant huntingtin.

    Directory of Open Access Journals (Sweden)

    Shounak Baksi

    Full Text Available Growth factor receptor protein binding protein 2 (Grb2 is known to be associated with intracellular growth and proliferation related signaling cascades. Huntingtin (Htt, a ubiquitously expressed protein, when mutated, forms toxic intracellular aggregates - the hallmark of Huntington's disease (HD. We observed an elevated expression of Grb2 in neuronal cells in animal and cell models of HD. Grb2 overexpression was predominantly regulated by the transcription factor Forkhead Box D3 (Foxd3. Exogenous expression of Grb2 also reduced aggregation of mutant Htt in Neuro2A cells. Grb2 is also known to interact with Htt, depending on epidermal growth factor receptor (EGFR activation. Grb2- mutant Htt interaction in the contrary, took place in vesicular structures, independent of EGFR activation that eventually merged with autophagosomes and activated the autophagy machinery helping in autophagosome and lysosome fusion. Grb2, with its emerging dual role, holds promise for a survival mechanism for HD.

  15. MHD simulations of NSNS mergers in full GR: the role of the initial B field on the emergence of sGRB jets II

    Science.gov (United States)

    Lang, Ryan; Paschalidis, Vasileios; Ruiz, Milton; Shapiro, Stuart

    2016-03-01

    Mergers of neutron star-neutron star (NSNS) binaries are among the most promising candidates for the engines that power short gamma-ray bursts (sGRBs). The most likely sGRB model requires the presence of a highly relativistic jet. However, recent relativistic simulations of NSNS mergers have shown that it is difficult for such jets to emerge following the delayed collapse of the hypermassive neutron star (HMNS) remnant. Varying the initial NS magnetic field in an NSNS binary, we have performed magnetohydrodynamic simulations in full general relativity that explore the formation of jets from the black hole-disk system following the HMNS collapse. In this talk we focus on initial dipole magnetic fields which extend from the neutron star interior into the exterior.

  16. Bursts de raios gama

    Science.gov (United States)

    Braga, J.

    2003-02-01

    Nos últimos anos, graças principalmente aos dados obtidos pelo Compton Gamma-Ray Observatory e pelo satélite ítalo-holandês BeppoSAX, grandes avanços foram obtidos no nosso conhecimento sobre os fascinantes e enigmáticos fenômenos conhecidos por "bursts"de raios gama. Neste trabalho é feita uma revisão sobre a fenomenologia desses misteriosos objetos e são apresentados os desenvolvimentos recentes nessa área palpitante da astrofísica moderna, ressaltando tanto os resultados observacionais obtidos até o momento quanto os modelos teóricos propostos para explixá-los.

  17. Quantum key based burst confidentiality in optical burst switched networks.

    Science.gov (United States)

    Balamurugan, A M; Sivasubramanian, A

    2014-01-01

    The optical burst switching (OBS) is an emergent result to the technology concern that could achieve a feasible network in future. They are endowed with the ability to meet the bandwidth requirement of those applications that require intensive bandwidth. There are more domains opening up in the OBS that evidently shows their advantages and their capability to face the future network traffic. However, the concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution, and quality of service (QoS). This paper deals with employing RC4 (stream cipher) to encrypt and decrypt bursts thereby ensuring the confidentiality of the burst. Although the use of AES algorithm has already been proposed for the same issue, by contrasting the two algorithms under the parameters of burst encryption and decryption time, end-to-end delay, it was found that RC4 provided better results. This paper looks to provide a better solution for the confidentiality of the burst in OBS networks.

  18. Quantum Key Based Burst Confidentiality in Optical Burst Switched Networks

    Directory of Open Access Journals (Sweden)

    A. M. Balamurugan

    2014-01-01

    Full Text Available The optical burst switching (OBS is an emergent result to the technology concern that could achieve a feasible network in future. They are endowed with the ability to meet the bandwidth requirement of those applications that require intensive bandwidth. There are more domains opening up in the OBS that evidently shows their advantages and their capability to face the future network traffic. However, the concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution, and quality of service (QoS. This paper deals with employing RC4 (stream cipher to encrypt and decrypt bursts thereby ensuring the confidentiality of the burst. Although the use of AES algorithm has already been proposed for the same issue, by contrasting the two algorithms under the parameters of burst encryption and decryption time, end-to-end delay, it was found that RC4 provided better results. This paper looks to provide a better solution for the confidentiality of the burst in OBS networks.

  19. Spitzer ToO observations of a short gamma-ray burst

    Science.gov (United States)

    Hurley, Kevin; Bloom, Joshua; Butler, Nathaniel; Falco, Emilio; Foley, Ryan; Granot, Jonathan; Kocevski, Daniel; Lee, William; Li, Weidong; Mahoney, William; Pahre, Michael; Panaitescu, Alin; Perley, Daniel; Prochaska, Jason; Ramirez-Ruiz, Enrico; Smith, Ian; Squires, Gordon

    2008-03-01

    An understanding of the origin of the short gamma-ray bursts remains an elusive and exciting pursuit. A great leap forward has been made over the past three years with the first rapid localizations and afterglow detections of such events, but follow-up has yet to reveal a detailed understanding of the progenitors and the nature of the afterglow light. We propose an ambitious multiwavelength approach to the problem, leveraging Spitzer with Chandra as well as numerous ground-based telescopes. By measuring the broad-band spectrum of the afterglow and any concurrent 'mini-supernova ' over a wide range of wavelengths at several epochs, we can distinguish between models proposed to explain this type of burst. We will constrain the energetics of the explosion and the short GRB bursting rate (an important number for gravitational wave observatories), and measure with unprecedented detail the stellar content of a short burst host galaxy. Given the high impact nature of these observations and the rarity of short bursts, we are requesting multiepoch Target of Opportunity observations on a single event in Cycle 5. The wavelengths observed by Spitzer, when used in coordination with these other instruments, can make a crucial contribution to understanding the nature of short duration GRBs, particularly by removing the degeneracies among the models due to dust extinction. This is a resubmission of our AO-4 ToO proposal, which has not been called yet. However, even if that observation is carried out, we are requesting an AO-5 observation, because so little is known about the short bursts that each new detection adds a very significant amount of information. Harvey Tananbaum has agreed to grant us Chandra ToO time through November 2008 (the end of Chandra AO-9) if Spitzer observations are carried out. Following that, we will submit a Chandra AO-10 proposal for ToO time; if warranted, we will request Chandra Director's Discretionary Time to support our Spitzer observations.

  20. The Third Fermi GBM Gamma-Ray Burst Catalog: The First Six Years

    Science.gov (United States)

    Narayana Bhat, P.; Meegan, Charles A.; von Kienlin, Andreas; Paciesas, William S.; Briggs, Michael S.; Burgess, J. Michael; Burns, Eric; Chaplin, Vandiver; Cleveland, William H.; Collazzi, Andrew C.; Connaughton, Valerie; Diekmann, Anne M.; Fitzpatrick, Gerard; Gibby, Melissa H.; Giles, Misty M.; Goldstein, Adam M.; Greiner, Jochen; Jenke, Peter A.; Kippen, R. Marc; Kouveliotou, Chryssa; Mailyan, Bagrat; McBreen, Sheila; Pelassa, Veronique; Preece, Robert D.; Roberts, Oliver J.; Sparke, Linda S.; Stanbro, Matthew; Veres, Péter; Wilson-Hodge, Colleen A.; Xiong, Shaolin; Younes, George; Yu, Hoi-Fung; Zhang, Binbin

    2016-04-01

    Since its launch in 2008, the Fermi Gamma-ray Burst Monitor (GBM) has triggered and located on average approximately two γ-ray bursts (GRBs) every three days. Here, we present the third of a series of catalogs of GRBs detected by GBM, extending the second catalog by two more years through the middle of 2014 July. The resulting list includes 1405 triggers identified as GRBs. The intention of the GBM GRB catalog is to provide information to the community on the most important observables of the GBM-detected GRBs. For each GRB, the location and main characteristics of the prompt emission, the duration, peak flux, and fluence are derived. The latter two quantities are calculated for the 50-300 keV energy band where the maximum energy release of GRBs in the instrument reference system is observed, and also for a broader energy band from 10 to 1000 keV, exploiting the full energy range of GBM's low-energy [Nai[Tl)] detectors. Using statistical methods to assess clustering, we find that the hardness and duration of GRBs are better fit by a two-component model with short-hard and long-soft bursts than by a model with three components. Furthermore, information is provided on the settings and modifications of the triggering criteria and exceptional operational conditions during years five and six in the mission. This third catalog is an official product of the Fermi GBM science team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.

  1. THE THIRD FERMI GBM GAMMA-RAY BURST CATALOG: THE FIRST SIX YEARS

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, P. Narayana; Meegan, Charles A.; Briggs, Michael S.; Burns, Eric; Chaplin, Vandiver; Fitzpatrick, Gerard; Jenke, Peter A. [The Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Von Kienlin, Andreas; Greiner, Jochen [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Paciesas, William S.; Cleveland, William H.; Connaughton, Valerie [Universities Space Research Association, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Burgess, J. Michael [The Oskar Klein Centre for Cosmoparticle Physics, AlbaNova, SE-106 91 Stockholm (Sweden); Collazzi, Andrew C. [SciTec Inc., 100 Wall Street, Princeton NJ, 08540 (United States); Diekmann, Anne M.; Gibby, Melissa H.; Giles, Misty M. [Jacobs Technology, Inc., Huntsville, Alabama (United States); Goldstein, Adam M. [ZP12 Astrophysics Office, NASA-Marshall Space Flight Center, Huntsville, AL 35812 (United States); Kippen, R. Marc [Los Alamos National Laboratory, MS B244, P.O. Box 1663, Los Alamos, NM 87545 (United States); Kouveliotou, Chryssa [Department of Physics, The George Washington University, 725 21st Street NW, Washington, DC 20052 (United States); and others

    2016-04-01

    Since its launch in 2008, the Fermi Gamma-ray Burst Monitor (GBM) has triggered and located on average approximately two γ -ray bursts (GRBs) every three days. Here, we present the third of a series of catalogs of GRBs detected by GBM, extending the second catalog by two more years through the middle of 2014 July. The resulting list includes 1405 triggers identified as GRBs. The intention of the GBM GRB catalog is to provide information to the community on the most important observables of the GBM-detected GRBs. For each GRB, the location and main characteristics of the prompt emission, the duration, peak flux, and fluence are derived. The latter two quantities are calculated for the 50–300 keV energy band where the maximum energy release of GRBs in the instrument reference system is observed, and also for a broader energy band from 10 to 1000 keV, exploiting the full energy range of GBM's low-energy [Nai[Tl)] detectors. Using statistical methods to assess clustering, we find that the hardness and duration of GRBs are better fit by a two-component model with short-hard and long-soft bursts than by a model with three components. Furthermore, information is provided on the settings and modifications of the triggering criteria and exceptional operational conditions during years five and six in the mission. This third catalog is an official product of the Fermi GBM science team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.

  2. Spectrophotometric analysis of gamma-ray burst afterglow extinction curves with X-Shooter

    Science.gov (United States)

    Japelj, J.; Covino, S.; Gomboc, A.; Vergani, S. D.; Goldoni, P.; Selsing, J.; Cano, Z.; D'Elia, V.; Flores, H.; Fynbo, J. P. U.; Hammer, F.; Hjorth, J.; Jakobsson, P.; Kaper, L.; Kopač, D.; Krühler, T.; Melandri, A.; Piranomonte, S.; Sánchez-Ramírez, R.; Tagliaferri, G.; Tanvir, N. R.; de Ugarte Postigo, A.; Watson, D.; Wijers, R. A. M. J.

    2015-07-01

    We use gamma-ray burst (GRB) afterglow spectra observed with the VLT/X-Shooter spectrograph to measure rest-frame extinction in GRB lines-of-sight by modelling the broadband near-infrared (NIR) to X-ray afterglow spectral energy distributions (SEDs). Our sample consists of nine Swift GRBs, of which eight belong to the long-duration and one to the short-duration class. Dust is modelled using the average extinction curves of the Milky Way and the two Magellanic Clouds. We derive the rest-frame extinction of the entire sample, which fall in the range 0 ≲ AV ≲ 1.2. Moreover, the SMC extinction curve is the preferred extinction curve template for the majority of our sample, a result that is in agreement with those commonly observed in GRB lines of sights. In one analysed case (GRB 120119A), the common extinction curve templates fail to reproduce the observed extinction. To illustrate the advantage of using the high-quality, X-Shooter afterglow SEDs over the photometric SEDs, we repeat the modelling using the broadband SEDs with the NIR-to-UV photometric measurements instead of the spectra. The main result is that the spectroscopic data, thanks to a combination of excellent resolution and coverage of the blue part of the SED, are more successful in constraining extinction curves and therefore dust properties in GRB hosts with respect to photometric measurements. In all cases but one the extinction curve of one template is preferred over the others. We show that themodelled values of the extinction AV and the spectral slope, obtained through spectroscopic and photometric SED analysis, can differ significantly for individual events, though no apparent trend in the differences is observed. Finally we stress that, regardless of the resolution of the optical-to-NIR data, the SED modelling gives reliable results only when the fit is performed on a SED covering a broader spectral region (in our case extending to X-rays). Based on observations collected at the European

  3. Targeting GRB7/ERK/FOXM1 signaling pathway impairs aggressiveness of ovarian cancer cells.

    Directory of Open Access Journals (Sweden)

    David W Chan

    Full Text Available Ovarian cancer is a highly lethal disease with poor prognosis and especially in high-grade tumor. Emerging evidence has reported that aberrant upregulation and activation of GRB7, ERK as well as FOXM1 are closely associated with aggresivenesss of human cancers. However, the interplay between these factors in the pathogenesis of human cancers still remains unclear. In this study, we found that GRB7 (P<0.0001, ERK phosphorylation (P<0.0001 and FOXM1 (P = 0.001 were frequently increased and associated with high-grade tumors, as well as a high tendency in association with advanced stage ovarian cancer by immunohistochemical analysis. Intriguingly, the expressions of GRB7 (P<0.0001, ERK phosphorylation (P<0.001 and FOXM1 (P<0.001 showed a significant stepwise increase pattern along Grade 1 to Grade 3 ovarian cancers. Biochemical studies using western blot analysis demonstrated that enforced expression or knockdown of GRB7 showed GRB7 could elevate the levels of ERK phosphorylation and FOXM1, whereas enforced expression of FOXM1 could not alter levels of GRB7 and ERK phosphorylation. But inhibition of ERK signaling by U0126 or PD98059 could reduce the level of FOXM1 in GRB7-overexpressing ovarian cancer cells, suggesting that GRB7, ERK and FOXM1 are regulated orderly. Moreover, inhibition of ERK activity by U0126 or PD98059, or decreased FOXM1 expression by Thiostrepton significantly inhibited cell migration/invasion, tumor growth in vitro and in vivo. Collectively, our findings confer that targeting GRB7/ERK/FOXM1 signaling cascade may be a promising molecular therapeutic choice in combating ovarian cancer.

  4. Modeling and simulation of aggregation of membrane protein LAT with molecular variability in the number of binding sites for cytosolic Grb2-SOS1-Grb2.

    Directory of Open Access Journals (Sweden)

    Ambarish Nag

    Full Text Available The linker for activation of T cells (LAT, the linker for activation of B cells (LAB, and the linker for activation of X cells (LAX form a family of transmembrane adaptor proteins widely expressed in lymphocytes. These scaffolding proteins have multiple binding motifs that, when phosphorylated, bind the SH2 domain of the cytosolic adaptor Grb2. Thus, the valence of LAT, LAB and LAX for Grb2 is variable, depending on the strength of receptor activation that initiates phosphorylation. During signaling, the LAT population will exhibit a time-varying distribution of Grb2 valences from zero to three. In the cytosol, Grb2 forms 1:1 and 2:1 complexes with the guanine nucleotide exchange factor SOS1. The 2:1 complex can bridge two LAT molecules when each Grb2, through their SH2 domains, binds to a phosphorylated site on a separate LAT. In T cells and mast cells, after receptor engagement, receptor phosphoyrlation is rapidly followed by LAT phosphorylation and aggregation. In mast cells, aggregates containing more than one hundred LAT molecules have been detected. Previously we considered a homogeneous population of trivalent LAT molecules and showed that for a range of Grb2, SOS1 and LAT concentrations, an equilibrium theory for LAT aggregation predicts the formation of a gel-like phase comprising a very large aggregate (superaggregate. We now extend this theory to investigate the effects of a distribution of Grb2 valence in the LAT population on the formation of LAT aggregates and superaggregate and use stochastic simulations to calculate the fraction of the total LAT population in the superaggregate.

  5. A peculiar low-luminosity short gamma-ray burst from a double neutron star merger progenitor.

    Science.gov (United States)

    Zhang, B-B; Zhang, B; Sun, H; Lei, W-H; Gao, H; Li, Y; Shao, L; Zhao, Y; Hu, Y-D; Lü, H-J; Wu, X-F; Fan, X-L; Wang, G; Castro-Tirado, A J; Zhang, S; Yu, B-Y; Cao, Y-Y; Liang, E-W

    2018-01-31

    Double neutron star (DNS) merger events are promising candidates of short gamma-ray burst (sGRB) progenitors as well as high-frequency gravitational wave (GW) emitters. On August 17, 2017, such a coinciding event was detected by both the LIGO-Virgo gravitational wave detector network as GW170817 and Gamma-Ray Monitor on board NASA's Fermi Space Telescope as GRB 170817A. Here, we show that the fluence and spectral peak energy of this sGRB fall into the lower portion of the distributions of known sGRBs. Its peak isotropic luminosity is abnormally low. The estimated event rate density above this luminosity is at least [Formula: see text] Gpc -3  yr -1 , which is close to but still below the DNS merger event rate density. This event likely originates from a structured jet viewed from a large viewing angle. There are similar faint soft GRBs in the Fermi archival data, a small fraction of which might belong to this new population of nearby, low-luminosity sGRBs.

  6. THE ANATOMY OF A LONG GAMMA-RAY BURST: A SIMPLE CLASSIFICATION SCHEME FOR THE EMISSION MECHANISM(S)

    Energy Technology Data Exchange (ETDEWEB)

    Bégué, D.; Burgess, J. Michael, E-mail: jamesb@kth.se, E-mail: damienb@kth.se [The Oskar Klein Centre for Cosmoparticle Physics, AlbaNova, SE-106 91 Stockholm (Sweden)

    2016-03-20

    Ultra-relativistic motion and efficient conversion of kinetic energy to radiation are required by gamma-ray burst (GRB) observations, yet they are difficult to simultaneously achieve. Three leading mechanisms have been proposed to explain the observed emission emanating from GRB outflows: radiation from either relativistic internal or external shocks, or thermal emission from a photosphere. Previous works were dedicated to independently treating these three mechanisms and arguing for a sole, unique origin of the prompt emission of GRBs. In contrast, herein, we first explain why all three models are valid mechanisms and that a contribution from each of them is expected in the prompt phase. Additionally, we show that a single parameter, the dimensionless entropy of the GRB outflow, determines which mechanism contributes the most to the emission. More specifically, internal shocks dominate for low values of the dimensionless entropy, external shocks for intermediate values, and finally, photospheric emission for large values. We present a unified framework for the emission mechanisms of GRBs with easily testable predictions for each process.

  7. Gravitational-wave Observations May Constrain Gamma-Ray Burst Models: The Case of GW150914-GBM

    Science.gov (United States)

    Veres, P.; Preece, R. D.; Goldstein, A.; Mészáros, P.; Burns, E.; Connaughton, V.

    2016-08-01

    The possible short gamma-ray burst (GRB) observed by Fermi/GBM in coincidence with the first gravitational-wave (GW) detection offers new ways to test GRB prompt emission models. GW observations provide previously inaccessible physical parameters for the black hole central engine such as its horizon radius and rotation parameter. Using a minimum jet launching radius from the Advanced LIGO measurement of GW 150914, we calculate photospheric and internal shock models and find that they are marginally inconsistent with the GBM data, but cannot be definitely ruled out. Dissipative photosphere models, however, have no problem explaining the observations. Based on the peak energy and the observed flux, we find that the external shock model gives a natural explanation, suggesting a low interstellar density (˜10-3 cm-3) and a high Lorentz factor (˜2000). We only speculate on the exact nature of the system producing the gamma-rays, and study the parameter space of a generic Blandford-Znajek model. If future joint observations confirm the GW-short-GRB association we can provide similar but more detailed tests for prompt emission models.

  8. Burst Oscillation Studies with NICER

    Science.gov (United States)

    Mahmoodifar, Simin; Strohmayer, Tod E.

    2017-08-01

    Type I X-ray bursts are thermonuclear flashes observed from the surfaces of accreting neutron stars in Low Mass X-ray Binaries. Oscillations have been observed during the rise and/or decay of some of these X-ray bursts. Those seen during the rise can be well explained by a spreading hot spot model, but large amplitude oscillations in the decay phase remain mysterious because of the absence of a clear-cut source of asymmetry. Here we present the results of our computations of the light curves and amplitudes of oscillations in X-ray burst models that realistically account for both flame spreading and subsequent cooling. For the cooling phase of the burst we use two simple phenomenological models. The first considers asymmetric cooling that can achieve high amplitudes in the tail. The second considers a sustained temperature pattern on the stellar surface that is produced by r-modes propagating in the surface fluid ocean of the star. We will present some simulated burst light curves/spectra using these models and NICER response files, and will show the capabilities of NICER to detect and study burst oscillations. NICER will enable us to study burst oscillations in the energy band below ~3 keV, where there has been no previous measurements of these phenomena.

  9. CONNECTING THE GAMMA RAY BURST RATE AND THE COSMIC STAR FORMATION HISTORY: IMPLICATIONS FOR REIONIZATION AND GALAXY EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Brant E.; Ellis, Richard S., E-mail: brant@astro.caltech.edu [Astronomy Department, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States)

    2012-01-10

    The contemporary discoveries of galaxies and gamma ray bursts (GRBs) at high redshift have supplied the first direct information on star formation when the universe was only a few hundred million years old. The probable origin of long duration GRBs in the deaths of massive stars would link the universal GRB rate to the redshift-dependent star formation rate (SFR) density, although exactly how is currently unknown. As the most distant GRBs and star-forming galaxies probe the reionization epoch, the potential reward of understanding the redshift-dependent ratio {Psi}(z) of the GRB rate to SFR is significant and includes addressing fundamental questions such as incompleteness in rest-frame UV surveys for determining the SFR at high redshift and time variations in the stellar initial mass function. Using an extensive sample of 112 GRBs above a fixed luminosity limit drawn from the Second Swift Burst Alert Telescope catalog and accounting for uncertainty in their redshift distribution by considering the contribution of 'dark' GRBs, we compare the cumulative redshift distribution N(< z) of GRBs with the star formation density {rho}-dot{sub *}(z) measured from UV-selected galaxies over 0 < z <4. Strong evolution (e.g., {Psi}(z){proportional_to}(1 + z){sup 1.5}) is disfavored (Kolmogorov-Smirnov test P < 0.07). We show that more modest evolution (e.g., {Psi}(z){proportional_to}(1 + z){sup 0.5}) is consistent with the data (P Almost-Equal-To 0.9) and can be readily explained if GRBs occur primarily in low-metallicity galaxies which are proportionally more numerous at earlier times. If such trends continue beyond z {approx_equal} 4, we find that the discovery rate of distant GRBs implies an SFR density much higher than that inferred from UV-selected galaxies. While some previous studies of the GRB-SFR connection have concluded that GRB-inferred star formation at high redshift would be sufficient to maintain cosmic reionization over 6

  10. Prompt and Afterglow Emission from Short GRB Cocoons

    Science.gov (United States)

    Morsony, Brian; Lazzati, Davide; López-Cámara, Diego; Workman, Jared; Moskal, Jeremiah; Cantiello, Matteo; Perna, Rosalba

    2018-01-01

    We present simulations of short GRB jets that create a wide cocoon of mildly relativistic material surrounding the narrow, highly relativistic jet. We model the prompt and afterglow emission from the jet and cocoon at a range of observer angles relative to the jet axis. Even far off axis, prompt X-ray and gamma-ray emission from the cocoon may be detectable by FERMI GBM out to several 10’s of Mpc. Afterglow emission off-axis is dominated by cocoon material at early times (hours - days). The afterglow should be detectable at a wide range of frequencies (radio, optical, X-ray) for a large fraction of off-axis short GRBs within 200 Mpc, the detection range of aLIGO at design sensitivity. Given recent events, cocoon emission may be very important in the future for localizing LIGO-detected neutron star mergers.

  11. GRB Probes of the Early Universe with EXIST

    Science.gov (United States)

    Grindlay, Jonathan E.

    2010-10-01

    With the Swift detection of GRB090423 at z = 8.2, it was confirmed that GRBs are now detectable at (significantly) larger redshifts than AGN, and so can indeed be used as probes of the Early Universe. The Energetic X-ray Imaging Survey Telescope (EXIST) mission has been designed to detect and promptly measure redshifts and both soft X-ray (0.1-10 keV) and simultaneous nUV-nIR (0.3-2.3 microns) imaging and spectra for GRBs out to redshifts z~18, which encompasses (or even exceeds) current estimates for Pop III stars that are expected to be massive and possibly GRB sources. Scaling from Swift for the ~10X greater sensitivity of EXIST, more than 100 GRBs at z>= 8 may be detected and would provide direct constraints on the formation and evolution of the first stars and galaxies. For GRBs at redshifts z>= 8, with Lyman breaks at greater than 1.12 microns, spectra at resolution R = 30 or R = 3000 for afterglows with AB magnitudes brighter than 24 or 20 (respectively) within ~3000 sec of trigger will directly probe the Epoch of Reionization, formation of galaxies, and cosmic star formation rate. The proposed EXIST mission can probe these questions, and many others, given its unparalleled combination of sensitivity and spatial-spectral-temporal coverage and resolution. Here we provide an overview of the key science objectives for GRBs as probes of the early Universe and of extreme physics, and the mission plan and technical readiness to bring this to EXIST.

  12. Challenging the Forward Shock Model with the 80 Ms Follow up of the X-ray Afterglow of Gamma-Ray Burst 130427A

    Directory of Open Access Journals (Sweden)

    Massimiliano De Pasquale

    2017-01-01

    Full Text Available GRB 130427A was the most luminous gamma-ray burst detected in the last 30 years. With an isotropic energy output of 8.5 × 10 53 erg and redshift of 0.34, it combined very high energetics with a relative proximity to Earth in an unprecedented way. Sensitive X-ray observatories such as XMM-Newton and Chandra have detected the afterglow of this event for a record-breaking baseline longer than 80 million seconds. The light curve displays a simple power-law over more than three decades in time. In this presentation, we explore the consequences of this result for a few models put forward so far to interpret GRB 130427A, and more in general the implication of this outcome in the context of the standard forward shock model.

  13. ePESSTO spectra and ATLAS photometry of SN2017iuk associated with GRB171205A

    Science.gov (United States)

    Prentice, S.; Mazzali, P.; Smartt, S. J.; Angus, C. R.; Firth, R. E.; Frohmaier, C.; Smith, M.; Barbarino, C.; Anderson, J.; Dennefeld, M.; Inserra, C.; Kankare, E.; Maguire, K.; Smartt, S. J.; Smith, K. W.; Sullivan, M.; Valenti, S.; Yaron, O.; Young, D.; Tonry, I. Manulis J.; Denneau, L.; Stalder, B.; Heinze, A.; Weiland, H.; Rest, A.; Fulton, M.; McBrien, O.

    2017-12-01

    ePESSTO, the extended Public ESO Spectroscopic Survey of Transient Objects, (see Smartt et al. 2015, A & A, 579, 40 http://www.pessto.org ), reports further spectral observations of SN 2017iuk, associated with GRB 171205A.

  14. A central role for GRB10 in regulation of islet function in man.

    Directory of Open Access Journals (Sweden)

    Inga Prokopenko

    2014-04-01

    Full Text Available Variants in the growth factor receptor-bound protein 10 (GRB10 gene were in a GWAS meta-analysis associated with reduced glucose-stimulated insulin secretion and increased risk of type 2 diabetes (T2D if inherited from the father, but inexplicably reduced fasting glucose when inherited from the mother. GRB10 is a negative regulator of insulin signaling and imprinted in a parent-of-origin fashion in different tissues. GRB10 knock-down in human pancreatic islets showed reduced insulin and glucagon secretion, which together with changes in insulin sensitivity may explain the paradoxical reduction of glucose despite a decrease in insulin secretion. Together, these findings suggest that tissue-specific methylation and possibly imprinting of GRB10 can influence glucose metabolism and contribute to T2D pathogenesis. The data also emphasize the need in genetic studies to consider whether risk alleles are inherited from the mother or the father.

  15. Constraints on cosmological models and reconstructing the acceleration history of the Universe with gamma-ray burst distance indicators

    Science.gov (United States)

    Liang, Nan; Wu, Puxun; Zhang, Shuang Nan

    2010-04-01

    Gamma-ray bursts (GRBs) have been regarded as standard candles at very high redshift for cosmology research. We have proposed a new method to calibrate GRB distance indicators with Type Ia supernova (SNe Ia) data in a completely cosmology-independent way to avoid the circularity problem that had limited the direct use of GRBs to probe cosmology [N. Liang, W. K. Xiao, Y. Liu, and S. N. Zhang, Astrophys. J. 685, 354 (2008).ASJOAB0004-637X10.1086/590903]. In this paper, a simple method is provided to combine GRB data into the joint observational data analysis to constrain cosmological models; in this method those SNe Ia data points used for calibrating the GRB data are not used to avoid any correlation between them. We find that the ΛCDM model is consistent with the joint data in the 1-σ confidence region, using the GRB data at high redshift calibrated with the interpolating method, the Constitution set of SNe Ia, the cosmic microwave background radiation from Wilkinson Microwave Anisotropy Probe five year observation, the baryonic acoustic oscillation from the spectroscopic Sloan Digital Sky Survey Data Release 7 galaxy sample, the x-ray baryon mass fraction in clusters of galaxies, and the observational Hubble parameter versus redshift data. Comparing to the joint constraints with GRBs and without GRBs, we find that the contribution of GRBs to the joint cosmological constraints is a slight shift in the confidence regions of cosmological parameters to better enclose the ΛCDM model. Finally, we reconstruct the acceleration history of the Universe up to z>6 with the distance moduli of SNe Ia and GRBs and find some features that deviate from the ΛCDM model and seem to favor oscillatory cosmology models; however, further investigations are needed to better understand the situation.

  16. 30 CFR 57.3461 - Rock bursts.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons to...

  17. A Decade of GRB Follow-Up by BOOTES in Spain (2003–2013

    Directory of Open Access Journals (Sweden)

    Martin Jelínek

    2016-01-01

    Full Text Available This article covers ten years of GRB follow-ups by the Spanish BOOTES stations: 71 follow-ups providing 23 detections. Follow-ups by BOOTES-1B from 2005 to 2008 were given in a previous article and are here reviewed and updated, and additional detection data points are included as the former article merely stated their existence. The all-sky cameras CASSANDRA have not yet detected any GRB optical afterglows, but limits are reported where available.

  18. Classification, Follow-Up, and Analysis of Gamma-Ray Bursts and their Early-Time Near-Infrared/Optical Afterglows

    Science.gov (United States)

    Morgan, Adam Nolan

    In the study of astronomical transients, deriving knowledge from discovery is a multifaceted process that includes real-time classification to identify new events of interest, deep, multi-wavelength follow-up of individual events, and the global analysis of multi-event catalogs. Here we present a body of work encompassing each of these steps as applied to the study of gamma-ray bursts (GRBs). First, we present our work on utilizing machine-learning algorithms on early-time metrics from the Swift satellite to inform the resource allocation of follow-up telescopes in order to optimize time spent on high-redshift GRB candidates. Next, we show broadband observations and analysis of the early-time afterglow of GRB 120119A, utilizing data obtained with a dozen telescope facilities both in space and on the ground. This event exhibits extreme red-to-blue color change in the first few minutes after the trigger at levels unseen in prior afterglows, and our model fits of this phenomenon reveal the best support yet for the direct detection of dust destruction in the local environment of a GRB. Finally, we present results from the PAIRITEL early-time near-infrared (NIR) afterglow catalog. The 1.3 meter PAIRITEL has autonomously observed 14 GRBs in under 3 minutes after the burst, yielding a homogenous sample of early-time JHKs light curves. Our analysis of these events provides constraints on the early-time NIR GRB afterglow luminosity function and gives insight into the importance of dust extinction in the suppression of some optical afterglows.

  19. CONNECTING GRBs AND ULIRGs: A SENSITIVE, UNBIASED SURVEY FOR RADIO EMISSION FROM GAMMA-RAY BURST HOST GALAXIES AT 0 < z < 2.5

    Energy Technology Data Exchange (ETDEWEB)

    Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Perley, R. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Hjorth, J.; Malesani, D. [Dark Cosmology Centre, Niels Bohr Institute, DK-2100 Copenhagen (Denmark); Michałowski, M. J. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Cenko, S. B. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Jakobsson, P. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavík (Iceland); Krühler, T. [European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago 19 (Chile); Levan, A. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Tanvir, N. R., E-mail: dperley@astro.caltech.edu [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom)

    2015-03-10

    Luminous infrared galaxies and submillimeter galaxies contribute significantly to stellar mass assembly and provide an important test of the connection between the gamma-ray burst (GRB) rate and that of overall cosmic star formation. We present sensitive 3 GHz radio observations using the Karl G. Jansky Very Large Array of 32 uniformly selected GRB host galaxies spanning a redshift range from 0 < z < 2.5, providing the first fully dust- and sample-unbiased measurement of the fraction of GRBs originating from the universe's most bolometrically luminous galaxies. Four galaxies are detected, with inferred radio star formation rates (SFRs) ranging between 50 and 300 M {sub ☉} yr{sup –1}. Three of the four detections correspond to events consistent with being optically obscured 'dark' bursts. Our overall detection fraction implies that between 9% and 23% of GRBs between 0.5 < z < 2.5 occur in galaxies with S {sub 3GHz} > 10 μJy, corresponding to SFR > 50 M {sub ☉} yr{sup –1} at z ∼ 1 or >250 M {sub ☉} yr{sup –1} at z ∼ 2. Similar galaxies contribute approximately 10%-30% of all cosmic star formation, so our results are consistent with a GRB rate that is not strongly biased with respect to the total SFR of a galaxy. However, all four radio-detected hosts have stellar masses significantly lower than IR/submillimeter-selected field galaxies of similar luminosities. We suggest that the GRB rate may be suppressed in metal-rich environments but independently enhanced in intense starbursts, producing a strong efficiency dependence on mass but little net dependence on bulk galaxy SFR.

  20. Ultrahigh energy neutrino afterglows of nearby long duration gamma-ray bursts

    Science.gov (United States)

    Thomas, Jessymol K.; Moharana, Reetanjali; Razzaque, Soebur

    2017-11-01

    Detection of ultrahigh energy (UHE, ≳1 PeV ) neutrinos from astrophysical sources will be a major advancement in identifying and understanding the sources of UHE cosmic rays (CRs) in nature. Long duration gamma-ray burst (GRB) blast waves have been considered as potential acceleration sites of UHECRs. These CRs are expected to interact with GRB afterglow photons, which are synchrotron radiation from relativistic electrons coaccelerated with CRs in the blast wave, and naturally produce UHE neutrinos. Fluxes of these neutrinos are uncertain, however, and crucially depend on the observed afterglow modeling. We have selected a sample of 23 long duration GRBs within redshift 0.5 for which adequate electromagnetic afterglow data are available and which could produce high flux of UHE afterglow neutrinos, being nearby. We fit optical, x-ray, and γ -ray afterglow data with an adiabatic blast wave model in a constant density interstellar medium and in a wind environment where the density of the wind decreases as the inverse square of the radius from the center of the GRB. The blast wave model parameters extracted from these fits are then used for calculating UHECR acceleration and p γ interactions to produce UHE neutrino fluxes from these GRBs. We have also explored the detectability of these neutrinos by currently running and upcoming large area neutrino detectors, such as the Pierre Auger Observatory, IceCube Gen-2, and KM3NeT observatories. We find that our realistic flux models from nearby GRBs will be unconstrained in the foreseeable future.

  1. Possible gamma-ray burst radio detections by the Square Kilometre Array. New perspectives

    Science.gov (United States)

    Ruggeri, Alan Cosimo; Capozziello, Salvatore

    2016-09-01

    The next generation interferometric radio telescope, the Square Kilometre Array (SKA), which will be the most sensitive and largest radio telescope ever constructed, could greatly contribute to the detection, survey and characterization of Gamma Ray Bursts (GRBs). By the SKA, it will be possible to perform the follow up of GRBs even for several months. This approach would be extremely useful to extend the Spectrum Energetic Distribution (SED) from the gamma to the to radio band and would increase the number of radio detectable GRBs. In principle, the SKA could help to understand the physics of GRBs by setting constraints on theoretical models. This goal could be achieved by taking into account multiple observations at different wavelengths in order to obtain a deeper insight of the sources. Here, we present an estimation of GRB radio detections, showing that the GRBs can really be observed by the SKA. The approach that we present consists in determining blind detection rates derived by a very large sample consisting of merging several GRB catalogues observed by current missions as Swift, Fermi, Agile and INTEGRAL and by previous missions as BeppoSAX, CGRO, GRANAT, HETE-2, Ulysses and Wind. The final catalogue counts 7516 distinct sources. We compute the fraction of GRBs that could be observed by the SKA at high and low frequencies, above its observable sky. Considering the planned SKA sensitivity and through an extrapolation based on previous works and observations, we deduce the minimum fluence in the range 15-150 keV. This is the energy interval where a GRB should emit to be detectable in the radio band by the SKA. Results seem consistent with observational capabilities.

  2. A common central engine for long gamma-ray bursts and Type Ib/c supernovae

    Science.gov (United States)

    Sobacchi, E.; Granot, J.; Bromberg, O.; Sormani, M. C.

    2017-11-01

    Long-duration, spectrally soft gamma-ray bursts (GRBs) are associated with Type Ic core collapse (CC) supernovae (SNe), and thus arise from the death of massive stars. In the collapsar model, the jet launched by the central engine must bore its way out of the progenitor star before it can produce a GRB. Most of these jets do not break out, and are instead 'choked' inside the star, as the central engine activity time, te, is not long enough. Modelling the long-soft GRB duration distribution assuming a power-law distribution for their central engine activity times, ∝ t_e^{-α } for te > tb, we find a steep distribution (α ∼ 4) and a typical GRB jet breakout time of tb ∼ 60s in the star's frame. The latter suggests the presence of a low-density, extended envelope surrounding the progenitor star, similar to that previously inferred for low-luminosity GRBs. Extrapolating the range of validity of this power law below what is directly observable, to te < tb, by only a factor of ∼4-5 produces enough events to account for all Type Ib/c SNe. Such extrapolation is necessary to avoid fine-tuning the distribution of central engine activity times with the breakout time, which are presumably unrelated. We speculate that central engines launching relativistic jets may operate in all Type Ib/c SNe. In this case, the existence of a common central engine would imply that (i) the jet may significantly contribute to the energy of the SN; (ii) various observational signatures, like the asphericity of the explosion, could be directly related to jet's interaction with the star.

  3. GAMMA-RAY BURSTS FROM MAGNETIC RECONNECTION: VARIABILITY AND ROBUSTNESS OF LIGHT CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Granot, Jonathan [Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Ra’anana 4353701 (Israel)

    2016-01-10

    The dissipation mechanism that powers gamma-ray bursts (GRBs) remains uncertain almost half a century after their discovery. The two main competing mechanisms are the extensively studied internal shocks and the less studied magnetic reconnection. Here we consider GRB emission from magnetic reconnection accounting for the relativistic bulk motions that it produces in the jet's bulk rest frame. Far from the source the magnetic field is almost exactly normal to the radial direction, suggesting locally quasi-spherical thin reconnection layers between regions of oppositely directed magnetic field. We show that if the relativistic motions in the jet's frame are confined to such a quasi-spherical uniform layer, then the resulting GRB light curves are independent of their direction distribution within this layer. This renders previous results for a delta-function velocity-direction distribution applicable to a much more general class of reconnection models, which are suggested by numerical simulations. Such models that vary in their velocity-direction distribution differ mainly in the size of the bright region that contributes most of the observed flux at a given emission radius or observed time. The more sharply peaked this distribution, the smaller this bright region, and the stronger the light curve variability that may be induced by deviations from a uniform emission over the thin reconnection layer, which may be expected in a realistic GRB outflow. This is reflected both in the observed image at a given observed time and in the observer-frame emissivity map at a given emission radius, which are calculated here for three simple velocity-direction distributions.

  4. Evidences for a double component in the emission of GRB 101023

    Science.gov (United States)

    Penacchioni, A. V.; Ruffini, R.; Izzo, L.; Muccino, M.; Bianco, C. L.; Caito, L.; Patricelli, B.

    We present the results of a preliminar analysis of GRB 101023 in the fireshell scenario [1]. Its redshift has not been determined due to the lack of optical data, so we tried to infer it applying two different methods, following two different works by Amati et al. and Grupe et al. Its light curve presents a double emission, which makes it very similar to the already studied GRB 090618. We called each part episode 1 and 2, respectively. We performed a time-resolved spectral analysis with RMFIT and XSPEC using different spectral models, and fitted the light curve with a numerical code. We used Fermi GBM data [3] to build the light curve, in particular the second and fifth NaI detectors, in the range (8.5-1000 keV). We considered different hypothesis regarding which part of the light curve could be the GRB and performed the analysis to all of them. We noticed a great variation of the temperature with time in the first episode, as well as almost no variation of the progenitor radius. We concluded that the second episode perfectly agrees with being a canonical GRB, with a P-GRB lasting 4s, while the first episode does not match the fireshell requirements for a GRB. Indeed, as we concluded within the fireshell scenario, it makes reference to the early stages of the formation of a black hole, as the core of the progenitor collapses.

  5. Grb10 characterization in bovine cumulus oocyte complexes from different follicle sizes

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Antunes da Rosa

    2015-05-01

    Full Text Available The objective of this study was to investigate the mRNA expression and protein localization of Grb10 gene in bovine cumulus-oocyte complexes (COCs from different follicle sizes. Firstly, it was investigated the mRNA expression to correlate with maturation rates. COCs from follicles at 1-3, 4-6, 6-8 and >8mm were used to evaluate Grb10 gene expression by qRT-PCR assay and nuclear maturation rates. It was observed that more competent oocytes (from follicles at 6-8 and >8mm; P>0.05, had lower Grb10 mRNA expression levels when compared to the oocytes from follicles at 1-3 and 4-6mm (P>0.05. After it was performed an immunofluorescence analysis in COCs from different follicle sizes (1-3, 4-6, 6-8 and >8mm to investigate Grb10 protein localization. Samples were incubated with primary antibody: Polyclonal rabbit anti-Grb10 (1:100. Primary antibody was detected using goat anti-rabbit IgG antibody conjugated with Alexa Fluor 488 (1:500. Positive fluorescence signal was detected in all analyzed samples but less evident in COCs from largest follicles. These results characterized Grb10 gene in bovine COC and provide evidences for its involvement during oocyte molecular maturation.

  6. Regularity of high energy photon events from gamma ray bursts

    Science.gov (United States)

    Xu, Haowei; Ma, Bo-Qiang

    2018-01-01

    The effect of Quantum Gravity (QG) may bring a tiny light speed variation as v(E)=c(1‑E/ELV), where E is the photon energy and ELV is a Lorentz violation scale. A remarkable regularity was suggested in previous studies to look for the light speed variation from high energy photon events of Gamma Ray Bursts (GRBs). We provide a general analysis on the data of 25 bright GRBs observed by the Fermi Gamma-ray Space Telescope (FGST). Such method allows a completed scan over all possibilities in a more clean and impartial way without any bias compared to previous intuitive analysis. The results show that with the increase in the intrinsic energies of photons, such regularity truly emerges and gradually becomes significant. For photons with intrinsic energies higher than 40 GeV, the regularity exists at a significance of 3–5 σ with ELV=3.6× 1017 GeV determined by the GRB data.

  7. Observation of GRB 030131 with the INTEGRAL satellite

    Czech Academy of Sciences Publication Activity Database

    Götz, D.; Mereghetti, S.; Hurley, K.; Deluit, S.; Feroci, M.; Frontera, F.; Fruchter, A.S.; Gorosabel, J.; Hartmann, D. H.; Hjorth, J.; Hudec, René; Mirabel, I. F.; Pian, E.; Pizzichini, G.; Umbertini, P.; Winkler, C.

    2003-01-01

    Roč. 409, č. 3 (2003), s. 831-834 ISSN 0004-6361 Institutional research plan: CEZ:AV0Z1003909 Keywords : burst * gamma rays * observations Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.843, year: 2003

  8. The blue host galaxy of the red GRB 000418

    DEFF Research Database (Denmark)

    Gorosabel, J.; Klose, S.; Christensen, L.

    2003-01-01

    We report on multi-band (UBVRIZJ(s)K(s)) observations of the host galaxy of the April 18, 2000 gamma-ray burst. The Spectral Energy Distribution (SED) is analysed by fitting empirical and synthetic spectral templates. We find that: (i) the best SED fit is obtained with a starburst template, (ii) ...

  9. Colour variations in the GRB 120327A afterglow

    Czech Academy of Sciences Publication Activity Database

    Melandri, A.; Covino, S.; Zaninoni, E.; Campana, S.; Bolmer, J.; Cobb, B. E.; Gorosabel, J.; Kim, J.W.; Kuindersma, S.; Kuroda, D.; Malesani, D.; Mundell, C. G.; Nappo, F.; Sbarufatti, B.; Smith, R. J.; Steele, I.A.; Topinka, M.; Trotter, G.; Virgili, F. J.; Bernardini, M. G.; D'Avanzo, P.; D'Elia, V.; Fugazza, D.; Ghirlanda, G.; Gomboc, A.; Greiner, J.; Guidorzi, C.; Haislip, J.B.; Hanayama, H.; Hanlon, L.; Im, M.; Ivarsen, K.M.; Japelj, J.; Jelínek, Martin; Kawai, N.; Kobayashi, S.; Kopac, D.; LaCluyze, A.; Martin-Carrillo, A.; Murphy, D.; Reichart, D. E.; Salvaterra, R.; Salafia, O. S.; Tagliaferri, G.; Vergani, S. D.

    2017-01-01

    Roč. 607, October (2017), A29/1-A29/5 E-ISSN 1432-0746 Institutional support: RVO:67985815 Keywords : gamma-ray burst * time-dependent photoionization * early optical afterglow Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.014, year: 2016

  10. Search for Gamma-Ray Bursts with the ARGO-YBJ Detector in Shower Mode

    Energy Technology Data Exchange (ETDEWEB)

    Bartoli, B.; Catalanotti, S.; Piazzoli, B. D’Ettorre; Girolamo, T. Di [Dipartimento di Fisica dell’Universitá di Napoli “Federico II,” Complesso Universitario di Monte Sant’Angelo, via Cinthia, I-80126 Napoli (Italy); Bernardini, P.; D’Amone, A.; Mitri, I. De [Dipartimento Matematica e Fisica “Ennio De Giorgi,” Universitá del Salento, via per Arnesano, I-73100 Lecce (Italy); Bi, X. J.; Cao, Z.; Chen, S. Z.; Feng, Zhaoyang; Gao, W.; Gou, Q. B. [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, P.O. Box 918, 100049 Beijing (China); Chen, T. L.; Danzengluobu [Tibet University, 850000 Lhasa, Xizang (China); Cui, S. W. [Hebei Normal University, 050024 Shijiazhuang Hebei (China); Dai, B. Z. [Yunnan University, 2 North Cuihu Road, 650091 Kunming, Yunnan (China); Sciascio, G. Di [Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tor Vergata, via della Ricerca Scientifica 1, I-00133 Roma (Italy); Feng, C. F. [Shandong University, 250100 Jinan, Shandong (China); Feng, Zhenyong, E-mail: chensz@ihep.ac.cn, E-mail: zhouxx@swjtu.edu.cn [Southwest Jiaotong University, 610031 Chengdu, Sichuan (China); Collaboration: ARGO-YBJ Collaboration; and others

    2017-06-10

    The ARGO-YBJ detector, located at the Yangbajing Cosmic Ray Laboratory (4300 m a. s. l., Tibet, China), was a “full coverage” (central carpet with an active area of ∼93%) air shower array dedicated to gamma-ray astronomy and cosmic-ray studies. The wide field of view (∼2 sr) and high duty cycle (>86%), made ARGO-YBJ suitable to search for short and unexpected gamma-ray emissions like gamma-ray bursts (GRBs). Between 2007 November 6 and 2013 February 7, 156 satellite-triggered GRBs (24 of them with known redshift) occurred within the ARGO-YBJ field of view (zenith angle θ ≤ 45°). A search for possible emission associated with these GRBs has been made in the two energy ranges 10–100 GeV and 10–1000 GeV. No significant excess has been found in time coincidence with the satellite detections nor in a set of different time windows inside the interval of one hour after the bursts. Taking into account the EBL absorption, upper limits to the energy fluence at a 99% confidence level have been evaluated, with values ranging from ∼10{sup −5} erg cm{sup −2} to ∼10{sup −1} erg cm{sup −2}. The Fermi -GBM burst GRB 090902B, with a high-energy photon of 33.4 GeV detected by Fermi -LAT, is discussed in detail.

  11. From Enigma to Tool: Gamma-Ray Burst Reveals Secrets of Host Galaxy

    Science.gov (United States)

    2001-05-01

    Five years ago, astronomers knew almost nothing about Gamma Ray Bursts. Now, a team of observers using the National Science Foundation's Very Large Array (VLA) radio telescope has used a gamma-ray burst as a powerful tool to unveil the nature of the galaxy in which it occurred, more than 7 billion light-years away. VLA Images of GRB980703 Host Galaxy "We believe that gamma-ray bursts may become one of the best available tools for studying the history of star formation in the universe," said Edo Berger, a graduate student at Caltech. Berger worked with Caltech astronomy professor Shri Kulkarni and Dale Frail, an astronomer at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, to study a gamma-ray burst first seen on July 3, 1998. The astronomers presented their results at the American Astronomical Society's meeting in Pasadena, CA. "For the first time, we've seen the host galaxy of a gamma-ray burst with a radio telescope," Berger said. "Previously, gamma-ray-burst host galaxies have been seen with optical telescopes, but detecting this galaxy with a radio telescope has given us new clues about the nature of the galaxy itself -- clues we couldn't have gotten any other way," he added. For example, based on optical-telescope studies, astronomers estimated that new stars are forming in the host galaxy at the rate of about the mass equivalent of 20 suns per year. However, data from the radio observations show that the actual star-formation rate is 25 times greater -- the mass equivalent of 500 suns per year. "With the VLA, we are seeing the entire region of star formation in this galaxy, including the areas so dusty that visible light can't get out," said Frail. Gamma-ray bursts are the most powerful explosions since the Big Bang. First discovered in 1967 by a satellite launched to monitor compliance with the atmospheric nuclear test ban treaty, gamma-ray bursts remained one of astronomy's premier mysteries for 30 years. For three decades

  12. Decameter Type III-Like Bursts

    Science.gov (United States)

    Melnik, V. N.; Konovalenko, A. A.; Rutkevych, B. P.; Rucker, H. O.; Dorovskyy, V. V.; Abranin, E. P.; Lecacheux, A.; Brazhenko, A. I.; Stanislavskyy, A. A.

    2007-12-01

    Starting from 1960s Type III-like bursts (Type III bursts with high drift rates) in a wide frequency range from 300 to 950MHz have been observed. These new bursts observed at certain frequency being compared to the usual Type III bursts at the same frequency show similar behaviour but feature frequency drift 2-6 times higher than the normal bursts. In this paper we report the first observations of Type III-like bursts in decameter range, carried out during summer campaigns 2002 - 2004 at UTR-2 radio telescope. The circular polarization of the bursts was measured by the radio telescope URAN-2 in 2004. The observed bursts are analyzed and compared with usual Type III bursts in the decameter range. From the analysis of over 1100 Type III-like bursts, their main parameters have been found. Characteristic feature of the observed bursts is similar to Type III-like bursts at other frequencies, i.e. measured drift rates (5-10 MHz/s) of this bursts are few times larger than that for usual Type III bursts, and their durations (1-2 s) are few times smaller than that for usual Type III bursts in this frequency band.

  13. Model-dependent high-energy neutrino flux from gamma-ray bursts.

    Science.gov (United States)

    Zhang, Bing; Kumar, Pawan

    2013-03-22

    The IceCube Collaboration recently reported a stringent upper limit on the high energy neutrino flux from gamma-ray bursts (GRBs), which provides a meaningful constraint on the standard internal shock model. Recent broadband electromagnetic observations of GRBs also challenge the internal shock paradigm for GRBs, and some competing models for γ-ray prompt emission have been proposed. We describe a general scheme for calculating the GRB neutrino flux, and compare the predicted neutrino flux levels for different models. We point out that the current neutrino flux upper limit starts to constrain the standard internal shock model. The dissipative photosphere models are also challenged if the cosmic ray luminosity from GRBs is at least 10 times larger than the γ-ray luminosity. If the neutrino flux upper limit continues to go down in the next few years, then it would suggest the following possibilities: (i) the photon-to-proton luminosity ratio in GRBs is anomalously high for shocks, which may be achieved in some dissipative photosphere models and magnetic dissipation models; or (ii) the GRB emission site is at a larger radius than the internal shock radius, as expected in some magnetic dissipation models such as the internal collision-induced magnetic reconnection and turbulence model.

  14. Neutrino-dominated accretion flows as the central engine of gamma-ray bursts

    Science.gov (Unit