WorldWideScience

Sample records for burst afterglow spectroscopy

  1. Dust extinction in high-z galaxies with gamma-ray burst afterglow spectroscopy

    DEFF Research Database (Denmark)

    Elíasdóttir, Á.; Fynbo, J. P. U.; Hjorth, J.

    2009-01-01

    in a GRB host galaxy, while several tens of optical afterglow spectra without the bump have been recorded in the past decade. The derived extinction curve gives AV = 0.8-1.5 depending on the assumed intrinsic slope. Of the three local extinction laws, a Large Magellanic Cloud (LMC) type extinction gives......, the spectrum of GRB 070802 is unique for a GRB spectrum in that it shows clear C I absorption features, leading us to propose a correlation between the presence of the bump and C I. The gas-to-dust ratio for the host galaxy is found to be significantly lower than that of other GRB hosts with N(H I)/AV = (2...

  2. Jet simulations and gamma-ray burst afterglow jet breaks

    NARCIS (Netherlands)

    van Eerten, H. J.; Meliani, Z.; Wijers, Ramj; Keppens, R.

    2011-01-01

    The conventional derivation of the gamma-ray burst afterglow jet break time uses only the blast wave fluid Lorentz factor and therefore leads to an achromatic break. We show that in general gamma-ray burst afterglow jet breaks are chromatic across the self-absorption break. Depending on

  3. Jet simulations and gamma-ray burst afterglow jet breaks

    NARCIS (Netherlands)

    van Eerten, H. J.; Meliani, Z.; Wijers, R.A.M.J.; Keppens, R.

    2010-01-01

    The conventional derivation of the gamma-ray burst afterglow jet break time uses only the blast wave fluid Lorentz factor and therefore leads to an achromatic break. We show that in general gamma-ray burst afterglow jet breaks are chromatic across the self-absorption break. Depending on

  4. Radio Afterglows of Gamma Ray Bursts

    Indian Academy of Sciences (India)

    Even though radio band is the least explored of the afterglow spectrum, it has played an important role in the progress of GRB physics, specifically in confirming the hypothesized relativistic effects. Currently radio astronomy is in the beginning of a revolution. The high sensitive Square Kilometer Array (SKA) is being planned ...

  5. Detecting radio afterglows of gamma-ray bursts with FAST

    National Research Council Canada - National Science Library

    Zhi-Bin Zhang Si-Wei Kong Yong-Feng Huang Di Li Long-Biao Li

    2015-01-01

    Using the generic hydrodynamic model of gamma-ray burst (GRB) after- glows, we calculate the radio afterglow light curves of low luminosity, high luminosity, failed and standard GRBs in different observational bands of FAST's energy window...

  6. Gamma-ray burst afterglows from transrelativistic blast wave simulations

    NARCIS (Netherlands)

    van Eerten, H. J.; Leventis, K.; Meliani, Z.; Wijers, R.A.M.J.; Keppens, R.

    2010-01-01

    We present a study of the intermediate regime between ultrarelativistic and non-relativistic flow for gamma-ray burst afterglows. The hydrodynamics of spherically symmetric blast waves is numerically calculated using the AMRVAC adaptive mesh refinement code. Spectra and light curves are calculated

  7. Gamma-ray burst afterglows from transrelativistic blast wave simulations

    NARCIS (Netherlands)

    van Eerten, H. J.; Leventis, K.; Meliani, Z.; Wijers, Ramj; Keppens, R.

    2010-01-01

    We present a study of the intermediate regime between ultrarelativistic and non-relativistic flow for gamma-ray burst afterglows. The hydrodynamics of spherically symmetric blast waves is numerically calculated using the amrvac adaptive mesh refinement code. Spectra and light curves are calculated

  8. Radio Afterglows of Gamma Ray Bursts

    Indian Academy of Sciences (India)

    Lekshmi Resmi

    2017-09-12

    Sep 12, 2017 ... Gamma Ray Bursts (GRBs) were serendipitously discovered in late 1960s by the Vela military satel- lites. In the following years, dedicated scanning instru- ments on-board high energy missions like BeppoSAX1,. CGRO2, HETE3, Swift4 and Fermi5 have increased the number of GRB detections to several ...

  9. Observations of gamma-ray burst afterglows with the AEOS Burst Camera

    Science.gov (United States)

    Flewelling, Heather Anne

    Gamma-ray bursts (GRBs), are variable bursts of gamma-ray radiation, that lasts from milliseconds to hundreds of seconds. These bursts of gamma rays are detected in other wavelengths (optical, IR, radio, X-ray), because the afterglow lasts much longer, and this enables us to learn more about GRBs. The AEOS Burst Camera (ABC) is a 6'x6' field of view camera designed to observe the optical afterglows of GRBs, and is mounted on the 3.67m Advanced Electro- Optical System (AEOS) telescope, located at 10,000ft on Haleakala, Hawaii. There are 45 hours of Target of Opportunity (ToO) time to observe GRBs detected by Swift and other GRB satellites. Observations are started within minutes after a suitable GRB is detected, and continue for an hour or two. During this project, 21 GRBs were observed, and of those, 10 had detected afterglows, and 4 had interesting limits. About half of the bursts fit the fireball model, and half did not, which is similar to what ROTSE has found. Roughly half of the ABC bursts fall in the dark category, with b ox Akerlof Sr, Swan (2007) found, that roughly 70% of all GRBs brighter than 22nd mag at 1000s should be detectable.

  10. Gamma-ray burst afterglow plateaus and gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Corsi, Alessandra [Universita di Roma Sapienza and INFN-Roma, Piazzale Aldo Moro 2, 00185-Roma (Italy); Meszaros, Peter, E-mail: alessandra.corsi@roma1.infn.i, E-mail: nnp@astro.psu.ed [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

    2009-10-21

    The existence of a shallow decay phase in the early x-ray afterglows of gamma-ray bursts is a common feature. We discuss the possibility that such a feature is connected to the formation of a highly magnetized millisecond pulsar, pumping energy into the fireball via magnetic dipole emission, while undergoing a secular bar-mode instability. If this is the case, gravitational wave losses associated with the neutron star's ellipsoidal deformation, would affect the star's spin-down, possibly producing a gravitational wave signal detectable by the advanced LIGO and Virgo. Such a signal, being emitted in association with an observed x-ray light-curve plateau over relatively long timescales, could open a new interesting opportunity for multi-messenger studies to be carried out in coincidence with gamma-ray burst sources. We conclude that the hypothesis proposed here deserves further investigation.

  11. Fermi and Swift Gamma-Ray Burst Afterglow Population Studies

    Science.gov (United States)

    Racusin, Judith L.; Oates, S. R.; Schady, P.; Burrows, D. N.; dePasquale, M.; Donato, D.; Gehrels, N.; Koch, S.; McEnery, J.; Piran, T.; hide

    2011-01-01

    The new and extreme population of GRBs detected by Fermi -LAT shows several new features in high energy gamma-rays that are providing interesting and unexpected clues into GRB prompt and afterglow emission mechanisms. Over the last 6 years, it has been Swift that has provided the robust dataset of UV/optical and X-ray afterglow observations that opened many windows into components of GRB emission structure. The relationship between the LAT detected GRBs and the well studied, fainter, less energetic GRBs detected by Swift -BAT is only beginning to be explored by multi-wavelength studies. We explore the large sample of GRBs detected by BAT only, BAT and Fermi -GBM, and GBM and LAT, focusing on these samples separately in order to search for statistically significant differences between the populations, using only those GRBs with measured redshifts in order to physically characterize these objects. We disentangle which differences are instrumental selection effects versus intrinsic properties, in order to better understand the nature of the special characteristics of the LAT bursts.

  12. Gamma-ray Burst Formation Environment: Comparison of Redshift Distributions of GRB Afterglows

    Directory of Open Access Journals (Sweden)

    Sung-Eun Kim

    2005-12-01

    Full Text Available Since gamma-ray bursts(GRBs have been first known to science societites in 1973, many scientists are involved in their studies. Observations of GRB afterglows provide us with much information on the environment in which the observed GRBs are born. Study of GRB afterglows deals with longer timescale emissions in lower energy bands (e.g., months or even up to years than prompt emissions in gamma-rays. Not all the bursts accompany afterglows in whole ranges of wavelengths. It has been suggested as a reason for that, for instance, that radio and/or X-ray afterglows are not recorded mainly due to lower sensitivity of detectors, and optical afterglows due to extinctions in intergalactic media or self-extinctions within a host galaxy itself. Based on the idea that these facts may also provide information on the GRB environment, we analyze statistical properties of GRB afterglows. We first select samples of the redshift-known GRBs according to the wavelength of afterglow they accompanied. We then compare their distributions as a function of redshift, using statistical methods. As a results, we find that the distribution of the GRBs with X-ray afterglows is consistent with that of the GRBs with optical afterglows. We, therefore, conclude that the lower detection rate of optical afterglows is not due to extinctions in intergalactic media.

  13. Spectrophotometric analysis of gamma-ray burst afterglow extinction curves with X-Shooter

    NARCIS (Netherlands)

    Japelj, J.; Covino, S.; Gomboc, A.; Vergani, S.D.; Goldoni, P.; Selsing, J.; Cano, Z.; D’Elia, V.; Flores, H.; Fynbo, J.P.U.; Hammer, F.; Hjorth, J.; Jakobsson, P.; Kaper, L.; Kopač, D.; Krühler, T.; Melandri, A.; Piranomonte, S.; Sánchez-Ramírez, R.; Tagliaferri, G.; Tanvir, N.R.; de Ugarte Postigo, A.; Watson, D.; Wijers, R.A.M.J.

    2015-01-01

    We use gamma-ray burst (GRB) afterglow spectra observed with the VLT/X-Shooter spectrograph to measure rest-frame extinction in GRB lines-of-sight by modelling the broadband near-infrared (NIR) to X-ray afterglow spectral energy distributions (SEDs). Our sample consists of nine Swift GRBs, of which

  14. Short Hard Gamma Ray Bursts And Their Afterglows

    CERN Document Server

    Dado, Shlomo

    2009-01-01

    Long duration gamma ray bursts (GRBs) and X-ray flashes (XRFs) are produced by highly- relativistic jets ejected in core-collapse supernova explosions. The origin of short hard gamma-ray bursts (SHBs) has not been established. They may be produced by highly relativistic jets ejected in various processes: mergers of compact stellar objects; large-mass accretion episodes onto compact stars in close binaries or onto intermediate-mass black holes in dense stellar regions; phase transition of compact stars. Natural environments of such events are the dense cores of globular clusters, superstar clusters and young supernova remnants. We have used the cannonball model of GRBs to analyze all Swift SHBs with a well-sampled X-ray afterglow. We show that their prompt gamma-ray emission can be explained by inverse Compton scattering (ICS) of the progenitor's glory light, and their extended soft emission component by ICS of high density light or synchrotron radiation (SR) in a high density interstellar medium within the cl...

  15. Thermal Electrons in Gamma-Ray Burst Afterglows

    Science.gov (United States)

    Ressler, Sean M.; Laskar, Tanmoy

    2017-08-01

    To date, nearly all multi-wavelength modeling of long-duration γ-ray bursts has ignored synchrotron radiation from the significant population of electrons expected to pass the shock without acceleration into a power-law distribution. We investigate the effect of including the contribution of thermal, non-accelerated electrons to synchrotron absorption and emission in the standard afterglow model, and show that these thermal electrons provide an additional source of opacity to synchrotron self-absorption, and yield an additional emission component at higher energies. The extra opacity results in an increase in the synchrotron self-absorption frequency by factors of 10-100 for fiducial parameters. The nature of the additional emission depends on the details of the thermal population, but is generally observed to yield a spectral peak in the optical brighter than radiation from the nonthermal population by similar factors a few seconds after the burst, remaining detectable at millimeter and radio frequencies several days later.

  16. Gamma-Ray Burst Afterglow Broadband Fitting Based Directly on Hydrodynamics Simulations

    NARCIS (Netherlands)

    van Eerten, H.; van der Horst, A.; MacFadyen, A.

    2012-01-01

    We present a powerful new tool for fitting broadband gamma-ray burst afterglow data, which can be used to determine the burst explosion parameters and the synchrotron radiation parameters. By making use of scale invariance between relativistic jets of different energies and different circumburst

  17. The afterglow and complex environment of the optically dim burst GRB 980613

    DEFF Research Database (Denmark)

    Hjorth, J.; Thomsen, Bente; Nielsen, S.R.

    2002-01-01

    not exhibit an unusually rapid decay (power-law decay slope alpha X-ray spectral index (beta(RX) approximate to 0.6), indicating a maximal reddening of the afterglow of approximate to0.45 mag in R. Hence, the dimness......We report the identification of the optical afterglow of GRB 980613 in R- and I-band images obtained between 16 and 48 hr after the gamma-ray burst. Early near-infrared (NIR) H and K' observations are also reported. The afterglow was optically faint (R approximate to 23) at discovery but did...

  18. Machine Learning Search for Gamma-Ray Burst Afterglows in Optical Images

    Science.gov (United States)

    Topinka, M.

    2016-06-01

    Thanks to the advances in robotic telescopes, time domain astronomy leads to a large number of transient events detected in images every night. Data mining and machine learning tools used for object classification are presented. The goal is to automatically classify transient events for both further follow-up by a larger telescope and for statistical studies of transient events. Special attention is given to the identification of gamma-ray burst afterglows. Machine learning techniques are used to identify GROND gamma-ray burst afterglow among the astrophysical objects present in the SDSS archival images based on the g'-r', r'-i' and i'-z' color indices. The performance of the support vector machine, random forest and neural network algorithms is compared. A joint meta-classifier, built on top of the individual classifiers, can identify GRB afterglows with the overall accuracy of ≳ 90%.

  19. The early X-ray afterglows of optically bright and dark Gamma-Ray Bursts

    OpenAIRE

    Lin, Yi-Qing

    2006-01-01

    A systematical study on the early X-ray afterglows of both optically bright and dark gamma-ray bursts (B-GRBs and D-GRBs) observed by Swift has been presented. Our sample includes 25 GRBs. Among them 13 are B-GRBs and 12 are D-GRBs. Our results show that the distributions of the X-ray afterglow fluxes ($F_{X}$), the gamma-ray fluxes ($S_{\\gamma}$), and the ratio ($R_{\\gamma, X}$) for both the D-GRBs and B-GRBs are similar. The differences of these distributions for the two kinds of GRBs shoul...

  20. On the Structure of the Burst and Afterglow of Gamma-Ray Bursts I

    Science.gov (United States)

    Ruffini, Remo; Bianco, Carlo Luciano; Xue, She-Sheng; Chardonnet, Pascal; Fraschetti, Federico

    We have recently proposed three paradigms for the theoretical interpretation of gamma-ray bursts (GRBs). (1) The relative space time transformation (RSTT) paradigm emphasizes how the knowledge of the entire world-line of the source from the moment of gravitational collapse is a necessary condition in order to interpret GRB data.1 (2) The interpretation of the burst structure (IBS) paradigm differentiates in all GRBs between an injector phase and a beam-target phase.2 (3) The GRB-supernova time sequence (GSTS) paradigm introduces the concept of induced supernova explosion in the supernovae-GRB association.3 The RSTT and IBS paradigms are enunciated and illustrated using our theory based on the vacuum polarization process occurring around an electromagnetic black hole (EMBH) theory. The results are summarized using figures, diagrams and a complete table with the space time grid, the fundamental parameters and the corresponding values of the Lorentz gamma factor for GRB 991216 used as a prototype. In the following sections the detailed treatment of the EMBH theory needed to understand the results of the three above paradigms is presented. We start from the considerations on the dyadosphere formation. We then review the basic hydrodynamic and rate equations, the equations leading to the relative space time transformations as well as the adopted numerical integration techniques. We then illustrate the five fundamental eras of the EMBH theory: the self acceleration of the e+e- pair-electromagnetic plasma (PEM pulse), its interaction with the baryonic remnant of the progenitor star, the further self acceleration of the e+e- pair-electromagnetic radiation and baryon plasma (PEMB pulse). We then study the approach of the PEMB pulse to transparency, the emission of the proper GRB (P-GRB) and its relation to the "short GRBs". Particular attention is given to the free parameters of the theory and to the values of the thermodynamical quantities at transparency. Finally

  1. The very red afterglow of GRB 000418: Further evidence for dust extinction in a gamma-ray burst host galaxy

    DEFF Research Database (Denmark)

    Klose, S.; Stecklum, B.; Masetti, N.

    2000-01-01

    We report near-infrared and optical follow-up observations of the afterglow of the GRB 000418 starting 2.5 days after the occurrence of the burst and extending over nearly 7 weeks. GRB 000418 represents the second case for which the afterglow was initially identified by observations in the near-i...

  2. On the optical and X-ray afterglows of gamma ray bursts

    CERN Document Server

    Dado, S; De Rújula, Alvaro; Dado, Shlomo; Dar, Arnon; Rujula, Alvaro De

    2002-01-01

    We severely criticize the consuetudinary analysis of the afterglows of gamma-ray bursts (GRBs) in the conical-ejection fireball scenarios. We argue that, instead, recent observations imply that the long-duration GRBs and their afterglows are produced by highly relativistic jets of cannonballs (CBs) emitted in supernova explosions. The CBs are heated by their collision with the supernova shell. The GRB is the boosted surface radiation the CBs emit as they reach the transparent outskirts of the shell. The exiting CBs further decelerate by sweeping up interstellar matter (ISM). The early afterglow is dominated by thermal bremsstrahlung from the cooling CB, the late afterglow by synchrotron radiation from the ISM electrons swept up by the CBs. We show that this model fits simply and remarkably well all the measured optical afterglows of the 15 GRBs with known redshift. We find that the CBs of GRB 970508 were gravitationally lensed by an intervening star, and moved extremely superluminally for kiloparsecs. The aft...

  3. A Leptonic-Hadronic Model for the Afterglow of Gamma-Ray Burst 090510

    Science.gov (United States)

    2010-11-20

    rights reserved. Printed in the U.S.A. A LEPTONIC– HADRONIC MODEL FOR THE AFTERGLOW OF GAMMA-RAY BURST 090510 Soebur Razzaque1 Space Science Division...combined leptonic– hadronic model of synchrotron radiation from an adiabatic blast wave. High-energy, !100 MeV, emission in our model is dominated by...escape the blast wave at early time, and their detection can provide evidence of a hadronic emission component dominating at high energies. Key words

  4. How Bad or Good Are the External Forward Shock Afterglow Models of Gamma-Ray Bursts?

    Science.gov (United States)

    Wang, Xiang-Gao; Zhang, Bing; Liang, En-Wei; Gao, He; Li, Liang; Deng, Can-Min; Qin, Song-Mei; Tang, Qing-Wen; Kann, D. Alexander; Ryde, Felix; Kumar, Pawan

    2015-07-01

    The external forward shock models have been the standard paradigm to interpret the broadband afterglow data of gamma-ray bursts (GRBs). One prediction of the models is that some afterglow temporal breaks at different energy bands should be achromatic; that is, the break times should be the same in different frequencies. Multiwavelength observations in the Swift era have revealed chromatic afterglow behaviors at least in some GRBs, casting doubts on the external forward shock origin of GRB afterglows. In this paper, using a large sample of GRBs with both X-ray and optical afterglow data, we perform a systematic study to address the question: how bad or good are the external forward shock models? Our sample includes 85 GRBs up to 2014 March with well-monitored X-ray and optical light curves. Based on how well the data abide by the external forward shock models, we categorize them into five grades and three samples. The first two grades (Grade I and II) include 45 of 85 GRBs. They show evidence of, or are consistent with having, an achromatic break. The temporal and spectral behaviors in each afterglow segment are consistent with the predictions (the “closure relations”) of the forward shock models. These GRBs are included in the Gold sample. The next two grades (Grade III and IV) include 37 of 85 GRBs. They are also consistent with having an achromatic break, even though one or more afterglow segments do not comply with the closure relations. These GRBs are included in the Silver sample. Finally, Grade V (3/85) shows direct evidence of chromatic behaviors, suggesting that the external shock models are inconsistent with the data. These are included in the Bad sample. We further perform statistical analyses of various observational properties (temporal index α, spectral index β, break time tb) and model parameters (energy injection index q, electron spectral index p, jet opening angle {θ }j, radiative efficiency ηγ, and so on) of the GRBs in the Gold sample

  5. POLARIZATION EVOLUTION OF EARLY OPTICAL AFTERGLOWS OF GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Mi-Xiang; Dai, Zi-Gao [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Wu, Xue-Feng, E-mail: dzg@nju.edu.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2016-01-10

    The central engine and jet composition of gamma-ray bursts (GRBs) remain mysterious. Here we suggest that observations on the polarization evolution of early optical afterglows may shed light on these questions. We first study the dynamics of a reverse shock and a forward shock that are generated during the interaction of a relativistic jet and its ambient medium. The jet is likely magnetized with a globally large-scale magnetic field from the central engine. The existence of the reverse shock requires that the magnetization degree of the jet should not be high (σ ≤ 1), so that the jet is mainly composed of baryons and leptons. We then calculate the light curves and polarization evolution of early optical afterglows and find that when the polarization position angle changes by 90° during the early afterglow, the polarization degree is zero for a toroidal magnetic field but is very likely to be nonzero for an aligned magnetic field. This result would be expected to provide a probe for the central engine of GRBs because an aligned field configuration could originate from a magnetar central engine and a toroidal field configuration could be produced from a black hole via the Blandford–Znajek mechanism. Finally, for such two kinds of magnetic field configurations, we fit the observed data of the early optical afterglow of GRB 120308A equally well.

  6. VLT identification of the optical afterglow of the gamma-ray burst GRB 000131 at z=4.50

    DEFF Research Database (Denmark)

    Andersen, M. I.; Hjorth, J.; Pedersen, H.

    2000-01-01

    We report the discovery of the gamma-ray burst GRB 000131 and its optical afterglow. The optical identification was made with the VLT 84 hours after the burst following a BATSE detection and an Inter Planetary Network localization. GRB 000131 was a bright, long-duration GRB, with an apparent prec...

  7. VLT identification of the optical afterglow of the gamma-ray burst GRB000131 at z=4.50

    DEFF Research Database (Denmark)

    Andersen, M.I.; Hjorth, J.; Jesen, B.L.

    2000-01-01

    We report the discovery of the gamma-ray burst GRB 000131 and its optical afterglow. The optical identification was made with the VLT 84 hours after the burst following a BATSE detection and an Inter Planetary Network localization. GRB 000131 was a bright, long-duration GRB, with an apparent prec...

  8. GRB 081029: A Gamma-Ray Burst with a Multi-Component Afterglow

    Science.gov (United States)

    Holland, Stephen T.; De Pasquale, Massimiliano; Mao, Jirong; Sakamoto, Takanori; Schady, Patricia; Covino, Stefano; Fan, Yi-Zhong; Jin, Zhi-Ping; D'Avanzo, Paolo; Antonelli, Angelo; hide

    2012-01-01

    We present an analysis of the unusual optical light curve of the gamma-ray burst GRB 081029, a long-soft burst with a redshift of z = 3.8479. We combine X-ray and optical observations from the Swift X-Ray Telescope and the Swift Ultra Violet/Optical Telescope with ground-based optical and infrared data obtained using the REM, ROTSE, and CTIO 1.3-m telescopes to construct a detailed data set extending from 86 s to approx.100,000 s after the BAT trigger. Our data covers a wide energy range, from 10 keV to 0.77 eV (1.24 A to 16000 A). The X-ray afterglow shows a shallow initial decay followed by a rapid decay starting at about 18,000 s. The optical and infrared afterglow, however, shows an uncharacteristic rise at about 3000 s that does not correspond to any feature in the X-ray light curve. Our data are not consistent with synchrotron radiation from a jet interacting with an external medium, a two-component jet, or continuous energy injection from the central engine. We find that the optical light curves can be broadly explained by a collision between two ejecta shells within a two-component jet. A growing number of gamma-ray burst afterglows are consistent with complex jets, which suggests that some (or all) gamma-ray burst jets are complex and will require detailed modelling to fully understand them.injection

  9. The superluminal motion of Gamma-Ray-Burst sources and the complex afterglow of GRB 030329

    CERN Document Server

    Dado, S; De Rújula, Alvaro; Dado, Shlomo; Dar, Arnon

    2004-01-01

    The source of the very bright Gamma-Ray Burst GRB 030329 is close enough to us for there to be a hope to measure or significantly constrain its putative superluminal motion. Such a phenomenon is expected in the ``Cannonball'' (CB) model of GRBs. Recent precise data on the optical and radio afterglow of this GRB --which demonstrated its very complex structure-- allow us to pin down the CB-model's prediction for the afterglow-source position as a function of time. It has been stated that (the unpublished part of) the new radio data ``unequivocably disprove'' the CB model. We show how greatly exaggerated that obituary announcement was, and how precise a refined analysis of the data would have to be, to be still of interest.

  10. Diverse Features of the Multiwavelength Afterglows of Gamma-Ray Bursts: Natural or Special?

    Directory of Open Access Journals (Sweden)

    J. J. Geng

    2016-01-01

    Full Text Available The detection of optical rebrightenings and X-ray plateaus in the afterglows of gamma-ray bursts (GRBs challenges the generic external shock model. Recently, we have developed a numerical method to calculate the dynamics of the system consisting of a forward shock and a reverse shock. Here, we briefly review the applications of this method in the afterglow theory. By relating these diverse features to the central engines of GRBs, we find that the steep optical rebrightenings would be caused by the fall-back accretion of black holes, while the shallow optical rebrightenings are the consequence of the injection of the electron-positron-pair wind from the central magnetar. These studies provide useful ways to probe the characteristics of GRB central engines.

  11. Ultrahigh energy neutrino afterglows of nearby long duration gamma-ray bursts

    Science.gov (United States)

    Thomas, Jessymol K.; Moharana, Reetanjali; Razzaque, Soebur

    2017-11-01

    Detection of ultrahigh energy (UHE, ≳1 PeV ) neutrinos from astrophysical sources will be a major advancement in identifying and understanding the sources of UHE cosmic rays (CRs) in nature. Long duration gamma-ray burst (GRB) blast waves have been considered as potential acceleration sites of UHECRs. These CRs are expected to interact with GRB afterglow photons, which are synchrotron radiation from relativistic electrons coaccelerated with CRs in the blast wave, and naturally produce UHE neutrinos. Fluxes of these neutrinos are uncertain, however, and crucially depend on the observed afterglow modeling. We have selected a sample of 23 long duration GRBs within redshift 0.5 for which adequate electromagnetic afterglow data are available and which could produce high flux of UHE afterglow neutrinos, being nearby. We fit optical, x-ray, and γ -ray afterglow data with an adiabatic blast wave model in a constant density interstellar medium and in a wind environment where the density of the wind decreases as the inverse square of the radius from the center of the GRB. The blast wave model parameters extracted from these fits are then used for calculating UHECR acceleration and p γ interactions to produce UHE neutrino fluxes from these GRBs. We have also explored the detectability of these neutrinos by currently running and upcoming large area neutrino detectors, such as the Pierre Auger Observatory, IceCube Gen-2, and KM3NeT observatories. We find that our realistic flux models from nearby GRBs will be unconstrained in the foreseeable future.

  12. THE UNUSUAL RADIO AFTERGLOW OF THE ULTRA-LONG GAMMA-RAY BURST GRB 130925A

    Energy Technology Data Exchange (ETDEWEB)

    Horesh, Assaf [Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Perley, Daniel A.; Kulkarni, S. R.; Hallinan, Gregg; Bellm, Eric [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-10-10

    GRB 130925A is one of the recent additions to the growing family of ultra-long gamma-ray bursts (GRBs; T90 ≳1000 s). While the X-ray emission of ultra-long GRBs have been studied extensively in the past, no comprehensive radio data set has been obtained so far. We report here the early discovery of an unusual radio afterglow associated with the ultra-long GRB 130925A. The radio emission peaks at low-frequencies (∼7 GHz) at early times, only 2.2 days after the burst occurred. More notably, the radio spectrum at frequencies above 10 GHz exhibits a rather steep cut-off, compared to other long GRB radio afterglows. This cut-off can be explained if the emitting electrons are either mono-energetic or originate from a rather steep, dN/dE ∝ E{sup −4}, power-law energy distribution. An alternative electron acceleration mechanism may be required to produce such an electron energy distribution. Furthermore, the radio spectrum exhibits a secondary underlying and slowly varying component. This may hint that the radio emission we observed is comprised of emission from both a reverse and a forward shock. We discuss our results in comparison with previous works that studied the unusual X-ray spectrum of this event and discuss the implications of our findings on progenitor scenarios.

  13. VLT/X-shooter spectroscopy of the GRB 120327A afterglow

    DEFF Research Database (Denmark)

    D'Elia, V.; Fynbo, Johan Peter Uldall; Goldoni, P.

    2014-01-01

    -25000AA) of the optical afterglow of GRB 120327A, taken with X-shooter at the VLT 2.13 and 27.65 hr after the GRB trigger. The first epoch spectrum shows that the ISM in the GRB host galaxy at z = 2.8145 is extremely rich in absorption features, with three components contributing to the line profiles...... we used to derive information on the distance between the host absorbing gas and the site of the GRB explosion. The variability of the FeI\\lambda2396 excited line between the two epochs proves that these features are excited by the GRB UV flux. Moreover, the distance of component I is found to be d......We present a study of the environment of the Swift long gamma-ray burst GRB 120327A at z ~2.8 through optical spectroscopy of its afterglow. We analyzed medium-resolution, multi-epoch spectroscopic observations (~7000 - 12000, corresponding to ~ 15 - 23 km/s, S/N = 15- 30 and wavelength range 3000...

  14. On the "canonical behaviour" of the X-ray afterglows of the Gamma Ray Bursts observed with Swift's XRT

    CERN Document Server

    Dado, S; De Rújula, Alvaro; Dado, Shlomo; Dar, Arnon

    2006-01-01

    The "canonical behaviour" of the early X-ray afterglows of long-duration Gamma-Ray Bursts (GRBs) --observed by the X-Ray Telescope of the SWIFT satellite-- is precisely the one predicted by the Cannonball model of GRBs.

  15. The Supercritical Pile Gamma-Ray Burst Model: The GRB Afterglow Steep Decline and Plateau Phase

    Science.gov (United States)

    Sultana, Joseph; Kazanas, D.; Mastichiadis, A.

    2013-01-01

    We present a process that accounts for the steep decline and plateau phase of the Swift X-Ray Telescope (XRT) light curves, vexing features of gamma-ray burst (GRB) phenomenology. This process is an integral part of the "supercritical pile" GRB model, proposed a few years ago to account for the conversion of the GRB kinetic energy into radiation with a spectral peak at E(sub pk) is approx. m(sub e)C(exp 2). We compute the evolution of the relativistic blast wave (RBW) Lorentz factor Gamma to show that the radiation-reaction force due to the GRB emission can produce an abrupt, small (approx. 25%) decrease in Gamma at a radius that is smaller (depending on conditions) than the deceleration radius R(sub D). Because of this reduction, the kinematic criticality criterion of the "supercritical pile" is no longer fulfilled. Transfer of the proton energy into electrons ceases and the GRB enters abruptly the afterglow phase at a luminosity smaller by approx. m(sub p)/m(sub e) than that of the prompt emission. If the radius at which this slow-down occurs is significantly smaller than R(sub D), the RBW internal energy continues to drive the RBW expansion at a constant (new) Gamma and its X-ray luminosity remains constant until R(sub D) is reached, at which point it resumes its more conventional decay, thereby completing the "unexpected" XRT light curve phase. If this transition occurs at R is approx. equal to R(sub D), the steep decline is followed by a flux decrease instead of a "plateau," consistent with the conventional afterglow declines. Besides providing an account of these peculiarities, the model suggests that the afterglow phase may in fact begin before the RBW reaches R is approx. equal to R(sub D), thus providing novel insights into GRB phenomenology.

  16. The redshift and afterglow of the extremely energetic gamma-ray burst GRB 080916C

    CERN Document Server

    Greiner, J.; Kruehler, T.; Kienlin, A.v.; Rau, A.; Sari, R.; Fox, Derek B.; Kawai, N.; Afonso, P.; Ajello, M.; Berger, E.; Cenko, S.B.; Cucchiara, A.; Filgas, R.; Klose, S.; Yoldas, A.Kuepue; Lichti, G.G.; Loew, S.; McBreen, S.; Nagayama, T.; Rossi, A.; Sato, S.; Szokoly, G.; Yoldas, A.; Zhang, X.-L.

    2009-01-01

    The detection of GeV photons from gamma-ray bursts (GRBs) has important consequences for the interpretation and modelling of these most-energetic cosmological explosions. The full exploitation of the high-energy measurements relies, however, on the accurate knowledge of the distance to the events. Here we report on the discovery of the afterglow and subsequent redshift determination of GRB 080916C, the first GRB detected by the Fermi Gamma-Ray Space Telescope with high significance detection of photons at >0.1 GeV. Observations were done with 7-channel imager GROND at the 2.2m MPI/ESO telescope, the SIRIUS instrument at the Nagoya-SAAO 1.4m telescope in South Africa, and the GMOS instrument at Gemini-S. The afterglow photometric redshift of z=4.35+-0.15, based on simultaneous 7-filter observations with the Gamma-Ray Optical and Near-infrared Detector (GROND), places GRB 080916C among the top 5% most distant GRBs, and makes it the most energetic GRB known to date. The detection of GeV photons from such a dista...

  17. On the Polarization of Gamma Ray Bursts and their Optical Afterglows

    CERN Document Server

    Dado, S; De Rújula, Alvaro; Dado, Shlomo; Dar, Arnon

    2004-01-01

    The polarization of the optical afterglow (AG) of Gamma-Ray Bursts (GRBs) has only been measured in a few instances at various times after the GRB. In all cases except the best measured one (GRB 030329) the observed polarization and its evolution are simple and easy to explain in the most naive version of the "Cannonball'' model of GRBs: the "intrinsic" AG polarization is small and the observations reflect the "foreground" effects of the host galaxy and ours. The polarization observed in GRB 030329 behaves chaotically, its understanding requires reasonable but ad-hoc ingredients. The polarization of the gamma rays of a GRB has only been measured in the case of GRB 021206. The result is debated, but similar measurements would be crucial to the determination of the GRB-generating mechanism.

  18. The Arcminute Microkelvin Imager catalogue of gamma-ray burst afterglows at 15.7 GHz

    Science.gov (United States)

    Anderson, G. E.; Staley, T. D.; van der Horst, A. J.; Fender, R. P.; Rowlinson, A.; Mooley, K. P.; Broderick, J. W.; Wijers, R. A. M. J.; Rumsey, C.; Titterington, D. J.

    2018-01-01

    We present the Arcminute Microkelvin Imager (AMI) Large Array catalogue of 139 gamma-ray bursts (GRBs). AMI observes at a central frequency of 15.7 GHz and is equipped with a fully automated rapid-response mode, which enables the telescope to respond to high-energy transients detected by Swift. On receiving a transient alert, AMI can be on-target within 2 min, scheduling later start times if the source is below the horizon. Further AMI observations are manually scheduled for several days following the trigger. The AMI GRB programme probes the early-time (GRBs, and has obtained some of the earliest radio detections (GRB 130427A at 0.36 and GRB 130907A at 0.51 d post-burst). As all Swift GRBs visible to AMI are observed, this catalogue provides the first representative sample of GRB radio properties, unbiased by multiwavelength selection criteria. We report the detection of six GRB radio afterglows that were not previously detected by other radio telescopes, increasing the rate of radio detections by 50 per cent over an 18-month period. The AMI catalogue implies a Swift GRB radio detection rate of ≳ 15 per cent, down to ∼0.2 mJy beam-1. However, scaling this by the fraction of GRBs AMI would have detected in the Chandra & Frail sample (all radio-observed GRBs between 1997 and 2011), it is possible ∼ 44-56 per cent of Swift GRBs are radio bright, down to ∼0.1-0.15 mJy beam-1. This increase from the Chandra & Frail rate (∼30 per cent) is likely due to the AMI rapid-response mode, which allows observations to begin while the reverse-shock is contributing to the radio afterglow.

  19. GAMMA-RAY BURST DYNAMICS AND AFTERGLOW RADIATION FROM ADAPTIVE MESH REFINEMENT, SPECIAL RELATIVISTIC HYDRODYNAMIC SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    De Colle, Fabio; Ramirez-Ruiz, Enrico [Astronomy and Astrophysics Department, University of California, Santa Cruz, CA 95064 (United States); Granot, Jonathan [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Lopez-Camara, Diego, E-mail: fabio@ucolick.org [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Ap. 70-543, 04510 D.F. (Mexico)

    2012-02-20

    We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with {rho}{proportional_to}r{sup -k}, bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the

  20. Gamma-Ray Burst Dynamics and Afterglow Radiation from Adaptive Mesh Refinement, Special Relativistic Hydrodynamic Simulations

    Science.gov (United States)

    De Colle, Fabio; Granot, Jonathan; López-Cámara, Diego; Ramirez-Ruiz, Enrico

    2012-02-01

    We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with ρvpropr -k , bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the relativistic flow.

  1. Luminosity Correlations for Gamma-Ray Bursts and Implications for Their Prompt and Afterglow Emission Mechanisms

    Science.gov (United States)

    Sultana, J.; Kazanas, D.; Fukumura, K

    2013-01-01

    We present the relation between the (z- and k-corrected) spectral lags, tau, for the standard Swift energy bands 50 - 100 keV and 100 - 200 keV and the peak isotropic luminosity, L(sub iso) (a relation reported first by Norris et al.), for a subset of 12 long Swift GRBs taken from a recent study of this relation by Ukwatta et al. The chosen GRBs are also a subset of the Dainotti et al. sample, a set of Swift GRBs of known redshift, employed in establishing a relation between the (GRB frame) luminosity, L(sub x), of the shallow (or constant) flux portion of the typical XRT GRB-afterglow light curve and the (GRB frame) time of transition to the normal decay rate, T(sub brk). We also present the L(sub x) - T(sub brk) relation using only the bursts common in the two samples. The two relations exhibit a significant degree of correlation (rho = -0.65 for the L(sub iso) - tao and rho = -0.88 for the L(sub x) -T(sub brk) relation) and have surprisingly similar best-fit power law indices (-1.19 +/- 0.17 for L(sub iso) - tau and -1.10 +/- 0.03 for L(sub x) - T(sub brk)). Even more surprisingly, we noted that although tau and T(sub brk) represent different GRB time variables, it appears that the first relation (L(sub iso) - tao) extrapolates into the second one for timescales tau similar to T(sub brk) This fact suggests that these two relations have a common origin, which we conjecture to be kinematic. This relation adds to the recently discovered relations between properties of the prompt and afterglow GRB phases, indicating a much more intimate relation between these two phases than hitherto considered.

  2. ON THE LATE-TIME SPECTRAL SOFTENING FOUND IN X-RAY AFTERGLOWS OF GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuan-Zhu; Liang, En-Wei; Lu, Zu-Jia [GXU-NAOC Center for Astrophysics and Space Sciences, Department of Physics, Guangxi University, Nanning 530004 (China); Zhao, Yinan [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Shao, Lang, E-mail: lshao@hebtu.edu.cn [Department of Space Sciences and Astronomy, Hebei Normal University, Shijiazhuang 050024 (China)

    2016-02-20

    Strong spectral softening has been revealed in the late X-ray afterglows of some gamma-ray bursts (GRBs). The scenario of X-ray scattering around the circumburst dusty medium has been supported by previous works due to its overall successful prediction of both the temporal and spectral evolution of some X-ray afterglows. To further investigate the observed feature of spectral softening we now systematically search the X-ray afterglows detected by the X-ray telescope aboard Swift and collect 12 GRBs with significant late-time spectral softening. We find that dust scattering could be the dominant radiative mechanism for these X-ray afterglows regarding their temporal and spectral features. For some well-observed bursts with high-quality data, the time-resolved spectra could be well-produced within the scattering scenario by taking into account the X-ray absorption from the circumburst medium. We also find that during spectral softening the power-law index in the high-energy end of the spectra does not vary much. The spectral softening is mainly manifested by the spectral peak energy continually moving to the soft end.

  3. Spectrophotometric analysis of gamma-ray burst afterglow extinction curves with X-Shooter

    Science.gov (United States)

    Japelj, J.; Covino, S.; Gomboc, A.; Vergani, S. D.; Goldoni, P.; Selsing, J.; Cano, Z.; D'Elia, V.; Flores, H.; Fynbo, J. P. U.; Hammer, F.; Hjorth, J.; Jakobsson, P.; Kaper, L.; Kopač, D.; Krühler, T.; Melandri, A.; Piranomonte, S.; Sánchez-Ramírez, R.; Tagliaferri, G.; Tanvir, N. R.; de Ugarte Postigo, A.; Watson, D.; Wijers, R. A. M. J.

    2015-07-01

    We use gamma-ray burst (GRB) afterglow spectra observed with the VLT/X-Shooter spectrograph to measure rest-frame extinction in GRB lines-of-sight by modelling the broadband near-infrared (NIR) to X-ray afterglow spectral energy distributions (SEDs). Our sample consists of nine Swift GRBs, of which eight belong to the long-duration and one to the short-duration class. Dust is modelled using the average extinction curves of the Milky Way and the two Magellanic Clouds. We derive the rest-frame extinction of the entire sample, which fall in the range 0 ≲ AV ≲ 1.2. Moreover, the SMC extinction curve is the preferred extinction curve template for the majority of our sample, a result that is in agreement with those commonly observed in GRB lines of sights. In one analysed case (GRB 120119A), the common extinction curve templates fail to reproduce the observed extinction. To illustrate the advantage of using the high-quality, X-Shooter afterglow SEDs over the photometric SEDs, we repeat the modelling using the broadband SEDs with the NIR-to-UV photometric measurements instead of the spectra. The main result is that the spectroscopic data, thanks to a combination of excellent resolution and coverage of the blue part of the SED, are more successful in constraining extinction curves and therefore dust properties in GRB hosts with respect to photometric measurements. In all cases but one the extinction curve of one template is preferred over the others. We show that themodelled values of the extinction AV and the spectral slope, obtained through spectroscopic and photometric SED analysis, can differ significantly for individual events, though no apparent trend in the differences is observed. Finally we stress that, regardless of the resolution of the optical-to-NIR data, the SED modelling gives reliable results only when the fit is performed on a SED covering a broader spectral region (in our case extending to X-rays). Based on observations collected at the European

  4. VLT identification of the optical afterglow of the gamma-ray burst GRB 000131 at z=4.50

    DEFF Research Database (Denmark)

    Andersen, M.I.; Hjorth, J.; Pedersen, H.

    2000-01-01

    Angstrom. This places GRB 000131 at a redshift of 4.500 +/- 0.015. The inferred isotropic energy release in gamma rays alone was similar to 10(54) erg (depending on the assumed cosmology). The rapid power-law decay of the afterglow (index alpha = 2.25, similar to bursts with a prior break in the lightcurve......We report the discovery of the gamma-ray burst GRB 000131 and its optical afterglow. The optical identification was made with the VLT 84 hours after the burst following a BATSE detection and an Inter Planetary Network localization. GRB 000131 was a bright, long-duration GRB, with an apparent...... precursor signal 62 s prior to trigger. The afterglow was detected in ESO VLT, NTT, and DK1.54m follow-up observations. Broad-band and spectroscopic observations of the spectral energy distribution reveals a sharp break at optical wavelengths which is interpreted as a Ly alpha absorption edge at 6700...

  5. A New Model for Iron Emission Lines and Re-Burst in GRB X-Ray Afterglows

    OpenAIRE

    Gao, W. H.; Wei, D. M.

    2005-01-01

    Recently iron emission features have been observed in several X-ray afterglows of GRBs. It is found that the energy obtained from the illuminating continuum which produces the emission lines is much higher than that of the main burst.The observation of SN-GRB association indicates a fallback disk should be formed after the supernovae explosion. The disk is optically thick and advection-dominated and dense. We suggest that the delayed injection energy after the initial main burst, much higher ...

  6. Prompt and Afterglow Emission Properties of Gamma-Ray Bursts with Spectroscopically Identified Supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Yuki; Ramirez-Ruiz, E.; Granot, J.; Kouveliotou, C.; Woosley, S.E.; Patel, S.K.; Rol, E.; Zand, J.J.M.in' t; a; Wijers, R.A.M.J.; Strom, R.; /USRA, Huntsville

    2006-07-12

    We present a detailed spectral analysis of the prompt and afterglow emission of four nearby long-soft gamma-ray bursts (GRBs 980425, 030329, 031203, and 060218) that were spectroscopically found to be associated with type Ic supernovae, and compare them to the general GRB population. For each event, we investigate the spectral and luminosity evolution, and estimate the total energy budget based upon broadband observations. The observational inventory for these events has become rich enough to allow estimates of their energy content in relativistic and sub-relativistic form. The result is a global portrait of the effects of the physical processes responsible for producing long-soft GRBs. In particular, we find that the values of the energy released in mildly relativistic outflows appears to have a significantly smaller scatter than those found in highly relativistic ejecta. This is consistent with a picture in which the energy released inside the progenitor star is roughly standard, while the fraction of that energy that ends up in highly relativistic ejecta outside the star can vary dramatically between different events.

  7. 'Jet breaks' and 'missing breaks' in the X-Ray afterglow of Gamma Ray Bursts

    CERN Document Server

    Dado, Shlomo; De Rújula, Alvaro

    2008-01-01

    The X-ray afterglows (AGs) of Gamma-Ray Bursts (GRBs) and X-Ray Flashes (XRFs) have, after the fast decline phase of their prompt emission, a temporal behaviour varying between two extremes. A large fraction of these AGs has a 'canonical' light curve which, after an initial shallow-decay 'plateau' phase, 'breaks smoothly' into a fast power-law decline. Very energetic GRBs, contrariwise, appear not to have a 'break', their AG declines like a power-law from the start of the observations. Breaks and 'missing breaks' are intimately related to the geometry and deceleration of the jets responsible for GRBs. In the frame of the 'cannonball' (CB) model of GRBs and XRFs, we analyze the cited extreme behaviours (canonical and pure power-law) and intermediate cases spanning the observed range of X-ray AG shapes. We show that the entire panoply of X-ray light-curve shapes --measured with Swift and other satellites-- are as anticipated, on very limpid grounds, by the CB model. We test the expected correlations between the...

  8. Viewing angle and environment effects in gamma-ray bursts: sources of afterglow diversity

    NARCIS (Netherlands)

    Meszaros, P.; Rees, M.J.; Wijers, R.A.M.J.

    1998-01-01

    We discuss the afterglows from the evolution of both spherical and anisotropic fireballs decelerating in an inhomogeneous external medium. We consider both the radiative and adiabatic evolution regimes and analyze the physical conditions under which these regimes can be used. Afterglows may be

  9. A Comprehensive Study of Gamma-Ray Burst Optical Emission. III. Brightness Distributions and Luminosity Functions of Optical Afterglows

    Science.gov (United States)

    Wang, Xiang-Gao; Liang, En-Wei; Li, Liang; Lu, Rui-Jing; Wei, Jian-Yan; Zhang, Bing

    2013-09-01

    We continue our systematic statistical study on optical afterglow data of gamma-ray bursts (GRBs). We present the apparent magnitude distributions of early optical afterglows at different epochs (t = 102 s, 103 s, and 1 hr) for the optical light curves of a sample of 93 GRBs (the global sample) and for sub-samples with an afterglow onset bump or a shallow decay segment. For the onset sample and shallow decay sample we also present the brightness distribution at the peak time t p and break time t b, respectively. All the distributions can be fit with Gaussian functions. We further perform Monte Carlo simulations to infer the luminosity function of GRB optical emission at the rest-frame time 103 s, t p, and t b. Our results show that a single power-law luminosity function is adequate to model the data with indices -1.40 ± 0.10, -1.06 ± 0.16, and -1.54 ± 0.22. Based on the derived rest-frame 103 s luminosity function, we generate the intrinsic distribution of the R-band apparent magnitude M R at the observed time 103 s post-trigger, which peaks at M R = 22.5 mag. The fraction of GRBs whose R-band magnitude is fainter than 22 mag and 25 mag and at the observer time 103 s are ~63% and ~25%, respectively. The detection probabilities of the optical afterglows with ground-based robotic telescopes and the UV-Optical Telescope on board Swift are roughly consistent with that inferred from this intrinsic M R distribution, indicating that the variations of the dark GRB fraction among the samples with different telescopes may be due to the observational selection effect, although the existence of an intrinsically dark GRB population cannot be ruled out.

  10. Exploring the Behaviour of Long Gamma-Ray Bursts with Intrinsic Afterglow Correlations: log L200s−α>200s

    Directory of Open Access Journals (Sweden)

    Samantha R. Oates

    2017-01-01

    Full Text Available In these proceedings, we summarise the exploration so far of the relationship between the afterglow luminosity (measured at rest frame 200s; log L 200 s and average afterglow decay rate (measured from rest frame 200s onwards, α > 200 s of long duration Gamma-ray Bursts (GRBs, first reported in the optical/UV light curves of GRB afterglows. We show that this correlation is also present in the X-ray afterglows of GRBs as observed by Swift-XRT. We explore how the parameters of the correlation observed in both the X-ray and optical/UV light curves relate to each other and the prompt emission phase and whether these correlations are consistent with predictions of the standard afterglow model. We find that the observed correlations are consistent with a common underlying physical mechanism producing GRBs and their afterglows regardless of the detailed temporal behaviour. However, a basic afterglow model has difficulty explaining all the observed correlations. This leads us to briefly discuss alternative more complex models.

  11. Gamma-Ray Burst Afterglows as Probes of Environment and Blast Wave Physics. I. Absorption by Host-Galaxy Gas and Dust

    NARCIS (Netherlands)

    Starling, R.L.C.; Wijers, R.A.M.J.; Wiersema, K.; Rol, E.; Curran, P.A.; Kouveliotou, C.; van der Horst, A.J.; Heemskerk, M.H.M.

    2007-01-01

    We use a new approach to obtain limits on the absorbing columns toward an initial sample of 10 long gamma-ray bursts observed with BeppoSAX and selected on the basis of their good optical and near-infrared (NIR) coverage, from simultaneous fits to NIR, optical, and X-ray afterglow data, in count

  12. Perspectives of observing the color indices of optical afterglows of gamma-ray bursts with ESA Gaia

    Science.gov (United States)

    Šimon, Vojtěch; Hudec, René; Pizzichini, Graziella

    2017-10-01

    We propose a strategy for detecting and analyzing optical afterglows (OAs) of long gamma-ray bursts (GRBs) without the need to obtain their light curves. This approach is useful for the Gaia satellite, which provides sampled optical ultra-low-dispersion spectroscopic observations of the sky. For this purpose, we show that most OAs of long GRBs display specific values of some of their color indices, representing synchrotron emission of the jet. They are stable in time during the event. These indices, which can be determined from the spectra, are very similar for the ensemble of OAs with redshift z Gaia instruments also gives us a hope to search for the so-called orphan afterglows, which, according to some authors, can be considerably more numerous than OAs of the observed GRBs. We also show how to resolve OAs from other transients in the Gaia data. The color indices and the properties of the quiescent sources (host galaxies of OAs detectable later by the large ground-based telescopes at the co-ordinates of the OA determined by Gaia) would tell us which one, among transients detected by Gaia, is a GRB OA.

  13. Detection of the optical afterglow of GRB 000630: Implications for dark bursts

    DEFF Research Database (Denmark)

    Fynbo, J.U.; Jensen, B.L.; Gorosabel, J.

    2001-01-01

    We present the discovery of the optical transient of the long-duration gamma-ray burst GRB 000630. The optical transient was detected with the Nordic Optical Telescope 21.1 hours after the burst. At the time of discovery the magnitude of the transient was R = 23.04 +/- 0.08. The transient display...

  14. Constraints on an Optical Afterglow and on Supernova Light Following the Short Burst GRB 050813

    NARCIS (Netherlands)

    Ferrero, P.; Sanchez, S.F.; Kann, D.A.; Klose, S.; Greiner, J.; Gorosabel, J.; Hartmann, D.H.; Henden, A.A.; Møller, P.; Palazzi, E.; Rau, A.; Stecklum, B.; Castro-Tirado, A.J.; Fynbo, J.P.U.; Hjorth, J.; Jakobsson, P.; Kouveliotou, C.; Masetti, N.; Pian, E.; Tanvir, N.R.; Wijers, R.A.M.J.

    2007-01-01

    We report early follow-up observations of the error box of the short burst GRB 050813 using the telescopes at Calar Alto and Observatorio Sierra Nevada, followed by deep VLT FORS2 I-band observations obtained under very good seeing conditions 5.7 and 11.7 days after the event. Neither a fading

  15. Classification, Follow-Up, and Analysis of Gamma-Ray Bursts and their Early-Time Near-Infrared/Optical Afterglows

    Science.gov (United States)

    Morgan, Adam Nolan

    In the study of astronomical transients, deriving knowledge from discovery is a multifaceted process that includes real-time classification to identify new events of interest, deep, multi-wavelength follow-up of individual events, and the global analysis of multi-event catalogs. Here we present a body of work encompassing each of these steps as applied to the study of gamma-ray bursts (GRBs). First, we present our work on utilizing machine-learning algorithms on early-time metrics from the Swift satellite to inform the resource allocation of follow-up telescopes in order to optimize time spent on high-redshift GRB candidates. Next, we show broadband observations and analysis of the early-time afterglow of GRB 120119A, utilizing data obtained with a dozen telescope facilities both in space and on the ground. This event exhibits extreme red-to-blue color change in the first few minutes after the trigger at levels unseen in prior afterglows, and our model fits of this phenomenon reveal the best support yet for the direct detection of dust destruction in the local environment of a GRB. Finally, we present results from the PAIRITEL early-time near-infrared (NIR) afterglow catalog. The 1.3 meter PAIRITEL has autonomously observed 14 GRBs in under 3 minutes after the burst, yielding a homogenous sample of early-time JHKs light curves. Our analysis of these events provides constraints on the early-time NIR GRB afterglow luminosity function and gives insight into the importance of dust extinction in the suppression of some optical afterglows.

  16. The afterglow of the short/intermediate-duration gamma-ray burst GRB 000301C: A jet at z=2.04

    DEFF Research Database (Denmark)

    Jensen, B.L.; Fynbo, J.U.; Gorosabel, J.

    2001-01-01

    was subsequently discovered with the Nordic Optical Telescope (NOT) about 42 h after the burst. The GRB lies at the border between the long-soft and the short-hard classes of GRBs. If GRB 000301C belongs to the latter class, this would be the first detection of an afterglow to a short-hard burst. We present UBRI...... the burst. The optical light curve is consistent with bring achromatic from 2 to 11 days after the burst and exhibits a break. A broken power-law fit yields a shallow pre-break decay power-law slope of alpha (1) = -0.72 +/- 0.06, a break time of t(break) = 4.39 +/- 0.26 days after the burst, and a post.......0404 +/- 0.0008. We find evidence for a curved shape of the spectral energy distribution of the observed afterglow. It is best fitted with a power-law spectral distribution with index beta similar to -0.7 reddened by an SMC-like extinction law with A(v) similar to 0.1 mag. Based on the Ly alpha absorption...

  17. Gamma-ray Bursts and their Afterglows in the Whole Electromagnetic Domain

    Science.gov (United States)

    Castro-Tirado, Alberto J.

    2007-08-01

    Since their discovery in 1967, GRBs have been puzzling to astrophysicists. With the advent of a new generation of X--ray satellites in the late 90's, it was possible to carry out deep multi-wavelength observations of the counterparts associated with the long GRBs class just within a few hours of occurrence, thanks to the observation of the fading X-ray emission that follows the more energetic gamma-ray photons once the GRB event has ended. The fact that this emission (the afterglow) extends at longer wavelengths, led to the discovery optical/IR/radio counterparts in the last decade, greatly improving our understanding of these sources. The launch of the Swift satellite in 2004 allows to detect about 100 events/yr, with a mean redshift of 2.7 for the long duration GRB class. The central engines that power these extraordinary events are thought to be the collapse of massive stars whereas the merging of compact objects seems to support the few detections of short GRBs detected so far. Searches for emission at VHE and UHE have been unsuccessful till now.

  18. THERMAL EMISSION IN THE EARLY X-RAY AFTERGLOWS OF GAMMA-RAY BURSTS: FOLLOWING THE PROMPT PHASE TO LATE TIMES

    Energy Technology Data Exchange (ETDEWEB)

    Friis, Mette [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik (Iceland); Watson, Darach, E-mail: mef4@hi.is, E-mail: darach@dark-cosmology.dk [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark)

    2013-07-01

    Thermal radiation, peaking in soft X-rays, has now been detected in a handful of gamma-ray burst (GRB) afterglows and has to date been interpreted as shock break-out of the GRB's progenitor star. We present a search for thermal emission in the early X-ray afterglows of a sample of Swift bursts selected by their brightness in X-rays at early times. We identify a clear thermal component in eight GRBs and track the evolution. We show that at least some of the emission must come from highly relativistic material since two show an apparent super-luminal expansion of the thermal component. Furthermore, we determine very large luminosities and high temperatures for many of the components-too high to originate in a supernova shock break-out. Instead, we suggest that the component may be modeled as late photospheric emission from the jet, linking it to the apparently thermal component observed in the prompt emission of some GRBs at gamma-ray and hard X-ray energies. By comparing the parameters from the prompt emission and the early afterglow emission, we find that the results are compatible with the interpretation that we are observing the prompt quasi-thermal emission component in soft X-rays at a later point in its evolution.

  19. iPTF14yb: The First Discovery of a Gamma-Ray Burst Afterglow Independent of a High-Energy Trigger

    Science.gov (United States)

    Cenko, S. Bradley; Urban, Alex L.; Perley, Daniel A.; Horesh, Assaf; Corsi, Alessandra; Fox, Derek B.; Cao, Yi; Kasliwal, Mansi M.; Lien, Amy; Arcavi, Iair; hide

    2015-01-01

    We report here the discovery by the Intermediate Palomar Transient Factory (iPTF) of iPTF14yb, a luminous (Mr >> -27.8 mag), cosmological (redshift 1.9733), rapidly fading optical transient. We demonstrate, based on probabilistic arguments and a comparison with the broader population, that iPTF14yb is the optical afterglow of the long-duration gamma-ray burst GRB 140226A. This marks the first unambiguous discovery of a GRB afterglow prior to (and thus entirely independent of) an associated high-energy trigger. We estimate the rate of iPTF14yb-like sources (i.e., cosmologically distant relativistic explosions) based on iPTF observations, inferring an all-sky value of Rrel = 610/yr (68% confidence interval of 110-2000/yr). Our derived rate is consistent (within the large uncertainty) with the all-sky rate of on-axis GRBs derived by the Swift satellite. Finally, we briefly discuss the implications of the nondetection to date of bona fide "orphan" afterglows (i.e., those lacking detectable high-energy emission) on GRB beaming and the degree of baryon loading in these relativistic jets.

  20. GRB 091208B: FIRST DETECTION OF THE OPTICAL POLARIZATION IN EARLY FORWARD SHOCK EMISSION OF A GAMMA-RAY BURST AFTERGLOW

    Energy Technology Data Exchange (ETDEWEB)

    Uehara, T.; Chiyonobu, S.; Fukazawa, Y.; Ikejiri, Y.; Itoh, R.; Komatsu, T.; Miyamoto, H.; Nagae, O.; Sakimoto, K.; Sasada, M.; Tanaka, H.; Yamanaka, M. [Department of Physical Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526 (Japan); Toma, K. [Department of Earth and Space Science, Osaka University, Toyonaka 560-0043 (Japan); Kawabata, K. S.; Mizuno, T.; Ohsugi, T.; Uemura, M. [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Inoue, T.; Yamashita, T. [Department of Physics and Mathematics, Aoyama Gakuin University, Fuchinobe, Chuou-ku, Sagamihara 252-5258 (Japan); Nakaya, H., E-mail: uehara@hep01.hepl.hiroshima-u.ac.jp [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); and others

    2012-06-10

    We report that the optical polarization in the afterglow of GRB 091208B is measured at t = 149-706 s after the burst trigger, and the polarization degree is P = 10.4( {+-} 2.5%. The optical light curve at this time shows a power-law decay with index -0.75 {+-} 0.02, which is interpreted as the forward shock synchrotron emission, and thus this is the first detection of the early-time optical polarization in the forward shock (rather than that in the reverse shock reported by Steele et al.). This detection disfavors the afterglow model in which the magnetic fields in the emission region are random on the plasma skin depth scales, such as those amplified by the plasma instabilities, e.g., Weibel instability. We suggest that the fields are amplified by the magnetohydrodynamic instabilities, which would be tested by future observations of the temporal changes of the polarization degrees and angles for other bursts.

  1. Time Resolved Spectroscopy of SGR J1550-5418 Bursts Detected with Fermi/Gamma-Ray Burst Monitor

    NARCIS (Netherlands)

    Younes, G.; Kouveliotou, C.; van der Horst, A.J.; Baring, M.G.; Granot, J.; Watts, A.L.; Bhat, P.N.; Collazzi, A.; Gehrels, N.; Gorgone, N.; Göğüş, E.; Gruber, D.; Grunblatt, S.; Huppenkothen, D.; Kaneko, Y.; von Kienlin, A.; van der Klis, M.; Lin, L.; Mcenery, J.; van Putten, T.; Wijers, R.A.M.J.

    2014-01-01

    We report on a time-resolved spectroscopy of the 63 brightest bursts of SGR J1550-5418, detected with the Fermi/Gamma-ray Burst Monitor during its 2008-2009 intense bursting episode. We performed spectral analysis down to 4 ms timescales to characterize the spectral evolution of the bursts. Using a

  2. A burst in a wind bubble and the impact on baryonic ejecta: high-energy gamma-ray flashes and afterglows from fast radio bursts and pulsar-driven supernova remnants

    Science.gov (United States)

    Murase, Kohta; Kashiyama, Kazumi; Mészáros, Peter

    2016-09-01

    Tenuous wind bubbles, which are formed by the spin-down activity of central compact remnants, are relevant in some models of fast radio bursts (FRBs) and superluminous supernovae (SNe). We study their high-energy signatures, focusing on the role of pair-enriched bubbles produced by young magnetars, rapidly rotating neutron stars, and magnetized white dwarfs. (i) First, we study the nebular properties and the conditions allowing for escape of high-energy gamma-rays and radio waves, showing that their escape is possible for nebulae with ages of ≳10-100 yr. In the rapidly rotating neutron star scenario, we find that radio emission from the quasi-steady nebula itself may be bright enough to be detected especially at sub-mm frequencies, which is relevant as a possible counterpart of pulsar-driven SNe and FRBs. (ii) Secondly, we consider the fate of bursting emission in the nebulae. We suggest that an impulsive burst may lead to a highly relativistic flow, which would interact with the nebula. If the shocked nebula is still relativistic, pre-existing non-thermal particles in the nebula can be significantly boosted by the forward shock, leading to short-duration (maybe millisecond or longer) high-energy gamma-ray flashes. Possible dissipation at the reverse shock may also lead to gamma-ray emission. (iii) After such flares, interactions with the baryonic ejecta may lead to afterglow emission with a duration of days to weeks. In the magnetar scenario, this burst-in-bubble model leads to the expectation that nearby (≲10-100 Mpc) high-energy gamma-ray flashes may be detected by the High-Altitude Water Cherenkov Observatory and the Cherenkov Telescope Array, and the subsequent afterglow emission may be seen by radio telescopes such as the Very Large Array. (iv) Finally, we discuss several implications specific to FRBs, including constraints on the emission regions and limits on soft gamma-ray counterparts.

  3. Temporal Evolution of the Gamma-ray Burst Afterglow Spectrum for an Observer: GeV–TeV Synchrotron Self-Compton Light Curve

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Takuma; Fujita, Yutaka [Department of Earth and Space Science, Osaka University, Osaka, 560-0043 (Japan); To, Sho; Asano, Katsuaki, E-mail: fukushima@vega.ess.sci.osaka-u.ac.jp, E-mail: fujita@vega.ess.sci.osaka-u.ac.jp, E-mail: tosho@icrr.u-tokyo.ac.jp, E-mail: asanok@icrr.u-tokyo.ac.jp [Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582 (Japan)

    2017-08-01

    We numerically simulate the gamma-ray burst (GRB) afterglow emission with a one-zone time-dependent code. The temporal evolutions of the decelerating shocked shell and energy distributions of electrons and photons are consistently calculated. The photon spectrum and light curves for an observer are obtained taking into account the relativistic propagation of the shocked shell and the curvature of the emission surface. We find that the onset time of the afterglow is significantly earlier than the previous analytical estimate. The analytical formulae of the shock propagation and light curve for the radiative case are also different from our results. Our results show that even if the emission mechanism is switching from synchrotron to synchrotron self-Compton, the gamma-ray light curves can be a smooth power law, which agrees with the observed light curve and the late detection of a 32 GeV photon in GRB 130427A. The uncertainty of the model parameters obtained with the analytical formula is discussed, especially in connection with the closure relation between spectral index and decay index.

  4. Temporal Evolution of the Gamma-ray Burst Afterglow Spectrum for an Observer: GeV-TeV Synchrotron Self-Compton Light Curve

    Science.gov (United States)

    Fukushima, Takuma; To, Sho; Asano, Katsuaki; Fujita, Yutaka

    2017-08-01

    We numerically simulate the gamma-ray burst (GRB) afterglow emission with a one-zone time-dependent code. The temporal evolutions of the decelerating shocked shell and energy distributions of electrons and photons are consistently calculated. The photon spectrum and light curves for an observer are obtained taking into account the relativistic propagation of the shocked shell and the curvature of the emission surface. We find that the onset time of the afterglow is significantly earlier than the previous analytical estimate. The analytical formulae of the shock propagation and light curve for the radiative case are also different from our results. Our results show that even if the emission mechanism is switching from synchrotron to synchrotron self-Compton, the gamma-ray light curves can be a smooth power law, which agrees with the observed light curve and the late detection of a 32 GeV photon in GRB 130427A. The uncertainty of the model parameters obtained with the analytical formula is discussed, especially in connection with the closure relation between spectral index and decay index.

  5. Afterglows and Kilonovae Associated with Nearby Low-luminosity Short-duration Gamma-Ray Bursts: Application to GW170817/GRB 170817A

    Science.gov (United States)

    Xiao, Di; Liu, Liang-Duan; Dai, Zi-Gao; Wu, Xue-Feng

    2017-12-01

    Very recently, the gravitational-wave (GW) event GW170817 was discovered to be associated with the short gamma-ray burst (GRB) 170817A. Multi-wavelength follow-up observations were carried out, and X-ray, optical, and radio counterparts to GW170817 were detected. The observations undoubtedly indicate that GRB 170817A originates from a binary neutron star merger. However, the GRB falls into the low-luminosity class that could have a higher statistical occurrence rate and detection probability than the normal (high-luminosity) class. This implies the possibility that GRB 170817A is intrinsically powerful, but we are off-axis and only observe its side emission. In this Letter, we provide a timely modeling of the multi-wavelength afterglow emission from this GRB and the associated kilonova signal from the merger ejecta, under the assumption of a structured jet, a two-component jet, and an intrinsically less-energetic quasi-isotropic fireball, respectively. Comparing the afterglow properties with the multi-wavelength follow-up observations, we can distinguish between these three models. Furthermore, a few model parameters (e.g., the ejecta mass and velocity) can be constrained.

  6. Hyperaccreting Black Hole as Gamma-Ray Burst Central Engine. II. Temporal Evolution of the Central Engine Parameters during the Prompt and Afterglow Phases

    Science.gov (United States)

    Lei, Wei-Hua; Zhang, Bing; Wu, Xue-Feng; Liang, En-Wei

    2017-11-01

    A hyperaccreting stellar-mass black hole (BH) has been proposed as the candidate central engine of gamma-ray bursts (GRBs). The rich observations of GRBs by Fermi and Swift make it possible to constrain the central engine model by comparing the model predictions against data. This paper is dedicated to studying the temporal evolution of the central engine parameters for both the prompt emission and afterglow phases. We consider two jet-launching mechanisms, i.e., ν \\bar{ν } annihilations and the Blandford–Znajek (BZ) process, and obtain analytical solutions to these two models. We then investigate the BH central engine parameters, such as the jet power, the dimensionless entropy η, and the central engine parameter μ 0 = η (1 + σ 0) (where σ 0 is the initial magnetization of the engine) at the base of the jet. The BH may be spun up by accretion or spun down by the BZ process, leaving imprints in the GRB light curves. Usually, a BZ jet is more powerful and is likely responsible for the late-time central engine activities. However, an initially non-spinning BH central engine may first launch a thermal “fireball” via neutrino annihilations, and then launch a Poynting-flux-dominated jet via the BZ process. Multiple flares, giant bumps, and plateaus in GRB afterglows can be produced as the result of late-time accretion onto the BH.

  7. Challenging the Forward Shock Model with the 80 Ms Follow up of the X-ray Afterglow of Gamma-Ray Burst 130427A

    Directory of Open Access Journals (Sweden)

    Massimiliano De Pasquale

    2017-01-01

    Full Text Available GRB 130427A was the most luminous gamma-ray burst detected in the last 30 years. With an isotropic energy output of 8.5 × 10 53 erg and redshift of 0.34, it combined very high energetics with a relative proximity to Earth in an unprecedented way. Sensitive X-ray observatories such as XMM-Newton and Chandra have detected the afterglow of this event for a record-breaking baseline longer than 80 million seconds. The light curve displays a simple power-law over more than three decades in time. In this presentation, we explore the consequences of this result for a few models put forward so far to interpret GRB 130427A, and more in general the implication of this outcome in the context of the standard forward shock model.

  8. Circular polarization in the optical afterglow of GRB 121024A

    DEFF Research Database (Denmark)

    Wiersema, K.; Covino, S.; Toma, K.

    2014-01-01

    Gamma-ray bursts (GRBs) are most probably powered by collimated relativistic outflows (jets) from accreting black holes at cosmological distances. Bright afterglows are produced when the outflow collides with the ambient medium. Afterglow polarization directly probes the magnetic properties...

  9. Gamma-Ray Burst Afterglows as Probes of Environment and Blast Wave Physics. II. The Distribution of rho and Structure of the Circumburst Medium

    Science.gov (United States)

    Starling, R. L. C.; vanderHorst, A. J.; Rol, E.; Wijers, R. A. M. J.; Kouveliotou, C.; Wiersema, K.; Curran, P. A.; Weltervrede, P.

    2008-01-01

    We constrain blast wave parameters and the circumburst media ofa subsample of 10 BeppoSAX gamma-ray bursts (GRBs). For this sample we derive the values of the injected electron energy distribution index, p, and the density structure index of the circumburst medium, k, from simultaneous spectral fits to their X-ray, optical, and NIR afterglow data. The spectral fits have been done in count space and include the effects ofmetallicity, and are compared with the previously reported optical and X-ray temporal behavior. Using the blast wave model and some assumptions which include on-axis viewing and standard jet structure, constant blast wave energy, and no evolution of the microphysical parameters, we find a mean value ofp for the sample as a whole of 9.... oa -0.003.0" 2 a_ statistical analysis of the distribution demonstrates that the p-values in this sample are inconsistent with a single universal value forp at the 3 _ level or greater, which has significant implications for particle acceleration models. This approach provides us with a measured distribution ofcircumburst density structures rather than considering only the cases of k ----0 (homogeneous) and k - 2 (windlike). We find five GRBs for which k can be well constrained, and in four of these cases the circumburst medium is clearly windlike. The fifth source has a value of 0 medium.

  10. Gamma-Ray Burst Afterglows as Probes of Environment and Blastwave Physics II: The Distribution of p and Structure of the Circumburst Medium

    Science.gov (United States)

    Starling, R. L. C.; vanderHorst, A. J.; Rol, E.; Wijers, R. A. M. J.; Kouveliotou, C.; Wiersema, K.; Curran, P. A.; Weltevrede, P.

    2007-01-01

    We constrain blastwave parameters and the circumburst media of a subsample of BeppoSAX Gamma-Ray Bursts. For this sample we derive the values of the injected electron energy distribution index, p, and the density structure index of the circumburst medium, k, from simultaneous spectral fits to their X-ray, optical and nIR afterglow data. The spectral fits have been done in count space and include the effects of metallicity, and are compared with the previously reported optical and X-ray temporal behaviour. Assuming the fireball model, we can find a mean value of p for the sample as a whole of 2.035. A statistical analysis Of the distribution demonstrates that the p values in this sample are inconsistent with a single universal value for p at the 3sigma level or greater. This approach provides us with a measured distribution of circumburst density structures rather than considering only the cases of k = 0 (homogeneous) and k = 2 (wind-like). We find five GRBs for which k can be well constrained, and in four of these cases the circumburst medium is clearly wind-like. The fifth source has a value of 0 less than or equal to k less than or equal to 1, consistent with a homogeneous circumburst medium.

  11. SIMULATIONS OF GAMMA-RAY BURST JETS IN A STRATIFIED EXTERNAL MEDIUM: DYNAMICS, AFTERGLOW LIGHT CURVES, JET BREAKS, AND RADIO CALORIMETRY

    Energy Technology Data Exchange (ETDEWEB)

    De Colle, Fabio; Ramirez-Ruiz, Enrico [TASC, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Granot, Jonathan [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Lopez-Camara, Diego, E-mail: fabio@ucolick.org [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Ap. 70-543, 04510 D.F. (Mexico)

    2012-05-20

    The dynamics of gamma-ray burst (GRB) jets during the afterglow phase is most reliably and accurately modeled using hydrodynamic simulations. All published simulations so far, however, have considered only a uniform external medium, while a stratified external medium is expected around long duration GRB progenitors. Here, we present simulations of the dynamics of GRB jets and the resulting afterglow emission for both uniform and stratified external media with {rho}{sub ext}{proportional_to}r{sup -k} for k = 0, 1, 2. The simulations are performed in two dimensions using the special relativistic version of the Mezcal code. Common to all calculations is the initiation of the GRB jet as a conical wedge of half-opening angle {theta}{sub 0} = 0.2 whose radial profile is taken from the self-similar Blandford-McKee solution. The dynamics for stratified external media (k = 1, 2) are broadly similar to those derived for expansion into a uniform external medium (k = 0). The jet half-opening angle is observed to start increasing logarithmically with time (or radius) once the Lorentz factor {Gamma} drops below {theta}{sup -1}{sub 0}. For larger k values, however, the lateral expansion is faster at early times (when {Gamma} > {theta}{sup -1}{sub 0}) and slower at late times with the jet expansion becoming Newtonian and slowly approaching spherical symmetry over progressively longer timescales. We find that, contrary to analytic expectations, there is a reasonably sharp jet break in the light curve for k = 2 (a wind-like external medium), although the shape of the break is affected more by the viewing angle (for {theta}{sub obs} {<=} {theta}{sub 0}) than by the slope of the external density profile (for 0 {<=} k {<=} 2). Steeper density profiles (i.e., increasing k values) are found to produce more gradual jet breaks while larger viewing angles cause smoother and later appearing jet breaks. The counterjet becomes visible as it becomes sub-relativistic, and for k = 0 this results

  12. Simulations of Gamma-Ray Burst Jets in a Stratified External Medium: Dynamics, Afterglow Light Curves, Jet Breaks, and Radio Calorimetry

    Science.gov (United States)

    De Colle, Fabio; Ramirez-Ruiz, Enrico; Granot, Jonathan; Lopez-Camara, Diego

    2012-05-01

    The dynamics of gamma-ray burst (GRB) jets during the afterglow phase is most reliably and accurately modeled using hydrodynamic simulations. All published simulations so far, however, have considered only a uniform external medium, while a stratified external medium is expected around long duration GRB progenitors. Here, we present simulations of the dynamics of GRB jets and the resulting afterglow emission for both uniform and stratified external media with ρextvpropr -k for k = 0, 1, 2. The simulations are performed in two dimensions using the special relativistic version of the Mezcal code. Common to all calculations is the initiation of the GRB jet as a conical wedge of half-opening angle θ0 = 0.2 whose radial profile is taken from the self-similar Blandford-McKee solution. The dynamics for stratified external media (k = 1, 2) are broadly similar to those derived for expansion into a uniform external medium (k = 0). The jet half-opening angle is observed to start increasing logarithmically with time (or radius) once the Lorentz factor Γ drops below θ-1 0. For larger k values, however, the lateral expansion is faster at early times (when Γ > θ-1 0) and slower at late times with the jet expansion becoming Newtonian and slowly approaching spherical symmetry over progressively longer timescales. We find that, contrary to analytic expectations, there is a reasonably sharp jet break in the light curve for k = 2 (a wind-like external medium), although the shape of the break is affected more by the viewing angle (for θobs <= θ0) than by the slope of the external density profile (for 0 <= k <= 2). Steeper density profiles (i.e., increasing k values) are found to produce more gradual jet breaks while larger viewing angles cause smoother and later appearing jet breaks. The counterjet becomes visible as it becomes sub-relativistic, and for k = 0 this results in a clear bump-like feature in the light curve. However, for larger k values the jet decelerates more

  13. GLAST Prospects for Swift-Era Afterglows

    Energy Technology Data Exchange (ETDEWEB)

    Gou, L.J.; /Penn State U., Astron. Astrophys.; Meszaros, P.; /Penn State U.

    2011-11-23

    We calculate the GeV spectra of gamma-ray burst afterglows produced by inverse Compton scattering of these objects sub-MeV emission. We improve on earlier treatments by using refined afterglow parameters and new model developments motivated by recent Swift observations. We present time-dependent GeV spectra for standard, constant-parameter models, as well as for models with energy injection and with time-varying parameters, for a range of burst parameters. We evaluate the limiting redshift to which such afterglows can be detected by the GLAST Large Area Telescope, as well as by AGILE.

  14. Short GRB afterglows observed with GROND

    DEFF Research Database (Denmark)

    Nicuesa Guelbenzu, A.; Klose, S.; Rossi, A.

    2013-01-01

    cases: GRBs 090305, 090426, 090510, 090927, and 100117A. Three of the aforementioned six bursts with optical light curves show a break: GRBs 090426 and 090510 as well as GRB 090305. For GRB 090927, no break is seen in the optical/X-ray light curve until about 150 ks/600 ks after the burst. A decay slope...... of short bursts. In three cases, GROND was on target within less than 10 min after the trigger, leading to the discovery of the afterglow of GRB 081226A and its faint underlying host galaxy. In addition, GROND was able to image the optical afterglow and follow the light curve evolution in five further...

  15. Physics of the GRB 030328 afterglow and its environment

    NARCIS (Netherlands)

    Maiorano, E.; Masetti, N.; Palazzi, E.; Savaglio, S.; Rol, E.; Vreeswijk, P.M.; Pian, E.; Price, P.A.; Peterson, B.A.; Jelínek, M.; Amati, L.; Andersen, M.I.; Castro-Tirado, A.J.; Castro Cerón, J.M.; de Ugarte Postigo, A.; Frontera, F.; Fruchter, A.S.; Fynbo, J.P.U.; Gorosabel, J.; Henden, A.A.; Hjorth, J.; Jensen, B.L.; Klose, S.; Kouveliotou, C.; Masi, G.; Møller, P.; Nicastro, L.; Ofek, E.O.; Pandey, S.B.; Rhoads, J.E.; Tanvir, N.R.; Wijers, R.A.M.J.; van den Heuvel, E.P.J.

    2006-01-01

    Aims.To investigate the physical nature of the afterglow emission. We report on the photometric, spectroscopic and polarimetric observations of the optical afterglow of Gamma-Ray Burst (GRB) 030328 detected by HETE-2. Methods.Photometric, spectroscopic and polarimetric monitoring of the optical

  16. Imaging spectroscopy of solar radio burst fine structures.

    Science.gov (United States)

    Kontar, E P; Yu, S; Kuznetsov, A A; Emslie, A G; Alcock, B; Jeffrey, N L S; Melnik, V N; Bian, N H; Subramanian, P

    2017-11-15

    Solar radio observations provide a unique diagnostic of the outer solar atmosphere. However, the inhomogeneous turbulent corona strongly affects the propagation of the emitted radio waves, so decoupling the intrinsic properties of the emitting source from the effects of radio wave propagation has long been a major challenge in solar physics. Here we report quantitative spatial and frequency characterization of solar radio burst fine structures observed with the Low Frequency Array, an instrument with high-time resolution that also permits imaging at scales much shorter than those corresponding to radio wave propagation in the corona. The observations demonstrate that radio wave propagation effects, and not the properties of the intrinsic emission source, dominate the observed spatial characteristics of radio burst images. These results permit more accurate estimates of source brightness temperatures, and open opportunities for quantitative study of the mechanisms that create the turbulent coronal medium through which the emitted radiation propagates.

  17. THE NEEDLE IN THE 100 deg{sup 2} HAYSTACK: UNCOVERING AFTERGLOWS OF FERMI GRBs WITH THE PALOMAR TRANSIENT FACTORY

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Leo P. [LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Kasliwal, Mansi M. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena CA 91101 (United States); Cenko, S. Bradley; Cucchiara, Antonino; Gehrels, Neil [Astrophysics Science Division, NASA Goddard Space Flight Center, Code 661, Greenbelt, MD 20771 (United States); Perley, Daniel A.; Cao, Yi [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Anderson, Gemma E.; Fender, Rob P. [Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Anupama, G. C. [Indian Institute of Astrophysics, Koramangala, Bangalore 560 034 (India); Arcavi, Iair [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Bhalerao, Varun [Inter-University Centre for Astronomy and Astrophysics (IUCAA), Post Bag 4, Ganeshkhind, Pune 411007 (India); Bue, Brian D. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Connaughton, Valerie [CSPAR and Physics Department, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Corsi, Alessandra [Texas Tech University, Physics Department, Lubbock, TX 79409-1051 (United States); Fox, Derek B. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Goldstein, Adam [Astrophysics Office, ZP12, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Gorosabel, J. [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, E-18008, Granada (Spain); Horesh, Assaf, E-mail: leo.p.singer@nasa.gov [Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); and others

    2015-06-10

    The Fermi Gamma-ray Space Telescope has greatly expanded the number and energy window of observations of gamma-ray bursts (GRBs). However, the coarse localizations of tens to a hundred square degrees provided by the Fermi GRB Monitor instrument have posed a formidable obstacle to locating the bursts’ host galaxies, measuring their redshifts, and tracking their panchromatic afterglows. We have built a target-of-opportunity mode for the intermediate Palomar Transient Factory in order to perform targeted searches for Fermi afterglows. Here, we present the results of one year of this program: 8 afterglow discoveries out of 35 searches. Two of the bursts with detected afterglows (GRBs 130702A and 140606B) were at low redshift (z = 0.145 and 0.384, respectively) and had spectroscopically confirmed broad-line Type Ic supernovae. We present our broadband follow-up including spectroscopy as well as X-ray, UV, optical, millimeter, and radio observations. We study possible selection effects in the context of the total Fermi and Swift GRB samples. We identify one new outlier on the Amati relation. We find that two bursts are consistent with a mildly relativistic shock breaking out from the progenitor star rather than the ultra-relativistic internal shock mechanism that powers standard cosmological bursts. Finally, in the context of the Zwicky Transient Facility, we discuss how we will continue to expand this effort to find optical counterparts of binary neutron star mergers that may soon be detected by Advanced LIGO and Virgo.

  18. Imaging spectroscopy of type U and J solar radio bursts with LOFAR

    Science.gov (United States)

    Reid, Hamish A. S.; Kontar, Eduard P.

    2017-10-01

    Context. Radio U-bursts and J-bursts are signatures of electron beams propagating along magnetic loops confined to the corona. The more commonly observed type III radio bursts are signatures of electron beams propagating along magnetic loops that extend into interplanetary space. Given the prevalence of solar magnetic flux to be closed in the corona, why type III bursts are more frequently observed than U-bursts or J-bursts is an outstanding question. Aims: We use Low-Frequency Array (LOFAR) imaging spectroscopy between 30-80 MHz of low-frequency U-bursts and J-bursts, for the first time, to understand why electron beams travelling along coronal loops produce radio emission less often. Radio burst observations provide information not only about the exciting electron beams but also about the structure of large coronal loops with densities that are too low for standard extreme ultraviolet (EUV) or X-ray analysis. Methods: We analysed LOFAR images of a sequence of two J-bursts and one U-burst. The different radio source positions were used to model the spatial structure of the guiding magnetic flux tube and then deduce the energy range of the exciting electron beams without the assumption of a standard density model. We also estimated the electron density along the magnetic flux rope and compared it to coronal models. Results: The radio sources infer a magnetic loop that is 1 solar radius in altitude with the highest frequency sources starting around 0.6 solar radii. Electron velocities were found between 0.13 c and 0.24 c with the front of the electron beam travelling faster than the back of the electron beam. The velocities correspond to energy ranges within the beam from 0.7-11 keV to 0.7-43 keV. The density along the loop is higher than typical coronal density models and the density gradient is smaller. Conclusions: We found that a more restrictive range of accelerated beam and background plasma parameters can result in U-bursts or J-bursts, causing type III

  19. Gamma-ray burst afterglows as probes of environment and blast wave physics. II. The distribution of p and structure of the circumburst medium

    NARCIS (Netherlands)

    Starling, R.L.C.; van der Horst, A.J.; Rol, E.; Wijers, R.A.M.J.; Kouveliotou, C.; Wiersema, K.; Curran, P.A.; Weltevrede, P.

    2008-01-01

    We constrain blast wave parameters and the circumburst media of a subsample of 10 BeppoSAX gamma-ray bursts (GRBs). For this sample we derive the values of the injected electron energy distribution index, p, and the density structure index of the circumburst medium, k, from simultaneous spectral

  20. Discovery and Redshift of an Optical Afterglow in 71 deg2: iPTF13bxl and GRB 130702A

    Science.gov (United States)

    Singer, Leo P.; Cenko, S. Bradley; Kasliwal, Mansi M.; Perley, Daniel A.; Ofek, Eran O.; Brown, Duncan A.; Nugent, Peter E.; Kulkarni, S. R.; Corsi, Alessandra; Frail, Dale A.; Bellm, Eric; Mulchaey, John; Arcavi, Iair; Barlow, Tom; Bloom, Joshua S.; Cao, Yi; Gehrels, Neil; Horesh, Assaf; Masci, Frank J.; McEnery, Julie; Rau, Arne; Surace, Jason A.; Yaron, Ofer

    2013-10-01

    We report the discovery of the optical afterglow of the γ-ray burst (GRB) 130702A, identified upon searching 71 deg2 surrounding the Fermi Gamma-ray Burst Monitor (GBM) localization. Discovered and characterized by the intermediate Palomar Transient Factory, iPTF13bxl is the first afterglow discovered solely based on a GBM localization. Real-time image subtraction, machine learning, human vetting, and rapid response multi-wavelength follow-up enabled us to quickly narrow a list of 27,004 optical transient candidates to a single afterglow-like source. Detection of a new, fading X-ray source by Swift and a radio counterpart by CARMA and the Very Large Array confirmed the association between iPTF13bxl and GRB 130702A. Spectroscopy with the Magellan and Palomar 200 inch telescopes showed the afterglow to be at a redshift of z = 0.145, placing GRB 130702A among the lowest redshift GRBs detected to date. The prompt γ-ray energy release and afterglow luminosity are intermediate between typical cosmological GRBs and nearby sub-luminous events such as GRB 980425 and GRB 060218. The bright afterglow and emerging supernova offer an opportunity for extensive panchromatic follow-up. Our discovery of iPTF13bxl demonstrates the first observational proof-of-principle for ~10 Fermi-iPTF localizations annually. Furthermore, it represents an important step toward overcoming the challenges inherent in uncovering faint optical counterparts to comparably localized gravitational wave events in the Advanced LIGO and Virgo era.

  1. The optical afterglow and host galaxy of GRB 000926

    DEFF Research Database (Denmark)

    Fynbo, J.U.; Gorosabel, J.; Dall, T.H.

    2002-01-01

    In this paper we illustrate with the case of GRB 000926 how Gamma Ray Bursts (GRBs) can be used as cosmological lighthouses to identify and study star forming galaxies at high redshifts. The optical afterglow of the burst was located with optical imaging at the Nordic Optical Telescope 20.7 hours...

  2. Heterogeneity in Short Gamma-Ray Bursts

    Science.gov (United States)

    Norris, Jay P.; Gehrels Neil; Scargle, Jeffrey D.

    2011-01-01

    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample comprises 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales - durations, pulse structure widths, and peak intervals - for EE bursts are factors of approx 2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts - the anti-correlation of pulse intensity and width - continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/XRT. The median flux of the initial XRT detections for EE bursts (approx 6 X 10(exp -10) erg / sq cm/ s) is approx > 20 x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts (approx 60,000 s) is approx 30 x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into more dense environments than non-EE bursts, or that the sometimes-dominant EE component efficiently p()wers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

  3. Multiwavelength detectability of Pop III GRBs from afterglow simulations

    Science.gov (United States)

    Macpherson, D.; Coward, D.

    2017-05-01

    Afterglows of gamma-ray bursts (GRBs) from Population III (Pop III) stars could reveal the formation history and properties of these first generation stars. Through detailed simulation, we predict the prospects of detecting these afterglows with a range of established, existing and upcoming telescopes across the spectrum from radio waves to X-rays. The simulations show that the afterglow light curves of Pop III GRBs at high redshift (≳8) are very similar to those of Pop I/II GRBs at lower redshift (˜2), with the distinction that Lyα absorption at Pop III redshifts removes any optical [and some near-infrared (NIR)] component. We calculate that within a single field of view (FOV) of the Australian Square Kilometre Array Pathfinder (ASKAP) telescope there will be on average four detectable Pop III GRB afterglows. This is the product of ASKAP's large FOV and excellent sensitivity at wavelengths where the afterglows are very long-lasting. We show that the exceptional sensitivity of the James Webb Space Telescope (JWST) Near-InfraRed Camera will make this the optimal instrument for afterglow follow-up and redshift measurement, while JWST Near-InfraRed Spectrograph will be able to detect the absorption features of Pop III-enriched environments in 70 per cent of directed Pop III GRB afterglows. We also find that the Atacama Large Millimetre Array is very poorly suited to observe these afterglows, and that the Spectrum-Roentgen-Gamma 4 yr all-sky X-ray survey has a 12 per cent chance of detecting an orphan Pop III GRB afterglow. The optimal strategy for detecting, identifying and studying Pop III GRB afterglows is to have JWST attempt NIR photometry of afterglows with a detected radio component but no detected optical component.

  4. DISCOVERY AND REDSHIFT OF AN OPTICAL AFTERGLOW IN 71 deg{sup 2}: iPTF13bxl AND GRB 130702A

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Leo P.; Brown, Duncan A. [LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Bradley Cenko, S.; Gehrels, Neil; McEnery, Julie [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Kasliwal, Mansi M.; Mulchaey, John [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St, Pasadena, CA 91101 (United States); Perley, Daniel A.; Kulkarni, S. R.; Bellm, Eric; Barlow, Tom; Cao, Yi; Horesh, Assaf [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Ofek, Eran O.; Arcavi, Iair [Benoziyo Center for Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Nugent, Peter E.; Bloom, Joshua S. [Department of Astronomy, University of California Berkeley, B-20 Hearst Field Annex 3411, Berkeley, CA 94720-3411 (United States); Corsi, Alessandra [George Washington University, Corcoran Hall, Washington, DC 20052 (United States); Frail, Dale A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Masci, Frank J., E-mail: lsinger@caltech.edu [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); and others

    2013-10-20

    We report the discovery of the optical afterglow of the γ-ray burst (GRB) 130702A, identified upon searching 71 deg{sup 2} surrounding the Fermi Gamma-ray Burst Monitor (GBM) localization. Discovered and characterized by the intermediate Palomar Transient Factory, iPTF13bxl is the first afterglow discovered solely based on a GBM localization. Real-time image subtraction, machine learning, human vetting, and rapid response multi-wavelength follow-up enabled us to quickly narrow a list of 27,004 optical transient candidates to a single afterglow-like source. Detection of a new, fading X-ray source by Swift and a radio counterpart by CARMA and the Very Large Array confirmed the association between iPTF13bxl and GRB 130702A. Spectroscopy with the Magellan and Palomar 200 inch telescopes showed the afterglow to be at a redshift of z = 0.145, placing GRB 130702A among the lowest redshift GRBs detected to date. The prompt γ-ray energy release and afterglow luminosity are intermediate between typical cosmological GRBs and nearby sub-luminous events such as GRB 980425 and GRB 060218. The bright afterglow and emerging supernova offer an opportunity for extensive panchromatic follow-up. Our discovery of iPTF13bxl demonstrates the first observational proof-of-principle for ∼10 Fermi-iPTF localizations annually. Furthermore, it represents an important step toward overcoming the challenges inherent in uncovering faint optical counterparts to comparably localized gravitational wave events in the Advanced LIGO and Virgo era.

  5. Observations of GRB X-ray afterglows with SODART/SRG

    DEFF Research Database (Denmark)

    Brandt, Søren Kristian; Lund, Niels; Pedersen, Henrik

    1998-01-01

    Despite recent progress with the detection of afterglows of Gamma Ray Bursts (GRBs), the nature of these events is unknown. However, important clues to understanding what the GRBs are, may very well be found by studying the X-ray afterglows. The combination on SRG of the MOXE all-sky monitor for ...

  6. Circular polarization in the optical afterglow of GRB 121024A.

    Science.gov (United States)

    Wiersema, K; Covino, S; Toma, K; van der Horst, A J; Varela, K; Min, M; Greiner, J; Starling, R L C; Tanvir, N R; Wijers, R A M J; Campana, S; Curran, P A; Fan, Y; Fynbo, J P U; Gorosabel, J; Gomboc, A; Götz, D; Hjorth, J; Jin, Z P; Kobayashi, S; Kouveliotou, C; Mundell, C; O'Brien, P T; Pian, E; Rowlinson, A; Russell, D M; Salvaterra, R; di Serego Alighieri, S; Tagliaferri, G; Vergani, S D; Elliott, J; Fariña, C; Hartoog, O E; Karjalainen, R; Klose, S; Knust, F; Levan, A J; Schady, P; Sudilovsky, V; Willingale, R

    2014-05-08

    Gamma-ray bursts (GRBs) are most probably powered by collimated relativistic outflows (jets) from accreting black holes at cosmological distances. Bright afterglows are produced when the outflow collides with the ambient medium. Afterglow polarization directly probes the magnetic properties of the jet when measured minutes after the burst, and it probes the geometric properties of the jet and the ambient medium when measured hours to days after the burst. High values of optical polarization detected minutes after the burst of GRB 120308A indicate the presence of large-scale ordered magnetic fields originating from the central engine (the power source of the GRB). Theoretical models predict low degrees of linear polarization and no circular polarization at late times, when the energy in the original ejecta is quickly transferred to the ambient medium and propagates farther into the medium as a blast wave. Here we report the detection of circularly polarized light in the afterglow of GRB 121024A, measured 0.15 days after the burst. We show that the circular polarization is intrinsic to the afterglow and unlikely to be produced by dust scattering or plasma propagation effects. A possible explanation is to invoke anisotropic (rather than the commonly assumed isotropic) electron pitch-angle distributions, and we suggest that new models are required to produce the complex microphysics of realistic shocks in relativistic jets.

  7. GRB 030227: The first multiwavelength afterglow of an INTEGRAL GRB

    DEFF Research Database (Denmark)

    Castro-Tirado, A.J.; Gorosabel, J.; Guziy, S.

    2003-01-01

    We present multiwavelength observations of a gamma-ray burst detected by INTEGRAL (GRB 030227) between 5.3 hours and similar to1.7 days after the event. Here we report the discovery of a dim optical afterglow (OA) that would not have been detected by many previous searches due to its faintess (R...

  8. Colour variations in the GRB 120327A afterglow

    Czech Academy of Sciences Publication Activity Database

    Melandri, A.; Covino, S.; Zaninoni, E.; Campana, S.; Bolmer, J.; Cobb, B. E.; Gorosabel, J.; Kim, J.W.; Kuindersma, S.; Kuroda, D.; Malesani, D.; Mundell, C. G.; Nappo, F.; Sbarufatti, B.; Smith, R. J.; Steele, I.A.; Topinka, M.; Trotter, G.; Virgili, F. J.; Bernardini, M. G.; D'Avanzo, P.; D'Elia, V.; Fugazza, D.; Ghirlanda, G.; Gomboc, A.; Greiner, J.; Guidorzi, C.; Haislip, J.B.; Hanayama, H.; Hanlon, L.; Im, M.; Ivarsen, K.M.; Japelj, J.; Jelínek, Martin; Kawai, N.; Kobayashi, S.; Kopac, D.; LaCluyze, A.; Martin-Carrillo, A.; Murphy, D.; Reichart, D. E.; Salvaterra, R.; Salafia, O. S.; Tagliaferri, G.; Vergani, S. D.

    2017-01-01

    Roč. 607, October (2017), A29/1-A29/5 E-ISSN 1432-0746 Institutional support: RVO:67985815 Keywords : gamma-ray burst * time-dependent photoionization * early optical afterglow Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.014, year: 2016

  9. Closing in on a Short-Hard Burst Progenitor: Constraints From Early-Time Optical Imaging and Spectroscopy of a Possible Host Galaxy of GRB 050509b

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, Joshua S.; Prochaska, J.X.; Pooley, D.; Blake, C.W.; Foley, R.J.; Jha, S.; Ramirez-Ruiz, E.; Granot, J.; Filippenko, A.V.; Sigurdsson, S.; Barth, A.J.; Chen,; Cooper, M.C.; Falco, E.E.; Gal, R.R.; Gerke, B.F.; Gladders, M.D.; Greene, J.E.; Hennanwi, J.; Ho, L.C.; Hurley, K.; /UC, Berkeley, Astron. Dept. /Lick Observ.

    2005-06-07

    The localization of the short-duration, hard-spectrum gamma-ray burst GRB050509b by the Swift satellite was a watershed event. Never before had a member of this mysterious subclass of classic GRBs been rapidly and precisely positioned in a sky accessible to the bevy of ground-based follow-up facilities. Thanks to the nearly immediate relay of the GRB position by Swift, we began imaging the GRB field 8 minutes after the burst and have continued during the 8 days since. Though the Swift X-ray Telescope (XRT) discovered an X-ray afterglow of GRB050509b, the first ever of a short-hard burst, thus far no convincing optical/infrared candidate afterglow or supernova has been found for the object. We present a re-analysis of the XRT afterglow and find an absolute position of R.A. = 12h36m13.59s, Decl. = +28{sup o}59'04.9'' (J2000), with a 1{sigma} uncertainty of 3.68'' in R.A., 3.52'' in Decl.; this is about 4'' to the west of the XRT position reported previously. Close to this position is a bright elliptical galaxy with redshift z = 0.2248 {+-} 0.0002, about 1' from the center of a rich cluster of galaxies. This cluster has detectable diffuse emission, with a temperature of kT = 5.25{sub -1.68}{sup +3.36} keV. We also find several ({approx}11) much fainter galaxies consistent with the XRT position from deep Keck imaging and have obtained Gemini spectra of several of these sources. Nevertheless we argue, based on positional coincidences, that the GRB and the bright elliptical are likely to be physically related. We thus have discovered reasonable evidence that at least some short-duration, hard-spectra GRBs are at cosmological distances. We also explore the connection of the properties of the burst and the afterglow, finding that GRB050509b was underluminous in both of these relative to long-duration GRBs. However, we also demonstrate that the ratio of the blast-wave energy to the {gamma}-ray energy is consistent with that

  10. The VLT/X-shooter GRB afterglow legacy survey

    Science.gov (United States)

    Kaper, Lex; Fynbo, Johan P. U.; Pugliese, Vanna; van Rest, Daan

    2017-11-01

    The Swift satellite allows us to use gamma-ray bursts (GRBs) to peer through the hearts of star forming galaxies through cosmic time. Our open collaboration, representing most of the active European researchers in this field, builds a public legacy sample of GRB X-shooter spectroscopy while Swift continues to fly. To date, our spectroscopy of more than 100 GRB afterglows covers a redshift range from 0.059 to about 8 (Tanvir et al. 2009, Nature 461, 1254), with more than 20 robust afterglow-based metallicity measurements (over a redshift range from 1.7 to 5.9). With afterglow spectroscopy (throughout the electromagnetic spectrum from X-rays to the sub-mm) we can hence characterize the properties of star-forming galaxies over cosmic history in terms of redshift, metallicity, molecular content, ISM temperature, UV-flux density, etc.. These observations provide key information on the final evolution of the most massive stars collapsing into black holes, with the potential of probing the epoch of the formation of the first (very massive) stars. VLT/X-shooter (Vernet et al. 2011, A&A 536, A105) is in many ways the ideal GRB follow-up instrument and indeed GRB follow-up was one of the primary science cases behind the instrument design and implementation. Due to the wide wavelength coverage of X-shooter, in the same observation one can detect molecular H2 absorption near the atmospheric cut-off and many strong emission lines from the host galaxy in the near-infrared (e.g., Friis et al. 2015, MNRAS 451, 167). For example, we have measured a metallicity of 0.1 Z ⊙ for GRB 100219A at z = 4.67 (Thöne et al. 2013, MNRAS 428, 3590), 0.02 Z ⊙ for GRB 111008A at z = 4.99 (Sparre et al. 2014, ApJ 785, 150) and 0.05 Z ⊙ for GRB 130606A at z = 5.91 (Hartoog et al. 2015, A&A 580, 139). In the latter, the very high value of [Al/Fe]=2.40 +/- 0.78 might be due to a proton capture process and may be a signature of a previous generation of massive (perhaps even the first) stars

  11. Chameleon Induced Atomic Afterglow

    CERN Document Server

    Brax, Philippe

    2010-01-01

    The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter.

  12. Transient Survey Rates for Orphan Afterglows from Compact Merger Jets

    OpenAIRE

    Lamb, Gavin P; Tanaka, Masaomi; Kobayashi, Shiho

    2017-01-01

    Orphan afterglows from short $\\gamma$-ray bursts (GRB) are potential candidates for electromagnetic (EM) counterpart searches to gravitational wave (GW) detected neutron star or neutron star black hole mergers. Various jet dynamical and structure models have been proposed that can be tested by the detection of a large sample of GW-EM counterparts. We make predictions for the expected rate of optical transients from these jet models for future survey telescopes, without a GW or GRB trigger. A ...

  13. On the anomalous afterglow seen in a chameleon afterglow search

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Jason H.; Baumbaugh, Alan; Chou, Aaron S.; Tomlin, Ray; /Fermilab; Upadhye, Amol; /Argonne, PHY

    2012-05-01

    We present data from our investigation of the anomalous orange-colored afterglow that was seen in the GammeV Chameleon Afterglow Search (CHASE). These data include information about the broadband color of the observed glow, the relationship between the glow and the temperature of the apparatus, and other data taken prior to, and during the science operations of CHASE. While differing in several details, the generic properties of the afterglow from CHASE are similar to luminescence seen in some vacuum compounds. Contamination from this, or similar, luminescent signatures will likely impact the design of implementation of future experiments involving single photon detectors and high intensity light sources in a cryogenic environment.

  14. The ``Christmas burst'' GRB 101225A revisited

    Science.gov (United States)

    Thöne, C. C.; de Ugarte Postigo, A.; Fryer, C. L.; Kann, D. A.

    2015-03-01

    Long GRBs are related to the death of massive stars and reveal themselves through synchrotron emission from highly relativistic jets. The `Christmas Burst' GRB 101225A was an exceptionally long GRB with a thermal afterglow, very different from the standard GRB. Initially, no spectroscopic redshift could be obtained and SED modeling yielded z=0.33. A plausible model was a He-NS star merger where the He-star had ejected part of its envelope in the common envelope phase during inspiral. The interaction between the jet and the previously ejected shell can explains the thermal emission. We obtained deep spectroscopy of the host galaxy which leads to a correction of the redshift to z=0.847. Despite the higher redshift, our model is still valid and theoretically better justified than the alternative suggestion of a blue supergiant progenitor proposed by Levan et al. (2014) for several ``ultra-long'' GRBs.

  15. HOST GALAXIES AS GAMMA-RAY BURST DISTANCE INDICATORS

    Energy Technology Data Exchange (ETDEWEB)

    D. BAND; ET AL

    2001-01-01

    We calculate the distributions of the total burst energy, the peak luminosity and the X-ray afterglow energy using burst observations and distances to the associated host galaxies. To expand the sample, we include redshift estimates for host galaxies without spectroscopic redshifts. The methodology requires a model of the host galaxy population; we find that in the best model the burst rate is proportional to the host galaxy luminosity at the time of the burst.

  16. Can optical afterglows be used to discriminate between Type I and Type II GRBs?

    OpenAIRE

    Kann, D. A.

    2008-01-01

    The precise localization of short/hard (Type I) gamma-ray bursts (GRBs) in recent years has answered many questions but raised even more. I present some results of a systematic study of the optical afterglows of long/soft (Type II) and short/hard (Type I) GRBs, focusing on the optical luminosity as another puzzle piece in the classification of GRBs.

  17. Gamma-ray bursts.

    Science.gov (United States)

    Gehrels, Neil; Mészáros, Péter

    2012-08-24

    Gamma-ray bursts (GRBs) are bright flashes of gamma rays coming from the cosmos. They occur roughly once per day, typically last for tens of seconds, and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this Review, we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglow.

  18. STATISTICAL PROPERTIES OF GRB AFTERGLOW PARAMETERS AS EVIDENCE OF COSMOLOGICAL EVOLUTION OF THEIR HOST GALAXIES

    Directory of Open Access Journals (Sweden)

    Gregory Beskin

    2014-08-01

    Full Text Available The results of a study of 43 peaked R-band light curves of optical counterparts of gamma-ray bursts with known redshifts are presented. The parameters of optical transients were calculated in the comoving frame, and then a search for pair correlations between them was conducted. A statistical analysis showed a strong correlation between the peak luminosity and the redshift both for pure afterglows and for events with residual gamma activity, which cannot be explained as an effect of observational selection.This suggests a cosmological evolution of the parameters of the local interstellar medium around the sources of the gamma-ray burst. In the models of forward and reverse shock waves, a relation between the density of the interstellar medium and the redshift was built for gamma-ray burst afterglows, leading to a power-law dependence of the star-formation rate at regions around GRBs on redshift with a slope of about 6.

  19. Very High Energy Neutrinos from nearby long GRB Afterglows

    Science.gov (United States)

    Thomas, Jessymol K.; Moharana, Reetanjali; Razzaque, Soebur

    2017-09-01

    Long duration Gamma Ray Bursts (GRBs) are well-motivated sources of Ultra High Energy Cosmic Rays (UHECRs) and neutrinos. During the afterglow phase these particles can be produced as a result of acceleration and interaction there in. We have modeled afterglow spectra and light curves from synchrotron cooling of accelerated electrons. We have fitted data of 17 long GRBs detected within redshift 0.5 in case of the GRB blastwave evolving in a wind and constant density interstellar medium. The afterglow photons can interact with the shock accelerated protons to produce very high energy neutrinos. We have calculated the neutrino flux for photo-pion interactions for all these GRBs. As IceCube have been detecting very high energy neutrinos for the last four years and a larger future extension called Gen 2 is planned, this calculation will help in understanding more about GRB neutrino production. Calculation of flux and estimation of events for Northern Hemisphere GRBs are done for the upcoming neutrino observatory KM3NeT.

  20. Colour variations in the GRB 120327A afterglow

    Science.gov (United States)

    Melandri, A.; Covino, S.; Zaninoni, E.; Campana, S.; Bolmer, J.; Cobb, B. E.; Gorosabel, J.; Kim, J.-W.; Kuin, P.; Kuroda, D.; Malesani, D.; Mundell, C. G.; Nappo, F.; Sbarufatti, B.; Smith, R. J.; Steele, I. A.; Topinka, M.; Trotter, A. S.; Virgili, F. J.; Bernardini, M. G.; D'Avanzo, P.; D'Elia, V.; Fugazza, D.; Ghirlanda, G.; Gomboc, A.; Greiner, J.; Guidorzi, C.; Haislip, J. B.; Hanayama, H.; Hanlon, L.; Im, M.; Ivarsen, K. M.; Japelj, J.; Jelínek, M.; Kawai, N.; Kobayashi, S.; Kopac, D.; LaCluyzé, A. P.; Martin-Carrillo, A.; Murphy, D.; Reichart, D. E.; Salvaterra, R.; Salafia, O. S.; Tagliaferri, G.; Vergani, S. D.

    2017-10-01

    Aims: We present a comprehensive temporal and spectral analysis of the long Swift GRB 120327A afterglow data to investigate possible causes of the observed early-time colour variations. Methods: We collected data from various instruments and telescopes in X-ray, ultraviolet, optical, and near-infrared bands, and determined the shapes of the afterglow early-time light curves. We studied the overall temporal behaviour and the spectral energy distributions from early to late times. Results: The ultraviolet, optical, and near-infrared light curves can be modelled with a single power-law component between 200 and 2 × 104 s after the burst event. The X-ray light curve shows a canonical steep-shallow-steep behaviour that is typical of long gamma-ray bursts. At early times a colour variation is observed in the ultraviolet/optical bands, while at very late times a hint of a re-brightening is visible. The observed early-time colour change can be explained as a variation in the intrinsic optical spectral index, rather than an evolution of the optical extinction. Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A29

  1. ON THE AFTERGLOW AND PROGENITOR OF FRB 150418

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bing, E-mail: zhang@physics.unlv.edu [Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154 (United States)

    2016-05-01

    Keane et al. recently detected a fading radio source following FRB 150418, leading to the identification of a putative host galaxy at z = 0.492 ± 0.008. Assuming that the fading source is the afterglow of FRB 150418, I model the afterglow and constrain the isotropic energy of the explosion to be a few 10{sup 50} erg, comparable to that of a short-duration gamma-ray burst (GRB). The outflow may have a jet opening angle of ∼0.22 rad, so that the beaming-corrected energy is below 10{sup 49} erg. The results rule out most fast radio burst (FRB) progenitor models for this FRB, but may be consistent with either of the following two scenarios. The first scenario invokes a merger of an NS–NS binary, which produced an undetected short GRB and a supra-massive neutron star, which subsequently collapsed into a black hole, probably hundreds of seconds after the short GRB. The second scenario invokes a merger of a compact star binary (BH–BH, NS–NS, or BH–NS) system whose pre-merger dynamical magnetospheric activities made the FRB, which is followed by an undetected short GRB-like transient. The gravitational-wave (GW) event GW 150914 would be a sister of FRB 150418 in this second scenario. In both cases, one expects an exciting prospect of GW/FRB/GRB associations.

  2. Antioxidant activity of Calendula officinalis extract: inhibitory effects on chemiluminescence of human neutrophil bursts and electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Braga, Pier Carlo; Dal Sasso, Monica; Culici, Maria; Spallino, Alessandra; Falchi, Mario; Bertelli, Aldo; Morelli, Roberto; Lo Scalzo, Roberto

    2009-01-01

    There is growing interest in natural chemical compounds from aromatic, spicy, medicinal and other plants with antioxidant properties in order to find new sources of compounds inactivating free radicals generated by metabolic pathways within body tissue and cells, mainly polymorphonuclear leukocytes (PMNs) whose overregulated recruitment and activation generate a large amount of reactive oxygen species (ROS) and reactive nitrogen species (RNS), leading to an imbalance of redox homeostasis and oxidative stress. The aim of this study was to examine whether a propylene glycol extract of Calendula officinalis interferes with ROS and RNS during the PMN respiratory bursts, and to establish the lowest concentration at which it still exerts antioxidant activity by means of luminol-amplified chemiluminescence. Electron paramagnetic resonance (EPR) spectroscopy was also used in order to confirm the activity of the C. officinalis extract. The C. officinalis extract exerted its anti-ROS and anti-RNS activity in a concentration-dependent manner, with significant effects being observed at even very low concentrations: 0.20 microg/ml without L-arginine, 0.10 microg/ml when L-arginine was added to the test with phorbol 12-myristate 13-acetate and 0.05 microg/ml when it was added to the test with N-formyl-methionyl-leucyl-phenylalanine. The EPR study confirmed these findings, 0.20 microg/ml being the lowest concentration of C. officinalis extract that significantly reduced 2,2-diphenyl-1-picrylhydrazyl. These findings are interesting for improving the antioxidant network and restoring the redox balance in human cells with plant-derived molecules as well as extending the possibility of antagonizing the oxidative stress generated in living organisms when the balance is in favor of free radicals as a result of the depletion of cell antioxidants. Copyright 2009 S. Karger AG, Basel.

  3. Gamma-ray bursts as cosmological probes

    Science.gov (United States)

    Vergani, S. D.

    2013-11-01

    Gamma-ray bursts (GRBs) are short, intense burstsof gamma-rays which during seconds to minutes outshine all other sources of gamma-ray emission in the sky.Following the prompt gamma-ray emission, an `afterglow' of emission from the X-ray range to radio wavelengthspersists up to months after the initial burst. The association of the class of long GRBs with the explosion of broad-line type Ic SNe GRBs allow galaxies to be selected independently oftheir emission properties (independently of dust obscuration and, uniquely, independently of their brightnesses atany wavelength) and they also permit the study of the gas in the interstellar medium (ISM) systematically and at anyredshift by the absorption lines present in the afterglow spectra. Moreover, the fading nature of GRBs and theprecise localization of the afterglow allow a detailed investigation of the emission properties of the GRB hostgalaxy once the afterglow has vanished. GRBs therefore constitute a unique tool to understand the link between theproperties of the ISM in the galaxy and the star formation activity, and this at any redshift. This is a unique wayto reveal the physical processes that trigger galaxy formation. The SVOM space mission project is designed to improve the use GRBs as cosmological probes.

  4. What we learn from the afterglow of GRB 021211

    CERN Document Server

    Dado, S; De Rújula, Alvaro; Dado, Shlomo; Dar, Arnon; Rujula, Alvaro De

    2003-01-01

    The behaviour of the afterglow (AG) of gamma-ray bursts (GRBs) directly provides, in the cannonball (CB) model, information about the environment of their progenitor stars. The well observed early temporal decline of the AG of GRB 021211 is precisely the one predicted in the presence of a progenitor's ``wind'' which resulted in a density profile $\\propto 1/r^2$ around the star. The subsequent fast fading --which makes this GRB ``quasi-dark''-- is the one anticipated if, further away, the interstellar density is roughly constant and relatively high. The CB-model fit to the AG clearly shows the presence of an associated supernova akin to SN1998bw, and allows even for the determination of the broad-band spectrum of the host galaxy. GRB 990123 and GRB 021004, whose AGs were also measured very early, are also discussed.

  5. Gamma-ray burst interaction with dense interstellar medium

    OpenAIRE

    Barkov, Maxim; Bisnovatyi-Kogan, Gennady

    2004-01-01

    Interaction of cosmological gamma ray burst radiation with the dense interstellar medium of host galaxy is considered. Gas dynamical motion of interstellar medium driven by gamma ray burst is investigated in 2D approximation for different initial density distributions of host galaxy matter and different total energy of gamma ray burst. The maximum velocity of motion of interstellar medium is $1.8\\cdot10^4$ km/s. Light curves of gamma ray burst afterglow are calculated for set of non homogeneo...

  6. The cannonball model of gamma ray bursts

    CERN Document Server

    Dar, Arnon

    2003-01-01

    The cannonball model (CB) of gamma ray bursts (GRBs) is incredibly more successful than the standard blast-wave models (SM) of GRBs, which suffer from profound inadequacies and limited predictive power. The CB model is falsifiable in its hypothesis and results. Its predictions are summarized in simple analytical expressions, derived, in fair approximations, from first principles. It provides a good description on a universal basis of the properties of long-duration GRBs and of their afterglows (AGs).

  7. Identifying gamma-ray bursts at very high redshifts

    Science.gov (United States)

    Tanvir, Nial

    2017-08-01

    Gamma-ray bursts are bright enough to be seen to very great distances and their afterglows can provide redshifts and positions for their host galaxies, and in some cases details of the ISM and the IGM close to the burst, irrespective of the host magnitude itself. Thus GRBs, despite their small numbers, offer a unique and powerful tracer of early star formation and the galaxy populations in the era of reionization. Our efforts to identify high-z GRBs have been rewarded with the discoveries of GRB 090423 and GRB 120923A at spectroscopic redshifts of 8.2 and 7.8 respectively. However, it remains the case that some good candidate high-z GRBs cannot be followed up quickly or deeply enough with ground-based IR spectroscopy, and indeed for others the Ly-alpha break may fall in regions of the IR spectrum difficult to access from the ground. GRB 090429B is an example, which had a photo-z of 9.4, but for which spectroscopy was curtailed due to bad weather. WFC3/IR on HST can obtain redshifts based on the location of the Ly-alpha break via slitless grism spectroscopy to considerably deeper limits (and hence later times) than is possible from the ground, thus offering a solution to this problem. This proposal aims to continue to build the sample of z>7 GRBs by obtaining spectroscopy for up to two candidates for which photometry suggests a very high redshift, but where the redshift could not be secured from the ground. This will provide an important legacy of host galaxy targets with known redshifts for future studies with JWST. The low rate of z>7 GRBs leads us to request a long-term ToO program, spanning cycles 25 and 26.

  8. BATSE Observations of Gamma-Ray Burst Tails

    Science.gov (United States)

    Connaughton, Valerie

    2002-01-01

    With the observation of low-energy radiation coming from the site of gamma-ray bursts in the hours to weeks after the initial gamma ray burst, it appears that astronomers have discovered a cosmological imprint made by the burster on its surroundings. This paper discusses the phenomenon of postburst emission in Burst and Transient Source Experiment (BATSE) gamma-ray bursts at energies usually associated with prompt emission. After summing up the background-subtracted signals from hundreds of bursts, it is found that tails out to hundreds of seconds after the trigger could be a common feature of events of a duration greater than 2 seconds, and perhaps of the shorter bursts at a lower and shorter-lived level. The tail component may be softer and seems independent of the duration (within the long-GRB sample) and brightness of the prompt burst emission. Some individual bursts have visible tails at gamma-ray energies, and the spectrum in a few cases differs from that of the prompt emission. For one of these bursts, GRB 991216, afterglow at lower energies was detected, which raised the possibility of seeing afterglow observations over large energy ranges using the next generation of GRB detectors in addition to sensitive space- or ground-based telescopes.

  9. A Burst to See

    Science.gov (United States)

    2008-04-01

    On 19 March, Nature was particularly generous and provided astronomers with the wealth of four gamma-ray bursts on the same day. But that was not all: one of them is the most luminous object ever observed in the Universe. Despite being located in a distant galaxy, billions of light years away, it was so bright that it could have been seen, for a brief while, with the unaided eye. ESO PR Photo 08a/08 ESO PR Photo 08a/08 The REM Telescope and TORTORA Camera Gamma-ray bursts (GRBs) are short flashes of energetic gamma-rays lasting from less than a second to several minutes. They release a tremendous quantity of energy in this short time making them the most powerful events since the Big Bang. It is now widely accepted that the majority of the gamma-ray bursts signal the explosion of very massive, highly evolved stars that collapse into black holes. Gamma-ray bursts, which are invisible to our eyes, are discovered by telescopes in space. After releasing their intense burst of high-energy radiation, they become detectable for a short while in the optical and in the near-infrared. This 'afterglow' fades very rapidly, making detailed analysis possible for only a few hours after the gamma-ray detection. This analysis is important in particular in order to determine the GRB's distance and, hence, intrinsic brightness. The gamma-ray burst GRB 080319B was detected by the NASA/STFC/ASI Swift satellite. "It was so bright that it almost blinded the Swift instruments for a while," says Guido Chincarini, Italian principal investigator of the mission. A bright optical counterpart was soon identified in the Boötes Constellation (the "Bear Driver" or "Herdsman"). A host of ground-based telescopes reacted promptly to study this new object in the sky. In particular, the optical emission was detected by a few wide-field cameras on telescopes that constantly monitor a large fraction of the sky, including the TORTORA camera in symbiosis with the 0.6-m REM telescope located at La Silla

  10. Fireballs and cannonballs confront the afterglow of GRB 991208

    CERN Document Server

    Dado, S; De Rújula, Alvaro; Dado, Shlomo; Dar, Arnon; Rujula, Alvaro De

    2003-01-01

    Galama et al. have recently reported their follow-up measurements of the radio afterglow (AG) of the Gamma Ray Burst (GRB) 991208, up to 293 days after burst, and their reanalysis of the broad-band AG, in the framework of standard fireball models. They advocate a serious revision of their prior analysis and conclusions, based on optical data and on their earlier observations during the first two weeks of the AG. We comment on their work and fill a lacuna: these authors have overlooked the possibility of comparing their new data to the available predictions of the cannonball (CB) model, based --like their incorrect predictions-- on the first round of data. The new data are in good agreement with these CB-model predictions. This is in spite of the fact that, in comparison to the fireball models, the CB model is much simpler, much more predictive, has many fewer parameters, practically no free choices... and it describes well --on a universal basis-- all the measured AGs of GRBs of known redshift.

  11. INTEGRAL and XMM-Newton observations of the weak gamma-ray burst GRB 030227

    DEFF Research Database (Denmark)

    Mereghetti, S.; Gotz, D.; Tiengo, A.

    2003-01-01

    We present International Gamma-Ray Astrophysical Laboratory ( INTEGRAL) and XMM-Newton observations of the prompt gamma-ray emission and the X-ray afterglow of GRB 030227, the first gamma-ray burst for which the quick localization obtained with the INTEGRAL Burst Alert System has led to the disco......We present International Gamma-Ray Astrophysical Laboratory ( INTEGRAL) and XMM-Newton observations of the prompt gamma-ray emission and the X-ray afterglow of GRB 030227, the first gamma-ray burst for which the quick localization obtained with the INTEGRAL Burst Alert System has led...... to the discovery of X-ray and optical afterglows. GRB 030227 had a duration of about 20 s and a peak flux of similar to1.1 photons cm(-2) s(-1) in the 20-200 keV energy range. The time-averaged spectrum can be fitted by a single power law with photon index similar to2, and we find some evidence for a hard......-to-soft spectral evolution. The X-ray afterglow has been detected starting only 8 hr after the prompt emission, with a 0.2-10 keV flux decreasing as t(-1) from 1.3 x 10(-12) to 5 x 10(-13) ergs cm(-2) s(-1). The afterglow spectrum is well described by a power law with photon index modified by a 1.94 +/- 0...

  12. Luminosity--time and luminosity--luminosity correlations for GRB prompt and afterglow plateau emissions

    OpenAIRE

    Dainotti, M. G.; Petrosian, V.; Willingale, R.; P. O'Brien(Univ. Leicester); Ostrowski, M.; Nagataki, S.

    2015-01-01

    We present an analysis of 123 Gamma-ray bursts (GRBs) with known redshifts possessing an afterglow plateau phase. We reveal that $L_a-T^{*}_a$ correlation between the X-ray luminosity $L_a$ at the end of the plateau phase and the plateau duration, $T^*_a$, in the GRB rest frame has a power law slope different, within more than 2 $\\sigma$, from the slope of the prompt $L_{f}-T^{*}_{f}$ correlation between the isotropic pulse peak luminosity, $L_{f}$, and the pulse duration, $T^{*}_{f}$, from t...

  13. Observing a Burst with Sunglasses

    Science.gov (United States)

    2003-11-01

    Unique Five-Week VLT Study of the Polarisation of a Gamma-Ray Burst Afterglow "Gamma-ray bursts (GRBs)" are certainly amongst the most dramatic events known in astrophysics. These short flashes of energetic gamma-rays, first detected in the late 1960's by military satellites, last from less than one second to several minutes. GRBs have been found to be situated at extremely large ("cosmological") distances. The energy released in a few seconds during such an event is larger than that of the Sun during its entire lifetime of more than 10,000 million years. The GRBs are indeed the most powerful events since the Big Bang known in the Universe, cf. ESO PR 08/99 and ESO PR 20/00. During the past years circumstantial evidence has mounted that GRBs signal the collapse of extremely massive stars, the so-called hypernovae. This was finally demonstrated some months ago when astronomers, using the FORS instrument on ESO's Very Large Telescope (VLT), documented in unprecedented detail the changes in the spectrum of the light source ("the optical afterglow") of the gamma-ray burst GRB 030329 (cf. ESO PR 16/03). A conclusive and direct link between cosmological gamma-ray bursts and explosions of very massive stars was provided on this occasion. Gamma-Ray Burst GRB 030329 was discovered on March 29, 2003 by NASA's High Energy Transient Explorer spacecraft. Follow-up observations with the UVES spectrograph at the 8.2-m VLT KUEYEN telescope at the Paranal Observatory (Chile) showed the burst to have a redshift of 0.1685 [1]. This corresponds to a distance of about 2,650 million light-years, making GRB 030329 the second-nearest long-duration GRB ever detected. The proximity of GRB 030329 resulted in very bright afterglow emission, permitting the most extensive follow-up observations of any afterglow to date. A team of astronomers [2] led by Jochen Greiner of the Max-Planck-Institut für extraterrestrische Physik (Germany) decided to make use of this unique opportunity to study the

  14. The Double Firing Burst

    Science.gov (United States)

    2008-09-01

    Astronomers from around the world combined data from ground- and space-based telescopes to paint a detailed portrait of the brightest explosion ever seen. The observations reveal that the jets of the gamma-ray burst called GRB 080319B were aimed almost directly at the Earth. Uncovering the disc ESO PR Photo 28/08 A Gamma-Ray Burst with Two Jets Read more on this illuminating blast in the additional story. GRB 080319B was so intense that, despite happening halfway across the Universe, it could have been seen briefly with the unaided eye (ESO 08/08). In a paper to appear in the 11 September issue of Nature, Judith Racusin of Penn State University, Pennsylvania (USA), and a team of 92 co-authors report observations across the electromagnetic spectrum that began 30 minutes before the explosion and followed it for months afterwards. "We conclude that the burst's extraordinary brightness arose from a jet that shot material almost directly towards Earth at almost the speed of light - the difference is only 1 part in 20 000," says Guido Chincarini, a member of the team. Gamma-ray bursts are the Universe's most luminous explosions. Most occur when massive stars run out of fuel. As a star collapses, it creates a black hole or neutron star that, through processes not fully understood, drives powerful gas jets outward. As the jets shoot into space, they strike gas previously shed by the star and heat it, thereby generating bright afterglows. The team believes the jet directed toward Earth contained an ultra-fast component just 0.4 degrees across (this is slightly smaller than the apparent size of the Full Moon). This jet is contained within another slightly less energetic jet about 20 times wider. The broad component is more typical of other bursts. "Perhaps every gamma-ray burst has a narrow jet, but astronomers miss it most of the time," says team member Stefano Covino. "We happened to view this monster down the barrel of the very narrow and energetic jet, and the chance for

  15. Afterglow of chlorophyll in vivo and photosynthesis

    NARCIS (Netherlands)

    Goedheer, J.C.

    1962-01-01

    Two pigment systems are involved in the afterglow of chlorophyll a-containing cells. Absorption in only one of these systems (promoting or “p” system) is effective in producing luminescence. If light is absorbed simultaneously by the other (quenching or “q” system), a decrease in luminescence

  16. A Large Catalog of Homogeneous Ultra-Violet/Optical GRB Afterglows: Temporal and Spectral Evolution

    Science.gov (United States)

    Roming, Peter W. A.; Koch, T. Scott; Oates, Samantha R.; Porterfield, Blair L.; Bayless, Amanda J.; Breeveld, Alice A.; Gronwall, Caryl; Kuin, N. P. M.; Page, Mat J.; de Pasquale, Massimiliano; Siegel, Michael H.; Swenson, Craig A.; Tobler, Jennifer M.

    2017-02-01

    We present the second Swift Ultra-Violet/Optical Telescope (UVOT) gamma-ray burst (GRB) afterglow catalog, greatly expanding on the first Swift UVOT GRB afterglow catalog. The second catalog is constructed from a database containing over 120,000 independent UVOT observations of 538 GRBs first detected by Swift, the High Energy Transient Explorer 2 (HETE2), the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), the Interplanetary Network (IPN), Fermi, and Astro-rivelatore Gamma a Immagini Leggero (AGILE). The catalog covers GRBs discovered from 2005 January 17 to 2010 December 25. Using photometric information in three UV bands, three optical bands, and a “white” or open filter, the data are optimally coadded to maximize the number of detections and normalized to one band to provide a detailed light curve. The catalog provides positional, temporal, and photometric information for each burst, as well as Swift Burst Alert Telescope and X-ray Telescope (XRT) GRB parameters. Temporal slopes are provided for each UVOT filter. The temporal slope per filter of almost half the GRBs are fit with a single power law, but one to three breaks are required in the remaining bursts. Morphological comparisons with the X-ray reveal that ˜ 75 % of the UVOT light curves are similar to one of the four morphologies identified by Evans et al. (2009). The remaining ˜ 25 % have a newly identified morphology. For many bursts, redshift- and extinction-corrected UV/optical spectral slopes are also provided at 2 × 103, 2 × 104, and 2 × 105 s.

  17. An Artificial Intelligence Classification Tool and Its Application to Gamma-Ray Bursts

    Science.gov (United States)

    Hakkila, Jon; Haglin, David J.; Roiger, Richard J.; Giblin, Timothy; Paciesas, William S.; Pendleton, Geoffrey N.; Mallozzi, Robert S.

    2004-01-01

    Despite being the most energetic phenomenon in the known universe, the astrophysics of gamma-ray bursts (GRBs) has still proven difficult to understand. It has only been within the past five years that the GRB distance scale has been firmly established, on the basis of a few dozen bursts with x-ray, optical, and radio afterglows. The afterglows indicate source redshifts of z=1 to z=5, total energy outputs of roughly 10(exp 52) ergs, and energy confined to the far x-ray to near gamma-ray regime of the electromagnetic spectrum. The multi-wavelength afterglow observations have thus far provided more insight on the nature of the GRB mechanism than the GRB observations; far more papers have been written about the few observed gamma-ray burst afterglows in the past few years than about the thousands of detected gamma-ray bursts. One reason the GRB central engine is still so poorly understood is that GRBs have complex, overlapping characteristics that do not appear to be produced by one homogeneous process. At least two subclasses have been found on the basis of duration, spectral hardness, and fluence (time integrated flux); Class 1 bursts are softer, longer, and brighter than Class 2 bursts (with two second durations indicating a rough division). A third GRB subclass, overlapping the other two, has been identified using statistical clustering techniques; Class 3 bursts are intermediate between Class 1 and Class 2 bursts in brightness and duration, but are softer than Class 1 bursts. We are developing a tool to aid scientists in the study of GRB properties. In the process of developing this tool, we are building a large gamma-ray burst classification database. We are also scientifically analyzing some GRB data as we develop the tool. Tool development thus proceeds in tandem with the dataset for which it is being designed. The tool invokes a modified KDD (Knowledge Discovery in Databases) process, which is described as follows.

  18. Rates of short-GRB afterglows in association with binary neutron star mergers

    Science.gov (United States)

    Saleem, M.; Pai, Archana; Misra, Kuntal; Resmi, L.; Arun, K. G.

    2018-03-01

    Assuming all binary neutron star (BNS) mergers produce short gamma-ray bursts, we combine the merger rates of BNS from population synthesis studies, the sensitivities of advanced gravitational wave (GW) interferometer networks, and of the electromagnetic (EM) facilities in various wavebands, to compute the detection rate of associated afterglows in these bands. Using the inclination angle measured from GWs as a proxy for the viewing angle and assuming a uniform distribution of jet opening angle between 3° and 30°, we generate light curves of the counterparts using the open access afterglow hydrodynamics package BOXFIT for X-ray, optical, and radio bands. For different EM detectors, we obtain the fraction of EM counterparts detectable in these three bands by imposing appropriate detection thresholds. In association with BNS mergers detected by five (three) detector networks of advanced GW interferometers, assuming a BNS merger rate of 0.6-774 Gpc-3 yr-1 from population synthesis models, we find the afterglow detection rates (per year) to be 0.04-53 (0.02-27), 0.03-36 (0.01-19), and 0.04-47 (0.02-25) in the X-ray, optical, and radio bands, respectively. Our rates represent maximum possible detections for the given BNS rate since we ignore effects of cadence and field of view in EM follow-up observations.

  19. Gamma Ray Bursts Observations and Theoretical Conjectures

    CERN Document Server

    Alagoz, E; Carrillo, C; Golup, G T; Grimes, M; Herrera, Mora C; Gallo, Palomino J L; López, Vega A; Wicht, J

    2008-01-01

    Gamma Ray Bursts (GRBs) are short bursts of very high energy photons which were discovered in the late 1960s. Ever since their discovery, scientists have wondered about their origin. Nowadays it is known that they originate outside the Milky Way because of their high red shift rst measured in the afterglows thanks to the Beppo-SAX satellite and ground-based observations. However, theoreticians still do not agree about the mechanism that generates the bursts, and different competing models are animatedly debated. Current GRB experiments include the Swift satellite and the Pierre Auger Observatory that could detect GRBs with an increase of the background. A forthcoming dedicated experiment is GLAST, a satellite observatory for detecting gamma rays with energies up to 300 GeV, whose launch is scheduled for early 2008.

  20. Afterglow Observations Shed New Light on the Nature of X-ray Flashes

    Energy Technology Data Exchange (ETDEWEB)

    Granot, J

    2005-02-17

    X-ray flashes (XRFs) and X-ray rich gamma-ray bursts (XRGRBs) share many observational characteristics with long duration ({approx}> 2 s) GRBs, but the reason for which the spectral energy distribution of their prompt emission peaks at lower photon energies, E{sub p}, is still a subject of debate. Although many different models have been invoked in order to explain the lower values of E{sub p}, their implications for the afterglow emission were not considered in most cases, mainly because observations of XRF afterglows have become available only recently. Here we examine the predictions of the various XRF models for the afterglow emission, and test them against the observations of XRF 030723 and XRGRB 041006, the events with the best monitored afterglow light curves in their respective class. We show that most existing XRF models are hard to reconcile with the observed afterglow light curves, which are very flat at early times. Such light curves are, however, naturally produced by a roughly uniform jet with relatively sharp edges that is viewed off-axis (i.e. from outside of the jet aperture). This type of model self consistently accommodates both the observed prompt emission and the afterglow light curves of XRGRB 041006 and XRF 030723, implying viewing angles {theta}{sub obs} from the jet axis of ({theta}{sub obs}-{theta}{sub 0}) {approx} 0.15 {theta}{sub 0} and ({theta}{sub obs}-{theta}{sub 0}) {approx} {theta}{sub 0}, respectively, where {theta}{sub 0} {approx} 3{sup o} is the half-opening angle of the jet. This suggests that GRBs, XRGRBs and XRFs are intrinsically similar relativistic jets viewed from different angles. It is then natural to identify GRBs with {gamma}({theta}{sub obs} - {theta}{sub 0}) {approx}< 1, XRGRBs with 1 {approx}< ({theta}{sub obs} - {theta}{sub 0}) {approx}< a few, and XRFs with {gamma}({theta}{sub obs} - {theta}{sub 0}) {approx}> a few, where {gamma} is the Lorentz factor of the outflow near the edge of the jet from which most of the

  1. Synthesis of ZnS:Ag,Co water-soluble blue afterglow nanoparticles and application in photodynamic activation.

    Science.gov (United States)

    Ma, Lun; Zou, Xiaoju; Hossu, Marius; Chen, Wei

    2016-08-05

    Silver and cobalt co-doped ZnS (ZnS:Ag,Co) water-soluble afterglow nanoparticles were synthesized using a wet chemistry method followed by aging at room temperature. The nanoparticles had a cubic zinc blende structure with average sizes of approximately 4 nm and emitted a blue fluorescence emission centered at 441 nm due to radiative transitions from surface defects to Ag(+) luminescent centers. Intense afterglow emission peaking at 475 nm from the obtained nanoparticles was observed and was red-shifted compared to the fluorescence emission peak. X-ray photoelectron spectroscopy revealed a large increase of O/S ratio, indicating a surface oxidation process during aging. The S vacancies produced accordingly may contribute to form more electron traps and enhance afterglow. The ZnS:Ag,Co afterglow nanoparticles have a very low dark-toxicity and are applied as a light source for photodynamic therapy activation by conjugating with protoporphyrin together. Our preliminary study has shown that the ZnS:Ag,Co afterglow nanoparticles can significantly reduce the x-ray dosage used in activation and thus may be a very promising candidate for future x-ray excited photodynamic therapy in deep cancer treatment.

  2. Synthesis of ZnS:Ag,Co water-soluble blue afterglow nanoparticles and application in photodynamic activation

    Science.gov (United States)

    Ma, Lun; Zou, Xiaoju; Hossu, Marius; Chen, Wei

    2016-08-01

    Silver and cobalt co-doped ZnS (ZnS:Ag,Co) water-soluble afterglow nanoparticles were synthesized using a wet chemistry method followed by aging at room temperature. The nanoparticles had a cubic zinc blende structure with average sizes of approximately 4 nm and emitted a blue fluorescence emission centered at 441 nm due to radiative transitions from surface defects to Ag+ luminescent centers. Intense afterglow emission peaking at 475 nm from the obtained nanoparticles was observed and was red-shifted compared to the fluorescence emission peak. X-ray photoelectron spectroscopy revealed a large increase of O/S ratio, indicating a surface oxidation process during aging. The S vacancies produced accordingly may contribute to form more electron traps and enhance afterglow. The ZnS:Ag,Co afterglow nanoparticles have a very low dark-toxicity and are applied as a light source for photodynamic therapy activation by conjugating with protoporphyrin together. Our preliminary study has shown that the ZnS:Ag,Co afterglow nanoparticles can significantly reduce the x-ray dosage used in activation and thus may be a very promising candidate for future x-ray excited photodynamic therapy in deep cancer treatment.

  3. Where are the missing gamma-ray burst redshifts?

    Science.gov (United States)

    Coward, D. M.; Guetta, D.; Burman, R. R.; Imerito, A.

    2008-05-01

    In the redshift range z = 0-1, the gamma-ray burst (GRB) redshift distribution should increase rapidly because of increasing differential volume sizes and strong evolution in the star formation rate (SFR). This feature is not observed in the Swift redshift distribution and to account for this discrepancy a dominant bias, independent of the Swift sensitivity, is required. Furthermore, despite rapid localization, about 50 per cent of Swift and pre-Swift GRBs do not have an observed optical afterglow and 60-70 per cent of GRBs are lacking redshifts. We employ a heuristic technique to extract this redshift bias using 69 GRBs localized by Swift with redshifts determined from absorption or emission spectroscopy. For the Swift and HETE + BeppoSAX redshift distributions, the best model fit to the bias at z bias cancels this rate increase. We find that the same bias is affecting both Swift and HETE + BeppoSAX measurements similarly at z bias model constrained at a 98 per cent Kolmogorov-Smirnov (KS) probability, we find that 72 per cent of GRBs at z 2. To achieve this high KS probability requires increasing the GRB rate density at small z compared to the high-z rate. This provides further evidence for a low-luminosity population of GRBs that are observed in only a small volume because of their faintness.

  4. Multirhythmic bursting

    Science.gov (United States)

    Butera, Robert J.

    1998-03-01

    A complex modeled bursting neuron [C. C. Canavier, J. W. Clark, and J. H. Byrne, J. Neurophysiol. 66, 2107-2124 (1991)] has been shown to possess seven coexisting limit cycle solutions at a given parameter set [Canavier et al., J. Neurophysiol 69, 2252-2259 (1993); 72, 872-882 (1994)]. These solutions are unique in that the limit cycles are concentric in the space of the slow variables. We examine the origin of these solutions using a minimal 4-variable bursting cell model. Poincaré maps are constructed using a saddle-node bifurcation of a fast subsystem such as our Poincaré section. This bifurcation defines a threshold between the active and silent phases of the burst cycle in the space of the slow variables. The maps identify parameter spaces with single limit cycles, multiple limit cycles, and two types of chaotic bursting. To investigate the dynamical features which underlie the unique shape of the maps, the maps are further decomposed into two submaps which describe the solution trajectories during the active and silent phases of a single burst. From these findings we postulate several necessary criteria for a bursting model to possess multiple stable concentric limit cycles. These criteria are demonstrated in a generalized 3-variable model. Finally, using a less direct numerical procedure, similar return maps are calculated for the original complex model [C. C. Canavier, J. W. Clark, and J. H. Byrne, J. Neurophysiol. 66, 2107-2124 (1991)], with the resulting mappings appearing qualitatively similar to those of our 4-variable model. These multistable concentric bursting solutions cannot occur in a bursting model with one slow variable. This type of multistability arises when a bursting system has two or more slow variables and is viewed as an essentially second-order system which receives discrete perturbations in a state-dependent manner.

  5. Polarized Emission from Gamma-Ray Burst Jets

    Directory of Open Access Journals (Sweden)

    Shiho Kobayashi

    2017-11-01

    Full Text Available I review how polarization signals have been discussed in the research field of Gamma-Ray Bursts (GRBs. I mainly discuss two subjects in which polarimetry enables us to study the nature of relativistic jets. (1 Jet breaks: Gamma-ray bursts are produced in ultra-relativistic jets. Due to the relativistic beaming effect, the emission can be modeled in a spherical model at early times. However, as the jet gradually slows down, we begin to see the edge of the jet together with polarized signals at some point. (2 Optical flash: later time afterglow is known to be insensitive to the properties of the original ejecta from the GRB central engine. However, a short-lived, reverse shock emission would enable us to study the nature of of GRB jets. I also briefly discuss the recent detection of optical circular polarization in GRB afterglow.

  6. Detection of GRB 060927 at z = 5.47: Implications for the Use of Gamma-Ray Bursts as Probes of the End of the Dark Ages

    NARCIS (Netherlands)

    Ruiz-Velasco, A.E.; Swan, H.; Troja, E.; Malesani, D.; Fynbo, J.P.U.; Starling, R.L.C.; Xu, D.; Aharonian, F.; Akerlof, C.; Andersen, M.I.; Ashley, M.C.B.; Barthelmy, S.D.; Bersier, D.F.; Cerón, J.M.; Castro-Tirado, A.J.; Gehrels, N.; Gögüs, E.; Gorosabel, J.; Guidorzi, C.; Güver, T.; Hjorth, J.; Horns, D.; Huang, K.Y.; Jakobsson, P.; Jensen, B.L.; Kiziloglu, Ü.; Kouveliotou, C.; Krimm, H.A.; Ledoux, C.; Levan, A.J.; Marsh, T.; McKay, T.; Melandri, A.; Milvang-Jensen, B.; Mundell, C.G.; O'Brien, P.T.; Özel, M.; Phillips, A.; Quimby, R.; Rowell, G.; Rujopakarn, W.; Rykoff, E.S.; Schaefer, B.E.; Sollerman, J.; Tanvir, N.R.; Thöne, C.C.; Urata, Y.; Vestrand, W.T.; Vreeswijk, P.M.; Watson, D.; Wheeler, J.C.; Wijers, R.A.M.J.; Wren, J.; Yost, S.A.; Yuan, F.; Zhai, M.; Zheng, W.K.

    2007-01-01

    We report on follow-up observations of the gamma-ray burst GRB 060927 using the robotic ROTSE-IIIa telescope and a suite of larger aperture ground-based telescopes. An optical afterglow was detected 20 s after the burst, the earliest rest-frame detection of optical emission from any GRB.

  7. Forming a constant density medium close to long gamma-ray burst

    NARCIS (Netherlands)

    Marle, A.J.; Langer, N.; Achterberg, A; Garia-Segura, G.

    2006-01-01

    Aims. The progenitor stars of long Gamma-Ray Bursts (GRBs) are thought to be Wolf-Rayet stars, which generate a massive and energetic wind. Nevertheless, about 25 percent of all GRB afterglows light curves indicate a constant density medium close to the exploding star. We explore various ways to

  8. THERMAL EMISSIONS SPANNING THE PROMPT AND THE AFTERGLOW PHASES OF THE ULTRA-LONG GRB 130925A

    Energy Technology Data Exchange (ETDEWEB)

    Basak, Rupal [Nicolaus Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warsaw (Poland); Rao, A. R., E-mail: rupal@camk.edu.pl, E-mail: arrao@tifr.res.in [Tata Institute of Fundamental Research, Mumbai-400005, India. (India)

    2015-07-01

    GRB 130925A is an ultra-long gamma-ray burst (GRB), and it shows clear evidence for thermal emission in the soft X-ray data of the Swift/X-ray Telescope (XRT; ∼0.5 keV), lasting until the X-ray afterglow phase. Due to the long duration of the GRB, the burst could be studied in hard X-rays with high-resolution focusing detectors (NuSTAR). The blackbody temperature, as measured by the Swift/XRT, shows a decreasing trend until the late phase (Piro et al.) whereas the high-energy data reveal a significant blackbody component during the late epochs at an order of magnitude higher temperature (∼5 keV) compared to contemporaneous low energy data (Bellm et al.). We resolve this apparent contradiction by demonstrating that a model with two black bodies and a power law (2BBPL) is consistent with the data right from the late prompt emission to the afterglow phase. Both blackbodies show a similar cooling behavior up to late times. We invoke a structured jet, having a fast spine and a slower sheath layer, to identify the location of these blackbodies. Independent of the physical interpretation, we propose that the 2BBPL model is a generic feature of the prompt emission of all long GRBs, and the thermal emission found in the afterglow phase of different GRBs reflects the lingering thermal component of the prompt emission with different timescales. We strengthen this proposal by pointing out a close similarity between the spectral evolutions of this GRB and GRB 090618, a source with significant wide band data during the early afterglow phase.

  9. Testing and Performance of UFFO Burst Alert & Trigger Telescope

    DEFF Research Database (Denmark)

    Rípa, Jakub; Bin Kim, Min; Lee, Jik

    2014-01-01

    The Ultra-Fast Flash Observatory pathfinder (UFFO-p) is a new space mission dedicated to detect Gamma-Ray Bursts (GRBs) and rapidly follow their afterglows in order to provide early optical/ultraviolet measurements. A GRB location is determined in a few seconds by the UFFO Burst Alert & Trigger...... telescope (UBAT) employing the coded mask imaging technique and the detector combination of Yttrium Oxyorthosilicate (YSO) scintillating crystals and multi-anode photomultiplier tubes. The results of the laboratory tests of UBAT’s functionality and performance are described in this article. The detector...

  10. The bright gamma-ray burst of 2000 February 10: A case study of an optically dark gamma-ray burst

    DEFF Research Database (Denmark)

    Piro, L.; Frail, D.A.; Gorosabel, J.

    2002-01-01

    The gamma-ray burst GRB 000210 had the highest gamma-ray peak flux of any event localized by BeppoSAX as yet, but it did not have a detected optical afterglow, despite prompt and deep searches down to R-lim approximate to 23.5. It is therefore one of the events recently classified as dark GRBs, w...... therefore that the optical flux is extinguished by Lyalpha forest clouds), but we conclude that the X-ray absorbing medium would have to be substantially thicker from that observed in GRBs with optical afterglows....

  11. A review of gamma ray bursts

    CERN Document Server

    Rees, Martin J

    2000-01-01

    Gamma-ray bursts, an enigma for more than 25 years, are now coming into focus. They involve extraordinary power outputs, and highly relativistic dynamics. The 'trigger' involves stellar-mass compact objects. The most plausible progenitors, ranging from neutron star binary mergers to collapsars (sometimes called 'hypernovae') eventually lead to the formation of a black hole with a torus of hot neutron-density material around it, the extractable energy being up to 10 sup 5 sup 4 ergs. Magnetic fields may exceed 10 sup 1 sup 5 G and particles may be accelerated up to > or approx. 10 sup 2 sup 0 eV. Details of the afterglow may be easier to understand than the initial trigger. Bursts at very high redshift can be astronomically-important as probes of the distant universe.

  12. Detection of GRB 060927 at zeta = 5.47: Implications for the Use of Gamma-Ray Bursts as Probes of the End of the Dark Ages

    Science.gov (United States)

    Ruiz-Velasco, A. E.; Swan, H.; Troja, E.; Malesani, D.; Fynbo, J. P. U.; Sterling, R. L. C.; Xu, D.; Aharonian, F.; Akerlof, C.; Andersen, M. I.; hide

    2007-01-01

    We report on follow-up observations of the gamma-ray burst GRB 060927 using the robotic ROTSE-IIIa telescope and a suite of larger aperture groundbased telescopes. An optical afterglow was detected 20 s after the burst, the earliest rest-frame detection of optical emission from any GRB. Spectroscopy performed with the VLT about 13 hours after the trigger shows a continuum break at lambda approx. equals 8070 A, produced by neutral hydrogen absorption at zeta = 5.6. We also detect an absorption line at 8158 A which we interpret as Si II lambda 1260 at zeta = 5.467. Hence, GRB 060927 is the second most distant GRB with a spectroscopically measured redshift. The shape of the red wing of the spectral break can be fitted by a damped Ly(alpha) profile with a column density with log(N(sub HI)/sq cm) = 22.50 +/- 0.15. We discuss the implications of this work for the use of GRBs as probes of the end of the dark ages and draw three main conclusions: i) GRB afterglows originating from zeta greater than or approx. equal to 6 should be relatively easy to detect from the ground, but rapid near-infrared monitoring is necessary to ensure that they are found; ii) The presence of large H I column densities in some GRBs host galaxies at zeta > 5 makes the use of GRBs to probe the reionization epoch via spectroscopy of the red damping wing challenging; iii) GRBs appear crucial to locate typical star-forming galaxies at zeta > 5 and therefore the type of galaxies responsible for the reionization of the universe.

  13. Light Dawns on Dark Gamma-ray Bursts

    Science.gov (United States)

    2010-12-01

    Gamma-ray bursts are among the most energetic events in the Universe, but some appear curiously faint in visible light. The biggest study to date of these so-called dark gamma-ray bursts, using the GROND instrument on the 2.2-metre MPG/ESO telescope at La Silla in Chile, has found that these gigantic explosions don't require exotic explanations. Their faintness is now fully explained by a combination of causes, the most important of which is the presence of dust between the Earth and the explosion. Gamma-ray bursts (GRBs), fleeting events that last from less than a second to several minutes, are detected by orbiting observatories that can pick up their high energy radiation. Thirteen years ago, however, astronomers discovered a longer-lasting stream of less energetic radiation coming from these violent outbursts, which can last for weeks or even years after the initial explosion. Astronomers call this the burst's afterglow. While all gamma-ray bursts [1] have afterglows that give off X-rays, only about half of them were found to give off visible light, with the rest remaining mysteriously dark. Some astronomers suspected that these dark afterglows could be examples of a whole new class of gamma-ray bursts, while others thought that they might all be at very great distances. Previous studies had suggested that obscuring dust between the burst and us might also explain why they were so dim. "Studying afterglows is vital to further our understanding of the objects that become gamma-ray bursts and what they tell us about star formation in the early Universe," says the study's lead author Jochen Greiner from the Max-Planck Institute for Extraterrestrial Physics in Garching bei München, Germany. NASA launched the Swift satellite at the end of 2004. From its orbit above the Earth's atmosphere it can detect gamma-ray bursts and immediately relay their positions to other observatories so that the afterglows could be studied. In the new study, astronomers combined Swift

  14. Thermal components in the early X-ray afterglows of GRBs: likely cocoon emission and constraints on the progenitors

    Science.gov (United States)

    Valan, Vlasta; Larsson, Josefin; Ahlgren, Björn

    2018-02-01

    The early X-ray afterglows of gamma-ray bursts (GRBs) are usually well described by absorbed power laws. However, in some cases, additional thermal components have been identified. The origin of this emission is debated, with proposed explanations including supernova shock breakout, emission from a cocoon surrounding the jet, as well as emission from the jet itself. A larger sample of detections is needed in order to place constraints on these different models. Here, we present a time-resolved spectral analysis of 74 GRBs observed by Swift X-ray Telescope in a search for thermal components. We report six detections in our sample, and also confirm an additional three cases that were previously reported in the literature. The majority of these bursts have a narrow range of blackbody radii around ˜2 × 1012 cm, despite having a large range of luminosities (Lpeak ˜ 1047-1051 erg s-1). This points to an origin connected to the progenitor stars, and we suggest that emission from a cocoon breaking out from a thick wind may explain the observations. For two of the bursts in the sample, an explanation in terms of late prompt emission from the jet is instead more likely. We also find that these thermal components are preferentially detected when the X-ray luminosity is low, which suggests that they may be hidden by bright afterglows in the majority of GRBs.

  15. DISCOVERY OF SMOOTHLY EVOLVING BLACKBODIES IN THE EARLY AFTERGLOW OF GRB 090618: EVIDENCE FOR A SPINE–SHEATH JET?

    Energy Technology Data Exchange (ETDEWEB)

    Basak, Rupal; Rao, A. R., E-mail: rupalb@tifr.res.in, E-mail: arrao@tifr.res.in [Tata Institute of Fundamental Research, Mumbai—400005 (India)

    2015-10-20

    GRB 090618 is a bright gamma-ray burst (GRB) with multiple pulses. It shows evidence of thermal emission in the initial pulses as well as in the early afterglow phase. Because high-resolution spectral data from the Swift/X-ray Telescope (XRT) are available for the early afterglow, we investigate the shape and evolution of the thermal component in this phase using data from the Swift/Burst Alert Telescope (BAT), the Swift/XRT, and the Fermi/Gamma-ray Burst Monitor detectors. An independent fit to the BAT and XRT data reveals two correlated blackbodies with monotonically decreasing temperatures. Hence, we investigated the combined data with a model consisting of two blackbodies and a power law (2BBPL), a model suggested for several bright GRBs. We elicit the following interesting features of the 2BBPL model: (1) the same model is applicable from the peak of the last pulse in the prompt emission to the afterglow emission, (2) the ratio of temperatures and the fluxes of the two blackbodies remains constant throughout the observations, (3) the blackbody temperatures and fluxes show a monotonic decrease with time, with the BB fluxes dropping about a factor of two faster than that of the power-law (PL) emission, and (4) attributing the blackbody emission to photospheric emissions, we find that the photospheric radii increase very slowly with time, and the lower-temperature blackbody shows a larger emitting radius than that of the higher-temperature blackbody. We find some evidence that the underlying shape of the nonthermal emission is a cutoff power law rather than a PL. We sketch a spine–sheath jet model to explain our observations.

  16. Evidence for a Canonical GRB Afterglow Light Curve in the Swift/XRT Data

    Energy Technology Data Exchange (ETDEWEB)

    Nousek, J.A.; Kouveliotou, C.; Grupe, D.; Page, K.; Granot, J.; Ramirez-Ruiz, E.; Patel, S.K.; Burrows, D.N.; Mangano, V.; Barthelmy, S.; Beardmore, A.P.; Campana, S.; Capalbi, M.; Chincarini, G.; Cusumano, G.; Falcone, A.D.; Gehrels, N.; Giommi, P.; Goad, M.; Godet, O.; Hurkett, C.; /Penn State U., Astron. Astrophys. /NASA, Marshall /Leicester

    2005-08-17

    We present new observations of the early X-ray afterglows of the first 27 gamma-ray bursts (GRBs) detected with the Swift X-ray Telescope (XRT). The early X-ray afterglows show a canonical behavior, where the light curve broadly consists of three distinct power law segments: (1) an initial very steep decay ({infinity} t{sup -a} with 3 {approx}< a{sub 1} {approx}< 5) , followed by (2) a very shallow decay (0.2 {approx}< a{sub 2} {approx}< 0.8), and finally (3) a somewhat steeper decay (1 {approx}< a{sub 3} {approx}< 1.5). These power law segments are separated by two corresponding break times, 300 s {approx}< t{sub break,1} {approx}< 500 s and 10{sup 3} s {approx}< t{sub break,2} {approx}< 10{sup 4} s. On top of this canonical behavior of the early X-ray light curve, many events have superimposed X-ray flares, which are most likely caused by internal shocks due to long lasting sporadic activity of the central engine, up to several hours after the GRB. We find that the initial steep decay is consistent with it being the tail of the prompt emission, from photons that are radiated at large angles relative to our line of sight. The first break in the light curve (t{sub break,1}) takes place when the forward shock emission becomes dominant, with the intermediate shallow flux decay (a{sub 2}) likely caused by the continuous energy injection into the external shock. When this energy injection stops, a second break is then observed in the light curve (t{sub break,2}). This energy injection increases the energy of the afterglow shock by at least a factor of f {approx}> 4, and augments the already severe requirements for the efficiency of the prompt gamma-ray emission.

  17. Time-dependent thermal effects in GRB afterglows

    Energy Technology Data Exchange (ETDEWEB)

    Postnov, K.A.; Blinnikov, S.I.; Kosenko, D.I.; Sorokina, E.I

    2004-06-01

    Time-dependent thermal effects should accompany standard non-thermal afterglows of GRB when {gamma}-rays pass through inhomogeneous surroundings of the GRB site. Thermal relaxation of an optically thin plasma is calculated using time-dependent collisional ionization of the plasma ion species. X-ray emission lines are similar to those found in the fading X-ray afterglow of GRB 011211. Thermal relaxation of clouds or shells around the GRB site could also contribute to the varying late optical GRB afterglows, such as in GRB 021004 and GRB 030329.

  18. UNUSUAL CENTRAL ENGINE ACTIVITY IN THE DOUBLE BURST GRB 110709B

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Binbin; Burrows, David N.; Meszaros, Peter; Falcone, Abraham D. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Zhang Bing [Department of Physics, University of Nevada, Las Vegas, NV 89154 (United States); Wang Xiangyu [Department of Astronomy, Nanjing University, Nanjing 210093 (China); Stratta, Giulia; D' Elia, Valerio [ASI-Science Data Center, Via Galileo Galilei, I-00044 Frascati (Italy); Frederiks, Dmitry; Golenetskii, Sergey [Ioffe Physico-Technical Institute, Laboratory for Experimental Astrophysics, 26 Polytekhnicheskaya, St Petersburg 194021 (Russian Federation); Cummings, Jay R.; Barthelmy, Scott D.; Gehrels, Neil [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Norris, Jay P., E-mail: bbzhang@psu.edu [Physics Department, Boise State University, 1910 University Drive, Boise, ID 83725 (United States)

    2012-04-01

    The double burst, GRB 110709B, triggered the Swift/Burst Alert Telescope (BAT) twice at 21:32:39 UT and 21:43:45 UT, respectively, on 2011 July 9. This is the first time we observed a gamma-ray burst (GRB) with two BAT triggers. In this paper, we present simultaneous Swift and Konus-WIND observations of this unusual GRB and its afterglow. If the two events originated from the same physical progenitor, their different time-dependent spectral evolution suggests they must belong to different episodes of the central engine, which may be a magnetar-to-BH accretion system.

  19. Gamma-Ray Bursts and Cosmology

    Science.gov (United States)

    Norris, Jay P.

    2003-01-01

    The unrivalled, extreme luminosities of gamma-ray bursts (GRBs) make them the favored beacons for sampling the high redshift Universe. To employ GRBs to study the cosmic terrain -- e.g., star and galaxy formation history -- GRB luminosities must be calibrated, and the luminosity function versus redshift must be measured or inferred. Several nascent relationships between gamma-ray temporal or spectral indicators and luminosity or total energy have been reported. These measures promise to further our understanding of GRBs once the connections between the luminosity indicators and GRB jets and emission mechanisms are better elucidated. The current distribution of 33 redshifts determined from host galaxies and afterglows peaks near z $\\sim$ 1, whereas for the full BATSE sample of long bursts, the lag-luminosity relation predicts a broad peak z $\\sim$ 1--4 with a tail to z $\\sim$ 20, in rough agreement with theoretical models based on star formation considerations. For some GRB subclasses and apparently related phenomena -- short bursts, long-lag bursts, and X-ray flashes -- the present information on their redshift distributions is sparse or entirely lacking, and progress is expected in Swift era when prompt alerts become numerous.

  20. A Large Catalog of Multiwavelength GRB Afterglows. I. Color Evolution and Its Physical Implication

    Science.gov (United States)

    Li, Liang; Wang, Yu; Shao, Lang; Wu, Xue-Feng; Huang, Yong-Feng; Zhang, Bing; Ryde, Felix; Yu, Hoi-Fung

    2018-02-01

    The spectrum of gamma-ray burst (GRB) afterglows can be studied with color indices. Here, we present a large comprehensive catalog of 70 GRBs with multiwavelength optical transient data on which we perform a systematic study to find the temporal evolution of color indices. We categorize them into two samples based on how well the color indices are evaluated. The Golden sample includes 25 bursts mostly observed by GROND, and the Silver sample includes 45 bursts observed by other telescopes. For the Golden sample, we find that 96% of the color indices do not vary over time. However, the color indices do vary during short periods in most bursts. The observed variations are consistent with effects of (i) the cooling frequency crossing the studied energy bands in a wind medium (43%) and in a constant-density medium (30%), (ii) early dust extinction (12%), (iii) transition from reverse-shock to forward-shock emission (5%), or (iv) an emergent SN emission (10%). We also study the evolutionary properties of the mean color indices for different emission episodes. We find that 86% of the color indices in the 70 bursts show constancy between consecutive ones. The color index variations occur mainly during the late GRB–SN bump, the flare, and early reverse-shock emission components. We further perform a statistical analysis of various observational properties and model parameters (spectral index {β }o{CI}, electron spectral indices p CI, etc.) using color indices. Overall, we conclude that ∼90% of colors are constant in time and can be accounted for by the simplest external forward-shock model, while the varying color indices call for more detailed modeling.

  1. X-ray spectral components observed in the afterglow of GRB 130925A

    DEFF Research Database (Denmark)

    Bellm, Eric C.; Barrière, Nicolas M.; Bhalerao, Varun

    2014-01-01

    We have identified spectral features in the late-time X-ray afterglow of the unusually long, slow-decaying GRB 130925A using NuSTAR, Swift/X-Ray Telescope, and Chandra. A spectral component in addition to an absorbed power law is required at >4σ significance, and its spectral shape varies between...... two observation epochs at 2 × 105 and 106 s after the burst. Several models can fit this additional component, each with very different physical implications. A broad, resolved Gaussian absorption feature of several keV width improves the fit, but it is poorly constrained in the second epoch....... An additive blackbody or second power-law component provide better fits. Both are challenging to interpret: the blackbody radius is near the scale of a compact remnant (108 cm), while the second power-law component requires an unobserved high-energy cutoff in order to be consistent with the non...

  2. The Giant Flare From SGR 1806-20 And Its Radio Afterglow

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G.B.; /New Mexico U. /NRAO, Socorro; Granot, J.; /KIPAC, Menlo Park

    2006-09-26

    The multi-wavelength observations of the 2004 December 27 Giant Flare (GF) from SGR 1806-20 and its long-lived radio afterglow are briefly reviewed. The GF appears to have been produced by a dramatic reconfiguration of the magnetic field near the surface of the neutron star, possibly accompanied by fractures in the crust. The explosive release of over 10{sup 46} erg (isotropic equivalent) powered a one-sided mildly relativistic outflow. The outflow produced a new expanding radio nebula, that is still visible over a year after the GF. Also considered are the constraints on the total energy in the GF, the energy and mass in the outflow, and on the external density, as well as possible implications for short {gamma}-ray bursts and potential signatures in high energy neutrinos, photons, or cosmic rays. Some possible future observations of this and other GFs are briefly discussed.

  3. Gamma-ray bursts and their use as cosmic probes

    Science.gov (United States)

    Schady, Patricia

    2017-07-01

    Since the launch of the highly successful and ongoing Swift mission, the field of gamma-ray bursts (GRBs) has undergone a revolution. The arcsecond GRB localizations available within just a few minutes of the GRB alert has signified the continual sampling of the GRB evolution through the prompt to afterglow phases revealing unexpected flaring and plateau phases, the first detection of a kilonova coincident with a short GRB, and the identification of samples of low-luminosity, ultra-long and highly dust-extinguished GRBs. The increased numbers of GRB afterglows, GRB-supernova detections, redshifts and host galaxy associations has greatly improved our understanding of what produces and powers these immense, cosmological explosions. Nevertheless, more high-quality data often also reveal greater complexity. In this review, I summarize some of the milestones made in GRB research during the Swift era, and how previous widely accepted theoretical models have had to adapt to accommodate the new wealth of observational data.

  4. Gamma-ray bursts and their use as cosmic probes.

    Science.gov (United States)

    Schady, Patricia

    2017-07-01

    Since the launch of the highly successful and ongoing Swift mission, the field of gamma-ray bursts (GRBs) has undergone a revolution. The arcsecond GRB localizations available within just a few minutes of the GRB alert has signified the continual sampling of the GRB evolution through the prompt to afterglow phases revealing unexpected flaring and plateau phases, the first detection of a kilonova coincident with a short GRB, and the identification of samples of low-luminosity, ultra-long and highly dust-extinguished GRBs. The increased numbers of GRB afterglows, GRB-supernova detections, redshifts and host galaxy associations has greatly improved our understanding of what produces and powers these immense, cosmological explosions. Nevertheless, more high-quality data often also reveal greater complexity. In this review, I summarize some of the milestones made in GRB research during the Swift era, and how previous widely accepted theoretical models have had to adapt to accommodate the new wealth of observational data.

  5. A study on selective surface nitridation of TiO2 nanocrystals in the afterglows of N2 and N2-O2 microwave plasmas

    Science.gov (United States)

    Jeon, Byungwook; Kim, Ansoon; Ricard, André; Sarrette, Jean-Philippe; Yu, Xiaomei; Kim, Yu Kwon

    2018-02-01

    Surface-selective chemical modification of anatase TiO2 nanocrystals is performed in the post-discharge region of N2 microwave plasma and the chemical bonding states of surface nitrogen species are carefully evaluated using X-ray photoemission spectroscopy (XPS). It is found that the surface treatments in the afterglows induce the formation of stable nitrogen species at or near the surface of TiO2. Interestingly, the detailed bonding structure varies strongly depending on the afterglow condition. In pure N2 afterglows, various N species with a direct Tisbnd N bond are formed on the surface, while the use of N2-O2 mixtures induces the formation of additional oxidized species of NO3- on the surface. This is attributed to the high concentrations of O or NO in the afterglows of N2-O2 plasmas. The incorporation of substitutional N species in the subsurface is also achieved after a prolonged exposure in the early afterglow with a high density of N2+ species. Our results show that the exposure condition can be controlled for a selective chemical modification of TiO2 surface for the control of surface properties in various applications.

  6. Influence on the long afterglow properties by the environmental temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wu Haoyi [School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Hu Yihua, E-mail: huyh@gdut.edu.c [School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Wang Yinhai; Mou Zhongfei [School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2010-01-15

    Sr{sub 2}MgSi{sub 2}O{sub 7}:Eu{sup 2+}, Dy{sup 3+} (SMED) and Ba{sub 2}MgSi{sub 2}O{sub 7}:Eu{sup 2+}, Dy{sup 3+} (BMED) were synthesized with the solid-state reaction. The SMED shows long afterglow while the afterglow of BMED is not visible at room temperature. When the environmental temperature is 150 deg. C, the afterglow of SMED is not obvious while the BMED shows the long afterglow. The decay curves measured at different temperatures conform to this phenomenon. It ascribes to the different trap depths of different samples. The thermoluminescence (TL) curves of SMED peaks at 80 deg. C. BMED has two TL peaks peaking at about 80 and 175 deg. C respectively. The low temperature peak is weak and its density is small. The high-temperature peak reveals that one trap of BMED is deeper than the one of SMED. The afterglows of the phosphors strongly depend on the environmental temperature since the lifetime of the trapping carriers is temperature-dependence. BMED is a potential optimum long afterglow phosphor for the purpose of high-temperature application.

  7. Prompt Optical Observations of Gamma-Ray Bursts.

    Science.gov (United States)

    Akerlof; Balsano; Barthelmy; Bloch; Butterworth; Casperson; Cline; Fletcher; Frontera; Gisler; Heise; Hills; Hurley; Kehoe; Lee; Marshall; McKay; Pawl; Piro; Szymanski; Wren

    2000-03-20

    The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure simultaneous and early afterglow optical emission from gamma-ray bursts (GRBs). A search for optical counterparts to six GRBs with localization errors of 1 deg2 or better produced no detections. The earliest limiting sensitivity is mROTSE>13.1 at 10.85 s (5 s exposure) after the gamma-ray rise, and the best limit is mROTSE>16.0 at 62 minutes (897 s exposure). These are the most stringent limits obtained for the GRB optical counterpart brightness in the first hour after the burst. Consideration of the gamma-ray fluence and peak flux for these bursts and for GRB 990123 indicates that there is not a strong positive correlation between optical flux and gamma-ray emission.

  8. Classification, Follow-up, and Analysis of GRBs and their Early-time NIR/Optical Afterglows

    Science.gov (United States)

    Morgan, Adam; Bloom, J. S.; Perley, D. A.; Christian, P.; Richards, J.; Cenko, S. B.; Klein, C. R.

    2014-01-01

    In the study of astronomical transients, achieving knowledge from discovery is a multifaceted process which includes real-time classification to identify new events of interest, deep, multi-wavelength follow-up of individual events, and the global analysis of multi-event catalogs. Here we present a body of work encompassing each of these steps as applied to the study of gamma-ray bursts (GRBs). First, we present our work on utilizing machine-learning algorithms on early-time metrics from the Swift satellite to inform the resource allocation of follow-up telescopes in order to optimize time spent on high-redshift GRB candidates. Next, we show broadband observations and analysis of the early-time afterglow of GRB 120119A, which exhibits extreme red-to-blue color change in the first few minutes after the trigger. Model fits of this color change reveal among the best support yet for the direct detection of dust destruction in the local environment of a GRB. Finally, we present results from the PAIRITEL early-time near-infrared (NIR) afterglow catalog. The 1.3 meter PAIRITEL has autonomously observed 15 GRBs in under 4 minutes after the trigger, yielding a homogenous sample of early-time JHKs light curves. Our analysis of these events provides constraints on the NIR GRB luminosity function, direct measurements of early-time NIR color change, and constraints on burst energetics.

  9. Characterization of the flowing afterglows of an N{sub 2}-O{sub 2} reduced-pressure discharge: setting the operating conditions to achieve a dominant late afterglow and correlating the NO{sub {beta}} UV intensity variation with the N and O atom densities

    Energy Technology Data Exchange (ETDEWEB)

    Boudam, M K [Groupe de Physique des Plasmas, Universite de Montreal, CP 6128, Succursale Centre-Ville, Montreal H3C 3J7, Quebec (Canada); Saoudi, B [Groupe de Physique des Plasmas, Universite de Montreal, CP 6128, Succursale Centre-Ville, Montreal H3C 3J7, Quebec (Canada); Moisan, M [Groupe de Physique des Plasmas, Universite de Montreal, CP 6128, Succursale Centre-Ville, Montreal H3C 3J7, Quebec (Canada); Ricard, A [Centre de Physique Atomique de Toulouse (CPAT), 118, route de Narbonne, Universite Paul Sabatier, 31062-Toulouse (France)

    2007-03-21

    The flowing afterglow of an N{sub 2}-O{sub 2} discharge in the 0.6-10 Torr range is examined in the perspective of achieving sterilization of medical devices (MDs) under conditions ensuring maximum UV intensity with minimum damage to polymer-based MDs. The early afterglow is shown to be responsible for creating strong erosion damage, requiring that the sterilizer be operated in a dominant late-afterglow mode. These two types of afterglow can be characterized by optical emission spectroscopy: the early afterglow is distinguished by an intense emission from the N{sub 2}{sup +} 1st negative system (band head at 391.4 nm) while the late afterglow yields an overpopulation of the v' = 11 ro-vibrational level of the N{sub 2}(B) state, indicating a reduced contribution from the early afterglow N{sub 2} metastable species. We have studied the influence of operating conditions (pressure, O{sub 2} content in the N{sub 2}-O{sub 2} mixture, distance of the discharge from the entrance to the afterglow (sterilizer) chamber) in order to achieve a dominant late afterglow that also ensures maximum and almost uniform UV intensity in the sterilization chamber. As far as operating conditions are concerned, moving the plasma source sufficiently far from the chamber entrance is shown to be a practical means for significantly reducing the density of the characteristic species of the early afterglow. Using the NO titration method, we obtain the (absolute) densities of N and O atoms in the afterglow at the NO injection inlet, a few cm before the chamber entrance: the N atom density goes through a maximum at approximately 0.3-0.5% O{sub 2} and then decreases, while the O atom density increases regularly with the O{sub 2} percentage. The spatial variation of the N atom (relative) density in the chamber is obtained by recording the emission intensity from the 1st positive system at 580 nm: in the 2-5 Torr range, this density is quite uniform everywhere in the chamber. The (relative

  10. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  11. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  12. HOW ELSE CAN WE DETECT FAST RADIO BURSTS?

    Energy Technology Data Exchange (ETDEWEB)

    Lyutikov, Maxim [Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907-2036 (United States); Lorimer, Duncan R., E-mail: lyutikov@purdue.edu [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506-6315 (United States)

    2016-06-20

    We discuss possible electromagnetic signals accompanying Fast Radio Bursts (FRBs) that are expected in the scenario where FRBs originate in neutron star magnetospheres. For models involving Crab-like giant pulses, no appreciable contemporaneous emission is expected at other wavelengths. However, magnetar giant flares, driven by the reconfiguration of the magnetosphere, can produce both contemporaneous bursts at other wavelengths as well as afterglow-like emission. We conclude that the best chances are: (i) prompt short GRB-like emission, (ii) a contemporaneous optical flash that can reach naked eye peak luminosity (but only for a few milliseconds), and (iii) a high-energy afterglow emission. Case (i) could be tested by coordinated radio and high-energy experiments. Case (ii) could be seen in a coordinated radio-optical surveys, e.g., by the Palomar Transient Factory in a 60 s frame as a transient object of m = 15–20 mag with an expected optical detection rate of about 0.1 hr{sup −1}, an order of magnitude higher than in radio. Shallow, but large-area sky surveys such as ASAS-SN and EVRYSCOPE could also detect prompt optical flashes from the more powerful Lorimer-burst clones. The best constraints on the optical to radio power for this kind of emission could be provided by future observations with facilities like Large Synoptic Survey Telescope. Case (iii) might be seen in relatively rare cases that the relativistically ejected magnetic blob is moving along the line of sight.

  13. A strong test for the forward shock model in GRBs: the 90 Ms follow up of the X-ray afterglow of GRB 130427A.

    Science.gov (United States)

    De Pasquale, M.; Page, M.; Kann, D.; Oates, S.; Schulze, S.; Zhang, B.; Cano, Z.; Malesani, D.; Troja, E.; Piro, L.

    2017-10-01

    GRB 130427A was the brightest gamma-ray burst detected in 30 years. With an isotropic energy output of 8.5×10^{53} erg and redshift of 0.34, it combined a very high energy release with a relative proximity to Earth in an unprecedented fashion. Sensitive X-ray observatories such as XMM-Newton and Chandra have detected the afterglow of this event for a record-breaking baseline of 90 million seconds. The light curve shows a simple power-law decay over more than three decades in time. In this presentation, we explore the consequences of this result for the scenarios proposed to interpret GRB 130427A, the implication of this outcome in the context of the forward shock model (beaming angle, energetics, surrounding medium), and the scientific prospects of extending GRB afterglow observations for several hundreds of Ms with Athena.

  14. RADIO FLARES FROM GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J. [Astrophysics Research Institute, Liverpool John Moores University, Liverpool, L3 5RF (United Kingdom); Harrison, R. [Department of Astrophysics, School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel); Japelj, J.; Gomboc, A. [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana (Slovenia); Guidorzi, C. [Department of Physics and Earth Sciences, University of Ferrara, Via Saragat, 1, I-44122 Ferrara (Italy); Melandri, A., E-mail: D.Kopac@ljmu.ac.uk [INAF/Brera Astronomical Observatory, via Bianchi 46, I-23807, Merate (Italy)

    2015-06-20

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1–1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time.

  15. Simulation of Relativistic Shocks and Associated Self-Consistent Radiation for GRB Prompt Emission and Afterglows

    Science.gov (United States)

    Nishikawa, Ken-Ichi; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; hide

    2010-01-01

    Plasma instabilities excited in collisionless shocks are responsible for particle acceleration. We have investigated the particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. This simulation corresponds to a case for gamma-ray burst afterglows. We will simulate colliding shells as an internal shock model for prompt emission. Turbulent magnetic fields generated by a slower shell will be collided by a faster shell. These magnetic fields contribute to the electron s transverse deflection behind the shock. We calculate the radiation from deflected electrons in the turbulent magnetic fields. The properties of this radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts

  16. Gamma-ray bursts and the sociology of science

    CERN Document Server

    De Rujula, Alvaro

    2003-01-01

    I discuss what we have learned about Gamma-Ray Bursts (GRBs) by studying their `afterglows', and how these are interpreted in the generally-accepted `fireball' model of GRBs, as well as in the generally-unaccepted `cannonball' model of the same phenomena. The interpretation of GRBs is a good example around which to frame a discussion of the different approaches to science found in various fields, such as high-energy physics (HEP), high-energy astrophysics, or even the deciphering of ancient languages. I use this example to draw conclusions on `post-academic' science, and on the current status of European HEP.

  17. Gamma Ray Bursts in the Swift-Fermi Era

    Science.gov (United States)

    Gehrels, Neil; Razzaque, Soebur

    2013-01-01

    Gamma-ray bursts (GRBs) are among the most violent occurrences in the universe. They are powerful explosions, visible to high redshift, and thought to be the signature of black hole birth. They are highly luminous events and provide excellent probes of the distant universe. GRB research has greatly advanced over the past 10 years with the results from Swift, Fermi and an active follow-up community. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  18. Supernovae and Gamma-Ray Bursts

    Science.gov (United States)

    Livio, Mario; Panagia, Nino; Sahu, Kailash

    2001-07-01

    Participants; Preface; Gamma-ray burst-supernova relation B. Paczynski; Observations of gamma-ray bursts G. Fishman; Fireballs T. Piran; Gamma-ray mechanisms M. Rees; Prompt optical emission from gamma-ray bursts R. Kehoe, C. Akerlof, R. Balsano, S. Barthelmy, J. Bloch, P. Butterworth, D. Casperson, T. Cline, S. Fletcher, F. Frontera, G. Gisler, J. Heise, J. Hills, K. Hurley, B. Lee, S. Marshall, T. McKay, A. Pawl, L. Piro, B. Priedhorsky, J. Szymanski and J. Wren; X-ray afterglows of gamma-ray bursts L. Piro; The first year of optical-IR observations of SN1998bw I. Danziger, T. Augusteijn, J. Brewer, E. Cappellaro, V. Doublier, T. Galama, J. Gonzalez, O. Hainaut, B. Leibundgut, C. Lidman, P. Mazzali, K. Nomoto, F. Patat, J. Spyromilio, M. Turatto, J. Van Paradijs, P. Vreeswijk and J. Walsh; X-ray emission of Supernova 1998bw in the error box of GRB980425 E. Pian; Direct analysis of spectra of type Ic supernovae D. Branch; The interaction of supernovae and gamma-ray bursts with their surroundings R. Chevalier; Magnetars, soft gamma-ray repeaters and gamma-ray bursts A. Harding; Super-luminous supernova remnants Y. -H. Chu, C. -H. Chen and S. -P. Lai; The properties of hypernovae: SNe Ic 1998bw, 1997ef, and SN IIn 1997cy K. Nomoto, P. Mazzali, T. Nakamura, K. Iwanmoto, K. Maeda, T. Suzuki, M. Turatto, I. Danziger and F. Patat; Collapsars, Gamma-Ray Bursts, and Supernovae S. Woosley, A. MacFadyen and A. Heger; Pre-supernova evolution of massive stars N. Panagia and G. Bono; Radio supernovae and GRB 980425 K. Weiler, N. Panagia, R. Sramek, S. Van Dyk, M. Montes and C. Lacey; Models for Ia supernovae and evolutionary effects P. Hoflich and I. Dominguez; Deflagration to detonation A. Khokhlov; Universality in SN Iae and the Phillips relation D. Arnett; Abundances from supernovae F. -K. Thielemann, F. Brachwitz, C. Freiburghaus, S. Rosswog, K. Iwamoto, T. Nakamura, K. Nomoto, H. Umeda, K. Langanke, G. Martinez-Pinedo, D. Dean, W. Hix and M. Strayer; Sne, GRBs, and the

  19. The Swift Gamma-Ray Burst Host Galaxy Legacy Survey. I. Sample Selection and Redshift Distribution

    Science.gov (United States)

    Perley, D. A.; Krühler, T.; Schulze, S.; de Ugarte Postigo, A.; Hjorth, J.; Berger, E.; Cenko, S. B.; Chary, R.; Cucchiara, A.; Ellis, R.; Fong, W.; Fynbo, J. P. U.; Gorosabel, J.; Greiner, J.; Jakobsson, P.; Kim, S.; Laskar, T.; Levan, A. J.; Michałowski, M. J.; Milvang-Jensen, B.; Tanvir, N. R.; Thöne, C. C.; Wiersema, K.

    2016-01-01

    We introduce the Swift Gamma-Ray Burst Host Galaxy Legacy Survey (“SHOALS”), a multi-observatory high-redshift galaxy survey targeting the largest unbiased sample of long-duration gamma-ray burst (GRB) hosts yet assembled (119 in total). We describe the motivations of the survey and the development of our selection criteria, including an assessment of the impact of various observability metrics on the success rate of afterglow-based redshift measurement. We briefly outline our host galaxy observational program, consisting of deep Spitzer/IRAC imaging of every field supplemented by similarly deep, multicolor optical/near-IR photometry, plus spectroscopy of events without preexisting redshifts. Our optimized selection cuts combined with host galaxy follow-up have so far enabled redshift measurements for 110 targets (92%) and placed upper limits on all but one of the remainder. About 20% of GRBs in the sample are heavily dust obscured, and at most 2% originate from z\\gt 5.5. Using this sample, we estimate the redshift-dependent GRB rate density, showing it to peak at z∼ 2.5 and fall by at least an order of magnitude toward low (z = 0) redshift, while declining more gradually toward high (z∼ 7) redshift. This behavior is consistent with a progenitor whose formation efficiency varies modestly over cosmic history. Our survey will permit the most detailed examination to date of the connection between the GRB host population and general star-forming galaxies, directly measure evolution in the host population over cosmic time and discern its causes, and provide new constraints on the fraction of cosmic star formation occurring in undetectable galaxies at all redshifts.

  20. The Swift Gamma-Ray Burst Host Galaxy Legacy Survey. I. Sample Selection and Redshift Distribution

    Science.gov (United States)

    Perley, D. A.; Kruhler, T.; Schulze, S.; Postigo, A. De Ugarte; Hjorth, J.; Berger, E.; Cenko, S. B.; Chary, R.; Cucchiara, A.; Ellis, R.; hide

    2016-01-01

    We introduce the Swift Gamma-Ray Burst Host Galaxy Legacy Survey (SHOALS), a multi-observatory high redshift galaxy survey targeting the largest unbiased sample of long-duration gamma-ray burst (GRB) hosts yet assembled (119 in total). We describe the motivations of the survey and the development of our selection criteria, including an assessment of the impact of various observability metrics on the success rate of afterglow-based redshift measurement. We briefly outline our host galaxy observational program, consisting of deep Spitzer/IRAC imaging of every field supplemented by similarly deep, multicolor optical/near-IR photometry, plus spectroscopy of events without preexisting redshifts. Our optimized selection cuts combined with host galaxy follow-up have so far enabled redshift measurements for 110 targets (92%) and placed upper limits on all but one of the remainder. About 20% of GRBs in the sample are heavily dust obscured, and at most 2% originate from z > 5.5. Using this sample, we estimate the redshift-dependent GRB rate density, showing it to peak at z approx. 2.5 and fall by at least an order of magnitude toward low (z = 0) redshift, while declining more gradually toward high (z approx. 7) redshift. This behavior is consistent with a progenitor whose formation efficiency varies modestly over cosmic history. Our survey will permit the most detailed examination to date of the connection between the GRB host population and general star-forming galaxies, directly measure evolution in the host population over cosmic time and discern its causes, and provide new constraints on the fraction of cosmic star formation occurring in undetectable galaxies at all redshifts.

  1. Prompt and Afterglow Emission from Short GRB Cocoons

    Science.gov (United States)

    Morsony, Brian; Lazzati, Davide; López-Cámara, Diego; Workman, Jared; Moskal, Jeremiah; Cantiello, Matteo; Perna, Rosalba

    2018-01-01

    We present simulations of short GRB jets that create a wide cocoon of mildly relativistic material surrounding the narrow, highly relativistic jet. We model the prompt and afterglow emission from the jet and cocoon at a range of observer angles relative to the jet axis. Even far off axis, prompt X-ray and gamma-ray emission from the cocoon may be detectable by FERMI GBM out to several 10’s of Mpc. Afterglow emission off-axis is dominated by cocoon material at early times (hours - days). The afterglow should be detectable at a wide range of frequencies (radio, optical, X-ray) for a large fraction of off-axis short GRBs within 200 Mpc, the detection range of aLIGO at design sensitivity. Given recent events, cocoon emission may be very important in the future for localizing LIGO-detected neutron star mergers.

  2. Hα Intensity Map of the Repeating Fast Radio Burst FRB 121102 Host Galaxy from Subaru/Kyoto 3DII AO-assisted Optical Integral-field Spectroscopy

    Science.gov (United States)

    Kokubo, Mitsuru; Mitsuda, Kazuma; Sugai, Hajime; Ozaki, Shinobu; Minowa, Yosuke; Hattori, Takashi; Hayano, Yutaka; Matsubayashi, Kazuya; Shimono, Atsushi; Sako, Shigeyuki; Doi, Mamoru

    2017-08-01

    We present the Hα intensity map of the host galaxy of the repeating fast radio burst FRB 121102 at a redshift of z = 0.193 obtained with the AO-assisted Kyoto 3DII optical integral-field unit mounted on the 8.2 m Subaru Telescope. We detected a compact Hα-emitting (I.e., star-forming) region in the galaxy, which has a much smaller angular size (universe as {{{Ω }}}{IGM}> 0.012. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  3. Nitric oxide kinetics in the afterglow of a diffuse plasma filament

    Science.gov (United States)

    Burnette, D.; Montello, A.; Adamovich, I. V.; Lempert, W. R.

    2014-08-01

    A suite of laser diagnostics is used to study kinetics of vibrational energy transfer and plasma chemical reactions in a nanosecond pulse, diffuse filament electric discharge and afterglow in N2 and dry air at 100 Torr. Laser-induced fluorescence of NO and two-photon absorption laser-induced fluorescence of O and N atoms are used to measure absolute, time-resolved number densities of these species after the discharge pulse, and picosecond coherent anti-Stokes Raman spectroscopy is used to measure time-resolved rotational temperature and ground electronic state N2(v = 0-4) vibrational level populations. The plasma filament diameter, determined from plasma emission and NO planar laser-induced fluorescence images, remains nearly constant after the discharge pulse, over a few hundred microseconds, and does not exhibit expansion on microsecond time scale. Peak temperature in the discharge and the afterglow is low, T ≈ 370 K, in spite of significant vibrational nonequilibrium, with peak N2 vibrational temperature of Tv ≈ 2000 K. Significant vibrational temperature rise in the afterglow is likely caused by the downward N2-N2 vibration-vibration (V-V) energy transfer. Simple kinetic modeling of time-resolved N, O, and NO number densities in the afterglow, on the time scale longer compared to relaxation and quenching time of excited species generated in the plasma, is in good agreement with the data. In nitrogen, the N atom density after the discharge pulse is controlled by three-body recombination and radial diffusion. In air, N, NO and O concentrations are dominated by the reverse Zel'dovich reaction, N + NO → N2 + O, and ozone formation reaction, O + O2 + M → O3 + M, respectively. The effect of vibrationally excited nitrogen molecules and excited N atoms on NO formation kinetics is estimated to be negligible. The results suggest that NO formation in the nanosecond pulse discharge is dominated by reactions of excited electronic states of nitrogen, occurring on

  4. A cannonball model of gamma-ray bursts superluminal signatures

    CERN Document Server

    Dar, Arnon; Dar, Arnon; Rujula, Alvaro De

    2000-01-01

    Recent observations suggest that the long-duration gamma ray bursts (GRBs) and their afterglows are produced by highly relativistic jets emitted in supernova explosions. We propose that the result of the event is not just a compact object plus the ejecta: within a day, a fraction of the parent star falls back to produce a thick accretion disk. The subsequent accretion generates jets and constitutes the GRB ``engine'', as in the observed ejection of relativistic ``cannonballs'' of plasma by microquasars and active galactic nuclei. The GRB is produced as the jetted cannonballs exit the supernova shell reheated by the collision, re-emitting their own radiation and boosting the light of the shell. They decelerate by sweeping up interstellar matter, which is accelerated to cosmic-ray energies and emits synchrotron radiation: the afterglow. We emphasize here a smoking-gun signature of this model of GRBs: the superluminal motion of the afterglow, that can be searched for ---the sooner the better--- in the particular...

  5. Visualisation of Honeypot Data Using Graphviz and Afterglow

    Directory of Open Access Journals (Sweden)

    Craig Valli

    2009-06-01

    Full Text Available This research in progress paper explores the use of Graphviz and Afterglow for the analysis of data emanating from a honeypot system. Honeypot systems gather a wide range of data that is often difficult to readily search for patterns and trends using conventional log file analysis techniques. The data from the honeypots has been statically extracted and processed through Afterglow scripts to produce inputs suitable for use by the DOT graph based tools contained within Graphviz.  This paper explores some of the benefits and drawbacks of currently using this type of approach.

  6. Constraints on gamma-ray burst and supernova progenitors through circumstellar absorption lines : II. Post-LBV Wolf-Rayet stars

    NARCIS (Netherlands)

    Marle, A.J.; Langer, N.; Garcia-Segura, G.

    2007-01-01

    Van Marle et al. (2005) showed that circumstellar absorption lines in early Type Ib/c supernova and gamma-ray burst afterglow spectra may reveal the progenitor evolution of the exploding Wolf-Rayet star. While the quoted paper deals with Wolf-Rayet stars which evolved through a red supergiant stage,

  7. Spitzer ToO observations of a short gamma-ray burst

    Science.gov (United States)

    Hurley, Kevin; Bloom, Joshua; Butler, Nathaniel; Falco, Emilio; Foley, Ryan; Granot, Jonathan; Kocevski, Daniel; Lee, William; Li, Weidong; Mahoney, William; Pahre, Michael; Panaitescu, Alin; Perley, Daniel; Prochaska, Jason; Ramirez-Ruiz, Enrico; Smith, Ian; Squires, Gordon

    2008-03-01

    An understanding of the origin of the short gamma-ray bursts remains an elusive and exciting pursuit. A great leap forward has been made over the past three years with the first rapid localizations and afterglow detections of such events, but follow-up has yet to reveal a detailed understanding of the progenitors and the nature of the afterglow light. We propose an ambitious multiwavelength approach to the problem, leveraging Spitzer with Chandra as well as numerous ground-based telescopes. By measuring the broad-band spectrum of the afterglow and any concurrent 'mini-supernova ' over a wide range of wavelengths at several epochs, we can distinguish between models proposed to explain this type of burst. We will constrain the energetics of the explosion and the short GRB bursting rate (an important number for gravitational wave observatories), and measure with unprecedented detail the stellar content of a short burst host galaxy. Given the high impact nature of these observations and the rarity of short bursts, we are requesting multiepoch Target of Opportunity observations on a single event in Cycle 5. The wavelengths observed by Spitzer, when used in coordination with these other instruments, can make a crucial contribution to understanding the nature of short duration GRBs, particularly by removing the degeneracies among the models due to dust extinction. This is a resubmission of our AO-4 ToO proposal, which has not been called yet. However, even if that observation is carried out, we are requesting an AO-5 observation, because so little is known about the short bursts that each new detection adds a very significant amount of information. Harvey Tananbaum has agreed to grant us Chandra ToO time through November 2008 (the end of Chandra AO-9) if Spitzer observations are carried out. Following that, we will submit a Chandra AO-10 proposal for ToO time; if warranted, we will request Chandra Director's Discretionary Time to support our Spitzer observations.

  8. Spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules.......This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules....

  9. Design and Fabrication of Detector Module for UFFO Burst Alert & Trigger Telescope

    DEFF Research Database (Denmark)

    Jung, A.; Ahmad, S.; Ahn, K. -B.

    2011-01-01

    The Ultra-Fast Flash Observatory (UFFO) pathfinder is a space mission devoted to the measurement of Gamma-Ray Bursts (GRBs), especially their early light curves which will give crucial information on the progenitor stars and central engines of the GRBs. It consists of two instruments: the UFFO...... Burst Alert & Trigger telescope (UBAT) for the detection of GRB locations and the Slewing Mirror Telescope (SMT) for the UV/optical afterglow observations, upon triggering by UBAT. The UBAT employs a coded-mask {\\gamma}/X-ray camera with a wide field of view (FOV), and is comprised of three parts...

  10. Design and implementation of the UFFO burst alert and trigger telescope

    DEFF Research Database (Denmark)

    Kim, J.E.; Ahmad, S.; Barrillon, P.

    2012-01-01

    The Ultra Fast Flash Observatory pathfinder (UFFO-p) is a telescope system designed for the detection of the prompt optical/UV photons from Gamma-Ray Bursts (GRBs), and it will be launched onboard the Lomonosov spacecraft in 2012. The UFFO-p consists of two instruments: the UFFO Burst Alert...... and Trigger telescope (UBAT) for the detection and location of GRBs, and the Slewing Mirror Telescope (SMT) for measurement of the UV/optical afterglow. The UBAT isa coded-mask aperture X-ray camera with a wide field of view (FOV) of 1.8 sr. The detector module consists of the YSO(Yttrium Oxyorthosilicate...

  11. The radio afterglow of Swift J1644+57 reveals a powerful jet with fast core and slow sheath

    Science.gov (United States)

    Mimica, P.; Giannios, D.; Metzger, B. D.; Aloy, M. A.

    2015-07-01

    We model the non-thermal transient Swift J1644+57 as resulting from a relativistic jet powered by the accretion of a tidally disrupted star on to a supermassive black hole. Accompanying synchrotron radio emission is produced by the shock interaction between the jet and the dense circumnuclear medium, similar to a gamma-ray burst afterglow. An open mystery, however, is the origin of the late-time radio re-brightening, which occurred well after the peak of the jetted X-ray emission. Here, we systematically explore several proposed explanations for this behaviour by means of multidimensional hydrodynamic simulations coupled to a self-consistent radiative transfer calculation of the synchrotron emission. Our main conclusion is that the radio afterglow of Swift J1644+57 is not naturally explained by a jet with a one-dimensional top-hat angular structure. However, a more complex angular structure comprised of an ultrarelativistic core (Lorentz factor Γ ˜ 10) surrounded by a slower (Γ ˜ 2) sheath provides a reasonable fit to the data. Such a geometry could result from the radial structure of the super-Eddington accretion flow or as the result of jet precession. The total kinetic energy of the ejecta that we infer of ˜ few 1053 erg requires a highly efficient jet launching mechanism. Our jet model providing the best fit to the light curve of the on-axis event Swift J1644+57 is used to predict the radio light curves for off-axis viewing angles. Implications for the presence of relativistic jets from tidal disruption events (TDEs) detected via their thermal disc emission, as well as the prospects for detecting orphan TDE afterglows with upcoming wide-field radio surveys and resolving the jet structure with long baseline interferometry, are discussed.

  12. The bright optical afterglow of the long GRB 001007

    DEFF Research Database (Denmark)

    Ceron, J.M.C.; Castro-Tirado, A.J.; Gorosabel, J.

    2002-01-01

    We present optical follow up observations of the long GRB 001007 between 6.14 hours and similar to468 days after the event. An unusually bright optical afterglow (OA) was seen to decline following a steep power law decay with index alpha = -2.03 +/- 0.11, possibly indicating a break in the light ...

  13. The Supercritical Pile GRB Model: The Prompt to Afterglow Evolution

    Science.gov (United States)

    Mastichiadis, A.; Kazanas, D.

    2009-01-01

    The "Supercritical Pile" is a very economical GRB model that provides for the efficient conversion of the energy stored in the protons of a Relativistic Blast Wave (RBW) into radiation and at the same time produces - in the prompt GRB phase, even in the absence of any particle acceleration - a spectral peak at energy approx. 1 MeV. We extend this model to include the evolution of the RBW Lorentz factor Gamma and thus follow its spectral and temporal features into the early GRB afterglow stage. One of the novel features of the present treatment is the inclusion of the feedback of the GRB produced radiation on the evolution of Gamma with radius. This feedback and the presence of kinematic and dynamic thresholds in the model can be the sources of rich time evolution which we have began to explore. In particular. one can this may obtain afterglow light curves with steep decays followed by the more conventional flatter afterglow slopes, while at the same time preserving the desirable features of the model, i.e. the well defined relativistic electron source and radiative processes that produce the proper peak in the (nu)F(sub nu), spectra. In this note we present the results of a specific set of parameters of this model with emphasis on the multiwavelength prompt emission and transition to the early afterglow.

  14. Gamma-ray bursts, a puzzle being resolved

    CERN Multimedia

    Piran, T

    1999-01-01

    Gamma Ray Bursts (GRBs), short and intense bursts of Gamma-Rays, have puzzled astrophysicists since their accidental discovery in the seventies. BATSE, launched in 1991, has established the cosmological origin of GRBs and has shown that they involve energies much higher than previously expected, corresponding to the most powerful explosions known in the Universe. The fireball model, which has been developed during the last ten years, explains most of the observed features of GRBs . According to this model, GRBs are produced in internal collisions of ejected matter flowing at ultra-relativistic energy. This ultra-relativistic motion reaches Lorentz factors of order 100 or more, higher than seen elsewhere in the Universe. The GRB afterglow was discovered in 1997. It was predicted by this model and it takes place when this relativistic flow is slowed down by the surrounding material. This model was confirmed recently with the discovery last January of the predicted prompt optical emission from GRB 990123. Unfort...

  15. GRB 120521C at z ∼ 6 and the properties of high-redshift γ-ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Laskar, Tanmoy; Berger, Edo; Zauderer, B. Ashley; Margutti, Raffaella; Fong, Wen-fai [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Tanvir, Nial; Wiersema, Klaas [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Levan, Andrew [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Perley, Daniel [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Menten, Karl [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Hrudkova, Marie [Isaac Newton Group of Telescopes, Apartado de Correos 321, E-387 00 Santa Cruz de la Palma, Canary Islands (Spain)

    2014-01-20

    We present optical, near-infrared, and radio observations of the afterglow of GRB 120521C. By modeling the multi-wavelength data set, we derive a photometric redshift of z ≈ 6.0, which we confirm with a low signal-to-noise ratio spectrum of the afterglow. We find that a model with a constant-density environment provides a good fit to the afterglow data, with an inferred density of n ≲ 0.05 cm{sup –3}. The radio observations reveal the presence of a jet break at t {sub jet} ≈ 7 d, corresponding to a jet opening angle of θ{sub jet} ≈ 3°. The beaming-corrected γ-ray and kinetic energies are E {sub γ} ≈ E{sub K} ≈ 3 × 10{sup 50} erg. We quantify the uncertainties in our results using a detailed Markov Chain Monte Carlo analysis, which allows us to uncover degeneracies between the physical parameters of the explosion. To compare GRB 120521C to other high-redshift bursts in a uniform manner we re-fit all available afterglow data for the two other bursts at z ≳ 6 with radio detections (GRBs 050904 and 090423). We find a jet break at t {sub jet} ≈ 15 d for GRB 090423, in contrast to previous work. Based on these three events, we find that γ-ray bursts (GRBs) at z ≳ 6 appear to explode in constant-density environments, and exhibit a wide range of energies and densities that span the range inferred for lower redshift bursts. On the other hand, we find a hint for narrower jets in the z ≳ 6 bursts, potentially indicating a larger true event rate at these redshifts. Overall, our results indicate that long GRBs share a common progenitor population at least to z ∼ 8.

  16. On Gamma-Ray Bursts

    Science.gov (United States)

    Ruffini, R.; Bernardini, M. G.; Bianco, C. L.; Caito, L.; Chardonnet, P.; Cherubini, C.; Dainotti, M. G.; Fraschetti, F.; Geralico, A.; Guida, R.; Patricelli, B.; Rotondo, M.; Rueda Hernandez, J. A.; Vereshchagin, G.; Xue, S.-S.

    2008-09-01

    We show by example how the uncoding of Gamma-Ray Bursts (GRBs) offers unprecedented possibilities to foster new knowledge in fundamental physics and in astrophysics. After recalling some of the classic work on vacuum polarization in uniform electric fields by Klein, Sauter, Heisenberg, Euler and Schwinger, we summarize some of the efforts to observe these effects in heavy ions and high energy ion collisions. We then turn to the theory of vacuum polarization around a Kerr-Newman black hole, leading to the extraction of the blackholic energy, to the concept of dyadosphere and dyadotorus, and to the creation of an electron-positron-photon plasma. We then present a new theoretical approach encompassing the physics of neutron stars and heavy nuclei. It is shown that configurations of nuclear matter in bulk with global charge neutrality can exist on macroscopic scales and with electric fields close to the critical value near their surfaces. These configurations may represent an initial condition for the process of gravitational collapse, leading to the creation of an electron-positron-photon plasma: the basic self-accelerating system explaining both the energetics and the high energy Lorentz factor observed in GRBs. We then turn to recall the two basic interpretational paradigms of our GRB model: 1) the Relative Space-Time Transformation (RSTT) paradigm and 2) the Interpretation of the Burst Structure (IBS) paradigm. These paradigms lead to a "canonical" GRB light curve formed from two different components: a Proper-GRB (P-GRB) and an extended afterglow comprising a raising part, a peak, and a decaying tail. When the P-GRB is energetically predominant we have a "genuine" short GRB, while when the afterglow is energetically predominant we have a so-called long GRB or a "fake" short GRB. We compare and contrast the description of the relativistic expansion of the electron-positron plasma within our approach and within the other ones in the current literature. We then turn

  17. Host galaxies are the obscurers of Gamma-ray bursts

    Science.gov (United States)

    Buchner, Johannes; Schulze, Steve; Bauer, Franz E.

    2017-08-01

    The luminous, high-energy emission of gamma-ray bursts (GRBs) makes them efficient probes of the high-redshift universe. The origin of the obscuration of gamma-ray burst afterglow is still unclear. We study the afterglows metal column densities along the line-of-sight of all Swift-detected long GRBs with an improved hierarchical Bayesian analysis methodology. We characterise follow-up biases and side-step them using SHOALS, an unbiased sub-sample with highly complete follow-up. That survey also measures Spitzer host masses. Overall, the column densities shows little redshift evolution but a significant correlation with host stellar mass. A simple geometrical model explains the width and shape of the column density distribution and the trend with galaxy mass correlation. Our findings implicate the host's galaxy-scale metal gas as the dominant obscurer. From a galaxy evolution perspective, our study places new constraints on the metal gas mass inside galaxies at z=0.5-4. We compare these with modern cosmological simulations (Illustris and EAGLE) and discuss implications for the obscuration of other sources inside high redshift galaxies, such as active galactic nuclei.

  18. Gamma-Ray Burst at the Extreme: "The Naked-Eye Burst" GRB 080319B

    Science.gov (United States)

    Woźniak, P. R.; Vestrand, W. T.; Panaitescu, A. D.; Wren, J. A.; Davis, H. R.; White, R. R.

    2009-01-01

    On 2008 March 19, the northern sky was the stage of a spectacular optical transient that for a few seconds remained visible to the naked eye. The transient was associated with GRB 080319B, a gamma-ray burst (GRB) at a luminosity distance of about 6 Gpc (standard cosmology), making it the most luminous optical object ever recorded by humankind. We present comprehensive sky monitoring and multicolor optical follow-up observations of GRB 080319B collected by the RAPTOR telescope network covering the development of the explosion and the afterglow before, during, and after the burst. The extremely bright prompt optical emission revealed features that are normally not detectable. The optical and gamma-ray variability during the explosion are correlated, but the optical flux is much greater than can be reconciled with single-emission mechanism and a flat gamma-ray spectrum. This extreme optical behavior is best understood as synchrotron self-Compton model (SSC). After a gradual onset of the gamma-ray emission, there is an abrupt rise of the prompt optical flux, suggesting that variable self-absorption dominates the early optical light curve. Our simultaneous multicolor optical light curves following the flash show spectral evolution consistent with a rapidly decaying red component due to large-angle emission and the emergence of a blue forward-shock component from interaction with the surrounding environment. While providing little support for the reverse shock that dominates the early afterglow, these observations strengthen the case for the universal role of the SSC mechanism in generating GRBs.

  19. Gamma-Ray Bursts: Characteristics and Prospects

    Science.gov (United States)

    Azzam, W. J.; Zitouni, H.; Guessoum, N.

    2017-06-01

    Gamma-ray bursts (GRBs) are the most powerful explosions in the universe. They have remained the object of intense research ever since their discovery was declassified in the early 1970s. Several space-borne missions have been dedicated to their study, including the Compton Gamma-Ray Burst Observatory (CGRO) in the 1990s and the current Swift and Fermi satellites. However, despite several decades of focused research, the precise mechanisms behind these enigmatic explosions have not been fully established. In the first part of this paper, we review what is currently known about GRBs. This includes: GRB light-curves and spectra; the different progenitor models, i.e., the "collapsar" and "merger" models; and the afterglow characteristics, including external shocks and the surrounding medium. In the second part of the paper, we present our work, which focuses on utilizing GRBs as cosmological probes. GRBs are ideal cosmological tools, because they have been observed to great distances (redshifts up to z = 9.4) and their radiation is unencumbered by any intervening dust. Although GRBs are not standard candles, the discovery of several energy and luminosity correlations, like the Amati relation which correlates the intrinsic spectral peak energy, Ep,i to the equivalent isotropic energy, Eiso , has ushered in a new era in which GRBs are used to investigate cosmological issues like the star formation rate and the value of the matter-density parameter, ΩM.

  20. Hubble space telescope observations of the afterglow, supernova, and host galaxy associated with the extremely bright GRB 130427A

    Energy Technology Data Exchange (ETDEWEB)

    Levan, A. J. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Tanvir, N. R.; Wiersema, K. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); Fruchter, A. S.; Hounsell, R. A.; Graham, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Hjorth, J.; Fynbo, J. P. U. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Pian, E. [INAF, Trieste Astronomical Observatory, via G.B. Tiepolo 11, I-34143 Trieste (Italy); Mazzali, P. [Astrophysics Research Institute, Liverpool John Moores University, IC2 Liverpool Science Park 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Cano, Z. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik (Iceland); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Kouveliotou, C. [Science and Technology Office, ZP12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Pe' er, A. [Department of Physics, University College Cork, Cork (Ireland); Misra, K., E-mail: a.j.levan@warwick.ac.uk [Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital-263 002 (India)

    2014-09-10

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst (GRB), GRB 130427A. At z = 0.34, this burst affords an excellent opportunity to study the supernova (SN) and host galaxy associated with an intrinsically extremely luminous burst (E {sub iso} > 10{sup 54} erg): more luminous than any previous GRB with a spectroscopically associated SN. We use the combination of the image quality, UV capability, and invariant point-spread function of HST to provide the best possible separation of the afterglow, host, and SN contributions to the observed light ∼17 rest-frame days after the burst, utilizing a host subtraction spectrum obtained one year later. Advanced Camera for Surveys grism observations show that the associated SN, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, v {sub ph} ∼ 15, 000 km s{sup –1}). The positions of the bluer features are better matched by the higher velocity SN 2010bh (v {sub ph} ∼ 30, 000 km s{sup –1}), but this SN is significantly fainter and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated ∼4 kpc from the nucleus of a moderately star forming (1 M {sub ☉} yr{sup –1}), possibly interacting disk galaxy. The absolute magnitude, physical size, and morphology of this galaxy, as well as the location of the GRB within it, are also strikingly similar to those of GRB 980425/SN 1998bw. The similarity of the SNe and environment from both the most luminous and least luminous GRBs suggests that broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  1. Hubble Space Telescope Observations of the Afterglow, Supernova and Host Galaxy Associated with the Extremely Bright GRB 130427A

    Science.gov (United States)

    Levan, A.J.; Tanvir, N. R.; Fruchter, A. S.; Hjorth, J.; Pian, E.; Mazzali, P.; Hounsell, R. A.; Perley, D. A.; Cano, Z.; Graham, J.; hide

    2014-01-01

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst, GRB 130427A. At z=0.34 this burst affords an excellent opportunity to study the supernova and host galaxy associated with an intrinsically extremely luminous burst (E(sub iso) greater than 10(exp 54) erg): more luminous than any previous GRB with a spectroscopically associated supernova. We use the combination of the image quality, UV capability and and invariant PSF of HST to provide the best possible separation of the afterglow, host and supernova contributions to the observed light approximately 17 rest-frame days after the burst utilising a host subtraction spectrum obtained 1 year later. Advanced Camera for Surveys (ACS) grism observations show that the associated supernova, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, vph approximately 15,000 kilometers per second). The positions of the bluer features are better matched by the higher velocity SN 2010bh (vph approximately 30,000 kilometers per second), but SN 2010bh (vph approximately 30,000 kilometers per second but this SN is significantly fainter, and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated approximately 4 kpc from the nucleus of a moderately star forming (1 Solar Mass yr(exp-1)), possibly interacting disc galaxy. The absolute magnitude, physical size and morphology of this galaxy, as well as the location of the GRB within it are also strikingly similar to those of GRB980425SN 1998bw. The similarity of supernovae and environment from both the most luminous and least luminous GRBs suggests broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  2. Metastable atomic species in the N{sub 2} flowing afterglow

    Energy Technology Data Exchange (ETDEWEB)

    Levaton, J. [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol - CTBE/CNPEM, Caixa Postal 6170, 13083-970 Campinas, Sao Paulo (Brazil); Amorim, J., E-mail: jayr.amorim@bioetanol.org.br [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol - CTBE/CNPEM, Caixa Postal 6170, 13083-970 Campinas, Sao Paulo (Brazil)

    2012-03-13

    Graphical abstract: Calculated N({sup 4}S), N({sup 2}D) and N({sup 2}P) absolute densities as a function of the afterglow time. Highlights: Black-Right-Pointing-Pointer Nitrogen flowing post-discharge. Black-Right-Pointing-Pointer N({sup 4}S) and N({sup 2}D) densities. Black-Right-Pointing-Pointer Kinetic numerical model of the nitrogen afterglow. - Abstract: We have studied by optical emission spectroscopy the post-discharge of a pure N{sub 2} DC flowing discharge in such experimental conditions that the pink afterglow and the Lewis-Rayleigh afterglow occur. The emission profiles originated from the N{sub 2}(B{sup 3}{Pi}{sub g}), N{sub 2}(C{sup 3}{Pi}{sub u}) and N{sub 2}{sup +}(B{sup 2}{Sigma}{sub u}{sup +}) states and the N{sub 2}(B{sup 3}{Pi}{sub g},6{<=}v{<=}12) and N{sub 2}(C{sup 3}{Pi}{sub u},0{<=}v{<=}4) vibrational distributions were obtained in the post-discharge region. With basis on the works of Bockel et al. [S. Bockel, A.M. Diamy, A. Ricard, Surf. Coat. Tech. 74 (1995) 474] and Amorim and Kiohara [J. Amorim, V. Kiohara, Chem. Phys. Lett. 385 (2004) 268], we have obtained the experimental N({sup 4}S) and N({sup 2}D) relative densities along the post-discharge. A numerical model, previously developed to describe the neutral atomic, molecular and ionic species in the afterglow, was improved to include the kinetics of N({sup 2}D) and N({sup 2}P) states. Several kinetic mechanisms leading to the production of N({sup 2}D) in the post-discharge have been studied in order to explain the experimental data. We have determined that the dominant one is the reaction N{sub 2}(X{sup 1}{Sigma}{sub g}{sup +},v>8)+N({sup 4}S){yields}N{sub 2}(X{sup 1}{Sigma}{sub g}{sup +})+N({sup 2}D) with an estimated rate constant of 7 Multiplication-Sign 10{sup -14} cm{sup 3} s{sup -1}. Also, the fit of the numerical density profiles of N{sub 2}(C{sup 3}{Pi}{sub u}) and N{sub 2}{sup +}(B{sup 2}{Sigma}{sub u}{sup +}) to the experimental ones has provided the rate constant for reaction

  3. Off-axis emission of short γ-ray bursts and the detectability of electromagnetic counterparts of gravitational-wave-detected binary mergers

    Science.gov (United States)

    Lazzati, Davide; Deich, Alex; Morsony, Brian J.; Workman, Jared C.

    2017-10-01

    We present calculations of the wide angle emission of short-duration gamma-ray bursts from compact binary merger progenitors. Such events are expected to be localized by their gravitational wave emission, fairly irrespective of the orientation of the angular momentum vector of the system, along which the gamma-ray burst outflow is expected to propagate. We show that both the prompt and afterglow emission are dim and challenging to detect for observers lying outside the cone within which the relativistic outflow is propagating. If the jet initially propagates through a baryon contaminated region surrounding the merger site, however, a hot cocoon forms around it. The cocoon subsequently expands quasi-isotropically producing its own prompt emission and external shock powered afterglow. We show that the cocoon prompt emission is detectable by Swift BAT and Fermi GBM. We also show that the cocoon afterglow peaks a few hours to a few days after the burst and is detectable for up to a few weeks at all wavelengths. The timing and brightness of the transient are however uncertain due to their dependence on unknown quantities such as the density of the ambient medium surrounding the merger site, the cocoon energy and the cocoon Lorentz factor. For a significant fraction of the gravitationally detected neutron-star-binary mergers, the cocoon afterglow could possibly be the only identifiable electromagnetic counterpart, at least at radio and X-ray frequencies.

  4. A New Era of Submillimeter GRB Afterglow Follow-Ups with the Greenland Telescope

    Directory of Open Access Journals (Sweden)

    Yuji Urata

    2015-01-01

    Full Text Available Planned rapid submillimeter (submm gamma-ray-bursts (GRBs follow-up observations conducted using the Greenland Telescope (GLT are presented. The GLT is a 12-m submm telescope to be located at the top of the Greenland ice sheet, where the high altitude and dry weather porvide excellent conditions for observations at submm wavelengths. With its combination of wavelength window and rapid responding system, the GLT will explore new insights on GRBs. Summarizing the current achievements of submm GRB follow-ups, we identify the following three scientific goals regarding GRBs: (1 systematic detection of bright submm emissions originating from reverse shock (RS in the early afterglow phase, (2 characterization of forward shock and RS emissions by capturing their peak flux and frequencies and performing continuous monitoring, and (3 detections of GRBs at a high redshift as a result of the explosion of first generation stars through systematic rapid follow-ups. The light curves and spectra calculated by available theoretical models clearly show that the GLT could play a crucial role in these studies.

  5. Clustering of galaxies around gamma-ray burst sight-lines

    DEFF Research Database (Denmark)

    Sudilovsky, V.; Greiner, J.; Rau, A.

    2013-01-01

    There is evidence of an overdensity of strong intervening MgII absorption line systems distributed along the lines of sight toward gamma-ray burst (GRB) afterglows relative to quasar sight-lines. If this excess is real, one should also expect an overdensity of field galaxies around GRB sight......-lines, as strong MgII tends to trace these sources. In this work, we test this expectation by calculating the two point angular correlation function of galaxies within 120'' (~470 h Kpc470h71-1Kpc at z ~ 0.4) of GRB afterglows. We compare the gamma-ray burst optical and near-infrared detector (GROND) GRB afterglow...... sample-one of the largest and most homogeneous samples of GRB fields-with galaxies and active galactic nuclei found in the COSMOS-30 photometric catalog. We find no significant signal of anomalous clustering of galaxies at an estimated median redshift of z ~ 0.3 around GRB sight-lines, down to K

  6. Gamma-ray Burst X-ray Flares Light Curve Fitting

    Science.gov (United States)

    Aubain, Jonisha

    2018-01-01

    Gamma Ray Bursts (GRBs) are the most luminous explosions in the Universe. These electromagnetic explosions produce jets demonstrated by a short burst of prompt gamma-ray emission followed by a broadband afterglow. There are sharp increases of flux in the X-ray light curves known as flares that occurs in about 50% of the afterglows. In this study, we characterized all of the X-ray afterglows that were detected by the Swift X-ray Telescope (XRT), whether with flares or without. We fit flares to the Norris function (Norris et al. 2005) and power laws with breaks where necessary (Racusin et al. 2009). After fitting the Norris function and power laws, we search for the residual pattern detected in prompt GRB pulses (Hakkila et al. 2014, 2015, 2017), that may indicate a common signature of shock physics. If we find the same signature in flares and prompt pulses, it provides insight into what causes them, as well as, how these flares are produced.

  7. GRB hosts through cosmic time. VLT/X-Shooter emission-line spectroscopy of 96 γ-ray-burst-selected galaxies at 0.1

    Science.gov (United States)

    Krühler, T.; Malesani, D.; Fynbo, J. P. U.; Hartoog, O. E.; Hjorth, J.; Jakobsson, P.; Perley, D. A.; Rossi, A.; Schady, P.; Schulze, S.; Tanvir, N. R.; Vergani, S. D.; Wiersema, K.; Afonso, P. M. J.; Bolmer, J.; Cano, Z.; Covino, S.; D'Elia, V.; de Ugarte Postigo, A.; Filgas, R.; Friis, M.; Graham, J. F.; Greiner, J.; Goldoni, P.; Gomboc, A.; Hammer, F.; Japelj, J.; Kann, D. A.; Kaper, L.; Klose, S.; Levan, A. J.; Leloudas, G.; Milvang-Jensen, B.; Nicuesa Guelbenzu, A.; Palazzi, E.; Pian, E.; Piranomonte, S.; Sánchez-Ramírez, R.; Savaglio, S.; Selsing, J.; Tagliaferri, G.; Vreeswijk, P. M.; Watson, D. J.; Xu, D.

    2015-09-01

    We present data and initial results from VLT/X-Shooter emission-line spectroscopy of 96 galaxies selected by long γ-ray bursts (GRBs) at 0.1 Swift and 76% are at 0.5 2 by ~0.4 dex. These properties of GRB hosts and their evolution with redshift can be understood in a cosmological context of star-forming galaxies and a picture in which the hosts' properties at low redshift are influenced by the tendency of GRBs to avoid the most metal-rich environments. Based on observations at ESO, Program IDs: 084.A-0260, 084.A-0303, 085.A-0009, 086.B-0954, 086.A-0533, 086.A-0874, 087.A-0055, 087.A-0451, 087.B-0737, 088.A-0051, 088.A-0644, 089.A-0067, 089.A-0120, 089.D-0256, 089.A-0868, 090.A-0088, 090.A-0760, 090.A-0825, 091.A-0342, 091.A-0703, 091.A-0877, 091.C-0934, 092.A-0076, 092.A-0124, 092.A-0231, 093.A-0069, 094.A-0593.Tables 1-4 and appendices are available in electronic form at http://www.aanda.orgThe reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/581/A125

  8. Optical diagnostics and mass spectrometry on the afterglow of an atmospheric pressure Ar/O$_2$ radiofrequency plasma used for polymer surface treatment

    CERN Document Server

    Duluard, Corinne Y; Hubert, Julie; Reniers, François

    2016-01-01

    In the context of polymer surface treatment, the afterglow of an atmospheric pressure Ar/O$_2$ radiofrequency plasma is characterized by optical emission spectroscopy, laser induced fluorescence and mass spectrometry. The influence of the O$_2$ gas flow rate and the source power on the plasma properties (gas temperature, Ar excitation temperature, relative concentrations of O atoms and OH radicals) are evaluated. We show that for plasma torch-to-substrate distances lower than 6 mm, the afterglow creates a protective atmosphere, thus the plasma gas composition interacting with the substrate is well controlled. For higher distances, the influence of ambient air can no longer be neglected and gradients in Ar, O$_2$ and N$_2$ concentrations are measured as a function of axial and vertical position.

  9. Adaptive Optical Burst Switching

    OpenAIRE

    Bonald, Thomas; Indre, Raluca-Maria; Oueslati, Sara

    2012-01-01

    International audience; We propose a modified version of Optical Burst Switching (OBS) that adapts the size of switched data units to the network load. Specifically, we propose a two-way reservation OBS scheme in which every active source-destination pair attempts to reserve a lightpath and for every successful reservation, transmits an optical burst whose size is proportional to the number of active data flows. We refer to this technique as Adaptive Optical Burst Switching. We prove that the...

  10. Powerful Radio Burst Indicates New Astronomical Phenomenon

    Science.gov (United States)

    2007-09-01

    . "It was a bit of luck that the survey included some observations of the sky surrounding the clouds," Narkevic said. It was from those "flanking" observations that the mysterious radio burst appeared in the data. The burst of radio waves was strong by astronomical standards, but lasted less than five milliseconds. The signal was spread out, with higher frequencies arriving at the telescope before the lower frequencies. This effect, called dispersion, is caused by the signal passing through ionized gas in interstellar and intergalactic space. The amount of this dispersion, the astronomers said, indicates that the signal likely originated about three billion light-years from Earth. No previously-detected cosmic radio burst has the same set of characteristics. "This burst represents an entirely new astronomical phenomenon," Bailes said. The astronomers estimate on the basis of their results that hundreds of similar events should occur over the sky each day. "Few radio surveys have the necessary sensitivity to such short-duration bursts, which makes them notoriously difficult to detect with current instruments," added Crawford. The next generation of radio telescopes currently under development should be able to detect many of these bursts across the sky. Although the nature of the mysterious new object is unclear, the astronomers have some ideas of what may cause such a burst. One idea is that it may be part of the energy released when a pair of superdense neutron stars collide and merge. Such an event is thought by some scientists to be the cause of one type of gamma-ray burst, but the only radio emission seen so far from these has been from the long-lived "afterglow" that follows the original burst. Another, more exotic, candidate is a burst of energy from an evaporating black hole. Black holes, concentrations of mass so dense that not even light can escape their powerful gravity, can lose mass and energy through a process proposed by famed British physicist Stephen

  11. An origin in the local Universe for some short gamma-ray bursts.

    Science.gov (United States)

    Tanvir, N R; Chapman, R; Levan, A J; Priddey, R S

    2005-12-15

    Gamma-ray bursts (GRBs) divide into two classes: 'long', which typically have initial durations of T90 > 2 s, and 'short', with durations of T90 origin of short bursts has remained mysterious until recently. A subsecond intense 'spike' of gamma-rays during a giant flare from the Galactic soft gamma-ray repeater, SGR 1806-20, reopened an old debate over whether some short GRBs could be similar events seen in galaxies out to approximately 70 Mpc (refs 6-10; redshift z approximately 0.016). Shortly after that, localizations of a few short GRBs (with optical afterglows detected in two cases) have shown an apparent association with a variety of host galaxies at moderate redshifts. Here we report a correlation between the locations of previously observed short bursts and the positions of galaxies in the local Universe, indicating that between 10 and 25 per cent of short GRBs originate at low redshifts (z < 0.025).

  12. X-ray Bursts from the Accreting Millisecond Pulsar XTE J1814-338

    OpenAIRE

    Strohmayer, Tod E.; Markwardt, Craig B.; Swank, Jean H.; Zand, Jean in 't

    2003-01-01

    Since the discovery of the accreting millisecond pulsar XTE J1814-338 a total of 27 thermonuclear bursts have been observed from the source with the Proportional Counter Array (PCA) onboard the Rossi X-ray Timing Explorer (RXTE). Spectroscopy of the bursts, as well as the presence of continuous burst oscillations, suggests that all but one of the bursts are sub-Eddington. The remaining burst has the largest peak bolometric flux of 2.64 x E^-8 erg/sec/cm^2, as well as a gap in the burst oscill...

  13. What can we learn from "internal plateaus"? The peculiar afterglow of GRB 070110

    Science.gov (United States)

    Beniamini, P.; Mochkovitch, R.

    2017-09-01

    Context. The origin of the prompt emission of gamma-ray bursts is highly debated. Proposed scenarios involve various dissipation processes (shocks, magnetic reconnection, and inelastic collisions) above or below the photosphere of an ultra-relativistic outflow. Aims: We search for observational features that could help to favour one scenario over the others by constraining the dissipation radius, the magnetization of the outflow, or by indicating the presence of shocks. Bursts showing peculiar behaviours can emphasize the role of a specific physical ingredient, which becomes more apparent under certain circumstances. Methods: We study GRB 070110, which exhibited several remarkable features during its early afterglow; I.e. a very flat plateau terminated by an extremely steep drop and immediately followed by a bump. We modelled the plateau as the photospheric emission from a long-lasting outflow of moderate Lorentz factor (Γ 20), which lags behind an ultra-relativistic (Γ > 100) ejecta that is responsible for the prompt emission. We computed the dissipation of energy in the forward and reverse shocks resulting from the deceleration of this ejecta by the external medium (uniform or stellar wind). Results: We find that photospheric emission from the long-lasting outflow can account for the plateau properties (luminosity and spectrum) assuming that some dissipation takes place in the flow. The geometrical timescale at the photospheric radius is so short that the observed decline at the end of the plateau likely corresponds to the actual shutdown of the activity in the central engine. The bump that follows results from the power dissipated in the reverse shock, which develops when the material making the plateau catches up with the initially fast shell in front, after the fast shell has decelerated. Conclusions: The proposed interpretation suggests that the prompt phase results from dissipation above the photosphere while the plateau has a photospheric origin. If the

  14. The Drift Burst Hypothesis

    DEFF Research Database (Denmark)

    Christensen, Kim; Oomen, Roel; Renò, Roberto

    The Drift Burst Hypothesis postulates the existence of short-lived locally explosive trends in the price paths of financial assets. The recent US equity and Treasury flash crashes can be viewed as two high profile manifestations of such dynamics, but we argue that drift bursts of varying magnitude....... We then develop a non-parametric test statistic that allows for the identification of drift bursts from noisy high-frequency data. We apply this methodology to a comprehensive set of tick data and show that drift bursts form an integral part of the price dynamics across equities, fixed income......, currencies and commodities. We find that the majority of identified drift bursts are accompanied by strong price reversals and these can therefore be regarded as “flash crashes” that span brief periods of severe market disruption without any material longer term price impacts....

  15. The optical afterglow and host galaxy of GRB 000926

    DEFF Research Database (Denmark)

    Fynbo, J.U.; Gorosabel, J.; Dall, T.H.

    2001-01-01

    We present the discovery of the Optical Transient (OT) of the long-duration gamma-ray burst GRB 000926. The optical transient was detected independently with the Nordic Optical Telescope and at Calar Alto 22.2 hours after the burst. At this time the magnitude of the transient was R = 19.36. The t...

  16. The Swift Gamma-ray Burst Explorer Mission at Penn State

    Science.gov (United States)

    Nousek, J.; Burrows, D.; Chester, M.; Roming, P.; Gehrels, N.; Swift Team

    2000-12-01

    The Swift GRB Explorer mission is designed to discover ~ 1000 new gamma-ray bursts in its three year planned life, and immediately (within tens of seconds) to start simultaneous X-ray, optical and ultraviolet observations of the GRB afterglow. After its planned launch in September, 2003, it will collect an impressive database of gamma ray bursts (reaching more sensitive limits than BATSE); uniform X-ray/UV/optical monitoring of afterglows (with a dedicated weatherless observatory with broad multi-wavelength imaging capability); and rapid followup by other observatories (utilizing a continuous ground link with burst alerts and data posted immediately to the GCN). The Penn State Swift responsibilities include development of the X-ray Telescope (with CCDs from the University of Leicester and X-ray mirrors from OAB); the UV/Optical Telescope (with instrument fabrication at MSSL and SwRI); and development of the Mission Operations Center at PSU (with support from Omitron Corp.). After launch Swift will be operated from Penn State, with data analysis pipelines and data archives at Goddard Space Flight Center, Leicester and the Italian Science Data Center. The mission, lead by Neil Gehrels of GSFC, has successfully concluded the Preliminary Design Review process, including the spacecraft to be built by SpectrumAstro. We show the current status of the PSU lead portions of the mission. Funding for the Swift project at PSU is provided by NASA Contract NAS5-00136.

  17. Relativistic simulations of long-lived reverse shocks in stratified ejecta: the origin of flares in GRB afterglows

    Science.gov (United States)

    Lamberts, A.; Daigne, F.

    2018-02-01

    The X-ray light curves of the early afterglow phase from gamma-ray bursts (GRBs) present a puzzling variability, including flares. The origin of these flares is still debated, and often associated with a late activity of the central engine. We discuss an alternative scenario where the central engine remains short-lived and flares are produced by the propagation of a long-lived reverse shock in a stratified ejecta. Here we focus on the hydrodynamics of the shock interactions. We perform one-dimensional ultrarelativistic hydrodynamic simulations with different initial internal structure in the GRB ejecta. We use them to extract bolometric light curves and compare with a previous study based on a simplified ballistic model. We find a good agreement between both approaches, with similar slopes and variability in the light curves, but identify several weaknesses in the ballistic model: the density is underestimated in the shocked regions, and more importantly, late shock reflections are not captured. With accurate dynamics provided by our hydrodynamic simulations, we confirm that internal shocks in the ejecta lead to the formation of dense shells. The interaction of the long-lived reverse shock with a dense shell then produces a fast and intense increase of the dissipated power. Assuming that the emission is due to the synchrotron radiation from shock-accelerated electrons, and that the external forward shock is radiatively inefficient, we find that this results in a bright flare in the X-ray light curve, with arrival times, shapes, and duration in agreement with the observed properties of X-ray flares in GRB afterglows.

  18. The Most Remote Gamma-Ray Burst

    Science.gov (United States)

    2000-10-01

    seconds is larger than that of the Sun during its entire life time (about 10,000 million years). "Gamma-ray bursts" are in fact by far the most powerful events since the Big Bang that are known in the Universe. While there are indications that gamma-ray bursts originate in star-forming regions within distant galaxies, the nature of such explosions remains a puzzle. Recent observations with large telescopes, e.g. the measurement of the degree of polarization of light from a gamma-ray burst in May 1999 with the VLT ( ESO PR 08/99), are now beginning to cast some light on this long-standing mystery. The afterglow of GRB 000131 ESO PR Photo 28a/00 ESO PR Photo 28a/00 [Preview - JPEG: 400 x 475 pix - 41k] [Normal - JPEG: 800 x 949 pix - 232k] [Full-Res - JPEG: 1200 x 1424 pix - 1.2Mb] ESO PR Photo 28b/00 ESO PR Photo 28b/00 [Preview - JPEG: 400 x 480 pix - 67k] [Normal - JPEG: 800 x 959 pix - 288k] [Full-Res - JPEG: 1200 x 1439 pix - 856k] Caption : PR Photo 28a/00 is a colour composite image of the sky field around the position of the gamma-ray burst GRB 000131 that was detected on January 31, 2000. It is based on images obtained with the ESO Very Large Telescope at Paranal. The object is indicated with an arrow, near a rather bright star (magnitude 9, i.e., over 1 million times brighter than the faintest objects visible on this photo). This and other bright objects in the field are responsible for various unavoidable imaging effects, caused by optical reflections (ring-shaped "ghost images", e.g. to the left of the brightest star) and detector saturation effects (horizontal and vertical straight lines and coloured "coronae" at the bright objects, and areas of "bleeding", e.g. below the bright star). PR Photo 28b/00 shows the rapid fading of the optical counterpart of GRB 000131 (slightly left of the centre), by means of exposures with the VLT on February 4 (upper left), 6 (upper right), 8 (lower left) and March 5 (lower right). It is no longer visible on the last photo

  19. What did we learn from gamma-ray burst 080319B?

    Energy Technology Data Exchange (ETDEWEB)

    Panaitescu, Alin [Los Alamos National Laboratory; Kumar, Pawan [UNIV OF TEXAS

    2008-01-01

    The optical and gamma-ray observations of GRB 080319B allow us to provide a broad-brush picture for this remarkable burst. The data indicate that the prompt optical and gamma-ray photons were possibly produced at the same location but by different radiation processes: synchrotron and synchrotron self-Compton, respectively (but we note that this interpretation of the gamma-ray data faces some difficulties). We find that the burst prompt optical emission was produced at a distance of 10{sup 16.3} cm by an ultrarelativistic source moving at Lorentz factor of -500. A straightforward inference is that about 10 times more energy must have been radiated at tens of GeV than that released at 1 MeV. Assuming that the GRB outflow was baryonic and the gamma-ray source was shock-heated plasma, the collimation-corrected kinetic energy of the jet powering GRB 080319B was larger than 10{sup 52.3} erg. The decay of the early afterglow optical emission (up to 1 ks) is too fast to be attributed to the reverse-shock crossing the GRB ejecta but is consistent with the expectations for the 'large-angle' emission released during the burst. The pure power-law decay of the optical afterglow flux from 1 ks to 10 d is most naturally identified with the (synchrotron) emission from the shock propagating into a wind-like medium. However, the X-ray afterglow requires a departure from the standard blast-wave model.

  20. Strategies for Studying the Sources of Gamma Ray Bursts

    Science.gov (United States)

    Cline, T. L.; Norris, J. P.; Hurley, K. C.

    2003-01-01

    The study of gamma ray bursts (GRBs) has rapidly evolved in recent years with the discovery of their cosmological nature and with BATSE, BeppoSAX, HETE and the IPN enabling a wide variety of associated . afterglow measurements. Multiwavelength observations ranging through the radio, optical, soft and hard x-ray, and gamma-ray regimes have exploded the field of GRB interpretation. Also, the Amanda, Milagro and LIGO experiments can search for related neutrino, cosmic-ray photon, and gravitational radiation events, even with the delayed alerts, such as from the IPN. The infrared region, where the optical emissions from sources at the extreme distances may be shifted, will become important but is undersubscribed. The soon-to-be launched Swift mission will greatly broaden the GRB discipline, and a strategy for associated ground-based measurements is outlined. The need for the improved global distribution of all instruments, in particular, robotic infrared detectors, is cited.

  1. High-z Universe with Gamma Ray Bursts

    Science.gov (United States)

    Kouveliotou, C.

    2011-01-01

    Gamma-Ray Bursts (GRBs) are the most luminous explosions in space and trace the cosmic star formation history back to the first generations of stars. Their bright afterglows allow us to trace the abundances of heavy elements to large distances, thereby measuring cosmic chemical evolution. To date GRBs have been detected up to distances of z=8.23 and possibly even beyond z9. This makes GRBs a unique and powerful tool to probe the high-z Universe up to the re-ionization era. We discuss the current status of the field, place it in context with other probes, and also discuss new mission concepts that have been planned to utilize GRBs as probes.

  2. Two γ-ray bursts from dusty regions with little molecular gas.

    Science.gov (United States)

    Hatsukade, B; Ohta, K; Endo, A; Nakanishi, K; Tamura, Y; Hashimoto, T; Kohno, K

    2014-06-12

    Long-duration γ-ray bursts are associated with the explosions of massive stars and are accordingly expected to reside in star-forming regions with molecular gas (the fuel for star formation). Previous searches for carbon monoxide (CO), a tracer of molecular gas, in burst host galaxies did not detect any emission. Molecules have been detected as absorption in the spectra of γ-ray burst afterglows, and the molecular gas is similar to the translucent or diffuse molecular clouds of the Milky Way. Absorption lines probe the interstellar medium only along the line of sight, so it is not clear whether the molecular gas represents the general properties of the regions where the bursts occur. Here we report spatially resolved observations of CO line emission and millimetre-wavelength continuum emission in two galaxies hosting γ-ray bursts. The bursts happened in regions rich in dust, but not particularly rich in molecular gas. The ratio of molecular gas to dust (forming regions of the Milky Way and nearby star-forming galaxies, suggesting that much of the dense gas where stars form has been dissipated by other massive stars.

  3. Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Asano, K.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; hide

    2013-01-01

    The observations of the exceptionally bright gamma-ray burst (GRB) 130427A by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope provide constraints on the nature of these unique astrophysical sources. GRB 130427A had the largest fluence, highest-energy photon (95 GeV), longest gamma-ray duration (20 hours), and one of the largest isotropic energy releases ever observed from a GRB. Temporal and spectral analyses of GRB 130427A challenge the widely accepted model that the nonthermal high-energy emission in the afterglow phase of GRBs is synchrotron emission radiated by electrons accelerated at an external shock.

  4. Fermi-LAT observations of the gamma-ray burst GRB 130427A.

    Science.gov (United States)

    Ackermann, M; Ajello, M; Asano, K; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Bechtol, K; Bellazzini, R; Bissaldi, E; Bonamente, E; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Burgess, J Michael; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cecchi, C; Chaplin, V; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Chiaro, G; Ciprini, S; Claus, R; Cleveland, W; Cohen-Tanugi, J; Collazzi, A; Cominsky, L R; Connaughton, V; Conrad, J; Cutini, S; D'Ammando, F; de Angelis, A; DeKlotz, M; de Palma, F; Dermer, C D; Desiante, R; Diekmann, A; Di Venere, L; Drell, P S; Drlica-Wagner, A; Favuzzi, C; Fegan, S J; Ferrara, E C; Finke, J; Fitzpatrick, G; Focke, W B; Franckowiak, A; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Gibby, M; Giglietto, N; Giles, M; Giordano, F; Giroletti, M; Godfrey, G; Granot, J; Grenier, I A; Grove, J E; Gruber, D; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Horan, D; Hughes, R E; Inoue, Y; Jogler, T; Jóhannesson, G; Johnson, W N; Kawano, T; Knödlseder, J; Kocevski, D; Kuss, M; Lande, J; Larsson, S; Latronico, L; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Mayer, M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mizuno, T; Moiseev, A A; Monzani, M E; Moretti, E; Morselli, A; Moskalenko, I V; Murgia, S; Nemmen, R; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orienti, M; Paneque, D; Pelassa, V; Perkins, J S; Pesce-Rollins, M; Petrosian, V; Piron, F; Pivato, G; Porter, T A; Racusin, J L; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Ritz, S; Roth, M; Ryde, F; Sartori, A; Parkinson, P M Saz; Scargle, J D; Schulz, A; Sgrò, C; Siskind, E J; Sonbas, E; Spandre, G; Spinelli, P; Tajima, H; Takahashi, H; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Winer, B L; Wood, K S; Yamazaki, R; Younes, G; Yu, H-F; Zhu, S J; Bhat, P N; Briggs, M S; Byrne, D; Foley, S; Goldstein, A; Jenke, P; Kippen, R M; Kouveliotou, C; McBreen, S; Meegan, C; Paciesas, W S; Preece, R; Rau, A; Tierney, D; van der Horst, A J; von Kienlin, A; Wilson-Hodge, C; Xiong, S; Cusumano, G; La Parola, V; Cummings, J R

    2014-01-03

    The observations of the exceptionally bright gamma-ray burst (GRB) 130427A by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope provide constraints on the nature of these unique astrophysical sources. GRB 130427A had the largest fluence, highest-energy photon (95 GeV), longest γ-ray duration (20 hours), and one of the largest isotropic energy releases ever observed from a GRB. Temporal and spectral analyses of GRB 130427A challenge the widely accepted model that the nonthermal high-energy emission in the afterglow phase of GRBs is synchrotron emission radiated by electrons accelerated at an external shock.

  5. GRB 080503 LATE AFTERGLOW RE-BRIGHTENING: SIGNATURE OF A MAGNETAR-POWERED MERGER-NOVA

    Energy Technology Data Exchange (ETDEWEB)

    Gao, He; Ding, Xuan; Wu, Xue-Feng [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Dai, Zi-Gao [School of Astronomy and Space Science, Nanjing University, Nanjing 2100093 (China); Zhang, Bing, E-mail: hug18@psu.edu, E-mail: xfwu@pmo.ac.cn, E-mail: dzg@nju.edu.cn, E-mail: zhang@physics.unlv.edu [Department of Physics and Astronomy, University of Nevada Las Vegas, NV 89154 (United States)

    2015-07-10

    GRB 080503 is a short gamma-ray burst (GRB) detected by Swift and has been classified as a GRB originating from a compact star merger. The soft extended emission and the simultaneous late re-brightening in both the X-ray and optical afterglow light curves raise interesting questions regarding its physical origin. We show that the broadband data of GRB 080503 can be well explained within the framework of the double neutron star merger model, provided that the merger remnant is a rapidly rotating massive neutron star with an extremely high magnetic field (i.e., a millisecond magnetar). We show that the late optical re-brightening is consistent with the emission from a magnetar-powered “merger-nova.” This adds one more case to the growing sample of merger-novae associated with short GRBs. The soft extended emission and the late X-ray excess emission are well connected through a magnetar dipole spin-down luminosity evolution function, suggesting that direct magnetic dissipation is the mechanism to produce these X-rays. The X-ray emission initially leaks from a hole in the merger ejecta pierced by the short GRB jet. The hole subsequently closes after the magnetar spins down and the magnetic pressure drops below ram pressure. The X-ray photons are then trapped behind the merger-nova ejecta until the ejecta becomes optically thin at a later time. This explains the essentially simultaneous re-brightening in both the optical and X-ray light curves. Within this model, future gravitational-wave sources could be associated with a bright X-ray counterpart along with the merger-nova, even if the short GRB jet beams away from Earth.

  6. Gamma-ray bursts

    National Research Council Canada - National Science Library

    Gehrels, Neil; Mészáros, Péter

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma rays coming from the cosmos. They occur roughly once per day, typically last for tens of seconds, and are the most luminous events in the universe...

  7. High Energy Gamma-Ray Emission from Gamma-Ray Bursts - Before GLAST

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yi-Zhong; Piran, Tsvi

    2011-11-29

    Gamma-ray bursts (GRBs) are short and intense emission of soft {gamma}-rays, which have fascinated astronomers and astrophysicists since their unexpected discovery in 1960s. The X-ray/optical/radio afterglow observations confirm the cosmological origin of GRBs, support the fireball model, and imply a long-activity of the central engine. The high-energy {gamma}-ray emission (> 20 MeV) from GRBs is particularly important because they shed some lights on the radiation mechanisms and can help us to constrain the physical processes giving rise to the early afterglows. In this work, we review observational and theoretical studies of the high-energy emission from GRBs. Special attention is given to the expected high-energy emission signatures accompanying the canonical early-time X-ray afterglow that was observed by the Swift X-ray Telescope. We also discuss the detection prospect of the upcoming GLAST satellite and the current ground-based Cerenkov detectors.

  8. Bremsstrahlung analysis through the microwave cutoff and afterglow performances

    CERN Document Server

    Lamoureux, M P; Niimura, M; Kidera, M; Nakagawa, T

    1999-01-01

    Bremsstralung spectra with a very good energy resolution have been obtained for various time slabs of a few ms throughout the microwave cutoff. In a recent work (1) we had noticed+ and explained why the enhancement of the extracted high charge currents by the afterglow effect is more pronounced when the X-ray emission in the heating stage is more intense. In the present communication, we give some additional information deduced from our spectra. We indicate estimates of the temperature parameter and of the density of the hot electron population at various times. For this purpose the method presented in ref.(3) was adapted to argon. We also determine the maximum energy reached by the electrons in the steady state; the spare results seem to follow the scaling law indicated in Geller's book (4).

  9. Cosmic Forensics Confirms Gamma-Ray Burst And Supernova Connection

    Science.gov (United States)

    2003-03-01

    Scientists announced today that they have used NASA's Chandra X-ray Observatory to confirm that a gamma-ray burst was connected to the death of a massive star. This result is an important step in understanding the origin of gamma-ray bursts, the most violent events in the present-day universe. "If a gamma-ray burst were a crime, then we now have strong circumstantial evidence that a supernova explosion was at the scene," said Nathaniel Butler of Massachusetts Institute of Technology in Cambridge, lead author of a paper presented today at the meeting of the High Energy Division of the American Astronomical Society. Chandra was able to obtain an unusually long observation (approximately 21 hours) of the afterglow of GRB 020813 (so named because the High-Energy Transient Explorer, HETE, discovered it on August 13, 2002.) A grating spectrometer aboard Chandra revealed an overabundance of elements characteristically dispersed in a supernova explosion. Narrow lines, or bumps, due to silicon and sulfur ions (atoms stripped of most of their electrons) were clearly identified in the X-ray spectrum of GRB 020813. "Our observation of GRB 020813 supports two of the most important features of the popular supra-nova model for gamma-ray bursts," said Butler. "An extremely massive star likely exploded less than two months prior to the gamma-ray burst, and the radiation from the gamma-ray burst was beamed into a narrow cone." An analysis of the data showed that the ions were moving away from the site of the gamma-ray burst at a tenth the speed of light, probably as part of a shell of matter ejected in the supernova explosion. The line features were observed to be sharply peaked, indicating that they were coming from a narrow region of the expanding shell. This implies that only a small fraction of the shell was illuminated by the gamma-ray burst, as would be expected if the burst was beamed into a narrow cone. The observed duration of the afterglow suggests a delay of about 60 days

  10. From Enigma to Tool: Gamma-Ray Burst Reveals Secrets of Host Galaxy

    Science.gov (United States)

    2001-05-01

    , astronomers debated whether the explosions were close, in our own Milky Way Galaxy, or far, in distant galaxies. In addition, a plethora of theories attempted to explain the bursts, but a lack of observational data prevented scientists from choosing among the theories. Optical and radio telescopes first spotted the "afterglows" from gamma- ray bursts in 1997. It was quickly determined that the explosions are occurring in very distant galaxies. Subsequent observations, most astronomers believe, have narrowed the theories down to two: either the explosions are the result of pairs of old, superdense neutron stars colliding with each other or are the death throes of young, very massive stars. "This burst in 1998 came from a region near the center of its host galaxy, where star birth is occuring at a rapid rate. This supports the theory that gamma-ray bursts come from the death explosions of very young, massive stars," said Kulkarni. The burst, known as GRB 980703, was detected by a satellite on July 3, 1998, and the VLA first observed it a day later. The astronomers continued to observe the object with the VLA at intervals over the next 1,000 days. This is the longest period over which a gamma-ray-burst afterglow ever has been observed; the previous record-holder was a burst in 1997 that was followed with the VLA for a period of 445 days. "The afterglow of the burst kept getting fainter with time, but we then noticed that the intensity of radio emission was leveling off. We realized that the burst afterglow was still fading, but what was remaining steady was radio emission from the galaxy itself," Berger said. This allowed the scientists to study the characteristics of the galaxy, and of the region within the galaxy where the burst occurred. They concluded that the gamma-ray burst occurred near the center of the galaxy in a region where the galaxy is experiencing its maximum amount of star formation. "If, as we believe, gamma-ray bursts come from the super-explosions of massive

  11. The rapid decline of the prompt emission in Gamma-Ray Bursts

    CERN Document Server

    Dado, Shlomo; De Rújula, Alvaro

    2008-01-01

    Many gamma ray bursts (GRBs) have been observed with the Burst-Alert and X-Ray telescopes of the SWIFT satellite. The successive `pulses' of these GRBs end with a fast decline and a fast spectral softening, until they are overtaken by another pulse, or the last pulse's decline is overtaken by a less rapidly-varying `afterglow'. The fast decline-phase has been attributed, in the standard fireball model of GRBs, to `high-latitude' synchrotron emission from a collision of two conical shells. This interpretation does not agree with the observed spectral softening. The temporal behaviour and the spectral evolution during the fast-decline phase agree with the predictions of the cannonball model of GRBs.

  12. Optical and X-ray Afterglows in the Cannonball Model of GRBs

    OpenAIRE

    De Rújula, Alvaro

    2002-01-01

    The Cannonball Model is based on the hypothesis that GRBs and their afterglows are made in supernova explosions by relativistic ejecta similar to the ones observed in quasars and microquasars. Its predictions are simple, and analytical in fair approximations. The model describes well the properties of the $\\gamma$-rays of GRBs. It gives a very simple and extremely successful description of the optical and X-ray afterglows of {\\it all} GRBs of known redshift. The only problem the model has, so...

  13. Dust reddening and extinction curves toward gamma-ray bursts at z > 4

    Science.gov (United States)

    Bolmer, J.; Greiner, J.; Krühler, T.; Schady, P.; Ledoux, C.; Tanvir, N. R.; Levan, A. J.

    2018-01-01

    Context. Dust is known to be produced in the envelopes of asymptotic giant branch (AGB) stars, the expanded shells of supernova (SN) remnants, and in situ grain growth within the interstellar medium (ISM), although the corresponding efficiency of each of these dust formation mechanisms at different redshifts remains a topic of debate. During the first Gyr after the Big Bang, it is widely believed that there was not enough time to form AGB stars in high numbers, hence the dust at this epoch is expected to be purely from SNe or subsequent grain growth in the ISM. The time period corresponding to z 5-6 is thus expected to display the transition from SN-only dust to a mixture of both formation channels as is generally recognized at present. Aims: Here we aim to use afterglow observations of gamma-ray bursts (GRBs) at redshifts larger than z > 4 to derive host galaxy dust column densities along their line of sight and to test if a SN-type dust extinction curve is required for some of the bursts. Methods: We performed GRB afterglow observations with the seven-channel Gamma-Ray Optical and Near-infrared Detector (GROND) at the 2.2 m MPI telescope in La Silla, Chile (ESO), and we combined these observations with quasi-simultaneous data gathered with the XRT telescope on board the Swift satellite. Results: We increase the number of measured AV values for GRBs at z > 4 by a factor of 2-3 and find that, in contrast to samples at mostly lower redshift, all of the GRB afterglows have a visual extinction of AV date.

  14. ESA's Integral detects closest cosmic gamma-ray burst

    Science.gov (United States)

    2004-08-01

    5 August 2004 A gamma-ray burst detected by ESA's Integral gamma-ray observatory on 3 December 2003 has been thoroughly studied for months by an armada of space and ground-based observatories. Astronomers have now concluded that this event, called GRB 031203, is the closest cosmic gamma-ray burst on record, but also the faintest. This also suggests that an entire population of sub-energetic gamma-ray bursts has so far gone unnoticed... Gamma ray burst model hi-res Size hi-res: 22 KB Credits: CXC/M. Weiss Artist impression of a low-energy gamma-ray burst This illustration describes a model for a gamma-ray burst, like the one detected by Integral on 3 December 2003 (GRB 031203). A jet of high-energy particles from a rapidly rotating black hole interacts with surrounding matter. Observations with Integral on 3 December 2003 and data on its afterglow, collected afterwards with XMM-Newton, Chandra and the Very Large Array telescope, show that GRB 031203 radiated only a fraction of the energy of normal gamma-ray bursts. Like supernovae, gamma-ray bursts are thought to be produced by the collapse of the core of a massive star. However, while the process leading to supernovae is relatively well understood, astronomers still do not know what happens when a core collapses to form a black hole. The discovery of 'under-energetic' gamma-ray bursts, like GRB 031203, should provide valuable clues as to links between supernovae, black holes and gamma-ray bursts. Lo-res JPG (22 Kb) Hi-res TIFF (5800 Kb) Cosmic gamma-ray bursts (GRBs) are flashes of gamma rays that can last from less than a second to a few minutes and occur at random positions in the sky. A large fraction of them is thought to result when a black hole is created from a dying star in a distant galaxy. Astronomers believe that a hot disc surrounding the black hole, made of gas and matter falling onto it, somehow emits an energetic beam parallel to the axis of rotation. According to the simplest picture, all GRBs

  15. On the Prospects of Gamma-Ray Burst Detection in the TeV Band

    Science.gov (United States)

    Vurm, Indrek; Beloborodov, Andrei M.

    2017-09-01

    A gamma-ray burst (GRB) jet running into an external medium is expected to generate luminous GeV-TeV emission lasting from minutes to several hours. The high-energy emission results from inverse Compton upscattering of prompt and afterglow photons by shock-heated thermal plasma. At its peak the high-energy radiation carries a significant fraction of the power dissipated at the forward shock. We discuss in detail the expected TeV luminosity, using a robust “minimal” emission model. Then, using the statistical properties of the GRB population (luminosity function, redshift distribution, afterglow energy), we simulate the expected detection rates of GRBs by current and upcoming atmospheric Cherenkov instruments. We find that GRBs exploding into a low-density interstellar medium must produce TeV emission that would have already been detected by the currently operating Cherenkov telescopes. The absence of detections is consistent with explosions into a dense wind of the GRB progenitor. If, as suggested by the recent analysis of Fermi LAT data, the typical environment of long GRBs is a Wolf-Rayet progenitor wind with the density parameter A˜ {10}11 g cm-1, then 10%-20% of the bursts that trigger the space-borne detectors should also be detectable by the upcoming Cherenkov Telescope Array (CTA) under favorable observing conditions. Since absorption by the extragalactic background light limits the detectability above 0.1 TeV for all but the most nearby bursts (z≲ 1), the reduced energy threshold of CTA is the key improvement over current instruments, which should increase the number of detectable bursts by at least a factor of 3 compared with currently operating facilities.

  16. THE BURST CLUSTER: DARK MATTER IN A CLUSTER MERGER ASSOCIATED WITH THE SHORT GAMMA-RAY BURST, GRB 050509B

    Energy Technology Data Exchange (ETDEWEB)

    Dahle, H. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); Sarazin, C. L. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Lopez, L. A. [MIT-Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, 37-664H, Cambridge, MA 02139 (United States); Kouveliotou, C. [Space Science Office, ZP12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Patel, S. K. [Optical Sciences Corporation, 6767 Old Madison Pike, Suite 650, Huntsville, AL 35806 (United States); Rol, E.; Van der Horst, A. J.; Wijers, R. A. M. J. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam (Netherlands); Fynbo, J.; Michalowski, M. J. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries vej 30, DK-2100 Copenhagen (Denmark); Burrows, D. N.; Grupe, D. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Gehrels, N. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ramirez-Ruiz, E., E-mail: hdahle@astro.uio.no [Department of Astronomy and Astrophysics, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95060 (United States)

    2013-07-20

    We have identified a merging galaxy cluster with evidence of two distinct subclusters. The X-ray and optical data suggest that the subclusters are presently moving away from each other after closest approach. This cluster merger was discovered from observations of the first well-localized short-duration gamma-ray burst (GRB), GRB 050509B. The Swift/Burst Alert Telescope error position of the source is coincident with a cluster of galaxies ZwCl 1234.0+02916, while the subsequent Swift/X-Ray Telescope localization of the X-ray afterglow found the GRB coincident with 2MASX J12361286+2858580, a giant red elliptical galaxy in the cluster. Deep multi-epoch optical images were obtained in this field to constrain the evolution of the GRB afterglow, including a total of 27,480 s exposure in the F814W band with Hubble Space Telescope Advanced Camera for Surveys, among the deepest imaging ever obtained toward a known galaxy cluster in a single passband. We perform a weak gravitational lensing analysis based on these data, including mapping of the total mass distribution of the merger system with high spatial resolution. When combined with Chandra X-ray Observatory Advanced CCD Imaging Spectrometer and Swift/XRT observations, we are able to investigate the dynamical state of the merger to better understand the nature of the dark matter component. Our weak gravitational lensing measurements reveal a separation of the X-ray centroid of the western subcluster from the center of the mass and galaxy light distributions, which is somewhat similar to that of the famous 'Bullet cluster', and we conclude that this 'Burst cluster' adds another candidate to the previously known merger systems for determining the nature of dark matter, as well as for studying the environment of a short GRB. Finally, we discuss potential connections between the cluster dynamical state and/or matter composition, and compact object mergers, which is currently the leading model for the

  17. Early-time observations of gamma-ray burst error boxes with the Livermore optical transient imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G G

    2000-08-01

    Despite the enormous wealth of gamma-ray burst (GRB) data collected over the past several years the physical mechanism which causes these extremely powerful phenomena is still unknown. Simultaneous and early time optical observations of GRBs will likely make an great contribution t o our understanding. LOTIS is a robotic wide field-of-view telescope dedicated to the search for prompt and early-time optical afterglows from gamma-ray bursts. LOTIS began routine operations in October 1996 and since that time has responded to over 145 gamma-ray burst triggers. Although LOTIS has not yet detected prompt optical emission from a GRB its upper limits have provided constraints on the theoretical emission mechanisms. Super-LOTIS, also a robotic wide field-of-view telescope, can detect emission 100 times fainter than LOTIS is capable of detecting. Routine observations from Steward Observatory's Kitt Peak Station will begin in the immediate future. During engineering test runs under bright skies from the grounds of Lawrence Livermore National Laboratory Super-LOTIS provided its first upper limits on the early-time optical afterglow of GRBs. This dissertation provides a summary of the results from LOTIS and Super-LOTIS through the time of writing. Plans for future studies with both systems are also presented.

  18. A repeating fast radio burst

    Science.gov (United States)

    Spitler, L. G.; Scholz, P.; Hessels, J. W. T.; Bogdanov, S.; Brazier, A.; Camilo, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J.; Ferdman, R. D.; Freire, P. C. C.; Kaspi, V. M.; Lazarus, P.; Lynch, R.; Madsen, E. C.; McLaughlin, M. A.; Patel, C.; Ransom, S. M.; Seymour, A.; Stairs, I. H.; Stappers, B. W.; van Leeuwen, J.; Zhu, W. W.

    2016-03-01

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.

  19. A Study of the Gamma-Ray Burst Fundamental Plane

    Science.gov (United States)

    Dainotti, Maria; Gilbertson, Christian; Postnikov, Sergey; Nagataki, Shigehiro; Willingale, Richard

    2017-01-01

    A class of long gamma-ray bursts (GRBs) with a plateau phase in their X-ray afterglows obeys a three dimensional (3D) relation (Dainotti et al. 2016), between the rest-frame time at the end of the plateau, $T_a$, its corresponding X-ray luminosity, $L_{a}$, and the peak luminosity in the prompt emission, $L_{peak}$, which is an extension of the two dimensional Dainotti relation. This 3D relation identifies a GRB fundamental plane whose existence we confirmed. We extended the original analysis with X-ray data from July 2014 to July 2016 achieving a total sample of 183 {\\it Swift} GRBs with afterglow plateaus and known redshifts. We added the most recent GRBs to the previous `gold sample' (now including 45 GRBs) and obtained an intrinsic scatter compatible within one $\\sigma$ with the previous result. We compared several GRB categories, such as short with extended emission, X-ray Flashes, GRBs associated with SNe, a sample of only long duration GRBs (132), selected from the total sample by excluding GRBs of the previous categories, and the gold sample, composed only by GRBs with light curves with good data coverage and relatively flat plateaus. We evaluated the relation planes for each of the mentioned categories and showed that they are not statistically different from the plane derived from the gold sample and that the fundamental plane derived from the gold sample has an intrinsic scatter smaller than any plane derived from the other sample categories. We compared the jet opening angles tabulated in literature with the angles derived using the $E_{iso}-E_{gamma}$ relation of the method in Pescalli et al. (2015) and calculated the relation plane for a sample of long GRBs accounting for the different jet opening angles. We observed that this correction does not significantly reduce the scatter. In an extended analysis, we found that the fundamental plane is independent from several prompt and afterglow parameters, such as the jet opening angle, $\\theta

  20. Gamma-ray bursts

    CERN Document Server

    Wijers, Ralph A M J; Woosley, Stan

    2012-01-01

    Cosmic gamma ray bursts (GRBs) have fascinated scientists and the public alike since their discovery in the late 1960s. Their story is told here by some of the scientists who participated in their discovery and, after many decades of false starts, solved the problem of their origin. Fourteen chapters by active researchers in the field present a detailed history of the discovery, a comprehensive theoretical description of GRB central engine and emission models, a discussion of GRB host galaxies and a guide to how GRBs can be used as cosmological tools. Observations are grouped into three sets from the satellites CGRO, BeppoSAX and Swift, and followed by a discussion of multi-wavelength observations. This is the first edited volume on GRB astrophysics that presents a fully comprehensive review of the subject. Utilizing the latest research, Gamma-ray Bursts is an essential desktop companion for graduate students and researchers in astrophysics.

  1. Relaxation of heavy species and gas temperature in the afterglow of a N2 microwave discharge★

    Science.gov (United States)

    Pintassilgo, Carlos D.; Guerra, Vasco

    2017-10-01

    In this paper we present a self-consistent kinetic model to study the temporal variation of the gas temperature in the afterglow of a 440 Pa microwave nitrogen discharge operating at 433 MHz in a 3.8 cm diameter tube. The initial conditions in the afterglow are determined by a kinetic model that solves the electron Boltzmann equation coupled to the gas thermal balance equation and a system of rate-balance equations for N2(X 1∑g+, v) molecules, electronically excited states of N2, ground and excited states of atomic nitrogen and the main positive ions. Once the initial concentrations of the heavy species and gas temperature are known, their relaxation in the afterglow is obtained from the solutions to the corresponding time-dependent equations. Modelling predictions are found to be in good agreement with previously measured values for the concentrations of N(4S) atoms and N2(A 3∑u+) molecules, and the radially averaged gas temperature Tg along the afterglow of a microwave discharge in N2 under the same working conditions. It is shown that gas heating in the afterglow comes essentially from the energy transfer involving non-resonant vibration-vibration (V-V) collisions between vibrationally excited nitrogen molecules, as well as from energy exchanges in vibration-translation (V-T) on N2-N collisions. Contribution to the topical issue "Plasma Sources and Plasma Processes (PSPP)", edited by Luis Lemos Alves, Thierry Belmonte and Tiberiu Minea

  2. Machine-z: Rapid Machine-Learned Redshift Indicator for Swift Gamma-Ray Bursts

    Science.gov (United States)

    Ukwatta, T. N.; Wozniak, P. R.; Gehrels, N.

    2016-01-01

    Studies of high-redshift gamma-ray bursts (GRBs) provide important information about the early Universe such as the rates of stellar collapsars and mergers, the metallicity content, constraints on the re-ionization period, and probes of the Hubble expansion. Rapid selection of high-z candidates from GRB samples reported in real time by dedicated space missions such as Swift is the key to identifying the most distant bursts before the optical afterglow becomes too dim to warrant a good spectrum. Here, we introduce 'machine-z', a redshift prediction algorithm and a 'high-z' classifier for Swift GRBs based on machine learning. Our method relies exclusively on canonical data commonly available within the first few hours after the GRB trigger. Using a sample of 284 bursts with measured redshifts, we trained a randomized ensemble of decision trees (random forest) to perform both regression and classification. Cross-validated performance studies show that the correlation coefficient between machine-z predictions and the true redshift is nearly 0.6. At the same time, our high-z classifier can achieve 80 per cent recall of true high-redshift bursts, while incurring a false positive rate of 20 per cent. With 40 per cent false positive rate the classifier can achieve approximately 100 per cent recall. The most reliable selection of high-redshift GRBs is obtained by combining predictions from both the high-z classifier and the machine-z regressor.

  3. THE PEAK ENERGY-DURATION CORRELATION AND POSSIBLE IMPLICATIONS ON GAMMA RAY BURST PROGENITOR

    Directory of Open Access Journals (Sweden)

    Heon-Young Chang

    2006-09-01

    Full Text Available We investigate the correlation between the peak energy and the burst duration using available long GRB data with known redshift, whose circumburst medium type has been suggested via afterglow light curve modeling. We find that the peak energy and the burst duration of the observed GRBs are correlated both in the observer frame and in the GRB rest frame. For our total sample we obtain, for instance, the Spearman rank-order correlation values sim 0.75 and sim 0.65 with the chance probabilities P=1.0 times 10^{-3} and P=6.0 times 10^{-3} in the observer frame and in the GRB rest frame, respectively. We note that taking the effects of the expanding universe into account reduces the value a bit. We further attempt to separate our GRB sample into the ``ISM'' GRBs and the ``WIND'' GRBs according to environment models inferred from the afterglow light curves and apply statistical tests, as one may expect that clues on the progenitor of GRBs can be deduced directly from prompt emission properties other than from the ambient environment surrounding GRBs. We find that two subsamples of GRBs show different correlation coefficients. That is, the Spearman rank-order correlation are sim 0.65 and sim 0.57 for the ``ISM'' GRBs and ``WIND'' GRBs, respectively, after taking the effects of the expanding universe into account. It is not yet, however, statistically very much significant that the GRBS in two types of circumburst media show statistically characteristic behaviors, from which one may conclude that all the long bursts are not originated from a single progenitor population. A larger size of data is required to increase the statistical significance.

  4. Optothermally actuated capillary burst valve

    Science.gov (United States)

    Eriksen, Johan; Bilenberg, Brian; Kristensen, Anders; Marie, Rodolphe

    2017-04-01

    We demonstrate the optothermal actuation of individual capillary burst valves in an all-polymer microfluidic device. The capillary burst valves are realised in a planar design by introducing a fluidic constriction in a microfluidic channel of constant depth. We show that a capillary burst valve can be burst by raising the temperature due to the temperature dependence of the fluid surface tension. We address individual valves by using a local heating platform based on a thin film of near infrared absorber dye embedded in the lid used to seal the microfluidic device [L. H. Thamdrup et al., Nano Lett. 10, 826-832 (2010)]. An individual valve is burst by focusing the laser in its vicinity. We demonstrate the capture of single polystyrene 7 μm beads in the constriction triggered by the bursting of the valve.

  5. The γ-ray afterglows of tidal disruption events.

    Science.gov (United States)

    Chen, Xian; Gómez-Vargas, Germán Arturo; Guillochon, James

    2016-05-21

    A star wandering too close to a supermassive black hole (SMBH) will be tidally disrupted. Previous studies of such 'tidal disruption event' (TDE) mostly focus on the stellar debris that are bound to the system, because they give rise to luminous flares. On the other hand, half of the stellar debris in principle are unbound and can stream to a great distance, but so far there is no clear evidence that this 'unbound debris stream' (UDS) exists. Motivated by the fact that the circum-nuclear region around SMBHs is usually filled with dense molecular clouds (MCs), here we investigate the observational signatures resulting from the collision between an UDS and an MC, which is likely to happen hundreds of years after a TDE. We focus on γ-ray emission (0.1-10(5) GeV), which comes from the encounter of shock-accelerated cosmic rays with background protons and, more importantly, is not subject to extinction. We show that because of the high proton density inside an MC, the peak γ-ray luminosity, about 10(39) erg s(-1), is at least 100 times greater than that in the case without an MC (only with a smooth interstellar medium). The luminosity decays on a time-scale of decades, depending on the distance of the MC, and about a dozen of these 'TDE afterglows' could be detected within a distance of about 16 Mpc by the future Cherenkov Telescope Array. Without careful discrimination, these sources potentially could contaminate the searches for starburst galaxies, galactic nuclei containing millisecond pulsars or dark matter annihilation signals.

  6. Study on the Influence Factors of the Luminous Intensity of the Long Afterglow Luminous Paints

    Directory of Open Access Journals (Sweden)

    Zhao Su

    2016-01-01

    Full Text Available In order to extend the time afterglow luminous powder, enhancement the brightness of luminous paint, this study explore affect long afterglow energy storage luminous paints brightness of the main factors. Luminous paints were prepared with rare earth aluminate long afterglow luminescent powder, first is luminous powder surface modification, then investigate the influence of light emitting powder content, calcium carbonate, titanium dioxide, nano alumina and other fillers on the luminescent properties of the paints. It was concluded that the water resistance of the luminescent powder is better and the brightness can be improved after the modification of anhydrous alcohol. The addition of nano-alumina can improve the brightness of the system, and can effectively enhance the hardness of the paints. In the paints, the two kinds of components of carbonate and titanium dioxide have little effect on the luminescent brightness of the painting.

  7. Controlled growth of copper oxide nanostructures by atmospheric pressure micro-afterglow

    Science.gov (United States)

    Altaweel, A.; Filipič, G.; Gries, T.; Belmonte, T.

    2014-12-01

    A large variety of copper oxide nanostructures encompassing nanodots, nanowires and nanowalls, sometimes organized in ;cabbage-like; architectures, are grown locally by direct oxidation of copper thin films using the micro-afterglow of an Ar-O2 microwave plasma operating at atmospheric pressure. Morphology, structure and composition of the oxidized copper thin films are characterized by X-ray diffraction, secondary ion mass spectrometry and scanning electron microscopy. The concentric areas where each kind of nanostructures is found are defined by both their radial position with respect to the afterglow centre and by experimental conditions. A growth mechanism is proposed, based on stress-induced outward migration of copper ions. The development of stress gradients is caused by the formation of a copper oxide scale layer. If copper oxide nanowires can be grown as in thermal oxidation processes, micro-afterglow conditions offer novel nanostructures and nano-architectures.

  8. Electron energy and vibrational distribution functions of carbon monoxide in nanosecond atmospheric discharges and microsecond afterglows

    Science.gov (United States)

    Pietanza, L. D.; Colonna, G.; Capitelli, M.

    2017-12-01

    Nanopulse atmospheric carbon monoxide discharges and corresponding afterglows have been investigated in a wide range of applied reduced electric field (130 kinetics of vibrational and electronic excited states as well as to a simplified plasma chemistry for the different species formed during the activation of CO. The molar fraction of electronically excited states generated in the discharge is sufficient to create structures in the EEDF in the afterglow regime. On the other hand, only for long duration pulses (i.e. 50 ns), non-equilibrium vibrational distributions can be observed especially in the afterglow. The trend of the results for the case study E/N = 200 Td, \\text{pulse}=2$ ns is qualitatively and quantitatively similar to the corresponding case for CO2 implying that the activation of CO2 by cold plasmas should take into account the kinetics of formed CO with the same accuracy as the CO2 itself.

  9. Low-resolution VLT Spectroscopy of GRBs 991216, 011211, 021211 and 030328

    Science.gov (United States)

    Vreeswijk, P. M.; Smette, A.; Fruchter, A. S.; Palazzi, E.; Rol, E.; Wijers, R. A. M. J.; Kouveliotou, C.; Kaper, L.; Pian, E.; Masetti, N.

    2005-01-01

    We present low-resolution VLT spectroscopy of the aftergiow position of the gamma ray bursts 991216, 011211, 021211 and 030328. The spectmm of GRB 991216 shows two probable absorption systems at z = 0.80 and z = 1.02, where the highest redshift most likely reflects the distance to the host galaxy. A third, more uncertain, system may be detected at z = 0.77. HST imaging of the field obtained 4 months later, show two amorphous regions of emission, one at the projected OT position, the presumed host galaxy at z = 1.02, and the other 0"6 away. All significant lines in the spectrum of GRB 011211 are identified with lines originating in a single absorption system at z = 2.142 plus or minus 0.002, the redshift of the GRB 011211 host galaxy. We also detect Lya in the host, for which we fit a neutral hydrogen column density of log N(HI)=20.4 plus or minus 0.2, which indicates that it is a damped Lya system. For GRB021211, we detect a single emission line in a spectrum tens of days after the burst, which we identify as [OII] at z = 1.006. The galaxy l"5 away from the afterglow location has z = 0.800, and is therefore unrelated to the GRB. Finally, for GRB030328 at least two absorption systems are required to explain all significant lines: one at z = 1.522, the likely redshift of the GRB, and the other at z = 1.295. For the latter system we only detect two lines, and we consider the reality of this system to be uncertain.

  10. Introduction to Optical Burst Switching

    OpenAIRE

    KERNÁCS János; Szilágyi, Szabolcs

    2010-01-01

    Optical Burst Switching (OBS) isconsidered a popular switching paradigm for therealization of all-optical networks due to the balance itoffers between the coarse-grained Optical CircuitSwitching (OSC) and fine-grained Optical PacketSwitching (OPS). Given that the data are switched allopticallyat the burst level, Optical Burst Switchingcombines the transparency of Optical CircuitSwitching with the benefits of statistical multiplexingin Optical Packet Switching.

  11. Optical and X-ray Afterglows in the Cannonball Model of GRBs

    CERN Document Server

    De Rújula, Alvaro

    2003-01-01

    The Cannonball Model is based on the hypothesis that GRBs and their afterglows are made in supernova explosions by relativistic ejecta similar to the ones observed in quasars and microquasars. Its predictions are simple, and analytical in fair approximations. The model describes well the properties of the $\\gamma$-rays of GRBs. It gives a very simple and extremely successful description of the optical and X-ray afterglows of {\\it all} GRBs of known redshift. The only problem the model has, so far, is that it is contrary to staunch orthodox beliefs.

  12. NEW BURST ASSEMBLY AND SCHEDULING TECHNIQUE FOR OPTICAL BURST SWITCHING NETWORKS

    OpenAIRE

    Kavitha, V.; V.Palanisamy

    2013-01-01

    The Optical Burst Switching is a new switching technology that efficiently utilizes the bandwidth in the optical layer. The key areas to be concentrated in Optical Burst Switching (OBS) networks are the burst assembly and burst scheduling i.e., assignment of wavelengths to the incoming bursts. This study presents a New Burst Assembly and Scheduling (NBAS) technique in a simultaneous multipath transmission for burst loss recovery in OBS networks. A Redundant Burst Segmentation (RBS) is used fo...

  13. Short duration gamma ray bursts

    Indian Academy of Sciences (India)

    Abstract. After a short review of gamma ray bursts (GRBs), we discuss the physical implications of strong statistical correlations seen among some of the parameters of short duration bursts (90 < 2 s). Finally, we conclude with a brief sketch of a new unified model for long and short GRBs.

  14. Short duration gamma ray bursts

    Indian Academy of Sciences (India)

    Gamma ray bursts (GRBs) are transient extragalactic events appearing randomly in the sky as localized flashes of electromagnetic radiation, consisting predominantly of photons with energy in the range of ~0.1–1 MeV. These sporadic bursts, occurring at the rate of ~600 per year, are isotropically distributed in the sky, ...

  15. Bursts de raios gama

    Science.gov (United States)

    Braga, J.

    2003-02-01

    Nos últimos anos, graças principalmente aos dados obtidos pelo Compton Gamma-Ray Observatory e pelo satélite ítalo-holandês BeppoSAX, grandes avanços foram obtidos no nosso conhecimento sobre os fascinantes e enigmáticos fenômenos conhecidos por "bursts"de raios gama. Neste trabalho é feita uma revisão sobre a fenomenologia desses misteriosos objetos e são apresentados os desenvolvimentos recentes nessa área palpitante da astrofísica moderna, ressaltando tanto os resultados observacionais obtidos até o momento quanto os modelos teóricos propostos para explixá-los.

  16. Quantum key based burst confidentiality in optical burst switched networks.

    Science.gov (United States)

    Balamurugan, A M; Sivasubramanian, A

    2014-01-01

    The optical burst switching (OBS) is an emergent result to the technology concern that could achieve a feasible network in future. They are endowed with the ability to meet the bandwidth requirement of those applications that require intensive bandwidth. There are more domains opening up in the OBS that evidently shows their advantages and their capability to face the future network traffic. However, the concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution, and quality of service (QoS). This paper deals with employing RC4 (stream cipher) to encrypt and decrypt bursts thereby ensuring the confidentiality of the burst. Although the use of AES algorithm has already been proposed for the same issue, by contrasting the two algorithms under the parameters of burst encryption and decryption time, end-to-end delay, it was found that RC4 provided better results. This paper looks to provide a better solution for the confidentiality of the burst in OBS networks.

  17. Quantum Key Based Burst Confidentiality in Optical Burst Switched Networks

    Directory of Open Access Journals (Sweden)

    A. M. Balamurugan

    2014-01-01

    Full Text Available The optical burst switching (OBS is an emergent result to the technology concern that could achieve a feasible network in future. They are endowed with the ability to meet the bandwidth requirement of those applications that require intensive bandwidth. There are more domains opening up in the OBS that evidently shows their advantages and their capability to face the future network traffic. However, the concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution, and quality of service (QoS. This paper deals with employing RC4 (stream cipher to encrypt and decrypt bursts thereby ensuring the confidentiality of the burst. Although the use of AES algorithm has already been proposed for the same issue, by contrasting the two algorithms under the parameters of burst encryption and decryption time, end-to-end delay, it was found that RC4 provided better results. This paper looks to provide a better solution for the confidentiality of the burst in OBS networks.

  18. Selective minority-ion heating in the afterglow of an electron cyclotron resonance ion source

    NARCIS (Netherlands)

    Nadzeyka, A; Meyer, D; Barzangy, F; Drentje, AG; Wiesemann, K

    We report first experimental results on selective minority-ion heating in the afterglow mode of electron cyclotron resonance ion sources in Bochum and at the KVI (Groningen) in mixtures of Ar/O/He and in pure nitrogen. In addition we measured time resolved vacuum ultraviolet-line intensities of

  19. The metallicity and dust content of a redshift 5 gamma-ray burst host galaxy

    DEFF Research Database (Denmark)

    Sparre, M.; Hartoog, O. E.; Krühler, T.

    2014-01-01

    Observations of the afterglows of long gamma-ray bursts (GRBs) allow the study of star-forming galaxies across most of cosmic history. Here we present observations of GRB 111008A from which we can measure metallicity, chemical abundance patterns, dust-to-metals ratio and extinction of the GRB host...... galaxy at z=5.0. The host absorption system is a damped Lyman-alpha absorber (DLA) with a very large neutral hydrogen column density of log N(HI)/cm^(-2) = 22.30 +/- 0.06, and a metallicity of [S/H]= -1.70 +/- 0.10. It is the highest redshift GRB with such a precise metallicity measurement. The presence...... of fine-structure lines confirms the z=5.0 system as the GRB host galaxy, and makes this the highest redshift where Fe II fine-structure lines have been detected. The afterglow is mildly reddened with A_V = 0.11 +/- 0.04 mag, and the host galaxy has a dust-to-metals ratio which is consistent with being...

  20. Jetted GRBs, afterglows and SGRs from quark stars birth

    CERN Document Server

    Dar, Arnon

    1999-01-01

    Recent studies suggest that when cold nuclear matter is compressed to high nuclear densities, diquarks with spin zero and antisymmetric color wave function Bose condensate into a superfluid/superconducting state that is several times as dense. Various astrophysical phenomena may be explained by gravitational collapse of neutron stars (NSs) to (di)quark stars (QSs) as a result of a first order phase transition in NSs within $\\sim 10^{4}$ years after their birth in supernova explosions, when they cooled and spun down sufficiently (by magnetic braking ?). The gravitational energy release drives an explosion which may eject both highly relativistic narrowly collimated jets and a mildly relativistic ``spherical'' shell. The slow contraction/cooling of the remnant QSs can power soft gamma ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs), without invoking a huge magnetic energy storage. The jets can produce the observed gamma ray bursts (GRBs) in distant galaxies when they happen to point in our direction and...

  1. Burst Oscillation Studies with NICER

    Science.gov (United States)

    Mahmoodifar, Simin; Strohmayer, Tod E.

    2017-08-01

    Type I X-ray bursts are thermonuclear flashes observed from the surfaces of accreting neutron stars in Low Mass X-ray Binaries. Oscillations have been observed during the rise and/or decay of some of these X-ray bursts. Those seen during the rise can be well explained by a spreading hot spot model, but large amplitude oscillations in the decay phase remain mysterious because of the absence of a clear-cut source of asymmetry. Here we present the results of our computations of the light curves and amplitudes of oscillations in X-ray burst models that realistically account for both flame spreading and subsequent cooling. For the cooling phase of the burst we use two simple phenomenological models. The first considers asymmetric cooling that can achieve high amplitudes in the tail. The second considers a sustained temperature pattern on the stellar surface that is produced by r-modes propagating in the surface fluid ocean of the star. We will present some simulated burst light curves/spectra using these models and NICER response files, and will show the capabilities of NICER to detect and study burst oscillations. NICER will enable us to study burst oscillations in the energy band below ~3 keV, where there has been no previous measurements of these phenomena.

  2. Magnetars in Ultra-Long Gamma-Ray Bursts and GRB 111209A

    Science.gov (United States)

    Gompertz, B.; Fruchter, A.

    2017-04-01

    Supernova 2011kl, associated with the ultra-long gamma-ray burst (ULGRB) 111209A, exhibited a higher-than-normal peak luminosity, placing it in the parameter space between regular supernovae and super-luminous supernovae. Its light curve can only be matched by an abnormally high fraction of 56Ni that appears inconsistent with the observed spectrum, and as a result it has been suggested that the supernova, and by extension the gamma-ray burst, are powered by the spin-down of a highly magnetized millisecond pulsar, known as a magnetar. We investigate the broadband observations of ULGRB 111209A and find two independent measures that suggest a high density circumburst environment. However, the light curve of the GRB afterglow shows no evidence of a jet break (the steep decline that would be expected as the jet slows due to the resistance of the external medium) out to three weeks after trigger, implying a wide jet. Combined with the high isotropic energy of the burst, this implies that only a magnetar with a spin period of ˜1 ms or faster can provide enough energy to power both ULGRB 111209A and Supernova 2011kl.

  3. Influence of ambient air on the flowing afterglow of an atmospheric pressure Ar/O2 radiofrequency plasma

    CERN Document Server

    Duluard, C Y; Hubert, J; Reniers, F

    2016-01-01

    The influence of ambient air on the flowing afterglow of an atmospheric pressure Ar/O2 radiofrequency plasma has been investigated experimentally. Spatially resolved mass spectrometry and laser induced fluorescence on OH radicals were used to estimate the intrusion of air in between the plasma torch and the substrate as a function of the torch-to-substrate separation distance. No air is detected, within the limits of measurement uncertainties, for separation distances smaller than 5 mm. For larger distances, the effect of ambient air can no longer be neglected, and radial gradients in the concentrations of species appear. The Ar 4p population, determined through absolute optical emission spectroscopy, is seen to decrease with separation distance, whereas a rise in emission from the N2(C--B) system is measured. The observed decay in Ar 4p and N2(C) populations for separation distances greater than 9mm is partly assigned to the increasing collisional quenching rate by N2 and O2 molecules from the entrained air....

  4. Long-lived Ar-Hg plasma in the afterglow of a high-current pulsed discharge

    Energy Technology Data Exchange (ETDEWEB)

    Sergeichev, K. F.; Lukina, N. A.; Fesenko, A. A. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2013-02-15

    High-density (n > 10{sup 12} cm{sup -3}) argon-mercury plasma produced by a short (t {approx} 20 {mu}s) high-power pulsed discharge in argon with an admixture of mercury vapor at a discharge current of {approx}50 A, an argon pressure of {approx}4 mm Hg, and a mercury vapor pressure of {approx}10{sup -3} mm Hg was studied using optical spectroscopy and radio physics methods. It is found that the lifetime of this plasma after the end of the discharge pulse is up to 10{sup -2} s. It is shown that such an abnormally long lifetime of such an afterglow plasma, as compared to the plasma of an argon discharge without an admixture of mercury vapor, is related to the long residence time of atoms and ions of both argon and mercury in highly excited states due to chemi-ionization processes involving long-lived metastable argon ions. It is suggested that dissociative recombination of highly excited molecular ions of argon play an important role in the transfer of excitation to argon atoms and ions that are close to autoionization states.

  5. ALMA and GMRT Constraints on the Off-axis Gamma-Ray Burst 170817A from the Binary Neutron Star Merger GW170817

    Science.gov (United States)

    Kim, S.; Schulze, S.; Resmi, L.; González-López, J.; Higgins, A. B.; Ishwara-Chandra, C. H.; Bauer, F. E.; de Gregorio-Monsalvo, I.; De Pasquale, M.; de Ugarte Postigo, A.; Kann, D. A.; Martín, S.; Oates, S. R.; Starling, R. L. C.; Tanvir, N. R.; Buchner, J.; Campana, S.; Cano, Z.; Covino, S.; Fruchter, A. S.; Fynbo, J. P. U.; Hartmann, D. H.; Hjorth, J.; Jakobsson, P.; Levan, A. J.; Malesani, D.; Michałowski, M. J.; Milvang-Jensen, B.; Misra, K.; O’Brien, P. T.; Sánchez-Ramírez, R.; Thöne, C. C.; Watson, D. J.; Wiersema, K.

    2017-12-01

    Binary neutron-star mergers (BNSMs) are among the most readily detectable gravitational-wave (GW) sources with the Laser Interferometer Gravitational-wave Observatory (LIGO). They are also thought to produce short γ-ray bursts (SGRBs) and kilonovae that are powered by r-process nuclei. Detecting these phenomena simultaneously would provide an unprecedented view of the physics during and after the merger of two compact objects. Such a Rosetta Stone event was detected by LIGO/Virgo on 2017 August 17 at a distance of ∼44 Mpc. We monitored the position of the BNSM with Atacama Large Millimeter/submillimeter Array (ALMA) at 338.5 GHz and the Giant Metrewave Radio Telescope (GMRT) at 1.4 GHz, from 1.4 to 44 days after the merger. Our observations rule out any afterglow more luminous than 3× {10}26 {erg} {{{s}}}-1 {{Hz}}-1 in these bands, probing >2–4 dex fainter than previous SGRB limits. We match these limits, in conjunction with public data announcing the appearance of X-ray and radio emission in the weeks after the GW event, to templates of off-axis afterglows. Our broadband modeling suggests that GW170817 was accompanied by an SGRB and that the γ-ray burst (GRB) jet, powered by {E}{AG,{iso}}∼ {10}50 erg, had a half-opening angle of ∼ 20^\\circ , and was misaligned by ∼ 41^\\circ from our line of sight. The data are also consistent with a more collimated jet: {E}{AG,{iso}}∼ {10}51 erg, {θ }1/2,{jet}∼ 5^\\circ ,{θ }{obs}∼ 17^\\circ . This is the most conclusive detection of an off-axis GRB afterglow and the first associated with a BNSM-GW event to date. We use the viewing angle estimates to infer the initial bulk Lorentz factor and true energy release of the burst.

  6. Galactic and extragalactic hydrogen in the X-ray spectra of Gamma Ray Bursts

    Science.gov (United States)

    Rácz, I. I.; Bagoly, Z.; Tóth, L. V.; Balázs, L. G.; Horváth, I.; Pintér, S.

    2017-07-01

    Two types of emission can be observed from gamma-ray bursts (GRBs): the prompt emission from the central engine which can be observed in gamma or X-ray (as a low energy tail) and the afterglow from the environment in X-ray and at shorter frequencies. We examined the Swift XRT spectra with the XSPEC software. The correct estimation of the galactic interstellar medium is very important because we observe the host emission together with the galactic hydrogen absorption. We found that the estimated intrinsic hydrogen column density and the X-ray flux depend heavily on the redshift and the galactic foreground hydrogen. We also found that the initial parameters of the iteration and the cosmological parameters did not have much effect on the fitting result.

  7. X-ray flares from dense shells formed in gamma-ray burst explosions

    Science.gov (United States)

    Hascoët, R.; Beloborodov, A. M.; Daigne, F.; Mochkovitch, R.

    2017-11-01

    Bright X-ray flares are routinely detected by the Swift satellite during the early afterglow of gamma-ray bursts, when the explosion ejecta drives a blast wave into the external medium. We suggest that the flares are produced as the reverse shock propagates into the tail of the ejecta. The ejecta is expected to contain a few dense shells formed at an earlier stage of the explosion. We show an example of how such dense shells form and describe how the reverse shock interacts with them. A new reflected shock is generated in this interaction, which produces a short-lived X-ray flare. The model provides a natural explanation for the main observed features of the X-ray flares - the fast rise, the steep power-law decline and the characteristic peak duration Δt/t ≃ 0.1-0.3.

  8. Broadband observations of the naked-eye gamma-ray burst GRB 080319B.

    Science.gov (United States)

    Racusin, J L; Karpov, S V; Sokolowski, M; Granot, J; Wu, X F; Pal'shin, V; Covino, S; van der Horst, A J; Oates, S R; Schady, P; Smith, R J; Cummings, J; Starling, R L C; Piotrowski, L W; Zhang, B; Evans, P A; Holland, S T; Malek, K; Page, M T; Vetere, L; Margutti, R; Guidorzi, C; Kamble, A P; Curran, P A; Beardmore, A; Kouveliotou, C; Mankiewicz, L; Melandri, A; O'Brien, P T; Page, K L; Piran, T; Tanvir, N R; Wrochna, G; Aptekar, R L; Barthelmy, S; Bartolini, C; Beskin, G M; Bondar, S; Bremer, M; Campana, S; Castro-Tirado, A; Cucchiara, A; Cwiok, M; D'Avanzo, P; D'Elia, V; Valle, M Della; de Ugarte Postigo, A; Dominik, W; Falcone, A; Fiore, F; Fox, D B; Frederiks, D D; Fruchter, A S; Fugazza, D; Garrett, M A; Gehrels, N; Golenetskii, S; Gomboc, A; Gorosabel, J; Greco, G; Guarnieri, A; Immler, S; Jelinek, M; Kasprowicz, G; La Parola, V; Levan, A J; Mangano, V; Mazets, E P; Molinari, E; Moretti, A; Nawrocki, K; Oleynik, P P; Osborne, J P; Pagani, C; Pandey, S B; Paragi, Z; Perri, M; Piccioni, A; Ramirez-Ruiz, E; Roming, P W A; Steele, I A; Strom, R G; Testa, V; Tosti, G; Ulanov, M V; Wiersema, K; Wijers, R A M J; Winters, J M; Zarnecki, A F; Zerbi, F; Mészáros, P; Chincarini, G; Burrows, D N

    2008-09-11

    Long-duration gamma-ray bursts (GRBs) release copious amounts of energy across the entire electromagnetic spectrum, and so provide a window into the process of black hole formation from the collapse of massive stars. Previous early optical observations of even the most exceptional GRBs (990123 and 030329) lacked both the temporal resolution to probe the optical flash in detail and the accuracy needed to trace the transition from the prompt emission within the outflow to external shocks caused by interaction with the progenitor environment. Here we report observations of the extraordinarily bright prompt optical and gamma-ray emission of GRB 080319B that provide diagnostics within seconds of its formation, followed by broadband observations of the afterglow decay that continued for weeks. We show that the prompt emission stems from a single physical region, implying an extremely relativistic outflow that propagates within the narrow inner core of a two-component jet.

  9. Constraining Magnetization of Gamma-Ray Bursts Outflows Using Prompt Emission Fluence

    Science.gov (United States)

    Pe'er, Asaf

    2017-12-01

    Considered here is the acceleration and heating of relativistic outflow by local magnetic energy dissipation process in Poynting-flux dominated outflow. Adopting the standard assumption that the reconnection rate scales with the Alfvén speed, I show here that the fraction of energy dissipated as thermal photons cannot exceed {(13\\hat{γ }-14)}-1=30 % (for adiabatic index \\hat{γ }=4/3) of the kinetic energy at the photosphere. Even in the most radiatively efficient scenario, the energy released as non-thermal photons during the prompt phase is at most equal to the kinetic energy of the outflow. These results imply that calorimetry of the kinetic energy that can be done during the afterglow phase could be used to constrain the magnetization of gamma-ray bursts (GRB) outflows. I discuss the recent observational status and its implications on constraining the magnetization in GRB outflows.

  10. Probing Pre-Galactic Metal Enrichment with High-Redshift Gamma-Ray Bursts

    Science.gov (United States)

    Wang, F. Y.; Bromm, Volker; Greif, Thomas H.; Stacy, Athena; Dai, Z. G.; Loeb, Abraham; Cheng, K. S.

    2012-01-01

    We explore high-redshift gamma-ray bursts (GRBs) as promising tools to probe pre-galactic metal enrichment. We utilize the bright afterglow of a Population III (Pop III) GRB exploding in a primordial dwarf galaxy as a luminous background source, and calculate the strength of metal absorption lines that are imprinted by the first heavy elements in the intergalactic medium (IGM). To derive the GRB absorption line diagnostics, we use an existing highly resolved simulation of the formation of a first galaxy which is characterized by the onset of atomic hydrogen cooling in a halo with virial temperature approximately greater than10(exp 4) K.We explore the unusual circumburst environment inside the systems that hosted Pop III stars, modeling the density evolution with the self-similar solution for a champagne flow. For minihalos close to the cooling threshold, the circumburst density is roughly proportional to (1 + z) with values of about a few cm(exp -3). In more massive halos, corresponding to the first galaxies, the density may be larger, n approximately greater than100 cm(exp -3). The resulting afterglow fluxes are weakly dependent on redshift at a fixed observed time, and may be detectable with the James Webb Space Telescope and Very Large Array in the near-IR and radio wavebands, respectively, out to redshift z approximately greater than 20. We predict that the maximum of the afterglow emission shifts from near-IR to millimeter bands with peak fluxes from mJy to Jy at different observed times. The metal absorption line signature is expected to be detectable in the near future. GRBs are ideal tools for probing the metal enrichment in the early IGM, due to their high luminosities and featureless power-law spectra. The metals in the first galaxies produced by the first supernova (SN) explosions are likely to reside in low-ionization stages (C II, O I, Si II and Fe II). We show that, if the afterglow can be observed sufficiently early, analysis of the metal lines may

  11. 30 CFR 57.3461 - Rock bursts.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons to...

  12. A trio of gamma-ray burst supernovae

    DEFF Research Database (Denmark)

    Cano, Z.; Ugarte Postigo, Antonio de; Pozanenko, A.

    2014-01-01

    We present optical and near-infrared (NIR) photometry for three gamma-ray burst supernovae (GRB-SNe): GRB 120729A, GRB 130215A / SN 2013ez and GRB 130831A / SN 2013fu. In the case of GRB 130215A / SN 2013ez, we also present optical spectroscopy at t-t0=16.1 d, which covers rest-frame 3000...

  13. Synergy of short gamma ray burst and gravitational wave observations: Constraining the inclination angle of the binary and possible implications for off-axis gamma ray bursts

    Science.gov (United States)

    Arun, K. G.; Tagoshi, Hideyuki; Pai, Archana; Mishra, Chandra Kant

    2014-07-01

    Compact binary mergers are the strongest candidates for the progenitors of short gamma ray bursts (SGRBs). If a gravitational wave signal from the compact binary merger is observed in association with a SGRB, such a synergy can help us understand many interesting aspects of these bursts. We examine the accuracies with which a worldwide network of gravitational wave interferometers would measure the inclination angle (the angle between the angular momentum axis of the binary and the observer's line of sight) of the binary. We compare the projected accuracies of gravitational wave detectors to measure the inclination angle of double neutron star and neutron star-black hole binaries for different astrophysical scenarios. We find that a five-detector network can measure the inclination angle to an accuracy of ˜5.1 (2.2) deg for a double neutron star (neutron star-black hole) system at 200 Mpc if the direction of the source as well as the redshift is known electromagnetically. We argue as to how an accurate estimation of the inclination angle of the binary can prove to be crucial in understanding off-axis GRBs, the dynamics and the energetics of their jets, and help the searches for (possible) orphan afterglows of the SGRBs.

  14. Decameter Type III-Like Bursts

    Science.gov (United States)

    Melnik, V. N.; Konovalenko, A. A.; Rutkevych, B. P.; Rucker, H. O.; Dorovskyy, V. V.; Abranin, E. P.; Lecacheux, A.; Brazhenko, A. I.; Stanislavskyy, A. A.

    2007-12-01

    Starting from 1960s Type III-like bursts (Type III bursts with high drift rates) in a wide frequency range from 300 to 950MHz have been observed. These new bursts observed at certain frequency being compared to the usual Type III bursts at the same frequency show similar behaviour but feature frequency drift 2-6 times higher than the normal bursts. In this paper we report the first observations of Type III-like bursts in decameter range, carried out during summer campaigns 2002 - 2004 at UTR-2 radio telescope. The circular polarization of the bursts was measured by the radio telescope URAN-2 in 2004. The observed bursts are analyzed and compared with usual Type III bursts in the decameter range. From the analysis of over 1100 Type III-like bursts, their main parameters have been found. Characteristic feature of the observed bursts is similar to Type III-like bursts at other frequencies, i.e. measured drift rates (5-10 MHz/s) of this bursts are few times larger than that for usual Type III bursts, and their durations (1-2 s) are few times smaller than that for usual Type III bursts in this frequency band.

  15. Constraining chameleon field theories using the GammeV afterglow experiments

    Energy Technology Data Exchange (ETDEWEB)

    Upadhye, A.; /Chicago U., EFI /KICP, Chicago; Steffen, J.H.; /Fermilab; Weltman, A.; /Cambridge U., DAMTP /Cape Town U.

    2009-11-01

    The GammeV experiment has constrained the couplings of chameleon scalar fields to matter and photons. Here we present a detailed calculation of the chameleon afterglow rate underlying these constraints. The dependence of GammeV constraints on various assumptions in the calculation is studied. We discuss GammeV-CHASE, a second-generation GammeV experiment, which will improve upon GammeV in several major ways. Using our calculation of the chameleon afterglow rate, we forecast model-independent constraints achievable by GammeV-CHASE. We then apply these constraints to a variety of chameleon models, including quartic chameleons and chameleon dark energy models. The new experiment will be able to probe a large region of parameter space that is beyond the reach of current tests, such as fifth force searches, constraints on the dimming of distant astrophysical objects, and bounds on the variation of the fine structure constant.

  16. Effect of a Biased Probe on the Afterglow Operation of an ECR4 Ion Source

    CERN Document Server

    Hill, C E; Wenander, F; Wolf, B H

    2000-01-01

    Various experiments have been performed on a 14.5 GHz ECR4 in order to improve the ion yield. The source runs in pulsed afterglow mode, and provides currents ~120 emA of Pb27+ to the CERN Heavy Ion Facility on an operational basis. In the search for higher beam intensities, the effects of a pulsed biased disk on axis at the injection side were investigated with different pulse timing and voltage settings. No proof for absolute higher intensities was seen for any of these modifications. However, the yield from a poorly tuned/low-performing source could be improved and the extracted pulse was less noisy with bias voltage applied. The fast response on the bias implies that increases/decreases are not due to ionisation processes. A good tune for high yield of high charge states during the afterglow coincides with a high plasma potential.

  17. Afterglow chemistry of atmospheric-pressure helium-oxygen plasmas with humid air impurity

    Science.gov (United States)

    Murakami, Tomoyuki; Niemi, Kari; Gans, Timo; O'Connell, Deborah; Graham, William G.

    2014-04-01

    The formation of reactive species in the afterglow of a radio-frequency-driven atmospheric-pressure plasma in a fixed helium-oxygen feed gas mixture (He+0.5%O2) with humid air impurity (a few hundred ppm) is investigated by means of an extensive global plasma chemical kinetics model. As an original objective, we explore the effects of humid air impurity on the biologically relevant reactive species in an oxygen-dependent system. After a few milliseconds in the afterglow environment, the densities of atomic oxygen (O) decreases from 1015 to 1013 cm-3 and singlet delta molecular oxygen (O2(1D)) of the order of 1015 cm-3 decreases by a factor of two, while the ozone (O3) density increases from 1014 to 1015 cm-3. Electrons and oxygen ionic species, initially of the order of 1011 cm-3, recombine much faster on the time scale of some microseconds. The formation of atomic hydrogen (H), hydroxyl radical (OH), hydroperoxyl (HO2), hydrogen peroxide (H2O2), nitric oxide (NO) and nitric acid (HNO3) resulting from the humid air impurity as well as the influence on the afterglow chemistry is clarified with particular emphasis on the formation of dominant reactive oxygen species (ROS). The model suggests that the reactive species predominantly formed in the afterglow are major ROS O2(1D) and O3 (of the order of 1015 cm-3) and rather minor hydrogen- and nitrogen-based reactive species OH, H2O2, HNO3 and NO2/NO3, of which densities are comparable to the O-atom density (of the order of 1013 cm-3). Furthermore, the model quantitatively reproduces the experimental results of independent O and O3 density measurements.

  18. Suppression of Afterglow in Microcolumnar CsI:Tl by Codoping With Sm: Recent Advances.

    Science.gov (United States)

    Nagarkar, Vivek V; Thacker, Samta C; Gaysinskiy, Valeriy; Ovechkina, Lena E; Miller, Stuart R; Cool, Steven; Brecher, Charles

    2009-01-01

    Microcolumnar CsI:Tl remains a highly desirable sensor for digital X-ray imaging due to its superior spatial resolution, bright emission, high absorption efficiency, and ready availability. Despite such obvious advantages, two characteristic properties of CsI:Tl undermine their use in clinical and high speed imaging: a persistent afterglow in its scintillation decay, and a hysteresis effect that distorts the scintillation yield after exposure to high radiation doses.In our earlier work we have discovered that the addition of 0.05 to 0.5 mol percent of Sm(2+) to crystals of CsI:Tl suppresses their afterglow by a factor of up to 50, even when subjected to a very high exposure of 120 R. This additive also diminishes hysteresis by an order of magnitude, which is a major accomplishment. Consequent- ly, our work is now focused on developing codoped microcolumnar CsI:Tl, Sm films that can potentially combine excellent properties of the current state-of-the-art CsI:Tl films with the reduced afterglow and hysteresis observed in codoped crystals. While our earlier attempts in CsI:Tl, Sm film fabrication, reported at the previous IEEE meeting, demonstrated obvious advantages of the approach, the recent work has succeeded in producing films that show improvement by at least a factor of 7 in afterglow and 150% in brightness compared to the standard CsI:Tl films. We report these important results in this paper, along with other recent advances in film growth and new imaging results.

  19. Preparation and properties of silicone fouling release coatings with long-life afterglow fluorescent

    Directory of Open Access Journals (Sweden)

    Zhang Zhanping

    2017-01-01

    Full Text Available Based on polydimethylsiloxane, three-component coatings were prepared with different content of luminescence powder. The results showed that the illuminance of coatings increases with the content of luminescence powder, decays exponentially with the afterglow time, increases exponentially with the increase of exposure time. The afterglow illuminance augments with irradiated light illuminance. All coatings are hydrophobic and oleophilic. Surface free energy decreases with the increase of luminescence powder. They have highest impact-resistance and bend flexibility. The luminescence powder does not change obviously the shore hardness, tensile breaking strength, breaking elongation rate, elastic modular and roughness of coatings. The static test panels in sea generally could be covered obviously by biofouling including sponges, bryophytes and mussels, hydra, kelp, green algae after 2 months of immersion during growing season. But it never found that the barnacle attached on the coating surface during 4 years of immersion test. The static anti-fouling ability of the coatings is very limited. In addition, the sea creatures attached on the coating surface can be easily removed; even attached organisms will fall off and expose again the smooth coating surface. Consequently, all coatings with long-life afterglow fluorescent have a significant effect on preventing adhesion of barnacle and fouling-release performance.

  20. Afterglow Population Studies from Swift Follow-Up Observations of Fermi LAT GRBs

    Science.gov (United States)

    Racusin, Judith L.; Oates, S. R.; McEnery, J.; Vasileiou, V.; Troja, E.; Gehrels, N.

    2010-01-01

    The small population of Fermi LAT detected GRBs discovered over the last year has been providing interesting and unexpected clues into GRB prompt and afterglow emission mechanisms. Over the last 5 years, it has been Swift that has provided the robust data set of UV/optical and X-ray afterglow observations that opened many windows into other components of GRB emission structure. We explore the new ability to utilize both of these observatories to study the same GRBs over 10 orders of magnitude in energy, although not always concurrently. Almost all LAT GRBs that have been followed-up by Swift within 1-day have been clearly detected and carefully observed. We will present the context of the lower-energy afterglows of this special subset of GRBs that has > 100 MeV emission compared to the hundreds in the Swift database that may or may not have been observed by LAT, and theorize upon the relationship between these properties and the origin of the high energy gamma-ray emission.

  1. Multi-band Observations of Gamma Ray Bursts

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. This talk focuses on the various aspects we learnt from multi- band observations of GRBs both, before and during the afterglow era. A statistical analysis to estimate the probable redshifts of host galaxies using the luminosity function of GRBs compatible with both the afterglow redshift data as well as the overall ...

  2. Multi-band Observations of Gamma Ray Bursts

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... This talk focuses on the various aspects we learnt from multiband observations of GRBs both, before and during the afterglow era. A statistical analysis to estimate the probable redshifts of host galaxies using the luminosity function of GRBs compatible with both the afterglow redshift data as well as the ...

  3. Hydrothermal synthesis and afterglow luminescence properties of hollow SnO{sub 2}:Sm{sup 3+},Zr{sup 4+} spheres for potential application in drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Pengfei; Zhang, Jiachi, E-mail: zhangjch@lzu.edu.cn; Qin, Qingsong; Hu, Rui; Wang, Yuhua

    2014-02-01

    Highlights: • We designed a novel afterglow labeling material SnO{sub 2}:Sm{sup 3+},Zr{sup 4+} for the first time. • Hollow SnO{sub 2}:Sm{sup 3+},Zr{sup 4+} spheres with afterglow were prepared by hydrothermal method. • Hollow SnO{sub 2}:Sm{sup 3+},Zr{sup 4+} is a potential afterglow labeling medium for drug delivery. - Abstract: A novel afterglow labeling material SnO{sub 2}:Sm{sup 3+},Zr{sup 4+} with hollow sphere shape and intense afterglow luminescence is prepared by hydrothermal method at 180 °C for the first time. The morphology and the sphere growth process of this material are investigated by scanning electron microscopy in detail. The afterglow measurement shows that this hydrothermal obtained material exhibits obvious red afterglow luminescence (550–700 nm) of Sm{sup 3+} which can last for 542 s (0.32 mcd/m{sup 2}). The depth of traps in this hydrothermal obtained material is calculated to be as shallow as 0.58 eV. The results demonstrate that although it is necessary to further improve the afterglow performance of the hydrothermal derived hollow SnO{sub 2}:Sm{sup 3+},Zr{sup 4+} spheres, it still can be regarded as a potential afterglow labeling medium for drug delivery.

  4. Bursts in intermittent aeolian saltation

    CERN Document Server

    Carneiro, M V; Herrmann, H J

    2014-01-01

    Close to the onset of Aeolian particle transport through saltation we find in wind tunnel experiments a regime of intermittent flux characterized by bursts of activity. Scaling laws are observed in the time delay between each burst and in the measurements of the wind fluctuations at the critical Shields number $\\theta_c$. The time delay between each burst decreases on average with the increase of the Shields number until saltation becomes non-intermittent and the sand flux becomes continuous. A numerical model for saltation including the wind-entrainment from the turbulent fluctuations can reproduce these observations and gives insight about their origin. We present here also for the first time measurements showing that with feeding it becomes possible to sustain intermittent flux even below the threshold $\\theta_c$ for natural saltation initiation.

  5. EXIST's Gamma-Ray Burst Sensitivity

    Science.gov (United States)

    Band, D. L.; Grindlay, J. E.; Hong, J.; Fishman, G.; Hartmann, D. H.; Garson, A., III; Krawczynski, H.; Barthelmy, S.; Gehrels, N.; Skinner, G.

    2008-02-01

    We use semianalytic techniques to evaluate the burst sensitivity of designs for the EXIST hard X-ray survey mission. Applying these techniques to the mission design proposed for the Beyond Einstein program, we find that with its very large field of view and faint gamma-ray burst detection threshold, EXIST will detect and localize approximately two bursts per day, a large fraction of which may be at high redshift. We estimate that EXIST's maximum sensitivity will be ~4 times greater than that of Swift's Burst Alert Telescope. Bursts will be localized to better than 40'' at threshold, with a burst position as good as a few arcseconds for strong bursts. EXIST's combination of three different detector systems will provide spectra from 3 keV to more than 10 MeV. Thus, EXIST will enable a major leap in the understanding of bursts, their evolution, environment, and utility as cosmological probes.

  6. Using Swift observations of prompt and afterglow emission to classify GRBs.

    Science.gov (United States)

    O'Brien, Paul T; Willingale, Richard

    2007-05-15

    We present an analysis of early Burst Alert Telescope and X-ray Telescope data for 107 gamma-ray bursts (GRBs) observed by the Swift satellite. We use these data to examine the behaviour of the X-ray light curve and propose a classification scheme for GRBs based on this behaviour. As found for previous smaller samples, the earliest X-ray light curve can be well described by an exponential, which relaxes into a power-law, often with flares superimposed. The later emission is well fit using a similar functional form and we find that these two functions provide a good description of the entire X-ray light curve. For the prompt emission, the transition time between the exponential and the power-law gives a well-defined time-scale, Tp, for the burst duration. We use Tp, the spectral index of the prompt emission, betap, and the prompt power-law decay index, alphap, to define four classes of burst: short, slow, fast and soft. Bursts with slowly declining emission have spectral and temporal properties similar to the short bursts despite having longer durations. Some of these GRBs may therefore arise from similar progenitors including several types of binary system. Short bursts tend to decline more gradually than longer duration bursts and hence emit a significant fraction of their total energy at times greater than Tp. This may be due to differences in the environment or the progenitor for long, fast bursts.

  7. Optothermally actuated capillary burst valve

    DEFF Research Database (Denmark)

    Eriksen, Johan; Bilenberg, Brian; Kristensen, Anders

    2017-01-01

    be burst by raising the temperature due to the temperature dependence of the fluid surface tension. We address individual valves by using a local heating platform based on a thin film of near infrared absorber dye embedded in the lid used to seal the microfluidic device [L. H. Thamdrup et al., Nano Lett...

  8. Respiratory burst oxidase of fertilization.

    Science.gov (United States)

    Heinecke, J W; Shapiro, B M

    1989-02-01

    Partially reduced oxygen species are toxic, yet sea urchin eggs synthesize H2O2 in a "respiratory burst" at fertilization, as an extracellular oxidant to crosslink their protective surface envelopes. To study the biochemical mechanism for H2O2 production, we have isolated an NADPH-specific oxidase fraction from homogenates of unfertilized Strongylocentrotus purpuratus eggs that produces H2O2 when stimulated with Ca2+ and MgATP2-. Concentrations of free Ca2+ previously implicated in regulation of egg activation modulate the activity of the oxidase. Inhibitors were used to test the relevance of this oxidase to the respiratory burst of fertilization. Procaine, two phenothiazines, and N-ethylmaleimide (but not iodoacetamide) inhibited H2O2 production by the oxidase fraction and oxygen consumption by activated eggs. The ATP requirement suggested that protein kinase activity might regulate the respiratory burst of fertilization; consonant with this hypothesis, H-7 and staurosporine were inhibitory. The respiratory burst oxidase of fertilization is an NADPH:O2 oxidoreductase that appears to be regulated by a protein kinase; although it bears a remarkable resemblance to the neutrophil oxidase, unlike the latter it does not form O2- as its initial product.

  9. FERMIGBRST - Fermi GBM Burst Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — This table lists all of the triggers observed by a subset of the 14 GBM detectors (12 NaI and 2 BGO) which have been classified as gamma-ray bursts (GRBs). Note that...

  10. The optical luminosity function of gamma-ray bursts deduced from ROTSE-III observations

    Energy Technology Data Exchange (ETDEWEB)

    Cui, X. H.; Wu, X. F.; Wei, J. J. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Yuan, F. [Research School of Astronomy and Astrophysics, The Australian National University, Weston Creek, ACT 2611 (Australia); Zheng, W. K. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Liang, E. W. [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Akerlof, C. W.; McKay, T. A. [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Ashley, M. C. B. [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Flewelling, H. A. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Göǧüş, E. [Sabancı University, Orhanlı-Tuzla, 34956 İstanbul (Turkey); Güver, T. [Department of Astronomy and Space Sciences, Istanbul University Science Faculty, 34119 Istanbul (Turkey); Kızıloǧlu, Ü. [Middle East Technical University, 06531 Ankara (Turkey); Pandey, S. B. [ARIES, Manora Peak, Nainital 263129, Uttarakhand (India); Rykoff, E. S. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Rujopakarn, W. [Department of Physics, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330 (Thailand); Schaefer, B. E. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Wheeler, J. C. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Yost, S. A., E-mail: xhcui@bao.ac.cn, E-mail: xfwu@pmo.ac.cn, E-mail: jjwei@pmo.ac.cn, E-mail: fang.yuan@anu.edu.au, E-mail: zwk@astro.berkeley.edu, E-mail: lew@gxu.edu.cn [Department of Physics, College of St. Benedict, St. John' s University, Collegeville, MN 56321 (United States)

    2014-11-10

    We present the optical luminosity function (LF) of gamma-ray bursts (GRBs) estimated from a uniform sample of 58 GRBs from observations with the Robotic Optical Transient Search Experiment III (ROTSE-III). Our GRB sample is divided into two sub-samples: detected afterglows (18 GRBs) and those with upper limits (40 GRBs). We derive R-band fluxes for these two sub-samples 100 s after the onset of the burst. The optical LFs at 100 s are fitted by assuming that the co-moving GRB rate traces the star formation rate. While fitting the optical LFs using Monte Carlo simulations, we take into account the detection function of ROTSE-III. We find that the cumulative distribution of optical emission at 100 s is well described by an exponential rise and power-law decay, a broken power law,and Schechter LFs. A single power-law (SPL) LF, on the other hand, is ruled out with high confidence.

  11. Quark-Nova Explosion inside a Collapsar: Application to Gamma Ray Bursts

    Directory of Open Access Journals (Sweden)

    Rachid Ouyed

    2009-01-01

    Full Text Available If a quark-nova occurs inside a collapsar, the interaction between the quark-nova ejecta (relativistic iron-rich chunks and the collapsar envelope leads to features indicative of those observed in Gamma Ray Bursts. The quark-nova ejecta collides with the stellar envelope creating an outward moving cap (Γ∼ 1–10 above the polar funnel. Prompt gamma-ray burst emission from internal shocks in relativistic jets (following accretion onto the quark star becomes visible after the cap becomes optically thin. Model features include (i precursor activity (optical, X-ray, γ-ray, (ii prompt γ-ray emission, and (iii afterglow emission. We discuss SN-less long duration GRBs, short hard GRBs (including association and nonassociation with star forming regions, dark GRBs, the energetic X-ray flares detected in Swift GRBs, and the near-simultaneous optical and γ-ray prompt emission observed in GRBs in the context of our model.

  12. The Optical Luminosity Function of Gamma-Ray Bursts Deduced from ROTSE-III Observations

    Science.gov (United States)

    Cui, X. H.; Wu, X. F.; Wei, J. J.; Yuan, F.; Zheng, W. K.; Liang, E. W.; Akerlof, C. W.; Ashley, M. C. B.; Flewelling, H. A.; Göǧüş, E.; Güver, T.; Kızıloǧlu, Ü.; McKay, T. A.; Pandey, S. B.; Rykoff, E. S.; Rujopakarn, W.; Schaefer, B. E.; Wheeler, J. C.; Yost, S. A.

    2014-11-01

    We present the optical luminosity function (LF) of gamma-ray bursts (GRBs) estimated from a uniform sample of 58 GRBs from observations with the Robotic Optical Transient Search Experiment III (ROTSE-III). Our GRB sample is divided into two sub-samples: detected afterglows (18 GRBs) and those with upper limits (40 GRBs). We derive R-band fluxes for these two sub-samples 100 s after the onset of the burst. The optical LFs at 100 s are fitted by assuming that the co-moving GRB rate traces the star formation rate. While fitting the optical LFs using Monte Carlo simulations, we take into account the detection function of ROTSE-III. We find that the cumulative distribution of optical emission at 100 s is well described by an exponential rise and power-law decay, a broken power law,and Schechter LFs. A single power-law (SPL) LF, on the other hand, is ruled out with high confidence.

  13. Detecting pipe bursts by monitoring water demand

    NARCIS (Netherlands)

    Bakker, M.; Vreeburg, J.H.G.; Van der Roer, M.; Sperber, V.

    2012-01-01

    An algorithm which compares measured and predicted water demands to detect pipe bursts was developed and tested on three data sets of water demand and reported pipe bursts of three years. The algorithm proved to be able to detect bursts where the water loss exceeds 30% of the average water demand in

  14. Bulk Lorentz factors of gamma-ray bursts

    Science.gov (United States)

    Ghirlanda, G.; Nappo, F.; Ghisellini, G.; Melandri, A.; Marcarini, G.; Nava, L.; Salafia, O. S.; Campana, S.; Salvaterra, R.

    2018-01-01

    Knowledge of the bulk Lorentz factor Γ0 of gamma-ray bursts (GRBs) allows us to compute their comoving frame properties shedding light on their physics. Upon collisions with the circumburst matter, the fireball of a GRB starts to decelerate, producing a peak or a break (depending on the circumburst density profile) in the light curve of the afterglow. Considering all bursts with known redshift and with an early coverage of their emission, we find 67 GRBs (including one short event) with a peak in their optical or GeV light curves at a time tp. For another 106 GRBs we set an upper limit tpUL. The measure of tp provides the bulk Lorentz factor Γ0 of the fireball before deceleration. We show that tp is due to the dynamics of the fireball deceleration and not to the passage of a characteristic frequency of the synchrotron spectrum across the optical band. Considering the tp of 66 long GRBs and the 85 most constraining upper limits, we estimate Γ0 or a lower limit Γ0LL. Using censored data analysis methods, we reconstruct the most likely distribution of tp. All tp are larger than the time Tp,γ when the prompt γ-ray emission peaks, and are much larger than the time Tph when the fireball becomes transparent, that is, tp>Tp,γ>Tph. The reconstructed distribution of Γ0 has median value 300 (150) for a uniform (wind) circumburst density profile. In the comoving frame, long GRBs have typical isotropic energy, luminosity, and peak energy ⟨ Eiso ⟩ = 3(8) × 1050 erg, ⟨ Liso ⟩ = 3(15) × 1047 erg s-1, and ⟨ Epeak ⟩ = 1(2) keV in the homogeneous (wind) case. We confirm that the significant correlations between Γ0 and the rest frame isotropic energy (Eiso), luminosity (Liso), and peak energy (Ep) are not due to selection effects. When combined, they lead to the observed Ep-Eiso and Ep-Liso correlations. Finally, assuming a typical opening angle of 5 degrees, we derive the distribution of the jet baryon loading which is centered around a few 10-6M⊙.

  15. Detection of an optical transient following the 13 March 2000 short/hard gamma-ray burst

    DEFF Research Database (Denmark)

    Castro-Tirado, A.J.; Ceron, J.M.C.; Gorosabel, J.

    2002-01-01

    We imaged the error box of a gamma-ray burst of the short (0.5 s), hard type (GRB 000313), with the BOOTES-1 experiment in southern Spain, starting 4 min after the gamma-ray event, in the I-band. A bright optical transient (OT 000313) with I = 9.4 +/- 0.1 was found in the BOOTES-1 image, close...... to the error box (3sigma) provided by BATSE. Late time VRI K'-band deep observations failed to reveal an underlying host galaxy. If the OT 000313 is related to the short, hard GRB 000313, this would be the first optical counterpart ever found for this kind of events (all counterparts to date have been found...... for bursts of the long, soft type). The fact that only prompt optical emission has been detected (but no afterglow emission at all, as supported by theoretical models) might explain why no optical counterparts have ever been found for short, hard GRBs. This fact suggests that most short bursts might occur...

  16. Roles of doping ions in afterglow properties of blue CaAl2O4:Eu2+,Nd3+ phosphors

    Science.gov (United States)

    Wako, A. H.; Dejene, B. F.; Swart, H. C.

    2014-04-01

    Eu2+ doped and Nd3+ co-doped calcium aluminate (CaAl2O4:Eu2+,Nd3+) phosphor was prepared by a urea-nitrate solution combustion method at furnace temperatures as low as 500 °C. The produced CaAl2O4:Eu2+,Nd3+ powder was investigated in terms of phase composition, morphology and luminescence by X-Ray diffraction (XRD), Scanning Electron Microscope (SEM), Fourier Transform Infra Red spectroscopy (FTIR) and Photoluminescence (PL) techniques respectively. XRD analysis depicts a dominant monoclinic phase that indicates no change in the crystalline structure of the phosphor with varying concentration of Eu2+ and Nd3+. SEM results show agglomerates with non-uniform shapes and sizes with a number of irregular network structures having lots of voids and pores. The Energy Dispersive X-ray Spectroscopy (EDS) and (FTIR) spectra confirm the expected chemical components of the phosphor. PL measurements indicated one broadband excitation spectra from 200 to 300 nm centered around 240 nm corresponding to the crystal field splitting of the Eu2+ d-orbital and an emission spectrum in the blue region with a maximum on 440 nm. This is a strong indication that there was dominantly one luminescence center, Eu2+ which represents emission from transitions between the 4f7 ground state and the 4f6-5d1 excited state configuration. High concentrations of Eu2+ and Nd3+ generally reduce both intensity and lifetime of the phosphor powders. The optimized content of Eu2+ is 1 mol% and for Nd3+ is 1 mol% for the obtained phosphors with excellent optical properties. The phosphor also emits visible light at around 587 and 616 nm. Such emissions can be ascribed to the 5D0-7F1 and 5D0-7F2 intrinsic transition of Eu3+ respectively. The decay characteristics exhibit a significant rise in initial intensity with increasing Eu2+ doping concentration while the decay time increased with Nd3+ co-doping. The observed afterglow can be ascribed to the generation of suitable traps due to the presence of the Nd3

  17. Respiratory burst oxidase of fertilization.

    OpenAIRE

    Heinecke, J W; Shapiro, B M

    1989-01-01

    Partially reduced oxygen species are toxic, yet sea urchin eggs synthesize H2O2 in a "respiratory burst" at fertilization, as an extracellular oxidant to crosslink their protective surface envelopes. To study the biochemical mechanism for H2O2 production, we have isolated an NADPH-specific oxidase fraction from homogenates of unfertilized Strongylocentrotus purpuratus eggs that produces H2O2 when stimulated with Ca2+ and MgATP2-. Concentrations of free Ca2+ previously implicated in regulation...

  18. On the neutron bursts origin.

    CERN Document Server

    Stenkin, Yu V

    2002-01-01

    The origin of the neutron bursts in Extensive Air Showers (EAS) is explained using results of the experiments and CORSIKA based Monte-Carlo simulations. It is shown that events with very high neutron multiplicity observed last years in neutron monitors as well as in surrounding detectors, are caused by usual EAS core with primary energies > 1 PeV. No exotic processes were needed for the explanation.

  19. Emissive sheath measurements in the afterglow of a radio frequency plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sheehan, J. P., E-mail: sheehanj@umich.edu; Hershkowitz, N. [Nuclear Engineering and Engineering Physics, University of Wisconsin—Madison, Madison, Wisconsin 53706 (United States); Barnat, E. V.; Weatherford, B. R. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Kaganovich, I. D. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States)

    2014-01-15

    The difference between the plasma potential and the floating potential of a highly emissive planar surface was measured in the afterglow of a radio frequency discharge. A Langmuir probe was used to measure the electron temperature and an emissive probe was used to measure the spatial distribution of the potential using the inflection point in the limit of zero emission technique. Time-resolved measurements were made using the slow-sweep method, a technique for measuring time-resolved current-voltage traces. This was the first time the inflection point in the limit of zero emission was used to make time-resolved measurements. Measurements of the potential profile of the presheath indicate that the potential penetrated approximately 50% farther into the plasma when a surface was emitting electrons. The experiments confirmed a recent kinetic theory of emissive sheaths, demonstrating that late in the afterglow as the plasma electron temperature approached the emitted electron temperature, the emissive sheath potential shrank to zero. However, the difference between the plasma potential and the floating potential of a highly emissive planar surface data appeared to be much less sensitive to the electron temperature ratio than the theory predicts.

  20. Growth of graphene-based films using afterglow of inductively coupled plasma

    Science.gov (United States)

    Hiramatsu, Mineo; Tomatsu, Masakazu; Kondo, Hiroki; Hori, Masaru

    2014-10-01

    Plasma-enhanced CVD (PECVD) employing methane/hydrogen gases has been used to grow diamond and carbon nanostructures. In the case of graphene growth using PECVD, excessive supply of carbon precursors and ion bombardment on the growing surface would cause secondary nuclei, resulting in small size of graphene grain and degradation in crystallinity. To overcome this issue, in this work, afterglow of inductively coupled plasma (ICP) was used for the growth of graphene. The CVD system is simple and consists of a reaction chamber and a remote radical source that uses an ICP in cylindrical geometry. Methane/hydrogen gases were fed through a quartz tube of 26 mm inner diameter and 20 cm in length. A five-turn rf (13.56 MHz) coil was mounted on the quartz tube. Substrates (Ni-coated Si and Cu foil) were located in the afterglow region of ICP. Growth experiments were carried out for 1-10 min at temperature of 700 C, rf power of 400 W, and total pressure of 100 mTorr. We have successfully fabricated graphene-based films, which was confirmed by the Raman spectrum and SEM image of deposit. We will discuss the planar graphene growth mechanism in terms of precursors and their surface reaction, in conjunction with the growth experiments using microwave plasma and ICP in planar geometry.

  1. Fuzzy-Based Adaptive Hybrid Burst Assembly Technique for Optical Burst Switched Networks

    Directory of Open Access Journals (Sweden)

    Abubakar Muhammad Umaru

    2014-01-01

    Full Text Available The optical burst switching (OBS paradigm is perceived as an intermediate switching technology for future all-optical networks. Burst assembly that is the first process in OBS is the focus of this paper. In this paper, an intelligent hybrid burst assembly algorithm that is based on fuzzy logic is proposed. The new algorithm is evaluated against the traditional hybrid burst assembly algorithm and the fuzzy adaptive threshold (FAT burst assembly algorithm via simulation. Simulation results show that the proposed algorithm outperforms the hybrid and the FAT algorithms in terms of burst end-to-end delay, packet end-to-end delay, and packet loss ratio.

  2. GRB 021004: Tomography of a gamma-ray burst progenitor and its host galaxy

    NARCIS (Netherlands)

    Castro-Tirado, A.J.; Møller, P.; García-Segura, G.; Gorosabel, J.; Pérez, E.; de Ugarte Postigo, A.; Solano, E.; Barrado, D.; Klose, S.; Kann, D.A.; Castro Cerón, J.M.; Kouveliotou, C.; Fynbo, J.P.U.; Hjorth, J.; Pedersen, H.; Pian, E.; Rol, E.; Palazzi, E.; Masetti, N.; Tanvir, N.R.; Vreeswijk, P.M.; Andersen, M.I.; Fruchter, A.S.; Greiner, J.; Wijers, R.A.M.J.; van den Heuvel, E.P.J.

    2010-01-01

    Aims. We analyse the distribution of matter around the progenitor star of gamma-ray burst GRB 021004 and the properties of its host galaxy with high-resolution echelle and near-infrared spectroscopy. Methods. Observations were taken by the 8.2 m Very Large Telescope with the Ultraviolet and Visual

  3. Hardness/intensity correlations among BATSE bursts

    Science.gov (United States)

    Paciesas, William S.; Pendleton, Geoffrey N.; Kouveliotou, Chryssa; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.

    1992-01-01

    Conclusions about the nature of gamma-ray bursts derived from the size-frequency distribution may be altered if a significant correlation exists between burst intensity and spectral shape. Moreover, if gamma-ray bursts have a cosmological origin, such a correlation may be expected to result from the expansion of the universe. We have performed a rudimentary search of the BATSE bursts for hardness/intensity correlations. The range of spectral shapes was determined for each burst by computing the ratio of the intensity in the range 100-300 keV to that in 55-300 keV. We find weak evidence for the existence of a correlation, the strongest effect being present when comparing the maximum hardness ratio for each burst with its maximum rate.

  4. The Growth, Polarization, and Motion of the Radio Afterglow from the Giant Flare from SGR 1806-20

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G

    2005-04-20

    The extraordinary giant flare (GF) of 2004 December 27 from the soft gamma repeater (SGR) 1806-20 was followed by a bright radio afterglow. We present an analysis of VLA observations of this radio afterglow from SGR1806-20, consisting of previously reported 8.5 GHz data covering days 7 to 20 after the GF, plus new observations at 8.5 and 22 GHz from day 24 to 81. For a symmetric outflow, we find a deceleration in the expansion, from {approx}4.5 mas/day to <2.5 mas/day. The time of deceleration is roughly coincident with the rebrightening in the radio light curve, as expected to result when the ejecta from the GF sweeps up enough of the external medium, and transitions from a coasting phase to the Sedov-Taylor regime. The radio afterglow is elongated and maintains a 2:1 axis ratio with an average position angle of -40{sup o} (north through east), oriented perpendicular to the average intrinsic linear polarization angle. We also report on the discovery of motion in the flux centroid of the afterglow, at an average velocity of 0.26 {+-} 0.03 c (assuming a distance of 15 kpc) at a position angle of -45{sup o}. This motion, in combination with the growth and polarization measurements, suggests an initially asymmetric outflow, mainly from one side of the magnetar.

  5. Effect of double frequency heating on the lead afterglow beam currents of an electron cyclotron resonance ion source

    Science.gov (United States)

    Toivanen, V.; Bellodi, G.; Küchler, D.; Wenander, F.; Tarvainen, O.

    2017-10-01

    The effect of double frequency heating on the performance of the CERN GTS-LHC 14.5 GHz Electron Cyclotron Resonance (ECR) ion source in afterglow mode is reported. The source of the secondary microwave frequency was operated both in pulsed and continuous wave (CW) modes within the range of 12-18 GHz. The results demonstrate that the addition of the secondary frequency can significantly impact the extracted beam currents and the temporal stability of the beam during the afterglow discharge. For example, up to a factor of 2.6 increase was achieved for 208Pb 35 and a factor of 3.1 for 208Pb 37+ compared to single frequency afterglow currents. It is shown that these effects are dependent on the choice of the secondary frequency with respect to the primary one and on the temporal synchronization between the two microwave sources. Overall, the results provide new insight into the afterglow discharge supporting the prevailing understanding of the physical processes behind the phenomenon.

  6. Low-Afterglow CsI:Tl microcolumnar films for small animal high-speed microCT.

    Science.gov (United States)

    Thacker, S C; Singh, B; Gaysinskiy, V; Ovechkina, E E; Miller, S R; Brecher, C; Nagarkar, V V

    2009-06-01

    Dedicated high-speed microCT systems are being developed for noninvasive screening of small animals. Such systems require scintillators with high spatial resolution, high light yield, and minimal persistence to ensure ghost free imaging. Unfortunately, the afterglow associated with conventional CsI:Tl microcolumnar films used in current high-speed systems introduces image lag, leading to substantial artifacts in reconstructed images, especially when the detector is operated at several hundreds of frames per second. At RMD, we have discovered that the addition of a second dopant, Eu(2+), to CsI:Tl crystals suppresses the afterglow by as much as a factor of 40 at 2 ms after a short excitation pulse of 20 ns, and by as much as a factor of 15 at 2 ms after a long excitation pulse of 100 ms. Our observations, supported by theoretical modeling, indicate that Eu(2+) ions introduce deep electron traps that alter the decay kinetics of the material, making it suitable for many high-speed imaging applications. Here we report on the fabrication and characterization of CsI:Tl,Eu microcolumnar films to determine if the remarkable afterglow properties of CsI:Tl,Eu crystals are preserved in the CsI:Tl,Eu microcolumnar films. Preliminary results indicate that the codoped microcolumnar films show a factor of 3.5 improvement in the afterglow compared to the standard CsI:Tl films.

  7. THE OPTICALLY UNBIASED GAMMA-RAY BURST HOST (TOUGH) SURVEY. I. SURVEY DESIGN AND CATALOGS

    Energy Technology Data Exchange (ETDEWEB)

    Hjorth, Jens; Malesani, Daniele; Fynbo, Johan P. U.; Kruehler, Thomas; Milvang-Jensen, Bo; Watson, Darach [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Jakobsson, Pall; Schulze, Steve [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik (Iceland); Jaunsen, Andreas O. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Gorosabel, Javier [Instituto de Astrofisica de Andalucia (IAA-CSIC), P.O. Box 03004, E-18080 Granada (Spain); Levan, Andrew J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Michalowski, Michal J. [SUPA, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Moller, Palle [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching by Muenchen (Germany); Tanvir, Nial R., E-mail: jens@dark-cosmology.dk [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2012-09-10

    Long-duration gamma-ray bursts (GRBs) are powerful tracers of star-forming galaxies. We have defined a homogeneous subsample of 69 Swift GRB-selected galaxies spanning a very wide redshift range. Special attention has been devoted to making the sample optically unbiased through simple and well-defined selection criteria based on the high-energy properties of the bursts and their positions on the sky. Thanks to our extensive follow-up observations, this sample has now achieved a comparatively high degree of redshift completeness, and thus provides a legacy sample, useful for statistical studies of GRBs and their host galaxies. In this paper, we present the survey design and summarize the results of our observing program conducted at the ESO Very Large Telescope (VLT) aimed at obtaining the most basic properties of galaxies in this sample, including a catalog of R and K{sub s} magnitudes and redshifts. We detect the host galaxies for 80% of the GRBs in the sample, although only 42% have K{sub s} -band detections, which confirms that GRB-selected host galaxies are generally blue. The sample is not uniformly blue, however, with two extremely red objects detected. Moreover, galaxies hosting GRBs with no optical/NIR afterglows, whose identification therefore relies on X-ray localizations, are significantly brighter and redder than those with an optical/NIR afterglow. This supports a scenario where GRBs occurring in more massive and dusty galaxies frequently suffer high optical obscuration. Our spectroscopic campaign has resulted in 77% now having redshift measurements, with a median redshift of 2.14 {+-} 0.18. TOUGH alone includes 17 detected z > 2 Swift GRB host galaxies suitable for individual and statistical studies-a substantial increase over previous samples. Seven hosts have detections of the Ly{alpha} emission line and we can exclude an early indication that Ly{alpha} emission is ubiquitous among GRB hosts, but confirm that Ly{alpha} is stronger in GRB

  8. Observations of Gamma-Ray Bursts

    Science.gov (United States)

    Fishman, Gerald J.

    1999-01-01

    Gamma-ray bursts are now generally believed to originate from cosmological distances and represent the largest known explosions in the Universe. These lectures will describe the temporal and spectral characteristic of gamma-ray bursts, their intensity and sky distribution, and other observed characteristics in the gamma-ray region, primarily from data obtained with the BATSE experiment on the Compton Observatory. A summary of recent discoveries and observations in other wavelength regions will also be presented, along with their implications for models of the burst emission mechanism. Various possibilities and models for the energy source(s) of gamma-ray bursts will be described.

  9. Millisecond Magnetar Birth Connects FRB 121102 to Superluminous Supernovae and Long-duration Gamma-Ray Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Brian D.; Margalit, Ben [Columbia Astrophysics Laboratory, New York, NY 10027 (United States); Berger, Edo [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-05-20

    Subarcsecond localization of the repeating fast radio burst FRB 121102 revealed its coincidence with a dwarf host galaxy and a steady (“quiescent”) nonthermal radio source. We show that the properties of the host galaxy are consistent with those of long-duration gamma-ray bursts (LGRB) and hydrogen-poor superluminous supernovae (SLSNe-I). Both LGRBs and SLSNe-I were previously hypothesized to be powered by the electromagnetic spin-down of newly formed, strongly magnetized neutron stars with millisecond birth rotation periods (“millisecond magnetars”). This motivates considering a scenario whereby the repeated bursts from FRB 121102 originate from a young magnetar remnant embedded within a young hydrogen-poor supernova (SN) remnant. Requirements on the gigahertz free–free optical depth through the expanding SN ejecta (accounting for photoionization by the rotationally powered magnetar nebula), energetic constraints on the bursts, and constraints on the size of the quiescent source all point to an age of less than a few decades. The quiescent radio source can be attributed to synchrotron emission from the shock interaction between the fast outer layer of the supernova ejecta with the surrounding wind of the progenitor star, or the radio source can from deeper within the magnetar wind nebula as outlined in Metzger et al. Alternatively, the radio emission could be an orphan afterglow from an initially off-axis LGRB jet, though this might require the source to be too young. The young age of the source can be tested by searching for a time derivative of the dispersion measure and the predicted fading of the quiescent radio source. We propose future tests of the SLSNe-I/LGRB/FRB connection, such as searches for FRBs from nearby SLSNe-I/LGRBs on timescales of decades after their explosions.

  10. Characterization of Ar/N2/H2 middle-pressure RF discharge and application of the afterglow region for nitridation of GaAs

    Science.gov (United States)

    Raud, J.; Jõgi, I.; Matisen, L.; Navrátil, Z.; Talviste, R.; Trunec, D.; Aarik, J.

    2017-12-01

    This work characterizes the production and destruction of nitrogen and hydrogen atoms in RF capacitively coupled middle-pressure discharge in argon/nitrogen/hydrogen mixtures. Input power, electron concentration, electric field strength and mean electron energy were determined on the basis of electrical measurements. Gas temperature and concentration of Ar atoms in 1s states were determined from spectral measurements. On the basis of experimentally determined plasma characteristics, main production and loss mechanisms of H and N atoms were discussed. The plasma produced radicals were applied for the nitridation and oxide reduction of gallium arsenide in the afterglow region of discharge. After plasma treatment the GaAs samples were analyzed using x-ray photoelectron spectroscopy (XPS) technique. Successful nitridation of GaAs sample was obtained in the case of Ar/5% N2 discharge. In this gas mixture the N atoms were generated via dissociative recombination of N2+ created by charge transfer from Ar+. The treatment in Ar/5% N2/1% H2 mixture resulted in the reduction of oxide signals in the XPS spectra. Negligible formation of GaN in the latter mixture was connected with reduced concentration of N atoms, which was, in turn, due to less efficient mechanism of N atom production (electron impact dissociation of N2 molecules) and additional loss channel in reaction with H2.

  11. Coulomb fission of a charged dust cloud in an afterglow plasma

    Science.gov (United States)

    Merlino, Robert; Meyer, John

    2015-11-01

    A dust cloud of 1 micron diameter silica microspheres was confined in a DC glow discharge dusty plasma in argon at a pressure of 100 mTorr (13 Pa). Laser sheet illumination and a fast video camera (2000 frames/s) was used to record the dynamics of this cloud following the switch-off of the plasma and confining forces. Due to the rapid decay of the plasma, and the substantial residual charge on the particles in the plasma afterglow, the cloud evolved under the mutual Coulomb repulsion forces. A variety of dynamic evolutions were observed with different clouds and under different conditions including, Coulomb explosion and expansion. In one case, the cloud underwent a Coulomb fission process, fragmenting into two clouds. Observations and analysis of this Coulomb fission event will be presented. Work supported by DOE.

  12. The Discovery of a Hyperluminal Source in the Radio Afterglow of GRB 030329

    CERN Document Server

    Dado, Shlomo; De Rújula, Alvaro; Dado, Shlomo; Dar, Arnon

    2004-01-01

    Taylor, Frail, Berger and Kulkarni have made precise VLBI measurements of the size and position of the source of the radio afterglow of GRB 030329. They report a size evolution compatible with standard fireball models, proper motion limits inconsistent with the cannonball model, and a double source, i.e. "an additional compact component" on day 51 after the GRB, totally unexpected in the standard models. We outline a consistent interpretation of the ensemble of the data in the realm of the cannonball model. The observed double source is a radio image of the two cannonballs required in this model to explain the gamma-ray and optical light curves of this GRB; their separation agrees with the expectation. Thus interpreted, the observation of the two sources --separated by a "hyperluminal" distance-- is a major discovery in astrophysics: it pins down the origin of GRBs.

  13. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VIII. A Comparison to Cosmological Short-duration Gamma-Ray Bursts

    Science.gov (United States)

    Fong, W.; Berger, E.; Blanchard, P. K.; Margutti, R.; Cowperthwaite, P. S.; Chornock, R.; Alexander, K. D.; Metzger, B. D.; Villar, V. A.; Nicholl, M.; Eftekhari, T.; Williams, P. K. G.; Annis, J.; Brout, D.; Brown, D. A.; Chen, H.-Y.; Doctor, Z.; Diehl, H. T.; Holz, D. E.; Rest, A.; Sako, M.; Soares-Santos, M.

    2017-10-01

    We present a comprehensive comparison of the properties of the radio through X-ray counterpart of GW170817 and the properties of short-duration gamma-ray bursts (GRBs). For this effort, we utilize a sample of 36 short GRBs spanning a redshift range of z≈ 0.12{--}2.6 discovered over 2004-2017. We find that the counterpart to GW170817 has an isotropic-equivalent luminosity that is ≈ 3000 times less than the median value of on-axis short GRB X-ray afterglows, and ≳104 times less than that for detected short GRB radio afterglows. Moreover, the allowed jet energies and particle densities inferred from the radio and X-ray counterparts to GW170817 and on-axis short GRB afterglows are remarkably similar, suggesting that viewing angle effects are the dominant, and perhaps only, difference in their observed radio and X-ray behavior. From comparison to previous claimed kilonovae following short GRBs, we find that the optical and near-infrared (NIR) counterpart to GW170817 is comparatively under-luminous by a factor of ≈ 3{--}5, indicating a range of kilonova luminosities and timescales. A comparison of the optical limits following short GRBs on ≲ 1 day timescales also rules out a “blue” kilonova of comparable optical isotropic-equivalent luminosity in one previous short GRB. Finally, we investigate the host galaxy of GW170817, NGC 4993, in the context of short GRB host galaxy stellar population properties. We find that NGC 4993 is superlative in terms of its large luminosity, old stellar population age, and low star formation rate compared to previous short GRB hosts. Additional events within the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo volume will be crucial in delineating the properties of the host galaxies of neutron star-neutron star (NS-NS) mergers, and connecting them to their cosmological counterparts.

  14. Coupling and noise induced spiking-bursting transition in a parabolic bursting model

    Science.gov (United States)

    Ji, Lin; Zhang, Jia; Lang, Xiufeng; Zhang, Xiuhui

    2013-03-01

    The transition from tonic spiking to bursting is an important dynamic process that carry physiologically relevant information. In this work, coupling and noise induced spiking-bursting transition is investigated in a parabolic bursting model with specific discussion on their cooperation effects. Fast/slow analysis shows that weak coupling may help to induce the bursting by changing the geometric property of the fast subsystem so that the original unstable periodical solution are stabilized. It turned out that noise can play the similar stabilization role and induce bursting at appropriate moderate intensity. However, their cooperation may either strengthen or weaken the overall effect depending on the choice of noise level.

  15. Photospheric radius expansion during magnetar bursts

    NARCIS (Netherlands)

    Watts, A.L.; Kouveliotou, C.; van der Horst, A.J.; Göğüş, E.; Kaneko, Y.; van der Klis, M.; Wijers, R.A.M.J.; Harding, A.K.; Baring, M.G.

    2010-01-01

    On 2008 August 24 the new magnetar SGR 0501+4516 (discovered by Swift) emitted a bright burst with a pronounced double-peaked structure in hard X-rays, reminiscent of the double-peaked temporal structure seen in some bright thermonuclear bursts on accreting neutron stars. In the latter case this is

  16. A theory of gamma-ray bursts

    NARCIS (Netherlands)

    Brown, G.E.; Lee, C.-H.; Wijers, R.A.M.J.; Lee, H.K.; Israelian, G.; Bethe, H.A.

    2000-01-01

    Recent observations and theoretical considerations have linked gamma-ray bursts with ultra-bright type Ibc supernovae (`hypernovae'). We here work out a specific scenario for this connection. Based on earlier work, we argue that especially the longest bursts must be powered by the Blandford-Znajek

  17. The 999th Swift gamma-ray burst: Some like it thermal. A multiwavelength study of GRB 151027A

    Science.gov (United States)

    Nappo, F.; Pescalli, A.; Oganesyan, G.; Ghirlanda, G.; Giroletti, M.; Melandri, A.; Campana, S.; Ghisellini, G.; Salafia, O. S.; D'Avanzo, P.; Bernardini, M. G.; Covino, S.; Carretti, E.; Celotti, A.; D'Elia, V.; Nava, L.; Palazzi, E.; Poppi, S.; Prandoni, I.; Righini, S.; Rossi, A.; Salvaterra, R.; Tagliaferri, G.; Testa, V.; Venturi, T.; Vergani, S. D.

    2017-02-01

    We present a multiwavelength study of GRB 151027A. This is the 999th gamma-ray burst detected by the Swift satellite and it has a densely sampled emission in the X-ray and optical band and has been observed and detected in the radio up to 140 days after the prompt. The multiwavelength light curve from 500 s to 140 days can be modelled through a standard forward shock afterglow, but it requires an additional emission component to reproduce the early X-ray and optical emission. We present optical observations performed with the Telescopio Nazionale Galileo (TNG) and the Large Binocular Telescope (LBT) 19.6, 33.9, and 92.3 days after the trigger which show a bump with respect to a standard afterglow flux decay and are interpreted as possibly due to the underlying supernova and host galaxy (at a level of 0.4 μJy in the optical R band, RAB 25). Radio observations, performed with the Sardinia Radio Telescope (SRT) and Medicina in single-dish mode and with the European Very Long Baseline Interferometer (VLBI) Network and the Very Long Baseline Array (VLBA), between day 4 and 140 suggest that the burst exploded in an environment characterized by a density profile scaling with the distance from the source (wind profile). A remarkable feature of the prompt emission is the presence of a bright flare 100 s after the trigger, lasting 70 s in the soft X-ray band, which was simultaneously detected from the optical band up to the MeV energy range. By combining Swift-BAT/XRT and Fermi-GBM data, the broadband (0.3-1000 keV) time resolved spectral analysis of the flare reveals the coexistence of a non-thermal (power law) and thermal blackbody components. The blackbody component contributes up to 35% of the luminosity in the 0.3-1000 keV band. The γ-ray emission observed in Swift-BAT and Fermi-GBM anticipates and lasts less than the soft X-ray emission as observed by Swift-XRT, arguing against a Comptonization origin. The blackbody component could either be produced by an outflow

  18. Infrared Emission from Kilonovae: The Case of the Nearby Short Hard Burst GRB 160821B

    Energy Technology Data Exchange (ETDEWEB)

    Kasliwal, Mansi M.; Lau, Ryan M. [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Korobkin, Oleg; Wollaeger, Ryan; Fryer, Christopher L. [Computational Methods Group (CCS-2), Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545 (United States)

    2017-07-10

    We present constraints on Ks-band emission from one of the nearest short hard gamma-ray bursts, GRB 160821B, at z = 0.16, at three epochs. We detect a red relativistic afterglow from the jetted emission in the first epoch but do not detect any excess kilonova emission in the second two epochs. We compare upper limits obtained with Keck I/MOSFIRE to multi-dimensional radiative transfer models of kilonovae, that employ composition-dependent nuclear heating and LTE opacities of heavy elements. We discuss eight models that combine toroidal dynamical ejecta and two types of wind and one model with dynamical ejecta only. We also discuss simple, empirical scaling laws of predicted emission as a function of ejecta mass and ejecta velocity. Our limits for GRB 160821B constrain the ejecta mass to be lower than 0.03 M {sub ⊙} for velocities greater than 0.1 c. At the distance sensitivity range of advanced LIGO, similar ground-based observations would be sufficiently sensitive to the full range of predicted model emission including models with only dynamical ejecta. The color evolution of these models shows that I – K color spans 7–16 mag, which suggests that even relatively shallow infrared searches for kilonovae could be as constraining as optical searches.

  19. Modeling The Most Luminous Supernova Associated with a Gamma-Ray Burst, SN 2011kl

    Science.gov (United States)

    Wang, Shan-Qin; Cano, Zach; Wang, Ling-Jun; Zheng, WeiKang; Dai, Zi-Gao; Filippenko, Alexei V.; Liu, Liang-Duan

    2017-12-01

    We study the most luminous known supernova (SN) associated with a gamma-ray burst (GRB), SN 2011kl. The photospheric velocity of SN 2011kl around peak brightness is 21,000 ± 7000 km s-1. Owing to different assumptions related to the light-curve (LC) evolution (broken or unbroken power-law function) of the optical afterglow of GRB 111209A, different techniques for the LC decomposition, and different methods (with or without a near-infrared contribution), three groups derived three different bolometric LCs for SN 2011kl. Previous studies have shown that the LCs without an early-time excess preferred a magnetar model, a magnetar+56Ni model, or a white dwarf tidal disruption event model rather than the radioactive heating model. On the other hand, the LC shows an early-time excess and dip that cannot be reproduced by the aforementioned models, and hence the blue-supergiant model was proposed to explain it. Here, we reinvestigate the energy sources powering SN 2011kl. We find that the two LCs without the early-time excess of SN 2011kl can be explained by the magnetar+56Ni model, and the LC showing the early excess can be explained by the magnetar+56Ni model taking into account the cooling emission from the shock-heated envelope of the SN progenitor, demonstrating that this SN might primarily be powered by a nascent magnetar.

  20. Pulsar-Driven Jets in Supernovae, Gamma-Ray Bursts, and the Universe

    Directory of Open Access Journals (Sweden)

    John Middleditch

    2012-01-01

    Full Text Available The bipolarity of Supernova 1987A can be understood through its very early light curve from the CTIO 0.4 m telescope and IUE FES and following speckle observations of the “Mystery Spot”. These indicate a beam/jet of light/particles, with initial collimation factors >104 and velocities >0.95 c, involving up to 10−5 M⊙ interacting with circumstellar material. These can be produced by a model of pulsar emission from polarization currents induced/(modulated faster than c beyond the pulsar light cylinder by the periodic electromagnetic field (supraluminally induced polarization currents (SLIP. SLIP accounts for the disruption of supernova progenitors and their anomalous dimming at cosmological distances, jets from Sco X-1 and SS 433, the lack/presence of pulsations from the high-/low-luminosity low-mass X-ray binaries, and long/short gamma-ray bursts, and it predicts that their afterglows are the pulsed optical-/near-infrared emission associated with these pulsars. SLIP may also account for the TeV e+/e− results from PAMELA and ATIC, the WMAP “Haze”/Fermi “Bubbles,” and the r-process. SLIP jets from SNe of the first stars may allow galaxies to form without dark matter and explain the peculiar nongravitational motions between pairs of distant galaxies observed by GALEX.

  1. A relativistic type Ibc supernova without a detected gamma-ray burst.

    Science.gov (United States)

    Soderberg, A M; Chakraborti, S; Pignata, G; Chevalier, R A; Chandra, P; Ray, A; Wieringa, M H; Copete, A; Chaplin, V; Connaughton, V; Barthelmy, S D; Bietenholz, M F; Chugai, N; Stritzinger, M D; Hamuy, M; Fransson, C; Fox, O; Levesque, E M; Grindlay, J E; Challis, P; Foley, R J; Kirshner, R P; Milne, P A; Torres, M A P

    2010-01-28

    Long duration gamma-ray bursts (GRBs) mark the explosive death of some massive stars and are a rare sub-class of type Ibc supernovae. They are distinguished by the production of an energetic and collimated relativistic outflow powered by a central engine (an accreting black hole or neutron star). Observationally, this outflow is manifested in the pulse of gamma-rays and a long-lived radio afterglow. Until now, central-engine-driven supernovae have been discovered exclusively through their gamma-ray emission, yet it is expected that a larger population goes undetected because of limited satellite sensitivity or beaming of the collimated emission away from our line of sight. In this framework, the recovery of undetected GRBs may be possible through radio searches for type Ibc supernovae with relativistic outflows. Here we report the discovery of luminous radio emission from the seemingly ordinary type Ibc SN 2009bb, which requires a substantial relativistic outflow powered by a central engine. A comparison with our radio survey of type Ibc supernovae reveals that the fraction harbouring central engines is low, about one per cent, measured independently from, but consistent with, the inferred rate of nearby GRBs. Independently, a second mildly relativistic supernova has been reported.

  2. Observational properties of decameter type IV bursts

    Science.gov (United States)

    Melnik, Valentin; Brazhenko, Anatoly; Rucker, Helmut; Konovalenko, Alexander; Briand, Carine; Dorovskyy, Vladimir; Zarka, Philippe; Frantzusenko, Anatoly; Panchenko, Michael; Poedts, Stefan; Zaqarashvili, Teimuraz; Shergelashvili, Bidzina

    2013-04-01

    Oscillations of decameter type IV bursts were registered during observations of solar radio emission by UTR-2, URAN-2 and NDA in 2011-2012. Large majority of these bursts were accompanied by coronal mass ejections (CMEs), which were observed by SOHO and STEREO in the visible light. Only in some cases decameter type IV bursts were not associated with CMEs. The largest periods of oscillations P were some tens of minutes. There were some modes of long periods of oscillations simultaneously. Periods of oscillations in flux and in polarization profiles were close. Detailed properties of oscillations at different frequencies were analyzed on the example of two type IV bursts. One of them was observed on April 7, 2011 when a CME happened. Another one (August 1, 2011) was registered without any CME. The 7 April type IV burst had two periods in the frames 75-85 and 35-85 minutes. Interesting feature of these oscillations is decreasing periods with time. The observed decreasing rates dP/dt equaled 0.03-0.07. Concerning type IV burst observed on August 1, 2011 the period of its oscillations increases from 17 min. at 30 MHz to 44 min. at 10 MHz. Connection of type IV burst oscillations with oscillations of magnetic arches and CMEs at corresponding altitudes are discussed. The work is fulfilled in the frame of FP7 project "SOLSPANET".

  3. Use of Interrupted Helium Flow in the Analysis of Vapor Samples with Flowing Atmospheric-Pressure Afterglow-Mass Spectrometry

    Science.gov (United States)

    Storey, Andrew P.; Zeiri, Offer M.; Ray, Steven J.; Hieftje, Gary M.

    2017-02-01

    The flowing atmospheric-pressure afterglow (FAPA) source was used for the mass-spectrometric analysis of vapor samples introduced between the source and mass spectrometer inlet. Through interrupted operation of the plasma-supporting helium flow, helium consumption is greatly reduced and dynamic gas behavior occurs that was characterized by schlieren imaging. Moreover, mass spectra acquired immediately after the onset of helium flow exhibit a signal spike before declining and ultimately reaching a steady level. This initial signal appears to be due to greater interaction of sample vapor with the afterglow of the source when helium flow resumes. In part, the initial spike in signal can be attributed to a pooling of analyte vapor in the absence of helium flow from the source. Time-resolved schlieren imaging of the helium flow during on and off cycles provided insight into gas-flow patterns between the FAPA source and the MS inlet that were correlated with mass-spectral data.

  4. Bursting neurons and ultrasound avoidance in crickets

    Directory of Open Access Journals (Sweden)

    Gary eMarsat

    2012-07-01

    Full Text Available Decision making in invertebrates often relies on simple neural circuits composed of only a few identified neurons. The relative simplicity of these circuits makes it possible to identify the key computation and neural properties underlying decisions. In this review, we summarize recent research on the neural basis of ultrasound avoidance in crickets, a response that allows escape from echolocating bats. The key neural property shaping behavioral output is high-frequency bursting of an identified interneuron, AN2, which carries information about ultrasound stimuli from receptor neurons to the brain. AN2's spike train consists of clusters of spikes –bursts– that may be interspersed with isolated, non-burst spikes. AN2 firing is necessary and sufficient to trigger avoidance steering but only high-rate firing, such as occurs in bursts, evokes this response. AN2 bursts are therefore at the core of the computation involved in deciding whether or not to steer away from ultrasound. Bursts in AN2 are triggered by synaptic input from nearly synchronous bursts in ultrasound receptors. Thus the population response at the very first stage of sensory processing –the auditory receptor- already differentiates the features of the stimulus that will trigger a behavioral response from those that will not. Adaptation, both intrinsic to AN2 and within ultrasound receptors, scales the burst-generating features according to the stimulus statistics, thus filtering out background noise and ensuring that bursts occur selectively in response to salient peaks in ultrasound intensity. Furthermore AN2’s sensitivity to ultrasound varies adaptively with predation pressure, through both developmental and evolutionary mechanisms. We discuss how this key relationship between bursting and the triggering of avoidance behavior is also observed in other invertebrate systems such as the avoidance of looming visual stimuli in locusts or heat avoidance in beetles.

  5. Burst Oscillations: Watching Neutron Stars Spin

    Science.gov (United States)

    Strohmayer, Tod

    2010-01-01

    It is now almost 15 years since the first detection of rotationally modulated emission from X-ray bursting neutron stars, "burst oscillations," This phenomenon enables us to see neutron stars spin, as the X-ray burst flux asymmetrically lights up the surface. It has enabled a new way to probe the neutron star spin frequency distribution, as well as to elucidate the multidimensional nature of nuclear burning on neutron stars. I will review our current observational understanding of the phenomenon, with an eye toward highlighting some of the interesting remaining puzzles, of which there is no shortage.

  6. Three-body recombination and dynamics of electrons and excited states in the low-pressure argon afterglow

    Science.gov (United States)

    Tsankov, Tsanko Vaskov; Johnsen, Rainer; Czarnetzki, Uwe

    2016-09-01

    The afterglow phase occurs naturally during the power-off period in pulsed low-pressure plasmas and in atmospheric pressure ns discharges. During that period the electron energy rapidly declines and the charged particles are lost due to diffusion and recombination. In low-pressure discharges the dominant process is three-body recombination (TBR) of Ar+ ions with electrons. It leads to complex dynamics of the excited states, dominated by collisional-radiative cascades that eventually repopulate the metastable states. In this contribution the afterglow dynamics of an argon discharge is analyzed in detail to elucidate the roles played by the various processes. An analytical model for the fast drop of the electron energy by evaporative cooling and electron-ion collisions is combined with a time-dependent collisional radiative model for the atomic excited states that numerically solves the electron energy and density balance equations. By including further gas heating and cooling, the model leads to excellent agreement with experiments utilizing different diagnostic techniques, and hence gives insight into the interplay of the various processes in the afterglow. Work Supported by the DFG (Grant No. TS 307/1-1).

  7. The luminous, massive and solar metallicity galaxy hosting the Swift γ-ray burst GRB 160804A at z = 0.737

    Science.gov (United States)

    Heintz, K. E.; Malesani, D.; Wiersema, K.; Jakobsson, P.; Fynbo, J. P. U.; Savaglio, S.; Cano, Z.; Covino, S.; D'Elia, V.; Gomboc, A.; Hammer, F.; Kaper, L.; Milvang-Jensen, B.; Møller, P.; Piranomonte, S.; Selsing, J.; Rhodin, N. H. P.; Tanvir, N. R.; Thöne, C. C.; de Ugarte Postigo, A.; Vergani, S. D.; Watson, D.

    2018-02-01

    We here present the spectroscopic follow-up observations with VLT/X-shooter of the Swift long-duration gamma-ray burst GRB 160804A at z = 0.737. Typically, GRBs are found in low-mass, metal-poor galaxies that constitute the sub-luminous population of star-forming galaxies. For the host galaxy of the GRB presented here, we derive a stellar mass of log (M*/ M⊙) = 9.80 ± 0.07, a roughly solar metallicity (12 + log (O/H) = 8.74 ± 0.12) based on emission line diagnostics, and an infrared luminosity of M3.6/(1 + z) = -21.94 mag, but find it to be dust-poor (E(B - V) < 0.05 mag). This establishes the galaxy hosting GRB 160804A as one of the most luminous, massive and metal-rich GRB hosts at z < 1.5. Furthermore, the gas-phase metallicity is found to be representative of the physical conditions of the gas close to the explosion site of the burst. The high metallicity of the host galaxy is also observed in absorption, where we detect several strong Fe II transitions as well as Mg II and Mg I. Although host galaxy absorption features are common in GRB afterglow spectra, we detect absorption from strong metal lines directly in the host continuum (at a time when the afterglow was contributing to < 15 per cent). Finally, we discuss the possibility that the geometry and state of the absorbing and emitting gas are indicative of a galactic scale outflow expelled at the final stage of two merging galaxies.

  8. On Gamma-Ray Bursts

    CERN Document Server

    Ruffini, Remo; Bianco, Carlo Luciano; Caito, Letizia; Chardonnet, Pascal; Cherubini, Christian; Dainotti, Maria Giovanna; Fraschetti, Federico; Geralico, Andrea; Guida, Roberto; Patricelli, Barbara; Rotondo, Michael; Hernandez, Jorge Armando Rueda; Vereshchagin, Gregory; Xue, She-Sheng

    2008-01-01

    (Shortened) We show by example how the uncoding of Gamma-Ray Bursts (GRBs) offers unprecedented possibilities to foster new knowledge in fundamental physics and in astrophysics. After recalling some of the classic work on vacuum polarization in uniform electric fields by Klein, Sauter, Heisenberg, Euler and Schwinger, we summarize some of the efforts to observe these effects in heavy ions and high energy ion collisions. We then turn to the theory of vacuum polarization around a Kerr-Newman black hole, leading to the extraction of the blackholic energy, to the concept of dyadosphere and dyadotorus, and to the creation of an electron-positron-photon plasma. We then present a new theoretical approach encompassing the physics of neutron stars and heavy nuclei. It is shown that configurations of nuclear matter in bulk with global charge neutrality can exist on macroscopic scales and with electric fields close to the critical value near their surfaces. These configurations may represent an initial condition for the...

  9. Long Burst Error Correcting Codes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Long burst error mitigation is an enabling technology for the use of Ka band for high rate commercial and government users. Multiple NASA, government, and commercial...

  10. POPULATION SYNTHESIS AND GAMMA RAY BURST PROGENITORS

    Energy Technology Data Exchange (ETDEWEB)

    C. L. FREYER

    2000-12-11

    Population synthesis studies of binaries are always limited by a myriad of uncertainties from the poorly understood effects of binary mass transfer and common envelope evolution to the many uncertainties that still remain in stellar evolution. But the importance of these uncertainties depends both upon the objects being studied and the questions asked about these objects. Here I review the most critical uncertainties in the population synthesis of gamma-ray burst progenitors. With a better understanding of these uncertainties, binary population synthesis can become a powerful tool in understanding, and constraining, gamma-ray burst models. In turn, as gamma-ray bursts become more important as cosmological probes, binary population synthesis of gamma-ray burst progenitors becomes an important tool in cosmology.

  11. Optimal Codes for the Burst Erasure Channel

    Science.gov (United States)

    Hamkins, Jon

    2010-01-01

    Deep space communications over noisy channels lead to certain packets that are not decodable. These packets leave gaps, or bursts of erasures, in the data stream. Burst erasure correcting codes overcome this problem. These are forward erasure correcting codes that allow one to recover the missing gaps of data. Much of the recent work on this topic concentrated on Low-Density Parity-Check (LDPC) codes. These are more complicated to encode and decode than Single Parity Check (SPC) codes or Reed-Solomon (RS) codes, and so far have not been able to achieve the theoretical limit for burst erasure protection. A block interleaved maximum distance separable (MDS) code (e.g., an SPC or RS code) offers near-optimal burst erasure protection, in the sense that no other scheme of equal total transmission length and code rate could improve the guaranteed correctible burst erasure length by more than one symbol. The optimality does not depend on the length of the code, i.e., a short MDS code block interleaved to a given length would perform as well as a longer MDS code interleaved to the same overall length. As a result, this approach offers lower decoding complexity with better burst erasure protection compared to other recent designs for the burst erasure channel (e.g., LDPC codes). A limitation of the design is its lack of robustness to channels that have impairments other than burst erasures (e.g., additive white Gaussian noise), making its application best suited for correcting data erasures in layers above the physical layer. The efficiency of a burst erasure code is the length of its burst erasure correction capability divided by the theoretical upper limit on this length. The inefficiency is one minus the efficiency. The illustration compares the inefficiency of interleaved RS codes to Quasi-Cyclic (QC) LDPC codes, Euclidean Geometry (EG) LDPC codes, extended Irregular Repeat Accumulate (eIRA) codes, array codes, and random LDPC codes previously proposed for burst erasure

  12. Blockwise Repeated Burst Error Correcting Linear Codes

    Directory of Open Access Journals (Sweden)

    B.K. Dass

    2010-12-01

    Full Text Available This paper presents a lower and an upper bound on the number of parity check digits required for a linear code that corrects a single sub-block containing errors which are in the form of 2-repeated bursts of length b or less. An illustration of such kind of codes has been provided. Further, the codes that correct m-repeated bursts of length b or less have also been studied.

  13. Supernovae and gamma-ray bursts connection

    Energy Technology Data Exchange (ETDEWEB)

    Valle, Massimo Della [INAF-Napoli, Capodimonte Observatory, Salita Moiariello, 16, I-80131 Napoli (Italy); International Center for Relativistic Astrophysics Network, Piazzale della Repubblica 10, I-65122, Pescara (Italy)

    2015-12-17

    I’ll review the status of the Supernova/Gamma-Ray Burst connection. Several pieces of evidence suggest that long duration Gamma-ray Bursts are associated with bright SNe-Ic. However recent works suggest that GRBs might be produced in tight binary systems composed of a massive carbon-oxygen cores and a neutron star companion. Current estimates of the SN and GRB rates yield a ratio GRB/SNe-Ibc in the range ∼ 0.4% − 3%.

  14. Phase analysis method for burst onset prediction

    Science.gov (United States)

    Stellino, Flavio; Mazzoni, Alberto; Storace, Marco

    2017-02-01

    The response of bursting neurons to fluctuating inputs is usually hard to predict, due to their strong nonlinearity. For the same reason, decoding the injected stimulus from the activity of a bursting neuron is generally difficult. In this paper we propose a method describing (for neuron models) a mechanism of phase coding relating the burst onsets with the phase profile of the input current. This relation suggests that burst onset may provide a way for postsynaptic neurons to track the input phase. Moreover, we define a method of phase decoding to solve the inverse problem and estimate the likelihood of burst onset given the input state. Both methods are presented here in a unified framework, describing a complete coding-decoding procedure. This procedure is tested by using different neuron models, stimulated with different inputs (stochastic, sinusoidal, up, and down states). The results obtained show the efficacy and broad range of application of the proposed methods. Possible applications range from the study of sensory information processing, in which phase-of-firing codes are known to play a crucial role, to clinical applications such as deep brain stimulation, helping to design stimuli in order to trigger or prevent neural bursting.

  15. Chandra Helps Put The Pieces Together On Gamma-Ray Bursts

    Science.gov (United States)

    2000-11-01

    NASA’s Chandra X-ray Observatory has detected never-before-seen properties in the X-ray afterglow of a gamma-ray burst. This discovery strengthens the case for a “hypernova” model, where massive collapsed stars generate these mysterious blasts of high-energy radiation believed to be the most powerful explosions in the universe. An international team of scientists used Chandra to observe iron emission lines from ejected material surrounding the gamma-ray burst (GRB) known as GRB991216. This is the first time emission lines associated with GRBs have been unambiguously detected and their properties precisely measured at X-ray wavelengths. Astronomers have long debated how GRBs originate. One theory contends that GRBs result when two “compact objects,” that is, neutron stars or black holes, collide and coalesce. Another theory speculates that a “hypernova,” a gigantic star collapsing on itself under its own weight, could cause these extremely energetic outbursts. “The discovery of iron lines in the X-ray spectrum is an important clue to our understanding of GRBs,” said Luigi Piro, lead author of the paper that appeared in the November 3 issue of the journal Science. “Studying the immediate area around the GRB tells us a great deal about the origin of the GRB itself.” A shift in the wavelength, or energy, of the detected iron line emission (relative to what would be seen in a laboratory) tells the researchers the distance to the GRB. The Chandra team determined that it has taken roughly 8 billion years for the X rays from GRB991216 to reach the Earth, in agreement with an independent estimate from an absorption feature in the optical light from the host galaxy. From the distance and the intensities of the detected X-ray emission lines, the investigators deduced the properties of the ejected material and its relationship to the GRB. The team was able to determine the mass of the medium within a light day or two of the GRB as approximately equivalent

  16. The 'Supercritical Pile' GRB Model: Afterglows and GRB, XRR, XRF Unification

    Science.gov (United States)

    Kazanas, D.

    2007-01-01

    We present the general notions and observational consequences of the "Supercritical Pile" GRB model; the fundamental feature of this model is a detailed process for the conversion of the energy stored in relativistic protons in the GRB Relativistic Blast Waves (RBW) into relativistic electrons and then into radiation. The conversion is effected through the $p \\, \\gamma \\rightarrow p \\, e circumflex + e circumflex -$ reaction, whose kinematic threshold is imprinted on the GRB spectra to provide a peak of their emitted luminosity at energy \\Ep $\\sim 1$ MeV in the lab frame. We extend this model to include, in addition to the (quasi--)thermal relativistic post-shock protons an accelerated component of power law form. This component guarantees the production of $e circumflex +e circumflex- - $pairs even after the RBW has slowed down to the point that its (quasi-) thermal protons cannot fulfill the threshold of the above reaction. We suggest that this last condition marks the transition from the prompt to the afterglow GRB phase. We also discuss conditions under which this transition is accompanied by a significant drop in the flux and could thus account for several puzzling, recent observations. Finally, we indicate that the same mechanism applied to the late stages of the GRB evolution leads to a decrease in \\Ep $\\propto \\Gamma circumflex 2(t)\\propto t circumflex {-3/4}$, a feature amenable to future observational tests.

  17. ASKAP Joins the Hunt for Mysterious Bursts

    Science.gov (United States)

    Kohler, Susanna

    2017-05-01

    A new telescope, the Australian Square Kilometre Array Pathfinder (ASKAP), has joined the search for energetic and elusive fast radio bursts. And in just a few days of looking, its already had success!Elusive TransientsThe Parkes radio telescope, which has detected all but five of the fast radio bursts published to date, has a very narrow field of view. [CSIRO]Fast radio bursts are mysterious millisecond-duration radio pulses that were first discovered around a decade ago. Since that time particularly in recent years weve made some progress toward the goal of localizing them. Were now fairly convinced that fast radio bursts come from outside of the galaxy, and yet theyre enormously bright orders of magnitude more luminous than any pulse seen from the Milky Way.Better identification of where these mysterious bursts come from would help us to determine what they are. But so far, weve discovered only around 30 such bursts, despite the fact that theyre estimated to occur at a rate of 3,000 events per day across the whole sky.Why are they so hard to find? Due to their short duration, effective detection would require instantaneous coverage of a very large fraction of the sky. The Parkes radio telescope which has detected all but five of the fast radio bursts published to date has a field of view spanning less than a square degree,significantly limiting our ability to rapidly survey for these transients.FRB 170107s band-averaged pulse (top) and dynamic spectrum (bottom). [Bannister et al. 2017]A New Array in TownA new player is now on the scene, however, and its already had huge success. ASKAP is a wide-field radio telescope made up of an array of 12-meter antennas. Using phased-array-feed technology, ASKAP is able to instantaneously observe an effective area of 160 square degrees an enormous field compared to Parkes 0.6 square degrees! This capability significantly increases our chances of being able to detect fast radio bursts.In a new study led by Keith Bannister

  18. Method and apparatus for coherent burst ranging

    Science.gov (United States)

    Wachter, Eric A.; Fisher, Walter G.

    1998-01-01

    A high resolution ranging method is described utilizing a novel modulated waveform, hereafter referred to as coherent burst modulation. In the coherent burst method, high frequency modulation of an acoustic or electromagnetic transmitter, such as a laser, is performed at a modulation frequency. This modulation frequency is transmitted quasi-continuously in the form of interrupted bursts of radiation. Energy from the transmitter is directed onto a target, interacts with the target, and the returning energy is collected. The encoded burst pattern contained in the collected return signal is detected coherently by a receiver that is tuned so as to be principally sensitive to the modulation frequency. The receiver signal is processed to determine target range using both time-of-flight of the burst envelope and phase shift of the high frequency modulation. This approach effectively decouples the maximum unambiguous range and range resolution relationship of earlier methods, thereby allowing high precision ranging to be conducted at arbitrarily long distances using at least one burst of encoded energy. The use of a receiver tuned to the high frequency modulation contained within the coherent burst vastly improves both sensitivity in the detection of the target return signal and rejection of background interferences, such as ambient acoustic or electromagnetic noise. Simultaneous transmission at several energies (or wavelengths) is possible by encoding each energy with a separate modulation frequency or pattern; electronic demodulation at the receiver allows the return pattern for each energy to be monitored independently. Radial velocity of a target can also be determined by monitoring change in phase shift of the return signal as a function of time.

  19. Localization of Gamma-Ray Bursts Using the Fermi Gamma-Ray Burst Monitor

    NARCIS (Netherlands)

    Connaughton, V.; Briggs, M.S.; Goldstein, A.; Meegan, C.A.; Paciesas, W.S.; Preece, R.D.; Wilson-Hodge, C.A.; Gibby, M.H.; Greiner, J.; Gruber, D.; Jenke, P.; Kippen, R.M.; Pelassa, V.; Xiong, S.; Yu, H-F.; Bhat, P.N.; Burgess, J.M.; Byrne, D.; Fitzpatrick, G.; Foley, S.; Giles, M.M.; Guiriec, S.; van der Horst, A.J.; von Kienlin, A.; McBreen, S.; McGlynn, S.; Tierney, D.; Zhang, B..B.

    2015-01-01

    The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 gamma-ray bursts (GRBs) since it began science operations in 2008 July. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the

  20. QKD-Based Secured Burst Integrity Design for Optical Burst Switched Networks

    Science.gov (United States)

    Balamurugan, A. M.; Sivasubramanian, A.; Parvathavarthini, B.

    2016-03-01

    The field of optical transmission has undergone numerous advancements and is still being researched mainly due to the fact that optical data transmission can be done at enormous speeds. It is quite evident that people prefer optical communication when it comes to large amount of data involving its transmission. The concept of switching in networks has matured enormously with several researches, architecture to implement and methods starting with Optical circuit switching to Optical Burst Switching. Optical burst switching is regarded as viable solution for switching bursts over networks but has several security vulnerabilities. However, this work exploited the security issues associated with Optical Burst Switching with respect to integrity of burst. This proposed Quantum Key based Secure Hash Algorithm (QKBSHA-512) with enhanced compression function design provides better avalanche effect over the conventional integrity algorithms.

  1. Happy Birthday Swift: Ultra-long GRB 141121A and Its Broadband Afterglow

    Science.gov (United States)

    Cucchiara, A.; Veres, P.; Corsi, A.; Cenko, S. B.; Perley, D. A.; Lien, A.; Marshall, F. E.; Pagani, C.; Toy, V. L.; Capone, J. I.; Frail, D. A.; Horesh, A.; Modjaz, M.; Butler, N. R.; Littlejohns, O. M.; Watson, A. M.; Kutyrev, A. S.; Lee, W. H.; Richer, M. G.; Klein, C. R.; Fox, O. D.; Prochaska, J. X.; Bloom, J. S.; Troja, E.; Ramirez-Ruiz, E.; de Diego, J. A.; Georgiev, L.; González, J.; Román-Zúñiga, C. G.; Gehrels, N.; Moseley, H.

    2015-10-01

    We present our extensive observational campaign on the Swift-discovered GRB 141121A, almost 10 years after its launch. Our observations cover radio through X-rays and extend for more than 30 days after discovery. The prompt phase of GRB 141121A lasted 1410 s and, at the derived redshift of z = 1.469, the isotropic energy is Eγ,iso = 8.0 × 1052 erg. Due to the long prompt duration, GRB 141121A falls into the recently discovered class of ultra-long GRBs (UL-GRBs). Peculiar features of this burst are (1) a flat early-time optical light curve and (2) a radio-to-X-ray rebrightening around three days after the burst. The latter is followed by a steep optical-to-X-ray decay and a much shallower radio fading. We analyze GRB 141121A in the context of the standard forward-reverse shock (FS, RS) scenario and we disentangle the FS and RS contributions. Finally, we comment on the puzzling early-time (t ≲ 3 days) behavior of GRB 141121A, and suggest that its interpretation may require a two-component jet model. Overall, our analysis confirms that the class of UL-GRBs represents our best opportunity to firmly establish the prominent emission mechanisms in action during powerful gamma-ray burst explosions, and future missions (like SVOM, XTiDE, or ISS-Lobster) will provide many more of such objects.

  2. HAPPY BIRTHDAY SWIFT: ULTRA-LONG GRB 141121A AND ITS BROADBAND AFTERGLOW

    Energy Technology Data Exchange (ETDEWEB)

    Cucchiara, A. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Veres, P. [The George Washington University, Department of Physics, 725 21st, NW Washington, DC 20052 (United States); Corsi, A. [Physics Department, Texas Tech University, Box 41051, Lubbock, TX 79409 (United States); Cenko, S. B.; Marshall, F. E.; Kutyrev, A. S. [Astrophysics Science Division, NASA Goddard Space Flight Center, MC 661, Greenbelt, MD 20771 (United States); Perley, D. A.; Horesh, A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Lien, A. [Center for Research and Exploration in Space Science and Technology (CRESST) and NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Pagani, C. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Toy, V. L.; Capone, J. I. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Frail, D. A. [National Radio Astronomy Observatory P.O. Box 0. Socorro, NM (United States); Modjaz, M. [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Butler, N. R.; Littlejohns, O. M. [School of Earth and Space Exploration, Arizona State University, AZ 85287 (United States); Watson, A. M.; Lee, W. H.; Richer, M. G. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 70-264, 04510 México, D. F., México (Mexico); Klein, C. R., E-mail: antonino.cucchiara@nasa.gov [Astronomy Department, University of California, Berkeley, CA 94720-7450 (United States); and others

    2015-10-20

    We present our extensive observational campaign on the Swift-discovered GRB 141121A, almost 10 years after its launch. Our observations cover radio through X-rays and extend for more than 30 days after discovery. The prompt phase of GRB 141121A lasted 1410 s and, at the derived redshift of z = 1.469, the isotropic energy is E{sub γ,iso} = 8.0 × 10{sup 52} erg. Due to the long prompt duration, GRB 141121A falls into the recently discovered class of ultra-long GRBs (UL-GRBs). Peculiar features of this burst are (1) a flat early-time optical light curve and (2) a radio-to-X-ray rebrightening around three days after the burst. The latter is followed by a steep optical-to-X-ray decay and a much shallower radio fading. We analyze GRB 141121A in the context of the standard forward–reverse shock (FS, RS) scenario and we disentangle the FS and RS contributions. Finally, we comment on the puzzling early-time (t ≲ 3 days) behavior of GRB 141121A, and suggest that its interpretation may require a two-component jet model. Overall, our analysis confirms that the class of UL-GRBs represents our best opportunity to firmly establish the prominent emission mechanisms in action during powerful gamma-ray burst explosions, and future missions (like SVOM, XTiDE, or ISS-Lobster) will provide many more of such objects.

  3. Non-Equilibrium Thermodynamics of Transcriptional Bursts

    Science.gov (United States)

    Hernández-Lemus, Enrique

    Gene transcription or Gene Expression (GE) is the process which transforms the information encoded in DNA into a functional RNA message. It is known that GE can occur in bursts or pulses. Transcription is irregular, with strong periods of activity, interspersed by long periods of inactivity. If we consider the average behavior over millions of cells, this process appears to be continuous. But at the individual cell level, there is considerable variability, and for most genes, very little activity at any one time. Some have claimed that GE bursting can account for the high variability in gene expression occurring between cells in isogenic populations. This variability has a big impact on cell behavior and thus on phenotypic conditions and disease. In view of these facts, the development of a thermodynamic framework to study gene expression and transcriptional regulation to integrate the vast amount of molecular biophysical GE data is appealing. Application of such thermodynamic formalism is useful to observe various dissipative phenomena in GE regulatory dynamics. In this chapter we will examine at some detail the complex phenomena of transcriptional bursts (specially of a certain class of anomalous bursts) in the context of a non-equilibrium thermodynamics formalism and will make some initial comments on the relevance of some irreversible processes that may be connected to anomalous transcriptional bursts.

  4. Scientific Applications Performance Evaluation on Burst Buffer

    KAUST Repository

    Markomanolis, George S.

    2017-10-19

    Parallel I/O is an integral component of modern high performance computing, especially in storing and processing very large datasets, such as the case of seismic imaging, CFD, combustion and weather modeling. The storage hierarchy includes nowadays additional layers, the latest being the usage of SSD-based storage as a Burst Buffer for I/O acceleration. We present an in-depth analysis on how to use Burst Buffer for specific cases and how the internal MPI I/O aggregators operate according to the options that the user provides during his job submission. We analyze the performance of a range of I/O intensive scientific applications, at various scales on a large installation of Lustre parallel file system compared to an SSD-based Burst Buffer. Our results show a performance improvement over Lustre when using Burst Buffer. Moreover, we show results from a data hierarchy library which indicate that the standard I/O approaches are not enough to get the expected performance from this technology. The performance gain on the total execution time of the studied applications is between 1.16 and 3 times compared to Lustre. One of the test cases achieved an impressive I/O throughput of 900 GB/s on Burst Buffer.

  5. Millimetre observations of gamma-ray bursts at IRAM

    DEFF Research Database (Denmark)

    Castro-Tirado, A. J.; Bremer, M.; Winters, J. M.

    2013-01-01

    Since 1997, and following our detection of the first mm afterglow, we have followed-up 70 GRBs, mainly with the IRAMÅ Plateau de Bure Interferometer, what can be considered as the IRAM Legacy GRB Sample. 66 events were observed at 3 mm, with 19 of them being detected (with another 3 having margin...

  6. X-Ray and Multi-Wavelength Observations of Gamma Ray Bursts (GRBs)

    Science.gov (United States)

    Kouveliotou, Chryssa

    2009-01-01

    The launch of the Italian (with Dutch participation) satellite BeppoSAX in 1996 enabled the detection of the first X-ray GRB afterglow, which in turn led to GRB counterpart detection in multiple wavelengths. This breakthrough firmly established the cosmological nature of GRBs. However, afterglow observations of GRBs took off in large numbers after the launch of NASA's Swift satellite in 2004. Swift enabled multiple major discoveries, such as the early lightcurves of X-ray afterglows, the first detection of a short GRB afterglow and opened more questions such as where are the elusive breaks in afterglow light curves. I will describe here these results and will discuss future opportunities and improvements in the field.

  7. Radio afterglow of the jetted tidal disruption event Swift J1644+57

    Directory of Open Access Journals (Sweden)

    Mimica P.

    2012-12-01

    Full Text Available The recent transient event Swift J1644+57 has been interpreted as resulting from a relativistic outflow, powered by the accretion of a tidally disrupted star onto a supermassive black hole. This discovery of a new class of relativistic transients opens new windows into the study of tidal disruption events (TDEs and offers a unique probe of the physics of relativistic jet formation and the conditions in the centers of distant quiescent galaxies. Unlike the rapidly-varying γ/X-ray emission from Swift J1644+57, the radio emission varies more slowly and is well modeled as synchrotron radiation from the shock interaction between the jet and the gaseous circumnuclear medium (CNM. Early after the onset of the jet, a reverse shock propagates through and decelerates the ejecta released during the first few days of activity, while at much later times the outflow approaches the self-similar evolution of Blandford and McKee. The point at which the reverse shock entirely crosses the earliest ejecta is clearly observed as an achromatic break in the radio light curve at t ≈ 10 days. The flux and break frequencies of the afterglow constrain the properties of the jet and the CNM, including providing robust evidence for a narrowly collimated jet. I briefly discuss the implications of Swift J1644+57 for the fraction of TDEs accompanied by relativistic jets; the physics of jet formation more broadly; and the prospects for detecting off-axis TDE radio emission, either via follow-up observations of TDE candidates discovered at other wavelengths or blindly with upcoming wide-field radio surveys. The radio rebrightening observed months after the onset of the jet remains a major unsolved mystery, the resolution of which may require considering a jet with more complex (temporal or angular structure.

  8. Bursting activity spreading through asymmetric interactions

    CERN Document Server

    Onaga, Tomokatsu

    2014-01-01

    People communicate with those who have the same background or share a common interest by using a social networking service (SNS). News or messages propagate through inhomogeneous connections in an SNS by sharing or facilitating additional comments. Such human activity is known to lead to endogenous bursting in the rate of message occurrences. We analyze a multi-dimensional self-exciting process to reveal dependence of the bursting activity on the topology of connections and the distribution of interaction strength on the connections. We determine the critical conditions for the cases where interaction strength is regulated at either the point of input or output for each person. In the input regulation condition, the network may exhibit bursting with infinitesimal interaction strength, if the dispersion of the degrees diverges as in the scale-free networks. In contrast, in the output regulation condition, the critical value of interaction strength, represented by the average number of events added by a single ...

  9. Burst Searches for Compact Binary Coalescences

    Science.gov (United States)

    Klimenko, Sergey

    2014-03-01

    Compact Binary coalescences (CBC) are the most promising sources of gravitational waves (GW) for the first detection with advanced GW detectors. Being the most efficient GW emitters among anticipated GW sources, they are also well understood theoretically in the framework of General Relativity. In the talk I'll discuss different flavors of CBC sources and two types of search methods employed in the GW data analysis: template and excess power. While template methods are the most optimal for CBC sources, I will concentrate on the excess power methods, which are typical for searches of generic GW transients (bursts). How to use burst searches for CBC sources? Why would we do this? What can we learn about CBC sources from a burst search? - these and other questions will be discussed in the talk. Supported by NSF grant PHY-1205512.

  10. CONSERVATIVE TREATMENT FOR THORACOLUMBAR SPINE BURST FRACTURES

    Directory of Open Access Journals (Sweden)

    Barajas Vanegas Raymundo

    Full Text Available ABSTRACT Objective: To identify the category of evidence and the strength of recommendation for the conservative treatment of thoracolumbar spine burst fractures. Method: A systematic review was conducted from April 2014 to June 2015, selecting articles according to their prospective design, related to thoracolumbar spine burst fractures and their treatment. These studies were published in the electronic bibliographic databases from January 2009 to January 2015. Results: A total of 9,504 articles were found in a free search, of which 7 met the selection criteria and were included for analysis in a study of a total of 435 patients, of whom 72 underwent surgical treatment and 363 received some type of conservative treatment, showing predominantly level of evidence "1b", with strength of recommendation type "A". Conclusions: According to the evidence obtained, the conservative treatment is a choice for patients with stable burst fracture in a single level of thoracolumbar spine and with no neurological injury.

  11. Gamma-Ray Bursts: A Radio Perspective

    Directory of Open Access Journals (Sweden)

    Poonam Chandra

    2016-01-01

    Full Text Available Gamma-ray bursts (GRBs are extremely energetic events at cosmological distances. They provide unique laboratory to investigate fundamental physical processes under extreme conditions. Due to extreme luminosities, GRBs are detectable at very high redshifts and potential tracers of cosmic star formation rate at early epoch. While the launch of Swift and Fermi has increased our understanding of GRBs tremendously, many new questions have opened up. Radio observations of GRBs uniquely probe the energetics and environments of the explosion. However, currently only 30% of the bursts are detected in radio bands. Radio observations with upcoming sensitive telescopes will potentially increase the sample size significantly and allow one to follow the individual bursts for a much longer duration and be able to answer some of the important issues related to true calorimetry, reverse shock emission, and environments around the massive stars exploding as GRBs in the early Universe.

  12. Mechanism behind Erosive Bursts In Porous Media

    Science.gov (United States)

    Jäger, R.; Mendoza, M.; Herrmann, H. J.

    2017-09-01

    Erosion and deposition during flow through porous media can lead to large erosive bursts that manifest as jumps in permeability and pressure loss. Here we reveal that the cause of these bursts is the reopening of clogged pores when the pressure difference between two opposite sites of the pore surpasses a certain threshold. We perform numerical simulations of flow through porous media and compare our predictions to experimental results, recovering with excellent agreement shape and power-law distribution of pressure loss jumps, and the behavior of the permeability jumps as a function of particle concentration. Furthermore, we find that erosive bursts only occur for pressure gradient thresholds within the range of two critical values, independent of how the flow is driven. Our findings provide a better understanding of sudden sand production in oil wells and breakthrough in filtration.

  13. Ag/BiOBr Film in a Rotating-Disk Reactor Containing Long-Afterglow Phosphor for Round-the-Clock Photocatalysis.

    Science.gov (United States)

    Yin, Haibo; Chen, Xiaofang; Hou, Rujing; Zhu, Huijuan; Li, Shiqing; Huo, Yuning; Li, Hexing

    2015-09-16

    Ag/BiOBr film coated on the glass substrate was synthesized by a solvothermal method and a subsequent photoreduction process. Such a Ag/BiOBr film was then adhered to a hollow rotating disk filled with long-afterglow phosphor inside the chamber. The Ag/BiOBr film exhibited high photocatalytic activity for organic pollutant degradation owing to the improved visible-light harvesting and the separation of photoinduced charges. The long-afterglow phosphor could absorb the excessive daylight and emit light around 488 nm, activating the Ag/BiOBr film to realize round-the-clock photocatalysis. Because the Ag nanoparticles could extend the light absorbance of the Ag/BiOBr film to wavelengths of around 500 nm via a surface plasma resonance effect, they played a key role in realizing photocatalysis induced by long-afterglow phosphor.

  14. X-ray bursts observed with JEM-X

    DEFF Research Database (Denmark)

    Brandt, Søren Kristian; Chenevez, Jérôme; Lund, Niels

    2006-01-01

    We report on the search for X-ray bursts in the JEM-X X-ray monitor on INTEGRAL during the first two years of operations. More than 350 bursts from 25 different type-I X-ray burst sources were found.......We report on the search for X-ray bursts in the JEM-X X-ray monitor on INTEGRAL during the first two years of operations. More than 350 bursts from 25 different type-I X-ray burst sources were found....

  15. Broadband Spectral Investigations of Magnetar Bursts

    Science.gov (United States)

    Kırmızıbayrak, Demet; Şaşmaz Muş, Sinem; Kaneko, Yuki; Göğüş, Ersin

    2017-09-01

    We present our broadband (2-250 keV) time-averaged spectral analysis of 388 bursts from SGR J1550-5418, SGR 1900+14, and SGR 1806-20 detected with the Rossi X-ray Timing Explorer (RXTE) here and as a database in a companion web-catalog. We find that two blackbody functions (BB+BB), the sum of two modified blackbody functions (LB+LB), the sum of a blackbody function and a power-law function (BB+PO), and a power law with a high-energy exponential cutoff (COMPT) all provide acceptable fits at similar levels. We performed numerical simulations to constrain the best fitting model for each burst spectrum and found that 67.6% of burst spectra with well-constrained parameters are better described by the Comptonized model. We also found that 64.7% of these burst spectra are better described with the LB+LB model, which is employed in the spectral analysis of a soft gamma repeater (SGR) for the first time here, than with the BB+BB and BB+PO models. We found a significant positive lower bound trend on photon index, suggesting a decreasing upper bound on hardness, with respect to total flux and fluence. We compare this result with bursts observed from SGR and AXP (anomalous X-ray pulsar) sources and suggest that the relationship is a distinctive characteristic between the two. We confirm a significant anticorrelation between burst emission area and blackbody temperature, and find that it varies between the hot and cool blackbody temperatures differently than previously discussed. We expand on the interpretation of our results in the framework of a strongly magnetized neutron star.

  16. Broadband Spectral Investigations of Magnetar Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Kırmızıbayrak, Demet; Şaşmaz Muş, Sinem; Kaneko, Yuki; Göğüş, Ersin, E-mail: demetk@sabanciuniv.edu [Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı Tuzla, Istanbul 34956 (Turkey)

    2017-09-01

    We present our broadband (2–250 keV) time-averaged spectral analysis of 388 bursts from SGR J1550−5418, SGR 1900+14, and SGR 1806−20 detected with the Rossi X-ray Timing Explorer ( RXTE ) here and as a database in a companion web-catalog. We find that two blackbody functions (BB+BB), the sum of two modified blackbody functions (LB+LB), the sum of a blackbody function and a power-law function (BB+PO), and a power law with a high-energy exponential cutoff (COMPT) all provide acceptable fits at similar levels. We performed numerical simulations to constrain the best fitting model for each burst spectrum and found that 67.6% of burst spectra with well-constrained parameters are better described by the Comptonized model. We also found that 64.7% of these burst spectra are better described with the LB+LB model, which is employed in the spectral analysis of a soft gamma repeater (SGR) for the first time here, than with the BB+BB and BB+PO models. We found a significant positive lower bound trend on photon index, suggesting a decreasing upper bound on hardness, with respect to total flux and fluence. We compare this result with bursts observed from SGR and AXP (anomalous X-ray pulsar) sources and suggest that the relationship is a distinctive characteristic between the two. We confirm a significant anticorrelation between burst emission area and blackbody temperature, and find that it varies between the hot and cool blackbody temperatures differently than previously discussed. We expand on the interpretation of our results in the framework of a strongly magnetized neutron star.

  17. Ultrasensitive Ambient Mass Spectrometric Analysis with a Pin-to-Capillary Flowing Atmospheric-Pressure Afterglow Source

    Science.gov (United States)

    Shelley, Jacob T.; Wiley, Joshua S.; Hieftje, Gary M.

    2011-01-01

    The advent of ambient desorption/ionization mass spectrometry has resulted in a strong interest in ionization sources that are capable of direct analyte sampling and ionization. One source that has enjoyed increasing interest is the Flowing Atmospheric-Pressure Afterglow (FAPA). FAPA has been proven capable of directly desorbing/ionizing samples in any phase (solid, liquid, or gas) and with impressive limits of detection (explosives. A detection limit of 4 amol was found for the direct determination of the agrochemical ametryn, and appears to be spectrometer-limited. The ability to quickly screen for analytes in bulk liquid samples with the pin-to-capillary FAPA is also shown. PMID:21627097

  18. Simmer analysis of prompt burst energetics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, J.T.

    1982-03-01

    The Prompt Burst Energetics experiments are designed to measure the pressure behavior of fuel and coolant as working fluids during a hypothetical prompt burst disassembly in an LMFBR. The work presented in this report consists of a parametric study of PBE-5S, a fresh oxide fuel experiment, using SIMMER-II. The various pressure sources in the experiment are examined, and the dominant source identified as incondensable contaminant gasses in the fuel. The important modeling uncertainties and limitations of SIMMER-II as applied to these experiments are discussed.

  19. Noise-induced bursting in Rulkov model

    Science.gov (United States)

    Ryashko, L.; Slepukhina, E.; Nasyrova, V.

    2016-10-01

    A problem of mathematical modeling and analysis of the stochastic phenomena in neuronal activity is considered. As a basic example, we use the nonlinear Rulkov map-based neuron model with random disturbances. In deterministic case, this one-dimensional model demonstrates quiescence, tonic and chaotic spiking regimes. We show that due to presence of random disturbances, a new regime of noise-induced bursting is generated not only in bistability zones, but also in monostability zones. To estimate noise intensity corresponding to the onset of bursting, the stochastic sensitivity technique and confidence domains method are applied. An effciency of our approach is confirmed by the statistics of interspike intervals.

  20. Polyrhythmic synchronization in bursting networking motifs.

    Science.gov (United States)

    Shilnikov, Andrey; Gordon, René; Belykh, Igor

    2008-09-01

    We study the emergence of polyrhythmic dynamics of motifs which are the building block for small inhibitory-excitatory networks, such as central pattern generators controlling various locomotive behaviors of animals. We discover that the pacemaker determining the specific rhythm of such a network composed of realistic Hodgkin-Huxley-type neurons is identified through the order parameter, which is the ratio of the neurons' burst durations or of duty cycles. We analyze different configurations of the motifs and describe the universal mechanisms for synergetics of the bursting patterns. We discuss also the multistability of inhibitory networks that results in polyrhythmicity of its emergent synchronous behaviors. (c) 2008 American Institute of Physics.

  1. INTEGRAL monitoring of unusually long X-ray bursts

    DEFF Research Database (Denmark)

    -rich bursting regime to a pure helium regime. Moreover, a handful of long bursts have shown, before the extended decay phase, an initial spike similar to a normal short X-ray burst. Such twofold bursts might be a sort of link between short and super-bursts, where the premature ignition of a carbon layer could......Thermonuclear bursts on the surface of accreting neutron stars in low mass X-ray binaries have been studied for many years and have in a few cases confirmed theoretical models of nuclear ignition and burning mechanisms. The large majority of X-ray bursts last less than 100s. A good number...... of the known X-ray bursters are frequently observed by INTEGRAL, in particular in the frame of the Key Programmes. Taking advantage of the INTEGRAL instrumentation, an international collaboration led by the JEM-X team at the Danish National Space Institute has been monitoring the occurrence of uncommon burst...

  2. On the Nature of the Gamma-ray Bursts

    Directory of Open Access Journals (Sweden)

    Kyung-Ai Hong

    1987-12-01

    Full Text Available Review of the γ-ray burst phenomena are presented. History of the γ-ray bursts, characteristics, and three radiation mechanisms of thermal bremsstrahlung, thermal synchrotron, and inverse Compton scattering processes are considered.

  3. Unusual Solar Decameter Radio Bursts with High Frequency Cut off

    Science.gov (United States)

    Brazhenko, A. I.; Melnik, V. M.; Frantsuzenko, A. V.; Rucker, H. O.; Panchenko, M.

    2015-03-01

    Solar bursts with high frequency cut off were observed by the URAN-2 radio telescope (Poltava, Ukraine) on 18 August, 2012 in the frequency range 8-32 MHz. Durations of these bursts changed from 30 to 70 s. It is much longer than that for standard type III bursts. Drift rates are much smaller than those of type III bursts are, though much larger than those for decameter type II bursts. In some cases, the drift rate sign changes from the negative to positive one. Some of these bursts have fine structures. Stripes of the fine structures have small drift rates of 20-40 kHz/s. Polarizations of these bursts made about 10 % that apparently indicates that they are generated at the second harmonic of the local plasma frequency. The connection of bursts with the high frequency cut off with compact ejections from the behind-limb active regions is confirmed.

  4. THE FERMI-GBM X-RAY BURST MONITOR: THERMONUCLEAR BURSTS FROM 4U 0614+09

    Energy Technology Data Exchange (ETDEWEB)

    Linares, M.; Chakrabarty, D. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, Cambridge, MA 02139 (United States); Connaughton, V.; Bhat, P. N.; Briggs, M. S.; Preece, R. [CSPAR and Physics Department, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Jenke, P.; Kouveliotou, C.; Wilson-Hodge, C. A. [Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Van der Horst, A. J. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, NL-1090-GE Amsterdam (Netherlands); Camero-Arranz, A.; Finger, M.; Paciesas, W. S. [Universities Space Research Association, Huntsville, AL 35805 (United States); Beklen, E. [Physics Department, Suleyman Demirel University, 32260 Isparta (Turkey); Von Kienlin, A. [Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, Postfach 1312, D-85748 Garching (Germany)

    2012-12-01

    Thermonuclear bursts from slowly accreting neutron stars (NSs) have proven difficult to detect, yet they are potential probes of the thermal properties of the NS interior. During the first year of a systematic all-sky search for X-ray bursts using the Gamma-ray Burst Monitor aboard the Fermi Gamma-ray Space Telescope we have detected 15 thermonuclear bursts from the NS low-mass X-ray binary 4U 0614+09 when it was accreting at nearly 1% of the Eddington limit. We measured an average burst recurrence time of 12 {+-} 3 days (68% confidence interval) between 2010 March and 2011 March, classified all bursts as normal duration bursts and placed a lower limit on the recurrence time of long/intermediate bursts of 62 days (95% confidence level). We discuss how observations of thermonuclear bursts in the hard X-ray band compare to pointed soft X-ray observations and quantify such bandpass effects on measurements of burst radiated energy and duration. We put our results for 4U 0614+09 in the context of other bursters and briefly discuss the constraints on ignition models. Interestingly, we find that the burst energies in 4U 0614+09 are on average between those of normal duration bursts and those measured in long/intermediate bursts. Such a continuous distribution in burst energy provides a new observational link between normal and long/intermediate bursts. We suggest that the apparent bimodal distribution that defined normal and long/intermediate duration bursts during the last decade could be due to an observational bias toward detecting only the longest and most energetic bursts from slowly accreting NSs.

  5. Spectral Lag Evolution among -Ray Burst Pulses

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We analyse the spectral lag evolution of -ray burst (GRB) pulses with observations by CGRO/BATSE. No universal spectral lag evolution feature and pulse luminosity-lag relation within a GRB is observed.Our results suggest that the spectral lag would be due to radiation physics and dynamics of a given ...

  6. Measurement of the Shape of the Optical-IR Spectrum of Prompt Emission from Gamma-Ray Bursts

    Science.gov (United States)

    Grossan, Bruce; Kistaubayev, M.; Smoot, G.; Scherr, L.

    2017-06-01

    While the afterglow phase of gamma-ray bursts (GRBs) has been extensively measured, detections of prompt emission (i.e. during bright X-gamma emission) are more limited. Some prompt optical measurements are regularly made, but these are typically in a single wide band, with limited time resolution, and no measurement of spectral shape. Some models predict a synchrotron self-absorption spectral break somewhere in the IR-optical region. Measurement of the absorption frequency would give extensive information on each burst, including the electron Lorentz factor, the radius of emission, and more (Shen & Zhang 2008). Thus far the best prompt observations have been explained invoking a variety of models, but often with a non-unique interpretation. To understand this apparently heterogeneous behavior, and to reduce the number of possible models, it is critical to add data on the optical - IR spectral shape.Long GRB prompt X-gamma emission typically lasts ~40-80 s. The Swift BAT instrument rapidly measures GRB positions to within a few arc minutes and communicates them via the internet within a few seconds. We have measured the time for a fast-moving D=700 mm telescope to point and settle to be less than 9 s anywhere on the observable sky. Therefore, the majority of prompt optical-IR emission can be measured responding to BAT positions with this telescope. In this presentation, we describe our observing and science programs, and give our design for the Burst Simultaneous Three-channel Instrument (BSTI), which uses dichroics to send eparate bands to 3 cameras. Two EMCCD cameras, give high-time resolution in B and V; a third camera with a HgCdTe sensor covers H band, allowing us to study extinguished bursts. For a total exposure time of 10 s, we find a 5 sigma sensitivity of 21.3 and 20.3 mag in B and R for 1" seeing and Kitt Peak sky brightness, much fainter than typical previous prompt detections. We estimate 5 sigma H-band sensitivity for an IR optimized telescope to be

  7. Is there cosmological time dilation in gamma-ray bursts?

    Science.gov (United States)

    Band, David L.

    1994-01-01

    Norris et al. report that the temporal structure of faint gamma-ray bursts is longer than that of bright bursts, as expected for time dilation in the cosmological models of burst origin. I show that the observed trends can easily be produced by a burst luminosity function and thus may not result from cosmological effects. A cosmological signature may be present, but the tests Norris et al. present are not powerful enough to detect these signatures.

  8. BurstMem: A High-Performance Burst Buffer System for Scientific Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Teng [Auburn University, Auburn, Alabama; Oral, H Sarp [ORNL; Wang, Yandong [Auburn University, Auburn, Alabama; Settlemyer, Bradley W [ORNL; Atchley, Scott [ORNL; Yu, Weikuan [Auburn University, Auburn, Alabama

    2014-01-01

    The growth of computing power on large-scale sys- tems requires commensurate high-bandwidth I/O system. Many parallel file systems are designed to provide fast sustainable I/O in response to applications soaring requirements. To meet this need, a novel system is imperative to temporarily buffer the bursty I/O and gradually flush datasets to long-term parallel file systems. In this paper, we introduce the design of BurstMem, a high- performance burst buffer system. BurstMem provides a storage framework with efficient storage and communication manage- ment strategies. Our experiments demonstrate that BurstMem is able to speed up the I/O performance of scientific applications by up to 8.5 on leadership computer systems.

  9. A Reconnection Switch to Trigger gamma-Ray Burst Jet Dissipation

    Energy Technology Data Exchange (ETDEWEB)

    McKinney, Jonathan C.; Uzdensky, Dmitri A.

    2012-03-14

    Prompt gamma-ray burst (GRB) emission requires some mechanism to dissipate an ultrarelativistic jet. Internal shocks or some form of electromagnetic dissipation are candidate mechanisms. Any mechanism needs to answer basic questions, such as what is the origin of variability, what radius does dissipation occur at, and how does efficient prompt emission occur. These mechanisms also need to be consistent with how ultrarelativistic jets form and stay baryon pure despite turbulence and electromagnetic reconnection near the compact object and despite stellar entrainment within the collapsar model. We use the latest magnetohydrodynamical models of ultrarelativistic jets to explore some of these questions in the context of electromagnetic dissipation due to the slow collisional and fast collisionless reconnection mechanisms, as often associated with Sweet-Parker and Petschek reconnection, respectively. For a highly magnetized ultrarelativistic jet and typical collapsar parameters, we find that significant electromagnetic dissipation may be avoided until it proceeds catastrophically near the jet photosphere at large radii (r {approx} 10{sup 13}-10{sup 14}cm), by which the jet obtains a high Lorentz factor ({gamma} {approx} 100-1000), has a luminosity of L{sub j} {approx} 10{sup 50}-10{sup 51} erg s{sup -1}, has observer variability timescales of order 1s (ranging from 0.001-10s), achieves {gamma}{theta}{sub j} {approx} 10-20 (for opening half-angle {theta}{sub j}) and so is able to produce jet breaks, and has comparable energy available for both prompt and afterglow emission. A range of model parameters are investigated and simplified scaling laws are derived. This reconnection switch mechanism allows for highly efficient conversion of electromagnetic energy into prompt emission and associates the observed prompt GRB pulse temporal structure with dissipation timescales of some number of reconnecting current sheets embedded in the jet. We hope this work helps motivate the

  10. Film formation from HMDSO: comparison of direct plasma injection with afterglow injection using an atmospheric pressure dielectric barrier discharge

    Science.gov (United States)

    Wallimann, Roger; Oberbossel, Gina; Butscher, Denis; Rudolf von Rohr, Philipp

    2017-07-01

    The afterglow of a dielectric barrier discharge plasma was used for the film formation from Hexamethyldisiloxane (HMDSO) on silicon wafers. The process gas was argon with varying admixtures of HMDSO and oxygen. The silicon wafers were analyzed using white light interferometry and ATR-FTIR to characterize film volume and composition, respectively. The topology of deposited films was compared to a flow model to link the film thickness to flow velocity. Results show that deposition only occurs where flow velocity is low. Maximum film volume was observed at an oxygen admixture of 0.05 vol.%, while oxygen depletion for lower admixtures and plasma quenching at higher oxygen contents reduce the film formation. Additionally, film deposition depends on the residence time in the region where active species promote dissociation and on the density of active species in this region. Afterglow injection of HMDSO yields film deposition comparable to direct plasma injection with respect to volume and composition, eliminating the need of direct plasma treatment and preventing unwanted reactor deposition. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  11. Electron energy distribution function, effective electron temperature, and dust charge in the temporal afterglow of a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Denysenko, I. B.; Azarenkov, N. A. [School of Physics and Technology, V. N. Karazin Kharkiv National University, Svobody sq. 4, 61022 Kharkiv (Ukraine); Kersten, H. [Institut für Experimentelle und Angewandte Physik, Leibnizstr. 19, Kiel D-24098 (Germany)

    2016-05-15

    Analytical expressions describing the variation of electron energy distribution function (EEDF) in an afterglow of a plasma are obtained. Especially, the case when the electron energy loss is mainly due to momentum-transfer electron-neutral collisions is considered. The study is carried out for different EEDFs in the steady state, including Maxwellian and Druyvesteyn distributions. The analytical results are not only obtained for the case when the rate for momentum-transfer electron-neutral collisions is independent on electron energy but also for the case when the collisions are a power function of electron energy. Using analytical expressions for the EEDF, the effective electron temperature and charge of the dust particles, which are assumed to be present in plasma, are calculated for different afterglow durations. An analytical expression for the rate describing collection of electrons by dust particles for the case when the rate for momentum-transfer electron-neutral collisions is independent on electron energy is also derived. The EEDF profile and, as a result, the effective electron temperature and dust charge are sufficiently different in the cases when the rate for momentum-transfer electron-neutral collisions is independent on electron energy and when the rate is a power function of electron energy.

  12. Ignition and afterglow dynamics of a high pressure nanosecond pulsed helium micro-discharge: II. Rydberg molecules kinetics

    Science.gov (United States)

    Carbone, Emile A. D.; Schregel, Christian-Georg; Czarnetzki, Uwe

    2016-10-01

    In this paper, we discuss the experimental results presented in Schregel et al (2016 Plasma Sources Sci. Technol. 25 054003) on a high pressure micro-discharge operated in helium and driven by nanosecond voltage pulses. A simple global plasma chemistry model is developed to describe the ions, excited atomic and molecular species dynamics in the ignition and early afterglow regimes. The existing experimental data on high pressure helium kinetics is reviewed and critically discussed. It is highlighted that several inconsistencies in the branching ratio of neutral assisted associative and dissociative processes currently exist in the literature and need further clarification. The model allows to pinpoint the mechanisms responsible for the large amounts of Rydberg molecules produced in the discharge and for the helium triplet metastable state in the afterglow. The main losses of electrons are also identified. The fast quenching of excited He (n  >  3) states appears to be a significant source of Rydberg molecules which has been previously neglected. The plasma model finally draws a simplified, but still accurate description of high pressure helium discharges based on available experimental data for ion and neutral helium species.

  13. Relativistic Particle-In-Cell Simulation Studies of Prompt and Early Afterglows from GRBs

    Science.gov (United States)

    Nishikawa, Ken-Ichi; Hardee, Philip; Mizuno, Yosuke; Fishman, Gerald

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities {e.g., the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.-/

  14. New Relativistic Particle-In-Cell Simulation Studies of Prompt and Early Afterglows from GRBs

    Science.gov (United States)

    Nishikawa, Ken-ichi; Hardee, P.; Mizuno, Y.; Zhang, B.; Medvedev, M.; Hartmann, D.; Fishman, J. F.; Preece, R.

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  15. Heuristic burst detection method using flow and pressure measurements

    NARCIS (Netherlands)

    Bakker, M.; Vreeburg, J.H.G.; Roer, Van de M.; Rietveld, L.C.

    2014-01-01

    Pipe bursts in a drinking water distribution system lead to water losses, interruption of supply, and damage to streets and houses due to the uncontrolled water flow. To minimize the negative consequences of pipe bursts, an early detection is necessary. This paper describes a heuristic burst

  16. Detecting Pipe Bursts Using Heuristic and CUSUM Methods

    NARCIS (Netherlands)

    Bakker, M.; Jung, D.; Vreeburg, J.; Van de Roer, M.; Lansey, K.; Rierveld, L.

    2014-01-01

    Pipe bursts in a drinking water distribution system lead to water losses, interruption of supply, and damage to streets and houses due to the uncontrolled water flow. To minimize the negative consequences of pipe bursts, an early detection is necessary. This paper describes a heuristic burst

  17. IGR J17254-3257, a new bursting neutron star

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Falanga, M.; Kuulkers, E.

    2007-01-01

    Aims. The study of the observational properties of uncommonly long bursts from low luminosity sources is important when investigating the transition from a hydrogen - rich bursting regime to a pure helium regime and from helium burning to carbon burning as predicted by current burst theories. On ...

  18. Path correlation considered prioritized burst segmentation for quality of service support in optical burst switching networks

    Science.gov (United States)

    Hou, Rui; Changyue, Jiana; He, Tingting; Yu, Jianwei; Lei, Bo; Mao, Tengyue

    2013-04-01

    Burst segmentation (BS) is a high-efficiency contention resolution scheme in bufferless optical burst switching (OBS) networks. A prioritized BS scheme for quality of service (QoS) support is developed. Unlike the existing work on the BS scheme, the proposed BS model considers path-correlated factors, such as path length, the adjoining paths carrying traffic on a given path, and the multipriority traffic coming from all paths. Byte loss probability for high-priority and low-priority bursts under the time-based assembly approach and the length-based assembly approach to estimate the performance of the proposed BS scheme by comparing the cumulative distribution function of a burst length in an OBS ingress node (source) with that in an egress node (destination) is introduced. A preemptive BS policy for different priority bursts is proposed to support the QoS of the OBS network. Finally, a simulation is given to validate the proposed analytical model in an existing OBS network with two priority bursts. It is shown that the proposed BS scheme can realize the service differentiation for multipriority traffic under the consideration of network topology-dependent parameters.

  19. Terahertz spectroscopy

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd

    2009-01-01

    In this presentation I will review methods for spectroscopy in the THz range, with special emphasis on the practical implementation of the technique known ad THz time-domain spectroscopy (THz-TDS). THz-TDS has revived the old field of far-infrared spectroscopy, and enabled a wealth of new activit...

  20. The Fermi-GBM X-Ray Burst Monitor: Thermonuclear Bursts from 4U 0614+09

    NARCIS (Netherlands)

    Linares, M.; Connaughton, V.; Jenke, P.; van der Horst, A.J.; Camero-Arranz, A.; Kouveliotou, C.; Chakrabarty, D.; Beklen, E.; Bhat, P.N.; Briggs, M.S.; Finger, M.; Paciesas, W.S.; Preece, R.; von Kienlin, A.; Wilson-Hodge, C.A.

    2012-01-01

    Thermonuclear bursts from slowly accreting neutron stars (NSs) have proven difficult to detect, yet they are potential probes of the thermal properties of the NS interior. During the first year of a systematic all-sky search for X-ray bursts using the Gamma-ray Burst Monitor aboard the Fermi

  1. NuSTARobservations of grb 130427a establish a single component synchrotron afterglow origin for the late optical to multi-gev emission

    DEFF Research Database (Denmark)

    Kouveliotou, C.; Granot, J.; Racusin, J. L.

    2013-01-01

    GRB 130427A occurred in a relatively nearby galaxy; its prompt emission had the largest GRB fluence ever recorded. The afterglow of GRB 130427A was bright enough for the Nuclear Spectroscopic Telescope ARray (NuSTAR) to observe it in the 3-79 keV energy range long after its prompt emission (simil...

  2. Packaging materials for plasma sterilization with the flowing afterglow of an N2-O2 discharge: damage assessment and inactivation efficiency of enclosed bacterial spores

    Science.gov (United States)

    Levif, P.; Séguin, J.; Moisan, M.; Soum-Glaude, A.; Barbeau, J.

    2011-10-01

    In conventional sterilization methods (steam, ozone, gaseous chemicals), after their proper cleaning, medical devices are wrapped/enclosed in adequate packaging materials, then closed/sealed before initiating the sterilization process: these packaging materials thus need to be porous. Gaseous plasma sterilization being still under development, evaluation and comparison of packaging materials have not yet been reported in the literature. To this end, we have subjected various porous packagings used with conventional sterilization systems to the N2-O2 flowing afterglow and also a non-porous one to evaluate and compare their characteristics towards the inactivation of B. atrophaeus endospores deposited on a Petri dish and enclosed in such packagings. Because the sterilization process with the N2-O2 discharge afterglow is conducted under reduced-pressure conditions, non-porous pouches can be sealed only after returning to atmospheric pressure. All the tests were therefore conducted with one end of the packaging freely opened, post-sealing being required. The features of these packaging materials, namely mass loss, resistance, toxicity to human cells as well as some characteristics specific to the plasma method used such as ultraviolet transparency, were examined before and after exposure to the flowing afterglow. All of our results show that the non-porous packaging considered is much more suitable than the conventionally used porous ones as far as ensuring an efficient and low-damage sterilization process with an N2-O2 plasma-afterglow is concerned.

  3. INTERPLANETARY NETWORK LOCALIZATIONS OF KONUS SHORT GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Pal' shin, V. D.; Svinkin, D. S.; Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Mazets, E. P.; Oleynik, P. P.; Ulanov, M. V. [Ioffe Physical Technical Institute, St. Petersburg, 194021 (Russian Federation); Hurley, K. [Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley, CA 94720-7450 (United States); Cline, T.; Trombka, J.; McClanahan, T. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Mitrofanov, I. G.; Golovin, D. V.; Kozyrev, A. S.; Litvak, M. L.; Sanin, A. B. [Space Research Institute, 84/32, Profsoyuznaya, Moscow 117997 (Russian Federation); Boynton, W.; Fellows, C.; Harshman, K., E-mail: val@mail.ioffe.ru [Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721 (United States); and others

    2013-08-15

    Between the launch of the Global Geospace Science Wind spacecraft in 1994 November and the end of 2010, the Konus-Wind experiment detected 296 short-duration gamma-ray bursts (including 23 bursts which can be classified as short bursts with extended emission). During this period, the Interplanetary Network (IPN) consisted of up to 11 spacecraft, and using triangulation, the localizations of 271 bursts were obtained. We present the most comprehensive IPN localization data on these events. The short burst detection rate, {approx}18 yr{sup -1}, exceeds that of many individual experiments.

  4. Dynamic Spectral Imaging of Decimetric Fiber Bursts in an Eruptive Solar Flare

    Science.gov (United States)

    Wang, Zhitao; Chen, Bin; Gary, Dale E.

    2017-10-01

    Fiber bursts are a type of fine structure that is often superposed on type IV radio continuum emission during solar flares. Although studied for many decades, its physical exciter, emission mechanism, and association with the flare energy release remain unclear, partly due to the lack of simultaneous imaging observations. We report the first dynamic spectroscopic imaging observations of decimetric fiber bursts, which occurred during the rise phase of a long-duration eruptive flare on 2012 March 3, as obtained by the Karl G. Jansky Very Large Array in 1-2 GHz. Our results show that the fiber sources are located near and above one footpoint of the flare loops. The fiber source and the background continuum source are found to be co-spatial and share the same morphology. It is likely that they are associated with nonthermal electrons trapped in the converging magnetic fields near the footpoint, as supported by a persistent coronal hard X-ray source present during the flare rise phase. We analyze three groups of fiber bursts in detail with dynamic imaging spectroscopy and obtain their mean frequency-dependent centroid trajectories in projection. By using a barometric density model and magnetic field based on a potential field extrapolation, we further reconstruct the 3D source trajectories of fiber bursts, for comparison with expectations from the whistler wave model and two MHD-based models. We conclude that the observed fiber burst properties are consistent with an exciter moving at the propagation velocity expected for whistler waves, or models that posit similar exciter velocities.

  5. A simple model of burst nucleation.

    Science.gov (United States)

    Baronov, Alexandr; Bufkin, Kevin; Shaw, Dan W; Johnson, Brad L; Patrick, David L

    2015-08-28

    We introduce a comprehensive quantitative treatment for burst nucleation (BN)-a kinetic pathway toward self-assembly or crystallization defined by an extended post-supersaturation induction period, followed by a burst of nucleation, and finally the growth of existing stable assemblages absent the formation of new ones-based on a hybrid mean field rate equation model incorporating thermodynamic treatment of the saturated solvent from classical nucleation theory. A key element is the inclusion of a concentration-dependent critical nucleus size, determined self-consistently along with the subcritical cluster population density. The model is applied to an example experimental study of crystallization in tetracene films prepared by organic vapor-liquid-solid deposition, where good agreement is observed with several aspects of the experiment using a single, physically well-defined adjustable parameter. The model predicts many important features of the experiment, and can be generalized to describe other self-organizing systems exhibiting BN kinetics.

  6. New approach to rock burst forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, V.V.; Fokin, A.N.; Pimonov, A.G. (Kuzbasskii Politekhnicheskii Institut (USSR))

    1990-10-01

    Deals with the problem of rock burst forecasting that departs from the concept of solid body strength and breaking and from equations that relate endurance of a solid body to continuous stress. A formula is derived that permits the lifetime of a rock volume under stress to be calculated. A block diagram of a laboratory automatic system is presented that is capable of monitoring the stress state of a rock sample and of forecasting the time to sample destruction. The system consists of a loading fixture, electromagnetic emission sensor, frequency meter, microprocessor and plotter. An example of a plot of the rate of fissure formation as a function of time is shown and a monitor screen display of a sample life versus time is also presented. It is maintained that the system creates a basis for developing a system that would monitor and forecast rock burst hazards in a continuous manner. 4 refs.

  7. Coherent combining pulse bursts in time domain

    Energy Technology Data Exchange (ETDEWEB)

    Galvanauskas, Almantas

    2018-01-09

    A beam combining and pulse stacking technique is provided that enhances laser pulse energy by coherent stacking pulse bursts (i.e. non-periodic pulsed signals) in time domain. This energy enhancement is achieved by using various configurations of Fabry-Perot, Gires-Tournois and other types of resonant cavities, so that a multiple-pulse burst incident at either a single input or multiple inputs of the system produces an output with a solitary pulse, which contains the summed energy of the incident multiple pulses from all beams. This disclosure provides a substantial improvement over conventional coherent-combining methods in that it achieves very high pulse energies using a relatively small number of combined laser systems, thus providing with orders of magnitude reduction in system size, complexity, and cost compared to current combining approaches.

  8. Numerical simulations of trailing vortex bursting

    Science.gov (United States)

    Beran, Philip S.

    1987-01-01

    Solutions of the steady-state Navier-Stokes equations for the axisymmetric bursting of a laminar trailing vortex are computed with Newton's method and the pseudo-arc length continuation method for wide ranges of vortex strength and Reynolds number. The results indicate that a trailing vortex can undergo a transition from a state in which the core slowly diffuses to a state marked by large amplitude, spatial oscillations of core radius and core axial velocity. At the transition point the core grows rapidly in size. This event is interpreted as vortex bursting. The results also suggest that when the maximum core swirl velocity is sufficiently large the centerline axial flow downstream of transition will be reversed.

  9. The Chase to Capture Gamma Ray Bursts

    Science.gov (United States)

    Gehrels, Neil

    2008-01-01

    Gamma-ray bursts are the most powerful explosions in the universe, thought to be the birth cries of black holes. It has taken 40 years of international cooperation and competition to begin to unravel the mystery of their origin. The most recent chapter in this field is being written by the SWIFT mission, a fast-response satellite with 3 power telescopes. An international team from countries all over the world participates in the chase to capture the fading light of bursts detected by SWIFT. This talk will discuss the challenges and excitement of building this space observatory. New results will be presented on our growing understanding of exploding stars and fiery mergers of orbiting stars.

  10. Bursting of sensitive polymersomes induced by curling.

    Science.gov (United States)

    Mabrouk, Elyes; Cuvelier, Damien; Brochard-Wyart, Françoise; Nassoy, Pierre; Li, Min-Hui

    2009-05-05

    Polymersomes, which are stable and robust vesicles made of block copolymer amphiphiles, are good candidates for drug carriers or micro/nanoreactors. Polymer chemistry enables almost unlimited molecular design of responsive polymersomes whose degradation upon environmental changes has been used for the slow release of active species. Here, we propose a strategy to remotely trigger instantaneous polymersome bursting. We have designed asymmetric polymer vesicles, in which only one leaflet is composed of responsive polymers. In particular, this approach has been successfully achieved by using a UV-sensitive liquid-crystalline copolymer. We study experimentally and theoretically this bursting mechanism and show that it results from a spontaneous curvature of the membrane induced by the remote stimulus. The versatility of this mechanism should broaden the range of applications of polymersomes in fields such as drug delivery, cosmetics and material chemistry.

  11. Automatic Cloud Bursting under FermiCloud

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hao [Fermilab; Shangping, Ren [IIT; Garzoglio, Gabriele [Fermilab; Timm, Steven [Fermilab; Bernabeu, Gerard [Fermilab; Kim, Hyun Woo; Chadwick, Keith; Jang, Haengjin [KISTI, Daejeon; Noh, Seo-Young [KISTI, Daejeon

    2013-01-01

    Cloud computing is changing the infrastructure upon which scientific computing depends from supercomputers and distributed computing clusters to a more elastic cloud-based structure. The service-oriented focus and elasticity of clouds can not only facilitate technology needs of emerging business but also shorten response time and reduce operational costs of traditional scientific applications. Fermi National Accelerator Laboratory (Fermilab) is currently in the process of building its own private cloud, FermiCloud, which allows the existing grid infrastructure to use dynamically provisioned resources on FermiCloud to accommodate increased but dynamic computation demand from scientists in the domains of High Energy Physics (HEP) and other research areas. Cloud infrastructure also allows to increase a private cloud’s resource capacity through “bursting” by borrowing or renting resources from other community or commercial clouds when needed. This paper introduces a joint project on building a cloud federation to support HEP applications between Fermi National Accelerator Laboratory and Korea Institution of Science and Technology Information, with technical contributions from the Illinois Institute of Technology. In particular, this paper presents two recent accomplishments of the joint project: (a) cloud bursting automation and (b) load balancer. Automatic cloud bursting allows computer resources to be dynamically reconfigured to meet users’ demands. The load balance algorithm which the cloud bursting depends on decides when and where new resources need to be allocated. Our preliminary prototyping and experiments have shown promising success, yet, they also have opened new challenges to be studied

  12. Black Hole Accretion in Gamma Ray Bursts

    Directory of Open Access Journals (Sweden)

    Agnieszka Janiuk

    2017-02-01

    Full Text Available We study the structure and evolution of the hyperaccreting disks and outflows in the gamma ray bursts central engines. The torus around a stellar mass black hole is composed of free nucleons, Helium, electron-positron pairs, and is cooled by neutrino emission. Accretion of matter powers the relativistic jets, responsible for the gamma ray prompt emission. The significant number density of neutrons in the disk and outflowing material will cause subsequent formation of heavier nuclei. We study the process of nucleosynthesis and its possible observational consequences. We also apply our scenario to the recent observation of the gravitational wave signal, detected on 14 September 2015 by the two Advanced LIGO detectors, and related to an inspiral and merger of a binary black hole system. A gamma ray burst that could possibly be related with the GW150914 event was observed by the Fermi satellite. It had a duration of about 1 s and appeared about 0.4 s after the gravitational-wave signal. We propose that a collapsing massive star and a black hole in a close binary could lead to the event. The gamma ray burst was powered by a weak neutrino flux produced in the star remnant’s matter. Low spin and kick velocity of the merged black hole are reproduced in our simulations. Coincident gravitational-wave emission originates from the merger of the collapsed core and the companion black hole.

  13. Management options in thoracolumbar burst fractures.

    Science.gov (United States)

    Hitchon, P W; Torner, J C; Haddad, S F; Follett, K A

    1998-06-01

    Both surgery and recumbency have been adopted in the treatment of spinal fractures. Herein we present the indications for each, and our experience with thoracolumbar junction (T12, L1 and L2) burst fractures. Sixty-eight patients with thoracolumbar burst fractures were treated operatively in 36 cases, and nonoperatively in 32 with recumbency for 1-6 weeks. Treatment was based on clinical and radiological criteria. Eighty-one percent of the recumbency patients, but only 14% of the surgical patients were intact on admission. Patients were followed for a mean+/-SD of 9+/-10 months in the recumbency group, and 21+/-21 months in the surgical group. Neurological improvement and progressive angular deformity occurred in both groups. The cost of recumbency in our patients was nearly half that of those who required surgery, though the length of hospitalization between the two groups was similar at 1 month +/-2 weeks. The above study emphasizes that the selection of operative versus nonoperative treatment in burst fractures should not be random but based on clinical as well as radiological criteria. Recumbency is favored in patients who are intact, with angular deformity less than 20 degrees , a residual spinal canal greater than 50% of normal, and an anterior body height exceeding 50% of the posterior height. Surgical intervention is generally indicated in patients with partial neurological deficit, and those with severe instability.

  14. Secured Hash Based Burst Header Authentication Design for Optical Burst Switched Networks

    Science.gov (United States)

    Balamurugan, A. M.; Sivasubramanian, A.; Parvathavarthini, B.

    2017-12-01

    The optical burst switching (OBS) is a promising technology that could meet the fast growing network demand. They are featured with the ability to meet the bandwidth requirement of applications that demand intensive bandwidth. OBS proves to be a satisfactory technology to tackle the huge bandwidth constraints, but suffers from security vulnerabilities. The objective of this proposed work is to design a faster and efficient burst header authentication algorithm for core nodes. There are two important key features in this work, viz., header encryption and authentication. Since the burst header is an important in optical burst switched network, it has to be encrypted; otherwise it is be prone to attack. The proposed MD5&RC4-4S based burst header authentication algorithm runs 20.75 ns faster than the conventional algorithms. The modification suggested in the proposed RC4-4S algorithm gives a better security and solves the correlation problems between the publicly known outputs during key generation phase. The modified MD5 recommended in this work provides 7.81 % better avalanche effect than the conventional algorithm. The device utilization result also shows the suitability of the proposed algorithm for header authentication in real time applications.

  15. Content Aware Burst Assembly - Supporting Telesurgery and Telemedicine in Optical Burst Switching Networks

    Directory of Open Access Journals (Sweden)

    Henry Orosco

    2010-08-01

    Full Text Available The emerging Telemedicine and Telesurgery technologies allow patients to share medical experts remotely through communication networks. However, network bandwidth, network latency and jitter (variation of latency, are the obstacles to the widespread use of this technology remotely. Optical Burst Switching (OBS networks greatly expand network bandwidth in existing network infrastructure by utilizing multiple DWDM channels within a single fiber, enabling high bandwidth applications. However, the burst assembly process in OBS networks introduces latency and jitter, making it unsuitable for high bandwidth, latency sensitive applications such as telesurgery and telemedicine. In this paper, we propose a content aware burst assembly scheme which dynamically adjusts the burst assembly parameters based on the content being assembled. The proposed content aware burst assembly minimizes the latency and jitter within a video frame, as well as across the left-view and right-view frames for 3D vision generation. Simulation results have shown that the proposed scheme can effectively reduce the latency and jitter experienced by video streams, making OBS a promising candidate for supporting telesurgery and telemedicine applications.

  16. INTEGRAL Results on Gamma-Ray Bursts

    Science.gov (United States)

    Hurley, Kevin C.

    2008-03-01

    Prompt, precise localizations of gamma-ray bursts imaged by IBIS are being disseminated at a rate of about 10 per year (49 to date). The INTEGRAL Burst Alert System (IBAS) produces automated alerts within 10's of seconds, giving positions which are accurate to several arcminutes for events as weak as 5.7 x 10-8 erg cm-2. IBIS is also a very sensitive detector of soft gamma repeaters (SGRs). It has detected well over 200 bursts from SGR1806-20, down to a fluence of 7×10-9 erg cm-2. An unexpected discovery is that the quiescent X-ray emission of this source and SGR 1900+14 is considerably harder than previous measurements indicated, and extends to 200 keV, a property which SGRs share with the AXP's. In addition, the SPI anti-coincidence shield (ACS) system is an extremely useful component of the interplanetary network. With its isotropic response, it detects about 66 confirmed bursts/year ( 450 to date) down to a threshold of 4.8×10-8 erg cm-2, many of which can be localized by triangulation. Most of these events are not detected by Swift or IBIS due to their limited fields of view. The triangulation results are currently being used to search for coincident neutrino emission, for gravitational radiation simultaneous with GRBs, and for coincidences between Type Ic supernovae and bursts, among other things. The SPI ACS has recently played a key role in localizing and identifying two events which are believed to be extragalactic giant magnetar flares (EMFs), from M81 and M31. LIGO was operating at the time of one of these events, and their observations support the EMF hypothesis. SPI is also being used as a Compton-scatter polarimeter for GRBs. Kalemci et al. (2007) and McGlynn et al. (2007) studied its response to GRB041219a, and obtained polarizations of 98% +/- 33%, and 63% (+31%,-30%) respectively.

  17. Production of Highly Charged Heavy Ions by means of a Hybrid Source in Dc mode and in Afterglow Mode

    Science.gov (United States)

    Gammino, S.; Ciavola, G.; Torrisi, L.; Andò, L.; Celona, L.; Presti, M.; Manciagli, S.; Picciotto, A.; Mezzasalma, A. M.; Krása, J.; Láska, L.; Pfeifer, M.; Wolowski, J.; Woryna, E.; Parys, P.; Shirkov, G. D.; Hitz, D.

    2005-03-01

    The ECLISSE experiment has been carried out by coupling a Laser Ion Source (based on a Nd:YAG laser (0.9 J / 9 ns, laser power densities metal samples without the use of ovens or sputtering technics were obtained in a variety of experimental conditions. The maximum charge states obtained from the ECRIS were 38+ for Ta and 41+ for Au. The peak current was obtained for 25+ and 29+ respectively and it was in the order of some tens of μA. In this work the analysis of some preliminary results obtained in afterglow mode will be also presented. We employed microwave pulse (length 4 msec) and laser pulse (length 9 nsec) with the same frequency (30 Hz) and variable relative phase. For appropriate phase values, a current enhancement of about one order of magnitude was observed.

  18. Computational study of the afterglow in single and sequential pulsing of an atmospheric-pressure plasma jet

    Science.gov (United States)

    Hasan, M. I.; Bradley, J. W.

    2015-10-01

    The spatial distribution of charged species in the afterglow of a helium plasma jet impinging atmospheric air has been computed using a 2D axisymmetric fluid model. The model is solved for two consecutive pulse periods of a rectangular voltage waveform (duration of 60 ns) and for two different frequencies (25 and 50 kHz). The most abundant ionic species in the afterglow are found to be \\text{O}2+ and \\text{O}2- with their concentrations increasing by about an order of magnitude (up to about 1018 m-3 and 1017 m-3 respectively) in the initial 1 μs. In the first pulse, these species form a halo around the diffusing He+ and electron rich central channel, the shape of the former being strongly correlated with the shape of He-air mixing layer computed using a hydrodynamic model. In the next pulse, this general configuration is also observed; however \\text{O}2+ is more concentrated on the axis of the jet, this being due to influence of residual electrons in the central channel. For \\text{O}2- there is little difference in their spatial distribution compared to the initial pulse. For higher frequency pulsing, the higher concentration of residual electrons lowers the necessary ignition electric field reducing the concentrations (by 25%) of charged species in a period of the applied waveform. This work provides new information on the concentration and distribution of ionic species generated by atmospheric-pressure capillary discharges of interest to those developing such sources for range of applications, particularly in the field of plasma medicine.

  19. Inactivation of Candida glabrata by a humid DC argon discharge afterglow: dominant contributions of short-lived aqueous active species

    Science.gov (United States)

    Xiong, Qing; Liu, Hongbin; Lu, Weiping; Chen, Qiang; Xu, Le; Wang, Xia; Zhu, Qunlin; Zeng, Xue; Yi, Ping

    2017-05-01

    Plasma medicine applications are currently attracting significant interest all over the world. Bactericidal treatments of Candida glabrata cultured in saline suspension are performed in this study by a room-temperature reactive afterglow of a DC-driven argon discharge. Water vapor was added to the discharge to study the inactivation contributions of reactive hydrolytic species including OH and H2O2 transporting along the gas flow to the treated solutions. The inactivation results indicate that the dominant roles in the bactericidal treatments are played by the short-lived aqueous active species, but not the stable species like H2O2aq (aq indicates an aqueous species). Further analysis shows that the ·OHaq radicals play an important role in the inactivation process. The ·OHaq radicals in the suspension are mostly produced from the direct dissolution of the OH species in the reactive afterglow. With the increase of added water vapor content, the ·OHaq production increases and enhances the inactivation efficiency of C. glabrata. Furthermore, it is found that the ambient air diffusion shows essential effects on the bactericidal activity of the remote humid argon discharge. Higher bactericidal effects can be obtained in open-space treatments compared to in a controlled Ar + H2O gas atmosphere. Key active air-byproduct species are believed to be generated in the suspension during the treatments and contributing to the inactivation process. Based on chemical analysis, the peroxynitrous acid ONOOHaq is considered as the key antimicrobial air-byproduct species. These results indicate the important dependence of plasma biomedical effects on the processing environment, which finally relates to the critical contributions of the key reactive species formed therein.

  20. Burst-suppression is reactive to photic stimulation in comatose children with acquired brain injury

    DEFF Research Database (Denmark)

    Nita, Dragos A.; Moldovan, Mihai; Sharma, Roy

    2016-01-01

    Objective: Burst-suppression is an electroencephalographic pattern observed during coma. In individuals without known brain pathologies undergoing deep general anesthesia, somatosensory stimulation transiently increases the occurrence of bursts. We investigated the reactivity of burst-suppression......Objective: Burst-suppression is an electroencephalographic pattern observed during coma. In individuals without known brain pathologies undergoing deep general anesthesia, somatosensory stimulation transiently increases the occurrence of bursts. We investigated the reactivity of burst...... reactivity. We quantified reactivity by measuring the change in the burst ratio (fraction of time in burst) following photic stimulation. Results: Photic stimulation evoked bursts in all patients, resulting in a transient increase in the burst ratio, while the mean heart rate remained unchanged....... The regression slope of the change in burst ratio, referred to as the standardized burst ratio reactivity, correlated with subjects' Glasgow Coma Scale scores. Conclusions: Reactivity of the burst-suppression pattern to photic stimulation occurs across diverse coma etiologies. Standardized burst ratio reactivity...

  1. Dynamic encoding of natural luminance sequences by LGN bursts.

    Directory of Open Access Journals (Sweden)

    Nicholas A Lesica

    2006-07-01

    Full Text Available In the lateral geniculate nucleus (LGN of the thalamus, visual stimulation produces two distinct types of responses known as tonic and burst. Due to the dynamics of the T-type Ca(2+ channels involved in burst generation, the type of response evoked by a particular stimulus depends on the resting membrane potential, which is controlled by a network of modulatory connections from other brain areas. In this study, we use simulated responses to natural scene movies to describe how modulatory and stimulus-driven changes in LGN membrane potential interact to determine the luminance sequences that trigger burst responses. We find that at low resting potentials, when the T channels are de-inactivated and bursts are relatively frequent, an excitatory stimulus transient alone is sufficient to evoke a burst. However, to evoke a burst at high resting potentials, when the T channels are inactivated and bursts are relatively rare, prolonged inhibitory stimulation followed by an excitatory transient is required. We also observe evidence of these effects in vivo, where analysis of experimental recordings demonstrates that the luminance sequences that trigger bursts can vary dramatically with the overall burst percentage of the response. To characterize the functional consequences of the effects of resting potential on burst generation, we simulate LGN responses to different luminance sequences at a range of resting potentials with and without a mechanism for generating bursts. Using analysis based on signal detection theory, we show that bursts enhance detection of specific luminance sequences, ranging from the onset of excitatory sequences at low resting potentials to the offset of inhibitory sequences at high resting potentials. These results suggest a dynamic role for burst responses during visual processing that may change according to behavioral state.

  2. Type III Radio Burst Duration and SEP Events

    Science.gov (United States)

    Gopalswamy, N.; Makela, P.; Xie, H.

    2010-01-01

    Long-duration (>15 min), low-frequency (SEP events of solar cycle 23. The Type III durations are distributed symmetrically at 1 MHz yielding a mean value of approximately 33 min (median = 32 min) for the large SEP events. When the SEP events with ground level enhancement (GLE,) are considered, the distribution is essentially unchanged (mean = 32 min, median = 30 min). To test the importance of type III bursts in indicating SEP events, we considered a set of six type III bursts from the same active region (AR 10588) whose durations fit the "long duration" criterion. We analyzed the coronal mass ejections (CMEs), flares, and type II radio bursts associated with the type III bursts. The CMEs were of similar speeds and the flares are also of similar size and duration. All but one of the type III bursts was not associated with a type II burst in the metric or longer wavelength domains. The burst without type II burst also lacked a solar energetic particle (SEP) event at energies >25 MeV. The 1-MHz duration of the type III burst (28 rein) is near the median value of type III durations found for gradual SEP events and ground level enhancement (GLE) events. Yet, there was no sign of SEP events. On the other hand, two other type III bursts from the same active region had similar duration but accompanied by WAVES type 11 bursts; these bursts were also accompanied by SEP events detected by SOHO/ERNE. This study suggests that the type III burst duration may not be a good indicator of an SEP event, consistent with the statistical study of Cliver and Ling (2009, ApJ ).

  3. Localization of Gamma-Ray Bursts using the Fermi Gamma-Ray Burst Monitor

    OpenAIRE

    Connaughton, V.; Briggs, M. S.; Goldstein, A.; Meegan, C. A.; Paciesas, W. S.; Preece, R. D.; Wilson-Hodge, C.A.; Gibby, M. H.; Greiner, J.; Gruber, D.; Jenke, P.; Kippen, R. M.; Pelassa, V.; Xiong, S.; Yu, H-F

    2014-01-01

    The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 Gamma-Ray Bursts (GRBs) since it began science operations in July, 2008. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the InterPlanetary Network (IPN), to analyze the accuracy of GBM GRB localizations. We find that the reported statistical uncertainties on GBM localizations, which can be as small as 1 degree, underestimat...

  4. Burst segmentation for void-filling scheduling and its performance evaluation in optical burst switching.

    Science.gov (United States)

    Tan, Wei; Wang, Sheng; Li, Lemin

    2004-12-27

    As a promising solution for the next generation optical Internet, optical burst switching still has much to be improved, especially the design of core routers. This paper mainly focuses on channel scheduling algorithms of core routers and proposes a new practical scheduling algorithm. In the new algorithm, burst segmentation, one of the contention resolution schemes that are another major concern in core router design, is introduced. The proposed algorithm is analyzed theoretically and evaluated by computer simulations. The results show that the new algorithm, compared with existing traditional scheduling algorithms, can lower the packet loss probability and enhance the link utilization and network performance.

  5. Exploring the Pulse Structure of the Gamma-Ray Bursts from the Swift Burst Alert Telescop

    Science.gov (United States)

    Martinez, Juan-Carlos; Team 1: Jon Hakkila, Amy Lien, Judith, Racusin, Team 2: Antonino Cucchiara, David Morris

    2018-01-01

    Gamma-ray bursts (GRBs) are one of the brightest and most intense explosions in our universe. For this project, we studied the shape of 400 single pulse GRBs using data gathered from Swift's Burst Alert Telescope (BAT). Hakkila et al. (2015) have discovered a mathematical Model that describes the GRB’s pulse shapes. Following the method in Hakkila et al. (2015), we fit GRB pulses with the Norris function and examined the residual in the fitting, to see whether the results are consistent with the one reported in Hakkila et al. (2015).

  6. Single particle fluorescence burst analysis of epsin induced membrane fission.

    Directory of Open Access Journals (Sweden)

    Arielle Brooks

    Full Text Available Vital cellular processes, from cell growth to synaptic transmission, rely on membrane-bounded carriers and vesicles to transport molecular cargo to and from specific intracellular compartments throughout the cell. Compartment-specific proteins are required for the final step, membrane fission, which releases the transport carrier from the intracellular compartment. The role of fission proteins, especially at intracellular locations and in non-neuronal cells, while informed by the dynamin-1 paradigm, remains to be resolved. In this study, we introduce a highly sensitive approach for the identification and analysis of membrane fission machinery, called burst analysis spectroscopy (BAS. BAS is a single particle, free-solution approach, well suited for quantitative measurements of membrane dynamics. Here, we use BAS to analyze membrane fission induced by the potent, fission-active ENTH domain of epsin. Using this method, we obtained temperature-dependent, time-resolved measurements of liposome size and concentration changes, even at sub-micromolar concentration of the epsin ENTH domain. We also uncovered, at 37°C, fission activity for the full-length epsin protein, supporting the argument that the membrane-fission activity observed with the ENTH domain represents a native function of the full-length epsin protein.

  7. Project ASTRAL: All-sky Space Telescope to Record Afterglow Locations

    Science.gov (United States)

    Tsarevsky, G.; Bisnovaty-Kogan, G.; Pozanenko, A.; Beskin, G. M.; Bondar, S.; Rumyantsev, V.

    ASTRAL is a project incorporating wide-field optical telescopes on board a small satellite (FedSat or SMEX type) dedicated to the whole-sky detection of a variety of rapid astronomical phenomena, particularly optical flashes associated with gamma ray bursts (GRB). Those flashes only visible optically (so called orphans), as well as those which could precede associated GRBs, cannot be detected in the current triggering mode of the world wide GRB Coordinates Network (GCN). Hence ASTRAL would have a unique opportunity to trigger a follow-up multi-frequency study via GCN. ASTRAL consists of a set of 13 wide-field cameras, each with FOV = 70°, equipped with 4096 × 4096 CCDs. The detection method is based on comparison of sky images with the reference image. Supernovae, novae and nova-like explosions, fast variable AGNs, flare stars, and even new comets would be promptly detected as well. Thus ASTRAL would be an original working prototype of the prospective major space mission to monitor on-line all the sky, a high priority instrument of 21st Century astrophysics. See http://www.atnf.csiro.au/people/Gregory.Tsarevsky for details.

  8. Raman Spectroscopy.

    Science.gov (United States)

    Gerrard, Donald L.

    1984-01-01

    Reviews literature on Raman spectroscopy from late 1981 to late 1983. Topic areas include: instrumentation and sampling; liquids and solutions; gases and matrix isolation; biological molecules; polymers; high-temperature and high-pressure studies; Raman microscopy; thin films and surfaces; resonance-enhanced and surface-enhanced spectroscopy; and…

  9. Electronic spectroscopies

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Schoonheydt, R.A.

    2000-01-01

    Diffuse reflectance spectroscopy (DRS) in the ultraviolet, visible and near-infrared region is a versatile spectroscopic technique, as both d-d and charge transfer transitions of supported TMI can be probed. One of the advantages of electronic spectroscopy is that the obtained information is

  10. Emergent synchronous bursting of oxytocin neuronal network.

    Directory of Open Access Journals (Sweden)

    Enrico Rossoni

    2008-07-01

    Full Text Available When young suckle, they are rewarded intermittently with a let-down of milk that results from reflex secretion of the hormone oxytocin; without oxytocin, newly born young will die unless they are fostered. Oxytocin is made by magnocellular hypothalamic neurons, and is secreted from their nerve endings in the pituitary in response to action potentials (spikes that are generated in the cell bodies and which are propagated down their axons to the nerve endings. Normally, oxytocin cells discharge asynchronously at 1-3 spikes/s, but during suckling, every 5 min or so, each discharges a brief, intense burst of spikes that release a pulse of oxytocin into the circulation. This reflex was the first, and is perhaps the best, example of a physiological role for peptide-mediated communication within the brain: it is coordinated by the release of oxytocin from the dendrites of oxytocin cells; it can be facilitated by injection of tiny amounts of oxytocin into the hypothalamus, and it can be blocked by injection of tiny amounts of oxytocin antagonist. Here we show how synchronized bursting can arise in a neuronal network model that incorporates basic observations of the physiology of oxytocin cells. In our model, bursting is an emergent behaviour of a complex system, involving both positive and negative feedbacks, between many sparsely connected cells. The oxytocin cells are regulated by independent afferent inputs, but they interact by local release of oxytocin and endocannabinoids. Oxytocin released from the dendrites of these cells has a positive-feedback effect, while endocannabinoids have an inhibitory effect by suppressing the afferent input to the cells.

  11. Electronic implementation of optical burst switching techniques

    Science.gov (United States)

    Albanese, Ilijc; Darcie, Thomas E.; Ganti, Sudhakar

    2013-10-01

    Extensive research effort is ongoing in energy-efficient Internet-based communications. Optical Flow Switching (OFS) and Optical Burst Switching (OBS) offer potentially efficient alternatives to IP-router-based networks for large data transactions, but significant challenges remain. OFS requires each user to install expensive core network technology, limiting application to highly specialized nodes. OBS can achieve higher scalability but burst assembly/disassembly procedures reduce power efficiency. Finally both OFS and OBS use all-optical switching technologies for which energy efficiency and flexibility remain subject to debate. Our study aims at combining the advantages of both OBS and OFS while avoiding their shortcomings. We consider using a two-way resource reservation protocol for periodic concatenations of large (e.g. 1 Mb) packets or Media Frames (MFs). These chains of MFs (MFCs) are semi-transparent with a periodicity referred to as the "transparency degree". Each MFC is assembled and stored at an end-user machine during the resource reservation procedure and is then switched and buffered electronically along its path. The periodic configuration of each MFC enables interleaving of several chains using buffering only to align the MFs in each MFC in time, largely reducing the buffer requirements with respect to OBS. This periodicity also enables a simple scheduling algorithm to schedule large transactions with minimal control plane processing, achieving link utilization approaching 99.9%. In summary, results indicate that implementing optical burst switching techniques in the electronic domain is a compelling path forward to high-throughput power-efficient networking.

  12. Observations of Low Frequency Solar Radio Bursts from the Rosse Solar-Terrestrial Observatory

    Science.gov (United States)

    Zucca, P.; Carley, E. P.; McCauley, J.; Gallagher, P. T.; Monstein, C.; McAteer, R. T. J.

    2012-10-01

    The Rosse Solar-Terrestrial Observatory (RSTO; http://www.rosseobservatory.ie) was established at Birr Castle, Co. Offaly, Ireland (53°05'38.9″, 7°55'12.7″) in 2010 to study solar radio bursts and the response of the Earth's ionosphere and geomagnetic field. To date, three Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy in Transportable Observatory (CALLISTO) spectrometers have been installed, with the capability of observing in the frequency range of 10 - 870 MHz. The receivers are fed simultaneously by biconical and log-periodic antennas. Nominally, frequency spectra in the range of 10 - 400 MHz are obtained with four sweeps per second over 600 channels. Here, we describe the RSTO solar radio spectrometer set-up, and present dynamic spectra of samples of type II, III and IV radio bursts. In particular, we describe the fine-scale structure observed in type II bursts, including band splitting and rapidly varying herringbone features.

  13. Damage detection and locating using tone burst and continuous excitation modulation method

    Science.gov (United States)

    Li, Zheng; Wang, Zhi; Xiao, Li; Qu, Wenzhong

    2014-03-01

    Among structural health monitoring techniques, nonlinear ultrasonic spectroscopy methods are found to be effective diagnostic approach to detecting nonlinear damage such as fatigue crack, due to their sensitivity to incipient structural changes. In this paper, a nonlinear ultrasonic modulation method was developed to detect and locate a fatigue crack on an aluminum plate. The method is different with nonlinear wave modulation method which recognizes the modulation of low-frequency vibration and high-frequency ultrasonic wave; it recognizes the modulation of tone burst and high-frequency ultrasonic wave. In the experiment, a Hanning window modulated sinusoidal tone burst and a continuous sinusoidal excitation were simultaneously imposed on the PZT array which was bonded on the surface of an aluminum plate. The modulations of tone burst and continuous sinusoidal excitation was observed in different actuator-sensor paths, indicating the presence and location of fatigue crack. The results of experiments show that the proposed method is capable of detecting and locating the fatigue crack successfully.

  14. Auroral kilometric radiation triggered by type II solar radio bursts

    Science.gov (United States)

    Calvert, W.

    1985-01-01

    The previously-reported triggering of auroral kilometric radiation (AKR) during type III solar radio bursts was attributed to the incoming radio waves rather than other aspects of the burst's causative solar flare. This conclusion has now been confirmed by ISEE-1 and ISEE-3 observations showing AKR which seems to have been triggered also by a subsequent type II solar radio burst, up to eleven hours after the flare.

  15. The bursting of housing bubble as jamming phase transition

    Science.gov (United States)

    Nishinari, Katsuhiro; Iwamura, Mitsuru; Umeno Saito, Yukiko; Watanabe, Tsutomu

    2010-04-01

    In this paper, we have proposed a bubble burst model by focusing on transaction volume incorporating a traffic model that represents spontaneous traffic jam. We find that the phenomenon of bubble burst shares many similar properties with traffic jam formation on highway by comparing data taken from the U.S. housing market. Our result suggests that transaction volume could be a driving force of bursting phenomenon.

  16. Fast radio bursts: the last sign of supramassive neutron stars

    OpenAIRE

    Falcke, H.; Rezzolla, L.

    2014-01-01

    Several fast radio bursts have been discovered recently, showing a bright, highly dispersed millisecond radio pulse. The pulses do not repeat and are not associated with a known pulsar or gamma-ray burst. The high dispersion suggests sources at cosmological distances, hence implying an extremely high radio luminosity, far larger than the power of single pulses from a pulsar. We suggest that a fast radio burst represents the final signal of a supramassive rotating neutron star that collapses t...

  17. Detecting Pipe Bursts Using Heuristic and CUSUM Methods

    OpenAIRE

    Bakker, M.; Jung, D; Vreeburg, J.; van de Roer, M.; Lansey, K.; Rietveld, L.

    2014-01-01

    Pipe bursts in a drinking water distribution system lead to water losses, interruption of supply, and damage to streets and houses due to the uncontrolled water flow. To minimize the negative consequences of pipe bursts, an early detection is necessary. This paper describes a heuristic burst detection method, which continuously compares forecasted and measured values of the water demand. The forecasts of the water demand were generated by an adaptive water demand forecasting model. To test th...

  18. Bursting in Cellular Automata and Cardiac Arrhythmias

    Science.gov (United States)

    Bub, Gil; Shrier, Alvin; Glass, Leon

    2013-01-01

    The mechanisms underlying the initiation and continuation of abnormal cardiac arrhythmias are incompletely understood. In this chapter, we summarize work that shows how simple cellular automata models of excitable media can display a range of interesting dynamical behavior including spontaneous bursts of reentrant spiral activity. Since the model incorporates basic physiological properties of excitability, heterogeneity, localized pacemakers, and fatigue in a schematic way, the model captures generic physiological dynamics that should be broadly observed in experimental and clinical settings as well as in more realistic mathematical models.

  19. Pulsar kicks and γ-ray burst

    Science.gov (United States)

    Cui, X. H.; Wang, H. G.; Xu, R. X.; Qiao, G. J.

    2007-09-01

    Aims:We use the supernova-GRB (γ-ray burst) association and assume that the GRB asymmetric explosions produce pulsars in order to test the consistency of distributions of modeled and observed pulsar-kick velocities. Methods: The deduced distribution of kick velocity from the model of GRB and the observed kick distribution of radio pulsars are checked by a K-S test. Results: These two distributions are found to come from the same parent population. Conclusions: This result may indicate that GRBs could really be related to supernova and that the asymmetry of GRB associated with supernova would cause the pulsar kick.

  20. Burst-Mode Asynchronous Controllers on FPGA

    Directory of Open Access Journals (Sweden)

    Duarte L. Oliveira

    2008-01-01

    Full Text Available FPGAs have been mainly used to design synchronous circuits. Asynchronous design on FPGAs is difficult because the resulting circuit may suffer from hazard problems. We propose a method that implements a popular class of asynchronous circuits, known as burst mode, on FPGAs based on look-up table architectures. We present two conditions that, if satisfied, guarantee essential hazard-free implementation on any LUT-based FPGA. By doing that, besides all the intrinsic advantages of asynchronous over synchronous circuits, they also take advantage of the shorter design time and lower cost associated with FPGA designs.

  1. Encephalopathies epileptogenes precoces avec suppression burst ...

    African Journals Online (AJOL)

    L'EEG de sommeil réalisé au moment du diagnostic a montré un pattern de suppression burst. Aucune étiologie n'a été retenue du fait de la limitation du bilan complémentaire à visée étiologique tel que l'IRM cérébrale ou les bilans métaboliques. L'évolution électro-clinique est favorable pour certains patients avec le ...

  2. Coexistence of tonic firing and bursting in cortical neurons

    Science.gov (United States)

    Fröhlich, Flavio; Bazhenov, Maxim

    2006-09-01

    Sustained neuronal activity can be broadly classified as either tonic firing or bursting. These two major patterns of neuronal oscillations are state dependent and may coexist. The dynamics and intracellular mechanisms of transitions between tonic firing and bursting in cortical networks remain poorly understood. Here we describe a detailed two-compartment conductance-based cortical neuron model which exhibits bistability with hysteresis between tonic firing and bursting for elevated extracellular potassium concentration. The study explains the ionic and dynamical mechanisms of burst generation and reveals the conditions underlying coexistence of two different oscillatory modes as a function of neuronal excitability.

  3. Review of GRANAT observations of gamma-ray bursts

    DEFF Research Database (Denmark)

    Terekhov, O.; Denissenko, D.; Sunyaev, R.

    1995-01-01

    of the observations of the time histories and spectral evolution of the detected events provided by the different instruments in different energy ranges. Short Gamma-Ray Bursts (histories. They have harder energy spectra than the long (> 2 s) events. Evidence of the existence...... of four differently behaving componenents in gamma-ray burst spectra is discussed. Statistical properties of the gamma-ray burst sources based on the 5 years of observations with (∼ 10−6 erg/cm2) sensitivity as well as the results of high sensitivity (∼ 10−8 erg/cm2) search for Gamma-Ray Bursts within...

  4. CME-Associated Radio Bursts from Satellite Observations

    Science.gov (United States)

    Gopalswamy, Nat

    2012-01-01

    Coronal mass ejections (CMEs) are closely associated with various types of radio bursts from the Sun. All radio bursts are due to nonthermal electrons, which are accelerated during the eruption of CMEs. Radio bursts at frequencies below about 15 MHz are of particular interest because they are associated with energetic CMEs that contribute to severe space weather. The low-frequency bursts need to be observed primarily from space because of the ionospheric cutoff. The main CME-related radio bursts are associated are: type III bursts due to accelerated electrons propagating along open magnetic field lines, type II bursts due to electrons accelerated in shocks, and type IV bursts due to electrons trapped in post-eruption arcades behind CMEs. This paper presents a summary of results obtained during solar cycle 23 primarily using the white-light coronagraphic observations from the Solar Heliospheric Observatory (SOHO) and the WAVES experiment on board Wind. Particular emphasis will be placed on what we can learn about particle acceleration in the coronal and interplanetary medium by analyzing the CMEs and the associated radio bursts.

  5. Energy sources in gamma-ray burst models

    Science.gov (United States)

    Taam, Ronald E.

    1987-01-01

    The current status of energy sources in models of gamma-ray bursts is examined. Special emphasis is placed on the thermonuclear flash model which has been the most developed model to date. Although there is no generally accepted model, if the site for the gamma-ray burst is on a strongly magnetized neutron star, the thermonuclear model can qualitatively explain the energetics of some, but probably not all burst events. The critical issues that may differentiate between the possible sources of energy for gamma-ray bursts are listed and briefly discussed.

  6. Burst-Compression And -Expansion For TDMA Communication

    Science.gov (United States)

    Budinger, James M.

    1991-01-01

    Burst-compression and -expansion technique enables interconnection of users transmitting and receiving data at rates asynchronous with respect to clocks within ground terminals of satellite-switched, time-division-multiple-access (TDMA) communication network. Matrix switch aboard satellite routes bursts of data from source users received on uplink antennas to downlink antennas illuminating ground areas containing destination users. TDMA ground terminal compresses streams of data from source users into rapid bursts for transmission and reexpands bursts of received data into slower streams of data for delivery to destination users. Greater flexibility in interconnecting widely dispersed users achieved by use of hopping beams.

  7. Time-resolved spectroscopy of low-pressure discharges

    Energy Technology Data Exchange (ETDEWEB)

    Huldt, S; Lennartsson, T [Lund Observatory, Lund University, Box 43, SE-221 00 Lund (Sweden)], E-mail: Sven.huldt@astro.lu.se

    2008-10-15

    Optical emission spectroscopy is used to investigate the excitation mechanisms in fluorescent tube plasmas. The temporal evolution of the intensities in the non-equilibrium parts of a pulse-excited rare gas - Hg mixture is recorded. Different transitions in a specific atomic system, as well as transitions from upper level of comparable excitation energy in different species, show distinctly different intensity build-up at the onset of the excitation, as well as varying decay characteristics in the afterglow after turning the excitation off. This implies different mechanisms for populating the excited level. The work of modelling the observations is in progress but hampered by the lack of adequate data for many of the important processes.

  8. Time-resolved spectroscopy of low-pressure discharges

    Science.gov (United States)

    Huldt, S.; Lennartsson, T.

    2008-10-01

    Optical emission spectroscopy is used to investigate the excitation mechanisms in fluorescent tube plasmas. The temporal evolution of the intensities in the non-equilibrium parts of a pulse-excited rare gas - Hg mixture is recorded. Different transitions in a specific atomic system, as well as transitions from upper level of comparable excitation energy in different species, show distinctly different intensity build-up at the onset of the excitation, as well as varying decay characteristics in the afterglow after turning the excitation off. This implies different mechanisms for populating the excited level. The work of modelling the observations is in progress but hampered by the lack of adequate data for many of the important processes.

  9. Measuring Cosmological Parameters with Gamma Ray Bursts

    Science.gov (United States)

    Amati, Lorenzo; Della Valle, Massimo

    2013-12-01

    In a few dozen seconds, gamma ray bursts (GRBs) emit up to 1054 erg in terms of an equivalent isotropically radiated energy Eiso, so they can be observed up to z 10. Thus, these phenomena appear to be very promising tools to describe the expansion rate history of the universe. Here, we review the use of the Ep,i-Eiso correlation of GRBs to measure the cosmological density parameter ΩM. We show that the present data set of GRBs, coupled with the assumption that we live in a flat universe, can provide independent evidence, from other probes, that ΩM 0.3. We show that current (e.g. Swift, Fermi/GBM, Konus-WIND) and forthcoming gamma ray burst (GRB) experiments (e.g. CALET/GBM, SVOM, Lomonosov/UFFO, LOFT/WFM) will allow us to constrain ΩM with an accuracy comparable to that currently exhibited by Type Ia supernovae (SNe-Ia) and to study the properties of dark energy and their evolution with time.

  10. Sterilization/disinfection using reduced-pressure plasmas: some differences between direct exposure of bacterial spores to a discharge and their exposure to a flowing afterglow

    Science.gov (United States)

    Moisan, M.; Levif, P.; Séguin, J.; Barbeau, J.

    2014-07-01

    The use of plasma for sterilization or disinfection offers a promising alternative to conventional steam or chemical approaches. Plasma can operate at temperatures less damaging to some heat-sensitive medical devices and, in contrast to chemicals, can be non-toxic and non-polluting for the operator and the environment, respectively. Direct exposure to the gaseous discharge (comprising an electric field and ions/electrons) or exposure to its afterglow (no E-field) can both be envisaged a priori, since these two methods can achieve sterility. However, important issues must be considered besides the sterility goal. Direct exposure to the discharge, although yielding a faster inactivation of microorganisms, is shown to be potentially more aggressive to materials and sometimes subjected to the shadowing effect that precludes the sterilization of complex-form items. These two drawbacks can be successfully minimized with an adequate flowing-afterglow exposure. Most importantly, the current paper shows that direct exposure to the discharge can lead to the dislodgment and release of viable microorganisms from their substratum. Such a phenomenon could be responsible for the recontamination of sterilized devices as well as possible contamination of the ambient surroundings, additionally yielding an erroneous over-appreciation of the inactivation efficiency. The operation of the N2-O2 flowing afterglow system being developed in our group is such that there are no ions and electrons left in the process chamber (late-afterglow regime) in full contrast with their presence in the discharge. The dislodgment and release of spores could be attributed, based on the literature, to their electrostatic charging by electrons, leading to an (outward) electrostatic stress that exceeds the adhesion of the spores on their substrate.

  11. Absolute ground-state nitrogen atom density in a N{sub 2}/CH{sub 4} late afterglow: TALIF experiments and modelling studies

    Energy Technology Data Exchange (ETDEWEB)

    Es-sebbar, Et; C-Gazeau, M; Benilan, Y; Jolly, A [LISA, Universites Paris-Est Creteil Val de Marne (UPEC) and Paris Denis Diderot, CNRS-UMR 7583, 61, avenue du General de Gaulle, 94010 Creteil Cedex (France); Pintassilgo, C D, E-mail: essebbar@lisa.univ-paris12.f [Instituto de Plasmas e Fusao Nuclear-Laboratorio Associado, Instituto Superior Tecnico, 1049-001 Lisboa (Portugal)

    2010-08-25

    Following a first study on a late afterglow in flowing pure nitrogen post discharge, we report new two-photon absorption laser-induced fluorescence (TALIF) measurements of the absolute ground-state atomic nitrogen density N({sup 4}S) and investigate the influence of methane introduced downstream from the discharge by varying the CH{sub 4} mixing ratio from 0% up to 50%. The N ({sup 4}S) maximum density is about 2.2 x 10{sup 15} cm{sup -3} in pure N{sub 2} for a residence time of 22 ms and does not change significantly for methane mixing ratio up to {approx}15%, while above, a drastic decrease is observed. The influence of the residence time has been studied. A kinetic model has been developed to determine the elementary processes responsible for the evolution of the N ({sup 4}S) density in N{sub 2}/CH{sub 4} late afterglow. This model shows the same decrease as the experimental results even though absolute density values are always larger by about a factor of 3. In the late afterglow three-body recombination dominates the loss of N ({sup 4}S) atoms whatever the CH{sub 4} mixing ratio. For high CH{sub 4} mixing ratio, the destruction process through collisions with CH{sub 3}, H{sub 2}CN and NH becomes important and is responsible for the observed decrease of the N ({sup 4}S) density.

  12. Long-lived plasma and fast quenching of N2(C3Π u ) by electrons in the afterglow of a nanosecond capillary discharge in nitrogen

    Science.gov (United States)

    Lepikhin, N. D.; Klochko, A. V.; Popov, N. A.; Starikovskaia, S. M.

    2016-08-01

    Quenching of electronically excited nitrogen state, {{\\text{N}}2}≤ft({{\\text{C}}3}{{\\Pi}u},{{v}\\prime}=0\\right) , in the afterglow of nanosecond capillary discharge in pure nitrogen is studied. It is found experimentally that an additional collisional mechanism appears and dominates at high specific deposited energies leading to the anomalously fast quenching of the {{\\text{N}}2}≤ft({{\\text{C}}3}{{\\Pi}u}\\right) in the afterglow. On the basis of obtained experimental data and of the analysis of possible quenching agents, it is concluded that the anomalously fast deactivation of the {{\\text{N}}2}≤ft({{\\text{C}}3}{{\\Pi}u}\\right) can be explained by quenching by electrons. Long-lived plasma at time scale of hundreds nanoseconds after the end of the pulse is observed. High electron densities, about 1014 cm-3 at 27 mbar, are sustained by reactions of associative ionization. Kinetic 1D numerical modeling and comparison of calculated results with experimentally measured electric fields in the second high-voltage pulse 250 ns after the initial pulse, and electron density measurements in the afterglow confirm the validity of the suggested mechanism.

  13. GRB 050509b: the elusive optical/nIR/mm afterglow of a short-duration GRB

    Czech Academy of Sciences Publication Activity Database

    Castro-Tirado, A.J.; de Ugarte Postigo, A.; Gorosabel, J.; Fatkhullin, T. A.; Sokolov, V. V.; Brener, M.; Márquez, I.; Marín, A.; Guziy, S.; Jelínek, Martin; Kubánek, Petr; Hudec, René; Vítek, S.; Mateo Sanguino, T. J.; Eigenbrod, A.; Pérez-Ramírez, M.D.; Sota, A.; Masegosa, J.; Prada, F.; Moles, M.

    2005-01-01

    Roč. 439, č. 2 (2005), L15-L18 ISSN 0004-6361 R&D Projects: GA AV ČR IAA3003206 Institutional research plan: CEZ:AV0Z10030501 Keywords : gamma ray bursts Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.223, year: 2005

  14. Gamma ray bursts observed with WATCH‐EURECA

    DEFF Research Database (Denmark)

    Brandt, Søren; Lund, Niels; Castro-Tirado, A. J.

    1994-01-01

    The WATCH wide field x‐ray monitor has the capability of independently locating bright Gamma Ray Bursts to 1° accuracy. We report the preliminary positions of 12 Gamma Ray Bursts observed with the WATCH monitor flown on the ES spacecraft EURECA during its 11 month mission. Also the recurrence...

  15. Stochastic bursting synchronization in a population of subthreshold Izhikevich neurons

    Science.gov (United States)

    Kim, Sang-Yoon; Kim, Youngnam; Hong, Duk-Geun; Kim, Jean; Lim, Woochang

    2012-05-01

    We consider a population of subthreshold Izhikevich neurons that cannot fire spontaneously without noise. As the coupling strength passes a threshold, individual neurons exhibit noise-induced burstings ( i.e., discrete groups or bursts of noise-induced spikes). We investigate stochastic bursting synchronization by varying the noise intensity. Through competition between the constructive and the destructive roles of noise, collective coherence between noise-induced burstings is found to occur over a large range of intermediate noise intensities. This kind of stochastic bursting synchronization is well characterized by using the techniques of statistical mechanics and nonlinear dynamics, such as the order parameter, the raster plot of neural spikes, the time series of the ensemble-averaged global potential, and the phase portraits of limit cycles. In contrast to spiking neurons showing only spike synchronization (characterizing a temporal relationship between spikes), bursting neurons are found to exhibit both spike synchronization and burst synchronization (characterizing a temporal relationship between the onset times of the active phases of repetitive spikings). The degree of stochastic bursting synchronization is also measured in terms of a synchronization measure that reflects the resemblance of the global potential to the individual potential.

  16. Observations of cosmic gamma ray bursts with WATCH on EURECA

    DEFF Research Database (Denmark)

    Brandt, Søren; Lund, N.; Castro-Tirado, A. J.

    1995-01-01

    19 Cosmic Gamma-Ray Bursts were detected by the WATCH wide field X-ray monitor during the 11 months flight of EURECA. The identification of the bursts were complicated by a high frequency of background of events caused by high energy cosmic ray interactions in the detector and by low energy, trap...

  17. Statistical properties of SGR 1806-20 bursts

    NARCIS (Netherlands)

    Göğüş, E.; Woods, P.M.; Kouveliotou, C.; van Paradijs, J.; Briggs, M.S.; Duncan, R.C.; Thompson, C.

    2000-01-01

    We present statistics of SGR 1806-20 bursts, combining 290 events detected with the Rossi X-Ray Timing Explorer/Proportional Counter Array, 111 events detected with the Burst and Transient Source Experiment, and 134 events detected with the International Cometary Explorer. We find that the fluence

  18. Nanoemulsions obtained via bubble bursting at a compound interface

    NARCIS (Netherlands)

    Feng, J.; Roche, M.; Vigolo, D.; Arnaudov, L.N.; Stoyanov, S.D.; Gurkov, T.D.; Tsutsumanova, G.G.; Stone, H.A.

    2014-01-01

    Bursting of bubbles at an air/liquid interface is a familiar occurrence relevant to foam stability, cell cultures in bioreactors and ocean–atmosphere mass transfer. In the latter case, bubble-bursting leads to the dispersal of sea-water aerosols in the surrounding air. Here we show that bubbles

  19. On the nature of gamma-ray burst time dilations

    Science.gov (United States)

    Wijers, Ralph A. M. J.; Paczynski, Bohdan

    1994-01-01

    The recent discovery that faint gamma-ray bursts are stretched in time relative to bright ones has been interpreted as support for cosmological distances: faint bursts have their durations redshifted relative to bright ones. It was pointed out, however, that the relative time stretching can also be produced by an intrinsic correlation bewteen duration and luminosity of gamma-ray bursts in a nearby, bounded distribution. While both models can explain the average amount of time stretching, we find a difference between them in the way the duration distribution of faint bursts deviates from that of bright ones, assuming the luminosity function of gamma-ray bursts is independent of distance. This allows us to distinguish between these two broad classes of model on the basis of the duration distributions of gamma-ray bursts, leading perhaps to an unambiguous determination of the distance scale of gamma-ray bursts. We apply our proposed test to the second Burst and Transient Source Experiment (BATSE) catalog and conclude, with some caution, that the data favor a cosmological interpretation of the time dilation.

  20. Large tundra methane burst during onset of freezing

    DEFF Research Database (Denmark)

    Mastepanov, Mikhail; Sigsgaard, Charlotte; Dlugokencky, Edward J.

    2008-01-01

    of global atmospheric methane concentrations indicate that the observed early winter emission burst improves the agreement between the simulated seasonal cycle and atmospheric data from latitudes north of 60N. Our findings suggest that permafrost-associated freeze-in bursts of methane missions from tundra...

  1. Supernova sheds light on gamma-ray bursts

    CERN Multimedia

    2003-01-01

    On 29 March the HETE-II satellite detected the most violent explosion in the universe to date - an enormous burst of gamma rays. Observers across the world recorded and studied the event. It appears to prove that gamma ray bursts originate in supernovae (1 page)

  2. Multiparameter Monitoring and Prevention of Fault-Slip Rock Burst

    Directory of Open Access Journals (Sweden)

    Shan-chao Hu

    2017-01-01

    Full Text Available Fault-slip rock burst is one type of the tectonic rock burst during mining. A detailed understanding of the precursory information of fault-slip rock burst and implementation of monitoring and early warning systems, as well as pressure relief measures, are essential to safety production in deep mines. This paper first establishes a mechanical model of stick-slip instability in fault-slip rock bursts and then reveals the failure characteristics of the instability. Then, change rule of mining-induced stress and microseismic signals before the occurrence of fault-slip rock burst are proposed, and multiparameter integrated early warning methods including mining-induced stress and energy are established. Finally, pressure relief methods targeting large-diameter boreholes and coal seam infusion are presented in accordance with the occurrence mechanism of fault-slip rock burst. The research results have been successfully applied in working faces 2310 of the Suncun Coal Mine, and the safety of the mine has been enhanced. These research results improve the theory of fault-slip rock burst mechanisms and provide the basis for prediction and forecasting, as well as pressure relief, of fault-slip rock bursts.

  3. A simple empirical redshift indicator for gamma-ray bursts

    OpenAIRE

    Atteia, J-L

    2003-01-01

    We propose a new empirical redshift indicator for gamma-ray bursts. This indicator is easily computed from the gamma-ray burst spectral parameters, and its duration, and it provides ``pseudo-redshifts'' accurate to a factor two. Possible applications of this redshift indicator are briefly discussed.

  4. WATCH observations of gamma ray bursts during 1990–1992

    DEFF Research Database (Denmark)

    Castro-Tirado, A.; Brandt, Søren; Lund, Niels

    1994-01-01

    The first WATCH/GRANAT Gamma‐Ray Burst Catalogue comprises 70 events which have been detected by WATCH during the period December 1989–September 1992. 32 GRBs could be localized within a 3σ error radii of 1°. We have found a weak (2.2σ) clustering of these 32 bursts towards the Galactic Center...

  5. The width of the gamma-ray burst luminosity function

    NARCIS (Netherlands)

    Ulmer, A.; Wijers, R.A.M.J.

    1995-01-01

    We examine the width of the gamma-ray burst (GRB) luminosity function through the distribution of GRB peak count rates, Cpeak, as detected by Burst and Transient Source Experiment (BATSE) (1993). In the context of Galactic corona spatial distribution models, we attempt to place constaints on the

  6. Interplanetary Shocks Lacking Type 2 Radio Bursts

    Science.gov (United States)

    Gopalswamy, N.; Xie, H.; Maekela, P.; Akiyama, S.; Yashiro, S.; Kaiser, M. L.; Howard, R. A.; Bougeret, J.-L.

    2010-01-01

    We report on the radio-emission characteristics of 222 interplanetary (IP) shocks detected by spacecraft at Sun-Earth L1 during solar cycle 23 (1996 to 2006, inclusive). A surprisingly large fraction of the IP shocks (approximately 34%) was radio quiet (RQ; i.e., the shocks lacked type II radio bursts). We examined the properties of coronal mass ejections (CMEs) and soft X-ray flares associated with such RQ shocks and compared them with those of the radio-loud (RL) shocks. The CMEs associated with the RQ shocks were generally slow (average speed approximately 535 km/s) and only approximately 40% of the CMEs were halos. The corresponding numbers for CMEs associated with RL shocks were 1237 km/s and 72%, respectively. Thus, the CME kinetic energy seems to be the deciding factor in the radio-emission properties of shocks. The lower kinetic energy of CMEs associated with RQ shocks is also suggested by the lower peak soft X-ray flux of the associated flares (C3.4 versus M4.7 for RL shocks). CMEs associated with RQ CMEs were generally accelerating within the coronagraph field of view (average acceleration approximately +6.8 m/s (exp 2)), while those associated with RL shocks were decelerating (average acceleration approximately 3.5 m/s (exp 2)). This suggests that many of the RQ shocks formed at large distances from the Sun, typically beyond 10 Rs, consistent with the absence of metric and decameter-hectometric (DH) type II radio bursts. A small fraction of RL shocks had type II radio emission solely in the kilometric (km) wavelength domain. Interestingly, the kinematics of the CMEs associated with the km type II bursts is similar to those of RQ shocks, except that the former are slightly more energetic. Comparison of the shock Mach numbers at 1 AU shows that the RQ shocks are mostly subcritical, suggesting that they were not efficient in accelerating electrons. The Mach number values also indicate that most of these are quasi-perpendicular shocks. The radio-quietness is

  7. 76 FR 28460 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Rock Burst...

    Science.gov (United States)

    2011-05-17

    ...; Rock Burst Control Plan--Pertains to Underground Metal and Nonmetal Mines ACTION: Notice. SUMMARY: The... rock burst plan within 90 days after a rock burst has been experienced. Stress data are normally...

  8. Analyses of resource reservation schemes for optical burst switching networks

    Science.gov (United States)

    Solanska, Michaela; Scholtz, Lubomir; Ladanyi, Libor; Mullerova, Jarmila

    2017-12-01

    With growing demands of Internet Protocol services for transmission capacity and speed, the Optical Burst Switching presents the solution for future high-speed optical networks. Optical Burst Switching is a technology for transmitting large amounts of data bursts through a transparent optical switching network. To successfully transmit bursts over OBS network and reach the destination node, resource reservation schemes have to be implemented to allocate resources and configure optical switches for that burst at each node. The one-way resource reservation schemes and the performance evaluation of reservation schemes are presented. The OBS network model is performed using OMNeT++ simulation environment. During the reservation of network resources, the optical cross-connect based on semiconductor optical amplifier is used as the core node. Optical switches based on semiconductor optical amplifiers are a promising technology for high-speed optical communication networks.

  9. Cosmology and the Subgroups of Gamma-ray Bursts

    Directory of Open Access Journals (Sweden)

    A. Mészáros

    2011-01-01

    Full Text Available Both short and intermediate gamma-ray bursts are distributed anisotropically in the sky (Mészáros, A. et al. ApJ, 539, 98 (2000, Vavrek, R. et al. MNRAS, 391, 1 741 (2008. Hence, in the redshift range, where these bursts take place, the cosmological principle is in doubt. It has already been noted that short bursts should be mainly at redshifts smaller than one (Mészáros, A. et al. Gamma-ray burst: Sixth Huntsville Symp., AIP, Vol. 1 133, 483 (2009; Mészáros, A. et al. Baltic Astron., 18, 293 (2009. Here we show that intermediate bursts should be at redshifts up to three.

  10. Long X-ray burst monitoring with INTEGRAL

    DEFF Research Database (Denmark)

    X-ray bursts are thermonuclear explosions on the surface of accreting neutron stars in low mass X-ray binary systems. In the frame of the INTEGRAL observational Key Programme over the Galactic Center a good number of the known X-ray bursters are frequently being monitored. An international...... collaboration lead by the JEM-X team at the Danish National Space Center has proposed to exploit the improved sensitivity of the INTEGRAL instruments to investigate the observational properties and physics up to high energies of exceptional burst events lasting between a few tens of minutes and several hours....... Of special interest are low luminosity bursting sources that exhibit X-ray bursts of very different durations allowing to study the transition from a hydrogen-rich bursting regime to a pure helium regime and from helium burning to carbon burning. I will present results obtained from INTEGRAL archive data...

  11. Statistical Properties of SGR J1550-5418 Bursts

    Science.gov (United States)

    Gorgone, Nicholas M.

    2010-01-01

    Magnetars are slowly rotating neutron stars with extreme magnetic fields, over 10(exp 15) Gauss. Only few have been discovered in the last 30 years. These sources are dormant most of their lifetimes and become randomly active emitting multiple soft gamma-ray bursts. We present here our results on the temporal analysis of 300 bursts from Soft Gamma Repeater SGR J1550-5418 recorded with the Gamma-ray Burst Monitor (GBM) onboard the Fermi Observatory during its activation on January 22-29, 2009. We employed an un-triggered burst search in the energy range 8-100keV to collect all events from the source, besides the ones that triggered GBM. For the entire sample of bursts we determined their durations, rise and decay times. We study here the statistical properties of these characteristics and discuss how these may help us better understand the physical characteristics of the magnetar model.

  12. Gamma-ray bursts observed by the watch experiment

    DEFF Research Database (Denmark)

    Lund, Niels; Brandt, Søren; Castro-Tirado, A. J.

    1991-01-01

    After two years in orbit the WATCH instruments on the GRANAT space observatory have localized seven gamma burst sources with better than 1° accuracy. In several cases, follow‐up observations with Schmidt telescopes have been made within a few days. Some of the bursts have also been detected by th...... by the distant space probes PVO and ULYSSES and there are, therefore, good prospects for obtaining much improved positions using the burst arrival times. The existence of the almost concurrent Schmidt plates could then become particularly interesting.......After two years in orbit the WATCH instruments on the GRANAT space observatory have localized seven gamma burst sources with better than 1° accuracy. In several cases, follow‐up observations with Schmidt telescopes have been made within a few days. Some of the bursts have also been detected...

  13. Soap Films Burst Like Flapping Flags

    Science.gov (United States)

    Lhuissier, Henri; Villermaux, Emmanuel

    2009-07-01

    When punctured, a flat soap film bursts by opening a hole driven by liquid surface tension. The hole rim does not, however, remain smooth but soon develops indentations at the tip of which ligaments form, ultimately breaking and leaving the initially connex film into a mist of disjointed drops. We report on original observations showing that these indentations result from a flaglike instability between the film and the surrounding atmosphere inducing an oscillatory motion out of its plane. Just like a flag edge flaps in the wind, the film is successively accelerated on both sides perpendicularly to its plane, inducing film thickness modulations and centrifuging liquid ligaments that finally pinch off to form the observed spray. This effect exemplifies how the dynamics of fragile objects such as thin liquid films is sensitive to their embedding medium.

  14. The Theory of Gamma-Ray Bursts

    Science.gov (United States)

    Dai, Zigao; Daigne, Frédéric; Mészáros, Peter

    2017-10-01

    This chapter gives a brief review on the theory of gamma-ray bursts (GRBs), including the models of multi-messengers (e.g., prompt multiwavelength electromagnetic emissions, high-energy neutrinos, ultra-high-energy cosmic rays, and gravitational waves) and central engines (in particular, mergers of binary neutron stars for short GRBs). For detailed reviews, please see (Piran in Phys. Rep. 314:575, 1999; Rev. Mod. Phys. 76:1143, 2004; Mészáros in Annu. Rev. Astron. Astrophys. 40:137, 2002; Rep. Prog. Phys. 69:2259, 2006; Zhang and Mészáros in Int. J. Mod. Phys. A 19:2385, 2004; Zhang in Chin. J. Astron. Astrophys. 7:1, 2007; Nakar in Phys. Rep. 442:166, 2007; Kumar and Zhang in Phys. Rep. 561:1, 2015).

  15. Gamma-Ray Burst Prompt Correlations

    Directory of Open Access Journals (Sweden)

    M. G. Dainotti

    2018-01-01

    Full Text Available The mechanism responsible for the prompt emission of gamma-ray bursts (GRBs is still a debated issue. The prompt phase-related GRB correlations can allow discriminating among the most plausible theoretical models explaining this emission. We present an overview of the observational two-parameter correlations, their physical interpretations, and their use as redshift estimators and possibly as cosmological tools. The nowadays challenge is to make GRBs, the farthest stellar-scaled objects observed (up to redshift z=9.4, standard candles through well established and robust correlations. However, GRBs spanning several orders of magnitude in their energetics are far from being standard candles. We describe the advances in the prompt correlation research in the past decades, with particular focus paid to the discoveries in the last 20 years.

  16. Soap films burst like flapping flags.

    Science.gov (United States)

    Lhuissier, Henri; Villermaux, Emmanuel

    2009-07-31

    When punctured, a flat soap film bursts by opening a hole driven by liquid surface tension. The hole rim does not, however, remain smooth but soon develops indentations at the tip of which ligaments form, ultimately breaking and leaving the initially connex film into a mist of disjointed drops. We report on original observations showing that these indentations result from a flaglike instability between the film and the surrounding atmosphere inducing an oscillatory motion out of its plane. Just like a flag edge flaps in the wind, the film is successively accelerated on both sides perpendicularly to its plane, inducing film thickness modulations and centrifuging liquid ligaments that finally pinch off to form the observed spray. This effect exemplifies how the dynamics of fragile objects such as thin liquid films is sensitive to their embedding medium.

  17. Measuring spectra using burst-mode LDA

    Science.gov (United States)

    Velte, Clara; George, William; Tutkun, Murat; Frohnapfel, Bettina

    2008-11-01

    The phrase ``burst-mode LDA'' refers to an LDA which operates with at most one particle present in the measuring volume at a time. For the signal to be interpreted correctly to avoid velocity bias, one must apply residence time-weighing to all statistical analysis. In addition, for time-series analysis, even though the randomly arriving particles eliminate aliasing, the self-noise from the random arrivals must be removed or it will dominate the spectra and correlations. A flaw in the earlier theory [1],[2], the goal of which was to provide an unbiased and unaliased spectral estimator from the random samples, is identified and corrected. The new methodology is illustrated using recent experiments in a round jet and a turbulent boundary layer. 1. Buchhave, P. PhD Thesis, SUNY/Buffalo, 1979. 2. George, W.K. Proc. Marseille.-Balt. Dyn. Flow Conf. 1978,757-800.

  18. Does Twitter trigger bursts in signature collections?

    Science.gov (United States)

    Yamaguchi, Rui; Imoto, Seiya; Kami, Masahiro; Watanabe, Kenji; Miyano, Satoru; Yuji, Koichiro

    2013-01-01

    The quantification of social media impacts on societal and political events is a difficult undertaking. The Japanese Society of Oriental Medicine started a signature-collecting campaign to oppose a medical policy of the Government Revitalization Unit to exclude a traditional Japanese medicine, "Kampo," from the public insurance system. The signature count showed a series of aberrant bursts from November 26 to 29, 2009. In the same interval, the number of messages on Twitter including the keywords "Signature" and "Kampo," increased abruptly. Moreover, the number of messages on an Internet forum that discussed the policy and called for signatures showed a train of spikes. In order to estimate the contributions of social media, we developed a statistical model with state-space modeling framework that distinguishes the contributions of multiple social media in time-series of collected public opinions. We applied the model to the time-series of signature counts of the campaign and quantified contributions of two social media, i.e., Twitter and an Internet forum, by the estimation. We found that a considerable portion (78%) of the signatures was affected from either of the social media throughout the campaign and the Twitter effect (26%) was smaller than the Forum effect (52%) in total, although Twitter probably triggered the initial two bursts of signatures. Comparisons of the estimated profiles of the both effects suggested distinctions between the social media in terms of sustainable impact of messages or tweets. Twitter shows messages on various topics on a time-line; newer messages push out older ones. Twitter may diminish the impact of messages that are tweeted intermittently. The quantification of social media impacts is beneficial to better understand people's tendency and may promote developing strategies to engage public opinions effectively. Our proposed method is a promising tool to explore information hidden in social phenomena.

  19. Does Twitter trigger bursts in signature collections?

    Directory of Open Access Journals (Sweden)

    Rui Yamaguchi

    Full Text Available INTRODUCTION: The quantification of social media impacts on societal and political events is a difficult undertaking. The Japanese Society of Oriental Medicine started a signature-collecting campaign to oppose a medical policy of the Government Revitalization Unit to exclude a traditional Japanese medicine, "Kampo," from the public insurance system. The signature count showed a series of aberrant bursts from November 26 to 29, 2009. In the same interval, the number of messages on Twitter including the keywords "Signature" and "Kampo," increased abruptly. Moreover, the number of messages on an Internet forum that discussed the policy and called for signatures showed a train of spikes. METHODS AND FINDINGS: In order to estimate the contributions of social media, we developed a statistical model with state-space modeling framework that distinguishes the contributions of multiple social media in time-series of collected public opinions. We applied the model to the time-series of signature counts of the campaign and quantified contributions of two social media, i.e., Twitter and an Internet forum, by the estimation. We found that a considerable portion (78% of the signatures was affected from either of the social media throughout the campaign and the Twitter effect (26% was smaller than the Forum effect (52% in total, although Twitter probably triggered the initial two bursts of signatures. Comparisons of the estimated profiles of the both effects suggested distinctions between the social media in terms of sustainable impact of messages or tweets. Twitter shows messages on various topics on a time-line; newer messages push out older ones. Twitter may diminish the impact of messages that are tweeted intermittently. CONCLUSIONS: The quantification of social media impacts is beneficial to better understand people's tendency and may promote developing strategies to engage public opinions effectively. Our proposed method is a promising tool to explore

  20. The link between coherent burst oscillations, burst spectral evolution and accretion state in 4U 1728-34

    NARCIS (Netherlands)

    Zhang, Guobao; Méndez, Mariano; Zamfir, Michael; Cumming, Andrew

    2016-01-01

    Coherent oscillations and the evolution of the X-ray spectrum during thermonuclear X-ray bursts in accreting neutron-star X-ray binaries have been studied intensively but separately. We analysed all the X-ray bursts of the source 4U 1728-34 with the Rossi X-ray Timing Explorer. We found that the

  1. Monitoring burst (M-burst) — A novel framework of failure localization in all-optical mesh networks

    KAUST Repository

    Ali, Mohammed L.

    2011-10-10

    Achieving instantaneous and precise failure localization in all-optical wavelength division multiplexing (WDM) networks has been an attractive feature of network fault management systems, and is particularly important when failure-dependent protection is employed. The paper introduces a novel framework of real-time failure localization in all-optical WDM mesh networks, called monitoring-burst (m-burst), which aims to initiate a graceful compromise between consumed monitoring resources and monitoring delay. Different from any previously reported solution, the proposed m-burst framework has a single monitoring node (MN) which launches optical bursts along a set of pre-defined close-loop routes, called monitoring cycles (m-cycles), to probe the links along the m-cycles. Bursts along different m-cycles are kept non-overlapping through any link of the network. By identifying the lost bursts due to single link failure events only, the MN can unambiguously localize the failed link in at least 3-connected networks. We will justify the feasibility and applicability of the proposed m-burst framework in the scenario of interest. To avoid possible collision among optical bursts launched by the MN, we define the problem of collision-free scheduling and formulate it into an integer linear program (ILP) in order to minimize the monitoring delay. Numerical results demonstrate the effectiveness of the proposed framework and the proposed solution.

  2. Sterilization/disinfection of medical devices using plasma: the flowing afterglow of the reduced-pressure N2-O2 discharge as the inactivating medium

    Science.gov (United States)

    Moisan, Michel; Boudam, Karim; Carignan, Denis; Kéroack, Danielle; Levif, Pierre; Barbeau, Jean; Séguin, Jacynthe; Kutasi, Kinga; Elmoualij, Benaïssa; Thellin, Olivier; Zorzi, Willy

    2013-07-01

    Potential sterilization/disinfection of medical devices (MDs) is investigated using a specific plasma process developed at the Université de Montréal over the last decade. The inactivating medium of the microorganisms is the flowing afterglow of a reduced-pressure N2-O2 discharge, which provides, as the main biocidal agent, photons over a broad ultraviolet (UV) wavelength range. The flowing afterglow is considered less damaging to MDs than the discharge itself. Working at gas pressures in the 400—700 Pa range (a few torr) ensures, through species diffusion, the uniform filling of large volume chambers with the species outflowing from the discharge, possibly allowing batch processing within them. As a rule, bacterial endospores are used as bio-indicators (BI) to validate sterilization processes. Under the present operating conditions, Bacillus atrophaeus is found to be the most resistant one and is therefore utilized as BI. The current paper reviews the main experimental results concerning the operation and characterization of this sterilizer/disinfector, updating and completing some of our previously published papers. It uses modeling results as guidelines, which are particularly useful when the corresponding experimental data are not (yet) available, hopefully leading to more insight into this plasma afterglow system. The species flowing out of the N2-O2 discharge can be divided into two groups, depending on the time elapsed after they left the discharge zone as they move toward the chamber, namely the early afterglow and the late afterglow. The early flowing afterglow from a pure N2 discharge (also called pink afterglow) is known to be comprised of N2+ and N4+ ions. In the present N2-O2 mixture discharge, NO+ ions are additionally generated, with a lifetime that extends over a longer period than that of the nitrogen molecular ions. We shall suppose that the disappearance of the NO+ ions marks the end of the early afterglow regime, thereby stressing our intent

  3. A self-consistent analytical magnetar model: the luminosity of γ-ray burst supernovae is powered by radioactivity

    Science.gov (United States)

    Cano, Zach; Johansson Andreas, K. G.; Maeda, Keiichi

    2016-04-01

    We present an analytical model that considers energy arising from a magnetar central engine. The results of fitting this model to the optical and X-ray light curves of five long-duration γ-ray bursts (LGRBs) and two ultralong GRBs (ULGRBs), including their associated supernovae (SNe), show that emission from a magnetar central engine cannot be solely responsible for powering an LGRB-SN. While the early afterglow (AG)-dominated phase can be well described with our model, the predicted SN luminosity is underluminous by a factor of 3-17. We use this as compelling evidence that additional sources of heating must be present to power an LGRB-SN, which we argue must be radioactive heating. Our self-consistent modelling approach was able to successfully describe all phases of ULGRB 111209A/SN 2011kl, from the early AG to the later SN, where we determined for the magnetar central engine a magnetic field strength of 1.1-1.3 × 1015 G, an initial spin period of 11.5-13.0 ms, a spin-down time of 4.8-6.5 d, and an initial energy of 1.2-1.6 × 1050 erg. These values are entirely consistent with those determined by other authors. The luminosity of a magnetar-powered SN is directly related to how long the central engine is active, where central engines with longer durations give rise to brighter SNe. The spin-down time-scales of superluminous supernovae (SLSNe) are of order months to years, which provides a natural explanation as to why SN 2011kl was less luminous than SLSNe that are also powered by emission from magnetar central engines.

  4. SK channels participate in the formation of after burst hyperpolarization and partly inhibit the burst strength of epileptic ictal discharges.

    Science.gov (United States)

    Huang, Yian; Liu, Xu; Wang, Guoxiang; Wang, Yun

    2018-01-01

    Epilepsy is a common disease of the central nervous system. Tetanic spasms and convulsions are the key symptoms exhibited during epileptic seizures. However, the majority of patients have a significant post‑seizure silence following a serious seizure; the underlying molecular neural mechanisms in this burst interval are unclear. The aim of the present study was to reveal the effect and role of calcium‑activated potassium channels during this seizure interval silence period. Cyclothiazide (CTZ) was used to establish the seizure model in rat hippocampal cultured neurons, then the after‑burst hyperpolarization (ABH) activities were recorded using the patch clamp technique. By comparing the amplitude and duration of hyperpolarizations, the present study analyzed the association between epileptiform bursts and ABHs when treated with different concentrations of CTZ. In addition, apamin and iberiotoxin were used for pharmacological tests. An intracranial electroencephalogram (EEG) recording was also performed when the CTZ experiments were repeated on animals. The experimental results revealed that treatment with high levels of CTZ induced larger ABHs and was associated with stronger burst activities, which suggested a positive correlation between ABH and epileptiform burst. Apamin, an antagonist of small conductance calcium‑activated potassium (SK) channels, decreased the amplitude of ABH; however, reduced ABH was associated with enhanced burst activity, in burst probability and burst strength. These results revealed an important role of SK channels in the formation of ABH and in the inhibition of burst activity. Iberiotoxin, an antagonist of big conductance calcium‑activated potassium (BK) channels, had no significant effect on ABH and burst activity. In addition, a positive correlation was identified between burst duration and ABH parameters. An intracellular calcium chelator impaired the amplitude of ABH; however, it did not affect the burst parameters. The

  5. Phantom bursting is highly sensitive to noise and unlikely to account for slow bursting in beta-cells

    DEFF Research Database (Denmark)

    Pedersen, Morten Gram

    2007-01-01

    Pancreatic beta-cells show bursting electrical activity with a wide range of burst periods ranging from a few seconds, often seen in isolated cells, over tens of seconds (medium bursting), usually observed in intact islets, to several minutes. The phantom burster model [Bertram, R., Previte, J......., Sherman, A., Kinard, T.A., Satin, L.S., 2000. The phantom burster model for pancreatic beta-cells. Biophys. J. 79, 2880-2892] provided a framework, which covered this span, and gave an explanation of how to obtain medium bursting combining two processes operating on different time scales. However, single...... cells are subjected to stochastic fluctuations in plasma membrane currents, which are likely to disturb the bursting mechanism and transform medium bursters into spikers or very fast bursters. We present a polynomial, minimal, phantom burster model and show that noise modifies the plateau fraction...

  6. NUMERICAL AND ANALYTICAL SOLUTIONS OF NEUTRINO-DOMINATED ACCRETION FLOWS WITH A NON-ZERO TORQUE BOUNDARY CONDITION AND ITS APPLICATIONS IN GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Wei; Lei, Wei-Hua; Wang, Ding-Xiong, E-mail: leiwh@hust.edu.cn [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-12-20

    A stellar-mass black hole (BH) surrounded by a neutrino-dominated accretion flow (NDAF) has been discussed in a number of works as the central engine of gamma-ray bursts (GRBs). It is widely believed that NDAF cannot liberate enough energy for bright GRBs. However, these works have been based on the assumption of a “no torque” boundary condition, which is invalid when the disk is magnetized. In this paper, we present both numerical and analytical solutions for NDAFs with non-zero boundary stresses and reexamine their properties. We find that an NDAF with such a boundary torque can be powerful enough to account for those bright short GRBs, energetic long GRBs, and ultra-long GRBs. The disk becomes viscously unstable, which makes it possible to interpret the variability of GRB prompt emission and the steep decay phase in the early X-ray afterglow. Finally, we study the gravitational waves radiated from a processing BH-NDAF. We find that the effects of the boundary torque on the strength of the gravitational waves can be ignored.

  7. Nuclear spectroscopy

    CERN Document Server

    Ajzenberg-Selove, Fay

    1960-01-01

    Nuclear Spectroscopy, Part A deals with the experimental and theoretical techniques involved in nuclear spectroscopy.This book discusses the interactions of charged particles with matter, gaseous ionization detectors, and particular mass attenuation coefficients. The magnetic gamma-ray spectrometers for photo or internal-conversion electrons, general characteristics of cross-section variation with energy, and measurement of fast neutron spectra are also elaborated. This text likewise covers the elastic scattering of photons by nuclei and measurement of widths of gamma-radiating levels.This pub

  8. Understanding the Generation of Network Bursts by Adaptive Oscillatory Neurons

    Directory of Open Access Journals (Sweden)

    Tanguy Fardet

    2018-02-01

    Full Text Available Experimental and numerical studies have revealed that isolated populations of oscillatory neurons can spontaneously synchronize and generate periodic bursts involving the whole network. Such a behavior has notably been observed for cultured neurons in rodent's cortex or hippocampus. We show here that a sufficient condition for this network bursting is the presence of an excitatory population of oscillatory neurons which displays spike-driven adaptation. We provide an analytic model to analyze network bursts generated by coupled adaptive exponential integrate-and-fire neurons. We show that, for strong synaptic coupling, intrinsically tonic spiking neurons evolve to reach a synchronized intermittent bursting state. The presence of inhibitory neurons or plastic synapses can then modulate this dynamics in many ways but is not necessary for its appearance. Thanks to a simple self-consistent equation, our model gives an intuitive and semi-quantitative tool to understand the bursting behavior. Furthermore, it suggests that after-hyperpolarization currents are sufficient to explain bursting termination. Through a thorough mapping between the theoretical parameters and ion-channel properties, we discuss the biological mechanisms that could be involved and the relevance of the explored parameter-space. Such an insight enables us to propose experimentally-testable predictions regarding how blocking fast, medium or slow after-hyperpolarization channels would affect the firing rate and burst duration, as well as the interburst interval.

  9. Accelerating Science with the NERSC Burst Buffer Early User Program

    Energy Technology Data Exchange (ETDEWEB)

    Bhimji, Wahid [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bard, Debbie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Romanus, Melissa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutgers Univ., New Brunswick, NJ (United States); Paul, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ovsyannikov, Andrey [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Friesen, Brian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bryson, Matt [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Correa, Joaquin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lockwood, Glenn K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tsulaia, Vakho [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Byna, Suren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Farrell, Steve [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gursoy, Doga [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Daley, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Beckner, Vince [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Van Straalen, Brian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Trebotich, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tull, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Weber, Gunther H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wright, Nicholas J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Prabhat, none [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-01-01

    NVRAM-based Burst Buffers are an important part of the emerging HPC storage landscape. The National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory recently installed one of the first Burst Buffer systems as part of its new Cori supercomputer, collaborating with Cray on the development of the DataWarp software. NERSC has a diverse user base comprised of over 6500 users in 700 different projects spanning a wide variety of scientific computing applications. The use-cases of the Burst Buffer at NERSC are therefore also considerable and diverse. We describe here performance measurements and lessons learned from the Burst Buffer Early User Program at NERSC, which selected a number of research projects to gain early access to the Burst Buffer and exercise its capability to enable new scientific advancements. To the best of our knowledge this is the first time a Burst Buffer has been stressed at scale by diverse, real user workloads and therefore these lessons will be of considerable benefit to shaping the developing use of Burst Buffers at HPC centers.

  10. Unusual Solar Radio Burst Observed at Decameter Wavelengths

    Science.gov (United States)

    Melnik, V. N.; Brazhenko, A. I.; Konovalenko, A. A.; Rucker, H. O.; Frantsuzenko, A. V.; Dorovskyy, V. V.; Panchenko, M.; Stanislavskyy, A. A.

    2014-01-01

    An unusual solar burst was observed simultaneously by two decameter radio telescopes UTR-2 (Kharkov, Ukraine) and URAN-2 (Poltava, Ukraine) on 3 June 2011 in the frequency range of 16 - 28 MHz. The observed radio burst had some unusual properties, which are not typical for the other types of solar radio bursts. Its frequency drift rate was positive (about 500 kHz s-1) at frequencies higher than 22 MHz and negative (100 kHz s-1) at lower frequencies. The full duration of this event varied from 50 s up to 80 s, depending on the frequency. The maximum radio flux of the unusual burst reached ≈103 s.f.u. and its polarization did not exceed 10 %. This burst had a fine frequency-time structure of unusual appearance. It consisted of stripes with the frequency bandwidth 300 - 400 kHz. We consider that several accompanied radio and optical events observed by SOHO and STEREO spacecraft were possibly associated with the reported radio burst. A model that may interpret the observed unusual solar radio burst is proposed.

  11. A metal-rich molecular cloud surrounds GRB 050904 at redshift 6.3

    NARCIS (Netherlands)

    Campana, S.; Lazzati, D.; Ripamonti, Emanuele; Perna, R.; Covino, S.; Tagliaferri, G.; Moretti, A.; Romano, P.; Cusumano, G.; Chincarini, G.

    2007-01-01

    GRB 050904 is the gamma-ray burst with the highest measured redshift. We performed time-resolved X-ray spectroscopy of the late GRB and early afterglow emission. We find robust evidence for a decrease with time of the soft X-ray-absorbing column. We model the evolution of the column density due to

  12. A burst segmentation-deflection routing contention resolution mechanism in OBS networks

    Science.gov (United States)

    Guan, Ai-hong; Wang, Bo-yun

    2012-01-01

    One of the key problems to hinder the realization of optical burst switching (OBS) technology in the core networks is the losses due to the contention among the bursts at the core nodes. Burst segmentation is an effective contention resolution technique used to reduce the number of packets lost due to the burst losses. In our work, a burst segmentation-deflection routing contention resolution mechanism in OBS networks is proposed. When the contention occurs, the bursts are segmented according to the lowest packet loss probability of networks firstly, and then the segmented burst is deflected on the optimum routing. An analytical model is proposed to evaluate the contention resolution mechanism. Simulation results show that high-priority bursts have significantly lower packet loss probability and transmission delay than the low-priority. And the performance of the burst lengths, in which the number of segments per burst distributes geometrically, is more effective than that of the deterministically distributed burst lengths.

  13. A Fast Radio Burst Every Second?

    Science.gov (United States)

    Kohler, Susanna

    2017-09-01

    How frequently do fast radio busts occur in the observable universe? Two researchers have now developed a new estimate.Extragalactic SignalsIn 2007, scientists looking through archival pulsar data discovered a transient radio pulse a flash that lasted only a few milliseconds. Since then, weve found another 22 such fast radio bursts (FRBs), yet we still dont know what causes these energetic signals.Artists illustration of the Very Large Array pinpointing the location of FRB 121102. [Bill Saxton/NRAO/AUI/NSF/Hubble Legacy Archive/ESA/NASA]Recently, some clues have finally come from FRB 121102, the only FRB ever observed to repeat. The multiple pulses detected from this source over the last five years have allowed us to confirm its extragalactic origin and pinpoint an origin for this FRB: a small, low-mass, metal-poor dwarf galaxy located about three billion light-years away.Is FRB 121102 typical? How frequently do such bursts occur, and how frequently can we hope to be able to detect them in the future? And what might these rates tell us about their origins? Two scientists from the Harvard-Smithsonian Center for Astrophysics, Anastasia Fialkov and Abraham Loeb, have now taken a phenomenological approach to answering these questions.Influencing FactorsFialkov and Loeb arguethat there are three main factors that influence the rate of observable FRBs in the universe:The spectral shape of the individual FRBsFRB 121102 had a Gaussian-like spectral profile, which means it peaks in a narrow range of frequencies and may not be detectable outside of that band. If this is typical for FRBs, then signals of distant FRBs may become redshifted to outside of the frequency band that we observe, making them undetectable.FRB detection rates in the 1.253.5GHz band predicted by the authors models (red and blue solid and dashed lines), as a function of the flux limit for detection (top) and as a function of the FRB hosts redshift (bottom). Grey circles mark our detections of FRBs thus

  14. PLASMA SPECTROSCOPY

    NARCIS (Netherlands)

    Jaspers, R. J. E.

    2010-01-01

    A brief introduction into the spectroscopy of fusion plasmas is presented. Basic principles of the emission of ionic, atomic and molecular radiation is explained and a survey of the effects, which lead to the population of the respective excited levels, is given. Line radiation, continuum radiation,

  15. Fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2016-01-01

    Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses...... the foundations of the fluorescence phenomenon, introduces some general methodologies and provides selected examples on applications focused to disentangle structural and dynamical aspects of biological processes....

  16. Q-bursts from various distances on the Earth

    Science.gov (United States)

    Ogawa, Toshio; Komatsu, Masayuki

    2009-02-01

    The mechanism of the Q-burst is investigated in the time and frequency domains. Electric fields in the ELF (extremely low frequency) to VLF (very low frequency) range have been observed with a ball antenna since 2003 in Kochi City, Japan (latitude 33.3°north, longitude 133.4°east). Source-to-observer distances (SODs) of Q-bursts are estimated by analyzing the waveforms. It is found as a result that the Q-burst is produced by combination of direct and antipodal pulses from a source lightning stroke occurring all over the world.

  17. INTEGRAL monitoring of unusually long X-ray bursts

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Falanga, M.; Kuulkers, E.

    2008-01-01

    X-ray bursts are thermonuclear explosions on the surface of accreting neutron stars in X-ray binaries. As most of the known X-ray bursters are frequently observed by INTEGRAL, an international collaboration have been taking advantage of its instrumentation to specifically monitor the occurrence...... of exceptional burst events lasting more than ~10 minutes. Half of the dozen so-called intermediate long bursts registered so far have been observed by INTEGRAL. The goal is to derive a comprehensive picture of the relationship between the nuclear ignition processes and the accretion states of the system leading...

  18. Neutron Stars and Thermonuclear X-ray Bursts

    Science.gov (United States)

    Bhattacharyya, Sudip

    2007-01-01

    Studies of thermonuclear X-ray bursts can be very useful to constrain the spin rate, mass and radius of a neutron star approaching EOS model of high density cold matter in the neutron star cores. +k Extensive observation and analysis of the data from the rising portions of the bursts - modeling of burst oscillations and thermonuclear flame spreading. +k Theoretical study of thermonuclear flame spreading on the rapidly spinning neutron stars should be done considering all the main physical effects (including magnetic field, nuclear energy generation, Coriolis effect, strong gravity, etc.).

  19. Understanding Neutron Stars using Thermonuclear X-ray Bursts

    Science.gov (United States)

    Bhattacharyya, S.

    2007-01-01

    Studies of thermonuclear X-ray bursts can be very useful to constrain the spin rate, mass and radius of a neutron star = EOS model of high density cold matter in the neutron star cores. Extensive observation and analysis of the data from the rising portions of the bursts = modeling of burst oscillations and thermonuclear flame spreading. Theoretical study of thermonuclear flame spreading on the rapidly spinning neutron stars should be done considering all the main physical effects (including magnetic field, nuclear energy generation, Coriolis effect, strong gravity, etc.).

  20. GRO: Black hole models for gamma-ray bursts

    Science.gov (United States)

    Shaham, Jacob

    1994-01-01

    The possibility of creating gamma ray bursts (GRB's) from accretion flows on to black holes is investigated. The mechanism of initial energy release in the form of a burst is not understood yet. The typical time scales involved in this energy release and the initial distribution of photons as a function of energy are studied. As a first step the problem is formulated in the Minkowski spacetime for a homogeneous and isotropic burst. For an arbitrary initial distribution of photons, the equations of relativistic kinetic theory are formulated for nonequilibrium plasmas which can take into account various particle creation and annihilation processes and various scattering processes.

  1. Shaping bursting by electrical coupling and noise.

    Science.gov (United States)

    Medvedev, Georgi S; Zhuravytska, Svitlana

    2012-02-01

    Gap-junctional coupling is an important way of communication between neurons and other excitable cells. Strong electrical coupling synchronizes activity across cell ensembles. Surprisingly, in the presence of noise synchronous oscillations generated by an electrically coupled network may differ qualitatively from the oscillations produced by uncoupled individual cells forming the network. A prominent example of such behavior is the synchronized bursting in islets of Langerhans formed by pancreatic β-cells, which in isolation are known to exhibit irregular spiking (Sherman and Rinzel, Biophys J 54:411-425, 1988; Sherman and Rinzel, Biophys J 59:547-559, 1991). At the heart of this intriguing phenomenon lies denoising, a remarkable ability of electrical coupling to diminish the effects of noise acting on individual cells. In this paper, building on an earlier analysis of denoising in networks of integrate-and-fire neurons (Medvedev, Neural Comput 21 (11):3057-3078, 2009) and our recent study of spontaneous activity in a closely related model of the Locus Coeruleus network (Medvedev and Zhuravytska, The geometry of spontaneous spiking in neuronal networks, submitted, 2012), we derive quantitative estimates characterizing denoising in electrically coupled networks of conductance-based models of square wave bursting cells. Our analysis reveals the interplay of the intrinsic properties of the individual cells and network topology and their respective contributions to this important effect. In particular, we show that networks on graphs with large algebraic connectivity (Fiedler, Czech Math J 23(98):298-305, 1973) or small total effective resistance (Bollobas, Modern graph theory, Graduate Texts in Mathematics, vol. 184, Springer, New York, 1998) are better equipped for implementing denoising. As a by-product of the analysis of denoising, we analytically estimate the rate with which trajectories converge to the synchronization subspace and the stability of the latter to

  2. Controlled retransmission scheme for prioritized burst segmentation to support quality-of-service in optical burst switching networks

    Science.gov (United States)

    Hou, Rui; He, Tingting; Mao, Tengyue

    2012-10-01

    In optical burst switching (OBS) networks, burst contentions in OBS core nodes may cause data loss. To reduce this data loss, a retransmission scheme has been applied. However, uncontrolled retransmission may significantly increase network load and data loss probability, thus defeating the retransmission purpose. In addition, in a priority traffic existing OBS network, OBS nodes may apply different retransmission mechanisms to priority bursts for quality-of-service (QoS) support. We present a controlled retransmission scheme for prioritized burst segmentation to support QoS in OBS networks. Different from previous work in the literature, we set a different value to retransmission probability at each contention and propose a retransmission analytical model for a burst segmentation contention resolution scheme. In addition, we apply the proposed retransmission scheme to the prioritized burst segmentation for QoS support. We take into account the load at each link due to both the fresh and the retransmitted traffic and calculate the path-blocking probability and the byte loss probability for high-priority and low-priority bursts to evaluate the network performance. An extensive simulation is proposed to validate our analytical model.

  3. The experimental optical burst switching system

    Science.gov (United States)

    Li, Xinwan; Chen, Jian-Ping; Wu, Guiling; Wang, Hui; Lu, Jialin; Ye, Ailun

    2005-02-01

    The first optical burst switching (OBS) system has been demonstrated in China, which includes three edge routers and one core-node. A kind of fast wavelength selective optical switching was used in the system. The core OBS node consists of a kind of wavelength selective optical switch we developed. It consists of two SOA switches and one wavelength selective thin film filter with centre wavelength at one wavelength. There are one input optical fiber and two output fibers, each fiber carries two wavelengths. The Dell PE2650 servers act as the edge OBS routers. The wavelength of each data channel is located in C-band and the bit rate is at 1.25Gbps. The control channel uses bit rate of 100Mbps at wavelength of 1310 nm. A novel effective scheme for Just-In-Time (JIT) protocol was proposed and implemented. OBS services, such as Video on Demand (VOD) and file transfer protocol (FTP), have been demonstrated. Assembling and scheduling methods that are capable to guarantee the QoS (quality of service) of the transported service are studied.

  4. A modeling perspective for meteor burst communication

    Science.gov (United States)

    Healy, Brian C.

    1988-12-01

    Meteor burst communication (MBC) is well suited for military applications. MBC offers better security compared to other long range communication systems because of its low probability of intercept and antijamming characteristics. MBC, however, has two major drawbacks: low throughout and long message waiting time. In order for MBC to be used effectively, methods need to be developed to predict and optimize system performance. The result of this research is the design and development of a methodology to analyze MBC networks. A decision support system was developed that provides a simulation model for any single or multiple-link MBC network. This model runs on an IBM XT/AT compatible computer and consists of two distinct components. The first component uses engineering parameters to compute intermediate queueing characteristics used by a discrete event simulation component. The simulation component provides point estimates for throughput, message delay, and resource utilization in tabular and graphical form. The MBC process is shown to be a M/G/1 queue with server vacations. Applicable analytical equations are presented and their limitations are discussed. Analytical equations and empirical data were both used to validate the MBC performance model.

  5. Quark nova model for fast radio bursts

    Science.gov (United States)

    Shand, Zachary; Ouyed, Amir; Koning, Nico; Ouyed, Rachid

    2016-05-01

    Fast radio bursts (FRBs) are puzzling, millisecond, energetic radio transients with no discernible source; observations show no counterparts in other frequency bands. The birth of a quark star from a parent neutron star experiencing a quark nova - previously thought undetectable when born in isolation - provides a natural explanation for the emission characteristics of FRBs. The generation of unstable r-process elements in the quark nova ejecta provides millisecond exponential injection of electrons into the surrounding strong magnetic field at the parent neutron star's light cylinder via β-decay. This radio synchrotron emission has a total duration of hundreds of milliseconds and matches the observed spectrum while reducing the inferred dispersion measure by approximately 200 cm-3 pc. The model allows indirect measurement of neutron star magnetic fields and periods in addition to providing astronomical measurements of β-decay chains of unstable neutron rich nuclei. Using this model, we can calculate expected FRB average energies (˜ 1041 erg) and spectral shapes, and provide a theoretical framework for determining distances.

  6. Photon Mass Limits from Fast Radio Bursts

    CERN Document Server

    Bonetti, Luca; Mavromatos, Nikolaos E.; Sakharov, Alexander S.; Sarkisyan-Grinbaum, Edward K.G.; Spallicci, Alessandro D.A.M.

    2016-06-10

    The frequency-dependent time delays in fast radio bursts (FRBs) can be used to constrain the photon mass, if the FRB redshifts are known, but the similarity between the frequency dependences of dispersion due to plasma effects and a photon mass complicates the derivation of a limit on $m_\\gamma$. The redshift of FRB 150418 has been measured to $\\sim 2$% and its dispersion measure (DM) is known to $\\sim 0.1$%, but the strength of the constraint on $m_\\gamma$ is limited by uncertainties in the modelling of the host galaxy and the Milky Way, as well as possible inhomogeneities in the intergalactic medium (IGM). Allowing for these uncertainties, the recent data on FRB 150418 indicate that $m_\\gamma \\lesssim 1.7 \\times 10^{-14}$ eV c$^{-2}$ ($4.6 \\times 10^{-50}$ kg). In the future, the different redshift dependences of the plasma and photon mass contributions to DM can be used to improve the sensitivity to $m_\\gamma$ if more FRB redshifts are measured. For a fixed fractional uncertainty in the extra-galactic cont...

  7. Rock burst governance of working face under igneous rock

    Science.gov (United States)

    Chang, Zhenxing; Yu, Yue

    2017-01-01

    As a typical failure phenomenon, rock burst occurs in many mines. It can not only cause the working face to cease production, but also cause serious damage to production equipment, and even result in casualties. To explore how to govern rock burst of working face under igneous rock, the 10416 working face in some mine is taken as engineering background. The supports damaged extensively and rock burst took place when the working face advanced. This paper establishes the mechanical model and conducts theoretical analysis and calculation to predict the fracture and migration mechanism and energy release of the thick hard igneous rock above the working face, and to obtain the advancing distance of the working face when the igneous rock fractures and critical value of the energy when rock burst occurs. Based on the specific conditions of the mine, this paper put forward three kinds of governance measures, which are borehole pressure relief, coal seam water injection and blasting pressure relief.

  8. A complete sample of long bright Swift gamma ray bursts.

    Science.gov (United States)

    Tagliaferri, Gianpiero; Salvaterra, Ruben; Campana, Sergio; Covino, Stefano; D'Avanzo, Paolo; Fugazza, Dino; Ghirlanda, Giancarlo; Ghisellini, Gabriele; Melandri, Andrea; Nava, Lara; Sbarufatti, Boris; Vergani, Susanna

    2013-06-13

    Complete samples are the basis of any population study. To this end, we selected a complete subsample of Swift long bright gamma ray bursts (GRBs). The sample, made up of 58 bursts, was selected by considering bursts with favourable observing conditions for ground-based follow-up observations and with the 15-150 keV 1 s peak flux above a flux threshold of 2.6 photons cm(-2) s(-1). This sample has a redshift completeness level higher than 90 per cent. Using this complete sample, we investigate the properties of long GRBs and their evolution with cosmic time, focusing in particular on the GRB luminosity function, the prompt emission spectral-energy correlations and the nature of dark bursts.

  9. Study on Monitoring Rock Burst through Drill Pipe Torque

    National Research Council Canada - National Science Library

    Li, Zhonghua; Zhu, Liyuan; Yin, Wanlei; Song, Yanfang

    2015-01-01

      This paper presents a new method to identify the danger of rock burst from the response of drill pipe torque during drilling process to overcome many defects of the conventional volume of drilled coal rubble method...

  10. Real-time observation of liposome bursting induced by acetonitrile.

    Science.gov (United States)

    Yoshida, Kazunari; Horii, Keitaro; Fujii, Yasuhiro; Nishio, Izumi

    2014-10-06

    We show the bursting process of dioleoylphosphatidylcholine (DOPC) liposomes in response to the addition of acetonitrile, a small toxic molecule widely used in the fields of chemistry and industry. The percentage of destroyed liposomes is reduced upon decreasing the acetonitrile fraction in the aqueous solution and vesicle bursting is not observed at volume ratios of 4:6 and below. This indicates that a high fraction of acetonitrile causes the bursting of liposomes, and it is proposed that this occurs through insertion of the molecules into outer leaflet of the lipid bilayer. The elapsed time between initial addition of acetonitrile and liposome bursting at each vesicle is also measured and demonstrated to be dependent on the volume fraction of acetonitrile and the vesicle size. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. An Unusual Burst at Decameter Wavelengths. 1. Observations

    Science.gov (United States)

    Brazhenko, A. I.; Melnik, V. M.; Konovalenko, O. O.; Dorovskyy, V. V.; Frantsuzenko, A. V.; Rucker, H. O.; Panchenko, M.; Stanislavsky, A. A.

    2012-06-01

    An unusual burst was observed by the UTR-2 (Kharkiv, Ukraine) and URAN-2 (Poltava, Ukraine) radio telescopes on June 3, 2011. It was recorded in the frequency band 16-28 MHz. Its frequency drift rate (about 500 kHz/s) was positive at frequencies higher than 22 MHz and negative with drift rate 100 kHz/s at lower frequencies. The half-power duration of this burst was about the same at all frequencies and made 17-22 s. The fine frequency-time structure was unusual too. The maximum radio flux of the unusual burst at 24 MHz was about 103 s.f.u. and its polarization was about 10 %. We propose an interpretation of the unusual burst.

  12. Dynamics of electro burst in solids: I. Power characteristics of electro burst

    Energy Technology Data Exchange (ETDEWEB)

    Burkin, V V; Kuznetsova, N S; Lopatin, V V, E-mail: tevn@hvd.tpu.r [High Voltage Research Institute of Tomsk Polytechnical University, Tomsk 634050, 2A Lenina Avenue (Russian Federation)

    2009-09-21

    By means of the developed physical and mathematical model of electro burst, an analysis of the power characteristics of wave disturbances generated by the expanding discharge channel in a solid material has been carried out. The dynamics of the generator energy conversion into the plasma channel and into the wave of mechanical stresses in the solid placed in a liquid has been considered. Conformably to the electro discharge destruction of strong materials, the relation of the discharge circuit parameters with the power characteristics of wave has been analysed. The prediction of a fracture pattern has been made depending on the discharge circuit parameters.

  13. Dynamics of electro burst in solids: I. Power characteristics of electro burst

    Science.gov (United States)

    Burkin, V. V.; Kuznetsova, N. S.; Lopatin, V. V.

    2009-09-01

    By means of the developed physical and mathematical model of electro burst, an analysis of the power characteristics of wave disturbances generated by the expanding discharge channel in a solid material has been carried out. The dynamics of the generator energy conversion into the plasma channel and into the wave of mechanical stresses in the solid placed in a liquid has been considered. Conformably to the electro discharge destruction of strong materials, the relation of the discharge circuit parameters with the power characteristics of wave has been analysed. The prediction of a fracture pattern has been made depending on the discharge circuit parameters.

  14. Burst spinal cord stimulation for limb and back pain.

    Science.gov (United States)

    De Ridder, Dirk; Plazier, Mark; Kamerling, Niels; Menovsky, Tomas; Vanneste, Sven

    2013-11-01

    Spinal cord stimulation via epidurally implanted electrodes is a common treatment for medically intractable neuropathic pain of different origins. Because tonic electrical stimulation evokes paresthesias over the painful area, this method has never been proven scientifically to be superior to placebo. Recently, burst stimulation (in which closely spaced, high-frequency stimuli are delivered to the spinal cord) has been developed, which does not generate paresthesias. A randomized placebo controlled trail in which we compared three stimulation paradigms (burst, tonic, and placebo) was performed on 15 consecutive pain patients. In contrast to tonic stimulation, burst stimulation was able to provide pain relief without the generation of paresthesias, permitting us to use a double-blinded placebo controlled approach. Primary outcome measures were visual analog scale pain scores for back pain, limb pain, and general pain. Secondary outcome measures included the pain vigilance and awareness questionnaire, which is used to measure attention to pain and pain changes, and visual analog scale of the worst, least, and momentary pain. In a subgroup of five patients, a source-localized electroencephalogram was performed under four conditions: baseline, tonic, burst, and placebo stimulation. Burst stimulation was able to improve back, limb, and general pain by 51%, 53%, and 55% and tonic stimulation by 30%, 52%, and 31%, respectively. Pain now, least, and worst pain were improved by 50%, 73%, and 36% by burst stimulation, respectively, and 26%, 46%, and 13% by tonic stimulation. In comparison with placebo, burst, corrected for multiple comparisons, was significantly better for all measurements. However, the greatest differences were obtained in the pain vigilance and awareness questionnaire measurements: burst improved the attention to pain and pain changes, whereas tonic and placebo worsened these measurements. The analysis via encephalogram demonstrates burst stimulation

  15. Formation of Pyrylium from Aromatic Systems with a Helium:Oxygen Flowing Atmospheric Pressure Afterglow (FAPA) Plasma Source

    Science.gov (United States)

    Badal, Sunil P.; Ratcliff, Tyree D.; You, Yi; Breneman, Curt M.; Shelley, Jacob T.

    2017-06-01

    The effects of oxygen addition on a helium-based flowing atmospheric pressure afterglow (FAPA) ionization source are explored. Small amounts of oxygen doped into the helium discharge gas resulted in an increase in abundance of protonated water clusters by at least three times. A corresponding increase in protonated analyte signal was also observed for small polar analytes, such as methanol and acetone. Meanwhile, most other reagent ions (e.g., O2 +·, NO+, etc.) significantly decrease in abundance with even 0.1% v/v oxygen in the discharge gas. Interestingly, when analytes that contained aromatic constituents were subjected to a He:O2-FAPA, a unique (M + 3)+ ion resulted, while molecular or protonated molecular ions were rarely detected. Exact-mass measurements revealed that these (M + 3)+ ions correspond to (M - CH + O)+, with the most likely structure being pyrylium. Presence of pyrylium-based ions was further confirmed by tandem mass spectrometry of the (M + 3)+ ion compared with that of a commercially available salt. Lastly, rapid and efficient production of pyrylium in the gas phase was used to convert benzene into pyridine. Though this pyrylium-formation reaction has not been shown before, the reaction is rapid and efficient. Potential reactant species, which could lead to pyrylium formation, were determined from reagent-ion mass spectra. Thermodynamic evaluation of reaction pathways was aided by calculation of the formation enthalpy for pyrylium, which was found to be 689.8 kJ/mol. Based on these results, we propose that this reaction is initiated by ionized ozone (O3 +·), proceeds similarly to ozonolysis, and results in the neutral loss of the stable CHO2 · radical. [Figure not available: see fulltext.

  16. Formation of Pyrylium from Aromatic Systems with a Helium:Oxygen Flowing Atmospheric Pressure Afterglow (FAPA) Plasma Source.

    Science.gov (United States)

    Badal, Sunil P; Ratcliff, Tyree D; You, Yi; Breneman, Curt M; Shelley, Jacob T

    2017-06-01

    The effects of oxygen addition on a helium-based flowing atmospheric pressure afterglow (FAPA) ionization source are explored. Small amounts of oxygen doped into the helium discharge gas resulted in an increase in abundance of protonated water clusters by at least three times. A corresponding increase in protonated analyte signal was also observed for small polar analytes, such as methanol and acetone. Meanwhile, most other reagent ions (e.g., O 2 +· , NO + , etc.) significantly decrease in abundance with even 0.1% v/v oxygen in the discharge gas. Interestingly, when analytes that contained aromatic constituents were subjected to a He:O 2 -FAPA, a unique (M + 3) + ion resulted, while molecular or protonated molecular ions were rarely detected. Exact-mass measurements revealed that these (M + 3) + ions correspond to (M - CH + O) + , with the most likely structure being pyrylium. Presence of pyrylium-based ions was further confirmed by tandem mass spectrometry of the (M + 3) + ion compared with that of a commercially available salt. Lastly, rapid and efficient production of pyrylium in the gas phase was used to convert benzene into pyridine. Though this pyrylium-formation reaction has not been shown before, the reaction is rapid and efficient. Potential reactant species, which could lead to pyrylium formation, were determined from reagent-ion mass spectra. Thermodynamic evaluation of reaction pathways was aided by calculation of the formation enthalpy for pyrylium, which was found to be 689.8 kJ/mol. Based on these results, we propose that this reaction is initiated by ionized ozone (O 3 +· ), proceeds similarly to ozonolysis, and results in the neutral loss of the stable CHO 2 · radical. Graphical Abstract ᅟ.

  17. Visual control of burst priming in the anesthetized lateral geniculate nucleus.

    Science.gov (United States)

    Denning, Kate S; Reinagel, Pamela

    2005-04-06

    Thalamic relay cells fire bursts of action potentials. Once a long hyperpolarization "primes" (deinactivates) the T-type calcium channel, a depolarizing input will "trigger" a calcium spike with a burst of action potentials. During sleep, bursts are frequent, rhythmic, and nonvisual. Bursts have been observed in alert animals, and burst timing is known to carry visual information under light anesthesia. We extend this finding by showing that bursts without visual triggers are rare. Nevertheless, if the channel were primed at random with respect to the stimulus, then bursts would have the same visual significance as single spikes. We find, however, that visual signals influence when the channel is primed. First, natural time-varying stimuli evoke more bursts than white noise. Second, specific visual stimuli reproducibly elicit bursts, whereas others reliably elicit single spikes. Therefore, visual information is encoded by the selective tagging of some responses as bursts. The visual information attributable to visual priming (as distinct from the information attributable to visual triggering of the bursts) was two bits per burst on average. Although bursts are reportedly rare in alert animals, this must be investigated as a function of visual stimulus. Moreover, we propose methods to measure the extent of both visual triggering and visual priming of bursts. Whether or not bursts are rare, our methods could help determine whether bursts in alert animals carry a distinct visual signal.

  18. Bursts and shocks in a continuum shell model

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Bohr, Tomas; Jensen, M.H.

    1998-01-01

    We study a burst event, i.e., the evolution of an initial condition having support only in a finite interval of k-space, in the continuum shell model due to Parisi. We show that the continuum equation without forcing or dissipation can be explicitly written in characteristic form and that the right...... and left moving parts can be solved exactly. When this is supplemented by the approximate shock condition it is possible to find the symptotic form of the burst....

  19. Fast radio bursts: the last sign of supramassive neutron stars

    Science.gov (United States)

    Falcke, Heino; Rezzolla, Luciano

    2014-02-01

    Context. Several fast radio bursts have been discovered recently, showing a bright, highly dispersed millisecond radio pulse. The pulses do not repeat and are not associated with a known pulsar or gamma-ray burst. The high dispersion suggests sources at cosmological distances, hence implying an extremely high radio luminosity, far larger than the power of single pulses from a pulsar. Aims: We suggest that a fast radio burst represents the final signal of a supramassive rotating neutron star that collapses to a black hole due to magnetic braking. The neutron star is initially above the critical mass for non-rotating models and is supported by rapid rotation. As magnetic braking constantly reduces the spin, the neutron star will suddenly collapse to a black hole several thousand to million years after its birth. Methods: We discuss several formation scenarios for supramassive neutron stars and estimate the possible observational signatures making use of the results of recent numerical general-relativistic calculations. Results: While the collapse will hide the stellar surface behind an event horizon, the magnetic-field lines will snap violently. This can turn an almost ordinary pulsar into a bright radio "blitzar": accelerated electrons from the travelling magnetic shock dissipate a significant fraction of the magnetosphere and produce a massive radio burst that is observable out to z > 0.7. Only a few per cent of the neutron stars need to be supramassive in order to explain the observed rate. Conclusions: We suggest the intriguing possibility that fast radio bursts might trace the solitary and almost silent formation of stellar mass black holes at high redshifts. These bursts could be an electromagnetic complement to gravitational-wave emission and reveal a new formation and evolutionary channel for black holes and neutron stars that are not seen as gamma-ray bursts. If supramassive neutron stars are formed at birth and not by accretion, radio observations of these

  20. Real Life Science with Dandelions and Project BudBurst.

    Science.gov (United States)

    Johnson, Katherine A

    2016-03-01

    Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone. Journal of Microbiology & Biology Education.

  1. Burst suppression in sleep in a routine outpatient EEG

    Directory of Open Access Journals (Sweden)

    Ammar Kheder

    2014-01-01

    Full Text Available Burst suppression (BS is an electroencephalogram (EEG pattern that is characterized by brief bursts of spikes, sharp waves, or slow waves of relatively high amplitude alternating with periods of relatively flat EEG or isoelectric periods. The pattern is usually associated with coma, severe encephalopathy of various etiologies, or general anesthesia. We describe an unusual case of anoxic brain injury in which a BS pattern was seen during behaviorally defined sleep during a routine outpatient EEG study.

  2. Study on Monitoring Rock Burst through Drill Pipe Torque

    OpenAIRE

    Zhonghua Li; Liyuan Zhu; Wanlei Yin; Yanfang Song

    2015-01-01

    This paper presents a new method to identify the danger of rock burst from the response of drill pipe torque during drilling process to overcome many defects of the conventional volume of drilled coal rubble method. It is based on the relationship of rock burst with coal stress and coal strength. Through theoretic analysis, the change mechanism of drill pipe torque and the relationship of drill pipe torque with coal stress, coal strength, and drilling speed are investigated. In light of the a...

  3. Real Life Science with Dandelions and Project BudBurst

    Directory of Open Access Journals (Sweden)

    Katherine A. Johnson

    2015-12-01

    Full Text Available Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone.

  4. An unusual burst at decameter wavelengths. 2. Interpretation

    Science.gov (United States)

    Melnik, V. M.; Brazhenko, A. I.; Konovalenko, O. O.; Dorovskyy, V. V.; Frantsuzenko, A. V.; Rucker, H. O.; Panchenko, M.; Stanislavsky, A. A.

    2012-09-01

    The model which describes appearance and process of radio emission of an unusual burst observed by the UTR-2 (Kharkiv, Ukraine) and URAN-2 (Poltava, Ukraine) radio telescopes at 16-28 MHz is proposed. We suppose that the unusual burst is caused by the small ejection initiated by the active region NOAA1222. This behind-limb region was situated at the heights 2.3R⊙⊙ to 2.8R to 2.8R⊙⊙, when radio emission of the unusual burst at the second harmonic was started. We believe that due to interaction of this ejection with coronal plasma some electrons were accelerated. These electrons propagating towards and outwards the Sun were sources of the UTR-2, URAN-2 and STEREO-A recorded unusual burst. The mechanism of radio emission was plasma one. The proposed model allows explaining such properties of the unusual burst as its positive and negative drift rates, duration, abrupt stopping of radio emission at 27.5 MHz and its fine frequency structure., when radio emission of the unusual burst at the second harmonic was started. We believe that due to interaction of this ejection with coronal plasma some electrons were accelerated. These electrons propagating towards and outwards the Sun were sources of the UTR-2, URAN-2 and STEREO-A recorded unusual burst. The mechanism of radio emission was plasma one. The proposed model allows explaining such properties of the unusual burst as its positive and negative drift rates, duration, abrupt stopping of radio emission at 27.5 MHz and its fine frequency structure.

  5. A Retroactive-Burst Framework for Automated Intrusion Response System

    Directory of Open Access Journals (Sweden)

    Alireza Shameli-Sendi

    2013-01-01

    Full Text Available The aim of this paper is to present an adaptive and cost-sensitive model to prevent security intrusions. In most automated intrusion response systems, response selection is performed locally based on current threat without using the knowledge of attacks history. Another challenge is that a group of responses are applied without any feedback mechanism to measure the response effect. We address these problems through retroactive-burst execution of responses and a Response Coordinator (RC mechanism, the main contributions of this work. The retroactive-burst execution consists of several burst executions of responses with, at the end of each burst, a mechanism for measuring the effectiveness of the applied responses by the risk assessment component. The appropriate combination of responses must be considered for each burst execution to mitigate the progress of the attack without necessarily running the next round of responses, because of the impact on legitimate users. In the proposed model, there is a multilevel response mechanism. To indicate which level is appropriate to apply based on the retroactive-burst execution, we get help from a Response Coordinator mechanism. The applied responses can improve the health of Applications, Kernel, Local Services, Network Services, and Physical Status. Based on these indexes, the RC gives a general overview of an attacker’s goal in a distributed environment.

  6. Bursting of a bubble confined in between two plates

    Science.gov (United States)

    Murano, Mayuko; Kimono, Natsuki; Okumura, Ko

    2015-11-01

    Rupture of liquid thin films, driven by surface tension, has attracted interests of scientists for many years. It is also a daily phenomenon familiar to everyone in the form of the bursting of soap films. In recent years, many studies in confined geometries (e.g. in a Hele-Shaw cell) have revealed physical mechanisms of the dynamics of bubbles and drops. As for a liquid film sandwiched in between another liquid immiscible to the film liquid in the Hele-Shaw cell, it is reported that the thin film bursts at a constant speed and the speed depends on the viscosity of the surrounding liquid when the film is less viscous, although a rim is not formed at the bursting tip; this is because the circular symmetry of the hole in the bursting film is lost. Here, we study the bursting speed of a thin film sandwiched between air instead of the surrounding liquid in the Hele-Shaw cell to seek different scaling regimes. By measuring the bursting velocity and the film thickness of an air bubble with a high speed camera, we have found a new scaling law in viscous regime. This research was partly supported by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).

  7. Probability assessment of burst limit state due to internal corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Sikder, E-mail: msh678@mun.ca [Process Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John' s, NL A1B 3X5 (Canada); Khan, Faisal; Kenny, Shawn [Process Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John' s, NL A1B 3X5 (Canada)

    2012-01-15

    The failure probability of an oil and gas pipeline, with longitudinally oriented internal corrosion defects, due to burst from internal operating pressure can be estimated through characterization of defect geometry, internal corrosion growth rate, and remaining mechanical hoop strength capacity. A number of candidate models to estimate the corrosion defect depth growth rate were evaluated. Defining a corrosion defect length, the corrosion feature geometry was integrated within burst pressure models, which have been adopted by oil and gas industry standards, codes or recommended practices. On this basis the burst pressure failure probability of a pipeline with internal corrosion defects can be estimated. A comparative analysis of pipe burst limit states and failure estimates were conducted, using Monte Carlo simulation and First Order Second Moment (FOSM) methods. Results from the comparative analysis closely matched and demonstrated consistent trends. Based on the probabilistic assessment, the relative conservatism between burst pressure models was analyzed and recommendations provided to assist designers on model selection. - Highlights: Black-Right-Pointing-Pointer We studied failure probability of pipeline due to internal corrosion defects. Black-Right-Pointing-Pointer We compared the burst pressure models of recommended codes/standard or individual models Black-Right-Pointing-Pointer Discussed relative conservatism of recommended codes/standards or individual models. Black-Right-Pointing-Pointer Recommendations also provided to assist designer on model selection.

  8. 79 Inverted U - Burst Observed on 21 August 2017

    Science.gov (United States)

    Reeve, Witham; Monstein, Christian

    2017-11-01

    Totality of the solar eclipse that occurred 21 August 2017 was observable in a narrow corridor across the United States from Oregon to South Carolina, and a partial eclipse was observable from almost everywhere else in North America. Because the Sun is nearing the minimum of its current solar cycle, we were expecting that radio observations would be of a quiet Sun with possible effects from the eclipse. It turned out that the Sun had two active regions, AR2671 and AR2672, visible from Earth at the time with AR2671 pointed almost directly at Earth(figure 1). We observed numerous Type III radio bursts throughout the day of the eclipse and a rare inverted U-burst (called, simply, U-burst here)during the eclipse. The radio activity was coincidental with but unrelated to the eclipse itself. In this paper we describe observations of the U-burst that were recorded at four stations in the e-Callisto solar radio spectrometer network at 1741 UTC. This burst has both fundamental and harmonic characteristics. Space Weather Prediction Center (SWPC) did not record any radio sweeps at the time of the U-burst (table 1) but we know from experience that SWPC occasionally misses solar radio events.

  9. Note: Light output enhanced fast response and low afterglow 6Li glass scintillator as potential down-scattered neutron diagnostics for inertial confinement fusion.

    Science.gov (United States)

    Arikawa, Yasunobu; Yamanoi, Kohei; Nagai, Takahiro; Watanabe, Kozue; Kouno, Masahiro; Sakai, Kohei; Nakazato, Tomoharu; Shimizu, Toshihiko; Cadatal, Marilou Raduban; Estacio, Elmer Surat; Sarukura, Nobuhiko; Nakai, Mitsuo; Norimatsu, Takayoshi; Azechi, Hiroshi; Murata, Takahiro; Fujino, Shigeru; Yoshida, Hideki; Izumi, Nobuhiko; Satoh, Nakahiro; Kan, Hirofumi

    2010-10-01

    The characteristics of an APLF80+3Ce scintillator are presented. Its sufficiently fast decay profile, low afterglow, and an improved light output compared to the recently developed APLF80+3Pr, were experimentally demonstrated. This scintillator material holds promise for applications in neutron imaging diagnostics at the energy regions of 0.27 MeV of DD fusion down-scattered neutron peak at the world's largest inertial confinement fusion facilities such as the National Ignition Facility and the Laser Mégajoule.

  10. Time resolved spectroscopy of GRB 030501 using INTEGRAL

    DEFF Research Database (Denmark)

    Beckmann, V.; Borkowski, J.; Courvoisier, T.J.L.

    2003-01-01

    The gamma-ray instruments on-board INTEGRAL offer an unique opportunity to perform time resolved analysis on GRBs. The imager IBIS allows accurate positioning of GRBs and broad band spectral analysis, while SPI provides high resolution spectroscopy. GRB 030501 was discovered by the INTEGRAL Burst...... Alert System in the ISGRI field of view. Although the burst was fairly weak (fluence F20-200 keV similar or equal to 3.5x10(-6) erg cm(-2)) it was possible to perform time resolved spectroscopy with a resolution of a few seconds. The GRB shows a spectrum in the 20-400 keV range which is consistent...

  11. LOCALIZATION OF GAMMA-RAY BURSTS USING THE FERMI GAMMA-RAY BURST MONITOR

    Energy Technology Data Exchange (ETDEWEB)

    Connaughton, V.; Briggs, M. S.; Burgess, J. M. [CSPAR and Physics Department, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Goldstein, A.; Wilson-Hodge, C. A. [Astrophysics Office, ZP12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Meegan, C. A.; Jenke, P.; Pelassa, V.; Xiong, S.; Bhat, P. N. [CSPAR, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Paciesas, W. S. [Universities Space Research Association, Huntsville, AL (United States); Preece, R. D. [Department of Space Science, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Gibby, M. H. [Jacobs Technology, Inc., Huntsville, AL (United States); Greiner, J.; Yu, H.-F. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Gruber, D. [Planetarium Südtirol, Gummer 5, I-39053 Karneid (Italy); Kippen, R. M. [Los Alamos National Laboratory, NM 87545 (United States); Byrne, D.; Fitzpatrick, G.; Foley, S., E-mail: valerie@nasa.gov [School of Physics, University College Dublin, Belfield, Stillorgan Road, Dublin 4 (Ireland); and others

    2015-02-01

    The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 gamma-ray bursts (GRBs) since it began science operations in 2008 July. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the InterPlanetary Network, to analyze the accuracy of GBM GRB localizations. We find that the reported statistical uncertainties on GBM localizations, which can be as small as 1°, underestimate the distance of the GBM positions to the true GRB locations and we attribute this to systematic uncertainties. The distribution of systematic uncertainties is well represented (68% confidence level) by a 3.°7 Gaussian with a non-Gaussian tail that contains about 10% of GBM-detected GRBs and extends to approximately 14°. A more complex model suggests that there is a dependence of the systematic uncertainty on the position of the GRB in spacecraft coordinates, with GRBs in the quadrants on the Y axis better localized than those on the X axis.

  12. Localization of Gamma-Ray Bursts Using the Fermi Gamma-Ray Burst Monitor

    Science.gov (United States)

    Connaughton, V.; Briggs, M. S.; Goldstein, A.; Meegan, C. A.; Paciesas, W. S.; Preece, R. D.; Wilson-Hodge, C. A.; Gibby, M. H.; Greiner, J.; Gruber, D.; Jenke, P.; Kippen, R. M.; Pelassa, V.; Xiong, S.; Yu, H.-F.; Bhat, P. N.; Burgess, J. M.; Byrne, D.; Fitzpatrick, G.; Foley, S.; Giles, M. M.; Guiriec, S.; van der Horst, A. J.; von Kienlin, A.; McBreen, S.; McGlynn, S.; Tierney, D.; Zhang, B.-B.

    2015-02-01

    The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 gamma-ray bursts (GRBs) since it began science operations in 2008 July. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the InterPlanetary Network, to analyze the accuracy of GBM GRB localizations. We find that the reported statistical uncertainties on GBM localizations, which can be as small as 1°, underestimate the distance of the GBM positions to the true GRB locations and we attribute this to systematic uncertainties. The distribution of systematic uncertainties is well represented (68% confidence level) by a 3.°7 Gaussian with a non-Gaussian tail that contains about 10% of GBM-detected GRBs and extends to approximately 14°. A more complex model suggests that there is a dependence of the systematic uncertainty on the position of the GRB in spacecraft coordinates, with GRBs in the quadrants on the Y axis better localized than those on the X axis.

  13. Relative Timing of Microwave and HXR Bursts

    Science.gov (United States)

    Bastian, T. S.; Aschwanden, M. J.

    1997-05-01

    The close correlation between microwave and hard X-ray (HXR) emission during flares has often been cited as evidence that the same population of energetic electrons is responsible for both types of emission. The two emissions differ in detail, however. Imaging observations have demonstrated that the two are not necessarily cospatial and timing observations have demonstrated that the microwaves are often significantly delayed with respect to HXR emission, typically by several seconds, but occassionally by much longer times. Such delays are in seeming conflict with the thick target model for HXR emission in its simplest form, and with the idea that microwave and HXR emissions result from essentially the same population of electrons. One way to reconcile the delay between microwaves and HXRs in the thick target model is to suppose that that electron trapping is significant (e.g., Cornell et al., ApJ, 279, 875). For a magnetic trap containing a plasma of constant density, high energy electrons have a longer lifetime against collisions than low energy electrons (tau_ {def} ~ E(3/2) ). Hence the energetic electrons responsible for the microwaves remain in the trap longer and the microwave emission they emit peaks later than the HXR emission. Another possibility is that higher energy electrons are accelerated later than lower energy electrons (so-called ``second-step'' acceleration models; e.g., Bai and Dennis 1985, ApJ, 292, 699). To explore the question in detail we have assembled a sample of 16 flares observed simultaneously in microwaves by the Nobeyama radioheliograph and in HXRs by the BATSE instrument on board the CGRO in burst trigger mode. The former imaged the flares at 17 GHz with an angular resolution of ~ 10'' and a time resolution of either 50 msec or 1 sec. The latter obtained medium energy resolution spectra (16 channels) between 20-200 keV with a time resolution of 16 or 64 msec. We present preliminary results of our analysis.

  14. Neuronal networks and energy bursts in epilepsy.

    Science.gov (United States)

    Wu, Y; Liu, D; Song, Z

    2015-02-26

    Epilepsy can be defined as the abnormal activities of neurons. The occurrence, propagation and termination of epileptic seizures rely on the networks of neuronal cells that are connected through both synaptic- and non-synaptic interactions. These complicated interactions contain the modified functions of normal neurons and glias as well as the mediation of excitatory and inhibitory mechanisms with feedback homeostasis. Numerous spread patterns are detected in disparate networks of ictal activities. The cortical-thalamic-cortical loop is present during a general spike wave seizure. The thalamic reticular nucleus (nRT) is the major inhibitory input traversing the region, and the dentate gyrus (DG) controls CA3 excitability. The imbalance between γ-aminobutyric acid (GABA)-ergic inhibition and glutamatergic excitation is the main disorder in epilepsy. Adjustable negative feedback that mediates both inhibitory and excitatory components affects neuronal networks through neurotransmission fluctuation, receptor and transmitter signaling, and through concomitant influences on ion concentrations and field effects. Within a limited dynamic range, neurons slowly adapt to input levels and have a high sensitivity to synaptic changes. The stability of the adapting network depends on the ratio of the adaptation rates of both the excitatory and inhibitory populations. Thus, therapeutic strategies with multiple effects on seizures are required for the treatment of epilepsy, and the therapeutic functions on networks are reviewed here. Based on the high-energy burst theory of epileptic activity, we propose a potential antiepileptic therapeutic strategy to transfer the high energy and extra electricity out of the foci. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. A trio of gamma-ray burst supernovae:. GRB 120729A, GRB 130215A/SN 2013ez, and GRB 130831A/SN 2013fu

    NARCIS (Netherlands)

    Cano, Z.; et al., [Unknown; Hartoog, O.

    2014-01-01

    We present optical and near-infrared (NIR) photometry for three gamma-ray burst supernovae (GRB-SNe): GRB 120729A, GRB 130215A/SN 2013ez, and GRB 130831A/SN 2013fu. For GRB 130215A/SN 2013ez, we also present optical spectroscopy at t − t0 = 16.1 d, which covers rest-frame 3000-6250 Å. Based on Fe ii

  16. Lu.sub.1-xI.sub.3:Ce.sub.x-a scintillator for gamma-ray spectroscopy and time-of-flight pet

    Science.gov (United States)

    Shah, Kanai S [Newton, MA

    2008-02-12

    The present invention includes very fast scintillator materials including lutetium iodide doped with Cerium (Lu.sub.1-xI.sub.3:Ce.sub.x; LuI.sub.3:Ce). The LuI.sub.3 scintillator material has surprisingly good characteristics including high light output, high gamma-ray stopping efficiency, fast response, low cost, good proportionality, and minimal afterglow that the material is useful for gamma-ray spectroscopy, medical imaging, nuclear and high energy physics research, diffraction, non-destructive testing, nuclear treaty verification and safeguards, and geological exploration.

  17. Nuclear spectroscopy

    CERN Document Server

    Ajzenberg-Selove, Fay

    1960-01-01

    Nuclear Spectroscopy, Part B focuses on the ways in which experimental data may be analyzed to furnish information about nuclear parameters and nuclear models in terms of which the data are interpreted.This book discusses the elastic and inelastic potential scattering amplitudes, role of beta decay in nuclear physics, and general selection rules for electromagnetic transitions. The nuclear shell model, fundamental coupling procedure, vibrational spectra, and empirical determination of the complex potential are also covered. This publication is suitable for graduate students preparing for exper

  18. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    2008-01-01

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., frequency doubling in external cavities, reliable cw-parametric oscillators, tunable narrow-band UV sources, more sensitive detection techniques, tunable femtosecond and sub-femtosecond lasers (X-ray region and the attosecond range), control of atomic and molecular excitations, frequency combs able to synchronize independent femtosecond lasers, coherent matter waves, and still more applications in chemical analysis, medical diagnostics, and engineering.

  19. Stress Effects on Stop Bursts in Five Languages

    Directory of Open Access Journals (Sweden)

    Marija Tabain

    2016-11-01

    Full Text Available This study examines the effects of stress on the stop burst in five languages differing in number of places of articulation, as reflected in burst duration, spectral centre of gravity, and ­spectral standard deviation. The languages studied are English (three places of articulation /p t k/, the Indonesian language Makasar (four places /p t c k/, and the Central Australian languages ­Pitjantjatjara, Warlpiri (both five places /p t ʈ c k/, and Arrernte (six places /p t̪ t ʈ c k/. We find that languages differ in how they manifest stress on the consonant, with Makasar not ­showing any effect of stress at all, and Warlpiri showing an effect on burst duration, but not on the ­spectral measures. For the other languages, the velar /k/ has a “darker” quality (i.e., lower spectral centre of gravity, and/or a less diffuse spectrum (i.e., lower standard deviation under stress; while the alveolar /t/ has a “lighter” quality under stress. In addition, the dental /t̪/ has a more diffuse spectrum under stress. We suggest that this involves enhancement of the features [grave] and [diffuse] under stress, with velars being [+grave] and [–diffuse], alveolars being [–grave], and dentals being [+diffuse]. We discuss the various possible spectral effects of enhancement of these features. Finally, in the languages with five or six places of articulation, the stop burst is longer only for the palatal /c/ and the velar /k/, which have intrinsically long burst durations, and not for the anterior coronals /t̪ t ʈ/, which have intrinsically short burst durations. We suggest that in these systems, [burst duration] is a feature that separates these two groups of consonants.

  20. The Musical Emotional Bursts: A validated set of musical affect bursts to investigate auditory affective processing.

    Directory of Open Access Journals (Sweden)

    Sébastien ePaquette

    2013-08-01

    Full Text Available The Musical Emotional Bursts (MEB consist of 80 brief musical executions expressing basic emotional states (happiness, sadness and fear and neutrality. These musical bursts were designed to be the musical analogue of the Montreal Affective Voices (MAV – a set of brief non-verbal affective vocalizations portraying different basic emotions. The MEB consist of short (mean duration: 1.6 sec improvisations on a given emotion or of imitations of a given MAV stimulus, played on a violin (n:40 or a clarinet (n:40. The MEB arguably represent a primitive form of music emotional expression, just like the MAV represent a primitive form of vocal, nonlinguistic emotional expression. To create the MEB, stimuli were recorded from 10 violinists and 10 clarinetists, and then evaluated by 60 participants. Participants evaluated 240 stimuli (30 stimuli x 4 [3 emotions + neutral] x 2 instruments by performing either a forced-choice emotion categorization task, a valence rating task or an arousal rating task (20 subjects per task; 40 MAVs were also used in the same session with similar task instructions. Recognition accuracy of emotional categories expressed by the MEB (n:80 was lower than for the MAVs but still very high with an average percent correct recognition score of 80.4%. Highest recognition accuracies were obtained for happy clarinet (92.0% and fearful or sad violin (88.0% each MEB stimuli. The MEB can be used to compare the cerebral processing of emotional expressions in music and vocal communication, or used for testing affective perception in patients with communication problems.