WorldWideScience

Sample records for burnup pwr fuel

  1. A burnup credit calculation methodology for PWR spent fuel transportation

    International Nuclear Information System (INIS)

    A burnup credit calculation methodology for PWR spent fuel transportation has been developed and validated in CEA/Saclay. To perform the calculation, the spent fuel composition are first determined by the PEPIN-2 depletion analysis. Secondly the most important actinides and fission product poisons are automatically selected in PEPIN-2 according to the reactivity worth and the burnup for critically consideration. Then the 3D Monte Carlo critically code TRIMARAN-2 is used to examine the subcriticality. All the resonance self-shielded cross sections used in this calculation system are prepared with the APOLLO-2 lattice cell code. The burnup credit calculation methodology and related PWR spent fuel transportation benchmark results are reported and discussed. (authors)

  2. PWR fuel performance and burnup extension programme in Japan

    International Nuclear Information System (INIS)

    Since the first PWR nuclear power plant Mihama Unit 1 initiated commercial operation in 1970, Japanese utilities and manufacturers have expended much of their resources and efforts on improving the technology of PWRs. The results can already be seen by the significantly improved performance of the PWR plants now in operation. Mitsubishi Heavy Industries, Ltd supplied the nuclear fuel assemblies, which now amount to almost 5000. Although some trouble with fuel was experienced in the beginning, the progressive efforts made to improve the fuel design and manufacturing technology have resulted in the superior performance of Mitsubishi fuels. Since fuel of current design should comply with the limitation set in Japan for a maximum discharged fuel assembly average burnup of less than 39,000 MW·d/t, the maximum burnup is now around 37,000 MW·d/t. However, an increase in this burnup limitation has been strongly requested by Japanese utilities in order to make nuclear power more economic and thus more competitive with other power generation methods. A summary is given of the design improvements made on Mitsubishi fuel, as well as demonstration programmes of current design fuel to prove its superior reliability and to prepare the database for a future extension of burnup. (author)

  3. Modeling of PWR fuel at extended burnup

    International Nuclear Information System (INIS)

    Since FRAPCON-3 series was rolled out, many improvements have been implanted in fuel performance codes, based on most recent literature, to promote better predictions against current data. Much of this advances include: improving fuel gas release prediction, hydrogen pickup model, cladding corrosion, and many others. An example of those modifications has been new cladding materials has added into hydrogen pickup model to support M5™, ZIRLO™, and ZIRLO™ optimized family under pressurized water reactor (PWR) conditions. Recently some research have been made over USNRC's steady-state fuel performance code, assessments against FUMEX-III's data have concluded that FRAPCON provides best-estimate calculation of fuel performance. Face of this, a study is required to summarize all those modifications and new implementations, as well as to compare this result against FRAPCON's older version, scrutinizing FRAPCON-3 series documentation to understand the real goal and literature base of any improvements. We have concluded that FRAPCON's latest modifications are based on strong literature review. Those modifications were tested against most recent data to assure these results will be the best evaluation as possible. Many improvements have been made to allow USNRC to have an audit tool with the last improvements. (author)

  4. Activity ratio measurement and burnup analysis for high burnup PWR fuels

    International Nuclear Information System (INIS)

    Applying burnup credit to spent fuel transportation and storage system is beneficial. To take burnup credit to criticality safety design for a spent fuel transportation cask and storage rack, the burnup of target fuel assembly based on core management data must be confirmed by experimental methods. Activity ratio method, in which measured the ratio of the activity of a nuclide to that of another, is one of the ways to confirm burnup history. However, there is no public data of gamma-ray spectrum from high burnup fuels and validation of depletion calculation codes is not sufficient in the evaluation of the burnup or nuclide inventories. In this study, applicability evaluation of activity ratio method was carried out for high burnup fuel samples taken from PWR lead use assembly. In the gamma-ray measurement experiments, energy spectrum was taken in the Reactor Fuel Examination Facility (RFEF) of Japan Atomic Energy Agency (JAEA), and 134Cs/137Cs and 154Eu/137Cs activity ratio were obtained. With the MVP-BURN code, the activity ratios were calculated by depletion calculation tracing the operation history. As a result, 134Cs/137Cs and 154Eu/137Cs activity ratios for UO2 fuel samples show good agreements and the activity ratio method has good applicability to high burnup fuels. 154Eu/134Cs activity ratio for Gd2O3+UO2 fuels also shows good agreements between calculation results and experimental results as well as the activity ratio for UO2 fuels. It also becomes clear that it is necessary to pay attention to not only burnup but also axial burnup distribution history when confirming the burnup of UO2+Gd2O3 fuel with 134Cs/137Cs activity ratios. (author)

  5. Application of a burnup verification meter to actinide-only burnup credit for spent PWR fuel

    International Nuclear Information System (INIS)

    A measurement system to verify reactor records for burnup of spent fuel at pressurized water reactors (PWR) has been developed by Sandia National Laboratories and tested at US nuclear utility sites. The system makes use of the Fork detector designed at Los Alamos National Laboratory for the safeguards program of the International Atomic Energy Agency. A single-point measurement of the neutrons and gamma- rays emitted from a PWR assembly is made at the center plane of the assembly while it is partially raised from its rack in the spent fuel pool. The objective of the measurements is to determine the variation in burnup assignments among a group of assemblies, and to identify anomalous assemblies that might adversely affect nuclear criticality safety. The measurements also provide an internal consistency check for reactor records of cooling time and initial enrichment. The burnup verification system has been proposed for qualifying spent fuel assemblies for loading into containers designed using burnup credit techniques. The system is incorporated in the US Department of Energy's.''Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages'' [DOE/RW 19951

  6. Application of burnup credit with partial boron credit to PWR spent fuel storage pools

    International Nuclear Information System (INIS)

    The outcome of performing a burnup credit criticality safety analysis of a PWR spent fuel storage pool is the determination of burnup credit loading curves BLC=BLC(e) for the spent fuel storage racks designed for burnup credit, cp. Reference. A burnup credit loading curve BLC=BLC(e) specifies the loading criterion by indicating the minimum burnup BLC(e) necessary for the fuel assembly with a specific initial enrichment e to be placed in storage racks designed for burnup credit. (orig.)

  7. Implementation of burnup credit in PWR spent fuel storage pools

    International Nuclear Information System (INIS)

    Implementation of burnup credit in spent fuel storage of LWR fuel at nuclear power plants is approved in Germany since the beginning of 2000. The burnup credit methods applied have to comply with the newly developed German criticality safety standard DIN 25471 passed in November 1999 and published in September 2000, cp. (orig.)

  8. Fuel burnup extension effect on the fuel utilization and economical impact for a typical PWR plant

    International Nuclear Information System (INIS)

    Currently in Japan, fuel assembly average burn-up is limited to 48GWd/t and is going to be extended to 55GWd/t in these years. Moreover, R and D programs for further extension are under operation. Simultaneous extension of fuel burn-up limitation and cycle length reduces the number of fuel required to produce a given amount of energy reducing the radioactive waste generation, the occupational radiation exposure and the electricity generation cost. In this paper, the effect of fuel burn-up and operation cycle length extension is estimated from the view point of electricity generation cost and amount of discharged fuel assemblies, and the desirable burn-up extension in the future is studied. The present 5wt% uranium-235 enrichment restriction for commercial reactors divides the burn-up extension implementation in two steps. The fuel burn-up achievable with the present 5wt% enrichment limitation and without it is analyzed. A standard 3 loop PWR plant loading 17x17 fuel assemblies has been chosen for the feasibility study of operation cycle longer than 15 months and up to 24 months under extended fuel burn-up limitation. With the 5wt% enrichment limitation, the maximum assembly average burn-up is between 60GWd/t and 70GWd/t. Three batches reload fuel strategy and 18 months operation cycle allow the electricity generation cost reduction in about 4% and the number of fuel assemblies discharged per year is reduced in approximately 15% compared with the current 48GWd/t fuel. Relaxing the enrichment limitation, for the 24 months operation cycle with 3 batches reload fuel strategy, the maximum assembly average burn-up become 80GWd/t. The electricity generation cost reduction is about 8% and the number of fuel assemblies discharged per year is reduced in approximately 35% compared with the current condition. This study shows the contribution of simultaneous extension of fuel burn-up limitation and operation cycle length to reduce the electricity generation cost and the number

  9. PIE Results and New Techniques Applied for 55GWd/t High Burnup Fuel of PWR

    International Nuclear Information System (INIS)

    Post-irradiation examinations (PIE) for 55GWd/t high burnup fuel which had been irradiated at a domestic PWR plant was conducted at the fuel hot laboratory of the Nuclear Development Corporation (NDC). In this PIE, such new techniques as the clamping for axial tensile test and the pellets density measurement method for high burnup fuels were used in addition to existing techniques to confirm the integrity of 55GWd/t high burnup fuel. The superiority of improved corrosion-resistant claddings over currently used current Zircaloy-4 claddings in terms of corrosion-resistance was also confirmed. This paper describes the PIE results and the advanced PIE techniques. (author)

  10. Irradiation test for verification of PWR 48 GWd/t high burnup fuel

    International Nuclear Information System (INIS)

    Nuclear Power Engineering Corporation (NUPEC) has conducted the irradiation test for verification of the high burnup fuel performance under the sponsorship of the Ministry of Economy, Trade and Industry. (NUPEC-HB Project) As for PWR, the fuel burnup is extended by two steps. The Step I fuel (maximum fuel assembly discharge burnup: 48 GWd/t), has been utilized since 1989. And now, the preparation for the regular utilization of Step II fuel (maximum fuel assembly discharge burnup: 55 GWd/t), is being conducted. The results of pre- and post-irradiation tests on the Step I fuel irradiated in the Takahama-3 of Kansai Electric Power Co., Inc., were analyzed and evaluated. The irradiation performance of fuel rod, pellet, cladding and fuel assembly showed no remarkable difference compared with that of other published paper. Consequently the reliability and integrity of the Step I fuel was verified. (author)

  11. PWR AXIAL BURNUP PROFILE ANALYSIS

    International Nuclear Information System (INIS)

    The purpose of this activity is to develop a representative ''limiting'' axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the ''end-effect''. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package. The scope of this calculation covers an initial enrichment range of 3.0 through 5.0 wt% U-235 and a burnup range of 10 through 50 GWd/MTU. This activity supports the validation of the process for ensuring conservative generation of spent fuel isotopics with respect to criticality safety applications, and the use of burnup credit for commercial spent nuclear fuel. The intended use of these results will be in the development of PWR waste package loading curves, and applications involving burnup credit. Limitations of this evaluation are that the limiting profiles are only confirmed for use with the B andW 15 x 15 fuel assembly design. However, this assembly design is considered bounding of all other typical commercial PWR fuel assembly designs. This calculation is subject to the Quality Assurance Requirements and Description (QARD) because this activity supports investigations of items or barriers on the Q-list (YMP 2001)

  12. PWR AXIAL BURNUP PROFILE ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Acaglione

    2003-09-17

    The purpose of this activity is to develop a representative ''limiting'' axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the ''end-effect''. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package. The scope of this calculation covers an initial enrichment range of 3.0 through 5.0 wt% U-235 and a burnup range of 10 through 50 GWd/MTU. This activity supports the validation of the process for ensuring conservative generation of spent fuel isotopics with respect to criticality safety applications, and the use of burnup credit for commercial spent nuclear fuel. The intended use of these results will be in the development of PWR waste package loading curves, and applications involving burnup credit. Limitations of this evaluation are that the limiting profiles are only confirmed for use with the B&W 15 x 15 fuel assembly design. However, this assembly design is considered bounding of all other typical commercial PWR fuel assembly designs. This calculation is subject to the Quality Assurance Requirements and Description (QARD) because this activity supports investigations of items or barriers on the Q-list (YMP 2001).

  13. Depletion of gadolinium burnable poison in a PWR assembly with high burnup fuel

    International Nuclear Information System (INIS)

    A tendency to increase the discharge burnup of nuclear fuel for Advanced Pressurized Water Reactors (PWR) has been a characteristic of its operation for many years. It will be able to burn at very high burnup of about 70 GWd/t with UO2 fuels. The U-235 enrichment must be higher than 5 %, which leads to the necessity of using an extremely efficient burnable poison like Gadolinium oxide. Using gadolinium isotope is significant due to its particular depletion behavior (''Onion-Skin'' effect). In this paper, the MCNPX2.7 code is used to calculate the important neutronic parameters of the next generation fuels of PWR. K-infinity, local peaking factor and fission rate distributions are calculated for a PWR assembly which burn at very high burnup reaching 70 GWd/t. The calculations are performed using the recently released evaluated Gadolinium cross section data. The results obtained are close to those of a LWR next generation fuel benchmark problem. This demonstrates that the calculation scheme used is able to accurately model a PWR assembly that operates at high burnup values.

  14. Depletion of gadolinium burnable poison in a PWR assembly with high burnup fuel

    Energy Technology Data Exchange (ETDEWEB)

    Refeat, Riham Mahmoud [Nuclear and Radiological Regulatory Authority (NRRA), Cairo (Egypt). Safety Engineering Dept.

    2015-12-15

    A tendency to increase the discharge burnup of nuclear fuel for Advanced Pressurized Water Reactors (PWR) has been a characteristic of its operation for many years. It will be able to burn at very high burnup of about 70 GWd/t with UO{sub 2} fuels. The U-235 enrichment must be higher than 5 %, which leads to the necessity of using an extremely efficient burnable poison like Gadolinium oxide. Using gadolinium isotope is significant due to its particular depletion behavior (''Onion-Skin'' effect). In this paper, the MCNPX2.7 code is used to calculate the important neutronic parameters of the next generation fuels of PWR. K-infinity, local peaking factor and fission rate distributions are calculated for a PWR assembly which burn at very high burnup reaching 70 GWd/t. The calculations are performed using the recently released evaluated Gadolinium cross section data. The results obtained are close to those of a LWR next generation fuel benchmark problem. This demonstrates that the calculation scheme used is able to accurately model a PWR assembly that operates at high burnup values.

  15. Room temperature leaching of labile radioactivity from irradiated PWR fuel according to the burnup

    International Nuclear Information System (INIS)

    Three PWR UO2 spent fuel specimens with average burnup of 22, 37 and 47 GWd tU-1 were submitted to sequential mode leaching in granitic groundwater for 62 cumulative days. The leaching rate decreased versus increasing contact time from 10-3 d-1 to 10-5 d-1. The 90Sr release appeared to be independent of the burnup with rates 2 orders of magnitude lower than for Cs but higher than the U and Pu release rates; both of the latter elements reached saturation rapidly, giving concentration values of 50-800 ppb and 0.1-10 ppb respectively, irrespective of the burnup. (authors)

  16. Shielding and Criticality Safety Analysis of KSC-1 Cask for the High Burnup PWR Spent Fuels

    International Nuclear Information System (INIS)

    KSC-1 (KAERI Shipping Cask-1) was designed and manufactured with a pure domestic technology in 1985 in order to transport a PWR spent fuel assembly from nuclear power plant to PIEF (Post-Irradiation Examination Facility) of KAERI. Since the first transportation of the fuel assembly from Kori-1 NPP was carried out by the cask in 1987, 19 shipments for the PWR spent fuels have been done successfully by now. Maximum discharge burnup of PWR in Korea has been extended from the late 1990s in order to reduce the cost of power generation. From this cause, allowable design values of the initial enrichment and the cooling time for the cask have been changed three times: year 2003, 2007 and 2010. Radiation shielding and criticality of KSC-1 were analyzed for all the PWR fuel type irradiated in Korea NPP to renew the design approval

  17. Shielding and Criticality Safety Analysis of KSC-1 Cask for the High Burnup PWR Spent Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyoung Mun; Jang, Jung Nam; Hwang, Yong Hwa; Kwon, In Chan; Min, Duck Kee; Chun, Yong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    KSC-1 (KAERI Shipping Cask-1) was designed and manufactured with a pure domestic technology in 1985 in order to transport a PWR spent fuel assembly from nuclear power plant to PIEF (Post-Irradiation Examination Facility) of KAERI. Since the first transportation of the fuel assembly from Kori-1 NPP was carried out by the cask in 1987, 19 shipments for the PWR spent fuels have been done successfully by now. Maximum discharge burnup of PWR in Korea has been extended from the late 1990s in order to reduce the cost of power generation. From this cause, allowable design values of the initial enrichment and the cooling time for the cask have been changed three times: year 2003, 2007 and 2010. Radiation shielding and criticality of KSC-1 were analyzed for all the PWR fuel type irradiated in Korea NPP to renew the design approval

  18. Burnup effects of MOX fuel pincells in PWR - OECD/NEA burnup credit benchmark analysis -

    International Nuclear Information System (INIS)

    The burnup effects were analyzed for various cases of MOX fuel pincells of fresh and irradiated fuels by using the HELIOS, MCNP-4/B, CRX and CDP computer codes. The investigated parameters were burnup, cooling time and combinations of nuclides in the fuel region. The fuel compositions for each case were provided by BNFL (British Nuclear Fuel Limited) as a part of the problem specification so that the results could be focused on the calculation of the neutron multiplication factor. The results of the analysis show that the largest saving effect of the neutron multiplication factor due to burnup credit is 30 %. This is mainly due to the consideration of actinides and fission products in the criticality analysis

  19. Analysis of bubble pressure in the rim region of high burnup PWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Yang Hyun; Lee, Byung Ho; Sohn, Dong Seong [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-02-01

    Bubble pressure in the rim region of high burnup PWR UO{sub 2} fuel has been modeled based on measured rim width, porosity and bubble density. Using the assumption that excessive bubble pressure in the rim is inversely proportional to its radius, proportionality constant is derived as a function of average pellet burnup and bubble radius. This approach is possible because the integration of the number of Xe atoms retained in the rim bubbles, which can be calculated as a function of bubble radius, over the bubble radius gives the total number of Xe atoms in the rim bubbles. Here the total number of Xe atoms in the rim bubbles can be derived from the measured Xe depletion fraction in the matrix and the calculated rim thickness. Then the rim bubble pressure is obtained as a function of fuel burnup and bubble size from the proportionality constant. Therefore, the present model can provide some useful information that would be required to analyze the behavior of high burnup PWR UO{sub 2} fuel under both normal and transient operating conditions. 28 refs., 9 figs. (Author)

  20. Comparisons of the predicted and measured isotopic composition for high burnup PWR spent fuels

    International Nuclear Information System (INIS)

    Comparisons between the calculated and measured isotopic composition for high burnup Korean PWR spent fuel samples were carried out. Spent fuel samples used in this study were obtained from commercial Korean PWRs, Ulchin unit 2 and Yonggwang unit 1. A radiochemical analysis of the spent fuel samples was performed to determine the isotopic compositions of U, Pu, and Nd. The depletion calculations which were carried out using the SAS2H control module in Version 5.1 of the SCALE code system were compared with the results of the radiochemical analyses. The results derived from the measured and calculated concentrations for each isotope of the corresponding samples were generally consistent with the earlier studies and the results were different within a few percent. The validity of the SAS2H control module in Version 5.1 of the SCALE code system could be confirmed in a high burnup spent fuel above 45 GWd/MTU

  1. Application of SCALE4.4 system for burnup credit criticality analysis of PWR spent fuel

    International Nuclear Information System (INIS)

    An investigation on the application of burnup credit for a PWR spent fuel storage pool has been carried out with the use of the SCALE 4.4 computer code system consisting of SAS2H and CSAS6 modules in association with 44-group SCALE cross-section library. Prior to the application of the computer code system, a series of bench markings have been performed in comparison with available data. A benchmarking of the SAS2h module has been done for experimental concentration data of 54 PWR spent fuel and then correction factors with a 95% probability at a 95% confidence level have been determined on the basis of the calculated and measured concentrations of 38 nuclides. After that, the bias which might have resulted from the use of the CSAS6 module has been calculated for 46 criticality experimental data of UO2 fuel and MOX fuel assemblies. The calculation bias with one-sided tolerance limit factor (2.086) corresponding to a 95% probability at a 95% confidence level has consequently been obtained to be 0.00834. Burnup credit criticality analysis has been done for the PWR spent fuel storage pool by means of the benchmarked or validated code system. It is revealed that the minimum burnup for safe storage is 7560 MWd/tU in 5 wt% enriched fuel if both actinides and fission products in spent fuel are taken into account. However, the minimum value required seems to be 9,565 MWd/tU in the same enriched fuel provided that only the actinides are taken into consideration. (author)

  2. Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages

    International Nuclear Information System (INIS)

    The objective of this topical report is to present to the NRC for review and acceptance a methodology for using burnup credit in the design of criticality control systems for PWR spent fuel transportation packages, while maintaining the criticality safety margins and related requirements of 10 CFR Part 71 and 72. The proposed methodology consists of five major steps as summarized below: (1) Validate a computer code system to calculate isotopic concentrations in SNF created during burnup in the reactor core and subsequent decay. (2) Validate a computer code system to predict the subcritical multiplication factor, keff, of a spent nuclear fuel package. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). and (5) Verify that SNF assemblies meet the package loading criteria and confirm proper fuel assembly selection prior to loading. (This step is required but the details are outside the scope of this topical report.) When reviewed and accepted by the NRC, this topical report will serve as a criterion document for criticality control analysts and will provide steps for the use of actinide-only burnup credit in the design of criticality control systems. The NRC-accepted burnup credit methodology will be used by commercial SNF storage and transportation package designers. Design-specific burnup credit criticality analyses will be defined, developed, and documented in the Safety Analysis Report (SAR) for each specific storage or transportation package that uses burnup credit. These SARs will then be submitted to the NRC for review and approval. This topical report is expected to be referenced in a number of storage and transportation cask applications to be submitted by commercial cask and canister designers to the NRC. Therefore, NRC acceptance of this topical report will result in increased efficiency of the

  3. Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1998-09-01

    The objective of this topical report is to present to the NRC for review and acceptance a methodology for using burnup credit in the design of criticality control systems for PWR spent fuel transportation packages, while maintaining the criticality safety margins and related requirements of 10 CFR Part 71 and 72. The proposed methodology consists of five major steps as summarized below: (1) Validate a computer code system to calculate isotopic concentrations in SNF created during burnup in the reactor core and subsequent decay. (2) Validate a computer code system to predict the subcritical multiplication factor, keff, of a spent nuclear fuel package. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). and (5) Verify that SNF assemblies meet the package loading criteria and confirm proper fuel assembly selection prior to loading. (This step is required but the details are outside the scope of this topical report.) When reviewed and accepted by the NRC, this topical report will serve as a criterion document for criticality control analysts and will provide steps for the use of actinide-only burnup credit in the design of criticality control systems. The NRC-accepted burnup credit methodology will be used by commercial SNF storage and transportation package designers. Design-specific burnup credit criticality analyses will be defined, developed, and documented in the Safety Analysis Report (SAR) for each specific storage or transportation package that uses burnup credit. These SARs will then be submitted to the NRC for review and approval. This topical report is expected to be referenced in a number of storage and transportation cask applications to be submitted by commercial cask and canister designers to the NRC. Therefore, NRC acceptance of this topical report will result in increased efficiency of the

  4. Burn-up credit in criticality safety of PWR spent fuel

    International Nuclear Information System (INIS)

    Highlights: • Designing spent fuel wet storage using WIMS-5D and MCNP-5 code. • Studying fresh and burned fuel with/out absorber like “B4C and Ag–In–Cd” in racks. • Sub-criticality was confirmed for fresh and burned fuel under specific cases. • Studies for BU credit recommend increasing fuel burn-up to 60.0 GWD/MTU. • Those studies require new core structure materials, fuel composition and cladding. - Abstract: The criticality safety calculations were performed for a proposed design of a wet spent fuel storage pool. This pool will be used for the storage of spent fuel discharged from a typical pressurized water reactor (PWR). The mathematical model based on the international validated codes, WIMS-5 and MCNP-5 were used for calculating the effective multiplication factor, keff, for the spent fuel stored in the pool. The data library for the multi-group neutron microscopic cross-sections was used for the cell calculations. The keff was calculated for several changes in water density, water level, assembly pitch and burn-up with different initial fuel enrichment and new types and amounts of fixed absorbers. Also, keff was calculated for the conservative fresh fuel case. The results of the calculations confirmed that the effective multiplication factor for the spent fuel storage is sub-critical for all normal and abnormal states. The future strategy for the burn-up credit recommends increasing the fuel burn-up to a value >60.0 GWD/MTU, which requires new fuel composition and new fuel cladding material with the assessment of the effects of negative reactivity build up

  5. Validation of SWAT for burnup credit problems by analysis of post irradiation examination of 17*17 PWR fuel assembly

    International Nuclear Information System (INIS)

    For adopting burnup credit in transport or storage of spent fuel (SF), development of a reliable burnup calculation code is crucial. For this purpose, data of Post Irradiation Examination (PIE) have been extensively analyzed to evaluate accuracy of burnup calculation codes for a 14*14 or 15*15 PWR fuel assembly. This study shows results of analysis of this latest PIE with SWAT and ORIGEN2.1. SWAT is an integrated burnup code system for a 17*17 PWR fuel assembly that has been developed by Tohoku University and JAERI. The results show that SWAT can more precisely predict nuclide composition of latest PWR assembly than ORIGEN2.1. (O.M.)

  6. Evaluation of burnup credit for accommodating PWR spent nuclear fuel in high-capacity cask designs

    International Nuclear Information System (INIS)

    This paper presents an evaluation of the amount of burnup credit needed for high-density casks to transport the current U.S. inventory of commercial spent nuclear fuel (SNF) assemblies. A prototypic 32-assembly cask and the current regulatory guidance were used as bases for this evaluation. By comparing actual pressurized-water-reactor (PWR) discharge data (i.e., fuel burnup and initial enrichment specifications for fuel assemblies discharged from U.S. PWRs) with actinide-only-based loading curves, this evaluation finds that additional negative reactivity (through either increased credit for fuel burnup or cask design/utilization modifications) is necessary to accommodate the majority of SNF assemblies in high-capacity storage and transportation casks. The impact of varying selected calculational assumptions is also investigated, and considerable improvement in effectiveness is shown with the inclusion of the principal fission products (FPs) and minor actinides and the use of a bounding best-estimate approach for isotopic validation. Given sufficient data for validation, the most significant component that would improve accuracy, and subsequently enhance the utilization of burnup credit, is the inclusion of FPs. (author)

  7. Reactivity loss validation of high-burnup PWR fuels with pile-oscillation experiments in MINERVE

    International Nuclear Information System (INIS)

    The ALIX experimental program relies on the experimental validation of the spent fuel inventory, by chemical analysis of samples irradiated in a pressurized water reactor (PWR) between five and seven cycles, and also on the experimental validation of the spent fuel reactivity loss with burnup, obtained by pile-oscillation measurements in the MINERVE reactor. These latter experiments provide an overall validation of both the fuel inventory and the nuclear data responsible for the reactivity loss. This program also offers unique experimental data for fuels with a burnup reaching 85 GWd/tonne, as spent fuels in French PWRs have never exceeded 70 GWd/tonne up to now. The analysis of these experiments is done in two steps with the APOLLO2/SHEM-MOC/CEA2005v4 package. In the first step, the fuel inventory of each sample is obtained by assembly calculations. The calculation route consists of the self-shielding of cross sections on the 281-energy-group SHEM mesh, followed by flux calculation by the method of characteristics in a two-dimensional exact heterogeneous geometry of the assembly, and finally a depletion calculation by an iterative resolution of the Bateman equations. In the second step, the fuel inventory is used in the analysis of pile-oscillation experiments in which the reactivity of the ALIX spent fuel samples is compared to the reactivity of fresh fuel samples. The comparison between experiment and calculation shows satisfactory results with the JEFF3.1.1 library, which predicts the reactivity loss within 2% for burnup of ∼75 GWd/tonne and within 4% for burnup of ∼85 GWd/tonne. (authors)

  8. TOPICAL REPORT ON ACTINIDE-ONLY BURNUP CREDIT FOR PWR SPENT NUCLEAR FUEL PACKAGES

    International Nuclear Information System (INIS)

    A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay. A set of chemical assay benchmarks is presented for this purpose as well as a method for assessing the calculational bias and uncertainty, and conservative correction factors for each isotope. (2) Validate a computer code system to predict the subcritical multiplication factor, keff, of a spent nuclear fuel package. Fifty-seven UO2, UO2/Gd2O3, and UO2/PuO2 critical experiments have been selected to cover anticipated conditions of SNF. The method uses an upper safety limit on keff (which can be a function of the trending parameters) such that the biased keff, when increased for the uncertainty is less than 0.95. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. Three bounding axial profiles have been established to assure the ''end effect'' is accounted for conservatively. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). Burnup credit loading curves show the minimum burnup required for a given initial enrichment. The utility burnup record is compared to this requirement after the utility accounts for the uncertainty in its record. Separate curves may be generated for each assembly design, various minimum cooling times and burnable absorber histories. (5) Verify that SNF assemblies meet the package loading criteria and confirm proper assembly selection prior to loading

  9. Stereological evolution of the rim structure in PWR-fuels at prolonged irradiation: Dependencies with burn-up and temperature

    International Nuclear Information System (INIS)

    The stereology of the rim-structure was studied for PWR-fuels up to the ninth irradiation cycle, achieving maximum local burn-ups of 240 GWd/tM and beyond. At intermediate radial positions (0.55 0 c = 0.29. Rim-cavities are expected to remain closed at least up to this limit

  10. Non-destructive burnup determination of PWR spent fuel using Cs-134/Cs-137 and Eu-154/Cs-137

    International Nuclear Information System (INIS)

    Burnups for 36 points of five rods in the G23 assembly of Kori unit 1 have been determined on the basis of gamma-ray spectrometric measurement of two isotopic ratios, Cs-134/Cs-137 and Eu-154/Cs-137 in combination with the results calculated by the SCALE4.4 SAS2H module. Benchmarking of the SAS2H module has been done for the existing experimental data of Cs-13134, Cs-137 and Eu-154 isotopic compositions in PWR spent fuel. The gamma ray counts of two isotopic ratios have been corrected with their branching ratios, decay rates and energy dependent counting efficiencies in order to get true ratios. The energy dependent counting efficiencies have been determined as a quadratic equation based on the gamma ray counts for Cs-134 and Eu-154 at fourth energy points. Finally, burnups have been determined by putting true ratios of two isotopic ratios to their burnup-to-ratio fitting functions, respectively. Then the measured burnups have been compared with the declared burnup by the nuclear power plant. It is revealed that burnups determined from Cs-134/Cs-137 are agreeable with the declared burnups in most cases within about 12% error except a measuring point of C13, one of G23 fuel rods. In the case of Eu-154/Cs-137, the measured burnup is much lower than the declared burnup, which seems to be derived from system errors. (author)

  11. LOLA-SYSTEM, JEN-UPM PWR Fuel Management System Burnup Code System

    International Nuclear Information System (INIS)

    1 - Description of program or function: The LOLA-SYSTEM is a part of the JEN-UPM code package for PWR fuel management, scope or design calculations. It is a code package for core burnup calculations using nodal theory based on a FLARE type code. The LOLA-SYSTEM includes four modules: the first one (MELON-3) generates the constants of the K-inf and M2 correlations to be input into SIMULA-3. It needs the K-inf and M2 fuel assembly values at different conditions of moderator temperature, Boron concentration, burnup, etc., which are provided by MARIA fuel assembly calculations. The main module (SIMULA-3) is the core burnup calculation code in three dimensions and one group of energy. It normally uses a geometrical representation of one node per fuel assembly or per quarter of fuel assembly. It has included a thermal hydraulic feedback on flow and voids and criticality searches on boron concentration and control rods insertion. The CONCON code makes the calculation of the albedo, transport factors, K-inf and M2 correction factors to be input into SIMULA-3. The calculation is made in the XY transversal plane. The CONAXI code is similar to CONCON, but in the axial direction. 2 - Method of solution: MELON-3 makes a mean squares fit of K-inf and M2 values at different conditions in order to determine the constants of the feedback correlations. SIMULA-3 uses a modified one-group nodal theory, with a new transport kernel that provides the same node interface leakages as a fine mesh diffusion calculation. CONCON and CONAXI determine the transport and correction factors, as well as the albedo, to be input into SIMULA-3. They are determined by a method of leakages equivalent to the detailed diffusion calculation of CARMEN or VENTURE; these factors also include the heterogeneity effects inside the node. 3 - Restrictions on the complexity of the problem: Number of axial nodes less than or equal 34. Number of material types less than or equal 30. Number of fuel assembly types less

  12. Parameterized representation of macroscopic cross section in the PWR fuel element considering burn-up cycles

    Energy Technology Data Exchange (ETDEWEB)

    Belo, Thiago F.; Fiel, Joao Claudio B., E-mail: thiagofbelo@hotmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Nuclear reactor core analysis involves neutronic modeling and the calculations require problem dependent nuclear data generated with few neutron energy groups, as for instance the neutron cross sections. The methods used to obtain these problem-dependent cross sections, in the reactor calculations, generally uses nuclear computer codes that require a large processing time and computational memory, making the process computationally very expensive. Presently, analysis of the macroscopic cross section, as a function of nuclear parameters, has shown a very distinct behavior that cannot be represented by simply using linear interpolation. Indeed, a polynomial representation is more adequate for the data parameterization. To provide the cross sections of rapidly and without the dependence of complex systems calculations, this work developed a set of parameterized cross sections, based on the Tchebychev polynomials, by fitting the cross sections as a function of nuclear parameters, which include fuel temperature, moderator temperature and density, soluble boron concentration, uranium enrichment, and the burn-up. In this study is evaluated the problem-dependent about fission, scattering, total, nu-fission, capture, transport and absorption cross sections for a typical PWR fuel element reactor, considering burn-up cycle. The analysis was carried out with the SCALE 6.1 code package. The results of comparison with direct calculations with the SCALE code system and also the test using project parameters, such as the temperature coefficient of reactivity and fast fission factor, show excellent agreements. The differences between the cross-section parameterization methodology and the direct calculations based on the SCALE code system are less than 0.03 percent. (author)

  13. High fuel burn-up and nonproliferation in PWR-type reactor on the basis of modified Th-fuel

    International Nuclear Information System (INIS)

    Neutronics-physical characteristics of the fuel lattice of a PWR-type reactor cooled by light water and by a mixture of light and heavy water have been analyzed. Th-fuel containing an essential amount of 231Pa and 232U is used, which allows an increase in fuel burn-up by a factor of 2-5 compared with that of traditional oxide uranium fuel with light water. It is important to underline that this is attained under the negative coolant density reactivity effect using cross sections of 231Pa and 232U from the updated JENDL-3.2 nuclear library. This radical increase of fuel burn-up is accompanied by a small change of reactivity during fuel irradiation (K∞=1.1 / 1.0), that favorably affects safety parameters of the reactor operation. A considerable percentage of 232U in fuel, and consequently in U, is a strong barrier against the proliferation of such weapon nuclide as 233U. (authors)

  14. Analysis of high burnup fuel behavior under rod ejection accident in the Westinghouse-designed 950 MWe PWR

    International Nuclear Information System (INIS)

    As there has arisen a concern that failure of the high burnup fuel under the reactivity-insertion accident (RIA) may occur at the energy lower than the expected, duel behavior under the rod ejection accident in a typical Westinghouse-designed 950 MWe PWR was analyzed by using the three dimensional nodal transient neutronics code, PANBOX2 and the transient fuel rod performance analysis code, FRAP-T6. Fuel failure criteria versus the burnup was conservatively derived taking into account available test data and the possible fuel failure mechanisms. The high burnup and longer cycle length fuel loading scheme of a peak rod burnup of 68 MWD/kgU was selected for the analysis. Except three dimensional core neutronics calculation, the analysis used the same core conditions and assumptions as the conventional zero dimensional analysis. Results of three dimensional analysis showed that the peak fuel enthalpy during the rod ejection accident is less than one third of that calculated by the core is less than 4 percent. Therefore, it can be said that the current design limit of less than 10 percent fuel failure and maintaining the core coolable geometry would be adequately satisfied under the rod ejection accident, even though the conservative fuel failure criteria derived from the test data are applied. (author)

  15. Development of base technology for high burnup PWR fuel improvement Volume 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yang Eun; Lee, Sang Hee; Bae, Seong Man [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Chung, Jin Gon; Chung, Sun Kyo; Kim, Sun Du [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of); Kim, Jae Won; Chung, Sun Kyo; Kim, Sun Du [Korea Nuclear Fuel Development Inst., Seoul (Korea, Republic of)

    1995-12-31

    Development of base technology for high burnup nuclear fuel -Development of UO{sub 2} pellet manufacturing technology -Improvement of fuel rod performance code -Improvement of plenum spring design -Study on the mechanical characteristics of fuel cladding -Organization of fuel failure mechanism Establishment of next stage R and D program (author). 226 refs., 100 figs.

  16. Sensitivity and parametric evaluations of significant aspects of burnup credit for PWR spent fuel packages

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, M.D.

    1996-05-01

    Spent fuel transportation and storage cask designs based on a burnup credit approach must consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For example, the spent fuel composition must be adequately characterized and the criticality analysis model can be complicated by the need to consider axial burnup variations. Parametric analyses are needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel composition and reactivity. Numerical models must be evaluated to determine the sensitivity of criticality safety calculations to modeling assumptions. The purpose of this report is to describe analyses and evaluations performed in order to demonstrate the effect physical parameters and modeling assumptions have on the criticality analysis of spent fuel. The analyses in this report include determination and ranking of the most important actinides and fission products; study of the effect of various depletion scenarios on subsequent criticality calculations; establishment of trends in neutron multiplication as a function of fuel enrichment, burnup, cooling time- and a parametric and modeling evaluation of three-dimensional effects (e.g., axially varying burnup and temperature/density effects) in a conceptual cask design. The sensitivity and parametric evaluations were performed with the consideration of two different burnup credit approaches: (1) only actinides in the fuel are considered in the criticality analysis, and (2) both actinides and fission products are considered. Calculations described in this report were performed using the criticality and depletion sequences available in the SCALE code system and the SCALE 27-group burnup library. Although the results described herein do not constitute a validation of SCALE for use in spent fuel analysis, independent validation efforts have been completed and are described in other reports.

  17. Sensitivity and parametric evaluations of significant aspects of burnup credit for PWR spent fuel packages

    International Nuclear Information System (INIS)

    Spent fuel transportation and storage cask designs based on a burnup credit approach must consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For example, the spent fuel composition must be adequately characterized and the criticality analysis model can be complicated by the need to consider axial burnup variations. Parametric analyses are needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel composition and reactivity. Numerical models must be evaluated to determine the sensitivity of criticality safety calculations to modeling assumptions. The purpose of this report is to describe analyses and evaluations performed in order to demonstrate the effect physical parameters and modeling assumptions have on the criticality analysis of spent fuel. The analyses in this report include determination and ranking of the most important actinides and fission products; study of the effect of various depletion scenarios on subsequent criticality calculations; establishment of trends in neutron multiplication as a function of fuel enrichment, burnup, cooling time- and a parametric and modeling evaluation of three-dimensional effects (e.g., axially varying burnup and temperature/density effects) in a conceptual cask design. The sensitivity and parametric evaluations were performed with the consideration of two different burnup credit approaches: (1) only actinides in the fuel are considered in the criticality analysis, and (2) both actinides and fission products are considered. Calculations described in this report were performed using the criticality and depletion sequences available in the SCALE code system and the SCALE 27-group burnup library. Although the results described herein do not constitute a validation of SCALE for use in spent fuel analysis, independent validation efforts have been completed and are described in other reports

  18. Impact of fission gas on irradiated PWR fuel behaviour at extended burnup under RIA conditions

    International Nuclear Information System (INIS)

    With the world-wide trend to increase the fuel burnup at discharge of the LWRs, the reliability of high burnup fuel must be proven, including its behaviour under energetic transient conditions, and in particular during RIAs. Specific aspects of irradiated fuel result from the increasing retention of gaseous and volatile fission products with burnup. The potential for swelling and transient expansion work under rapid heating conditions characterizes the high burnup fuel behaviour by comparison to fresh fuel. This effect is resulting from the steadily increasing amount of gaseous and volatile fission products retained inside the fuel structure. An attempt is presented to quantify the gas behaviour which is motivated by the results from the global tests both in CABRI and in NSRR. A coherent understanding of specific results, either transient release or post transient residual retention has been reached. The early failure of REP Na1 with consideration given to the satisfactory behaviour of the father rod of the test pin at the end of the irradiation (under load follow conditions) is to be explained both by the transient loading from gas driven fuel swelling and from the reduced clad resistance due to hydriding. (R.P.)

  19. Specific application of burnup credit for MOX PWR fuels in the rotary dissolver

    International Nuclear Information System (INIS)

    In prospect of a Mixed OXide spent fuels processing in the rotary dissolver in COGEMA/La Hague plant, it is interesting to quantify the criticality-safety margins from the burnup credit. Using the current production computer codes and considering a minimal fuel irradiation of 3 200 megawatt-day per ton, this paper shows the impact of burnup credit on industrial parameters such as the permissible concentration in the dissolution solution or the permissible oxide mass in the rotary dissolver. Moreover, the burnup credit is broken down into five sequences in order to quantify the contribution of fissile nuclides decrease and of minor actinides and fission products formation. The implementation of the burnup credit in the criticality-safety analysis of the rotary dissolver may lead to workable industrial conditions for the particular MOX fuel studied. It can eventually be noticed that minor actinides contribution is negligible and that considering only the six major fission products is sufficient, owing to the weak fuel irradiation contemplated. (author)

  20. Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation - Vandellos II Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [ORNL; Gauld, Ian C [ORNL

    2011-01-01

    This report is one of the several recent NUREG/CR reports documenting benchmark-quality radiochemical assay data and the use of the data to validate computer code predictions of isotopic composition for spent nuclear fuel, to establish the uncertainty and bias associated with code predictions. The experimental data analyzed in the current report were acquired from a high-burnup fuel program coordinated by Spanish organizations. The measurements included extensive actinide and fission product data of importance to spent fuel safety applications, including burnup credit, decay heat, and radiation source terms. Six unique spent fuel samples from three uranium oxide fuel rods were analyzed. The fuel rods had a 4.5 wt % {sup 235}U initial enrichment and were irradiated in the Vandellos II pressurized water reactor operated in Spain. The burnups of the fuel samples range from 42 to 78 GWd/MTU. The measurements were used to validate the two-dimensional depletion sequence TRITON in the SCALE computer code system.

  1. Actinide-only burnup credit methodology for PWR spent nuclear fuel

    International Nuclear Information System (INIS)

    A conservative methodology is presented that would allow taking credit for burnup in the criticality safety analysis of spent nuclear fuel (SNF) packages. The method is based on the assumption that the isotopic concentration in the SNF and cross sections of each isotope for which credit is taken must be supported by validation experiments. The method allows credit for the changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps: 1. Validate a computer code system to calculate isotopic concentrations of spent nuclear fuel created during burnup in the reactor core and subsequent decay. 2. Validate a computer code system to predict the subcritical multiplication factor, keff, of a spent nuclear fuel package by use of UO2 and UO2/Puo2 critical experiments. 3. Establish conditions for the SNF (depletion analysis) and package (criticality analysis) which bounds keff. 4. Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). 5. Verify by measurement that SNF assemblies meet the package loading criteria and confirm proper assembly selection prior to loading. (author)

  2. Evaluation of fission product worth margins in PWR spent nuclear fuel burnup credit calculations

    International Nuclear Information System (INIS)

    Current criticality safety calculations for the transportation of irradiated LWR fuel make the very conservative assumption that the fuel is fresh. This results in a very substantial overprediction of the actual keff of the transportation casks; in certain cases, this decreases the amount of spent fuel which can be loaded in a cask, and increases the cost of transporting the spent fuel to the repository. Accounting for the change of reactivity due to fuel depletion is usually referred to as ''burnup credit.'' The US DOE is currently funding a program aimed at establishing an actinide only burnup credit methodology (in this case, the calculated reactivity takes into account the buildup or depletion of a limited number of actinides). This work is undergoing NRC review. While this methodology is being validated on a significant experimental basis, it implicitly relies on additional margins: in particular, the absorption of neutrons by certain actinides and by all fission products is not taken into account. This provides an important additional margin and helps guarantee that the methodology is conservative provided these neglected absorption are known with reasonable accuracy. This report establishes the accuracy of fission product absorption rate calculations: (1) the analysis of European fission product worth experiments demonstrates that fission product cross-sections available in the US provide very good predictions of fission product worth; (2) this is confirmed by a direct comparison of European and US cross section evaluations; (3) accuracy of Spent Nuclear Fuel (SNF) fission product content predictions is established in a recent ORNL report where several SNF isotopic assays are analyzed; and (4) these data are then combined to establish in a conservative manner the fraction of the predicted total fission product absorption which can be guaranteed based on available experimental data

  3. Burn-up credit criticality benchmark. Phase 4-A: reactivity prediction calculations for infinite arrays of PWR MOX fuel pin cells

    International Nuclear Information System (INIS)

    The OECD/NEA Expert Group on Burn-up Credit was established in 1991 to address scientific and technical issues connected with the use of burn-up credit in nuclear fuel cycle operations. Following the completion of six benchmark exercises with uranium oxide fuels irradiated in pressurised water reactors (PWRs) and boiling water reactors (BWRs), the present report concerns mixed uranium and plutonium oxide (MOX) fuels irradiated in PWRs. The report summarises and analyses the solutions to the specified exercises provided by 37 contributors from 10 countries. The exercises were based upon the calculation of infinite PWR fuel pin cell reactivity for fresh and irradiated MOX fuels with various MOX compositions, burn-ups and cooling times. In addition, several representations of the MOX fuel assembly were tested in order to check various levels of approximations commonly used in reactor physics calculations. (authors)

  4. Burnup Credit of French PWR-MOx fuels: methodology and associated conservatisms with the JEFF-3.1.1 evaluation

    International Nuclear Information System (INIS)

    Considering spent fuel management (storage, transport and reprocessing), the approach using 'fresh fuel assumption' in criticality-safety studies results in a significant conservatism in the calculated value of the system reactivity. The concept of Burnup Credit (BUC) consists in considering the reduction of the spent fuel reactivity due to its burnup. A careful BUC methodology, developed by CEA in association with AREVA-NC was recently validated and written up for PWR-UOx fuels. However, 22 of 58 French reactors use MOx fuel, so more and more irradiated MOx fuels have to be stored and transported. As a result, why industrial partners are interested in this concept is because taking into account this BUC concept would enable for example a load increase in several fuel cycle devices. Recent publications and discussions within the French BUC Working Group highlight the current interest of the BUC concept in PWR-MOx spent fuel industrial applications. In this case of PWR-MOx fuel, studies show in particular that the 15 FPs selected thanks to their properties (absorbing, stable, non-gaseous) are responsible for more than a half of the total reactivity credit and 80% of the FPs credit. That is why, in order to get a conservative and physically realistic value of the application keff and meet the Upper Safety Limit constraint, calculation biases on these 15 FPs inventory and individual reactivity worth should be considered in a criticality-safety approach. In this context, thanks to an exhaustive literature study, PWR-MOx fuels particularities have been identified and by following a rigorous approach, a validated and physically representative BUC methodology, adapted to this type of fuel has been proposed, allowing to take fission products into account and to determine the biases related to considered isotopes inventory and to reactivity worth. This approach consists of the following studies: - isotopic correction factors determination to guarantee the criticality

  5. Reactivity and isotopic composition of spent PWR [pressurized-water-reactor] fuel as a function of initial enrichment, burnup, and cooling time

    International Nuclear Information System (INIS)

    This study presents the reactivity loss of spent PWR fuel due to burnup in terms of the infinite lattice multiplications factor, k/sub ∞/. Calculations were performed using the SAS2 and CSAS1 control modules of the SCALE system. The k/sub ∞/ values calculated for all combinations of six enrichments, seven burnups, and five cooling times. The results are presented as a primary function of enrichment in both tabular and graphic form. An equation has been developed to estimate the tabulated values of k/sub ∞/'s by specifying enrichment, cooling time, and burnup. Atom densities for fresh fuel, and spent fuel at cooling times of 2, 10, and 20 years are included. 13 refs., 8 figs., 8 tabs

  6. Recommendations for Addressing Axial Burnup in the PWR Burnup Credit Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.C.

    2002-10-23

    This report presents studies performed to support the development of a technically justifiable approach for addressing the axial-burnup distribution in pressurized-water reactor (PWR) burnup-credit criticality safety analyses. The effect of the axial-burnup distribution on reactivity and proposed approaches for addressing the axial-burnup distribution are briefly reviewed. A publicly available database of profiles is examined in detail to identify profiles that maximize the neutron multiplication factor, k{sub eff}, assess its adequacy for PWR burnup credit analyses, and investigate the existence of trends with fuel type and/or reactor operations. A statistical evaluation of the k{sub eff} values associated with the profiles in the axial-burnup-profile database was performed, and the most reactive (bounding) profiles were identified as statistical outliers. The impact of these bounding profiles on k{sub eff} is quantified for a high-density burnup credit cask. Analyses are also presented to quantify the potential reactivity consequence of loading assemblies with axial-burnup profiles that are not bounded by the database. The report concludes with a discussion on the issues for consideration and recommendations for addressing axial burnup in criticality safety analyses using burnup credit for dry cask storage and transportation.

  7. Addressing the Axial Burnup Distribution in PWR Burnup Credit Criticality Safety

    International Nuclear Information System (INIS)

    This paper summarizes efforts related to developing a technically justifiable approach for addressing the axial burnup distribution in PWR burnup-credit criticality safety analyses. The paper reviews available data on the axial variation in burnup and the effect of axial burnup profiles on reactivity in a SNF cask. A publicly available database of profiles is examined to identify profiles that maximize the neutron multiplication factor, keff, assess its adequacy for general PWR burnup credit analyses, and investigate the existence of trends with fuel type and/or reactor operations. For this assessment, a statistical evaluation of the keff values associated with the profiles in the axial burnup profile database was performed that identifies the most reactive profiles as statistical outliers that are not representative of typical discharged SNF assemblies. The impact of these bounding profiles on the neutron multiplication factor for a high-density burnup credit cask is quantified. Finally, analyses are presented to quantify the potential reactivity consequence of assemblies with axial profiles that are not bounded by the existing database. The paper concludes with findings for addressing the axial burnup distribution in burnup credit analyses

  8. Development and validation of ad hoc ORIGEN-ARP libraries for very high burnup UO2 PWR fuel with SCALE/TRITON

    International Nuclear Information System (INIS)

    The estimation of the nuclide inventory of the spent fuel to be disposed of in the high-level waste geological repository in Switzerland is fundamental for the realization of the repository itself. The fuel characterization is relevant not only for safety-relevant issues concerning the repository, but also for all the issues related to the previous phase, consisting of fuel handling and encapsulation. In order to keep the uncertainties sufficiently low, a fuel characterization methodology needs to be defined and validated. The large heterogeneity of the fuel used in the five Swiss reactors makes this task highly complex. UO2 PWR fuels have been simulated using SCALE/TRITON employing the latest ENDF/B-VII cross-section data, aiming to produce ORIGEN-ARP libraries suitable for very high burnup fuels. The results obtained from TRITON and ORIGEN-ARP calculations are compared to the results of previous experimental studies. The experimental results considered here were selected from chemical isotopic analysis and passive neutron emission performed earlier at the Paul Scherer Institute in Switzerland. A set of fuel rod samples with different burnups was used for the analysis. Very high burnup samples have been investigated, particularly for the neutron output. The results show that the developed ORIGEN-ARP libraries provide a valid alternative to very long and detailed fuel simulations without loss of accuracy in the depletion capabilities. (author)

  9. Increment of capacity of casks for PWR spent fuel transport. (1) Analysis taking into account pin-wised distribution of nuclides for introduction of burn-up credit

    International Nuclear Information System (INIS)

    Subcriticality of a fuel assembly immersed in light water is studied to take burn-up credit for spent fuel transport. For the purpose, pin-wised nuclide density distribution in a typical PWR spent fuel assembly is evaluated with a code used for designing of fuel loading patterns in commercial PWRs. Taking the heterogeneous distribution into account, multiplication and radiation of neutrons inside / outside the assembly is analyzed with MCNP-5 and SOURCES-4C. As the results, neutron leakage ratio to water surrounding the assembly is found to vary little with burn-up of the assembly so that total neutron yield can be estimated by measuring neutron absorption in the water. Provided 252Cf of known intensity is inserted to the assembly, the subcritical multiplication factor ksub is evaluated by the number of neutron absorption. If not 252Cf but Sb-Be is only available, it is recommended to measure spatial decay constant in middle height of the assembly with it by the exponential method. The axial buckling which is the square of the constant is found to be a good indicator for burn-up of the assembly. (author)

  10. Analyses of PWR spent fuel composition using SCALE and SWAT code systems to find correction factors for criticality safety applications adopting burnup credit

    International Nuclear Information System (INIS)

    The isotopic composition calculations were performed for 26 spent fuel samples from the Obrigheim PWR reactor and 55 spent fuel samples from 7 PWR reactors using the SAS2H module of the SCALE4.4 code system with 27, 44 and 238 group cross-section libraries and the SWAT code system with the 107 group cross-section library. For the analyses of samples from the Obrigheim PWR reactor, geometrical models were constructed for each of SCALE4.4/SAS2H and SWAT. For the analyses of samples from 7 PWR reactors, the geometrical model already adopted in the SCALE/SAS2H was directly converted to the model of SWAT. The four kinds of calculation results were compared with the measured data. For convenience, the ratio of the measured to calculated values was used as a parameter. When the ratio is less than unity, the calculation overestimates the measurement, and the ratio becomes closer to unity, they have a better agreement. For many important nuclides for burnup credit criticality safety evaluation, the four methods applied in this study showed good coincidence with measurements in general. More precise observations showed, however: (1) Less unity ratios were found for Pu-239 and -241 for selected 16 samples out of the 26 samples from the Obrigheim reactor (10 samples were deselected because their burnups were measured with Cs-137 non-destructive method, less reliable than Nd-148 method the rest 16 samples were measured with); (2) Larger than unity ratios were found for Am-241 and Cm-242 for both the 16 and 55 samples; (3) Larger than unity ratios were found for Sm-149 for the 55 samples; (4) SWAT was generally accompanied by larger ratios than those of SAS2H with some exceptions. Based on the measured-to-calculated ratios for 71 samples of a combined set in which 16 selected samples and 55 samples were included, the correction factors that should be multiplied to the calculated isotopic compositions were generated for a conservative estimate of the neutron multiplication factor

  11. High burnup fuel development program in Japan

    International Nuclear Information System (INIS)

    A step wise burnup extension program has been progressing in Japan to reduce the LWR fuel cycle cost. At present, the maximum assembly burnup limit of BWR 8 Χ 8 type fuel (B. Step II fuel) is 50GWd/t and a limited numbers of 9 Χ 9 type fuel (B. Step III fuel) with 55GWd/t maximum assembly burnup has been licensed by regulatory agencies recently. Though present maximum assembly burnup limit for PWR fuel is 48GWd/t (P. Step I fuel), the licensing work has been progressing for irradiation testing on a limited number of fuel assemblies with extended burnup of up to 55GWd/t (p. Step II fuel) Design of high burnup fuel and fabrication test are carried out by vendors, and subsequent irradiation test of fuel rods is conducted jointly by utilities and vendors to prepare for licensing. It is usual to make an irradiation test for vectarion, using lead use assemblies by government to confirm fuel integrity and reliability and win the public confidence. Nuclear Power Engineering Corporation (NUPE C) is responsible for verification test. The fuel are subjected to post irradiation examination (PIE) and no unfavorable indications of fuel behavior have found both in NUPE C verification test and joint irradiation test by utilities and vendors. Burnup extension is an urgent task for LWR fuel in Japan in order to establish the domestic fuel cycle. It is conducted in joint efforts of industries, government and institutes. However, watching a situation of burnup extension in the world, we are not going ahead of other countries in the achievement of burnup extension. It is due to a conservative policy in the nuclear safety of the country. This is the reason why the burnup extension program in Japan is progressing 'slow and steady' As for the data obtained, no unfavorable indications of fuel behavior have found both in NUPE C verification test and joint irradiation test by utilities and vendors until now

  12. Extended calculations of OECD/NEA phase II-C burnup credit criticality benchmark problem for PWR spent fuel transport cask by using MCNP-4B2 code and JENDL-3.2 library

    International Nuclear Information System (INIS)

    The reactivity effect of the asymmetry of axial burnup profile in burnup credit criticality safety is studied for a realistic PWR spent fuel transport cask proposed in the current OECD/NEA Phase II-C benchmark problem. The axial burnup profiles are simulated in 21 material zones based on in-core flux measurements varying from strong asymmetry to more or less no asymmetry. Criticality calculations in a 3-D model have been performed using the continuous energy Monte Carlo code MCNP-4B2 and the nuclear data library JENDL-3.2. Calculation conditions are determined with consideration of the axial fission source convergence. Calculations are carried out not only for cases proposed in the benchmark but also for additional cases assuming symmetric burnup profile. The actinide-only approach supposed for first domestic introduction of burnup credit into criticality evaluation is also considered in addition to the actinide plus fission product approach adopted in the benchmark. The calculated results show that keff and the end effect increase almost linearly with increasing burnup axial offset that is defined as one of typical parameters showing the intensity of axial burnup asymmetry. The end effect is more sensitive to the asymmetry of burnup profile for the higher burnup. For an axially distributed burnup, the axial fission source distribution becomes strongly asymmetric as its peak shifts toward the top end of the fuel's active zone where the local burnup is less than that of the bottom end. The peak of fission source distribution becomes higher with the increase of either the asymmetry of burnup profile or the assembly-averaged burnup. The conservatism of the assumption of uniform axial burnup based on the actinide-only approach is estimated quantitatively in comparison with the keff result calculated with experiment-based strongest asymmetric axial burnup profile with the actinide plus fission product approach. (author)

  13. Analysis of high burnup fuel safety issues

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Bock; Kim, D. H.; Bang, J. G.; Kim, Y. M.; Yang, Y. S.; Jung, Y. H.; Jeong, Y. H.; Nam, C.; Baik, J. H.; Song, K. W.; Kim, K. S

    2000-12-01

    Safety issues in steady state and transient behavior of high burnup LWR fuel above 50 - 60 MWD/kgU were analyzed. Effects of burnup extension upon fuel performance parameters was reviewed, and validity of both the fuel safety criteria and the performance analysis models which were based upon the lower burnup fuel test results was analyzed. It was found that further tests would be necessary in such areas as fuel failure and dispersion for RIA, and high temperature cladding corrosion and mechanical deformation for LOCA. Since domestic fuels have been irradiated in PWR up to burnup higher than 55 MWD/kgU-rod. avg., it can be said that Korea is in the same situation as the other countries in the high burnup fuel safety issues. Therefore, necessary research areas to be performed in Korea were derived. Considering that post-irradiation examination(PIE) for the domestic fuel of burnup higher than 30 MWD/kgU has not been done so far at all, it is primarily necessary to perform PIE for high burnup fuel, and then simulation tests for RIA and LOCA could be performed by using high burnup fuel specimens. For the areas which can not be performed in Korea, international cooperation will be helpful to obtain the test results. With those data base, safety of high burnup domestic fuels will be confirmed, current fuel safety criteria will be re-evaluated, and finally transient high burnup fuel behavior analysis technology will be developed through the fuel performance analysis code development.

  14. Analysis of high burnup fuel safety issues

    International Nuclear Information System (INIS)

    Safety issues in steady state and transient behavior of high burnup LWR fuel above 50 - 60 MWD/kgU were analyzed. Effects of burnup extension upon fuel performance parameters was reviewed, and validity of both the fuel safety criteria and the performance analysis models which were based upon the lower burnup fuel test results was analyzed. It was found that further tests would be necessary in such areas as fuel failure and dispersion for RIA, and high temperature cladding corrosion and mechanical deformation for LOCA. Since domestic fuels have been irradiated in PWR up to burnup higher than 55 MWD/kgU-rod. avg., it can be said that Korea is in the same situation as the other countries in the high burnup fuel safety issues. Therefore, necessary research areas to be performed in Korea were derived. Considering that post-irradiation examination(PIE) for the domestic fuel of burnup higher than 30 MWD/kgU has not been done so far at all, it is primarily necessary to perform PIE for high burnup fuel, and then simulation tests for RIA and LOCA could be performed by using high burnup fuel specimens. For the areas which can not be performed in Korea, international cooperation will be helpful to obtain the test results. With those data base, safety of high burnup domestic fuels will be confirmed, current fuel safety criteria will be re-evaluated, and finally transient high burnup fuel behavior analysis technology will be developed through the fuel performance analysis code development

  15. Burnup credit implementation in spent fuel management

    International Nuclear Information System (INIS)

    The criticality safety analysis of spent fuel management systems has traditionally assumed that the fuel is fresh. This results in significant conservatism in the calculated value of the system's reactivity. The concept of allowing reactivity credit for spent fuel offers economic incentives. Burnup Credit (BUC) could reduce mass limitation during dissolution of highly enriched PWR assemblies at the La Hague reprocessing plant. Furthermore, accounting for burnup credit enables the operator to avoid the use of Gd soluble poison in the dissolver for MOX assemblies. Analyses performed by DOE and its contractors have indicated that using BUC to maximize spent fuel transportation cask capacities is a justifiable concept that would result in public risk benefits and cost savings while fully maintaining criticality safety margins. In order to allow for Fission Products and Actinides in Criticality-Safety analyses, an extensive BUC experimental programme has been developed in France in the framework of the CEA-COGEMA collaboration. The use of burnup credit implies a verification of the fuel burnup before loading for transport, storage, disposal, or reprocessing each assembly, to make sure that the burnup level achieved complies with the criteria established. Independent measurement systems, e.g. gamma spectrum detection systems, are needed to perform a true independent measurement of assembly burnup, without reliance on reactor records, using the gamma emission signatures fission products (mainly Cesium isotopes). (author)

  16. Reactivity effects of nonuniform axial burnup distributions on spent fuel

    International Nuclear Information System (INIS)

    When conducting future criticality safety analyses on spent fuel shipping casks, burnup credit may play a significant role in determining the number of fuel assemblies that can be safely loaded into each cask. An important area in burnup credit analysis is the burnup variation along the length of the fuel assembly, which is determined by the location of the assembly in the reactor core and its residence time. A study of the effects of axial burnup distributions on reactivity has been conducted, using data from existing power plant fuel. Utilizing a one-dimensional, two-group diffusion code, named REALAX, the reactivity effects of axial burnup profiles have been calculated for various PWR fuel assemblies. The reactivity effects calculated by the code are defined in terms of k for the axially dependent burnup distribution minus k for a uniform axial burnup distribution at the assembly average burnup divided by k for a uniform axial burnup distribution at the assembly average burnup. Criticality safety specialists can take advantage of the quick-running code to determine axial effects of different assembly burnup profiles. In general, the positive reactivity effects of axial burnup distributions increase as burnup increases, though they do not increase faster than the overall decrease in reactivity due to burnup

  17. Reactivity effects of nonuniform axial burnup distributions on spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Leary, R.W. II; Parish, T.A. [Texas A & M Univ., College Station, TX (United States)

    1995-12-01

    When conducting future criticality safety analyses on spent fuel shipping casks, burnup credit may play a significant role in determining the number of fuel assemblies that can be safely loaded into each cask. An important area in burnup credit analysis is the burnup variation along the length of the fuel assembly, which is determined by the location of the assembly in the reactor core and its residence time. A study of the effects of axial burnup distributions on reactivity has been conducted, using data from existing power plant fuel. Utilizing a one-dimensional, two-group diffusion code, named REALAX, the reactivity effects of axial burnup profiles have been calculated for various PWR fuel assemblies. The reactivity effects calculated by the code are defined in terms of k for the axially dependent burnup distribution minus k for a uniform axial burnup distribution at the assembly average burnup divided by k for a uniform axial burnup distribution at the assembly average burnup. Criticality safety specialists can take advantage of the quick-running code to determine axial effects of different assembly burnup profiles. In general, the positive reactivity effects of axial burnup distributions increase as burnup increases, though they do not increase faster than the overall decrease in reactivity due to burnup.

  18. Long-Term Dry Storage of High Burn-Up Spent Pressurized Water Reactor (PWR) Fuel in TAD (Transportation, Aging, and Disposal) Containers

    International Nuclear Information System (INIS)

    A TAD canister, in conjunction with specially-designed over-packs can accomplish the functions of transportation, aging, and disposal (TAD) in the management of spent nuclear fuel (SNF). Industrial dry cask systems currently available for SNF are licensed for storage-only or for dual-purpose (i.e., storage and transportation). By extending the function to include the indefinite storage and perhaps, eventual geologic disposal, the TAD canister would have to be designed to enhance, among others, corrosion resistance, thermal stability, and criticality-safety control. This investigative paper introduces the use of these advanced iron-based, corrosion-resistant materials for SNF transportation, aging, and disposal.The objective of this investigative project is to explore the interest that KAERI would research and develop its specific SAM coating materials for the TAD canisters to satisfy the requirements of corrosion-resistance, thermal stability, and criticality-controls for long-term dry storage of high burn-up spent PWR fuel

  19. Establishing a PWR burn-up library

    International Nuclear Information System (INIS)

    Starting out from data file ENDF/B IV /1/, a cross-section library has been established for the calculation of operating conditions in pressurized water reactors of the type used in BIBLIS B. The library includes macroscopic, homogenized 2-group cross-sections for all types of fuel elements used in this reactor, including those equipped with boron glass rods. For their calculation the previous irradiation of the fuel has been taken into consideration by approximation. Information on fuel consumption from cell burn-up calculations has been stored in a separate data file. It was designed as a base for the determination of cross sections to be used in the calculation of the incident ''main-steam pipe fracture''. For this library the description of cross sections as a function of the moderator status chose the water densities at 3000C/155 bar, 1900C/140 bar and 1000C/100 bar as fixed values. The burn-up library has been tested by a three-dimensional calculation for the 1sup(st) cycle of the BIBLIS B-reactor using program QUABOX /2/. This showed variances with the anticipated course concerning critically, which can be explained almost quantitatively by known deficiencies of the ENDF/b-IV library. (orig.)

  20. Increased burnup of fuel elements

    International Nuclear Information System (INIS)

    The specialists' group for fuel elements of the Kerntechnische Gesellschaft e.V. held a meeting on ''Increased Burnup of Fuel Elements'' on 9th and 10th of November 1982 at the GKSS Research Center Geesthacht. Most papers dealt with the problems of burnup increase of fuel elements for light water reactors with respect to fuel manufacturing, power plant operation and reprocessing. Review papers were given on the burnup limits for high temperature gas cooled reactors and sodium fast breeder reactors. The meeting ended with a presentation of the technical equipment of the hot laboratory of the GKSS and the programs which are in progress there. (orig.)

  1. In-pile test of Qinshan PWR fuel bundle

    International Nuclear Information System (INIS)

    In-pile test of Qinshan Nuclear Power Plant PWR fuel bundle has been conducted in HWRR HTHP Test loop at CIAE. The test fuel bundle was irradiated to an average burnup of 25000 Mwd/tU. The authors describe the structure of (3 x 3-2) test fuel bundle, structure of irradiation rig, fuel fabrication, irradiation conditions, power and fuel burnup. Some comments on the in-pile performance for fuel bundle, fuel rod and irradiation rig were made

  2. New results from the NSRR experiments with high burnup fuel

    Energy Technology Data Exchange (ETDEWEB)

    Fuketa, Toyoshi; Ishijima, Kiyomi; Mori, Yukihide [Japan Atomic Research Institute, Toaki, Ibaraki (Japan)] [and others

    1996-03-01

    Results obtained in the NSRR power burst experiments with irradiated PWR fuel rods with fuel burnup up to 50 MWd/kgU are described and discussed in this paper. Data concerning test method, test fuel rod, pulse irradiation, transient records during the pulse and post irradiation examination are described, and interpretations and discussions on fission gas release and fuel pellet fragmentation are presented. During the pulse-irradiation experiment with 50 MWd/kgU PWR fuel rod, the fuel rod failed at considerably low energy deposition level, and large amount of fission gas release and fragmentation of fuel pellets were observed.

  3. Research on Integrity of High Burnup Spent Fuel Under the Long Term Dry Storage

    International Nuclear Information System (INIS)

    Objectives were to acquire the following behaviour data by dynamic load impact tests on high burnup spent fuel rods of BWR and PWR and to improve the guidance of regulation of spent fuel storage and transportation. (1) The limit of load and strain for high burnup fuel in the cask drop accident. (2) The amount of deformation of high burnup fuel rods under dynamic load impact. (3) The amount of fuel pellet material released from fuel rods under dynamic load impact

  4. Effects of high burnup on spent-fuel casks

    International Nuclear Information System (INIS)

    Utility fuel managers have become very interested in higher burnup fuels as a means to reduce the impact of refueling outages. High-burnup fuels have significant effects on spent-fuel storage or transportation casks because additional heat rejection and shielding capabilities are required. Some existing transportation casks have useful margins that allow shipment of high-burnup fuel, especially the NLI-1/2 truck cask, which has been relicensed to carry pressurized water reactor (PWR) fuel with 56,000 MWd/ton U burnup at 450 days of cooling time. New cask designs should consider the effects of high burnup for future use, even though it is not commercially desirable to include currently unneeded capability. In conclusion, the increased heat and gamma radiation of high-burnup fuels can be accommodated by additional cooling time, but the increased neutron radiation source cannot be accommodated unless the balance of neutron and gamma contributions to the overall dose rate is properly chosen in the initial cask design. Criticality control of high-burnup fuels is possible with heavily poisoned baskets, but burnup credit in licensing is a much more direct means of demonstrating criticality safety

  5. PWR and WWER fuel performance. A comparison of major characteristics

    International Nuclear Information System (INIS)

    PWR and WWER fuel technologies have the same basic performance targets: most effective use of the energy stored in the fuel and highest possible reliability. Both fuel technologies use basically the same strategies to reach these targets: 1) Optimized reload strategies; 2) Maximal use of structural material with low neutron cross sections; 3) Decrease the fuel failure frequency towards a 'zero failure' performance by understanding and eliminating the root causes of those defects. The key driving force of the technology of both, PWR and WWER fuel is high burn-up. Presently a range of 45 - 50 MWD/kgU have been reached commercially for PWR and WWER fuel. The main technical limitations to reach high burn-up are typically different for PWR and WWER fuel: for PWR fuel it is the corrosion and hydrogen uptake of the Zr-based materials; for WWER fuel it is the mechanical and dimensional stability of the FA (and the whole core). Corrosion and hydrogen uptake of Zr-materials is a 'non-problem' for WWER fuel. Other performance criteria that are important for high burn-up are the creep and growth behaviour of the Zr materials and the fission gas release in the fuel rod. There exists a good and broad data base to model and design both fuel types. FA and fuel rod vibration appears to be a generic problem for both fuel types but with more evidence for PWR fuel performance reliability. Grid-to-rod fretting is still a major issue in the fuel failure statistics of PWR fuel. Fuel rod cladding defects by debris fretting is no longer a key problem for PWR fuel, while it still appears to be a significant root cause for WWER fuel failures. 'Zero defect' fuel performance is achievable with a high probability, as statistics for US PWR and WWER-1000 fuel has shown

  6. Siemens PWR burnup credit criticality analysis methodology: Depletion code and verification methods

    International Nuclear Information System (INIS)

    Application of burnup credit requires knowledge of the reactivity state of the irradiated fuel for which burnup credit is taken. The isotopic inventory of the irradiated fuel has to be calculated, therefore, by means of depletion codes. Siemens performs depletion calculations for PWR fuel burnup credit applications with the aid of the code package SAV. This code package is based on the first principles approach, i.e., avoids cycle or reactor specific fitting or adjustment parameters. This approach requires a general and comprehensive qualification of SAV by comparing experimental with calculational results. In the paper on hand the attention is focused mainly on the evaluation of chemical assay data received from different experimental programmes. (author)

  7. Ciclon: A neutronic fuel management program for PWR's consecutive cycles

    International Nuclear Information System (INIS)

    The program description and user's manual of a new computer code is given. Ciclon performs the neutronic calculation of consecutive reload cycles for PWR's fuel management optimization. Fuel characteristics and burnup data, region or batch sizes, loading schemes and state of previously irradiated fuel are input to the code. Cycle lengths or feed enrichments and burnup sharing for each region or batch are calculate using different core neutronic models and printed or punched in standard fuel management format. (author)

  8. The Influence Of Fuel-To-Clad Gap Anti) UO2 Grain Size On Fission Gas Release In High Burn-Up PWR Design Fuel Rods; IFA-519.9

    International Nuclear Information System (INIS)

    The experiment described in this report was designed to test the effect of gap size, and hence fuel temperatures, and grain size on the fission gas release characteristics of PWR design UO2 fuel rods. Three rods with different combinations of gap and grain size irradiated during several loadings in IFA-429 at an average linear heat rate below 20 kW/m. At this low power, there was minimal fission gas release. The burn-up achieved at the end of this irradiation was 26-29 MWd/kgUO2. The rods were reinstrumented with bellows type pressure transducers so that fission gas release could be monitored during irradiation from measurements of the rod internal pressure. The rods were loaded into IFA-519.9, and irradiated at a higher power level,≅ 40 kW/m. Irradiation at high power continued to ≅ 90 MWd/kgUO2. In-pile pressure data obtained from two rods confirmed a substantial fission gas release in both rods. The data have been analyzed using a simple diffusion and re-solution based release model incorporated into the FUEL TEMP-2 code. The predictions are in excellent agreement with the in-pile data and suffice to separate the individual effects of the two parameters on the fission gas release characteristics. It is concluded that in the present experiment, the effect of different gap sizes dominates that due to differences in UO2 grain size. (author)

  9. A study, using noise analysis, of fuel thermo-mechanical behaviour in the high burn-up MOX experiment IFA 648.1 and the PWR/WWER comparison experiment IFA 503.2

    International Nuclear Information System (INIS)

    The reactor start-up in March 1999 offered an opportunity to extend the range of fuel types and conditions for which noise data were available by making measurements on several rods with different fuel types and instrumentation, and repeating the measurements at different power levels as the start-up progressed. Measurements were made on the high burn-up (50 MWd/kg) MOX experiment IFA 648.1 (instrumented with fuel centre thermocouples and a cladding extensometer), and the PWR/WWER comparison experiment IFA 503.2 (fresh fuel instrumented with expansion thermometers and fuel extensometers). The various time constants obtained from analysis of the resulting noise data show themselves to be a useful way of studying fuel performance. Different sensor types have different impulse responses and yield complementary information; fuel thermocouples and expansion thermometers provide data on fuel thermal behaviour and gap closure, clad extensometers yield information on the extent of PCMI, and fuel extensometers are sensitive to pellet relocation effects (author) (ml)

  10. A high burnup cycle in a PWR utilizing Gadolinia burnable poison

    International Nuclear Information System (INIS)

    The Design Calculations and Safety Submissions for the Sizewell 'B' PWR, now under construction in Suffolk, England, are being made on the assumption that the reactor will be operated on a 12 month three batch fuel cycle scheme giving 33 GWd/t discharge burnup. Fuel cycle economic studies carried out by BNFL for PWRs have shown that there are significant economic benefits to be obtained from increasing the discharge burnup to 40 GWd/t and beyond. This has provided an incentive for the study of high burnup PWR fuel cycles, from which a four batch fuel cycle has emerged as a strong candidate, well favoured to the requirements of the UK. 12 month fuel cycles would be well suited to the annual load demand characteristics of the UK Grid System, with the minimum demand occurring in the summer months, and would also fit in well with statutory maintenance requirements. In advance of a decision as to whether to adopt a 12 month four batch fuel cycle scheme for Sizewell 'B', BNFL have carried out detailed calculations for such a fuel cycle in order to assist the decision making process. This paper describes a 12 month equilibrium fuel cycle for a typical four loop PWR of 3400 MW(th) output in which a partial low leakage loading pattern is used in conjunction with gadolinia burnable poison. The gadolinia is required to control the radial power peaking factor. The paper also demonstrates that the principal safety related characteristics of the fuel cycle are compatible with present safety limits. (author). 2 refs, 8 figs, 2 tabs

  11. Assessment of the uncertainties of MULTICELL calculations by the OECD NEA UAM PWR pin cell burnup benchmark

    International Nuclear Information System (INIS)

    Defining precisely the burnup of the nuclear fuel is important from the point of view of core design calculations, safety analyses, criticality calculations (e.g. burnup credit calculations), etc. This paper deals with the uncertainties of MULTICELL calculations obtained by the solution of the OECD NEA UAM PWR pin cell burnup benchmark. In this assessment Monte-Carlo type statistical analyses are applied and the energy dependent covariance matrices of the cross-sections are taken into account. Additionally, the impact of the uncertainties of the fission yields is also considered. The target quantities are the burnup dependent uncertainties of the infinite multiplication factor, the two-group cross-sections, the reaction rates and the number densities of some isotopes up to the burnup of 60 MWd/kgU. In the paper the burnup dependent tendencies of the corresponding uncertainties and their sources are analyzed.

  12. Assessment of the uncertainties of MULTICELL calculations by the OECD NEA UAM PWR pin cell burnup benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Kereszturi, Andras [Hungarian Academy of Sciences, Budapest (Hungary). Centre for Energy Research; Panka, Istvan

    2015-09-15

    Defining precisely the burnup of the nuclear fuel is important from the point of view of core design calculations, safety analyses, criticality calculations (e.g. burnup credit calculations), etc. This paper deals with the uncertainties of MULTICELL calculations obtained by the solution of the OECD NEA UAM PWR pin cell burnup benchmark. In this assessment Monte-Carlo type statistical analyses are applied and the energy dependent covariance matrices of the cross-sections are taken into account. Additionally, the impact of the uncertainties of the fission yields is also considered. The target quantities are the burnup dependent uncertainties of the infinite multiplication factor, the two-group cross-sections, the reaction rates and the number densities of some isotopes up to the burnup of 60 MWd/kgU. In the paper the burnup dependent tendencies of the corresponding uncertainties and their sources are analyzed.

  13. Assessment of Reactivity Margins and Loading Curves for PWR Burnup Credit Cask Designs

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.C.

    2002-12-17

    This report presents studies to assess reactivity margins and loading curves for pressurized water reactor (PWR) burnup-credit criticality safety evaluations. The studies are based on a generic high-density 32-assembly cask and systematically vary individual calculational (depletion and criticality) assumptions to demonstrate the impact on the predicted effective neutron multiplication factor, k{sub eff}, and burnup-credit loading curves. The purpose of this report is to provide a greater understanding of the importance of input parameter variations and quantify the impact of calculational assumptions on the outcome of a burnup-credit evaluation. This study should provide guidance to regulators and industry on the technical areas where improved information will most enhance the estimation of accurate subcritical margins. Based on these studies, areas where future work may provide the most benefit are identified. The report also includes an evaluation of the degree of burnup credit needed for high-density casks to transport the current spent nuclear fuel inventory. By comparing PWR discharge data to actinide-only based loading curves and determining the number of assemblies that meet the loading criteria, this evaluation finds that additional negative reactivity (through either increased credit for fuel burnup or cask design/utilization modifications) is necessary to accommodate the majority of current spent fuel assemblies in high-capacity casks. Assemblies that are not acceptable for loading in the prototypic high-capacity cask may be stored or transported by other means (e.g., lower capacity casks that utilize flux traps and/or increased fixed poison concentrations or high-capacity casks with design/utilization modifications).

  14. Analysis of burnup credit on spent fuel storage

    International Nuclear Information System (INIS)

    Chemical analyses were carried out on high burnup UO2 (65 GWd/t) and MOX (45 GWd/t) spent fuel pins. Measured data of the composition of nuclides from 234U to 242Pu were used for evaluation of ORIGEN-2/82 code. Criticality calculations were executed for the casks which were being designed to store 52 BWR or 21 PWR spent fuel assemblies. The reactivity biases were evaluated for (1) axial and horizontal profiles of burnup, and void history (BWR), (2) operational histories such as control rod insertion history, BPR insertion history and others, and (3) calculational accuracy of ORIGEN-2/82 code on the composition of nuclides. Present evaluation shows that introduction of burnup credit has a substantial merit in criticality safety analysis of the cask, even if these reactivity biases are considered. The concept of equivalent uniform burnup was adapted for present reactivity bias evaluation and showed a possibility of simplifying the reactivity bias evaluation in burnup credit. Finally, adapting procedures of burnup credit such as the burnup meter were evaluated. (author)

  15. Parametric Study of Control Rod Exposure for PWR Burnup Credit Criticality Safety Analyses

    International Nuclear Information System (INIS)

    The Interim Staff Guidance on burnup credit (ISG-8) for pressurized water reactor (PWR) spent nuclear fuel (SNF), issued by the Nuclear Regulatory Commission's (NRC) Spent Fuel Project Office, recommends the use of analyses that provide an ''adequate representation of the physics'' and notes particular concern with the ''need to consider the more reactive actinide compositions of fuels burned with fixed absorbers or with control rods fully or partly inserted.'' In the absence of readily available information on the extent of control rod (CR) usage in U.S. PWRs and the subsequent reactivity effect of CR exposure on discharged SNF, NRC staff have indicated a need for greater understanding in these areas. In response, this paper presents results of a parametric study of the effect of CR exposure on the reactivity of discharged SNF for various CR designs (including Axial Power Shaping Rods), fuel enrichments, and exposure conditions (i.e., burnup and axial insertion). The study is performed in two parts. In the first part, two-dimensional calculations are performed, effectively assuming full axial CR insertion. These calculations are intended to bound the effect of CR exposure and facilitate comparisons of the various CR designs. In the second part, three-dimensional calculations are performed to determine the effect of various axial insertion conditions and gain a better understanding of reality. The results from the study demonstrate that the reactivity effect increases with increasing CR exposure (e.g., burnup) and decreasing initial fuel enrichment (for a fixed burnup). Additionally, the results show that even for significant burnup exposures, minor axial CR insertions (e.g., eff of a spent fuel cask

  16. Parametric studies of the effect of MOx environment and control rods for PWR-UOx burnup credit implementation

    International Nuclear Information System (INIS)

    The increase of PWR-UOX fuel initial enrichment and the extensive needs for spent fuel storage or cask capacities reinforce the interest in taking burnup credit into account in criticality calculations. However, this utilization of credit for fuel burnup requires the definition of a methodology that ensures the conservatism of calculations. In order to guarantee the conservatism of the spent fuel inventory calculation, a depletion calculation scheme for burnup credit is under development. This paper presents the studies on the main parameters which have an effect on nuclides concentration: the presence of control rods during depletion and the fuel assembly environment, particularly the presence of MOx fuels around the UO2 assembly. Reactivity effects which are relevant to these parameters are then presented, and physics phenomena are identified. (author)

  17. Methods of RECORD, an LWR fuel assembly burnup code

    International Nuclear Information System (INIS)

    The RECORD computer code is a detailed rector physics code for performing efficient LWR fuel assembly calculations, taking into account most of the features found in BWR and PWR fuel designs. The code calculates neutron spectrum, reaction rates and reactivity as a function of fuel burnup, and it generates the few-group data required for use in full scale core simulation and fuel management calculations. The report describes the methods of the RECORD computer code and the basis for fundamental models selected, and gives a review of code qualifications against measured data. (Auth. /RF)

  18. IFPE/US-PWR-16 X 16 Lead Test Assembly Extended Burnup Demonstration Program

    International Nuclear Information System (INIS)

    Description: US-PWR 16 x 16 LTA (lead test assembly) extended burnup demonstration program conducted during the 1980's. Relevant program data was obtained from the project final report and other supporting documents. The objective of this program was to demonstrate improved nuclear fuel utilization through more efficient fuel management and increased discharge burnup. The use of the 16 x 16 LTAs with Zr-4 cladding in this program demonstrated the capability to achieve peak fuel rod average burnups of ∼ 60 GWd/MTU. Both pool side (non-destructive) and hot cell (destructive) post irradiation examinations (PIE) of selected rods from the two LTAs were conducted. These examinations included rods irradiated for 3 and 5 cycles. Pool side examinations of the LTAs included visual inspection, dimensional measurements, eddy currant testing (ECT), and waterside corrosion thickness measurement. Hot cell fuel rod PIE included void volume measurements, fill gas analyses, cladding visual inspections, dimensional measurements, neutron radiography, and gamma scanning. Fuel pellet examinations included fuel densification and swelling measurements, fuel burnup analyses, and ceramography. Cladding examinations included metallography, hydrogen concentration measurement, and mechanical property testing. The irradiation of two 16 x 16 LTAs was completed in a US commercial PWR. LTA D039 was irradiated during reactor cycles 2 through 4. The irradiation of LTA D040 was extended through reactor cycle 6 to achieve a lead rod, axial average burnup of 58 GWd/MTU. The fuel assembly design consisted of 236 rods in a 16 x 16 array, five control element guide tubes, 12 fuel rod spacer grids, upper and lower end fittings, and a hold-down device. The bottom spacer grid is Inconel 625. All other spacer grids and all guide tubes are Zr-4. The standard fuel rod design consists of enriched UO2, solid cylindrical pellets, a round wire Type 302 stainless steel compression spring, and an alumina spacer

  19. Transient behaviour of high burnup fuel

    International Nuclear Information System (INIS)

    The main subjects of the meeting were the discussion of regulatory background, integral tests and analysis, plant calculations, separate-effect test and analysis, concerning high burnup phenomena during RIA accidents in reactors, especially LWR, BWR and PWR type reactors. 32 papers were abstracted and indexed individually for the INIS database. (R.P.)

  20. Development of an MCNP-tally based burnup code and validation through PWR benchmark exercises

    International Nuclear Information System (INIS)

    The aim of this study is to evaluate the capabilities of a newly developed burnup code called BUCAL1. The code provides the full capabilities of the Monte Carlo code MCNP5, through the use of the MCNP tally information. BUCAL1 uses the fourth order Runge Kutta method with the predictor-corrector approach as the integration method to determine the fuel composition at a desired burnup step. Validation of BUCAL1 was done by code vs. code comparison. Results of two different kinds of codes are employed. The first one is CASMO-4, a deterministic multi-group two-dimensional transport code. The second kind is MCODE and MOCUP, a link MCNP-ORIGEN codes. These codes use different burnup algorithms to solve the depletion equations system. Eigenvalue and isotope concentrations were compared for two PWR uranium and thorium benchmark exercises at cold (300 K) and hot (900 K) conditions, respectively. The eigenvalue comparison between BUCAL1 and the aforementioned two kinds of codes shows a good prediction of the systems'k-inf values during the entire burnup history, and the maximum difference is within 2%. The differences between the BUCAL1 isotope concentrations and the predictions of CASMO-4, MCODE and MOCUP are generally better, and only for a few sets of isotopes these differences exceed 10%.

  1. Effects of axial burnup distributions on the reactivity of spent fuel

    International Nuclear Information System (INIS)

    Criticality safety analyses for spent fuel shipping casks will eventually need to take credit for the decreased reactivity of spent fuel assemblies resulting from burnup. In order to do so, it will be necessary to assess the reactivity effects of the multitude of burnup shapes that can characterize spent fuel. A computer program, CASAX, has been written that allows the analyst to quickly evaluate the reactivity effects of actual and simplified axial burnup distributions on a group of PWR fuel assemblies. CASAX employs one dimensional, two group diffusion calculations to determine the k-effective of a cluster of assemblies. Assembly average, burnup dependent, two group cross sections for CASAX were obtained from CASMO3 using physical properties representative of Westinghouse 17 x 17 assemblies. Reactivity results are presented in terms of (k for the axially dependent burnup distribution minus k for a uniform axial burnup distribution at the assembly average burnup)/(k for a uniform axial burnup distribution at the assembly average burnup). Axial burnup distributions can have both positive and negative effects on the calculated k-effective. Positive reactivity effects generally result at high assembly average burnups and for axial distributions with low burnups in the assembly's tips

  2. Extended burnup: fuel development and performance

    International Nuclear Information System (INIS)

    Fuel Performance for the B and W 15 x 15 (Mark B) and 17 x 17 (Mark C) fuel assembly designs is examined on a plant by plant basis. An extensive data base of fuel assembly and rod bow measurements and tests which demonstrate that these phenomena should not limit the high burnup capability of B and W fuel is presented. Post-irradiation measurements to date for fuel rod and assembly growth show that these phenomena are behaving as predicted and can be adequately evaluated and designed for in high burnup fuel assemblies. Clad creep and ductility data as a function of burnup for B and W fuel is presented with emphasis on their effects on our high burnup targets. Finally, fission gas release and waterside corrosion measurements results are presented

  3. A PWR PCI failure criterion to burnups of 60 GW·d/t using the ENIGMA code

    International Nuclear Information System (INIS)

    A fuel performance modelling code (ENIGMA) has been used to analyse the empirical PCI failure criterion in terms of a clad failure stress as a function of burnup and fast neutron dose. The Studsvik database has been analysed. Results indicate a rising and then saturating failure stress with burnup and fast neutron dose. Using the PCI failure limits, equivalent to 95/95 confidence limits, an ENIGMA stress-based methodology is used to derive PWR PCI failure limits up to 60 GW·d/t U using a conservative assumption that the failure stress does not increase at high burnup and neutron dose. In addition experimental ramp data on gadolinia-doped fuel rods do not indicate any increased susceptibility to PCI failure implying that the UO2 criterion can be used for gadolinia doped fuel. (author)

  4. Introduction of new flasks for high burnup spent fuel

    International Nuclear Information System (INIS)

    New flasks have been designed to transport the high burnup spent fuels now becoming available from the world's nuclear power stations. Two versions have been designed: Excellox 6 for 5 metre PWR fuels and Excellox 7 with increased neutron shielding for 4.5 metre PWR and BWR fuels arising in Japan. The designs of these flasks have been finalised; Excellox 6 has been approved and validated as a Type B(U)F package and the first two have been manufactured and are now in routine service, with a third at an advanced stage of manufacture. The Excellox 7 design is ready for manufacture when service requirements for it have been settled. An account is given of the final adjustments to the design in the course of manufacture, the main steps and tests in the manufacturing process and the commissioning tests at the reprocessing and reactor sites. The entry of the flasks into service is reviewed. (author)

  5. Timing analysis of PWR fuel pin failures

    International Nuclear Information System (INIS)

    This report discusses research conducted to develop and demonstrate a methodology for calculation of the time interval between receipt of the containment isolation signals and the first fuel pin failure for loss-of-coolant accidents (LOCAs). Demonstration calculations were performed for a Babcock and Wilcox (B ampersand W) design (Oconee) and a Westinghouse (W) four-loop design (Seabrook). Sensitivity studies were performed to assess the impacts of fuel pin burnup, axial peaking factor, break size, emergency core cooling system availability, and main coolant pump trip on these times. The analysis was performed using the following codes: FRAPCON-2, for the calculation of steady-state fuel behavior; SCDAP/RELAP5/MOD3 and TRACPF1/MOD1, for the calculation of the transient thermal-hydraulic conditions in the reactor system; and FRAP-T6, for the calculation of transient fuel behavior. In addition to the calculation of fuel pin failure timing, this analysis provides a comparison of the predicted results of SCDAP/RELAP5/MOD3 and TRAC-PF1/MOD1 for large-break LOCA analysis. Using SCDAP/RELAP5/MOD3 thermal-hydraulic data, the shortest time intervals calculated between initiation of containment isolation and fuel pin failure are 10.4 seconds and 19.1 seconds for the B ampersand W and W plants, respectively. Using data generated by TRAC-PF1/MOD1, the shortest intervals are 10.3 seconds and 29.1 seconds for the B ampersand W and W plants, respectively. These intervals are for a double-ended, offset-shear, cold leg break, using the technical specification maximum peaking factor and applied to fuel with maximum design burnup. Using peaking factors commensurate with actual burnups would result in longer intervals for both reactor designs. This document provides appendices K and L of this report which provide plots for the timing analysis of PWR fuel pin failures for Oconee and Seabrook respectively

  6. Evolutionary developments of advanced PWR nuclear fuels and cladding materials

    International Nuclear Information System (INIS)

    Highlights: • PWR fuel and cladding materials development processes are provided. • Evolution of PWR advanced fuel in U.S.A. and in Korea is described. • Cutting-edge design features against grid-to-rod fretting and debris are explained. • High performance data of advanced grids, debris filters and claddings are given. -- Abstract: The evolutionary developments of advanced PWR fuels and cladding materials are explained with outstanding design features of nuclear fuel assembly components and zirconium-base cladding materials. The advanced PWR fuel and cladding materials development processes are also provided along with verification tests, which can be used as guidelines for newcomers planning to develop an advanced fuel for the first time. The up-to-date advanced fuels with the advanced cladding materials may provide a high level of economic utilization and reliable performance even under current and upcoming aggressive operating conditions. To be specific, nuclear fuel vendors may achieve high fuel burnup capability of between 45,000 and 65,000 MWD/MTU batch average, overpower thermal margin of as much as 15% and longer cycle length up to 24 months on the one hand and fuel failure rates of around 10−6 on the other hand. However, there is still a need for better understanding of grid-to-rod fretting wear mechanisms leading to major PWR fuel defects in the world and subsequently a driving force for developing innovative spacer grid designs with zero fretting wear-induced fuel failure

  7. Evolutionary developments of advanced PWR nuclear fuels and cladding materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyu-Tae, E-mail: ktkim@dongguk.ac.kr

    2013-10-15

    Highlights: • PWR fuel and cladding materials development processes are provided. • Evolution of PWR advanced fuel in U.S.A. and in Korea is described. • Cutting-edge design features against grid-to-rod fretting and debris are explained. • High performance data of advanced grids, debris filters and claddings are given. -- Abstract: The evolutionary developments of advanced PWR fuels and cladding materials are explained with outstanding design features of nuclear fuel assembly components and zirconium-base cladding materials. The advanced PWR fuel and cladding materials development processes are also provided along with verification tests, which can be used as guidelines for newcomers planning to develop an advanced fuel for the first time. The up-to-date advanced fuels with the advanced cladding materials may provide a high level of economic utilization and reliable performance even under current and upcoming aggressive operating conditions. To be specific, nuclear fuel vendors may achieve high fuel burnup capability of between 45,000 and 65,000 MWD/MTU batch average, overpower thermal margin of as much as 15% and longer cycle length up to 24 months on the one hand and fuel failure rates of around 10{sup −6} on the other hand. However, there is still a need for better understanding of grid-to-rod fretting wear mechanisms leading to major PWR fuel defects in the world and subsequently a driving force for developing innovative spacer grid designs with zero fretting wear-induced fuel failure.

  8. Progress of the RIA experiments with high burnup fuels and their evaluation in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Ishijima, Kiyomi; Fuketa, Toyoshi [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)

    1997-01-01

    Recent results obtained in the NSRR power burst experiments with high burnup PWR fuel rods are described and discussed in this paper. Data concerning test condition, transient records during pulse irradiation and post irradiation examination are described. Another high burnup PWR fuel rod failed in the test HBO-5 at the slightly higher energy deposition than that in the test HBO-1. The failure mechanism of the test HBO-5 is the same as that of the test HBO-1, that is, hydride-assisted PCMI. Some influence of the thermocouples welding on the failure behavior of the HBO-5 rod was observed.

  9. Burnup performances of boron nitride and boron coated nuclear fuels

    International Nuclear Information System (INIS)

    The nuclear fuels of urania (UOV) and 5% and 10% gadolinia (Gd2O3) containing UO2 previously produced by sol-gel technique were coated with first boron nitride (BN) then boron (B) thin layer by chemical vapor deposition (CVD) and also by plasma enhanced chemical vapor deposition (PECVD) techniques to increase the fuel cycle length and to improve the physical properties. From the cross-sectional view of BN and B layers taken from scanning electron microscope (SEM), the excellent adherence of BN onto fuel and B onto BN layer was observed in both cases. The behavior of fuel burnup, depletion of BN and B, the effect of coating thickness and also Gd2O3 content on the burnup performances of the fuels were identified by using the code WIMS-D/4 for Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) cores. The optimum thickness ratio of B to BN was found as 4 and their thicknesses were chosen as 40 mm and 10 mm respectively in both reactor types to get extended cycle length. The assemblies consisting of fuels with 5% Gd2O3 and also coated with 10 mm BN and 40 mm B layers were determined as candidates for getting higher burnup in both types of reactors

  10. Recovery and separation for the trace amounts of iodide in PWR spent fuel

    International Nuclear Information System (INIS)

    An separation and recovery technique for iodide in spent pressurized water reactor (PWR) fuels has been established using a SIMFUEL simulated for spent PWR fuel. The spent PWR fuels were dissolved with mixture of nitric and hydrochloric acids(80; 20 mol%) which can oxidize iodide to iodate through dissolution process. Iodide in uranium matrix and co-exist fission products was separated and recovered by organic extraction of iodine with carbon tetrachloride and by back extraction of iodide with 0.1 M NaHSO3. Recovered iodide was measured using an ion chromatograph/shielding system available for analysis of radioactive materials. In practice, a spent PWR fuel whose burnup rate was 42,261 MWd/MtU was analyzed and then the relation between the burnup and the quantity of the fission products was compared to the calculated by burnup code, Origen 2

  11. PWR fuel performance and future trend in Japan

    International Nuclear Information System (INIS)

    Since the first PWR power plant Mihama Unit 1 initiated its commercial operation in 1970, Japanese utilities and manufacturers have expended much of their resources and efforts to improve PWR technology. The results are already seen in significantly improved performance of 16 PWR plants now in operation. Mitsubishi Heavy Industries Ltd. (MHI) has been supplying them with nuclear fuel assemblies, which are over 5700. As the reliability of the current design fuel has been achieved, the direction of RandD on nuclear fuel has changed to make nuclear power more competitive to the other power generation methods. The most important RandD targets are the burnup extension, Gd contained fuel, utilization and the load follow capability

  12. Nuclear fuel burn-up economy

    International Nuclear Information System (INIS)

    In the period 1981-1985, for the needs of Utility Organization, Beograd, and with the support of the Scientific Council of SR Srbija, work has been performed on the study entitled 'Nuclear Fuel Burn-up Economy'. The forst [phase, completed during the year 1983 comprised: comparative analysis of commercial NPP from the standpoint of nuclear fuel requirements; development of methods for fuel burn-up analysis; specification of elements concerning the nuclear fuel for the tender documentation. The present paper gives the short description of the purpose, content and results achieved in the up-to-now work on the study. (author)

  13. Analysis of burnup credit on spent fuel transport / storage casks - estimation of reactivity bias

    International Nuclear Information System (INIS)

    Chemical analyses of high burnup UO2 (65 GWd/t) and MOX (45 GWd/t) spent fuel pins were carried out. Measured data of nuclides' composition from U234 to P 242 were used for evaluation of ORIGEN-2/82 code and a nuclear fuel design code (NULIF). Critically calculations were executed for transport and storage casks for 52 BWR or 21 PWR spent fuel assemblies. The reactivity biases were evaluated for axial and horizontal profiles of burnup, and historical void fraction (BWR), operational histories such as control rod insertion history, BPR insertion history and others, and calculational accuracy of ORIGEN-2/82 on nuclides' composition. This study shows that introduction of burnup credit has a large merit in criticality safety analysis of casks, even if these reactivity biases are considered. The concept of equivalent uniform burnup was adapted for the present reactivity bias evaluation and showed the possibility of simplifying the reactivity bias evaluation in burnup credit. (authors)

  14. Determination of the accuracy of utility spent fuel burnup records. Interim report

    International Nuclear Information System (INIS)

    In order to develop a NRC-licensable burnup credit methodology, the pedigree and uncertainty of commercial spent nuclear fuel assembly burnup records needs to be established. Typically the assembly average burnup for each assembly is maintained in the plant records. It is anticipated that the repository for the disposal of spent fuel will utilize burnup credit and will require knowledge of the uncertainty of reactor burnup records. The uncertainty of the assembly average burnup record depends on the uncertainty of the method used to develop the record. Such records are generally based on core neutronic analysis coupled with analysis of in-core power detector data. This report evaluates the uncertainties in the burnup of fuel assemblies utilizing in-core measurements and core neutronic calculations for a Westinghouse PWR. To quantify the uncertainty, three cycles of in-core movable detector data were used. The data represents a first cycle of operation, a transition cycle and a low leakage cycle. These three cycles of data provide a true test of the uncertainty methodology. Three separate sets of results were used to characterize the burnup uncertainty of the fuel assemblies. The first set of results compared the measured and calculated reaction rates in instrumented assemblies and determined the uncertainty in the reaction rates. The second set of results determined the uncertainty in relative assembly power for both the instrumented and un-instrumented assemblies. The third set of results determined the burnup uncertainty of the discharged fuel in each cycle

  15. Criticality analysis of PWR spent fuel storage facilities inside nuclear power plants

    International Nuclear Information System (INIS)

    This paper describes some of the main features of the actinide plus fission product burnup credit methodology used by Siemens for criticality safety design analysis of wet PWR storage pools with soluble boron in the pool water. Application of burnup credit requires knowledge of the isotopic inventory of the irradiated fuel for which burnup credit is taken. This knowledge is gained by using depletion codes. The results of the depletion analysis are a necessary input to the criticality analysis. Siemens performs depletion calculations for PWR fuel burnup credit applications with the aid of the Siemens standard design procedure SAV90. The quality of this procedure relies on statistics on the differences between calculation and measurement extracted from in-core measurement data and chemical assay data. Siemens performs criticality safety calculations with the aid of the criticality calculation modules of the SCALE code package. These modules are verified many times with the aid of various kinds of critical experiments and configurations: Application of these modules to spent LWR fuel assembly storage pools was verified by analyzing critical experiments simulating such storage pools. Actinide plus fission product burnup credit applications of these modules were verified by analyzing PWR reactor critical configurations. The result of performing a burnup credit analysis is the determination of a burnup, credit loading curve for the spent fuel storage racks designed for burnup credit. This curve specifies the loading criterion by indicating the minimum burnup necessary for the fuel assembly with a specific initial enrichment to be placed in the storage racks designed for burnup credit. The loading of the spent fuel storage racks designed for burnup credit requires the implementation of controls to ensure that the loading curve is met. The controls include the determination of fuel assembly burnup based on reactor records. (author)

  16. Features of fuel performance at high fuel burnups

    International Nuclear Information System (INIS)

    Some features of fuel behavior at high fuel burnups, in particular, initiation and development of rim-layer, increase in the rate of fission gas release from the fuel and increase in the inner gas pressure in the fuel rod are briefly described. Basing on the analysis of the data of post-irradiation examinations of fuel rods of WWER-440 working FA and CR fuel followers, that have been operated for five fuel cycles and got the average fuel burnup or varies as 50MW-day/kgU, a conclusion is made that the WWER-440 fuel burnup can be increased at least to average burnups of 55-58 MW-day/kgU per fuel assembly (Authors)

  17. High burnup effects in WWER fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, V.; Smirnov, A. [RRC Research Institute of Atomic Reactors, Dimitrovqrad (Russian Federation)

    1996-03-01

    Since 1987 at the Research Institute of Atomic Reactors, the examinations of the WWER spent fuel assemblies has been carried out. These investigations are aimed to gain information on WWER spent fuel conditions in order to validate the fuel assemblies use during the 3 and 4 year fuel cycle in the WWER-440 and WWER-1000 units. At present time, the aim is to reach an average fuel burnup of 55 MWd/kgU. According to this aim, a new investigation program on the WWER spent fuel elements is started. The main objectives of this program are to study the high burnup effects and their influence on the WWER fuel properties. This paper presented the main statistical values of the WWER-440 and WWER-1000 reactors` fuel assemblies and their fragment parameters. Average burnup of fuel in the investigated fuel assemblies was in the range of 13 to 49.7 MWd/kgU. In this case, the numer of fuel cycles was from 1 to 4 during operation of the fuel assemblies.

  18. Fuel cycle economical improvement by reaching high fuel burnup

    International Nuclear Information System (INIS)

    Improvements of fuel utilization in the light water reactors, burnup increase have led to a necessity to revise strategic approaches of the fuel cycle development. Different trends of the fuel cycle development are necessary to consider in accordance with the type of reactors used, the uranium market and other features that correspond to the nuclear and economic aspects of the fuel cycle. The fuel burnup step-by-step extension Program that successfully are being realized by the leading, firms - fuel manufacturers and the research centres allow to say that there are no serious technical obstacles for licensing in the near future of water cooling reactors fuel rod burnup (average) limit to 65-70 MWd/kgU and fuel assembly (average) limit to (60-65) MWd/kgU. The operating experience of Ukrainian NPPs with WWER-1000 is 130 reactor * years. At the beginning of 1999, a total quantity of the fuel FA discharged during all time of operation of 11 reactors was 5819 (110 fuel cycles). Economical improvement is reached by increase of fuel burn-up by using of some FA of 3 fuel cycles design in 4th fuel loading cycle. Fuel reliability is satisfactory. The further improvement of FA is necessary, that will allow to reduce the front-end fuel cycle cost (specific natural uranium expenditure), to reduce spent fuel amount and, respectively, the fuel cycle back end costs, and to increase burn-up of the fuel. (author)

  19. Advanced PWR fuel design concepts

    International Nuclear Information System (INIS)

    For nearly 15 years, Combustion Engineering has provided pressurized water reactor fuel with the features most suppliers are now introducing in their advanced fuel designs. Zircaloy grids, removable upper end fittings, large fission gas plenum, high burnup, integral burnable poisons and sophisticated analytical methods are all features of C-E standard fuel which have been well proven by reactor performance. C-E's next generation fuel for pressurized water reactors features 24-month operating cycles, optimal lattice burnable poisons, increased resistance to common industry fuel rod failure mechanisms, and hardware and methodology for operating margin improvements. Application of these various improvements offer continued improvement in fuel cycle economics, plant operation and maintenance. (author)

  20. Present status and future developments of the implementation of burnup credit in spent fuel management systems in Germany

    International Nuclear Information System (INIS)

    This paper describes the experience gained in Germany in implementing burnup credit in wet storage and dry transport systems of spent PWR, BWR, and MOX fuel. It gives a survey of the levels of burnup credit presently used, the regulatory status and activities planned, the fuel depletion codes and criticality calculation codes employed, the verification methods used for validating these codes, the modeling assumptions made to ensure that the burnup credit criticality analysis is based on a fuel irradiation history which leads to bounding neutron multiplication factors, and the implementation of procedures used for fuel loading verification. (author)

  1. High Burnup Fuel Performance and Safety Research

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Je Keun; Lee, Chan Bok; Kim, Dae Ho (and others)

    2007-03-15

    The worldwide trend of nuclear fuel development is to develop a high burnup and high performance nuclear fuel with high economies and safety. Because the fuel performance evaluation code, INFRA, has a patent, and the superiority for prediction of fuel performance was proven through the IAEA CRP FUMEX-II program, the INFRA code can be utilized with commercial purpose in the industry. The INFRA code was provided and utilized usefully in the universities and relevant institutes domesticallly and it has been used as a reference code in the industry for the development of the intrinsic fuel rod design code.

  2. Tritium management in PWR fuel reprocessing plants

    International Nuclear Information System (INIS)

    Activity, quantity and nature of tritium compounds obtained during head end process (cutting and dissolution) are determined to estimate environmental release hazards in fuel reprocessing plants. Measurements on representative PWR reactor fuels (burnup 33,000 MWdt-1, specific power 30 MW dt-1) show that about 60% of the tritium produced in the reactor diffuses in the cladding where it is fixed. Remaining tritium stays in the irradiated oxide and is found as tritiated water in the solution obtained during fuel dissolution. In the UP3 plant at La Hague (France) tritiated water is disposed into the sea without environmental problems. In the case of a reprocessing plant far from the sea, the PUREX process is slightly modified for concentration of tritium in a limited amount of water (TRILEX process). It is verified experimentally in αβγ lab on actual fuel and by simulation at the pilot seale that the supplementary step ''tritium washing'' of the solvent can be obtained in pulsed columns. 4 tables, 7 figs

  3. Compressive creep of simulated burnup fuel

    International Nuclear Information System (INIS)

    In order to study the nitride fuel mechanical properties, we measured the compressive steady state creep rates of uranium mononitride (UN) and UN containing neodymium which was simulated burnup fuel. The stress exponent n'' and the apparent activation energy ''Q'' of the creep rate were determined in the range of 27.5 ≤ σ ≤ 200.0 MPa and 950 ≤ T ≤ 1500 degC. (author)

  4. PWR fuel: experience and development

    International Nuclear Information System (INIS)

    The start-up of the large French nuclear program has rapidly led FRAGEMA to be one of the first PWR fuel suppliers. FRAGEMA is a joint subsidiary of two companies whose scopes of supply are fully complementary: FRAMATOME (NSSS vendor) and COGEMA (nuclear fuel cycle service supplier). At the center of these two activities FRAGEMA is in charge of designing and marketing fuel assemblies. Assistance is also offered to nuclear power plant operators in all fuel related fields by providing a wide range of services and a number of specialized components. Over the past years a statistical data base has been accumulated on fuel assembly behaviour under various operating conditions. At the same time extensive experimental programs have been, set up to develop advanced products to cope with utilities needs in the future. An overview of these two sides of our experience is presented in the following

  5. Fuel burnup monitor for nuclear reactors

    International Nuclear Information System (INIS)

    An in-service detector is designed using the principle of comparing temperatures in the fuel element and in the detector material. The detector consists of 3 metallic heat conductors insulated with ceramic insulators, two of them with uranium fuel spheres at the end. One sphere is coated with zirconium, the other with zirconium and gold. The precision of measurement of the degree of fuel burnup depends on the precision of the measurement of temperature and is determined from the difference in temperature gradients of the two uranium fuel spheres in the detector. (M.D.)

  6. High-burnup fuel and the impact on fuel management

    International Nuclear Information System (INIS)

    Competition in the electric utility industry has forced utilities to reduce cost. For a nuclear utility, this means a reduction of both the nuclear fuel cost and the operating and maintenance cost. To this extent, utilities are pursuing longer cycles. To reduce the nuclear fuel cost, utilities are trying to reduce batch size while increasing cycle length. Yankee Atomic Electric Company has performed a number of fuel cycle studies to optimize both batch size and cycle length; however, certain burnup-related constraints are encountered. As a result of these circumstances, longer fuel cycles make it increasingly difficult to simultaneously meet the burnup-related fuel design constraints and the technical specification limits. Longer cycles require fuel assemblies to operate for longer times at relatively high power. If utilities continue to pursue longer cycles to help reduce nuclear fuel cost, changes may need to be made to existing fuel burnup limits

  7. NSSR experiment with 50 MWd/kgU PWR fuel under an RIA condition

    International Nuclear Information System (INIS)

    Results obtained in the NSRR power burst experiments with irradiated PWR fuel rods with fuel burnup up to 50 MWd/kgU are described and discussed in this paper. Data concerning test method, test fuel rod, pulse irradiation, transient records during the pulse and post irradiation examination are described, and interpretations and discussions on fission gas release and fuel pellet fragmentation are presented. During the pulse-irradiation experiment with 50 MWd/kgU PWR fuel rod, the fuel rod failed at considerably low energy deposition level, and large amount of fission gas release and fragmentation of fuel pellets were observed. (author). 6 refs, 11 figs, 5 tabs

  8. Impact of Integral Burnable Absorbers on PWR Burnup Credit Criticality Safety Analyses

    International Nuclear Information System (INIS)

    The concept of taking credit for the reduction in reactivity of burned or spent nuclear fuel (SNF) due to fuel burnup is commonly referred to as burnup credit. The reduction in reactivity that occurs with fuel burnup is due to the net reduction of fissile nuclide concentrations and the production of actinide and fission-product neutron absorbers. The change in the inventory of these nuclides with fuel burnup, and the consequent reduction in reactivity, is dependent upon the depletion environment. Therefore, the use of burnup credit necessitates consideration of all possible fuel operating conditions, including the use of integral burnable absorbers (IBAs). The Interim Staff Guidance on burnup credit [1] issued by the Nuclear Regulatory Commission's (NRC) Spent Fuel Project Office recommends licensees restrict the use of burnup credit to assemblies that have not used burnable absorbers (e.g., IBAs or burnable poison rods, BPRs). This restriction eliminates a large portion of the currently discharged spent fuel assemblies from cask loading, and thus severely limits the practical usefulness of burnup credit. The reason for this restriction is that the presence of burnable absorbers during depletion hardens the neutron spectrum, resulting in lower 235U depletion and higher production of fissile plutonium isotopes. Enhanced plutonium production has the effect of increasing the reactivity of the fuel at discharge and beyond. Consequently, an assembly exposed to burnable absorbers may have a slightly higher reactivity for a given burnup than an assembly that has not been exposed to burnable absorbers. This paper examines the effect of IBAs on reactivity for various designs and enrichment/poison loading combinations as a function of burnup. The effect of BPRs, which are typically removed during operation, is addressed elsewhere [2

  9. Investigation of the load change behaviour of PWR- and BWR fuel rods at positive power ramps

    International Nuclear Information System (INIS)

    The following irradiation experiments have been performed to determine the operational behaviour of fuel rods in LWR during power ramps: a) power ramp experiment in the nuclear power plant of Obrigheim (KWO) with 6 PWR test fuel rods at a burnup of about 14 MWd/kgU. No fuel rod defects have been found. b) preirradiation of 45 segmented fuel rods in KWO and of 8 segmented fuel rods in the reactor of Wuergassen; the preirradiated segments will be ramped at HFR Petten. c) power ramp experiments at HBWR with 8 BWR test fuel rods at burnups of 4-14 MWd/kgU; ramping caused no defects. (orig.)

  10. Computational Benchmark for Estimation of Reactivity Margin from Fission Products and Minor Actinides in PWR Burnup Credit

    International Nuclear Information System (INIS)

    This report proposes and documents a computational benchmark problem for the estimation of the additional reactivity margin available in spent nuclear fuel (SNF) from fission products and minor actinides in a burnup-credit storage/transport environment, relative to SNF compositions containing only the major actinides. The benchmark problem/configuration is a generic burnup credit cask designed to hold 32 pressurized water reactor (PWR) assemblies. The purpose of this computational benchmark is to provide a reference configuration for the estimation of the additional reactivity margin, which is encouraged in the U.S. Nuclear Regulatory Commission (NRC) guidance for partial burnup credit (ISG8), and document reference estimations of the additional reactivity margin as a function of initial enrichment, burnup, and cooling time. Consequently, the geometry and material specifications are provided in sufficient detail to enable independent evaluations. Estimates of additional reactivity margin for this reference configuration may be compared to those of similar burnup-credit casks to provide an indication of the validity of design-specific estimates of fission-product margin. The reference solutions were generated with the SAS2H-depletion and CSAS25-criticality sequences of the SCALE 4.4a package. Although the SAS2H and CSAS25 sequences have been extensively validated elsewhere, the reference solutions are not directly or indirectly based on experimental results. Consequently, this computational benchmark cannot be used to satisfy the ANS 8.1 requirements for validation of calculational methods and is not intended to be used to establish biases for burnup credit analyses

  11. Computational Benchmark for Estimation of Reactivity Margin from Fission Products and Minor Actinides in PWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.C.

    2001-08-02

    This report proposes and documents a computational benchmark problem for the estimation of the additional reactivity margin available in spent nuclear fuel (SNF) from fission products and minor actinides in a burnup-credit storage/transport environment, relative to SNF compositions containing only the major actinides. The benchmark problem/configuration is a generic burnup credit cask designed to hold 32 pressurized water reactor (PWR) assemblies. The purpose of this computational benchmark is to provide a reference configuration for the estimation of the additional reactivity margin, which is encouraged in the U.S. Nuclear Regulatory Commission (NRC) guidance for partial burnup credit (ISG8), and document reference estimations of the additional reactivity margin as a function of initial enrichment, burnup, and cooling time. Consequently, the geometry and material specifications are provided in sufficient detail to enable independent evaluations. Estimates of additional reactivity margin for this reference configuration may be compared to those of similar burnup-credit casks to provide an indication of the validity of design-specific estimates of fission-product margin. The reference solutions were generated with the SAS2H-depletion and CSAS25-criticality sequences of the SCALE 4.4a package. Although the SAS2H and CSAS25 sequences have been extensively validated elsewhere, the reference solutions are not directly or indirectly based on experimental results. Consequently, this computational benchmark cannot be used to satisfy the ANS 8.1 requirements for validation of calculational methods and is not intended to be used to establish biases for burnup credit analyses.

  12. Study of nuclear fuel burn-up

    International Nuclear Information System (INIS)

    The authors approach theoretical treatment of isotopic composition changement for nuclear fuel in nuclear reactors. They show the difficulty of exhaustive treatment of burn-up problems and introduce the principal simplifying principles. Due to these principles they write and solve analytically the evolution equations of the concentration for the principal nuclides both in the case of fast and thermal reactors. Finally, they expose and comment the results obtained in the case of a power fast reactor. (author)

  13. Burnup measurements of leader fuel elements

    International Nuclear Information System (INIS)

    Some time ago the CCHEN authorities decided to produce a set of 50 low enrichment fuel elements. These elements were produced in the PEC (Fuel Elements Plant), located at CCHEN offices in Lo Aguirre. These new fuel elements have basically the same geometrical characteristics of previous ones, which were British and made with raw material from the U.S. The principal differences between our fuel elements and the British ones is the density of fissile material, U-235, which was increased to compensate the reduction in enrichment. Last year, the Fuel Elements Plant (PEC) delivered the shipment's first four (4) fuel elements, called leaders, to the RECH1. A test element was delivered too, and the complete set was introduced into the reactor's nucleus, following the normal routine, but performing a special follow-up on their behavior inside the nucleus. This experimental element has only one outside fuel plate, and the remaining (15) structural plates are aluminum. In order to study the burnup, the test element was taken out of the nucleus, in mid- November 1999, and left to decay until June 2000, when it was moved to the laboratory (High Activity Cell), to start the burnup measurements, with a gamma spectroscopy system. This work aims to show the results of these measurements and in addition to meet the following objectives: (a) Visual test of the plate's general condition; (b) Sipping test of fission products; (c) Study of burn-up distribution in the plate; (d) Check and improve the calculus algorithm; (e) Comparison of the results obtained from the spectroscopy with the ones from neutron calculus

  14. Burnup determination of water reactor fuel

    International Nuclear Information System (INIS)

    The present meeting was scheduled by the International Atomic Energy Agency in consultation with the Members of the International Working Group on Water Reactor Fuel Performance and Technology. The meeting was hosted by the Commission of the European Communities, at the Transuranium Research Laboratory, Joint Research Centre Karlsruhe, in the Federal Republic of Germany. This subject was dealt with for the first time by the IAEA. It was found to correspond adequately to this type of Specialist Meeting and to be suitable at a moment when the extension of burnup constitutes a major technical and economical issue in fuel technology. It was stressed that analysis of highly burnt fuels, mixed oxides and burnable absorber bearing fuels required extension of the experimental data base, to comply with the increasing demand for an improved fuel management, including better qualification of reactor physics codes. Twenty-seven participants from eleven countries plus two international organizations attended the Meeting. Twelve papers were given during three technical sessions, followed by a panel discussion which allowed to formulate the conclusions of the meeting and recommendations to the Agency. In addition, participants were invited to give an outline of their national programmes, related to Burnup Determination of Water Reactor Fuel. A separate abstract was prepared for each of these 12 papers. Refs, figs and tabs

  15. Fuel rod behaviour at high burnup WWER fuel cycles

    International Nuclear Information System (INIS)

    The modernisation of WWER fuel cycles is carried out on the base of complete modelling and experimental justification of fuel rods up to 70 MWd/kgU. The modelling justification of the reliability of fuel rod and fuel rod with gadolinium is carried out with the use of certified START-3 code. START-3 code has a continuous experimental support. The thermophysical and strength reliability of WWER-440 fuel is justified for fuel rod and pellet burnups 65 MWd/kgU and 74 MWd/U, accordingly. Results of analysis are demonstrated by the example of uranium-gadolinium fuel assemblies of second generation under 5-year cycle with a portion of 6-year assemblies and by the example of successfully completed pilot operation of 5-year cycle fuel assemblies during 6 years at unit 3 of Kolskaja NPP. The thermophysical and strength reliability of WWER-1000 fuel is justified for a fuel rod burnup 66 MWd/kgU by the example of fuel operation under 4-year cycles and 6-year test operation of fuel assemblies at unit 1 of Kalininskaya NPP. By the example of 5-year cycle at Dukovany NPP Unit 2 it was demonstrated that WWER fuel rod of a burnup 58 MWd/kgU ensure reliable operation under load following conditions. The analysis has confirmed sufficient reserves of Russian fuel to implement program of JSC 'TVEL' in order to improve technical and economical parameters of WWER fuel cycles

  16. A preliminary study of thorium and transuranic advanced fuel cycle utilization in PWR

    International Nuclear Information System (INIS)

    A typical PWR fuel element considering (TRU-Th) cycle was simulated. The study analyzed the behaviour of the thorium insertion spiked with reprocessed fuel considering different enrichments that varied from 5.5% to 7.0%. The reprocessed fuels were obtained using the ORIGEN 2.1 code from a burned PWR standard fuel (33,000 MWd/tHM burned), with 3.1% of initial enrichment, which was remained in the cooling pool for five years. The Kerf, hardening spectrum, and the fuel evolution during the burnup were evaluated. This study was performed using the SCALE 6.0. (author)

  17. MOX and UOX PWR fuel performances EDF operating experience

    International Nuclear Information System (INIS)

    Based on a large program of experimentations implemented during the 90s, the industrial achievement of new FAs designs with increased performances opens up new prospects. The currently UOX fuels used on the 58 EDF PWR units are now authorized up to a maximum FA burn-up of 52 GWd/t with a large experience from 45 to 50 GWd/t. Today, the new products, along with the progress made in the field of calculation methods, still enable to increase further the fuel performances with respect to the safety margins. Thus, the conditions are met to implement in the next years new fuel managements on each NPPs series of the EDF fleet with increased enrichment (up to 4.5%) and irradiation limits (up to 62 GWd/t). The recycling of plutonium is part of EDF's reprocessing/recycling strategy. Up to now, 20 PWR 900 MW reactors are managed in MOX hybrid management. The feedback experience of 18 years of PWR operation with MOX is satisfactory, without any specific problem regarding manoeuvrability or plant availability. EDF is now looking to introduce MOX fuels with a higher plutonium content (up to 8.6%) equivalent to natural uranium enriched to 3.7%. It is the goal of the MOX Parity core management which achieve balance of MOX and UOX fuel performance with a significant increase of the MOX average discharge burn-up (BU max: 52 GWd/t for MOX and UOX). The industrial maturity of new FAs designs, with increased performances, allows the implementation in the next years of new fuel managements on each NPPs series of the EDF fleet. The scheduling of the implementation of the new fuel managements on the PWRs fleet is a great challenge for EDF, with important stakes: the nuclear KWh cost decrease with the improvement of the plant operation performance. (author)

  18. Determination of research reactor fuel burnup

    International Nuclear Information System (INIS)

    This report was prepared by a Consultants Group which met during 12-15 June 1989 at the Jozef Stefan Institute, Yugoslavia, and during 11-13 July 1990 at the IAEA Headquarters in Vienna, Austria, with subsequent contributions from the Consultants. The report is intended to provide information to research reactor operators and managers on the different, most commonly used methods of determining research reactor fuel burnup: 1) reactor physics calculations, 2) measurement of reactivity effects, and 3) gamma ray spectrometry. The advantages and disadvantages of each method are discussed. References are provided to assist the reactor operator planning to establish a programme for burnup determination of fuel. Destructive techniques are not included since such techniques are expensive, time consuming, and not normally performed by the reactor operators. In this report, TRIGA fuel elements are used in most examples to describe the methods. The same techniques however can be used for research reactors which use different types of fuel elements. 22 refs, 13 figs, 2 tabs

  19. Burnup credit demands for spent fuel management in Ukraine

    International Nuclear Information System (INIS)

    In fact, till now, burnup credit has not be applied in Ukrainian nuclear power for spent fuel management systems (storage and transport). However, application of advanced fuel at VVER reactors, arising spent fuel amounts, represent burnup credit as an important resource to decrease spent fuel management costs. The paper describes spent fuel management status in Ukraine from viewpoint of subcriticality assurance under spent fuel storage and transport. It also considers: 1. Regulation basis concerning subcriticality assurance, 2. Basic spent fuel and transport casks characteristics, 3. Possibilities and demands for burnup credit application at spent fuel management systems in Ukraine. (author)

  20. Actinide and fission product evolution benchmarking with Vandellos II (PWR-Spain) measured isotopic values with considering all the burn-up history with consecutive calculation

    International Nuclear Information System (INIS)

    At this study, isotopic evolution of the sample E58-263 of assembly WZR0058 of Vandellos Unit II (PWR-Spain) is calculated with MONTEBURNS code system. The sample was exposed with different neutron spectrum because of its different core location at fuel different cycles. At fuel calculation, all fuel cycle burn-up history of Use sample is 1 considered consecutively by using the 'remove' and 'add' option of the MONTEBURNS code. The calculated results are compared with fuel measurement and with cycle by cycle calculation methodology results.

  1. Advanced fuel cycles and burnup increase of WWER-440 fuel

    International Nuclear Information System (INIS)

    Analyses of operational experience of 4.4% enriched fuel in the 5-year fuel cycle at Kola NPP Unit 3 and fuel assemblies with Uranium-Gadolinium fuel at Kola NPP Unit 4 are made. The operability of WWER-440 fuel under high burnup is studied. The obtained results indicate that the fuel rods of WWER-440 assemblies intended for operation within six years of the reviewed fuel cycle totally preserve their operability. Performed analyses have demonstrated the possibility of the fuel rod operability during the fuel cycle. 12 assemblies were loaded into the reactor unit of Kola 3 in 2001. The predicted burnup in six assemblies was 59.2 MWd/kgU. Calculated values of the burnup after operation for working fuel assemblies were ∼57 MWd/kgU, for fuel rods - up to ∼61 MWd/kgU. Data on the coolant activity, specific activity of the benchmark iodine radionuclides of the reactor primary circuit, control of the integrity of fuel rods of the assemblies that were operated for six years indicate that not a single assembly has reached the criterion for the early discharge

  2. Fuel and fuel cycles with high burnup for WWER reactors

    International Nuclear Information System (INIS)

    The paper discusses the status and trends in development of nuclear fuel and fuel cycles for WWER reactors. Parameters and main stages of implementation of new fuel cycles will be presented. At present, these new fuel cycles are offered to NPPs. Development of new fuel and fuel cycles based on the following principles: profiling fuel enrichment in a cross section of fuel assemblies; increase of average fuel enrichment in fuel assemblies; use of refuelling schemes with lower neutron leakage ('in-in-out'); use of integrated fuel gadolinium-based burnable absorber (for a five-year fuel cycle); increase of fuel burnup in fuel assemblies; improving the neutron balance by using structural materials with low neutron absorption; use of zirconium alloy claddings which are highly resistant to irradiation and corrosion. The paper also presents the results of fuel operation. (author)

  3. Siemens Nuclear Power Corporation experience with BWR and PWR fuels

    International Nuclear Information System (INIS)

    The large data base of fuel performance parameters available to Siemens Nuclear Power Corporation (SNP), and the excellent track record of innovation and fuel reliability accumulated over the last twenty-three years, allows SNP to have a clear insight on the characteristics of future developments in the area of fuel design. Following is a description of some of SNP's recent design innovations to prevent failures and to extend burnup capabilities. A goal paramount to the design and manufacture of BWR and PWR fuel is that of zero defects from any case during its operation in the reactor. Progress has already been made in achieving this goal. This paper summarized the cumulative failure rate of SNP fuel rod through January 1992

  4. Experimental programmes related to high burnup fuel

    International Nuclear Information System (INIS)

    The experimental programmes undertaken at IGCAR with regard to high burn-up fuels fall under the following categories: a) studies on fuel behaviour, b) development of extractants for aqueous reprocessing and c) development of non-aqueous reprocessing techniques. An experimental programme to measure the carbon potential in U/Pu-FP-C systems by methane-hydrogen gas equilibration technique has been initiated at IGCAR in order to understand the evolution of fuel and fission product phases in carbide fuel at high burn-up. The carbon potentials in U-Mo-C system have been measured by this technique. The free energies and enthalpies of formation of LaC2, NdC2 and SmC2 have been measured by measuring the vapor pressures of CO over the region Ln2O3-LnC2-C during the carbothermic reduction of Ln2O3 by C. The decontamination from fission products achieved in fuel reprocessing depends strongly on the actinide loading of the extractant phase. Tri-n-butyl phosphate (TBP), presently used as the extractant, does not allow high loadings due to its propensity for third phase formation in the extraction of Pu(IV). A detailed study of the allowable Pu loadings in TBP and other extractants has been undertaken in IGCAR, the results of which are presented in this paper. The paper also describes the status of our programme to develop a non-aqueous route for the reprocessing of fast reactor fuels. (author)

  5. Burn-up and cycle length optimization project of the robust fuel programme

    International Nuclear Information System (INIS)

    The Spanish electric sector (UNESA) takes part in the Robust Fuel programme in the different work groups set up by EPRI. Iberinco, with the collaboration of Iberdrola Generacion (TECNO and Cofrentes NPP) and Soluziona Ingenieria, has created a stable multidisciplinary group to assimilate and follow up this program, analyzing in detail the technology generated and evaluating the conclusions to provide the most suitable recommendations for application. Along these lines, one of the most promising projects within technical group 3 (High burn properties) has been the one called Burn-up and cycle Length Optimization. In January 2000 Duke Power published a study on the plants it owns (PWR type) and 18-month cycles, to establish the optimum unloading burn-up of fuel. The conclusion it reached is that the fuel cost drops t a minimum for average unload burn-ups of between 60 and 70 GWd/MTU. As an extension to this study and covering a wider base of considerations, Exelon, with the support of Westinghouse and the University of Pennsylvania, released a study in December 2001 on different reference cores with different cycle lengths. In this study, the optimum burn-up without exceeding current maximum enrichment limits (5%) is determined. Publication of the results of the second phase, considering higher enrichments, was due in the summer of 2002. The design of the core to be refueled and economic analyzes show that both pressurized water reactors (PWR) and boiling water reactors (BWR) can obtain significant benefits by increasing the fuel unloading burn-up above currently licensed limits. However, the optimum unload burn-up level is not reached without exceeding the current enrichment limit of 5% . (Author)

  6. Double-strata high burnup fuel performance in light water reactors

    International Nuclear Information System (INIS)

    This study is aimed at the development of a fuel cycle concept for host countries with a lack of nuclear infrastructure. Two interrelated criteria, proliferation resistance and high-burnup, form the general framework of the fuel management scenario with the highest priority given to light water reactor technology and plutonium-free fresh fuel. Logically it implies the use of uranium oxide with enrichment close to 20%, whose effective utilization forms the main subject of the present paper. A sequence of two irradiation cycles for the same fuel pins in two different light water reactors is the key feature of the advocated approach. It is found that the synergism of PWR and pressure tube graphite reactor offers fuel burnup up to 140 GWd/tHM. Being as large as 8% in the final isotopic vector, the fraction of 238Pu serves as an inherent protective measure against plutonium proliferation

  7. OECD/NEA burnup credit criticality benchmarks phase IIIB: Burnup calculations of BWR fuel assemblies for storage and transport

    International Nuclear Information System (INIS)

    The report describes the final results of the Phase IIIB Benchmark conducted by the Expert Group on Burnup Credit Criticality Safety under the auspices of the Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD). The Benchmark was intended to compare the predictability of current computer code and data library combinations for the atomic number densities of an irradiated PWR fuel assembly model. The fuel assembly was irradiated under specific power of 25.6 MW/tHM up to 40 GWd/tHM and cooled for five years. The void fraction was assumed to be uniform throughout the channel box and constant, at 0, 40 and 70%, during burnup. In total, 16 results were submitted from 13 institutes of 7 countries. The calculated atomic number densities of 12 actinides and 20 fission product nuclides were found to be for the most part within a range of ±10% relative to the average, although some results, esp. 155Eu and gadolinium isotopes, exceeded the band, which will require further investigation. Pin-wise burnup results agreed well among the participants. The results in the infinite neutron multiplication factor k∞ also accorded well with each other for void fractions of 0 and 40%; however some results deviated from the averaged value noticeably for the void fraction of 70%. (author)

  8. OECD/NEA burnup credit criticality benchmarks phase IIIB. Burnup calculations of BWR fuel assemblies for storage and transport

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, Hiroshi; Naito, Yoshitaka; Suyama, Kenya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-02-01

    The report describes the final results of the Phase IIIB Benchmark conducted by the Expert Group on Burnup Credit Criticality Safety under the auspices of the Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD). The Benchmark was intended to compare the predictability of current computer code and data library combinations for the atomic number densities of an irradiated PWR fuel assembly model. The fuel assembly was irradiated under specific power of 25.6 MW/tHM up to 40 GWd/tHM and cooled for five years. The void fraction was assumed to be uniform throughout the channel box and constant, at 0, 40 and 70%, during burnup. In total, 16 results were submitted from 13 institutes of 7 countries. The calculated atomic number densities of 12 actinides and 20 fission product nuclides were found to be for the most part within a range of {+-}10% relative to the average, although some results, esp. {sup 155}Eu and gadolinium isotopes, exceeded the band, which will require further investigation. Pin-wise burnup results agreed well among the participants. The results in the infinite neutron multiplication factor k{sub {infinity}} also accorded well with each other for void fractions of 0 and 40%; however some results deviated from the averaged value noticeably for the void fraction of 70%. (author)

  9. Calculation study of TNPS spent fuel pool using burnup credit

    International Nuclear Information System (INIS)

    Exampled by the spent fuel pool of TNPS which is consist of 2 × 5 fuel storage racks, the spent fuel high-density storage based on burnup credit (BUC) and related criticality safety issues were studied. The MONK9A code was used to analyze keff, of different enrichment fuels at different burnups. A reference loading curve was proposed in accordance with the system keff's changing with the burnup of different initially enriched nuclear fuels. The capacity of the spent fuel pool increases by 31% compared with the one that does not consider BUC. (authors)

  10. Investigation of burnup credit implementation for BWR fuel

    International Nuclear Information System (INIS)

    Burnup Credit allows considering the reactivity decrease due to fuel irradiation in criticality studies for the nuclear fuel cycle. Its implementation requires to carefully analyze the validity of the assumptions made to define the axial profile of the burnup and void fraction (for BWR), to determine the composition of the irradiated fuel and to compute the criticality simulation. In the framework of Burnup Credit implementation for BWR fuel, this paper proposes to investigate part of these items. The studies presented in this paper concern: the influence of the burnup and of the void fraction on BWR spent fuel content and on the effective multiplication factor of an infinite array of BWR assemblies. A code-to-code comparison for BWR fuel depletion calculations relevant to Burnup Credit is also performed. (authors)

  11. Reevaluation of fuel enthalpy in NSRR test for high burnup fuels

    International Nuclear Information System (INIS)

    This paper describes the recent procedure of evaluation of the fuel enthalpy in the reactivity initiated accident (RIA) simulating tests performed at the nuclear safety research reactor (NSRR), and reports some important updates of the fuel enthalpies in the tests with high burnup PWR fuels. Previously, the fuel enthalpy had been evaluated by the procedure based on the short-life fission product measurement, i.e. a pellet slice was sampled from the test fuel rod after the NSRR test, a chemical separation process was applied to the solution of the pellet slice to separate barium, and the amount of Ba-140 was measured by gamma spectrometry on the separated barium. But a part of the results showed significant scattering even within the similar tests with similar fuels, which should have showed similar fuel enthalpies. The scattering appears to indicate the difficulty in treatment of the short-life nuclides after the completion of the NSRR test and unsuccessful measurement of the amount of fuel dissolved in the specimen preparation. Another difficulty of the procedure is that it is not repeatable for a specimen and so double check of an evaluation is not possible. Hence, an alternative procedure, which is based on the total amount of fissile materials evaluated by mass analysis, was developed and has been applied for the tests after 2003; the amount of fissile materials is input to a well-verified neutron transport calculation model for the NSRR reactor core to calculate a coupling factor of power densities between the test fuel rod and the NSRR driver fuel rods. This procedure does not require quickness and is repeatable, so it is applicable even many years later if the fuel sample is available. The recent procedure was thus applied to the tests before 2003, whose burnups are below 60 GWd/tU. It was shown that the fuel enthalpy had been significantly underestimated in the tests with high burnup PWR fuels: the test series HBO and TK. In this paper, the procedure

  12. Experiments on the load following behaviour of PWR fuel rods

    International Nuclear Information System (INIS)

    KWU had studied the effects of load following operation on fuel performance from the beginning of commercial operation of nuclear power plants: The first power cycling experiments were started in 1970 in the nuclear power plant Obrigheim (KWO) and in the High Flux Reactor (HFR) Petten. These power cycling tests performed at various power levels and burnups of up to 25 GWd/t(U) showed that the fuel rod cycling performance compares well with the performance of fuel rods operated under essentially constant load at comparable power levels. Two additional cycling tests as described in this paper were performed on the HFR Petten with preirradiated PWR fuel rods having burnups of up to 40 GWd/t(U). These experiments comprised up to 60 cycles between 250/360 W/cm and 215/320 W/cm with 10% power overshoot (400, 370 W/cm) after each cycle. Also, these experiments ended up with sound fuel rods. Moreover, detailed investigations before and between power cycles and after experiment termination showed clearly that the fuel performance corresponds to a single ramp to peak power and that the cycling effects are indeed very small. This confirmed earlier findings that due to crack reversal in the UO2 the cyclic dimensional changes mainly occur in the UO2 itself. Altogether the experiments show that power cycling does not lead to fuel rod failures, which is also confirmed by successful load follow operation in commercial power plants. (orig.)

  13. Current Status of Burnup Evaluation for Test Fuel at HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seong Woo; Park, Seung Jae; Shin, Yoon Taeg; Choo, Kee Nam; Cho, Man Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    For the research reactor, 8 mini plate fuels were irradiation-tested during 4 irradiation cycles. 2 more irradiation capsules were fabricated for additional test of plate type fuel. Also fission Mo target for the performance verification and the demonstration of Mo-99 extraction process will be irradiated at HANARO. It is important to evaluate the burnup history of test fuel. The burnup of test fuel has been calculated using HANARO Fuel Management System (HANAFMS). Although it is proper to evaluate the burnup of HANARO fuel, it is difficult to accurately calculate the burnup of test fuel due to the limitation of HANAFMS model. Therefore, the improvement of burnup evaluation for the recent irradiated test fuel is conducted and reported in this paper. To evaluate the burnup of test fuel, HANAFMS has been used; however, HANAFMS model is not proper to apply plate type fuel. Therefore, MCNP burned core model was developed for HAMP-1 burnup calculation. Throughout the comparison of fuel assembly power, MCNP burned core model showed the good agreement with HANAFMS.

  14. Burnup determination and age dating of spent nuclear fuel using noble gas isotopic analysis

    International Nuclear Information System (INIS)

    During the chopping and dissolving phases of reprocessing, gases (such as tritium, krypton, xenon, iodine, carbon dioxide, nitrogen oxide, and steam) are released. These gases are traditionally transferred to a gas-treatment system for treatment, release, and/or recycle. Because of their chemically inert nature, the xenon and krypton noble gases are generally released directly into the loser atmosphere through the facility's stack. These gases (being fission products) contain information about the fuel being reprocessed and may prove a valuable monitor of reprocessing activities. Two properties of the fuel that may prove valuable from a safeguards standpoint are the fuel burnup and the fuel age (or time since discharge from the reactor). Both can be used to aid in confirming declared activities, and the burnup is generally indicative of the usability of the fuel for fabricating nuclear explosives. A study has been ongoing at Los Alamos National Laboratory to develop a methodology to determine spent-fuel parameters from measured xenon and/or krypton isotopic ratios on-stack at reprocessing facilities. This study has resulted in the generation of the NOVA data analysis code, which links to a comprehensive database of reactor physics parameters (calculated using the Monteburns 3.01 code system). NOVA has been satisfactorily tested for burnup determination of weapons-grade fuel from a US production reactor. Less effort has been spent quantifying NOVA's ability to predict burnup and fuel age for power reactor fuel. The authors describe the results predicted by NOVA for xenon and krypton isotopic ratios measured after the dissolution of spent-fuel samples from the Borssele reactor. The Borssele reactor is a 450-MW(electric) pressurized water reactor (PWR) consisting of 15 x 15 KWU assemblies. The spent-fuel samples analyzed were single fuel rods removed from one assembly and dissolved at the La Hague reprocessing facility. The assembly average burnup was estimated at 32

  15. Safety Analysis Report for the PWR Spent Fuel Canister

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui Joo; Choi, Jong Won; Cho, Dong Keun; Chun, Kwan Sik; Lee, Jong Youl; Kim, Seong Ki; Kim, Seong Soo; Lee, Yang

    2005-11-15

    This report outlined the results of the safety assessment of the canisters for the PWR spent fuels which will be used in the KRS. All safety analyses including criticality and radiation shielding analyses, mechanical analyses, thermal analyses, and containment analyses were performed. The reference PWR spent fuels were in the 17x17 and determined to have 45,000 MWD/MTU burnup. The canister consists of copper outer shell and nodular cast iron inner structure with diameter of 102 cm and height of 483 cm. Criticality safety was checked for normal and abnormal conditions. It was assumed that the integrity of engineered barriers is preserved and saturated with water of 1.0g/cc for normal condition. For the abnormal condition container and bentonite was assumed to disappear, which allows the spent fuel to be surrounded by water with the most reactive condition. In radiation shielding analysis it was investigated that the absorbed dose at the surface of the canister met the safety limit. The structural analysis was conducted considering three load conditions, normal, extreme, and rock movement condition. Thermal analysis was carried out for the case that the canister with four PWR assemblies was deposited in the repository 500 meter below the surface with 40 m tunnel spacing and 6 m deposition hole spacing. The results of the safety assessment showed that the proposed KDC-1 canister met all the safety limits.

  16. Fuel burnup characteristics for the NRU research reactor

    International Nuclear Information System (INIS)

    The driver fuel of the NRU research reactor at AECL, Chalk River is a low enriched uranium (LEU) fuel alloy of Al-61 wt% U3Si, consisting of particles of U3Si dispersed in a continuous aluminum matrix, with 19.8% U235 in uranium. This paper describes the burnup characteristics for this type of fuel in NRU, including the determination of fuel depletion using the neutronic simulation code TRIAD, comparisons between simulated and measured burnup values, and the regulatory licensing operational average fuel burnup limit. (author)

  17. Fuel burnup characteristics for the NRU research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Leung, T.C., E-mail: leungt@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-07-01

    The driver fuel of the NRU research reactor at AECL, Chalk River is a low enriched uranium (LEU) fuel alloy of Al-61 wt% U{sub 3}Si, consisting of particles of U{sub 3}Si dispersed in a continuous aluminum matrix, with 19.8% U235 in uranium. This paper describes the burnup characteristics for this type of fuel in NRU, including the determination of fuel depletion using the neutronic simulation code TRIAD, comparisons between simulated and measured burnup values, and the regulatory licensing operational average fuel burnup limit. (author)

  18. BNFL assessment of methods of attaining high burnup MOX fuel

    International Nuclear Information System (INIS)

    It is clear that in order to maintain competitiveness with UO2 fuel, the burnups achievable in MOX fuel must be enhanced beyond the levels attainable today. There are two aspects which require attention when studying methods of increased burnups - cladding integrity and fuel performance. Current irradiation experience indicates that one of the main performance issues for MOX fuel is fission gas retention. MOX, with its lower thermal conductivity, runs at higher temperatures than UO2 fuel; this can result in enhanced fission gas release. This paper explores methods of effectively reducing gas release and thereby improving MOX burnup potential. (author)

  19. A Criticality Evaluation of the GBC-32 Dry Storage Cask in PWR Burnup Credit

    International Nuclear Information System (INIS)

    The current criticality safety evaluation assumes the only unirradiated fresh fuels with the maximum enrichment in a dry storage cask (DSC) for conservatism without consideration of the depletion of fissile nuclides and the generation of neutron-absorbing fission products. However, the large conservatism leads to the significant increase of the storage casks required. Thus, the application of burnup credit which takes credit for the reduction of reactivity resulted from fuel depletion can increase the capacity in storage casks. On the other hand, the burnup credit application introduces lots of complexity into a criticality safety analysis such as the accurate estimation of the isotopic inventories and the burnup of UNFs and the validation of the criticality calculation. The criticality evaluation with an effect of burnup credit was performed for the DSC of GBC-32 by using SCALE 6.1/STARBUCS. keff values were calculated as a function of burnup and cooling time for four initial enrichments of 2, 3, 4, and 5 wt. % 235U. The values were calculated for the burnup range of 0 to 60,000 MWD/MTU, in increments of 10,000 MWD/MTU, and for five cooling times of 0, 5, 10, 20, and 40 years

  20. Radionuclide Release from High Burnup Fuel

    International Nuclear Information System (INIS)

    In this paper we investigate the production, evolution and release of radioactive fission products in a light water reactor. The production of the nuclides is determined by the neutronics, their evolution in the fuel by local temperature and by the fuel microstructure and the rate of release is governed by the scenario and the properties of the microstructure where the nuclides reside. The problem combines fields of reactor physics, fuel behaviour analysis and accident analysis. Radionuclide evolution during fuel reactor life is also important for determination of instant release fraction of final repository analysis. The source term problem is investigated by literature study and simulations with reactor physics code Serpent as well as fuel performance code ENIGMA. The capabilities of severe accident management codes MELCOR and ASTEC for describing high burnup structure effects are reviewed. As the problem is multidisciplinary in nature the transfer of information between the codes is studied. While the combining of the different fields as they currently are is challenging, there are some possibilities to synergy. Using reactor physics tools capable of spatial discretization is necessary for determining the HBS inventory. Fuel performance studies can provide insight how the HBS should be modelled in severe accident codes, however the end effect is probably very small considering the energetic nature of the postulated accidents in these scenarios. Nuclide release in severe accidents is affected by fuel oxidation, which is not taken into account by ANSI/ANS-5.4 but could be important in some cases, and as such, following the example of severe accident models would benefit the development of fuel performance code models. (author)

  1. WWER fuel behaviour and characteristics at high burnup

    International Nuclear Information System (INIS)

    The increase of fuel burnup in fuel rods is a task that provides a considerable cost reduction of WWER fuel cycle in case of its solution. Investigations on fuel and cladding behaviour and change in fuel characteristics under irradiation are carried out in the Russian Federation for standard and as well as for experimental fuel rods to validate the reliable and safe operation of the fuel rods at high burnups. The paper presents the results of examinations on cracking, dimensional, structural and density changes of fuel pellets as well as the results of examination on corrosion and mechanical properties of WWER-440 and WWER-1000 fuel rod claddings. (author)

  2. Implementation of burnup credit in spent fuel management systems

    International Nuclear Information System (INIS)

    Improved calculational methods allow one to take credit for the reactivity reduction associated with fuel burnup. This means reducing the analysis conservatism while maintaining an adequate safety margin. The motivation for using burnup credit in criticality safety applications is based on economic considerations and additional benefits contributing to public health and safety and resource conservation. Interest in the implementation of burnup credit has been shown by many countries. In 1997, the International Atomic Energy Agency (IAEA) started a task to monitor the implementation of burnup credit in spent fuel management systems, to provide a forum to exchange information, to discuss the matter and to gather and disseminate information on the status of national practices of burnup credit implementation in the Member States. The task addresses current and future aspects of burnup credit. This task was continued during the following years. (author)

  3. Thorium fuel cycle study for PWR applications

    International Nuclear Information System (INIS)

    A nuclear design feasibility of thorium fueled high converting PWR was investigated. Two kinds of fuel design option were tested for the comparison with conventional UO2 fuel. The first one was an application of MHTGR pyro-carbon coated particle fuels. The other design was an application of MOX fuels as a ThO2-PuO2 ceramic pellet. In the case of carbon-coated particle fuels, there was no benefit in nuclear design aspect because enrichment of U-235 was required over 5 w/o in order to match with the K-infinite of Ulchin-3/4 fuels. However, the use of thorium based plutonium fuels in PWR gave favorable aspects in nuclear design such as flatter K-infinite curve, lower M. T. C. and lower F. T. C. than that of UO2 fuel. (author). 6 refs., 3 tabs., 6 figs

  4. Thorium fuel cycle study for PWR applications

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jae Yong; Kim, Myung Hyun [Kyung Hee Univ., Seoul (Korea, Republic of)

    1997-12-31

    A nuclear design feasibility of thorium fueled high converting PWR was investigated. Two kinds of fuel design option were tested for the comparison with conventional UO{sub 2} fuel. The first one was an application of MHTGR pyro-carbon coated particle fuels. The other design was an application of MOX fuels as a ThO{sub 2}-PuO{sub 2} ceramic pellet. In the case of carbon-coated particle fuels, there was no benefit in nuclear design aspect because enrichment of U-235 was required over 5 w/o in order to match with the K-infinite of Ulchin-3/4 fuels. However, the use of thorium based plutonium fuels in PWR gave favorable aspects in nuclear design such as flatter K-infinite curve, lower M. T. C. and lower F. T. C. than that of UO{sub 2} fuel. (author). 6 refs., 3 tabs., 6 figs.

  5. The effects of fission gas release on PWR fuel rod design and performance

    International Nuclear Information System (INIS)

    The purpose of this investigation was to determine the effects of fission gas release on PWR fuel rod design and performance. Empirical models were developed from fission gas release data. Fission gas release during normal operation is a function of burnup. There is little additional fission gas release during anticipated transients. The empirical models were used to evaluate Westinghouse fuel rod designs. It was determined that fission gas release is not a limiting parameter for obtaining rod average burnups in the range of 50 000 to 60 000 MWD/MTU. Fission gas release during anticipated transients has a negligible effect on the margins to rod design limits. (author)

  6. The effects of fission gas release on PWR fuel rod design and performance

    International Nuclear Information System (INIS)

    The purpose of this investigation was to determine the effects of fission gas release on PWR fuel rod design and performance. Empirical models were developed from fission gas release data. Fission gas release during normal operation is a function of burnup. There is little additional fission gas release during anticipated transients. The empirical models were used to evaluate Westinghouse fuel rod designs. It was determined that fission gas release is not a limiting parameter for obtaining rod average burnups in the range of 50,000 to 60,000 MWD/MTU. Fission gas release during anticipated transients has a negligible effect on the margins to rod design limits. (author)

  7. Program of monitoring PWR fuel in Spain

    International Nuclear Information System (INIS)

    In the year 2000 the PWR utilities: Centrales Nucleares Almaraz-Trillo (CNAT) and Asociacion Nuclear Asco-Vandellos (ANAV), and ENUSA Industrias Avanzadas developed and executed a coordinated strategy named PIC (standing for Coordinated Research Program), for achieving the highest level of fuel reliability. The paper will present the scope and results of this program along the years and will summarize the way the changes are managed to ensure fuel integrity. The excellent performance of the ENUSA manufactured fuel in the PWR Spanish NPPs is the best indicator that the expectations on this program are being met. (Author)

  8. Manufacture of nuclear fuel elements for commercial PWR in China

    International Nuclear Information System (INIS)

    Yibin Nuclear Fuel Element Plant (YFP) under the leadership of China National Nuclear Corporation is sole manufacturer in China to specialize in the production of fuel assemblies and associated core components for commercial PWR nuclear power plant. At the early of 1980's, it began to manufacture fuel assemblies and associated core components for the first core of QINSHAN 300 MW nuclear power plant designed and built by China itself. With the development of nuclear power industry in China and the demand for localization of nuclear fuel elements in the early 1990's, YFP cooperated with FRAMATOME France in technology transfer for design and manufacturing of AFA 2G fuel assembly and successfully supplied the qualified fuel assemblies for the reloads of two units of GUANGDONG Da Ya Bay 900 MW nuclear power plant (Da Ya Bay NPP), and has achieved the localization of fuel assemblies and nuclear power plants. Meanwhile, it supplied fuel assemblies and associated core components for the first core and further reloads of Pakistan CHASHMA 300 MW nuclear power plant which was designed and built by China, and now it is manufacturing AFA 2G fuel assemblies and associated core components for the first core of two units of NPQJVC 600 MW nuclear power plant. From 2001 on, YFP will be able to supply Da Ya Bay NPP with the third generation of fuel assembly-AFA 3G which is to realize a strategy to develop the fuel assembly being of long cycle reload and high burn-up

  9. PWR fuel behavior: lessons learned from LOFT

    International Nuclear Information System (INIS)

    A summary of the experience with the Loss-of-Fluid Test (LOFT) fuel during loss-of-coolant experiments (LOCEs), operational and overpower transient tests and steady-state operation is presented. LOFT provides unique capabilities for obtaining pressurized water reactor (PWR) fuel behavior information because it features the representative thermal-hydraulic conditions which control fuel behavior during transient conditions and an elaborate measurement system to record the history of the fuel behavior

  10. Key issues in nuclear fuel cycle concerning high burn-up strategy

    International Nuclear Information System (INIS)

    In the present high burn-up strategy in Japan, the economic efficiency and reduction of the spent nuclear fuel have been in progress. On the other hand, in the further progress of the strategy, several issues may appear. The amount and activity of nuclides, heat generation, and radiation for a fuel pin in the typical 17x17 PWR assembly were calculated as functions of burn-up and cooling time, using the SWAT code system. Waste loading in glass waste forms from spent UO2 fuel and MOX fuel were discussed, assuming the number of glass canisters of 150 liter per THM is 1.25 at 45 GWd/THM. The number of glass canisters per GWd is almost constant in the range of burn-up up to 70 GWd/THM. The amount of molybdate from Pu-239 fissions linearly increases as a function of burn-up similarly like increase from U-235 fissions. The current vitrification technology may not face serious situation to be required substantial reduction in waste loading relating to molybdate up to 70 GWd/THM. The initial cooling period prior to vitrification, the waste loading and the interim storage period prior to final disposal are major factors which determine the way of storage and final disposal. The higher burn-up above 45 GWd/THM may require pretreatment of HLLW or substantial reduction in waste loading to retain the integrity of the ceramic melter for e.g. five years. Further promotion of high burn-up strategy should be consistent with nuclear fuel cycle including waste management. A potential approach, a conceptual new reprocessing system for thermal reactors is described. (author)

  11. Burnup and plutonium distribution of WWER-440 fuel pin at extended burnup

    International Nuclear Information System (INIS)

    The formation of rim region in LWR UO2 based nuclear fuel at high burnup is a common observation. This region has very high porosity due to excessive gas release. Such a region is also characterized by a significantly high plutonium concentration and high local burnup compared to the internal fuel region. Spatial distribution of these parameters has been incorporated with fuel behavior and performance analysis codes by using mostly empirical relations. Variation of these parameters depends on the neutron flux as well as neutron energy spectrum. Detailed neutronics analysis is necessary for the accurate prediction of these parameters. This study is performed by MCNP4B Monte Carlo code for the calculation of local neutron flux, ORIGEN2 for burnup and depletion calculations, and MONTEBURNS for coupling these codes. For the analysis, a typical WWER-440 fuel pin and surrounding water moderator are considered in a hexagonal pin cell. Fuel pin is divided into a number of radial segments. A relatively small mesh size is used at the region near the surface to reveal the rim effect. The variation of plutonium and local burnup are obtained for high burnup. Results are compared with existing experimental observations for WWER-440 fuel and other theoretical predictions

  12. Development of burnup dependent fuel rod model in COBRA-TF

    Science.gov (United States)

    Yilmaz, Mine Ozdemir

    The purpose of this research was to develop a burnup dependent fuel thermal conductivity model within Pennsylvania State University, Reactor Dynamics and Fuel Management Group (RDFMG) version of the subchannel thermal-hydraulics code COBRA-TF (CTF). The model takes into account first, the degradation of fuel thermal conductivity with high burnup; and second, the fuel thermal conductivity dependence on the Gadolinium content for both UO2 and MOX fuel rods. The modified Nuclear Fuel Industries (NFI) model for UO2 fuel rods and Duriez/Modified NFI Model for MOX fuel rods were incorporated into CTF and fuel centerline predictions were compared against Halden experimental test data and FRAPCON-3.4 predictions to validate the burnup dependent fuel thermal conductivity model in CTF. Experimental test cases from Halden reactor fuel rods for UO2 fuel rods at Beginning of Life (BOL), through lifetime without Gd2O3 and through lifetime with Gd 2O3 and a MOX fuel rod were simulated with CTF. Since test fuel rod and FRAPCON-3.4 results were based on single rod measurements, CTF was run for a single fuel rod surrounded with a single channel configuration. Input decks for CTF were developed for one fuel rod located at the center of a subchannel (rod-centered subchannel approach). Fuel centerline temperatures predicted by CTF were compared against the measurements from Halden experimental test data and the predictions from FRAPCON-3.4. After implementing the new fuel thermal conductivity model in CTF and validating the model with experimental data, CTF model was applied to steady state and transient calculations. 4x4 PWR fuel bundle configuration from Purdue MOX benchmark was used to apply the new model for steady state and transient calculations. First, one of each high burnup UO2 and MOX fuel rods from 4x4 matrix were selected to carry out single fuel rod calculations and fuel centerline temperatures predicted by CTF/TORT-TD were compared against CTF /TORT-TD /FRAPTRAN

  13. VANTAGE 5 PWR fuel assembly demonstration program at Virgil C. Summer nuclear station

    International Nuclear Information System (INIS)

    VANTAGE 5 is an improved PWR fuel product designed and manufactured by Westinghouse Electric Corporation. The VANTAGE 5 fuel design features integral fuel burnable absorbers, intermediate flow mixer grids, axial blankets, high burnup capability, and a reconstitutable top nozzle. A demonstration program for this fuel design commenced in late 1984 in cycle 2 of the Virgil C. Summer Nuclear Station. Objectives for VANTAGE 5 fuel are reduced fuel cycle costs, better core operating margins, and increased design and operating flexibility. Inspections of the VANTAGE 5 demonstration assemblies are planned at each refueling outage

  14. Parametric Study of the Effect of Burnable Poison Rods for PWR Burnup Credit

    International Nuclear Information System (INIS)

    The Interim Staff Guidance on burnup credit (ISG-8) issued by the United States (U.S.) Nuclear Regulatory Commission's (NRC) Spent Fuel Project Office recommends restricting the use of burnup credit to assemblies that have not used burnable absorbers. This recommended restriction eliminates a large portion of the currently discharged spent fuel assemblies from cask loading, and thus severely limits the practical usefulness of burnup credit. In the absence of readily available information on burnable poison rod (BPR) design specifications and usage in U.S. pressurized water reactors (PWRs), and the subsequent reactivity effect of BPR exposure on discharged spent nuclear fuel (SNF), NRC staff has indicated a need for additional information in these areas. In response, this report presents a parametric study of the effect of BPR exposure on the reactivity of SNF for various BPR designs, fuel enrichments, and exposure conditions, and documents BPR design specifications. Trends in the reactivity effects of BPRs are established with infinite pin-cell and assembly array calculations with the SCALE and HELIOS code packages, respectively. Subsequently, the reactivity effects of BPRs for typical initial enrichment and burnup combinations are quantified based on three-dimensional (3-D) KENO V.a Monte Carlo calculations with a realistic rail-type cask designed for burnup credit. The calculations demonstrate that the positive reactivity effect due to BPR exposure increases nearly linearly with burnup and is dependent on the number, poison loading, and design of the BPRs and the initial fuel enrichment. Expected typical reactivity increases, based on one-cycle BPR exposure, were found to be less than 1% Δk. Based on the presented analysis, guidance is offered on an appropriate approach for calculating bounding SNF isotopic data for assemblies exposed to BPRs. Although the analyses do not address the issue of validation of depletion methods for assembly designs with BPRs, they

  15. Parametric Study of the Effect of Burnable Poison Rods for PWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.C.

    2001-09-28

    The Interim Staff Guidance on burnup credit (ISG-8) issued by the United States Nuclear Regulatory Commission's (U.S. NRC) Spent Fuel Project Office recommends restricting the use of burnup credit to assemblies that have not used burnable absorbers. This recommended restriction eliminates a large portion of the currently discharged spent fuel assemblies from cask loading, and thus severely limits the practical usefulness of burnup credit. In the absence of readily available information on burnable poison rod (BPR) design specifications and usage in U.S. pressurized-water-reactors (PWRs), and the subsequent reactivity effect of BPR exposure on discharged spent nuclear fuel (SNF), NRC staff has indicated a need for additional information in these areas. In response, this report presents a parametric study of the effect of BPR exposure on the reactivity of SNF for various BPR designs, fuel enrichments, and exposure conditions, and documents BPR design specifications. Trends in the reactivity effects of BPRs are established with infinite pin-cell and assembly array calculations with the SCALE and HELIOS code packages, respectively. Subsequently, the reactivity effects of BPRs for typical initial enrichment and burnup combinations are quantified based on three-dimensional (3-D) KENO V.a Monte Carlo calculations with a realistic rail-type cask designed for burnup credit. The calculations demonstrate that the positive reactivity effect due to BPR exposure increases nearly linearly with burnup and is dependent on the number, poison loading, and design of the BPRs and the initial fuel enrichment. Expected typical reactivity increases, based on one-cycle BPR exposure, were found to be less than 1% {Delta}k. Based on the presented analysis, guidance is offered on an appropriate approach for calculating bounding SNF isotopic data for assemblies exposed to BPRs. Although the analyses do not address the issue of validation of depletion methods for assembly designs with BPRs

  16. Reactivity and neutron emission measurements of burnt PWR fuel rod samples in LWR-PROTEUS phase II

    International Nuclear Information System (INIS)

    Measurements have been made of the reactivity effects and the neutron emission rates of uranium oxide and mixed oxide burnt fuel samples having a wide range of burnup values and coming from a Pressurised Water Reactor (PWR). The reactivity measurements have been made in a PWR lattice moderated in turn with: water, a water and heavy water mixture, and water containing boron. An interesting relationship has been found between the neutron emission rate and the measured reactivity. (authors)

  17. HEXBU-3D, a three-dimensional PWR-simulator program for hexagonal fuel assemblies

    International Nuclear Information System (INIS)

    HEXBU-3D is a three-dimensional nodal simulator program for PWR reactors. It is designed for a reactor core that consists of hexagonal fuel assemblies and of big follower-type control assemblies. The program solves two-group diffusion equations in homogenized fuel assembly geometry by a sophisticated nodal method. The treatment of feedback effects from xenon-poisoning, fuel temperature, moderator temperature and density and soluble boron concentration are included in the program. The nodal equations are solved by a fast two-level iteration technique and the eigenvalue can be either the effective multiplication factor or the boron concentration of the moderator. Burnup calculations are performed by tabulated sets of burnup-dependent cross sections evaluated by a cell burnup program. HEXBY-3D has been originally programmed in FORTRAN V for the UNIVAC 1108 computer, but there is also another version which is operable on the CDC CYBER 170 computer. (author)

  18. Instrumentation for measuring the burnup of spent nuclear fuel

    International Nuclear Information System (INIS)

    Many different methods or procedures have been developed to measure reactivity of fissil materials. Few of these, however, have been designed specifically for light water reactor fuel or have actually been used to measure the reactivity of spent fuel. The methods that have been used to make measurements of related systems are the 252Cf source-driven noise analysis method, a noise analysis method using natural neutron sources, subcritical assembly measurements, and pulsed neutron techniques. Several different approaches to directly measuring burnup have been developed by various organizations. The experimental work on actual spent nuclear fuel utilizing reactivity measurement techniques is insufficient to provide conclusive evidence of the applicability of these techniques for verifying fuel burnup. The work with burnup meters indicates, however, that good correlations can be obtained with any of the systems. A burnup meter's primary function would be a secondary assurance that the administrative records are not grossly in error. Reactivity measurements provide information relating to the reactivity of the fuel only under the conditions measured. Criticality prevention design requirements will necessitate that casks accommodate a minimum burnup level for a given initial enrichment (i.e., a maximum reactivity). Direct measurement of the burnup will enable an easy determination of whether a particular fuel assembly can be shipped in a specific cask with a minimum number of additional correlations

  19. Research on irradiation behavior of superhigh burnup fuel

    International Nuclear Information System (INIS)

    In Japan Atomic Energy Research Institute, the special team for LWR future technology development project was organized in Tokai Research Establishment from October, 1991 to the end of fiscal year 1993. Due to the delay of the introduction of fast reactors, LWRs are expected to be used for considerably long period also in 21st century, therefore, it aimed at the further advancement of LWRs, and as one of its embodiments, the concept of superhigh burnup fuel was investigated. The superhigh burnup fuel aims at the attainment of 100 GWd/t burnup, and it succeeded the achievement of the conceptual design study on 'superlong life LWRs'. It is generally recognized that the development of the new material that substitutes for zircaloy is indispensable for superhigh burnup fuel. The concept of superhigh burnup core and the specification of fuel, the research and development of superhigh burnup fuel, the research on the irradiation behavior and irradiation damage of fuel and the damage by ion irradiation, and the method and the results of the irradiation experiment using a tandem accelerator are reported. (K.I.)

  20. Research on irradiation behavior of superhigh burnup fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Kimio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1995-03-01

    In Japan Atomic Energy Research Institute, the special team for LWR future technology development project was organized in Tokai Research Establishment from October, 1991 to the end of fiscal year 1993. Due to the delay of the introduction of fast reactors, LWRs are expected to be used for considerably long period also in 21st century, therefore, it aimed at the further advancement of LWRs, and as one of its embodiments, the concept of superhigh burnup fuel was investigated. The superhigh burnup fuel aims at the attainment of 100 GWd/t burnup, and it succeeded the achievement of the conceptual design study on `superlong life LWRs`. It is generally recognized that the development of the new material that substitutes for zircaloy is indispensable for superhigh burnup fuel. The concept of superhigh burnup core and the specification of fuel, the research and development of superhigh burnup fuel, the research on the irradiation behavior and irradiation damage of fuel and the damage by ion irradiation, and the method and the results of the irradiation experiment using a tandem accelerator are reported. (K.I.).

  1. Comparison of Computational Estimations of Reactivity Margin From Fission Products and Minor Actinides in PWR Burnup Credit

    International Nuclear Information System (INIS)

    This paper has presented the results of a computational benchmark and independent calculations to verify the benchmark calculations for the estimation of the additional reactivity margin available from fission products and minor actinides in a PWR burnup credit storage/transport environment. The calculations were based on a generic 32 PWR-assembly cask. The differences between the independent calculations and the benchmark lie within 1% for the uniform axial burnup distribution, which is acceptable. The Δk for KENO - MCNP results are generally lower than the other Δk values, due to the fact that HELIOS performed the depletion part of the calculation for both the KENO and MCNP results. The differences between the independent calculations and the benchmark for the non-uniform axial burnup distribution were within 1.1%

  2. Analysis of reactivity worths of highly-burnt PWR fuel samples measured in LWR-PROTEUS Phase II

    International Nuclear Information System (INIS)

    The reactivity loss of PWR fuel with burnup has been determined experimentally by inserting fresh and highly-burnt fuel samples in a PWR test lattice in the framework of the LWR-PROTEUS Phase II programme. Seven UO2 samples irradiated in a Swiss PWR plant with burnups ranging from ∼40 to ∼120 MWd/kg and four MOX samples with burnups up to ∼70 MWd/kg were oscillated in a test region constituted of actual PWR UO2 fuel rods in the centre of the PROTEUS zero-power experimental facility. The measurements were analyzed using the CASMO-4E fuel assembly code and a cross section library based on the ENDF/B-VI evaluation. The results show close proximity between calculated and measured reactivity effects and no trend for a deterioration of the quality of the prediction at high burnup. The analysis thus demonstrates the high accuracy of the calculation of the reactivity of highly-burnt fuel. (authors)

  3. Effects of cladding and pellet variables on PWR fuel rod performance

    International Nuclear Information System (INIS)

    Two standard 15 x 15 PWR fuel assemblies containing test fuel rods were irradiated to an average burnup of 24,500 MWD/MTU through two cycles of operation. The assemblies had a total of 56 experimental fuel rods representing four different cladding types and two different fuel pellet types in rods located in peripheral positions. Sixteen of these test rods, representing all eight cladding/pellet combinations, were extracted from one of these assemblies for extensive nondestructive examination in the B and W LRC Hot Cells. The results obtained thus far indicate significant differences in cladding deformation and fuel pellet densification

  4. NFCSim: A Dynamic Fuel Burnup and Fuel Cycle Simulation Tool

    International Nuclear Information System (INIS)

    NFCSim is an event-driven, time-dependent simulation code modeling the flow of materials through the nuclear fuel cycle. NFCSim tracks mass flow at the level of discrete reactor fuel charges/discharges and logs the history of nuclear material as it progresses through a detailed series of processes and facilities, generating life-cycle material balances for any number of reactors. NFCSim is an ideal tool for analysis - of the economics, sustainability, or proliferation resistance - of nonequilibrium, interacting, or evolving reactor fleets. The software couples with a criticality and burnup engine, LACE (Los Alamos Criticality Engine). LACE implements a piecewise-linear, reactor-specific reactivity model for its criticality calculations. This model constructs fluence-dependent reactivity traces for any facility; it is designed to address nuclear economies in which either a steady state is never obtained or is a poor approximation. LACE operates in transient and equilibrium fuel management regimes at the refueling batch level, derives reactor- and cycle-dependent initial fuel compositions, and invokes ORIGEN2.x to carry out burnup calculations

  5. Calculation of source term in spent PWR fuel assemblies for dry storage and shipping cask design

    International Nuclear Information System (INIS)

    Using the ORIGEN-2 Coda, the decay heat and neutron and photon sources for an irradiated PWR fuel element have been calculated. Also, parametric studies on the behaviour of the magnitudes with the burn-up, linear heat power and irradiation and cooling times were performed. Finally, a comparison between our results and other design calculations shows a good agreement and confirms the validity of the used method. (Author) 6 refs

  6. Consequences of the increase of burnup on the fuel

    International Nuclear Information System (INIS)

    The examinations carried out on the FRAGEMA fuel of EDF reactors show its good behavior in service. The results of research and development programs developed by EDF, FGA and the CEA show that this fuel can be irradiated up to a high burnup, and allow to point out the axies of research to improve still the performance of the product in a more and more soliciting environment (increase of power and burnup coupled with load following). Among the solutions considered, there are the design and fabrication adjustments (geometry, initial pressurization), more fundamental changes concerning fuel cans and fuel pellets, which need still research and development programs

  7. Utilization of spent PWR fuel-advanced nuclear fuel cycle of PWR/CANDU synergism

    Institute of Scientific and Technical Information of China (English)

    HUO Xiao-Dong; XIE Zhong-Sheng

    2004-01-01

    High neutron economy, on line refueling and channel design result in the unsurpassed fuel cycle flexibility and variety for CANDU reactors. According to the Chinese national conditions that China has both PWR and CANDU reactors and the closed cycle policy of reprocessing the spent PWR fuel is adopted, one of the advanced nuclear fuel cycles of PWR/CANDU synergism using the reprocessed uranium of spent PWR fuel in CANDU reactor is proposed, which will save the uranium resource (~22.5%), increase the energy output (~41%), decrease the quantity of spent fuels to be disposed (~2/3) and lower the cost of nuclear power. Because of the inherent flexibility of nuclear fuel cycle in CANDU reactor, and the low radiation level of recycled uranium(RU), which is acceptable for CANDU reactor fuel fabrication, the transition from the natural uranium to the RU can be completed without major modification of the reactor core structure and operation mode. It can be implemented in Qinshan Phase Ⅲ CANDU reactors with little or no requirement of big investment in new design. It can be expected that the reuse of recycled uranium of spent PWR fuel in CANDU reactor is a feasible and desirable strategy in China.

  8. Burnup credit considerations in dry spent-fuel storage licensing

    International Nuclear Information System (INIS)

    Burnup credit has been allowed in reactor basin spent-fuel storage at pressurized water reactors for a number of years. However, such storage occurs under strict administrative, procedural, and design controls. In recent years, dry spent-fuel storage cask vendors have expressed interest in designing cask fuel baskets with allowance for burnup credit. At last year's American Nuclear Society Winter Meeting, an ad hoc session was organized and authorized on burnup credit for dry storage and transportation casks. It has become clear that some utilities are interested in burnup credit for dry storage designs. Given this, the US Nuclear Regulatory Commission (NRC) staff is examining the technical issues involved in allowing burnup credit. Analytical work focused on the development of branch technical positions for determination of burnup credit for dry spent-fuel storage technology designs has begun. Procedural and administrative issues will be examined, based on licensing experience, and will also be the subject of branch technical positions. At an appropriate time, preparation of regulatory guides will be considered

  9. Uranium and plutonium determinations for evaluation of high burnup fuel performance

    International Nuclear Information System (INIS)

    Purpose of this work is to experimentally test computational methods being developed for reactor fuel operation. Described are the analytical techniques used in the determination of uranium and plutonium compositions on PWR fuel that has spanned five power cycles, culminating in 55,000 to 57,000 MWd/T burnup. Analyses have been performed on ten samples excised from selected sections of the fuel rods. Hot cell operations required the separation of fuel from cladding and the comminution of the fuel. These tasks were successfully accomplished using a SpectroMil, a ball pestle impact grinding and blending instrument manufactured by Chemplex Industries, Inc., Eastchester, New York. The fuel was dissolved using strong mineral acids and bomb dissolution techniques. Separation of the fuel from fission products was done by solvent (hexone) extraction. Fuel isotopic compositions and assays were determined by the mass spectrometric isotope dilution (MSID) method using NBS standards SRM-993 and SRM-996. Alpha spectrometry was used to determine the 238Pu composition. Relative correlations of composition with burnup were obtained by gamma-ray spectrometry of selected fission products in the dissolved fuel

  10. Impact of extended burnup on the nuclear fuel cycle

    International Nuclear Information System (INIS)

    The Advisory Group Meeting was held in Vienna from 2 to 5 December 1991, to review, analyse, and discuss the effects of burnup extension in both light and heavy water reactors on all aspects of the fuel cycle. Twenty experts from thirteen countries participated in this meeting. There was consensus that both economic and environmental benefits are driving forces toward the achievement of higher burnups and that the present trend of burnup extension may be expected to continue. The extended burnup has been considered for the three main stages of the fuel cycle: the front end, in-reactor issues and the back end. Thirteen papers were presented. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  11. Automated system for determining the burnup of spent nuclear fuel

    Directory of Open Access Journals (Sweden)

    Mokritskii V. A.

    2014-12-01

    Full Text Available The authors analyze their experience in application of semi-conductor detectors and development of a breadboard model of the monitoring system for spent nuclear fuel (SNF. Such system should use CdZnTe-detectors in which one-charging gathering conditions are realized. The proposed technique of real time SNF control during reloading technological operations is based on the obtained research results. Methods for determining the burnup of spent nuclear fuel based on measuring the characteristics of intrinsic radiation are covered in many papers, but those metods do not usually take into account that the nuclear fuel used during the operation has varying degrees of initial enrichment, or a new kind of fuel may be used. Besides, the known methods often do not fit well into the existing technology of fuel loading operations and are not suitable for operational control. Nuclear fuel monitoring (including burnup determination system in this research is based on the measurement of the spectrum of natural gamma-radiation of irradiated fuel assemblies (IFA, as from the point of view of minimizing the time spent, the measurement of IFA gamma spectra directly during fuel loading is optimal. It is the overload time that is regulated rather strictly, and burnup control operations should be coordinated with the schedule of the fuel loading. Therefore, the real time working capacity of the system should be chosen as the basic criterion when constructing the structure of such burnup control systems.

  12. High burnup experience in PWRs

    International Nuclear Information System (INIS)

    The purpose of this paper is to summarize the high burnup experience of Westinghouse PWR fuel. The emphasis is on two regions of commercial PWR fuel that attained region average burnups greater than 36,000 MWD/MTU. One region operated under load follow conditions. The other region operated at base load conditions with a high average linear heat rating. Coolant activity data and post irradiation data were obtained. The post-irradiation data consisted of visual examinations, crud sampling, rod-to-rod dimensional changes, fuel column length changes, rod and assembly growth, assembly bow, fuel rod profilometry, grid spring relaxation, and fuel assembly sipping tests. The data showed that the fuel operated reliably to this burnup. Plans for irradiation to higher burnups are also discussed

  13. Behaviour of fuel rods of the second generation at high burnup WWER-440 fuel cycles. Aspects for attainment of burnup 70 MWd/kgU

    International Nuclear Information System (INIS)

    In this report an analysis of WWER-440 fuel of the second generation supplied by Russian JSC TVEL for high burnup fuel cycle is presented. The certificated code START-3 is applied to modeling of fuel rod operation parameters. Reliability of high-burnup fuel on the base of 5-6 year operation is demonstrated. Special attention is paid to aspects for attainment of burnup 70 MWd/kgU, including experimental and fuel modeling support and fuel operation experience

  14. Fabrication of PWR fuel assembly and CANDU fuel bundle

    International Nuclear Information System (INIS)

    For the project of localization of nuclear fuel fabrication, the R and D to establish the fabrication technology of CANDU fuel bundle as well as PWR fuel assembly was carried out. The suitable boss height and the prober Beryllium coating thickness to get good brazing condition of appendage were studied in the fabrication process of CANDU fuel rod. Basic Studies on CANLUB coating method also were performed. Problems in each fabrication process step and process flow between steps were reviewed and modified. The welding conditions for top and bottom nozzles, guide tube, seal and thimble screw pin were established in the fabrication processes of PWR fuel assembly. Additionally, some researches for a part of PWR grid brazing problems are also carried out

  15. Development of high burnup fuel data-base

    International Nuclear Information System (INIS)

    Development of high burnup fuel data base (HBDB) was studied, which stores various performance data of high burnup fuels using a personal computer. Data items of the data base and storing and display methods of time-depending data such as power history were studied. It was shown that compound systems of a personal computer and an engineering work station have capacity for constructing the data base with much efficiency and small cost. And comparison of data items between the data base and the EPRI fuel base FPDB was discussed. (author)

  16. Quality Assurance Review of ISOTOPE and ORIGEN Decay Masses for PWR Fuel (51 GWd/MTU)

    International Nuclear Information System (INIS)

    This memorandum documents the comparison of ISOTOPE decay mass calculations for PWR 51GW fuel with analogous calculations in ORIGEN. ISOTOPE and ORIGEN are two tools that compute the mass of radionuclides as they decay over time. In an effort to provide decay heat figures for selected used nuclear fuels, the UFD campaign identified ISOTOPE as the preferred tool to compute radionuclide masses. ISOTOPE was selected over ORIGEN because of its relative ease to integrate with current tools used to calculate waste stream volumes associated with selected fuels and fuel cycles. This memorandum documents the comparison of decay mass calculations for PWR fuel with burnup of 51 GWd/MTU in ISOTOPE with analogous calculations in ORIGEN. Two comparisons were made: a 'horizontal cut' comparing the masses of selected radionuclides over time; and a 'vertical cut' comparing the masses of radionuclides common to both tools at selected years. This analysis indicates that decay mass calculations for PWR fuel with burnup of 51 GWd/MTU using ISOTOPE yield essentially the same results as those calculated using ORIGEN for the first thousand years after discharge from the reactor. While the results for the two methodologies begin to diverge after this time for some radionuclides, the difference in mass across all radionuclides is still less than a tenth of a percent of the ORIGEN mass even at one million years.

  17. Criticality Analysis of Assembly Misload in a PWR Burnup Credit Cask

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J. C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2008-01-31

    The Interim Staff Guidance on bumup credit (ISG-8) for spent fuel in storage and transportation casks, issued by the Nuclear Regulatory Commission's Spent Fuel Project Office, recommends a bumup measurement for each assembly to confirm the reactor record and compliance with the assembly bumup value used for loading acceptance. This recommendation is intended to prevent unauthorized loading (misloading) of assemblies due to inaccuracies in reactor burnup records and/or improper assembly identification, thereby ensuring that the appropriate subcritical margin is maintained. This report presents a computational criticality safety analysis of the consequences of misloading fuel assemblies in a highcapacity cask that relies on burnup credit for criticality safety. The purpose of this report is to provide a quantitative understanding of the effects of fuel misloading events on safety margins. A wide variety of fuel-misloading configurations are investigated and results are provided for informational purposes. This report does not address the likelihood of occurrence for any of the misload configurations considered. For representative, qualified bumup-enrichment combinations, with and without fission products included, misloading two assemblies that are underburned by 75% results in an increase in keff of 0.025-0.045, while misloading four assemblies that are underburned by 50% also results in an increase in keff of 0.025-0.045. For the cask and conditions considered, a reduction in bumup of 20% in all assemblies results in an increase in kff of less than 0.035. Misloading a single fresh assembly with 3, 4, or 5 wt% 235U enrichment results in an increase in keffof--0.02, 0.04, or 0.06, respectively. The report concludes with a summary of these and other important findings, as well as a discussion of relevant issues that should be considered when assessing the appropriate role of burnup measurements.

  18. The Design Method for the ATR High Burnup MOX Fuel

    International Nuclear Information System (INIS)

    The Power Reactor and Nuclear Fuel Development Corporation (PNC) has developed the advanced thermal reactor (ATR). PNC is demonstrating MOX fuel utilization in a prototype of ATR, Fugen (165 MWe), in which 638 MOX fuel assemblies have been loaded without a failure since 1979. PNC is developing the high burn-up MOX fuel for the ATR to contribute to MOX fuels for thermal reactors. The statistical design evaluation method that included the MOX fuel rod performance evaluation code 'FEMAXI-ATR' was developed for the ATR high bum-up MOX fuel rod; it was verified that the integrity of the fuel could be maintained over the whole irradiation period

  19. Economics of VVER Fuel Cycles Leading to High Discharge Burnup

    International Nuclear Information System (INIS)

    Economic characteristics of equilibrium VVER fuel cycles leading to high discharge burnup are investigated by supposing two scenarios named optimistic and pessimistic. The optimistic and pessimistic terms are used in the sense whether the high burnup fuel cycles are economically advantageous or the increasing enrichment cost can increase the specific fuel cycle cost above a certain discharge burnup value. Therefore in case of the optimistic scenario, maximum fabrication and back end costs and minimum enrichment and raw uranium costs were applied, while in case of the pessimistic scenario vice-versa. The applied costs are detailed in Table 1. Table1 Cost data of the two different scenarios. Concerning the transport and storage during the front end fuel cycle, it was assumed that application of burnable poison solves the criticality problems caused by the increased enrichment. By using the advantage of the burnup credit, the subcriticality of the spent fuel storage and transport devices can also be proved. Large reserve in the biological shielding is supposed. According to the above argumentation, fixed cost of the front and back end fuel cycle was used in the calculations, except the enrichment, but a 700 $/pin extra fabrication cost of the burnable poison was taken into account. Instead of fixed batch fraction, fixed cycle length was assumed which is advantageous for maximizing the discharge burnup and for minimizing the burnable poison extra cost but disadvantageous concerning the availability factor, which is constant in the given calculations. Beside the economic characteristics, the feasibility of the cycles are investigated from the point of view of the most important safety related parameters like reactivity coefficients and shut down margin. The figure below shows the burnup dependent fuel cycle cost for the above two scenarios. (author)

  20. Progress of PWR reactor fuels: OSIRIS equipments

    International Nuclear Information System (INIS)

    The experimental reactor Osiris situated at the Saclay Nuclear Centre is a reactor fitted with tests and monitoring facilities. Of the pool and open core type, it can test the test fuel of PWR power stations under high neutron flux. The characteristic stresses of the operating states of power reactors can be reproduced in experimental devices suited to the various study subjects, be this the creep and deformation of zircaloy claddings, the behavior of fuel rods to power ramps, to load following, to remote regulation, to the cooling state in double phase or just analytical tests. The experimental irradiation devices extend from the single static coolant capsule, such as the NaK alloy, to the dynamic coolant test loop that operates in the cooling conditions representative of PWR's including water chemistry. Ancillary devices make it possible to carry out examinations and non-destructive testing: immersed neutron radiography, gamma scanning visualization monitoring device, eddy currents, profilometering

  1. Fuel burnup analysis for the Moroccan TRIGA research reactor

    International Nuclear Information System (INIS)

    Highlights: ► A fuel burnup analysis of the 2 MW TRIGA MARK II Moroccan research reactor was established. ► Burnup calculations were done by means of the in-house developed burnup code BUCAL1. ► BUCAL1 uses the MCNP tallies directly in the calculation of the isotopic inventories. ► The reactor life time was found to be 3360 MW h considering full power operating conditions. ► Power factors and fluxes of the in-core irradiation positions are strongly affected by burnup. -- Abstract: The fundamental advantage and main reason to use Monte Carlo methods for burnup calculations is the possibility to generate extremely accurate burnup dependent one group cross-sections and neutron fluxes for arbitrary core and fuel geometries. Yet, a set of values determined for a material at a given position and time remains accurate only in a local region, in which neutron spectrum and flux vary weakly — and only for a limited period of time, during which changes of the local isotopic composition are minor. This paper presents the approach of fuel burnup evaluation used at the Moroccan TRIGA MARK II research reactor. The approach is essentially based upon the utilization of BUCAL1, an in-house developed burnup code. BUCAL1 is a FORTRAN computer code designed to aid in analysis, prediction, and optimization of fuel burnup performance in nuclear reactors. The code was developed to incorporate the neutron absorption reaction tally information generated directly by MCNP5 code in the calculation of fissioned or neutron-transmuted isotopes for multi-fueled regions. The fuel cycle length and changes in several core parameters such as: core excess reactivity, control rods position, fluxes at the irradiation positions, axial and radial power factors and other parameters are estimated. Besides, this study gives valuable insight into the behavior of the reactor and will ensure better utilization and operation of the reactor during its life-time and it will allow the establishment of

  2. Optimum fuel use in PWR reactors

    International Nuclear Information System (INIS)

    An optimization program was developed to calculate minimum-cost refuelling schedules for PWR reactors. Optimization was made over several cycles, without any constraints (equilibrium cycle). In developing the optimization program, special consideration was given to an individual treatment of every fuel element and to a sufficiently accurate calculation of all the data required for safe reactor operation. The results of the optimization program were compared with experimental values obtained at Obrigheim nuclear power plant. (orig.)

  3. Ultrasonic measurement of high burn-up fuel elastic properties

    International Nuclear Information System (INIS)

    The ultrasonic method developed for the evaluation of high burn-up fuel elastic properties is presented hereafter. The objective of the method is to provide data for fuel thermo-mechanical calculation codes in order to improve industrial nuclear fuel and materials or to design new reactor components. The need for data is especially crucial for high burn-up fuel modelling for which the fuel mechanical properties are essential and for which a wide range of experiments in MTR reactors and high burn-up commercial reactor fuel examinations have been included in programmes worldwide. To contribute to the acquisition of this knowledge the LAIN activity is developing in two directions. First one is development of an ultrasonic focused technique adapted to active materials study. This technique was used few years ago in the EdF laboratory in Chinon to assess the ageing of materials under irradiation. It is now used in a hot cell at ITU Karlsruhe to determine the elastic moduli of high burnup fuels from 0 to 110 GWd/tU. Some of this work is presented here. The second on going programme is related to the qualification of acoustic sensors in nuclear environments, which is of a great interest for all the methods, which work, in a hostile nuclear environment

  4. Burn-up measurement of irradiated rock-like fuels

    International Nuclear Information System (INIS)

    In order to obtain burn-up data of plutonium rock-like (ROX) fuels irradiated at JRR-3M in JAERI, destructive chemical analysis of zirconia or thoria system ROX fuels was performed after development of a new dissolution method. The dissolution method and procedure have been established using simulated ROX fuel, which is applicable to the hot-cell handling. Specimens for destructive chemical analysis were obtained by applying the present method to irradiated ROX fuels in a hot-cell. Isotopic ratios of neodymium and plutonium were determined by mass-spectrometry using the isotope dilution procedure. Burn-up of the irradiated ROX fuels was calculated by the 148Nd procedure using measured data. The burn-ups of thoria and zirconia system fuels that irradiated same location in the capsule showed almost same values. For the ROX fuel containing thorium, 233U was also determined by the same techniques in order to evaluate the effect of burn-up of thorium. As the result, it was found that the fission of 233U was below 1% of total fission number and could be negligible. In addition, americium and curium were determined by alpha-spectrometry. These data, together with isotopic ratio of plutonium, are important data to analyze the irradiation behavior of plutonium. (author)

  5. Prediction of fission gas pressure from high burnup oxide fuel

    International Nuclear Information System (INIS)

    The ELESIM fuel performance code incorporates a fundamentally based treatment of the relevant physical processes affecting fission gas release. The fission gas release model treats fission gas diffusion, formation and subsequent interlinkage of intergranular bubbles, grain boundary storage of gas, grain growth and fuel swelling. The latter case considers the contributions of thermal expansion, densification, solid fission products, and gas bubbles. The effect of porosity on fuel thermal conductivity is taken into account. Previously we showed predictions of the gas release model agreed well with measured values for oxide fuel with burnups to about 300 MW.h/kg U. The applicability of the model to high burnup fuel is examined using examples from the literature. The fission gas release range considered is about 1-100% for burnups to 1000 MW.h/kg U in thermal reactor fuel and 2400 MW.h/kg U in fast reactor fuel. Predicted and measured releases are shown to be in good agreement, suggesting that the fundamental model is correct. In some models, empirical correction factors are required at high burnup to achieve agreement between predicted and measured release values; no such factor is required in ELESIM. (auth)

  6. Fuel cycle cost considerations of increased discharge burnups

    International Nuclear Information System (INIS)

    Evaluations are presented that indicate the attainment of increased discharge burnups in light water reactors will depend on economic factors particular to individual operators. In addition to pure resource conserving effects and assuming continued reliable fuel performance, a substantial economic incentive must exist to justify the longer operating times necessary to achieve higher burnups. Whether such incentive will exist or not will depend on relative price levels of all fuel cycle cost components, utility operating practices, and resolution of uncertainties associated with the back-end of the fuel cycle. It is concluded that implementation of increased burnups will continue at a graduated pace similar to past experience, rather than finding universal acceptance of particular increased levels at any particular time

  7. Mechanical Property Evaluation of High Burnup PHWR Fuel Clads

    International Nuclear Information System (INIS)

    Assurance of clad integrity is of vital importance for the safe and reliable extension of fuel burnup. In order to study the effect of extended burnup of 15,000 MW∙d/tU on the performance of Pressurised Heavy Water Reactor (PHWR) fuel bundles of 19-element design, a couple of bundles were irradiated in Indian PHWR. The tensile property of irradiated cladding from one such bundle was evaluated using the ring tension test method. Using a similar method, claddings of mixed oxide (MOX) fuel elements irradiated in the pressurized water loop (PWL) of CIRUS to a burnup of 10,000 MW∙d/THM were tested. The tests were carried out both at ambient temperature and at 300°C. The paper will describe the test procedure, results generated and discuss the findings. (author)

  8. TRIGA fuel burn-up calculations and its confirmation

    International Nuclear Information System (INIS)

    The Cesium (Cs-137) isotopic concentration due to irradiation of TRIGA Fuel Elements FE(s) is calculated and measured at the Atominstitute (ATI) of Vienna University of Technology (VUT). The Cs-137 isotope, as proved burn-up indicator, was applied to determine the burn-up of the TRIGA Mark II research reactor FE. This article presents the calculations and measurements of the Cs-137 isotope and its relevant burn-up of six selected Spent Fuel Elements SPE(s). High-resolution gamma-ray spectroscopy based non-destructive method is employed to measure spent fuel parameters. By the employment of this method, the axial distribution of Cesium-137 for six SPE(s) is measured, resulting in the axial burn-up profiles. Knowing the exact irradiation history and material isotopic inventory of an irradiated FE, six SPE(s) are selected for on-site gamma scanning using a special shielded scanning device developed at the ATI. This unique fuel inspection unit allows to scan each millimeter of the FE. For this purpose, each selected FE was transferred to the fuel inspection unit using the standard fuel transfer cask. Each FE was scanned at a scale of 1 cm of its active length and the Cs-137 activity was determined as proved burn-up indicator. The measuring system consists of a high-purity germanium detector (HPGe) together with suitable fast electronics and on-line PC data acquisition module. The absolute activity of each centimeter of the FE was measured and compared with reactor physics calculations. The ORIGEN2, a one-group depletion and radioactive decay computer code, was applied to calculate the activity of the Cs-137 and the burn-up of selected SPE. The deviation between calculations and measurements was in range from 0.82% to 12.64%.

  9. Performance evaluation of two-stage fuel cycle from SFR to PWR

    International Nuclear Information System (INIS)

    One potential fuel cycle option being considered is a two-stage fuel cycle system involving the continuous recycle of transuranics in a fast reactor and the use of bred plutonium in a thermal reactor. The first stage is a Sodium-cooled Fast Reactor (SFR) fuel cycle with metallic U-TRU-Zr fuel. The SFRs need to have a breeding ratio greater than 1.0 in order to produce fissile material for use in the second stage. The second stage is a PWR fuel cycle with uranium and plutonium mixed oxide fuel based on the design and performance of the current state-of-the-art commercial PWRs with an average discharge burnup of 50 MWd/kgHM. This paper evaluates the possibility of this fuel cycle option and discusses its fuel cycle performance characteristics. The study focuses on an equilibrium stage of the fuel cycle. Results indicate that, in order to avoid a positive coolant void reactivity feedback in the stage-2 PWR, the reactor requires high quality of plutonium from the first stage and minor actinides in the discharge fuel of the PWR needs to be separated and sent back to the stage-1 SFR. The electricity-sharing ratio between the 2 stages is 87.0% (SFR) to 13.0% (PWR) for a TRU inventory ratio (the mass of TRU in the discharge fuel divided by the mass of TRU in the fresh fuel) of 1.06. A sensitivity study indicated that by increasing the TRU inventory ratio to 1.13, The electricity generation fraction of stage-2 PWR is increased to 28.9%. The two-stage fuel cycle system considered in this study was found to provide a high uranium utilization (>80%). (authors)

  10. SOURCE OF BURNUP VALUES FOR COMMERCIAL SPENT NUCLEAR FUEL ASSEMBLIES

    International Nuclear Information System (INIS)

    Waste packages are loaded with commercial spent nuclear fuel (SNF) that satisfies the minimum burnup requirements of a criticality loading curve. The burnup value assigned by the originating nuclear utility to each SNF assembly (assigned burnup) is used to load waste packages in compliance with a criticality loading curve. The burnup provided by a nuclear utility has uncertainties, so conservative calculation methods are used to characterize those uncertainties for incorporation into the criticality loading curves. Procedural safety controls ensure that the correct assembly is loaded into each waste package to prevent a misload that could create a condition affecting the safety margins. Probabilistic analyses show that procedural safety controls can minimize the chance of a misload but can not completely eliminate the possibility. Physical measurements of burnup with instrumentation in the surface facility are not necessary due to the conservative calculation methods used to produce the criticality loading curves. The reactor records assigned burnup of a commercial SNF assembly contains about two percent uncertainty, which is increased to five-percent to ensure conservatism. This five-percent uncertainty is accommodated by adjusting the criticality loading curve. Also, the record keeping methods of nuclear utilities are not uniform and the level of detail required by the NRC has varied over the last several decades. Thus, some SNF assemblies may have assigned burnups that are averages for a batch of assemblies with similar characteristics. Utilities typically have access to more detailed core-follow records that allow the batch average burnup to be changed to an assembly specific burnup. Alternatively, an additional safety margin is incorporated into the criticality loading curve to accommodate SNF assemblies with batch average burnups or greater uncertainties due to the methodology used by the nuclear utility. The utility records provide the assembly identifier

  11. Performance of fast reactor irradiated fueled emitters at goal burnup

    International Nuclear Information System (INIS)

    UO2-fueled W emitters were examined that had been irradiated to goal burnups of approximately 4 at.% at emitter surface temperatures to 1820 K in a fast reactor to establish their performance for use in thermionic reactors with power levels from tens of kilowatts to multimegawatts. The examinations provided first-time data on structural integrity, dimensional stability, component compatibility, and fuel and fission product behavior. The data are consistent with similar measurements at approximately 2 at.% burnup with the exception of one emitter which breached the W during irradiation

  12. Criticality safety evaluation for the direct disposal of used nuclear fuel. Preparation of data for burnup credit evaluation (Contract research)

    International Nuclear Information System (INIS)

    In the direct disposal of used nuclear fuel (UNF), criticality safety evaluation is one of the important issues since UNF contains some amount of fissile material. In the conventional criticality safety evaluation of UNF where the fresh fuel composition is conservatively assumed, neutron multiplication factor is becoming overestimated as the fuel enrichment increases. The recent development of higher-enrichment fuel has therefore enhanced the benefit of the application of burnup credit. When applying the burnup credit to the criticality safety analysis of the disposed fuel system, the safe-side estimation of the reactivity is required taking into account the factors which affect the neutron multiplication factor of the burnt fuel system such as the nuclide composition uncertainties. In this report, the effects of the several parameters on the reactivity of disposal canister model were evaluated for used PWR fuel. The parameters are relevant to the uncertainties of depletion calculation code, irradiation history, and axial and horizontal burnup distribution, which are known to be important effect in the criticality safety evaluation adopting burnup credit. The latest data or methodology was adopted in this evaluation, based on the various latest studies. The appropriate margin of neutron multiplication factor in the criticality safety evaluation for UNF can be determined by adopting the methodology described in the present study. (author)

  13. Burnup monitoring of VVER-440 spent fuel assemblies

    International Nuclear Information System (INIS)

    This paper reports on the results of the experiments performed on spent VVER-440 fuel assemblies at the Paks Nuclear Power Plant (NPP), Hungary. The fuel assemblies submerged in the service pit were examined by high-resolution gamma spectrometry (HRGS). The assemblies were moved to the front of a collimator tube built in the concrete wall of the pit in the reactor block at the NPP, and lifted down and up under water for scanning by the refueling machine. The HPGe detector was placed behind the collimator in an outside staircase. The measurements involved scanning of the assemblies along their length of all the 6 sides, at 5-12 measurement positions side by side. Axial and azimuthal burnup profiles were taken in this way. Assembly groups for measurements were selected according to their burnup (10–50 GWd/tU) and special positions (e. g. control assembly, neighbour of control assembly). Burnup differences were well observable between assembly sides looking towards the center of the core and opposite directions. Also, burnup profiles were different for control assemblies and normal (working) fuel assemblies. The ratio of the measured activities of Cs-134 and Cs-137 was evaluated by relative efficiency (intrinsic) calibration. Measurement uncertainty is around 3 %. Taking into account irradiation history and cooling time (i. e.the time elapsed since the discharge of the assembly out of the core), the activity ratio Cs-134/Cs-137 shows good correlation with the declared burnup.

  14. Achieving High Burnup Targets With Mox Fuels: Techno Economic Implications

    International Nuclear Information System (INIS)

    For a typical MOX fuelled SFR of power reactor size, Implications due to higher burnup have been quantified. Advantages: – Improvement in the economy is seen upto 200 GWd/ t; Disadvantages: – Design changes > 150 GWd/ t bu; – Need for 8/ 16 more fuel SA at 150/ 200 GWd/ t bu; – Higher enrichment of B4C in CSR/ DSR at higher bu; – Reduction in LHR may be required at higher bu; – Structural material changes beyond 150 GWd/ t bu; – Reprocessing point of view-Sp Activity & Decay heat increase. Need for R & D is a must before increasing burnup. bu- refers burnup. Efforts to increase MOX fuel burnup beyond 200 GWd/ t may not be highly lucrative; • MOX fuelled FBR would be restricted to two or four further reactors; • Imported MOX fuelled FBRs may be considered; • India looks towards launching metal fuel FBRs in the future. – Due to high Breeding Ratio; – High burnup capability

  15. Investigation of Burnup Credit Issues in BWR Fuel

    International Nuclear Information System (INIS)

    Calculations for long-term-disposal criticality safety of spent nuclear fuel requires the application of burnup credit because of the large mass of fissile material that will be present in the repository. Burnup credit calculations are based on depletion calculations that provide a conservative estimate of spent fuel contents, followed by criticality calculations to assess the value of keff for a spent fuel cask or a fuel configuration under a variety of probabilistically derived events. In order to ensure that the depletion calculation is conservative, it is necessary to both qualify and quantify assumptions that can be made in depletion models used to characterize spent fuel. Most effort in the United States this decade has focused on burnup issues related to pressurized-water reactors. However, requirements for the permanent disposal of fuel from boiling-water reactors has necessitated development of methods for prediction of spent fuel contents for such fuels. Concomitant with such analyses, validation is also necessary. This paper provides a summary of initial efforts at the Oak Ridge National Laboratory to better understand and validate spent fuel analyses for boiling-water-reactor fuel

  16. Use of burnup credit in criticality safety design analysis of spent fuel storage systems

    International Nuclear Information System (INIS)

    temperature and density, presence of soluble boron in the core (PWR), use of fixed neutron absorbers (control rods, burnable poison rods, axial power shaping rods), use of integral burnable absorbers (gadolinium or erbium bearing fuel rods, IFBA rods). It will be shown how a bounding approach can be obtained for the impact of these parameters on the reactivity of the storage system. The criticality calculation procedure consists in the following main steps: Isotopic selection and validation; Validation of the criticality calculation code applied; Sensitivity studies on the reactivity effects of axial and horizontal burnup profiles of fuel assemblies; Determination of the criticality acceptance criterion (maximum allowable neutron multiplication factor including the impacts of all the mechanical and calculational uncertainties) and determination of the loading curve. The fundamentals of isotopic selection will be defined, and a survey of the benchmark experiments available for isotopic validation and validation of the criticality calculation code applied will be given. Since the parameters and conditions characterizing the benchmark experiments are usually different from the parameters and conditions describing the spent fuel storage system of interest, a method of checking the applicability of such experiments to the storage system will be briefly described. This method bases the applicability on the similarity of sensitivity coefficients which are defined for the underlying nuclear data characterizing the isotopic compositions and their effect on the spent fuel reactivity. The fact that the axial burnup distribution in a fuel assembly is non-uniform must be considered in the analysis of the storage system. The difference between the system's neutron multiplication factor obtained by using an axially varying burnup profile and the system's neutron multiplication factor obtained by assuming a uniform distribution of the averaged burnup of this profile is known as the 'end

  17. Evaluation model for PWR irradiated fuel

    International Nuclear Information System (INIS)

    The individual economic value of the plutonium isotopes for the recycle of the PWR reactor is investigated, assuming the existence of an market for this element. Two distinct market situations for the stages of the fuel cycle are analysed: one for the 1972 costs and the other for costs of 1982. Comparisons are made for each of the two market situations concerning enrichment of the U-235 in the uranium fuel that gives the minimum cost in the fuel cycle. The method adopted to establish the individual value of the plutonium isotopes consists on the economical analyses of the plutonium fuel cycle for four different isotopes mixtures refering to the uranium fuel cycle. (Author)

  18. Need for higher fuel burnup at the Hatch Plant

    International Nuclear Information System (INIS)

    Hatch is a BWR 4 and has been in operation for some time. The first unit became commercial about 1975. Obtaining higher burnups, or higher average discharge exposures, is nothing new at Hatch. Since we have started, the discharge exposure of the plant has increased. Now, of course, we are not approaching the numbers currently being discussed but, the average discharge exposure has increased from around 20,000 MWD/MTU in the early to mid-1980s to 34,000 MWD/MTU in 1994, I am talking about batch average values. There are also peak bundle and peak rod values. You will have to make the conversions if you think in one way or the other because I am talking in batch averages. During Hatch's operating history we have had some problems with fuel failure. Higher burnup fuel raises a concern about how much fuel failure you are going to have. Fuel failure is, of course, an economic issue with us. Back in the early 1980s, we had a problem with crud-induced localized corrosion, known as CILC. We have gotten over that, but we had some times when it was up around 27 fuel failures a year. That is not a pleasant time to live through because it is not what you want from an economic viewpoint or any other. We have gotten that down. We have had some fuel failures recently, but they have not been related to fuel burnup or to corrosion. In fact, the number of failures has decreased from the early 1980s to the 90s even though burnup increased during that time. The fuel failures are more debris-related-type failures. In addition to increasing burnups, utilities are actively evaluating or have already incorporated power uprate and longer fuel cycles (e.g., 2-year cycles). The goal is to balance out the higher power density, longer cycles, higher burnup, and to have no leakers. Why do we as an industry want to have higher burnup fuel? That is what I want to tell you a little bit about

  19. Need for higher fuel burnup at the Hatch Plant

    Energy Technology Data Exchange (ETDEWEB)

    Beckhman, J.T. [Georgia Power Co., Birmingham, AL (United States)

    1996-03-01

    Hatch is a BWR 4 and has been in operation for some time. The first unit became commercial about 1975. Obtaining higher burnups, or higher average discharge exposures, is nothing new at Hatch. Since we have started, the discharge exposure of the plant has increased. Now, of course, we are not approaching the numbers currently being discussed but, the average discharge exposure has increased from around 20,000 MWD/MTU in the early to mid-1980s to 34,000 MWD/MTU in 1994, I am talking about batch average values. There are also peak bundle and peak rod values. You will have to make the conversions if you think in one way or the other because I am talking in batch averages. During Hatch`s operating history we have had some problems with fuel failure. Higher burnup fuel raises a concern about how much fuel failure you are going to have. Fuel failure is, of course, an economic issue with us. Back in the early 1980s, we had a problem with crud-induced localized corrosion, known as CILC. We have gotten over that, but we had some times when it was up around 27 fuel failures a year. That is not a pleasant time to live through because it is not what you want from an economic viewpoint or any other. We have gotten that down. We have had some fuel failures recently, but they have not been related to fuel burnup or to corrosion. In fact, the number of failures has decreased from the early 1980s to the 90s even though burnup increased during that time. The fuel failures are more debris-related-type failures. In addition to increasing burnups, utilities are actively evaluating or have already incorporated power uprate and longer fuel cycles (e.g., 2-year cycles). The goal is to balance out the higher power density, longer cycles, higher burnup, and to have no leakers. Why do we as an industry want to have higher burnup fuel? That is what I want to tell you a little bit about.

  20. Nuclear fuel burn-up credit for criticality safety justification of spent nuclear fuel storage systems

    International Nuclear Information System (INIS)

    Burn-up credit analysis of RBMK-1000 an WWER-1000 spent nuclear fuel accounting only for actinides is carried out and a method is proposed for actinide burn-up credit. Two burn-up credit approaches are analyzed, which consider a system without and with the distribution of isotopes along the height of the fuel assembly. Calculations are performed using SCALE and MCNP computer codes

  1. Feasibility assessment of burnup credit in the criticality analysis of shipping casks with boiling water reactor spent fuel

    International Nuclear Information System (INIS)

    Considerable interest in the allowance of reactivity credit for the exposure history of power reactor fuel currently exists. This ''burnup credit'' issue has the potential to greatly reduce risk and cost when applied to the design and certification of spent fuel casks used for transportation and storage. Recently, analyses have demonstrated the technical feasibility and estimated the risk and economic incentives for allowing burnup credit in pressurized water reactor (PWR) spent fuel shipping cask applications. This report summarizes the extension of the previous PWR technical feasibility assessment to boiling water reactor (BWR) fuel. This feasibility analysis aims to apply simple methods that adequately characterize the time-dependent isotopic compositions of typical BWR fuel. An initial analysis objective was to identify a simple and reliable method for characterizing BWR spent fuel. Two different aspects of fuel characterization were considered:l first, the generation of burn- up dependent material interaction probabilities; second, the prediction of material inventories over time (depletion). After characterizing the spent fuel at various stages of exposure and decay, three dimensional (3-D) models for an infinite array of assemblies and, in several cases, infinite arrays of assemblies in a typical shipping cask basket were analyzed. Results for assemblies without a basket provide reactivity control requirements as a function of burnup and decay, while results including the basket allow assessment of typical basket configurations to provide sufficient reactivity control for spent BWR fuel. Resulting basket worths and reactivity trends over time are then evaluated to determine whether burnup credit is needed and feasible in BWR applications

  2. Size Design of CdZnTe Detector Shield for Measuring Burnup of Spent Fuel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>It is important to measure the burnup of spent fuel for nuclear safeguards, burnup credit and critical safety in spent-fuel reprocessing process. The purpose of this work is designing a portable device to

  3. Highlights on R and D work related to the achievement of high burnup with MOX fuel in commercial reactors

    International Nuclear Information System (INIS)

    Part of the R and D work made at BELGONUCLEAIRE in the field of high burnup achievement with MOX fuel in commercial LWRs is made through lnternational Programmes. Special attention is given to the evolution with burnup of fuel neutronic characteristics and of in-reactor rod thermal-mechanical behaviour. Pu burning in MOX is characterized essentially by a drop of Pu239 content. The other Pu isotopes have an almost unchanged concentration, due to internal breeding. The reactivity drop of MOX versus burnup is consequently much less pronounced than in UO2 fuel. Concentration of minor actinides Am and Cm becomes significant with burnup increase. These nuclides start to play a role on total reactivity and in the helium production. The thermal-mechanical behaviour of MOX fuel rod is very similar to that of UO2. Some specificities are noticed. The better PCI resistance recognized to MOX fuel has recently been confirmed. Three PWR MOX segments pm-irradiated up to 58 GWd/tM were ramped at 100 W/cm.min respectively to 430-450-500 W/cm followed by a hold time of 24 hours. No segment failed. MOX and UO2 fuels have different reactivities and operate thus at different powers. Moreover, radial distribution of power in MOX pellet is less depressed at high burnup than in UO2, leading to higher fuel central temperature for a same rating. The thermal conductivity of MOX fuel decreases with Pu content, typically 4% for 10% Pu. The combination of these three elements (power level, power profile, and conductivity) lead to larger FGR at high burnup compared to UO2. Helium production remains low compared to fission gas production (ratio < 0.2). As faster diffusing element, the helium fractional release is much higher than that of fission gas, leading to rod pressure increase comparable to the one resulting from fission gas. (author)

  4. Burnup credit in Spain

    International Nuclear Information System (INIS)

    The status of development of burnup credit for criticality safety analyses in Spain is described in this paper. Ongoing activities in the country in this field, both national and international, are resumed. Burnup credit is currently being applied to wet storage of PWR fuel, and credit to integral burnable absorbers is given for BWR fuel storage. It is envisaged to apply burnup credit techniques to the new generation of transport casks now in the design phase. The analysis methodologies submitted for the analyses of PWR and BWR fuel wet storage are outlined. Analytical activities in the country are described, as well as international collaborations in this field. Perspectives for future research and development of new applications are finally resumed. (author)

  5. A Simple Recycling of PWR Spent Fuel in a Breed-and-Burn Fast Reactor

    International Nuclear Information System (INIS)

    The breed-and-burn fast reactor (B&BR), also known as TWR, is attractive in terms of the core performances, economics, and non-proliferation. The B&BR has the capability to breed the fissile fuels and use the bred fuel in situ in the same reactor. In this work, a long-life breed-and-burn type fast reactor has been investigated from the neutronics points of view in order to re-utilize the PWR spent fuel. Feasibility of a compact sodium-cooled B&BR using PWR spent nuclear fuel as blanket material has been studied. In order to derive a compact B&BR, a tight fuel lattice and relatively large fuel pin are used to achieve high fuel volume fraction. The core is initially loaded with a LEU (Low Enriched Uranium) fuel and a metallic fuel is used in the core. For a very high fuel burnup, the smear density of the metallic fuel is burnup-dependent in this work. The Monte Carlo depletion has been performed for the core to see the long-term behavior of the B&B reactor. Several important parameters such as reactivity coefficients, delayed neutron fraction, prompt neutron generation lifetime, fission power, and fast neutron fluence, are analyzed through Monte Carlo reactor analysis. Evolution of the core fuel composition is also analyzed as a function of burnup. Although the long-life small B&B fast reactor is found to be feasible from the neutronics point of view, it is characterized to have several challenging technical issues including a very high fast neutron fluence of the structural materials. (author)

  6. Revaluation on measured burnup values of fuel assemblies by post-irradiation experiments at BWR plants

    International Nuclear Information System (INIS)

    Fuel composition data for 8x8 UO2, Tsuruga MOX and 9x9-A type UO2 fuel assemblies irradiated in BWR plants were measured. Burnup values for measured fuels based on Nd-148 method were revaluated. In this report, Nd-148 fission yield and energy per fission obtained by burnup analyses for measured fuels were applied and fuel composition data for the measured fuel assemblies were revised. Furthermore, the adequacies of revaluated burnup values were verified through the comparison with burnup values calculated by the burnup analyses for the measured fuel assemblies. (author)

  7. Estimation of PWR spent fuel composition using SCALE and SWAT code systems

    International Nuclear Information System (INIS)

    The isotopic composition calculations were performed for 26 spent fuel samples from Obrigheim PWR reactor and 55 spent fuel samples from 7 PWR reactors using SCALE4.4 SAS2H with 27, 44 and 238 group cross-section libraries and SWAT with 107 group cross-section library. For convenience, the ratio of the measured to calculated value was used as a parameter. The four kinds of the calculation results were compared with the measured data. For many important nuclides for burnup credit criticality safety evaluation, the four methods applied in this study showed good coincidence with measurements in general. More precise observations showed the following results. Less unity ratios were found for Pu-239 and -241 for selected 16 samples out of the 26 samples from Obrigheim reactor. Larger than unity ratios were found for Am-241 for both the 16 and 55 samples. Larger than unity ratios were found for Sm-149 for the 55 samples. In the case of 26 sample SWAT was generally accompanied by larger ratios than those of SAS2H with some exceptions. Based on the measured-to-calculated ratios for 71 samples of a combined set in which 16 selected samples and 55 samples were included, the correction factors that should be multiplied to the calculated isotopic compositions were generated for a conservative estimate of the neutron multiplication factor of a system containing PWR spent fuel, taking burnup credit into account

  8. Effect of transplutonium doping on approach to long-life core in uranium-fueled PWR

    International Nuclear Information System (INIS)

    The present paper advertises doping of transplutonium isotopes as an essential measure to improve proliferation-resistance properties and burnup characteristics of UOX fuel for PWR. Among them 241Am might play the decisive role of burnable absorber to reduce the initial reactivity excess while the short-lived nuclides 242Cm and 244Cm decay into even plutonium isotopes, thus increasing the extent of denaturation for primary fissile 239Pu in the course of reactor operation. The doping composition corresponds to one discharged from a current PWR. For definiteness, the case identity is ascribed to atomic percentage of 241Am, and then the other transplutonium nuclide contents follow their ratio as in the PWR discharged fuel. The case of 1 at% doping to 20% enriched uranium oxide fuel shows the potential of achieving the burnup value of 100 GWd/tHM with about 20% 238Pu fraction at the end of irradiation. Since so far, americium and curium do not require special proliferation resistance measures, their doping to UOX would assist in introducing nuclear technology in developing countries with simultaneous reduction of accumulated minor actinides stockpiles. (author)

  9. Effect of transplutonium doping on approach to long-life core in uranium-fueled PWR

    Energy Technology Data Exchange (ETDEWEB)

    Peryoga, Yoga; Saito, Masaki; Artisyuk, Vladimir [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors; Shmelev, Anatolii [Moscow Engineering Physics Institute, Moscow (Russian Federation)

    2002-08-01

    The present paper advertises doping of transplutonium isotopes as an essential measure to improve proliferation-resistance properties and burnup characteristics of UOX fuel for PWR. Among them {sup 241}Am might play the decisive role of burnable absorber to reduce the initial reactivity excess while the short-lived nuclides {sup 242}Cm and {sup 244}Cm decay into even plutonium isotopes, thus increasing the extent of denaturation for primary fissile {sup 239}Pu in the course of reactor operation. The doping composition corresponds to one discharged from a current PWR. For definiteness, the case identity is ascribed to atomic percentage of {sup 241}Am, and then the other transplutonium nuclide contents follow their ratio as in the PWR discharged fuel. The case of 1 at% doping to 20% enriched uranium oxide fuel shows the potential of achieving the burnup value of 100 GWd/tHM with about 20% {sup 238}Pu fraction at the end of irradiation. Since so far, americium and curium do not require special proliferation resistance measures, their doping to UOX would assist in introducing nuclear technology in developing countries with simultaneous reduction of accumulated minor actinides stockpiles. (author)

  10. Burnup behavior of FBR fuels sourced in uranium and plutonium recycled in PWRs and its influence on fuel cycle economy

    International Nuclear Information System (INIS)

    Considering the strategic security of uranium resources, authors investigated the effective use of fuel recycling in the current light water reactor system (1.1GWe-class PWRs of standard type), where we supposed the uranium fuel reformed by re-enrichment of the recovery uranium from the PWR spent fuels and the MOX fuel produced with the recovery plutonium as main fissile, and examined three types of MOX fuels prepared by making choice of these matrixes among (A) the recovery uranium, (B) the depleted uranium as the waste from natural uranium enrichment, and (C) the depleted one sourced from recovery uranium re-enrichment. Calculations were carried out of the multi-component uranium isotope separation employing the ideal centrifuge-cascade and of the reactor core burnup analysis using the comprehensive neutronics computation system SRAC-2006. Burnup analysis was performed under the following conditions: The concentration of 235U in the depleted natural uranium is 0.2 mol%. This conditional mass-effect on isotope separation affects the other isotope concentrations in the centrifuge cascade. The integrated burnup of uranium and full-MOX fuels is 45 GWd/t- HM during 3 cycles in one batch burning. The spent original-uranium-fuels are cooled for 10 years before these reprocessing and then fabrication of reformed uranium or MOX fuels. In the reprocessing, the plutonium is recovered as a 50-50 mixture with the spent uranium oxide and the remaining uranium oxide is recovered in isolated form. The result of burnup analysis shows that the uranium recovered from the spent original fuel contains 235U enriched about 20 % more than that of the natural uranium and also 236U transformed from 235U capturing neutrons during fuel burning. The constituent 236U behaves as a neutron absorber. Hence, the reformed uranium fuel containing 236U enriched additionally in the re-enrichment process requires the fissile 235U concentrated 1.154 times more than that in the original fuel, in order

  11. Fuel performance annual report for 1981. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, W.J.; Tokar, M.

    1982-12-01

    This annual report, the fourth in a series, provides a brief description of fuel performance during 1981 in commercial nuclear power plants. Brief summaries of fuel operating experience, fuel problems, fuel design changes and fuel surveillance programs, and high-burnup fuel experience are provided. References to additional, more detailed information and related NRC evaluations are included.

  12. PWR rod ejection accident: uncertainty analysis on a high burn-up core configuration

    Energy Technology Data Exchange (ETDEWEB)

    Le Pallec, J.C.; Studer, E.; Royer, E. [CEA Saclay, Direction de l' Energie Nucleaire, Service d' Etudes de Reacteurs et de Modelisation Avancee (DEN/SERMA), 91 - Gif sur Yvette (France)

    2003-07-01

    With the increasing of the discharge burn-up assembly, the rod ejection accident (REA) methodology based on the analyse of the hot spot from a decoupling methods of calculation does not allow to ensure the respect of safety criteria. The main reason is that the irradiated fuel certainly less solicited thermally is in the other hand more sensitive to a transient due to a rod ejection. Thus, the hot spot is not necessarily the sensitive point of the core. In the framework of high burn-up configurations, a new methodology tends to replace the former. It characterizes by the use of a best-estimate 3-dimensional modelling: coupling of the thermal hydraulics and neutronics, taking in account fuel properties depending on irradiation. To ensure the conservatism of the modelling response, this new approach has to be followed by an uncertainties analysis. Inputs from the benchmark RIA TMI-1 conducted by IRSN (France), NRC (United State of America) and KI (Russian) are used to perform a first analysis. The response of the modelling is the enthalpy deposited in an assembly. The analysis is based on the Design of Experiments (DoE) that permits to measure the weight of the main parameters and their interactions on the response. These last cannot be disregarded because they represent up to 20% of the penalizing uncertainty. This study shows that the main fuel modifications due to irradiation (radial power distribution, thermal properties degradation) have to be taken into account in a realistic thermal modelling during a strong transient.

  13. PWR fuel inspection and repair technology development in the Republic of Korea

    International Nuclear Information System (INIS)

    As of September 1997, 10 PWRs and 2 PHWRs generate 10,320MW electricity in Korea. And another 8 PWRs and 2 PHWRs will be constructed by 2006. These will need about 400 MTU of PWR fuels and 400 MTU of PHWR fuels. To improve average burnup, thermal power, fuel usability and plant safety, better poolside fuel service technologies are strongly recommended as well as the fuel design and fabrication technology improvements. During the last twenty years of nuclear power plant operation in Korea, more than 4,000 fuel assemblies has been used. At the site, continuous coolant activity measurement, pool-side visual inspection and ultrasonic tests have been performed. Some of the fuels are damaged or failed for various reasons. Some of the defected fuels were examined in hot cell to investigate the cause of failure. Even though 30 PWR fuel assemblies were repaired by foreign engineers, fuel inspection and repair technologies are not established yet. Various kind of design for the fuel make the inspection, repair and reconstitution equipment more complex. As a result, recently, a plant to obtain overall technology for poolside fuel inspection, failed fuel repair and reconstitution through R and D activities are set forth. (author)

  14. Neutronic Analysis of Advanced SFR Burner Cores using Deep-Burn PWR Spent Fuel TRU Feed

    International Nuclear Information System (INIS)

    In this work, an advanced sodium-cooled fast TRU (Transuranics) burner core using deep-burn TRU feed composition discharged from small LWR cores was neutronically analyzed to show the effects of deeply burned TRU feed composition on the performances of sodium-cooled fast burner core. We consider a nuclear park that is comprised of the commercial PWRs, small PWRs of 100MWe for TRU deep burning using FCM (Fully Ceramic Micro-encapsulated) fuels and advanced sodium-cooled fast burners for their synergistic combination for effective TRU burning. In the small PWR core having long cycle length of 4.0 EFPYs, deep burning of TRU up to 35% is achieved with FCM fuel pins whose TRISO particle fuels contain TRUs in their central kernel. In this paper, we analyzed the performances of the advanced SFR burner cores using TRU feeds discharged from the small long cycle PWR deep-burn cores. Also, we analyzed the effect of cooling time for the TRU feeds on the SFR burner core. The results showed that the TRU feed composition from FCM fuel pins of the small long cycle PWR core can be effectively used into the advanced SFR burner core by significantly reducing the burnup reactivity swing which reduces smaller number of control rod assemblies to satisfy all the conditions for the self controllability than the TRU feed composition discharged from the typical PWR cores

  15. Development of mechanical test techniques for structural components of irradiated PWR fuel assembly

    International Nuclear Information System (INIS)

    An increase of fuel burnup and duration of fuel life remains one of the main methods for a nuclear power engineering enhancement. Properties of structural materials providing corrosion resistance, mechanical strength, and dimensional instability of the components of a fuel assembly (FA) are of great importance for fuel operational reliability in such fuel life cycles. Generally, PWR fuel assemblies consist of a top nozzle, spacer grid, bottom nozzle, and guide/instrumentation tubes. The top and bottom nozzle are fixed to the guide tubes using a screw or bulge method. The spacer grid fixed to the guide/instrumentation tubes using a spot weld or bulge method. To understand the in-reactor performance of PWR FA, several devices and test techniques have been developed for mechanical property tests. Among the structural components of PWR FA, a spacer grid, a hold down spring of a top nozzle and a connecting part of FA were considered. Experimental works were carried out for the unirradiated and irradiated components of advanced nuclear fuel assemblies for KSNPs and Westinghouse type PWRs at IMEF (Irradiated Materials Examination Facility) at KAERI. The developed techniques were verified through a hot cell tests. (author)

  16. Dependence of control rod worth on fuel burnup

    Energy Technology Data Exchange (ETDEWEB)

    Savva, P., E-mail: savvapan@ipta.demokritos.g [NCSR ' DEMOKRITOS' , PoB 60228, 15310 Aghia Paraskevi (Greece); Varvayanni, M., E-mail: melina@ipta.demokritos.g [NCSR ' DEMOKRITOS' , PoB 60228, 15310 Aghia Paraskevi (Greece); Catsaros, N., E-mail: nicos@ipta.demokritos.g [NCSR ' DEMOKRITOS' , PoB 60228, 15310 Aghia Paraskevi (Greece)

    2011-02-15

    Research highlights: Diffusion and MC calculations for rod worth dependence on burnup and Xe in reactors. One-step rod withdrawal/insertion are used for rod worth estimation. The study showed that when Xe is present the rods worth is significantly reduced. Rod worth variation with burnup depends on rod position in core. Rod worth obtained with MC code is higher than that obtained from deterministic. - Abstract: One important parameter in the design and the analysis of a nuclear reactor core is the reactivity worth of the control rods, i.e. their efficiency to absorb excess reactivity. The control rod worth is affected by parameters such as the fuel burnup in the rod vicinity, the Xe concentration in the core, the operational time of the rod and its position in the core. In the present work, two different computational approaches, a deterministic and a stochastic one, were used for the determination of the rods worth dependence on the fuel burnup level and the Xe concentration level in a conceptual, symmetric reactor core, based on the MTR fuel assemblies used in the Greek Research Reactor (GRR-1). For the deterministic approach the neutronics code system composed by the SCALE modules NITAWL and XSDRN and the diffusion code CITATION was used, while for the stochastic one the Monte Carlo code TRIPOLI was applied. The study showed that when Xe is present in the core, the rods worth is significantly reduced, while the rod worth variation with increasing burnup depends on the rods position in the core grid. The rod worth obtained with the use of the Monte Carlo code is higher than the one obtained from the deterministic code.

  17. Verification of the OREST (HAMMER-ORIGEN) burn-up program system in the post-irradiation analyses of fuel elements BE-168, 170, 171 and 176 of the Obrigheim reactor

    International Nuclear Information System (INIS)

    The burn-up code OREST has a spectrum code assigned to it, which determines the neutron spectrum in the actual fuel element mixture at the start and during burn-up and carries out the resonance treatment for the most important uranium and transuranic element isotopes. The reliability of the OREST system is shown for UO2 burn-up in PWR's. Post-irradiation analyses of five UO2 fuel elements of KWO with an initial enrichment of 3.13% by weight of U235 and a mean burn-up of 28.4 GWd/tV are used for comparison. The reliability of OREST information for UO2 fuel in PWR's is proved by the good agreement between experiment and calculation, also compared with KfK's results. (orig./HP)

  18. Hot Operation of FTL for PWR Fuels Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sung Ho; Joung, Chang Yong; Lee, Jong Min; Park, Su Ki; Sim, Bong Sik; Ahn, Guk Hoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    Fuel Test Loop (FTL) in HANARO is the test facility which can conduct a fuel irradiation test with commercial NPPs' operating conditions such as their pressure, temperature, flow and water chemistry. The FTL is used for the irradiation test of PWR type or CNNDU type fuels. In this paper, the hot operation of FTL for irradiation test of PWR fuels is introduced. The experimental results show the excellence of operation performance

  19. FUMEX-III: A New IAEA Coordinated Research Project on Fuel Modelling at Extended Burnup

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency has initiated a new a Coordinated Research Project on Fuel Modelling at Extended Burnup (FUMEX-III). Currently, thirty one fuel modelling groups are participating with the intention of improving their capabilities to understand and predict the behaviour of water reactor fuel at high burnups. The exercise is carried in coordination with the OECD/NEA. The participants will model test cases provided by from sources such as the Halden Reactor Project and commercial irradiations and tests from the participants themselves. It is also intended to utilise idealised cases to test model behaviour under high burnup conditions. All cases are maintained in the OECD International Fuel Performance Experimental (IFPE) Database. The participants are particularly interested in modelling transient behaviour and mechanical interactions between pellet and cladding, including severe transient behaviour (RIA/LOCA) as well as temperature and fission gas release. However the participants include newcomer teams as well as state-of-the-art code users and have differing needs depending on the reactor system that they are modelling (PHWR, PWR, BWR, WWER) and the level of code development and experience that they have, so a matrix of test cases has been developed to allow each team to test their codes and methods appropriately. Some codes (eg TRANSURANUS and FEMAXI) are being used by several teams, both developing models and code user expertise. This paper summarises the objectives of the participants, the matrix of test cases that has been made available to the participants and some additional cases that are being prepared for inclusion in the later stages of the Project. (authors)

  20. Recriticality risk in PWR spent fuel pools

    International Nuclear Information System (INIS)

    In this paper we investigated the situation in a PWR Spent Fuel Pool (SFP) following a long-term loss of power / loss of cooling accident. In the SFP there is a large amount of water with soluble boron between the fuel assemblies. There may be a problem from the point of view of criticality safety if the water of the SFP starts to boil and evaporate. A thermal-hydraulic analysis was performed using a simplified model of the SFP. The thermal-hydraulic analysis shows that in all cases a chaotic boiling phenomenon develops. This indicates that even if there is an issue of (near-)criticality, it will have a very intermittent nature. The multiplication factor of the SFP was evaluated with a Monte Carlo calculation. The neutronic analysis was performed for several representative cooling situations. In all cases, the system remains (deeply) subcritical. (author)

  1. Development of a reference spent fuel library of 17x17 PWR fuel assemblies

    International Nuclear Information System (INIS)

    One of the most common ways to investigate new Non-Destructive Assays (NDA) for the spent fuel assemblies are Monte Carlo simulations. In order to build realistic models the user must define in an accurate way the material compositions and the source terms in the system. This information can be obtained using burnup codes such as ORIGEN-ARP and ALEPH2.2, developed at SCK-CEN. These software applications allow the user to select the irradiation history of the fuel assembly and to calculate the corresponding isotopic composition and neutron/gamma emissions as a function of time. In the framework of the development of an innovative NDA for spent fuel verifications, SCK•CEN built an extensive fuel library for 17x17 PWR assemblies, using both ORIGEN-ARP and ALEPH2.2. The parameters considered in the calculations were initial enrichment, discharge burnup, and cooling time. The combination of these variables allows to obtain more than 1500 test cases. Considering the broad range of the parameters, the fuel library can be used for other purposes apart from spent fuel verifications, for instance for the direct disposal in geological repositories. In addition to the isotopic composition of the spent fuel, the neutron and photon emissions were also calculated and compared between the two codes. The comparison of the isotopic composition showed a good agreement between the codes for most of the relevant isotopes in the spent fuel. However, specific isotopes as well as neutron and gamma spectra still need to be investigated in detail.

  2. Development of a reference spent fuel library of 17x17 PWR fuel assemblies

    International Nuclear Information System (INIS)

    One of the most common ways to investigate new Non- Destructive Assays (NDA) for the spent fuel assemblies are Monte Carlo simulations. In order to build realistic models the user must define in an accurate way the material compositions and the source terms in the system. This information can be obtained using burnup codes such as ORIGEN-ARP and ALEPH2.2, developed at SCK•CEN. These software applications allow the user to select the irradiation history of the fuel assembly and to calculate the corresponding isotopic composition and neutron/gamma emissions as a function of time. In the framework of the development of an innovative NDA for spent fuel verifications, SCK•CEN built an extensive fuel library for 17x17 PWR assemblies, using both ORIGENARP and ALEPH2.2. The parameters considered in the calculations were initial enrichment, discharge burnup, and cooling time. The combination of these variables allows to obtain more than 1500 test cases. Considering the broad range of the parameters, the fuel library can be used for other purposes apart from spent fuel verifications, for instance for the direct disposal in geological repositories. In addition to the isotopic composition of the spent fuel, the neutron and photon emissions were also calculated and compared between the two codes. The comparison of the isotopic composition showed a good agreement between the codes for most of the relevant isotopes in the spent fuel. However, specific isotopes as well as neutron and gamma spectra still need to be investigated in detail.

  3. High Burnup UO2 Fuel Pellets with Dopants for WWER

    International Nuclear Information System (INIS)

    The currently achieved level of design and technology developments provided for the implementation of the fuel cycle (4x1) in WWER at the maximal design burnup of 56 MW.day/kgU per FA. Presently in Russia the program is under way to improve the technical and economic parameters of WWER fuel cycles characterized by an increased fuel usability. To meet the requirements placed on the new fuel that ensures the reliable operation under conditions of higher burnups complex activities are under way to optimize the composition and microstructure of fuel pellets as applied to WWER. This paper describes a general approach to providing the stimulated composition and microstructure of fuel via introducing various dopants. Aside from this, the paper presents the experimentally results of studies into the main technologic and operational characteristics of dopant containing fuel pellets including higher grain sizes, pores distribution and oxygen to metal ratio. The results of the experiments made it possible to work out the pilot commercial process of the modified fuel fabrication, to manufacture pellet batches to be semi-commercially operated at NPP with WWER. (author)

  4. Transient behaviour of high burnup fuel. Status report

    International Nuclear Information System (INIS)

    This Status Report is a follow-on to the CSNI Specialist Meeting on Transient Behaviour of High Burnup Fuel which was held in Cadarache, France, from September 12. to 14., 1995. The Status Report identifies the needs and rationale for any further work to better understand the transient behaviour of high burnup fuel. The different options to perform that work, from analytical to experimental activities, and discussion on the potential benefits of performing new integral tests are also addressed. A brief description of the major on-going and short-term planned activities in this field is included as additional information. The main conclusions from this effort are highlighted. (K.A.)

  5. Destructive radiochemical analysis of uraniumsilicide fuel for burnup determination

    Energy Technology Data Exchange (ETDEWEB)

    Gysemans, M.; Bocxstaele, M. van; Bree, P. van; Vandevelde, L.; Koonen, E.; Sannen, L. [SCK-CEN, Boeretang, Mol (Belgium); Guigon, B. [CEA, Centre de Cadarache, Saint Paul lez Durance (France)

    2004-07-01

    During the design phase of the French research reactor Jules Horowitz (RJH) several types of low enriched uranium fuels (LEU), i.e. <20% {sup 235}U enrichment, are studied as possible candidate fuel elements for the reactor core. One of the LEU fuels that is taken into consideration is an uraniumsilicide based fuel with U{sub 3}Si{sub 2} dispersed in an aluminium matrix. The development and evaluation of such a new fuel for a research reactor requires an extensive testing and qualification program, which includes destructive radiochemical analysis to determine the burnup of irradiated fuel with a high accuracy. In radiochemistry burnup is expressed as atom percent burnup and is a measure for the number of fissions that have occurred per initial 100 heavy element atoms (%FIMA). It is determined by measuring the number of heavy element atoms in the fuel and the number of atoms of selected key fission products that are proportional to the number of fissions that occurred during irradiation. From the few fission products that are suitable as fission product monitor, the stable Nd-isotopes {sup 143}Nd, {sup 144}Nd, {sup 145}Nd, {sup 146}Nd, {sup 148Nd}, {sup 150}Nd and the gamma-emitters {sup 137}Cs and {sup 144}Ce are selected for analysis. Samples form two curved U{sub 3}Si{sub 2} plates, with a fuel core density of 5.1 and 6.1 g U/cm{sup 3} (35% {sup 235}U) and being irradiated in the BR2 reactor of SCK x CEN{sup [1]}, were analyzed. (orig.)

  6. Application of depletion perturbation theory to fuel cycle burnup analysis

    International Nuclear Information System (INIS)

    Over the past several years static perturbation theory methods have been increasingly used for reactor analysis in lieu of more detailed and costly direct computations. Recently, perturbation methods incorporating time dependence have also received attention, and several authors have demonstrated their applicability to fuel burnup analysis. The objective of the work described here is to demonstrate that a time-dependent perturbation method can be easily and accurately applied to realistic depletion problems

  7. The implementation of burnup credit in VVER-440 spent fuel

    International Nuclear Information System (INIS)

    The countries using Russian reactors VVER-440 cooperate in reactor physics in Atomic Energy Research (AER). One of topic areas is 'Physical Problems of Spent Fuel, Radwaste and Decommissioning' (Working Group E). In this article, in the first part is an overview about our activity for numerical and experimental verification of codes which participants use for calculation of criticality, isotopic concentration, activity, neutron and gamma sources and shielding is shown. The set of numerical benchmarks (CB1, CB2, CB3 and CB4) is very similar (the same idea, the VVER-440) to the OECD/NEA/NSC Burnup Credit Criticality Benchmarks, Phases 1 and 2. In the second part, verification of the SCALE 4.4 system (only criticality and nuclide concentrations) for VVER-440 fuel is shown. In the third part, dependence of criticality on burnup (only actinides and actinides + fission products) for transport cask C30 with VVER-440 fuel by optimal moderation is shown. In the last part, current status in implementation burnup credit in Slovakia is shown. (author)

  8. Trade-off and optimization of fuel cycle costs in high burnup fuel management schemes

    International Nuclear Information System (INIS)

    Evaluations of the fuel cycle costs of nuclear reactors normally consider uranium ore procurement, conversion to hex, enrichment, fuel fabrication, transport at the front-end and back-end costs such as spent fuel interim storage, transport and direct disposal/reprocessing. The methods for carrying out such evaluation are firmly established and generally show a clear incentive to increase discharge burnups in order to benefit from improved fuel cycle economics. This paper challenges the conventional approach to fuel cycle economics, arguing that there are additional considerations that should legitimately be included in fuel cycle cost calculations. An illustrative calculation o fuel cycle costs for high burnup cycles with allowances for such additional factors shows that fuel cycle costs are a minimum at around 55 GWd/t discharge burnup. (authors)

  9. Exponential experiments on PWR spent fuel assemblies

    International Nuclear Information System (INIS)

    An Exponential experiment system which is composed of a neutron detector, a signal analysis system and a neutron source, Cf-252 has been installed in order to experimentally determine the neutron effective multiplication factor for PWR spent fuel assembly. The axial background neutron flux is measured as a preliminary performance test. From the results, the spacer grid position is determined to be consistent with the design specifications within a 2.3% relative error. The induced fission neutron for four of the assemblies is also measured by scanning the neutron source, Cf-252 or the neutron detector. The exponential decay constants have been evaluated by the application of Poisson regression to the net induced fission neutron counts. It was revealed that the average exponential decay constants for the C15, J14, G23 and J44 assemblies were determined to be 0.130, 0.127, 0.125 and 0.121, respectively. (author)

  10. REBUS: A burnup credit experimental programme

    International Nuclear Information System (INIS)

    An international programme called REBUS (REactivity tests for a direct evaluation of the Burn-Up credit on Selected irradiated LWR fuel bundles) for the investigation of the burn-up credit has been initiated by the Belgian Nuclear Research Center SCK-CEN and Belgonucleaire. At present it is sponsored by USNRC, EdF from France and VGB, representing German nuclear utilities. The programme aims to establish a neutronic benchmark for reactor physics codes. This benchmark would qualify the codes to perform calculations of the burn-up credit. The benchmark exercise will investigate the following fuel types with associated burn-up. 1. Reference absorber test bundle, 2. Fresh commercial PWR UO2 fuel, 3. Irradiated commercial PWR UO2 fuel (50 GWd/tM), 4. Fresh PWR UO2 fuel, 5. Irradiated PWR UO2 fuel (30 GWd/tM). Reactivity effects will be measured in the critical facility VENUS. The accumulated burn-up of all rods will be measured non-destructively by gamma-spectrometry. Some rods will be analyzed destructively with respect to accumulated burn-up, actinides content and TOP-18 fission products (i.e. those non-gaseous fission products that have most implications on the reactivity). The experimental implementation of the programme will start in 2000. (author)

  11. Surface harmonics method for burnup calculations of VVER-1000 fuel assemblies with uranium and MOX fuel

    International Nuclear Information System (INIS)

    Development of the SUHAM-U code for burnup calculations of VVER-1000 fuel assemblies with uranium and MOX fuel is described. Developed SUHAM-U code has capacity to calculate burnup in each fuel or poison zone of each cell of VVER-1000 fuel assembly. In so doing Surface Harmonics Method is used for calculation of the detail neutron spectra in fuel assembly at separated burnup values. Verification of SUHAM-U code by burnup calculations of VVER-1000 fuel assemblies with uranium and MOX fuel has been carried out. Comparisons were carried out with calculations by UNK and RECOL codes. UNK code uses the first collisions probabilities method for solution of the neutron transport equation and RECOL code uses Monte-Carlo method with point-wise continues energy presentation of cross-sections. The main conclusion of all comparisons is the SUHAM-U code calculates the fuel burnup of VVER-1000 fuel assemblies with uranium and MOX fuel with enough high accuracy. Time expenditures are adduced. (authors)

  12. Surface harmonics method for burnup calculations of VVER-1000 fuel assemblies with uranium and MOX fuel

    Energy Technology Data Exchange (ETDEWEB)

    Boyarinov, V. F.; Davidenko, V. D.; Polismakov, A. A.; Tsibulsky, V. F. [Russian Research Center Kurchatov Inst., Nuclear Reactor Inst., 123182, Moscow (Russian Federation)

    2006-07-01

    Development of the SUHAM-U code for burnup calculations of VVER-1000 fuel assemblies with uranium and MOX fuel is described. Developed SUHAM-U code has capacity to calculate burnup in each fuel or poison zone of each cell of VVER-1000 fuel assembly. In so doing Surface Harmonics Method is used for calculation of the detail neutron spectra in fuel assembly at separated burnup values. Verification of SUHAM-U code by burnup calculations of VVER-1000 fuel assemblies with uranium and MOX fuel has been carried out. Comparisons were carried out with calculations by UNK and RECOL codes. UNK code uses the first collisions probabilities method for solution of the neutron transport equation and RECOL code uses Monte-Carlo method with point-wise continues energy presentation of cross-sections. The main conclusion of all comparisons is the SUHAM-U code calculates the fuel burnup of VVER-1000 fuel assemblies with uranium and MOX fuel with enough high accuracy. Time expenditures are adduced. (authors)

  13. Assessment of reactivity transient experiments with high burnup fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ozer, O.; Yang, R.L.; Rashid, Y.R.; Montgomery, R.O.

    1996-03-01

    A few recent experiments aimed at determining the response of high-burnup LWR fuel during a reactivity initiated accident (RIA) have raised concerns that existing failure criteria may be inappropriate for such fuel. In particular, three experiments (SPERT CDC-859, NSRR HBO-1 and CABRI REP Na-1) appear to have resulted in fuel failures at only a fraction of the anticipated enthalpy levels. In evaluating the results of such RIA simulation experiments, however, it is necessary that the following two key considerations be taken into account: (1) Are the experiments representative of conditions that LWR fuel would experience during an in-reactor RIA event? (2) Is the fuel that is being utilized in the tests representative of the present (or anticipated) population of LWR fuel? Conducting experiments under conditions that can not occur in-reactor can trigger response modes that could not take place during in-reactor operation. Similarly, using unrepresentative fuel samples for the tests will produce failure information that is of limited relevance to commercial LWR fuel. This is particularly important for high-burnup fuel since the manner under which the test samples are base-irradiated prior to the test will impact the mechanical properties of the cladding and will therefore affect the RIA response. A good example of this effect can be seen in the results of the SPERT CDC-859 test and in the NSRR JM-4 and JM-5 tests. The conditions under which the fuel used for these tests was fabricated and/or base-irradiated prior to the RIA pulse resulted in the formation of multiple cladding defects in the form of hydride blisters. When this fuel was subjected to the RIA power pulse, it failed by developing multiple cracks that were closely correlated with the locations of the pre-existing hydride blisters. In the case of the JM tests, many of the cracks formed within the blisters themselves and did not propagate beyond the heavily hydrided regions.

  14. Improved and consistent determination of the nuclear inventory of spent PWR-fuel on the basis of time-dependent cell-calculations with KORIGEN

    International Nuclear Information System (INIS)

    For safe handling, processing and storage of spent nuclear fuel a reliable, experimentally validated method is needed to determine fuel and waste characteristics: composition, radioactivity, heat and radiation. For PWR's, a cell-burnup procedure has been developed which is able to calculate the inventory in consistency with cell geometry, initial enrichment, and reactor control. Routine calculations can be performed with KORIGEN using consistent cross-section sets - burnup-dependent and based on the latest Karlsruhe evaluations for actinides - which were calculated previously with the cell-burnup procedure. Extensive comparisons between calculations and experiments validate the presented procedure. For the use of the KORIGEN code the input description and sample problems are added. Improvements in the calculational method and in data are described, results from KORIGEN, ORIGEN and ORIGEN2 calculations are compared. Fuel and waste inventories are given for BIBLIS-type fuel of different burnup. (orig.)

  15. Nuclide Importance to Criticality Safety, Decay Heating, and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gauld, I. C.; Ryman, J. C.

    2000-12-11

    This report investigates trends in the radiological decay properties and changes in relative nuclide importance associated with increasing enrichments and burnup for spent LWR fuel as they affect the areas of criticality safety, thermal analysis (decay heat), and shielding analysis of spent fuel transport and storage casks. To facilitate identifying the changes in the spent fuel compositions that most directly impact these application areas, the dominant nuclides in each area have been identified and ranked by importance. The importance is investigated as a function of increasing burnup to assist in identifying the key changes in spent fuel characteristics between conventional- and extended-burnup regimes. Studies involving both pressurized water-reactor (PWR) fuel assemblies and boiling-water-reactor (BWR) assemblies are included. This study is seen to be a necessary first step in identifying the high-burnup spent fuel characteristics that may adversely affect the accuracy of current computational methods and data, assess the potential impact on previous guidance on isotopic source terms and decay-heat values, and thus help identify areas for methods and data improvement. Finally, several recommendations on the direction of possible future code validation efforts for high-burnup spent fuel predictions are presented.

  16. Actinide-only burnup credit for spent fuel transport

    International Nuclear Information System (INIS)

    A conservative methodology is described that would allow taking credit for burn up in the criticality safety analysis of spent nuclear fuel packages. Requirements for its implementation include isotopic and criticality validation, generation of package loading criteria using limiting parameters, and assembly burn up verification by measurement. The method allows credit for the changes in the 234U, 235U, 236U, 238U, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, and 241Am concentrations with burnup. No credit for fission product neutron absorbers is taken. Analyses are included regarding the methodology's financial benefits and conservative margin. It is estimated that the proposed actinide-only burnup credit methodology would save 20% of the transport costs. Nevertheless, the methodology includes a substantial margin. Conservatism due to the isotopic correction factors, limiting modelling parameters, limiting axial profiles and exclusion of the fission products ranges from 10 to 25% k. (author)

  17. Phenomena and Parameters Important to Burnup Credit

    International Nuclear Information System (INIS)

    Since the mid-1980s, a significant number of studies have been directed at understanding the phenomena and parameters important to implementation of burnup credit in out-of-reactor applications involving pressurized-water-reactor (PWR) spent fuel. The efforts directed at burnup credit involving boiling-water-reactor (BWR) spent fuel have been more limited. This paper reviews the knowledge and experience gained from work performed in the US and other countries in the study of burnup credit. Relevant physics and analysis phenomenon are identified, and an assessment of their importance to burnup credit implementation for transport and dry cask storage is given

  18. Phenomena and parameters important to burnup credit

    International Nuclear Information System (INIS)

    Since the mid-1980s, a significant number of studies have been directed at understanding the phenomena and parameters important to implementation of burnup credit in out-of-reactor applications involving pressurized-water- reactor (PWR) spent fuel. The efforts directed at burnup credit involving boiling-water-reactor (BWR) spent fuel have been more limited. This paper reviews the knowledge and experience gained from work performed in the United States and other countries in the study of burnup credit. Relevant physics and analysis phenomenon are identified, and an assessment of their importance to burnup credit implementation for transport and dry cask storage is given. (author)

  19. In-core fuel management amd attainable fuel burn-up in TRIGA

    International Nuclear Information System (INIS)

    The principles of in-core fuel management in research reactors, and especially in TRIGA, are discussed. Calculations made to determine the attainable fuel burn-up values of various fuel element types in the Otaniemi TRIGA Mark II reactor are described and the results obtained are given. Recommendations are given of how to perform the in-core fuel management to achieve good fuel utilization. The results obtained indicate that burn-up values of up to 5 and 2.5 MWd/element can be achieved for the 8 wt-% U Al clad and the 8.5 wt-% U SS clad elements, respectively. (author)

  20. Optimization of small long-life PWR based on thorium fuel

    Science.gov (United States)

    Subkhi, Moh Nurul; Suud, Zaki; Waris, Abdul; Permana, Sidik

    2015-09-01

    A conceptual design of small long-life Pressurized Water Reactor (PWR) using thorium fuel has been investigated in neutronic aspect. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.2, while the multi-energy-group diffusion calculations were optimized in three-dimension X-Y-Z geometry of core by COREBN. The excess reactivity of thorium nitride with ZIRLO cladding is considered during 5 years of burnup without refueling. Optimization of 350 MWe long life PWR based on 5% 233U & 2.8% 231Pa, 6% 233U & 2.8% 231Pa and 7% 233U & 6% 231Pa give low excess reactivity.

  1. Optimization of small long-life PWR based on thorium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Subkhi, Moh Nurul, E-mail: nsubkhi@students.itb.ac.id [Nuclear Physics and Biophysics Research Group, Faculty of Mathematics and Natural Science, Bandung Institute of Technology. Jalan Ganesha 10, Bandung (Indonesia); Physics Dept., Faculty of Science and Technology, State Islamic University of Sunan Gunung Djati Bandung Jalan A.H Nasution 105 Bandung (Indonesia); Suud, Zaki, E-mail: szaki@fi.itb.ac.id; Waris, Abdul; Permana, Sidik [Nuclear Physics and Biophysics Research Group, Faculty of Mathematics and Natural Science, Bandung Institute of Technology. Jalan Ganesha 10, Bandung (Indonesia)

    2015-09-30

    A conceptual design of small long-life Pressurized Water Reactor (PWR) using thorium fuel has been investigated in neutronic aspect. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.2, while the multi-energy-group diffusion calculations were optimized in three-dimension X-Y-Z geometry of core by COREBN. The excess reactivity of thorium nitride with ZIRLO cladding is considered during 5 years of burnup without refueling. Optimization of 350 MWe long life PWR based on 5% {sup 233}U & 2.8% {sup 231}Pa, 6% {sup 233}U & 2.8% {sup 231}Pa and 7% {sup 233}U & 6% {sup 231}Pa give low excess reactivity.

  2. Optimization of small long-life PWR based on thorium fuel

    International Nuclear Information System (INIS)

    A conceptual design of small long-life Pressurized Water Reactor (PWR) using thorium fuel has been investigated in neutronic aspect. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.2, while the multi-energy-group diffusion calculations were optimized in three-dimension X-Y-Z geometry of core by COREBN. The excess reactivity of thorium nitride with ZIRLO cladding is considered during 5 years of burnup without refueling. Optimization of 350 MWe long life PWR based on 5% 233U & 2.8% 231Pa, 6% 233U & 2.8% 231Pa and 7% 233U & 6% 231Pa give low excess reactivity

  3. Chemical form of fission products in high burnup fuels

    International Nuclear Information System (INIS)

    In order to make a proper assessment of candidate materials for advanced high-burnup fuels, thermochemical studies of fuel materials have been performed. Using data from the ECN thermochemical database (TBASE), which has been updated and extended for the present work, the suitability of various advanced fuel materials and inert matrices is studied. Detailed thermodynamic equilibrium calculations are performed for Pu0.42U0.58O2 and Pu0.40U0.60N for values of the burnup up to 200 MWd/kgHM. The formation of metallic phases, the pressure buildup and the stability of nitride or oxide phases is studied for each fuel type. The results for the chemical form of the solid fission products are given. The chemical aspects of the use of the inert matrix spinel (MgAl2O4) in combination with oxide fuel will be discussed. Experimental research on the compatibility of various types of inert matrices (nitrides, spinel) is in progress at ECN. (author)

  4. Burn-up behavior of FBR fuels sourced in uranium and plutonium recycled in PWRs and its influence on fuel economy

    International Nuclear Information System (INIS)

    Considering the strategic security of uranium resources, the authors investigated the effectual use of fuels recycled in a current LWR system (1.1 GWe-class PWRs of standard type), where they supposed the uranium fuel remade by re-enrichment of the recovery uranium from PWR spent fuels and the MOX fuel produced with the recovery plutonium as main fissile, and examined three cases of MOX fuels prepared by making choice of these matrixes among (A) the recovery uranium, (B) the depleted uranium as waste from natural uranium enrichment and (C) the depleted one sourced from recovery uranium re-enrichment. The result suggests that the multi-recycle of fuels in the LWR system brings the decline in fuel qualities. Particularly, the re-enrichment of recovery uranium brings the issue of an increase of 236U in remanufactured fuel. Thus, in order to investigate the burn-up of fast reactor fuels sourced from the PWR fuel system, they designed a model core of practical-FBR with reference to a concept of FBR reported by JAEA, using the SRAC numerical system. The burn-up behavior of FBR fuels was analyzed which were sourced in the original uranium spent-fuel and the remade uranium spent-fuel. And also, the breeding behavior of blanket materials was investigated which were individually of the depleted natural uranium, the recovery uranium from the original uranium spent-fuel and the recovery uranium from the remade uranium spent-fuel. The fissile 235U in FBR fuels reduces the burden of plutonium while the containment of 236U declines the neutron multiplication in FBRs. (author)

  5. Modelling of fission gas behaviour in high burnup nuclear fuel

    International Nuclear Information System (INIS)

    The safe and economic operation of nuclear power plants (NPPs) requires that the behaviour and performance of the fuel can be calculated reliably over its expected lifetime. This requires highly developed codes that treat the nuclear fuel in a general manner and which take into account the large number of influences on fuel behaviour, in particular the trend of NPP operators to increase the fuel burnup. With higher burnup, more fission events impact the material characteristics of the fuel and significant restructuring can be observed. At local burnups in excess of 60-75 MWd/kgU, the microstructure of nuclear fuel pellets differs markedly from the as-fabricated structure. This high burnup structure (HBS) is characterised by three principal features: 1) low matrix xenon concentration, 2) sub-micron grains and 3) a high volume fraction of micrometer-sized pores. The peculiar features of the HBS affect the fuel performance and safety; the large retention of fission gas within the HBS could lead to significant gas release at high burnups, either through the degradation of thermal conductivity or through direct release. The present work has focussed on the development and evaluation of HBS fission gas transport models, especially on two features: the equilibrium xenon concentration in the matrix of the HBS in UO2 fuel pellets, and the growth of the HBS porosity and its effect on fission gas release. A steady-state fission gas model has been developed to examine the importance of grain boundary diffusion for the gas dynamics in the HBS. It was possible to simulate the ∼0.2 wt% experimentally observed xenon concentration. The value of the grain boundary diffusion coefficient is not important for diffusion coefficient ratios in excess of ∼10”4. The model exhibits a high sensitivity to principally three parameters: the grain diffusion coefficient, the bubble number density and the re-solution rate coefficient. The model can reproduce the observed HBS xenon depletion

  6. The burnup dependence of light water reactor spent fuel oxidation

    International Nuclear Information System (INIS)

    Over the temperature range of interest for dry storage or for placement of spent fuel in a permanent repository under the conditions now being considered, UO2 is thermodynamically unstable with respect to oxidation to higher oxides. The multiple valence states of uranium allow for the accommodation of interstitial oxygen atoms in the fuel matrix. A variety of stoichiometric and nonstoichiometric phases is therefore possible as the fuel oxidizers from UO2 to higher oxides. The oxidation of UO2 has been studied extensively for over 40 years. It has been shown that spent fuel and unirradiated UO2 oxidize via different mechanisms and at different rates. The oxidation of LWR spent fuel from UO2 to UO2.4 was studied previously and is reasonably well understood. The study presented here was initiated to determine the mechanism and rate of oxidation from UO2.4 to higher oxides. During the early stages of this work, a large variability in the oxidation behavior of samples oxidized under nearly identical conditions was found. Based on previous work on the effect of dopants on UO2 oxidation and this initial variability, it was hypothesized that the substitution of fission product and actinide impurities for uranium atoms in the spent fuel matrix was the cause of the variable oxidation behavior. Since the impurity concentration is roughly proportional to the burnup of a specimen, the oxidation behavior of spent fuel was expected to be a function of both temperature and burnup. This report (1) summarizes the previous oxidation work for both unirradiated UO2 and spent fuel (Section 2.2) and presents the theoretical basis for the burnup (i.e., impurity concentration) dependence of the rate of oxidation (Sections 2.3, 2.4, and 2.5), (2) describes the experimental approach (Section 3) and results (Section 4) for the current oxidation tests on spent fuel, and (3) establishes a simple model to determine the activation energies associated with spent fuel oxidation (Section 5)

  7. Effect of fuel burnup history on neutronic characteristics of WWER-1000 core

    International Nuclear Information System (INIS)

    The paper analyzes fuel burnup history effect on neutronic characteristics of WWER-1000 core with use of the DYN3D codes. The DYN3D code employs the local Pu-239 concentration as an indicator of burnup spectral history. The calculations have been performed for the first four fuel loadings of Khmelnitsky NPP unit 2 and stationary fuel loading with TVSA. The effect of fuel burnup history is shown both on macro-characteristics on the reactor core and on local values of burnup and power

  8. Specific behaviour aspects at extended burnup operation of PHWR nuclear fuels

    International Nuclear Information System (INIS)

    In order to evaluate the influence of burnup extension on PHWR nuclear fuel performance, the paper presents and discusses the specific potentially life-limiting factors at extended burnup for this type of fuel using recent experimental evidence and making a direct comparison with LWR fuel performance. (Author)

  9. Microstructural characterization of high burn-up mixed oxide fast reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Teague, Melissa, E-mail: melissa.teague@inl.gov [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States); Gorman, Brian; King, Jeffrey [Colorado School of Mines, 1500 Illinois St, Golden, CO 80401 (United States); Porter, Douglas; Hayes, Steven [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States)

    2013-10-15

    High burn-up mixed oxide fuel with local burn-ups of 3.4–23.7% FIMA (fissions per initial metal atom) were destructively examined as part of a research project to understand the performance of oxide fuel at extreme burn-ups. Optical metallography of fuel cross-sections measured the fuel-to-cladding gap, clad thickness, and central void evolution in the samples. The fuel-to-cladding gap closed significantly in samples with burn-ups below 7–9% FIMA. Samples with burn-ups in excess of 7–9% FIMA had a reopening of the fuel-to-cladding gap and evidence of joint oxide-gain (JOG) formation. Signs of axial fuel migration to the top of the fuel column were observed in the fuel pin with a peak burn-up of 23.7% FIMA. Additionally, high burn-up structure (HBS) was observed in the two highest burn-up samples (23.7% and 21.3% FIMA). The HBS layers were found to be 3–5 times thicker than the layers found in typical LWR fuel. The results of the study indicate that formation of JOG and or HBS prevents any significant fuel-cladding mechanical interaction from occurring, thereby extending the potential life of the fuel elements.

  10. Effect of additives on corrosion resistance of Zirconium alloy for extended burn-up fuel cladding

    International Nuclear Information System (INIS)

    Sumitomo Metal Industries, Ltd. (SMI) supplies Zircaloy cladding tubes and has been developing high corrosion resistance Zr alloys for extended burn-up fuel claddings for BWR and PWR, respectively. For BWR cladding tube, small addition of IVb and Vb elements to Low Sn Zircaloy-2 improved nodular corrosion resistance. It was observed by Transmission Electron Microscopy that these additives complied with a Zr(Cr, Fe)2 type intermetallic compound and those size were finer than that precipitated in a conventional Zircaloy-2. That was assumed to result in suppressing nodular corrosion occurrence. For PWR cladding tube, small addition of Ni and Nb to extremely low Sn zirconium alloy improved uniform corrosion resistance and suppressed hydrogen pick-up. As this results Zr-1.0Sn-0.27Fe-0.16Cr-0.1Nb-0.01Ni were selected as a candidate alloy. In spite of extremely low Sn content, its mechanical properties were almost same as conventional Zircaloy-4. (author)

  11. Advanced fuel developments to improve fuel cycle cost in PWR

    International Nuclear Information System (INIS)

    Increasingly lower fuel cycle costs and higher plant availability factors have been two crucial components in keeping the overall cost of electricity produced by nuclear low and competitive with respect to other energy sources. The continuous quest to reduce fuel cycle cost has resulted in some consolidated trends in LWR fuel management schemes: smaller number of feed fuel assemblies with longer residence time; longer cycles, with 18-month cycle as the predominant option, and some plants already operating on, or considering, 24-month refueling intervals; higher power ratings with many plants undergoing power uprates. In order to maintain or improve fuel utilization for the longer cycles and/or higher power ratings, the licensed limits in fuel fissile content (5.0 w/o U235 enrichment) and discharge burnup (62 GWd/tHM for the peak pin) have been approached. In addition, Zr-based fuel cladding materials are also being challenged by the resulting increased duty. For the above reasons further improvements in fuel cycle cost have to overcome one or more of the current limits. This paper discusses an option to break through this 'stalemate', i.e. uranium nitride (UN) fuel with SiC clad. In UN the higher density of the nitride with respect to the oxide fuel leads to higher fissile content and reduction in the number of feed assemblies, improved fuel utilization and potentially higher specific powers. The SiC clad, among other benefits, enables higher clad irradiation, thereby exploiting the full potential of UN fuel. An alternative to employing UN fuel is to maintain UO2 fuel but boost the fissile content increasing the U235 enrichment beyond the 5 w/o limit. The paper describes and compares the potential benefits on fuel cycle cost of either option using realistic full-core calculations and ensuing economic analysis performed using Westinghouse in-house reactor physics tools and methodologies. (author)

  12. Calculation of fuel burn-up and fuel reloading for the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Calculation of fuel burnup and fuel reloading for the Dalat Nuclear Research Reactor was carried out by using a new programme named HEXA-BURNUP, realized in a PC. The programme is used to calculate the following parameters of the Dalat reactor: a/Critical configurations of the core loaded with 69, 72, 74, 86, 88, 89 and 92 fuel elements. The effective multiplication coefficients equal 1 within the error ranges of less than 0.38%. b/ The thermal neutron flux distribution in the reactor. The calculated results agree with the experimental data measured at 11 typical positions. c/The average fuel burn-up for the period from Feb. 1984 to Sep. 1992. The difference between calculation and experiment is only about 1.9%. 10 fuel reloading versions are calculated, from which an optimal version is proposed. (author). 9 refs., 4 figs., 5 tabs

  13. Modeling of the thermo-mechanical behaviour of the PWR fuel

    International Nuclear Information System (INIS)

    This article reviews the various physical phenomena that take place in an irradiated fuel rod and presents the development of the thermo-mechanical codes able to simulate them. Though technically simple the fuel rod is the place where appear 4 types of process: thermal, gas behaviour, mechanical and corrosion that combine involving 5 elements: the fuel pellet, the fuel clad, the fuel-clad gap, the inside volume and the coolant. For instance the pellet is the place where the following mechanical processes took place: thermal dilatation, elastic deformation, creep deformation, densification, solid swelling, gaseous swelling and cracking. The first industrial code simulating the behaviour of the fuel rod was COCCINEL, it was developed by AREVA teams from the American PAD code that was included in the Westinghouse license. Today the GALILEO code has replaced the COPERNIC code that was developed in the beginning of the 2000 years. GALILEO is a synthesis of the state of the art of the different models used in the codes validated for PWR and BWR. GALILEO has been validated on more than 1500 fuel rods concerning PWR, BWR and specific reactors like Siloe, Osiris, HFR, Halden, Studsvik, BR2/3,...) and also for extended burn-ups. (A.C.)

  14. Nuclear fuel behaviour modelling at high burnup and its experimental support. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    of MOX behaviour up to that for UO2 fuel. There appears to be a good consensus on how MOX fuel performance differs from UO2, and on the issues that need to be addressed to achieve higher burnups. The final sessions of the TCM considered the current status of integrated fuel behaviour codes and the challenges for higher burnup modelling. The meeting provided a valuable forum for a review of the state-of-the-art. Presentations were given on a number of existing codes and others under development, covering PWR, WWER, BWR and CANDU fuel performance. Some specialised methods for specific advanced fuel types were also discussed. Recommendations on future work in the area of fission gas release; clad modelling; and MOX fuel modelling are included

  15. MCWO - Linking MCNP And ORIGEN2 For Fuel Burnup Analysis

    International Nuclear Information System (INIS)

    The UNIX BASH (Bourne Again Shell) script MCWO has been developed at the Idaho National Engineering and Environment Laboratory (INEEL) to couple the Monte Carlo transport code MCNP with the depletion and buildup code ORIGEN2. MCWO is a fully automated tool that links the Monte Carlo transport code MCNP with the radioactive decay and burnup code ORIGEN2. MCWO can handle a large number of fuel burnup and material loading specifications, Advanced Test Reactor (ATR) powers, and irradiation time intervals. The program processes input from the user that specifies the system geometry, initial material compositions, feed/removal specifications, and other code-specific parameters. Calculated results from MCNP, ORIGEN2, and data process module calculations are then output successively as the code runs. The principal function of MCWO is to transfer one-group cross-section and flux values from MCNP to ORIGEN2, and then transfer the resulting material compositions (after irradiation and/or decay) from ORIGEN2 back to MCNP in a repeated, cyclic fashion. The basic requirement of the code is that the user have a working MCNP input file and other input parameters; all interaction with ORIGEN2 and other calculations are performed by UNIX BASH script MCWO. This paper presents the MCWO-calculated results of the RERTR-1 and -2, and the Weapons-Grade Mixed Oxide fuel (Wg-MOX) fuel experiments in ATR and compares the MCWO-calculated results with the measured data

  16. Derivation of correction factor to be applied for calculated results of PWR fuel isotopic composition by ORIGEN2 code

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya; Nomura, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Murazaki, Minoru [Tokyo Nuclear Service Inc., Tokyo (Japan); Mochizuki, Hiroki [The Japan Research Institute Ltd., Tokyo (Japan)

    2001-11-01

    For providing conservative PWR spent fuel compositions from the view point of nuclear criticality safety, correction factors applicable for result of burnup calculation by ORIGEN2 were evaluated. Its conservativeness was verified by criticality calculations using MVP. To calculate these correction factors, analyses of spent fuel isotopic composition data were performed by ORIGEN2. Maximum or minimum value of the ratio of calculation result to experimental data was chosen as correction factor. These factors are given to each set of fuel assembly and ORIGEN2 library. They could be considered as the re-definition of recommended isotopic composition given in Nuclear Criticality Safety Handbook. (author)

  17. Nondestructive analysis of RA reactor fuel burnup, Program for burnup calculation base on relative yield of 106Ru, 134Cs and 137Cs in the irradiated fuel

    International Nuclear Information System (INIS)

    Burnup of low enriched metal uranium fuel of the RA reactor is described by two chain reactions. Energy balance and material changes in the fuel are described by systems of differential equations. Numerical integration of these equations is base on the the reactor operation data. Neutron flux and percent of Uranium-235 or more frequently yield of epithermal neutrons in the neutron flux, is determined by iteration from the measured contents of 106Ru, 134Cs and 137Cs in the irradiated fuel. The computer program was written in FORTRAN-IV. Burnup is calculated by using the measured activities of fission products. Burnup results are absolute values

  18. Mechanical Fatigue Testing of High Burnup Fuel for Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-05-01

    This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using a set up with three linear variable differential transformers (LVDTs).

  19. Bias estimates used in lieu of validation of fission products and minor actinides in MCNP Keff calculations for PWR burnup credit casks

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Don E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Marshall, William J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wagner, John C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bowen, Douglas G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The U.S. Nuclear Regulatory Commission (NRC) Division of Spent Fuel Storage and Transportation recently issued Interim Staff Guidance (ISG) 8, Revision 3. This ISG provides guidance for burnup credit (BUC) analyses supporting transport and storage of PWR pressurized water reactor (PWR) fuel in casks. Revision 3 includes guidance for addressing validation of criticality (keff) calculations crediting the presence of a limited set of fission products and minor actinides (FP&MA). Based on previous work documented in NUREG/CR-7109, recommendation 4 of ISG-8, Rev. 3, includes a recommendation to use 1.5 or 3% of the FP&MA worth to conservatively cover the bias due to the specified FP&MAs. This bias is supplementary to the bias and bias uncertainty resulting from validation of keff calculations for the major actinides in SNF and does not address extension to actinides and fission products beyond those identified herein. The work described in this report involves comparison of FP&MA worths calculated using SCALE and MCNP with ENDF/B-V, -VI, and -VII based nuclear data and supports use of the 1.5% FP&MA worth bias when either SCALE or MCNP codes are used for criticality calculations, provided the other conditions of the recommendation 4 are met. The method used in this report may also be applied to demonstrate the applicability of the 1.5% FP&MA worth bias to other codes using ENDF/B V, VI or VII based nuclear data. The method involves use of the applicant s computational method to generate FP&MA worths for a reference SNF cask model using specified spent fuel compositions. The applicant s FP&MA worths are then compared to reference values provided in this report. The applicants FP&MA worths should not exceed the reference results by more than 1.5% of the reference FP&MA worths.

  20. The development of flow test technology for PWR fuel assemblies

    International Nuclear Information System (INIS)

    The objective of this project is to design and construct a high temperature and pressure flow test facility and to develop flow test technology for the evaluation of PWR fuel performance. For the nuclear fuel safety aspect it is of importance to evaluate the thermalhydraulic compatibility and mechanical integrity of a newly designed fuel through the design verification test. The PWR-Hot Test Loop facility is under construction to be used to perform a pressure drop test, a lift force test and a fretting corrosion test of a fullsize PWR fuel assembly at reactor operating conditions. This facility was designed to be used to produce the hydraulic parameters of the existing PWR fuel assemblies(14x14FA, 16x16FA, 17x17FA) and to verify a design of advanced fuel assemblies (KAFA-I and KAFA-II) developed by KAERI. The PWR-Cold Test Loop facility with the 5x5 Rod Bundles in the test section was designed and installed to carry out the flow distribution study by means of Laser Doppler Velocimeter. The LDV techniques have been developed and used to measure the flow velocity and turbulent intensity for evaluating mixing effects of a newly designed spacer grid with and without mixing vanes, cross flow between the fuel assemblies and a turbulent model. (Author)

  1. Sensitivity analysis of a PWR fuel element using zircaloy and silicon carbide claddings

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Rochkhudson B. de; Cardoso, Fabiano; Salome, Jean A.D.; Pereira, Claubia; Fortini, Angela, E-mail: rochkhudson@ufmg.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Escola de Engenharia. Departamento de Engenharia Nuclear

    2015-07-01

    The alloy composed of zirconium has been used effectively for over 50 years in claddings of nuclear fuel, especially for PWR type reactors. However, to increase fuel enrichment with the aim of raising the burning and maintaining the safety of nuclear plants is of great relevance the study of new materials that can replace safely and efficiently zircaloy cladding. Among several proposed material, silicon carbide (SiC) has a potential to replace zircaloy as fuel cladding material due to its high-temperature tolerance, chemical stability and low neutron affinity. In this paper, the goal is to expand the study with silicon carbide cladding, checking its behavior when submitted to an environment with boron, burnable poison rods, and temperature variations. Sensitivity calculation and the impact in multiplication factor to both claddings, zircaloy and silicon carbide, were performed during the burnup. The neutronic analysis was made using the SCALE 6.0 (Standardized Computer Analysis for Licensing Evaluation) code. (author)

  2. Sensitivity analysis of a PWR fuel element using zircaloy and silicon carbide claddings

    International Nuclear Information System (INIS)

    The alloy composed of zirconium has been used effectively for over 50 years in claddings of nuclear fuel, especially for PWR type reactors. However, to increase fuel enrichment with the aim of raising the burning and maintaining the safety of nuclear plants is of great relevance the study of new materials that can replace safely and efficiently zircaloy cladding. Among several proposed material, silicon carbide (SiC) has a potential to replace zircaloy as fuel cladding material due to its high-temperature tolerance, chemical stability and low neutron affinity. In this paper, the goal is to expand the study with silicon carbide cladding, checking its behavior when submitted to an environment with boron, burnable poison rods, and temperature variations. Sensitivity calculation and the impact in multiplication factor to both claddings, zircaloy and silicon carbide, were performed during the burnup. The neutronic analysis was made using the SCALE 6.0 (Standardized Computer Analysis for Licensing Evaluation) code. (author)

  3. Investigation of research and development subjects for very high burnup fuel. Development of fuel cladding materials

    Energy Technology Data Exchange (ETDEWEB)

    Nagase, Fumihisa; Suzuki, Masahide; Furuta, Teruo; Suzuki, Yasufumi; Hayashi, Kimio; Amano, Hidetoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1993-05-01

    Plutonium use as well as burnup extension of UO{sub 2} fuel is an important subject for the strategy of utilization of the nuclear energy in LWRs. A higher burnup is favorable to MOX fuel in economic respect and for effective use of plutonium. Therefore, the concept of a `very high burnup` aiming at the maximum bundle burnup of 100GWd/t has been proposed assuming use of MOX fuel. The authors have investigated research and development subjects for the fuel pellet and the cladding material to be developed. The present report shows the results on the cladding material. In order to achieve a very high burnup, development of the cladding material with higher corrosion and radiation resistance compared with Zircaloy is necessary. In this report, zirconium based alloy, stainless steel, nickel and titanium based alloys, ceramics, etc. were reviewed considering water corrosion resistance, thermal and mechanical properties, radiation effects, etc. Furthermore, capability of these materials as the fuel cladding was discussed focusing on water side corrosion and radiation effect on mechanical properties. As a result, candidate materials at present and the required research tasks were shown with issues for the development. (author) 66 refs.

  4. Composition and Distribution of Tramp Uranium Contamination on BWR and PWR Fuel Rods

    International Nuclear Information System (INIS)

    In a joint research project of VGB and AREVA NP GmbH the behaviour of alpha nuclides in nuclear power plants with light water reactors has been investigated. Understanding the source and the behaviour of alpha nuclides is of big importance for planning radiation protection measures for outages and upcoming dismantling projects. Previous publications have shown the correlation between plant specific alpha contamination of the core and the so called 'tramp fuel' or 'tramp uranium' level which is linked to the defect history of fuel assemblies and accordingly the amount of previously washed out fuel from defective fuel rods. The methodology of tramp fuel estimation is based on fission product concentrations in reactor coolant but also needs a good knowledge of tramp fuel composition and in-core distribution on the outer surface of fuel rods itself. Sampling campaigns of CRUD deposits of irradiated fuel assemblies in different NPPs were performed. CRUD analyses including nuclide specific alpha analysis have shown systematic differences between BWR and PWR plants. Those data combined with literature results of fuel pellet investigations led to model improvements showing that a main part of fission products is caused by fission of Pu-239 an activation product of U-238. CRUD investigations also gave a better picture of the in-core composition and distribution of the tramp uranium contamination. It was shown that the tramp uranium distribution in PWR plants is time dependent. Even new fuel assemblies will be notably contaminated after only one cycle of operation. For PWR applies the following logic: the higher the local power the higher the contamination. With increasing burnup the local rod power usually decreases leading to decreasing tramp uranium contamination on the fuel rod surface. This is not applicable for tramp uranium contamination in BWR. CRUD contamination (including the tramp fuel deposits) is much more fixed and is constantly increasing

  5. Investigation of several methods to set burnup for criticality safety assessment of spent fuel transport casks

    International Nuclear Information System (INIS)

    Several currently available methods to set burnup for depletion calculation are reviewed and discussed about its adequacy for criticality safety assessment of spent fuel (SF) transport casks by taking burnup credit (BC) into accounts. Various errors associated with BC criticality analyses are evaluated and converted to equivalent burnup to compare each other. Methods are proposed to use some reduced burnups equivalent to compensation of these associated errors. Effects of assumption of axial burnup distribution on criticality calculation and irradiation history parameter variation on depletion calculation are evaluated with OECD/NEA BC international benchmark data. (author)

  6. Experience and reliability of Framatome ANP's PWR and BWR fuel

    International Nuclear Information System (INIS)

    Based on three decades of fuel supply to 169 PWR and BWR plants on four continents, Framatome ANP has a very large database from operating experience feedback. The performance of Framatome PWR and BWR fuel is discussed for the period 1992-2001 with special emphasis on fuel failures, countermeasures and their effectiveness. While PWR fuel performance in most reactors has been good, the performance in some years did suffer from special circumstances that caused grid-to-rod fretting failures in few PWRs. After solving this problem, fuel of all types showed high reliability again. Especially the current PWR fuel products AFA 3G, HTP, Mark B and Mark BW showed a very good operating performance. Fuel reliability of Framatome ANP BWR fuel has been excellent over the last decade with average annual fuel rod failure rates under 1x10-5 since 1991. More than 40% of all BWR fuel failures in the 1992-2001 decade were caused by debris fretting. The debris problem has been remedied with the FUELGUARDTM lower tie plate, and by reactor operators' efforts to control the sources of debris. PCI, the main failure mechanism in former periods, affected only 10 rods. All of these rods had non-liner cladding. (author)

  7. Fuel Element Designs for Achieving High Burnups in 220 MW(e) Indian PHWRs

    International Nuclear Information System (INIS)

    Presently 19-element natural uranium fuel bundles are used in 220 MW(e) Indian PHWRs. The core average design discharge burnup for these bundles is 7000 MW·d/Te U and maximum burnup for assembly goes upto of 15 000 MWD/Te U. Use of fuel materials like MOX, Thorium, slightly enriched uranium etc in place of natural uranium in 19-element fuel bundles, in 220 MW(e) PHWRs is being investigated to achieve higher burnups. The maximum burnup investigated with these bundles is 30 000 MW·d/Te U. In PHWR fuel elements no plenum space is available and the cladding is of collapsible type. Studies have been carried out for different fuel element target burnups with different alternative concepts. Modification in pellet shape and pellet parameters are considered. These studies for the PHWR fuel elements/assemblies have been elaborated in this paper. (author)

  8. Burn-up measurements at TRIGA fuel elements containing strong burnable poison

    International Nuclear Information System (INIS)

    The reactivity method of determining the burn-up of research reactor fuel elements is applied to the highly enriched FLIP elements of TRIGA reactors. In contrast to other TRIGA fuel element types, the reactivity of FLIP elements increases with burn-up due to consumption of burnable poison. 33 fuel elements with burn-up values between 3% and 14% were investigated. The experiments showed that variations in the initial fuel composition significantly influence the reactivity and, consequently, increase the inaccuracy of the burn-up measurements. Particularly important are variations in the initial concentration of erbium, which is used as burnable poison in FLIP fuel. A method for reducing the effects of the material composition variations on the measured reactivity is presented. If it is applied, the accuracy of the reactivity method for highly poisoned fuel elements becomes comparable to the accuracy of other methods for burn-up determination. (orig.)

  9. Investigation of research and development subjects for the Very High Burnup Fuel. Development of fuel pellet

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Kimio; Amano, Hidetoshi; Suzuki, Yasufumi; Furuta, Teruo; Nagase, Fumihisa; Suzuki, Masahide [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1993-06-01

    A concept of the Very High Burnup Fuel aiming at a maximum fuel assembly burnup of 100 GWd/t has been proposed in terms of burnup extension, utilization of Pu and transmutation of transuranium elements (TRU: Np, Am and Cm). The authors have investigated research and development (R and D) subjects of the fuel pellet and the cladding material of the Fuel. The present report describes the results on the fuel pellet. First, the chemical state of the Fuel and fission products (FP) was inferred through an FP-inventory and an equilibrium-thermodynamics calculations. Besides, knowledge obtained from post-irradiation examinations was surveyed. Next, an investigation was made on irradiation behavior of U/Pu mixed oxide (MOX) fuel with high enrichment of Pu, as well as on fission-gas release and swelling behavior of high burnup fuels. Reprocessibility of the Fuel, particularly solubility of the spent fuel, was also examined. As for the TRU-added fuel, material property data on TRU oxides were surveyed and summarized as a database. And the subjects on the production and the irradiation behavior were examined on the basis of experiences of MOX fuel production and TRU-added fuel irradiation. As a whole, the present study revealed the necessity of accumulating fundamental data and knowledge required for design and assessment of the fuel pellet, including the information on properties and irradiation performance of the TRU-added fuel. Finally, the R and D subjects were summarized, and a proposal was made on the way of development of the fuel pellet and cladding materials. (author).

  10. Fuel performance at high burnup for water reactors

    International Nuclear Information System (INIS)

    The present meeting was scheduled by the International Atomic Energy Agency, upon proposal of the Members of the International Working Group on Water Reactor Fuel Performance and Technology. The purpose of this meeting was to review the ''state-of-the-art'' in the area of Fuel Performance at High Burnup for Water Reactors. Previous IAEA meetings on this topic were held in Mol in 1981 and 1984 and on related topics in Stockholm and Lyon in 1987. Fifty-five participants from 16 countries and two international organizations attended the meeting and 28 papers were presented and discussed. The papers were presented in five sub-sessions and during the meeting, working groups composed of the session chairmen and paper authors prepared the summary of each session with conclusions and recommendations for future work. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  11. Criticality calculations of a generic fuel container for fuel assemblies PWR, by means of the code MCNP; Calculos de criticidad de un contenedor de combustible generico para ensambles combustibles PWR, mediante el codigo MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Vargas E, S.; Esquivel E, J.; Ramirez S, J. R., E-mail: samuel.vargas@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    The purpose of the concept of burned consideration (Burn-up credit) is determining the capacity of the calculation codes, as well as of the nuclear data associates to predict the isotopic composition and the corresponding neutrons effective multiplication factor in a generic container of spent fuel during some time of relevant storage. The present work has as objective determining this capacity of the calculation code MCNP in the prediction of the neutrons effective multiplication factor for a fuel assemblies arrangement type PWR inside a container of generic storage. The calculations are divided in two parts, the first, in the decay calculations with specified nuclide concentrations by the reference for a pressure water reactor (PWR) with enriched fuel to 4.5% and a discharge burned of 50 GW d/Mtu. The second, in criticality calculations with isotopic compositions dependent of the time for actinides and important fission products, taking 30 time steps, for two actinide groups and fission products. (Author)

  12. An overview of burnup credit application in spent nuclear fuel management

    International Nuclear Information System (INIS)

    The current status of burnup credit application has been overviewed for spent nuclear fuel management. It was revealed that the use of burnup credit is practically limited to spent nuclear fuel storage, for which selected actinides-only are taken into account

  13. A neural network approach for burn-up calculation and its application to the dynamic fuel cycle code CLASS

    International Nuclear Information System (INIS)

    Highlights: • Development of a neural network model to predict the requiered plutonium content. • The accuracy of this model is very good (0.37% of error). • Development of a neural network model to predict evolution of average cross sections. • Predictions allow calculating fuel depletion quickly and with a very good accuracy. • This approach has been applied to the PWR MOX case in a dynamic fuel cycle code. - Abstract: Dynamic fuel cycle simulation tools calculate nuclei inventories and mass flows evolution in an entire fuel cycle, from the mine to the final disposal. Usually, the fuel depletion in reactor is handled by a fuel loading model and a mean cross section predictor. In the case of a PWR–MOX, a fuel loading model provides from a plutonium stock the plutonium fraction in the fresh fuel needed to reach a specific burnup. A mean cross section predictor aims to assess isotopic cross sections required for building Bateman equations for any fresh fuel composition with a sufficient accuracy and a reasonable computing time. This paper presents a methodology based on neural networks for building a fuel loading model and a cross section predictor for a PWR reactor loaded with MOX fuel. The mean error of the plutonium content prediction from the fuel loading model is 0.37%. Furthermore, the mean cross section predictor allows completion of the fuel depletion calculation in less than one minute with excellent accuracy. A maximum deviation of 3% on main nuclei is obtained at the end of cycle between inventories calculated from neural networks and from the reference coupled neutron transport/fuel depletion calculation

  14. The traveller: a new look for PWR fresh fuel packages

    International Nuclear Information System (INIS)

    The Traveller PWR fresh fuel shipping package represents a radical departure from conventional PWR fuel package designs. This paper follows the development effort from the establishment of goals and objectives, to intermediate testing and analysis, to final testing and licensing. The discussion starts with concept origination and covers the myriad iterations that followed until arriving at a design that would meet the demanding licensing requirements, last for 30 years, and would be easy to load and unload fuel, easy to handle, inexpensive to manufacture and transport, and simple and inexpensive to maintain

  15. Post DNB heat transfer experiments for PWR fuel assemblies

    International Nuclear Information System (INIS)

    Nuclear Power Engineering Corporation (NUPEC) and Mitsubishi performed heat transfer experiments on post DNB (departure from nucleate boiling) for the pressurized water reactor (PWR) fuel assemblies under the sponsorship of the Japanese Ministry of Economy, Trade and Industry (METI) as one of a series of fuel assembly verification tests. Based on the obtained experimental data, a new evaluation model for the fuel rod heat transfer behavior after DNB was developed. A large safety margin, which had remained in the present thermal-hydraulic design that did not allow DNB, was confirmed by applying the developed model to the PWR plant safety analysis. (author)

  16. Development of an advanced 16x165 Westinghouse type PWR fuel assembly for Slovenia

    International Nuclear Information System (INIS)

    Industrias Nucleares do Brasil (INB), KEPCO Nuclear Fuel Company, Ltd. (KNFC), and Westinghouse Electric Company (Westinghouse) have jointly designed an advanced 16x16 Westinghouse type PWR fuel assembly. This advanced 16x16 Westinghouse type PWR fuel assembly, which will be implemented in both Kori Unit 2 (in Korea) and Angra Unit 1 (in Brazil) in January and March 2005, respectively, is an integral part of the utilities fuel management strategy. This same fuel design has also been developed for future use in Krsko Unit 1 (in Slovenia). In this paper we will describe the front-end nuclear fuel management activities utilized by the joint development team and describe how these activities played an integral part in defining the direction of the advanced 16x16 Westinghouse type PWR fuel assembly design. Additionally, this paper will describe how this design demonstrates improved margins under high duty plant operating conditions. The major reason for initiating this joint development program was to update the current 16x16 fuel assembly, which is also called 16STD. The current 16STD fuel assembly contains a non-optimized fuel rod diameter for the fuel rod pitch (i.e. 9.5 mm OD fuel rods at a 0.485 inch pitch), non-neutronic efficient components (i.e. Inconel Mid grids), no Intermediate Flow Mixer (IFM) grids, and other mechanical features. The advanced 16x16 fuel assembly is being designed for peak rod average burnups of up to 75 MWd/kgU and will use an optimized fuel rod diameter (i.e. 9.14 mm OD ZIRLOTM fuel rods), neutronic efficient components (i.e. ZIRLOTM Mid grids), ZIRLOTM Intermediate Flow Mixer (IFM) grids to improve Departure from Nucleate Boiling (DNB) margin, and many other mechanical features that improve design margins. Nuclear design activities in the areas of fuel cycle cost and fuel management were performed in parallel to the fuel assembly design efforts. As the change in reactivity due to the change in the fuel rod diameter influences directly the

  17. A comparative study of fuel management in PWR reactors

    International Nuclear Information System (INIS)

    A study about fuel management in PWR reactors, where not only the conventional uranium cycle is considered, but also the thorium cycle as an alternative is presented. The final results are presented in terms of U3O8 demand and SWU and the approximate costs of the principal stages of the fuel cycle, comparing with the stardand cycle without recycling. (E.G.)

  18. Make use of EDF orientations in PWR fuel management

    International Nuclear Information System (INIS)

    The EDF experience acquired permits to allow the PWR fuel performances and to make use of better management. In this domain low progress can be given considerable financial profits. The industrial and commercial structures, the time constant of the fuel cycle, has for consequence that the electric utilities can take advantage only progressively of the expected profits

  19. Dissolution of low burnup Fast Flux Test reactor fuel

    International Nuclear Information System (INIS)

    The first Fast-Flux Test Facility reactor fuel [mixed (U,Pu)O2 composition] has been used in dissolution tests for fuel reprocessing. The fuel tested here had a peak burnup of 0.22 at. %, with peak centerline temperatures of 19970C. Linear dissolution rates of 0.99 to 1.57 mm/h were determined for dissolver solution and fresh acid, respectively. Insoluble residues from dissolution at 950C ranged from 0.18 to 0.28% of the original fuel. From 2 to 37 wt % of the residue was recoverable plutonium. Dissolution at 290C yielded residues of 0.56 to 0.64% of the original fuel. The major elements present in the HF leached residue included Ru, Mo, and Rh. The recovered cladding from the 950C dissolution contained the equivalent of 198 mg of 239Pu per 100 g of hulls, while the cladding from the 290c experiments contained only 0.21 mg of 239Pu per 100 g of hulls. 9 references, 5 figures

  20. WWER-1000 fuel cycle economical improvement by reaching high fuel burnup

    International Nuclear Information System (INIS)

    The use of some Fuel Assemblies (FAs) of conventional design in 4 fuel cycles has allowed to increase unloaded FA average burnup from 38.5-40 MWd/kgU up to 42-43 MWd/kgU. It makes it possible to reduce spent fuel amount and, respectively, the fuel cycle back end costs. The increase of Ukrainian WWER-1000 fuel burnup has not decreased the fuel reliability. The number of leaking, unloaded ahead of schedule FAs, FAs having reached the failure criterion, differ substantially (several times). Correspondingly the share of leaking FAs (FPLR) and the share of failed FAs (FPFR) will be different. Average value of FPFR calculated according to the number of unloaded ahead of schedule FAs for Ukrainian WWER-1000 (except Rovno-3) not more than (0.6-1)x10-5 (6-10 ppm). Average fuel pin leaking rate for Ukrainian WWER-1000 (without taking into account some cases, Rovno-3) corresponds to 2 x10-5 -2.8 x10-5 (20-28) ppm. The experience of fuel operation and principal results of the irradiated FAs examination allow to accept a possibility of further fuel burnup increase. The situation regarding fuel reliability operation on Rovno-3 units requires further analysis and additional measures

  1. Dissolution study of spent PWR fuel: Dissolution behavior and chemical properties of insoluble residues

    International Nuclear Information System (INIS)

    The dissolution behavior of PWR spent nuclear fuels of 7000 to 39000 MWd/t and the chemical properties of fission product insoluble residues obtained by the nitric acid dissolution of the fuels were investigated. UO2 pellets in the irradiated fuel rods (10.7 mm in diameter) sliced to 3 to 5 mm in length were completely dissolved within 2 h in 3M nitride acid at about 100deg C, regardless of their burnups. The amount of insoluble residue remaining after dissolution increased linearly with burnup from 7000 to 30000 MWd/t, and above 30000 MWd/t it increased steeply. About 70% of the insoluble residue was composed of fission products such as molybdenum, technetium, ruthenium, rhodium and palladium. The remainder was fine chips of cladding, etc. The relative ratio of these elements in the insoluble residue was different from that in the spent fuel based on calculation. In insoluble residues only hexagonal ruthenium alloy (ε-phase) was identified. (orig.)

  2. Equivalence test for sample data of isotopic compositions in PWR spent fuel

    International Nuclear Information System (INIS)

    Statistical combination method for previous and JAERI data of isotopic compositions in PWR spent fuel has been investigated. Using the F and T statistical test method, tests for the normality, the homogeneous variance and equivalent mean at a 5 % significance level have been carried out for twenty two isotopes which consist of spent fuel over 30 GWd/tU in burnup. All isotopes except U-238 and Nd-148 seem to be satisfied with the normality. 16 isotopes including U-234 seem to be satisfied with the homogeneous variance. 9 isotopes including U-235 seem to have a equivalent mean. 6 isotopes of U-235, Pu-240, Pu-241, Cs-134, Nd-144 and Sm-148 are appeared to be satisfied simultaneously with 3 alternative test results

  3. Basic safety research for high burnup fuels in light water reactors

    International Nuclear Information System (INIS)

    While the high burnup programs for LWR'S fuel have been proceeding, the piling up fundamental data on high burnup fuels is more desirable to conduct even more precise assessment of fuel integrity and safety. This study covers the influence of gadelinia addition on fuel pellets, of hydrogen absorption on zircaloy waterside corrosion, of fission products on pellet-cladding interaction and reactor structual materials. (author)

  4. Long term Integrity of PWR Spent Fuel in Dry Storage

    International Nuclear Information System (INIS)

    The newly established organization KRMC (Korea radioactive waste management corporation) which is responsible for all kinds of radioactive waste generated in the Republic of Korea launched the PWR spent fuel dry storage research project in June 2009. This project has objectives to develop a storage system and evaluate the integrity of PWR fuel in dry storage. The project consists of three steps. At first step, it would develop own degradation models by referring to pre-exist good models and develop the hot test scenarios. Second step, test facilities would be constructed and used for testing the degradation behaviour in each mechanisms and in total. As a final step, total evaluation code would be developed by integrating each degradation model produced in the first step and the test data produced in the second step. All the activities would be summarized into a report and applied to licensing work. The Republic of Korea PWR spent fuels have unique characteristics of various fuel types (array type, clad material) and high capacity factor (maximum usage of fuel which is bad for integrity). These facts could impact on the research ranges of experimental data needed for degradation evaluation. In this research, spent fuel performance data concerning long term dry storage will be analysed and the major degradation mechanisms like creep and hydride behaviour will be studied and proposed for Korean PWR spent fuels

  5. Evaluation of a high burnup spent fuel regarding the regulations for a spent fuel dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Ik Sung; Yang, Young Sik; Bang, Je Geon; Kim, Dae Ho; Kim, Sun Ki; Song, Keun Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    All nuclear plants have storage pools for spent fuel. These pools are typically 40 or more feet deep. In many countries, the spent fuels are stored under water. The water serves 2 purposes: 1) It serves as a shield to reduce the radiation levels. 2) It cools the fuel assemblies that continue to produce heat (called decay heat). But Korean nuclear plant expects the storage capacity to reach its limit by the year 2016. So, the research for the spent fuel dry storage facilities is necessary. The purpose of this study was to overview the regulatory basis for spent fuel dry storage and to evaluate its applicability for high burnup spent fuel.

  6. Improving burnup performance of fast sodium cooled reactor by utilizing thorium based fuels

    International Nuclear Information System (INIS)

    To study the improvement of fuel burnup for fast reactors, thorium based fuels are investigated. In order to ensure the projected expansion of nuclear power is achieved in conjunction with reduced risk of nuclear weapons proliferation, new conventional sources of fuel will have to be made available. Thorium fuel cycles have many incentives such as the reduction of plutonium generation and consumption of LWR actinides, the provision of high performance burnup, and the conservation of 235U resources. This work examined the burnup reactivity loss and depletion analysis of thorium versus uranium based metal fuels. When compared the thorium based metallic fuel outperformed uranium based fuel with respect to higher actinide burnup and higher depletion rate of plutonium isotopes. (authors)

  7. Implementation of burnup credit in spent fuel management systems. Proceedings of an advisory group meeting

    International Nuclear Information System (INIS)

    The criticality safety analysis of spent fuel systems has traditionally assumed that the fuel is fresh. This results in significant conservatism in the calculated value of the system's reactivity. Improved calculational methods allows one to take credit for the reactivity reduction associated with fuel burnup, hence reducing the analysis conservatism while maintaining an adequate criticality safety margin. Motivation for using burnup credit in criticality safety applications is generally based on economic considerations. Although economics may be a primary factor in deciding to use burnup credit, other benefits may be realized. Many of the additional benefits of burnup credit that are not strictly economic, may be considered to contribute to public health and safety, and resource conservation and environmental quality. Interest in the implementation of burnup credit has been shown by many countries. A summary of the information gathered by the IAEA about ongoing activities and regulatory status of burnup credit in different countries is included. Burnup credit implementation introduces new parameters and effects that should be addressed in the criticality analysis (e.g., axial and radial burnup shapes, fuel irradiation history, and others). Analysis of these parameters introduces new variations as well as the uncertainties, that should be considered in the safety assessment of the system. Also, the need arises to validate the isotopic composition that results from a depletion calculation, as well as to extend the current validation range of criticality codes to cover spent fuel. The use of burnup credit implies a verification of the fuel burnup before loading for transport, storage, disposal, or reprocessing each assembly, to make sure that the burnup level achieved complies with the criteria established. Methods and procedures used in different countries are described in this report

  8. Burnup credit implementation in WWER spent fuel management systems: Status and future aspects

    International Nuclear Information System (INIS)

    This paper describes the motivation for possible burnup credit implementation in WWER spent fuel management systems in Bulgaria. The activities being done are described, namely: the development and verification of a 3D few-group diffusion burnup model; the application of the KORIGEN code for evaluation of WWER fuel nuclear inventory during reactor core lifetime and after spent fuel discharge; using the SCALE modular system (PC Version 4.1) for criticality safety analyses of spent fuel storage facilities. Future plans involving such important tasks as validation and verification of computer systems and libraries for WWER burnup credit analysis are shown. (author)

  9. Pool inspection techniques for surveillance and further development of high burnup fuel assemblies

    International Nuclear Information System (INIS)

    The pool inspection techniques which have been used in fuel assembly surveillance programs for many years are suitable for high burnup fuel assemblies too. The techniques have been adapted to the requirements of new fuel assembly concepts with higher burnup potential. For high burnup, the emphasis within the scope of examination techniques available has shifted towards a characterization of the corrosion behaviour and surveillance of the geometrical dimensions of the fuel assemblies. In order to accomplish these tasks complementary techniques will have to be developed. (orig.)

  10. An analysis of burnup reactivity credit for reactor RA spent fuel storage

    International Nuclear Information System (INIS)

    The need for increasing the spent fuel storage capacity has led to the development of validated methods for assessing the reactivity effects associated with fuel burnup. This paper gives an overview of the criticality safety analysis methodology used to investigate the sensitivity of storage system reactivities to changes in fuel burnup. Results representing the validation of the methods are also discussed. As an example of the application of this methodology an analysis of the burnup reactivity credit for the three-dimensional model of the reactor RA spent fuel storage is described. (author)

  11. Assessment of the use of extended burnup fuel in light water power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D.A.; Bailey, W.J.; Beyer, C.E.; Bold, F.C.; Tawil, J.J.

    1988-02-01

    This study has been conducted by Pacific Northwest Laboratory for the US Nuclear Regulatory Commission to review the environmental and economic impacts associated with the use of extended burnup nuclear fuel in light water power reactors. It has been proposed that current batch average burnup levels of 33 GWd/t uranium be increased to above 50 GWd/t. The environmental effects of extending fuel burnup during normal operations and during accident events and the economic effects of cost changes on the fuel cycle are discussed in this report. The physical effects of extended burnup on the fuel and the fuel assembly are also presented as a basis for the environmental and economic assessments. Environmentally, this burnup increase would have no significant impact over that of normal burnup. Economically, the increased burnup would have favorable effects, consisting primarily of a reduction: (1) total fuel requirements; (2) reactor downtime for fuel replacement; (3) the number of fuel shipments to and from reactor sites; and (4) repository storage requirements. 61 refs., 4 figs., 27 tabs.

  12. Radionuclide compositions of spent fuel and high level waste for the uranium and plutonium fuelled PWR

    International Nuclear Information System (INIS)

    The activities of a selection of radionuclides are presented for three types of reactor fuel of interest in radioactive waste management. The fuel types are for a uranium 'burning' PWR, a plutonium 'burning' PWR using plutonium recycled from spent uranium fuel and a plutonium 'burning' PWR using plutonium which has undergone multiple recycle. (author)

  13. Accident source terms for light-water nuclear power plants using high-burnup or MOX fuel.

    Energy Technology Data Exchange (ETDEWEB)

    Salay, Michael (U.S. Nuclear Regulatory Commission, Washington, D.C.); Gauntt, Randall O.; Lee, Richard Y. (U.S. Nuclear Regulatory Commission, Washington, D.C.); Powers, Dana Auburn; Leonard, Mark Thomas

    2011-01-01

    Representative accident source terms patterned after the NUREG-1465 Source Term have been developed for high burnup fuel in BWRs and PWRs and for MOX fuel in a PWR with an ice-condenser containment. These source terms have been derived using nonparametric order statistics to develop distributions for the timing of radionuclide release during four accident phases and for release fractions of nine chemical classes of radionuclides as calculated with the MELCOR 1.8.5 accident analysis computer code. The accident phases are those defined in the NUREG-1465 Source Term - gap release, in-vessel release, ex-vessel release, and late in-vessel release. Important differences among the accident source terms derived here and the NUREG-1465 Source Term are not attributable to either fuel burnup or use of MOX fuel. Rather, differences among the source terms are due predominantly to improved understanding of the physics of core meltdown accidents. Heat losses from the degrading reactor core prolong the process of in-vessel release of radionuclides. Improved understanding of the chemistries of tellurium and cesium under reactor accidents changes the predicted behavior characteristics of these radioactive elements relative to what was assumed in the derivation of the NUREG-1465 Source Term. An additional radionuclide chemical class has been defined to account for release of cesium as cesium molybdate which enhances molybdenum release relative to other metallic fission products.

  14. Simulation of Spent PWR Fuel Assembly Behavior Under Normal Conditions of Transport

    International Nuclear Information System (INIS)

    The behavior of a PWR high-burnup spent fuel assembly under normal conditions of transport is simulated in a dynamic analysis of a 0.3-m free drop of a transportation cask unprotected by impact limiters striking a flat rigid surface in the horizontal orientation. The structural analysis employs a finite element numerical model consisting of the cask, the fuel assemblies, the fuel rods, the guide tubes and the cask’s internal structures that hold the fuel assemblies in position. Appropriate mechanical properties for the cask’s structural components, as well as the elastic-plastic properties typical of high-burnup Zircaloy-4 cladding, are utilized. Emphasis is placed on fuel rods responses at locations where maximum forces would be expected, which include end-plate positions and spacer-grid positions at assembly mid-span. Temporal and spatial variations of the forces acting on the fuel rods are calculated and post-processed to obtain frequency distributions, which statistically represent the total fuel rod population in the cask. The results show that the largest pinch force, (ror-to-rod contact force), is 1700 lb, the maximum axial force is 600 lb, and the largest bending moment is 175 in-lb. Failure analysis of fuel rods using these force quantities, and considering the effects of potential hydrides reorientation on cladding failure resistance, indicates, under conservative assumptions, a factor of safety of least 2 against longitudinal tearing, and no failure is predicted for transverse tearing or rod breakage. Fuel reconfiguration is predicted not to occur, and although partial tearing of guide tubes is possible, it is not enough to impair post-accident assembly retrieval. (author)

  15. Technical Development on Burn-up Credit for Spent LWR Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gauld, I.C.

    2001-12-26

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled ''Technical Development on Criticality Safety Management for Spent LWR Fuels.'' Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burnup and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report.

  16. Economic viability to BeO-UO2 fuel burnup extension

    International Nuclear Information System (INIS)

    This paper presents the quantitative analysis results of research on the burnup effect on the nuclear fuel cycle cost of BeO-UO2 fuel. As a result of this analysis, if the burnup is 60 MWD/kg, which is the limit under South Korean regulations, the nuclear fuel cycle cost is 4.47 mills/kWh at 4.8wt% of Be content for the BeO-UO2 fuel. It is, however, reduced to 3.70 mills/kWh at 5.4wt% of Be content if the burnup is 75MWD/kg. Therefore, it seems very advantageous, in terms of the economic aspect, to develop BeO-UO2 fuel, which does not have any technical problem with its safety and is a high burnup and long life cycle nuclear fuel

  17. Technical Development on Burn-up Credit for Spent LWR Fuel

    International Nuclear Information System (INIS)

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled ''Technical Development on Criticality Safety Management for Spent LWR Fuels.'' Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burnup and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report

  18. High burn-up structure of U(Mo) dispersion fuel

    Science.gov (United States)

    Leenaers, A.; Van Renterghem, W.; Van den Berghe, S.

    2016-08-01

    The evolution of the high burn-up structure (HBS) in U(Mo) fuel irradiated up to a burn-up of ∼70% 235U or ∼5 × 1021 f/cm3 or ∼120 GWd/tHM is described and compared to the observation made on LWR fuel. Scanning and transmission electron microscopy was performed on several samples having different burn-ups in order to get a better understanding of the mechanisms leading to the high burn-up structure formation. Even though there are some substantial differences between the irradiation of ceramic and U(Mo) alloy fuels (crystal structure, enrichment, irradiation temperature …), it was found that in both fuels recrystallization initiates at the same threshold and progresses in a similar way with increasing fission density. In case of U(Mo), recrystallization leads to accelerated swelling of the fuel which could result in instability of the fuel plate.

  19. Monte Carlo Simulation of Quantitative Electron Probe Microanalysis of the PWR Spent Fuel with a Pt Coating

    International Nuclear Information System (INIS)

    The PWR spent fuel sample should be coated with conducting material in order to provide a path for electrons and to prevent charging. Generally, the ZAF method has been used for quantitative electron probe microanalysis of conducting samples. However, the coated samples are not applicable for the ZAF method. Probe current, primary electron energy and x-ray produced by the primary beam are attenuated within the coating films. The electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program [2] to evaluate the x-ray attenuation within the Pt coating films. The target samples are the PWR spent fuels with 50 GWd/tU of burnup , 6 years of cooling time and a Pt coating film (3, 5, 7, 10 and 15 nm thickness)

  20. Optimal burnable poison-loading in a PWR with carbon coated particle fuel

    International Nuclear Information System (INIS)

    An innovative PWR concept that uses carbon-coated particle fuels moderated by graphite as that of HTGR but cooled by pressurized light water has been studied. The aim of this concept is to take both the best advantages of fuel integrity against fission products release and the reliability PWR technology based on the long operational experience. The purpose of the study is to optimize loading pattern of burnable poison in the proposed core in order to suppress excess reactivity during a cycle. Although there are many parameters to be determined for optimization of the usage of burnable poison, the emphasis is put here on loading patterns of Gadolinia in an assembly and in the core. We investigated the burnup characteristics of the core varying the concentration of burnable poison in a fuel rod, the number of burnable poison-rods in an assembly, and the number of burnable poison-assemblies in the core. The result suggested that Gadolinia was more suitable for this reactor than boron as burnable poison, and it was possible to make the reactivity swing negligible by combining at least three kinds of burnable poison-assemblies in which the amount of Gadolinia was different. Therefore the requirement for the number of control rods was reduced and it meant that Control Rod Programming would become easier. (author)

  1. Nuclear Energy Research Initiative. Development of a Stabilized Light Water Reactor Fuel Matrix for Extended Burnup

    International Nuclear Information System (INIS)

    The main objective of this project is to develop an advanced fuel matrix capable of achieving extended burnup while improving safety margins and reliability for present operations. In the course of this project, the authors improve understanding of the mechanism for high burnup structure (HBS) formation and attempt to design a fuel to minimize its formation. The use of soluble dopants in the UO2 matrix to stabilize the matrix and minimize fuel-side corrosion of the cladding is the main focus

  2. Radiochemical analysis of nuclear fuel burn-up and spent fuel key nuclides

    International Nuclear Information System (INIS)

    Destructive radiochemical analysis of spent nuclear fuels is an important tool to determine burn-up with high accuracy and to better understand the process of depletion and formation of actinides and fission products during irradiation as a result of fission and successive neutron capture. The resulting isotope inventories and nuclear databases that are created, are of high importance to evaluate the performance of nuclear fuels in a reactor, to evaluate computer codes applied for a safe transport, storage and disposal/reprocessing of spent fuels and to safeguard fissile material. The objective is to provide chemical and radiochemical analyses procedures for an accurate determination of isotopic compositions and concentrations of actinides and fission products in different types of industrial (UO2, MOX) and experimental nuclear fuels (UAlx, U3Si2, UMo, ...). For a burn-up determination program typically 21 actinides and fission products are analyzed. For an extended characterization program this can increase to up to approximately 50 isotopes

  3. Modeling and design of a reload PWR core for a 48-month fuel cycle

    International Nuclear Information System (INIS)

    The objective of this research was to use state-of-the-art nuclear and fuel performance packages to evaluate the feasibility and costs of a 48 calendar month core in existing pressurized water reactor (PWR) designs, considering the full range of practical design and economic considerations. The driving force behind this research is the desire to make nuclear power more economically competitive with fossil fuel options by expanding the scope for achievement of higher capacity factors. Using CASMO/SIMULATE, a core design with fuel enriched to 7w/o U235 for a single batch loaded, 48-month fuel cycle has been developed. This core achieves an ultra-long cycle length without exceeding current fuel burnup limits. The design uses two different types of burnable poisons. Gadolinium in the form of gadolinium oxide (Gd2O3) mixed with the UO2 of selected pins is sued to hold down initial reactivity and to control flux peaking throughout the life of the core. A zirconium di-boride (ZrB2) integral fuel burnable absorber (IFBA) coating on the Gd2O3-UO2 fuel pellets is added to reduce the critical soluble boron concentration in the reactor coolant to within acceptable limits. Fuel performance issues of concern to this design are also outlined and areas which will require further research are highlighted

  4. Basic evaluation on nuclear characteristics of BWR high burnup MOX fuel and core

    International Nuclear Information System (INIS)

    MOX fuel will be used in existing commercial BWR cores as a part of reload fuels with equivalent operability, safety and economy to UO2 fuel in Japan. The design concept should be compatible with UO2 fuel design. High burnup UO2 fuels are being developed and commercialized step by step. The MOX fuel planned to be introduced in around year 2000 will use the same hardware as UO2 8 x 8 array fuel developed for a second step of UO2 high burnup fuel. The target discharge exposure of this MOX fuel is about 33 GWd/t. And the loading fraction of MOX fuel is approximately one-third in an equilibrium core. On the other hand, it becomes necessary to minimize a number of MOX fuels and plants utilizing MOX fuel, mainly due to the fuel economy, handling cost and inspection cost in site. For the above reasons, it needed to developed a high burnup MOX fuel containing much Pu and a core with a large amount of MOX fuels. The purpose of this study is to evaluate basic nuclear fuel and core characteristics of BWR high burnup MOX fuel with batch average exposure of about 39.5 GWd/t using 9 x 9 array fuel. The loading fraction of MOX fuel in the core is within a range of about 50% to 100%. Also the influence of Pu isotopic composition fluctuations and Pu-241 decay upon nuclear characteristics are studied. (author). 3 refs, 5 figs, 3 tabs

  5. Dry Storage Demonstration for High-Burnup Spent Nuclear Fuel-Feasibility Study

    International Nuclear Information System (INIS)

    Initially, casks for dry storage of spent fuel were licensed for assembly-average burnup of about 35 GWd/MTU. Over the last two decades, the discharge burnup of fuel has increased steadily and now exceeds 45 GWd/MTU. With spent fuel burnups approaching the licensing limits (peak rod burnup of 62 GWd/MTU for pressurized water reactor fuel) and some lead test assemblies being burned beyond this limit, a need for a confirmatory dry storage demonstration program was first identified after the publication in May 1999 of the U.S. Nuclear Regulatory Commissions (NRC) Interim Staff Guidance 11 (ISG-11). With the publication in July 2002 of the second revision of ISG-11, the desirability for such a program further increased to obtain confirmatory data about the potential changes in cladding mechanical properties induced by dry storage, which would have implications to the transportation, handling, and disposal of high-burnup spent fuel. While dry storage licenses have kept pace with reactor discharge burnups, transportation licenses have not and are considered on a case by case basis. Therefore, this feasibility study was performed to examine the options available for conducting a confirmatory experimental program supporting the dry storage, transportation, and disposal of spent nuclear fuel with burnups well in excess of 45 GWd/MTU

  6. Taking burnup credit for interim storage and transportation system for BWR fuels

    International Nuclear Information System (INIS)

    In order to establish a realistic burnup credit design system, a calculation system has been developed for determining isotope compositions, burnup, and criticality. The calculation system consists of several modules such as TGBLA, ORIGEN, CITATION, MCNP, and KENO. The TGBLA code is a fuel design code for LWR fuels developed in TOSHIBA Corporation. A compact measurement system for a fuel assembly has been being developed to meet requirements for the burnup determination, the neutron emission-rate evaluation, and the nuclear materials management. For a spent MOX fuel, a neutron emission rate measurement method has been being developed. The system consists of Cd-Te detectors and / or fission chambers. Some model calculations were carried out for the latest design BWR fuels. The effect of taking burnup credit for a transportation cask is shown. (authors)

  7. Implementation of burnup credit in spent fuel management systems. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    The purpose of this Technical Committee Meeting was to explore the status of international activities related to the use of burnup credit for spent fuel applications. This was the second major meeting on the issues of burnup credit for spent fuel management systems held since the IAEA began to monitor the uses of burnup credit in spent fuel management systems in 1997. Burnup credit for wet and dry storage systems is needed in many Member States to allow for increased initial fuel enrichment, and to increase the storage capacity and thus to avoid the need for extensive modifications of the spent fuel management systems involved. This document contains 31 individual papers presented at the Meeting; each of the papers was indexed separately

  8. Fission gas release and fuel rod chemistry related to extended burnup

    International Nuclear Information System (INIS)

    The purpose of the meeting was to review the state of the art in fission gas release and fuel rod chemistry related to extended burnup. The meeting was held in a time when national and international programmes on water reactor fuel irradiated in experimental reactors were still ongoing or had reached their conclusion, and when lead test assemblies had reached high burnup in power reactors and been examined. At the same time, several out-of-pile experiments on high burnup fuel or with simulated fuel were being carried out. As a result, significant progress has been registered since the last meeting, particularly in the evaluation of fuel temperature, the degradation of the global thermal conductivity with burnup and in the understanding of the impact on fission gas release. Fifty five participants from 16 countries and one international organization attended the meeting. 28 papers were presented. A separate abstract was prepared for each of the papers. Refs, figs, tabs and photos

  9. High Burn-Up Spent Nuclear Fuel Vibration Integrity Study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jiang, Hao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevard, Bruce Balkcom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Rob L [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scaglione, John M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    The Oak Ridge National Laboratory (ORNL) has developed the cyclic integrated reversible-bending fatigue tester (CIRFT) approach to successfully demonstrate the controllable fatigue fracture on high burnup (HBU) spent nuclear fuel (SNF) in a normal vibration mode. CIRFT enables examination of the underlying mechanisms of SNF system dynamic performance. Due to the inhomogeneous composite structure of the SNF system, the detailed mechanisms of the pellet-pellet and pellet-clad interactions and the stress concentration effects at the pellet-pellet interface cannot be readily obtained from a CIRFT system measurement. Therefore, finite element analyses (FEAs) are used to translate the global moment-curvature measurement into local stress-strain profiles for further investigation. The major findings of CIRFT on the HBU SNF are as follows: SNF system interface bonding plays an important role in SNF vibration performance. Fuel structure contributes to SNF system stiffness. There are significant variations in stress and curvature of SNF systems during vibration cycles resulting from segment pellets and clad interactions. SNF failure initiates at the pellet-pellet interface region and appears to be spontaneous.

  10. Behavior of irradiated PWR fuel under a simulated RIA condition. Results of NSRR Test MH-3

    International Nuclear Information System (INIS)

    Results from the power burst experiment, Test MH-3, conducted in the Nuclear Safety Research Reactor (NSRR) are presented. A fuel rod was irradiated with a fuel burnup up to 38.9 MWd/kgU in the Mihama unit No.2 of the Kansai Electric Power Co., Inc. The Test MH-3 was the third and final experiment in a reactivity initiated accident (RIA) test series with the MH fuel rod. Data concerning test method, pre-pulse examination, pulse irradiation, transient records and post-pulse fuel examination are described, and discussions of the results are presented. A test fuel rod is a short-sized 14x14 pressurized water reactor (PWR) type rod, which is refabricated from a full size commercial fuel rod. A double container-type capsule contains the instrumented test fuel rod with stagnant water cooling condition at atmospheric pressure and ambient temperature. The test fuel rod was subjected to the pulse irradiation resulting in a deposited energy of 87 cal/g·fuel and a peak fuel enthalpy of 67 cal/g·fuel. Behavior of the test fuel rod was assessed from pre- and post-pulse examinations and transient records during the pulse irradiation. Cladding surface temperature increased about 200degC. The maximum cladding deformation was 1.6% and the test fuel rod did not fail. Estimated fission gas release during the pulse irradiation is 3.8% in Kr, and 2.3% in Xe, respectively. Through the detail fuel examination, information concerning microstructural change in the fuel pellets was also obtained. (author)

  11. Economic incentives and recommended development for commercial use of high burnup fuels in the once-through LWR fuel cycle

    International Nuclear Information System (INIS)

    This study calculates the reduced uranium requirements and the economic incentives for increasing the burnup of current design LWR fuels from the current range of 25 to 35 MWD/Kg to a range of 45 to 55 MWD/Kg. The changes in fuel management strategies which may be required to accommodate these high burnup fuels and longer fuel cycles are discussed. The material behavior problems which may present obstacles to achieving high burnup or to license fuel are identified and discussed. These problems are presented in terms of integral fuel response and the informational needs for commercial and licensing acceptance. Research and development programs are outlined which are aimed at achieving a licensing position and commercial acceptance of high burnup fuels

  12. Criticality evaluation of control component credited mixed zone spent and fresh fuel storage in high density PWR racks

    International Nuclear Information System (INIS)

    To expand the set of assemblies that qualify for storage in high-density racks, a mixed zone analysis may be performed where repeating pattern configurations within the rack are prescribed. In a mixed zone analysis, assemblies that are more reactive (low burnup) are stored adjacent to less reactive (highly burned) assemblies, thereby meeting the same overall criticality requirements as with the uniform burnup/enrichment analysis. The Arkansas Nuclear One (ANO) Plant has faced several challenges with respect to their spent fuel storage that reach beyond simply the number of spent fuel assemblies and available storage cells. These issues have resulted in the need for ANO to use an advanced storage strategy. In addition to using the mixed zone burnup approach in the high-density racks, ANO also proposed a new solution involving credit for control components in the spent fuel pool. ANO submitted an amendment of their spent fuel pool technical specifications to the Nuclear Regulatory Commission (NRC) based on the evaluation performed by Holtec International that was subsequently approved. This paper presents a description of the overall methodology used for supporting the submittal, and provides further discussion regarding the reactivity effect of control rods in a PWR spent fuel pool. (authors)

  13. End effect analysis with various axial burnup distributions in high density spent fuel storage racks

    International Nuclear Information System (INIS)

    Highlights: • Criticality tests are carried out with various axial burnup distributions of fuel assemblies for spent fuel storage racks. • KENO-Va code system was used to obtain criticalities with 10 axial segments. • ORIGEN-S code system was used to obtain burnup dependent axial compositions. • The criticality and burnup dependent reactivity difference are obtained from the results. • End effect quantifications are satisfactory confirming the previous suggestions. - Abstract: End effect of spent fuel comes from the difference between uniform and actual axial burnup distributions of fuel assemblies. It is significant to control the criticality safety in spent fuel storage and transportation. This work is focused on estimation of end effect in the spent fuel of light water reactor for the spent fuel storage rack region-II. High and low burnups of corresponding different uranium enrichments are taken into consideration to analyze the end effect with different axial burnup distributions such as uniform, MOC and EOC profiles. Two types of fuel assemblies such as CE type and Westinghouse type are considered. The whole calculations have been carried out by using the SCALE6 code including ORIGEN-S and KENO-Va

  14. PWR-UO2 nuclear fuel criticality study: control rod effects on infinite neutron multiplication factor and spent fuel composition

    International Nuclear Information System (INIS)

    Highlights: • A three-dimensional model of a PWR fuel were simulated. • Results using TRITON/T6-DEPL module in SCALE 6.0 and two libraries (238 and 44 groups) were compared. • Variations in the infinite neutron multiplication factor and the nuclides concentrations, both under control rod insertion effects were analysed. • Results show very good agreement with those published by OECD. -- Abstract: Deterministic and stochastic nuclear codes are software packages used to perform reactor physics calculations, especially in PWRs, the most common type of nuclear reactor currently in operation. The NEA Expert Group on Burn-up Credit Criticality Safety has published a Benchmark with results obtained from simulations of PWR-UO2 nuclear fuel. The same simulations were performed at DEN/UFMG with SCALE 6.0, a modular nuclear system code developed by Oak Ridge National Laboratory using two different neutron energy libraries (238 and 44 groups). The results obtained using a three-dimensional model with the T6-DEPL sequence of the TRITON module in SCALE 6.0 for spent fuel inventory and infinite neutron multiplication factor calculations show very good agreement with those published by the OECD. The main goal of this work is to validate the methodology at DEN/UFMG for future use in simulations related to Angra I, II and III Nuclear Power Plants

  15. The development of flow test technology for PWR fuel assembly

    International Nuclear Information System (INIS)

    KAERI has an extensive program to develope PWR fuel assembly. In relation to the program, development of flow test technology is needed to evaluate the thermal hydraulic compactibility and mechanical integrity of domestically fabricated nuclear fuels. A high-pressure and high-temperature flow test facility was designed to test domestically fabricated fuel assembly. The test section of the facility has capacity of a 6x6 full length PWR fuel assembly. A flow test rig was designed and installed at Cold Test Loop to carry out model experiments with 5x5 rod assembly under atmosphere pressure to get information about the characteristics of pressure loss of spacer grids and velocity distribution in the subchannels. LDV measuring technology was established using TSI's Laser Dopper Velocimeter 9100-3 System

  16. Re-evaluation of Assay Data of Spent Nuclear Fuel obtained at Japan Atomic Energy Research Institute for validation of burnup calculation code systems

    International Nuclear Information System (INIS)

    Highlights: → The specifications required for the analyses of the destructive assay data taken from irradiated fuel in Ohi-1 and Ohi-2 PWRs were documented in this paper. → These data were analyzed using the SWAT2.1 code, and the calculation results showed good agreement with experimental results. → These destructive assay data are suitable for the benchmarking of the burnup calculation code systems. - Abstract: The isotopic composition of spent nuclear fuels is vital data for studies on the nuclear fuel cycle and reactor physics. The Japan Atomic Energy Agency (JAEA) has been active in obtaining such data for pressurized water reactor (PWR) and boiling water reactor (BWR) fuels, and some data has already been published. These data have been registered with the international Spent Fuel Isotopic Composition Database (SFCOMPO) and widely used as international benchmarks for burnup calculation codes and libraries. In this paper, Assay Data of Spent Nuclear Fuel from two fuel assemblies irradiated in the Ohi-1 and Ohi-2 PWRs in Japan are shown. The destructive assay data from Ohi-2 have already been published. However, these data were not suitable for the benchmarking of calculation codes and libraries because several important specifications and data were not included. This paper summarizes the details of destructive assay data and specifications required for analyses of isotopic composition from Ohi-1 and Ohi-2. For precise burnup analyses, the burnup values of destructive assay samples were re-evaluated in this study. These destructive assay data were analyzed using the SWAT2.1 code, and the calculation results showed good agreement with experimental results. This indicates that the quality of destructive assay data from Ohi-1 and Ohi-2 PWRs is high, and that these destructive assay data are suitable for the benchmarking of burnup calculation code systems.

  17. A MATLAB-Linked Solver to Find Fuel Depletion in a PWR, a Suggested VVER-1000 Type

    Directory of Open Access Journals (Sweden)

    F. Faghihi

    2009-01-01

    Full Text Available Coupled first-order IVPs are frequently used in many parts of engineering and sciences. We present a “solver” including three computer programs which were joint with the MATLAB software to solve and plot solutions of the first-order coupled stiff or nonstiff IVPs. Some applications related to IVPs are given here using our MATLAB-linked solver. Muon catalyzed fusion in a D-T mixture is considered as a first dynamical example of the coupled IVPs. Then, we have focused on the fuel depletion in a suggested PWR including poisons burnups (xenon-135 and samarium-149, plutonium isotopes production, and uranium depletion.

  18. New high burnup fuel models for NRC`s licensing audit code, FRAPCON

    Energy Technology Data Exchange (ETDEWEB)

    Lanning, D.D.; Beyer, C.E.; Painter, C.L. [Pacific Northwest Laboratory, Richland, WA (United States)

    1996-03-01

    Fuel behavior models have recently been updated within the U.S. Nuclear Regulatory Commission steady-state FRAPCON code used for auditing of fuel vendor/utility-codes and analyses. These modeling updates have concentrated on providing a best estimate prediction of steady-state fuel behavior up to the maximum burnup level s of current data (60 to 65 GWd/MTU rod-average). A decade has passed since these models were last updated. Currently, some U.S. utilities and fuel vendors are requesting approval for rod-average burnups greater than 60 GWd/MTU; however, until these recent updates the NRC did not have valid fuel performance models at these higher burnup levels. Pacific Northwest Laboratory (PNL) has reviewed 15 separate effects models within the FRAPCON fuel performance code (References 1 and 2) and identified nine models that needed updating for improved prediction of fuel behavior at high burnup levels. The six separate effects models not updated were the cladding thermal properties, cladding thermal expansion, cladding creepdown, fuel specific heat, fuel thermal expansion and open gap conductance. Comparison of these models to the currently available data indicates that these models still adequately predict the data within data uncertainties. The nine models identified as needing improvement for predicting high-burnup behavior are fission gas release (FGR), fuel thermal conductivity (accounting for both high burnup effects and burnable poison additions), fuel swelling, fuel relocation, radial power distribution, fuel-cladding contact gap conductance, cladding corrosion, cladding mechanical properties and cladding axial growth. Each of the updated models will be described in the following sections and the model predictions will be compared to currently available high burnup data.

  19. Extended burnup demonstration: reactor fuel program. Pre-irradiation characterization and summary of pre-program poolside examinations. Big Rock Point extended burnup fuel

    International Nuclear Information System (INIS)

    This report is a resource document characterizing the 64 fuel rods being irradiated at the Big Rock Point reactor as part of the Extended Burnup Demonstration being sponsored jointly by the US Department of Energy, Consumers Power Company, Exxon Nuclear Company, and General Public Utilities. The program entails extending the exposure of standard BWR fuel to a discharge average of 38,000 MWD/MTU to demonstrate the feasibility of operating fuel of standard design to levels significantly above current limits. The fabrication characteristics of the Big Rock Point EBD fuel are presented along with measurement of rod length, rod diameter, pellet stack height, and fuel rod withdrawal force taken at poolside at burnups up to 26,200 MWD/MTU. A review of the fuel examination data indicates no performance characteristics which might restrict the continued irradiation of the fuel

  20. Fuel rod behavior of a PWR during load following

    International Nuclear Information System (INIS)

    The behavior of a PWR fuel rod when operating in normal power cycles, excluding in case of accidents, is analysed. A computer code, that makes the mechanical analysis of the cladding using the finite element method was developed. The ramps and power cycles were simulated suposing the existence of cracks in pellets when the cladding-pellet interaction are done. As a result, an operation procedure of the fuel rod in power cycle is recommended. (E.G.)

  1. Investigation of fuel rod behaviour under extended 1 burnup conditions with ROFEM fuel performance code

    Energy Technology Data Exchange (ETDEWEB)

    Horhoianu, G.; Moscalu, D.R.; Popescu, I.A

    1998-06-01

    Extending burnup is a practical way to improve the economics of water-reactor operation, via enhanced fuel utilisation and reduced spent fuel volume. A dedicated fuel behaviour modeling computer code (entitled ROFEM-1B) has been developed in order to analyse high burnup fuel performance. The code was benchmarked on an experimental data base which include a significant number of irradiation experiments performed in TRIGA-INR Pitesti research reactor. Five fuel rod behaviour during irradiation up to 50 MWd kg{sup -1}UO{sub 2}{sup -1} burnup have been analysed by the code in the framework of the first phase of the international FUMEX code exercise co-ordinated by IAEA Vienna. The input experimental data package has been prepared by IFE-OECD Halden, Norway laboratory. In the second phase of the FUMEX exercise the participants have analysed eight simplified theoretical cases. The paper presents and discuss the results obtained with ROFEM-1B in this exercise and the comparison between code predictions and experimental data.

  2. Testing of experimental fuel elements for VVER-1000 reactors in MR to high fuel burnup

    International Nuclear Information System (INIS)

    Pressurized water reactors are given a commanding role in the development program for the nation's nuclear power industry. Considerable operating experience has been gained with VVER-1000 reactors. As of the start of 1990, 17 units with VVER-1000 reactors were in operation in this country and abroad. The first loadings were designed for a 2-year run with average fuel burnup of 28.5 MW-day/kg. The rod-type fuel elements used in the reactors displayed high serviceability and reliability (leakage does not exceed 0.02%). Operating experience and the results of computational and experimental work have made it possible to substantiate the possibility of switching them to a 3-year run. The fifth unit of the Novovoronezh Atomic Power Plant was the first to be switched to a 3-year run, as of 1984. The average fuel burnup achieved after three fuel cycles was 42.6 MW-day/kg. All units with VVER-1000 reactors are now being switched to a 3-year run with an average burnup of more than 40 MW-day/kg for the unloaded fuel

  3. Comparison of nuclear data uncertainty propagation methodologies for PWR burn-up simulations

    CERN Document Server

    Diez, Carlos Javier; Hoefer, Axel; Porsch, Dieter; Cabellos, Oscar

    2014-01-01

    Several methodologies using different levels of approximations have been developed for propagating nuclear data uncertainties in nuclear burn-up simulations. Most methods fall into the two broad classes of Monte Carlo approaches, which are exact apart from statistical uncertainties but require additional computation time, and first order perturbation theory approaches, which are efficient for not too large numbers of considered response functions but only applicable for sufficiently small nuclear data uncertainties. Some methods neglect isotopic composition uncertainties induced by the depletion steps of the simulations, others neglect neutron flux uncertainties, and the accuracy of a given approximation is often very hard to quantify. In order to get a better sense of the impact of different approximations, this work aims to compare results obtained based on different approximate methodologies with an exact method, namely the NUDUNA Monte Carlo based approach developed by AREVA GmbH. In addition, the impact ...

  4. Separation of Molybdenum From Spent Fuel Solution in Burnup Measurements Process

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In order to establish a kind of automatic radiochemistry separation procedure of nuclide 100Mo from spent fuel solution in burnup measurements process, a method of separating Mo quickly and effectively from the feed solution is needed. In the studies,

  5. Supercell burnup model for the physics design of BWR fuel assemblies

    International Nuclear Information System (INIS)

    A code called SUPERB has been developed for the BWR fuel assembly burnup analyses using supercell model. Each of the characteristic heterogeneities of a BWR fuel assembly like water gap, poisoned pins, control blade etc., is treated by invoking appropriate supercell concept. The burnup model of SUPERB is so devised as to strike a balance between accuracy and speed. This is achieved by building isotopic densities in each fuel pin separately while the depletion equations are solved only in a few groups of pins or burnup zones and the multigroup neutron spectra are differentiated in fewer group of pincell types. Multiple fuel ring burnup is considered only for Gd isotopes. A special empirical formula allows the microscopic cross section of Gd isotopes to be varied even during burnup integration. The supercell model has been tested against Monte Carlo results for the fresh cold clean Tarapur fuel assembly with two Gd fuel pins. The burnup model of SUPERB has been validated against one of the most sophisticated codes LWR-WIMS for a benchmark problem involving all the complexities of a BWR fuel assembly. The agreement of SUPERB results with both Monte Carlo and LWR-WIMS results is found to be excellent. (auth.)

  6. The Effect of Pitch, Burnup, and Absorbers on a TRIGA Spent-Fuel Pool Criticality Safety

    International Nuclear Information System (INIS)

    It has been shown that supercriticality might occur for some postulated accident conditions at the TRIGA spent-fuel pool. However, the effect of burnup was not accounted for in previous studies. In this work, the combined effect of fuel burnup, pitch among fuel elements, and number of uniformly mixed absorber rods for a square arrangement on the spent-fuel pool keff is investigated.The Monte Carlo computer code MCNP4B with the ENDF-B/VI library and detailed three dimensional geometry was used. The WIMS-D code was used to model the isotopic composition of the standard TRIGA and FLIP fuel for 5, 10, 20 and 30% burnup level and 2- and 4-yr cooling time.The results show that out of the three studied effects, pitch from contact (3.75 cm) up to rack design pitch (8 cm), number of absorbers from zero to eight, and burnup up to 30%, the pitch has the greatest influence on the multiplication factor keff. In the interval in which the pitch was changed, keff decreased for up to ∼0.4 for standard and ∼0.3 for FLIP fuel. The number of absorber rods affects the multiplication factor much less. This effect is bigger for more compact arrangements, e.g., for contact of standard fuel elements with eight absorber rods among them, keff values are smaller for ∼0.2 (∼0.1 for FLIP) than for arrangements without absorber rods almost regardless of the burnup. The effect of burnup is the smallest. For standard fuel elements, it is ∼0.1 for almost all pitches and numbers of absorbers. For FLIP fuel, it is smaller for a factor of 3, but increases with the burnup for compact arrangements. Cooling time of fuel has just a minor effect on the keff of spent-fuel pool and can be neglected in spent-fuel pool design

  7. The influence of pitch, burnup and absorber rods on the spent fuel pool criticality

    International Nuclear Information System (INIS)

    It has been shown that supercriticality might occur for some postulated accidents for the TRIGA spent fuel pool at ''Josef Stefan'' Institute in Ljubljana, Slovenia. However, in the previous studies, the effect of burnup was not accounted for. In this work the dependence of criticality on fuel burnup, the pitch among the elements and the number of uniformly mixed absorber rods for a square arrangement is presented. The Monte Carlo computer code MCNP4B with ENDF-B/VI library and detailed three dimensional geometry was used. WIMS-D code was used to model the isotopic composition of the fuel for 5, 10, 20 and 30 % burnup without cooling time. The results show, that out of the three studied effects: pitch from contact (3.75cm) up to rack design pitch (8cm), number of absorbers from 0 to 8 and burnup up to 30 %, the pitch has the greatest influence on the multiplication factor keff. In the interval in which the pitch was changed, keff decreased for up to 0.45. The number of absorber rods affects the multiplication factor much less. This effect is bigger for more compact arrangements, e.g. for contact of fuel elements with 8 absorber rods among them, keff values are smaller for almost 0.20 than for arrangement without absorber rods regardless of the burnup. The effect of burnup is the smallest since in no case keff decreases for more than 0.10, even for high burnups of 30 %. (author)

  8. Study of the lattice parameter evolution of PWR irradiated MOX fuel by X-Ray diffraction

    International Nuclear Information System (INIS)

    Fuel irradiation leads to a swelling resulting from the formation of gaseous (Kr, Xe) or solid fission products which are found either in solution or as solid inclusions in the matrix. This phenomena has to be evaluated to be taken into account in fuel cladding Interaction. Fuel swelling was studied as a function of burn up by measuring the corresponding cell constant evolution by X-Ray diffraction. This study was realized on Mixed Oxide Fuels (MOX) irradiated in a Pressurized Water Reactor (PWR) at different burn-up for 3 initial Pu contents. Lattice parameter evolutions were followed as a function of burn-up for the irradiated fuel with and without an annealing thermal treatment. These experimental evolutions are compared to the theoretical evolutions calculated from the hard sphere model, using the fission product concentrations determined by the APPOLO computer code. Contribution of varying parameters influencing the unit cell value is discussed. Thermal treatment effects were checked by metallography, X-Ray diffraction and microprobe analysis. After thermal treatment, no structural change was observed but a decrease of the lattice parameter was measured. This modification results essentially from self-irradiation defect annealing and not from stoichiometry variations. Microprobe analysis showed that about 15% of the formed Molybdenum is in solid solution In the oxide matrix. Micrographs showed the existence of Pu packs in the oxide matrix which induces a broadening of diffraction lines. The RIETVELD method used to analyze the X-Ray patterns did not allow to characterize independently the Pu packs and the oxide matrix lattice parameters. Nevertheless, with this method, the presence of micro-strains in the irradiated nuclear fuel could be confirmed. (author)

  9. Alternatives for implementing burnup credit in the design and operation of spent fuel transport casks

    International Nuclear Information System (INIS)

    It is possible to develop an optimal strategy for implementing burnup credit in spent fuel transport casks. For transport, the relative risk is rapidly reduced if additional pre-transport controls such as a cavity dryness verifications are conducted prior to transport. Some other operational and design features that could be incorporated into a burnup credit cask strategy are listed. These examples represent many of the system features and alternatives already available for use in developing a broadly based criticality safety strategy for implementing burnup credit in the design and operation of spent fuel transport casks. 4 refs., 1 tab

  10. Burnup measurements on spent fuel elements of the RP-10 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vela Mora, Mariano; Gallardo Padilla, Alberto; Palomino, Jose Luis Castro, E-mail: mvela@ipen.gob.p [Instituto Peruano de Energia Nuclear (IPEN/Peru), Lima (Peru). Grupo de Calculo, Analisis y Seguridad de Reactores; Terremoto, Luis Antonio Albiac, E-mail: laaterre@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This work describes the measurement, using nondestructive gamma-ray spectroscopy, of the average burnup attained by Material Testing Reactor (MTR) fuel elements irradiated in the RP-10 research reactor. Measurements were performed at the reactor storage pool area using {sup 137}Cs as the only burnup monitor, even for spent fuel elements with cooling times much shorter than two years. The experimental apparatus was previously calibrated in efficiency to obtain absolute average burnup values, which were compared against corresponding ones furnished by reactor physics calculations. The mean deviation between both values amounts to 6%. (author)

  11. Determination of the burn-up of TRIGA fuel elements by calculation and reactivity experiments

    International Nuclear Information System (INIS)

    The burnup of 17 fuel elements of the TRIGA Mark-II reactor in Vienna was measured. Different types of fuel elements had been simultaneously used for several years. The measured burnup values are compared with those calculated on the basis of core configuration and reactor operation history records since the beginning of operation. A one-dimensional, two-group diffusion computer code TRIGAP was used for the calculations. Comparison with burnup values determined by γ-scanning is also made. (orig./HP)

  12. Modeling of WWER-440 fuel pin behavior at extended burn-up

    Energy Technology Data Exchange (ETDEWEB)

    El-Koliel, Moustafa S. E-mail: moustafa_elkoliel@yahoo.com; Abou-Zaid, Attya A.; El-Kafas, A.A

    2004-04-01

    Currently, there is an ongoing effort to increase fuel discharge burn-up of all LWRs fuel including WWERs as much as possible in order to decrease power production cost. Therefore, burn-up is expected to be increased from 60 to 70 MWd/kg U. The change in the fuel radial power distribution as a function of fuel burn-up can affect the radial fuel temperature distribution as well as the fuel microstructure in the fuel pellet rim. Both of these features, commonly termed the 'rim effect'. High burn-up phenomena in WWER-440 UO{sub 2} fuel pin, which are important for fission gas release (FGR) were modeled. The radial burn-up as a function of the pellet radius and enrichment has to be known to determine the local thermal conductivity. In this paper, the radial burn-up and fissile products distributions of WWER-440 UO{sub 2} fuel pin were evaluated using MCNP4B and ORIGEN2 codes. The impact of the thermal conductivity on predicted FGR calculations is needed. For the analysis, a typical WWER-440 fuel pin and surrounding water moderator are considered in a hexagonal pin well. The thermal release and the athermal release from the pellet rim were modeled separately. The fraction of the rim structure and the excessive porosity in the rim structure in isothermal irradiation as a function of the fuel burn-up was predicted. A computer program; RIMSC-01, is developed to perform the required FGR calculations. Finally, the relevant phenomena and the corresponding models together with their validation are presented.

  13. Modeling of WWER-440 fuel pin behavior at extended burn-up

    International Nuclear Information System (INIS)

    Currently, there is an ongoing effort to increase fuel discharge burn-up of all LWRs fuel including WWERs as much as possible in order to decrease power production cost. Therefore, burn-up is expected to be increased from 60 to 70 MWd/kg U. The change in the fuel radial power distribution as a function of fuel burn-up can affect the radial fuel temperature distribution as well as the fuel microstructure in the fuel pellet rim. Both of these features, commonly termed the 'rim effect'. High burn-up phenomena in WWER-440 UO2 fuel pin, which are important for fission gas release (FGR) were modeled. The radial burn-up as a function of the pellet radius and enrichment has to be known to determine the local thermal conductivity. In this paper, the radial burn-up and fissile products distributions of WWER-440 UO2 fuel pin were evaluated using MCNP4B and ORIGEN2 codes. The impact of the thermal conductivity on predicted FGR calculations is needed. For the analysis, a typical WWER-440 fuel pin and surrounding water moderator are considered in a hexagonal pin well. The thermal release and the athermal release from the pellet rim were modeled separately. The fraction of the rim structure and the excessive porosity in the rim structure in isothermal irradiation as a function of the fuel burn-up was predicted. A computer program; RIMSC-01, is developed to perform the required FGR calculations. Finally, the relevant phenomena and the corresponding models together with their validation are presented

  14. Development of a fuel rod thermal-mechanical analysis code for high burnup fuel

    International Nuclear Information System (INIS)

    The thermal-mechanical analysis code for high burnup BWR fuel rod has been developed by NFI. The irradiation data accumulated up to the assembly burnup of 55 GWd/t in commercial BWRs were adopted for the modeling. In the code, pellet thermal conductivity degradation with burnup progress was considered. Effects of the soluble FPs, irradiation defects and porosity increase due to RIM effect were taken into the model. In addition to the pellet thermal conductivity degradation, the pellet swelling due to the RIM porosity was studied. The modeling for the high burnup effects was also carried out for (U, Gd)O2 and MOX fuel. The thermal conductivities of all pellet types, UO2, (U, Gd)O2 and (U, Pu)O2 pellets, are expressed by the same form of equation with individual coefficient γ in the code. The pellet center temperature was calculated using this modeling code, and compared with measured values for the code verification. The pellet center temperature calculated using the thermal conductivity degradation model agreed well with the measured values within ±150 deg. C. The influence of rim porosity on pellet center temperature is small, and the temperature increase in only 30 deg. C at 75 GWd/t and 200 W/cm. The pellet center temperature of MOX fuel was also calculated, and it was found that the pellet center temperature of MOX fuel with 10wt% PuO2 is about 60 deg. C higher than UO2 fuel at 75 GWd/t and 200 W/cm. (author)

  15. Investigation of the ex-core noise induced by fuel assembly vibrations in the Ringhals-3 PWR

    International Nuclear Information System (INIS)

    Highlights: • The effect of cycle burnup on the ex-core noise induced by fuel assembly vibrations in a PWR was investigated. • No general monotonic variation of APSD during cycle burnup was found. • The increase of APSD occurs primarily for the vibrations of peripheral assemblies. • The ex-core noise is dominated by peripheral assemblies. • For the vibration of several assemblies distributed throughout the core in Model 2, a monotonic increase of APSD was found. - Abstract: The effect of cycle burnup on the ex-core detector noise at the frequency of the pendular core barrel vibrations in the Ringhals-3 PWR core was investigated using a neutron noise simulator. The purpose of the investigations was to confirm or disprove a hypothesis raised by Sweeney et al. (1985) that fuel assembly vibrations could affect the ex-core detector noise and cause the corresponding peak in the auto power spectral density (APSD) to increase during the cycle due to the effects of fuel burnup, the change of boron concentration, flux redistribution etc. Numerical calculations were performed by modelling the vibrations of fuel assemblies at different locations in the core and calculating the induced neutron noise at three burnup steps. The APSD of the ex-core detector noise was evaluated with the assumption of vibrations either along a straight-line or along a random two-dimensional trajectory, with two different representations of the cross section perturbations caused by the vibrations. The results show the obvious effect of in-core fuel vibrations on the ex-core detector noise, but the monotonic increase of the APSD does not occur for all fuel elements, vibration types and cross section perturbation models. Such an increase of the of APSD occurs predominantly for peripheral assemblies with one of the perturbation models. However, assuming simultaneous vibrations of a number of fuel assemblies uniformly distributed over the core with random vibrations and the more realistic

  16. RAPID program to predict radial power and burnup distribution of UO{sub 2} fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Bock; Song, Jae Sung; Bang, Je Gun; Kim, Dae Ho [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-02-01

    Due to the radial variation of the neutron flux and its energy spectrum inside UO{sub 2} fuel, the fission density and fissile isotope production rates are varied radially in the pellet, and it becomes necessary to know the accurate radial power and burnup variation to predict the high burnup fuel behavior such as rim effects. Therefore, to predict the radial distribution of power, burnup and fissionable nuclide densities in the pellet with the burnup and U-235 enrichment, RAPID(RAdial power and burnup Prediction by following fissile Isotope Distribution in the pellet) program was developed. It considers the specific radial variation of the neutron reaction of the nuclides while the constant radial variation of neutron reaction except neutron absorption of U-238 regardless of the nuclides, the burnup and U-235 enrichment is assumed in TUBRNP model which is recognized as the one of the most reliable models. Therefore, it is expected that RAPID may be more accurate than TUBRNP, specially at high burnup region. RAPID is based upon and validated by the detailed reactor physics code, HELIOS which is one of few codes that can calculates the radial variations of the nuclides inside the pellet. Comparison of RAPID prediction with the measured data of the irradiated fuels showed very good agreement. RAPID can be used to calculate the local variations of the fissionable nuclide concentrations as well as the local power and burnup inside that pellet as a function of the burnup up to 10 w/o U-235 enrichment and 150 MWD/kgU burnup under the LWR environment. (author). 8 refs., 50 figs., 1 tab.

  17. Serviceability of VVER-1000 fuel rods at extended burn-up

    International Nuclear Information System (INIS)

    To-day in Russia fuel cycles are under development intended for fuel assembly burn-up up to 65MW.day/kgU. To validate the fuel serviceability standard VVER-1000 fuel assemblies are in trial operation to reach the burn-up >60MW.day/kgU. Late in 2002 fuel assemblies that reached the burn-up of 55MW.day/kgU after 5 years of operation were discharged from the Balakovo NPP. A series of assemblies will continue their trial operation during the 6th year. The post-irradiation examinations of high burn-up UO2 base fuel rods of the VVER type reveal that one of the most important consequences of burn-up extension is the so-called rim-effect. The term 'rim-effect' assumes a complex of specific features of the structure and thermophysical behaviour of a fuel rod related to processes proceeding in a fuel layer that is on the periphery of a fuel pellet

  18. Analysis on burnup step effect for evaluating reactor criticality and fuel breeding ratio

    International Nuclear Information System (INIS)

    Criticality condition of the reactors is one of the important factors for evaluating reactor operation and nuclear fuel breeding ratio is another factor to show nuclear fuel sustainability. This study analyzes the effect of burnup steps and cycle operation step for evaluating the criticality condition of the reactor as well as the performance of nuclear fuel breeding or breeding ratio (BR). Burnup step is performed based on a day step analysis which is varied from 10 days up to 800 days and for cycle operation from 1 cycle up to 8 cycles reactor operations. In addition, calculation efficiency based on the variation of computer processors to run the analysis in term of time (time efficiency in the calculation) have been also investigated. Optimization method for reactor design analysis which is used a large fast breeder reactor type as a reference case was performed by adopting an established reactor design code of JOINT-FR. The results show a criticality condition becomes higher for smaller burnup step (day) and for breeding ratio becomes less for smaller burnup step (day). Some nuclides contribute to make better criticality when smaller burnup step due to individul nuclide half-live. Calculation time for different burnup step shows a correlation with the time consuming requirement for more details step calculation, although the consuming time is not directly equivalent with the how many time the burnup time step is divided

  19. IAEA Consultancy on Technical Influence of High Burnup UOX and MOX LWR Fuel on Spent Fuel Management

    International Nuclear Information System (INIS)

    This paper reviews the results of the International Atomic Energy Agency (IAEA) project investigating the influence of high burnup and mixed-oxide (MOX) fuels, from water power reactors, on SFM. These data will provide information on the impacts, regarding SFM, for those countries operating light-water reactors (LWR) and heavy-water reactors (HWR)s with zirconium alloy-clad uranium dioxide (UOX) fuels, that are considering the use of higher burnup UOX or the introduction of reprocessing and MOX fuels. The mechanical designs of lower burnup UOX and higher burnup UOX or MOX fuel are very similar, but some of the properties (e.g., higher fuel rod internal pressures; higher decay heat; higher specific activity; and degraded cladding mechanical properties of higher burnup UOX and MOX spent fuels) may potentially significantly affect the behavior of the fuel after irradiation. The effects of these property changes on wet and dry storage, transportation, reprocessing, refabrication of fuel, and final disposal were evaluated, based on regulatory, safety, and operational considerations. Political and strategic considerations were not taken into account since relative importance of technical, economic and strategic considerations vary from country to country. There will also be an impact of these fuels on issues like non-proliferation, safeguards, and sustainability, but because of the complexity of factors affecting those issues, they are only briefly discussed. The advantages and drawbacks of using high burnup UOX or MOX, for each applicable issue in each stage of the back end of the fuel cycle, were evaluated and are discussed. Although, in theory, higher burnup fuel and MOX fuels mean a smaller quantity of spent fuel, the potential need for some changes in design of spent fuel storage, transportation, handling, reprocessing, refabrication, and disposal will have to be balanced with the benefits of their use. (author)

  20. Study of development of non-destructive method for determining FGR from high burned PWR type fuel rod

    International Nuclear Information System (INIS)

    Experimental study was made to evaluate the FGR (Fission Product Gas Release) from high burned PWR type fuel rods by means of non-destructive method through measurement of the gamma activity of 85Kr isotope which was accumulated in the fuel top plenum. Experimental result shows that it is possible to know the amounts of FGR at fuel plenum by the equations given in the followings. FGR = 0.28C/Vf or FGR = 0.07C where, FGR (%) is the amounts of Xe and Kr released from UO2 fuel, C (counts/h) the radioactivity of 85Kr at plenum of the tested fuel rod and Vf (ml) the plenum volume of the tested fuel rod, respectively. The present study was made by using 14 x 14 PWR type fuel rods preirradiated up to the burn-up of 42.1 MWd/kgU, followed by the pulse irradiation at Nuclear Safety Research Reactor of Japan Atomic Energy Research Institute (JAERI). The FGR of the tested segmented fuel rods were measured by puncturing and found to range from 0.6% to 12% according to the magnitude of the deposited energy given by pulse. Estimated experimental error bands against the above equations were within plus minus 30%. (author)

  1. Non destructive assay of nuclear LEU spent fuels for burnup credit application

    International Nuclear Information System (INIS)

    Criticality safety analysis devoted to spent fuel storage and transportation has to be conservative in order to be sure no accident will ever happen. In the spent fuel storage field, the assumption of freshness has been used to achieve the conservative aspect of criticality safety procedures. Nevertheless, after being irradiated in a reactor core, the fuel elements have obviously lost part of their original reactivity. The concept of taking into account this reactivity loss in criticality safety analysis is known as Burnup credit. To be used, Burnup credit involves obtaining evidence of the reactivity loss with a Burnup measurement. Many non destructive assays (NDA) based on neutron as well as on gamma ray emissions are devoted to spent fuel characterization. Heavy nuclei that compose the fuels are modified during irradiation and cooling. Some of them emit neutrons spontaneously and the link to Burnup is a power link. As a result, burn-up determination with passive neutron measurement is extremely accurate. Some gamma emitters also have interesting properties in order to characterize spent fuels but the convenience of the gamma spectrometric methods is very dependent on characteristics of spent fuel. In addition, contrary to the neutron emission, the gamma signal is mostly representative of the peripheral rods of the fuels. Two devices based on neutron methods but combining different NDA methods which have been studied in the past are described in detail: 1. The PYTHON device is a combination of a passive neutron measurement, a collimated total gamma measurement, and an online depletion code. This device, which has been used in several Nuclear Power Plants in western Europe, gives the average Burnup within a 5% uncertainty and also the extremity Burnup, 2. The NAJA device is an automatic device that involves three nuclear methods and an online depletion code. It is designed to cover the whole fuel assembly panel (Active Neutron Interrogation, Passive Neutron

  2. The Study of Nuclear Fuel Cycle Options Based On PWR and CANDU Reactors

    International Nuclear Information System (INIS)

    The study of nuclear fuel cycle options based on PWR and CANDU type reactors have been carried out. There are 5 cycle options based on PWR and CANDU reactors, i.e.: PWR-OT, PWR-OT, PWR-MOX, CANDU-OT, DUPIC, and PWR-CANDU-OT options. While parameters which assessed in this study are fuel requirement, generating waste and plutonium from each cycle options. From the study found that the amount of fuel in the DUPIC option needs relatively small compared the other options. From the view of total radioactive waste generated from the cycles, PWR-MOX generate the smallest amount of waste, but produce twice of high level waste than DUPIC option. For total plutonium generated from the cycle, PWR-MOX option generates smallest quantity, but for fissile plutonium, DUPIC options produce the smallest one. It means that the DUPIC option has some benefits in plutonium consumption aspects. (author)

  3. Effect of startup ramp rate on PWR fuel reliability

    International Nuclear Information System (INIS)

    A wide range of startup strategies and restart times currently exists for commercially operated pressurized water reactors (PWRs). The variability in PWR restart strategies is a function of several factors, including reactor system instrument calibration, primary and secondary water chemistry control, and vendor specified fuel rod ramp rate limitations. Fuel vendors, as a means to mitigate pellet-cladding interaction (PCI) leading to fuel rod failures, specify reactor power ramp rate limitations following a refueling outage. Typical restart ramp rates range between 3% per hour and 4% per hour of full reactor power above a threshold reactor power level between 20% and 40% full power. This paper summarizes an analytical evaluation performed to assess the technical basis for PWR restart ramp rate restrictions and to provide the technical justification to propose less restrictive power ramp rate conditions. Two combinations of PWR reactor types (Yonggwang Unit 2 and 4) and fuel rod designs were used to evaluate the impact of ramp rate and threshold power conditions on the PCI behavior of once-burned and twice-burned fuel rods. The fuel rod condition at the reactor restart of interest was established using the ESCORE steady state fuel performance program. Detailed PCI calculations were performed using the FREY fuel rod behavior program. The assessment identified significant margin to PCI failure for current ramp rate conditions used in YGN Unit 2 and 4. Based on the analytical evaluation presented, ramp rates up to 5% per hour above threshold power levels up to 60% of full reactor power can be used without concern for fuel rod integrity during reactor restarts following a refueling outage

  4. Modified ADS molten salt processes for back-end fuel cycle of PWR spent fuel

    International Nuclear Information System (INIS)

    The back-end fuel cycle concept for PWR spent fuel is explained. This concept is adequate for Korea, which has operated both PWR and CANDU reactors. Molten salt processes for accelerator driven system (ADS) were modified both for the transmutation of long-lived radioisotopes and for the utilisation of the remained fissile uranium in PWR spent fuels. Prior to applying molten salt processes to PWR fuel, hydrofluorination and fluorination processes are applied to obtain uranium hexafluoride from the spent fuel pellet. It is converted to uranium dioxide and fabricated into CANDU fuel. From the remained fluoride compounds, transuranium elements can be separated by the molten salt technology such as electrowinning and reductive extraction processes for transmutation purpose without weakening the proliferation resistance of molten salt technology. The proposed fuel cycle concept using fluorination processes is thought to be adequate for our nuclear program and can replace DUPIC (Direct Use of spent PWR fuel in CANDU reactor) fuel cycle. Each process for the proposed fuel cycle concept was evaluated in detail

  5. A study on the direct use of spent PWR fuel in CANDU reactors -Fuel management and safety analysis-

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Soo; Lee, Boh Wook; Choi, Hang Bok; Lee, Yung Wook; Cho, Jae Sun; Huh, Chang Wook [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    The reference DUPIC fuel composition was determined based on the reactor safety, thermal-hydraulics, economics, and refabrication aspects. The center pin of the reference DUPIC fuel bundle is poisoned with natural dysprosium. The worst LOCA analysis has shown that the transient power and heat deposition of the reference DUPIC core are the same as those of natural uranium CANDU core. The intra-code comparison has shown that the accuracy of DUPIC physics code system is comparable to the current CANDU core design code system. The sensitivity studies were performed for the refuelling schemes of DUPIC core and the 2-bundle shift refuelling scheme was selected as the standard refuelling scheme of the DUPIC core. The application of 4-bundle shift refuelling scheme will be studied in parallel as the auto-refuelling method is improved and the reference core parameters of the heterogeneous DUPIC core are defined. The heterogeneity effect was analyzed in a preliminary fashion using 33 fuel types and the random loading strategy. The refuelling simulation has shown that the DUPIC core satisfies the current CANDU 6 operating limits of channel and bundle power regardless of the fuel composition heterogeneity. The 33 fuel types used in the heterogeneity analysis was determined based on the initial enrichment and discharge burnup of the PWR fuel. 90 figs, 62 tabs, 63 refs. (Author).

  6. Small PWR 'PFPWR50' using cermet fuel of Th-Pu particles

    International Nuclear Information System (INIS)

    An innovative concept of PFPWR50 has been studied. The main feature of PFPWR50 has been to adopt TRISO coated fuel particles in a conventional PWR cladding. Coated fuel particle provides good confining ability of fission products. But it is pointed out that swelling of SiC layer at low temperature by irradiation has possibilities of degrading the integrity of coated fuel particle in the LWR environment. Thus, we examined the use of Cermet fuel replacing SiC layer to Zr metal or Zr compound. And the nuclear fuel has been used as fuel compact, which is configured to fix coated fuel particles in the matrix material to the shape of fuel pellet. In the previous study, graphite matrix is adopted as the matrix material. According to the burnup calculations of the several fuel concepts with those covering layers, we decide to use Zr layer embedded in Zr metal base or ZrC layer with graphite matrix. But carbon has the problem at low temperature by irradiation as well as SiC. Therefore, Zr covering layer and Zr metal base are finally selected. The other feature of PFPWR50 concept has been that the excess reactivity is suppressed during a cycle by initially loading burnable poison (gadolinia) in the fuels. In this study, a new loading pattern is determined by combining 7 types of assemblies in which the gadolinia concentration and the number of the fuel rods with gadolinia are different. This new core gives 6.7 equivalent full power years (EFPY) as the core life of a cycle. And the excess reactivity is suppressed to less than 2.0%Δk/k during the cycle. (author)

  7. Impact of High Burnup Uranium Oxide and Mixed Uranium-Plutonium Oxide Water Reactor Fuel on Spent Fuel Management

    International Nuclear Information System (INIS)

    There is increasing worldwide use of uranium oxide (UOX) nuclear fuel with higher enrichments and burnups as the reliability of UOX fuel increases and the economics of moving to higher burnup fuel improves. Burnup extension affects all important stages of the nuclear fuel cycle and thus concerns the entire nuclear industry. There are many aspects of switching to higher burnup UOX or MOX fuels, such as reliability, safety, and economics, that decision makers need to take into account. The potential physical changes to the fuel rods and assemblies will affect the operation of the components of the back end of the fuel cycle. The objective of this report is to provide information on the impacts on spent fuel management to those countries operating LWRs and HWRs with zirconium alloy clad UOX fuels who are considering the use of higher burnup UOX or the introduction of reprocessing and MOX fuels. The mechanical designs of lower burnup UOX and higher burnup UOX or MOX fuel are very similar, but some of the properties of higher burnup UOX and MOX are potentially significant. Examples of the differences in properties between lower burnup UOX and higher burnup UOX and MOX include: higher fuel rod internal pressures; higher decay heat; higher specific activity; and degraded cladding mechanical properties. Higher burnup UOX or MOX usage affects all spent fuel management components, such as wet and dry storage, transportation, reprocessing, re-fabricated fuel and final disposal. This report briefly reviews the current fuel characteristics of UOX and MOX and the potential for characteristic changes with increased burnup. In addition, the components of the back end of the fuel cycle are discussed. Evaluation of these effects on the back end of the fuel cycle was based on the particular fuel behaviour, regulatory, safety, sustainability, or operational issues that might be impacted by the increased burnup or switch to MOX. Other than a brief mention, an economic evaluation of the

  8. Development of modified MDA (M-MDA), PWR fuel cladding tube for high duty operation in future

    International Nuclear Information System (INIS)

    A new cladding material of M-MDA has been developed in order to prepare for a strong growing demand for advanced fuel which can maintain its integrity even under high duties due to more efficient operation such as higher burnup, higher LHR, and longer operation cycle which will contribute the suppression of environmental burdens like CO2 emission. The main aim of M-MDA is to have excellent corrosion resistance while the other properties are inherited from MDA, which has been adopted to the step 2 fuel, instead of Zry-4, of Japanese PWR plant whose upper limit of assembly discharged burnup is 55 MWd/kgU. And we could confirm that the main aim of M-MDA was achieved by means of out-of-pile tests. In order to confirm improvement of corrosion resistance of M-MDA in the actual operation, irradiation test of M-MDA in the commercial reactor of Vandellos II is ongoing. The latest results of on-site examination after every end of cycle showed that oxide thickness of M-MDA-SR was much smaller than that of MDA at rod discharged burnup of approximately 60 MWd/kgU. The final irradiation cycle was completed on April 2007 and then we will obtain corrosion data of M-MDA over 70 MWd/kgU. M-MDA is a candidate alloy for advanced fuel under higher duty usage. (authors)

  9. Design and manufacturing of non-instrumented capsule for advanced PWR fuel pellet irradiation test in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Lee, C. B.; Song, K. W. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    This project is preparing to irradiation test of the developed large grain UO{sub 2} fuel pellet in HANARO for pursuit fuel safety and high burn-up in 'Advanced LWR Fuel Technology Development Project' as a part Nuclear Mid and Long-term R and D Program. On the basis test rod is performed the nuclei property and preliminary fuel performance analysis, test rod and non-instrumented capsule are designed and manufactured for irradiation test in HANARO. This non-instrumented irradiation capsule of Advanced PWR Fuel pellet was referred the non-instrumented capsule for an irradiation test of simulated DUPIC fuel in HANARO(DUPIC Rig-001) and 18-element HANARO fuel, was designed to ensure the integrity and the endurance of non-instrumented capsule during the long term(2.5 years) irradiation. To irradiate the UO{sub 2} pellets up to the burn-up 70 MWD/kgU, need the time about 60 months and ensure the integrity of non-instrumented capsule for 30 months until replace the new capsule. This non-instrumented irradiation capsule will be based to develope the non-instrumented capsule for the more long term irradiation in HANARO. 22 refs., 13 figs., 5 tabs. (Author)

  10. Fuel Modelling at Extended Burnup (Fumex-II). Report of a Coordinated Research Project 2002-2007

    International Nuclear Information System (INIS)

    to fuel licensing. This report describes the results of the coordinated research project on fuel modelling at extended burnup (FUMEX-II). This programme was initiated in 2000 and completed in 2006. It followed previous programmes on fuel modelling, D-COM which was conducted between 1982 and 1984, and the FUMEX programme which was conducted between 1993 and 1996. The participants used a mixture of data, derived from actual irradiation histories, in particular those with PIE measurements from high burnup commercial and experimental fuels, combined with idealized power histories intended to represent possible future extended dwell, commercial irradiations, to test code capabilities at high burnup. All participants have carried out calculations on the six priority cases selected from the 27 cases identified to them at the first research coordination meeting (RCM). At the second RCM, three further priority cases were identified and have been modelled. These priority cases have been chosen as the best available to help determine which of the many high burnup models used in the codes best reflect reality. The participants are using the remaining cases for verification and validation purposes as well as inter-code comparisons. The codes participating in the exercise have been developed for a wide variety of purposes, including predictions for fuel operation in PWR, BWR, WWER, the pressurized HWR type, CANDU and other reactor types. They are used as development tools as well as for routine licensing calculations, where code configuration is strictly controlled.

  11. Criticality evaluation of high density spent fuel storge rack under normal condition using burnup credit

    International Nuclear Information System (INIS)

    The high density spent fuel storage rack Boraflex was known to experience changes of its physical property and to dissolve under exposure to radiation in an aqueous environment for long period of time. In this study, the criticality evaluation for spent fuel storage rack of Ulchin Unit 2 under normal condition was performed assuming complete loss of 10B from the Boraflex and applying burnup credit. Criticality evaluation code KENO-V.a. from SCALE4.4 system was benchmarked against critical experiments to obtain the calculation bias and bias uncertainties. The manufacturing tolerances of nuclear fuel and storage rack and their reactivity uncertainties were derived, as well. Considering those bias and uncertainties of calculation, the criticality of spent fuel storage under normal condition was conservatively evaluated. The criticality evaluation result using burnup credit can be presented as a spent fuel loading curve that indicates the acceptable burnup domain in spent fuel storage pool. The spent fuels with various initial enrichments and discharge fuel burnup can be safely accommodated in the storage without taking any boron credit from Boraflex, provided the combination falls within the acceptable domain in the loading curve. The spent fuel with initial enrichment of 5.0w/o was evaluated to meet the subcritical safety if its burnup is over 43.0GWD/MTU. The criticality evaluation result also showed that spent fuels with the initial enrichment less than 1.6w/o were able to be stored in the storage pool regardless of their burnup. Conclusively, in the Region 2 of the spent fuel storage pool, the maximum keff , considering all uncertainties, was calculated as 0.94818

  12. Poolside inspection facility for PWR fuel assemblies

    International Nuclear Information System (INIS)

    Pool side inspection programme for LWRs started in India with the inspection of BWR fuel assemblies at Tarapur and this involved sipping, visual inspection, UT and Eddy current testing. In view of the possibility of having WWER type of reactors in our country, a R and D program has been initiated for study of behavior of these types of fuel. The program would involve irradiation, pool side inspection and hot cell examination of specially designed fuel assemblies. Well characterized fuel assemblies irradiated in research reactor are transferred to the fuel pool with the help of fuel transfer system. The fuel assemblies are taken out of the transfer system, sipping test performed and de channeled using under water handling and cutting tools. The fuel pins are then taken out of assembly and loaded on to the stand for underwater UT and Eddy current testing. The details of the handling and inspection facilities provided in pool for inspection of the hexagonal fuel assemblies has been discussed in the text. Dismantling and inspection procedure used for control assembly pins have also been discussed. (author)

  13. High burnup performance of Mg, Mg-Nb and Ti doped UO2 fuels

    International Nuclear Information System (INIS)

    In order to control irradiation performance of fuel swelling and FP gas release etc. at high burnups of light water reactor fuels, doped UO2 pellet fuels were prepared and their irradiation behavior was examined. The UO2 pellets doped 2.5 to 15mol%Mg, 5mol%Mg - 5mol%Nb, and 3.5mol%Ti and undoped UO2 pellets as a reference fuel were loaded together in a capsule and irradiated to the maximum burnups of 94GWd/t(U) below temperature of 1000degC in the JRR-3M reactor of JAERI. As results of post-irradiation examinations such as visual inspection, dimensional and density change measurements, thermal diffusivity and ceramography with optical microscope and EPMA, no difference was observed between the doped and the reference UO2 fuels. And valuable results were obtained on high burnup properties for swelling rates, thermal conductivities, structure changes and so on. (author)

  14. Analysis of the estimated isotopic concentration of PWR spent fuel

    International Nuclear Information System (INIS)

    Using SCALE4.4 SAS2H, HELIOS and CASMO codes, isotopic inventories in PWR spent fuel have been calculated and compared with the reported experimental data. Correction factors with a 95% probability at a 95% confidence level have been determined on the basis of the calculated and measured concentrations of 38 nuclides. Influences of correction factors to the multiplication factor have also been investigated. The calculated biases and uncertainties of U-235 in PWR spent fuel seem to be 2.8 % / 3.9 %, -2.0 % / 4.1 % and 5.0 % / 4.5 %. In the case of transuranium isotopes and fission products, the results calculated by HELIOS and CASMO codes show a large discrepancy from the reported experimental data in comparison of SAS2H results. In general it is believed that SAS2H is better than HELIOS and CASMO for estimating isotopic inventory in PWR spent fuel. It is revealed that correction factors obtained by codes of interest give rise to the maximum difference of about 0.05 in the multiplication factor

  15. Experimental studies of spent fuel burn-up in WWR-SM reactor

    Energy Technology Data Exchange (ETDEWEB)

    Alikulov, Sh. A.; Baytelesov, S.A.; Boltaboev, A.F.; Kungurov, F.R. [Institute of Nuclear Physics, Ulughbek township, 100214, Tashkent (Uzbekistan); Menlove, H.O.; O’Connor, W. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Osmanov, B.S., E-mail: bari_osmanov@yahoo.com [Research Institute of Applied Physics, Vuzgorodok, 100174 Tashkent (Uzbekistan); Salikhbaev, U.S. [Institute of Nuclear Physics, Ulughbek township, 100214, Tashkent (Uzbekistan)

    2014-10-01

    Highlights: • Uranium burn-up measurement from {sup 137}Cs activity in spent reactor fuel. • Comparison to reference sample with known burn-up value (ratio method). • Cross-check of the approach with neutron-based measurement technique. - Abstract: The article reports the results of {sup 235}U burn-up measurements using {sup 137}Cs activity technique for 12 nuclear fuel assemblies of WWR-SM research reactor after 3-year cooling time. The discrepancy between the measured and the calculated burn-up values was about 3%. To increase the reliability of the data and for cross-check purposes, neutron measurement approach was also used. Average discrepancy between two methods was around 12%.

  16. Development of high-burnup fuel analysis code EXBURN-I

    International Nuclear Information System (INIS)

    A computer code EXBURN-I has been developed which analyses LWR fuel behavior in high-burnup region in normal operation and transient conditions. In the high-burnup region, fuel behavior is affected considerably by such burnup-dependent factors as FP gas release, waterside corrosion of cladding, and pellet property change. To analyze these phenomena, in the present version, the base code FEMAXI-IV has been improved and incorporated such new models as pellet thermal conductivity change, burnup-dependent FP gas release rate, and cladding waterside corrosion. The present report describes the whole structure of the code, adopted models, and material properties, followed by input manual and sample input/output. Verification and further improvement of the code performance by experimental data will be done in the next stage. (author)

  17. Experimental studies of spent fuel burn-up in WWR-SM reactor

    International Nuclear Information System (INIS)

    Highlights: • Uranium burn-up measurement from 137Cs activity in spent reactor fuel. • Comparison to reference sample with known burn-up value (ratio method). • Cross-check of the approach with neutron-based measurement technique. - Abstract: The article reports the results of 235U burn-up measurements using 137Cs activity technique for 12 nuclear fuel assemblies of WWR-SM research reactor after 3-year cooling time. The discrepancy between the measured and the calculated burn-up values was about 3%. To increase the reliability of the data and for cross-check purposes, neutron measurement approach was also used. Average discrepancy between two methods was around 12%

  18. A complete NUHOMS registered solution for storage and transport of high burnup spent fuel

    International Nuclear Information System (INIS)

    The discharge burnups of spent fuel from nuclear power plants keep increasing with plants discharging or planning to discharge fuel with burnups in excess of 60,000 MWD/MTU. Due to limited capacity of spent fuel pools, transfer of older cooler spent fuel from fuel pool to dry storage, and very limited options for transport of spent fuel, there is a critical need for dry storage of high burnup, higher heat load spent fuel so that plants could maintain their full core offload reserve capability. A typical NUHOMS registered solution for dry spent fuel storage is shown in the Figure 1. Transnuclear, Inc. offers two advanced NUHOMS registered solutions for the storage and transportation of high burnup fuel. One includes the NUHOMS registered 24PTH system for plants with 90.7 Metric Ton (MT) crane capacity; the other offers the higher capacity NUHOMS registered 32PTH system for higher crane capacity. These systems include NUHOMS registered - 24PTH and -32PTH Transportable Canisters stored in a concrete storage overpack (HSM-H). These canisters are designed to meet all the requirements of both storage and transport regulations. They are designed to be transported off-site either directly from the spent fuel pool or from the storage overpack in a suitable transport cask

  19. Technical and economic limits to fuel burnup extension. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    For many years, the increase of efficiency in the production of nuclear electricity has been an economic challenge in many countries which have developed this kind of energy. The increase of fuel burnup leads to a reduction in the volume of spent fuel discharged to longer fuel cycles in the reactor, which means bigger availability and capacity factors. After having increased the authorized burnup in plants, developing new alloys capable of resisting high burnup, and having accumulated data on fuel evolution with burnup, it has become necessary to establish the limitations which could be imposed by the physical evolution of the fuel, influencing fuel management, neutron properties, reprocessing or, more generally, the management of waste and irradiated fuels. It is also necessary to verify whether the benefits of lower electricity costs would not be offset by an increase in fuel management costs. The main questions are: Are technical and economic limits to the increasing of fuel burnup in parallel? Can we envisage nowadays the hardest limitation in some of these areas? Which are the main points to be solved from the technical point of view? Is this effort worthwhile considering the economy of the cycle? To which extent? For these reasons, the IAEA, following a recommendation by the International Working Group on Fuel Performance and Technology, held a Technical Committee Meeting on Technical and Economic Limits to Fuel Burnup Extension. The purpose of this meeting was to provide an international forum to review the evolution of fuel properties at increased burnup in order to estimate the limitations both from a physical and an economic point of view. The meeting was therefore divided into two parts. The first part, focusing on technical limits, was devoted to the improvement of the fuel element, such as fission gas release (FGR), RIM effect, cladding, etc. and the fabrication, core management, spent fuel and reprocessing. Eighteen related papers were presented which

  20. Fuel rod and core materials investigations related to LWR extended burnup operation

    Science.gov (United States)

    Kolstad, Erik; Vitanza, Carlo

    1992-06-01

    The paper deals with tests and recent measurements related to extended burnup fuel performance and describes test facilities and results in the areas of waterside cladding corrosion and irradiation-assisted stress corrosion cracking (IASCC). Fuel temperature data suggest a gradual degradation of UO 2 thermal conductivity with exposure in the range 6-8% per 10 MWd/kgUO 2 at temperatures below 700°C. The effect on the fuel microstructure of interlinkage and resintering phenomena is shown by measuring the surface-to-volume ( S/ V) ratio of the fuel. Changes in S/V with burnup are correlated to power rating and fuel operating temperature. No evidence was found of enhanced fission gas release during load-follow operation in the burnup range 25-45 MWd/kgUO 2. The effect of high lithium concentration (high pH) on the corrosion behaviour of pre-irradiated high burnup Zircaloy-4 fuel rods subjected either to nucleate boiling or to one-phase cooling conditions was studied. The oxide thickness growth rates measured at an average burnup up to 40 MWd/kgUO 2 are consistent with literature data and show no evidence of corrosion enhancement due to the high lithium content and little effect of cooling regime. A test facility for exploring the effects of environmental variables on IASCC behaviour of in-core structural materials is described.

  1. Advanced PWR fuel assembly development programs in Korea

    International Nuclear Information System (INIS)

    Both KNFC and Westinghouse have continued to focus on developing products that will meet the challenge of increasing fuel duty requirements in Korea. These higher duty conditions include higher energy core designs through improved plant capacity factors, power uprate, extended fuel burnup, peaking factor increases, and more severe coolant chemistry (including high lithium concentration). Recent advanced fuel development activities in Korea include implementation of the 17x17 Robust Fuel Assembly (RFA), which is currently in operation with excellent performance in the United States and Europe, as well as the 16x16 PLUS7TM fuel assembly for use in KSNP plants. KNFC and Westinghouse are jointly developing advanced fuel that will meet future fuel duty challenges of 17x17 and 16x16 Westinghouse type plants. This paper focuses on advanced fuel assembly development programs that are underway and how these designs demonstrate improved margins under high duty plant operating conditions. In designing for these high duty conditions key design considerations for the various operational modes (i.e. power uprating, high burnup, long cycles, etc.) must be identified. These design considerations will include the traditional factors such as safety margin (DNB and LOCA), fuel rod design margin (e.g. corrosion, internal pressure, etc.) and mechanical design margins, among others. In addressing these design considerations, the fundamental approach is to provide additional design margin through materials, mechanical, and thermal performance enhancements, to assure flawless fuel performance. The foundation of all fuel designs is the product development process used to meet the demands of modern high duty operation including power uprating, high burnup, longer cycles, and high-lithium coolant chemistries. These advanced fuel assembly designs incorporate features that provide improved mechanical design margin, as well as thermal performance margin (DNB). Enhanced grid designs result in a

  2. Gross Gamma Dose Rate Measurements for TRIGA Spent Nuclear Fuel Burnup Validation

    International Nuclear Information System (INIS)

    Gross gamma-ray dose rates from six spent TRIGA fuel elements were measured and compared to calculated values as a means to validate the reported element burnups. A newly installed and functional gamma-ray detection subsystem of the In-Cell Examination System was used to perform the measurements and is described in some detail. The analytical methodology used to calculate the corresponding dose rates is presented along with the calculated values. Comparison of the measured and calculated dose rates for the TRIGA fuel elements indicates good agreement (less than a factor of 2 difference). The intent of the subsystem is to measure the gross gamma dose rate and correlate the measurement to a calculated dose rate based on the element s known burnup and other pertinent spent fuel information. Although validation of the TRIGA elements' burnup is of primary concern in this paper, the measurement and calculational techniques can be used to either validate an element's reported burnup or provide a burnup estimate for an element with an unknown burnup. (authors)

  3. PWR Fuel licensing in France - from design to reprocessing: licensing of nuclear PWR fuel rod design to satisfy with criteria for normal and abnormal fuel operation in France

    International Nuclear Information System (INIS)

    In this lecture are presented: French regulatory context; Current fuel management methods; Request from the french operator EdF; Most recent actions of the french Nuclear safety authority; Fuel assemblies deformations (impact of high burn-up; investigations during reactor's exploitation; control rods drop off times)

  4. Criticality safety analysis of WWER-440 spent fuel cask with radial and axial burnup profile implementation

    International Nuclear Information System (INIS)

    The impact of radial and axial burnup profile on the criticality of WWER-440 spent fuel cask is presented in the paper. The calculations are performed based on two AER Benchmark problems for WWER-440 irradiated fuel assembly. The radial zonewise dependent spent fuel inventory has been calculated by the NESSEL - NUKO code system. The axial dependent isotope concentrations have been determined by the modular code system SCALE4.4. For criticality calculations the SCALE4.4 has been applied. Calculations have been carried out for cask with 30 WWER-440 fuel assemblies with initial enrichment 3.6% of 235U and burnup up to 40 MWd/kgU. The influence of radial and axial burnup credit on the cask criticality has been evaluated

  5. Irradiation behavior of FBTR mixed carbide fuel at various burn-ups

    International Nuclear Information System (INIS)

    The fast breeder test reactor at Kalpakkam has completed nearly 25 years of operation and is now operating at 18 MWt capacity with 46 fuel subassemblies (FSA) in the core consisting of 27 Mark-I (70% PuC + 30% UC), 13 Mark-II (55% PuC + 45% UC) and 6 MOX (44% PuO2 + 56% UO2) and one test PFBR FSA. Post Irradiation Examination (PIE) campaigns on FSAs at different burnup levels has provided valuable information about the irradiation behavior of the carbide fuel. This paper gives a summary of the irradiation performance of the carbide fuel evaluated through some of the investigations such as neutron radiography, x-radiography, gamma scanning, fission gas analysis and ceramography. Burnup of the carbide fuel could be enhanced from the initial design burnup limit of 50 GWd/t to 165 GWd/through systematic PIE. (author)

  6. Timing analysis of PWR fuel pin failures

    International Nuclear Information System (INIS)

    Research has been conducted to develop and demonstrate a methodology for calculation of the time interval between receipt of the containment isolation signals and the first fuel pin failure for loss-of-coolant accidents (LOCAs). Demonstration calculations were performed for a Babcock and Wilcox (B ampersand W) design (Oconee) and a Westinghouse (W) four-loop design (Seabrook). Sensitivity studies were performed to assess the impacts of fuel pin bumup, axial peaking factor, break size, emergency core cooling system availability, and main coolant pump trip on these times. The analysis was performed using the following codes: FRAPCON-2, for the calculation of steady-state fuel behavior; SCDAP/RELAP5/MOD3 and TRACPF1/MOD1, for the calculation of the transient thermal-hydraulic conditions in the reactor system; and FRAP-T6, for the calculation of transient fuel behavior. In addition to the calculation of fuel pin failure timing, this analysis provides a comparison of the predicted results of SCDAP/RELAP5/MOD3 and TRAC-PFL/MOD1 for large-break LOCA analysis. Using SCDAP/RELAP5/MOD3 thermal-hydraulic data, the shortest time intervals calculated between initiation of containment isolation and fuel pin failure are 10.4 seconds and 19.1 seconds for the B ampersand W and W plants, respectively. Using data generated by TRAC-PF1/MOD1, the shortest intervals are 10.3 seconds and 29.1 seconds for the B ampersand W and W plants, respectively. These intervals are for a double-ended, offset-shear, cold leg break, using the technical specification maximum peaking factor and applied to fuel with maximum design bumup. Using peaking factors commensurate widi actual bumups would result in longer intervals for both reactor designs. This document also contains appendices A through J of this report

  7. Instant release fraction and matrix release of high burn-up UO2 spent nuclear fuel: Effect of high burn-up structure and leaching solution composition

    International Nuclear Information System (INIS)

    Two weak points in Performance Assessment (PA) exercises regarding the alteration of Spent Nuclear Fuel (SNF) are the contribution of the so-called Instant Release Fraction (IRF) and the effect of High Burn-Up Structure (HBS). This manuscript focuses on the effect of HBS in matrix (long term) and instant release of a Pressurised Water Reactor (PWR) SNF irradiated in a commercial reactor with a mean Burn-Up (BU) of 60 GWd/tU. In order to study the HBS contribution, two samples from different radial positions have been prepared. One from the centre of the SNF, labelled CORE, and one from the periphery, enriched with HBS and labelled OUT. Static leaching experiments have been carried out with two synthetic leaching solutions: bicarbonate (BIC) and Bentonitic Granitic Groundwater (BGW), and in all cases under oxidising conditions. IRF values have been calculated from the determined Fraction of Inventory in Aqueous Phase (FIAP). In all studied cases, some radionuclides (RN): Rb, Sr and Cs, have shown higher release rates than uranium, especially at the beginning of the experiment, and have been considered as IRF. Redox sensitive RN like Mo and Tc have been found to dissolve slightly faster than uranium and further studies might be needed to confirm if they can also be considered part of the IRF. Most of the remaining studied RN, mainly actinides and lanthanides, have been found to dissolve congruently with the uranium matrix. Finally, Zr, Ru and Rh presented lower release rates than the matrix. Higher matrix release has been determined for CORE than for OUT samples showing that the formation of HBS might have a protective effect against the oxidative corrosion of the SNF. On the contrary, no significant differences have been observed between the two studied leaching solutions (BIC and BGW). Two different IRF contributions have been determined. One corresponding to the fraction of inventory segregated in the external open grain boundaries, directly available to water and

  8. A computer program for nuclear fuel burnup determination using gamma spectrometric methods

    International Nuclear Information System (INIS)

    In the end of its service life in the reactor, the fuel needs to be characterized for reasons relating both to safety and economy. The main investigations carried out are oriented towards verifying the fuel cladding integrity and determining the fissile content and the fuel burnup. A computer program for fast burnup evaluation was developed at the Post-Irradiation Examination Laboratory (PIEL) from INR Pitesti, the only laboratory of this kind in Romania. The input data consists, on one hand, of axial and radial gamma-scanning profiles (for the experimental evaluation of the number of nuclei of a given fission product - selected as burnup monitor - in the end of irradiation) and, on the other hand, of the history of irradiation (the time length and relative value of the neutron flux for each step of irradiation). Using the equation for the build-up and decay of the burnup monitor during irradiation the flux value is iteratively adjusted until the calculated number of nucleus is equal to the experimental one. Then the flux value is used in the equations of evolution of the fissile and fertile nuclei to determine the number of fissions and consequently the fuel burnup. The program was successfully used in the analysis of more then one hundred of TRIGA and CANDU-type fuel rods. An experimental result is reported in some details. (authors)

  9. Investigation of research and development subjects for very high burnup fuel

    International Nuclear Information System (INIS)

    Plutonium use as well as burnup extension of UO2 fuel is an important subject for the strategy of utilization of the nuclear energy in LWRs. A higher burnup is favorable to MOX fuel in economic respect and for effective use of plutonium. Therefore, the concept of a 'very high burnup' aiming at the maximum bundle burnup of 100GWd/t has been proposed assuming use of MOX fuel. The authors have investigated research and development subjects for the fuel pellet and the cladding material to be developed. The present report shows the results on the cladding material. In order to achieve a very high burnup, development of the cladding material with higher corrosion and radiation resistance compared with Zircaloy is necessary. In this report, zirconium based alloy, stainless steel, nickel and titanium based alloys, ceramics, etc. were reviewed considering water corrosion resistance, thermal and mechanical properties, radiation effects, etc. Furthermore, capability of these materials as the fuel cladding was discussed focusing on water side corrosion and radiation effect on mechanical properties. As a result, candidate materials at present and the required research tasks were shown with issues for the development. (author) 66 refs

  10. In-reactor thermo-mechanical measurements on LWR fuel rods in the high burnup range

    International Nuclear Information System (INIS)

    The extension of fuel burn-up beyond previously accepted levels is currently being applied in varying degrees throughout the nuclear industry, with the aim of improving fuel economics and reducing the spent fuel volume. So it is necessary that the current fuel knowledge base should be extended. Modifications of fuel rod/assembly concepts, together with fuel management schemes, should be gradually implemented so that the operation of power reactors becomes even more reliable and flexible than it is today. Extrapolation to extended burn-up levels does not cause concern but will have to be made in steps, in order to demonstrate expected performance trends. The fuel testing programmes at the OECD Halden Reactor Project have over the years significantly contributed to the understanding of LWR fuel behaviour in the high burn-up range. A broad range of versatile and integrated in-reactor test rigs and high pressure loops have been developed which allow simulations of LWR irradiation conditions, comparative testing of alternative fuel rod designs and use of test segments pre-irradiated in power reactors. A number of in-core instruments and experimental techniques have been developed for detailed investigations of various aspects related to the thermal behaviour, fission product release and mechanical response of high burn-up LWR fuel rods, under a variety of operating conditions. The paper reviews recent measurements in the area of burnup-dependent steady-state and transient thermal behaviour of fuel rods, intermixing of fission and helium filler gases in the pellet cladding gap, fission gas release kinetics under changing heat loads and power excursions (burst release) and dimensional changes of fuel rods subjected to cyclic load changes. (author). 14 refs, 12 figs

  11. A practical method for optimization of fuel management of PWR

    International Nuclear Information System (INIS)

    A practical method for simulation of fuel management optimization of PWR cores with two-dimensional model is described. The general objective of the optimization is to choose a set of refuelling arrangement schemes, which will produce the maximum economic profit on condition that it meets the safety criteria of PWR. It oftern requires quite a lot of computer time to simulate the optimized schemes. An effective and acceptable optimization strategy, two-step search method, has been developed. The first step of algorithm consists of several approaches based on the information avilable and the past experiences with refuelling. The second step allows a further improvement of the previously determined optimum schemes. The maximum radial power peaking factor, Wp, is defined as the objective function. Several physical criteria are examined to propose the constraints. The main intention is to minimize, the objective function Wp, subjected to various constraints. Hence a computer program, 2DFEOF in FORTRAN 77, was developed. Some calculations were done for a typical PWR core on an IBM-4341 computer. The satisfactory results were obtained at reasonable low computational costs. It spent nearly 9 mins CPU time for 3 fuel cycles with a 1/8 core configuration

  12. Determination of fissile fraction in MOX (mixed U + Pu oxides) fuels for different burnup values

    Energy Technology Data Exchange (ETDEWEB)

    Ozdemir, Levent, E-mail: levent.ozdemir@taek.gov.tr [Department of Nuclear Engineering, Hacettepe University, 06800 Beytepe, Ankara (Turkey); Acar, Banu Bulut; Zabunoglu, Okan H. [Department of Nuclear Engineering, Hacettepe University, 06800 Beytepe, Ankara (Turkey)

    2011-02-15

    When spent Light Water Reactor fuels are processed by the standard Purex method of reprocessing, plutonium (Pu) and uranium (U) in spent fuel are obtained as pure and separate streams. The recovered Pu has a fissile content (consisting of {sup 239}Pu and {sup 241}Pu) greater than 60% typically (although it mainly depends on discharge burnup of spent fuel). The recovered Pu can be recycled as mixed-oxide (MOX) fuel after being blended with a fertile U makeup in a MOX fabrication plant. The burnup that can be obtained from MOX fuel depends on: (1) isotopic composition of Pu, which is closely related to the discharge burnup of spent fuel from which Pu is recovered; (2) the type of fertile U makeup material used (depleted U, natural U, or recovered U); and (3) fraction of makeup material in the mix (blending ratio), which in turn determines the total fissile fraction of MOX. Using the Non-linear Reactivity Model and the code MONTEBURNS, a step-by-step procedure for computing the total fissile content of MOX is introduced. As was intended, the resulting expression is simple enough for quick/hand calculations of total fissile content of MOX required to reach a desired burnup for a given discharge burnup of spent fuel and for a specified fertile U makeup. In any case, due to non-fissile (parasitic) content of recovered Pu, a greater fissile fraction in MOX than that in fresh U is required to obtain the same burnup as can be obtained by the fresh U fuel.

  13. Review of Halden Reactor Project high burnup fuel data that can be used in safety analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wiesenack, W. [OECD Halden Reactor Project (Norway)

    1996-03-01

    The fuels and materials testing programmes carried out at the OECD Halden Reactor Project are aimed at providing data in support of a mechanistic understanding of phenomena, especially as related to high burnup fuel. The investigations are focused on identifying long term property changes, and irradiation techniques and instrumentation have been developed over the years which enable to assess fuel behaviour and properties in-pile. The fuel-cladding gap has an influence on both thermal and mechanical behaviour. Improved gap conductance due to gap closure at high exposure is observed even in the case of a strong contamination with released fission gas. On the other hand, pellet-cladding mechanical interaction, which is measured with cladding elongation detectors and diameter gauges, is re-established after a phase with less interaction and is increasing. These developments are exemplified with data showing changes of fuel temperature, hydraulic diameter and cladding elongation with burnup. Fuel swelling and cladding primary and secondary creep have been successfully measured in-pile. They provide data for, e.g., the possible cladding lift-off to be accounted for at high burnup. Fuel conductivity degradation is observed as a gradual temperature increase with burnup. This affects stored heat, fission gas release and temperature dependent fuel behaviour in general. The Halden Project`s data base on fission gas release shows that the phenomenon is associated with an accumulation of gas atoms at the grain boundaries to a critical concentration before appreciable release occurs. This is accompanied by an increase of the surface-to-volume ratio measured in-pile in gas flow experiments. A typical observation at high burnup is also that a burst release of fission gas may occur during a power decrease. Gas flow and pressure equilibration experiments have shown that axial communication is severely restricted at high burnup.

  14. Summary of high burnup fuel issues and NRC`s plan of action

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, R.O.

    1997-01-01

    For the past two years the Office of Nuclear Regulatory Research has concentrated mostly on the so-called reactivity-initiated accidents -- the RIAs -- in this session of the Water Reactor Safety Information Meeting, but this year there is a more varied agenda. RIAs are, of course, not the only events of interest for reactor safety that are affected by extended burnup operation. Their has now been enough time to consider a range of technical issues that arise at high burnup, and a list of such issues being addressed in their research program is given here. (1) High burnup capability of the steady-state code (FRAPCON) used for licensing audit calculations. (2) General capability (including high burnup) of the transient code (FRAPTRAN) used for special studies. (3) Adequacy at high burnup of fuel damage criteria used in regulation for reactivity accidents. (4) Adequacy at high burnup of models and fuel related criteria used in regulation for loss-of-coolant accidents (LOCAs). (5) Effect of high burnup on fuel system damage during normal operation, including control rod insertion problems. A distinction is made between technical issues, which may or may not have direct licensing impacts, and licensing issues. The RIAs became a licensing issue when the French test in CABRI showed that cladding failures could occur at fuel enthalpies much lower than a value currently used in licensing. Fuel assembly distortion became a licensing issue when control rod insertion was affected in some operating plants. In this presentation, these technical issues will be described and the NRC`s plan of action to address them will be discussed.

  15. Fission gas release and pellet microstructure change of high burnup BWR fuel

    International Nuclear Information System (INIS)

    UO2 fuel, with and without Gadolinium, irradiated for three, five, and six irradiation cycles up to about 60 GWd/t pellet burnup in a commercial BWR were studied. The fission gas release and the rim effect were investigated by the puncture test and gas analysis method, OM (optical microscope), SEM (scanning electron microscope), and EPMA (electron probe microanalyzer). The fission gas release rate of the fuel rods irradiated up to six cycles was below a few percent; there was no tendency for the fission gas release to increase abruptly with burnup. On the other hand, microstructure changes were revealed by OM and SEM examination at the rim position with burnup increase. Fission gas was found depleted at both the rim position and the pellet center region using EPMA. There was no correlation between the fission gas release measured by the puncture test and the fission gas depletion at the rim position using EPMA. However, the depletion of fission gas in the center region had good correlation with the fission gas release rate determined by the puncture test. In addition, because the burnup is very large at the rim position of high burnup fuel and also due to the fission rate of the produced Pu, the Xe/Kr ratio at the rim position of high burnup fuel is close to the value of the fission yield of Pu. The Xe/Kr ratio determined by the gas analysis after the puncture test was equivalent to the fuel average but not to the pellet rim position. From the results, it was concluded that fission gas at the rim position was released from the UO2 matrix in high burnup, however, most of this released fission gas was held in the porous structure and not released from the pellet to the free volume. (author)

  16. Experimental support of WWER-440 fuel reliability and serviceability at high burnup

    International Nuclear Information System (INIS)

    Results from post-reactor examination of two WWER-440 fuel assemblies spent at the Kola NPP Unit 3 during 4 and 5 fuel cycles are presented. The fuel assembly states and their serviceability allowance are estimated experimentally at the RIAR hot laboratory and studied by non-destructive and destructive methods. The following parameters are examined: fuel assembly overall dimensions change; fuel element diameter change; fuel element cladding corrosion and hydriding; fuel element cladding mechanical properties; fission gas release from fuel and gas pressure; fuel macro- and microstructure. it has been found that the maximum fuel burnup of fuel assemblies No. 1 and No.2 achieved is 58.3 and 64.0 MWd/kg, respectively. The mechanical fuel pellets-cladding interaction has been observed at the average fuel burnup above 45 MWd/kg that occurred with increasing the local cladding diameter at the areas of pellets end arrangement (bamboo stick). The gas release linearly increases at the range 2.7% per 10 MWd/kg within burnup of 43-60 MWd/kg. 9 figs., 3 refs

  17. About a fuel for burnup reactor of periodical pulsed nuclear pumped laser

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, A.I.; Lukin, A.V.; Magda, L.E.; Magda, E.P.; Pogrebov, I.S.; Putnikov, I.S.; Khmelnitsky, D.V.; Scherbakov, A.P. [Russian Federal Nuclear Center, Snezhinsk (Russian Federation)

    1998-07-01

    A physical scheme of burnup reactor for a Periodic Pulsed Nuclear Pumped Laser was supposed. Calculations of its neutron physical parameters were made. The general layout and construction of basic elements of the reactor are discussed. The requirements for the fuel and fuel elements are established. (author)

  18. About a fuel for burnup reactor of periodical pulsed nuclear pumped laser

    International Nuclear Information System (INIS)

    A physical scheme of burnup reactor for a Periodic Pulsed Nuclear Pumped Laser was supposed. Calculations of its neutron physical parameters were made. The general layout and construction of basic elements of the reactor are discussed. The requirements for the fuel and fuel elements are established. (author)

  19. Development of the CANDU high-burnup fuel design/analysis technology

    International Nuclear Information System (INIS)

    This report contains all the information related to the development of the CANDU advanced fuel, so-called CANFLEX-NU, which is composed of 43 elements with natural uranium fuel. Also, it contains the compatibility study of CANFLEX-RU which is considered as a CANDU high burnup fuel. This report describes the mechanical design, thermalhydraulic and safety evaluations of CANFLEX fuel bundle. (author). 38 refs., 24 tabs., 74 figs

  20. Investigation of research and development subjects for the Very High Burnup Fuel

    International Nuclear Information System (INIS)

    A concept of the Very High Burnup Fuel aiming at a maximum fuel assembly burnup of 100 GWd/t has been proposed in terms of burnup extension, utilization of Pu and transmutation of transuranium elements (TRU: Np, Am and Cm). The authors have investigated research and development (R and D) subjects of the fuel pellet and the cladding material of the Fuel. The present report describes the results on the fuel pellet. First, the chemical state of the Fuel and fission products (FP) was inferred through an FP-inventory and an equilibrium-thermodynamics calculations. Besides, knowledge obtained from post-irradiation examinations was surveyed. Next, an investigation was made on irradiation behavior of U/Pu mixed oxide (MOX) fuel with high enrichment of Pu, as well as on fission-gas release and swelling behavior of high burnup fuels. Reprocessibility of the Fuel, particularly solubility of the spent fuel, was also examined. As for the TRU-added fuel, material property data on TRU oxides were surveyed and summarized as a database. And the subjects on the production and the irradiation behavior were examined on the basis of experiences of MOX fuel production and TRU-added fuel irradiation. As a whole, the present study revealed the necessity of accumulating fundamental data and knowledge required for design and assessment of the fuel pellet, including the information on properties and irradiation performance of the TRU-added fuel. Finally, the R and D subjects were summarized, and a proposal was made on the way of development of the fuel pellet and cladding materials. (author)

  1. Ruthenium release at high temperature from irradiated PWR fuels in various oxidising conditions. Main findings from the VERCORS program

    International Nuclear Information System (INIS)

    Fission product release and transport in case of PWR severe accident is a major topic in reactor safety assessment due to the potential radiological consequences for surrounding populations and the environment. In this context, the Institute for Radiological Protection and Safety (IRSN) and Electricite de France (EDF) have supported the VERCORS analytical test program which was performed by the ''Commissariat a l'Energie Atomique'' (CEA). It is usually considered as complementary to the PHEBUS FP in-pile integral experimental program. 25 annealing tests were performed between 1983 and 2002 on irradiated PWR fuels under various conditions of temperature and atmospheres (oxidising or reducing conditions).The influence of the nature of the fuel (UO2 versus MOX, burn-up) and the fuel morphology (initially intact or fragmented fuels) have also been investigated. These led to an extended data base allowing on the one hand to study mechanisms which promote fission products release, and on the other hand to enhance models implemented in severe accident codes. Among all the fission products investigated, ruthenium is of specific concern because of its high radiological effects due essentially to the combination of both its short and long half-life isotopes (i.e. 103Ru and 106Ru respectively), but also by its ability to generate volatile gaseous oxides (RuO3, RuO4) in very oxidising conditions, in particular in the case of air ingress accidents. Important uncertainties still remain on the release and transport of this element in such situations, and investigations on this open issue are notably carried out in the SARNET European framework. The present communication gives a general overview of the VERCORS program and presents more deeply the main findings concerning the ruthenium release. Its global behaviour is analysed on the basis of several comparative tests: same UO2 sample (35 and 50 GWd/t) under hydrogen or steam conditions, similar MOX sample (40 GWd/t) under hydrogen

  2. Burnup analysis of the VVER-1000 reactor using thorium-based fuel

    Energy Technology Data Exchange (ETDEWEB)

    Korkmaz, Mehmet E.; Agar, Osman; Bueyueker, Eylem [Karamanoglu Mehmetbey Univ., Karaman (Turkey). Faculty of Kamil Ozdag Science

    2014-12-15

    This paper aims to investigate {sup 232}Th/{sup 233}U fuel cycles in a VVER-1000 reactor through calculation by computer. The 3D core geometry of VVER-1000 system was designed using the Serpent Monte Carlo 1.1.19 Code. The Serpent Code using parallel programming interface (Message Passing Interface-MPI), was run on a workstation with 12-core and 48 GB RAM. {sup 232}Th/{sup 235}U/{sup 238}U oxide mixture was considered as fuel in the core, when the mass fraction of {sup 232}Th was increased as 0.05-0.1-0.2-0.3-0.4 respectively, the mass fraction of {sup 238}U equally was decreased. In the system, the calculations were made for 3 000 MW thermal power. For the burnup analyses, the core is assumed to deplete from initial fresh core up to a burnup of 16 MWd/kgU without refuelling considerations. In the burnup calculations, a burnup interval of 360 effective full power days (EFPDs) was defined. According to burnup, the mass changes of the {sup 232}Th, {sup 233}U, {sup 238}U, {sup 237}Np, {sup 239}Pu, {sup 241}Am and {sup 244}Cm were evaluated, and also flux and criticality of the system were calculated in dependence of the burnup rate.

  3. Burnup analysis of the VVER-1000 reactor using thorium-based fuel

    International Nuclear Information System (INIS)

    This paper aims to investigate 232Th/233U fuel cycles in a VVER-1000 reactor through calculation by computer. The 3D core geometry of VVER-1000 system was designed using the Serpent Monte Carlo 1.1.19 Code. The Serpent Code using parallel programming interface (Message Passing Interface-MPI), was run on a workstation with 12-core and 48 GB RAM. 232Th/235U/238U oxide mixture was considered as fuel in the core, when the mass fraction of 232Th was increased as 0.05-0.1-0.2-0.3-0.4 respectively, the mass fraction of 238U equally was decreased. In the system, the calculations were made for 3 000 MW thermal power. For the burnup analyses, the core is assumed to deplete from initial fresh core up to a burnup of 16 MWd/kgU without refuelling considerations. In the burnup calculations, a burnup interval of 360 effective full power days (EFPDs) was defined. According to burnup, the mass changes of the 232Th, 233U, 238U, 237Np, 239Pu, 241Am and 244Cm were evaluated, and also flux and criticality of the system were calculated in dependence of the burnup rate.

  4. Model for evolution of grain size in the rim region of high burnup UO2 fuel

    Science.gov (United States)

    Xiao, Hongxing; Long, Chongsheng; Chen, Hongsheng

    2016-04-01

    The restructuring process of the high burnup structure (HBS) formation in UO2 fuel results in sub-micron size grains that accelerate the fission gas swelling, which will raise some concern over the safety of extended the nuclear fuel operation life in the reactor. A mechanistic and engineering model for evolution of grain size in the rim region of high burnup UO2 fuel based on the experimental observations of the HBS in the literature is presented. The model takes into account dislocations evolution under irradiation and the grain subdivision occur successively at increasing local burnup. It is assumed that the original driving force for subdivision of grain in the HBS of UO2 fuel is the production and accumulation of dislocation loops during irradiation. The dislocation loops can also be annealed through thermal diffusion when the temperature is high enough. The capability of this model is validated by the comparison with the experimental data of temperature threshold of subdivision, dislocation density and sub-grain size as a function of local burnup. It is shown that the calculated results of the dislocation density and subdivided grain size as a function of local burnup are in good agreement with the experimental results.

  5. Evaluation of fuel performance in reactor (PWR)

    International Nuclear Information System (INIS)

    The ratios of primary coolant concentration of 131I to 133I and 135I to 133I are expressible as one point in the area surrounded by two straight lines and two rectangular hyperbolas having a fixed common point in the rectangular coordinate system of the above two ratios. And fuel defect level, exposed tramp uranium level and primary purification rate are obtained conveniently in the above figure. Some remarks to these procedures are also presented. (auth.)

  6. Spacer grid for a PWR fuel assembly

    International Nuclear Information System (INIS)

    The spacer grid defines a block of square section cells each accommodating one fuel rod and is made up of interlocking flat strips welded together and made of zirconium alloy. A spring of nickel alloy is secured between each peripheral strip. The strip defining the wall of each of those cells opposite strip carries rigid bosses pressed out of the strip. The rods in those cells are gripped between bosses and spring sections. 7 figs

  7. Burnup performance of OTTO cycle pebble bed reactors with ROX fuel

    International Nuclear Information System (INIS)

    Highlights: • A 300 MWt Small Pebble Bed Reactor with Rock-like oxide fuel is proposed. • Using ROX fuel can achieve high discharged burnup of spent fuel. • High geological stability can be expected in direct disposal of the spent ROX fuel. • The Pebble Bed Reactor with ROX fuel can be critical at steady state operation. • All the reactor designs have a negative temperature coefficient. - Abstract: A pebble bed high-temperature gas-cooled reactor (PBR) with rock-like oxide (ROX) fuel was designed to achieve high discharged burnup and improve the integrity of the spent fuel in geological disposal. The MCPBR code with a JENDL-4.0 library, which developed the analysis of the Once-Through-Then-Out (OTTO) cycle in PBR, was used to perform the criticality and burnup analysis. Burnup calculations for eight cases were carried out for both ROX fuel and a UO2 fuel reactor with different heavy-metal loading conditions. The effective multiplication factor of all cases approximately equalled unity in the equilibrium condition. The ROX fuel reactor showed lower FIFA than the UO2 fuel reactor at the same heavy-metal loading, about 5–15%. However, the power peaking factor and maximum power per fuel ball in the ROX fuel core were lower than that of UO2 fuel core. This effect makes it possible to compensate for the lower-FIFA disadvantage in a ROX fuel core. All reactor designs had a negative temperature coefficient that is needed for the passive safety features of a pebble bed reactor

  8. Dynamic modelling of PWR fuel assembly for seismic behaviour

    International Nuclear Information System (INIS)

    Vibration and snap back tests have shown that the behaviour of PWR fuel assemblies was non linear : the fuel assembly eigenfrequencies decrease with the excitation level or with the motion amplitude, which was supposed to be due to the slippage of the fuel rods through the grids. Up to now the fuel assembly models were linear and composed by one beam alone representing both the guide thimbles and the fuel rods or by two beams (one for the guide thimbles and one for the fuel rods). The stiffness of such models' were adjusted to fit with the measured eigenfrequency corresponding to a given amplitude. The aim of this paper is to identify the influence of the slippage between grids and fuel rods on the dynamic behaviour of the fuel assembly. For that purpose a non linear fuel assembly model is proposed representing explicitly the slippage phenomenon and is applied to the reduced scale fuel assemblies which have been tested in the framework of a collaboration between FRAMATOME and CEA-DMT. Comparisons between calculations and experiments will be presented and the limitation of this model will be also discussed

  9. Burn-up credit applications for UO2 and MOX fuel assemblies in AREVA/COGEMA

    International Nuclear Information System (INIS)

    For the last seven years, AREVA/COGEMA has been implementing the second phase of its burn-up credit program (the incorporation of fission products). Since the early nineties, major actinides have been taken into account in criticality analyses first for reprocessing applications, then for transport and storage of fuel assemblies Next year (2004) COGEMA will take into account the six main fission products (Rh103, Cs133, Nd143, Sm149, Sm152 and Gd155) that make up 50% of the anti-reactivity of all fission products. The experimental program will soon be finished. The new burn-up credit methodology is in progress. After a brief overview of BUC R and D program and COGEMA's application of the BUC, this paper will focus on the new burn-up measurement for UO2 and MOX fuel assemblies. It details the measurement instrumentation and the measurement experiments on MOX fuels performed at La Hague in January 2003. (author)

  10. Determination of burn-up of irradiated PHWR fuel samples from KAPS-1 by mass spectrometry

    International Nuclear Information System (INIS)

    Burn-up was determined experimentally using thermal ionization mass spectrometry for three spent UO2 fuel samples, which had undergone extended irradiation in Kakrapar Atomic Power Station Unit 1 (KAPS-1). The method involves dissolution of the irradiated fuel sample, separation and determination of burn-up monitor, uranium and plutonium. Isotope Dilution-Thermal Ionisation Mass Spectrometry (ID-TIMS) using Triple Spike Mixture consisting of (142Nd+233U+242Pu) was employed for the concentration determination of Nd, U and Pu in the dissolved fuel samples. The atom percent fission was calculated based on 148Nd as a burn-up monitor and also from the changes in the abundances of heavy element isotopes. Fractional fission contributions from the major fissile nuclides were calculated from heavy elemental data and also from the Nd isotopic ratios. (author)

  11. An iterative approach for TRIGA fuel burn-up determination using nondestructive gamma-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wang Tienko E-mail: tkw@faculty.nthu.edu.tw; Peir Jinnjer

    2000-01-01

    The purpose of this work is to establish a method for evaluating the burn-up values of the rod-type TRIGA spent fuel by using gamma-ray spectrometry of the short-lived fission products {sup 97}Zr/{sup 97}Nb, {sup 132}I, and {sup 140}La. Fuel irradiation history is not needed in this method. Short-lived fission-product activities were established by re irradiating the spent fuels in a nuclear reactor. Based on the measured activities, {sup 235}U burn-up values can be deduced by iterative calculations. The complication caused by {sup 239}Pu production and fission is also discussed in detail. The burn-up values obtained by this method are in good agreement with those deduced from the conventional method based on long-lived fission products {sup 137}Cs, {sup 134}Cs/{sup 137}Cs ratio and {sup 106}Ru/{sup 137}Cs ratio.

  12. An iterative approach for TRIGA fuel burn-up determination using nondestructive gamma-ray spectrometry

    International Nuclear Information System (INIS)

    The purpose of this work is to establish a method for evaluating the burn-up values of the rod-type TRIGA spent fuel by using gamma-ray spectrometry of the short-lived fission products 97Zr/97Nb, 132I, and 140La. Fuel irradiation history is not needed in this method. Short-lived fission-product activities were established by re irradiating the spent fuels in a nuclear reactor. Based on the measured activities, 235U burn-up values can be deduced by iterative calculations. The complication caused by 239Pu production and fission is also discussed in detail. The burn-up values obtained by this method are in good agreement with those deduced from the conventional method based on long-lived fission products 137Cs, 134Cs/137Cs ratio and 106Ru/137Cs ratio

  13. An iterative approach for TRIGA fuel burn-up determination using nondestructive gamma-ray spectrometry.

    Science.gov (United States)

    Wang, T K; Peir, J J

    2000-01-01

    The purpose of this work is to establish a method for evaluating the burn-up values of the rod-type TRIGA spent fuel by using gamma-ray spectrometry of the short-lived fission products 97Zr/97Nb, 132I, and 140La. Fuel irradiation history is not needed in this method. Short-lived fission-product activities were established by reirradiating the spent fuels in a nuclear reactor. Based on the measured activities, 235U burn-up values can be deduced by iterative calculations. The complication caused by 239Pu production and fission is also discussed in detail. The burn-up values obtained by this method are in good agreement with those deduced from the conventional method based on long-lived fission products 137Cs, 134Cs/137Cs ratio and 106Ru/137Cs ratio. PMID:10670930

  14. Behavior of irradiated PWR fuel under simulated RIA conditions. Results of the NSRR tests GK-1 and GK-2

    International Nuclear Information System (INIS)

    Results from power burst tests, GK-1 and GK-2, conducted at the Nuclear Safety Research Reactor (NSRR), are summarized. The objectives of the tests are to investigate irradiated pressurized water reactor (PWR) fuel behaviors under reactivity initiated accident (RIA) conditions. The tests were performed on a 14 x 14 PWR fuel rod irradiated to a burnup of 42.1 MWd/kgU in the Genkai unit no.1 of Kyushu Electric Power Co., Inc. Test method, data from pre- and post-pulse fuel examinations, transient records during the pulse-irradiations are described and discussed. GK-1 and -2 test fuel rods are short-sized rods re-fabricated from a full size fuel rod. The instrumented test fuel rod in a double-container-type capsule was subjected to the pulse-irradiation with stagnant water cooling condition at 0.1 MPa and 293 K. Deposited energy and peak fuel enthalpy were 505 J/g·fuel and 389 J/g·fuel in the Test GK-1, and 490 J/g·fuel and 377 J/g·fuel in the Test GK-2, respectively. During the pulse-irradiations, departure from nucleate boiling (DNB) occurred and the cladding surface temperature reached 581 K and 569 K in the Tests GK-1 and -2, respectively. The maximum cladding hoop strain was 2.7% in the Test GK-1 and 1.2% in the Test GK-2. However, the test fuel rods did not fail. Estimated fission gas releases during the pulse-irradiations were 11.7% and 7.0% in the Tests GK-1 and -2, respectively. (author)

  15. Use of axial burnup distribution profile in the nuclear safety analysis of spent nuclear fuel storage for WWER reactors in Ukraine

    International Nuclear Information System (INIS)

    The nuclear safety analysis of spent fuel storages taking into account fuel burnup should allow for burnup distribution along the height of the assembly. We propose a method based on an analysis of the axial burnup profiles of spent fuel assemblies. This method can be used in nuclear safety justification of spent fuel management and storage systems

  16. Determination of the fuel element burn-up for mixed TRIGA core by measurement and calculation with new TRIGLAV code

    Energy Technology Data Exchange (ETDEWEB)

    Zagar, T.; Ravnik, M.; Persic, A. (J.Stefan Institute, Ljubljana (Slovenia))

    1999-12-15

    Results of fuel element burn-up determination by measurement and calculation are given. Fuel element burn-up was calculated with two different programs TRIGLAV and TRIGAC using different models. New TRIGLAV code is based on cylindrical, two-dimensional geometry with four group diffusion approximation. TRIGAC program uses one-dimensional cylindrical geometry with twogroup diffusion approximation. Fuel element burn-up was measured with reactivity method. In this paper comparison and analysis of these three methods is presented. Results calculated with TRIGLAV show considerably better alignment with measured values than results calculated with TRIGAC. Some two-dimensional effects in fuel element burn-up can be observed, for instance smaller standard fuel element burn-up in mixed core rings and control rod influence on nearby fuel elements. (orig.)

  17. Fission gas release behavior in high burnup UO2 fuels with developed rim-structure

    International Nuclear Information System (INIS)

    The effect of rim structure formation and external restraint pressure on fission gas release at transient conditions has been examined by using an out-of-pile high pressure heating technique for high burnup UO2 fuels (60, 74 and 90 GWd/t), which had been irradiated in test reactors. The latter two fuels bore a developed rim structure. The maximum heating temperature was 1500 degC, and the external pressures were independently controlled in the range of 10-150 MPa. The present high burnup fuel data were compared with those of previously studied BWR fuels of 37 and 54 GWd/t with almost no rim structure. The fission gas release and bubble swelling due to the growth of grain boundary bubbles and coarsened rim bubbles were effectively suppressed by the strong restraint pressure of 150 MPa for all the fuels; however the fission gas release remarkably increased for the two high burnup fuels with the developed rim structure, even at the strong restraint conditions. From the stepwise de-pressurization tests at an isothermal condition of 1500degC, the critical external pressure, below which a large burst release due to the rapid growth and interlinkage of the bubbles abruptly begins, was increased from a 40-60 MPa level for the middle burnup fuels to a high level of 120-140 MPa for the rim-structured high burnup fuels. The high potential for transient fission gas release and bubble swelling in the rim-structured fuels was attributed to highly over-pressurized fission gases in the rim bubbles. (author)

  18. An economic evaluation of a storage system for casks with burnup credit

    International Nuclear Information System (INIS)

    It is generally recognized that casks designed with burnup credit are more economical than those without burnup credit. To estimate how much more economical they are, we made conceptual designs of transport/storage casks with and without burnup credit for PWR and BWR fuels of various uranium enrichment. The casks were designed to contain the maximum number of fuel assemblies under the necessary weight and dimensional limitations as well as the criticality and shielding criteria. The results showed that approximately 8 % to 44 % more fuel assemblies could be contained in casks with burnup credit. We then evaluated the economy of cask storage system incorporating the cask designs obtained above both with and without burnup credit. The results showed that the cost of storing casks with burnup credit is approximately 7 % to 30 % less expensive than storing casks without burnup credit. (J.P.N.)

  19. The use of burnup credit in criticality control for the Korean spent fuel management program

    International Nuclear Information System (INIS)

    More than 25% k-eff saving effect is observed in this burnup credit analysis. This mainly comes from the adoption of actinide nuclides and fission products in the criticality analysis. By taking burnup credit, the high capacity of the storage and transportation can be more fully utilized, reducing the space of storage and the number of shipments. Larger storage and fewer shipments for a given inventory of spent fuel result should in remarkable cost savings and more importantly reduce the risks to the public and occupational workers for the Korean Spent Fuel Management Program

  20. Computational simulation of fuel burnup estimation for research reactors plate type

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Nadia Rodrigues dos, E-mail: nadiasam@gmail.com [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio de Janeiro (IFRJ), Paracambi, RJ (Brazil); Lima, Zelmo Rodrigues de; Moreira, Maria de Lourdes, E-mail: zrlima@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The aim of this study is to estimate the spatial fuel burnup, through computational simulation, in two research reactors plate type, loaded with dispersion fuel: the benchmark Material Test Research - International Atomic Energy Agency (MTR-IAEA) and a typical multipurpose reactor (MR). The first composed of plates with uranium oxide dispersed in aluminum (UAlx-Al) and a second composed with uranium silicide (U{sub 3}Si{sub 2}) dispersed in aluminum. To develop this work we used the deterministic code, WIMSD-5B, which performs the cell calculation solving the neutron transport equation, and the DF3DQ code, written in FORTRAN, which solves the three-dimensional neutron diffusion equation using the finite difference method. The methodology used was adequate to estimate the spatial fuel burnup , as the results was in accordance with chosen benchmark, given satisfactorily to the proposal presented in this work, even showing the possibility to be applied to other research reactors. For future work are suggested simulations with other WIMS libraries, other settings core and fuel types. Comparisons the WIMSD-5B results with programs often employed in fuel burnup calculations and also others commercial programs, are suggested too. Another proposal is to estimate the fuel burnup, taking into account the thermohydraulics parameters and the Xenon production. (author)

  1. Estimating PWR fuel rod failures throughout a cycle

    International Nuclear Information System (INIS)

    A fuel performance engineer requires good prediction models for fuel conditions to help assure that any fuel repair operation he may recommend for the next refueling outage will have a minimal impact on nuclear plant operation. For nearly two decades, simple equilibrium equations have been used to provide estimates of the number of failed fuel rods in a pressurized water reactor (PWR) core. The unknown parameter is the isotopic escape rate (upsilon), which is often assumed to be --1 X 10/sup -8//s for the release of /sup 131/I from a 3- to 4-m-long PWR rod. The use of this escape rate value will generally produce end-of-cycle (EOC) predictions that are accurate within a factor of --3. When applied at the time when fuel rods initially fail, such as early in a reactor cycle, however, the prediction obtained may overestimate the number of failed rods present by a factor of 10 or more. While a goal of Combustion Engineering's (C-E's) efforts on failed fuel prediction (FFP) models over the past decade has been to increase the accuracy of the EOC estimate, recent efforts have emphasized improving prediction capability for failed rods present early in a reactor cycle. The C-E approach to modeling iodine release from failed fuel rods is based on dynamic escape rate theory that is incorporated in the C-E IODYNE (for iodine dynamic evaluation) code. This theory has been empirically modified to account for specific observed time dependencies of the release rates for /sup 131/I and /sup 133/I from a failed rod. In a current version of IODYNE, four such factors have been included in the FFP model, as described in this paper

  2. Corrosion studies with high burnup light water reactor fuel. Release of nuclides into simulated groundwater during accumulated contact time of up to two years

    Energy Technology Data Exchange (ETDEWEB)

    Zwicky, Hans-Urs (Zwicky Consulting GmbH, Remigen (Switzerland)); Low, Jeanett; Ekeroth, Ella (Studsvik Nuclear AB, Nykoeping (Sweden))

    2011-03-15

    pellet surface than the bulk of the pellet in leaching experiments. Thus, formation of oxidising species and radicals by radiolysis is expected to be disproportionately high as well. Therefore, when discussing high burnup fuel dissolution, the effect of the increased radiation field with burnup, as well as of the influence of the smaller grain size and increased porosity at the rim are mentioned as factors which contribute to increased dissolution rates. A third factor, increased fission product and actinide doping with burnup, has been discussed extensively in connection with increased resistance to air oxidation of the fuel. Samples from four different fuel rods, all operated in Pressurised Water Reactors (PWR), are used in the new series of corrosion experiments. They cover a burnup range from 58 to 75 MWd/kgU. The nuclide inventory of all four samples was determined by means of a combination of experimental nuclide analysis and sample specific modelling calculations. More than 40 different nuclides were analysed by isotope dilution analysis using Inductively Coupled Plasma Mass Spectrometry (ICP-MS), as well as other ICP-MS and gamma spectrometric methods. The content of roughly all fission products and actinides was also calculated separately for each sample. The experiments are performed under oxidising conditions in synthetic groundwater at ambient temperature. In order to make results as comparable as possible to those of the Series 11 experiments, the same procedure and the same leachant is used. At least nine consecutive contact periods of one and three weeks and two, three, six and twelve months are planned. The present report covers the first five contact periods up to a cumulative contact time of one year for all four samples and in addition the sixth period up to a cumulative contact time of two years for two of the samples. The samples, kept in position by a platinum wire spiral, are exposed to synthetic groundwater in a Pyrex flask. After the contact

  3. Benchmark calculation with MOSRA-SRAC for burnup of a BWR fuel assembly

    International Nuclear Information System (INIS)

    The Japan Atomic Energy Agency has developed the Modular Reactor Analysis Code System MOSRA to improve the applicability of neutronic characteristics modeling. The cell calculation module MOSRA-SRAC is based on the collision probability method and is one of the core modules of the MOSRA system. To test the module on a real-world problem, it was combined with the benchmark program 'Burnup Credit Criticality Benchmark Phase IIIC.' In this program participants are requested to submit the neutronic characteristics of burnup calculations for a BWR fuel assembly containing fuel rods poisoned with gadolinium (Gd2O3), which is similar to the fuel assembly at TEPCO's Fukushima Daiichi Nuclear Power Station. Because of certain restrictions of the MOSRA-SRAC burnup calculations part of the geometry model was homogenized. In order to verify the validity of MOSRA-SRAC, including the effects of the homogenization, the calculated burnup dependent infinite multiplication factor and the nuclide compositions were compared with those obtained with the burnup calculation code MVP-BURN which had already been validated for many benchmark problems. As a result of the comparisons, the applicability of MOSRA-SRAC module for the BWR assembly has been verified. Furthermore, it can be shown that the effects of the homogenization are smaller than the effects due to the calculation method for both multiplication factor and compositions. (author)

  4. Microstructural Modeling of Thermal Conductivity of High Burn-up Mixed Oxide Fuel

    International Nuclear Information System (INIS)

    Predicting the thermal conductivity of oxide fuels as a function of burn-up and temperature is fundamental to the efficient and safe operation of nuclear reactors. However, modeling the thermal conductivity of fuel is greatly complicated by the radially inhomogeneous nature of irradiated fuel in both composition and microstructure. In this work, radially and temperature-dependent models for effective thermal conductivity were developed utilizing optical micrographs of high burn-up mixed oxide fuel. The micrographs were employed to create finite element meshes with the OOF2 software. The meshes were then used to calculate the effective thermal conductivity of the microstructures using the BISON fuel performance code. The new thermal conductivity models were used to calculate thermal profiles at end of life for the fuel pellets. These results were compared to thermal conductivity models from the literature, and comparison between the new finite element-based thermal conductivity model and the Duriez-Lucuta model was favorable

  5. Taking burnup credit for interim storage and transportation system for BWR fuels

    International Nuclear Information System (INIS)

    In the back-end issues of nuclear fuel cycle, selection of reprocessing or one-through is a big issue. For both of the cases, a reasonable interim storage and transportation system is required. This study proposes an advanced practical monitoring and evaluation system. The system features the followings: (l) Storage racks and transportation casks taking credit for burnup. (2) A burnup estimation system using a compact monitor with Cd- Te detectors and fission chambers. (3) A neutron emission-rate evaluation methodology, especially important for high burnup MOX fuels. (4) A nuclear materials management system for safeguards. Current storage system and transport casks are designed on the basis of a fresh fuel assumption. The assumption is too conservative. Taking burnup credit gives a reasonable design while keeping conservatism. In order to establish a reasonable burnup credit design system, a calculation system has been developed for determining isotope compositions, burnup, and criticality. The calculation system consists of some modules such as TGBLA, ORIGEN, CITATION, MCNP and KENO. The TGBLA code is a fuel design code for LWR fuels developed in TOSHIBA Corporation. The code takes operational history such as, power density, void fraction into account. This code is applied to the back-end issues for a more accurate design of a storage and a transportation system. The ORIGEN code is well-known one-point isotope depletion code. In the calculation system, the code calculates isotope compositions using libraries generated from the TGBLA code. The CITATION code, the MCNP code, and the KENO code are three dimensional diffusion code, continuous energy Monte Carlo code, discrete energy Monte Carlo code, respectively. Those codes calculate k- effective of the storage and transportation systems using isotope compositions generated from the ORIGEN code. The CITATION code and the KENO code are usually used for practical designs. The MCNP code is used for reference

  6. Development of the new basic correlation “MG-S” for CHF prediction of the PWR fuels

    International Nuclear Information System (INIS)

    It is important for core thermal-hydraulic design and plant safety analysis of PWR (Pressurized Water Reactor) to predict CHF (Critical Heat Flux) accurately. The accurate CHF prediction can enhance the reliability of the safety analysis and bring more efficient plant operations such as up-rating and higher burn-up fuel management. The new CHF correlation, MG-S (Mitsubishi Generalized correlation - for Standard grid), has been developed as a basic correlation of the new correlation series, which are for conventional and new-generation Mitsubishi fuel assemblies. Through comparisons with existing CHF data and a conventional CHF correlation, it was confirmed that MG-S can predict CHF with sufficient accuracy and extend its applicability to wider fluid parameters of interest. (author)

  7. Feasibility and incentives for burnup credit in spent-fuel casks

    International Nuclear Information System (INIS)

    The spent-fuel carrying capacities of previous-generation spent-fuel shipping casks have been primarily thermal and/or shielding limited. Shielding and heat transfer requirements for casks designed to transport older spent fuel with longer decay times are reduced considerably and cask capacities become criticality limited. Using burnup credit in the design of future casks can result in increased cask capacities as well as reduced environmental impacts and savings in time and money

  8. Parametric study of the TANDEM cycle fuel material balance between Angra-1 and Embalse

    International Nuclear Information System (INIS)

    The TANDEM cycle fuel material balance between the Angra-I PWR in Brazil and Embalse CANDU reactor in Argentina is estimated. The analysis considers the discharge burnup of Angra-I and a dilution ratio (decontaminated uranium dioxide from the PWR: natural uranium dioxide) of 1.9:1.0 for the fuel of the Embalse CANDU reactor. Parametric studies involving the MOX fuel have been carried out for different dilution ratios and different PWR discharge burnups. (author)

  9. Fuel burnup calculation for HEU and LEU cores of Ghana MNSR

    International Nuclear Information System (INIS)

    Fuel burnup calculations have been performed using a computer program developed as part of this research work for both Highly Enriched Uranium (90.2 % U-235) and Low Enriched Uranium (12.6 % U-235) cores for Ghana Research Reactor-1 (GHARR-1). Fuel depletion analyses of the GHARR-1 core was also performed which provided an inventory of the actinides formed as a result of burnup. The effect of the production of plutonium isotopes with burnup on reactor operation was also estimated. A FORTRAN 95 code was written based on the three group model approach namely fast, resonance and slow (thermal) neutron reactions. The time rate of change of each fuel isotope density is given by a first order differential equation. A general solution for each fuel isotope rate equation was used as input for the computer code. These results are particularized to the case of constant power during a short time interval, during which the slow (thermal) neutron flux is considered constant. The results obtained for the HEU were in good agreement with those found in literature. Therefore, this code can be used to estimate the burnup of LEU fuel for core conversion from HEU to LEU. (au)

  10. Fuel cycle and waste management. 3. Analysis of PWR Equilibrium Fuel Cycles Using Nuclide Importance

    International Nuclear Information System (INIS)

    Energy generation by nuclear reactors entails production of plutonium and radioactive waste. To utilize the plutonium and to minimize the long-term radio-toxic waste, an option is a closed fuel cycle strategy employing reprocessing and recycling of actinides. Since commercial operation of fast reactors is not considered to be realized in the near future, plutonium and minor actinide recycling in light water reactors (LWRs) is considered, although LWR neutron economy is not good. In this study, uranium enrichment, natural uranium requirements, and toxicity of discharged heavy metals (HMs) are evaluated for a pressurized water reactor (PWR), whose design parameters are given in Table I. The following fuel cycles are investigated, where all fission products (FPs) and final products of HMs (Tl-Fr) are discharged from the reactor at a standard rate (25%/yr): Case 1: All HMs are discharged with the standard rate. Case 2: All HMs except Pu are discharged with the standard rate; Pu is discharged at the rate of one-half of the standard rate. Case 3: All HMs except Pu are discharged with the standard rate; Pu is confined. Case 4: All HMs except U are confined; U is discharged with the standard rate. Case 5: All HMs are confined. The infinite multiplication factor k can be expressed by using the nuclide importance (fission neutron importance fj and absorbed neutron importance aj ) as k = (Σj fj sj)/(αΣj aj sj), where sj = atomic percent of uranium isotopes (234U, 235U, and 238U ) in the supplied fuel α = correction factor for estimating neutron absorption by non-fuel-originating nuclides, such as coolant and construction materials. A detailed description of nuclide importance and calculation method is given in Ref. 1. The value k is set to be 1.02, and sj are evaluated from this equation and the following ones: s24 + s25 + s28 = 100 and 100s24 - 0.9937s25=-0.1925. The second equation is given by enrichment conditions. The group cross-section set is generated with the SRAC

  11. Automatic defect identification on PWR nuclear power station fuel pellets

    International Nuclear Information System (INIS)

    This article presents a new automatic identification technique of structural failures in nuclear green fuel pellet. This technique was developed to identify failures occurred during the fabrication process. It is based on a smart image analysis technique for automatic identification of the failures on uranium oxide pellets used as fuel in PWR nuclear power stations. In order to achieve this goal, an artificial neural network (ANN) has been trained and validated from image histograms of pellets containing examples not only from normal pellets (flawless), but from defective pellets as well (with the main flaws normally found during the manufacturing process). Based on this technique, a new automatic identification system of flaws on nuclear fuel element pellets, composed by the association of image pre-processing and intelligent, will be developed and implemented on the Brazilian nuclear fuel production industry. Based on the theoretical performance of the technology proposed and presented in this article, it is believed that this new system, NuFAS (Nuclear Fuel Pellets Failures Automatic Identification Neural System) will be able to identify structural failures in nuclear fuel pellets with virtually zero error margins. After implemented, the NuFAS will add value to control quality process of the national production of the nuclear fuel.

  12. Study Of The PWR Fuel Bundle Characteristic With Borated Water

    International Nuclear Information System (INIS)

    Study of the PWR fuel bundle characteristic with 2,4, 2,6, 2,8, 3,0, 3,2 and 3,4 enrichment also with borated water 150 and 200 ppm has been done. The fuel bundle contained 264 fuel elements and water (no fuel elements) are arranged as 17 x 17 matrix and 30,294 cm. The fuel bundle characteristic can be seen from their group constants and the infinite multiplication factor whether more or less than one. The fuel bundle parameters can be found from cell calculation with WIMS PC version program. From the cell calculation shown that the infinite multiplication factor of the fuel bundle with 2,4% enrichment and 200 ppm borated water is 1, 01672, its shown that infinite multiplication factor will less than one with increasing borated water more than 200 ppm. From these result if we would like to design the reactor core with 2,4% minimum enrichment then the maximum borated water is 200 ppm

  13. FRAPCON-3: Modifications to fuel rod material properties and performance models for high-burnup application

    Energy Technology Data Exchange (ETDEWEB)

    Lanning, D.D.; Beyer, C.E.; Painter, C.L.

    1997-12-01

    This volume describes the fuel rod material and performance models that were updated for the FRAPCON-3 steady-state fuel rod performance code. The property and performance models were changed to account for behavior at extended burnup levels up to 65 Gwd/MTU. The property and performance models updated were the fission gas release, fuel thermal conductivity, fuel swelling, fuel relocation, radial power distribution, solid-solid contact gap conductance, cladding corrosion and hydriding, cladding mechanical properties, and cladding axial growth. Each updated property and model was compared to well characterized data up to high burnup levels. The installation of these properties and models in the FRAPCON-3 code along with input instructions are provided in Volume 2 of this report and Volume 3 provides a code assessment based on comparison to integral performance data. The updated FRAPCON-3 code is intended to replace the earlier codes FRAPCON-2 and GAPCON-THERMAL-2. 94 refs., 61 figs., 9 tabs.

  14. FRAPCON-3: Modifications to fuel rod material properties and performance models for high-burnup application

    International Nuclear Information System (INIS)

    This volume describes the fuel rod material and performance models that were updated for the FRAPCON-3 steady-state fuel rod performance code. The property and performance models were changed to account for behavior at extended burnup levels up to 65 Gwd/MTU. The property and performance models updated were the fission gas release, fuel thermal conductivity, fuel swelling, fuel relocation, radial power distribution, solid-solid contact gap conductance, cladding corrosion and hydriding, cladding mechanical properties, and cladding axial growth. Each updated property and model was compared to well characterized data up to high burnup levels. The installation of these properties and models in the FRAPCON-3 code along with input instructions are provided in Volume 2 of this report and Volume 3 provides a code assessment based on comparison to integral performance data. The updated FRAPCON-3 code is intended to replace the earlier codes FRAPCON-2 and GAPCON-THERMAL-2. 94 refs., 61 figs., 9 tabs

  15. The REBUS experimental programme for burn-up credit

    International Nuclear Information System (INIS)

    An international programme called REBUS for the investigation of the burn-up credit has been initiated by the Belgian Nuclear Research Centre SCK·CEN and Belgonucleaire with the support of EdF and IRSN from France and VGB, representing German nuclear utilities and NUPEC, representing the Japanese industry. Recently also ORNL from the U.S. jointed the programme. The programme aims to establish a neutronic benchmark for reactor physics codes in order to qualify the codes for calculations of the burn-up credit. The benchmark exercise investigate the following fuel types with associated burn-up: reference fresh 3.3% enriched UO2 fuel, fresh commercial PWR UO2 fuel and irradiated commercial PWR UO2 fuel (54 GWd/tM), fresh PWR MOX fuel and irradiated PWR MOX fuel (20 GWd/tM). The experiments on the three configurations with fresh fuel have been completed. The experiments show a good agreement between calculation and experiments for the different measured parameters: critical water level, reactivity effect of the water level and fission-rate and flux distributions. In 2003 the irradiated BR3 MOX fuel bundle was loaded into the VENUS reactor and the associated experimental programme was carried out. The reactivity measurements in this configuration with irradiated fuel show a good agreement between experimental and preliminary calculated values. (author)

  16. Burnup simulations of different fuel grades using the MCNPX Monte Carlo code

    Directory of Open Access Journals (Sweden)

    Asah-Opoku Fiifi

    2014-01-01

    Full Text Available Global energy problems range from the increasing cost of fuel to the unequal distribution of energy resources and the potential climate change resulting from the burning of fossil fuels. A sustainable nuclear energy would augment the current world energy supply and serve as a reliable future energy source. This research focuses on Monte Carlo simulations of pressurized water reactor systems. Three different fuel grades - mixed oxide fuel (MOX, uranium oxide fuel (UOX, and commercially enriched uranium or uranium metal (CEU - are used in this simulation and their impact on the effective multiplication factor (Keff and, hence, criticality and total radioactivity of the reactor core after fuel burnup analyzed. The effect of different clad materials on Keff is also studied. Burnup calculation results indicate a buildup of plutonium isotopes in UOX and CEU, as opposed to a decline in plutonium radioisotopes for MOX fuel burnup time. For MOX fuel, a decrease of 31.9% of the fissile plutonium isotope is observed, while for UOX and CEU, fissile plutonium isotopes increased by 82.3% and 83.8%, respectively. Keff results show zircaloy as a much more effective clad material in comparison to zirconium and stainless steel.

  17. Analysis of Burnup and Economic Potential of Alternative Fuel Materials in Thermal Reactors

    International Nuclear Information System (INIS)

    A strategy is proposed for the assessment of nuclear fuel material economic potential use in future light water reactors (LWRs). In this methodology, both the required enrichment and the fuel performance limits are considered. In order to select the best fuel candidate, the optimal burnup that produces the lowest annual fuel cost within the burnup potential for a given fuel material and smear density ratio is determined.Several nuclear materials are presented as examples of the application of the methodology proposed in this paper. The alternative fuels considered include uranium dioxide (UO2), uranium carbide (UC), uranium nitride (UN), metallic uranium (U-Zr alloy), combined thorium and uranium oxides (ThO2/UO2), and combined thorium and uranium metals (U/Th). For these examples, a typical LWR lattice geometry in a zirconium-based cladding was assumed. The uncertainties in the results presented are large due to the scarcity of experimental data regarding the behavior of the considered materials at high burnups. Also, chemical compatibility issues are to be considered separately.The same methodology can be applied in the future to evaluate the economic potential of other nuclear fuel materials including different cladding designs, dispersions of ceramics into ceramics, dispersions of ceramics into metals, and also for geometries other than the traditional circular fuel pin

  18. DNB analysis with mechanistic models for PWR fuel assemblies

    International Nuclear Information System (INIS)

    In order to predict the DNB heat flux of PWR fuel assemblies and the critical power of BWR fuel bundles, the Boiling Transition Analysis Code CAPE' has been developed in the IMPACT project. The CAPE code for PWR includes three analysis modules, subchannel analysis module, three-dimensional two-phase flow analysis module, and DNB evaluation module. The subchannel module uses drift-flux model to identify the hottest subchannel. The three-dimensional two-phase flow analysis module uses nonhomogeneous and nonequilibrium two fluid model to analyze the detailed three-dimensional two-phase flow behaviors such as void distribution. For DNB heat flux prediction, the DNB evaluation module uses the Weisman model in which is a mechanistic DNB evaluation model. This paper describes the analysis models, analysis techniques and the results of validation by rod bundle test analysis. To date, the average difference between calculated and 11 measured values was -0.6% with a standard deviation of 7.0%. (author)

  19. Primary analysis of PWR loaded with MOX fuel and related fuel cycle scenarios in China

    International Nuclear Information System (INIS)

    To meet the China's energy demand, nuclear power will keep growing in the future. Nuclear fuel cycle system is essential for the nuclear power development in China. In this paper, nuclear fuel cycle issues, including the amount of natural uranium resource, separation work and nuclear fuel for PWR NPP, together with spent fuel and separated plutonium are studied. The influences of spent fuel reprocessing and separated plutonium recycling on the uranium resource demand and accumulation are discussed in two fuel cycle scenarios. (authors)

  20. Burn-Up Dependence of Bubble Morphology of Uranium Silicide Dispersion Fuels Used in Research Reactor

    International Nuclear Information System (INIS)

    Burn-up dependence of fission gas bubble morphology of U3Si2-Al and U3Si-Al dispersion fuels are reviewed with the data of ANL(Argonne Nation Laboratory) and KAERI(Korea Atomic Energy Research Institute

  1. Simulation of the behaviour of nuclear fuel under high burnup conditions

    International Nuclear Information System (INIS)

    Highlights: • Increasing the time of nuclear fuel into reactor generates high burnup structure. • We analyze model to simulate high burnup scenarios for UO2 nuclear fuel. • We include these models in the DIONISIO 2.0 code. • Tests of our models are in very good agreement with experimental data. • We extend the range of predictability of our code up to 60 MWd/KgU average. - Abstract: In this paper we summarize all the models included in the latest version of the DIONISIO code related to the high burnup scenario. Due to the extension of nuclear fuels permanence under irradiation, physical and chemical modifications are developed in the fuel material, especially in the external corona of the pellet. The codes devoted to simulation of the rod behaviour under irradiation need to introduce modifications and new models in order to describe those phenomena and be capable to predict the behaviour in all the range of a general pressurized water reactor. A complex group of subroutines has been included in the code in order to predict the radial distribution of power density, burnup, concentration of diverse nuclides and porosity within the pellet. The behaviour of gadolinium as burnable poison also is modelled into the code. The results of some of the simulations performed with DIONISIO are presented to show the good agreement with the data selected for the FUMEX I/II/III exercises, compiled in the NEA data bank

  2. Practice and prospect of advanced fuel management and fuel technology application in PWR in China

    International Nuclear Information System (INIS)

    Since Daya Bay nuclear power plant implemented 18-month refueling strategy in 2001, China has completed a series of innovative fuel management and fuel technology projects, including the Ling Ao Advanced Fuel Management (AFM) project (high-burnup quarter core refueling) and the Ningde 18-month refueling project with gadolinium-bearing fuel in initial core. First, this paper gives brief introduction to China's advanced fuel management and fuel technology experience. Second, it introduces practices of the advanced fuel management in China in detail, which mainly focuses on the implementation and progress of the Ningde 18-month refueling project with gadolinium-bearing fuel in initial core. Finally, the paper introduces the practices of advanced fuel technology in China and gives the outlook of the future advanced fuel management and fuel technology in this field. (author)

  3. PWR fuel management optimization using continuous particle swarm intelligence

    International Nuclear Information System (INIS)

    The objective of nuclear fuel management is to minimize the cost of electrical energy generation subject to operational and safety constraints. In the present work, a core reload optimization package using continuous version of particle swarm optimization, CRCPSO, which is a combinatorial and discrete one has been developed and mapped on nuclear fuel loading pattern problems. This code is applicable to all types of PWR cores to optimize loading patterns. To evaluate the system, flattening of power inside a WWER-1000 core is considered as an objective function although other variables such as Keff along power peaking factor, burn up and cycle length can be included. Optimization solutions, which improve the safety aspects of a nuclear reactor, may not lead to economical designs. The system performed well in comparison to the developed loading pattern optimizer using Hopfield along SA and GA.

  4. Full MOX core design for PWR

    International Nuclear Information System (INIS)

    Full MOX core design for APWR was analyzed in nuclear design, fuel integrity analysis, thermal hydraulic design and safety analysis et. al. Feasibility of Full MOX core was confirmed from these analyses without any large modifications. Full MOX PWR core has very good characteristics in which single Pu content in an assembly, burnable poison free, higher burnup and longer cycle operation are feasible. (author)

  5. Out-pile test of non-instrumented capsule for the advanced PWR fuel pellets in HANARO irradiation test

    International Nuclear Information System (INIS)

    Non-instrumental capsule were designed and fabricated to irradiate the advanced pellet developed for the high burn-up LWR fuel in the HANARO in-pile capsule. This capsule was out-pie tested at Cold Test Loop-I in KAERI. From the pressure drop test results, it is noted that the flow velocity across the non-instrumented capsule of advanced PWR fuel pellet corresponding to the pressure drop of 200 kPa is measured to be about 7.45 kg/sec. Vibration frequency for the capsule ranges from 13.0 to 32.3 Hz. RMS displacement for non-instrumented capsule of advanced PWR fuel pellet is less than 11.6 μm, and the maximum displacement is less that 30.5 μm. The flow rate for endurance test were 8.19 kg/s, which was 110% of 7.45 kg/s. And the endurance test was carried out for 100 days and 17 hours. The test results found not to the wear satisfied to the limits of pressure drop, flow rate, vibration and wear in the non-instrumented capsule

  6. Fuel Burnup and Fuel Pool Shielding Analysis for Bushehr Nuclear Reactor VVER-1000

    Science.gov (United States)

    Hadad, Kamal; Ayobian, Navid

    Bushehr Nuclear power plant (BNPP) is currently under construction. The VVER-1000 reactor will be loaded with 126 tons of about 4% enriched fuel having 3-years life cycle. The spent fuel (SF) will be transferred into the spent fuel pool (SPF), where it stays for 8 years before being transferred to Russia. The SPF plays a crucial role during 8 years when the SP resides in there. This paper investigates the shielding of this structure as it is designed to shield the SF radiation. In this study, the SF isotope inventory, for different cycles and with different burnups, was calculated using WIMS/4D transport code. Using MCNP4C nuclear code, the intensity of γ rays was obtained in different layers of SFP shields. These layers include the water above fuel assemblies (FA) in pool, concrete wall of the pool and water laid above transferring fuels. Results show that γ rays leakage from the shield in the mentioned layers are in agreement with the plant's PSAR data. Finally we analyzed an accident were the water height above the FA in the pool drops to 47 cm. In this case it was observed that exposure dose above pool, 10 and 30 days from the accident, are still high and in the levels of 1000 and 758 R/hr.

  7. Chemical analytical considerations on the determination of burnup in irradiated nuclear fuels

    International Nuclear Information System (INIS)

    Burnup in an irradiated nuclear fuel may be defined as the energy produced per mass unit, from the time the fuel is introduced into the reactor and until a given moment. It is usually shown in megawatt/day or megawatt/hour generated per ton or kilo of fuel. It is also indicated as the number of fission produced per volume unit (cm3) or per every 100 initial fissionable atoms. The yield of a power plant is directly related to the burnup of its fuel load and knowing the latter contributes to optimizing the economy in reactor operation and the related technologies. The development of nuclear fuels and the operation of reactors require doing with exact and accurate methods allowing to know the burnup. Errors in this measurement have an incidence upon the fuel design, the physical and nuclear calculations, the shielding requirements, the design of vehicles for the transportation of irradiated fuels, the engineering of processing plants, etc. All these factors, in turn, have an incidence upon the cost of nuclear power generation. (Author)

  8. Burnup credit methodology in the NPP Krzko spent fuel pool reracking project

    International Nuclear Information System (INIS)

    NPP Krzko is going to increase the capacity of the spent fuel storage pool by replacement of the existing racks with high-density racks. The design, rack manufacturing and installation has been awarded to the Framatome ANP GmbH. Burnup credit methodology, which has been already approved by the Slovenian Nuclear Safety Administration in previous licensing of existing racks, will be again implemented in the licensing process with the recent methodology improvements. Specific steps of the criticality analysis and representative results are presented in the paper showing also the current national practice of the burnup credit implementation. (author)

  9. EPRI R and D perspective on burnup credit

    International Nuclear Information System (INIS)

    'Burnup credit' refers to taking credit for the burnup of nuclear fuel in the performance of criticality safety analyses. Historically, criticality safety analyses for transport of spent nuclear fuel have assumed the fuel to be unirradiated (i.e. 'fresh' fuel). In 1999, the U.S. Nuclear Regulatory Commission (NRC) Spent Fuel Project Office issued Interim Staff Guidance - 8 (ISG-8) with recommendations for the use of burnup credit in storage and transportation of pressurized water reactor (PWR) spent fuel. The use of burnup credit offers an opportunity to reduce the number of spent nuclear fuel shipments by ∼30%. A simple analysis shows that the increased risk of a criticality event associated with properly using burnup credit is negligible. Comparing this negligible risk component with the reduction in common transport risks due to the reduced number of spent fuel shipments (higher capacity casks for transporting PWR spent fuel) leads to the conclusion that using 'burnup credit' is preferable to using the 'fresh fuel' assumption. A specific objective of the EPRI program is to support the Goals of the U.S. Industry. These goals are consistent with the original U.S. Department of Energy (DOE) goal defined in 1988: a burnup credit methodology that takes credit for the negative reactivity that is practical (all fissile actinides, most neutron absorbing actinides, and a subset of the fission products that account for the majority of the available credit from all fission products). The determination of the optimum number of fission products to consider in a practical burnup credit methodology validates the approach advocated by researchers from France to first focus on a handful of isotopes that include Sm-149; Rh-103; Nd-143; Gd-155; and Sm-152. (author)

  10. Preliminary study of the economics of enriching PWR fuel with a fusion hybrid reactor

    International Nuclear Information System (INIS)

    This study is a comparison of the economics of enriching uranium oxide for pressurized water reactor (PWR) power plant fuel using a fusion hybrid reactor versus the present isotopic enrichment process. The conclusion is that privately owned hybrid fusion reactors, which simultaneously produce electrical power and enrich fuel, are competitive with the gaseous diffusion enrichment process if spent PWR fuel rods are reenriched without refabrication. Analysis of irradiation damage effects should be performed to determine if the fuel rod cladding can withstand the additional irradiation in the hybrid and second PWR power cycle. The cost competitiveness shown by this initial study clearly justifies further investigations

  11. TRIGA fuel burn-up calculations supported by gamma scanning

    International Nuclear Information System (INIS)

    High resolution gamma-ray spectroscopy based non-destructive methods is employed to measure spent fuel parameters. By this method, the axial distribution of Cesium-137 has been measured which results in an axial burn up profiles. Knowing the exact irradiation history of the fuel, four spent TRIGA fuel elements have been selected for on-site gamma scanning using a special shielded scanning device developed at the Atominstitute. Each selected fuel element was transferred into the fuel inspection unit using the standard fuel transfer cask. Each fuel element was scanned in one centimetre steps of its active fuel length and the Cesium-137 activity was determined as a proved burn up indicator. The absolute activity of each centimetre was measured and compared with the reactor physics code ORIGEN2.2 results. This code was used to calculate average burn up and isotopic composition of fuel element. The comparison between measured and calculated results shows good agreement. (author)

  12. Technologies for manufacturing UO2 sintered pellets to fuel burnup extension

    International Nuclear Information System (INIS)

    The actual tendency all over the world is to manufacture fuel bundles capable to resist high burn-up. The factors affecting the burn-up increase are: the pellet-cladding mechanical interaction (PCMI), the oxidation and hydriding of the Zircaloy-4 sheath, the increase of internal pressure, stress corrosion cracking, Zircaloy-4 irradiation growth, fuel swelling. A way to increase fuel burn-up is to diminish the elements internal pressure by adequate UO2 fuel pellet structure (large grain or controlled closed porosity). In the large grain size UO2 pellets, fission gas release rate decreases and the elements internal pressure increase slowly. Similarly, in the UO2 sintered pellet with controlled closed porosity the fission gas accommodation is better and the elements internal pressure increases slowly. The paper presents a literature review related to the technologies and the methods for manufacturing UO2 sintered pellets to fuel burn-up extension. The flowsheets for large grains and controlled closed porosity UO2 sintered pellets obtained by Nb2O5 dopant respectively pores former addition in UO2 sinterable powder, pressing and sintering in H2 atmosphere are exposed. In the diagrams are presented the dependency of the main sintered pellet characteristics (pore radius distribution, pores volume, density, grains size) as function of the Nb2O5 dopant concentration, UO2 sinterable powder nature and sintering temperature. Other sintered pellets characteristics (electrical conductivity, Seebeck coefficient, high temperature molar heat capacity and thermomechanical properties) are presented. The technologies for sintered pellets manufacturing for RU, DUPIC, MOX fuel cycles are presented. A proposal related to fuel manufacturing from Uranium compound resulted in LWR spent fuel reprocessing is also given. (author)

  13. A combined 1D/3D fuel burnup analysis of generation IV light water reactor IRIS

    International Nuclear Information System (INIS)

    A combined 1D/3D methodology for the fuel burnup analysis of generation IV light water reactors with thin boron coating that covers the fuel rods is described in this paper. This methodology is founded on three approximations. The first approximation assumes that the problem of fuel depletion in the entire 3D core can be resolved into two independent problems. One is a 3D Monte Carlo evolution of power distribution in large volumes (nodes) with the KENO-V.a code, and the other is a transport method evolution of burnup dependent fuel composition in 1D Wigner-Seitz cell for each node independently. With the second approximation, the time-dependent fuel composition in the node (e.g., in the fuel assembly) is calculated by using a 1D fuel depletion analysis with the SAS2H control module from the SCALE-4.4a code system. The third approximation involves smearing the boron coating with the clad (by volume homogenization). The proposed SAS2H/KENO-V.a methodology is verified for the case of 2D x-y model of IRIS 15x15 fuel assembly (with a reflective boundary condition) by using two well benchmarked code systems. The first one is MOCUP, a coupled MCNP-4C and ORIGEN2.1 utility code, and the second is KENO-V.a/ORIGEN2.1 code system recently developed by authors of this paper. It has been found that the proposed SAS2H/KENO-V.a methodology gives a satisfactory accuracy for keff and nuclide composition. Finally, this methodology was applied for 3D burnup analysis of IRIS-1000 benchmark≠44 core. Detailed keff and power density evolution with burnup are reported. (author)

  14. Spent fuel pool storage calculations using the ISOCRIT burnup credit tool

    International Nuclear Information System (INIS)

    Highlights: ► Depletion isotopics are needed for burnup credit in spent fuel pool analyses. ► We developed ISOCRIT to generate the isotopics using conservative depletion assumptions. ► ISOCRIT works in an automated fashion passing data between lattice physics and 3D Monte Carlo codes. ► Analyses to assess the impact of different depletion parameters on the reactivity of the spent fuel in pool conditions. - Abstract: In order to conservatively apply burnup credit in spent fuel pool criticality safety analyses, Westinghouse has developed a software tool, ISOCRIT, for generating depletion isotopics. This tool is used to create isotopics data based on specific reactor input parameters, such as design basis assembly type; bounding power/burnup profiles; reactor specific moderator temperature profiles; pellet percent theoretical density; burnable absorbers, axial blanket regions, and bounding ppm boron concentration. ISOCRIT generates burnup dependent isotopics using PARAGON; Westinghouse’s state-of-the-art and licensed lattice physics code. Generation of isotopics and passing the data to the subsequent 3D KENO calculations are performed in an automated fashion, thus reducing the chance for human error. Furthermore, ISOCRIT provides the means for responding to any customer request regarding re-analysis due to changed parameters (e.g., power uprate, exit temperature changes, etc.) with a quick turnaround.

  15. Validation of a new continuous Monte Carlo burnup code using a Mox fuel assembly

    International Nuclear Information System (INIS)

    The reactivity of nuclear fuel decreases with irradiation (or burnup) due to the transformation of heavy nuclides and the formation of fission products. Burnup credit studies aim at accounting for fuel irradiation in criticality studies of the nuclear fuel cycle (transport, storage, etc...). The principal objective of this study is to evaluate the potential capabilities of a newly developed burnup code called 'BUCAL1'. BUCAL1 differs in comparison with other burnup codes as it does not use the calculated neutron flux as input to other computer codes to generate the nuclide inventory for the next time step. Instead, BUCAL1 directly uses the neutron reaction tally information generated by MCNP for each nuclide of interest to determine the new nuclides inventory. This allows the full capabilities of MCNP to be incorporated into the calculation and a more accurate and robust analysis to be performed. Validation of BUCAL1 was processed by code-to-code comparisons using predictions of several codes from the NEA/OCED. Infinite multiplication factors (k∞) and important fission product and actinide concentrations were compared for a MOX core benchmark exercise. Results of calculations are analysed and discussed.

  16. Development of high performance liquid chromatography for rapid determination of burn-up of nuclear fuels

    International Nuclear Information System (INIS)

    Burn-up an important parameter during evaluation of the performance of any nuclear fuel. Among the various techniques available, the preferred one for its determination is based on accurate measurement of a suitable fission product monitor and the residual heavy elements. Since isotopes of rare earth elements are generally used as burn-up monitors, conditions were standardized for rapid separation (within 15 minutes) of light rare earths using high performance liquid chromatography based on either anion exchange (Partisil 10 SAX) in methanol-nitric acid medium or by cation exchange on a reverse phase column (Spherisorb 5-ODS-2 or Supelcosil LC-18) dynamically modified with 1-octane sulfonate or camphor-10-sulfonic acid (β). Both these methods were assessed for separation of individual fission product rare earths from their mixtures. A new approach has been examined in detail for rapid assay of neodymium, which appears promising for faster and accurate measurement of burn-up. (author)

  17. Burnup verification measurements on spent fuel assemblies at Arkansas Nuclear One

    International Nuclear Information System (INIS)

    Burnup verification measurements have been performed using the Fork system at Arkansas Nuclear One, Units 1 and 2, operated by Energy Operations, Inc. Passive neutron and gamma-ray measurements on individual spent fuel assemblies were correlated with the reactor records for burnup, cooling time, and initial enrichment. The correlation generates an internal calibration for the system in the form of a power law determined by a least squares fit to the neutron data. The values of the exponent in the power laws were 3.83 and 4.35 for Units 1 and 2, respectively. The average deviation of the reactor burnup records from the calibration determined from the measurements is a measure of the random error in the burnup records. The observed average deviations were 2.7% and 3.5% for assemblies at Units 1 and 2, respectively, indicating a high degree of consistency in the reactor records. Two non-standard assemblies containing neutron sources were studied at Unit 2. No anomalous measurements were observed among the standard assemblies at either Unit. The effectiveness of the Fork system for verification of reactor records is due to the sensitivity of the neutron yield to burnup, the self-calibration generated by a series of measurements, the redundancy provided by three independent detection systems, and the operational simplicity and flexibility of the design

  18. Studies at INR-Pitesti for developing fuels of high burnup suitable to CANDU 6 reactor

    International Nuclear Information System (INIS)

    Increasing burnup allows the utility to get the same kWh output with a diminished tonnage of fissile material and provides a saving in the cost of fuel manufacturing as well as of spent fuel disposal. The RU, SEU, MOX, DUPIC fuel cycles and CANFLEX fuel bundles concept compatible with CANDU 6 reactor are presented. INR projects for developing SEU 43 fuel bundles supported by IAEA-Vienna are also presented. Particularly, one gives an overlook of standard CANDU and advanced SEU 43 nuclear fuel cycles. The paper presents also the current and future directions of studies implied by the research program in the nuclear fuel field of RAAN (The Autonomous Authority for Nuclear Activities). Among these, mentioned are: working out of the manual of physics of CANDU core with slightly enriched uranium; technological studies aiming at reducing the effects of limiting factors of the fuel lifetime and at burnup extension; obtaining new fuels as vectors of advanced cycles; off reactor tests of SEU 43 clusters; in-reactor tests of SEU 43 experimental fuel elements; developing computer codes for analysis of SEU, MOX and DUPIC fuel behavior; in-reactor tests of experimental MOX and DUPIC elements

  19. Measurements of fuel burnup for the RA reactor spent fuel elements stored in the stainless steel containers (Draft version)

    International Nuclear Information System (INIS)

    According to the Radiological Characterisation Plan of the RA reactor, the accurate data on fuel burnup are very important for the radiation safety provisions during removal of spent fuel elements from the RA reactor as well as for verification of methods, geometry models and historically reviewed data concerning fuel irradiation. These data and methods will be used for neutron flux calculations in the RA reactor cores, reflector and biological shield, and finally for activity calculations of hard-to-detect radionuclides in the graphite reflector and concrete shields. Since the comparison of previous experimental data with the calculations showed discrepancy of 25% , fuel burnup of all fuel elements stored in the stainless steel containers was measured recently (from february to August 2006). This progress report summarizes the techniques and methods used for fuel burnup measurements of both type fuel elements (2% enriched metal uranium and 80% enriched uranium dioxide). It presents results for some maximum burned fuel elements and contains results of multichannel scanning of gamma ray emission from all stainless steel containers with spent fuel elements in storage pool

  20. The dependence of the global neutronic parameters on the fuel burnup for CANDU SEU43 core

    Energy Technology Data Exchange (ETDEWEB)

    Balaceanu, V. [Institute for Nuclear Research, Pitesti (Romania); Pavelescu, M. [Academy of Romanian Scientists, Bucharest (Romania)

    2010-05-15

    In order to reduce the total fuel costs for the CANDU reactors, mainly by extending the fuel burnup limits, some fuel bundle concepts have been developed in different CANDU owner countries. Therefore, in our Institute the SEU43 (Slightly Enriched Uranium with 43 fuel elements) project was started in early '90s. The neutronic behavior analysis of the CANDU core with SEU43 fuel was an important step in our project design. The objective of this paper is to highline an analysis of the neutronic behavior of the CANDU SEU43 core with the fuel burnup. More exactly, the study refers to the dependence of some global neutronic parameters, mainly the reactivity, on the fuel burnup. Two types of CANDU core were taken into consideration: reference core (without any reactivity devices) and perturbed core (with a strong reactivity system inserted). The considered reactivity system is the Mechanical Control Absorber (MCA) one. The performed parameters are: k{sub eff.} values, the MCA reactivity worth and flux distributions. The fuel bundles in the core are SEU43, with the fuel enrichment in U{sup 235} of 0.96% and at nominal power. For the fuel burnup the values are: 0.00 GWd/tU (fresh fuel); 8.00 GWd/tU and 25.00 GWd/tU. For reaching this objective, a global neutronic calculation system named WIMSPIJXYZ LEGENTR is used. Starting from a 69-groups ENDF/B-V based library, this system uses three transport codes: (1) the standard lattice-cell code WIMS, for generating macroscopic cross sections in supercell option and also for burnup calculations; (2) the PIJXYZ code for 3D simulation of the MCA reactivity devices and the 3D correction of the macroscopic cross sections; (3) the LEGENTR 3D transport code for estimating global neutronic parameters (CANDU core). The analysis of the neutronic parameters consists of comparing the obtained results with the similar results calculated with the DRAGON and DIREN codes. This comparison shows a good agreement between these results. (orig.)

  1. IFPE/FUMEX-I, Data from OECD Halden Reactor Project for FUMEX-1 (Fuel Modelling at Extended Burnup)

    International Nuclear Information System (INIS)

    This set contains the experimental data from the OECD Halden Reactor Project made available for the FUMEX-I exercise (Fuel Modelling at Extended Burnup) carried out under the auspices of the IAEA. The six cases are: FUMEX 1: This data set represents the irradiation of production line PWR type fuel under benign conditions. Temperatures remained low but increased slightly with burnup. FUMEX 2:This was a small diameter rod designed to achieve rapid accumulation of burnup. Temperatures were estimated to remain low. The internal pin pressure was measured in-pile and an assessment of FGR was also provided by PIE. FUMEX 3: This case consisted of 3 short rods equipped with centreline thermocouples each with a different gap and fill gas composition. After steady state irradiation to ∼30 MW.d/kg UO2, they were given a severe increase in power (power ramp). FUMEX 4: Two rods filled with 3 bar He and 1 bar He/Xe mixture were irradiated to ∼33 MW.d/kg UO2. Both rods experienced a period of increased power part way through the irradiation. FUMEX 5: The test case comprised a single rod base irradiated at low power to 16 MW.d/kg UO2 with a power ramp and a hold period at the end of life. The main purpose of this case was to assess pellet clad mechanical interaction (PCMI) and fission gas release (FGR) under ramp conditions. FUMEX 6: Two rods were base irradiated at low power. The rods were re-fabricated to include pressure transducers. Rod internal pressure was monitored during power ramps, one fast, one slow. Irradiation conditions in the Halden Reactor: The Halden Reactor is a heavy water moderated and cooled boiling water reactor. The nominal operation conditions are 240 deg. C coolant temperature and a corresponding saturation pressure of 34 bar. These conditions imply decreased uncertainties for some effects with an influence on experimental results and data evaluation, namely: cladding creep-down is very small, cladding oxidation can be practically neglected, boiling

  2. ISOTOPIC MODEL FOR COMMERCIAL SNF BURNUP CREDIT

    International Nuclear Information System (INIS)

    The purpose of this report is to demonstrate a process for selecting bounding depletion parameters, show that they are conservative for pressurized water reactor (PWR) and boiling water reactor (BWR) spent nuclear fuel (SNF), and establish the range of burnup for which the parameters are conservative. The general range of applicability is for commercial light water reactor (LWR) SNF with initial enrichments between 2.0 and 5.0 weight percent 235U and burnups between 10 and 50 gigawatt-day per metric ton of uranium (GWd/MTU)

  3. ISOTOPIC MODEL FOR COMMERCIAL SNF BURNUP CREDIT

    Energy Technology Data Exchange (ETDEWEB)

    A.H. Wells

    2004-11-17

    The purpose of this report is to demonstrate a process for selecting bounding depletion parameters, show that they are conservative for pressurized water reactor (PWR) and boiling water reactor (BWR) spent nuclear fuel (SNF), and establish the range of burnup for which the parameters are conservative. The general range of applicability is for commercial light water reactor (LWR) SNF with initial enrichments between 2.0 and 5.0 weight percent {sup 235}U and burnups between 10 and 50 gigawatt-day per metric ton of uranium (GWd/MTU).

  4. ELESTRES 2.1 computer code for high burnup CANDU fuel performance analysis

    International Nuclear Information System (INIS)

    The ELESTRES (ELEment Simulation and sTRESses) computer code models the thermal, mechanical and micro structural behaviours of CANDU® fuel element under normal operating conditions. The main purpose of the code is to calculate fuel temperatures, fission gas release, internal gas pressure, fuel pellet deformation, and fuel sheath strains in fuel element design analysis and assessments. It is also used to provide initial conditions for evaluating fuel behaviour during high temperature transients. ELESTRES 2.1 was developed for high burnup fuel application, based on an industry standard tool version of the code, through the implementation or modification to code models such as fission gas release, fuel pellet densification, flux depression (radial power distribution in the fuel pellet), fuel pellet thermal conductivity, fuel sheath creep, fuel sheath yield strength, fuel sheath oxidation, two dimensional heat transfer between the fuel pellet and the fuel sheath; and an automatic finite element meshing capability to handle various fuel pellet shapes. The ELESTRES 2.1 code design and development was planned, implemented, verified, validated, and documented in accordance with the AECL software quality assurance program, which meets the requirements of the Canadian Standards Association standard for software quality assurance CSA N286.7-99. This paper presents an overview of the ELESTRES 2.1 code with descriptions of the code's theoretical background, solution methodologies, application range, input data, and interface with other analytical tools. Code verification and validation results, which are also discussed in the paper, have confirmed that ELESTRES 2.1 is capable of modelling important fuel phenomena and the code can be used in the design assessment and the verification of high burnup fuels. (author)

  5. Neutronic performance of uranium nitride composite fuels in a PWR

    International Nuclear Information System (INIS)

    Highlights: • Survey and sensitivity assembly level studies for uranium nitride composite fuels. • Composites harden the neutron spectrum and decrease the worth of control rods. • Moderator temperature coefficient is more negative, soluble boron coefficient is less negative. • Similar equilibrium core power peaking and reactivity coefficient when compared to UO2. • Illustrates “do no harm” in evaluation of candidate accident tolerant fuels. - Abstract: Uranium mononitride (UN) based composite nuclear fuels may have potential benefits in light water reactor applications, including enhanced thermal conductivity and increased fuel density. However, uranium nitride reacts chemically when in contact with water, especially at high temperatures. To overcome this challenge, several advanced composite fuels have been proposed with uranium nitride as a primary phase. The primary nitride phase is “shielded” from water by a secondary phase, which would allow the potential benefits of nitride fuels to be realized. This work is an operational assessment of four different candidate composite materials. We considered uranium dioxide (UO2) and UN base cases and compared them with the candidate composite UN-based fuels. The comparison was performed for nominal conditions in a reference PWR with Zr-based cladding. We assessed the impact of UN porosity on the operational performance, because this is a key sensitivity parameter. As composite fuels, we studied UN/U3Si5, UN/U3Si2, UN/UB4, and UN/ZrO2. In the case of UB4, the boron content is 100% enriched in 11B. The proposed zirconium dioxide (ZrO2) phase is cubic and yttria-stabilized. In all cases UN is the primary phase, with small fractions of U3Si5, U3Si5, UB4, or ZrO2 as a secondary phase. In this analysis we showed that two baseline nitride cases at different fractions of theoretical density (0.8 and 0.95) generally bound the neutronic performance of the candidate composite fuels. Performance was comparable with

  6. An analysis of nuclear fuel burnup in the AGR-1 TRISO fuel experiment using gamma spectrometry, mass spectrometry, and computational simulation techniques

    International Nuclear Information System (INIS)

    Highlights: • The burnup of irradiated AGR-1 TRISO fuel was analyzed using gamma spectrometry. • The burnup of irradiated AGR-1 TRISO fuel was also analyzed using mass spectrometry. • Agreement between experimental results and neutron physics simulations was excellent. - Abstract: AGR-1 was the first in a series of experiments designed to test US TRISO fuel under high temperature gas-cooled reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post-irradiation examination (PIE) at INL and Oak Ridge National Laboratory. One component of the AGR-1 PIE is the experimental evaluation of the burnup of the fuel by two separate techniques. Gamma spectrometry was used to non-destructively evaluate the burnup of all 72 of the TRISO fuel compacts that comprised the AGR-1 experiment. Two methods for evaluating burnup by gamma spectrometry were developed, one based on the Cs-137 activity and the other based on the ratio of Cs-134 and Cs-137 activities. Burnup values determined from both methods compared well with the values predicted from simulations. The highest measured burnup was 20.1% FIMA (fissions per initial heavy metal atom) for the direct method and 20.0% FIMA for the ratio method (compared to 19.56% FIMA from simulations). An advantage of the ratio method is that the burnup of the cylindrical fuel compacts can be determined in small (2.5 mm) axial increments and an axial burnup profile can be produced. Destructive chemical analysis by inductively coupled mass spectrometry (ICP-MS) was then performed on selected compacts that were representative of the expected range of fuel burnups in the experiment to compare with the burnup values determined by gamma spectrometry. The compacts analyzed by mass spectrometry had a burnup range of 19.3% FIMA to 10.7% FIMA. The mass spectrometry evaluation of burnup for the four compacts agreed well with the gamma

  7. A validated methodology for evaluating burnup credit in spent fuel casks

    International Nuclear Information System (INIS)

    The concept of allowing reactivity credit for the transmuted state of spent fuel offers both economic and risk incentives. This paper presents a general overview of the technical work being performed in support of the U.S. Department of Energy (DOE) program to resolve issues related to the implementation of burnup credit. An analysis methodology is presented along with information representing the validation of the method against available experimental data. The experimental data that are applicable to burnup credit include chemical assay data for the validation of the isotopic prediction models, fresh fuel critical experiments for the validation of criticality calculations for various cask geometries, and reactor restart critical data to validate criticality calculations with spent fuel. The methodology has been specifically developed to be simple and generally applicable, therefore giving rise to uncertainties or sensitivities which are identified and quantified in terms of a percent bias in keff. Implementation issues affecting licensing requirements and operational procedures are discussed briefly. (Author)

  8. Upgrading spent fuel shipping casks to meet higher burn-up

    International Nuclear Information System (INIS)

    In order to allow the transportability of high burn-up fuel and of MOX fuel in existing casks, TRANSNUCLEAIRE presents a two-step proven solution: (1) starting from 35/40 GWd/tU and 3.5 % enrichment, casks of the TN 12 family can be upgraded to 40/45 GWd/tU and 4.3 % enrichment by the use high performance baskets. (2) a second step consists in adding neutron shielding to allow transportation of fuel with a burn-up of 45/50 GWd/tU with a standard basket and of 50/55 GWd/tU with a high performance basket. (J.P.N.)

  9. On stability of spatial distributions of crystal structure defects in irradiated high burnup UO2 fuel

    International Nuclear Information System (INIS)

    Conditions of Kinoshita instability development of point defects and dislocation spatial distributions in the crystal structure of UO2 fuel are studied. As a result of the instability development, spatially non-uniform regions with increased dislocation density are formed. Closed-form expressions of instability increment and spatial scale are derived. Parameters of the instability for irradiation conditions of high burnup UO2 fuel are obtained by means of numerical simulation. Instability development time is shown to be inversely proportional to fission rate and it increases as dislocation density decreases. Calculated values of instability spatial scale and increment are in accordance with the size of fine grains and their formation rate in the peripheral zones of high burnup LWR fuel pellets

  10. Cellular automata approach to investigation of high burn-up structures in nuclear reactor fuel

    International Nuclear Information System (INIS)

    Micrographs of uranium dioxide (UO2) corresponding to exposure times in reactor during 323, 953, 971, 1266 and 1642 full power days were investigated. The micrographs were converted into digital files isomorphous to cellular automata (CA) checkerboards. Such a representation of the fuel structure provides efficient tools for its dynamics simulation in terms of primary 'entities' imprinted in the micrographs. Besides, it also ensures a possibility of very effective micrograph processing by CA means. Interconnection between the description of fuel burn-up development and some exactly soluble models is ascertained. Evidences for existence of self-organization in the fuel at high burn-ups were established. The fractal dimension of microstructures is found to be an important characteristic describing the degree of radiation destructions

  11. A validated methodology for evaluating burnup credit in spent fuel casks

    International Nuclear Information System (INIS)

    The concept of allowing reactivity credit for the transmuted state of spent fuel offers both economic and risk incentives. This paper presents a general overview of the technical work being performed in support of the US Department of Energy (DOE) program to resolve issues related to the implementation of burnup credit. An analysis methodology is presented along with information representing the validation of the method against available experimental data. The experimental data that are applicable to burnup credit include chemical assay data for the validation of the isotopic prediction models, fresh fuel critical experiments for the validation of criticality calculations for various cask geometries, and reactor restart critical data to validate criticality calculations with spent fuel. The methodology has been specifically developed to be simple and generally applicable, therefore giving rise to uncertainties or sensitivities which are identified and quantified in terms of a percent bias in keff. Implementation issues affecting licensing requirements and operational procedures are discussed briefly. 24 refs., 3 tabs

  12. Development of a dry storage cask for PWR spent fuel

    International Nuclear Information System (INIS)

    Korea Hydro and Nuclear Power Co., Ltd.(KHNP), which operates all the nuclear power plants in Korea, is developing a new dry storage cask to store twenty four spent fuel assemblies generated from pressurized water reactors for at-reactor or away-from-reactor interim storage facility in Korea. The dry storage cask is designed and evaluated according to the requirements of the IAEA, the US NRC and the Korean regulations for the dry spent fuel storage system. It provides confinement, radiation shielding, structural integrity, subcritical control and passive heat removal for normal and accident conditions. The dry storage cask consists of a dual purpose canister providing a confinement boundary for the PWR spent fuel, and a storage overpack providing a structural and radiological boundary for long-term storage of the canister placed inside it. The overpack is constructed by a combination of steel and concrete, and is equipped with penetrating ducts near its lower and upper extremities to permit natural circulation of air to provide for the passive cooling of the canister and the contained spent fuel assemblies. This paper describes development status, description, design criteria, evaluation and demonstration tests of the dry storage cask. (authors)

  13. Enhancing heat transfer and crud mitigation in PWR fuel

    International Nuclear Information System (INIS)

    This paper discusses three methods for increasing single phase heat transfer in PWR fuel. The primary effect of increasing heat transfer is a reduction in the steaming rate from the fuel rods, which in turn reduces the likelihood of crud formation on the fuel rods and the potential for adsorption of boron into the crud. The advantage of lowering boron mass on the fuel is reduced risk of Axial Offset Anomaly (AOA). Another benefit of reduced crud formation is a lower risk of localized corrosion, a known contributor to rod cladding failures. Thinner crud leads to locally lower rod operating temperatures (lower corrosion rate) since crud acts as a thermal insulator between the rod and the coolant. The first method of increasing heat transfer involves addition of more than one Intermediate Flow Mixing vane grid (IFM) in the span between two neighboring structural spacing grids. The second method includes optimization of the mixing vane according to axial position. The third method involves variation of the IFMs axial position to optimize axial distribution of rod heat transfer. (authors)

  14. ORIGEN computer code use in non-destructive analysis of irradiated fuel elements for burn-up determination

    International Nuclear Information System (INIS)

    An iterative method for burn-up determination in the non-destructive analysis of irradiated fuel elements using the ORIGEN computer code is presented. On the bases of data obtained from ORIGEN code the calibration coefficient for the neutron flux is determined as a function of one fission product activity while the burn-up is determined as a function of the calibration coefficient for a given irradiation history. These functions are used for determining the burn-up of nuclear fuel elements measured by gamma-scanning. The method is tested for fuel elements irradiated in a TRIGA reactor facility. (Author)

  15. Irradiation performance of PFBR MOX fuel after 112 GWd/t burn-up

    Energy Technology Data Exchange (ETDEWEB)

    Venkiteswaran, C.N., E-mail: cnv@igcar.gov.in; Jayaraj, V.V.; Ojha, B.K.; Anandaraj, V.; Padalakshmi, M.; Vinodkumar, S.; Karthik, V.; Vijaykumar, Ran; Vijayaraghavan, A.; Divakar, R.; Johny, T.; Joseph, Jojo; Thirunavakkarasu, S.; Saravanan, T.; Philip, John; Rao, B.P.C.; Kasiviswanathan, K.V.; Jayakumar, T.

    2014-06-01

    The 500 MWe Prototype Fast Breeder Reactor (PFBR) which is in advanced stage of construction at Kalpakkam, India, will use mixed oxide (MOX) fuel with a target burnup of 100 GWd/t. The fuel pellet is of annular design to enable operation at a peak linear power of 450 W/cm with the requirement of minimum duration of pre-conditioning. The performance of the MOX fuel and the D9 clad and wrapper material was assessed through Post Irradiation Examinations (PIE) after test irradiation of 37 fuel pin subassembly in Fast Breeder Test Reactor (FBTR) to a burn-up of 112 GWd/t. Fission product distribution, swelling and fuel–clad gap evolution, central hole diameter variation, restructuring, fission gas release and clad wastage due to fuel–clad chemical interaction were evaluated through non-destructive and destructive examinations. The examinations have indicated that the MOX fuel can safely attain the desired target burn-up in PFBR.

  16. Evaluation of the characteristics of high burnup and high plutonium content mixed oxide (MOX) fuel

    International Nuclear Information System (INIS)

    Two kinds of MOX fuel irradiation tests, i.e., MOX irradiation test up to high burnup and MOX having high plutonium content irradiation test, have been performed from JFY 2007 for five years in order to establish technical data concerning MOX fuel behavior during irradiation, which shall be needed in safety regulation of MOX fuel with high reliability. The high burnup MOX irradiation test consists of irradiation extension and post irradiation examination (PIE). The activities done in JFY 2011 are destructive post irradiation examination (D-PIE) such as EPMA and SIMS at CEA (Commissariat a l'Enegie Atomique) facility. Cadarache and PIE data analysis. In the frame of irradiation test of high plutonium content MOX fuel programme, MOX fuel rods with about 14wt % Pu content are being irradiated at BR-2 reactor and corresponding PIE is also being done at PIE facility (SCK/CEN: Studiecentrum voor Kernenergie/Centre d'Etude l'Energie Nucleaire) in Belgium. The activities done in JFY 2011 are non-destructive post irradiation examination (ND-PIE) and D-PIE and PIE data analysis. In this report the results of EPMA and SIMS with high burnup irradiation test and the result of gamma spectrometry measurement which can give FP gas release rate are reported. (author)

  17. Advances in applications of burnup credit to enhance spent fuel transportation, storage, reprocessing and disposition. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    Given a trend towards higher burnup power reactor fuel, the IAEA began an active programme in burnup credit (BUC) with major meetings in 1997 (IAEA-TECDOC-1013), 2000 (IAEA-TECDOC-1241) and 2002 (IAEA-TECDOC-1378) exploring worldwide interest in using BUC in spent fuel management systems. This publication contains the proceedings of the IAEA's 4th major BUC meeting, held in London. Sixty participants from 18 countries addressed calculation methodology, validation and criticality, safety criteria, procedural compliance with safety criteria, benefits of BUC applications, and regulatory aspects in BUC. This meeting encouraged the IAEA to continue its activities on burnup credit including dissemination of related information, given the number of Member States having to deal with increased spent fuel quantities and extended durations. A 5th major meeting on burnup credit is planned 2008. Burnup credit is a concept that takes credit for the reduced reactivity of fuel discharged from the reactor to improve loading density of irradiated fuel assemblies in storage, transportation, and disposal applications, relative to the assumption of fresh fuel nuclide inventories in loading calculations. This report has described a general four phase approach to be considered in burnup credit implementation. Much if not all of the background research and data acquisition necessary for successful burnup credit development in preparation for licensing has been completed. Many fuel types, facilities, and analysis methods are encompassed in the public knowledge base, such that in many cases this guidance will provide a means for rapid development of a burnup credit program. For newer assembly designs, higher enrichment fuels, and more extensive nuclide credit, additional research and development may be necessary, but even this work can build on the foundation that has been established to date. Those, it is hoped that this report will serve as a starting point with sufficient reference to

  18. Correlation of waterside corrosion and cladding microstructure in high-burnup fuel and gadolinia rods

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M. (Argonne National Lab., IL (USA))

    1989-09-01

    Waterside corrosion of the Zircaloy cladding has been examined in high-burnup fuel rods from several BWRs and PWRs, as well as in 3 wt % gadolinia burnable poison rods obtained from a BWR. The corrosion behavior of the high-burnup rods was then correlated with results from a microstructural characterization of the cladding by optical, scanning-electron, and transmission-electron microscopy (OM, SEM, and TEM). OM and SEM examination of the BWR fuel cladding showed both uniform and nodular oxide layers 2 to 45 {mu}m in thickness after burnups of 11 to 30 MWd/kgU. For one of the BWRs, which was operated at 307{degree}C rather than the normal 288{degree}C, a relatively thick (50 to 70 {mu}m) uniform oxide, rather than nodular oxides, was observed after a burnup of 27 to 30 MWd/kgU. TEM characterization revealed a number of microstructural features that occurred in association with the intermetallic precipitates in the cladding metal, apparently as a result of irradiation-induced or -enhanced processes. The BWR rods that exhibited white nodular oxides contained large precipitates (300 to 700 nm in size) that were partially amorphized during service, indicating that a distribution of the large intermetallic precipitates is conductive to nodular oxidation. 23 refs., 9 figs.

  19. Investigation and basic evaluation for ultra-high burnup fuel cladding material

    International Nuclear Information System (INIS)

    In ultra-high burnup of the power reactor, it is an essential problem to develop the cladding with excellent durability. First, development history and approach of the safety assessment of Zircaloy for the high burnup fuel were summarized in the report. Second, the basic evaluation and investigation were carried out on the material with high practicability in order to select the candidate materials for the ultra-high burnup fuel. In addition, the basic research on modification technology of the cladding surface was carried out from the viewpoint of the addition of safety margin as a cladding. From the development history of the zirconium alloy including the Zircaloy, it is hard to estimate the results of in-pile test from those of the conventional corrosion test (out-pile test). Therefore, the development of the new testing technology that can simulate the actual environment and the elucidation of the corrosion-controlling factor of the cladding are desired. In cases of RIA (Reactivity Initiated Accident) and LOCA (Loss of Coolant Accident), it seems that the loss of ductility in zirconium alloys under heavy irradiation and boiling of high temperature water restricts the extension of fuel burnup. From preliminary evaluation on the high corrosion-resistance materials (austenitic stainless steel, iron or nickel base superalloys, titanium alloy, niobium alloy, vanadium alloy and ferritic stainless steel), stabilized austenitic stainless steels with a capability of future improvement and high-purity niobium alloys with a expectation of the good corrosion resistance were selected as candidate materials of ultra-high burnup cladding. (author)

  20. Application of Genetic Algorithm methodologies in fuel bundle burnup optimization of Pressurized Heavy Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jayalal, M.L., E-mail: jayalal@igcar.gov.in [Electronics, Instrumentation and Radiological Safety Group (EIRSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India); Ramachandran, Suja [Electronics, Instrumentation and Radiological Safety Group (EIRSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India); Rathakrishnan, S. [Reactor Physics Section, Madras Atomic Power Station (MAPS), Kalpakkam, Tamil Nadu (India); Satya Murty, S.A.V. [Electronics, Instrumentation and Radiological Safety Group (EIRSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India); Sai Baba, M. [Resources Management Group (RMG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India)

    2015-01-15

    Highlights: • We study and compare Genetic Algorithms (GA) in the fuel bundle burnup optimization of an Indian Pressurized Heavy Water Reactor (PHWR) of 220 MWe. • Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are considered. • For the selected problem, Multi Objective GA performs better than Penalty Functions based GA. • In the present study, Multi Objective GA outperforms Penalty Functions based GA in convergence speed and better diversity in solutions. - Abstract: The work carried out as a part of application and comparison of GA techniques in nuclear reactor environment is presented in the study. The nuclear fuel management optimization problem selected for the study aims at arriving appropriate reference discharge burnup values for the two burnup zones of 220 MWe Pressurized Heavy Water Reactor (PHWR) core. Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are applied in this study. The study reveals, for the selected problem of PHWR fuel bundle burnup optimization, Multi Objective GA is more suitable than Penalty Functions based GA in the two aspects considered: by way of producing diverse feasible solutions and the convergence speed being better, i.e. it is capable of generating more number of feasible solutions, from earlier generations. It is observed that for the selected problem, the Multi Objective GA is 25.0% faster than Penalty Functions based GA with respect to CPU time, for generating 80% of the population with feasible solutions. When average computational time of fixed generations are considered, Penalty Functions based GA is 44.5% faster than Multi Objective GA. In the overall performance, the convergence speed of Multi Objective GA surpasses the computational time advantage of Penalty Functions based GA. The ability of Multi Objective GA in producing more diverse feasible solutions is a desired feature of the problem selected, that helps the

  1. Application of Genetic Algorithm methodologies in fuel bundle burnup optimization of Pressurized Heavy Water Reactor

    International Nuclear Information System (INIS)

    Highlights: • We study and compare Genetic Algorithms (GA) in the fuel bundle burnup optimization of an Indian Pressurized Heavy Water Reactor (PHWR) of 220 MWe. • Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are considered. • For the selected problem, Multi Objective GA performs better than Penalty Functions based GA. • In the present study, Multi Objective GA outperforms Penalty Functions based GA in convergence speed and better diversity in solutions. - Abstract: The work carried out as a part of application and comparison of GA techniques in nuclear reactor environment is presented in the study. The nuclear fuel management optimization problem selected for the study aims at arriving appropriate reference discharge burnup values for the two burnup zones of 220 MWe Pressurized Heavy Water Reactor (PHWR) core. Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are applied in this study. The study reveals, for the selected problem of PHWR fuel bundle burnup optimization, Multi Objective GA is more suitable than Penalty Functions based GA in the two aspects considered: by way of producing diverse feasible solutions and the convergence speed being better, i.e. it is capable of generating more number of feasible solutions, from earlier generations. It is observed that for the selected problem, the Multi Objective GA is 25.0% faster than Penalty Functions based GA with respect to CPU time, for generating 80% of the population with feasible solutions. When average computational time of fixed generations are considered, Penalty Functions based GA is 44.5% faster than Multi Objective GA. In the overall performance, the convergence speed of Multi Objective GA surpasses the computational time advantage of Penalty Functions based GA. The ability of Multi Objective GA in producing more diverse feasible solutions is a desired feature of the problem selected, that helps the

  2. Physical mechanism analysis of burnup actinide composition in light water reactor MOX fuel and its application to uncertainty evaluation

    International Nuclear Information System (INIS)

    Highlights: • We discuss physical mechanisms for burnup actinide compositions in LWR’s MOX fuel. • Mechanisms of 244Cm and 238Pu productions are analyzed in detail with sensitivity. • We can evaluate the indirect effect on actinide productions by nuclear reactions. • Burnup sensitivity is applied to uncertainty evaluation of nuclide production. • Actinides can be categorized into patterns according to a burnup sensitivity trend. - Abstract: In designing radioactive waste management and decommissioning facilities, understanding the physical mechanisms for burnup actinide composition is indispensable to satisfy requirements for its validity and reliability. Therefore, the uncertainty associated with physical quantities, such as nuclear data, needs to be quantitatively analyzed. The present paper illustrates an analysis methodology to investigate the physical mechanisms of burnup actinide composition with nuclear-data sensitivity based on the generalized depletion perturbation theory. The target in this paper is the MOX fuel of the light water reactor. We start with the discussion of the basic physical mechanisms for burnup actinide compositions using the reaction-rate flow chart on the burnup chain. After that, the physical mechanisms of the productions of Cm-244 and Pu-238 are analyzed in detail with burnup sensitivity calculation. Conclusively, we can identify the source of actinide productions and evaluate the indirect influence of the nuclear reactions if the physical mechanisms of burnup actinide composition are analyzed using the reaction-rate flow chart on the burnup chain and burnup sensitivity calculation. Finally, we demonstrate the usefulness of the burnup sensitivity coefficients in an application to determine the priority of accuracy improvement in nuclear data in combination with the covariance of the nuclear data. In addition, the target actinides and reactions are categorized into patterns according to a sensitivity trend

  3. Investigation of Irradiation Behavior of SiC-Coated Fuel Particle at Extended Burnup

    International Nuclear Information System (INIS)

    In current high-temperature gas-cooled reactors (HTGRs), Tri-isotropic (TRISO)-coated fuel particles are employed as fuel. In safety design of the HTGR fuels, it is important to retain fission products within particles so that their release to primary coolant does not exceed an acceptable level. From this point of view, the basic design criteria for the fuel are to minimize the failure fraction of as-fabricated fuel coating layers and to prevent significant additional fuel failures during operation. The maximum burnup of the first-loading fuel of the High Temperature Engineering Test Reactor (HTTR) is limited to 3.6%FIMA (% fission per initial metallic atom) to certify its integrity during the operation. In order to investigate fuel behavior under extended burnup condition, irradiation tests were performed. The irradiation was carried out as HRB-22 and 91F-1A capsule irradiation tests. The fuel for the irradiation tests was called extended burnup fuel, whose target burnup and fast neutron fluence were higher than those of the first-loading fuel of the HTTR. In order to keep fuel integrity up to over 5%FIMA, the thickness of buffer and SiC layers of fuel particle were increased. The fuel compacts were irradiated in the HRB-22 and the 91F-1A capsules at the High Flux Isotope Reactor of Oak Ridge National Laboratory and at the Japan Materials Testing Reactor of the Japan Atomic Energy Research Institute, respectively. The comparison of measured and calculated release rate-to-birth rate ratios showed that there were additional failures in both irradiation tests. A pressure vessel failure model analysis showed that no tensile stresses acted on the SiC layers even at the end of irradiation and no pressure vessel failure occurred in the intact particles even in a particle with thin buffer layer with failed OPyC layer. The presumed failure mechanisms are additional through-coatings failure of as-fabricated SiC-failed particles or an excessive increase of internal pressure

  4. Comparison of gamma dose rate calculations for PWR spent fuel assemblies

    International Nuclear Information System (INIS)

    Gamma dose rate calculations from the U.S. Department of Energy and the French Commissariat a l'Energie Atomique et aux Energies Alternatives were compared for PWR spent fuel assembly models with UO2 fuel at 33 MWd/kg burnup and MOX fuel at 60 MWd/kg. Both sides used their reference physics codes in a three-step calculation procedure involving depleting fresh assemblies to obtain the discharge compositions, obtaining the isotopic gamma source after 30 years of simulated radioactive decay, and applying the source to heterogeneous 3-D transport models to tally the flux at one meter away from the axial midpoint through air. The fluxes were ultimately converted to dose rates with different energy-dependent conversion factors. This study was able to pinpoint the intermediate calculations that exhibited the largest sources of discrepancy between the two approaches. Most notably, the U.S. gamma source calculation accounts for Bremsstrahlung and adjusts its multi-group photon release rates to conserve energy. Despite these differences, very similar dose rates were calculated by both approaches. For the UO2 case, which was intended to benchmark a frequently-cited reference study, both the DOE and CEA calculated 30-year dose rates between 4.6 and 5.8 Sv/h with various conversion factors, which are roughly three times lower than the reference study's results. For the MOX case, the calculated dose rates ranged from 8.5 to 11 Sv/h. Given the same conversion factor, the largest difference between DOE and CEA values was about 1.5 Sv/h. (author)

  5. Determination of Fission Gas Inclusion Pressures in High Burnup Nuclear Fuel using Laser Ablation ICP-MS combined with SEM/EPMA and Optical Microscopy

    International Nuclear Information System (INIS)

    In approximately 20% of all fissions at least one of the fission products is gaseous. These are mainly xenon and krypton isotopes contributing up to 90% by the xenon isotopes. Upon reaching a burn-up of 60 - 75 GWd/tHM a so called High Burnup Structure (HBS) is formed in the cooler rim of the fuel. In this region a depletion of the noble fission gases (FG) in the matrix and an enrichment of FG in μm-sized pores can be observed. Recent calculations show that in these pores the pressure at room temperature can be as large as 30 MPa. The knowledge of the FG pressure in pores is important to understand the high burn-up fuel behavior under accident conditions (i.e. RIA or LOCA). With analytical methods routinely used for the characterization of solid samples, i.e. Electron Probe Micro Analysis (EPMA), Secondary Ion Mass Spectrometry (SIMS), the quantification of gaseous inclusions is very difficult to almost impossible. The combination of a laser ablation system (LA) with an inductively coupled plasma mass spectrometer (ICP-MS) offers a powerful tool for quantification of the gaseous pore inventory. This method offers the advantages of high spatial resolution with laser spot sizes down to 10 μm and low detection limits. By coupling with scanning electron microscopy (SEM) for the pore size distribution, EPMA for the FG inventory in the fuel matrix and optical microscopy for the LA-crater sizes, the pressures in the pores and porosity was calculated. As a first application of this calibration technique for gases, measurements were performed on pressurized water reactor (PWR) fuel with a rod average of 105 GWd/tHM to determine the local FG pressure distribution. (authors)

  6. Development of Inverse Estimation Program of Burnup Histories for Nuclear Spent Fuel Based on ORIGEN-S

    International Nuclear Information System (INIS)

    The purpose of this work is to develop a computer program which can accurately estimate burnup histories of spent fuels based on the environmental sample measurements. The burnup histories of spent fuels include initial uranium enrichment, discharge burnup, cooling time after discharge, and nuclear reactor type in which the spent fuel was burnt. The methodologies employed in our program are based on the formulations developed by M. R. Scott1 but we developed a stable bi-section method to correct initial uranium enrichment and used a simplified algorithm without burnup correction. Also, ORIGEN-S2 rather than ORIGEN-23 was used in our program to improve the accuracies by using the new capabilities of burnup dependent cross section libraries of ORIGEN-S. Our program is applied to several benchmark problems including realistic Mihama-3 problems to test the accuracies. We developed a computer program to determine the burnup history such as initial uranium enrichment, burnup, cooling time, and reactor type by using the results of sample measurements as input. Our methodologies are based on the methodologies given in Ref. 1 but we devised a new stable bisection method for the correction of initial uranium enrichment and we used ORIGEN-S rather than ORIGEN-2 to utilize the new capabilities of ORIGEN-S such as burnup dependent cross sections which can be prepared by using SCALE6

  7. Validation of the burn-up code EVOLCODE 2.0 with PWR experimental data and with a Sensitivity/Uncertainty analysis

    International Nuclear Information System (INIS)

    Highlights: • A successful validation of the burn-up simulation system EVOLCODE is presented here. • A Sensitivity/Uncertainty model was applied for uncertainty propagation/assessment. • Cross sections are for most cases the main contributors to inventory uncertainties. • The improved model helps to explain some simulation-experiment discrepancies. • Some hints for the improvement of basic data libraries are provided. - Abstract: A validation of the burn-up simulation system EVOLCODE 2.0 is presented here, involving the experimental measurement of U and Pu isotopes and some fission fragments production ratios after a burn-up of around 30 GWd/tU in a Pressurized Light Water Reactor (PWR). This work provides an in-depth analysis of the validation results, including the possible sources of the uncertainties. An uncertainty analysis based on the sensitivity methodology has been also performed, providing the uncertainties in the isotopic content propagated from the cross sections uncertainties. An improvement of the classical Sensitivity/Uncertainty (S/U) model has been developed to take into account the implicit dependence of the neutron flux normalization, that is, the effect of the constant power of the reactor. The improved S/U methodology, neglected in this kind of studies, has proven to be an important contribution to the explanation of some simulation-experiment discrepancies for which, in general, the cross section uncertainties are, for the most relevant actinides, an important contributor to the simulation uncertainties, of the same order of magnitude and sometimes even larger than the experimental uncertainties and the experiment-simulation differences. Additionally, some hints for the improvement of the JEFF3.1.1 fission yield library and for the correction of some errata in the experimental data are presented

  8. Regulatory Perspective on Potential Fuel Reconfiguration and Its Implication to High Burnup Spent Fuel Storage and Transportation - 13042

    International Nuclear Information System (INIS)

    The recent experiments conducted by Argonne National Laboratory on high burnup fuel cladding material property show that the ductile to brittle transition temperature of high burnup fuel cladding is dependent on: (1) cladding material, (2) irradiation conditions, and (3) drying-storage histories (stress at maximum temperature) [1]. The experiment results also show that the ductile to brittle temperature increases as the fuel burnup increases. These results indicate that the current knowledge in cladding material property is insufficient to determine the structural performance of the cladding of high burnup fuel after it has been stored in a dry cask storage system for some time. The uncertainties in material property and the elevated ductile to brittle transition temperature impose a challenge to the storage cask and transportation packaging designs because the cask designs may not be able to rely on the structural integrity of the fuel assembly for control of fissile material, radiation source, and decay heat source distributions. The fuel may reconfigure during further storage and/or the subsequent transportation conditions. In addition, the fraction of radioactive materials available for release from spent fuel under normal condition of storage and transport may also change. The spent fuel storage and/or transportation packaging vendors, spent fuel shippers, and the regulator may need to consider this possible fuel reconfiguration and its impact on the packages' ability to meet the safety requirements of Part 72 and Part 71 of Title 10 of the Code of Federal Regulations. The United States Nuclear Regulatory Commission (NRC) is working with the scientists at Oak Ridge National Laboratory (ORNL) to assess the impact of fuel reconfiguration on the safety of the dry storage systems and transportation packages. The NRC Division of Spent Fuel Storage and Transportation has formed a task force to work on the safety and regulatory concerns in relevance to high burnup

  9. A technique of melting temperature measurement and its application for irradiated high-burnup MOX fuels

    International Nuclear Information System (INIS)

    A melting temperature measurement technique for irradiated oxide fuels is described. In this technique, the melting temperature was determined from a thermal arrest on a heating curve of the specimen which was enclosed in a tungsten capsule to maintain constant chemical composition of the specimen during measurement. The measurement apparatus was installed in an alpha-tight steel box within a gamma-shielding cell and operated by remote handling. The temperature of the specimen was measured with a two-color pyrometer sighted on a black-body well at the bottom of the tungsten capsule. The diameter of the black-body well was optimized so that the uncertainties of measurement were reduced. To calibrate the measured temperature, two reference melting temperature materials, tantalum and molybdenum, were encapsulated and run before and after every oxide fuel test. The melting temperature data on fast reactor mixed oxide fuels irradiated up to 124 GWd/t were obtained. In addition, simulated high-burnup mixed oxide fuel up to 250 GWd/t by adding non-radioactive soluble fission products was examined. These data shows that the melting temperature decrease with increasing burnup and saturated at high burnup region. (author)

  10. Characterisation of high-burnup LWR fuel rods through gamma tomography

    International Nuclear Information System (INIS)

    Current fuel management strategies for light water reactors (LWRs), in countries with high back-end costs, progressively extend the discharge burnup at the expense of increasing the 235U enrichment of the fresh UO2 fuel loaded. In this perspective, standard non-destructive assay techniques, which are very attractive because they are fast, cheap, and preserve the fuel integrity, in contrast to destructive approaches, require further validation when burnup values become higher than 50 GWd/t. This doctoral work has been devoted to the development and optimisation of non-destructive assay techniques based on gamma-ray emissions from irradiated fuel. It represents an important extension of the unique, high-burnup related database, generated in the framework of the LWR PROTEUS Phase II experiments. A novel tomographic measurement station has been designed and developed for the investigation of irradiated fuel rod segments. A unique feature of the station is that it allows both gamma-ray transmission and emission computerised tomography to be performed on single fuel rods. Four burnt UO2 fuel rod segments of 400 mm length have been investigated, two with very high (52 GWd/t and 71 GWd/t) and two with ultra-high (91 GWd/t and 126 GWd/t) burnup. Several research areas have been addressed, as described below. The application of transmission tomography to spent fuel rods has been a major task, because of difficulties of implementation and the uniqueness of the experiments. The main achievements, in this context, have been the determination of fuel rod average material density (a linear relationship between density and burnup was established), fuel rod linear attenuation coefficient distribution (for use in emission tomography), and fuel rod material density distribution. The non-destructive technique of emission computerised tomography (CT) has been applied to the very high and ultra-high burnup fuel rod samples for determining their within-rod distributions of caesium and

  11. Use of burnup credit in criticality evaluation for spent fuel storage pool

    International Nuclear Information System (INIS)

    Boraflex is a polymer based material which is used as matrix to contain a neutron absorber material, boron carbide. In a typical spent fuel pool the irradiated Boraflex has been known as a significant source of silica. Since 1996, it was reported that elevated silica levels were measured in the Ulchin Unit 2 spent fuel pool water. Therefore, the Ulchin Unit 2 spent fuel storage racks were needed to be reanalyzed to allow storage of fuel assemblies with normal enrichments up to 5.0w/o U-235 in all storage cell locations using credit for burnup. The analysis does not take any credit for the presence of the spent fuel rack Boraflex neutron absorber panels. In region 2, the calculations were performed by assuming in an infinite radial array of storage cells. No credit is taken for axial or radial neutron leakage. The water in the spent fuel storage pool was assumed to be pure. In the evaluation of the Ulchin Unit 2 spent fuel storage pool, criticality analyses were performed with the CASMO-3 code. A reactivity uncertainty in the fuel depletion calculations was combined with other calculational uncertainty. The manufacturing tolerances were considered, as well. From the calculation, the acceptable burnup domain in region 2 of the spent fuel storage pool. where the curve identifies conditions of equal reactivity for various initial enrichments between 1.6w/o and 5.0w/o, was evaluated. In region 2, the maximum keff including all uncertainties, is 0.94648 for the enrichment-burnup combination from loading curve. (author)

  12. Fuel Cycle Cost Calculations for a 120,000 shp PWR for Ship Propulsion. RCN Report

    International Nuclear Information System (INIS)

    A parametric study of the fuel cycle costs for a 120,000 SHP PWR for ship propulsion has been carried out. Variable parameters are: fuel pellet diameter, moderating ratio and refuelling scheme. Minimum fuel cycle costs can be obtained at moderating ratios of about 2.2. Both fuel cycle costs and reactor control requirements favour the two batch core. (author)

  13. Probabilistic safety criteria on high burnup HWR fuels

    International Nuclear Information System (INIS)

    BACO is a code for the simulation of the thermo-mechanical and fission gas behaviour of a cylindrical fuel rod under operation conditions. Their input parameters and, therefore, output ones may include statistical dispersion. In this paper, experimental CANDU fuel rods irradiated at the NRX reactor together with experimental MOX fuel rods and the IAEA-CRP FUMEX cases are used in order to determine the sensitivity of BACO code predictions. The techniques for sensitivity analysis defined in BACO are: the 'extreme case analysis', the 'parametric analysis' and the 'probabilistic (or statistics) analysis'. We analyse the CARA and CAREM fuel rods relation between predicted performance and statistical dispersion in order of enhanced their original designs taking account probabilistic safety criteria and using the BACO's sensitivity analysis. (author)

  14. Assessment of dry storage performance of spent LWR fuel assemblies with increasing burnup

    International Nuclear Information System (INIS)

    To assess the extended storage performance of spent LWR-fuel, the available experience can be collated into 3 storage modes: mode I: fast decrease rate of temperature between maximum of licensed dry storage temperature and 300 deg. C; mode II: medium decrease rate of the fuel rod dry storage temperature between 300 deg. C and 200 deg. C; mode III: slow to negligible decrease rate of fuel rod dry storage temperature for temperatures less than 200 deg. C. Mode I is typical for early interim storage, mode III covers extremely long term storage which is encountered presumably for nearly all dry storage extensions to be considered. Mode II dry storage is characterised by the fact that all creep deformations of the spent fuel cladding can already be regarded as terminated as well as the corrosive attack of the cladding. Reviewing the fission product behaviour under dry storage conditions it can be pointed out that the fission products generated in the UO2-fuel under in service conditions are practically immobile in the UO2-fuel lattice during storage. Consequently all fission product driven defect mechanisms like stress corrosion cracking (SCC), uniform fuel rod internal fission product corrosion of the cladding, localised fuel rod internal fission product corrosion of the cladding, will not take place. The leading defect mechanism for spent fuel rod in dry storage - also for fuel rod with increased burn-up - remains creep due to the hoop strain resulting from the fuel rod internal fission gas pressure. Limiting the creep to its primary and secondary stages prevents fuel rod degradation. Post-pile creep of fuel rod cladding can be described conservatively by the creep of unirradiated cladding. The allowable uniform strain of the cladding in its typical post-pile condition preventing tertiary creep under dry spent fuel storage conditions is 1-2%. Dry storage performance prediction of fuel assemblies with a burn-up ≤ 65 GWd/tHM was calculated based on the fuel assemblies

  15. Burnup credit application in criticality analysis of storage casks with spent RBMK-1500 nuclear fuel

    International Nuclear Information System (INIS)

    Nuclear criticality safety analysis of two types of the casks CASTOR RBMK-1500 and CONSTOR RBMK-1500 was performed using the SCALE 4.3 computer code system. These casks are planned for an interim dry storage of spent nuclear fuel at Ignalina nuclear power plant. Effective neutron multiplication factor keff was calculated for different density of the water inside the casks for unfavorable operational cases and for assumed hypothetical accident conditions when fuel in the system is fresh and fuel is depleted (i.e. burnup credit taken into account). Results show that for all cases effective neutron multiplication factor keff is less then allowable value 0.95. (author)

  16. Fuel chemistry and pellet-clad interaction related to high burnup fuel. Proceedings of the technical committee

    International Nuclear Information System (INIS)

    The purpose of the meeting was to review new developments in clad failures. Major findings regarding the causes of clad failures are presented in this publication, with the main topics being fuel chemistry and fission product behaviour, swelling and pellet-cladding mechanical interaction, cladding failure mechanism at high burnup, thermal properties and fuel behaviour in off-normal conditions. This publication contains 17 individual presentations delivered at the meeting; each of them was indexed separately

  17. Technical Basis for Peak Reactivity Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, William BJ J [ORNL; Ade, Brian J [ORNL; Bowman, Stephen M [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL; Mertyurek, Ugur [ORNL; Radulescu, Georgeta [ORNL

    2015-01-01

    Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate application of burnup credit for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase (1) investigates applicability of peak reactivity methods currently used in spent fuel pools (SFPs) to storage and transportation systems and (2) evaluates validation of both reactivity (keff) calculations and burnup credit nuclide concentrations within these methods. The second phase will focus on extending burnup credit beyond peak reactivity. This paper documents the first phase, including an analysis of lattice design parameters and depletion effects, as well as both validation components. Initial efforts related to extended burnup credit are discussed in a companion paper. Peak reactivity analyses have been used in criticality analyses for licensing of BWR fuel in SFPs over the last 20 years. These analyses typically combine credit for the gadolinium burnable absorber present in the fuel with a modest amount of burnup credit. Gadolinium burnable absorbers are used in BWR assemblies to control core reactivity. The burnable absorber significantly reduces assembly reactivity at beginning of life, potentially leading to significant increases in assembly reactivity for burnups less than 15–20 GWd/MTU. The reactivity of each fuel lattice is dependent on gadolinium loading. The number of gadolinium-bearing fuel pins lowers initial lattice reactivity, but it has a small impact on the burnup and reactivity of the peak. The gadolinium concentration in each pin has a small impact on initial lattice reactivity but a significant effect on the reactivity of the peak and the burnup at which the peak occurs. The importance of the lattice parameters and depletion conditions are primarily determined by their impact on the gadolinium depletion. Criticality code validation for BWR burnup

  18. Analytical and numerical study of radiation effect up to high burnup in power reactor fuels

    International Nuclear Information System (INIS)

    In the present work the behavior of fuel pellets for power reactors in the high burnup range (average burnup higher than 50 MWd/kgHM) is analyzed. For extended irradiation periods, a considerable Pu concentration is reached in the pellet periphery (rim zone), that contributes to local burnup, as long as a new microstructure develops, characterized by small grains and large pores as compared with those of the original material. In this region Xe is absent from the solid lattice (although it continues to be dissolved in the rest of the pellet). The porous microstructure in the pellet edge causes local changes in the mechanical and thermal properties, thus affecting the overall fuel behaviour. The evolution of porosity in the high burnup structure (HBS) is assumed to be determinant of the retention capacity of the fission gases released by the matrix. This is the reason why, during the latest years a considerable effort has been devoted to characterizing the parameters that influence porosity. Starting from several works published in the open literature, a model was developed to describe the behaviour and evolution of porosity at local burnup values ranging from 60 to 300 MWd/KgHM. The model is mathematically expressed by a system of non-linear differential equations that take into account the open and closed porosity, the interactions between pores and the free surface and phenomena like pore's coalescence and migration and gas venting. Interactions of different orders between open and closed pores, growth of pores radius by vacancies trapping, the evolution of the pores number density, the internal pressure and over pressure within the pores, the fission gas retained in the matrix and released to the free volume are analyzed. The results of the simulations performed in the present work are in excellent agreement with experimental data available in the open literature and with results calculated by other authors (author)

  19. Effect of burnup dependence of fuel cladding gap properties on WWER core characteristics

    International Nuclear Information System (INIS)

    Dependence of gas gap properties on burnup has been obtained with use of TRANSURANUS code. Implemented dependency on burnup is based on TRANSURANUS calculations of different fuel pins upon different linear power Ql. Obtained dependence was implemented into DYN3D code and results of new dependence effect on characteristics of WWER fuel loadings are presented. The work was performed in framework of orders BMU SR 2511 and BMU R0801504 (SR2611). The report describes the opinion and view of the contractor-State Scientific and Technical Centre on Nuclear and Radiation Safety-and does not necessarily represent the opinion of the ordering party-BMU-BfS/GRS and TUEV SUED. (Authors)

  20. Experience with incomplete control rod insertion in fuel with burnup exceeding approximately 40 GWD/MTU

    Energy Technology Data Exchange (ETDEWEB)

    Kee, E. [Houston Lighting & Power Co., Wadworth, TX (United States)

    1997-01-01

    Analysis and measurement experience with fuel assemblies having incomplete control rod insertion at burnups of approximately 40 GWD/MTU is presented. Control rod motion dynamics and simplified structural analyses are presented and compared to measurement data. Fuel assembly growth measurements taken with the plant Refueling Machine Z-Tape are described and presented. Bow measurements (including plug gauging) are described and potential improvements are suggested. The measurements described and analysis performed show that sufficient guide tube bow (either from creep or yield buckling) is present in some high burnup assemblies to stop the control rods before they reach their full limit of travel. Recommendations are made that, if implemented, could improve cost performance related to testing and analysis activities.

  1. Flowchart evaluations of irradiated fuel treatment process of low burnup thorium

    International Nuclear Information System (INIS)

    A literature survey has been carried out, on some versions of the acid-thorex process. Flowsheets of the different parts of the process were evaluated with mixer-settlers experiments. A low burnup thorium fuel (mass ratio Th/U∼100/1), proposed for Brazilian fast breeder reactor initial program, was considered. The behaviour of some fission products was studied by irradiated tracers techniques. Modifications in some of the process parameters were necessary to achieve low losses of 233U and 232U and 232Th. A modified acid-thorex process flowsheet, evaluated in a complete operational cycle, for the treatment of low burnup thorium fuels, is presented. High decontamination factors of thorium in uranium, with reasonable decontamination of uranium in thorium, were achieved. (author)

  2. 2005 status and future of burnup credit in the USA

    International Nuclear Information System (INIS)

    At the beginning of 2005 in the USA burnup credit is licensed for PWR and BWR spent fuel pools, is under license review for a transport cask, is under discussion for disposal criticality. Two basic approaches exist for burnup credit. The first approach, which is licensed for spent fuel pools, utilizes criticality experience with spent fuel that has not been chemically assayed. The second approach to burnup credit comes from utilizing chemical assay data to validate the depletion calculations and then clean critical experiments to validate the criticality calculation. A burnup credit standard (ANS/ANSI-8.27) is under development where the two approaches are actively discussed. Issues related to the two approaches are presented as well as possible ways of resolving the issues. (author)

  3. Determination of dependence of fissile fraction in MOX fuels on spent fuel storage period for different burnup values

    International Nuclear Information System (INIS)

    Highlights: ► In a previous study, an expression to calculate fissile fraction of MOX for various burnups was obtained for 5-year cooled SF. ► In this follow-up study, a correction factor for spent fuel storage periods other than 5 years is derived. ► Thus, one major restriction on use of the expression derived in the initial study is eliminated. - Abstract: The purpose of this technical note is to remove one of the limitations of a derived expression in a previously published article (Özdemir et al., 2011). The original article focused on deriving (computationally) an expression for calculating total fissile fraction of mixed oxid (MOX) fuels depending on discharge burnup of spent fuel and desired burnup of MOX fuel; consequently, such an expression was obtained and put forward, together with its limitations. One of the limitations has been that all the computations and therefore the resulting expression are based on the assumption of a spent fuel storage period of 5 years. This follow-up study simply aims to obtain a correction factor for spent fuel storage periods other than 5 years; thus to remove one major restriction on use of the expression derived in the original article

  4. Burnup calculations and chemical analysis of irradiated fuel samples studied in LWR-PROTEUS phase II

    International Nuclear Information System (INIS)

    The isotopic compositions of 5 UO2 samples irradiated in a Swiss PWR power plant, which were investigated in the LWR-PROTEUS Phase II programme, were calculated using the CASMO-4 and BOXER assembly codes. The burnups of the samples range from 50 to 90 MWd/kg. The results for a large number of actinide and fission product nuclides were compared to those of chemical analyses performed using a combination of chromatographic separation and mass spectrometry. A good agreement of calculated and measured concentrations is found for many of the nuclides investigated with both codes. The concentrations of the Pu isotopes are mostly predicted within ±10%, the two codes giving quite different results, except for 242Pu. Relatively significant deviations are found for some isotopes of Cs and Sm, and large discrepancies are observed for Eu and Gd. The overall quality of the predictions by the two codes is comparable, and the deviations from the experimental data do not generally increase with burnup. (authors)

  5. Determination of uranium in PWR spent fuels by coulometric titration method

    International Nuclear Information System (INIS)

    Controlled-potential coulometric titration method was applied in 0.5M sulphuric acid medium for the determination of uranium content in samples of PWR spent fuel. In this study, we discussed some experimental conditions related to the determination of uranium in PWR spent fuel samples. Accuracy(recovery of uranium) for the coulometric determination of 1∼7mg uranium standard was 99.96∼100.88%. Precision(relative standard deviation, rsd) for the coulometric determination(n=3) of 3∼4mg uranium in PWR spent fuel samples was 0.07∼0.68%. Relative error for the results of the potentiometric and coulometric determination of uranium PWR spent fuel samples was +0.65∼-2.76%

  6. Investigation of burnup credit allowance in the criticality safety evaluation of spent fuel casks

    International Nuclear Information System (INIS)

    This presentation discusses work in progress on criticality analysis verification for designs which take account of the burnup and age of transported fuel. The work includes verification of cross section data, correlation with experiments, proper extension of the methods into regimes not covered by experiments, establishing adequate reactivity margins, and complete documentation of the project. Recommendations for safe operational procedures are included, as well as a discussion of the economic and safety benefits of such designs

  7. PLD-IDMS studies towards direct measurement of burn-up of nuclear fuel

    International Nuclear Information System (INIS)

    A method based on Pulsed laser deposition followed by Isotope dilution mass spectrometric method is evaluated towards the possibility of direct measurement of burn up of nuclear fuel and also to find out spatial distribution of burn-up along the pellet. The wave length dependent results show larger error with 1064 nm, compared to 532 nm laser beam. Much less error is expected with shorter wave length and shorter pulse width laser beam. Further work is being carried out in this direction

  8. Evaluation of safety criteria on LOCA and RIA for high burnup nuclear fuel

    International Nuclear Information System (INIS)

    Comprehensive researches in many countries and some international research programs to investigate the applicability to high burnup nuclear fuels have been performing as the existing safety criteria of DBA such as LOCA and RIA was established several decades ago. In this report, main research programs for the safety criteria of DBA such as LOCA and RIA are introduced, and also the current status on the modification of the safety criteria are also introduced

  9. Evaluation of safety criteria on LOCA and RIA for high burnup nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Ki; Bang, Je Geon; Kim, Dae Ho; Yang, Yong Sik; Song, Keun Woo

    2007-12-15

    Comprehensive researches in many countries and some international research programs to investigate the applicability to high burnup nuclear fuels have been performing as the existing safety criteria of DBA such as LOCA and RIA was established several decades ago. In this report, main research programs for the safety criteria of DBA such as LOCA and RIA are introduced, and also the current status on the modification of the safety criteria are also introduced.

  10. Grain size and burnup dependence of spent fuel oxidation: Geological repository impact

    International Nuclear Information System (INIS)

    Further refinements to the oxidation model of Stout et al. have been made. The present model incorporates the burnup dependence of the oxidation rate and an allowance for a distribution of grain sizes. The model was tested by comparing the model results with the oxidation histories of spent-fuel samples oxidized in thermogravimetric analysis (TGA) or oven dry-bath (ODB) experiments. The experimental and model results are remarkably close and confirm the assumption that grain-size distributions and activation energies are the important parameters to predicting oxidation behavior. The burnup dependence of the activation energy was shown to have a greater effect than decreasing the effective grain size in suppressing the rate of the reaction U4O9r↓U3O8. Model results predict that U3O8 formation of spent fuels exposed to oxygen will be suppressed even for high burnup fuels that have undergone restructuring in the rim region, provided the repository temperature is kept sufficiently low

  11. Standard- and extended-burnup PWR [pressurized-water reactor] and BWR [boiling-water reactor] reactor models for the ORIGEN2 computer code

    International Nuclear Information System (INIS)

    The purpose of this report is to describe an updated set of reactor models for pressurized-water reactors (PWRs) and boiling-water reactors (BWRs) operating on uranium fuel cycles and the methods used to generate the information for these models. Since new fuel cycle schemes and reactor core designs are introduced from time to time by reactor manufacturers and fuel vendors, an effort has been made to update these reactor models periodically and to expand the data bases used by the ORIGEN2 computer code. In addition, more sophisticated computational techniques than previously available were used to calculate the resulting reactor model cross-section libraries. The PWR models were based on a Westinghouse design, while the BWR models were based on a General Electric BWR/6 design. The specific reactor types considered in this report are as follows (see Glossary for the definition of these and other terms): (1) PWR-US, (2) PWR-UE, (3) BWR-US, (4) BWR-USO, and (5) BWR-UE. Each reactor model includes a unique data library that may be used to simulate the buildup and deletion of isotopes in nuclear materials using the ORIGEN2 computer code. 33 refs., 44 tabs

  12. Modeling fission gas release in high burnup ThO2-UO2 fuel

    International Nuclear Information System (INIS)

    A preliminary fission gas release model to predict the performance of thoria fuel using the FRAPCON-3 computer code package has been formulated. The following modeling changes have been made in the code: - Radial power/burnup distribution; - Thermal conductivity and thermal expansion; - Rim porosity and fuel density; - Diffusion coefficient of fission gas in ThO2-UO2 fuel and low temperature fission gas release model. Due to its lower epithermal resonance absorption, thoria fuel experiences a much flatter distribution of radial fissile products and radial power distribution during operation as compared to uranian fuel. The rim effect and its consequences in thoria fuel, therefore, are expected to occur only at relatively high burnup levels. The enhanced conductivity is evident for ThO2, but for a mixture the thermal conductivity enhancement is small. The lower thermal fuel expansion tends to negate these small advantages. With the modifications above, the new version of FRAPCON-3 matched the measured fission gas release data reasonably well using the ANS 5.4 fission gas release model. (authors)

  13. Chemical separation for the burnup determination of the U3Si/Al spent fuels

    International Nuclear Information System (INIS)

    The separation of U, Pu, and Nd for the burnup determination of the U3Si/Al spent fuel samples has been studied. The preliminary experiments were carried out with the simulated spent fuel solution. The solutions were prepared by adding of fission product elements to unirradiated U3Si/Al fuel samples. The fuel samples were dissolved in 6 M HNO3, 6 M HNO3 using mercury catalyst, or applying a mixture of HCl and HNO3 without any catalyst. All dissolved fuel solutions contained a small amount of a residue(silica). The trace silica reprecipitated from the fuel solutions taken for the separation was dissolved in HF and removed by subsequent evaporating to dryness. The separation of U and fission product elements from the various sample solutions was achieved by two sequential anion exchange resin separation procedures. The U, Pu and Nd can be purely isolated from the sample solutions with a large excess of Al by this chromatographic procedures. The dissolution and separation procedure used in this experiment were applied for burnup determination of real U3Si/Al spent fuels from HANARO reactor

  14. Quantitative analysis of gases in fuels. Applications to PWR type reactors fuels

    International Nuclear Information System (INIS)

    The different methods used in Saclay and Cadarache to determine the quantity of gases which are present in fuels and fuel cans of PWR type reactors are described. These gases are fission gases (Xe, Kr), pollutant gases (hydrocarbons, N2, O2, H2O, CO, CO2), filling gases (He) or hydrides. A description of the equipment and the operation mode used are given. The obtained results on uranium oxides and mixed oxide fuels are compared with the measures of gases released in the whole rod. (O.M.)

  15. Chemical analyses and calculation of isotopic compositions of high-burnup UO2 fuels and MOX fuels

    International Nuclear Information System (INIS)

    Chemical analysis activities of isotopic compositions of high-burnup UO2 fuels and MOX fuels in CRIEPI and calculation evaluation are reviewed briefly. C/E values of ORIGEN2, in which original libraries and JENDL-3.2 libraries are used, and other codes with chemical analysis data are reviewed and evaluated. Isotopic compositions of main U and Pu in fuels can be evaluated within 10% relative errors by suitable libraries and codes. Void ratio is effective parameter for C/E values in BWR fuels. JENDL-3.2 library shows remarkable improvement compared with original libraries in isotopic composition evaluations of FP nuclides. (author)

  16. DUPIC fuel fabrication using spent PWR fuels at KAERI

    International Nuclear Information System (INIS)

    This document contains DUPIC fuel cycle R and D activities to be carried out for 5 years beyond the scope described in the report KAERI/AR-510/98, which was attached to Joint Determination for Post-Irradiation Examination of irradiated nuclear fuel, by MOST and US Embassy in Korea, signed on April 8, 1999. This document is purposely prepared as early as possible to have ample time to review that the over-all DUPIC activities are within the scope and contents in compliance to Article 8(C) of ROK-U.S. cooperation agreement, and also maintain the current normal DUPIC project without interruption. Manufacturing Program of DUPIC Fuel in DFDF and Post Irradiation Examination of DUPIC Fuel are described in Chapter I and Chapter II, respectively. In Chapter III, safeguarding procedures in DFDF and on-going R and D on DUPIC safeguards such as development of nuclear material accounting system and development of containment/surveillance system are described in details

  17. Study on advanced nuclear fuel cycle of PWR/CANDU synergism

    International Nuclear Information System (INIS)

    According to the concrete condition that China has both PWR and CANDU reactors, one of the advanced nuclear fuel cycle strategy of PWR/CANDU synergism ws proposed, i.e. the reprocessed uranium of spent PWR fuel was used in CANDU reactor, which will save the uranium resource, increase the energy output, decrease the quantity of spent fuels to be disposed and lower the cost of nuclear power. Because of the inherent flexibility of nuclear fuel cycle in CANDU reactor, the transition from the natural uranium to the recycled uranium (RU) can be completed without any changes of the structure of reactor core and operation mode. Furthermore, because of the low radiation level of RU, which is acceptable for CANDU reactor fuel fabrication, the present product line of fuel elements of CANDU reactor only need to be shielded slightly, also the conditions of transportation, operation and fuel management need not to be changed. Thus this strategy has significant practical and economical benefit

  18. High burnup fast reactor fuel: processing and waste management experiences

    International Nuclear Information System (INIS)

    The routine processing of mixed Plutonium/Uranium oxide fuels from the Prototype Fast Reactor (PFR) at Dounreay began in September 1980 and the design features of the modified Dounreay Fast Reactor (DFR) reprocessing plant and experience of the first active campaign were described in a paper to the British Nuclear Engineering Society in November 1981 (1). Since then progress in processing the fuel discharged from PFR has been covered briefly in a number of papers to international conferences and the Public Inquiry held in 1986 into the outline planning application for the proposed European Demonstration Reprocessing Plant. During this decade considerable experience in the operation of fast reactors and associated fuel plants has been accumulated providing confidence in the system before entering the next development phase - that of its commercial demonstration. Confidence in the UK draws on the successful operation of the PFR and the associated Dounreay fuel reprocessing and BNF Sellafield fabrication plants. Of equal importance is public confidence in safe operation and in the management of wastes generated by a fast reactor system. The present paper is a review of fast reactor reprocessing and waste management at the Dounreay Nuclear Establishment (DNE) as a contribution to the present status of the fast reactor system

  19. A relative risk comparison of criticality control strategies based on fresh fuel and burnup credit design bases

    International Nuclear Information System (INIS)

    The fresh fuel design basis provides some margin of safety, i.e., criticality safety is almost independent of loading operations if fuel designs do not change significantly over the next 40 years. However, the design basis enrichment for future nuclear fuel will most likely vary with time. As a result, it cannot be guaranteed that the perceived passivity of the concept will be maintained over the life cycle of a future cask system. Several options are available to ensure that the reliability of a burnup credit system is comparable to or greater than that of a system based on a fresh fuel assumption. Criticality safety and control reliability could increase with burnup credit implementation. The safety of a burnup credit system could be comparable to that for a system based on the fresh fuel assumption. A burnup credit philosophy could be implemented without any cost-benefit tradeoff. A burnup credit design basis could result in a significant reduction in total system risk as well as economic benefits. These reductions occur primarily as a result of increased cask capacities and, thus, fewer shipments. Fewer shipments also result in fewer operations over the useful life of a cask, and opportunities for error decrease. The system concept can be designed such that only benefits occur. These benefits could include enhanced criticality safety and the overall reliability of cask operations, as well as system risk and economic benefits. Thus, burnup credit should be available as an alternative for the criticality design of spent fuel shipping casks

  20. Development of a code and models for high burnup fuel performance analysis

    International Nuclear Information System (INIS)

    First the high burnup LWR fuel behavior is discussed and necessary models for the analysis are reviewed. These aspects of behavior are the changes of power history due to the higher enrichment, the temperature feedback due to fission gas release and resultant degradation of gap conductance, axial fission gas transport in fuel free volume, fuel conductivity degradation due to fission product solution and modification of fuel micro-structure. Models developed for these phenomena, modifications in the code, and the benchmark results mainly based on Risoe fission gas project is presented. Finally the rim effect which is observe only around the fuel periphery will be discussed focusing into the fuel conductivity degradation and swelling due to the porosity development. (author). 18 refs, 13 figs, 3 tabs