WorldWideScience

Sample records for burnup nuclear fuel

  1. Development of high burnup nuclear fuel technology

    International Nuclear Information System (INIS)

    Suk, Ho Chun; Kang, Young Hwan; Jung, Jin Gone; Hwang, Won; Park, Zoo Hwan; Ryu, Woo Seog; Kim, Bong Goo; Kim, Il Gone

    1987-04-01

    The objectives of the project are mainly to develope both design and manufacturing technologies for 600 MWe-CANDU-PHWR-type high burnup nuclear fuel, and secondly to build up the foundation of PWR high burnup nuclear fuel technology on the basis of KAERI technology localized upon the standard 600 MWe-CANDU- PHWR nuclear fuel. So, as in the first stage, the goal of the program in the last one year was set up mainly to establish the concept of the nuclear fuel pellet design and manufacturing. The economic incentives for high burnup nuclear fuel technology development are improvement of fuel utilization, backend costs plant operation, etc. Forming the most important incentives of fuel cycle costs reduction and improvement of power operation, etc., the development of high burnup nuclear fuel technology and also the research on the incore fuel management and safety and technologies are necessary in this country

  2. Nuclear fuel burn-up economy

    International Nuclear Information System (INIS)

    Matausek, M.

    1984-01-01

    In the period 1981-1985, for the needs of Utility Organization, Beograd, and with the support of the Scientific Council of SR Srbija, work has been performed on the study entitled 'Nuclear Fuel Burn-up Economy'. The forst [phase, completed during the year 1983 comprised: comparative analysis of commercial NPP from the standpoint of nuclear fuel requirements; development of methods for fuel burn-up analysis; specification of elements concerning the nuclear fuel for the tender documentation. The present paper gives the short description of the purpose, content and results achieved in the up-to-now work on the study. (author)

  3. Nuclear fuels with high burnup: safety requirements

    International Nuclear Information System (INIS)

    Phuc Tran Dai

    2016-01-01

    Vietnam authorities foresees to build 3 reactors from Russian design (VVER AES 2006) by 2030. In order to prepare the preliminary report on safety analysis the Vietnamese Agency for Radioprotection and Safety has launched an investigation on the behaviour of nuclear fuels at high burnups (up to 60 GWj/tU) that will be those of the new plants. This study deals mainly with the behaviour of the fuel assemblies in case of loss of coolant (LOCA). It appears that for an average burnup of 50 GWj/tU and for the advanced design of the fuel assembly (cladding and materials) safety requirements are fulfilled. For an average burnup of 60 GWj/tU, a list of issues remains to be assessed, among which the impact of clad bursting or the hydrogen embrittlement of the advanced zirconium alloys. (A.C.)

  4. Study of nuclear fuel burn-up

    International Nuclear Information System (INIS)

    Pavelescu, M.; Borza, M.

    1975-01-01

    The authors approach theoretical treatment of isotopic composition changement for nuclear fuel in nuclear reactors. They show the difficulty of exhaustive treatment of burn-up problems and introduce the principal simplifying principles. Due to these principles they write and solve analytically the evolution equations of the concentration for the principal nuclides both in the case of fast and thermal reactors. Finally, they expose and comment the results obtained in the case of a power fast reactor. (author)

  5. Burnup determination of mass spectrometry for nuclear fuels

    International Nuclear Information System (INIS)

    Zhang Chunhua.

    1987-01-01

    The various methods currently being used in burnup determination of nuclear fuels are studied and reviewed. The mass spectrometry method of destructive testing is discussed emphatically. The burnup determination of mass spectrometry includes heavy isotopic abundance ratio method and isotope dilution mass spectrometry used as burnup indicator for the fission products. The former is applied to high burnup level, but the later to various burnup level. According to experiences, some problems which should be noticed in burnup determination of mass spectrometry are presented

  6. Determination of nuclear fuel burn-up

    International Nuclear Information System (INIS)

    Kristak, J.; Vobecky, M.

    1973-01-01

    Samples containing a known content of 235 U were irradiated with several different neutron doses and activities were determined of radionuclides including 125 Sb, 144 Ce, 134 Cs, 154 Eu, 103 Ru, 95 Zr. The values thus obtained were divided by the 137 Cs activity value. The resulting neutron dose-dependent value is plotted into a calibration graph. The degree of nuclear fuel burn-up is obtained from the graph using an experimentally determined ratio of the activities of the above radionuclides. (B.S.)

  7. Nuclear fuel burn-up economy; Ekonomija izgaranja nuklearnog goriva

    Energy Technology Data Exchange (ETDEWEB)

    Matausek, M [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1984-07-01

    In the period 1981-1985, for the needs of Utility Organization, Beograd, and with the support of the Scientific Council of SR Srbija, work has been performed on the study entitled 'Nuclear Fuel Burn-up Economy'. The forst [phase, completed during the year 1983 comprised: comparative analysis of commercial NPP from the standpoint of nuclear fuel requirements; development of methods for fuel burn-up analysis; specification of elements concerning the nuclear fuel for the tender documentation. The present paper gives the short description of the purpose, content and results achieved in the up-to-now work on the study. (author)

  8. SOURCE OF BURNUP VALUES FOR COMMERCIAL SPENT NUCLEAR FUEL ASSEMBLIES

    International Nuclear Information System (INIS)

    BSC

    2004-01-01

    Waste packages are loaded with commercial spent nuclear fuel (SNF) that satisfies the minimum burnup requirements of a criticality loading curve. The burnup value assigned by the originating nuclear utility to each SNF assembly (assigned burnup) is used to load waste packages in compliance with a criticality loading curve. The burnup provided by a nuclear utility has uncertainties, so conservative calculation methods are used to characterize those uncertainties for incorporation into the criticality loading curves. Procedural safety controls ensure that the correct assembly is loaded into each waste package to prevent a misload that could create a condition affecting the safety margins. Probabilistic analyses show that procedural safety controls can minimize the chance of a misload but can not completely eliminate the possibility. Physical measurements of burnup with instrumentation in the surface facility are not necessary due to the conservative calculation methods used to produce the criticality loading curves. The reactor records assigned burnup of a commercial SNF assembly contains about two percent uncertainty, which is increased to five-percent to ensure conservatism. This five-percent uncertainty is accommodated by adjusting the criticality loading curve. Also, the record keeping methods of nuclear utilities are not uniform and the level of detail required by the NRC has varied over the last several decades. Thus, some SNF assemblies may have assigned burnups that are averages for a batch of assemblies with similar characteristics. Utilities typically have access to more detailed core-follow records that allow the batch average burnup to be changed to an assembly specific burnup. Alternatively, an additional safety margin is incorporated into the criticality loading curve to accommodate SNF assemblies with batch average burnups or greater uncertainties due to the methodology used by the nuclear utility. The utility records provide the assembly identifier

  9. COMRAD96, Nuclear Fuel Burnup and Depletion Calculation System

    International Nuclear Information System (INIS)

    Suyama, K.; Masukawa, F.; Ido, M.; Enomoto, M.; Takyu, S.; Hara, T.

    2002-01-01

    1 - Description of program or function: Burn-up calculation of nuclear fuel. 2 - Methods: Matrix exponential method, Bateman Equation. 3 - Restrictions on the complexity of the problem: a) One-grouped cross section library should be prepared for the fuel system to be analyzed using UNITBURN. However, UNITBURN is not available now for UNIX systems. b) Gamma ray spectrometry calculation will fail using the attached piflib routine. This problem has already been rectified in the internal version. 4 - Typical running time: Two minutes for standard burn-up calculation on Sun ULTRA 30. 5 - Unusual features - a) Selection of Matrix exponential method, or Bateman Equation. b) JDDL, a detailed decay chain data based on ENSDF. 6 - Related or auxiliary programs: UNITBURN: Burnup calculation code unit cell system

  10. chemical determination of burnup ratio in nuclear fuels

    International Nuclear Information System (INIS)

    Guereli, L.

    1997-01-01

    Measurements of the extent of fission are important to determine the irradiation performance of a nuclear fuel. The energy released per unit mass of uranium (burnup) can be determined from measurement of the percent of heavy atoms that have fissioned during irradiation.The preferred method for this determination is choosing a suitable fission monitor (usually ''1''4''8Nd) and its determination after separation from the fuel matrix. In thermal reactor fuels where the only heavy element in the starting material is uranium, uranium depletion can be used for burnup determination. ''2''3''5U depletion method requires measurement of uranium isotopic ratios of both irradiated and unirradiated fuel. Isotopic ratios can be determined by thermal ionization mass spectrometer following separation of uranium from the fuel matrix. Separation procedures include solvent extraction, ion exchange and anion exchange chromatography. Another fission monitor used is ''1''3''9La determination by HPLC. Because La is monoisotopic (''1''3''9La) in the fuel, it can be determined by chemical analysis techniques

  11. Modelling of some high burnup phenomena in nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, K; Lindstroem, F; Massih, A R [ABB Atom AB, Vaesteraas (Sweden)

    1997-08-01

    In this paper the results of some modelling efforts carried out by ABB Atom to describe certain light water reactor fuel high burnup effects are presented. In particular the degradation of fuel thermal conductivity with burnup and its impact on fuel temperature is briefly discussed. The formation of a porous rim and its effect on a thermal fission gas release has been modelled and the model has been used to predict the release of pressurized water reactor fuel rods that were operated at low power densities. Furthermore, a mathematical model which combines the diffusion and re-solution controlled thermal release with grain boundary movement has been briefly described. The model is used to compare release with diffusion only and release caused by diffusion and grain boundary sweeping (due to grain growth). Finally, analytical expressions are obtained for the calculation of fuel stoichiometry as a function of burnup. (author). 20 refs, 10 figs, 1 tab.

  12. Impact of extended burnup on the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-04-01

    The Advisory Group Meeting was held in Vienna from 2 to 5 December 1991, to review, analyse, and discuss the effects of burnup extension in both light and heavy water reactors on all aspects of the fuel cycle. Twenty experts from thirteen countries participated in this meeting. There was consensus that both economic and environmental benefits are driving forces toward the achievement of higher burnups and that the present trend of burnup extension may be expected to continue. The extended burnup has been considered for the three main stages of the fuel cycle: the front end, in-reactor issues and the back end. Thirteen papers were presented. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  13. Burnup effect on nuclear fuel cycle cost using an equilibrium model

    International Nuclear Information System (INIS)

    Youn, S. R.; Kim, S. K.; Ko, W. I.

    2014-01-01

    The degree of fuel burnup is an important technical parameter to the nuclear fuel cycle, being sensitive and progressive to reduce the total volume of process flow materials and eventually cut the nuclear fuel cycle costs. This paper performed the sensitivity analysis of the total nuclear fuel cycle costs to changes in the technical parameter by varying the degree of burnups in each of the three nuclear fuel cycles using an equilibrium model. Important as burnup does, burnup effect was used among the cost drivers of fuel cycle, as the technical parameter. The fuel cycle options analyzed in this paper are three different fuel cycle options as follows: PWR-Once Through Cycle(PWR-OT), PWR-MOX Recycle, Pyro-SFR Recycle. These fuel cycles are most likely to be adopted in the foreseeable future. As a result of the sensitivity analysis on burnup effect of each three different nuclear fuel cycle costs, PWR-MOX turned out to be the most influenced by burnup changes. Next to PWR-MOX cycle, in the order of Pyro-SFR and PWR-OT cycle turned out to be influenced by the degree of burnup. In conclusion, the degree of burnup in the three nuclear fuel cycles can act as the controlling driver of nuclear fuel cycle costs due to a reduction in the volume of spent fuel leading better availability and capacity factors. However, the equilibrium model used in this paper has a limit that time-dependent material flow and cost calculation is impossible. Hence, comparative analysis of the results calculated by dynamic model hereafter and the calculation results using an equilibrium model should be proceed. Moving forward to the foreseeable future with increasing burnups, further studies regarding alternative material of high corrosion resistance fuel cladding for the overall

  14. Calculation of fuel burn-up and fuel reloading for the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Nguyen Phuoc; Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Binh, Do Quang [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    Calculation of fuel burnup and fuel reloading for the Dalat Nuclear Research Reactor was carried out by using a new programme named HEXA-BURNUP, realized in a PC. The programme is used to calculate the following parameters of the Dalat reactor: a/Critical configurations of the core loaded with 69, 72, 74, 86, 88, 89 and 92 fuel elements. The effective multiplication coefficients equal 1 within the error ranges of less than 0.38%. b/ The thermal neutron flux distribution in the reactor. The calculated results agree with the experimental data measured at 11 typical positions. c/The average fuel burn-up for the period from Feb. 1984 to Sep. 1992. The difference between calculation and experiment is only about 1.9%. 10 fuel reloading versions are calculated, from which an optimal version is proposed. (author). 9 refs., 4 figs., 5 tabs.

  15. Construction and tests of a gamma device for experimental measurements of burnup of nuclear reactor fuel

    International Nuclear Information System (INIS)

    Brandao Junior, F.A.

    1982-01-01

    The gamma-scanning method is an important tool for the measurement of burnup of nuclear reactor fuel. The adequate knowledge of burnup allows for a better inventory of 'sensitive' fissile materials, better fuel management and provides insight on fuel behaviour and safety margins. This paper is related to the description, construction and operation of a first gamma scanning device, tested by irradiation of prototype PWR fuel pins, 14 cm long, in a Triga Mark-I reactor at very low power. Despite the limitations imposed by the low burnup, the experiment permitted a good checking of the main physical concepts and devices involved in the method. (Author) [pt

  16. Determination of burn-up of irradiated nuclear fuels using mass spectrometry

    International Nuclear Information System (INIS)

    Jagadish Kumar, S.; Telmore, V.M.; Shah, R.V.; Sasi Bhushan, K.; Paul, Sumana; Kumar, Pranaw; Rao, Radhika M.; Jaison, P.G.

    2017-01-01

    Burn-up defined as the atom percent fission, is a vital parameter used for assessing the performance of nuclear fuel during its irradiation in the reactor. Accurate data on the actinide isotopes are also essential for the reliable accountability of nuclear materials and for nuclear safeguards. Both destructive and non-destructive methods are employed in the post-irradiation analysis for the burn-up measurements. Though non-destructive methods are preferred from the point view of remote handling of irradiated fuels with high radioactivity, they do not provide the high accuracy as achieved by the chemical analysis methods. Thus destructive radiochemical and chemical analyses are still the established reference methods for accurate and reliable burn-up determination of irradiated nuclear fuels. In the destructive method, burn-up of irradiated nuclear fuel is determined by correlating the amount of a fission product formed during irradiation with that of heavy elements. Thus the destructive experimental determination of burn-up involves the dissolution of irradiated fuel samples followed by the separation and determination of heavy elements and fission product(s) to be used as burn-up monitor(s). Another approach for the experimental determination of burn-up is based on the changes in the abundances of the heavy element isotopes. A widely accepted method for burn-up determination is based on stable "1"4"8Nd and "1"3"9La as burn-up monitors. Several properties such as non-volatility, nearly same yields for thermal fissions of "2"3"5U and "2"3"9Pu etc justifies the selection of "1"4"8Nd as a burn-up monitor

  17. Basic evaluation on nuclear characteristics of BWR high burnup MOX fuel and core

    International Nuclear Information System (INIS)

    Nagano, M.; Sakurai, S.; Yamaguchi, H.

    1997-01-01

    MOX fuel will be used in existing commercial BWR cores as a part of reload fuels with equivalent operability, safety and economy to UO 2 fuel in Japan. The design concept should be compatible with UO 2 fuel design. High burnup UO 2 fuels are being developed and commercialized step by step. The MOX fuel planned to be introduced in around year 2000 will use the same hardware as UO 2 8 x 8 array fuel developed for a second step of UO 2 high burnup fuel. The target discharge exposure of this MOX fuel is about 33 GWd/t. And the loading fraction of MOX fuel is approximately one-third in an equilibrium core. On the other hand, it becomes necessary to minimize a number of MOX fuels and plants utilizing MOX fuel, mainly due to the fuel economy, handling cost and inspection cost in site. For the above reasons, it needed to developed a high burnup MOX fuel containing much Pu and a core with a large amount of MOX fuels. The purpose of this study is to evaluate basic nuclear fuel and core characteristics of BWR high burnup MOX fuel with batch average exposure of about 39.5 GWd/t using 9 x 9 array fuel. The loading fraction of MOX fuel in the core is within a range of about 50% to 100%. Also the influence of Pu isotopic composition fluctuations and Pu-241 decay upon nuclear characteristics are studied. (author). 3 refs, 5 figs, 3 tabs

  18. Calculational prediction of fuel burn-up for the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Nguyen Phuoc Lan; Do Quang Binh

    2016-01-01

    In this paper, the method of expanding operators and functions in the neutron diffusion equations as chains of time variable is used for calculation of fuel burn-up of the Dalat nuclear reactors. A computer code, named BURREF, programmed in language Fortran-77 running on IBM PC-AT, has been developed based on this method to predict the fuel burn-up of the Dalat reactor. Some results will be presented here. (author)

  19. Non destructive assay of nuclear LEU spent fuels for burnup credit application

    International Nuclear Information System (INIS)

    Lebrun, A.; Bignan, G.

    2001-01-01

    Criticality safety analysis devoted to spent fuel storage and transportation has to be conservative in order to be sure no accident will ever happen. In the spent fuel storage field, the assumption of freshness has been used to achieve the conservative aspect of criticality safety procedures. Nevertheless, after being irradiated in a reactor core, the fuel elements have obviously lost part of their original reactivity. The concept of taking into account this reactivity loss in criticality safety analysis is known as Burnup credit. To be used, Burnup credit involves obtaining evidence of the reactivity loss with a Burnup measurement. Many non destructive assays (NDA) based on neutron as well as on gamma ray emissions are devoted to spent fuel characterization. Heavy nuclei that compose the fuels are modified during irradiation and cooling. Some of them emit neutrons spontaneously and the link to Burnup is a power link. As a result, burn-up determination with passive neutron measurement is extremely accurate. Some gamma emitters also have interesting properties in order to characterize spent fuels but the convenience of the gamma spectrometric methods is very dependent on characteristics of spent fuel. In addition, contrary to the neutron emission, the gamma signal is mostly representative of the peripheral rods of the fuels. Two devices based on neutron methods but combining different NDA methods which have been studied in the past are described in detail: 1. The PYTHON device is a combination of a passive neutron measurement, a collimated total gamma measurement, and an online depletion code. This device, which has been used in several Nuclear Power Plants in western Europe, gives the average Burnup within a 5% uncertainty and also the extremity Burnup, 2. The NAJA device is an automatic device that involves three nuclear methods and an online depletion code. It is designed to cover the whole fuel assembly panel (Active Neutron Interrogation, Passive Neutron

  20. About a fuel for burnup reactor of periodical pulsed nuclear pumped laser

    International Nuclear Information System (INIS)

    Volkov, A.I.; Lukin, A.V.; Magda, L.E.; Magda, E.P.; Pogrebov, I.S.; Putnikov, I.S.; Khmelnitsky, D.V.; Scherbakov, A.P.

    1998-01-01

    A physical scheme of burnup reactor for a Periodic Pulsed Nuclear Pumped Laser was supposed. Calculations of its neutron physical parameters were made. The general layout and construction of basic elements of the reactor are discussed. The requirements for the fuel and fuel elements are established. (author)

  1. Issues of high-burnup fuel for advanced nuclear reactors

    International Nuclear Information System (INIS)

    Belac, J.; Milisdoerfer, L.

    2004-12-01

    A brief description is given of nuclear fuels for Generation III+ and IV reactors, and the major steps needed for a successful implementation of new fuels in prospective types of newly designed power reactors are outlined. The following reactor types are discussed: gas cooled fast reactors, heavy metal (lead) cooled fast reactors, molten salt cooled reactors, sodium cooled fast reactors, supercritical water cooled reactors, and very high temperature reactors. The following are regarded as priority areas for future investigations: (i) spent fuel radiotoxicity; (ii) proliferation volatility; (iii) neutron physics characteristics and inherent safety element assessment; technical and economic analysis of the manufacture of advanced fuels; technical and economic analysis of the fuel cycle back end, possibilities of spent nuclear fuel reprocessing, storage and disposal. In parallel, work should be done on the validation and verification of analytical tools using existing and/or newly acquired experimental data. (P.A.)

  2. Conservatism in the actinide-only burnup credit for PWR spent nuclear fuel packages

    International Nuclear Information System (INIS)

    Lancaster, D.B.; Rahimi, M.; Thornton, J.

    1996-01-01

    In May 1995, the U.S. Department of Energy (DOE) submitted a topical report to the U.S. Nuclear Regulatory Commission (NRC) to gain actinide-only burnup credit for spent nuclear fuel (SNF) storage, transportation, or disposal packages. After approval of this topical report, DOE intends further submittals to the NRC to acquire additional burnup credit (e.g., the topical does not use fission products and is limited to only the first 100 yr of disposal). The NRC has responded to the topical with its preliminary questions. To aid in evaluation of the method, a review of the conservatism in the actinide-only burnup credit methodology was performed. An overview of the actinide-only burnup credit methodology is presented followed by a summary of the conservatism

  3. Properties of the high burnup structure in nuclear light water reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wiss, Thierry; Rondinella, Vincenzo V.; Konings, Rudy J.M. [European Commission, Joint Research Centre, Karlsruhe (Germany). Directorate Nuclear Safety and Security; and others

    2017-07-01

    The formation of the high burnup structure (HBS) is possibly the most significant example of the restructuring processes affecting commercial nuclear fuel in-pile. The HBS forms at the relatively cold outer rim of the fuel pellet, where the local burnup is 2-3 times higher than the average pellet burnup, under the combined effects of irradiation and thermo-mechanical conditions determined by the power regime and the fuel rod configuration. The main features of the transformation are the subdivision of the original fuel grains into new sub-micron grains, the relocation of the fission gas into newly formed intergranular pores, and the absence of large concentrations of extended defects in the fuel matrix inside the subdivided grains. The characterization of the newly formed structure and its impact on thermo-physical or mechanical properties is a key requirement to ensure that high burnup fuel operates within the safety margins. This paper presents a synthesis of the main findings from extensive studies performed at JRC-Karlsruhe during the last 25 years to determine properties and behaviour of the HBS. In particular, microstructural features, thermal transport, fission gas behaviour, and thermo-mechanical properties of the HBS will be discussed. The main conclusion of the experimental studies is that the HBS does not compromise the safety of nuclear fuel during normal operations.

  4. An optimal model for fuel burnup in nuclear reactors

    International Nuclear Information System (INIS)

    Anton, V.

    1979-05-01

    An approach to minimize the number of the burnup equations taking into account the introduction of an appropriate number of fission products is given. The corresponding number of fission pseudo-products is defined. (author)

  5. Chemical analytical considerations on the determination of burnup in irradiated nuclear fuels

    International Nuclear Information System (INIS)

    Cretella, R.F.; Servant, R.E.

    1989-01-01

    Burnup in an irradiated nuclear fuel may be defined as the energy produced per mass unit, from the time the fuel is introduced into the reactor and until a given moment. It is usually shown in megawatt/day or megawatt/hour generated per ton or kilo of fuel. It is also indicated as the number of fission produced per volume unit (cm 3 ) or per every 100 initial fissionable atoms. The yield of a power plant is directly related to the burnup of its fuel load and knowing the latter contributes to optimizing the economy in reactor operation and the related technologies. The development of nuclear fuels and the operation of reactors require doing with exact and accurate methods allowing to know the burnup. Errors in this measurement have an incidence upon the fuel design, the physical and nuclear calculations, the shielding requirements, the design of vehicles for the transportation of irradiated fuels, the engineering of processing plants, etc. All these factors, in turn, have an incidence upon the cost of nuclear power generation. (Author) [es

  6. Simulation of the behaviour of nuclear fuel under high burnup conditions

    International Nuclear Information System (INIS)

    Soba, Alejandro; Lemes, Martin; González, Martin Emilio; Denis, Alicia; Romero, Luis

    2014-01-01

    Highlights: • Increasing the time of nuclear fuel into reactor generates high burnup structure. • We analyze model to simulate high burnup scenarios for UO 2 nuclear fuel. • We include these models in the DIONISIO 2.0 code. • Tests of our models are in very good agreement with experimental data. • We extend the range of predictability of our code up to 60 MWd/KgU average. - Abstract: In this paper we summarize all the models included in the latest version of the DIONISIO code related to the high burnup scenario. Due to the extension of nuclear fuels permanence under irradiation, physical and chemical modifications are developed in the fuel material, especially in the external corona of the pellet. The codes devoted to simulation of the rod behaviour under irradiation need to introduce modifications and new models in order to describe those phenomena and be capable to predict the behaviour in all the range of a general pressurized water reactor. A complex group of subroutines has been included in the code in order to predict the radial distribution of power density, burnup, concentration of diverse nuclides and porosity within the pellet. The behaviour of gadolinium as burnable poison also is modelled into the code. The results of some of the simulations performed with DIONISIO are presented to show the good agreement with the data selected for the FUMEX I/II/III exercises, compiled in the NEA data bank

  7. TOPICAL REPORT ON ACTINIDE-ONLY BURNUP CREDIT FOR PWR SPENT NUCLEAR FUEL PACKAGES

    International Nuclear Information System (INIS)

    DOE

    1997-01-01

    A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay. A set of chemical assay benchmarks is presented for this purpose as well as a method for assessing the calculational bias and uncertainty, and conservative correction factors for each isotope. (2) Validate a computer code system to predict the subcritical multiplication factor, k eff , of a spent nuclear fuel package. Fifty-seven UO 2 , UO 2 /Gd 2 O 3 , and UO 2 /PuO 2 critical experiments have been selected to cover anticipated conditions of SNF. The method uses an upper safety limit on k eff (which can be a function of the trending parameters) such that the biased k eff , when increased for the uncertainty is less than 0.95. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. Three bounding axial profiles have been established to assure the ''end effect'' is accounted for conservatively. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). Burnup credit loading curves show the minimum burnup required for a given initial enrichment. The utility burnup record is compared to this requirement after the utility accounts for the uncertainty in its record. Separate curves may be generated for each assembly design, various minimum cooling times and burnable absorber histories. (5) Verify that SNF assemblies meet the package loading criteria and confirm proper assembly selection

  8. Topical report on actinide-only burnup credit for PWR spent nuclear fuel packages. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1997-04-01

    A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay. A set of chemical assay benchmarks is presented for this purpose as well as a method for assessing the calculational bias and uncertainty, and conservative correction factors for each isotope. (2) Validate a computer code system to predict the subcritical multiplication factor, k{sub eff}, of a spent nuclear fuel package. Fifty-seven UO{sub 2}, UO{sub 2}/Gd{sub 2}O{sub 3}, and UO{sub 2}/PuO{sub 2} critical experiments have been selected to cover anticipated conditions of SNF. The method uses an upper safety limit on k{sub eff} (which can be a function of the trending parameters) such that the biased k{sub eff}, when increased for the uncertainty is less than 0.95. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. Three bounding axial profiles have been established to assure the ''end effect'' is accounted for conservatively. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). Burnup credit loading curves show the minimum burnup required for a given initial enrichment. The utility burnup record is compared to this requirement after the utility accounts for the uncertainty in its record. Separate curves may be generated for each assembly design, various minimum cooling times and burnable absorber histories. (5) Verify that SNF assemblies meet the package

  9. Influence of prolonged nuclear fuel burnup on safety characteristics of advanced PWRs

    International Nuclear Information System (INIS)

    Spasojevic, D.; Matausek, M.; Marinkovic, N.

    1989-01-01

    Prolonged nuclear fuel burnup in advanced NPP with four or more instead of three one-year cycles, and/or with 15- to 18-month instead of standard 12-month cycles, requires the fresh fuel to have increased enrichment combined with burnable poisons. This causes changes in axial and radial distribution of power generation during the particular fuel cycles, so that detailed analyses of thermal reliability of reactor core becomes necessary. This paper presents the results of the analysis of the departure from nuclear boiling ratio DNBR for an equilibrium cycle of an advanced PWR. (author)

  10. Evaluation of burnup credit for accommodating PWR spent nuclear fuel in high-capacity cask designs

    International Nuclear Information System (INIS)

    Wagner, John C.

    2003-01-01

    This paper presents an evaluation of the amount of burnup credit needed for high-density casks to transport the current U.S. inventory of commercial spent nuclear fuel (SNF) assemblies. A prototypic 32-assembly cask and the current regulatory guidance were used as bases for this evaluation. By comparing actual pressurized-water-reactor (PWR) discharge data (i.e., fuel burnup and initial enrichment specifications for fuel assemblies discharged from U.S. PWRs) with actinide-only-based loading curves, this evaluation finds that additional negative reactivity (through either increased credit for fuel burnup or cask design/utilization modifications) is necessary to accommodate the majority of SNF assemblies in high-capacity storage and transportation casks. The impact of varying selected calculational assumptions is also investigated, and considerable improvement in effectiveness is shown with the inclusion of the principal fission products (FPs) and minor actinides and the use of a bounding best-estimate approach for isotopic validation. Given sufficient data for validation, the most significant component that would improve accuracy, and subsequently enhance the utilization of burnup credit, is the inclusion of FPs. (author)

  11. Development of high performance liquid chromatography for rapid determination of burn-up of nuclear fuels

    International Nuclear Information System (INIS)

    Joseph, M.; Karunasagar, D.; Saha, B.

    1996-01-01

    Burn-up an important parameter during evaluation of the performance of any nuclear fuel. Among the various techniques available, the preferred one for its determination is based on accurate measurement of a suitable fission product monitor and the residual heavy elements. Since isotopes of rare earth elements are generally used as burn-up monitors, conditions were standardized for rapid separation (within 15 minutes) of light rare earths using high performance liquid chromatography based on either anion exchange (Partisil 10 SAX) in methanol-nitric acid medium or by cation exchange on a reverse phase column (Spherisorb 5-ODS-2 or Supelcosil LC-18) dynamically modified with 1-octane sulfonate or camphor-10-sulfonic acid (β). Both these methods were assessed for separation of individual fission product rare earths from their mixtures. A new approach has been examined in detail for rapid assay of neodymium, which appears promising for faster and accurate measurement of burn-up. (author)

  12. Actinide-only and full burn-up credit in criticality assessment of RBMK-1500 spent nuclear fuel storage cask using axial burn-up profile

    Energy Technology Data Exchange (ETDEWEB)

    Barkauskas, V., E-mail: vytenis.barkauskas@ftmc.lt; Plukiene, R., E-mail: rita.plukiene@ftmc.lt; Plukis, A., E-mail: arturas.plukis@ftmc.lt

    2016-10-15

    Highlights: • RBMK-1500 fuel burn-up impact on k{sub eff} in the SNF cask was calculated using SCALE 6.1. • Positive end effect was noticed at certain burn-up for the RBMK-1500 spent nuclear fuel. • The non-uniform uranium depletion is responsible for the end effect in RBMK-1500 SNF. • k{sub eff} in the SNF cask does not exceed a value of 0.95 which is set in the safety requirements. - Abstract: Safe long-term storage of spent nuclear fuel (SNF) is one of the main issues in the field of nuclear safety. Burn-up credit application in criticality analysis of SNF reduces conservatism of usually used fresh fuel assumption and implies a positive economic impact for the SNF storage. Criticality calculations of spent nuclear fuel in the CONSTOR® RBMK-1500/M2 cask were performed using pre-generated ORIGEN-ARP spent nuclear fuel composition libraries, and the results of the RBMK-1500 burn-up credit impact on the effective neutron multiplication factor (k{sub eff}) have been obtained and are presented in the paper. SCALE 6.1 code package with the STARBUCKS burn-up credit evaluation tool was used for modeling. Pre-generated ARP (Automatic Rapid Processing) crosssection libraries based on ENDF/B-VII cross section library were used for fast burn-up inventory modeling. Different conditions in the SNF cask were modeled: 2.0% and 2.8% initial enrichment fuel of various burn-up and water density inside cavities of the SNF cask. The fuel composition for the criticality analysis was chosen taking into account main actinides and most important fission products used in burn-up calculations. A significant positive end effect is noticed from 15 GWd/tU burn-up for 2.8% enrichment fuel and from 9 GWd/tU for 2.0% enrichment fuel applying the actinide-only approach. The obtained results may be applied in further evaluations of the RBMK type reactor SNF storage as well as help to optimize the SNF storage volume inside the CONSTOR® RBMK-1500/M2 cask without compromising criticality

  13. Actinide-only and full burn-up credit in criticality assessment of RBMK-1500 spent nuclear fuel storage cask using axial burn-up profile

    International Nuclear Information System (INIS)

    Barkauskas, V.; Plukiene, R.; Plukis, A.

    2016-01-01

    Highlights: • RBMK-1500 fuel burn-up impact on k_e_f_f in the SNF cask was calculated using SCALE 6.1. • Positive end effect was noticed at certain burn-up for the RBMK-1500 spent nuclear fuel. • The non-uniform uranium depletion is responsible for the end effect in RBMK-1500 SNF. • k_e_f_f in the SNF cask does not exceed a value of 0.95 which is set in the safety requirements. - Abstract: Safe long-term storage of spent nuclear fuel (SNF) is one of the main issues in the field of nuclear safety. Burn-up credit application in criticality analysis of SNF reduces conservatism of usually used fresh fuel assumption and implies a positive economic impact for the SNF storage. Criticality calculations of spent nuclear fuel in the CONSTOR® RBMK-1500/M2 cask were performed using pre-generated ORIGEN-ARP spent nuclear fuel composition libraries, and the results of the RBMK-1500 burn-up credit impact on the effective neutron multiplication factor (k_e_f_f) have been obtained and are presented in the paper. SCALE 6.1 code package with the STARBUCKS burn-up credit evaluation tool was used for modeling. Pre-generated ARP (Automatic Rapid Processing) crosssection libraries based on ENDF/B-VII cross section library were used for fast burn-up inventory modeling. Different conditions in the SNF cask were modeled: 2.0% and 2.8% initial enrichment fuel of various burn-up and water density inside cavities of the SNF cask. The fuel composition for the criticality analysis was chosen taking into account main actinides and most important fission products used in burn-up calculations. A significant positive end effect is noticed from 15 GWd/tU burn-up for 2.8% enrichment fuel and from 9 GWd/tU for 2.0% enrichment fuel applying the actinide-only approach. The obtained results may be applied in further evaluations of the RBMK type reactor SNF storage as well as help to optimize the SNF storage volume inside the CONSTOR® RBMK-1500/M2 cask without compromising criticality safety.

  14. Burnup verification measurements on spent fuel assemblies at Arkansas Nuclear One

    International Nuclear Information System (INIS)

    Ewing, R.I.

    1995-01-01

    Burnup verification measurements have been performed using the Fork system at Arkansas Nuclear One, Units 1 and 2, operated by Energy Operations, Inc. Passive neutron and gamma-ray measurements on individual spent fuel assemblies were correlated with the reactor records for burnup, cooling time, and initial enrichment. The correlation generates an internal calibration for the system in the form of a power law determined by a least squares fit to the neutron data. The values of the exponent in the power laws were 3.83 and 4.35 for Units 1 and 2, respectively. The average deviation of the reactor burnup records from the calibration determined from the measurements is a measure of the random error in the burnup records. The observed average deviations were 2.7% and 3.5% for assemblies at Units 1 and 2, respectively, indicating a high degree of consistency in the reactor records. Two non-standard assemblies containing neutron sources were studied at Unit 2. No anomalous measurements were observed among the standard assemblies at either Unit. The effectiveness of the Fork system for verification of reactor records is due to the sensitivity of the neutron yield to burnup, the self-calibration generated by a series of measurements, the redundancy provided by three independent detection systems, and the operational simplicity and flexibility of the design

  15. Underestimation of nuclear fuel burnup – theory, demonstration and solution in numerical models

    Directory of Open Access Journals (Sweden)

    Gajda Paweł

    2016-01-01

    Full Text Available Monte Carlo methodology provides reference statistical solution of neutron transport criticality problems of nuclear systems. Estimated reaction rates can be applied as an input to Bateman equations that govern isotopic evolution of reactor materials. Because statistical solution of Boltzmann equation is computationally expensive, it is in practice applied to time steps of limited length. In this paper we show that simple staircase step model leads to underprediction of numerical fuel burnup (Fissions per Initial Metal Atom – FIMA. Theoretical considerations indicates that this error is inversely proportional to the length of the time step and origins from the variation of heating per source neutron. The bias can be diminished by application of predictor-corrector step model. A set of burnup simulations with various step length and coupling schemes has been performed. SERPENT code version 1.17 has been applied to the model of a typical fuel assembly from Pressurized Water Reactor. In reference case FIMA reaches 6.24% that is equivalent to about 60 GWD/tHM of industrial burnup. The discrepancies up to 1% have been observed depending on time step model and theoretical predictions are consistent with numerical results. Conclusions presented in this paper are important for research and development concerning nuclear fuel cycle also in the context of Gen4 systems.

  16. High burn-up structure in nuclear fuel: impact on fuel behavior - 4005

    International Nuclear Information System (INIS)

    Noirot, J.; Pontillon, Y.; Zacharie-Aubrun, I.; Hanifi, K.; Bienvenu, P.; Lamontagne, J.; Desgranges, L.

    2016-01-01

    When UO 2 and (U,Pu)O 2 fuels locally reach high burn-up, a major change in the microstructure takes place. The initial grains are replaced by thousands of much smaller grains, fission gases form micrometric bubbles and metallic fission products form precipitates. This occurs typically at the rim of the pellets and in heterogeneous MOX fuel Pu rich agglomerates. The high burn-up at the rim of the pellets is due to a high capture of epithermal neutrons by 238 U leading locally to a higher concentration of fissile Pu than in the rest of the pellet. In the heterogeneous MOX fuels, this rim effect is also active, but most of the high burn-up structure (HBS) formation is linked to the high local concentration of fissile Pu in the Pu agglomerates. This Pu distribution leads to sharp borders between HBS and non-HBS areas. It has been shown that the size of the new grains, of the bubbles and of the precipitates increase with the irradiation local temperatures. Other parameters have been shown to have an influence on the HBS initiation threshold, such as the irradiation density rate, the fuel composition with an effect of the Pu presence, but also of the Gd concentration in poisoned fuels, some of the studied additives, like Cr, and, maybe some of the impurities. It has been shown by indirect and direct approaches that HBS formation is not the main contributor to the increase of fission gas release at high burn-up and that the HBS areas are not the main source of the released gases. The impact of HBS on the fuel behavior during ramp on high burn-up fuels is still unclear. This short paper is followed by the slides of the presentation

  17. Regulatory status of burnup credit for dry storage and transport of spent nuclear fuel in the United States

    International Nuclear Information System (INIS)

    Carlson, D.E.

    2001-01-01

    During 1999, the Spent Fuel Project Office of the U.S. Nuclear Regulatory Commission (NRC) introduced technical guidance for allowing burnup credit in the criticality safety analysis of casks for transporting or storing spent fuel from pressurized water reactors. This paper presents the recommendations embodied by the current NRC guidance, discusses associated technical issues, and reviews information needs and industry priorities for expanding the scope and content of the guidance. Allowable analysis approaches for burnup credit must account for the fuel irradiation variables that affect spent fuel reactivity, including the axial and horizontal variation of burnup within fuel assemblies. Consistent with international transport regulations, the burnup of each fuel assembly must be verified by pre-loading measurements. The current guidance limits the credited burnup to no more than 40 GWd/MTU and the credited cooling time to five years, imposes a burnup offset for fuels with initial enrichments between 4 and 5 wt% 235U, does not include credit for fission products, and excludes burnup credit for damaged fuels and fuels that have used burnable absorbers. Burnup credit outside these limits may be considered when adequately supported by technical information beyond that reviewed to-date by the NRC staff. The guidance further recommends that residual subcritical margins from the neglect of fission products, and any other nuclides not credited in the licensing-basis analysis, be estimated for each cask design and compared against estimates of the maximum reactivity effects associated with remaining computational uncertainties and potentially nonconservative modeling assumptions. The NRC's Office of Nuclear Regulatory Research is conducting a research program to help develop the technical information needed for refining and expanding the evolving guidance. Cask vendors have announced plans to submit the first NRC license applications for burnup credit later this year

  18. Determination of burnup in irradiated nuclear fuels by the method of stable 148Nd fission products

    International Nuclear Information System (INIS)

    Souza Sarkis, J.E. de.

    1982-01-01

    A method is described for the isotopic analysis and determination of burnup in irradiated nuclear fuel by mass spectrometric technique. The burnup is calculed from the determination of the concentration of uranium, plutonium and the fission product 148 Nd in the samples of UO 2 irradiated fuel from a P.W.R. type reactor. The method involves the separation of fractions of uranium, plutonium and neodimium from the dissolved irradiated fuel by ion exchange technique. The determination of uranium, plutonium and the fission product 148 Nd is carried out by isotope diluition mass spectrometry technique using as isotope tracers the nuclides 233 U, 242 Pu and 150 Nd. For the chemical processing and handling of the irradiated sample a Hot Chemistry Laboratory was mounted. It consists of glove boxes and equipments for radiation monitoring and protection. The results obtained indicate an atom percent burnup of 2.181 + - 0.035% wich corresponds an 20.937 + - 0.739 Gwd/ton of thermal energy produced. (Author) [pt

  19. Procedure, algorithm and criterions of determination of a burnup of a irradiated nuclear fuel in process of overloading

    International Nuclear Information System (INIS)

    Bilej, D.V.; Fridman, N.A.; Maslov, O.V.; Maksimov, M.V.

    2001-01-01

    The procedure, algorithm and criterions of determination of a burnup of the irradiated nuclear fuel in process of overloading are described. The feature of the procedure, algorithm and criterions consists in the account of initial enrichment and cooling time nuclear fuel after irradiation

  20. Incentives for the allowance of burnup credit in the design of spent nuclear fuel shipping casks

    International Nuclear Information System (INIS)

    Sanders, T.L.; Westfall, R.M.; Jones, R.H.

    1987-01-01

    An analysis has been completed which indicates that the consideration of spent fuel histories ('burnup credit') in the criticality design of spent fuel shipping casks could result in considerable public risk benefits and cost savings in the transport of spent nuclear fuel. Capacities of casks could be increased considerably in some cases. These capacity increases result in lower public and occupational exposures to ionizing radiation due to the reduced number of shipments necessary to transport a given amount of fuel. Additional safety benefits result from reduced non-radiological risks to both public and occupational sectors. In addition, economic benefits result from lower in-transit shipping costs, reduced transportation fleet capital costs, and fewer cask handling requirements at both shipping and receiving facilities

  1. ABB high burnup fuel

    International Nuclear Information System (INIS)

    Andersson, S.; Helmersson, S.; Nilsson, S.; Jourdain, P.; Karlsson, L.; Limback, M.; Garde, A.M.

    1999-01-01

    Fuel designed and fabricated by ABB is now operating in 40 PWRs and BWRs in Europe, the United States and Korea. An excellent fuel reliability track record has been established. High burnups are proven for both PWR and BWR. Thermal margin improving features and advanced burnable absorber concepts enable the utilities to adopt demanding duty cycles to meet new economic objectives. In particular we note the excellent reliability record of ABB PWR fuel equipped with Guardian TM debris filter proven to meet the 6 rod-cycles fuel failure goal, and the out-standing operating record of the SVEA 10 x 10 fuel, where ABB is the only vendor to date with batch experience to high burnup. ABB is dedicated to maintain high fuel reliability as well as continually improve and develop a broad line of PWR and BWR products. ABB's development and fuel follow-up activities are performed in close co-operation with its utility customers. This paper provides an overview of recent fuel performance and reliability experience at ABB. Selected development and validation activities for PWR and BWR fuel are presented, for which the ABB test facilities in Windsor (TF-2 loop, mechanical test laboratory) and Vaesteras (FRIGG, BURE) are essential. (authors)

  2. The impact of interface bonding efficiency on high-burnup spent nuclear fuel dynamic performance

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hao, E-mail: jiangh@ornl.gov; Wang, Jy-An John; Wang, Hong

    2016-12-01

    Highlights: • To investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on its dynamic performance. • Flexural rigidity, EI = M/κ, estimated from FEA results were benchmarked with SNF dynamic experimental results, and used to evaluate interface bonding efficiency. • Interface bonding efficiency can significantly dictate the SNF system rigidity and the associated dynamic performance. • With consideration of interface bonding efficiency and fuel cracking, HBU SNF fuel property was estimated with SNF static and dynamic experimental data. - Abstract: Finite element analysis (FEA) was used to investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on system dynamic performance. Bending moments M were applied to FEA model to evaluate the system responses. From bending curvature, κ, flexural rigidity EI can be estimated as EI = M/κ. The FEA simulation results were benchmarked with experimental results from cyclic integrated reversal bending fatigue test (CIRFT) of HBR fuel rods. The consequence of interface debonding between fuel pellets and cladding is a redistribution of the loads carried by the fuel pellets to the clad, which results in a reduction in composite rod system flexural rigidity. Therefore, the interface bonding efficiency at the pellet-pellet and pellet-clad interfaces can significantly dictate the SNF system dynamic performance. With the consideration of interface bonding efficiency, the HBU SNF fuel property was estimated with CIRFT test data.

  3. Nuclear fuel burnup calculation in a Voronezh type reactor; Analiza izgaranja nuklearnog goriva u reaktoru tipa Voronjez

    Energy Technology Data Exchange (ETDEWEB)

    Matausek, M; Marinkovic, N; Kocic, A [Boris Kidric Institute of nuclear sciences, Vinca, Belgrade (Yugoslavia)

    1977-07-01

    In order to summarize and present our abilities to perform a complex computation of the nuclear fuel burn-up, a systematic review of the available methods, algorithms and computer programmes is given in this paper. The computer programmes quoted have all been developed, modified and tested in our department, so that they can be successfully used in the analysis of nuclear power plants from both physics and economic points of view. For a commercially proven nuclear reactor - reactor of the Voronezh type - an illustrative computation of the fuel burn-up is performed. The typical results are presented and discussed. The conclusion concerns the completion of a modular scheme for the fuel burn-up calculation and the fuel cycle analysis (author)

  4. Technical Basis for Peak Reactivity Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, William BJ J [ORNL; Ade, Brian J [ORNL; Bowman, Stephen M [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL; Mertyurek, Ugur [ORNL; Radulescu, Georgeta [ORNL

    2015-01-01

    Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate application of burnup credit for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase (1) investigates applicability of peak reactivity methods currently used in spent fuel pools (SFPs) to storage and transportation systems and (2) evaluates validation of both reactivity (keff) calculations and burnup credit nuclide concentrations within these methods. The second phase will focus on extending burnup credit beyond peak reactivity. This paper documents the first phase, including an analysis of lattice design parameters and depletion effects, as well as both validation components. Initial efforts related to extended burnup credit are discussed in a companion paper. Peak reactivity analyses have been used in criticality analyses for licensing of BWR fuel in SFPs over the last 20 years. These analyses typically combine credit for the gadolinium burnable absorber present in the fuel with a modest amount of burnup credit. Gadolinium burnable absorbers are used in BWR assemblies to control core reactivity. The burnable absorber significantly reduces assembly reactivity at beginning of life, potentially leading to significant increases in assembly reactivity for burnups less than 15–20 GWd/MTU. The reactivity of each fuel lattice is dependent on gadolinium loading. The number of gadolinium-bearing fuel pins lowers initial lattice reactivity, but it has a small impact on the burnup and reactivity of the peak. The gadolinium concentration in each pin has a small impact on initial lattice reactivity but a significant effect on the reactivity of the peak and the burnup at which the peak occurs. The importance of the lattice parameters and depletion conditions are primarily determined by their impact on the gadolinium depletion. Criticality code validation for BWR burnup

  5. Fission-gas release in fuel performing to extended burnups in Ontario Hydro nuclear generating stations

    International Nuclear Information System (INIS)

    Floyd, M.R.; Novak, J.; Truant, P.T.

    1992-06-01

    The average discharge burnup of CANDU fuel is about 200 MWh/kgU. A significant number of 37-element bundles have achieved burnups in excess of 400 MWh/kgU. Some of these bundles have experienced failures related to their extended operation. To date, hot-cell examinations have been performed on fuel elements from nine 37-element bundles irradiated in Bruce NGS-A that have burnups in the range of 300-800 MWh/kgU. 1 Most of these have declining power histories from peak powers of up to 59 kW/m. Fission-gas releases of up to 26% have been observed and exhibit a strong dependence on fuel power. This obscures any dependence on burnup. The extent of fission-gas release at extended burnups was not predicted by low-burnup code extrapolations. This is attributed primarily to a reduction in fuel thermal conductivity which results in elevated operating temperatures. Reduced conductivity is due, at least in part, to the buildup of fission products in the fuel matrix. Some evidence of hyperstoichiometry exists, although this needs to be further investigated along with any possible relation to CANLUB graphite coating behaviour and sheath oxidation. Residual tensile sheath strains of up to 2% have been observed and can be correlated with fuel power/fission-gas release. SCC 2 -related defects have been observed in the sheath and endcaps of elements from bundles experiencing declining power histories to burnups in excess of 500 MWh/kgU. This indicates that the current recommended burnup limit of 450 MWh/kgU is justified. SCC-related defects have also been observed in ramped bundles having burnups < 450 MWh/kgU. Hence, additional guidelines are in place for power ramping extended-burnup fuel

  6. Determination of nuclear fuel burnup by non-destructive gamma spectroscopy

    International Nuclear Information System (INIS)

    Soares, A.J.

    1979-01-01

    The determination of nuclear fuel burnup by the non-destructive gamma spectroscopy method is studied. A MTR (Materials Testing Reactor) -type fuel element is used in the measurement. The fuel element was removed from the reactor core in 1958 and, because of the long decay time, show only one peak in is gamma spectrum at 661.6 Kev. Corresponding to 137 Cs. Measurements are made at 330 points of the element using a Nal detector and the final result revealed that the quantity of 235 U consumed was 3.3 +- 0,8 milligram in the entire element. The effect of the migration of 137 Cs in the element is neglected in view of the fact that it occurs only when the temperature is above 1000 0 C, which is not the case in IEAR-1. (Author)

  7. Nuclear Energy Research Initiative. Development of a Stabilized Light Water Reactor Fuel Matrix for Extended Burnup

    International Nuclear Information System (INIS)

    BD Hanson; J Abrefah; SC Marschman; SG Prussin

    2000-01-01

    The main objective of this project is to develop an advanced fuel matrix capable of achieving extended burnup while improving safety margins and reliability for present operations. In the course of this project, the authors improve understanding of the mechanism for high burnup structure (HBS) formation and attempt to design a fuel to minimize its formation. The use of soluble dopants in the UO 2 matrix to stabilize the matrix and minimize fuel-side corrosion of the cladding is the main focus

  8. Evaluation of fission product worth margins in PWR spent nuclear fuel burnup credit calculations

    International Nuclear Information System (INIS)

    Blomquist, R.N.; Finck, P.J.; Jammes, C.; Stenberg, C.G.

    1999-01-01

    Current criticality safety calculations for the transportation of irradiated LWR fuel make the very conservative assumption that the fuel is fresh. This results in a very substantial overprediction of the actual k eff of the transportation casks; in certain cases, this decreases the amount of spent fuel which can be loaded in a cask, and increases the cost of transporting the spent fuel to the repository. Accounting for the change of reactivity due to fuel depletion is usually referred to as ''burnup credit.'' The US DOE is currently funding a program aimed at establishing an actinide only burnup credit methodology (in this case, the calculated reactivity takes into account the buildup or depletion of a limited number of actinides). This work is undergoing NRC review. While this methodology is being validated on a significant experimental basis, it implicitly relies on additional margins: in particular, the absorption of neutrons by certain actinides and by all fission products is not taken into account. This provides an important additional margin and helps guarantee that the methodology is conservative provided these neglected absorption are known with reasonable accuracy. This report establishes the accuracy of fission product absorption rate calculations: (1) the analysis of European fission product worth experiments demonstrates that fission product cross-sections available in the US provide very good predictions of fission product worth; (2) this is confirmed by a direct comparison of European and US cross section evaluations; (3) accuracy of Spent Nuclear Fuel (SNF) fission product content predictions is established in a recent ORNL report where several SNF isotopic assays are analyzed; and (4) these data are then combined to establish in a conservative manner the fraction of the predicted total fission product absorption which can be guaranteed based on available experimental data

  9. Increased burnup of fuel elements

    International Nuclear Information System (INIS)

    Ahlf, J.

    1983-01-01

    The specialists' group for fuel elements of the Kerntechnische Gesellschaft e.V. held a meeting on ''Increased Burnup of Fuel Elements'' on 9th and 10th of November 1982 at the GKSS Research Center Geesthacht. Most papers dealt with the problems of burnup increase of fuel elements for light water reactors with respect to fuel manufacturing, power plant operation and reprocessing. Review papers were given on the burnup limits for high temperature gas cooled reactors and sodium fast breeder reactors. The meeting ended with a presentation of the technical equipment of the hot laboratory of the GKSS and the programs which are in progress there. (orig.) [de

  10. Development of destructive methods of burn-up determination and their application on WWER type nuclear fuels

    International Nuclear Information System (INIS)

    Hermann, A.; Stephan, H.; Nebel, D.

    1984-03-01

    Results are described of a cooperation between the Central Institute of Nuclear Research Rossendorf and the Radium Institute 'V.G. Chlopin' Leningrad in the field of destructive burn-up determination. Laboratory methods of burn-up determination using the classical monitors 137 Cs, 106 Ru, 148 Nd and isotopes of heavy metals (U, Pu) as well as the usefulness of 90 Sr, stable isotopes of Ru and Mo as monitors are dealt with. The analysis of the fuel components uranium (spectrophotometry, potentiometric titration, mass-spectrometric isotope dilution) and plutonium (spectrophotometry, coulometric titration, mass- and alpha-spectrometric isotope dilution) is fully described. Possibilities of increasing the reproducibility (automatic adjusting of measurement conditions) and the sensibility (ion impuls counting) of mass-spectrometric measurements are proposed and applied to a precise determination of Am and Cm isotopic composition. The methods have been used for burn-up analysis of spent WWER (especially WWER-440) fuel. (author)

  11. Studies on the primary and secondary residues from the dissolution of high-burnup nuclear fuels

    International Nuclear Information System (INIS)

    Schmid, M.

    1986-01-01

    To clarify the composition of residues from the dissolution of high-burnup nuclear fuels a sample with a burnup of 4.5 GWd and a two year cooling period was studied with the help of REM-EDX. In a parallel experiment an inactive simulator of a solution was subjected to a similar chemical treatment. The residues which resulted from this were analysed analogously. As a result of the results the chemistry of the following compounds in HNO 3 were studied: MoO 3 , ZrMo 2 O 5 (OH) 2 x2H 2 O, the oxide of antimony as well as Sb 4 O 4 (OH) 2 (NO 3 ) 2 , PdO.xH 2 O, Ag 2 Se, Ag 2 Te, and CsTcO 4 . Of special interest here were the solubility and precipitation formation of these compounds as well as the influence of a high (ca. 1 mol/l) concentration of uranium on these characteristics. With high radiation doses to the simulated solution a radiolytical reduction of Pd 2+ was established and was studied more closely with pure Pd(NO 3 ) 2 solutions. In primary dissolution residues the presence of the radionuclides Ru-106, Ag-110m, Sb-125, Cs-134, and Cs-137 was γ-spectrometrically proven. The residue was made up primarily of an element combination of Mo and Ru. As other components Rh, Pd and Tc appear in an alloy as the so-called ε phase, which already has to be present in the fuel, because this phase was not exhibited in the similarly handled simulator. Zirconium molybdate was not identified in the real feed slurries, but was definitely present in the precipitation of the simulated feed solution. The analysis of the primary residues also showed pure zirconium particles, presumably from the zirconium alloy of the fuel cans, as well as undissolved fuel particles. The precipitation from the fuel solution was made up of agglomerates of the smallest particles of the ε phase, upon which silver halogenides were crystallized. Radiochemically reduced Pd was also found. (orig./RB) [de

  12. A contribution to the understanding of the high burn-up structure formation in nuclear fuels

    International Nuclear Information System (INIS)

    Jonnet, J.

    2007-01-01

    An increase of the discharge burn-up of UO 2 nuclear fuels in the light water reactors results in the appearance of a change of microscopic structure, called HBS. Although well characterised experimentally, important points on the mechanisms of its formation remain to be cleared up. In order to answer these questions, a study of the contribution of the dislocation-type defects was conducted. In a first part, a calculation method of the stress field associated with periodic configurations of dislocations was developed. The method was applied to the cases of edge dislocation pile-up and wall, for which an explicit expression of the internal stress potential was obtained. Through the study of other examples of dislocation configurations, it was highlighted that this method also allows the calculation of any periodic dislocation configuration. In a second part, the evolution of interstitial-type dislocation loops was studied in UO 2 fuel samples doped with 10% in mass of alpha emitters. The experimental loop size distributions were obtained for these samples stored during 4 and 7 years at room temperature. Kinetic equations are proposed in order to study the influence of the resolution process of interstitials from a loop back to the matrix due to an impact with the recoil atom 234 U, as well as the coalescence of two interstitial loops that can diffuse by a volume mechanism. The application of the model shows that the two processes must be considered in the study of the evolution of radiation damage. (author)

  13. Cellular automata approach to investigation of high burn-up structures in nuclear reactor fuel

    International Nuclear Information System (INIS)

    Akishina, E.P.; Ivanov, V.V.; Kostenko, B.F.

    2005-01-01

    Micrographs of uranium dioxide (UO 2 ) corresponding to exposure times in reactor during 323, 953, 971, 1266 and 1642 full power days were investigated. The micrographs were converted into digital files isomorphous to cellular automata (CA) checkerboards. Such a representation of the fuel structure provides efficient tools for its dynamics simulation in terms of primary 'entities' imprinted in the micrographs. Besides, it also ensures a possibility of very effective micrograph processing by CA means. Interconnection between the description of fuel burn-up development and some exactly soluble models is ascertained. Evidences for existence of self-organization in the fuel at high burn-ups were established. The fractal dimension of microstructures is found to be an important characteristic describing the degree of radiation destructions

  14. Nuclear fuel and/or fertile material element suitable for non-destructive determination of burn-up

    International Nuclear Information System (INIS)

    Muench, E.

    1976-01-01

    The invention refers to a nuclear fuel and/or fertile material element suitable for non-destructive burn-up analysis, where an isotope or a mixture of isotopes capable of being activated is provided for measuring the intensity of radiation emitted from radioactive nuclides, especially the intensity of gamma rays. The half-life of radioactive decay of the isotope or the mixture mentioned above after being activated is sufficiently large compared with the irradiation of the fuel and/or fertile material element in the nuclear reactor. (orig.) [de

  15. High Burnup Fuel Performance and Safety Research

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Je Keun; Lee, Chan Bok; Kim, Dae Ho (and others)

    2007-03-15

    The worldwide trend of nuclear fuel development is to develop a high burnup and high performance nuclear fuel with high economies and safety. Because the fuel performance evaluation code, INFRA, has a patent, and the superiority for prediction of fuel performance was proven through the IAEA CRP FUMEX-II program, the INFRA code can be utilized with commercial purpose in the industry. The INFRA code was provided and utilized usefully in the universities and relevant institutes domesticallly and it has been used as a reference code in the industry for the development of the intrinsic fuel rod design code.

  16. Burn-up Credit Criticality Safety Benchmark Phase III-C. Nuclide Composition and Neutron Multiplication Factor of a Boiling Water Reactor Spent Fuel Assembly for Burn-up Credit and Criticality Control of Damaged Nuclear Fuel

    International Nuclear Information System (INIS)

    Suyama, K.; Uchida, Y.; Kashima, T.; Ito, T.; Miyaji, T.

    2016-01-01

    Criticality control of damaged nuclear fuel is one of the key issues in the decommissioning operation of the Fukushima Daiichi Nuclear Power Station accident. The average isotopic composition of spent nuclear fuel as a function of burn-up is required in order to evaluate criticality parameters of the mixture of damaged nuclear fuel with other materials. The NEA Expert Group on Burn-up Credit Criticality (EGBUC) has organised several international benchmarks to assess the accuracy of burn-up calculation methodologies. For BWR fuel, the Phase III-B benchmark, published in 2002, was a remarkable landmark that provided general information on the burn-up properties of BWR spent fuel based on the 8x8 type fuel assembly. Since the publication of the Phase III-B benchmark, all major nuclear data libraries have been revised; in Japan from JENDL-3.2 to JENDL-4, in Europe from JEF-2.2 to JEFF-3.1 and in the US from ENDF/B-VI to ENDF/B-VII.1. Burn-up calculation methodologies have been improved by adopting continuous-energy Monte Carlo codes and modern neutronics calculation methods. Considering the importance of the criticality control of damaged fuel in the Fukushima Daiichi Nuclear Power Station accident, a new international burn-up calculation benchmark for the 9 x 9 STEP-3 BWR fuel assemblies was organised to carry out the inter-comparison of the averaged isotopic composition in the interest of the burnup credit criticality safety community. Benchmark specifications were proposed and approved at the EGBUC meeting in September 2012 and distributed in October 2012. The deadline for submitting results was set at the end of February 2013. The basic model for the benchmark problem is an infinite two-dimensional array of BWR fuel assemblies consisting of a 9 x 9 fuel rod array with a water channel in the centre. The initial uranium enrichment of fuel rods without gadolinium is 4.9, 4.4, 3.9, 3.4 and 2.1 wt% and 3.4 wt% for the rods using gadolinium. The burn-up conditions are

  17. A criticality analysis of the GBC-32 dry storage cask with Hanbit nuclear power plant unit 3 fuel assemblies from the viewpoint of burnup credit

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hyung Ju; Kim, Do Yeon; Park, Kwang Heon; Hong, Ser Gi [Dept. of Nuclear Engineering, Kyung Hee University, Seoul (Korea, Republic of)

    2016-06-15

    Nuclear criticality safety analyses (NCSAs) considering burnup credit were performed for the GBC-32 cask. The used nuclear fuel assemblies (UNFAs) discharged from Hanbit Nuclear Power Plant Unit 3 Cycle 6 were loaded into the cask. Their axial burnup distributions and average discharge burnups were evaluated using the DeCART and Multi-purpose Analyzer for Static and Transient Effects of Reactors (MASTER) codes, and NCSAs were performed using SCALE 6.1/STandardized Analysis of Reactivity for Burnup Credit using SCALE (STARBUCS) and Monte Carlo N-Particle transport code, version 6 (MCNP 6). The axial burnup distributions were determined for 20 UNFAs with various initial enrichments and burnups, which were applied to the criticality analysis for the cask system. The UNFAs for 20- and 30-year cooling times were assumed to be stored in the cask. The criticality analyses indicated that keff values for UNFAs with nonuniform axial burnup distributions were larger than those with a uniform distribution, that is, the end effects were positive but much smaller than those with the reference distribution. The axial burnup distributions for 20 UNFAs had shapes that were more symmetrical with a less steep gradient in the upper region than the reference ones of the United States Department of Energy. These differences in the axial burnup distributions resulted in a significant reduction in end effects compared with the reference.

  18. Burnup credit demands for spent fuel management in Ukraine

    International Nuclear Information System (INIS)

    Medun, V.

    2001-01-01

    In fact, till now, burnup credit has not be applied in Ukrainian nuclear power for spent fuel management systems (storage and transport). However, application of advanced fuel at VVER reactors, arising spent fuel amounts, represent burnup credit as an important resource to decrease spent fuel management costs. The paper describes spent fuel management status in Ukraine from viewpoint of subcriticality assurance under spent fuel storage and transport. It also considers: 1. Regulation basis concerning subcriticality assurance, 2. Basic spent fuel and transport casks characteristics, 3. Possibilities and demands for burnup credit application at spent fuel management systems in Ukraine. (author)

  19. Increased fuel burn-up and fuel cycle equilibrium

    International Nuclear Information System (INIS)

    Debes, M.

    2001-01-01

    Improvement of nuclear competitiveness will rely mainly on increased fuel performance, with higher burn-up, and reactors sustained life. Regarding spent fuel management, the EDF current policy relies on UO 2 fuel reprocessing (around 850 MTHM/year at La Hague) and MOX recycling to ensure plutonium flux adequacy (around 100 MTHM/year, with an electricity production equivalent to 30 TWh). This policy enables to reuse fuel material, while maintaining global kWh economy with existing facilities. It goes along with current perspective to increase fuel burn-up up to 57 GWday/t mean in 2010. The following presentation describes the consequences of higher fuel burn-up on fuel cycle and waste management and implementation of a long term and global equilibrium for decades in spent fuel management resulting from this strategy. (author)

  20. Decay heat power of spent nuclear fuel of power reactors with high burnup at long-term storage

    Science.gov (United States)

    Ternovykh, Mikhail; Tikhomirov, Georgy; Saldikov, Ivan; Gerasimov, Alexander

    2017-09-01

    Decay heat power of actinides and fission products from spent nuclear fuel of power VVER-1000 type reactors at long-term storage is calculated. Two modes of storage are considered: mode in which single portion of actinides or fission products is loaded in storage facility, and mode in which actinides or fission products from spent fuel of one VVER reactor are added every year in storage facility during 30 years and then accumulated nuclides are stored without addition new nuclides. Two values of fuel burnup 40 and 70 MW·d/kg are considered for the mode of storage of single fuel unloading. For the mode of accumulation of spent fuel with subsequent storage, one value of burnup of 70 MW·d/kg is considered. Very long time of storage 105 years accepted in calculations allows to simulate final geological disposal of radioactive wastes. Heat power of fission products decreases quickly after 50-100 years of storage. The power of actinides decreases very slow. In passing from 40 to 70 MW·d/kg, power of actinides increases due to accumulation of higher fraction of 244Cm. These data are important in the back end of fuel cycle when improved cooling system of the storage facility will be required along with stronger radiation protection during storage, transportation and processing.

  1. Decay heat power of spent nuclear fuel of power reactors with high burnup at long-term storage

    Directory of Open Access Journals (Sweden)

    Ternovykh Mikhail

    2017-01-01

    Full Text Available Decay heat power of actinides and fission products from spent nuclear fuel of power VVER-1000 type reactors at long-term storage is calculated. Two modes of storage are considered: mode in which single portion of actinides or fission products is loaded in storage facility, and mode in which actinides or fission products from spent fuel of one VVER reactor are added every year in storage facility during 30 years and then accumulated nuclides are stored without addition new nuclides. Two values of fuel burnup 40 and 70 MW·d/kg are considered for the mode of storage of single fuel unloading. For the mode of accumulation of spent fuel with subsequent storage, one value of burnup of 70 MW·d/kg is considered. Very long time of storage 105 years accepted in calculations allows to simulate final geological disposal of radioactive wastes. Heat power of fission products decreases quickly after 50-100 years of storage. The power of actinides decreases very slow. In passing from 40 to 70 MW·d/kg, power of actinides increases due to accumulation of higher fraction of 244Cm. These data are important in the back end of fuel cycle when improved cooling system of the storage facility will be required along with stronger radiation protection during storage, transportation and processing.

  2. Burn-up measurements on nuclear reactor fuels using high performance liquid chromatography

    International Nuclear Information System (INIS)

    Sivaraman, N.; Subramaniam, S.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2002-01-01

    Burn-up measurements on thermal as well as fast reactor fuels were carried out using high performance liquid chromatography (HPLC). A column chromatographic technique using di-(2-ethylhexyl) phosphoric acid (HDEHP) coated column was employed for the isolation of lanthanides from uranium, plutonium and other fission products. Ion-pair HPLC was used for the separation of individual lanthanides. The atom percent fissions were calculated from the concentrations of the lanthanide (neodymium in the case of thermal reactor and lanthanum for the fast reactor fuels) and from uranium and plutonium contents of the dissolver solutions. The HPLC method was also used for determining the fractional fissions from uranium and plutonium for the thermal reactor fuel. (author)

  3. Measuring device for the distribution of burn-up degree in fuel assembly irradiated in nuclear reactor

    International Nuclear Information System (INIS)

    Kumanomido, Hironori

    1989-01-01

    The object of the invention is to measure the distribution of burn-up degree, of fuel assemblies irradiated in a nuclear reactor in a short time and exactly. That is, the device comprises a device main body having substantially the same length as that for the axial length of a fuel assembly and a detector container disposed axially slidably to the main body. A plurality of radiation detectors are arranged at an equi-axial pitch and contained in the container. The container is caused to slide at a pitch equal to the equi-axial distance of the detectors. In the device having thus been constituted, measurement is conducted at least for twice at an axial position on the side of a fuel assembly irradiated in the nuclear reactor and a position caused to slide therefrom by one pitch. Based on the result, the sensitivities between each of the detectors are compared and the relative sensitivity of the radiation detectors is calibrated. Accordingly, the sensitivity between each of the detectors can be calibrated rapidly and easily. As a result, the distribution of the burn-up degree, etc of irradiated fuel assembly can be measured exactly. (K.M.)

  4. High burnup MOX fuel assembly

    International Nuclear Information System (INIS)

    Blanpain, P.; Brunel, L.

    1999-01-01

    From the outset, the MOX product was required to have the same performance as UO 2 in terms of burnup and operational flexibility. In fact during the first years the UO 2 managements could not be applied to MOX. The changeover to an AFA 2G type fuel allowed an improvement in NPP operational flexibility. The move to the AFA 3G design fuel will enable an increase in the burnup of the MOX assemblies to the level of the UO 2 ones ('MOX Parity' project). But the FRAMATOME fuel development objective does not stop at the obtaining of parity between the current MOX and UO 2 products: this parity must remain guaranteed and the MOX managements must evolve in the same way as the UO 2 managements. The goal of the MOX product development programmes underway with COGEMA and the CEA is the demonstration over the next 10 years of a fuel capable of reaching burnups of 70 GWD/T. The research programmes focus on the fission gas release aspect, with three issues explored: optimization of pellet microstructures and validation in experimental reactor ; build-up of experience feedback from fission gas release at elevated burnups in commercial reactors, both for current and experimental products; adaptation and qualification of the design models and tools, over the ranges and for the products concerned. The product arising from these development programmes should be offered on the market around 2010. While meeting safety requirements, it will cater for the needs of the utilities in terms of product reliability, personnel dosimetry and kWh output costs (increase in burnup, NPP maneuverability and availability, minimization of process waste). (authors)

  5. Impacts of the use of spent nuclear fuel burnup credit on DOE advanced technology legal weight truck cask GA-4 fleet size

    International Nuclear Information System (INIS)

    Mobasheran, A.S.; Boshoven, J.; Lake, B.

    1995-01-01

    The object of this paper is to study the impact of full and partial spent fuel burnup credit on the capacity of the Legal Weight Truck Spent Fuel Shipping Cask (GA-4) and to determine the numbers of additional spent fuel assemblies which could be accommodated as a result. The scope of the study comprised performing nuclear criticality safety scoping calculations using the SCALE-PC software package and the 1993 spent fuel database to determine logistics for number of spent fuel assemblies to be shipped. The results of the study indicate that more capacity than 2 or 3 pressurized water reactor assemblies could be gained for GA-4 casks when burnup credit is considered. Reduction in GA-4 fleet size and number of shipments are expected to result from the acceptance of spent fuel burnup credit

  6. High Frequency Acoustic Microscopy for the Determination of Porosity and Young's Modulus in High Burnup Uranium Dioxide Nuclear Fuel

    Science.gov (United States)

    Marchetti, Mara; Laux, Didier; Cappia, Fabiola; Laurie, M.; Van Uffelen, P.; Rondinella, V. V.; Wiss, T.; Despaux, G.

    2016-06-01

    During irradiation UO2 nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of both porosity and elastic properties in high burnup UO2 pellet can be investigated via high frequency acoustic microscopy. For this purpose ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A UO2 pellet with a burnup of 67 GWd/tU was characterized using the acoustic microscope installed in the hot cells of the JRC-ITU at a 90 MHz frequency, with methanol as coupling liquid. VR was measured at different radial positions. A good agreement was found, when comparing the porosity values obtained via acoustic microscopy with those determined using SEM image analysis, especially in the areas close to the centre. In addition, Young's modulus was calculated and its radial profile was correlated to the corresponding burnup profile and to the hardness radial profile data obtained by Vickers micro-indentation.

  7. Development of a method for xenon determination in the microstructure of high burn-up nuclear fuel[Dissertation 17527

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, M. I

    2008-07-01

    In nuclear fuel, in approximately one quarter of the fissions, one of the two formed fission products is gaseous. These are mainly the noble gases xenon and krypton with isotopes of xenon contributing up to 90% of the product gases. These noble fission gases do not combine with other species, and have a low solubility in the normally used uranium oxide matrix. They can be dissolved in the fuel matrix or precipitate in nanometer-sized bubbles within the fuel grain, in micrometer-sized bubbles at the grain boundaries, and a fraction also precipitates in fuel pores, coming from fuel fabrication. A fraction of the gas can also be released into the plenum of the fuel rod. With increasing fission, and therefore burn-up, the ceramic fuel material experiences a transformation of its structure in the 'cooler' rim region of the fuel. A subdivision occurs of the original fuel grains of few microns size into thousands of small grains of sub-micron sizes. Additionally, larger pores are formed, which also leads into an increasing porosity in the fuel rim, called high burn-up structure. In this structure, only a small fraction of the fission gas remains in the matrix, the major quantity is said to accumulate in these pores. Because of this accumulation, the knowledge of the quantities of gas within these pores is of major interest in consideration to burn-up, fuel performance and especially for safety issues. In case of design based accidents, i.e. rapidly increasing temperature transients, the behavior of the fuel has to be estimated. Various analytical techniques have been used to determine the Xe concentration in nuclear fuel samples. The capabilities of EPMA (Electron Probe Micro-Analyser) and SIMS (Secondary Ion Mass Spectrometry) have been studied and provided some qualitative information, which has been used for determining Xe-matrix concentrations. First approaches combining these two techniques to estimate pore pressures have been recently reported. However

  8. Development of a method for xenon determination in the microstructure of high burn-up nuclear fuel

    International Nuclear Information System (INIS)

    Horvath, M. I.

    2008-01-01

    In nuclear fuel, in approximately one quarter of the fissions, one of the two formed fission products is gaseous. These are mainly the noble gases xenon and krypton with isotopes of xenon contributing up to 90% of the product gases. These noble fission gases do not combine with other species, and have a low solubility in the normally used uranium oxide matrix. They can be dissolved in the fuel matrix or precipitate in nanometer-sized bubbles within the fuel grain, in micrometer-sized bubbles at the grain boundaries, and a fraction also precipitates in fuel pores, coming from fuel fabrication. A fraction of the gas can also be released into the plenum of the fuel rod. With increasing fission, and therefore burn-up, the ceramic fuel material experiences a transformation of its structure in the 'cooler' rim region of the fuel. A subdivision occurs of the original fuel grains of few microns size into thousands of small grains of sub-micron sizes. Additionally, larger pores are formed, which also leads into an increasing porosity in the fuel rim, called high burn-up structure. In this structure, only a small fraction of the fission gas remains in the matrix, the major quantity is said to accumulate in these pores. Because of this accumulation, the knowledge of the quantities of gas within these pores is of major interest in consideration to burn-up, fuel performance and especially for safety issues. In case of design based accidents, i.e. rapidly increasing temperature transients, the behavior of the fuel has to be estimated. Various analytical techniques have been used to determine the Xe concentration in nuclear fuel samples. The capabilities of EPMA (Electron Probe Micro-Analyser) and SIMS (Secondary Ion Mass Spectrometry) have been studied and provided some qualitative information, which has been used for determining Xe-matrix concentrations. First approaches combining these two techniques to estimate pore pressures have been recently reported. However, relevant Xe

  9. Experimental methods for burn-up determination in nuclear fuels, 1

    International Nuclear Information System (INIS)

    Taddei, J.F. de A.C.; Rodrigues, C.

    1977-01-01

    A method is presented that allows the calculation of the total percentage of atoms having undergone fission ('burn up') in nuclear fuels, from the measurement of absolute amounts of fission product neodymium-148 and of uranium and plutoniun present in the spent fuel, the fission yield of neodymium-148 being known. These measurements are performed through the mass spectrometry- isotope dilution technique [pt

  10. Safety aspects related to burnup increase and mixed oxide fuel

    International Nuclear Information System (INIS)

    Thomas, W.

    1992-01-01

    The dominant factor presently limiting the fuel burnup is the response of the cladding hulls. To maintain the excellent record of very low fuel failure rates for increased burnups further technical development is underway and necessary. In the nuclear fuel cycle increased burnups lead to a remarkable reduction of spent fuel arisings and corresponding economic savings. Thermal recycling of plutonium presently provides an opportunity to reduce the rising accumulation of plutunium in a situation where there is no demand for this fissile material in Fast Breeder Reactors. (orig.) [de

  11. Determination of nuclear fuel burn-up using mass spectrometric techniques

    International Nuclear Information System (INIS)

    Saha, B.; Bagyalakshmi, R.; Periaswami, G.; Kavimandan, V.D.; Chitambar, S.A.; Jain, H.C.; Mathews, C.K.

    1977-01-01

    Determination of burn-up using a stable fission product monitor such as 148 Nd and heavy elements, determined by isotope dilution mass spectrometry gives the most accurate data. This report describes the work carried out to standardise the conditions for burn-up determination. Some typical results are given. (author)

  12. Fuel and fuel cycles with high burnup for WWER reactors

    International Nuclear Information System (INIS)

    Chernushev, V.; Sokolov, F.

    2002-01-01

    The paper discusses the status and trends in development of nuclear fuel and fuel cycles for WWER reactors. Parameters and main stages of implementation of new fuel cycles will be presented. At present, these new fuel cycles are offered to NPPs. Development of new fuel and fuel cycles based on the following principles: profiling fuel enrichment in a cross section of fuel assemblies; increase of average fuel enrichment in fuel assemblies; use of refuelling schemes with lower neutron leakage ('in-in-out'); use of integrated fuel gadolinium-based burnable absorber (for a five-year fuel cycle); increase of fuel burnup in fuel assemblies; improving the neutron balance by using structural materials with low neutron absorption; use of zirconium alloy claddings which are highly resistant to irradiation and corrosion. The paper also presents the results of fuel operation. (author)

  13. Burnup Measurement of Spent Fuel Assembly by CZT-based Gamma-ray Spectroscopy for Input Nuclear Material Accountancy of Pyroprocessing

    International Nuclear Information System (INIS)

    Seo, Hee; Oh, Jong-Myeong; Shin, Hee-Sung; Kim, Ho-Dong; Lee, Seung-Kyu; Park, Se-Hwan

    2013-06-01

    Input nuclear material accountancy is crucial for a pyroprocessing facility safeguards. Until a direct Pu measurement technique is established, an indirect method based on code calculations with burnup measurement and neutron counting for 244 Cm could be a practical option. Burnup can be determined by destructive analysis (DA) for final dispositive accuracy or by nondestructive assay (NDA) for near-real time accountancy. In the present study, an underwater burnup measurement system based on gamma-ray spectroscopy with the CZT detector was developed and tested on a spent fuel assembly. Burnup was determined according to the 134 Cs/ 137 Cs activity ratio with efficiency correction by Geant4 Monte Carlo simulations. The activity ratio as a function of burnup was obtained by ORIGEN calculations. The measured burnup error was 8.6%, which was within the measurement uncertainty. It is expected that the underwater burnup measurement system could fulfill an important role as a means of near-real time accountancy at a future pyroprocessing facility. (authors)

  14. Simulation of integral local tests with high-burnup fuel

    International Nuclear Information System (INIS)

    Gyori, G.

    2011-01-01

    The behaviour of nuclear fuel under LOCA conditions may strongly depend on the burnup-dependent fuel characteristics, as it has been indicated by recent integral experiments. Fuel fragmentation and the associated fission gas release can influence the integral fuel behaviour, the rod rupture and the radiological release. The TRANSURANUS fuel performance code is a proper tool for the consistent simulation of burnup-dependent phenomena during normal operation and the thermo-mechanical behaviour of the fuel rod in a subsequent accident. The code has been extended with an empirical model for micro-cracking induced FGR and fuel fragmentation and verified against integral LOCA tests of international projects. (author)

  15. Analysis of high burnup fuel safety issues

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Kim, D. H.; Bang, J. G.; Kim, Y. M.; Yang, Y. S.; Jung, Y. H.; Jeong, Y. H.; Nam, C.; Baik, J. H.; Song, K. W.; Kim, K. S

    2000-12-01

    Safety issues in steady state and transient behavior of high burnup LWR fuel above 50 - 60 MWD/kgU were analyzed. Effects of burnup extension upon fuel performance parameters was reviewed, and validity of both the fuel safety criteria and the performance analysis models which were based upon the lower burnup fuel test results was analyzed. It was found that further tests would be necessary in such areas as fuel failure and dispersion for RIA, and high temperature cladding corrosion and mechanical deformation for LOCA. Since domestic fuels have been irradiated in PWR up to burnup higher than 55 MWD/kgU-rod. avg., it can be said that Korea is in the same situation as the other countries in the high burnup fuel safety issues. Therefore, necessary research areas to be performed in Korea were derived. Considering that post-irradiation examination(PIE) for the domestic fuel of burnup higher than 30 MWD/kgU has not been done so far at all, it is primarily necessary to perform PIE for high burnup fuel, and then simulation tests for RIA and LOCA could be performed by using high burnup fuel specimens. For the areas which can not be performed in Korea, international cooperation will be helpful to obtain the test results. With those data base, safety of high burnup domestic fuels will be confirmed, current fuel safety criteria will be re-evaluated, and finally transient high burnup fuel behavior analysis technology will be developed through the fuel performance analysis code development

  16. Analysis of high burnup fuel safety issues

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Bock; Kim, D. H.; Bang, J. G.; Kim, Y. M.; Yang, Y. S.; Jung, Y. H.; Jeong, Y. H.; Nam, C.; Baik, J. H.; Song, K. W.; Kim, K. S

    2000-12-01

    Safety issues in steady state and transient behavior of high burnup LWR fuel above 50 - 60 MWD/kgU were analyzed. Effects of burnup extension upon fuel performance parameters was reviewed, and validity of both the fuel safety criteria and the performance analysis models which were based upon the lower burnup fuel test results was analyzed. It was found that further tests would be necessary in such areas as fuel failure and dispersion for RIA, and high temperature cladding corrosion and mechanical deformation for LOCA. Since domestic fuels have been irradiated in PWR up to burnup higher than 55 MWD/kgU-rod. avg., it can be said that Korea is in the same situation as the other countries in the high burnup fuel safety issues. Therefore, necessary research areas to be performed in Korea were derived. Considering that post-irradiation examination(PIE) for the domestic fuel of burnup higher than 30 MWD/kgU has not been done so far at all, it is primarily necessary to perform PIE for high burnup fuel, and then simulation tests for RIA and LOCA could be performed by using high burnup fuel specimens. For the areas which can not be performed in Korea, international cooperation will be helpful to obtain the test results. With those data base, safety of high burnup domestic fuels will be confirmed, current fuel safety criteria will be re-evaluated, and finally transient high burnup fuel behavior analysis technology will be developed through the fuel performance analysis code development.

  17. An analysis of nuclear fuel burnup in the AGR-1 TRISO fuel experiment using gamma spectrometry, mass spectrometry, and computational simulation techniques

    International Nuclear Information System (INIS)

    Harp, Jason M.; Demkowicz, Paul A.; Winston, Philip L.; Sterbentz, James W.

    2014-01-01

    Highlights: • The burnup of irradiated AGR-1 TRISO fuel was analyzed using gamma spectrometry. • The burnup of irradiated AGR-1 TRISO fuel was also analyzed using mass spectrometry. • Agreement between experimental results and neutron physics simulations was excellent. - Abstract: AGR-1 was the first in a series of experiments designed to test US TRISO fuel under high temperature gas-cooled reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post-irradiation examination (PIE) at INL and Oak Ridge National Laboratory. One component of the AGR-1 PIE is the experimental evaluation of the burnup of the fuel by two separate techniques. Gamma spectrometry was used to non-destructively evaluate the burnup of all 72 of the TRISO fuel compacts that comprised the AGR-1 experiment. Two methods for evaluating burnup by gamma spectrometry were developed, one based on the Cs-137 activity and the other based on the ratio of Cs-134 and Cs-137 activities. Burnup values determined from both methods compared well with the values predicted from simulations. The highest measured burnup was 20.1% FIMA (fissions per initial heavy metal atom) for the direct method and 20.0% FIMA for the ratio method (compared to 19.56% FIMA from simulations). An advantage of the ratio method is that the burnup of the cylindrical fuel compacts can be determined in small (2.5 mm) axial increments and an axial burnup profile can be produced. Destructive chemical analysis by inductively coupled mass spectrometry (ICP-MS) was then performed on selected compacts that were representative of the expected range of fuel burnups in the experiment to compare with the burnup values determined by gamma spectrometry. The compacts analyzed by mass spectrometry had a burnup range of 19.3% FIMA to 10.7% FIMA. The mass spectrometry evaluation of burnup for the four compacts agreed well with the gamma

  18. Re-evaluation of Assay Data of Spent Nuclear Fuel obtained at Japan Atomic Energy Research Institute for validation of burnup calculation code systems

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya, E-mail: suyama.kenya@jaea.go.jp [Office of International Relations, Nuclear Safety Division, Ministry of Education, Culture, Sports, Science and Technology - Japan, 3-2-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-8959 (Japan); Murazaki, Minoru; Ohkubo, Kiyoshi [Fuel Cycle Safety Research Group, Nuclear Safety Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Nakahara, Yoshinori [Research Group for Analytical Science, Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Uchiyama, Gunzo [Fuel Cycle Safety Research Group, Nuclear Safety Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki 319-1195 (Japan)

    2011-05-15

    Highlights: > The specifications required for the analyses of the destructive assay data taken from irradiated fuel in Ohi-1 and Ohi-2 PWRs were documented in this paper. > These data were analyzed using the SWAT2.1 code, and the calculation results showed good agreement with experimental results. > These destructive assay data are suitable for the benchmarking of the burnup calculation code systems. - Abstract: The isotopic composition of spent nuclear fuels is vital data for studies on the nuclear fuel cycle and reactor physics. The Japan Atomic Energy Agency (JAEA) has been active in obtaining such data for pressurized water reactor (PWR) and boiling water reactor (BWR) fuels, and some data has already been published. These data have been registered with the international Spent Fuel Isotopic Composition Database (SFCOMPO) and widely used as international benchmarks for burnup calculation codes and libraries. In this paper, Assay Data of Spent Nuclear Fuel from two fuel assemblies irradiated in the Ohi-1 and Ohi-2 PWRs in Japan are shown. The destructive assay data from Ohi-2 have already been published. However, these data were not suitable for the benchmarking of calculation codes and libraries because several important specifications and data were not included. This paper summarizes the details of destructive assay data and specifications required for analyses of isotopic composition from Ohi-1 and Ohi-2. For precise burnup analyses, the burnup values of destructive assay samples were re-evaluated in this study. These destructive assay data were analyzed using the SWAT2.1 code, and the calculation results showed good agreement with experimental results. This indicates that the quality of destructive assay data from Ohi-1 and Ohi-2 PWRs is high, and that these destructive assay data are suitable for the benchmarking of burnup calculation code systems.

  19. Modeling of PWR fuel at extended burnup

    International Nuclear Information System (INIS)

    Dias, Raphael Mejias

    2016-01-01

    This work studies the modifications implemented over successive versions in the empirical models of the computer program FRAPCON used to simulate the steady state irradiation performance of Pressurized Water Reactor (PWR) fuel rods under high burnup condition. In the study, the empirical models present in FRAPCON official documentation were analyzed. A literature study was conducted on the effects of high burnup in nuclear fuels and to improve the understanding of the models used by FRAPCON program in these conditions. A steady state fuel performance analysis was conducted for a typical PWR fuel rod using FRAPCON program versions 3.3, 3.4, and 3.5. The results presented by the different versions of the program were compared in order to verify the impact of model changes in the output parameters of the program. It was observed that the changes brought significant differences in the results of the fuel rod thermal and mechanical parameters, especially when they evolved from FRAPCON-3.3 version to FRAPCON-3.5 version. Lower temperatures, lower cladding stress and strain, lower cladding oxide layer thickness were obtained in the fuel rod analyzed with the FRAPCON-3.5 version. (author)

  20. Experimental Investigation of Burnup Credit for Safe Transport, Storage, and Disposal of Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Harms, Gary A.; Helmick, Paul H.; Ford, John T.; Walker, Sharon A.; Berry, Donald T.; Pickard, Paul S.

    2004-01-01

    This report describes criticality benchmark experiments containing rhodium that were conducted as part of a Department of Energy Nuclear Energy Research Initiative project. Rhodium is an important fission product absorber. A capability to perform critical experiments with low-enriched uranium fuel was established as part of the project. Ten critical experiments, some containing rhodium and others without, were conducted. The experiments were performed in such a way that the effects of the rhodium could be accurately isolated. The use of the experimental results to test neutronics codes is demonstrated by example for two Monte Carlo codes. These comparisons indicate that the codes predict the behavior of the rhodium in the critical systems within the experimental uncertainties. The results from this project, coupled with the results of follow-on experiments that investigate other fission products, can be used to quantify and reduce the conservatism of spent nuclear fuel safety analyses while still providing the necessary level of safety

  1. Analysis of burnup of Angra 2 PWR nuclear with addition of thorium dioxide fuel using ORIGEN-ARP

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Isadora C.; Wichrowski, Caio C.; Oliveira, Claudio L. de; Vellozo, Sergio O.; Baptista, Camila O., E-mail: isadora.goncalves@ime.eb.br, E-mail: wichrowski@ime.eb.br, E-mail: d7luiz@yahoo.com.br, E-mail: vellozo@ime.eb.br, E-mail: camila.oliv.baptista@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia Nuclear

    2017-11-01

    It is known that isotope {sup 232}thorium is a fertile nuclide with the ability to convert into {sup 233}uranium, a potentially fissile isotope, after absorbing a neutron. As there is a large stock of available thorium in the world, this element shows great promise in mitigate the world energy crisis, more particularly in the problem of uranium scarcity, besides being an alternative nuclear fuel for those currently used in reactors, and yet presenting advantages as an option for the non-proliferation movement, among others. In this study, the analysis of the remaining nuclides of burnup was carried out for the core configuration of a PWR (pressurized water reactor) reactor, specifically the Angra 2 reactor, using only uranium dioxide, its current configuration, and in different configurations including a mixed oxide of uranium and thorium in three concentrations, allowing a preliminary assessment of the feasibility of the modification of the fuel, the resulting production of {sup 233}uranium, the emergence of {sup 231}protactinium (an isotope that only occurs as a fission product of {sup 232}Th) resulting from burning. The study was carried out using data obtained from FSAR (Final Safety Analysis Report) of Angra 2, using the SCALE 6.1, a modeling and simulation nuclear code, especially its ORIGEN-ARP module, which analyzes the depletion of isotopes presents in a reactor. (author)

  2. Analysis of burnup of Angra 2 PWR nuclear with addition of thorium dioxide fuel using ORIGEN-ARP

    International Nuclear Information System (INIS)

    Goncalves, Isadora C.; Wichrowski, Caio C.; Oliveira, Claudio L. de; Vellozo, Sergio O.; Baptista, Camila O.

    2017-01-01

    It is known that isotope "2"3"2thorium is a fertile nuclide with the ability to convert into "2"3"3uranium, a potentially fissile isotope, after absorbing a neutron. As there is a large stock of available thorium in the world, this element shows great promise in mitigate the world energy crisis, more particularly in the problem of uranium scarcity, besides being an alternative nuclear fuel for those currently used in reactors, and yet presenting advantages as an option for the non-proliferation movement, among others. In this study, the analysis of the remaining nuclides of burnup was carried out for the core configuration of a PWR (pressurized water reactor) reactor, specifically the Angra 2 reactor, using only uranium dioxide, its current configuration, and in different configurations including a mixed oxide of uranium and thorium in three concentrations, allowing a preliminary assessment of the feasibility of the modification of the fuel, the resulting production of "2"3"3uranium, the emergence of "2"3"1protactinium (an isotope that only occurs as a fission product of "2"3"2Th) resulting from burning. The study was carried out using data obtained from FSAR (Final Safety Analysis Report) of Angra 2, using the SCALE 6.1, a modeling and simulation nuclear code, especially its ORIGEN-ARP module, which analyzes the depletion of isotopes presents in a reactor. (author)

  3. Physical models for high burnup fuel

    International Nuclear Information System (INIS)

    Kanyukova, V.; Khoruzhii, O.; Likhanskii, V.; Solodovnikov, G.; Sorokin, A.

    2003-01-01

    In this paper some models of processes in high burnup fuel developed in Src of Russia Troitsk Institute for Innovation and Fusion Research are presented. The emphasis is on the description of the degradation of the fuel heat conductivity, radial profiles of the burnup and the plutonium accumulation, restructuring of the pellet rim, mechanical pellet-cladding interaction. The results demonstrate the possibility of rather accurate description of the behaviour of the fuel of high burnup on the base of simplified models in frame of the fuel performance code if the models are physically ground. The development of such models requires the performance of the detailed physical analysis to serve as a test for a correct choice of allowable simplifications. This approach was applied in the SRC of Russia TRINITI to develop a set of models for the WWER fuel resulting in high reliability of predictions in simulation of the high burnup fuel

  4. Nuclear fuel behaviour modelling at high burnup and its experimental support. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2001-07-01

    The Technical Committee Meeting (TCM) included separate sessions on the specific topics of fuel thermal performance and fission product retention. On thermal performance, it is apparent that the capability exists to measure conductivity in high burnup fuel either by out-of-pile measurement or by instrumentation of test reactor rods. State-of-the-art modelling codes contain models for the conductivity degradation process, and hence adequate predictions of fuel temperature are achievable. Concerning fission product release, it is clear that many groups around the world are actively investigating the subject, with experimental and modelling programmes being pursued. However, a general consensus on the exact mechanisms of gas release and related gas bubble swelling has yet to emerge, even at medium burnup levels. Fission gas phenomena, not only the release to open volumes, but the whole sequence of processes taking place prior to this, need to be modelled in any modern fuel performance code. The presence of gaseous fission products may generate rapid fuel swelling during power transients, and this can cause PCI and rod failure. At high burnups, the quantity of released gases could give rise to pressures exceeding the safe limits. Modelling of pellet-cladding interaction (PCI) effects during transient operation is also an active area of study for many groups. In some situations a purely empirical approach to failure modelling can be justified, while for other applications a more detailed mechanistic approach is required. Another aspect of cladding modelling which was featured at the TCM concerned corrosion and hydriding. Although this issue can be the main life-limiting factor on fuel duty, it is apparent that modelling methods, and the experimental measurement techniques that underpin them, are adequate. A session was included on MOX fuel modelling. Substantial programmes of work, especially by the MOX vendors, appear to be underway to bring the level of understanding

  5. Impacts of the turbogenerator reactive operation in the nuclear fuel burnup

    International Nuclear Information System (INIS)

    Oliveira, Helio Ricardo V. de; Martinez, Aquilino S.

    2002-01-01

    The parameterization of the losses in a turbogenerator in function of an operation with the electrical system reactive allowed to model in a simple and exact way the equations that define and they quantify the additional of nuclear potency that it should be generated by a reactor, in order to maintain the commitment with the national system operator, that is, the electric active power contracted. starting from this additional of nuclear power it was modeled the additional burn up of the fuel elements, as well as the numbers of effective days to full power wasted. it was promoted a safety analysis and some limitations due to the reactive operation of the electrical system. inside of this context it was made a financial evaluation in which we ask some questions to companies and government organs in order to define what losses are acceptable and also the reason why we don't use other technician resources such as: increase of the electrical mesh, electrical power injection in strategic points, capacitor banks and increase of the number the electrical plants. (author)

  6. Extended burnup with SEU fuel in Atucha-1 NPP

    International Nuclear Information System (INIS)

    Alvarez, L.; Casario, J.; Fink, J.; Perez, R.; Higa, M.

    2002-01-01

    Atucha-1 is a Pressurized Heavy Water Reactor originally fuelled with natural uranium. Fuel Assemblies consist of 36 fuel rods and the active length is 5300 mm. The total length of the fuel assembly is about 6 m. The average discharge burnup of natural UO 2 fuel is 5900 MWd/tU. After the deregulation of the Argentine electricity market there was an important incentive to reduce the impact of fuel cost on the cost of generation. To keep the competitiveness of the nuclear energy against another sources of electricity it was necessary to reduce the cost of the nuclear fuel. With this objective a program to introduce SEU (0.85 % 235 U) fuel in Atucha-1 was launched in 1993. As a result of this program the average SEU fuel discharge burnup increased to more than 11000 MWd/tU. The first SEU fuels were introduced in Atucha-1 in 1995 and, in the present stage of the program, 71% of core positions are loaded with this type of fuel. This paper describes key aspects of Atucha-1 fuel design and their relevance limiting the burnup extension and shows relevant data regarding the SEU in-reactor performance. At the present time 125 SEU Fuel Assemblies have been irradiated without failures associated with the extended burnup or unfavorable influences on the operation of the power station. (author)

  7. The relevance of axial burn-up profiles for the criticality safety analysis of spent nuclear fuel in a final repository

    International Nuclear Information System (INIS)

    Kilger, R.; Gmal, B.; Moser, E.F.

    2008-01-01

    Due to inhomogeneous neutron flux and moderator density distributions in the reactor core, the burn-up of a nuclear fuel assembly is not homogeneous but shows an axial distribution, typically with lower partial burn-up and thus higher remaining reactivity at the fuel ends in particular at the assembly top end. Beyond a burn-up of about 15 to 20 GWd/tHM, the multiplication factor K of the whole assembly is dominated by this lower-burnt end regions, and is usually higher than for assuming a homogeneous uniform distribution of the averaged burn-up. This behaviour commonly referred to as positive ''end effect'' is well known in burn-up credit considerations for transportation and storage casks and is being investigated also in the context of criticality analyses for final disposition of spent nuclear fuel. Sign and value of the end effect depend on several parameters. Based on a generic model one may not conclude that criticality in a final repository is a likely or expected event, but nevertheless it draws the attention to the fact that criticality is not excluded per se but has to be considered in the analysis and probably has to be encountered by certain appropriate measures, maybe e.g. by limitation of the amount of fissile material inside one single cask, or a rigorous prove for prevention of water ingress. The authors also conclude that the higher partial reactivity of the fuel ends has to be accounted for carefully in more realistic analyses of post-closure scenarios with respect to criticality safety.

  8. Analysis of the behavior under irradiation of high burnup nuclear fuels with the computer programs FRAPCON and FRAPTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Regis; Silva, Antonio Teixeira e, E-mail: teixeira@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    The objective of this paper is to verify the validity and accuracy of the results provided by computer programs FRAPCON-3.4a and FRAPTRAN-1.4, used in the simulation process of the irradiation behavior of Pressurized Water Reactors (PWR) fuel rods, in steady-state and transient operational conditions at high burnup. To achieve this goal, the results provided by these computer simulations are compared with experimental data available in the database FUMEX III. Through the results, it was found that the computer programs used have a good ability to predict the operational behavior of PWR fuel rods in high burnup steady-state conditions and under the influence of Reactivity Initiated Accident (RIA). (author)

  9. The use of burnup credit for spent fuel cask design

    International Nuclear Information System (INIS)

    Lake, W.H.

    1993-01-01

    A new generation of high capacity spent fuel transport casks is being developed by the U.S. Department of Energy (DOE) as part of the Federal Waste Management System (FWMS). Burnup credit, which recognizes the reduced reactivity of spent fuel is being used for these casks. Two cask designs being developed for DOE by Babcock and Wilcox and General Atomics use burnup credit. The cask designs must be certified by the U.S. Nuclear Regulatory Commission (NRC) if they are to be used in the FWMS. Certification of these casks by the NRC would not require any change in the NRC's transport regulations, and would be consistent with past practices. Furthermore, use of burnup credit casks appears to be consistent with current International Atomic Energy Agency (IAEA) rules and regulations. To support NRC certification, DOE has identified the technical issues related to burnup credit, and embarked on a development program to resolve them. (J.P.N.)

  10. Preferential removal of Sm by evaporation from Nd-Sm mixture and its application in direct burn-up determination of spent nuclear fuel

    International Nuclear Information System (INIS)

    Sajimol, R.; Bera, S.; Nalini, S.; Sivaraman, N.; Joseph, M.; Kumar, T.

    2016-01-01

    Rate of evaporation of Sm and Nd from their mixture was studied based on their ion intensities using thermal ionization mass spectrometry. Because of the comparatively larger evaporation rate of Sm, it was found possible to get the isotopic composition of Nd (fission product monitor) free from isobaric interference of Sm isotopes. The decrease in ion intensity of Sm was studied as a function of time and filament temperature. Based on this study, an easy and time effective method for the determination of burn-up of spent nuclear fuel was examined and the results are compared with that obtained by the conventional method. Typical burn-up value obtained for a pressurized heavy water reactor fuel dissolver solution using the direct method by preferential evaporation of Sm is: 0.84 at.%, whereas the one obtained by the use of conventional method is 0.82 at.%. In both the cases, Nd was employed as the fission product monitor. (author)

  11. The Gd-isotopic fuel for high burnup in PWR's

    International Nuclear Information System (INIS)

    Dias, Marcio Soares; Mattos, João Roberto L. de; Andrade, Edison Pereira de

    2017-01-01

    Today, the discussion about the high burnup fuel is beyond the current fuel enrichment licensing and burnup limits. Licensing issues and material/design developments are again key features in further development of the LWR fuel design. Nevertheless, technological and economical solutions are already available or will be available in a short time. In order to prevent the growth of the technological gap, Brazil's nuclear sector needs to invest in the training of new human resources, in the access to international databases, and in the upgrading existing infrastructure. Experimental database and R&D infrastructure are essential components to support the autonomous development of Brazilian Nuclear Reactors, promoting the development of national technologies. The (U,Gd)O_2 isotopic fuel proposed by the CDTN's staff solve two main issues in the high burnup fuel, which are (1) the peak of reactivity resulting from the Gd-157 fast burnup, and (2) the peak of temperature in the (U,Gd)O_2 nuclear fuel resulting from detrimental effects in the thermal properties for gadolinia additions higher than 2%. A sustainable future can be envisaged for the nuclear energy. (author)

  12. Characterization of the non-uniqueness of used nuclear fuel burnup signatures through a Mesh-Adaptive Direct Search

    Energy Technology Data Exchange (ETDEWEB)

    Skutnik, Steven E., E-mail: sskutnik@utk.edu; Davis, David R.

    2016-05-01

    The use of passive gamma and neutron signatures from fission indicators is a common means of estimating used fuel burnup, enrichment, and cooling time. However, while characteristic fission product signatures such as {sup 134}Cs, {sup 137}Cs, {sup 154}Eu, and others are generally reliable estimators for used fuel burnup within the context where the assembly initial enrichment and the discharge time are known, in the absence of initial enrichment and/or cooling time information (such as when applying NDA measurements in a safeguards/verification context), these fission product indicators no longer yield a unique solution for assembly enrichment, burnup, and cooling time after discharge. Through the use of a new Mesh-Adaptive Direct Search (MADS) algorithm, it is possible to directly probe the shape of this “degeneracy space” characteristic of individual nuclides (and combinations thereof), both as a function of constrained parameters (such as the assembly irradiation history) and unconstrained parameters (e.g., the cooling time before measurement and the measurement precision for particular indicator nuclides). In doing so, this affords the identification of potential means of narrowing the uncertainty space of potential assembly enrichment, burnup, and cooling time combinations, thereby bounding estimates of assembly plutonium content. In particular, combinations of gamma-emitting nuclides with distinct half-lives (e.g., {sup 134}Cs with {sup 137}Cs and {sup 154}Eu) in conjunction with gross neutron counting (via {sup 244}Cm) are able to reasonably constrain the degeneracy space of possible solutions to a space small enough to perform useful discrimination and verification of fuel assemblies based on their irradiation history.

  13. Ultrasonic measurement of high burn-up fuel elastic properties

    International Nuclear Information System (INIS)

    Laux, D.; Despaux, G.; Augereau, F.; Attal, J.; Gatt, J.; Basini, V.

    2006-01-01

    The ultrasonic method developed for the evaluation of high burn-up fuel elastic properties is presented hereafter. The objective of the method is to provide data for fuel thermo-mechanical calculation codes in order to improve industrial nuclear fuel and materials or to design new reactor components. The need for data is especially crucial for high burn-up fuel modelling for which the fuel mechanical properties are essential and for which a wide range of experiments in MTR reactors and high burn-up commercial reactor fuel examinations have been included in programmes worldwide. To contribute to the acquisition of this knowledge the LAIN activity is developing in two directions. First one is development of an ultrasonic focused technique adapted to active materials study. This technique was used few years ago in the EdF laboratory in Chinon to assess the ageing of materials under irradiation. It is now used in a hot cell at ITU Karlsruhe to determine the elastic moduli of high burnup fuels from 0 to 110 GWd/tU. Some of this work is presented here. The second on going programme is related to the qualification of acoustic sensors in nuclear environments, which is of a great interest for all the methods, which work, in a hostile nuclear environment

  14. Analysis of high burnup fuel behavior under control rod ejection accident in Korea standard nuclear power plant

    International Nuclear Information System (INIS)

    Lee, Chan Bok; Lee, Chung Chan; Kim, Oh Hwan; Kim, Jong Jin

    1996-07-01

    Test results of high burnup fuel behavior under RIA(reactivity insertion accident) indicated that fuel might fail at the fuel enthalpy lower than that in the current fuel failure criteria was derived by the conservative assumptions and analysis of fuel failure mechanisms, and applied to the analysis of control rod ejection accident in the 1,000 MWe Korea standard PWR. Except that three dimensional core analysis was performed instead of conventional zero dimensional analysis, all the other conservative assumptions were kept. Analysis results showed that less than on percent of the fuel rods in the core has failed which was much less than the conventional fuel failure fraction, 9.8 %, even though a newly derived fuel failure criteria -Fuel failure occurs at the power level lower than that in the current fuel failure criteria. - was applied, since transient fuel rod power level was significantly decreased by analyzing the transient fuel rod power level was significantly decreased by analyzing the transient core three dimensionally. Therefore, it can be said that results of the radiological consequence analysis for the control rod ejection accident in the FSAR where fuel failure fraction was assumed 9.8 % is still bounding. 18 tabs., 48 figs., 39 refs. (Author)

  15. Features of fuel performance at high fuel burnups

    International Nuclear Information System (INIS)

    Proselkov, V.N.; Scheglov, A.S.; Smirnov, A.V.; Smirnov, V.P.

    2001-01-01

    Some features of fuel behavior at high fuel burnups, in particular, initiation and development of rim-layer, increase in the rate of fission gas release from the fuel and increase in the inner gas pressure in the fuel rod are briefly described. Basing on the analysis of the data of post-irradiation examinations of fuel rods of WWER-440 working FA and CR fuel followers, that have been operated for five fuel cycles and got the average fuel burnup or varies as 50MW-day/kgU, a conclusion is made that the WWER-440 fuel burnup can be increased at least to average burnups of 55-58 MW-day/kgU per fuel assembly (Authors)

  16. On the thermal conductivity of UO2 nuclear fuel at a high burn-up of around 100 MWd/kgHM

    International Nuclear Information System (INIS)

    Walker, C.T.; Staicu, D.; Sheindlin, M.; Papaioannou, D.; Goll, W.; Sontheimer, F.

    2006-01-01

    A study of the thermal conductivity of a commercial PWR fuel with an average pellet burn-up of 102 MWd/kgHM is described. The thermal conductivity data reported were derived from the thermal diffusivity measured by the laser flash method. The factors determining the fuel thermal conductivity at high burn-up were elucidated by investigating the recovery that occurred during thermal annealing. It was found that the thermal conductivity in the outer region of the fuel was much higher than it would have been if the high burn-up structure were not present. The increase in thermal conductivity is a consequence of the removal of fission products and radiation defects from the fuel lattice during recrystallisation of the fuel grains (an integral part of the formation process of the high burn-up structure). The gas porosity in the high burn-up structure lowers the increase in thermal conductivity caused by recrystallisation

  17. Fuel burnup analysis for the Moroccan TRIGA research reactor

    International Nuclear Information System (INIS)

    El Bakkari, B.; El Bardouni, T.; Nacir, B.; El Younoussi, C.; Boulaich, Y.; Boukhal, H.; Zoubair, M.

    2013-01-01

    Highlights: ► A fuel burnup analysis of the 2 MW TRIGA MARK II Moroccan research reactor was established. ► Burnup calculations were done by means of the in-house developed burnup code BUCAL1. ► BUCAL1 uses the MCNP tallies directly in the calculation of the isotopic inventories. ► The reactor life time was found to be 3360 MW h considering full power operating conditions. ► Power factors and fluxes of the in-core irradiation positions are strongly affected by burnup. -- Abstract: The fundamental advantage and main reason to use Monte Carlo methods for burnup calculations is the possibility to generate extremely accurate burnup dependent one group cross-sections and neutron fluxes for arbitrary core and fuel geometries. Yet, a set of values determined for a material at a given position and time remains accurate only in a local region, in which neutron spectrum and flux vary weakly — and only for a limited period of time, during which changes of the local isotopic composition are minor. This paper presents the approach of fuel burnup evaluation used at the Moroccan TRIGA MARK II research reactor. The approach is essentially based upon the utilization of BUCAL1, an in-house developed burnup code. BUCAL1 is a FORTRAN computer code designed to aid in analysis, prediction, and optimization of fuel burnup performance in nuclear reactors. The code was developed to incorporate the neutron absorption reaction tally information generated directly by MCNP5 code in the calculation of fissioned or neutron-transmuted isotopes for multi-fueled regions. The fuel cycle length and changes in several core parameters such as: core excess reactivity, control rods position, fluxes at the irradiation positions, axial and radial power factors and other parameters are estimated. Besides, this study gives valuable insight into the behavior of the reactor and will ensure better utilization and operation of the reactor during its life-time and it will allow the establishment of

  18. Fuel analysis code FAIR and its high burnup modelling capabilities

    International Nuclear Information System (INIS)

    Prasad, P.S.; Dutta, B.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1995-01-01

    A computer code FAIR has been developed for analysing performance of water cooled reactor fuel pins. It is capable of analysing high burnup fuels. This code has recently been used for analysing ten high burnup fuel rods irradiated at Halden reactor. In the present paper, the code FAIR and its various high burnup models are described. The performance of code FAIR in analysing high burnup fuels and its other applications are highlighted. (author). 21 refs., 12 figs

  19. Investigation of Burnup Credit Issues in BWR Fuel

    International Nuclear Information System (INIS)

    Broadhead, B.L.; DeHart, M.D.

    1999-01-01

    Calculations for long-term-disposal criticality safety of spent nuclear fuel requires the application of burnup credit because of the large mass of fissile material that will be present in the repository. Burnup credit calculations are based on depletion calculations that provide a conservative estimate of spent fuel contents, followed by criticality calculations to assess the value of keff for a spent fuel cask or a fuel configuration under a variety of probabilistically derived events. In order to ensure that the depletion calculation is conservative, it is necessary to both qualify and quantify assumptions that can be made in depletion models used to characterize spent fuel. Most effort in the United States this decade has focused on burnup issues related to pressurized-water reactors. However, requirements for the permanent disposal of fuel from boiling-water reactors has necessitated development of methods for prediction of spent fuel contents for such fuels. Concomitant with such analyses, validation is also necessary. This paper provides a summary of initial efforts at the Oak Ridge National Laboratory to better understand and validate spent fuel analyses for boiling-water-reactor fuel

  20. Technical Issues in the development of high burnup and long cycle fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Joo; Yang, Jae Ho; Oh, Jang Soo; Kim, Keon Sik; Rhee, Young Woo; Kim, Jong Hun; Nam, Ik Hui [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    Over the last half century, a nuclear fuel cycle, a fuel discharged burnup and a uranium enrichment of the LWR (Light Water Reactor) fuel have continuously increased. It was the efforts to reduce the LWR fuel cycle cost, and to make reactor operation more efficiently. Improved fuel and reactor performance contribute further to the reduction and management efficiency of spent fuels. The primary incentive for operating nuclear reactor fuel to higher burnup and longer cycle is the economic benefits. The fuel cycle costs could be reduced by extending fuel discharged burnup and fuel cycle length. The higher discharged burnup can increase the energy production per unit fuel mass or fuel assembly. The longer fuel cycle can increase reactor operation flexibility and reduce the fuel changing operation and the spent fuel management burden. The margin to storage capacity limits would be also increased because high burnup and long cycle fuel reduces the mass of spent fuels. However, increment of fuel burnup and cycle length might result in the acceleration of material aging consisting fuel assembly. Then, the safety and integrity of nuclear fuel will be degraded. Therefore, to simultaneously enhance the safety and economics of the LWR fuel through the fuel burnup and cycle extension, it is indispensable to develop the innovative nuclear fuel material concepts and technologies which can overcome degradation of fuel safety. New fuel research project to extend fuel discharged burnup and cycle length has been launched in KAERI. Main subject is to develop innovative LWR fuel pellets which can provide required fuel performance and safety at extended fuel burnup and cycle length. In order to achieve the mission, we need to know that what the impediments are and how to break through current limit of fuel pellet properties. In this study, the technical issues related to fuel pellets at high burnup were surveyed and summarized. We have collected the technical issues in the literatures

  1. Technical Issues in the development of high burnup and long cycle fuel pellets

    International Nuclear Information System (INIS)

    Kim, Dong Joo; Yang, Jae Ho; Oh, Jang Soo; Kim, Keon Sik; Rhee, Young Woo; Kim, Jong Hun; Nam, Ik Hui

    2012-01-01

    Over the last half century, a nuclear fuel cycle, a fuel discharged burnup and a uranium enrichment of the LWR (Light Water Reactor) fuel have continuously increased. It was the efforts to reduce the LWR fuel cycle cost, and to make reactor operation more efficiently. Improved fuel and reactor performance contribute further to the reduction and management efficiency of spent fuels. The primary incentive for operating nuclear reactor fuel to higher burnup and longer cycle is the economic benefits. The fuel cycle costs could be reduced by extending fuel discharged burnup and fuel cycle length. The higher discharged burnup can increase the energy production per unit fuel mass or fuel assembly. The longer fuel cycle can increase reactor operation flexibility and reduce the fuel changing operation and the spent fuel management burden. The margin to storage capacity limits would be also increased because high burnup and long cycle fuel reduces the mass of spent fuels. However, increment of fuel burnup and cycle length might result in the acceleration of material aging consisting fuel assembly. Then, the safety and integrity of nuclear fuel will be degraded. Therefore, to simultaneously enhance the safety and economics of the LWR fuel through the fuel burnup and cycle extension, it is indispensable to develop the innovative nuclear fuel material concepts and technologies which can overcome degradation of fuel safety. New fuel research project to extend fuel discharged burnup and cycle length has been launched in KAERI. Main subject is to develop innovative LWR fuel pellets which can provide required fuel performance and safety at extended fuel burnup and cycle length. In order to achieve the mission, we need to know that what the impediments are and how to break through current limit of fuel pellet properties. In this study, the technical issues related to fuel pellets at high burnup were surveyed and summarized. We have collected the technical issues in the literatures

  2. Experience with nuclear fuel utilization in Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Harizanov, Y [Committee on the Use of Atomic Energy for Peaceful Purposes, Sofia (Bulgaria)

    1997-12-01

    The presentation on experience with nuclear fuel utilization in Bulgaria briefly reviews the situation with nuclear energy in Bulgaria and then discusses nuclear fuel performance (amount of fuel loaded, type of fuel, burnup, fuel failures, assemblies deformation). 2 tabs.

  3. Fission gas release from fuel at high burnup

    International Nuclear Information System (INIS)

    Meyer, R.O.; Beyer, C.E.; Voglewede, J.C.

    1978-03-01

    The release of fission gas from fuel pellets at high burnup is reviewed in the context of the safety analysis performed for reactor license applications. Licensing actions are described that were taken to correct deficient gas release models used in these safety analyses. A correction function, which was developed by the Nuclear Regulatory Commission staff and its consultants, is presented. Related information, which includes some previously unpublished data, is also summarized. The report thus provides guidance for the analysis of high burnup gas release in licensing situations

  4. Comparison of scale/triton and helios burnup calculations for high burnup LWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tittelbach, S.; Mispagel, T.; Phlippen, P.W. [WTI Wissenschaftlich-Technische Ingenieurberatung GmbH, Juelich (Germany)

    2009-07-01

    The presented analyses provide information about the suitability of the lattice burnup code HELIOS and the recently developed code SCALE/TRITON for the prediction of isotopic compositions of high burnup LWR fuel. The accurate prediction of the isotopic inventory of high burnt spent fuel is a prerequisite for safety analyses in and outside of the reactor core, safe loading of spent fuel into storage casks, design of next generation spent fuel casks and for any consideration of burnup credit. Depletion analyses are performed with both burnup codes for PWR and BWR fuel samples which were irradiated far beyond 50 GWd/t within the LWR-PROTEUS Phase II project. (orig.)

  5. Light a CANDLE. An innovative burnup strategy of nuclear reactors

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi

    2005-11-01

    CANDLE is a new burnup strategy for nuclear reactors, which stands for Constant Axial Shape of Neutron Flux, Nuclide Densities and Power Shape During Life of Energy Production. When this candle-like burnup strategy is adopted, although the fuel is fixed in a reactor core, the burning region moves, at a speed proportionate to the power output, along the direction of the core axis without changing the spatial distribution of the number density of the nuclides, neutron flux, and power density. Excess reactivity is not necessary for burnup and the shape of the power distribution and core characteristics do not change with the progress of burnup. It is not necessary to use control rods for the control of the burnup. This booklet described the concept of the CANDLE burnup strategy with basic explanations of excess neutrons and its specific application to a high-temperature gas-cooled reactor and a fast reactor with excellent neutron economy. Supplementary issues concerning the initial core and high burnup were also referred. (T. Tanaka)

  6. Fuel cycles with high fuel burn-up: analysis of reactivity coefficients

    International Nuclear Information System (INIS)

    Kryuchkov, E.F.; Shmelev, A.N.; Ternovykh, M.J.; Tikhomirov, G.V.; Jinhong, L.; Saito, M.

    2003-01-01

    Fuel cycles of light-water reactors (LWR) with high fuel burn-up (above 100 MWd/kg), as a rule, involve large amounts of fissionable materials. It leads to forming the neutron spectrum harder than that in traditional LWR. Change of neutron spectrum and significant amount of non-traditional isotopes (for example, 237 Np, 238 Pu, 231 Pa, 232 U) in such fuel compositions can alter substantially reactivity coefficients as compared with traditional uranium-based fuel. The present work addresses the fuel cycles with high fuel burn-up which are based on Th-Pa-U and U-Np-Pu fuel compositions. Numerical analyses are carried out to determine effective neutron multiplication factor and void reactivity coefficient (VRC) for different values of fuel burn-up and different lattice parameters. The algorithm is proposed for analysis of isotopes contribution to these coefficients. Various ways are considered to upgrade safety of nuclear fuel cycles with high fuel burn-up. So, the results obtained in this study have demonstrated that: -1) Non-traditional fuel compositions developed for achievement of high fuel burn-up in LWR can possess positive values of reactivity coefficients that is unacceptable from the reactor operation safety point of view; -2) The lattice pitch of traditional LWR is not optimal for non-traditional fuel compositions, the increased value of the lattice pitch leads to larger value of initial reactivity margin and provides negative VRC within sufficiently broad range of coolant density; -3) Fuel burn-up has an insignificant effect on VRC dependence on coolant density, so, the measures undertaken to suppress positive VRC of fresh fuel will be effective for partially burnt-up fuel compositions also and; -4) Increase of LWR core height and introduction of additional moderators into the fuel lattice can be used as the ways to reach negative VRC values for full range of possible coolant density variations

  7. Fuel cycles with high fuel burn-up: analysis of reactivity coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Kryuchkov, E.F.; Shmelev, A.N.; Ternovykh, M.J.; Tikhomirov, G.V.; Jinhong, L. [Moscow Engineering Physics Institute (State University) (Russian Federation); Saito, M. [Tokyo Institute of Technology (Japan)

    2003-07-01

    Fuel cycles of light-water reactors (LWR) with high fuel burn-up (above 100 MWd/kg), as a rule, involve large amounts of fissionable materials. It leads to forming the neutron spectrum harder than that in traditional LWR. Change of neutron spectrum and significant amount of non-traditional isotopes (for example, {sup 237}Np, {sup 238}Pu, {sup 231}Pa, {sup 232}U) in such fuel compositions can alter substantially reactivity coefficients as compared with traditional uranium-based fuel. The present work addresses the fuel cycles with high fuel burn-up which are based on Th-Pa-U and U-Np-Pu fuel compositions. Numerical analyses are carried out to determine effective neutron multiplication factor and void reactivity coefficient (VRC) for different values of fuel burn-up and different lattice parameters. The algorithm is proposed for analysis of isotopes contribution to these coefficients. Various ways are considered to upgrade safety of nuclear fuel cycles with high fuel burn-up. So, the results obtained in this study have demonstrated that: -1) Non-traditional fuel compositions developed for achievement of high fuel burn-up in LWR can possess positive values of reactivity coefficients that is unacceptable from the reactor operation safety point of view; -2) The lattice pitch of traditional LWR is not optimal for non-traditional fuel compositions, the increased value of the lattice pitch leads to larger value of initial reactivity margin and provides negative VRC within sufficiently broad range of coolant density; -3) Fuel burn-up has an insignificant effect on VRC dependence on coolant density, so, the measures undertaken to suppress positive VRC of fresh fuel will be effective for partially burnt-up fuel compositions also and; -4) Increase of LWR core height and introduction of additional moderators into the fuel lattice can be used as the ways to reach negative VRC values for full range of possible coolant density variations.

  8. Analysis of high burnup pressurized water reactor fuel using uranium, plutonium, neodymium, and cesium isotope correlations with burnup

    International Nuclear Information System (INIS)

    Kim, Jung Suk; Jeon, Young Shin; Park, Soon Dal; Ha, Yeong Keong; Song, Kyu Seok

    2015-01-01

    The correlation of the isotopic composition of uranium, plutonium, neodymium, and cesium with the burnup for high burnup pressurized water reactor fuels irradiated in nuclear power reactors has been experimentally investigated. The total burnup was determined by Nd-148 and the fractional 235 U burnup was determined by U and Pu mass spectrometric methods. The isotopic compositions of U, Pu, Nd, and Cs after their separation from the irradiated fuel samples were measured using thermal ionization mass spectrometry. The contents of these elements in the irradiated fuel were determined through an isotope dilution mass spectrometric method using 233 U, 242 Pu, 150 Nd, and 133 Cs as spikes. The activity ratios of Cs isotopes in the fuel samples were determined using gamma-ray spectrometry. The content of each element and its isotopic compositions in the irradiated fuel were expressed by their correlation with the total and fractional burnup, burnup parameters, and the isotopic compositions of different elements. The results obtained from the experimental methods were compared with those calculated using the ORIGEN-S code

  9. The effect of fuel burnup and dispersed water intrusion on the criticality of spent high-level nuclear fuel in a geologic repository

    International Nuclear Information System (INIS)

    Culbreth, W.G.; Zielinski, P.R.

    1994-01-01

    Studies of the spent fuel waste package have been conducted through the use of a Monte-Carlo neutron simulation program to determine the ability of the fuel to sustain a chain reaction. These studies have included fuel burnup and the effect of water mists on criticality. Results were compared with previous studies. In many criticality studies of spent fuel waste packages, fresh fuel with an enrichment as high as 4.5% is used as the conservative (worst) case. The actual spent fuel has a certain amount of burnup that decreases the concentration of fissile uranium and increases the amount of radionuclides present. The LWR Radiological Data Base from OCRWM has been used to determine the relative radionuclide ratios and KENO 5.1 was used to calculate values of the effective multiplication factor, k eff . Spent fuel is not capable of sustaining a chain reaction unless a suitable moderator, such as water, is present. A completely flooded container has been treated as the worst case for criticality. Results of a previous report that demonstrated that k eff actually peaked at a water-to-mixture ratio of 13% were analyzed for validity. In the present study, these results did not occur in the SCP waste package container

  10. Burnup measurements of leader fuel elements

    International Nuclear Information System (INIS)

    Henriquez, C; Navarro, G; Pereda, C

    2000-01-01

    Some time ago the CCHEN authorities decided to produce a set of 50 low enrichment fuel elements. These elements were produced in the PEC (Fuel Elements Plant), located at CCHEN offices in Lo Aguirre. These new fuel elements have basically the same geometrical characteristics of previous ones, which were British and made with raw material from the U.S. The principal differences between our fuel elements and the British ones is the density of fissile material, U-235, which was increased to compensate the reduction in enrichment. Last year, the Fuel Elements Plant (PEC) delivered the shipment's first four (4) fuel elements, called leaders, to the RECH1. A test element was delivered too, and the complete set was introduced into the reactor's nucleus, following the normal routine, but performing a special follow-up on their behavior inside the nucleus. This experimental element has only one outside fuel plate, and the remaining (15) structural plates are aluminum. In order to study the burnup, the test element was taken out of the nucleus, in mid- November 1999, and left to decay until June 2000, when it was moved to the laboratory (High Activity Cell), to start the burnup measurements, with a gamma spectroscopy system. This work aims to show the results of these measurements and in addition to meet the following objectives: (a) Visual test of the plate's general condition; (b) Sipping test of fission products; (c) Study of burn-up distribution in the plate; (d) Check and improve the calculus algorithm; (e) Comparison of the results obtained from the spectroscopy with the ones from neutron calculus

  11. ABB PWR fuel design for high burnup

    International Nuclear Information System (INIS)

    Nilsson, S.; Jourdain, P.; Limback, M.; Garde, A.M.

    1998-01-01

    Corrosion, hydriding and irradiation induced growth of a based materials are important factors for the high burnup performance of PWR fuel. ABB has developed a number of Zr based alloys to meet the need for fuel that enables operation to elevated burnups. The materials include composition and processing optimised Zircaloy 4 (OPTIN TM ) and Zircaloy 2 (Zircaloy 2P), as well as advanced Zr based alloys with chemical compositions outside the composition specified for Zircaloy. The advanced alloys are either used as Duplex or as single component claddings. The Duplex claddings have an inner component of Zircaloy and an outer layer of Zr with small additions of alloying elements. ABB has furthermore improved the dimensional stability of the fuel assembly by developing stiffer and more bow resistant guide tubes while debris related fuel failures have been eliminated from ABB fuel by introducing the Guardian TM grid. Intermediate flow mixers that improve the thermal hydraulic performance and the dimensional stability of the fuel has also been developed within ABB. (author)

  12. Fuel rod behaviour at high burnup WWER fuel cycles

    International Nuclear Information System (INIS)

    Medvedev, A.; Bogatyr, S.; Kouznetsov, V.; Khvostov, G.; Lagovsky; Korystin, L.; Poudov, V.

    2003-01-01

    The modernisation of WWER fuel cycles is carried out on the base of complete modelling and experimental justification of fuel rods up to 70 MWd/kgU. The modelling justification of the reliability of fuel rod and fuel rod with gadolinium is carried out with the use of certified START-3 code. START-3 code has a continuous experimental support. The thermophysical and strength reliability of WWER-440 fuel is justified for fuel rod and pellet burnups 65 MWd/kgU and 74 MWd/U, accordingly. Results of analysis are demonstrated by the example of uranium-gadolinium fuel assemblies of second generation under 5-year cycle with a portion of 6-year assemblies and by the example of successfully completed pilot operation of 5-year cycle fuel assemblies during 6 years at unit 3 of Kolskaja NPP. The thermophysical and strength reliability of WWER-1000 fuel is justified for a fuel rod burnup 66 MWd/kgU by the example of fuel operation under 4-year cycles and 6-year test operation of fuel assemblies at unit 1 of Kalininskaya NPP. By the example of 5-year cycle at Dukovany NPP Unit 2 it was demonstrated that WWER fuel rod of a burnup 58 MWd/kgU ensure reliable operation under load following conditions. The analysis has confirmed sufficient reserves of Russian fuel to implement program of JSC 'TVEL' in order to improve technical and economical parameters of WWER fuel cycles

  13. Burnup credit implementation in WWER spent fuel management systems: Status and future aspects

    International Nuclear Information System (INIS)

    Manolova, M.

    1998-01-01

    This paper describes the motivation for possible burnup credit implementation in WWER spent fuel management systems in Bulgaria. The activities being done are described, namely: the development and verification of a 3D few-group diffusion burnup model; the application of the KORIGEN code for evaluation of WWER fuel nuclear inventory during reactor core lifetime and after spent fuel discharge; using the SCALE modular system (PC Version 4.1) for criticality safety analyses of spent fuel storage facilities. Future plans involving such important tasks as validation and verification of computer systems and libraries for WWER burnup credit analysis are shown. (author)

  14. High frequency acoustic microscopy for the determination of porosity and Young's modulus in high burnup uranium dioxide nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, M. [European Commission, Joint Research Centre, Institute for Transuranium Elements P.O. Box 2340 76125 Karlsruhe (Germany); University of Montpellier, IES, UMR 5214, F-34000, Montpellier (France); Laux, D. [University of Montpellier, IES, UMR 5214, F-34000, Montpellier (France); CNRS, IES, UMR 5214, F-34000, Montpellier (France); Cappia, F. [European Commission, Joint Research Centre, Institute for Transuranium Elements P.O. Box 2340 76125 Karlsruhe (Germany); Technische Universitaet Muenchen, Department of Nuclear Engineering, Boltzmannstrasse 15, 85747 Garching bei Munchen (Germany); Laurie, M.; Van Uffelen, P.; Rondinella, V.V. [European Commission, Joint Research Centre, Institute for Transuranium Elements P.O. Box 2340 76125 Karlsruhe (Germany); Despaux, G. [University of Montpellier, IES, UMR 5214, F-34000, Montpellier (France); CNRS, IES, UMR 5214, F-34000, Montpellier (France)

    2015-07-01

    During irradiation UO{sub 2} nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of the porosity and of elastic properties in high burnup UO{sub 2} pellet can be investigated via high frequency acoustic microscopy. Ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A 67 MWd/kgU UO{sub 2} pellet was characterized using the acoustic microscope installed in the hot cells of the Institute of Transuranium Elements: 90 MHz frequency was applied, methanol was used as coupling liquid and VR was measured at different radial positions. By comparing the porosity values obtained via acoustic microscopy with those determined using ceramographic image analysis a good agreement was found, especially in the areas close to the centre. In addition Young's modulus was calculated and its radial profile was correlated to the corresponding burnup profile. (authors)

  15. High frequency acoustic microscopy for the determination of porosity and Young's modulus in high burnup uranium dioxide nuclear fuel

    International Nuclear Information System (INIS)

    Marchetti, M.; Laux, D.; Cappia, F.; Laurie, M.; Van Uffelen, P.; Rondinella, V.V.; Despaux, G.

    2015-01-01

    During irradiation UO 2 nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of the porosity and of elastic properties in high burnup UO 2 pellet can be investigated via high frequency acoustic microscopy. Ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A 67 MWd/kgU UO 2 pellet was characterized using the acoustic microscope installed in the hot cells of the Institute of Transuranium Elements: 90 MHz frequency was applied, methanol was used as coupling liquid and VR was measured at different radial positions. By comparing the porosity values obtained via acoustic microscopy with those determined using ceramographic image analysis a good agreement was found, especially in the areas close to the centre. In addition Young's modulus was calculated and its radial profile was correlated to the corresponding burnup profile. (authors)

  16. Models for fuel rod behaviour at high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Jernkvist, Lars O.; Massih, Ali R. [Quantum Technologies AB, Uppsala Science Park, Uppsala (Sweden)

    2004-12-01

    This report deals with release of fission product gases and irradiation-induced restructuring in uranium dioxide nuclear fuel. Waterside corrosion of zirconium alloy clad tubes to light water reactor fuel rods is also discussed. Computational models, suitable for implementation in the FRAPCON-3.2 computer code, are proposed for these potentially life-limiting phenomena. Hence, an integrated model for the calculation or thermal fission gas release by intragranular diffusion, gas trapping in grain boundaries, irradiation-induced re-solution, grain boundary saturation, and grain boundary sweeping in UO{sub 2} fuel, under time varying temperature loads, is formulated. After a brief review of the status of thermal fission gas release modelling, we delineate the governing equations for the aforementioned processes. Grain growth kinetic modelling is briefly reviewed and pertinent data on grain growth of high burnup fuel obtained during power ramps in the Third Risoe Fission Gas Release Project are evaluated. Sample computations are performed, which clearly show the connection between fission gas release and gram growth as a function of time at different isotherms. Models are also proposed for the restructuring of uranium dioxide fuel at high burnup, the so-called rim formation, and its effect on fuel porosity build-up, fuel thermal conductivity and fission gas release. These models are assessed by use of recent experimental data from the High Burnup Rim Project, as well as from post irradiation examinations of high-burnup fuel, irradiated in power reactors. Moreover, models for clad oxide growth and hydrogen pickup in PWRs, applicable to Zircaloy-4, ZIRLO or M5 cladding, are formulated, based on recent in-reactor corrosion data for high-burnup fuel rods. Our evaluation of these data indicates that the oxidation rate of ZIRLO-type materials is about 20% lower than for standard Zircaloy-4 cladding under typical PWR conditions. Likewise, the oxidation rate of M5 seems to be

  17. Regulatory status of burnup credit for storage and transport of spent fuel in Germany

    International Nuclear Information System (INIS)

    Neuber, J.C.; Schweer, H.H.; Johann, H.G.

    2001-01-01

    This paper describes the regulatory status of burnup credit applications to pond storage and dry-cask transport and storage of spent fuel in Germany. Burnup credit for wet storage of LWR fuel at nuclear power plants has to comply with the newly developed safety standard DIN 25471. This standard establishes the safety requirements for burnup credit criticality safety analysis of LWR fuel storage ponds and gives guidance on meeting these requirements. Licensing evaluations of dry transport systems are based on the application of the IAEA Safety Standards Series No.ST-1. However, because of the fact that burnup credit for dry-cask transport becomes more and more inevitable due to increasing initial enrichment of the fuel, and because of the increasing importance of dry-cask storage in Germany, the necessity of giving regulatory guidance on applying burnup credit to dry-cask transport and storage is seen. (author)

  18. Advanced fuel cycles and burnup increase of WWER-440 fuel

    International Nuclear Information System (INIS)

    Proselkov, V.; Saprykin, V.; Scheglov, A.

    2003-01-01

    Analyses of operational experience of 4.4% enriched fuel in the 5-year fuel cycle at Kola NPP Unit 3 and fuel assemblies with Uranium-Gadolinium fuel at Kola NPP Unit 4 are made. The operability of WWER-440 fuel under high burnup is studied. The obtained results indicate that the fuel rods of WWER-440 assemblies intended for operation within six years of the reviewed fuel cycle totally preserve their operability. Performed analyses have demonstrated the possibility of the fuel rod operability during the fuel cycle. 12 assemblies were loaded into the reactor unit of Kola 3 in 2001. The predicted burnup in six assemblies was 59.2 MWd/kgU. Calculated values of the burnup after operation for working fuel assemblies were ∼57 MWd/kgU, for fuel rods - up to ∼61 MWd/kgU. Data on the coolant activity, specific activity of the benchmark iodine radionuclides of the reactor primary circuit, control of the integrity of fuel rods of the assemblies that were operated for six years indicate that not a single assembly has reached the criterion for the early discharge

  19. Instant release of fission products in leaching experiments with high burn-up nuclear fuels in the framework of the Euratom project FIRST- Nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Lemmens, K., E-mail: klemmens@sckcen.be [Waste and Disposal Expert Group, Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, 2400 Mol (Belgium); González-Robles, E.; Kienzler, B. [Karlsruhe Institute of Technology Institute for Nuclear Waste Disposal (KIT-INE), PO Box 3640, D-76021 Karlsruhe (Germany); Curti, E. [Laboratory for Waste Management, Nuclear Energy and Safety Dept., Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Serrano-Purroy, D. [European Commission, DG Joint Research Centre - JRC, Directorate G - Nuclear Safety & Security, Department G.III, PO Box 2340, D-76125 Karlsruhe (Germany); Sureda, R.; Martínez-Torrents, A. [CTM Centre Tecnològic, Plaça de la Ciència 2, 08243 Manresa (Spain); Roth, O. [Studsvik, Nuclear AB, 611 82 Nyköping (Sweden); Slonszki, E. [Magyar Tudományos Akadémia Energiatudományi Kutatóközpont (MTA EK), PO Box 49, H-1525 Budapest (Hungary); Mennecart, T. [Waste and Disposal Expert Group, Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, 2400 Mol (Belgium); Günther-Leopold, I. [Laboratory for Waste Management, Nuclear Energy and Safety Dept., Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Hózer, Z. [Magyar Tudományos Akadémia Energiatudományi Kutatóközpont (MTA EK), PO Box 49, H-1525 Budapest (Hungary)

    2017-02-15

    The instant release of fission products from high burn-up UO{sub 2} fuels and one MOX fuel was investigated by means of leach tests. The samples covered PWR and BWR fuels at average rod burn-up in the range of 45–63 GWd/t{sub HM} and included clad fuel segments, fuel segments with opened cladding, fuel fragments and fuel powder. The tests were performed with sodium chloride – bicarbonate solutions under oxidizing conditions and, for one test, in reducing Ar/H{sub 2} atmosphere. The iodine and cesium release could be partially explained by the differences in sample preparation, leading to different sizes and properties of the exposed surface areas. Iodine and cesium releases tend to correlate with FGR and linear power rating, but the scatter of the data is significant. Although the gap between the fuel and the cladding was closed in some high burn-up samples, fissures still provide possible preferential transport pathways. - Highlights: • Leach tests were performed to study the instant release of fission products from high burn-up UO{sub 2} fuels and one MOX fuel. • In these tests, the fission gas release given by the operator was a pessimistic estimator of the iodine and cesium release. • Iodine and cesium release is proportional to linear power rating beyond 200 W cm{sup −1}. • Closure of the fuel-cladding gap at high burn-up slows down the release. • The release rate decreases following an exponential equation.

  20. Development of base technology for high burnup PWR fuel improvement Volume 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yang Eun; Lee, Sang Hee; Bae, Seong Man [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Chung, Jin Gon; Chung, Sun Kyo; Kim, Sun Du [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of); Kim, Jae Won; Chung, Sun Kyo; Kim, Sun Du [Korea Nuclear Fuel Development Inst., Seoul (Korea, Republic of)

    1995-12-31

    Development of base technology for high burnup nuclear fuel -Development of UO{sub 2} pellet manufacturing technology -Improvement of fuel rod performance code -Improvement of plenum spring design -Study on the mechanical characteristics of fuel cladding -Organization of fuel failure mechanism Establishment of next stage R and D program (author). 226 refs., 100 figs.

  1. Impact on burnup performance of coated particle fuel design in pebble bed reactor with ROX fuel

    International Nuclear Information System (INIS)

    Ho, Hai Quan; Obara, Toru

    2015-01-01

    The pebble bed reactor (PBR), a kind of high-temperature gas-cooled reactor (HTGR), is expected to be among the next generation of nuclear reactors as it has excellent passive safety features, as well as online refueling and high thermal efficiency. Rock-like oxide (ROX) fuel has been studied at the Japan Atomic Energy Agency (JAEA) as a new once-through type fuel concept. Rock-like oxide used as fuel in a PBR can be expected to achieve high burnup and improve chemical stabilities. In the once-through fuel concept, the main challenge is to achieve as high a burnup as possible without failure of the spent fuel. The purpose of this study was to investigate the impact on burnup performance of different coated fuel particle (CFP) designs in a PBR with ROX fuel. In the study, the AGR-1 Coated Particle design and Deep-Burn Coated Particle design were used to make the burnup performance comparison. Criticality and core burnup calculations were performed by MCPBR code using the JENDL-4.0 library. Results at equilibrium showed that the two reactors utilizing AGR-1 Coated Particle and Deep-Burn Coated Particle designs could be critical with almost the same multiplication factor k eff . However, the power peaking factor and maximum power per fuel ball in the AGR-1 coated particle design was lower than that of Deep-Burn coated particle design. The AGR-1 design also showed an advantage in fissions per initial fissile atoms (FIFA); the AGR-1 coated particle design produced a higher FIFA than the Deep-Burn coated particle design. These results suggest that the difference in coated particle fuel design can have an effect on the burnup performance in ROX fuel. (author)

  2. Experimental programmes related to high burnup fuel

    International Nuclear Information System (INIS)

    Vasudeva Rao, P.R.; Vidhya, R.; Ananthasivan, K.; Srinivasan, T.G.; Nagarajan, K.

    2002-01-01

    The experimental programmes undertaken at IGCAR with regard to high burn-up fuels fall under the following categories: a) studies on fuel behaviour, b) development of extractants for aqueous reprocessing and c) development of non-aqueous reprocessing techniques. An experimental programme to measure the carbon potential in U/Pu-FP-C systems by methane-hydrogen gas equilibration technique has been initiated at IGCAR in order to understand the evolution of fuel and fission product phases in carbide fuel at high burn-up. The carbon potentials in U-Mo-C system have been measured by this technique. The free energies and enthalpies of formation of LaC 2 , NdC 2 and SmC 2 have been measured by measuring the vapor pressures of CO over the region Ln 2 O 3 -LnC 2 -C during the carbothermic reduction of Ln 2 O 3 by C. The decontamination from fission products achieved in fuel reprocessing depends strongly on the actinide loading of the extractant phase. Tri-n-butyl phosphate (TBP), presently used as the extractant, does not allow high loadings due to its propensity for third phase formation in the extraction of Pu(IV). A detailed study of the allowable Pu loadings in TBP and other extractants has been undertaken in IGCAR, the results of which are presented in this paper. The paper also describes the status of our programme to develop a non-aqueous route for the reprocessing of fast reactor fuels. (author)

  3. High Burnup Fuel: Implications and Operational Experience. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2016-08-01

    This publication reports on the outcome of a technical meeting on high burnup fuel experience and economics, held in Buenos Aires, Argentina in 2013. The purpose of the meeting was to revisit and update the current operational experience and economic conditions associated with high burnup fuel. International experts with significant experience in experimental programmes on high burnup fuel discussed and evaluated physical limitations at pellet, cladding and structural component levels, with a wide focus including fabrication, core behaviour, transport and intermediate storage for most types of commercial nuclear power plants

  4. Instant release fraction and matrix release of high burn-up UO{sub 2} spent nuclear fuel: Effect of high burn-up structure and leaching solution composition

    Energy Technology Data Exchange (ETDEWEB)

    Serrano-Purroy, D., E-mail: Daniel.serrano-purroy@ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe (Germany); Clarens, F.; Gonzalez-Robles, E. [CTM Centre Tecnologic, Avda. Bases de Manresa 1, 08240 Barcelona (Spain); Glatz, J.P.; Wegen, D.H. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe (Germany); Pablo, J. de [CTM Centre Tecnologic, Avda. Bases de Manresa 1, 08240 Barcelona (Spain); Department of Chemical Engineering, Universitat Politecnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); Casas, I.; Gimenez, J. [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); Martinez-Esparza, A. [ENRESA, C/Emilio Vargas 7, 28043 Madrid (Spain)

    2012-08-15

    Two weak points in Performance Assessment (PA) exercises regarding the alteration of Spent Nuclear Fuel (SNF) are the contribution of the so-called Instant Release Fraction (IRF) and the effect of High Burn-Up Structure (HBS). This manuscript focuses on the effect of HBS in matrix (long term) and instant release of a Pressurised Water Reactor (PWR) SNF irradiated in a commercial reactor with a mean Burn-Up (BU) of 60 GWd/tU. In order to study the HBS contribution, two samples from different radial positions have been prepared. One from the centre of the SNF, labelled CORE, and one from the periphery, enriched with HBS and labelled OUT. Static leaching experiments have been carried out with two synthetic leaching solutions: bicarbonate (BIC) and Bentonitic Granitic Groundwater (BGW), and in all cases under oxidising conditions. IRF values have been calculated from the determined Fraction of Inventory in Aqueous Phase (FIAP). In all studied cases, some radionuclides (RN): Rb, Sr and Cs, have shown higher release rates than uranium, especially at the beginning of the experiment, and have been considered as IRF. Redox sensitive RN like Mo and Tc have been found to dissolve slightly faster than uranium and further studies might be needed to confirm if they can also be considered part of the IRF. Most of the remaining studied RN, mainly actinides and lanthanides, have been found to dissolve congruently with the uranium matrix. Finally, Zr, Ru and Rh presented lower release rates than the matrix. Higher matrix release has been determined for CORE than for OUT samples showing that the formation of HBS might have a protective effect against the oxidative corrosion of the SNF. On the contrary, no significant differences have been observed between the two studied leaching solutions (BIC and BGW). Two different IRF contributions have been determined. One corresponding to the fraction of inventory segregated in the external open grain boundaries, directly available to water and

  5. Threshold burnup for recrystallization and model for rim porosity in the high burnup UO2 fuel

    International Nuclear Information System (INIS)

    Lee, Byung Ho; Koo, Yang Hyun; Sohn, Dong Seong

    1998-01-01

    Applicability of the threshold burnup for rim formation was investigated as a function of temperature by Rest's model. The threshold burnup was the lowest in the intermediate temperature region, while on the other temperature regions the threshold burnup is higher. The rim porosity was predicted by the van der Waals equation based of the rim pore radius of 0.75μm and the overpressurization model on rim pores. The calculated centerline temperature is in good agreement with the measured temperature. However, more efforts seem to be necessary for the mechanistic model of the rim effect including rim growth with the fuel burnup

  6. On the condition of UO{sub 2} nuclear fuel irradiated in a PWR to a burn-up in excess of 110 MWd/kgHM

    Energy Technology Data Exchange (ETDEWEB)

    Restani, R.; Horvath, M. [Paul Scherrer Institut, CH-5232, Villigen PSI (Switzerland); Goll, W. [AREVA GmbH, P.O. Box 1109, DE-91001 Erlangen (Germany); Bertsch, J.; Gavillet, D.; Hermann, A. [Paul Scherrer Institut, CH-5232, Villigen PSI (Switzerland); Martin, M., E-mail: matthias.martin@psi.ch [Paul Scherrer Institut, CH-5232, Villigen PSI (Switzerland); Walker, C.T. [The Grange, 66 High Street, Swinderby, Lincoln LN6 9LU (United Kingdom)

    2016-12-01

    Post-irradiation examination results are presented for UO{sub 2} fuel from a PWR fuel rod that had been irradiated to an average burn-up of 105 MWd/kgHM and showed high fission gas release of 42%. The radial distribution of xenon and the partitioning of fission gas between bubbles and the fuel matrix was investigated using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and electron probe microanalysis. It is concluded that release from the fuel at intermediate radial positions was mainly responsible for the high fission gas release. In this region thermal release had occurred from the high burn-up structure (HBS) at some point after the sixth irradiation cycle. The LA-ICP-MS results indicate that gas release had also occurred from the HBS in the vicinity of the pellet periphery. It is shown that the gas pressure in the HBS pores is well below the pressure that the fuel can sustain. - Highlights: • Gas retention measured by laser ablation induction coupled plasma mass spectrometry. • Thermal release from the high burn structure responsible for high gas release. • At a pellet burn-up of 115 MWd/kgHM the high burn-up structure is still evolving. • The gas pressure in HBS pores is well below the pressure that the fuel can sustain.

  7. Oxide thickness measurement for monitoring fuel performance at high burnup

    International Nuclear Information System (INIS)

    Jaeger, M.A.; Van Swam, L.F.P.; Brueck-Neufeld, K.

    1991-01-01

    For on-site monitoring of the fuel performance at high burnup, Advanced Nuclear Fuels uses the linear scan eddy current method to determine the oxide thickness of irradiated Zircaloy fuel cans. Direct digital data acquisition methods are employed to collect the data on magnetic storage media. This field-proven methodology allows oxide thickness measurements and rapid interpretation of the data during the reactor outages and makes it possible to immediately reinsert the assemblies for the next operating cycle. The accuracy of the poolside measurements and data acquisition/interpretation techniques have been verified through hot cell metallographic measurements of rods previously measured in the fuel pool. The accumulated data provide a valuable database against which oxide growth models have been benchmarked and allow for effective monitoring of fuel performance. (orig.) [de

  8. Application of reactivity method to MTR fuel burn-up measurement

    International Nuclear Information System (INIS)

    Zuniga, A.; Ravnik, M.; Cuya, R.

    2001-01-01

    Fuel element burn-up has been measured for the first time by reactivity method in a MTR reactor. The measurement was performed in RP-10 reactor of Peruvian Institute for Nuclear Energy (IPEN) in Lima. It is a pool type 10MW material testing reactor using standard 20% enriched uranium plate type fuel elements. A fresh element and an element with well defined burn-up were selected as reference elements. Several elements in the core were selected for burn-up measurement. Each of them was replaced in its original position by both reference elements. Change in excess reactivity was measured using control rod calibration curve. The burn-up reactivity worth of fuel elements was plotted as a function of their calculated burnup. Corrected burn-up values of the measured fuel elements were calculated using the fitting function at experimental reactivity for all elements. Good agreement between measured and calculated burn-up values was observed indicating that the reactivity method can be successfully applied also to MTR fuel element burn-up determination.(author)

  9. Burnup simulations of an inert matrix fuel using a two region, multigroup reactor physics model

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E. [Dept. of Mechanical Engineering, Univ. of Texas at Austin, 1 Univ. Place C2200, Austin, TX 78712 (United States); Deinert, M.; Bingham Cady, K. [Dept. of Theoretical and Applied Mechanics, Cornell Univ., Ithaca, NY 14853 (United States)

    2006-07-01

    Determining the time dependent concentration of isotopes in a nuclear reactor core is of fundamental importance to analysis of nuclear fuel cycles and the impact of spent fuels on long term storage facilities. We present a fast, conceptually simple tool for performing burnup calculations applicable to obtaining isotopic balances as a function of fuel burnup. The code (VBUDS: visualization, burnup, depletion and spectra) uses a two region, multigroup collision probability model to determine the energy dependent neutron flux and tracks the buildup and burnout of 24 actinides, as well as fission products. The model has been tested against benchmarked results for LWRs burning UOX and MOX, as well as MONTEBURNS simulations of zirconium oxide based IMF, all with strong fidelity. As an illustrative example, VBUDS burnup calculation results for an IMF fuel are presented in this paper. (authors)

  10. Technological and licensing challenges for high burnup fuel

    International Nuclear Information System (INIS)

    Gross, H.; Urban, P.; Fenzlein, C.

    2002-01-01

    Deregulation of electricity markets is driving electricity prices downward as well in the U.S. as in Europe. As a consequence high burnup fuel will be demanded by utilities using either the storage or the reprocessing option. At a minimum, burnups consistent with the current political enrichment limit of 5 w/o will be required for both markets.Significant progress has been achieved in the past by Siemens in meeting the demands of utilities for increased fuel burnup. The technological challenges posed by the increased burnup are mainly related to the corrosion and hydrogen pickup of the clad, the high burnup properties of the fuel and the dimensional changes of the fuel assembly structure. Clad materials with increased corrosion resistance appropriate for high burnup have been developed. The high burnup behaviour of the fuel has been extensively investigated and the decrease of thermal conductivity with burnup, the rim effect of the pellet and the increase of fission gas release with burnup can be described, with good accuracy, in fuel rod computer codes. Advanced statistical design methods have been developed and introduced. Materials with increased corrosion resistance are also helpful controlling the dimensional changes of the fuel assembly structure. In summary, most of the questions about the fuel operational behaviour and reliability in the high burnup range have been solved - some of them are still in the process of verification - or the solutions are visible. This fact is largely acknowledged by regulators too. The main licensing challenges for high burnup fuel are currently seen for accident condition analyses, especially for RIA and LOCA. (author)

  11. Taking burnup credit for interim storage and transportation system for BWR fuels

    International Nuclear Information System (INIS)

    Yoshioka, Ken-ichi; Ando, Y.; Kumanomido, H.; Sasaki, T.; Mitsuhashi, I.; Ueda, M.

    2001-01-01

    In order to establish a realistic burnup credit design system, a calculation system has been developed for determining isotope compositions, burnup, and criticality. The calculation system consists of several modules such as TGBLA, ORIGEN, CITATION, MCNP, and KENO. The TGBLA code is a fuel design code for LWR fuels developed in TOSHIBA Corporation. A compact measurement system for a fuel assembly has been being developed to meet requirements for the burnup determination, the neutron emission-rate evaluation, and the nuclear materials management. For a spent MOX fuel, a neutron emission rate measurement method has been being developed. The system consists of Cd-Te detectors and / or fission chambers. Some model calculations were carried out for the latest design BWR fuels. The effect of taking burnup credit for a transportation cask is shown. (authors)

  12. BNFL assessment of methods of attaining high burnup MOX fuel

    International Nuclear Information System (INIS)

    Brown, C.; Hesketh, K.W.; Palmer, I.D.

    1998-01-01

    It is clear that in order to maintain competitiveness with UO 2 fuel, the burnups achievable in MOX fuel must be enhanced beyond the levels attainable today. There are two aspects which require attention when studying methods of increased burnups - cladding integrity and fuel performance. Current irradiation experience indicates that one of the main performance issues for MOX fuel is fission gas retention. MOX, with its lower thermal conductivity, runs at higher temperatures than UO 2 fuel; this can result in enhanced fission gas release. This paper explores methods of effectively reducing gas release and thereby improving MOX burnup potential. (author)

  13. Implementation of burnup credit in spent fuel management systems

    International Nuclear Information System (INIS)

    Dyck, H.P.

    2001-01-01

    Improved calculational methods allow one to take credit for the reactivity reduction associated with fuel burnup. This means reducing the analysis conservatism while maintaining an adequate safety margin. The motivation for using burnup credit in criticality safety applications is based on economic considerations and additional benefits contributing to public health and safety and resource conservation. Interest in the implementation of burnup credit has been shown by many countries. In 1997, the International Atomic Energy Agency (IAEA) started a task to monitor the implementation of burnup credit in spent fuel management systems, to provide a forum to exchange information, to discuss the matter and to gather and disseminate information on the status of national practices of burnup credit implementation in the Member States. The task addresses current and future aspects of burnup credit. This task was continued during the following years. (author)

  14. Analysis on burnup step effect for evaluating reactor criticality and fuel breeding ratio

    International Nuclear Information System (INIS)

    Saputra, Geby; Purnama, Aditya Rizki; Permana, Sidik; Suzuki, Mitsutoshi

    2014-01-01

    Criticality condition of the reactors is one of the important factors for evaluating reactor operation and nuclear fuel breeding ratio is another factor to show nuclear fuel sustainability. This study analyzes the effect of burnup steps and cycle operation step for evaluating the criticality condition of the reactor as well as the performance of nuclear fuel breeding or breeding ratio (BR). Burnup step is performed based on a day step analysis which is varied from 10 days up to 800 days and for cycle operation from 1 cycle up to 8 cycles reactor operations. In addition, calculation efficiency based on the variation of computer processors to run the analysis in term of time (time efficiency in the calculation) have been also investigated. Optimization method for reactor design analysis which is used a large fast breeder reactor type as a reference case was performed by adopting an established reactor design code of JOINT-FR. The results show a criticality condition becomes higher for smaller burnup step (day) and for breeding ratio becomes less for smaller burnup step (day). Some nuclides contribute to make better criticality when smaller burnup step due to individul nuclide half-live. Calculation time for different burnup step shows a correlation with the time consuming requirement for more details step calculation, although the consuming time is not directly equivalent with the how many time the burnup time step is divided

  15. Plutonium isotopic composition of high burnup spent fuel discharged from light water reactors

    International Nuclear Information System (INIS)

    Nakano, Yoshihiro; Okubo, Tsutomu

    2011-01-01

    Highlights: → Pu isotopic composition of fuel affects FBR core nuclear characteristics very much. → Spent fuel compositions of next generation LWRs with burnup of 70 GWd/t were obtained. → Pu isotopic composition and amount in the spent fuel with 70 GWd/t were evaluated. → Spectral shift rods of high burnup BWR increases the fissile Pu fraction of spent fuel. → Wide fuel rod pitch of high burnup PWR lowers the fissile Pu fraction of spent fuel. - Abstract: The isotopic composition and amount of plutonium (Pu) in spent fuel from a high burnup boiling water reactor (HB-BWR) and a high burnup pressurized water reactor (HB-PWR), each with an average discharge burnup of 70 GWd/t, were estimated, in order to evaluate fast breeder reactor (FBR) fuel composition in the transition period from LWRs to FBRs. The HB-BWR employs spectral shift rods and the neutron spectrum is shifted through the operation cycle. The weight fraction of fissile plutonium (Puf) isotopes to the total plutonium in HB-BWR spent fuel after 5 years cooling is 62%, which is larger than that of conventional BWRs with average burnup of 45 GWd/t, because of the spectral shift operation. The amount of Pu produced in the HB-BWR is also larger than that produced in a conventional BWR. The HB-PWR uses a wider pitch 17 x 17 fuel rod assembly to optimize neutron slowing down. The Puf fraction of HB-PWR spent fuel after 5 years cooling is 56%, which is smaller than that of conventional PWRs with average burnup of 49 GWd/t, mainly because of the wider pitch. The amount of Pu produced in the HB-PWR is also smaller than that in conventional PWRs.

  16. Validation of integrated burnup code system SWAT2 by the analyses of isotopic composition of spent nuclear fuel

    International Nuclear Information System (INIS)

    Suyama, K.; Mochizuki, H.; Okuno, H.; Miyoshi, Y.

    2004-01-01

    This paper provides validation results of SWAT2, the revised version of SWAT, which is a code system combining point burnup code ORIGEN2 and continuous energy Monte Carlo code MVP, by the analysis of post irradiation examinations (PIEs). Some isotopes show differences of calculation results between SWAT and SWAT2. However, generally, the differences are smaller than the error of PIE analysis that was reported in previous SWAT validation activity, and improved results are obtained for several important fission product nuclides. This study also includes comparison between an assembly and a single pin cell geometry models. (authors)

  17. Burnup degree measuring device for spent fuel

    International Nuclear Information System (INIS)

    Doi, Hideo; Imaizumi, Hideki; Endo, Yasumi; Itahara, Kuniyuki.

    1994-01-01

    The present invention provides a small-sized and convenient device for measuring a burnup degree of spent fuels, which can be installed without remodelling an existent fuel storage pool. Namely, a gamma-ray detecting portion incorporates a Cd-Te detector for measuring intensity ratio of gamma-rays. A neutron detecting portion incorporates a fission counter tube. The Cd-Te detector comprises a neutron shielding member for reducing radiation damages and a background controlling plate for reducing low energy gamma-rays entering from a collimator. Since the Cd-Td detector for use in a gamma-ray spectroscopy can be used at a normal temperature and can measure even a relatively strong radiation field, it can measure the intensity of gamma-rays from Cs-137 and Cs-134 in spent fuels accurately at a resolving power of less than 10 keV. Further, in a case where a cooling period is less than one year, gamma-rays from Rh-106 and Nb-95 can also be measured. (I.S.)

  18. Mechanical Fatigue Testing of High Burnup Fuel for Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-05-01

    This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using a set up with three linear variable differential transformers (LVDTs).

  19. Distribution of equilibrium burnup for an homogeneous core with fuel elements of slightly enriched uranium (0.85% U-235) at Atucha I nuclear power plant

    International Nuclear Information System (INIS)

    Sidelnik, J.I.; Perez, R.A.; Salom, G.F.

    1987-01-01

    At Atucha I, the present fuel management with natural uranium comprises three burnup areas and one irradiation path, sometimes performing four steps in the reactor core, according to the requirements. The discharge burnup is 6.0 Mw d/kg U for a waste reactivity of 6.5 m k and a heavy water purity of 99.75%. This is a preliminary study to obtain the distribution of equilibrium burnup of an homogeneous core with slightly enriched uranium (0.85% by weight U-235), using the time-averaged method implemented in the code PUMA and a representative model of one third of core and fixed rod position. It was found a strategy of three areas and two paths that agrees with the present limits of channel power and specific power in fuel rod. The discharge burnup obtained is 11.6 Mw d/kg U. This strategy is calculated with the same method and a full core representation model is used to verify the obtained results. (Author)

  20. Proceedings of a workshop on the use of burnup credit in spent fuel transport casks

    International Nuclear Information System (INIS)

    Sanders, T.L.

    1989-10-01

    The Department of Energy sponsored a workshop on the use of burnup credit in the criticality design of spent fuel shipping casks on February 21 and 22, 1988. Twenty-five different presentations on many related topics were conducted, including the effects of burnup credit on the design and operation of spent fuel storage pools, casks and modules, and shipping casks; analysis and physics issues related to burnup credit; regulatory issues and criticality safety; economic incentives and risks associated with burnup credit; and methods for verifying spent fuel characteristics. An abbreviated version of the DOE workshop was repeated as a special session at the November 1988 American Nuclear Society Meeting in Washington, DC. Each of the invited speakers prepared detailed papers on his or her respective topic. The individual papers have been cataloged separately

  1. Extended burnup demonstration: reactor fuel program. Pre-irradiation characterization and summary of pre-program poolside examinations. Big Rock Point extended burnup fuel

    International Nuclear Information System (INIS)

    Exarhos, C.A.; Van Swam, L.F.; Wahlquist, F.P.

    1981-12-01

    This report is a resource document characterizing the 64 fuel rods being irradiated at the Big Rock Point reactor as part of the Extended Burnup Demonstration being sponsored jointly by the US Department of Energy, Consumers Power Company, Exxon Nuclear Company, and General Public Utilities. The program entails extending the exposure of standard BWR fuel to a discharge average of 38,000 MWD/MTU to demonstrate the feasibility of operating fuel of standard design to levels significantly above current limits. The fabrication characteristics of the Big Rock Point EBD fuel are presented along with measurement of rod length, rod diameter, pellet stack height, and fuel rod withdrawal force taken at poolside at burnups up to 26,200 MWD/MTU. A review of the fuel examination data indicates no performance characteristics which might restrict the continued irradiation of the fuel

  2. Burnup credit study and application in spent fuel management in China

    International Nuclear Information System (INIS)

    Ruan Keqiang; Xue Xiaogang; Shen Leisheng

    2001-01-01

    This paper gives a brief of spent fuel situation of nuclear power plants in China, problems faced with, and measures to be taken. The main research items in this field in next five years are introduced. It is imperative to put burnup credit to use in spent fuel storage, transport and reprocessing. (author)

  3. Advances in Metallic Fuels for High Burnup and Actinide Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, S. L.; Harp, J. M.; Chichester, H. J. M.; Fielding, R. S.; Mariani, R. D.; Carmack, W. J.

    2016-10-01

    Research and development activities on metallic fuels in the US are focused on their potential use for actinide transmutation in future sodium fast reactors. As part of this application, there is a desire to demonstrate a multifold increase in burnup potential. A number of metallic fuel design innovations are under investigation with a view toward significantly increasing the burnup potential of metallic fuels, since higher discharge burnups equate to lower potential actinide losses during recycle. Promising innovations under investigation include: 1) lowering the fuel smeared density in order to accommodate the additional swelling expected as burnups increase, 2) utilizing an annular fuel geometry for better geometrical stability at low smeared densities, as well as the potential to eliminate the need for a sodium bond, and 3) minor alloy additions to immobilize lanthanide fission products inside the metallic fuel matrix and prevent their transport to the cladding resulting in fuel-cladding chemical interaction. This paper presents results from these efforts to advance metallic fuel technology in support of high burnup and actinide transmutation objectives. Highlights include examples of fabrication of low smeared density annular metallic fuels, experiments to identify alloy additions effective in immobilizing lanthanide fission products, and early postirradiation examinations of annular metallic fuels having low smeared densities and palladium additions for fission product immobilization.

  4. Nuclear fuels

    International Nuclear Information System (INIS)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F.

    2009-01-01

    , Bubbles and precipitates, Modeling fuel behavior); Modeling defects and fission products in UO 2 ceramic by ab initio computation (Ab initio computation, Point defects in uranium dioxide, Fission products in uranium dioxide, The indispensable coupling of modeling and experiment); Cladding and assembly materials (What is the purpose of cladding?, Zirconium alloys, Claddings: required to exhibit good mechanical strength, Mechanical behavior of irradiated Zr alloys, Claddings: required to prove corrosion resistant); Pellet-cladding interaction (The phenomena involved in pellet-cladding interaction (PCI), Experimental simulation of PCI and the lessons to be drawn from it, The requirement for an experimental basis, Numerical simulation of PCI, Towards a lifting of PCI-related operating constraints); Advanced UO 2 and MOX ceramics (Chromium oxide-doped UO 2 fuel, Novel MOX microstructures); Mechanical behavior of fuel assemblies (Assembly mechanical behavior in normal operating conditions, Assembly mechanical behavior in accident situations, Fuel in a loss of primary coolant accident (LOCA)); Introduction to LOCA-type accident transients (Overview of thermal-hydraulic and fuel-related aspects, Incidence of LOCA transients on the thermal-metallurgical-mechanical behavior of zirconium-base alloy cladding); Fuel in a reactivity insertion accident (RIA) (Safety criteria); Fuel in a severe accident (The VERCORS analytical program, The Phebus-FP global tests, Control of severe accidents in the EPR reactor); In-core fuel management (Relationships between cycle length, maximum burnup, and batch fraction Enrichment and burnable poisons, The impact of the nature of the fuel used, and its evolution, on the major parameters of core physics, and management Prospects for future trends in core management); Fuel cycle material balances (In-core evolution of materials, Decay heat and potential radiotoxicity, Plutonium management); Long-term behavior of spent fuel (The nature of spent nuclear

  5. Nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F

    2009-07-01

    Fuel is one of the essential components in a reactor. It is within that fuel that nuclear reactions take place, i.e. fission of heavy atoms, uranium and plutonium. Fuel is at the core of the reactor, but equally at the core of the nuclear system as a whole. Fuel design and properties influence reactor behavior, performance, and safety. Even though it only accounts for a small part of the cost per kilowatt-hour of power provided by current nuclear power plants, good utilization of fuel is a major economic issue. Major advances have yet to be achieved, to ensure longer in-reactor dwell-time, thus enabling fuel to yield more energy; and improve ruggedness. Aside from economics, and safety, such strategic issues as use of plutonium, conservation of resources, and nuclear waste management have to be addressed, and true technological challenges arise. This Monograph surveys current knowledge regarding in-reactor behavior, operating limits, and avenues for R and D. It also provides illustrations of ongoing research work, setting out a few noteworthy results recently achieved. Content: 1 - Introduction; 2 - Water reactor fuel: What are the features of water reactor fuel? 9 (What is the purpose of a nuclear fuel?, Ceramic fuel, Fuel rods, PWR fuel assemblies, BWR fuel assemblies); Fabrication of water reactor fuels (Fabrication of UO{sub 2} pellets, Fabrication of MOX (mixed uranium-plutonium oxide) pellets, Fabrication of claddings); In-reactor behavior of UO{sub 2} and MOX fuels (Irradiation conditions during nominal operation, Heat generation, and removal, The processes involved at the start of irradiation, Fission gas behavior, Microstructural changes); Water reactor fuel behavior in loss of tightness conditions (Cladding, the first containment barrier, Causes of failure, Consequences of a failure); Microscopic morphology of fuel ceramic and its evolution under irradiation; Migration and localization of fission products in UOX and MOX matrices (The ceramic under

  6. Nuclear fuel activities in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D S [Fuel Development Branch, Chalk River Labs., AECL (Canada)

    1997-12-01

    Nuclear fuel activities in Canada are considered in the presentation on the following directions: Canadian utility fuel performance; CANDU owner`s group fuel programs; AECL advanced fuel program (high burnup fuel behaviour and development); Pu dispositioning (MOX) activities. 1 tab.

  7. Effect of fuel burnup on the mechanical safety coefficients

    International Nuclear Information System (INIS)

    Plyashkevich, V.Ju.; Sidorenko, V.D.; Shishkov, L.K.

    2001-01-01

    )In the paper the results of studies of changes in the process of campaign 'disturbances' of local heat flux and local fuel burnup, resulting from the 'mechanical' deviations in the composition and geometrical characteristics of fuel rods from the nominal are given. As example, the WWER-440 fuel assembly with burnable poisons used in the five-year fuel cycle is considered. The effect of deviations in fuel enrichment, fuel content, gadolinium content and geometrical size was studied (Authors)

  8. Experimental studies of spent fuel burn-up in WWR-SM reactor

    Energy Technology Data Exchange (ETDEWEB)

    Alikulov, Sh. A.; Baytelesov, S.A.; Boltaboev, A.F.; Kungurov, F.R. [Institute of Nuclear Physics, Ulughbek township, 100214, Tashkent (Uzbekistan); Menlove, H.O.; O’Connor, W. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Osmanov, B.S., E-mail: bari_osmanov@yahoo.com [Research Institute of Applied Physics, Vuzgorodok, 100174 Tashkent (Uzbekistan); Salikhbaev, U.S. [Institute of Nuclear Physics, Ulughbek township, 100214, Tashkent (Uzbekistan)

    2014-10-01

    Highlights: • Uranium burn-up measurement from {sup 137}Cs activity in spent reactor fuel. • Comparison to reference sample with known burn-up value (ratio method). • Cross-check of the approach with neutron-based measurement technique. - Abstract: The article reports the results of {sup 235}U burn-up measurements using {sup 137}Cs activity technique for 12 nuclear fuel assemblies of WWR-SM research reactor after 3-year cooling time. The discrepancy between the measured and the calculated burn-up values was about 3%. To increase the reliability of the data and for cross-check purposes, neutron measurement approach was also used. Average discrepancy between two methods was around 12%.

  9. TRIGA fuel element burnup determination by measurement and calculation

    International Nuclear Information System (INIS)

    Zagar, T.; Ravnik, M.; Persic, A.; Jeraj, R.

    2000-01-01

    To estimate the accuracy of the fuel element burnup calculation different factors influencing the calculation were studied. To cover different aspects of burnup calculations, two in-house developed computer codes were used in calculations. The first (TRIGAP) is based on a one-dimensional two-group diffusion approximation, and the second (TRIGLAV) is based on a two-dimensional four-group diffusion equation. Both codes use WIMSD program with different libraries forunit-cell cross section data calculation. The burnup accumulated during the operating history of the TRIGA reactor at Josef Stefan Institute was calculated for all fuel elements. Elements used in the core during this period were standard SS 8.5% fuel elements, standard SS 12% fuel elements and highly enriched FLIP fuel elements. During the considerable period of operational history, FLIP and standard fuel elements were used simultaneously in mixed cores. (authors)

  10. High Burnup Fuel Behaviour under LOCA Conditions as Observed in Halden Reactor Experiments

    International Nuclear Information System (INIS)

    Kolstad, E.; Wiesenack, W.; Oberlander, B.; Tverberg, T.

    2013-01-01

    In the context of assessing the validity of safety criteria for loss of coolant accidents with high burnup fuel, the OECD Halden Reactor Project has implemented an integral in-pile LOCA test series. In this series, fuel fragmentation and relocation, axial gas communication in high burnup rods as affected by gap closure and fuel- clad bonding, and secondary cladding oxidation and hydriding are of major interest. In addition, the data are being used for code validation as well as model development and verification. So far, nine tests with irradiated fuel segments (burnup 40-92 MW.d.kg -1 ) from PWR, BWR and VVER commercial nuclear power plants have been carried out. The in-pile measurements and the PIE results show a good repeatability of the experiments. The paper describes the experimental setup as well as the principal features and main results of these tests. Fuel fragmentation and relocation have occurred to varying degrees in these tests. The paper compares the conditions leading to the presence or absence of fuel fragmentation, e.g., burnup and loss of constraint. Axial gas flow is an important driving force for clad ballooning, fuel relocation and fuel expulsion. The experiments have provided evidence that such gas flow can be impeded in high burnup fuel with a potential impact on the ballooning and fuel dispersal. Although the results of the Halden LOCA tests are, to some extent, amplified by conditions and features deliberately introduced into the test series, the fuel behaviour identified in the Halden tests has an impact on the safety assessment of high burnup fuel and should give rise to improvements of the predictive capabilities of LOCA modelling codes. (author)

  11. The Gd-isotopic fuel for high burnup in PWR's

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Marcio Soares; Mattos, João Roberto L. de; Andrade, Edison Pereira de, E-mail: marciod@cdtn.br, E-mail: jrmattos@cdtn.br, E-mail: epa@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Today, the discussion about the high burnup fuel is beyond the current fuel enrichment licensing and burnup limits. Licensing issues and material/design developments are again key features in further development of the LWR fuel design. Nevertheless, technological and economical solutions are already available or will be available in a short time. In order to prevent the growth of the technological gap, Brazil's nuclear sector needs to invest in the training of new human resources, in the access to international databases, and in the upgrading existing infrastructure. Experimental database and R&D infrastructure are essential components to support the autonomous development of Brazilian Nuclear Reactors, promoting the development of national technologies. The (U,Gd)O{sub 2} isotopic fuel proposed by the CDTN's staff solve two main issues in the high burnup fuel, which are (1) the peak of reactivity resulting from the Gd-157 fast burnup, and (2) the peak of temperature in the (U,Gd)O{sub 2} nuclear fuel resulting from detrimental effects in the thermal properties for gadolinia additions higher than 2%. A sustainable future can be envisaged for the nuclear energy. (author)

  12. A simple gamma spectrometry method for evaluating the burnup of MTR-type HEU fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Makmal, T. [The Unit of Nuclear Engineering, Ben-Gurion University of The Negev, Beer-Sheva 84105 (Israel); Nuclear Physics and Engineering Division, Soreq Nuclear Research Center, Yavne 81800 (Israel); Aviv, O. [Radiation Safety Division, Soreq Nuclear Research Center, Yavne 81800 (Israel); Gilad, E., E-mail: gilade@bgu.ac.il [The Unit of Nuclear Engineering, Ben-Gurion University of The Negev, Beer-Sheva 84105 (Israel)

    2016-10-21

    A simple method for the evaluation of the burnup of a materials testing reactor (MTR) fuel element by gamma spectrometry is presented. The method was applied to a highly enriched uranium MTR nuclear fuel element that was irradiated in a 5 MW pool-type research reactor for a total period of 34 years. The experimental approach is based on in-situ measurements of the MTR fuel element in the reactor pool by a portable high-purity germanium detector located in a gamma cell. To corroborate the method, analytical calculations (based on the irradiation history of the fuel element) and computer simulations using a dedicated fuel cycle burnup code ORIGEN2 were performed. The burnup of the MTR fuel element was found to be 52.4±8.8%, which is in good agreement with the analytical calculations and the computer simulations. The method presented here is suitable for research reactors with either a regular or an irregular irradiation regime and for reactors with limited infrastructure and/or resources. In addition, its simplicity and the enhanced safety it confers may render this method suitable for IAEA inspectors in fuel element burnup assessments during on-site inspections. - Highlights: • Simple, inexpensive, safe and flexible experimental setup that can be quickly deployed. • Experimental results are thoroughly corroborated against ORIGEN2 burnup code. • Experimental uncertainty of 9% and 5% deviation between measurements and simulations. • Very high burnup MTR fuel element is examined, with 60% depletion of {sup 235}U. • Impact of highly irregular irradiation regime on burnup evaluation is studied.

  13. Consequences of the increase of burnup on the fuel

    International Nuclear Information System (INIS)

    Melin, P.; Lavoine, O.; Houdaille, B.

    1986-04-01

    The examinations carried out on the FRAGEMA fuel of EDF reactors show its good behavior in service. The results of research and development programs developed by EDF, FGA and the CEA show that this fuel can be irradiated up to a high burnup, and allow to point out the axies of research to improve still the performance of the product in a more and more soliciting environment (increase of power and burnup coupled with load following). Among the solutions considered, there are the design and fabrication adjustments (geometry, initial pressurization), more fundamental changes concerning fuel cans and fuel pellets, which need still research and development programs [fr

  14. Determination of Fission Gas Inclusion Pressures in High Burnup Nuclear Fuel using Laser Ablation ICP-MS combined with SEM/EPMA and Optical Microscopy

    International Nuclear Information System (INIS)

    Horvath, Matthias I.; Guenther-Leopold, Ines; Kivel, Niko; Restani, Renato; Guillong, Marcel; Izmer, Andrei; Hellwig, Christian; Guenther, Detlef

    2008-01-01

    In approximately 20% of all fissions at least one of the fission products is gaseous. These are mainly xenon and krypton isotopes contributing up to 90% by the xenon isotopes. Upon reaching a burn-up of 60 - 75 GWd/tHM a so called High Burnup Structure (HBS) is formed in the cooler rim of the fuel. In this region a depletion of the noble fission gases (FG) in the matrix and an enrichment of FG in μm-sized pores can be observed. Recent calculations show that in these pores the pressure at room temperature can be as large as 30 MPa. The knowledge of the FG pressure in pores is important to understand the high burn-up fuel behavior under accident conditions (i.e. RIA or LOCA). With analytical methods routinely used for the characterization of solid samples, i.e. Electron Probe Micro Analysis (EPMA), Secondary Ion Mass Spectrometry (SIMS), the quantification of gaseous inclusions is very difficult to almost impossible. The combination of a laser ablation system (LA) with an inductively coupled plasma mass spectrometer (ICP-MS) offers a powerful tool for quantification of the gaseous pore inventory. This method offers the advantages of high spatial resolution with laser spot sizes down to 10 μm and low detection limits. By coupling with scanning electron microscopy (SEM) for the pore size distribution, EPMA for the FG inventory in the fuel matrix and optical microscopy for the LA-crater sizes, the pressures in the pores and porosity was calculated. As a first application of this calibration technique for gases, measurements were performed on pressurized water reactor (PWR) fuel with a rod average of 105 GWd/tHM to determine the local FG pressure distribution. (authors)

  15. CARA design criteria for HWR fuel burnup extension

    International Nuclear Information System (INIS)

    Florido, P.C.; Cirimello, R.O.; Bergallo, J.E.; Marino, A.C.; Delmastro, D.F.; Brasnarof, D.O.; Gonzalez, J.H.; Juanico, L.A.

    2002-01-01

    A new concept for HWR fuel bundles, namely CARA, is presented. The CARA design allows to improve all the major performances in the PHWR fuel technology. Among others, it reaches higher burnup and thermohydraulic safety margins, together with lower fuel pellet temperatures and Zry/HM mass ratio. Moreover, it keeps the fuel mass content per unit length and the channel pressure drop by using a single diameter of fuel rods. (author)

  16. A complete NUHOMS {sup registered} solution for storage and transport of high burnup spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bondre, J. [Transnuclear, Inc. (AREVA Group), Fremont, CA (United States)

    2004-07-01

    The discharge burnups of spent fuel from nuclear power plants keep increasing with plants discharging or planning to discharge fuel with burnups in excess of 60,000 MWD/MTU. Due to limited capacity of spent fuel pools, transfer of older cooler spent fuel from fuel pool to dry storage, and very limited options for transport of spent fuel, there is a critical need for dry storage of high burnup, higher heat load spent fuel so that plants could maintain their full core offload reserve capability. A typical NUHOMS {sup registered} solution for dry spent fuel storage is shown in the Figure 1. Transnuclear, Inc. offers two advanced NUHOMS {sup registered} solutions for the storage and transportation of high burnup fuel. One includes the NUHOMS {sup registered} 24PTH system for plants with 90.7 Metric Ton (MT) crane capacity; the other offers the higher capacity NUHOMS {sup registered} 32PTH system for higher crane capacity. These systems include NUHOMS {sup registered} - 24PTH and -32PTH Transportable Canisters stored in a concrete storage overpack (HSM-H). These canisters are designed to meet all the requirements of both storage and transport regulations. They are designed to be transported off-site either directly from the spent fuel pool or from the storage overpack in a suitable transport cask.

  17. Evaluation of burnup characteristics and energy deposition during NSRR pulse irradiation tests on irradiated BWR fuels

    International Nuclear Information System (INIS)

    Nakamura, Takehiko; Yoshinaga, Makio

    2000-11-01

    Pulse irradiation tests of irradiated fuel are performed in the Nuclear Safety Research Reactor (NSRR) to investigate the fuel behavior under Reactivity Initiated Accident Conditions (RIA). The severity of the RIA is represented by energy deposition or peak fuel enthalpy during the power excursion. In case of the irradiated fuel tests, the energy deposition varies depending both on the amounts and distribution of residual fissile and neutron absorbing fission products generated during the base irradiation. Thus, proper fuel burnup characterization, especially for low enriched commercial fuels, is important, because plutonium (Pu) takes a large part of fissile and its generation depends on the neutron spectrum during the base irradiation. Fuel burnup calculations were conducted with ORIGEN2, RODBURN and SWAT codes for the BWR fuels tested in the NSRR. The calculation results were compared with the measured isotope concentrations and used for the NSRR neutron calculations to evaluate energy depositions of the test fuel. The comparison of the code calculations and the measurements revealed that the neutron spectrum change due to difference in void fraction altered Pu generation and energy deposition in the NSRR tests considerably. With the properly evaluated neutron spectrum, the combined burnup and NSRR neutron calculation gave reasonably good evaluation of the energy deposition. The calculations provided radial distributions of the fission product accumulation during the base irradiation and power distribution during the NSRR pulse irradiation, which were important for the evaluation of both burnup characteristics and fission gas release behavior. (author)

  18. Technical and economic limits to fuel burnup extension. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2002-07-01

    For many years, the increase of efficiency in the production of nuclear electricity has been an economic challenge in many countries which have developed this kind of energy. The increase of fuel burnup leads to a reduction in the volume of spent fuel discharged to longer fuel cycles in the reactor, which means bigger availability and capacity factors. After having increased the authorized burnup in plants, developing new alloys capable of resisting high burnup, and having accumulated data on fuel evolution with burnup, it has become necessary to establish the limitations which could be imposed by the physical evolution of the fuel, influencing fuel management, neutron properties, reprocessing or, more generally, the management of waste and irradiated fuels. It is also necessary to verify whether the benefits of lower electricity costs would not be offset by an increase in fuel management costs. The main questions are: Are technical and economic limits to the increasing of fuel burnup in parallel? Can we envisage nowadays the hardest limitation in some of these areas? Which are the main points to be solved from the technical point of view? Is this effort worthwhile considering the economy of the cycle? To which extent? For these reasons, the IAEA, following a recommendation by the International Working Group on Fuel Performance and Technology, held a Technical Committee Meeting on Technical and Economic Limits to Fuel Burnup Extension. The purpose of this meeting was to provide an international forum to review the evolution of fuel properties at increased burnup in order to estimate the limitations both from a physical and an economic point of view. The meeting was therefore divided into two parts. The first part, focusing on technical limits, was devoted to the improvement of the fuel element, such as fission gas release (FGR), RIM effect, cladding, etc. and the fabrication, core management, spent fuel and reprocessing. Eighteen related papers were presented which

  19. Determination of reactor fuel burnup using passive neutron assay

    International Nuclear Information System (INIS)

    Kodeli, I.; Trkov, A.; Najzer, M.; Ertek, C.

    1988-01-01

    Passive neutron assay (PNA) method was developed to verify the fissile inventory of the irradiated reactor fuels. The characteristics of the method were studied at 'Jozef Stefan' Institute. The dependence of neutron source in the fuel on burnup, cooling time, initial enrichment and specific power were investigated and the accuracy of the method, using available computer codes was estimated. (author)

  20. Benefits of cycle stretchout in pressurized water reactor extended-burnup fuel cycles

    International Nuclear Information System (INIS)

    Matzie, R.A.; Leung, D.C.; Liu, Y.; Beekmann, R.W.

    1981-01-01

    Nuclear reactors are inherently capable of operating for a substantial period beyond their nominal end of cycle (EOC) as a result of negative moderator and fuel temperature coefficients and the decrease in xenon poisoning with lower core power levels. This inherent capability can be used to advantage to reduce annual uranium makeup requirements and cycle energy costs by the use of planned EOC stretchout. This paper discusses the fuel utilization efficiency and economics of both the five-batch, extended-burnup cycle and the three-batch, standard-burnup cycle, which can be improved by employing planned EOC (end of cycle) stretchout. 11 refs

  1. Burnup credit feasibility for BWR spent fuel shipments

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    1990-01-01

    Considerable interest in the allowance of reactivity credit for the exposure history of power reactor fuel currently exists. This ''burnup credit'' issue has the potential to greatly reduce risk and cost when applied to the design and certification of spent of fuel casks used for transportation and storage. Analyses 1 have shown the feasibility estimated the risk and economic incentives for allowing burnup credit in pressurized water reactor (PWR) spent fuel shipping cask applications. This paper summarizes the extension of the previous PWR feasibility assessments to boiling water reactor (BWR) fuel. As with the PWR analysis, the purpose was not verification of burnup credit (see ref. 2 for ongoing work in this area) but a reasonable assessment of the feasibility and potential gains from its use in BWR applications. This feasibility analysis aims to apply simple methods that adequately characterize the time-dependent isotopic compositions of typical BWR fuel. An initial analysis objective was to identify a simple and reliable method for characterizing BWR spent fuel. The method includes characterization of a typical pin-cell spectrum, using a one-dimensional (1-D) model of a BWR assembly. The calculated spectrum allows burnup-dependent few-group material constants to be generated. Point depletion methods were then used to obtain the time-varying characteristics of the fuel. These simple methods were validated, where practical, with multidimensional methods. 6 refs., 1 tab

  2. Fuel cycle cost considerations of increased discharge burnups

    International Nuclear Information System (INIS)

    Scherpereel, L.R.; Frank, F.J.

    1982-01-01

    Evaluations are presented that indicate the attainment of increased discharge burnups in light water reactors will depend on economic factors particular to individual operators. In addition to pure resource conserving effects and assuming continued reliable fuel performance, a substantial economic incentive must exist to justify the longer operating times necessary to achieve higher burnups. Whether such incentive will exist or not will depend on relative price levels of all fuel cycle cost components, utility operating practices, and resolution of uncertainties associated with the back-end of the fuel cycle. It is concluded that implementation of increased burnups will continue at a graduated pace similar to past experience, rather than finding universal acceptance of particular increased levels at any particular time

  3. OECD/NEA burnup credit criticality benchmarks phase IIIB: Burnup calculations of BWR fuel assemblies for storage and transport

    International Nuclear Information System (INIS)

    Okuno, Hiroshi; Naito, Yoshitaka; Suyama, Kenya

    2002-02-01

    The report describes the final results of the Phase IIIB Benchmark conducted by the Expert Group on Burnup Credit Criticality Safety under the auspices of the Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD). The Benchmark was intended to compare the predictability of current computer code and data library combinations for the atomic number densities of an irradiated PWR fuel assembly model. The fuel assembly was irradiated under specific power of 25.6 MW/tHM up to 40 GWd/tHM and cooled for five years. The void fraction was assumed to be uniform throughout the channel box and constant, at 0, 40 and 70%, during burnup. In total, 16 results were submitted from 13 institutes of 7 countries. The calculated atomic number densities of 12 actinides and 20 fission product nuclides were found to be for the most part within a range of ±10% relative to the average, although some results, esp. 155 Eu and gadolinium isotopes, exceeded the band, which will require further investigation. Pin-wise burnup results agreed well among the participants. The results in the infinite neutron multiplication factor k ∞ also accorded well with each other for void fractions of 0 and 40%; however some results deviated from the averaged value noticeably for the void fraction of 70%. (author)

  4. OECD/NEA burnup credit criticality benchmarks phase IIIB. Burnup calculations of BWR fuel assemblies for storage and transport

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, Hiroshi; Naito, Yoshitaka; Suyama, Kenya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-02-01

    The report describes the final results of the Phase IIIB Benchmark conducted by the Expert Group on Burnup Credit Criticality Safety under the auspices of the Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD). The Benchmark was intended to compare the predictability of current computer code and data library combinations for the atomic number densities of an irradiated PWR fuel assembly model. The fuel assembly was irradiated under specific power of 25.6 MW/tHM up to 40 GWd/tHM and cooled for five years. The void fraction was assumed to be uniform throughout the channel box and constant, at 0, 40 and 70%, during burnup. In total, 16 results were submitted from 13 institutes of 7 countries. The calculated atomic number densities of 12 actinides and 20 fission product nuclides were found to be for the most part within a range of {+-}10% relative to the average, although some results, esp. {sup 155}Eu and gadolinium isotopes, exceeded the band, which will require further investigation. Pin-wise burnup results agreed well among the participants. The results in the infinite neutron multiplication factor k{sub {infinity}} also accorded well with each other for void fractions of 0 and 40%; however some results deviated from the averaged value noticeably for the void fraction of 70%. (author)

  5. Achieving High Burnup Targets With Mox Fuels: Techno Economic Implications

    International Nuclear Information System (INIS)

    Clement Ravi Chandar, S.; Sivayya, D.N.; Puthiyavinayagam, P.; Chellapandi, P.

    2013-01-01

    For a typical MOX fuelled SFR of power reactor size, Implications due to higher burnup have been quantified. Advantages: – Improvement in the economy is seen upto 200 GWd/ t; Disadvantages: – Design changes > 150 GWd/ t bu; – Need for 8/ 16 more fuel SA at 150/ 200 GWd/ t bu; – Higher enrichment of B 4 C in CSR/ DSR at higher bu; – Reduction in LHR may be required at higher bu; – Structural material changes beyond 150 GWd/ t bu; – Reprocessing point of view-Sp Activity & Decay heat increase. Need for R & D is a must before increasing burnup. bu- refers burnup. Efforts to increase MOX fuel burnup beyond 200 GWd/ t may not be highly lucrative; • MOX fuelled FBR would be restricted to two or four further reactors; • Imported MOX fuelled FBRs may be considered; • India looks towards launching metal fuel FBRs in the future. – Due to high Breeding Ratio; – High burnup capability

  6. Measurement of burnup in FBR MOX fuel irradiated to high burnup

    International Nuclear Information System (INIS)

    Koyama, Shin-ichi; Osaka, Masahiko; Sekine, Takashi; Morozumi, Katsufumi; Namekawa, Takashi; Itoh, Masahiko

    2003-01-01

    The burnup of fuel pins in the subassemblies irradiated at the range from 0.003 to 13.28% FIMA in the JOYO MK-II core were measured by the isotope dilution analysis. For the measurement, 75 and 51 specimens were taken from the fuel pins of driver fuel and irradiation test subassemblies, respectively. The data of burnup could be obtained within an experimental error of 4%, and were compared with the ones calculated by 3-dimensional neutron diffusion codes MAGI and ESPRIT-J, which are used for JOYO core management system. Both data of burnup almost agree with each other within an error of 5%. For the fuel pins loaded at the outer region of the subassembly in the 4th row, which was adjacent to reflectors, however, some of the calculation results were 15% less at most than the measured values. It is suggested from the calculation by a Monte Carlo code MCNP-4A that this difference between the calculated and the measured data attribute from the softening of neutron flux in the region adjacent to the reflector. (author)

  7. Micrographic study on distribution of fission products in high burn-up metallic alloy fuel

    International Nuclear Information System (INIS)

    Kolay, S.; Basu, M.; Das, D.

    2012-01-01

    One of the important mandates in the three-stage nuclear power generation programme of India is to utilize uranium-plutonium based alloy fuels in enabling shorter doubling time for breeding of the fissile isotopes ( 239 Pu and 233 U ) to be used in thorium based driver fuel in the third stage. Reported information shows the successful performance of alloy fuel with somewhat porous matrix in achieving 10-15 atom% burnup. The porosity and microstructure of these alloys are strongly dependent on their composition and phases present. Porosity also influences the extent of fuel swelling and gas release. So to assess fuel performance and fuel integrity under high burn-up condition it is essential to have knowledge about the new phases formed and their redistribution that occurs as a result of inter-diffusion and temperature gradient. This study addresses these issues taking the base alloy U-10 wt %Zr

  8. Fission gas release from fuels at high burnup

    International Nuclear Information System (INIS)

    Kauffmann, Yves; Pointud, M.L.; Vignesoult, Nicole; Atabek, Rosemarie; Baron, Daniel.

    1982-04-01

    Determinations of residual gas concentrations by heating and by X microanalysis were respectively carried out on particles (TANGO program) and on sections of fuel rods, perfectly characterized as to fabrication and irradiation history. A threshold release temperature of 1250 0 C+-100 0 C was determined irrespective of the type of oxide and the irradiation history in the 18,000-45,000 MWdt -1 (U) specific burnup field. The overall analyses of gas released from the fuel rods show that, in the PWR operating conditions, the fraction released remains less than 1% up to a mean specific burnup of 35000 MWdt -1 (U). The release of gases should not be a limiting factor in the increase of specific burnups [fr

  9. EPRI/DOE High-Burnup Fuel Sister Rod Test Plan Simplification and Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Saltzstein, Sylvia J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorenson, Ken B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hanson, B. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shimskey, R. W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Klymyshyn, N. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Webster, R. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jensen, P. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); MacFarlan, P. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Billone, Mike [Argonne National Lab. (ANL), Argonne, IL (United States); Scaglione, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Montgomery, Rose [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevard, Bruce [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-15

    The EPRI/DOE High-Burnup Confirmatory Data Project (herein called the “Demo”) is a multi-year, multi-entity test with the purpose of providing quantitative and qualitative data to show if high-burnup fuel mechanical properties change in dry storage over a ten-year period. The Demo involves obtaining 32 assemblies of high-burnup PWR fuel of common cladding alloys from the North Anna Nuclear Power Plant, loading them in an NRC-licensed TN-32B cask, drying them according to standard plant procedures, and then storing them on the North Anna dry storage pad for ten years. After the ten-year storage time, the cask will be opened and the mechanical properties of the rods will be tested and analyzed.

  10. Documentation for WIMSD-formatted libraries based on ENDF/B-VII.1 evaluated nuclear data files with extended actinide burn-up chains and cross section data up to 2000 K for fuel materials

    International Nuclear Information System (INIS)

    López Aldama, Daniel

    2014-11-01

    In the frame of WIMS Library Update Project the WIMSD-IAEA-69 and WIMSD-IAEA-172 libraries were prepared and made available at the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The main libraries were prepared from different sources of evaluated nuclear data that were available before December 2003. Also others WIMSD libraries were prepared from the major evaluated nuclear data libraries and made available at http://www-nds.iaea.org/wimsd. During the last ten years new libraries have been prepared every time that a major version of an evaluated nuclear data library has been released, namely JEFF-3.1 and ENDF/B-VII.0. Recently, end-users have requested to extend the temperature ranges of fuel materials included in the libraries and also to extend the burn-up chains to higher actinides up to Cf-254. The inclusion of new structural materials, like bismuth, has been also considered. Therefore, new WIMSD-formatted libraries in the 69- and 172-energy structure have been prepared with more materials, extended actinides burn-up chains and higher temperatures in thermal and resonance range

  11. Fuel removing method for high burnup fuel and device therefor

    International Nuclear Information System (INIS)

    Terakado, Shogo; Owada, Isao; Kanno, Yoshio; Aizawa, Sakue; Yamahara, Takeshi.

    1993-01-01

    A through hole is perforated at the center of a fuel rod in a cladding tube by a diamond drill in a water vessel. Further, the through hole is enlarged by the diamond drill. A pellet removing tool is attached to a drill chuck instead of the diamond drill. Then, the thin cylindrical fuel pellet remaining on the inner surface of the cladding tube is removed by using a pellet removing tool while applying vibrations. Subsequently, a wire brush having a slightly larger diameter than that of the inner diameter of the cladding tube is attached to the drill chuck and rotated to finish the inner surface, so that a small amount of pellets remained on the inner surface of the cladding tube is removed. Pellet powders in the water vessel are collected and recovered to the water container. This can remove high burnup fuels which are firmly sticked to the cladding tube, without giving thermal or mechanical influences on the cladding tube. (I.N.)

  12. Study on the application of CANDLE burnup strategy to several nuclear reactors. JAERI's nuclear research promotion program, H13-002 (Contract research)

    International Nuclear Information System (INIS)

    Kunitomi, Kazuhiko

    2005-03-01

    The CANDLE burnup strategy is a new reactor burnup concept, where the distributions of fuel nuclide densities, neutron flux, and power density move with the same constant speed from bottom to top (or from top to bottom) of the core and without any change in their shapes. Therefore, any burnup control mechanisms are not required, and reactor characteristics do not change along burnup. The reactor is simple and safe. When this burnup scheme is applied to some neutron rich fast reactors, either natural or depleted uranium can be utilized as fresh fuel after second core and the burnup of discharged fuel is about 40%. It means that the nuclear energy can be utilized for many hundreds years without new mining, enrichment and reprocessing, and the amount of spent fuel can be reduced considerably. However, in order to perform such a high fuel burnup some innovative technologies should be developed. Though development of innovative fuel will take a lot of time, intermediate re-cladding may be easy to be employed. Compared to fast reactors, application of CANDLE burnup to prismatic fuel high-temperature gas cooled reactors is very easy. In this report the application of CANDLE burnup to both these types of reactors are studied. (author)

  13. Impacts of the turbogenerator reactive operation in the nuclear fuel burnup; Impactos da operacao reativa do turbogerador na queima do combustivel nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Helio Ricardo V. de; Martinez, Aquilino S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    2002-07-01

    The parameterization of the losses in a turbogenerator in function of an operation with the electrical system reactive allowed to model in a simple and exact way the equations that define and they quantify the additional of nuclear potency that it should be generated by a reactor, in order to maintain the commitment with the national system operator, that is, the electric active power contracted. starting from this additional of nuclear power it was modeled the additional burn up of the fuel elements, as well as the numbers of effective days to full power wasted. it was promoted a safety analysis and some limitations due to the reactive operation of the electrical system. inside of this context it was made a financial evaluation in which we ask some questions to companies and government organs in order to define what losses are acceptable and also the reason why we don't use other technician resources such as: increase of the electrical mesh, electrical power injection in strategic points, capacitor banks and increase of the number the electrical plants. (author)

  14. Evaluation of burnup credit for fuel storage analysis -- Experience in Spain

    International Nuclear Information System (INIS)

    Conde, J.M.; Recio, M.

    1995-01-01

    Several Spanish light water reactor commercial nuclear power plants are close to maximum spent-fuel pool storage capacity. The utilities are working on the implementation of state-of-the-art methods to increase the storage capacity, including both changes in the pool design (recracking) and the implementation of new analysis approaches with reduced conservation (burnup credit). Burnup credit criticality safety analyses have been approved for two pressurized water reactor plants (four units) and one boiling water reactor (BWR); an other BWR storage analysis is being developed at this moment. The elimination of the ''fresh fuel assumption'' increases the complexity of the criticality analysis to be performed, sometimes putting into question the capability of the analytic tools to properly describe this new situation and increasing the scope of the scenarios to be analyzed. From a regulatory perspective, the reactivity reduction associated with burnup of the fuel can be given credit only if the exposure of each fuel bundle can be known with enough accuracy. Subcriticality of spent-fuel storage depends mainly on the initial fuel enrichment, storage geometry, fuel exposure history, and cooling time. The last two aspects introduced new uncertainties in the criticality analysis that should be quantified in an adequate way. In addition, each and every fuel bundle has its own specific exposure history, so that strong assumptions and simplified calculational schemes have to be developed to undertake the analysis. The Consejo de Seguridad Nuclear (CSN), Spanish regulatory authority on the matter of nuclear safety and radiation protection, plays an active role in the development of analysis methods to support burnup credit, making proposals that may be beneficial in terms of risk and cost while keeping the widest safety margins possible

  15. Validation of a new continuous Monte Carlo burnup code using a Mox fuel assembly

    International Nuclear Information System (INIS)

    El bakkari, B.; El Bardouni, T.; Merroun, O.; El Younoussi, C.; Boulaich, Y.; Boukhal, H.; Chakir, E.

    2009-01-01

    The reactivity of nuclear fuel decreases with irradiation (or burnup) due to the transformation of heavy nuclides and the formation of fission products. Burnup credit studies aim at accounting for fuel irradiation in criticality studies of the nuclear fuel cycle (transport, storage, etc...). The principal objective of this study is to evaluate the potential capabilities of a newly developed burnup code called 'BUCAL1'. BUCAL1 differs in comparison with other burnup codes as it does not use the calculated neutron flux as input to other computer codes to generate the nuclide inventory for the next time step. Instead, BUCAL1 directly uses the neutron reaction tally information generated by MCNP for each nuclide of interest to determine the new nuclides inventory. This allows the full capabilities of MCNP to be incorporated into the calculation and a more accurate and robust analysis to be performed. Validation of BUCAL1 was processed by code-to-code comparisons using predictions of several codes from the NEA/OCED. Infinite multiplication factors (k ∞ ) and important fission product and actinide concentrations were compared for a MOX core benchmark exercise. Results of calculations are analysed and discussed.

  16. Burnup simulations of different fuel grades using the MCNPX Monte Carlo code

    Directory of Open Access Journals (Sweden)

    Asah-Opoku Fiifi

    2014-01-01

    Full Text Available Global energy problems range from the increasing cost of fuel to the unequal distribution of energy resources and the potential climate change resulting from the burning of fossil fuels. A sustainable nuclear energy would augment the current world energy supply and serve as a reliable future energy source. This research focuses on Monte Carlo simulations of pressurized water reactor systems. Three different fuel grades - mixed oxide fuel (MOX, uranium oxide fuel (UOX, and commercially enriched uranium or uranium metal (CEU - are used in this simulation and their impact on the effective multiplication factor (Keff and, hence, criticality and total radioactivity of the reactor core after fuel burnup analyzed. The effect of different clad materials on Keff is also studied. Burnup calculation results indicate a buildup of plutonium isotopes in UOX and CEU, as opposed to a decline in plutonium radioisotopes for MOX fuel burnup time. For MOX fuel, a decrease of 31.9% of the fissile plutonium isotope is observed, while for UOX and CEU, fissile plutonium isotopes increased by 82.3% and 83.8%, respectively. Keff results show zircaloy as a much more effective clad material in comparison to zirconium and stainless steel.

  17. Study on burnup credit evaluation method at JAERI towards securing criticality safety rationale for management of spent fuel

    International Nuclear Information System (INIS)

    Nomura, Y.

    1998-01-01

    Lately, due to massive accumulation of spent fuel discharged from light water reactors in Japan, it is gradually demanded to introduce the so-called burnup credit methodology into criticality safety design for nuclear fuel cycle facilities, such as spent fuel storage pools and transport casks. In order to save space in the spent fuel storage pool of the Rokkasho Reprocessing Plant, the burnup credit design has been firstly implemented for its criticality safety evaluation. Here, its design conditions and operational control procedures are briefly shown and research using burned fuel at JAERI is explained to support its licensing safety review, focusing on the relevant content of the Nuclear Criticality Safety Handbook of Japan, which has been prepared so far and planned in the near future. Finally, international co-operation for study on burnup credit issues practiced by JAERI is addressed. (author)

  18. Application of burnup credit for PWR spent fuel storage pool

    International Nuclear Information System (INIS)

    Shin, Hee Sung; Ro, Seung-Gy; Bae, Kang Mok; Kim, Ik Soo; Shin, Young Joon

    1999-01-01

    A study on the application of burnup credit for a PWR spent fuel storage pool has been investigated using a computer code system such as CSAS6 module of SCALE 4.3 in association with 44-group SCALE cross-section library. The calculation bias of the code system at a 95% probability with a 95% confidence level seems to be 0.00951 by benchmarking the system for forty six experimental data. With the aid of this computer code system, criticality analysis has been performed for the PWR spent fuel storage pool. Uncertainties due to postulated abnormal and accidental conditions, and manufacturing tolerance such as stainless steel thickness of storage rack, fuel enrichment, fuel density and box size have statistically been combined and resulted in 0.00674. Also, isotopic correction factor which was based on the calculated and measured concentration of 43 isotopes for both selected actinides and fission products important in burnup credit application has been taken into account in the criticality analysis. It is revealed that the minimum burnup with the corrected isotopic concentrations as required for the safe storage is 5,730 MWd/tU in enriched fuel of 5.0 wt%. (author)

  19. Depletion of gadolinium burnable poison in a PWR assembly with high burnup fuel

    Energy Technology Data Exchange (ETDEWEB)

    Refeat, Riham Mahmoud [Nuclear and Radiological Regulatory Authority (NRRA), Cairo (Egypt). Safety Engineering Dept.

    2015-12-15

    A tendency to increase the discharge burnup of nuclear fuel for Advanced Pressurized Water Reactors (PWR) has been a characteristic of its operation for many years. It will be able to burn at very high burnup of about 70 GWd/t with UO{sub 2} fuels. The U-235 enrichment must be higher than 5 %, which leads to the necessity of using an extremely efficient burnable poison like Gadolinium oxide. Using gadolinium isotope is significant due to its particular depletion behavior (''Onion-Skin'' effect). In this paper, the MCNPX2.7 code is used to calculate the important neutronic parameters of the next generation fuels of PWR. K-infinity, local peaking factor and fission rate distributions are calculated for a PWR assembly which burn at very high burnup reaching 70 GWd/t. The calculations are performed using the recently released evaluated Gadolinium cross section data. The results obtained are close to those of a LWR next generation fuel benchmark problem. This demonstrates that the calculation scheme used is able to accurately model a PWR assembly that operates at high burnup values.

  20. Simulation of the neutron-physical properties of the classical UO2 fuel and of MOX fuel during the burn-up by Transuranus

    International Nuclear Information System (INIS)

    Breza, J. jr.; Necas, V.; Daoeilek, P.

    2005-01-01

    The classical nuclear fuel UO 2 is well known for VVER reactors. Nevertheless, in the near future it will be possible to replace this fuel by novel, advanced kinds of fuel, for instance MOX, inert matrices fuel, etc., that will allow to increase the level of burn-up and minimize the amount of hazardous waste. The code Transuranus [2], designed at ITU Karlsruhe, is intended for thermal and mechanical analyses of fuel elements in nuclear reactors. We have utilized the code Transuranus to simulate the neutron-physical properties of the classical UO 2 fuel and of MOX fuel during the burn-up to a level of 40 MWd/kgHM. We compare obtained results of uranium and plutonium nuclides concentrations, their changes during burn-up, with results obtained by code HELIOS [3], which is well-validated code for this kind of applications. We performed calculations of fission gasses concentrations, namely xenon and krypton. (author)

  1. Spent fuel management systems, burnup credit approach experience in expert activity of State Scientific and Technical Centre for Nuclear and Radiation Safety

    International Nuclear Information System (INIS)

    Kovbasenko, Y.

    2010-01-01

    Implementing new devices and mechanisms, including those developed and manufactured abroad, at enterprises of the Ukrainian power industry makes it necessary to license them in advance by the Ukrainian Regulatory Authority. From time to time, situations occur when these systems or their close analogues have been already used in some countries and have successively passed licensing by the relevant Regulatory Authorities; however, they do not meet the regulatory requirements in force in Ukraine. Preliminary analysis of the regulations in Ukraine concerning nuclear safety of spent nuclear fuel (SNF) management systems shows that some regulatory requirements in force are too conservative in view of current international practice. The extent of conservatism can be reduced, if necessary, only on the base of improving our level of understanding the processes occurring in nuclear dangerous systems and improving our capabilities as regards accuracy, correctness, and reliability in numerical modeling these processes. Such activity is consistent with the state-of-the-art production requirements. This work was intended to demonstrate that the excessive conservatism laid previously into the requirements on nuclear safety in Ukraine due to insufficient development of tools for modeling processes in nuclear fuel can be considerably decreased through using more modern and real modeling fuel systems. If such modeling is performed with the use of state-of-the-art methods, based on more complete understanding the processes in fuel systems, then removal of the excessive conservatism will not reduce the safety of nuclear dangerous systems

  2. iBEST: a program for burnup history estimation of spent fuels based on ORIGEN-S

    International Nuclear Information System (INIS)

    Kim, Do Yeon; Hong, Ser Gi; Ahn, Gil Hoon

    2015-01-01

    In this paper, we describe a computer program, iBEST (inverse Burnup ESTimator), that we developed to accurately estimate the burnup histories of spent nuclear fuels based on sample measurement data. The burnup history parameters include initial uranium enrichment, burnup, cooling time after discharge from reactor, and reactor type. The program uses algebraic equations derived using the simplified burnup chains of major actinides for initial estimations of burnup and uranium enrichment, and it uses the ORIGEN-S code to correct its initial estimations for improved accuracy. In addition, we newly developed a stable bisection method coupled with ORIGEN-S to correct burnup and enrichment values and implemented it in iBEST in order to fully take advantage of the new capabilities of ORIGEN-S for improving accuracy. The iBEST program was tested using several problems for verification and well-known realistic problems with measurement data from spent fuel samples from the Mihama-3 reactor for validation. The test results show that iBEST accurately estimates the burnup history parameters for the test problems and gives an acceptable level of accuracy for the realistic Mihama-3 problems

  3. Nuclear fuels

    International Nuclear Information System (INIS)

    Gangwani, Saloni; Chakrabortty, Sumita

    2011-01-01

    Nuclear fuel is a material that can be consumed to derive nuclear energy, by analogy to chemical fuel that is burned for energy. Nuclear fuels are the most dense sources of energy available. Nuclear fuel in a nuclear fuel cycle can refer to the fuel itself, or to physical objects (for example bundles composed of fuel rods) composed of the fuel material, mixed with structural, neutron moderating, or neutron reflecting materials. Long-lived radioactive waste from the back end of the fuel cycle is especially relevant when designing a complete waste management plan for SNF. When looking at long-term radioactive decay, the actinides in the SNF have a significant influence due to their characteristically long half-lives. Depending on what a nuclear reactor is fueled with, the actinide composition in the SNF will be different. The following paper will also include the uses. advancements, advantages, disadvantages, various processes and behavior of nuclear fuels

  4. A relative risk comparison of criticality control strategies based on fresh fuel and burnup credit design bases

    International Nuclear Information System (INIS)

    Sanders, T.L.

    1989-01-01

    The fresh fuel design basis provides some margin of safety, i.e., criticality safety is almost independent of loading operations if fuel designs do not change significantly over the next 40 years. However, the design basis enrichment for future nuclear fuel will most likely vary with time. As a result, it cannot be guaranteed that the perceived passivity of the concept will be maintained over the life cycle of a future cask system. Several options are available to ensure that the reliability of a burnup credit system is comparable to or greater than that of a system based on a fresh fuel assumption. Criticality safety and control reliability could increase with burnup credit implementation. The safety of a burnup credit system could be comparable to that for a system based on the fresh fuel assumption. A burnup credit philosophy could be implemented without any cost-benefit tradeoff. A burnup credit design basis could result in a significant reduction in total system risk as well as economic benefits. These reductions occur primarily as a result of increased cask capacities and, thus, fewer shipments. Fewer shipments also result in fewer operations over the useful life of a cask, and opportunities for error decrease. The system concept can be designed such that only benefits occur. These benefits could include enhanced criticality safety and the overall reliability of cask operations, as well as system risk and economic benefits. Thus, burnup credit should be available as an alternative for the criticality design of spent fuel shipping casks

  5. Configuration of LWR fuel enrichment or burnup yielding maximum power

    International Nuclear Information System (INIS)

    Bartosek, V.; Zalesky, K.

    1976-01-01

    An analysis is given of the spatial distribution of fuel burnup and enrichment in a light-water lattice of given dimensions with slightly enriched uranium, at which the maximum output is achieved. It is based on the spatial solution of neutron flux using a one-group diffusion model in which linear dependence may be expected of the fission cross section and the material buckling parameter on the fuel burnup and enrichment. Two problem constraints are considered, i.e., the neutron flux value and the specific output value. For the former the optimum core configuration remains qualitatively unchanged for any reflector thickness, for the latter the cases of a reactor with and without reflector must be distinguished. (Z.M.)

  6. IFPE/TRIBULATION R1, Fuel Rod Behaviour at High Burnup

    International Nuclear Information System (INIS)

    Turnbull, J.A.

    2002-01-01

    Description: The TRIBULATION (Tests Relative to High Burnup Limitations Arising Normally in LWRs) International Programme started in July 1980 and was organized jointly by BelgoNucleaire and the Nuclear Energy Centre at Mol (CEN/SCK) with the co-sponsorship of 14 participating organizations. The objectives of the programme were twofold. It was primarily a demonstration programme aimed at assessing the fuel rod behaviour at high burn-up, when an earlier transient had occurred in the power plant. The second objective was to investigate the behaviour of different fuel rod designs and manufacturers when subjected to a steady state irradiation history to high burn-up. The first objective was met by irradiating fuel rods under steady state conditions in the BR3 reactor and under transient conditions in BR2. The effect of the transient was determined by comparing data from 4 identical rods tested as follows: i) BR3 irradiation followed by PIE; ii) BR3 irradiation followed by BR2 transient then PIE; iii) BR3 irradiation followed by BR2 transient and re-irradiated in BR3 before PIE; iv) BR3 irradiation and continued BR3 irradiation to maximum burn-up before PIE. The Database contains data from 19 cases using rods fabricated by BelgoNucleaire (BN) (11) and Brown Boveri Reactor GmbH (BBR) (8)

  7. Estimate of fuel burnup spatial a multipurpose reactor in computer simulation

    International Nuclear Information System (INIS)

    Santos, Nadia Rodrigues dos; Lima, Zelmo Rodrigues de; Moreira, Maria de Lourdes

    2015-01-01

    In previous research, which aimed, through computer simulation, estimate the spatial fuel burnup for the research reactor benchmark, material test research - International Atomic Energy Agency (MTR/IAEA), it was found that the use of the code in FORTRAN language, based on the diffusion theory of neutrons and WIMSD-5B, which makes cell calculation, bespoke be valid to estimate the spatial burnup other nuclear research reactors. That said, this paper aims to present the results of computer simulation to estimate the space fuel burnup of a typical multipurpose reactor, plate type and dispersion. the results were considered satisfactory, being in line with those presented in the literature. for future work is suggested simulations with other core configurations. are also suggested comparisons of WIMSD-5B results with programs often employed in burnup calculations and also test different methods of interpolation values obtained by FORTRAN. Another proposal is to estimate the burning fuel, taking into account the thermohydraulics parameters and the appearance of xenon. (author)

  8. Application of depletion perturbation theory to fuel cycle burnup analysis

    International Nuclear Information System (INIS)

    White, J.R.

    1979-01-01

    Over the past several years static perturbation theory methods have been increasingly used for reactor analysis in lieu of more detailed and costly direct computations. Recently, perturbation methods incorporating time dependence have also received attention, and several authors have demonstrated their applicability to fuel burnup analysis. The objective of the work described here is to demonstrate that a time-dependent perturbation method can be easily and accurately applied to realistic depletion problems

  9. Improvement of burnup analysis for pebble bed reactors with an accumulative fuel loading scheme

    International Nuclear Information System (INIS)

    Simanullang, Irwan Liapto; Obara, Toru

    2015-01-01

    Given the limitations of natural uranium resources, innovative nuclear power plant concepts that increase the efficiency of nuclear fuel utilization are needed. The Pebble Bed Reactor (PBR) shows some potential to achieve high efficiency in natural uranium utilization. To simplify the PBR concept, PBR with an accumulation fuel loading scheme was introduced and the Fuel Handling System (FHS) removed. In this concept, the pebble balls are added little by little into the reactor core until the pebble balls reach the top of the reactor core, and all pebble balls are discharged from the core at the end of the operation period. A code based on the MVP/MVP-BURN method has been developed to perform an analysis of a PBR with the accumulative fuel loading scheme. The optimum fuel composition was found using the code for high burnup performance. Previous efforts provided several motivations to improve the burnup performance: First, some errors in the input code were corrected. This correction, and an overall simplification of the input code, was implemented for easier analysis of a PBR with the accumulative fuel loading scheme. Second, the optimum fuel design had been obtained in the infinite geometry. To improve the optimum fuel composition, a parametric survey was obtained by varying the amount of Heavy Metal (HM) uranium per pebble and the degree of uranium enrichment. Moreover, an entire analysis of the parametric survey was obtained in the finite geometry. The results show that improvements in the fuel composition can lead to more accurate analysis with the code. (author)

  10. Burnup verification measurements at a US nuclear utility using the FORK measurement system

    International Nuclear Information System (INIS)

    Ewing, R.I.; Bosler, G.E.; Walden, G.

    1993-01-01

    The FORK measurement system, designed at Los Alamos National Laboratory (LANL) for the International Atomic Energy Agency (IAEA) safeguards program, has been used to examine spent reactor fuel assemblies at Duke Power Company's Oconee Nuclear Station. The FORK system measures the passive neutron and gamma-ray emission from spent fuel assemblies while in the storage pool. These measurements can be correlated with burnup and cooling time, and can be used to verify the reactor site records. Verification measurements may be used to help ensure nuclear criticality safety when burnup credit is applied to spent fuel transport and storage systems. By taking into account the reduced reactivity of spent fuel due to its burnup in the reactor, burnup credit results in more efficient and economic transport and storage. The objectives of these tests are to demonstrate the applicability of the FORK system to verify reactor records and to develop optimal procedures compatible with utility operations. The test program is a cooperative effort supported by Sandia National Laboratories, the Electric Power Research Institute (EPRI), Los Alamos National Laboratory, and the Duke Power Company

  11. Modeling of PWR fuel at extended burnup

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Raphael M.; Silva, Antonio Teixeira, E-mail: rmdias@ipen.br, E-mail: teixeira@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Since FRAPCON-3 series was rolled out, many improvements have been implanted in fuel performance codes, based on most recent literature, to promote better predictions against current data. Much of this advances include: improving fuel gas release prediction, hydrogen pickup model, cladding corrosion, and many others. An example of those modifications has been new cladding materials has added into hydrogen pickup model to support M5™, ZIRLO™, and ZIRLO™ optimized family under pressurized water reactor (PWR) conditions. Recently some research have been made over USNRC's steady-state fuel performance code, assessments against FUMEX-III's data have concluded that FRAPCON provides best-estimate calculation of fuel performance. Face of this, a study is required to summarize all those modifications and new implementations, as well as to compare this result against FRAPCON's older version, scrutinizing FRAPCON-3 series documentation to understand the real goal and literature base of any improvements. We have concluded that FRAPCON's latest modifications are based on strong literature review. Those modifications were tested against most recent data to assure these results will be the best evaluation as possible. Many improvements have been made to allow USNRC to have an audit tool with the last improvements. (author)

  12. Modeling of PWR fuel at extended burnup

    International Nuclear Information System (INIS)

    Dias, Raphael M.; Silva, Antonio Teixeira

    2015-01-01

    Since FRAPCON-3 series was rolled out, many improvements have been implanted in fuel performance codes, based on most recent literature, to promote better predictions against current data. Much of this advances include: improving fuel gas release prediction, hydrogen pickup model, cladding corrosion, and many others. An example of those modifications has been new cladding materials has added into hydrogen pickup model to support M5™, ZIRLO™, and ZIRLO™ optimized family under pressurized water reactor (PWR) conditions. Recently some research have been made over USNRC's steady-state fuel performance code, assessments against FUMEX-III's data have concluded that FRAPCON provides best-estimate calculation of fuel performance. Face of this, a study is required to summarize all those modifications and new implementations, as well as to compare this result against FRAPCON's older version, scrutinizing FRAPCON-3 series documentation to understand the real goal and literature base of any improvements. We have concluded that FRAPCON's latest modifications are based on strong literature review. Those modifications were tested against most recent data to assure these results will be the best evaluation as possible. Many improvements have been made to allow USNRC to have an audit tool with the last improvements. (author)

  13. An investigation into fuel pulverization with specific reference to high burn-up LOCA

    International Nuclear Information System (INIS)

    Yagnik, Suresh; Turnbull, James; Noirot, Jean; Walker, Clive; Hallstadius, Lars; Waeckel, N.; Blanpain, P.

    2014-01-01

    To investigate the phenomenon of high burn-up fuel pellet material potentially disintegrating into powder under a rapid temperature transient, such as in a LOCA-type accident scenario, two independent scoping studies were commissioned. The first was to investigate the effect of hydrostatic restraint pressure on Fission Gas Release (FGR) from small samples of highly irradiated fuel (71 MWd/kgU) during a series of rapid temperature ramps. Experimentally, when the FGR increased rapidly during the temperature transients, the fuel was assumed to be 'pulverized', i.e., fragmented into powder. In the second series of experiments, laser heating of small samples was used to investigate the temperature at which fuel pulverization was initiated. Subsequent to fuel disintegration, there was always a spectrum of particle sizes present. The significance of this observation was recognized in the context of extended burn-up operation in commercial reactors. Based on the observation from these investigations, a fuel fragmentation threshold has been discussed and developed. We conclude that fuel disintegration could be of potential importance in limiting the performance and productive lifetime of nuclear fuel. However, since only fuel closely adjacent to ballooned or ruptured cladding would be released in a LOCA-type transient, expulsion of pulverized fuel from the ruptured fuel rod is not considered a safety issue; cooling of the defected assembly remains possible and there is no issue with respect to local criticality. (author)

  14. Future trends in nuclear fuels

    International Nuclear Information System (INIS)

    Guitierrez, J.E.

    2006-01-01

    This series of transparencies presents: the fuel management cycle and key areas (security of supplies, strategies and core management, reliability, spent fuel management), the world nuclear generating capacity, concentrate capacity, enrichment capacity, and manufacturing capacity forecasts, the fuel cycle strategies and core management (longer cycles, higher burnups, power up-rates, higher enrichments), the Spanish nuclear generation cost, the fuel reliability (no defects, robust designs, operational margins, integrated fuel and core design), spent fuel storage (design and safety criteria, fuel performance and integrity). (J.S.)

  15. Analysis of burnup and isotopic compositions of BWR 9 x 9 UO2 fuel assemblies

    International Nuclear Information System (INIS)

    Suzuki, M.; Yamamoto, T.; Ando, Y.; Nakajima, T.

    2012-01-01

    In order to extend isotopic composition data focusing on fission product nuclides, measurements are progressing using facilities of JAEA for five samples taken from high burnup BWR 9 x 9 UO 2 fuel assemblies. Neutronics analysis with an infinite assembly model was applied to the preliminary measurement data using a continuous-energy Monte Carlo burnup calculation code MVP-BURN with nuclear libraries based on JENDL-3.3 and JENDL-4.0. The burnups of the samples were determined to be 28.0, 39.3, 56.6, 68.1, and 64.0 GWd/t by the Nd-148 method. They were compared with those calculated using node-average irradiation histories of power and in-channel void fractions which were taken from the plant data. The comparison results showed that the deviations of the calculated burnups from the measurements were -4 to 3%. It was confirmed that adopting the nuclear data library based on JENDL-4.0 reduced the deviations of the calculated isotopic compositions from the measurements for 238 Pu, 144 Nd, 145 Nd, 146 Nd, 148 Nd, 134 Cs, 154 Eu, 152 Sm, 154 Gd, and 157 Gd. On the other hand, the effect of the revision in the nuclear. data library on the neutronics analysis was not significant for major U and Pu isotopes. (authors)

  16. High burnup (41 - 61 GWd/tU) BWR fuel behavior under reactivity initiated accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Takehiko; Kusagaya, Kazuyuki; Yoshinaga, Makio; Uetsuka, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    High burnup boiling water reactor (BWR) fuel was pulse irradiated in the Nuclear Safety Research Reactor (NSRR) to investigate fuel behavior under cold startup reactivity initiated accident (RIA) conditions. Temperature, deformation, failure, and fission gas release behavior under the simulated RIA condition was studied in the tests. Fuel failure due to pellet-cladding mechanical interaction (PCMI) did not occur in the tests with typical domestic BWR fuel at burnups up to 56 GWd/tU, because they had limited cladding embrittlement due to hydrogen absorption of about 100 ppm or less. However, the cladding failure occurred in tests with fuel at a burnup of 61 GWd/tU, in which the peak hydrogen content in the cladding was above 150 ppm. This type of failure was observed for the first time in BWR fuels. The cladding failure occurred at fuel enthalpies of 260 to 360 J/g (62 to 86 cal/g), which were higher than the PCMI failure thresholds decided by the Japanese Nuclear Safety Commission. From post-test examinations of the failed fuel, it was found that the crack in the BWR cladding progressed in a manner different from the one in PWR cladding failed in earlier tests, owing to its more randomly oriented hydride distribution. Because of these differences, the BWR fuel was judged to have failed at hydrogen contents lower than those of the PWR fuel. Comparison of the test results with code calculations revealed that the PCMI failure was caused by thermal expansion of pellets, rather than by the fission gas expansion in the pellets. The gas expansion, however, was found to cause large cladding hoop deformation later after the cladding temperature escalated. (author)

  17. Application of Genetic Algorithm methodologies in fuel bundle burnup optimization of Pressurized Heavy Water Reactor

    International Nuclear Information System (INIS)

    Jayalal, M.L.; Ramachandran, Suja; Rathakrishnan, S.; Satya Murty, S.A.V.; Sai Baba, M.

    2015-01-01

    Highlights: • We study and compare Genetic Algorithms (GA) in the fuel bundle burnup optimization of an Indian Pressurized Heavy Water Reactor (PHWR) of 220 MWe. • Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are considered. • For the selected problem, Multi Objective GA performs better than Penalty Functions based GA. • In the present study, Multi Objective GA outperforms Penalty Functions based GA in convergence speed and better diversity in solutions. - Abstract: The work carried out as a part of application and comparison of GA techniques in nuclear reactor environment is presented in the study. The nuclear fuel management optimization problem selected for the study aims at arriving appropriate reference discharge burnup values for the two burnup zones of 220 MWe Pressurized Heavy Water Reactor (PHWR) core. Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are applied in this study. The study reveals, for the selected problem of PHWR fuel bundle burnup optimization, Multi Objective GA is more suitable than Penalty Functions based GA in the two aspects considered: by way of producing diverse feasible solutions and the convergence speed being better, i.e. it is capable of generating more number of feasible solutions, from earlier generations. It is observed that for the selected problem, the Multi Objective GA is 25.0% faster than Penalty Functions based GA with respect to CPU time, for generating 80% of the population with feasible solutions. When average computational time of fixed generations are considered, Penalty Functions based GA is 44.5% faster than Multi Objective GA. In the overall performance, the convergence speed of Multi Objective GA surpasses the computational time advantage of Penalty Functions based GA. The ability of Multi Objective GA in producing more diverse feasible solutions is a desired feature of the problem selected, that helps the

  18. Modeling of burnup express-estimation for UO{sub 2}-fuel

    Energy Technology Data Exchange (ETDEWEB)

    Likhanskii, Vladimir V.; Tokarev, Sergey A.; Vilkhivskaya, Olga V., E-mail: vilhivskaya_olga@mail.ru

    2017-03-15

    Highlights: • Proposed engineering model estimates fuel burnup by {sup 134}Cs/{sup 137}Cs activity ratio. • Buildup of cesium isotopes relies on changing neutron spectrum in the core cycle. • {sup 134}Cs/{sup 137}Cs activity ratios in FAs with Gd-doped fuel rods are analyzed. • Comparison of the model calculations with the NPPs spike measurements is presented. - Abstract: The paper presents the developed engineering model of cesium isotopes production as function of UO{sub 2}-fuel burnup and an assessment of their activity ratios. The model considers the evolution of linear power of gadolinium-doped fuel rods and fuel rods surrounding them in fuel assemblies with high enrichment fuel, harder neutron spectrum, and the changes in cross-sections of neutron reactions in thermal and epithermal energy areas. Parametrical dependences in the model are based on the fuel operation data for nuclear power plants and on the detailed neutronic-physical calculations of the core. Presented are the results of the model calculations for the {sup 134}Cs/{sup 137}Cs activity ratios in fuel taking into account the parameter of hardness of the neutron spectrum during the first irradiation cycle for fuel with enrichment ranging from 3.6 wt% in {sup 235}U.

  19. Fuel element burnup measurements for the equilibrium LEU silicide RSG GAS (MPR-30) core under a new fuel management strategy

    International Nuclear Information System (INIS)

    Pinem, Surian; Liem, Peng Hong; Sembiring, Tagor Malem; Surbakti, Tukiran

    2016-01-01

    Highlights: • Burnup measurement of fuel elements comprising the new equilibrium LEU silicide core of RSG GAS. • The burnup measurement method is based on a linear relationship between reactivity and burnup. • Burnup verification was conducted using an in-house, in-core fuel management code BATAN-FUEL. • A good agreement between the measured and calculated burnup was confirmed. • The new fuel management strategy was confirmed and validated. - Abstract: After the equilibrium LEU silicide core of RSG GAS was achieved, there was a strong need to validate the new fuel management strategy by measuring burnup of fuel elements comprising the core. Since the regulatory body had a great concern on the safety limit of the silicide fuel element burnup, amongst the 35 burnt fuel elements we selected 22 fuel elements with high burnup classes i.e. from 20 to 53% loss of U-235 (declared values) for the present measurements. The burnup measurement method was based on a linear relationship between reactivity and burnup where the measurements were conducted under subcritical conditions using two fission counters of the reactor startup channel. The measurement results were compared with the declared burnup evaluated by an in-house in-core fuel management code, BATAN-FUEL. A good agreement between the measured burnup values and the calculated ones was found within 8% uncertainties. Possible major sources of differences were identified, i.e. large statistical errors (i.e. low fission counters’ count rates), variation of initial U-235 loading per fuel element and accuracy of control rod indicators. The measured burnup of the 22 fuel elements provided the confirmation of the core burnup distribution planned for the equilibrium LEU silicide core under the new fuel management strategy.

  20. Burnup code for fuel assembly by Monte Carlo code. MKENO-BURN

    International Nuclear Information System (INIS)

    Naito, Yoshitaka; Suyama, Kenya; Masukawa, Fumihiro; Matsumoto, Kiyoshi; Kurosawa, Masayoshi; Kaneko, Toshiyuki.

    1996-12-01

    The evaluation of neutron spectrum is so important for burnup calculation of the heterogeneous geometry like recent BWR fuel assembly. MKENO-BURN is a multi dimensional burnup code that based on the three dimensional monte carlo neutron transport code 'MULTI-KENO' and the routine for the burnup calculation of the one dimensional burnup code 'UNITBURN'. MKENO-BURN analyzes the burnup problem of arbitrary regions after evaluating the neutron spectrum and making one group cross section in three dimensional geometry with MULTI-KENO. It enables us to do three dimensional burnup calculation. This report consists of general description of MKENO-BURN and the input data. (author)

  1. Burnup code for fuel assembly by Monte Carlo code. MKENO-BURN

    Energy Technology Data Exchange (ETDEWEB)

    Naito, Yoshitaka; Suyama, Kenya; Masukawa, Fumihiro; Matsumoto, Kiyoshi; Kurosawa, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kaneko, Toshiyuki

    1996-12-01

    The evaluation of neutron spectrum is so important for burnup calculation of the heterogeneous geometry like recent BWR fuel assembly. MKENO-BURN is a multi dimensional burnup code that based on the three dimensional monte carlo neutron transport code `MULTI-KENO` and the routine for the burnup calculation of the one dimensional burnup code `UNITBURN`. MKENO-BURN analyzes the burnup problem of arbitrary regions after evaluating the neutron spectrum and making one group cross section in three dimensional geometry with MULTI-KENO. It enables us to do three dimensional burnup calculation. This report consists of general description of MKENO-BURN and the input data. (author)

  2. Conservative axial burnup distributions for actinide-only burnup credit

    International Nuclear Information System (INIS)

    Kang, C.; Lancaster, D.

    1997-11-01

    Unlike the fresh fuel approach, which assumes the initial isotopic compositions for criticality analyses, any burnup credit methodology must address the proper treatment of axial burnup distributions. A straightforward way of treating a given axial burnup distribution is to segment the fuel assembly into multiple meshes and to model each burnup mesh with the corresponding isotopic compositions. Although this approach represents a significant increase in modeling efforts compared to the uniform average burnup approach, it can adequately determine the reactivity effect of the axial burnup distribution. A major consideration is what axial burnup distributions are appropriate for use in light of many possible distributions depending on core operating conditions and histories. This paper summarizes criticality analyses performed to determine conservative axial burnup distributions. The conservative axial burnup distributions presented in this paper are included in the Topical Report on Actinide-Only Burnup Credit for Pressurized Water Reactor Spent Nuclear Fuel Packages, Revision 1 submitted in May 1997 by the US Department of Energy (DOE) to the US Nuclear Regulatory Commission (NRC). When approved by NRC, the conservative axial burnup distributions may be used to model PWR spent nuclear fuel for the purpose of gaining actinide only burnup credit

  3. Framatome-ANP extended burnup experience and views on LWR fuels

    International Nuclear Information System (INIS)

    Esteve, B.; Gueldner, R.; Hoffman, R.; Watteau, M.

    2002-01-01

    In every sense of the term, nuclear fuel forms the core of nuclear power plants (NPPs). Although there are many equipment items important for their safety function or for their participation in NPP availability, the fuel, in essence renewable, is one of the key elements which have to be acted upon if utilities are to be helped to fulfil their mission of generating power in total safety and supplying the kWh to their customers at the best price. Nuclear fuel is also the core business of the Framatome-ANP Fuel Business Group: pooling and rationalising the available skills - technical, cultural and human - supplied by each of the partners forms a challenge which it is up to each and every one to meet in a cooperative spirit. This paper gives an outline of the company's extended burnup experience, current R and D, and its plans for the future. (author)

  4. Investigation of very high burnup UO{sub 2} fuels in Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cappia, Fabiola

    2017-03-27

    Historically, the average discharge burnup of Light Water Reactor (LWR) fuel has increased almost continuously. On one side, increase in the average discharge burnup is attractive because it contributes to decrease part of the fuel cycle costs. On the other side, it raises the practical problem of predicting the performance, longevity and properties of reactor fuel elements upon accumulation of irradiation damage and fission products both during in-reactor operation and after discharge. Performance of the fuel and structural components of the core is one of the critical areas on which the economic viability and public acceptance of nuclear energy production hinges. Along the pellet radius, the fuel matrix is subjected to extremely heterogeneous alteration and damage, as a result of temperature and burnup gradients. In particular, in the peripheral region of LWR UO{sub 2} fuel pellets, when the local burnup exceeds 50-70 GWd/tHM, a microstructural transformation starts to take place, as a consequence of enhanced accumulation of radiation damage, fission products and limited thermal recovery. The newly formed structure is commonly named High Burnup Structure (HBS). The HBS is characterised by three main features: (a) formation of submicrometric grains from the original grains, (b) depletion of fission gas from the fuel matrix, (c) steep increase in the porosity, which retains most of the gas depleted from the fuel matrix. The last two aspects rose significant attention because of the important impact of the fission gas behaviour on integral fuel performance. The porosity increase controls the gas-driven swelling, worsening the cladding loading once the fuel-cladding gap is closed. Another concern is that the large retention of fission gas within the HBS could lead to significant release at high burnups through the degradation of thermal conductivity or contribute to fuel pulverisation during accidental conditions. Need of more experimental investigations about the

  5. Mesoscopic approach to describe high burn-up fuel behaviour

    International Nuclear Information System (INIS)

    Kinoshita, M.

    1999-01-01

    The grain sub-division and the rim structure formation are new phenomena for LWR fuel engineering. The consequence of these are now under investigation in several international programs such as HBRP (High Burnup Rim Project) of CRIEPI, NFIR of EPRI, and EdF/CEA program in France. The theoretical understanding of this phenomenon is underway. Here, the process is peculiar in the following points; (1) majority of the domain of the material are changed to a new morphology after the restructuring, (2) the final size of the new grains is around 0.1 μm which is neither atomic scale nor macroscopic scale. (3) the morphology of the restructured domain indicates fractal like feature which indicates complex process is under-taken. From the first feature, the process is similar to phase transitions or metallographic transformations. However, as the crystallographic structure has no change before and after the restructuring, it is not the phase transition nor the transformation of atomic scale instability. The focus could be put on the material transport of mesoscopic scale which create the peculiar morphology. Indeed there are flows of energy and disturbances in crystallographic structure in nuclear materials on duty. Although the fission energy is 10 4 larger than the formation energy of the defects, thanks to the stability of the selected material, most of energy is thermalized without crystallographic instability. Little remained energy creates flows of disturbances and the new structure is a consequence of ordering process driven by these flows of disturbances. Therefore this phenomenon is a good example to study cooperative ordering process in physics of materials. This paper presents some of present understandings of the rim structure formation based on the mesoscopic mechanistic theories. Possible future development is also proposed (author) (ml)

  6. The burnup dependence of light water reactor spent fuel oxidation

    International Nuclear Information System (INIS)

    Hanson, B.D.

    1998-07-01

    Over the temperature range of interest for dry storage or for placement of spent fuel in a permanent repository under the conditions now being considered, UO 2 is thermodynamically unstable with respect to oxidation to higher oxides. The multiple valence states of uranium allow for the accommodation of interstitial oxygen atoms in the fuel matrix. A variety of stoichiometric and nonstoichiometric phases is therefore possible as the fuel oxidizers from UO 2 to higher oxides. The oxidation of UO 2 has been studied extensively for over 40 years. It has been shown that spent fuel and unirradiated UO 2 oxidize via different mechanisms and at different rates. The oxidation of LWR spent fuel from UO 2 to UO 2.4 was studied previously and is reasonably well understood. The study presented here was initiated to determine the mechanism and rate of oxidation from UO 2.4 to higher oxides. During the early stages of this work, a large variability in the oxidation behavior of samples oxidized under nearly identical conditions was found. Based on previous work on the effect of dopants on UO 2 oxidation and this initial variability, it was hypothesized that the substitution of fission product and actinide impurities for uranium atoms in the spent fuel matrix was the cause of the variable oxidation behavior. Since the impurity concentration is roughly proportional to the burnup of a specimen, the oxidation behavior of spent fuel was expected to be a function of both temperature and burnup. This report (1) summarizes the previous oxidation work for both unirradiated UO 2 and spent fuel (Section 2.2) and presents the theoretical basis for the burnup (i.e., impurity concentration) dependence of the rate of oxidation (Sections 2.3, 2.4, and 2.5), (2) describes the experimental approach (Section 3) and results (Section 4) for the current oxidation tests on spent fuel, and (3) establishes a simple model to determine the activation energies associated with spent fuel oxidation (Section 5)

  7. Nuclear fuel

    International Nuclear Information System (INIS)

    D Hondt, P.

    1998-01-01

    The research and development programme on nuclear fuel at the Belgian Nuclear Research Centre SCK/CEN is described. The objective of this programme is to enhance the quantitative prediction of the operational limits of nuclear fuel and to assess the behaviour of fuel under incidental and accidental conditions. Progress is described in different domains including the modelling of fission gas release in LWR fuel, thermal conductivity, basic physical phenomena, post-irradiation examination for fuel performance assessment, and conceptual studies of incidental and accidental fuel experiments

  8. Burnup simulations and spent fuel characteristics of ZrO{sub 2} based inert matrix fuels

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E.A. [Department of Mechanical Engineering, University of Texas, Austin, TX (United States); Deinert, M.R. [Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY (United States)]. E-mail: mrd6@cornell.edu; Herring, S.T. [Idaho National Laboratory, Idaho Falls, ID (United States); Cady, K.B. [Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY (United States)

    2007-03-31

    Reducing the inventory of long lived isotopes that are contained in spent nuclear fuel is essential for maximizing repository capacity and extending the lifetime of related storage. Because of their non-fertile matrices, inert matrix fuels (IMF's) could be an ideal vehicle for using light-water reactors to help decrease the inventory of plutonium and other transuranics (neptunium, americium, curium) that are contained within spent uranium oxide fuel (UOX). Quantifying the characteristics of spent IMF is therefore of fundamental importance to determining its effect on repository design and capacity. We consider six ZrO{sub 2} based IMF formulations with different transuranic loadings in a 1-8 IMF to UOX pin-cell arrangement. Burnup calculations are performed using a collision probability model where transport of neutrons through space is modeled using fuel to moderator transport and escape probabilities. The lethargy dependent neutron flux is treated with a high resolution multigroup thermalization method. The results of the reactor physics model are compared to a benchmark case performed with Montebruns and indicate that the approach yields reliable results applicable to high-level analyses of spent fuel isotopics. The data generated show that a fourfold reduction in the radiological and integrated thermal output is achievable in single recycle using IMF, as compared to direct disposal of an energy equivalent spent UOX.

  9. Dissolution studies of spent nuclear fuels

    International Nuclear Information System (INIS)

    1991-02-01

    To obtain quantitative data on the dissolution of high burnup spent nuclear fuel, dissolution study have been carried out at the Department of Chemistry, JAERI, from 1984 under the contract with STA entitled 'Reprocessing Test Study of High Burnup Fuel'. In this study PWR spent fuels of 8,400 to 36,100 MWd/t in averaged burnup were dissolved and the chemical composition and distribution of radioactive nuclides were measured for insoluble residue, cladding material (hull), off-gas and dissolved solution. With these analyses basic data concerning the dissolution and clarification process in the reprocessing plant were accumulated. (author)

  10. The evolving nuclear fuel cycle

    International Nuclear Information System (INIS)

    Gale, J.D.; Hanson, G.E.; Coleman, T.A.

    1993-01-01

    Various economics and political pressures have shaped the evolution of nuclear fuel cycles over the past 10 to 15 yr. Future trends will no doubt be similarly driven. This paper discusses the influences that long cycles, high discharge burnups, fuel reliability, and costs will have on the future nuclear cycle. Maintaining the economic viability of nuclear generation is a key issue facing many utilities. Nuclear fuel has been a tremendous bargain for utilities, helping to offset major increases in operation and maintenance (O ampersand M) expenses. An important factor in reducing O ampersand M costs is increasing capacity factor by eliminating outages

  11. Fuel element burnup determination in HEU-LEU mixed TRIGA research reactor core

    International Nuclear Information System (INIS)

    Zagar, Tomaz; Ravnik, Matjaz

    2000-01-01

    This paper presents the results of a burnup calculations and burnup measurements for TRIGA FLIP HEU fuel elements and standard TRIGA LEU fuel elements used simultaneously in small TRIGA Mark II research reactor in Ljubljana, Slovenija. The fuel element burnup for approximately 15 years of operation was calculated with two different in house computer codes TRIGAP and TRIGLAV (both codes are available at OECD NEA Data Bank). The calculation is performed in one-dimensional radial geometry in TRIGAP and in two-dimensional (r,φ) geometry in TRIGLAV. Inter-comparison of results shows important influence of in-core water gaps, irradiation channels and mixed rings on burnup calculation accuracy. Burnup of 5 HEU and 27 LEU fuel elements was also measured with reactivity method. Measured and calculated burnup values are inter-compared for these elements (author)

  12. Reactivity effect of spent fuel due to spatial distributions for coolant temperature and burnup

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, T.; Yamane, Y. [Nagoya Univ., Dept. of Nuclear Engineering, Nagoya, Aichi (Japan); Suyama, K. [OECD/NEA, Paris (France); Mochizuki, H. [Japan Research Institute, Ltd., Tokyo (Japan)

    2002-03-01

    We investigated the reactivity effect of spent fuel caused by the spatial distributions of coolant temperature and burnup by using the integrated burnup calculation code system SWAT. The reactivity effect which arises from taking account of the spatial coolant temperature distribution increases as the average burnup increases, and reaches the maximum value of 0.69%{delta}k/k at 50 GWd/tU when the burnup distribution is concurrently considered. When the burnup distribution is ignored, the reactivity effect decreases by approximately one-third. (author)

  13. Burnup performance of rock-like oxide (ROX) fuel in small pebble bed reactor with accumulative fuel loading scheme

    International Nuclear Information System (INIS)

    Simanullang, Irwan Liapto; Obara, Toru

    2017-01-01

    Highlights: • Burnup performance using ROX fuel in PBR with accumulative fuel loading scheme was analyzed. • Initial excess reactivity was suppressed by reducing 235 U enrichment in the startup condition. • Negative temperature coefficient was achieved in all condition of PBR with accumulative fuel loading scheme using ROX fuel. • Core lifetime of PBR with accumulative fuel loading scheme using ROX fuel was shorter than with UO 2 fuel. • In PBR with accumulative fuel loading scheme using ROX fuel, achieved discharged burnup can be as high as that for UO 2 fuel. - Abstract: The Japan Atomic Energy Agency (JAEA) has proposed rock-like oxide (ROX) fuel as a new, once-through type fuel concept. Here, burnup performance using ROX fuel was simulated in a pebble bed reactor with an accumulative fuel loading scheme. The MVP-BURN code was used to simulate the burnup calculation. Fuel of 5 g-HM/pebble with 20% 235 U enrichment was selected as the optimum composition. Discharged burnup could reach up to 218 GWd/t, with a core lifetime of about 8.4 years. However, high excess reactivity occurred in the initial condition. Initial fuel enrichment was therefore reduced from 20% to 4.65% to counter the initial excess reactivity. The operation period was reduced by the decrease of initial fuel enrichment, but the maximum discharged burnup was 198 GWd/t. Burnup performance of ROX fuel in this reactor concept was compared with that of UO 2 fuel obtained previously. Discharged burnup for ROX fuel in the PBR with an accumulative fuel loading scheme was as high as UO 2 fuel. Maximum power density could be lowered by introducing ROX fuel compared to UO 2 fuel. However, PBR core lifetime was shorter with ROX fuel than with UO 2 fuel. A negative temperature coefficient was achieved for both UO 2 and ROX fuels throughout the operation period.

  14. Visualization of fuel rod burnup analysis by Scilab

    International Nuclear Information System (INIS)

    Tsai, Chiung-Wen

    2013-01-01

    The goal of this technical note is to provide an alternative, the freeware Scilab, by which means we may construct custom GUIs and distribute them without extra constrains and cost. A post-processor has been constructed by Scilab to visualize the fuel rod burnup analysis data calculated by FRAPCON-3.4. This post-processor incorporates a graphical user interface (GUI), providing users a rapid overview of the characteristics of the numerical results with 2-D and 3-D graphs, as well as the animations of fuel temperature distribution. An assessment case input file provided by FRAPCON user group was applied to demonstrate the construction of a post-processor with GUI by object-oriented GUI tool, as well as the capability of visualization functions of Scilab

  15. Visualization of fuel rod burnup analysis by Scilab

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Chiung-Wen, E-mail: d937121@oz.nthu.edu.tw

    2013-12-15

    The goal of this technical note is to provide an alternative, the freeware Scilab, by which means we may construct custom GUIs and distribute them without extra constrains and cost. A post-processor has been constructed by Scilab to visualize the fuel rod burnup analysis data calculated by FRAPCON-3.4. This post-processor incorporates a graphical user interface (GUI), providing users a rapid overview of the characteristics of the numerical results with 2-D and 3-D graphs, as well as the animations of fuel temperature distribution. An assessment case input file provided by FRAPCON user group was applied to demonstrate the construction of a post-processor with GUI by object-oriented GUI tool, as well as the capability of visualization functions of Scilab.

  16. Fuel performance at high burnup for water reactors

    International Nuclear Information System (INIS)

    1991-02-01

    The present meeting was scheduled by the International Atomic Energy Agency, upon proposal of the Members of the International Working Group on Water Reactor Fuel Performance and Technology. The purpose of this meeting was to review the ''state-of-the-art'' in the area of Fuel Performance at High Burnup for Water Reactors. Previous IAEA meetings on this topic were held in Mol in 1981 and 1984 and on related topics in Stockholm and Lyon in 1987. Fifty-five participants from 16 countries and two international organizations attended the meeting and 28 papers were presented and discussed. The papers were presented in five sub-sessions and during the meeting, working groups composed of the session chairmen and paper authors prepared the summary of each session with conclusions and recommendations for future work. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  17. Thermal behaviour of high burnup PWR fuel under different fill gas conditions

    International Nuclear Information System (INIS)

    Tverberg, T.

    2001-01-01

    During its more than 40 years of existence, a large number of experiments have been carried out at the Halden Reactor Project focusing on different aspects related to nuclear reactor fuel. During recent years, the fuels testing program has mainly been focusing on aspects related to high burnup, in particular in terms of fuel thermal performance and fission gas release, and often involving reinstrumentation of commercially irradiated fuel. The paper describes such an experiment where a PWR rod, previously irradiated in a commercial reactor to a burnup of ∼50 MWd/kgUO 2 , was reinstrumented with a fuel central oxide thermocouple and a cladding extensometer together with a high pressure gas flow line, allowing for different fill gas compositions and pressures to be applied. The paper focuses on the thermal behaviour of such LWR rods with emphasis on how different fill gas conditions influence the fuel temperatures and gap conductance. Rod growth rate was also monitored during the irradiation in the Halden reactor. (author)

  18. REFLOS, Fuel Loading and Cost from Burnup and Heavy Atomic Mass Flow Calculation in HWR

    International Nuclear Information System (INIS)

    Boettcher, W.; Schmidt, E.

    1969-01-01

    1 - Nature of physical problem solved: REFLOS is a programme for the evaluation of fuel-loading schemes in heavy water moderated reactors. The problems involved in this study are: a) Burn-up calculation for the reactor cell. b) Determination of reactivity behaviour, power distribution, attainable burn-up for both the running-in period and the equilibrium of a 3-dimensional heterogeneous reactor model; investigation of radial fuel movement schemes. c) Evaluation of mass flows of heavy atoms through the reactor and fuel cycle costs for the running-in, the equilibrium, and the shut down of a power reactor. If the subroutine for treating the reactor cell were replaced by a suitable routine, other reactors with weakly absorbing moderators could be analyzed. 2 - Method of solution: Nuclear constants and isotopic compositions of the different fuels in the reactor are calculated by the cell-burn-up programme and tabulated as functions of the burn-up rate (MWD/T). Starting from a known state of the reactor, the 3-dimensional heterogeneous reactor programme (applying an extension of the technique of Feinberg and Galanin) calculates reactivity and neutron flux distribution using one thermal and one or two fast neutron groups. After a given irradiation time, the new state of the reactor is determined, and new nuclear constants are assigned to the various defined locations in the reactor. Reloading of fuel may occur if the prescribed life of the reactor is reached or if the effective multiplication factor or the power form factor falls below a specified level. The scheme of reloading to be carried out is specified by a load vector, giving the number of channels to be discharged, the kind of movement from one to another channel and the type of fresh fuel to be charged for each single reloading event. After having determined the core states characterizing the equilibrium period, and having decided the fuel reloading scheme for the running-in period of the reactor life, the fuel

  19. The applicability of detailed process for neutron resonance absorption to neutronics analyses in LWR next generation fuels to extend burnup

    International Nuclear Information System (INIS)

    Kameyama, Takanori; Nauchi, Yasushi

    2004-01-01

    Neutronics analyses with detail processing for neutron resonance absorption in LWR next generation UOX and MOX fuels to extend burnup were performed based on the neutronic transport and burnup calculation. In the detailed processing, ultra-fine energy nuclear library and collision probabilities between neutron and U, Pu nuclides (actinide nuclides) are utilized for two-dimension geometry. In the usual simple processing (narrow resonance approximation), shielding factors and compensation equations for neutron resonance absorption are utilized. The results with detailed and simple processing were compared to clarify where the detailed processing is needed. The two processing caused difference of neutron multiplication factor by 0.5% at the beginning of irradiation, while the difference became smaller as burnup increased and was not significant at high burnup. The nuclide compositions of the fuel rods for main actinide nuclides were little different besides Cm isotopes by the processing, since the neutron absorption rate of 244 Cm became different. The detail processing is needed to evaluate the neutron emission rate in spent fuels. In the fuel assemblies, the distributions of rod power rates were not different within 0.5%, and the peak rates of fuel rod were almost the same by the two processing at the beginning of irradiation when the peak rate is the largest during the irradiation. The simple processing is also satisfied for safety evaluation based on the peak rate of rod power. The difference of local power densities in fuel pellets became larger as burnup increased, since the neutron absorption rate of 238 U in the peripheral region of pellets were significantly different by the two processing. The detail processing is needed to evaluate the fuel behavior at high burnup. (author)

  20. Determination of the burn-up of TRIGA fuel elements by calculation with new TRIGLAV program

    International Nuclear Information System (INIS)

    Zagar, T.; Ravnik, M.

    1996-01-01

    The results of fuel element burn-up calculations with new TRIGLAV program are presented. TRIGLAV program uses two dimensional model. Results of calculation are compared to results calculated with program, which uses one dimensional model. The results of fuel element burn-up measurements with reactivity method are presented and compared with the calculated results. (author)

  1. EPRI/DOE High Burnup Fuel Sister Pin Test Plan Simplification and Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Saltzstein, Sylvia J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorenson, Ken B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hanson, Brady [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Billone, Mike [Argonne National Lab. (ANL), Argonne, IL (United States); Scaglione, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Montgomery, Rose [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevard, Bruce [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    The EPRI/DOE High Burnup Confirmatory Data Project (herein called the "Demo") is a multi-year, multi-entity confirmation demonstration test with the purpose of providing quantitative and qualitative data to show how high-burnup fuel ages in dry storage over a ten-year period. The Demo involves obtaining 32 assemblies of high-burnup PWR fuel of four common cladding alloys from the North Anna Nuclear Power Plant, drying them according to standard plant procedures, and then storing them in an NRC-licensed TN-3 2B cask on the North Anna dry storage pad for ten years. After the ten-year storage time, the cask will be opened and the rods will be examined for signs of aging. Twenty-five rods from assemblies of similar claddings, in-reactor placement, and burnup histories (herein called "sister rods") have been shipped from the North Anna Nuclear Power Plant and are currently being nondestructively tested at Oak Ridge National Laboratory. After the non-destructive testing has been completed for each of the twenty-five rods, destructive analysis will be performed at ORNL, PNNL, and ANL to obtain mechanical data. Opinions gathered from the expert interviews, ORNL and PNNL Sister Rod Test Plans, and numerous meetings has resulted in the Simplified Test Plan described in this document. Some of the opinions and discussions leading to the simplified test plan are included here. Detailed descriptions and background are in the ORNL and PNNL plans in the appendices . After the testing described in this simplified test plan h as been completed , the community will review all the collected data and determine if additional testing is needed.

  2. Method of fueling for a nuclear reactor

    International Nuclear Information System (INIS)

    Igarashi, Takao.

    1983-01-01

    Purpose: To enable the monitoring of reactor power with sufficient accuracy, upon starting even without existence of neutron source in case of a low average burnup degree in the reactor core. Constitution: Each of fuel assemblies is charged such that neutron source region monitors for the start-up system in a reactor core neutron instrumentation system having nuclear fuel assemblies and a neutron instrumentation system are surrounded with 4 or 16 fuel assemblies of a low burnup degree. Then, the average burnup degree of the fuel assemblies surrounding the neutron source region monitors are increased than the reactor core burnup degree, whereby neutrons released from the peripheral fuels are increased, sufficient number of neutron counts can be obtained even with no neutron sources upon start-up and the reactor power can be monitored at a sufficient accuracy. (Sekiya, K.)

  3. Dependence of heavy metal burnup on nuclear data libraries for fast reactors

    CERN Document Server

    Ohki, S

    2003-01-01

    Japan Nuclear Cycle Development Institute (JNC) is considering the highly burnt fuel as well as the recycling of minor actinide (MA) in the development of commercialized fast reactor cycle systems. Higher accuracy in burnup calculation is going to be required for higher mass plutonium isotopes ( sup 2 sup 4 sup 0 Pu, etc.) and MA nuclides. In the framework of research and development aiming at the validation and necessary improvements of fast reactor burnup calculation, we investigated the differences among the burnup calculation results with the major nuclear data libraries: JEF-2.2, ENDF/B-VI Release 5, JENDL-3.2, and JENDL-3.3. We focused on the heavy metal nuclides such as plutonium and MA in the central core region of a conventional sodium-cooled fast reactor. For main heavy metal nuclides ( sup 2 sup 3 sup 5 U, sup 2 sup 3 sup 8 U, sup 2 sup 3 sup 9 Pu, sup 2 sup 4 sup 0 Pu, and sup 2 sup 4 sup 1 Pu), number densities after 1-cycle burnup did not change over one or two percent. Library dependence was re...

  4. A simulation of the temperature overshoot observed at high burnup in annular fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Baron, D [Electricite de France, Moret-sur-Loing (France); Couty, J C [Electricite de France (EDF), 69 - Villeurbanne (France)

    1997-08-01

    Instrumented experiments have been carried out in recent years to calibrate and improve temperature calculations at high burnup in PWR nuclear fuel rods. The introduction of a thermocouple in the fuel stack allows the experiment to record the centre-line temperature all along the irradiation or re-irradiation. The results obtained on fresh fuel have not revealed any abnormal behavior as have observations done on high burnup rods. In this case, a sudden overshoot has been recorded on the thermocouple temperature above an average power threshold. Several hypotheses have been suggested. Only two seem to be acceptable: one in relation to an effect of grain decohesion, another based on a modification of fuel chemistry. The apparent reversibility of the phenomena when power decreases led us to prefer the first explanation. Indeed, the introduction of a thermocouple means that annular fuel pellets must be used. These are either initially manufactured with a central hole or drilled after base irradiation, using the ``RISOE`` technique. One must bear in mind that the use of such annular pellets drastically changes the crack pattern as irradiation proceeds. This is due to a different stress field which, combined with a weakening of the grain binding energy, leads to a partial grain decohesion on the inner face of the annular pellet. Modification of the grain binding energy is related to the presence of an increasing local population of gas bubbles and metallic precipitates at grain boundaries, as swelling creates intergranular local stresses which also could probably enhance the grain decohesion process. This grain decohesion concerns a 250 to 350 {mu}m depth and shows a narrow cracks network through which released fission gas can flow, temporarily pushing the resident helium gas out. The low conductivity of these gaseous fission products and the numerous gas layers created this way could partly explain the unexpected temperatures measured in high burnup fuels. (Abstract

  5. Discharge Burnup Evaluation of Natural Uranium Loaded CANFLEX-43 Fuel Bundle

    International Nuclear Information System (INIS)

    Roh, Gyu Hong; Kim, Yong Hee; Kim, Won Young; Park, Joo Hwan

    2009-11-01

    Using WIMS-AECL code, which is 2-dimensional lattice core used in CANDU physics calculation, the discharge burnup of the natural uranium loaded CANFLEX-43 fuel bundle was evaluated by comparing the discharge burnup of standard 37 element fuel bundle. When the discharge burnup of the standard 37 element fuel is 7,200 MWd/MTU, that of the CANFLEX 43 fuel bundle was evaluated as 7,077 MWd/MTU, by applying the same lattice conditions for both fuel bundles

  6. Needs of reliable nuclear data and covariance matrices for Burnup Credit in JEFF-3 library

    International Nuclear Information System (INIS)

    Chambon, A.; Santamarina, A.; Riffard, C.; Lavaud, F.; Lecarpentier, D.

    2013-01-01

    Burnup Credit (BUC) is the concept which consists in taking into account credit for the reduction of nuclear spent fuel reactivity due to its burnup. In the case of PWR-MOx spent fuel, studies pointed out that the contribution of the 15 most absorbing, stable and non-volatile fission products selected to the credit is as important as the one of the actinides. In order to get a 'best estimate' value of the keff, biases of their inventory calculation and individual reactivity worth should be considered in criticality safety studies. This paper enhances the most penalizing bias towards criticality and highlights possible improvements of nuclear data for the 15 fission products (FPs) of PWR-MOx BUC. Concerning the fuel inventory, trends in function of the burnup can be derived from experimental validation of the DARWIN-2.3 package (using the JEFF- 3.1.1/SHEM library). Thanks to the BUC oscillation programme of separated FPs in the MINERVE reactor and fully validated scheme PIMS, calculation over experiment ratios can be accurately transposed to tendencies on the FPs integral cross sections. (authors)

  7. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mecartnery, Martha [Univ. of California, Irvine, CA (United States); Graeve, Olivia [Univ. of California, San Diego, CA (United States); Patel, Maulik [Univ. of Liverpool (United Kingdom)

    2017-05-25

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  8. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    International Nuclear Information System (INIS)

    Mecartnery, Martha; Graeve, Olivia; Patel, Maulik

    2017-01-01

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  9. Calculation of effect of burnup history on spent fuel reactivity based on CASMO5

    International Nuclear Information System (INIS)

    Li Xiaobo; Xia Zhaodong; Zhu Qingfu

    2015-01-01

    Based on the burnup credit of actinides + fission products (APU-2) which are usually considered in spent fuel package, the effect of power density and operating history on k_∞ was studied. All the burnup calculations are based on the two-dimensional fuel assembly burnup program CASMO5. The results show that taking the core average power density of specified power plus a bounding margin of 0.0023 to k_∞, and taking the operating history of specified power without shutdown during cycle and between cycles plus a bounding margin of 0.0045 to k_∞ can meet the bounding principle of burnup credit. (authors)

  10. Nuclear fuels

    International Nuclear Information System (INIS)

    2008-01-01

    The nuclear fuel is one of the key component of a nuclear reactor. Inside it, the fission reactions of heavy atoms, uranium and plutonium, take place. It is located in the core of the reactor, but also in the core of the whole nuclear system. Its design and properties influence the behaviour, the efficiency and the safety of the reactor. Even if it represents a weak share of the generated electricity cost, its proper use represents an important economic stake. Important improvements remain to be made to increase its residence time inside the reactor, to supply more energy, and to improve its robustness. Beyond the economical and safety considerations, strategical questions have to find an answer, like the use of plutonium, the management of resources and the management of nuclear wastes and real technological challenges have to be taken up. This monograph summarizes the existing knowledge about the nuclear fuel, its behaviour inside the reactor, its limits of use, and its R and D tracks. It illustrates also the researches in progress and presents some key results obtained recently. Content: 1 - Introduction; 2 - The fuel of water-cooled reactors: aspect, fabrication, behaviour of UO 2 and MOX fuels inside the reactor, behaviour in loss of tightness situation, microscopic morphology of fuel ceramics and evolution under irradiation - migration and localisation of fission products in UOX and MOX matrices, modeling of fuels behaviour - modeling of defects and fission products in the UO 2 ceramics by ab initio calculations, cladding and assembly materials, pellet-cladding interaction, advanced UO 2 and MOX ceramics, mechanical behaviour of the fuel assembly, fuel during a loss of coolant accident, fuel during a reactivity accident, fuel during a serious accident, fuel management inside reactor cores, fuel cycle materials balance, long-term behaviour of the spent fuel, fuel of boiling water reactors; 3 - the fuel of liquid metal fast reactors: fast neutrons radiation

  11. IAEA activities on nuclear fuel

    International Nuclear Information System (INIS)

    Basak, U.

    2011-01-01

    In this paper a brief description and the main objectives of IAEA Programme B on Nuclear fuel cycle are given. The following Coordinated Research Projects: 1) FUel performance at high burn-up and in ageing plant by management and optimisation of WAter Chemistry Technologies (FUWAC ); 2) Near Term and Promising Long Term Options for Deployment of Thorium Based Nuclear Energy; 3) Fuel Modelling (FUMEX-III) are shortly described. The data collected by the IAEA Expert Group of Fuel Failures in Water Cooled Reactors including information about fuel failure cause for PWR (1994-2006) and failure mechanisms for BWR fuel (1994-2006) are shown. The just published Fuel Failure Handbook as well as preparation of a Monograph on Zirconium including an overview of Zirconium for nuclear applications are presented. The current projects in Sub-programme B2 - Power Reactor Fuel Engineering are also listed

  12. Nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, H [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

    1976-10-01

    It is expected that nuclear power generation will reach 49 million kW in 1985 and 129 million kW in 1995, and the nuclear fuel having to be supplied and processed will increase in proportion to these values. The technical problems concerning nuclear fuel are presented on the basis of the balance between the benefit for human beings and the burden on the human beings. Recently, especially the downstream of nuclear fuel attracts public attention. Enriched uranium as the raw material for light water reactor fuel is almost monopolized by the U.S., and the technical information has not been published for fear of the diversion to nuclear weapons. In this paper, the present situations of uranium enrichment, fuel fabrication, transportation, reprocessing and waste disposal and the future problems are described according to the path of nuclear fuel cycle. The demand and supply of enriched uranium in Japan will be balanced up to about 1988, but afterwards, the supply must rely upon the early establishment of the domestic technology by centrifugal separation method. No problem remains in the fabrication of light water reactor fuel, but for the fabrication of mixed oxide fuel, the mechanization of the production facility and labor saving are necessary. The solution of the capital risk for the construction of the second reprocessing plant is the main problem. Japan must develop waste disposal techniques with all-out efforts.

  13. Design and analytic evaluation of a rim effect reduction type LWR fuel for extending burnup

    International Nuclear Information System (INIS)

    Matsumura, Tetsuo; Kameyama, Takanori; Kinoshita, Motoyasu

    1991-01-01

    We have designed a new concept fuel design 'Rim effect reduction type fuel' which has thin natural UO 2 layer on surface of a UO2 pellet. Our neutronic analyses with ANRB code show this fuel design can reduce rim effect (burnup at plelet rim) by about 30 GWd/t comparing a normal fuel. It is known that a high burnup fuel has different microstructure from as-fabricated one at fuel rim (which is called as rim region) due to rim effect. Therefore this fuel design can expect smaller rim region than a normal fuel. Our fuel performance analyses with EIMUS code show this fuel design can reduce fuel center temperature at high burnup if thermal conductivity of fuel pellet decreases with burnup in inverse proportion. However, this fuel design increases fuel center temperature at low and middle burnup than a normal fuel due to increase of thermal power density at pellet center. Additionally Irradiation experiment of this fuel design can be considered to offer important data which make clear the relation between rim effect and fuel performance. (author)

  14. Nuclear fuel

    International Nuclear Information System (INIS)

    Azevedo, J.B.L. de.

    1980-01-01

    All stages of nuclear fuel cycle are analysed with respect to the present situation and future perspectives of supply and demand of services; the prices and the unitary cost estimation of these stages for the international fuel market are also mentioned. From the world resources and projections of uranium consumption, medium-and long term analyses are made of fuel availability for several strategies of use of different reactor types. Finally, the cost of nuclear fuel in the generation of electric energy is calculated to be used in the energetic planning of the electric sector. (M.A.) [pt

  15. Implementation of burnup credit in spent fuel management systems. Proceedings of an advisory group meeting

    International Nuclear Information System (INIS)

    1998-04-01

    The criticality safety analysis of spent fuel systems has traditionally assumed that the fuel is fresh. This results in significant conservatism in the calculated value of the system's reactivity. Improved calculational methods allows one to take credit for the reactivity reduction associated with fuel burnup, hence reducing the analysis conservatism while maintaining an adequate criticality safety margin. Motivation for using burnup credit in criticality safety applications is generally based on economic considerations. Although economics may be a primary factor in deciding to use burnup credit, other benefits may be realized. Many of the additional benefits of burnup credit that are not strictly economic, may be considered to contribute to public health and safety, and resource conservation and environmental quality. Interest in the implementation of burnup credit has been shown by many countries. A summary of the information gathered by the IAEA about ongoing activities and regulatory status of burnup credit in different countries is included. Burnup credit implementation introduces new parameters and effects that should be addressed in the criticality analysis (e.g., axial and radial burnup shapes, fuel irradiation history, and others). Analysis of these parameters introduces new variations as well as the uncertainties, that should be considered in the safety assessment of the system. Also, the need arises to validate the isotopic composition that results from a depletion calculation, as well as to extend the current validation range of criticality codes to cover spent fuel. The use of burnup credit implies a verification of the fuel burnup before loading for transport, storage, disposal, or reprocessing each assembly, to make sure that the burnup level achieved complies with the criteria established. Methods and procedures used in different countries are described in this report

  16. Implementation of burnup credit in spent fuel management systems. Proceedings of an advisory group meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The criticality safety analysis of spent fuel systems has traditionally assumed that the fuel is fresh. This results in significant conservatism in the calculated value of the system`s reactivity. Improved calculational methods allows one to take credit for the reactivity reduction associated with fuel burnup, hence reducing the analysis conservatism while maintaining an adequate criticality safety margin. Motivation for using burnup credit in criticality safety applications is generally based on economic considerations. Although economics may be a primary factor in deciding to use burnup credit, other benefits may be realized. Many of the additional benefits of burnup credit that are not strictly economic, may be considered to contribute to public health and safety, and resource conservation and environmental quality. Interest in the implementation of burnup credit has been shown by many countries. A summary of the information gathered by the IAEA about ongoing activities and regulatory status of burnup credit in different countries is included. Burnup credit implementation introduces new parameters and effects that should be addressed in the criticality analysis (e.g., axial and radial burnup shapes, fuel irradiation history, and others). Analysis of these parameters introduces new variations as well as the uncertainties, that should be considered in the safety assessment of the system. Also, the need arises to validate the isotopic composition that results from a depletion calculation, as well as to extend the current validation range of criticality codes to cover spent fuel. The use of burnup credit implies a verification of the fuel burnup before loading for transport, storage, disposal, or reprocessing each assembly, to make sure that the burnup level achieved complies with the criteria established. Methods and procedures used in different countries are described in this report. Refs, figs, tabs.

  17. Comparison of measured and calculated burn-up of AVR-Fuel-Elements

    Energy Technology Data Exchange (ETDEWEB)

    Wagemann, R.

    1974-03-15

    Burn-up comparisons are made for small batches of three types of AVR fuel elements using a coupled EREBUS-MUPO neutronic analysis compared against test results from both nondestructive gamma-ray measurements of cesium-137 activity and destructive mass spectrometry measurements of the ratio of U-233 to U-235. The comparisons are relatively good for average burn-up and reasonably good for burn-up distributions.

  18. Numerical Tests for the Problem of U-Pu Fuel Burnup in Fuel Rod and Polycell Models Using the MCNP Code

    Science.gov (United States)

    Muratov, V. G.; Lopatkin, A. V.

    An important aspect in the verification of the engineering techniques used in the safety analysis of MOX-fuelled reactors, is the preparation of test calculations to determine nuclide composition variations under irradiation and analysis of burnup problem errors resulting from various factors, such as, for instance, the effect of nuclear data uncertainties on nuclide concentration calculations. So far, no universally recognized tests have been devised. A calculation technique has been developed for solving the problem using the up-to-date calculation tools and the latest versions of nuclear libraries. Initially, in 1997, a code was drawn up in an effort under ISTC Project No. 116 to calculate the burnup in one VVER-1000 fuel rod, using the MCNP Code. Later on, the authors developed a computation technique which allows calculating fuel burnup in models of a fuel rod, or a fuel assembly, or the whole reactor. It became possible to apply it to fuel burnup in all types of nuclear reactors and subcritical blankets.

  19. Microstructural change and its influence on fission gas release in high burnup UO 2 fuel

    Science.gov (United States)

    Une, K.; Nogita, K.; Kashibe, S.; Imamura, M.

    1992-06-01

    The microstructural change of UO 2 fuel pellets (burnup: 6-83 GWd/t), base irradiated under LWR conditions, has been studied by detailed postirradiation examinations. The lattice parameter near the fuel rim in the irradiated UO 2 increased with burnup and appeared to become constant beyond about 50 GWd/t. This lattice dilation was mainly due to the accumulation of radiation induced point defects. Moreover, the dislocation density in the UO 2 matrix developed progressively with burnup, and eventually the tangled dislocations organized many sub-grain boundaries in the highest burnup fuel of 83 GWd/t. This sub-grain structure induced by accumulated radiation damage was compatible in appearance with SEM fractography results which revealed sub-divided grains of sub-micron size in as-fabricated grains. The influence of burnup on 85Kr release from the UO 2 fuels has been examined by means of a postirradiation annealing technique. The higher fractional release of high burnup fuels was mainly due to the burnup dependence of the fractional burst release evolved on temperature ramp. The fractional burst release was represented in terms of the square root of burnup from 6 to 83 GWd/t.

  20. Technical development on burn-up credit for spent LWR fuels

    International Nuclear Information System (INIS)

    Nakahara, Yoshinori; Suyama, Kenya; Suzaki, Takenori

    2000-10-01

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled 'Technical Development on Criticality Safety Management for Spent LWR Fuels'. Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burn-up and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report. (author)

  1. Technical Development on Burn-up Credit for Spent LWR Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gauld, I.C.

    2001-12-26

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled ''Technical Development on Criticality Safety Management for Spent LWR Fuels.'' Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burnup and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report.

  2. Technical development on burn-up credit for spent LWR fuels

    Energy Technology Data Exchange (ETDEWEB)

    Nakahara, Yoshinori; Suyama, Kenya; Suzaki, Takenori [eds.] [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-10-01

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled 'Technical Development on Criticality Safety Management for Spent LWR Fuels'. Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burn-up and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report. (author)

  3. Mechanical Fatigue Testing of High-Burnup Fuel for Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Wang, Hong [ORNL

    2015-05-01

    This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using a set up with three linear variable differential transformers (LVDTs).

  4. Performance of Bruce natural UO2 fuel irradiated to extended burnups

    International Nuclear Information System (INIS)

    Zhou, Y.N.; Floyd, M.R.; Ryz, M.A.

    1995-11-01

    Bruce-type bundles XY, AAH and GF were successfully irradiated in the NRU reactor at Chalk River Laboratories to outer-element burnups of 570-900 MWh/kgU. These bundles were of the Bruce Nuclear Generating Station (NGS)-A 'first-charge' design that contained gas plenums in the outer elements. The maximum outer-element linear powers were 33-37 kW/m. Post-irradiation examination of these bundles confirmed that all the elements were intact. Bundles XY and AAH, irradiated to outer-element burnups of 570-700 MWh/kgU, experienced low fission-gas release (FGR) ( 500 MWh/kgU (equivalent to bundle-average 450 MWh/kgU) when maximum outer-element linear powers are > 50 kW/m. The analysis in this paper suggests that CANDU 37-element fuel can be successfully irradiated (low-FGR/defect-free) to burnups of at least 700 MWh/kgU, provided maximum power do not exceed 40 kW/m. (author). 5 refs., 1 tab., 8 figs

  5. Assessment of US NRC fuel rod behavior codes to extended burnup

    International Nuclear Information System (INIS)

    Laats, E.T.; Croucher, D.W.; Haggag, F.M.

    1982-01-01

    The purpose of this paper is to report the status of assessing the capabilities of the NRC fuel rod performance codes for calculating extended burnup rod behavior. As part of this effort, a large spectrum of fuel rod behavior phenomena was examined, and the phenomena deemed as being influential during extended burnup operation were identified. Then, the experiment data base addressing these identified phenomena was examined for availability and completeness at extended burnups. Calculational capabilities of the NRC's steady state FRAPCON-2 and transient FRAP-T6 fuel rod behavior codes were examined for each of the identified phenomenon. Parameters calculated by the codes were compared with the available data base, and judgments were made regarding model performance. Overall, the FRAPCON-2 code was found to be moderately well assessed to extended burnups, but the FRAP-T6 code cannot be adequately assessed until more transient high burnup data are available

  6. Application of burnup credit in spent fuel management at Russian NPPs

    International Nuclear Information System (INIS)

    Koulikov, V.I.; Makarchuk, T.F.; Tikhonov, N.S.

    1998-01-01

    The article concerns implementation of burnup credit in spent fuel storage and transportation. Some of the problems with increased enrichment fuel can be resolved by use of modified transport methodology. Such as shipping in gas-filled casks only, reduced number of assemblies in casks, etc. However, the use of modified schemes of transportation results in essential financial losses. An actinide-only burnup credit is taken into account in most part of criticality calculations, and a parameter limiting loading of spent fuel in the cask or the repository is the avenge value of burnup on an assembly. The main method of burnup depth definition is its defect measurement. A short description of devices for measurement as well as some technical results of suing burnup credit approach in storage and transport are given. (author)

  7. Calculation study of the WWER-440 fuel performance for extended burnup

    International Nuclear Information System (INIS)

    Kujal, J.; Pazdera, F.; Barta, O.

    1984-01-01

    The results of preliminary calculational study of extended burnup cycling schemes impact on WWER-440 fuel performance are presented. Two high burnup schemes were proposed with three and four cycles, resp. Comparison was made with three cycle reference case. The thermal mechanical analysis was performed with PIN and RELA codes. The values of rod internal pressure, fuel centerline temperatures and fuel-cladding gap are expressed as function of power history. (author)

  8. Determination of enrichment of recycle uranium fuels for different burnup values

    International Nuclear Information System (INIS)

    Zabunoglu, Okan H.

    2008-01-01

    Uranium (U) recovered from spent LWR fuels by reprocessing, which contains small amounts of U-236, is to be enriched before being re-irradiated as the recycle U. During the enrichment of recovered U in U-235, the mass fraction of U-236 also increases. Since the existence of U-236 in the recycle U has a negative effect on neutron economy, a greater enrichment of U-235 in the recycle U is required for reaching the same burnup as can be reached by the fresh U fuel. Two burnup values play the most important role in determining the enrichment of recycle U: (1) discharge burnup of spent fuel from which the recycle U is obtained and (2) desired discharge burnup of the recycle U fuel. A step-by-step procedure for calculating the enrichment of the recycle U as a function of these two burnup values is introduced. The computer codes MONTEBURNS and ORIGEN-S are made use of and a three-component (U-235, U-236, U-238) enrichment scheme is applied for calculating the amount of U-236 in producing the recycle U from the recovered U. As was aimed, the resulting expression is simple enough for quick/hand calculations of the enrichment of the recycle U for any given discharge burnup of spent fuel and for any desired discharge burnup of the recycle U fuel, most accurately within the range of 33,000-50,000 MWd/tonU

  9. Past experience and future needs for the use of burnup credit in LWR fuel storage

    International Nuclear Information System (INIS)

    Boyd, W.A.; Wrights, G.N.

    1987-01-01

    To achieve improved fuel economics and reduce the amount of fuel discharged annually, utilities are engaging in fuel management strategies that will achieve higher discharge burnups for their fuel assemblies. Although burnup credit methodologies have been developed and spent-fuel racks have been licensed, burnup credit fuel storage racks are not the answer for all utilities. Off-site and out-of-pool spent-fuel storage may be more appropriate. This is leading to the development of dry spent-fuel storage and shipping casks. Cask designs with spent-fuel storage capability between 20 and 32 assemblies are being developed by several vendors. The US Dept. of Energy is also funding work by VEPCO. Westinghouse is currently licensing its dry storage cask, developing a shipping cask for the domestic market, and is involved in a joint venture to develop a cask for the international market. Although methods of taking credit for fuel burnup in spent-fuel storage racks have been developed and licensed, use of these methods on dry spent-fuel storage and shipping casks can lead to new issues. These issues arise because the excess reactivity margin that is inherent in a burnup credit spent-fuel storage rack criticality analysis will not be available in a dry cask analysis

  10. FUNDAMENTAL MECHANISMS OF CORROSION OF ADVANCED LIGHT WATER REACTOR FUEL CLADDING ALLOYS AT HIGH BURNUP

    International Nuclear Information System (INIS)

    Lott, Randy G.

    2003-01-01

    OAK (B204) The corrosion behavior of nuclear fuel cladding is a key factor limiting the performance of nuclear fuel elements, improved cladding alloys, which resist corrosion and radiation damage, will facilitate higher burnup core designs. The objective of this project is to understand the mechanisms by which alloy composition, heat treatment and microstructure affect corrosion rate. This knowledge can be used to predict the behavior of existing alloys outside the current experience base (for example, at high burn-up) and predict the effects of changes in operation conditions on zirconium alloy behavior. Zirconium alloys corrode by the formation f a highly adherent protective oxide layer. The working hypothesis of this project is that alloy composition, microstructure and heat treatment affect corrosion rates through their effect on the protective oxide structure and ion transport properties. The experimental task in this project is to identify these differences and understand how they affect corrosion behavior. To do this, several microstructural examination techniques including transmission electron microscope (TEM), electrochemical impedance spectroscopy (EIS) and a selection of fluorescence and diffraction techniques using synchrotron radiation at the Advanced Photon Source (APS) were employed

  11. Fission gas release and fuel rod chemistry related to extended burnup

    International Nuclear Information System (INIS)

    1993-04-01

    The purpose of the meeting was to review the state of the art in fission gas release and fuel rod chemistry related to extended burnup. The meeting was held in a time when national and international programmes on water reactor fuel irradiated in experimental reactors were still ongoing or had reached their conclusion, and when lead test assemblies had reached high burnup in power reactors and been examined. At the same time, several out-of-pile experiments on high burnup fuel or with simulated fuel were being carried out. As a result, significant progress has been registered since the last meeting, particularly in the evaluation of fuel temperature, the degradation of the global thermal conductivity with burnup and in the understanding of the impact on fission gas release. Fifty five participants from 16 countries and one international organization attended the meeting. 28 papers were presented. A separate abstract was prepared for each of the papers. Refs, figs, tabs and photos

  12. Implementation of burnup credit in spent fuel management systems. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-08-01

    The purpose of this Technical Committee Meeting was to explore the status of international activities related to the use of burnup credit for spent fuel applications. This was the second major meeting on the issues of burnup credit for spent fuel management systems held since the IAEA began to monitor the uses of burnup credit in spent fuel management systems in 1997. Burnup credit for wet and dry storage systems is needed in many Member States to allow for increased initial fuel enrichment, and to increase the storage capacity and thus to avoid the need for extensive modifications of the spent fuel management systems involved. This document contains 31 individual papers presented at the Meeting; each of the papers was indexed separately.

  13. Implementation of burnup credit in spent fuel management systems. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2001-08-01

    The purpose of this Technical Committee Meeting was to explore the status of international activities related to the use of burnup credit for spent fuel applications. This was the second major meeting on the issues of burnup credit for spent fuel management systems held since the IAEA began to monitor the uses of burnup credit in spent fuel management systems in 1997. Burnup credit for wet and dry storage systems is needed in many Member States to allow for increased initial fuel enrichment, and to increase the storage capacity and thus to avoid the need for extensive modifications of the spent fuel management systems involved. This document contains 31 individual papers presented at the Meeting; each of the papers was indexed separately

  14. Thermal conductivity evaluation of high burnup mixed-oxide (MOX) fuel pellet

    International Nuclear Information System (INIS)

    Amaya, Masaki; Nakamura, Jinichi; Nagase, Fumihisa; Fuketa, Toyoshi

    2011-01-01

    The thermal conductivity formula of fuel pellet which contains the effects of burnup and plutonium (Pu) addition was proposed based on the Klemens' theory and reported thermal conductivities of unirradiated (U, Pu) O 2 and irradiated UO 2 pellets. The thermal conductivity of high burnup MOX pellet was formulated by applying a summation rule between phonon scattering parameters which show the effects of plutonium addition and burnup. Temperature of high burnup MOX fuel was evaluated based on the thermal conductivity integral which was calculated from the above-mentioned thermal conductivity formula. Calculated fuel temperatures were plotted against the linear heat rates of the fuel rods, and were compared with the fuel temperatures measured in a test reactor. Since both values agreed well, it was confirmed that the proposed thermal conductivity formula of MOX pellets is adequate.

  15. Thermochemistry of nuclear fuels in advanced reactors

    International Nuclear Information System (INIS)

    Agarwal, Renu

    2015-01-01

    The presence of a large number of elements, accompanied with steep temperature gradient results in dynamic chemistry during nuclear fuel burn-up. Understanding this chemistry is very important for efficient and safe usage of nuclear fuels. The radioactive nature of these fuels puts lot of constraint on regulatory bodies to ensure their accident free operation in the reactors. One of the common aims of advanced fuels is to achieve high burn-up. As burn-up of the fuel increases, chemistry of fission-products becomes increasingly more important. To understand different phenomenon taking place in-pile, many out of-pile experiments are carried out. Extensive studies of thermodynamic properties, phase analysis, thermophysical property evaluation, fuel-fission product clad compatibility are carried out with relevant compounds and simulated fuels (SIMFUEL). All these data are compiled and jointly evaluated using different computational methods to predict fuel behaviour during burn-up. Only when this combined experimental and theoretical information confirms safe operation of the pin, a test pin is prepared and burnt in a test reactor. Every fuel has a different chemistry and different constraints associated with it. In this talk, various thermo-chemical aspects of some of the advanced fuels, mixed carbide, mixed nitride, 'Pu' rich MOX, 'Th' based AHWR fuels and metallic fuels will be discussed. (author)

  16. Economic incentives and recommended development for commercial use of high burnup fuels in the once-through LWR fuel cycle

    International Nuclear Information System (INIS)

    Stout, R.B.; Merckx, K.R.; Holm, J.S.

    1981-01-01

    This study calculates the reduced uranium requirements and the economic incentives for increasing the burnup of current design LWR fuels from the current range of 25 to 35 MWD/Kg to a range of 45 to 55 MWD/Kg. The changes in fuel management strategies which may be required to accommodate these high burnup fuels and longer fuel cycles are discussed. The material behavior problems which may present obstacles to achieving high burnup or to license fuel are identified and discussed. These problems are presented in terms of integral fuel response and the informational needs for commercial and licensing acceptance. Research and development programs are outlined which are aimed at achieving a licensing position and commercial acceptance of high burnup fuels

  17. Detailed description and user`s manual of high burnup fuel analysis code EXBURN-I

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Motoe [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Saitou, Hiroaki

    1997-11-01

    EXBURN-I has been developed for the analysis of LWR high burnup fuel behavior in normal operation and power transient conditions. In the high burnup region, phenomena occur which are different in quality from those expected for the extension of behaviors in the mid-burnup region. To analyze these phenomena, EXBURN-I has been formed by the incorporation of such new models as pellet thermal conductivity change, burnup-dependent FP gas release rate, and cladding oxide layer growth to the basic structure of low- and mid-burnup fuel analysis code FEMAXI-IV. The present report describes in detail the whole structure of the code, models, and materials properties. Also, it includes a detailed input manual and sample output, etc. (author). 55 refs.

  18. The application of burnup credit for spent fuel operations in the United Kingdom

    International Nuclear Information System (INIS)

    Bowden, R.

    1998-01-01

    This paper begins by outlining the structure of the nuclear industry in the United Kingdom. It then sets out the methodology of burnup credit, and provides a brief discussion of the validation and robustness of the calculational route. This leads to a description of both the current and intended applications of burnup credit in the United Kingdom. (author)

  19. LWR high burn-up operation and MOX introduction. Fuel cycle performance from the viewpoint of waste management

    International Nuclear Information System (INIS)

    Inagaki, Yaohiro; Iwasaki, Tomohiko; Niibori, Yuichi; Sato, Seichi; Ohe, Toshiaki; Kato, Kazuyuki; Torikai, Seishi; Nagasaki, Shinya; Kitayama, Kazumi

    2009-01-01

    From the viewpoint of waste management, a quantitative evaluation of LWR nuclear fuel cycle system performance was carried out, considering both higher burn-up operation of UO 2 fuel coupled with the introduction of MOX fuel. A major parameter to quantify this performance is the number of high-level waste (HLW) glass units generated per GWd (gigawatt-day based on reactor thermal power generation before electrical conversion). This parameter was evaluated for each system up to a maximum burn-up of 70GWd/THM (gigawatt-day per ton of heavy metal) assuming current conventional reprocessing and vitrification conditions where the waste loading of glass is restricted by the heat generation rate, the MoO 3 content, or the noble metal content. The results showed that higher burn-up operation has no significant influence on the number of glass units generated per GWd for UO 2 fuel, though the number of glass units per THM increases linearly with burn-up and is restricted by the heat generation rate. On the other hand, the introduction of MOX fuel causes the number of glass units per GWd to double owing to the increase in the heat generation rate. An extended cooling period of the spent fuel prior to reprocessing effectively reduces the heat generation rate for UO 2 fuel, while a separation of minor actinides (Np, Am, and Cm) from the high-level waste provides additional reduction for MOX fuel. However, neither of these leads to a substantial reduction in the number of glass units, since the MoO 3 content or the noble metal content restricts the number of glass units rather than the heat generation rate. These results suggest that both the MoO 3 content and the noble metal content provide the key to reducing the amount of waste glass that is generated, leading to an overall improvement in fuel cycle system performance. (author)

  20. Nuclear data needs for the analysis of generation and burn-up of actinide isotopes in nuclear reactors

    International Nuclear Information System (INIS)

    Kuesters, H.

    1980-04-01

    A reliable prediction of the in-pile and out-of-pile physics characteristics of nuclear fuel is one of the objectives of present-day reactor physics. The paper describes the main production paths of important actinides for light water and fast breeder reactors. The accuracy of recent nuclear data is examined by comparisons of theoretical predictions with the results from post-irradiation analysis of nuclear fuel from power reactors, and partly with results obtained in zero-power facilities. A world-wide comparison of nuclear data to be used in large fast power reactor burn-up and long term considerations is presented. The needs for further improvement of nuclear data are discussed. (orig.) [de

  1. MTR fuel element burn-up measurements by the reactivity method

    International Nuclear Information System (INIS)

    Zuniga, A.; Cuya, T.R.; Ravnik, M.

    2003-01-01

    Fuel element burn-up was measured by the reactivity method in the 10 MW Peruvian MTR reactor RP-10. The main purpose of the experiment was testing the reactivity method for an MTR reactor as the reactivity method was originally developed for TRIGA reactors. The reactivity worth of each measured fuel element was measured in its original core position in order to measure the burn-up of the fuel elements that were part of the experimental core. The burn-up of each measured fuel element was derived by interpolating its reactivity worth from the reactivity worth of two reference fuel elements of known burn-up, whose reactivity worth was measured in the position of the measured fuel element. The accuracy of the method was improved by separating the reactivity effect of burn-up from the effect of the position in the core. The results of the experiment showed that the modified reactivity method for fuel element burn-up determination could be applied also to MTR reactors. (orig.)

  2. Parameterized representation of macroscopic cross section in the PWR fuel element considering burn-up cycles

    International Nuclear Information System (INIS)

    Belo, Thiago F.; Fiel, Joao Claudio B.

    2015-01-01

    Nuclear reactor core analysis involves neutronic modeling and the calculations require problem dependent nuclear data generated with few neutron energy groups, as for instance the neutron cross sections. The methods used to obtain these problem-dependent cross sections, in the reactor calculations, generally uses nuclear computer codes that require a large processing time and computational memory, making the process computationally very expensive. Presently, analysis of the macroscopic cross section, as a function of nuclear parameters, has shown a very distinct behavior that cannot be represented by simply using linear interpolation. Indeed, a polynomial representation is more adequate for the data parameterization. To provide the cross sections of rapidly and without the dependence of complex systems calculations, this work developed a set of parameterized cross sections, based on the Tchebychev polynomials, by fitting the cross sections as a function of nuclear parameters, which include fuel temperature, moderator temperature and density, soluble boron concentration, uranium enrichment, and the burn-up. In this study is evaluated the problem-dependent about fission, scattering, total, nu-fission, capture, transport and absorption cross sections for a typical PWR fuel element reactor, considering burn-up cycle. The analysis was carried out with the SCALE 6.1 code package. The results of comparison with direct calculations with the SCALE code system and also the test using project parameters, such as the temperature coefficient of reactivity and fast fission factor, show excellent agreements. The differences between the cross-section parameterization methodology and the direct calculations based on the SCALE code system are less than 0.03 percent. (author)

  3. Parameterized representation of macroscopic cross section in the PWR fuel element considering burn-up cycles

    Energy Technology Data Exchange (ETDEWEB)

    Belo, Thiago F.; Fiel, Joao Claudio B., E-mail: thiagofbelo@hotmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Nuclear reactor core analysis involves neutronic modeling and the calculations require problem dependent nuclear data generated with few neutron energy groups, as for instance the neutron cross sections. The methods used to obtain these problem-dependent cross sections, in the reactor calculations, generally uses nuclear computer codes that require a large processing time and computational memory, making the process computationally very expensive. Presently, analysis of the macroscopic cross section, as a function of nuclear parameters, has shown a very distinct behavior that cannot be represented by simply using linear interpolation. Indeed, a polynomial representation is more adequate for the data parameterization. To provide the cross sections of rapidly and without the dependence of complex systems calculations, this work developed a set of parameterized cross sections, based on the Tchebychev polynomials, by fitting the cross sections as a function of nuclear parameters, which include fuel temperature, moderator temperature and density, soluble boron concentration, uranium enrichment, and the burn-up. In this study is evaluated the problem-dependent about fission, scattering, total, nu-fission, capture, transport and absorption cross sections for a typical PWR fuel element reactor, considering burn-up cycle. The analysis was carried out with the SCALE 6.1 code package. The results of comparison with direct calculations with the SCALE code system and also the test using project parameters, such as the temperature coefficient of reactivity and fast fission factor, show excellent agreements. The differences between the cross-section parameterization methodology and the direct calculations based on the SCALE code system are less than 0.03 percent. (author)

  4. Burn-up analysis of uranium silicide fuels 20% 235U, in the LFR facility

    International Nuclear Information System (INIS)

    Amor, Ricardo A.; Bouza, Edgardo; Cabrejas, Julian L.; Devida, Claudio A.; Gil, Daniel A.; Stankevicius, Alejandro; Gautier, Eduardo; Garavaglia, Ricardo N.; Lobo, Alfredo

    2003-01-01

    The LFR Facility is a laboratory designed and constructed with a Hot-Cells line, a Globe-Box and a Fume-Hood, all of them suited to work with radioactive materials such as samples of irradiated silicide MTR fuel elements. A series of dissolutions of this material was performed. From the resulting solutions, two fractions were separated by HPLC. One contained U + Pu, and other the fission product Nd. The concentrations of these elements were obtained by isotopic dilution and mass spectrometry (IDMS). It is concluded that this technique is very powerful and accurate when properly applied, and makes the validation of burn-up calculation codes possible. It is worth remarking the Lfr capacity to carry on different Research and Development (R + D) tasks in the Nuclear Fuel Cycle field. (author)

  5. Modelling of phenomena associated with high burnup fuel behaviour during overpower transients

    International Nuclear Information System (INIS)

    Sills, H.E.; Langman, V.J.; Iglesias, F.C.

    1995-01-01

    Phenomena of importance to the behaviour of high burnup fuel subjected to conditions of rapid overpower (i.e., LWR RIAs) include the change in cladding material properties due to irradiation, pellet-clad interaction (PCI) and 'rim' effects associated with the periphery of high burnup fuel. 'Rim' effects are postulated to be caused by changes in fuel morphology at high burnup. Typical discharge burnups for CANDU fuel are low compared to LWRs. Maximum linear ratings for CANDU fuel are higher than those for LWRs. However, under normal operating conditions, the Zircaloy-4 clad of the CANDU fuel is collapsed onto the fuel stack. Thus, the CANDU fuel performance codes model the transient behaviour of the fuel-to-clad interface and are capable of assessing the potential for pellet-clad mechanical interaction (PCMI) failures for a wide range of overpower conditions. This report provides a discussion of the modelling of the phenomena of importance to high burnup fuel behaviour during rapid overpower transients. (author)

  6. Burnup measurements on spent fuel elements of the RP-10 research reactor

    International Nuclear Information System (INIS)

    Vela Mora, Mariano; Gallardo Padilla, Alberto; Palomino, Jose Luis Castro

    2011-01-01

    This work describes the measurement, using nondestructive gamma-ray spectroscopy, of the average burnup attained by Material Testing Reactor (MTR) fuel elements irradiated in the RP-10 research reactor. Measurements were performed at the reactor storage pool area using 137 Cs as the only burnup monitor, even for spent fuel elements with cooling times much shorter than two years. The experimental apparatus was previously calibrated in efficiency to obtain absolute average burnup values, which were compared against corresponding ones furnished by reactor physics calculations. The mean deviation between both values amounts to 6%. (author)

  7. Alternatives for implementing burnup credit in the design and operation of spent fuel transport casks

    International Nuclear Information System (INIS)

    Sanders, T.L.; Lake, W.H.

    1989-01-01

    It is possible to develop an optimal strategy for implementing burnup credit in spent fuel transport casks. For transport, the relative risk is rapidly reduced if additional pre-transport controls such as a cavity dryness verifications are conducted prior to transport. Some other operational and design features that could be incorporated into a burnup credit cask strategy are listed. These examples represent many of the system features and alternatives already available for use in developing a broadly based criticality safety strategy for implementing burnup credit in the design and operation of spent fuel transport casks. 4 refs., 1 tab

  8. Burnup measurements on spent fuel elements of the RP-10 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vela Mora, Mariano; Gallardo Padilla, Alberto; Palomino, Jose Luis Castro, E-mail: mvela@ipen.gob.p [Instituto Peruano de Energia Nuclear (IPEN/Peru), Lima (Peru). Grupo de Calculo, Analisis y Seguridad de Reactores; Terremoto, Luis Antonio Albiac, E-mail: laaterre@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This work describes the measurement, using nondestructive gamma-ray spectroscopy, of the average burnup attained by Material Testing Reactor (MTR) fuel elements irradiated in the RP-10 research reactor. Measurements were performed at the reactor storage pool area using {sup 137}Cs as the only burnup monitor, even for spent fuel elements with cooling times much shorter than two years. The experimental apparatus was previously calibrated in efficiency to obtain absolute average burnup values, which were compared against corresponding ones furnished by reactor physics calculations. The mean deviation between both values amounts to 6%. (author)

  9. Steady-state irradiation testing of U-Pu-Zr fuel to >18% burnup

    International Nuclear Information System (INIS)

    Pahl, R.G.; Wisner, R.S.; Billone, M.C.; Hofman, G.L.

    1990-01-01

    Tests of austenitic stainless steel clad U-xP-10Zr fuel (x=o, 8, 19 wt. %) to peak burnups as high as 18.4 at. % have been completed in the EBR-II. Fuel swelling and fractional fission gas release are slowly increasing functions of burnup beyond 2 at. % burnup. Increasing plutonium content in the fuel reduces swelling and decreases the amount of fission gas which diffuses from fuel to plenum. LIFE-METAL code modelling of cladding strains is consistent with creep by fission gas loading and irradiation-induced swelling mechanisms. Fuel/cladding chemical interaction involves the ingress of rare-earth fission products. Constituent redistribution in the fuel had not limited steady-state performance. Cladding breach behavior at closure welds, in the gas plenum, and in the fuel column region have been benign events. 3 refs., 5 figs

  10. Temperature and Burnup Correlated FCCI in U-10Zr Metallic Fuel

    Energy Technology Data Exchange (ETDEWEB)

    William J. Carmack

    2012-05-01

    Metallic fuels are proposed for use in advanced sodium cooled fast reactors. The experience basis for metallic fuels is extensive and includes development and qualification of fuels for the Experimental Breeder Reactor I, the Experimental Breeder Reactor II, FERMI-I, and the Fast Flux Test Facility (FFTF) reactors. Metallic fuels provide a number of advantages over other fuel types in terms of fabricability, performance, recyclability, and safety. Key to the performance of all nuclear fuel systems is the resistance to “breach” and subsequent release of fission products and fuel constituents to the primary coolant system of the nuclear power plant. In metallic fuel, the experience is that significant fuel-cladding chemical (FCCI) interaction occurs and becomes prevalent at high power-high temperature operation and ultimately leads to fuel pin breach and failure. Empirical relationships for metallic fuel pin failure have been developed from a large body of in-pile and out of pile research, development, and experimentation. It has been found that significant in-pile acceleration of the FCCI rate is experienced over similar condition out-of-pile experiments. The study of FCCI in metallic fuels has led to the quantification of in-pile failure rates to establish an empirical time and temperature dependent failure limit for fuel elements. Up until now the understanding of FCCI layer formation has been limited to data generated in EBR-II experiments. This dissertation provides new FCCI data extracted from the MFF-series of metallic fuel irradiations performed in the FFTF. These fuel assemblies contain valuable information on the formation of FCCI in metallic fuels at a variety of temperature and burnup conditions and in fuel with axial fuel height three times longer than EBR-II experiments. The longer fuel column in the FFTF and the fuel pins examined have significantly different flux, power, temperature, and FCCI profiles than that found in similar tests conducted in

  11. The Width of High Burnup Structure in LWR UO2 Fuel

    International Nuclear Information System (INIS)

    Koo, Yang-Hyun; Lee, Byung-Ho; Oh, Jae-Yong; Sohn, Dong-Seong

    2007-01-01

    The measured data available in the open literature on the width of high burnup structure (HBS) in LWR UO 2 fuel were analyzed in terms of pellet average burnup, enrichment, and grain size. Dependence of the HBS width on pellet average burnup was shown to be divided into three regions; while the HBS width is governed by accumulation of fission damage (i.e., burnup) for burnup below 60 GWd/tU, it seems to be restricted to some limiting value of around 1.5 mm for burnup above 75 GWd/tU due to high temperature which might have caused extensive annealing of irradiation damage. As for intermediate burnup between 60 and 75 GWd/tU, although temperature would not have been so high as to induce extensive annealing, the microstructural damage could have been partly annealed, resulting in the reduction of the HBS width. It was found that both enrichment and grain size also affects the HBS width. However, as long as the pellet average burnup is lower than about 75 GWd/tU, the effect does not appear to be significant for the enrichment and grain size that are typically used in current LWR fuel. (authors)

  12. PIE and separate effect test of high burnup UO2 fuel

    International Nuclear Information System (INIS)

    Yang, Yong Sik; Kim, S.K.; Kim, D.H.

    2005-01-01

    To investigate the performance of a high burnup UO 2 fuel, the highest burnup fuel assembly in KOREA was transported to the PIE facility in KAERI. It was a 17·17 fuel assembly irradiated at the Ulchin Unit 2 PWR. The peak fuel rod average burnup was about 57MWd/kgU and locally 65MWd/kgU. The general PIE was performed to investigate the fuel rod irradiation performance. Fission gas release, burnup, oxide thickness, hydrogen pickup, CRUD, and density change were measured by destructive of non-destructive test. Microstructure change, bubble and pore size distributions were observed by optical microscopy, SEM and EPMA. All generated and available PIE results were used to verify high burnup fuel performance code INFRA. Several rods were cut for additional separate effect test. For the high burnup fission gas release behaviour analysis, annealing apparatus were developed and installed in hot cell and preliminary test was performed. In addition to current apparatus new induction furnace will be installed in hot cell to investigate the high temperature and transient fission gas release behaviour. Ring tensile test was performed to analyze the material property degradation which caused by the oxidation and hydride, and additional mechanical tests will be performed. (Author)

  13. Criticality reference benchmark calculations for burnup credit using spent fuel isotopics

    International Nuclear Information System (INIS)

    Bowman, S.M.

    1991-04-01

    To date, criticality analyses performed in support of the certification of spent fuel casks in the United States do not take credit for the reactivity reduction that results from burnup. By taking credit for the fuel burnup, commonly referred to as ''burnup credit,'' the fuel loading capacity of these casks can be increased. One of the difficulties in implementing burnup credit in criticality analyses is that there have been no critical experiments performed with spent fuel which can be used for computer code validation. In lieu of that, a reference problem set of fresh fuel critical experiments which model various conditions typical of light water reactor (LWR) transportation and storage casks has been identified and used in the validation of SCALE-4. This report documents the use of this same problem set to perform spent fuel criticality benchmark calculations by replacing the actual fresh fuel isotopics from the experiments with six different sets of calculated spent fuel isotopics. The SCALE-4 modules SAS2H and CSAS4 were used to perform the analyses. These calculations do not model actual critical experiments. The calculated k-effectives are not supposed to equal unity and will vary depending on the initial enrichment and burnup of the calculated spent fuel isotopics. 12 refs., 11 tabs

  14. Reactivity management and burn-up management on JRR-3 silicide-fuel-core

    International Nuclear Information System (INIS)

    Kato, Tomoaki; Araki, Masaaki; Izumo, Hironobu; Kinase, Masami; Torii, Yoshiya; Murayama, Yoji

    2007-08-01

    On the conversion from uranium-aluminum-dispersion-type fuel (aluminide fuel) to uranium-silicon-aluminum-dispersion-type fuel (silicide fuel), uranium density was increased from 2.2 to 4.8 g/cm 3 with keeping uranium-235 enrichment of 20%. So, burnable absorbers (cadmium wire) were introduced for decreasing excess reactivity caused by the increasing of uranium density. The burnable absorbers influence reactivity during reactor operation. So, the burning of the burnable absorbers was studied and the influence on reactor operation was made cleared. Furthermore, necessary excess reactivity on beginning of operation cycle and the time limit for restart after unplanned reactor shutdown was calculated. On the conversion, limit of fuel burn-up was increased from 50% to 60%. And the fuel exchange procedure was changed from the six-batch dispersion procedure to the fuel burn-up management procedure. The previous estimation of fuel burn-up was required for the planning of fuel exchange, so that the estimation was carried out by means of past operation data. Finally, a new fuel exchange procedure was proposed for effective use of fuel elements. On the procedure, burn-up of spent fuel was defined for each loading position. The average length of fuel's staying in the core can be increased by two percent on the procedure. (author)

  15. Burn-up calculation of different thorium-based fuel matrixes in a thermal research reactor using MCNPX 2.6 code

    Directory of Open Access Journals (Sweden)

    Gholamzadeh Zohreh

    2014-12-01

    Full Text Available Decrease of the economically accessible uranium resources and the inherent proliferation resistance of thorium fuel motivate its application in nuclear power systems. Estimation of the nuclear reactor’s neutronic parameters during different operational situations is of key importance for the safe operation of nuclear reactors. In the present research, thorium oxide fuel burn-up calculations for a demonstrative model of a heavy water- -cooled reactor have been performed using MCNPX 2.6 code. Neutronic parameters for three different thorium fuel matrices loaded separately in the modelled thermal core have been investigated. 233U, 235U and 239Pu isotopes have been used as fissile element in the thorium oxide fuel, separately. Burn-up of three different fuels has been calculated at 1 MW constant power. 135X and 149Sm concentration variations have been studied in the modelled core during 165 days burn-up. Burn-up of thorium oxide enriched with 233U resulted in the least 149Sm and 135Xe productions and net fissile production of 233U after 165 days. The negative fuel, coolant and void reactivity of the used fuel assures safe operation of the modelled thermal core containing (233U-Th O2 matrix. Furthermore, utilisation of thorium breeder fuel demonstrates several advantages, such as good neutronic economy, 233U production and less production of long-lived α emitter high radiotoxic wastes in biological internal exposure point of view

  16. Model for evolution of grain size in the rim region of high burnup UO{sub 2} fuel

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hongxing, E-mail: xiaohongxing2003@163.com; Long, Chongsheng; Chen, Hongsheng

    2016-04-01

    The restructuring process of the high burnup structure (HBS) formation in UO{sub 2} fuel results in sub-micron size grains that accelerate the fission gas swelling, which will raise some concern over the safety of extended the nuclear fuel operation life in the reactor. A mechanistic and engineering model for evolution of grain size in the rim region of high burnup UO{sub 2} fuel based on the experimental observations of the HBS in the literature is presented. The model takes into account dislocations evolution under irradiation and the grain subdivision occur successively at increasing local burnup. It is assumed that the original driving force for subdivision of grain in the HBS of UO{sub 2} fuel is the production and accumulation of dislocation loops during irradiation. The dislocation loops can also be annealed through thermal diffusion when the temperature is high enough. The capability of this model is validated by the comparison with the experimental data of temperature threshold of subdivision, dislocation density and sub-grain size as a function of local burnup. It is shown that the calculated results of the dislocation density and subdivided grain size as a function of local burnup are in good agreement with the experimental results. - Highlights: • A model for evolution of dislocation density and grain size in HBS is proposed. • The dislocation can also be annealed when the temperature is high enough. • Original driving force for subdivision is mostly accumulation of dislocation loops. • The temperature threshold of the subdivision is predicted at 1300–1400 K.

  17. A simulation of the temperature overshoot observed at high burnup in annular fuel pellets

    International Nuclear Information System (INIS)

    Baron, D.; Couty, J.C.

    1997-01-01

    Instrumented experiments have been carried out in recent years to calibrate and improve temperature calculations at high burnup in PWR nuclear fuel rods. The introduction of a thermocouple in the fuel stack allows the experiment to record the centre-line temperature all along the irradiation or re-irradiation. The results obtained on fresh fuel have not revealed any abnormal behavior as have observations done on high burnup rods. In this case, a sudden overshoot has been recorded on the thermocouple temperature above an average power threshold. Several hypotheses have been suggested. Only two seem to be acceptable: one in relation to an effect of grain decohesion, another based on a modification of fuel chemistry. The apparent reversibility of the phenomena when power decreases led us to prefer the first explanation. Indeed, the introduction of a thermocouple means that annular fuel pellets must be used. These are either initially manufactured with a central hole or drilled after base irradiation, using the ''RISOE'' technique. One must bear in mind that the use of such annular pellets drastically changes the crack pattern as irradiation proceeds. This is due to a different stress field which, combined with a weakening of the grain binding energy, leads to a partial grain decohesion on the inner face of the annular pellet. Modification of the grain binding energy is related to the presence of an increasing local population of gas bubbles and metallic precipitates at grain boundaries, as swelling creates intergranular local stresses which also could probably enhance the grain decohesion process. This grain decohesion concerns a 250 to 350 μm depth and shows a narrow cracks network through which released fission gas can flow, temporarily pushing the resident helium gas out. The low conductivity of these gaseous fission products and the numerous gas layers created this way could partly explain the unexpected temperatures measured in high burnup fuels. The purpose of

  18. Method of manufacturing nuclear fuel pellet

    International Nuclear Information System (INIS)

    Oguma, Masaomi; Masuda, Hiroshi; Hirai, Mutsumi; Tanabe, Isami; Yuda, Ryoichi.

    1989-01-01

    In a method of manufacturing nuclear fuel pellets by compression molding an oxide powder of nuclear fuel material followed by sintering, a metal nuclear material is mixed with an oxide powder of the nuclear fuel material. As the metal nuclear fuel material, whisker or wire-like fine wire or granules of metal uranium can be used effectively. As a result, a fuel pellet in which the metal nuclear fuel is disposed in a network-like manner can be obtained. The pellet shows a great effect of preventing thermal stress destruction of pellets upon increase of fuel rod power as compared with conventional pellets. Further, the metal nuclear fuel material acts as an oxygen getter to suppress the increase of O/M ratio of the pellets. Further, it is possible to reduce the swelling of pellet at high burn-up degree. (T.M.)

  19. Modelling the high burnup UO2 structure in LWR fuel

    International Nuclear Information System (INIS)

    Lassmann, K.; Walker, C.T.; Laar, J. van de; Lindstroem, F.

    1995-01-01

    The concept of a burnup threshold for the formation of the high burnup UO 2 structure (HBS) is supported by experimental data, which also reveal that a transition zone exists between the normal UO 2 structure and the fully developed HBS. From the analysis of radial xenon profiles measured by EPMA a threshold burnup is obtained in the range 60-75 GW d/t U. The lower value is considered to be the threshold for the onset of the HBS and the higher value the threshold for the fully developed HBS. Xenon depletion in the transition zone and the fully developed HBS can be described by a simple model. At local burnups above 120 GW d/t U the xenon generated is in equilibrium with the xenon lost to the fission gas pores and the concentration does not fall below 0.25 wt%. The TRANSURANUS burnup model TUBRNP predicts reasonably well the penetration of the HBS and the associated xenon depletion up to a cross section average burnup of approximately 70 GW d/t U. (orig.)

  20. The build-up and characterization of nuclear burn-up wave in a fast ...

    Indian Academy of Sciences (India)

    K V Anoop

    2018-02-07

    Feb 7, 2018 ... evaluating the quality of the wave by the researchers working in the field of nuclear burn-up wave build-up and propagation. Keywords. ... However, there are concerns relating to the nuclear safety, ... Simulation studies have.

  1. UO2 fuel behaviour at rod burn-ups up to 105 MWd/kgHM. A review of 10 years of high burn-up examinations commissioned by AREVA NP

    International Nuclear Information System (INIS)

    Goll, W.; Hoffmann, P.B.; Hellwig, C.; Sauser, W.; Spino, J.; Walker, C.T.

    2007-01-01

    Irradiation experience gained on fuel rods with burn-ups greater than 60 MWd/kgHM irradiated in the Nuclear Power Plant Goesgen, Switzerland, is described. Emphasis is placed on the fuel behaviour, which has been analysed by hot cell examinations at the Institute for Transuranium Elements and the Paul-Scherrer-Institute. Above 60 MWd/kgHM, the so-called high burn-up structure (HBS) forms and the fission gas release increases with burn-up and rod power. Examinations performed in the outer region of the fuel revealed that most if not all of the fission gas created was retained in the HBS, even at 25% porosity. Furthermore, the HBS has a relatively low swelling rate, greatly increased plasticity, and its thermal conductivity is higher than expected from the porosity. The post-irradiation examinations showed that the HBS has no detrimental effects on the performance of stationary irradiated PWR fuel irradiated to the high burn-ups that can be achieved with 5 wt% U-235 enrichment. On the contrary, the HBS results in fuel performance that is generally better than it would have been if the HBS had not formed. (orig.)

  2. First steps towards modelling high burnup effect in UO{sub 2} fuel

    Energy Technology Data Exchange (ETDEWEB)

    O` Carroll, C; Lassmann, K; Laar, J Van De; Walker, C T [CEC Joint Research Centre, Karlsruhe (Germany)

    1997-08-01

    High burnup initiates a process that can lead to major microstructural changes near the edge of the fuel: formation of subgrains, the loss of matrix fission gas and an increase in porosity. A consequence of this, is a decrease of thermal conductivity near the edge of the fuel which may be major implications for the performance of LWR fuels at higher burnup. The mechanism for the changes in grain structure, the apparent depletion of Xe and increase in porosity is associated with the high fission density at the fuel periphery. This is in turn due to the preferential capture of epithermal neutrons in the resonances of {sup 238}U. The new model TUBRNP predicts the radial burnup profile as a function of time together with the radial profile of plutonium. The model has been validated with data from LWR UO{sub 2} fuels with enrichments in the range 2 to 8.25% and burnups between 21 to 75 Gwd/t. It has been reported that at high burnup EPMA measures a sharp decrease in the concentration of Xe near the fuel surface. This loss of Xe is interpreted as a signal that the gas has been swept out of the original grains into pores: this ``missing`` Xe has been measured by XRF. It has been noted experimentally that the restructuring (Xe depletion and changes in grain structure) have an onset threshold local burnup in the region of 70 to 80 GWd/t: a specific value was taken for use in the model. For a given fuel TUBRNP predicts the local burnup profile, and the depth corresponding to the threshold value is taken to be the thickness of the Xe depleted region. The theoretical predictions have been compared with experimental data. The results are presented and should be seen as a first step in the development of a more detailed model of this phenomenon. (author). 22 refs, 9 figs, 2 tabs.

  3. Comparison of burnup calculation results using several evaluated nuclear data files

    International Nuclear Information System (INIS)

    Suyama, Kenya; Katakura, Jun-ichi; Nomura, Yasushi

    2002-01-01

    Burn-up calculation and comparison of the results were carried out to clarify the differences among the following latest evaluated nuclear data libraries: JENDL-3.2, ENDF/B-VI and JEF-2.2. The analyses showed that the differences seen among the current evaluated nuclear data libraries are small for evaluation of the amounts of many uranium and plutonium isotopes. However, several nuclides important for evaluation of nuclear fuel cycle as 238 Pu, 244 Cm, 149 Sm and 134 Cs showed large differences among used libraries. The chain analyses for the isotopes were conducted and the reasons for the differences were discussed. Based on the discussion, information of important cross section to obtain better agreement with the experimental results for 238 Pu, 244 Cm, 149 Sm and 134 Cs was shown. (author)

  4. SRAC-95, Cell Calculation with Burnup, Fuel Management for Thermal Reactors

    International Nuclear Information System (INIS)

    Tsuchihashi, K.; Ishiguro, Y.; Kaneko, K.; Ido, M.

    2004-01-01

    1 - Description of program or function: General neutronics calculation including cell calculation with burn-up, core calculation for any type of thermal reactor. Core burn-up calculation and fuel management by an auxiliary code. 2 - Method of solution: Collision probability method, 1D and 2D Sn for cell calculation; 1D, 2D and 3D diffusion for core calculation. 3 - Restrictions on the complexity of the problem: 20 regions for a continuous energy resonance absorption calculation and 16 steps for cell burn-up

  5. The radial distribution of plutonium in high burnup UO2 fuels

    International Nuclear Information System (INIS)

    Lassmann, K.; O'Carroll, C.; Laar, J. van de; Walker, C.T.

    1994-01-01

    A new model (TUBRNP) is described which predicts the radial power density distribution as a function of burnup (and hence the radial burnup profile as a function of time) together with the radial profile of uranium and plutonium isotopes. Comparisons between measurements and the predictions of the TUBRNP model are made on fuels with enrichments in the range 2.9 to 8.25% and with burnups between 21 000 and 64 000 MWd/t. It is shown to be in excellent agreement with experimental measurements and is a marked improvement on earlier versions. (orig.)

  6. Sensitivity and parametric evaluations of significant aspects of burnup credit for PWR spent fuel packages

    International Nuclear Information System (INIS)

    DeHart, M.D.

    1996-05-01

    Spent fuel transportation and storage cask designs based on a burnup credit approach must consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For example, the spent fuel composition must be adequately characterized and the criticality analysis model can be complicated by the need to consider axial burnup variations. Parametric analyses are needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel composition and reactivity. Numerical models must be evaluated to determine the sensitivity of criticality safety calculations to modeling assumptions. The purpose of this report is to describe analyses and evaluations performed in order to demonstrate the effect physical parameters and modeling assumptions have on the criticality analysis of spent fuel. The analyses in this report include determination and ranking of the most important actinides and fission products; study of the effect of various depletion scenarios on subsequent criticality calculations; establishment of trends in neutron multiplication as a function of fuel enrichment, burnup, cooling time- and a parametric and modeling evaluation of three-dimensional effects (e.g., axially varying burnup and temperature/density effects) in a conceptual cask design. The sensitivity and parametric evaluations were performed with the consideration of two different burnup credit approaches: (1) only actinides in the fuel are considered in the criticality analysis, and (2) both actinides and fission products are considered. Calculations described in this report were performed using the criticality and depletion sequences available in the SCALE code system and the SCALE 27-group burnup library. Although the results described herein do not constitute a validation of SCALE for use in spent fuel analysis, independent validation efforts have been completed and are described in other reports

  7. Sensitivity and parametric evaluations of significant aspects of burnup credit for PWR spent fuel packages

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, M.D.

    1996-05-01

    Spent fuel transportation and storage cask designs based on a burnup credit approach must consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For example, the spent fuel composition must be adequately characterized and the criticality analysis model can be complicated by the need to consider axial burnup variations. Parametric analyses are needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel composition and reactivity. Numerical models must be evaluated to determine the sensitivity of criticality safety calculations to modeling assumptions. The purpose of this report is to describe analyses and evaluations performed in order to demonstrate the effect physical parameters and modeling assumptions have on the criticality analysis of spent fuel. The analyses in this report include determination and ranking of the most important actinides and fission products; study of the effect of various depletion scenarios on subsequent criticality calculations; establishment of trends in neutron multiplication as a function of fuel enrichment, burnup, cooling time- and a parametric and modeling evaluation of three-dimensional effects (e.g., axially varying burnup and temperature/density effects) in a conceptual cask design. The sensitivity and parametric evaluations were performed with the consideration of two different burnup credit approaches: (1) only actinides in the fuel are considered in the criticality analysis, and (2) both actinides and fission products are considered. Calculations described in this report were performed using the criticality and depletion sequences available in the SCALE code system and the SCALE 27-group burnup library. Although the results described herein do not constitute a validation of SCALE for use in spent fuel analysis, independent validation efforts have been completed and are described in other reports.

  8. ANS/ENS tutorial session: Burnup credit issues in spent fuel transportation: Overview and objectives

    International Nuclear Information System (INIS)

    Sanders, T.L.

    1988-01-01

    A number of opportunities exist to increase the efficiency of the next generation of spent fuel shipping casks. Improving cask efficiency will not only reduce life cycle transportation costs, but also is consistent with maintaining public and occupational radiological risks and, more importantly, total risks (radiological and nonradiological) within the guidelines of the ''as low as reasonably achievable'' (ALARA) philosophy. Increases in cask capacities will reduce both the total number of shipments required to transport a given amount of fuel and the number of handling operations at both shipping and receiving facilities. Additional capacity increases can be achieved by implementing various design strategies based on new concepts and/or the actual characteristics of the majority of the spent fuel to be shipped in the future. For example, it has been determined that additional capacity increases can be achieved by taking credit for burnup, the reduced reactivity that results when fuel has been used to produce power in a nuclear reactor. That is, as the fuel is used the atoms of fissile material decrease, and neutron absorbers (or ''poisons'') that tend to retard the fission process are produced. 7 refs., 1 fig

  9. Practices and developments in spent fuel burnup credit applications. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-10-01

    The International Atomic Energy Agency convened a technical committee Meeting on Requirements, Practices and Developments in Burnup Credit (BUC) Applications in Madrid, Spain, from 22 to 26 April 2002. The purpose of this meeting was to explore the progress and status of international activities related to the BUC applications for spent nuclear fuel. This meeting was the third major meeting on the uses of BUC for spent fuel management systems held since the IAEA began to monitor the uses of BUC in spent fuel management systems in 1997. The first major meeting was an Advisory Group meeting (AGM), which was held in Vienna, in October 1997. The second major meeting was a technical committee meeting (TCM), which was held in Vienna, in July 2000. Several consultants meetings were held since 1997 to advise and assist the IAEA in planning and conducting its BUC activities. The proceedings of the 1997 AGM were published as IAEA-TECDOC-1013, and the proceedings of the 2000 TCM as IAEA-TECDOC-1241. BUC for wet and dry storage systems, spent fuel transport, reprocessing and final disposal is needed in many Member States to allow for increased enrichment, and to increase storage capacities, cask capacities and dissolver capacities avoiding the need for extensive modifications. The use of BUC is a necessity for spent fuel disposal.

  10. Modeling of WWER-440 Fuel Pin Behavior at Extended Burn-up

    International Nuclear Information System (INIS)

    El-Koliel, M.S.; Abou-Zaid, A.A.; El-Kafas, A.A.

    2004-01-01

    Currently, there is an ongoing effort to increase fuel discharge burn-up of all LWRs fuel including WWER's as much as possible in order to decrease power production cost. Therefore, burn-up is expected to be increased to 60 to 70 Mwd/kg U. The change in the fuel radial power distribution as a function of fuel burn up can affect the radial fuel temperature distribution as well as the fuel microstructure in the fuel pellet rim. In this paper, the radial burn-up and fissile products distributions of WWER-440 UO 2 fuel pin were evaluated using MCNP 4B and ORIGEN2 codes. The impact of the thermal conductivity on predicted fission gas release calculations is needed. For the analysis, a typical WWER-440 fuel pin and surrounding water moderator are considered in a hexagonal pin cell well. The thermal release and the athermal release from the pellet rim were modeled separately. The fraction of the rim structure and the excessive porosity in the rim structure in isothermal irradiation as a function of the fuel burn-up was predicted. a computer program; RIMSC-01, is developed to perform the required FGR calculations. Finally, the relevant phenomena and the corresponding models together with their validation are presented

  11. High Cr ODS steels R and D for high burnup fuel cladding

    International Nuclear Information System (INIS)

    Kimura, A.; Kasada, R.; Kishimoto, H.; Iwata, N.; Cho, H.-S.; Toda, N.; Yutani, K.; Ukai, S.; Fujiwara, M.

    2007-01-01

    High-performance cladding materials is essential to realize highly efficient and high-burnup operation over 150 GWd/t of so called Generation IV nuclear energy systems, such as supercritical-water-cooled reactor (SCWR) and lead-cooled fast reactor (LFR). Oxide dispersion strengthening (ODS) ferritic/ martensitic steels, which contain 9-12%Cr, show rather high resistance to neutron irradiation embrittlement and high strength at elevated temperatures. However, their corrosion resistance is not good enough in SCW and in lead at high temperatures. High-Cr ODS steels have been developed to improve corrosion resistance. An increase in Cr content an addition resulted in a drastic improvement of corrosion resistance in SCW and in lead. On the contrary, high-Cr steels often show an enhancement of aging embrittlement as well as irradiation embrittlement. Anisotropy in tensile properties is another issue. In order to overwhelm these issues, surveillance tests of the material performance have been performed for high Cr-ODS steels produced by new processing technologies. It is demonstrated that the dispersion of nono-sized oxide particles in high density is effective to attain high-performance and high-Cr ODS steels have a high potential as fuel cladding materials for SCWR and LFR with high efficiency and high burnup. (authors)

  12. Effects of pellet-to-cladding gap design parameters on the reliability of high burnup PWR fuel rods under steady state and transient conditions

    International Nuclear Information System (INIS)

    Tas, Fatma Burcu; Ergun, Sule

    2013-01-01

    Highlights: • Fuel performance of a typical Pressurized Water Reactor rod is analyzed. • Steady state fuel rod behavior is examined to see the effects of pellet to cladding gap thickness and gap gas pressure. • Transient fuel rod behavior is examined to see the effects of pellet to cladding gap thickness and gap gas pressure. • The optimum pellet to cladding gap thickness and gap gas pressure values of the simulated fuel are determined. • The effects of pellet to cladding gap design parameters on nuclear fuel reliability are examined. - Abstract: As an important improvement in the light water nuclear reactor operations, the nuclear fuel burnup rate is increased in recent decades and this increase causes heavier duty for the nuclear fuel. Since the high burnup fuel is exposed to very high thermal and mechanical stresses and since it operates in an environment with high radiation for about 18 month cycles, it carries the risk of losing its integrity. In this study; it is aimed to determine the effects of pellet–cladding gap thickness and gap pressure on reliability of high burnup nuclear fuel in Pressurized Water Reactors (PWRs) under steady state operation conditions and suggest optimum values for the examined parameters only and validate these suggestions for a transient condition. In the presented study, fuel performance was analyzed by examining the effects of pellet–cladding gap thickness and gap pressure on the integrity of high burnup fuels. This work is carried out for a typical Westinghouse type PWR fuel. The steady state conditions were modeled and simulated with FRAPCON-3.4a steady state fuel performance code and the FRAPTRAN-1.4 fuel transient code was used to calculate transient fuel behavior. The analysis included the changes in the important nuclear fuel design limitations such as the centerline temperature, cladding stress, strain and oxidation with the change in pellet–cladding gap thickness and initial pellet–cladding gap gas

  13. Data Mining Techniques to Estimate Plutonium, Initial Enrichment, Burnup, and Cooling Time in Spent Fuel Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Trellue, Holly Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fugate, Michael Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tobin, Stephen Joesph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-19

    The Next Generation Safeguards Initiative (NGSI), Office of Nonproliferation and Arms Control (NPAC), National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE) has sponsored a multi-laboratory, university, international partner collaboration to (1) detect replaced or missing pins from spent fuel assemblies (SFA) to confirm item integrity and deter diversion, (2) determine plutonium mass and related plutonium and uranium fissile mass parameters in SFAs, and (3) verify initial enrichment (IE), burnup (BU), and cooling time (CT) of facility declaration for SFAs. A wide variety of nondestructive assay (NDA) techniques were researched to achieve these goals [Veal, 2010 and Humphrey, 2012]. In addition, the project includes two related activities with facility-specific benefits: (1) determination of heat content and (2) determination of reactivity (multiplication). In this research, a subset of 11 integrated NDA techniques was researched using data mining solutions at Los Alamos National Laboratory (LANL) for their ability to achieve the above goals.

  14. Analysis of the Daya Bay Reactor Antineutrino Flux Changes with Fuel Burnup

    Science.gov (United States)

    Hayes, A. C.; Jungman, Gerard; McCutchan, E. A.; Sonzogni, A. A.; Garvey, G. T.; Wang, X. B.

    2018-01-01

    We investigate the recent Daya Bay results on the changes in the antineutrino flux and spectrum with the burnup of the reactor fuel. We find that the discrepancy between current model predictions and the Daya Bay results can be traced to the original measured U 235 /Pu 239 ratio of the fission β spectra that were used as a base for the expected antineutrino fluxes. An analysis of the antineutrino spectra that is based on a summation over all fission fragment β decays, using nuclear database input, explains all of the features seen in the Daya Bay evolution data. However, this summation method still allows for an anomaly. We conclude that there is currently not enough information to use the antineutrino flux changes to rule out the possible existence of sterile neutrinos.

  15. Development of CANDU high-burnup fuel fabrication technology

    International Nuclear Information System (INIS)

    Sim, Ki Seob; Suk, H. C.; Kwon, H. I.; Ji, C. G.; Cho, M. S.; Chang, H. I.

    1997-07-01

    This study is focused on the achievement of the fabrication process improvement of CANFLEX-NU and for this purpose, following two areas of basic research were executed this year. 1) development of amorphous alloy for use in brazing of nuclear materials. 2) development of ECT techniques for the end-cap weld inspection. Also, preliminary feasibility analyses on the characteristics and handling techniques of CANFLEX-RU fuel were executed this year. - Selection of optimum conversion process of RU power -Characterization of the composition of RU power - Radiological characterization of RU power and sintered pellets - Compaction and sintering characteristics of RU power - Required special process for the production of CANFLEX-RU fuel - Development of technical specification for RU powder and pellets. In addition, technical support activities were performed for in-pile and out-pile fuel performance tests such as precision measurement of out-pile test fuel dimensions, establishment of quality control technique on fuel bundle by providing bundle kits to AECL for use in-pile irradiation tests in the NRU research reactor. (author). 57 refs., 16 tabs.,40 figs

  16. Reactivity loss validation of high burn-up PWR fuels with pile-oscillation experiments in MINERVE

    Energy Technology Data Exchange (ETDEWEB)

    Leconte, P.; Vaglio-Gaudard, C.; Eschbach, R.; Di-Salvo, J.; Antony, M.; Pepino, A. [CEA, DEN, DER, Cadarache, F-13108 Saint-Paul-Lez-Durance (France)

    2012-07-01

    The ALIX experimental program relies on the experimental validation of the spent fuel inventory, by chemical analysis of samples irradiated in a PWR between 5 and 7 cycles, and also on the experimental validation of the spent fuel reactivity loss with bum-up, obtained by pile-oscillation measurements in the MINERVE reactor. These latter experiments provide an overall validation of both the fuel inventory and of the nuclear data responsible for the reactivity loss. This program offers also unique experimental data for fuels with a burn-up reaching 85 GWd/t, as spent fuels in French PWRs never exceeds 70 GWd/t up to now. The analysis of these experiments is done in two steps with the APOLLO2/SHEM-MOC/CEA2005v4 package. In the first one, the fuel inventory of each sample is obtained by assembly calculations. The calculation route consists in the self-shielding of cross sections on the 281 energy group SHEM mesh, followed by the flux calculation by the Method Of Characteristics in a 2D-exact heterogeneous geometry of the assembly, and finally a depletion calculation by an iterative resolution of the Bateman equations. In the second step, the fuel inventory is used in the analysis of pile-oscillation experiments in which the reactivity of the ALIX spent fuel samples is compared to the reactivity of fresh fuel samples. The comparison between Experiment and Calculation shows satisfactory results with the JEFF3.1.1 library which predicts the reactivity loss within 2% for burn-up of {approx}75 GWd/t and within 4% for burn-up of {approx}85 GWd/t. (authors)

  17. Some implications of batch average burnup calculations on predicted spent fuel compositions

    International Nuclear Information System (INIS)

    Alexander, C.W.; Croff, A.G.

    1984-01-01

    The accuracy of using batch-averaged burnups to determine spent fuel characteristics (such as isotopic composition, activity, etc.) was examined for a typical pressurized-water reactor (PWR) fuel discharge batch by comparing characteristics computed by (a) performing a single depletion calculation using the average burnup of the spent fuel and (b) performing separate depletion calculations based on the relative amounts of spent fuel in each of twelve burnup ranges and summing the results. The computations were done using ORIGEN 2. Procedure (b) showed a significant shift toward a greater quantity of the heavier transuranics, which derive from multiple neutron captures, and a corresponding decrease in the amounts of lower transuranics. Those characteristics which derive primarily from fission products, such as total radioactivity and total thermal power, are essentially identical for the two procedures. Those characteristics that derive primarily from the heavier transuranics, such as spontaneous fission neutrons, are underestimated by procedure (a)

  18. Study of the influence of slab perturbation in the cell on the fuel local burnup

    International Nuclear Information System (INIS)

    Takac, S.; Kocic, A.; Dimitrijevic, Z.; Markovic, H.; Dimitrijevic, V.

    1975-01-01

    The influence of construction material or voids in the fuel element on the fuel burnup was the objective of this study. Experiments were done by cell perturbation method. Theoretical method was developed for calculating the effect of reactor cell perturbation. Obtained results both experimental and theoretical clearly indicate that the minimum quantity of construction material or void cause local increase of neutron flux in the mentioned regions. This increase of flux which amounts to nearly ten percent, and can reach the value of a few tens percent leads to the local increase of fuel burnup [sr

  19. Review of Halden Reactor Project high burnup fuel data that can be used in safety analyses

    International Nuclear Information System (INIS)

    Wiesenack, W.

    1996-01-01

    The fuels and materials testing programmes carried out at the OECD Halden Reactor Project are aimed at providing data in support of a mechanistic understanding of phenomena, especially as related to high burnup fuel. The investigations are focused on identifying long term property changes, and irradiation techniques and instrumentation have been developed over the years which enable to assess fuel behaviour and properties in-pile. The fuel-cladding gap has an influence on both thermal and mechanical behaviour. Improved gap conductance due to gap closure at high exposure is observed even in the case of a strong contamination with released fission gas. On the other hand, pellet-cladding mechanical interaction, which is measured with cladding elongation detectors and diameter gauges, is re-established after a phase with less interaction and is increasing. These developments are exemplified with data showing changes of fuel temperature, hydraulic diameter and cladding elongation with burnup. Fuel swelling and cladding primary and secondary creep have been successfully measured in-pile. They provide data for, e.g., the possible cladding lift-off to be accounted for at high burnup. Fuel conductivity degradation is observed as a gradual temperature increase with burnup. This affects stored heat, fission gas release and temperature dependent fuel behaviour in general. The Halden Project's data base on fission gas release shows that the phenomenon is associated with an accumulation of gas atoms at the grain boundaries to a critical concentration before appreciable release occurs. This is accompanied by an increase of the surface-to-volume ratio measured in-pile in gas flow experiments. A typical observation at high burnup is also that a burst release of fission gas may occur during a power decrease. Gas flow and pressure equilibration experiments have shown that axial communication is severely restricted at high burnup

  20. Determination of fissile fraction in MOX (mixed U + Pu oxides) fuels for different burnup values

    International Nuclear Information System (INIS)

    Ozdemir, Levent; Acar, Banu Bulut; Zabunoglu, Okan H.

    2011-01-01

    When spent Light Water Reactor fuels are processed by the standard Purex method of reprocessing, plutonium (Pu) and uranium (U) in spent fuel are obtained as pure and separate streams. The recovered Pu has a fissile content (consisting of 239 Pu and 241 Pu) greater than 60% typically (although it mainly depends on discharge burnup of spent fuel). The recovered Pu can be recycled as mixed-oxide (MOX) fuel after being blended with a fertile U makeup in a MOX fabrication plant. The burnup that can be obtained from MOX fuel depends on: (1) isotopic composition of Pu, which is closely related to the discharge burnup of spent fuel from which Pu is recovered; (2) the type of fertile U makeup material used (depleted U, natural U, or recovered U); and (3) fraction of makeup material in the mix (blending ratio), which in turn determines the total fissile fraction of MOX. Using the Non-linear Reactivity Model and the code MONTEBURNS, a step-by-step procedure for computing the total fissile content of MOX is introduced. As was intended, the resulting expression is simple enough for quick/hand calculations of total fissile content of MOX required to reach a desired burnup for a given discharge burnup of spent fuel and for a specified fertile U makeup. In any case, due to non-fissile (parasitic) content of recovered Pu, a greater fissile fraction in MOX than that in fresh U is required to obtain the same burnup as can be obtained by the fresh U fuel.

  1. K-infinite trends with burnup, enrichment, and cooling time for BWR fuel assemblies

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    1998-08-01

    This report documents the work performed by ORNL for the Yucca Mountain project (YMP) M and O contractor, Framatome Cogema Fuels. The goal of this work was to obtain k inf values for infinite arrays of flooded boiling-water-reactor (BWR) fuel assemblies as a function of various burnup/enrichment and cooling-time combinations. These scenarios simulate expected limiting criticality loading conditions (for a given assembly type) for drift emplacements in a repository. Upon consultation with the YMP staff, a Quad Cities BWR fuel assembly was selected as a baseline assembly. This design consists of seven axial enrichment zones, three of which contain natural uranium oxide. No attempt was made to find a bounding or even typical assembly design due to the wide variety in fuel assembly designs necessary for consideration. The current work concentrates on establishing a baseline analysis, along with a small number of sensitivity studies which can be expected later if desired. As a result of similar studies of this nature, several effects are known to be important in the determination of the final k inf for spent fuel in a cask-like geometry. For a given enrichment there is an optimal burnup: for lower burnups, excess energy (and corresponding excess reactivity) is present in the fuel assembly; for larger burnups, the assembly is overburned and essentially driven by neighboring fuel assemblies. The majority of the burnup/enrichment scenarios included in this study were for some near-optimum burnup/enrichment combinations as determined from Energy Information Administration (EIA) data. Several calculations were performed for under- and over-burned fuel to show these effects

  2. Fission gas release and pellet microstructure change of high burnup BWR fuel

    International Nuclear Information System (INIS)

    Itagaki, N.; Ohira, K.; Tsuda, K.; Fischer, G.; Ota, T.

    1998-01-01

    UO 2 fuel, with and without Gadolinium, irradiated for three, five, and six irradiation cycles up to about 60 GWd/t pellet burnup in a commercial BWR were studied. The fission gas release and the rim effect were investigated by the puncture test and gas analysis method, OM (optical microscope), SEM (scanning electron microscope), and EPMA (electron probe microanalyzer). The fission gas release rate of the fuel rods irradiated up to six cycles was below a few percent; there was no tendency for the fission gas release to increase abruptly with burnup. On the other hand, microstructure changes were revealed by OM and SEM examination at the rim position with burnup increase. Fission gas was found depleted at both the rim position and the pellet center region using EPMA. There was no correlation between the fission gas release measured by the puncture test and the fission gas depletion at the rim position using EPMA. However, the depletion of fission gas in the center region had good correlation with the fission gas release rate determined by the puncture test. In addition, because the burnup is very large at the rim position of high burnup fuel and also due to the fission rate of the produced Pu, the Xe/Kr ratio at the rim position of high burnup fuel is close to the value of the fission yield of Pu. The Xe/Kr ratio determined by the gas analysis after the puncture test was equivalent to the fuel average but not to the pellet rim position. From the results, it was concluded that fission gas at the rim position was released from the UO 2 matrix in high burnup, however, most of this released fission gas was held in the porous structure and not released from the pellet to the free volume. (author)

  3. Experimental support of WWER-440 fuel reliability and serviceability at high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A; Ivanov, V; Pnyushkin, A [Nauchno-Issledovatel` skij Inst. Atomnykh Reaktorov, Dimitrovgrad (Russian Federation); Tzibulya, V [AO Mashinostroitelnij Zavod Electrostal (Russian Federation); Kolosovsky, V; Bibilashvili, Yu [Vsesoyuznyj Nauchno-Issledovatel` skij Inst. Neorganicheskikh Materialov, Moscow (Russian Federation); Dubrovin, K [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)

    1994-12-31

    Results from post-reactor examination of two WWER-440 fuel assemblies spent at the Kola NPP Unit 3 during 4 and 5 fuel cycles are presented. The fuel assembly states and their serviceability allowance are estimated experimentally at the RIAR hot laboratory and studied by non-destructive and destructive methods. The following parameters are examined: fuel assembly overall dimensions change; fuel element diameter change; fuel element cladding corrosion and hydriding; fuel element cladding mechanical properties; fission gas release from fuel and gas pressure; fuel macro- and microstructure. it has been found that the maximum fuel burnup of fuel assemblies No. 1 and No.2 achieved is 58.3 and 64.0 MWd/kg, respectively. The mechanical fuel pellets-cladding interaction has been observed at the average fuel burnup above 45 MWd/kg that occurred with increasing the local cladding diameter at the areas of pellets end arrangement (bamboo stick). The gas release linearly increases at the range 2.7% per 10 MWd/kg within burnup of 43-60 MWd/kg. 9 figs., 3 refs.

  4. Impact of axial burnup profile on criticality safety of ANPP spent fuel cask

    International Nuclear Information System (INIS)

    Bznuni, S.

    2006-01-01

    Criticality safety assessment for WWER-440 NUHOMS cask with spent nuclear fuel from Armenian NPP has been performed. The cask was designed in such way that the neutron multiplication factor k eff must be below 0,95 for all operational modes and accident conditions. Usually for criticality analysis, fresh fuel approach with the highest enrichment is taken as conservative assumption as it was done for ANPP. NRSC ANRA in order to improve future fuel storage efficiency initiated research with taking into account burn up credit in the criticality safety assessment. Axial burn up profile (end effect) has essential impact on criticality safety justification analysis. However this phenomenon was not taken into account in the Safety Analysis Report of NUHOMS spent fuel storage constructed on the site of ANPP. Although ANRA does not yet accept burn up credit approach for ANPP spent fuel storage, assessment of impact of axial burnup profile on criticality of spent fuel assemblies has important value for future activities of ANRA. This paper presents results of criticality calculations of spent fuel assemblies with axial burn up profile. Horizontal burn up profile isn't taken account since influence of the horizontal variation of the burn up is much less than the axial variation. The actinides and actinides + fission products approach are discussed. The calculations were carried out with STARBUCS module of SCALE 5.0 code package developed at Oak Ridge National laboratory. SCALE5.0 sequence CSAS26 (KENO-VI) was used for evaluation the k eff for 3-D problems. Obtained results showed that criticality of ANPP spent fuel cask is very sensitive to the end effect

  5. Evaluation of Gap Conductance Approach for Mid-Burnup Fuel LOCA Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joosuk; Woo, Swengwoong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    In this study, therefore, the applicability of gap conductance approach on the mid-burnup fuel in LOCA analysis was estimated in terms of the comparison of PCT distribution method means the fuel rod uncertainty is taken into account by the combination of overall uncertainty parameters of fuel rod altogether by use of a simple random sampling(SRS) technique. There are many uncertainty parameters of fuel rod that can change the PCT during LOCA analysis, and these have been identified by the authors' previous work already. But, for the 'best-estimate' LOCA safety analysis the methodology that dose not use the overall uncertainty parameters altogether but used the gap conductance uncertainty alone has been developed to simulate the overall fuel rod uncertainty, because it can represent many uncertainty parameters. Based on this approach, uncertainty range of gap conductance was prescribed as 0.67∼1.5 in audit calculation methodology on LBLOCA analysis. This uncertainty was derived from experimental data of fresh or low burnup fuel. Meanwhile, recent research work identify that the currently utilized uncertainty range seems to be not enough to encompass the uncertainty of mid-burnup fuel. Instead it has to be changed to 0.5∼2.4 for the mid-burnup fuel(30 MWd/kgU)

  6. Evaluation of Gap Conductance Approach for Mid-Burnup Fuel LOCA Analysis

    International Nuclear Information System (INIS)

    Lee, Joosuk; Woo, Swengwoong

    2013-01-01

    In this study, therefore, the applicability of gap conductance approach on the mid-burnup fuel in LOCA analysis was estimated in terms of the comparison of PCT distribution method means the fuel rod uncertainty is taken into account by the combination of overall uncertainty parameters of fuel rod altogether by use of a simple random sampling(SRS) technique. There are many uncertainty parameters of fuel rod that can change the PCT during LOCA analysis, and these have been identified by the authors' previous work already. But, for the 'best-estimate' LOCA safety analysis the methodology that dose not use the overall uncertainty parameters altogether but used the gap conductance uncertainty alone has been developed to simulate the overall fuel rod uncertainty, because it can represent many uncertainty parameters. Based on this approach, uncertainty range of gap conductance was prescribed as 0.67∼1.5 in audit calculation methodology on LBLOCA analysis. This uncertainty was derived from experimental data of fresh or low burnup fuel. Meanwhile, recent research work identify that the currently utilized uncertainty range seems to be not enough to encompass the uncertainty of mid-burnup fuel. Instead it has to be changed to 0.5∼2.4 for the mid-burnup fuel(30 MWd/kgU)

  7. Fission Gas Release in LWR Fuel Rods Exhibiting Very High Burn-Up

    DEFF Research Database (Denmark)

    Carlsen, H.

    1980-01-01

    Two UO2Zr BWR type test fuel rods were irradiated to a burn-up of about 38000 MWd/tUO2. After non-destructive characterization, the fission gas released to the internal free volume was extracted and analysed. The irradiation was simulated by means of the Danish fuel performance code WAFER-2, which...

  8. Burn-up credit criticality safety benchmark phase VII - UO2 fuel: study of spent fuel compositions for long-term disposal

    International Nuclear Information System (INIS)

    2012-01-01

    After spent nuclear fuel (SNF) is discharged from a nuclear reactor, fuel composition and reactivity continue to vary as a function of time due to the decay of unstable nuclides. Accurate predictions of the concentrations of long-lived radionuclides in SNF, which represent a significant potential hazard to human beings and to the environment over a very long period, are particularly necessary for radiological dose assessments. This report assesses the ability of existing computer codes and associated nuclear data to predict isotopic compositions and their corresponding neutron multiplication factor (k eff ) values for pressurised-water-reactor (PWR) UO 2 fuel at 50 GWd/MTU burn-up in a generic spent fuel cask configuration. Fuel decay compositions and k eff values have been calculated for 30 post-irradiation time steps out to one million years

  9. Development of the CANDU high-burnup fuel design/analysis technology

    International Nuclear Information System (INIS)

    Suk, Ho Chun; Sim, K. S.; Oh, D. J.; Park, J. H.; Jun, J. S.; Yoo, K. J.

    1997-08-01

    This report contains all the information related to the development of the CANDU advanced fuel, so-called CANFLEX-NU, which is composed of 43 elements with natural uranium fuel. Also, it contains the compatibility study of CANFLEX-RU which is considered as a CANDU high burnup fuel. This report describes the mechanical design, thermalhydraulic and safety evaluations of CANFLEX fuel bundle. (author). 38 refs., 24 tabs., 74 figs

  10. Development of the CANDU high-burnup fuel design/analysis technology

    Energy Technology Data Exchange (ETDEWEB)

    Suk, Ho Chun; Sim, K. S.; Oh, D. J.; Park, J. H.; Jun, J. S.; Yoo, K. J.

    1997-08-01

    This report contains all the information related to the development of the CANDU advanced fuel, so-called CANFLEX-NU, which is composed of 43 elements with natural uranium fuel. Also, it contains the compatibility study of CANFLEX-RU which is considered as a CANDU high burnup fuel. This report describes the mechanical design, thermalhydraulic and safety evaluations of CANFLEX fuel bundle. (author). 38 refs., 24 tabs., 74 figs.

  11. Investigation of research and development subjects for the Very High Burnup Fuel

    International Nuclear Information System (INIS)

    Hayashi, Kimio; Amano, Hidetoshi; Suzuki, Yasufumi; Furuta, Teruo; Nagase, Fumihisa; Suzuki, Masahide

    1993-06-01

    A concept of the Very High Burnup Fuel aiming at a maximum fuel assembly burnup of 100 GWd/t has been proposed in terms of burnup extension, utilization of Pu and transmutation of transuranium elements (TRU: Np, Am and Cm). The authors have investigated research and development (R and D) subjects of the fuel pellet and the cladding material of the Fuel. The present report describes the results on the fuel pellet. First, the chemical state of the Fuel and fission products (FP) was inferred through an FP-inventory and an equilibrium-thermodynamics calculations. Besides, knowledge obtained from post-irradiation examinations was surveyed. Next, an investigation was made on irradiation behavior of U/Pu mixed oxide (MOX) fuel with high enrichment of Pu, as well as on fission-gas release and swelling behavior of high burnup fuels. Reprocessibility of the Fuel, particularly solubility of the spent fuel, was also examined. As for the TRU-added fuel, material property data on TRU oxides were surveyed and summarized as a database. And the subjects on the production and the irradiation behavior were examined on the basis of experiences of MOX fuel production and TRU-added fuel irradiation. As a whole, the present study revealed the necessity of accumulating fundamental data and knowledge required for design and assessment of the fuel pellet, including the information on properties and irradiation performance of the TRU-added fuel. Finally, the R and D subjects were summarized, and a proposal was made on the way of development of the fuel pellet and cladding materials. (author)

  12. Fuel assemblies for nuclear reactor

    International Nuclear Information System (INIS)

    Nishi, Akihito.

    1987-01-01

    Purpose: To control power-up rate at the initial burning stage of new fuel assemblies due to fuel exchange in a pressure tube type power reactor. Constitution: Burnable poisons are disposed to a most portion of fuel pellets in a fuel assembly to such a low concentration as the burn-up rate changes with time at the initial stage of the burning. The most portion means substantially more than one-half part of the pellets and gadolinia is used as burn-up poisons to be dispersed and the concentration is set to less than about 0.2 %. Upon elapse of about 15 days after the charging, the burnable poisons are eliminated and the infinite multiplication factors are about at 1.2 to attain a predetermined power state. Since the power-up rate of the nuclear reactor fuel assembly is about 0.1 % power/hour and the power-up rate of the fuel assembly around the exchanged channel is lower than that, it can be lowered sufficiently than the limit for the power-up rate practiced upon reactor start-up thereby enabling to replace fuels during power operation. (Horiuchi, T.)

  13. Changes of the inventory of radioactive materials in reactor fuel from uranium in changing to higher burn-up and determining the important effects of this

    International Nuclear Information System (INIS)

    Kirchner, G.; Schaefer, R.

    1985-01-01

    The knowledge of the nuclide composition during and after use in the reactor is an essential, in order to be able to determine the effects associated with the operation of nuclear plants. The missing reliable data on the inventory of radioactive materials resulting from the expected change to higher burn-ups of uranium fuels in West Germany are calculated. The reliability of the program system used for this, which permits a one-dimensional account taken of the fuel rod cell and measurement of the changes of specific sets of nuclear data depending on burn-up, is confirmed by the comparison with experimentally found concentrations of important nuclides in fuel samples at Obrigheim nuclear power station. Realistic conditions of use are defined for a range of burn-up of 33 GWd/t to 55 GWd/t and the effects of changes of the number of cycles and the use of types of fuel elements being developed on the composition of the inventory are determined. The plutonium compositions during use in the reactor are given and are tabulated with the inventory for decay times up to 30 years. Effects during change to higher burn-ups are examined and discussed for the maximum inventories during use of fuel and for heat generation during final storage. (orig./HP) [de

  14. Burnup performance of OTTO cycle pebble bed reactors with ROX fuel

    International Nuclear Information System (INIS)

    Ho, Hai Quan; Obara, Toru

    2015-01-01

    Highlights: • A 300 MW t Small Pebble Bed Reactor with Rock-like oxide fuel is proposed. • Using ROX fuel can achieve high discharged burnup of spent fuel. • High geological stability can be expected in direct disposal of the spent ROX fuel. • The Pebble Bed Reactor with ROX fuel can be critical at steady state operation. • All the reactor designs have a negative temperature coefficient. - Abstract: A pebble bed high-temperature gas-cooled reactor (PBR) with rock-like oxide (ROX) fuel was designed to achieve high discharged burnup and improve the integrity of the spent fuel in geological disposal. The MCPBR code with a JENDL-4.0 library, which developed the analysis of the Once-Through-Then-Out (OTTO) cycle in PBR, was used to perform the criticality and burnup analysis. Burnup calculations for eight cases were carried out for both ROX fuel and a UO 2 fuel reactor with different heavy-metal loading conditions. The effective multiplication factor of all cases approximately equalled unity in the equilibrium condition. The ROX fuel reactor showed lower FIFA than the UO 2 fuel reactor at the same heavy-metal loading, about 5–15%. However, the power peaking factor and maximum power per fuel ball in the ROX fuel core were lower than that of UO 2 fuel core. This effect makes it possible to compensate for the lower-FIFA disadvantage in a ROX fuel core. All reactor designs had a negative temperature coefficient that is needed for the passive safety features of a pebble bed reactor

  15. Calculation of heat rating and burn-up for test fuel pins irradiated in DR 3

    International Nuclear Information System (INIS)

    Bagger, C.; Carlsen, H.; Hansen, K.

    1980-01-01

    A summary of the DR 3 reactor and HP1 rig design is given followed by a detailed description of the calculation procedure for obtaining linear heat rating and burn-up values of fuel pins irradiated in HP1 rigs. The calculations are carried out rather detailed, especially regarding features like end pellet contribution to power as a function of burn-up, gamma heat contributions, and evaluation of local values of heat rating and burn-up. Included in the report is also a description of the fast flux- and cladding temperature calculation techniques currently used. A good agreement between measured and calculated local burn-up values is found. This gives confidence to the detailed treatment of the data. (author)

  16. Impact of fission gas on irradiated PWR fuel behaviour at extended burnup under RIA conditions

    International Nuclear Information System (INIS)

    Lemoine, F.; Schmitz, F.

    1996-01-01

    With the world-wide trend to increase the fuel burnup at discharge of the LWRs, the reliability of high burnup fuel must be proven, including its behaviour under energetic transient conditions, and in particular during RIAs. Specific aspects of irradiated fuel result from the increasing retention of gaseous and volatile fission products with burnup. The potential for swelling and transient expansion work under rapid heating conditions characterizes the high burnup fuel behaviour by comparison to fresh fuel. This effect is resulting from the steadily increasing amount of gaseous and volatile fission products retained inside the fuel structure. An attempt is presented to quantify the gas behaviour which is motivated by the results from the global tests both in CABRI and in NSRR. A coherent understanding of specific results, either transient release or post transient residual retention has been reached. The early failure of REP Na1 with consideration given to the satisfactory behaviour of the father rod of the test pin at the end of the irradiation (under load follow conditions) is to be explained both by the transient loading from gas driven fuel swelling and from the reduced clad resistance due to hydriding. (R.P.)

  17. Burn-up credit applications for UO2 and MOX fuel assemblies in AREVA/COGEMA

    International Nuclear Information System (INIS)

    Toubon, H.; Riffard, C.; Batifol, M.; Pelletier, S.

    2003-01-01

    For the last seven years, AREVA/COGEMA has been implementing the second phase of its burn-up credit program (the incorporation of fission products). Since the early nineties, major actinides have been taken into account in criticality analyses first for reprocessing applications, then for transport and storage of fuel assemblies Next year (2004) COGEMA will take into account the six main fission products (Rh103, Cs133, Nd143, Sm149, Sm152 and Gd155) that make up 50% of the anti-reactivity of all fission products. The experimental program will soon be finished. The new burn-up credit methodology is in progress. After a brief overview of BUC R and D program and COGEMA's application of the BUC, this paper will focus on the new burn-up measurement for UO2 and MOX fuel assemblies. It details the measurement instrumentation and the measurement experiments on MOX fuels performed at La Hague in January 2003. (author)

  18. Burn-up credit in criticality safety of PWR spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Rowayda F., E-mail: Rowayda_mahmoud@yahoo.com [Metallurgy Department, Nuclear Research Center, Atomic Energy Authority (Egypt); Shaat, Mohamed K. [Nuclear Engineering, Reactors Department, Nuclear Research Center, Atomic Energy Authority (Egypt); Nagy, M.E.; Agamy, S.A. [Professor of Nuclear Engineering, Nuclear and Radiation Department, Alexandria University (Egypt); Abdelrahman, Adel A. [Metallurgy Department, Nuclear Research Center, Atomic Energy Authority (Egypt)

    2014-12-15

    Highlights: • Designing spent fuel wet storage using WIMS-5D and MCNP-5 code. • Studying fresh and burned fuel with/out absorber like “B{sub 4}C and Ag–In–Cd” in racks. • Sub-criticality was confirmed for fresh and burned fuel under specific cases. • Studies for BU credit recommend increasing fuel burn-up to 60.0 GWD/MTU. • Those studies require new core structure materials, fuel composition and cladding. - Abstract: The criticality safety calculations were performed for a proposed design of a wet spent fuel storage pool. This pool will be used for the storage of spent fuel discharged from a typical pressurized water reactor (PWR). The mathematical model based on the international validated codes, WIMS-5 and MCNP-5 were used for calculating the effective multiplication factor, k{sub eff}, for the spent fuel stored in the pool. The data library for the multi-group neutron microscopic cross-sections was used for the cell calculations. The k{sub eff} was calculated for several changes in water density, water level, assembly pitch and burn-up with different initial fuel enrichment and new types and amounts of fixed absorbers. Also, k{sub eff} was calculated for the conservative fresh fuel case. The results of the calculations confirmed that the effective multiplication factor for the spent fuel storage is sub-critical for all normal and abnormal states. The future strategy for the burn-up credit recommends increasing the fuel burn-up to a value >60.0 GWD/MTU, which requires new fuel composition and new fuel cladding material with the assessment of the effects of negative reactivity build up.

  19. Irradiation experiment on fast reactor metal fuels containing minor actinides up to 7 at.% burnup

    International Nuclear Information System (INIS)

    Ohta, H.; Yokoo, T.; Ogata, T.; Inoue, T.; Ougier, M.; Glatz, J.P.; Fontaine, B.; Breton, L.

    2007-01-01

    Fast reactor metal fuels containing minor actinides (MAs: Np, Am, Cm) and rare earths (REs) have been irradiated in the fast reactor PHENIX. In this experiment, four types of fuel alloys, U-19Pu-10Zr, U-19Pu-10Zr-2MA-2RE, U-19Pu-10Zr-5MA-5RE and U-19Pu-10Zr-5MA (wt.%), are loaded into part of standard metal fuel stacks. The postirradiation examinations will be conducted at ∼2.4, ∼7 and ∼11 at.% burnup. As for the low-burnup fuel pins, nondestructive postirradiation tests have already been performed and the fuel integrity was confirmed. Furthermore, the irradiation experiment for the intermediate burnup goal of ∼7 at.% was completed in July 2006. For the irradiation period of 356.63 equivalent full-power days, the neutron flux level remained in the range of 3.5-3.6 x 10 15 n/cm 2 /s at the axial peak position. On the other hand, the maximum linear power of fuel alloys decreased gradually from 305-315 W/cm (beginning of irradiation) to 250-260 W/cm (end of irradiation). The discharged peak burnup was estimated to be 6.59-7.23 at.%. The irradiation behavior of MA-containing metal fuels up to 7 at.% burnup was predicted using the ALFUS code, which was developed for U-Pu-Zr ternary fuel performance analysis. As a result, it was evaluated that the fuel temperature is distributed between ∼410 deg. C and ∼645 deg. C at the end of the irradiation experiment. From the stress-strain analysis based on the preliminarily employed cladding irradiation properties and the FCMI stress distribution history, it was predicted that a cladding strain of not more than 0.9% would appear. (authors)

  20. Effect of high burn-up and MOX fuel on reprocessing, vitrification and disposal of PWR and BWR spent fuels based on accurate burn-up calculation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, T.; Iwasaki, T.; Wada, K. [Tohoku Univ., Graduate School of Engineering, Dept. of Quantum Science and Energy Engineering, Sendai 980-8579 (Japan); Suyama, K. [Japan Atomic Energy Agency, Shirakata-Shirane 2-4, Naka-gun, Ibaraki-ken 319-1195 (Japan)

    2006-07-01

    To examine the procedures of the reprocessing, the vitrification and the geologic disposal, precise burn-up calculation for high burn-up and MOX fuels has been performed for not only PWR but also BWR by using SWAT and SWAT2 codes which are the integrated bum-up calculation code systems combined with the bum-up calculation code, ORIGEN2, and the transport calculation code, SRAC (the collision probability method) or MVP (the continuous energy Monte Carlo method), respectively. The calculation results shows that all of the evaluated items (heat generation and concentrations of Mo and Pt) largely increase and those significantly effect to the current procedures of the vitrification and the geologic disposal. The calculation result by SWAT2 confirms that the bundle calculation is required for BWR to be discussed about those effects in details, especially for the MOX fuel. (authors)

  1. Reducing the fuel temperature for pressure-tube supercritical-water-cooled reactors and the effect of fuel burnup

    Energy Technology Data Exchange (ETDEWEB)

    Nichita, E., E-mail: eleodor.nichita@uoit.ca; Kovaltchouk, V., E-mail: vitali.kovaltchouk@uoit.ca

    2015-12-15

    Highlights: • Typical PT-SCWR fuel uses single-region pins consisting of a homogeneous mixture of ThO{sub 2} and PuO{sub 2}. • Using two regions (central for the ThO{sub 2} and peripheral for the PuO{sub 2}) reduces the fuel temperature. • Single-region-pin melting-to-average power ratio is 2.5 at 0.0 MW d/kg and 2.3 at 40 MW d/kg. • Two-region-pin melting-to-average power ratio is 36 at 0.0 MW d/kg and 10.5 at 40 MW d/kg. • Two-region-pin performance drops with burnup due to fissile-element buildup in the ThO{sub 2} region. - Abstract: The Pressure-Tube Supercritical-Water-Cooled Reactor (PT-SCWR) is one of the concepts under investigation by the Generation IV International Forum for its promise to deliver higher thermal efficiency than nuclear reactors currently in operation. The high coolant temperature (>625 K) and high linear power density employed by the PT-SCWR cause the fuel temperature to be fairly high, leading to a reduced margin to fuel melting, thus increasing the risk of actual melting during accident scenarios. It is therefore desirable to come up with a fuel design that lowers the fuel temperature while preserving the high linear power ratio and high coolant temperature. One possible solution is to separate the fertile (ThO{sub 2}) and fissile (PuO{sub 2}) fuel materials into different radial regions in each fuel pin. Previously-reported work found that by locating the fertile material at the centre and the fissile material at the periphery of the fuel pin, the fuel centreline temperature can be reduced by ∼650 K for fresh fuel compared to the case of a homogeneous (Th–Pu)O{sub 2} mixture for the same coolant temperature and linear power density. This work provides a justification for the observed reduction in fuel centreline temperature and suggests a systematic approach to lower the fuel temperature. It also extends the analysis to the dependence of the radial temperature profile on fuel burnup. The radial temperature profile is

  2. The use of burnup credit in criticality control for the Korean spent fuel management program

    International Nuclear Information System (INIS)

    Koh, Duck Joon; Chon, Je Keun; Park, Chung Ryul; Ji, Pyung Kuk; Kim, Byung Tae; Jo, Chang Keun; Cho, Nam Zin

    1997-01-01

    More than 25% k-eff saving effect is observed in this burnup credit analysis. This mainly comes from the adoption of actinide nuclides and fission products in the criticality analysis. By taking burnup credit, the high capacity of the storage and transportation can be more fully utilized, reducing the space of storage and the number of shipments. Larger storage and fewer shipments for a given inventory of spent fuel result should in remarkable cost savings and more importantly reduce the risks to the public and occupational workers for the Korean Spent Fuel Management Program

  3. Fission gas release from UO2 pellet fuel at high burn-up

    International Nuclear Information System (INIS)

    Vitanza, C.; Kolstad, E.; Graziani, U.

    1979-01-01

    Analysis of in-reactor measurements of fuel center temperature and rod internal pressure at the OECD Halden Reactor Project has led to the development of an empirical fission gas release model, which is described. The model originally derived from data obtained in the low and intermediate burn-up range, appears to give good predictions for rods irradiated to high exposures as well. PIE puncturing data from seven fuel rods, operated at relatively constant powers and peak center temperatures between 1900 and 2000 0 C up to approx. 40,000 MWd/t UO 2 , did not exhibit any burn-up enhancement on the fission gas release rate

  4. Water reactor fuel element modelling at high burnup and its experimental support. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-08-01

    The Technical Committee Meeting on Fuel Element Modelling at High Burnup and its Experimental Support was recommended by the International Working Group on Fuel Performance and Technology (IWGFPT). Its subject had been touched on in many of the IAEA's activities; however for the first time modellers and experimentalists were brought together to have an exchange of views on the research under way and to identify areas where new knowledge is necessary to improve the safety, reliability and/or economics of nuclear fuel. The timely organization of this meeting in conjunction with the second meeting of the Co-ordinated Research Programme on Fuel Modelling at Extended Burnup, in short ''FUMEX'', allowed fruitful participation of representatives of developing countries which are only rarely exposed to such a scientific event. The thirty-nine papers presented covered the status of codes and experimental facilities and the main phenomena affecting the fuel during irradiation, namely: thermal fuel performance, clad corrosion and pellet-cladding interaction (PCI) and fission gas release (FGR). Refs, figs, tabs

  5. Water reactor fuel element modelling at high burnup and its experimental support. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    The Technical Committee Meeting on Fuel Element Modelling at High Burnup and its Experimental Support was recommended by the International Working Group on Fuel Performance and Technology (IWGFPT). Its subject had been touched on in many of the IAEA`s activities; however for the first time modellers and experimentalists were brought together to have an exchange of views on the research under way and to identify areas where new knowledge is necessary to improve the safety, reliability and/or economics of nuclear fuel. The timely organization of this meeting in conjunction with the second meeting of the Co-ordinated Research Programme on Fuel Modelling at Extended Burnup, in short ``FUMEX``, allowed fruitful participation of representatives of developing countries which are only rarely exposed to such a scientific event. The thirty-nine papers presented covered the status of codes and experimental facilities and the main phenomena affecting the fuel during irradiation, namely: thermal fuel performance, clad corrosion and pellet-cladding interaction (PCI) and fission gas release (FGR). Refs, figs, tabs.

  6. Fuel and nuclear fuel cycle

    International Nuclear Information System (INIS)

    Prunier, C.

    1998-01-01

    The nuclear fuel is studied in detail, the best choice and why in relation with the type of reactor, the properties of the fuel cans, the choice of fuel materials. An important part is granted to the fuel assembly of PWR type reactor and the performances of nuclear fuels are tackled. The different subjects for research and development are discussed and this article ends with the particular situation of mixed oxide fuels ( materials, behavior, efficiency). (N.C.)

  7. Radiometric characterisation supports, burnup credit, safeguards and radionuclide inventory determination for spent fuel transport, storage and disposal

    International Nuclear Information System (INIS)

    Chesterman, A.S.; Clapham, M.J.; Gardner, N.

    1999-01-01

    Spent nuclear fuel characterisation measurements play an essential role in a range of fuel handling activities. In particular, they are necessary to support the application of burnup credit to the transport of spent fuel, to detect diversion of safeguarded nuclear material and to determine the radionuclide inventory of materials destined for final disposal. To apply measurements to these activities the measurement procedures need to be approved by the relevant regulatory bodies. Often key to the measurement procedures is the method of instrument system calibration and what a priori data is acceptable to aid the measurement process. Discussion of these, pertinent to the three areas of application mentioned above, is presented with suggestions of alternative approaches where considered appropriate. (author)

  8. Present status and future developments of the implementation of burnup credit in spent fuel management systems in Germany

    International Nuclear Information System (INIS)

    Neuber, J.C.

    1998-01-01

    The paper describes the experience gained in Germany in applying burnup credit methodologies to wet storage and dry transport systems of spent LWR fuel. It gives a survey of the levels of burnup credit presently used or intended to be used, the regulatory status and future developments planned, the codes used for performing depletion and criticality calculations, the methods applied to verification of these codes, and the methods used to treat parameters specific of burnup credit. In particular it is shown that the effect of axial burnup profiles on wet PWR storage designs based on burnup credit varies from fuel type to fuel type. For wet BWR storage systems the method of estimating a loading curve is described which provides for a given BWR fuel assembly design the minimum required initial burnable absorber content as a function of the initial enrichment of the fuel. (author)

  9. New approach to derive linear power/burnup history input for CANDU fuel codes

    International Nuclear Information System (INIS)

    Lac Tang, T.; Richards, M.; Parent, G.

    2003-01-01

    The fuel element linear power / burnup history is a required input for the ELESTRES code in order to simulate CANDU fuel behavior during normal operating conditions and also to provide input for the accident analysis codes ELOCA and SOURCE. The purpose of this paper is to present a new approach to derive 'true', or at least more realistic linear power / burnup histories. Such an approach can be used to recreate any typical bundle power history if only a single pair of instantaneous values of bundle power and burnup, together with the position in the channel, are known. The histories obtained could be useful to perform more realistic simulations for safety analyses for cases where the reference (overpower) history is not appropriate. (author)

  10. Fuel element concept for long life high power nuclear reactors

    Science.gov (United States)

    Mcdonald, G. E.; Rom, F. E.

    1969-01-01

    Nuclear reactor fuel elements have burnups that are an order of magnitude higher than can currently be achieved by conventional design practice. Elements have greater time integrated power producing capacity per unit volume. Element design concept capitalizes on known design principles and observed behavior of nuclear fuel.

  11. High burnup, high power irradiation behavior of helium-bonded mixed carbide fuel pins

    International Nuclear Information System (INIS)

    Levine, P.J.; Nayak, U.P.; Boltax, A.

    1983-01-01

    Large diameter (9.4 mm) helium-bonded mixed carbide fuel pins were successfully irradiated in EBR-II to high burnup (12%) at high power levels (100 kW/m) with peak cladding midwall temperatures of 550 0 C. The wire-wrapped pins were clad with 0.51-mm-thick, 20% cold-worked Type 316 stainless steel and contained hyperstoichiometric (Usub(0.8)Pusub(0.2))C fuel covering the smeared density range from 75-82% TD. Post-irradiation examinations revealed: extensive fuel-cladding mechanical interaction over the entire length of the fuel column, 35% fission gas release at 12% burnup, cladding carburization and fuel restructuring. (orig.)

  12. FRAPCON-3: Modifications to fuel rod material properties and performance models for high-burnup application

    International Nuclear Information System (INIS)

    Lanning, D.D.; Beyer, C.E.; Painter, C.L.

    1997-12-01

    This volume describes the fuel rod material and performance models that were updated for the FRAPCON-3 steady-state fuel rod performance code. The property and performance models were changed to account for behavior at extended burnup levels up to 65 Gwd/MTU. The property and performance models updated were the fission gas release, fuel thermal conductivity, fuel swelling, fuel relocation, radial power distribution, solid-solid contact gap conductance, cladding corrosion and hydriding, cladding mechanical properties, and cladding axial growth. Each updated property and model was compared to well characterized data up to high burnup levels. The installation of these properties and models in the FRAPCON-3 code along with input instructions are provided in Volume 2 of this report and Volume 3 provides a code assessment based on comparison to integral performance data. The updated FRAPCON-3 code is intended to replace the earlier codes FRAPCON-2 and GAPCON-THERMAL-2. 94 refs., 61 figs., 9 tabs

  13. Calculation of burn-up data for spent LWR-fuels with respect to the design of spent fuel reprocessing plants

    International Nuclear Information System (INIS)

    Gasteiger, R.

    1976-11-01

    The design of spent fuel reprocessing plants makes necessary a detailed knowledge of the composition of the incoming fuels as a function of burn-up. This report gives a broad review on the composition of radionuclides in fuels (fission products, actinides) and structural materials for different burn-up data. (orig.) [de

  14. High-burnup/low-cooling-time fuel carrying capacity of the GA-4 and GA-9 spent fuel shipping casks

    International Nuclear Information System (INIS)

    Boshoven, J.K.; Hopf, J.E.

    1994-01-01

    In response to utilities' projected needs to ship higher burnup spent fuel, General Atomics (GA) has performed shielding and thermal analysis for the GA-4 and GA-9 legal weight shipping casks to determine the minimum cooling times for various burnup levels for fully loaded GA-4 and GA-9 casks and reduced payloads for the casks. Tables are provided in the paper which show the minimum cooling time for a given burnup and payload for each of the casks. The analyses show that the GA-4 and GA-9 casks can carry at least as many high-burnup and/or short-cooling-time spent fuel assemblies as present day shipping casks. In addition, the GA casks are able to carry at least twice as many assemblies as the present day shipping casks if the spent fuel burnup levels and/or cooling times are open-quotes coolerclose quotes or open-quotes as coolclose quotes as their design basis fuels. The increased shipping capacity for these more common open-quotes coolerclose quotes assemblies allows fewer shipments and therefore increases the efficiency and lowers predicted risks of the transport system

  15. Burn-up measurements of spent fuel using gamma spectrometry technique

    International Nuclear Information System (INIS)

    Pereda, C.; Henriquez, C.; Klein, J.; Medel, J.

    2005-01-01

    Burn-up results obtained for HEU (45% of 235 U) fuel assemblies of the RECH-1 Research Reactor using gamma spectrometry technique are presented. The spectra were got from an in-pool facility built in the reactor to be mainly used to measure the burnup of irradiated fuel assemblies with short cooling time, where 95 Zr is being evaluated as possible fission monitor. A program to measure all spent fuel assemblies of the RECH-1 reactor was initiated in the frame of the Regional Project RLA/4/018: 'Management of Spent Fuel from Research Reactors'. The results presented here were obtained from HEU spent fuel assemblies with cooling time greater than 100 days and 137 Cs was used as fission monitor. The efficiency of the in-pool system was determined using a slightly burnt experimental fuel assembly, which has one fuel plate (one of the outer plates) and the rest are dummy plates. An average burn-up of 2.8% of 235 U was previously measured for the experimental fuel assembly utilizing a facility installed in a hot cell and 137 Cs was used as monitor. (author)

  16. Effect of burnup on the response of stainless steel-clad mixed-oxide fuels to simulated thermal transients

    International Nuclear Information System (INIS)

    Fenske, G.R.; Badyopadhyay, G.

    1981-01-01

    Direct electrical heating experiments were performed on irradiated fuel to study the fuel and cladding response as a function of burnup during a slow thermal transient. The results indicated that the nature and extent of the fuel and cladding behavior depended on the quantity of fission gas retained in the fuel. Fission-gas-driven fuel ejection occurred as the molten cladding flowed down the stack exposing bare, radially unrestrained fuel. The fuel dispersion occurred in the absence of molten fuel and the amount of fuel ejected increased with increasing burnup. 31 refs

  17. Twenty-third water reactor safety information meeting: Volume 1, plenary session, high burnup fuel behavior, thermal hydraulic research. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1996-03-01

    This three-volume report contains papers presented at the Twenty- Third Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 23-25, 1995. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Italy, Japan, Norway, Russia, Sweden, and Switzerland. This document, Volume 1, present topics on High Burnup Fuel Behavior, Thermal Hydraulic Research, and Plenary Session topics. Individual papers have been cataloged separately.

  18. Twenty-third water reactor safety information meeting: Volume 1, plenary session, high burnup fuel behavior, thermal hydraulic research. Proceedings

    International Nuclear Information System (INIS)

    Monteleone, S.

    1996-03-01

    This three-volume report contains papers presented at the Twenty- Third Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 23-25, 1995. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Italy, Japan, Norway, Russia, Sweden, and Switzerland. This document, Volume 1, present topics on High Burnup Fuel Behavior, Thermal Hydraulic Research, and Plenary Session topics. Individual papers have been cataloged separately

  19. Reactivity effect of spent fuel depending on burn-up history

    International Nuclear Information System (INIS)

    Hayashi, Takafumi; Suyama, Kenya; Nomura, Yasushi

    2001-06-01

    It is well known that a composition of spent fuel depends on various parameter changes throughout a burn-up period. In this study we aimed at the boron concentration and its change, the coolant temperature and its spatial distribution, the specific power, the operation mode, and the duration of inspection, because the effects due to these parameters have not been analyzed in detail. The composition changes of spent fuel were calculated by using the burn-up code SWAT, when the parameters mentioned above varied in the range of actual variations. Moreover, to estimate the reactivity effect caused by the composition changes, the criticality calculations for an infinite array of spent fuel were carried out with computer codes SRAC95 or MVP. In this report the reactivity effects were arranged from the viewpoint of what parameters gave more positive reactivity effect. The results obtained through this study are useful to choose the burn-up calculation model when we take account of the burn-up credit in the spent fuel management. (author)

  20. Specific application of burnup credit for MOX PWR fuels in the rotary dissolver

    International Nuclear Information System (INIS)

    Caplin, Gregory; Coulaud, Alexandre; Klenov, Pavel; Toubon, Herve

    2003-01-01

    In prospect of a Mixed OXide spent fuels processing in the rotary dissolver in COGEMA/La Hague plant, it is interesting to quantify the criticality-safety margins from the burnup credit. Using the current production computer codes and considering a minimal fuel irradiation of 3 200 megawatt-day per ton, this paper shows the impact of burnup credit on industrial parameters such as the permissible concentration in the dissolution solution or the permissible oxide mass in the rotary dissolver. Moreover, the burnup credit is broken down into five sequences in order to quantify the contribution of fissile nuclides decrease and of minor actinides and fission products formation. The implementation of the burnup credit in the criticality-safety analysis of the rotary dissolver may lead to workable industrial conditions for the particular MOX fuel studied. It can eventually be noticed that minor actinides contribution is negligible and that considering only the six major fission products is sufficient, owing to the weak fuel irradiation contemplated. (author)

  1. Review of the IAEA nuclear fuel cycle and material section activities connected with nuclear fuel including WWER fuel

    International Nuclear Information System (INIS)

    Sokolov, F.

    2001-01-01

    Program activities on Nuclear Fuel Cycle and Materials cover the areas of: 1) raw materials (B.1.01); 2) fuel performance and technology (B.1.02); 3) pent fuel (B.1.03); 4) fuel cycle issues and information system (B.1.04); 5) support to technical cooperation activities (B.1.05). The IAEA activities in fuel performance and technology in 2001 include organization of the fuel experts meetings and completion of the Co-ordinate Research Projects (CRP). The special attention is given to the advanced post-irradiation examination techniques for water reactor fuel and fuel behavior under transients and LOCA conditions. An international research program on modeling of activity transfer in primary circuit of NPP is finalized in 2001. A new CRP on fuel modeling at extended burnup (FUMEX II) has planed to be carried out during the period 2002-2006. In the area of spent fuel management the implementation of burnup credit (BUC) in spent fuel management systems has motivated to be used in criticality safety applications, based on economic consideration. An overview of spent fuel storage policy accounting new fuel features as higher enrichment and final burnup, usage of MOX fuel and prolongation of the term of spent fuel storage is also given

  2. Present status and future developments of the implementation of burnup credit in spent fuel management systems in Germany

    International Nuclear Information System (INIS)

    Neuber, J.C.; Kuehl, H.

    2001-01-01

    This paper describes the experience gained in Germany in implementing burnup credit in wet storage and dry transport systems of spent PWR, BWR, and MOX fuel. It gives a survey of the levels of burnup credit presently used, the regulatory status and activities planned, the fuel depletion codes and criticality calculation codes employed, the verification methods used for validating these codes, the modeling assumptions made to ensure that the burnup credit criticality analysis is based on a fuel irradiation history which leads to bounding neutron multiplication factors, and the implementation of procedures used for fuel loading verification. (author)

  3. Present status and future developments of the implementation of burnup credit in spent fuel management systems in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Neuber, J C [Siemens Nuclear Power GmbH, Offenbach (Germany); Kuehl, H [Wissenschaftlich-Technische Ingenieurberatung WTI GmbH, Juelich (Germany)

    2001-08-01

    This paper describes the experience gained in Germany in implementing burnup credit in wet storage and dry transport systems of spent PWR, BWR, and MOX fuel. It gives a survey of the levels of burnup credit presently used, the regulatory status and activities planned, the fuel depletion codes and criticality calculation codes employed, the verification methods used for validating these codes, the modeling assumptions made to ensure that the burnup credit criticality analysis is based on a fuel irradiation history which leads to bounding neutron multiplication factors, and the implementation of procedures used for fuel loading verification. (author)

  4. Effects of burnup on fission product release and implications for severe fuel damage events

    International Nuclear Information System (INIS)

    Appelhans, A.D.; Cronenberg, A.W.; Carboneau, M.L.

    1984-01-01

    Xe, Kr, and I fission-product release data from (a) Halden tests where release in intact rods was measured during irradiation at burnups to 18,000 MWd/t and fuel temperatures of 800 to 1800 0 K, and (b) Power Burst Facility (PBF) tests where trace-irradiated fuel (approx. = 90 MWd/t) was driven to temperatures of >2400 0 K and fuel liquefaction occurred are discussed and related to fuel morphology. Results from both indicate that the fission-product morphology and fuel restructuring govern release behavior. The Halden tests show low release at beginning of life with a 10-fold increase at burnups in excess of 10,000 MWd/t, due to the development of grain boundary interlinkage at higher burnups. Such dependence of release on morphology characteristics is consistent with findings from the PBF tests, where for trace-irradiated fuel, the absence of interlinkage accounts for the low release rates observed during initial fuel heatup, with subsequent enhanced Xe, Kr, and I release via liquefaction or quench-induced destruction of the grain structure. Morphology is also shown to influence the chemical release form of I and Cs fission products

  5. Burnup credit activities being conducted in the United States

    International Nuclear Information System (INIS)

    Lake, W.

    1998-01-01

    The paper describes burnup credit activities being conducted in the U.S. where burnup credit is either being used or being planned to be used for storage, transport, and disposal of spent nuclear fuel. Currently approved uses of burnup credit are for wet storage of PWR fuel. For dry storage of spent PWR fuel, burnup credit is used to supplement a principle of moderator exclusion. These storage applications have been pursued by the private sector. The Department of Energy (DOE) which is an organization of the U.S. Federal government is seeking approval for burnup credit for transport and disposal applications. For transport of spent fuel, regulatory review of an actinide-only PWR burnup credit method is now being conducted. A request by DOE for regulatory review of actinide and fission product burnup credit for disposal of spent BWR and PWR fuel is scheduled to occur in 1998. (author)

  6. The structure and economics of the nuclear fuel cycle service industry

    International Nuclear Information System (INIS)

    Hyett, A.J.

    1984-01-01

    The subject is covered in sections, entitled; introduction; mining and milling of uranium ore; the nuclear energy process; enrichment; burnup; reprocessing; fast reactors; waste disposal; international aspects of the nuclear fuel cycle (international trade). (U.K.)

  7. New Fuel Alloys Seeking Optimal Solidus and Phase Behavior for High Burnup and TRU Burning

    International Nuclear Information System (INIS)

    Blackwood, V.S.; Jones, Z.S.; Olson, D.L.; Mishra, B.; Mariani, R.D.; Porter, D.L.; Kennedy, J.R.; Hayes, S.L.

    2013-01-01

    Summary: • Pd will bind lanthanide fission products. • 2 wt% Pd in alloy is expected to allow 20 at% Heavy Metal burnup, 4 wt% Pd possibly 30-40 at% HM burnup. • For recycled fuel with some lanthanide carryover, palladium additive will also prevent premature FCCI. • Novel uranium alloy systems suitable for burning transuranics were identified. • U-Mo-Ti-Zr and U-W-Mo irradiations may perform comparably to U-10Zr, but the real tests needed must include Pu and Np for TRU burning. – Diffusion couples with alloys and Fe or cladding; – Irradiations

  8. Burn-up function of fuel management code for aqueous homogeneous reactors and its validation

    International Nuclear Information System (INIS)

    Wang Liangzi; Yao Dong; Wang Kan

    2011-01-01

    Fuel Management Code for Aqueous Homogeneous Reactors (FMCAHR) is developed based on the Monte Carlo transport method, to analyze the physics characteristics of aqueous homogeneous reactors. FMCAHR has the ability of doing resonance treatment, searching for critical rod heights, thermal hydraulic parameters calculation, radiolytic-gas bubbles' calculation and bum-up calculation. This paper introduces the theory model and scheme of its burn-up function, and then compares its calculation results with benchmarks and with DRAGON's burn-up results, which confirms its bum-up computing precision and its applicability in the bum-up calculation and analysis for aqueous solution reactors. (authors)

  9. Computer modelling of the WWER fuel elements under high burnup conditions by the computer codes PIN-W and RODQ2D

    International Nuclear Information System (INIS)

    Valach, M.; Zymak, J.; Svoboda, R.

    1997-01-01

    This paper presents the development status of the computer codes for the WWER fuel elements thermomechanical behavior modelling under high burnup conditions at the Nuclear Research Institute Rez. The accent is given on the analysis of the results from the parametric calculations, performed by the programmes PIN-W and RODQ2D, rather than on their detailed theoretical description. Several new optional correlations for the UO2 thermal conductivity with degradation effect caused by burnup were implemented into the both codes. Examples of performed calculations document differences between previous and new versions of both programmes. Some recommendations for further development of the codes are given in conclusion. (author). 6 refs, 9 figs

  10. Computer modelling of the WWER fuel elements under high burnup conditions by the computer codes PIN-W and RODQ2D

    Energy Technology Data Exchange (ETDEWEB)

    Valach, M; Zymak, J; Svoboda, R [Nuclear Research Inst. Rez plc, Rez (Czech Republic)

    1997-08-01

    This paper presents the development status of the computer codes for the WWER fuel elements thermomechanical behavior modelling under high burnup conditions at the Nuclear Research Institute Rez. The accent is given on the analysis of the results from the parametric calculations, performed by the programmes PIN-W and RODQ2D, rather than on their detailed theoretical description. Several new optional correlations for the UO2 thermal conductivity with degradation effect caused by burnup were implemented into the both codes. Examples of performed calculations document differences between previous and new versions of both programmes. Some recommendations for further development of the codes are given in conclusion. (author). 6 refs, 9 figs.

  11. Development and preliminary analyses of material balance evaluation model in nuclear fuel cycle

    International Nuclear Information System (INIS)

    Matsumura, Tetsuo

    1994-01-01

    Material balance evaluation model in nuclear fuel cycle has been developed using ORIGEN-2 code as basic engine. This model has feature of: It can treat more than 1000 nuclides including minor actinides and fission products. It has flexibility of modeling and graph output using a engineering work station. I made preliminary calculation of LWR fuel high burnup effect (reloading fuel average burnup of 60 GWd/t) on nuclear fuel cycle. The preliminary calculation shows LWR fuel high burnup has much effect on Japanese Pu balance problem. (author)

  12. Analysis of bubble pressure in the rim region of high burnup PWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Yang Hyun; Lee, Byung Ho; Sohn, Dong Seong [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-02-01

    Bubble pressure in the rim region of high burnup PWR UO{sub 2} fuel has been modeled based on measured rim width, porosity and bubble density. Using the assumption that excessive bubble pressure in the rim is inversely proportional to its radius, proportionality constant is derived as a function of average pellet burnup and bubble radius. This approach is possible because the integration of the number of Xe atoms retained in the rim bubbles, which can be calculated as a function of bubble radius, over the bubble radius gives the total number of Xe atoms in the rim bubbles. Here the total number of Xe atoms in the rim bubbles can be derived from the measured Xe depletion fraction in the matrix and the calculated rim thickness. Then the rim bubble pressure is obtained as a function of fuel burnup and bubble size from the proportionality constant. Therefore, the present model can provide some useful information that would be required to analyze the behavior of high burnup PWR UO{sub 2} fuel under both normal and transient operating conditions. 28 refs., 9 figs. (Author)

  13. A SAS2H/KENO-V methodology for 3D fuel burnup analysis

    International Nuclear Information System (INIS)

    Milosevic, M.; Greenspan, E.; Vujic, J.

    2002-01-01

    An efficient methodology for 3D fuel burnup analysis of LWR reactors is described in this paper. This methodology is founded on coupling Monte Carlo method for 3D calculation of node power distribution, and transport method for depletion calculation in ID Wigner-Seitz equivalent cell for each node independently. The proposed fuel burnup modeling, based on application of SCALE-4.4a control modules SAS2H and KENO-V.a is verified for the case of 2D x-y model of IRIS 15 x 15 fuel assembly (with reflective boundary condition) by using two well benchmarked code systems. The one is MOCUP, a coupled MCNP-4C and ORIGEN2.1 utility code, and the second is KENO-V.a/ORIGEN2.1 code system recently developed by authors of this paper. The proposed SAS2H/KENO-V.a methodology was applied for 3D burnup analysis of IRIS-1000 benchmark.44 core. Detailed k sub e sub f sub f and power density evolution with burnup are reported. (author)

  14. Isocrit: a burnup credit tool for spent fuel pool storage calculations - 333

    International Nuclear Information System (INIS)

    Kucukboyaci, V.N.; Marshall, W.J.

    2010-01-01

    In order to conservatively apply burnup credit in spent fuel pool criticality safety analyses, Westinghouse has developed a software tool, ISOCRIT, for generating depletion isotopics. This tool is used to create isotopics data based on specific reactor input parameters, such as design basis assembly type; bounding power/burnup profiles; reactor specific moderator temperature profiles; pellet percent theoretical density; burnable absorbers, axial blanket regions, and bounding ppm boron concentration. ISOCRIT generates burnup dependent isotopics using PARAGON; Westinghouse's state-of-the-art and licensed lattice physics code. Generation of isotopics and passing the data to the subsequent 3D KENO calculations are performed in an automated fashion, thus reducing the chance for human error. Furthermore, ISOCRIT provides the means for responding to any customer request regarding re-analysis due to changed parameters (e.g., power up-rate, exit temperature changes, etc) with a quick turnaround. (authors)

  15. Influence of graphite discs, chamfers, and plenums on temperature distributions in high burnup fuel

    International Nuclear Information System (INIS)

    Ranger, A.; Tayal, M.; Singh, P.

    1990-04-01

    Previous studies have demonstrated the desirability to increase the fuel burnups in CANDU reactors from 7-9 GW.d/t to 21 GW.d/t. At high burnups, one consideration in fuel integrity is fission gas pressure, which is predicted to reach about 13 MPa. The gas pressure can be kept below the coolant pressure (about 10 MPa) via a variety of options such as bigger chamfers, deeper dishes, central hole, and plenums. However, it is important to address the temperature perturbations produced by the bigger chamfers and plenums which in turn, affect the gas pressure. Another consideration in fuel integrity is to reduce the likelihood of fuel failures via environmentally assisted cracking. Insertion of graphite discs between neighbouring pellets will lower the pellet temperatures, hence, lower fission gas release and lower expansion of the pellet. Therefore, it is desired to quantify the effect of graphite discs on pellet temperatures. Thermal analyses of different fuel element geometries: with and without chamfers, graphite discs, and plenums were performed. The results indicate that the two-dimensional distributions of temperatures due to the presence of chamfers, graphite discs, or plenums can have a significant impact on the integrity of high burnup fuel as we have been able to quantify in this paper

  16. Burnup verification using the FORK measurement system

    International Nuclear Information System (INIS)

    Ewing, R.I.

    1994-01-01

    Verification measurements may be used to help ensure nuclear criticality safety when burnup credit is applied to spent fuel transport and storage systems. The FORK measurement system, designed at Los Alamos National Laboratory for the International Atomic Energy Agency safeguards program, has been used to verify reactor site records for burnup and cooling time for many years. The FORK system measures the passive neutron and gamma-ray emission from spent fuel assemblies while in the storage pool. This report deals with the application of the FORK system to burnup credit operations based on measurements performed on spent fuel assemblies at the Oconee Nuclear Station of Duke Power Company

  17. ZZ CANDULIB-AECL, Burnup-Dependent ORIGEN-S Cross-Section Libraries for Candu Reactor Fuels

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Historical background and information: - 28-element fuel cross-section library: Format: Designed for use with the ORIGEN-S isotope generation and depletion code. Materials: Co, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Lu, Ta, W, Re, Au, Th, Pa, U, Np, Pu, Am, Cm. Origin: ENDSF, ENDF/B-IV, -V and -VI Weighting spectrum: determined using WIMS-AECL transport code. - 37-element fuel cross-section library: Format: Designed for use with the ORIGEN-S isotope generation and depletion code. Materials: Co, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Lu, Ta, W, Re, Au, Th, Pa, U, Np, Pu, Am, Cm. Origin: ENDSF, ENDF/B-IV, -V and -VI Weighting spectrum: determined using WIMS-AECL transport code. In 1995, updated ORIGEN-S cross-section libraries were created as part of a program to upgrade and standardize the computer codes and nuclear data employed for used fuel characterization. This effort was funded through collaboration between Atomic Energy of Canada Limited and the Canadian Nuclear Power Utilities, under the Candu Owners Group (COG). The updated cross sections were generated using the WIMS-AECL lattice code and ENDF/B-V and -VI based data to provide cross section consistency with reactor physics codes. 2 - Application of the data: The libraries in this data collection are designed for characterising used fuel from Candu pressurized heavy water reactors. Two libraries are provided: one for the standard 28-element fuel bundle design, the other for the 37-element fuel bundle design. The libraries were generated for typical reactor operating conditions. The libraries are designed for use with the ORIGEN-S isotope generation and depletion code. 3 - Source and scope of data: The Candu libraries are updated with cross sections from a variety of different sources. Capture

  18. Results of calculation of WWER-440 fuel rods (Kol`skaya-3 NPP) at high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Scheglov, A; Proselkov, V [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation); Panin, M; Pitkin, Yu [Kol` skaya NPP, (Russian Federation); Tzibulya, V [AO Mashinostroitelnij Zavod Electrostal (Russian Federation)

    1994-12-31

    Thermal-physical characteristics of fuel rods of two fuel assemblies which were operated within 5 - 8 and 5 - 9 core fuel loadings of the Unit 3 of the Kol`skaya NPP are calculated. They have achieved deep burnup during 4-year (> 46 Mwd/kg U) and 5-year (> 48 Mwd/kg U) fuel cycle. Fuel assemblies have been unloaded off the reactor and subjected to a post-irradiation testing. PIN-mod2 code originally designed for modelling of WWER fuel rod behaviour in a quasi-steady-state operation is used. The average fuel rod in the fuel assembly and the fuel rod with maximum burnup are selected. The preliminary comparison of the calculation results with those of the post-irradiation examination shows a satisfactory agreement. On the basis of the results obtained in the post-irradiation experiments an improvement of the model for calculation of fission gas release and creep of the cladding is planned. The results of the analysis performed indicate that the fuel rod completely preserves its working ability; fuel temperature does not exceed 1300{sup o} C; fission gas release does not exceed 4%; maximum gas pressure inside the cladding at the end of campaign does not exceed 2 MPa. 2 tabs., 11 figs., 5 refs.

  19. Effect of fissile isotope burnup on criticality safety for stored disintegrated fuel rods

    International Nuclear Information System (INIS)

    Heaberlin, S.W.; Selby, G.P.

    1978-09-01

    If the fuel rods were to disintegrate and water added, a criticality could occur in a 13-in. PWR canister with fresh fuel enriched to 3.5 wt % 235 U. The question is, ''If credit could be taken for burnup, could this indicate a subcritical condition.'' In attempting to answer this question, a series of calculations were performed. A set of isotopic concentrations were generated for 5,000, 10,000, 15,000, and 20,000 MWD/MTU burnup levels. Four reflector materials, water, concrete and two types of soil, were considered. Results indicate that allowing credit for fissile isotope burnup does not completely remove the concern for criticality safety in the event of rod disintegration. Reactivities which are ''subcritical'' (k/sub eff/ = 0.95) would not occur for three of the four reflector materials at even the 20,000 MWD/MTU burnup level in the 13-in. canister. The water reflected canister would achieve the k/sub eff/ = 0.95 level near 18,000 MWD/MTU. A smaller canister could be postulated. If a quarter inch gap is allowed, a Westinghouse 17 x 17 PWR assembly requires a 12 1 / 4 inch diameter canister. For such a canister with water reflection the ''subcritical'' (k/sub eff/ = 0.95) level would be reached near 15,000 MWD/MTU. The soil reflected canisters would reach this level between 18,000 and 19,000 MWD/MTU. Considering the difficulties in taking credit for burnup, such modest gains in apparent safety are not encouraging. This situation might be improved, however, if credit were also taken for neutron absorption by fission product poisons produced during burnup. It is strongly recommended that other approaches to a solution of the criticality safety problem be considered

  20. OECD/NEA burnup credit criticality benchmarks phase IIIA: Criticality calculations of BWR spent fuel assemblies in storage and transport

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, Hiroshi; Naito, Yoshitaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ando, Yoshihira [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    2000-09-01

    The report describes the final results of Phase IIIA Benchmarks conducted by the Burnup Credit Criticality Calculation Working Group under the auspices of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development (OECD/NEA). The benchmarks are intended to confirm the predictive capability of the current computer code and data library combinations for the neutron multiplication factor (k{sub eff}) of a layer of irradiated BWR fuel assembly array model. In total 22 benchmark problems are proposed for calculations of k{sub eff}. The effects of following parameters are investigated: cooling time, inclusion/exclusion of FP nuclides and axial burnup profile, and inclusion of axial profile of void fraction or constant void fractions during burnup. Axial profiles of fractional fission rates are further requested for five cases out of the 22 problems. Twenty-one sets of results are presented, contributed by 17 institutes from 9 countries. The relative dispersion of k{sub eff} values calculated by the participants from the mean value is almost within the band of {+-}1%{delta}k/k. The deviations from the averaged calculated fission rate profiles are found to be within {+-}5% for most cases. (author)

  1. Modelling the radial distribution of the inventory of U and Pu isotopes in PWR fuel rods at high burnup

    International Nuclear Information System (INIS)

    Furlano, L.; Marino, A.C.

    2015-01-01

    Nowadays trends on nuclear reactors are to take advantage of a more efficient use of the fuels. In this way, goals like decreasing the volume of radioactive wastes, increasing life time in the reactor, extended burnup and accident-tolerance fuels are taken as the principal guidelines for the design and construction for actual nuclear fuels. The development of tools and the capability of prediction of the behaviour of nuclear fuels under irradiation let us design and improve the new demanding conditions without neglecting the security and economics. In this way, the study of the evolution and details of the fissile material of the fuel in particular the 235 U inventory evolution and the 239 Pu production and evolution are demanding conditions. We implemented the PILR code, based on the RAPID model, for the radial distribution of U and Pu radioisotopes. The aim of this work is to determine production and disappearance of Pu and U isotopes during the irradiation of commercial and experimental fuel rods. (author)

  2. Fuel Modelling at Extended Burnup (Fumex-II). Report of a Coordinated Research Project 2002-2007

    International Nuclear Information System (INIS)

    2012-08-01

    It is fundamental to the future of nuclear power that reactors can be run safely and economically to compete with other forms of power generation. As a consequence, it is essential to develop the understanding of fuel performance and to embody that knowledge in codes to provide best estimate predictions of fuel behaviour. This, in turn, leads to a better understanding of fuel performance, a reduction in operating margins, flexibility in fuel management and unproved operating economics. Reliable prediction of fuel behaviour constitutes a basic demand for safety based calculations, for design purposes and for fuel performance assessments. Owing to the large number of interacting physical, chemical and thermomechanical phenomena occurring in the fuel rod during irradiation, it is necessary to perform calculations using computer codes. The ultimate goal is a description of fuel behaviour in both normal and abnormal conditions. From this knowledge, operating rules can be derived to prevent fuel failures and the release of fission products to the environment, and also, in extreme cases, to prevent escalation of fuel and core damage and the consequential hazards. The IAEA has therefore embarked on a series of programmes addressing different aspects of fuel behaviour modelling with the following objectives: - To assess the maturity and prediction capabilities of fuel performance codes, and support interaction and information exchange between countries with code development and application needs (FUMEX series); - To build a database of well-defined experiments suitable for code validation in association with the OECD/NEA; - To transfer a mature fuel modelling code to developing countries, to support teams in these countries in their efforts to adapt the code to the requirements of particular reactors, and to give guidance on applying the code to reactor operation and safety assessments; - To provide guidelines for code quality assurance, code licensing and code application

  3. A validated methodology for evaluating burnup credit in spent fuel casks

    International Nuclear Information System (INIS)

    Brady, M.C.; Sanders, T.L.

    1991-01-01

    The concept of allowing reactivity credit for the transmuted state of spent fuel offers both economic and risk incentives. This paper presents a general overview of the technical work being performed in support of the U.S. Department of Energy (DOE) program to resolve issues related to the implementation of burnup credit. An analysis methodology is presented along with information representing the validation of the method against available experimental data. The experimental data that are applicable to burnup credit include chemical assay data for the validation of the isotopic prediction models, fresh fuel critical experiments for the validation of criticality calculations for various cask geometries, and reactor restart critical data to validate criticality calculations with spent fuel. The methodology has been specifically developed to be simple and generally applicable, therefore giving rise to uncertainties or sensitivities which are identified and quantified in terms of a percent bias in k eff . Implementation issues affecting licensing requirements and operational procedures are discussed briefly. (Author)

  4. A validated methodology for evaluating burnup credit in spent fuel casks

    International Nuclear Information System (INIS)

    Brady, M.C.; Sanders, T.L.

    1991-01-01

    The concept of allowing reactivity credit for the transmuted state of spent fuel offers both economic and risk incentives. This paper presents a general overview of the technical work being performed in support of the US Department of Energy (DOE) program to resolve issues related to the implementation of burnup credit. An analysis methodology is presented along with information representing the validation of the method against available experimental data. The experimental data that are applicable to burnup credit include chemical assay data for the validation of the isotopic prediction models, fresh fuel critical experiments for the validation of criticality calculations for various casks geometries, and reactor restart critical data to validate criticality calculations with spent fuel. The methodology has been specifically developed to be simple and generally applicable, therefore giving rise to uncertainties or sensitivities which are identified and quantified in terms of a percent bias in k eff . Implementation issues affecting licensing requirements and operational procedures are discussed briefly

  5. A comparative study to investigate burnup in research reactor fuel using two independent experimental methods

    International Nuclear Information System (INIS)

    Iqbal, M.; Mehmood, T.; Ayazuddin, S.K.; Salahuddin, A.; Pervez, S.

    2001-01-01

    Two independent experimental methods have been used for the comparative study of fuel burnup measurement in low enriched uranium, plate type research reactor. In the first method a gamma ray activity ratio method was employed. An experimental setup was established for gamma ray scanning using prior calibrated high purity germanium detector. The computer software KORIGEN gave the theoretical support. In the second method reactivity difference technique was used. At the same location in the same core configuration the fresh and burned fuel element's reactivity worth was estimated. For theoretical estimated curve, group cross-sections were generated using computer code WIMS-D/4, and three dimensional modeling was made by computer code CITATION. The measured burnup of different fuel elements using these methods were found to be in good agreement

  6. Evaluation of the characteristics of high burnup and high plutonium content mixed oxide (MOX) fuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    Two kinds of MOX fuel irradiation tests, i.e., MOX irradiation test up to high burnup and MOX having high plutonium content irradiation test, have been performed from JFY 2007 for five years in order to establish technical data concerning MOX fuel behavior during irradiation, which shall be needed in safety regulation of MOX fuel with high reliability. The high burnup MOX irradiation test consists of irradiation extension and post irradiation examination (PIE). The activities done in JFY 2011 are destructive post irradiation examination (D-PIE) such as EPMA and SIMS at CEA (Commissariat a l'Enegie Atomique) facility. Cadarache and PIE data analysis. In the frame of irradiation test of high plutonium content MOX fuel programme, MOX fuel rods with about 14wt % Pu content are being irradiated at BR-2 reactor and corresponding PIE is also being done at PIE facility (SCK/CEN: Studiecentrum voor Kernenergie/Centre d'Etude l'Energie Nucleaire) in Belgium. The activities done in JFY 2011 are non-destructive post irradiation examination (ND-PIE) and D-PIE and PIE data analysis. In this report the results of EPMA and SIMS with high burnup irradiation test and the result of gamma spectrometry measurement which can give FP gas release rate are reported. (author)

  7. Irradiation performance of PFBR MOX fuel after 112 GWd/t burn-up

    Energy Technology Data Exchange (ETDEWEB)

    Venkiteswaran, C.N., E-mail: cnv@igcar.gov.in; Jayaraj, V.V.; Ojha, B.K.; Anandaraj, V.; Padalakshmi, M.; Vinodkumar, S.; Karthik, V.; Vijaykumar, Ran; Vijayaraghavan, A.; Divakar, R.; Johny, T.; Joseph, Jojo; Thirunavakkarasu, S.; Saravanan, T.; Philip, John; Rao, B.P.C.; Kasiviswanathan, K.V.; Jayakumar, T.

    2014-06-01

    The 500 MWe Prototype Fast Breeder Reactor (PFBR) which is in advanced stage of construction at Kalpakkam, India, will use mixed oxide (MOX) fuel with a target burnup of 100 GWd/t. The fuel pellet is of annular design to enable operation at a peak linear power of 450 W/cm with the requirement of minimum duration of pre-conditioning. The performance of the MOX fuel and the D9 clad and wrapper material was assessed through Post Irradiation Examinations (PIE) after test irradiation of 37 fuel pin subassembly in Fast Breeder Test Reactor (FBTR) to a burn-up of 112 GWd/t. Fission product distribution, swelling and fuel–clad gap evolution, central hole diameter variation, restructuring, fission gas release and clad wastage due to fuel–clad chemical interaction were evaluated through non-destructive and destructive examinations. The examinations have indicated that the MOX fuel can safely attain the desired target burn-up in PFBR.

  8. Modelling of high burnup structure in UO2 fuel with the RTOP code

    International Nuclear Information System (INIS)

    Likhanskii, V.; Zborovskii, V.; Evdokimov, I.; Kanyukova, V.; Sorokin, A.

    2008-01-01

    The present work deals with self-consistent physical approach aimed to derive the criterion of fuel restructuring avoiding correlations. The approach is based on study of large over pressurized bubbles formation on dislocations, at grain boundaries and in grain volume. At first, stage of formation of bubbles non-destroyable by fission fragments is examined using consistent modelling of point defects and fission gas behavior near dislocation and in grain volume. Then, evolution of formed large non-destroyable bubbles is considered using results of the previous step as initial values. Finally, condition of dislocation loops punching by sufficiently large over pressurized bubbles is regarded as the criterion of fuel restructuring onset. In the present work consideration of large over pressurized bubbles evolution is applied to modelling of the restructuring threshold depending on temperature, burnup and grain size. Effect of grain size predicted by the model is in qualitative agreement with experimental observations. Restructuring threshold criterion as an analytical function of local burnup and fuel temperature is derived and compared with HBRP project data. To predict rim-layer width formation depending on fuel burnup and irradiation conditions the model is implemented into the mechanistic fuel performance code RTOP. Calculated dependencies give upper estimate for the width of restructured region. Calculations show that one needs to consider temperature distribution within pellet which depends on irradiation history in order to model rim-structure formation

  9. Change in geometrical parameters of WWER high burnup fuel rods under operational conditions and transient testing

    International Nuclear Information System (INIS)

    Kanashov, B.; Amosov, S.; Lyadov, G.; Markov, D.; Ovchinnikov, V; Polenok, V.; Smirnov, A.; Sukhikh, A.; Bek, E.; Yenin, A.; Novikov, V.

    2001-01-01

    The paper discusses changes in fuel rods geometric parameters as result of operation conditions and burnups. The degree of geometry variability of fuel rods, cladding and column is one of the most important characteristics affecting fuel serviceability. On the other hand, changes in fuel rod geometric parameters influence fuel temperature, fission gas release, fuel-to-cladding stress strained state as well as the degree of interaction with FA skeleton elements and skeleton rigidity. Change in fuel-to-cladding gap is measured using compression technique. The axial distribution of fuel-to-cladding gap demonstrates the largest decrease of the gap in the region 500 to 2000 mm from the bottom of the fuel rod (WWER-440) and in the region of 500 to 3000 mm for WWER-1000. The cladding material creep in WWER fuel rods together with the radiation growth results in fuel rod cladding elongation. A set of transient tests for spent WWER-440 and WWER-1000 fuel rods carried out in SSC RIAR during a period 1995-1999, with the aim to estimate the changes in geometric parameters of FRs. The estimation of changes in outer diameter of cladding and fuel column and fuel-to-cladding gap are performed in transient conditions (changes in linear power range of 180 to 400 W/cm) for both WWER-440 and WWER-1000. WWER-440 fuel rods having the same burnup and close fuel-cladding contact before testing are subjected to considerable hoop cladding strain in testing up to 300 W/cm. But the hoop strain does not grow due to the structural changes in fuel column and decrease in central hole diameter occurred when the power is higher

  10. Operational Experience of Nuclear Fuel in Finnish Nuclear Power Plants (with Emphasis on WWER Fuel)

    International Nuclear Information System (INIS)

    Teraesvirta, R.

    2009-01-01

    The four operating nuclear reactors in Finland, Loviisa-1 and -2 and Olkiluoto-1 and -2 have now operated approximately 30 years. The overall operational experience has been excellent. Load factors of all units have been for years among the highest in the world. The development of the fuel designs during the years has enabled remarkable improvement in the fuel performance in terms of burnup. Average discharge burnup has increased more than 30 percent in all Finnish reactor units. A systematic inspection of spent fuel assemblies, and especially all failed fuel assemblies, is a good and useful practise employed in Finland. A possibility to inspect the fuel on site using a pool side inspection facility is a relatively economic way to find out root causes of fuel failures and thereby facilitate developing remedies to prevent similar failures in the future

  11. Advances in applications of burnup credit to enhance spent fuel transportation, storage, reprocessing and disposition. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2007-05-01

    Given a trend towards higher burnup power reactor fuel, the IAEA began an active programme in burnup credit (BUC) with major meetings in 1997 (IAEA-TECDOC-1013), 2000 (IAEA-TECDOC-1241) and 2002 (IAEA-TECDOC-1378) exploring worldwide interest in using BUC in spent fuel management systems. This publication contains the proceedings of the IAEA's 4th major BUC meeting, held in London. Sixty participants from 18 countries addressed calculation methodology, validation and criticality, safety criteria, procedural compliance with safety criteria, benefits of BUC applications, and regulatory aspects in BUC. This meeting encouraged the IAEA to continue its activities on burnup credit including dissemination of related information, given the number of Member States having to deal with increased spent fuel quantities and extended durations. A 5th major meeting on burnup credit is planned 2008. Burnup credit is a concept that takes credit for the reduced reactivity of fuel discharged from the reactor to improve loading density of irradiated fuel assemblies in storage, transportation, and disposal applications, relative to the assumption of fresh fuel nuclide inventories in loading calculations. This report has described a general four phase approach to be considered in burnup credit implementation. Much if not all of the background research and data acquisition necessary for successful burnup credit development in preparation for licensing has been completed. Many fuel types, facilities, and analysis methods are encompassed in the public knowledge base, such that in many cases this guidance will provide a means for rapid development of a burnup credit program. For newer assembly designs, higher enrichment fuels, and more extensive nuclide credit, additional research and development may be necessary, but even this work can build on the foundation that has been established to date. Those, it is hoped that this report will serve as a starting point with sufficient reference to

  12. Fission gas induced fuel swelling in low and medium burnup fuel during high temperature transients

    International Nuclear Information System (INIS)

    Vinjamuri, K.

    1980-01-01

    The behavior of light water reactor fuel elements under postulated accident conditions is being studied by the EG and G Idaho, Inc., Thermal Fuels Behavior Program for the Nuclear Regulatory Commission. As a part of this program, unirradiated and previously irradiated, pressurized-water-reactor type fuel rods were tested under power-cooling-mismatch (PCM) conditions in the Power Burst Facility (PBF). During these integral in-reactor experiments, film boiling was produced on the fuel rods which created high fuel and cladding temperatures. Fuel rod diameters increased in the film boiling region to a greater extent for irradiated rods than for unirradiated rods. The purpose of the study was to investigate and assess the fuel swelling which caused the fuel rod diameter increases and to evaluate the ability of an analytical code, the Gas Release and Swelling Subroutine - Steady-State and Transient (GRASS-SST), to predict the results

  13. Fission gas induced fuel swelling in low and medium burnup fuel during high temperature transients. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Vinjamuri, K.

    1980-01-01

    The behavior of light water reactor fuel elements under postulated accident conditions is being studied by the EG and G Idaho, Inc., Thermal Fuels Behavior Program for the Nuclear Regulatory Commission. As a part of this program, unirradiated and previously irradiated, pressurized-water-reactor type fuel rods were tested under power-cooling-mismatch (PCM) conditions in the Power Burst Facility (PBF). During these integral in-reactor experiments, film boiling was produced on the fuel rods which created high fuel and cladding temperatures. Fuel rod diameters increased in the film boiling region to a greater extent for irradiated rods than for unirradiated rods. The purpose of the study was to investigate and assess the fuel swelling which caused the fuel rod diameter increases and to evaluate the ability of an analytical code, the Gas Release and Swelling Subroutine - Steady-State and Transient (GRASS-SST), to predict the results.

  14. Correlation of waterside corrosion and cladding microstructure in high-burnup fuel and gadolinia rods

    International Nuclear Information System (INIS)

    Chung, H.M.

    1989-09-01

    Waterside corrosion of the Zircaloy cladding has been examined in high-burnup fuel rods from several BWRs and PWRs, as well as in 3 wt % gadolinia burnable poison rods obtained from a BWR. The corrosion behavior of the high-burnup rods was then correlated with results from a microstructural characterization of the cladding by optical, scanning-electron, and transmission-electron microscopy (OM, SEM, and TEM). OM and SEM examination of the BWR fuel cladding showed both uniform and nodular oxide layers 2 to 45 μm in thickness after burnups of 11 to 30 MWd/kgU. For one of the BWRs, which was operated at 307 degree C rather than the normal 288 degree C, a relatively thick (50 to 70 μm) uniform oxide, rather than nodular oxides, was observed after a burnup of 27 to 30 MWd/kgU. TEM characterization revealed a number of microstructural features that occurred in association with the intermetallic precipitates in the cladding metal, apparently as a result of irradiation-induced or -enhanced processes. The BWR rods that exhibited white nodular oxides contained large precipitates (300 to 700 nm in size) that were partially amorphized during service, indicating that a distribution of the large intermetallic precipitates is conductive to nodular oxidation. 23 refs., 9 figs

  15. Nuclear fuel

    International Nuclear Information System (INIS)

    Quinauk, J.P.

    1990-01-01

    Since 1985, Fragema has been marketing and selling the Advanced Fuel Assemby AFA whose main features are its zircaloy grids and removable top and bottom nozzles. It is this product, which exists for several different fuel assembly arrays and heights, that will be employed in the reactors at Daya Bay. Fragema employs gadolinium as the consumable poison to enable highperformance fuel management. More recently, the company has supplied fuel assemblies of the mixed-oxide(MOX) and enriched reprocessed uranium type. The reliability level of the fuel sold by Fragema is one of the highest in the world, thanks in particular to the excellence of the quality assurance and quality control programs that have been implemented at all stages of its design and manufacture

  16. Modeling CANDU type fuel behaviour during extended burnup irradiations using a revised version of the ELESIM code

    International Nuclear Information System (INIS)

    Arimescu, V.I.; Richmond, W.R.

    1992-05-01

    The high-burnup database for CANDU fuel, with a variety of cases, offers a good opportunity to check models of fuel behaviour, and to identify areas for improvement. Good agreement of calculated values of fission-gas release, and sheath hoop strain, with experimental data indicates that the global behaviour of the fuel element is adequately simulated by a computer code. Using, the ELESIM computer code, the fission-gas release, swelling, and fuel pellet expansion models were analysed, and changes made for gaseous swelling, and diffusional release of fission-gas atoms to the grain boundaries. Using this revised version of ELESIM, satisfactory agreement between measured values of fission-gas release was found for most of the high-burnup database cases. It is concluded that the revised version of the ELESIM code is able to simulate with reasonable accuracy high-burnup as well as low-burnup CANDU fuel

  17. Spent fuel dissolution rates as a function of burnup and water chemistry

    International Nuclear Information System (INIS)

    Gray, W.J.

    1998-06-01

    To help provide a source term for performance-assessment calculations, dissolution studies on light-water-reactor (LWR) spent fuel have been conducted over the past few years at Pacific Northwest National Laboratory in support of the Yucca Mountain Site Characterization Project. This report describes that work for fiscal years 1996 through mid-1998 and includes summaries of some results from previous years for completeness. The following conclusions were based on the results of various flowthrough dissolution rate tests and on tests designed to measure the inventories of 129 I located within the fuel/cladding gap region of different spent fuels: (1) Spent fuels with burnups in the range 30 to 50 MWd/kgM all dissolved at about the same rate over the conditions tested. To help determine whether the lack of burnup dependence extends to higher and lower values, tests are in progress or planned for spent fuels with burnups of 13 and ∼ 65 MWd/kgM. (2) Oxidation of spent fuel up to the U 4 O 9+x stage does not have a large effect on intrinsic dissolution rates. However, this degree of oxidation could increase the dissolution rates of relatively intact fuel by opening the grain boundaries, thereby increasing the effective surface area that is available for contact by water. From a disposal viewpoint, this is a potentially more important consideration than the effect on intrinsic rates. (3) The gap inventories of 129 I were found to be smaller than the fission gas release (FGR) for the same fuel rod with the exception of the rod with the highest FGR. Several additional fuels would have to be tested to determine whether a generalized relationship exists between FGR and 129 I gap inventory for US LWR fuels

  18. Investigation and basic evaluation for ultra-high burnup fuel cladding material

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Nagase, Fumihisa; Futakawa, Masatoshi; Kiuchi, Kiyoshi

    2001-03-01

    In ultra-high burnup of the power reactor, it is an essential problem to develop the cladding with excellent durability. First, development history and approach of the safety assessment of Zircaloy for the high burnup fuel were summarized in the report. Second, the basic evaluation and investigation were carried out on the material with high practicability in order to select the candidate materials for the ultra-high burnup fuel. In addition, the basic research on modification technology of the cladding surface was carried out from the viewpoint of the addition of safety margin as a cladding. From the development history of the zirconium alloy including the Zircaloy, it is hard to estimate the results of in-pile test from those of the conventional corrosion test (out-pile test). Therefore, the development of the new testing technology that can simulate the actual environment and the elucidation of the corrosion-controlling factor of the cladding are desired. In cases of RIA (Reactivity Initiated Accident) and LOCA (Loss of Coolant Accident), it seems that the loss of ductility in zirconium alloys under heavy irradiation and boiling of high temperature water restricts the extension of fuel burnup. From preliminary evaluation on the high corrosion-resistance materials (austenitic stainless steel, iron or nickel base superalloys, titanium alloy, niobium alloy, vanadium alloy and ferritic stainless steel), stabilized austenitic stainless steels with a capability of future improvement and high-purity niobium alloys with a expectation of the good corrosion resistance were selected as candidate materials of ultra-high burnup cladding. (author)

  19. Reactors as a Source of Antineutrinos: Effects of Fuel Loading and Burnup for Mixed-Oxide Fuels

    Science.gov (United States)

    Bernstein, Adam; Bowden, Nathaniel S.; Erickson, Anna S.

    2018-01-01

    In a conventional light-water reactor loaded with a range of uranium and plutonium-based fuel mixtures, the variation in antineutrino production over the cycle reflects both the initial core fissile inventory and its evolution. Under an assumption of constant thermal power, we calculate the rate at which antineutrinos are emitted from variously fueled cores, and the evolution of that rate as measured by a representative ton-scale antineutrino detector. We find that antineutrino flux decreases with burnup for low-enriched uranium cores, increases for full mixed-oxide (MOX) cores, and does not appreciably change for cores with a MOX fraction of approximately 75%. Accounting for uncertainties in the fission yields in the emitted antineutrino spectra and the detector response function, we show that the difference in corewide MOX fractions at least as small as 8% can be distinguished using a hypothesis test. The test compares the evolution of the antineutrino rate relative to an initial value over part or all of the cycle. The use of relative rates reduces the sensitivity of the test to an independent thermal power measurement, making the result more robust against possible countermeasures. This rate-only approach also offers the potential advantage of reducing the cost and complexity of the antineutrino detectors used to verify the diversion, compared to methods that depend on the use of the antineutrino spectrum. A possible application is the verification of the disposition of surplus plutonium in nuclear reactors.

  20. Uranium and plutonium determinations for evaluation of high burnup fuel performance

    International Nuclear Information System (INIS)

    Heinrich, R.R.; Popek, R.J.; Bowers, D.L.; Essling, A.M.; Callis, E.L.; Persiani, P.J.

    1985-01-01

    Purpose of this work is to experimentally test computational methods being developed for reactor fuel operation. Described are the analytical techniques used in the determination of uranium and plutonium compositions on PWR fuel that has spanned five power cycles, culminating in 55,000 to 57,000 MWd/T burnup. Analyses have been performed on ten samples excised from selected sections of the fuel rods. Hot cell operations required the separation of fuel from cladding and the comminution of the fuel. These tasks were successfully accomplished using a SpectroMil, a ball pestle impact grinding and blending instrument manufactured by Chemplex Industries, Inc., Eastchester, New York. The fuel was dissolved using strong mineral acids and bomb dissolution techniques. Separation of the fuel from fission products was done by solvent (hexone) extraction. Fuel isotopic compositions and assays were determined by the mass spectrometric isotope dilution (MSID) method using NBS standards SRM-993 and SRM-996. Alpha spectrometry was used to determine the 238 Pu composition. Relative correlations of composition with burnup were obtained by gamma-ray spectrometry of selected fission products in the dissolved fuel

  1. Spent nuclear fuel transport problems

    International Nuclear Information System (INIS)

    Kondrat'ev, A.N.; Kosarev, Yu.A.; Yulikov, E.I.

    1977-01-01

    The paper considers the problems of shipping spent fuel from nuclear power stations to reprocessing plants and also the principal ways of solving these problems with a view to achieving maximum economy and safety in transport. The increase in the number of nuclear power plants in the USSR will entail an intensification of spent-fuel shipments. Higher burnup and the need to reduce cooling time call for heavier and more complex shipping containers. The problem of shipping spent fuel should be tackled comprehensively, bearing in mind the requirements of safety and economy. One solution to these problems is to develop rational and cheap designs of such containers. In addition, the world-wide trend towards more thorough protection of the environment against pollution and of the health of the population requires the devotion of constant attention to improving the reliability and safety of shipments. The paper considers the prospects for nuclear power development in the USSR and in other member countries of the CMEA (1976-1980), the composition and design of some Soviet packaging assemblies, the appropriate cooling time for spent fuel from thermal reactor power stations, procedures for reducing fuel-shipping costs, some methodological problems of container calculation and design, and finally problems of testing and checking containers on test rigs. (author)

  2. Efficiency improvement of nuclear power plant operation: the significant role of advanced nuclear fuel technologies

    International Nuclear Information System (INIS)

    Van Velde, AA. de; Burtak, F.

    2000-01-01

    In this paper authors deals with nuclear fuel cycle and their economic aspects. At Siemens, the developments focusing on the reduction of fuel cycle costs are currently directed on .further batch average burnup increase, .improvement of fuel reliability, .enlargement of fuel operation margins, .improvement of methods for fuel design and core analysis. These items will be presented in detail in the full paper and illustrated by the global operating experience of Siemens fuel for both PWRs and BWRs. (authors)

  3. Research program on conditions to failure of high burnup fuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Regarding the power ramp test to verify the out-of-pile test results on hydrogen-induced cladding failure, situation of the shipping port restoration after the earthquake disaster was investigated for the overseas transportation of test fuel rods which had been interrupted. Its reopening schedule was still currently uncertain and the power ramp test plan also remained suspended. The information about the fuel irradiation performance obtained from JNES projects and international projects, etc. is prepared as database, and based on the recent findings, the fuel irradiation performance models and analysis codes are developed and/or improved. (author)

  4. Modification in the FUDA computer code to predict fuel performance at high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Das, M; Arunakumar, B V; Prasad, P N [Nuclear Power Corp., Mumbai (India)

    1997-08-01

    The computer code FUDA (FUel Design Analysis) participated in the blind exercises organized by the IAEA CRP (Co-ordinated Research Programme) on FUMEX (Fuel Modelling at Extended Burnup). While the code prediction compared well with the experiments at Halden under various parametric and operating conditions, the fission gas release and fission gas pressure were found to be slightly over-predicted, particularly at high burnups. In view of the results of 6 FUMEX cases, the main models and submodels of the code were reviewed and necessary improvements were made. The new version of the code FUDA MOD 2 is now able to predict fuel performance parameter for burn-ups up to 50000 MWD/TeU. The validation field of the code has been extended to prediction of thorium oxide fuel performance. An analysis of local deformations at pellet interfaces and near the end caps is carried out considering the hourglassing of the pellet by finite element technique. (author). 15 refs, 1 fig.

  5. Modification in the FUDA computer code to predict fuel performance at high burnup

    International Nuclear Information System (INIS)

    Das, M.; Arunakumar, B.V.; Prasad, P.N.

    1997-01-01

    The computer code FUDA (FUel Design Analysis) participated in the blind exercises organized by the IAEA CRP (Co-ordinated Research Programme) on FUMEX (Fuel Modelling at Extended Burnup). While the code prediction compared well with the experiments at Halden under various parametric and operating conditions, the fission gas release and fission gas pressure were found to be slightly over-predicted, particularly at high burnups. In view of the results of 6 FUMEX cases, the main models and submodels of the code were reviewed and necessary improvements were made. The new version of the code FUDA MOD 2 is now able to predict fuel performance parameter for burn-ups up to 50000 MWD/TeU. The validation field of the code has been extended to prediction of thorium oxide fuel performance. An analysis of local deformations at pellet interfaces and near the end caps is carried out considering the hourglassing of the pellet by finite element technique. (author). 15 refs, 1 fig

  6. Characterisation of high-burnup LWR fuel rods through gamma tomography

    International Nuclear Information System (INIS)

    Caruso, S.

    2007-01-01

    Current fuel management strategies for light water reactors (LWRs), in countries with high back-end costs, progressively extend the discharge burnup at the expense of increasing the 235 U enrichment of the fresh UO 2 fuel loaded. In this perspective, standard non-destructive assay techniques, which are very attractive because they are fast, cheap, and preserve the fuel integrity, in contrast to destructive approaches, require further validation when burnup values become higher than 50 GWd/t. This doctoral work has been devoted to the development and optimisation of non-destructive assay techniques based on gamma-ray emissions from irradiated fuel. It represents an important extension of the unique, high-burnup related database, generated in the framework of the LWR PROTEUS Phase II experiments. A novel tomographic measurement station has been designed and developed for the investigation of irradiated fuel rod segments. A unique feature of the station is that it allows both gamma-ray transmission and emission computerised tomography to be performed on single fuel rods. Four burnt UO 2 fuel rod segments of 400 mm length have been investigated, two with very high (52 GWd/t and 71 GWd/t) and two with ultra-high (91 GWd/t and 126 GWd/t) burnup. Several research areas have been addressed, as described below. The application of transmission tomography to spent fuel rods has been a major task, because of difficulties of implementation and the uniqueness of the experiments. The main achievements, in this context, have been the determination of fuel rod average material density (a linear relationship between density and burnup was established), fuel rod linear attenuation coefficient distribution (for use in emission tomography), and fuel rod material density distribution. The non-destructive technique of emission computerised tomography (CT) has been applied to the very high and ultra-high burnup fuel rod samples for determining their within-rod distributions of caesium and

  7. A technique of melting temperature measurement and its application for irradiated high-burnup MOX fuels

    International Nuclear Information System (INIS)

    Namekawa, Takashi; Hirosawa, Takashi

    1999-01-01

    A melting temperature measurement technique for irradiated oxide fuels is described. In this technique, the melting temperature was determined from a thermal arrest on a heating curve of the specimen which was enclosed in a tungsten capsule to maintain constant chemical composition of the specimen during measurement. The measurement apparatus was installed in an alpha-tight steel box within a gamma-shielding cell and operated by remote handling. The temperature of the specimen was measured with a two-color pyrometer sighted on a black-body well at the bottom of the tungsten capsule. The diameter of the black-body well was optimized so that the uncertainties of measurement were reduced. To calibrate the measured temperature, two reference melting temperature materials, tantalum and molybdenum, were encapsulated and run before and after every oxide fuel test. The melting temperature data on fast reactor mixed oxide fuels irradiated up to 124 GWd/t were obtained. In addition, simulated high-burnup mixed oxide fuel up to 250 GWd/t by adding non-radioactive soluble fission products was examined. These data shows that the melting temperature decrease with increasing burnup and saturated at high burnup region. (author)

  8. Probabilistic safety criteria on high burnup HWR fuels

    International Nuclear Information System (INIS)

    Marino, A.C.

    2002-01-01

    BACO is a code for the simulation of the thermo-mechanical and fission gas behaviour of a cylindrical fuel rod under operation conditions. Their input parameters and, therefore, output ones may include statistical dispersion. In this paper, experimental CANDU fuel rods irradiated at the NRX reactor together with experimental MOX fuel rods and the IAEA-CRP FUMEX cases are used in order to determine the sensitivity of BACO code predictions. The techniques for sensitivity analysis defined in BACO are: the 'extreme case analysis', the 'parametric analysis' and the 'probabilistic (or statistics) analysis'. We analyse the CARA and CAREM fuel rods relation between predicted performance and statistical dispersion in order of enhanced their original designs taking account probabilistic safety criteria and using the BACO's sensitivity analysis. (author)

  9. Optimization of FBR fuel element for high burnup

    International Nuclear Information System (INIS)

    Marbach, G.; Millet, P.

    1985-03-01

    After a brief historical background showing evolution of the French fast reactor fuel element from RAPSODIE to PHENIX and SUPER PHENIX we have examined the main points which have permitted to increase irradiation performance of the subassembly

  10. The optimum fuel and power distribution for a PWR burnup cycle

    International Nuclear Information System (INIS)

    Stillman, J.A.

    1989-01-01

    A method was developed to determine the optimum fuel and power distributions for a PWR burnup cycle. The backward diffusion calculation [1] and the Core-wise Green's Function [2] method were used for the core model which provided analytic derivatives for solving the nonlinear optimization problem using successive linear programming [3] methods. The solution algorithm consisted of a reverse depletion strategy which begins at the end of cycle and solves simultaneously for the optimal fuel and burnable absorber distributions while the core is depleted to the beginning of cycle. The resulting optimal solutions minimize the required fissile fuel inventory and burnable absorber loading for a PWR

  11. Fuel chemistry and pellet-clad interaction related to high burnup fuel. Proceedings of the technical committee

    International Nuclear Information System (INIS)

    2000-10-01

    The purpose of the meeting was to review new developments in clad failures. Major findings regarding the causes of clad failures are presented in this publication, with the main topics being fuel chemistry and fission product behaviour, swelling and pellet-cladding mechanical interaction, cladding failure mechanism at high burnup, thermal properties and fuel behaviour in off-normal conditions. This publication contains 17 individual presentations delivered at the meeting; each of them was indexed separately

  12. Analytical and numerical study of radiation effect up to high burnup in power reactor fuels

    International Nuclear Information System (INIS)

    Lemes, M; Denis, A; Soba, A

    2012-01-01

    In the present work the behavior of fuel pellets for power reactors in the high burnup range (average burnup higher than 50 MWd/kgHM) is analyzed. For extended irradiation periods, a considerable Pu concentration is reached in the pellet periphery (rim zone), that contributes to local burnup, as long as a new microstructure develops, characterized by small grains and large pores as compared with those of the original material. In this region Xe is absent from the solid lattice (although it continues to be dissolved in the rest of the pellet). The porous microstructure in the pellet edge causes local changes in the mechanical and thermal properties, thus affecting the overall fuel behaviour. The evolution of porosity in the high burnup structure (HBS) is assumed to be determinant of the retention capacity of the fission gases released by the matrix. This is the reason why, during the latest years a considerable effort has been devoted to characterizing the parameters that influence porosity. Starting from several works published in the open literature, a model was developed to describe the behaviour and evolution of porosity at local burnup values ranging from 60 to 300 MWd/KgHM. The model is mathematically expressed by a system of non-linear differential equations that take into account the open and closed porosity, the interactions between pores and the free surface and phenomena like pore's coalescence and migration and gas venting. Interactions of different orders between open and closed pores, growth of pores radius by vacancies trapping, the evolution of the pores number density, the internal pressure and over pressure within the pores, the fission gas retained in the matrix and released to the free volume are analyzed. The results of the simulations performed in the present work are in excellent agreement with experimental data available in the open literature and with results calculated by other authors (author)

  13. Development of a new measurement method for fast breeder reactor fuel burnup using a shielded ion microprobe analyzer

    International Nuclear Information System (INIS)

    Mizuno, M.; Enokido, Y.; Itaki, T.; Kono, K.; Unno, I.; Yamanouchi, S.

    1985-01-01

    A new method of burnup measurement using a shielded ion microprobe analyzer (SIMA) has been developed. The method is based on the isotope analysis of uranium, plutonium, and fission products in irradiated mixed oxide fuel by means of secondary ion mass spectrometry (SIMS). Fourteen samples irradiated in the Japanese experimental fast reactor JOYO were examined. The maximum local burnup of JOYO MK-I core fuels was about5.1 at. %. The axial burnup distribution of the fuel pin was in good agreement with that of the sibling pin in the same subassembly, measured by surface ionization mass spectrometry, which requires the chemical separation of fission products and heavy metals. The new method facilitates the rapid and accurate measurement of fast breeder reactor fuel burnup without human radiation exposure during sample preparation and analysis

  14. Effect of a time varying power level in EBR-II on mixed-oxide fuel burnup

    International Nuclear Information System (INIS)

    Stone, I.Z.; Jost, J.W.; Baker, R.B.

    1979-01-01

    A refined prediction of burnup of mixed-oxide fuel in EBR-2 is compared with measured data. The calculation utilizes a time-varying power factor and results in a general improvement to previous calculations

  15. Flowchart evaluations of irradiated fuel treatment process of low burnup thorium

    International Nuclear Information System (INIS)

    Linardi, M.

    1987-01-01

    A literature survey has been carried out, on some versions of the acid-thorex process. Flowsheets of the different parts of the process were evaluated with mixer-settlers experiments. A low burnup thorium fuel (mass ratio Th/U∼100/1), proposed for Brazilian fast breeder reactor initial program, was considered. The behaviour of some fission products was studied by irradiated tracers techniques. Modifications in some of the process parameters were necessary to achieve low losses of 233 U and 232 U and 232 Th. A modified acid-thorex process flowsheet, evaluated in a complete operational cycle, for the treatment of low burnup thorium fuels, is presented. High decontamination factors of thorium in uranium, with reasonable decontamination of uranium in thorium, were achieved. (author) [pt

  16. Fuel temperature prediction during high burnup HTGR fuel irradiation test. US-JAERI irradiation test for HTGR fuel

    International Nuclear Information System (INIS)

    Sawa, Kazuhiro; Fukuda, Kousaku; Acharya, R.

    1995-01-01

    This report describes the preirradiation thermal analysis of the HRB-22 capsule designed for an irradiation test in a removable beryllium position of the High Flux Isotope Reactor(HFIR) at Oak Ridge National Laboratory. This test is being carried out under Annex 2 of the Arrangement between the U.S. Department of Energy and the Japan Atomic Energy Research Institute on Cooperation in Research and Development regarding High-Temperature Gas-cooled Reactors. The fuel used in the test is an advanced type. The advanced fuel was designed aiming at burnup of about 10%FIMA(% fissions per initial metallic atom) which was higher than that of the first charge fuel for the High Temperature Engineering Test Reactor(HTTR) and was produced in Japan. CACA-2, a heavy isotope and fission product concentration calculational code for experimental irradiation capsules, was used to determine time-dependent fission power for the fuel compacts. The Heat Engineering and Transfer in Nine Geometries(HEATING) code was used to solve the steady-state heat conduction problem. The diameters of the graphite fuel body, which contains the fuel compacts, and of the primary pressure vessel were determined such that the requirements of running the fuel compacts at an average temperature less than 1250degC and of not exceeding a maximum fuel temperature of 1350degC were met throughout the four cycles of irradiation. The detail design of the capsule was carried out based on this analysis. (author)

  17. The role of ORIGEN-S in the design of burnup credit spent fuel casks

    International Nuclear Information System (INIS)

    Brady, M.C.

    1991-01-01

    Current licensing practices for spent fuel pools, storage facilities, and transportation casks require a conservative ''fresh fuel assumption'' be used in the criticality analysis. Burnup credit refers to a new approach in criticality analyses for spent fuel handling systems in which reactivity credit is allowed for the depleted state of the fuel. Studies have shown that the increased cask capacities that can be achieved with burnup credit offer both economic and risk incentives. The US Department of Energy is currently sponsoring a program to develop analysis methodologies and establish a new generation of spent fuel casks using the principle of burnup credit. The key difference in this new approach is the necessity to accurately predict the isotopic composition of the spent fuel. ORIGEN-S was selected to satisfy this requirement because of the flexibility and user-friendly input offered via its usage in the Standardized Computer Analyses for Licensing and Evaluation (SCALE) code system. Specifically, through the Shielding Analysis Sequence 2H (SAS2H), ORIGEN-S is linked with cross-section processing codes and one-dimensional transport analyses to produce problem-specific cross-section data for the point-depletion calculation. The utility code COUPLE facilitates updating basic cross-section and fission-yield data for the calculations. This paper describes the fundamental role fulfilled by ORIGEN-S in the development of the analysis methodology, validation of the methods, definition of criticality safety margins and other licensing considerations in the design of a new generation of spent fuel casks. Particular emphasis is given to the performance of ORIGEN-S in comparisons with measurements of irradiated fuel compositions and in predicting isotopics for use in the calculation of reactor restart critical configurations that are performed as a part of the validation process

  18. Estimate of fuel burnup spatial a multipurpose reactor in computer simulation; Estimativa da queima espacial do combustivel de um reator multiproposito por simulacao computacional

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Nadia Rodrigues dos, E-mail: nadia.santos@ifrj.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio de Janeiro (IFRJ), Paracambi, RJ (Brazil); Lima, Zelmo Rodrigues de; Moreira, Maria de Lourdes, E-mail: malu@ien.gov.br, E-mail: zrlima@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    In previous research, which aimed, through computer simulation, estimate the spatial fuel burnup for the research reactor benchmark, material test research - International Atomic Energy Agency (MTR/IAEA), it was found that the use of the code in FORTRAN language, based on the diffusion theory of neutrons and WIMSD-5B, which makes cell calculation, bespoke be valid to estimate the spatial burnup other nuclear research reactors. That said, this paper aims to present the results of computer simulation to estimate the space fuel burnup of a typical multipurpose reactor, plate type and dispersion. the results were considered satisfactory, being in line with those presented in the literature. for future work is suggested simulations with other core configurations. are also suggested comparisons of WIMSD-5B results with programs often employed in burnup calculations and also test different methods of interpolation values obtained by FORTRAN. Another proposal is to estimate the burning fuel, taking into account the thermohydraulics parameters and the appearance of xenon. (author)

  19. Investigation of burnup credit allowance in the criticality safety evaluation of spent fuel casks

    International Nuclear Information System (INIS)

    Lake, W.H.; Sanders, T.L.; Parks, C.V.

    1990-01-01

    This presentation discusses work in progress on criticality analysis verification for designs which take account of the burnup and age of transported fuel. The work includes verification of cross section data, correlation with experiments, proper extension of the methods into regimes not covered by experiments, establishing adequate reactivity margins, and complete documentation of the project. Recommendations for safe operational procedures are included, as well as a discussion of the economic and safety benefits of such designs

  20. Nondestructive assay methods for irradiated nuclear fuels

    International Nuclear Information System (INIS)

    Hsue, S.T.; Crane, T.W.; Talbert, W.L. Jr.; Lee, J.C.

    1978-01-01

    This report is a review of the status of nondestructive assay (NDA) methods used to determine burnup and fissile content of irradiated nuclear fuels. The gamma-spectroscopy method measures gamma activities of certain fission products that are proportional to the burnup. Problems associated with this method are migration of the fission products and gamma-ray attenuation through the relatively dense fuel material. The attenuation correction is complicated by generally unknown activity distributions within the assemblies. The neutron methods, which usually involve active interrogation and prompt or delayed signal counting, are designed to assay the fissile content of the spent-fuel elements. Systems to assay highly enriched spent-fuel assemblies have been tested extensively. Feasibility studies have been reported of systems to assay light-water reactor spent-fuel assemblies. The slowing-down spectrometer and neutron resonance absorption methods can distinguish between the uranium and plutonium fissile contents, but they are limited to the assay of individual rods. We have summarized the status of NDA techniques for spent-fuel assay and present some subjects in need of further investigation. Accuracy of the burnup calculations for power reactors is also reviewed

  1. Chemical analyses and calculation of isotopic compositions of high-burnup UO{sub 2} fuels and MOX fuels

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Tetsuo; Sasahara, Akihiro [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2001-08-01

    Chemical analysis activities of isotopic compositions of high-burnup UO{sub 2} fuels and MOX fuels in CRIEPI and calculation evaluation are reviewed briefly. C/E values of ORIGEN2, in which original libraries and JENDL-3.2 libraries are used, and other codes with chemical analysis data are reviewed and evaluated. Isotopic compositions of main U and Pu in fuels can be evaluated within 10% relative errors by suitable libraries and codes. Void ratio is effective parameter for C/E values in BWR fuels. JENDL-3.2 library shows remarkable improvement compared with original libraries in isotopic composition evaluations of FP nuclides. (author)

  2. Nuclear-data uncertainty propagations in burnup calculation for the PWR assembly

    International Nuclear Information System (INIS)

    Wan, Chenghui; Cao, Liangzhi; Wu, Hongchun; Shen, Wei

    2017-01-01

    Highlights: • The DRAGON 5.0 and NECP-CACTI have been implemented in UNICORN. • The effects of different neutronics methods on S&U results were quantified. • Uncertainty analysis has been applied to burnup calculation of PWR assembly. • The uncertainties of eigenvalue and few-group constants have been quantified. - Abstract: In this paper, our home-developed lattice code NECP-CACTI has been implemented into our UNICORN code to perform sensitivity and uncertainty analysis for the lattice calculations. The verified multigroup cross-section perturbation model and methods of the sensitivity and uncertainty analysis are established and applied to different lattice codes in UNICORN. As DRAGON5.0 and NECP-CACTI are available for the lattice calculations in UNICORN now, the effects of different neutronics methods (including methods for the neutron-transport and resonance self-shielding calculations) on the results of sensitivity and uncertainty analysis were studied in this paper. Based on NECP-CACTI, uncertainty analysis using the statistical sampling method has been performed to the burnup calculation for the fresh-fueled TMI-1 assembly, propagating the nuclear-data uncertainties to k_∞ and two-group constants of the lattice calculation with depletions. As results shown, for different neutronics methods, it can be observed that different methods of the neutron-transport calculation introduce no differences to the results of sensitivity and uncertainty analysis, while different methods of the resonance self-shielding calculation would impact the results. With depletions of the TMI-1 assembly, for k_∞, the relative uncertainty varies between 0.45% and 0.60%; for two-group constants, the largest variation is between 0.35% and 2.56% for vΣ_f_,_2. Moreover, the most significant contributors to the uncertainty of k_∞ and two-group constants varied with depletions are determined.

  3. Nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Natori, Hisahide; Kurihara, Kunitoshi.

    1982-01-01

    Purpose: To increase the fuel safety by decreasing the gap conductance between fuels and cladding tubes, as well as improve the reactor core controllability by rendering the void coefficient negative. Constitution: Fuel assemblies in a pressure tube comprise a tie-rod, fuel rods in a central region, and fuel rods with burnable poison in the outer circumference region. Here, B 4 C is used as the burnable poison by 1.17 % by weight ratio. The degrees of enrichment for the fissile plutonium as PuO 2 -UO 2 fuel used in the assemblies are 2.7 %, 2.7 % and 1.5 % respectively in the innermost layer, the intermediate layer and the outermost layer. This increases the burn-up degree to improve the plant utilizability, whereby the void coefficient is rendered negative to improve the reactor core controllability. (Horiuchi, T.)

  4. Modeling fission gas release in high burnup ThO2-UO2 fuel

    International Nuclear Information System (INIS)

    Long, Y.; Yuan, Y.; Pilat, E.E.; Rim, C.S.; Kazimi, M.S.

    2001-01-01

    A preliminary fission gas release model to predict the performance of thoria fuel using the FRAPCON-3 computer code package has been formulated. The following modeling changes have been made in the code: - Radial power/burnup distribution; - Thermal conductivity and thermal expansion; - Rim porosity and fuel density; - Diffusion coefficient of fission gas in ThO 2 -UO 2 fuel and low temperature fission gas release model. Due to its lower epithermal resonance absorption, thoria fuel experiences a much flatter distribution of radial fissile products and radial power distribution during operation as compared to uranian fuel. The rim effect and its consequences in thoria fuel, therefore, are expected to occur only at relatively high burnup levels. The enhanced conductivity is evident for ThO 2 , but for a mixture the thermal conductivity enhancement is small. The lower thermal fuel expansion tends to negate these small advantages. With the modifications above, the new version of FRAPCON-3 matched the measured fission gas release data reasonably well using the ANS 5.4 fission gas release model. (authors)

  5. Fuel burnup analysis of the TRIGA Mark II reactor at the University of Pavia

    International Nuclear Information System (INIS)

    Chiesa, Davide; Clemenza, Massimiliano; Pozzi, Stefano; Previtali, Ezio; Sisti, Monica; Alloni, Daniele; Magrotti, Giovanni; Manera, Sergio; Prata, Michele; Salvini, Andrea; Cammi, Antonio; Zanetti, Matteo; Sartori, Alberto

    2016-01-01

    Highlights: • A fuel evolution model for a TRIGA Mark II reactor has been developed. • Reproduction of nearly 50 years of reactor operation. • The model was used to predict the best reactor reconfiguration. • Reactor life was extended without adding fresh fuel elements. - Abstract: A time evolution model was developed to study fuel burnup for the TRIGA Mark II reactor at the University of Pavia. The results were used to predict the effects of a complete core reconfiguration and the accuracy of this prediction was tested experimentally. We used the Monte Carlo code MCNP5 to reproduce system neutronics in different operating conditions and to analyze neutron fluxes in the reactor core. The software that took care of time evolution, completely designed in-house, used the neutron fluxes obtained by MCNP5 to evaluate fuel consumption. This software was developed specifically to keep into account some features that differentiate low power experimental reactors from those used for power production, such as the daily ON/OFF cycle and the long fuel lifetime. These effects can not be neglected to properly account for neutron poison accumulation. We evaluated the effect of 48 years of reactor operation and predicted a possible new configuration for the reactor core: the objective was to remove some of the fuel elements from the core and to obtain a substantial increase in the Core Excess reactivity value. The evaluation of fuel burnup and the reconfiguration results are presented in this paper.

  6. Grain size and burnup dependence of spent fuel oxidation: Geological repository impact

    International Nuclear Information System (INIS)

    Kansa, E.J.; Hanson, B.D.; Stout, R.B.

    1999-01-01

    Further refinements to the oxidation model of Stout et al. have been made. The present model incorporates the burnup dependence of the oxidation rate and an allowance for a distribution of grain sizes. The model was tested by comparing the model results with the oxidation histories of spent-fuel samples oxidized in thermogravimetric analysis (TGA) or oven dry-bath (ODB) experiments. The experimental and model results are remarkably close and confirm the assumption that grain-size distributions and activation energies are the important parameters to predicting oxidation behavior. The burnup dependence of the activation energy was shown to have a greater effect than decreasing the effective grain size in suppressing the rate of the reaction U 4 O 9 r↓U 3 O 8 . Model results predict that U 3 O 8 formation of spent fuels exposed to oxygen will be suppressed even for high burnup fuels that have undergone restructuring in the rim region, provided the repository temperature is kept sufficiently low

  7. Some Thermodynamic Features of Uranium-Plutonium Nitride Fuel in the Course of Burnup

    Science.gov (United States)

    Rusinkevich, A. A.; Ivanov, A. S.; Belov, G. V.; Skupov, M. V.

    2017-12-01

    Calculation studies on the effect of carbon and oxygen impurities on the chemical and phase compositions of nitride uranium-plutonium fuel in the course of burnup are performed using the IVTANTHERMO code. It is shown that the number of moles of UN decreases with increasing burnup level, whereas UN1.466, UN1.54, and UN1.73 exhibit a considerable increase. The presence of oxygen and carbon impurities causes an increase in the content of the UN1.466, UN1.54 and UN1.73 phases in the initial fuel by several orders of magnitude, in particular, at a relatively low temperature. At the same time, the presence of impurities abruptly reduces the content of free uranium in unburned fuel. Plutonium in the considered system is contained in form of Pu, PuC, PuC2, Pu2C3, and PuN. Plutonium carbides, as well as uranium carbides, are formed in small amounts. Most of the plutonium remains in the form of nitride PuN, whereas unbound Pu is present only in the areas with a low burnup level and high temperatures.

  8. Grain and burnup dependence of spent fuel oxidation: geological repository impact

    International Nuclear Information System (INIS)

    Hanson, B. D.; Kansa, E. J.; Stoot, R.B.

    1998-01-01

    Further refinements to the oxidation model of Stout et al. have been made. The present model incorporates the burnup dependence of the oxidation rate in addition to an allowance for a distribution of grain sizes. The model was tested by comparing the model results with the oxidation histories of spent fuel samples oxidized in Thermogravimetric Analysis (TGA) or Oven Dry-Bath (ODB) experiments. The comparison between the experimental and model results are remarkably close and confirm the assumption that grain-size distributions and activation energies are the important parameters to predicting oxidation behavior. The burnup dependence of the activation energy was shown to have a greater effect than decreasing the effective grain size in suppressing the rate of the reaction U 4 O 9 (rightwards arrow)U 3 O 4 . Model results predict that U 3 O 8 formation of spent fuels exposed to oxygen will be suppressed even for high burnup fuels that have undergone restructuring in the rim region, provided the repository temperature is kept sufficient

  9. Development of a code and models for high burnup fuel performance analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, M; Kitajima, S [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1997-08-01

    First the high burnup LWR fuel behavior is discussed and necessary models for the analysis are reviewed. These aspects of behavior are the changes of power history due to the higher enrichment, the temperature feedback due to fission gas release and resultant degradation of gap conductance, axial fission gas transport in fuel free volume, fuel conductivity degradation due to fission product solution and modification of fuel micro-structure. Models developed for these phenomena, modifications in the code, and the benchmark results mainly based on Risoe fission gas project is presented. Finally the rim effect which is observe only around the fuel periphery will be discussed focusing into the fuel conductivity degradation and swelling due to the porosity development. (author). 18 refs, 13 figs, 3 tabs.

  10. Assessment of dry storage performance of spent LWR fuel assemblies with increasing burnup

    International Nuclear Information System (INIS)

    Peehs, M.; Garzarolli, F.; Goll, W.

    1999-01-01

    Although the safety of a dry long-term spent fuel store is scarcely influenced if a few fuel rods start to leak during extended storage - since all confinement systems are designed to retain gaseous activity safely - it is a very conservative safety goal to avoid the occurrence of systematic rod defects. To assess the extended storage performance of a spent fuel assembly (FA), the experience can be collated into 3 storage modes: I - fast rate of temperature decrease δ max ≥ δ ≥ 300 deg. C, II - medium rate of decrease for the fuel rod dry storage temperature 300 deg. C > δ ≥ 200 deg. C, III - slow to negligible rate of temperature decrease for δ 2 -fuel are practically immobile during storage. Consequently all fission-product-driven defect mechanisms will not take place. The leading defect mechanism - also for fuel rods with increased burnup - remains creep due to the hoop strain resulting from the fuel rod internal fission gas pressure. Limiting the creep to its primary and secondary stages prevents fuel rod degradation. The allowable uniform strain of the cladding is 1 - 2%. Calculations were performed to predict the dry storage performance of fuel assemblies with a burnup ≤ 55 GW · d/tHM based on the fuel assemblies end of life (EOL)-data and on a representative curve T = f(t). The maximum allowable hot spot temperature of a fuel rod in the CASTOR V cask was between 348 deg. C (U FA) and 358 deg. C (MOX FA). The highest hoop strain predicted after 40 years of storage is 0.77% proving that spent LWR fuel dry storage is safe. (author)

  11. Development of experimental methods for measuring fuel elements burnup

    International Nuclear Information System (INIS)

    PEREDA, C; HENRIQUEZ, C; NAVARRO, G; TORRES, H; KLEIN, J; CALDERON, D; MEDEL, J; MUTIS, O; DAIE, J; ITURRIETA, L; LONCOMILLA, M; ZAMBRANO, J; KESTELMAN, A

    2003-01-01

    This paper is a summary of the work carried out during the last two years in fuel burning measurements at RECH-1 for different enrichments, cooling times and burning rates. The measurements were made in two gamma-spectrometric facilities, one is installed in a hot cell and the other inside of the secondary pool of the RECH-1, where the element is under 2 meters of water. The hot cell measurements need at least 100 cooling days because of the problems generated by the transport of highly active fuel elements from the Reactor to the cell. This was the main reason for using the in-pool facility because of its capability to measure the burning of fuel elements without having to wait so long, that is with only 5 cooling days. The accumulated experience in measurements achieved in both facilities and the encouraging results show that this measuring method is reliable. The results agreed well with those obtained using the reactor's physics codes, which was the way they were obtained previously (Cw)

  12. Nuclear fuel cycle scenarios at CGNPC

    International Nuclear Information System (INIS)

    Xiao, Min; Zhou, Zhou; Nie, Li Hong; Mao, Guo Ping; Hao, Si Xiong; Shen, Kang

    2008-01-01

    Established in 1994, China Guangdong Nuclear Power Holding Co. (CGNPC) now owns two power stations GNPS and LNPS Phase I, with approximate 4000 MWe of installed capacity. With plant upgrades, advanced fuel management has been introduced into the two plants to improve the plant economical behavior with the high burnup fuel implemented. For the purpose of sustainable development, some preliminary studies on nuclear fuel cycle, especially on the back-end, have been carried out at CGNPC. According to the nuclear power development plan of China, the timing for operation and the capacity of the reprocessing facility are studied based on the amount of the spent fuel forecast in the future. Furthermore, scenarios of the fuel cycles in the future in China with the next generation of nuclear power were considered. Based on the international experiences on the spent fuel management, several options of spent fuel reprocessing strategies are investigated in detail, for example, MOX fuel recycling in light water reactor, especially in the current reactors of CGNPC, spent fuel intermediated storage, etc. All the investigations help us to draw an overall scheme of the nuclear fuel cycle, and to find a suitable road-map to achieve the sustainable development of nuclear power. (authors)

  13. Evaluation of Isotopic Measurements and Burn-up Value of Sample GU3 of ARIANE Project

    Energy Technology Data Exchange (ETDEWEB)

    Tore, C.; Rodriguez Rivada, A.

    2014-07-01

    Estimation of the burn-up value of irradiated fuel and its isotopic composition are important for criticality analysis, spent fuel management and source term estimation. The practical way to estimate the irradiated fuel composition and burn.up value is calculation with validated code and nuclear data. Such validation of the neutronic codes and nuclear data requires the benchmarking with measured values. (Author)

  14. Methods for acquiring data in power ramping experiments with WWER fuel rods at high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Bobrov, S N; Grachev, A F; Ovchinnikov, V A; Poliakov, I S; Matveev, N P [Research Inst. of Atomic Reactors, Dimitrovgrad (Russian Federation); Novikov, V V [Institute of Inorganic Materials, Moscow (Russian Federation)

    1997-08-01

    A programme on in-pile test which involve fuel burnup up to 60 MWd/kg and up to 12 fuel rods in the experimental rig is considered. Testing methods with reference to the MIR-M1 reactor are reported. Power ramping regime can be realized either by an increase of the total reactor capacity or by displacement of the nearest to the experimental cell control rods or by combination of these two ways. A total thermal capacity of the fuel rod cluster is determined by means of the thermal balance technique. The thermal capacity of each separate fuel rod can be estimated from the distribution of their relative activity within the accuracy range 5-10%. The important condition for this procedure is to keep the initial distribution of the fuel rod heating during power ramping. Means of instrumentation are described. They are standard detectors of loop facilities and transducers installed both in the irradiation rigs and fuel rods. Different ways of processing data on the fuel rod loss of integrity are reported. When the time of fuel rod loss of tightness is placed in correspondence with its capacity, processing can be made either on the maximum fuel rod heat load or on that at crack location. The information acquired in the experiments on the burnup values, heat rating distribution, kinetics of fission product gas emission, fuel rod elongation, fuel rod diameter changes, crack availability and fission products migration is used for the development and verification of calculation codes. (author). 1 ref., 4 figs, 1 tab.

  15. International Atomic Energy Agency (IAEA) Activity on Technical Influence of High Burnup UOX and MOX Water Reactor Fuel on Spent Fuel Management

    International Nuclear Information System (INIS)

    Lovasic, Z.; Einziger, R.

    2009-01-01

    This paper briefly reviews the results of the International Atomic Energy Agency (IAEA) project investigating the influence of high burnup and mixed-oxide (MOX) fuels, from water power reactors, on spent fuel management. These data will provide information on the impacts, regarding spent fuel management, for those countries operating light-water reactors (LWR)s and heavy-water reactors (HWR)s with zirconium alloy-clad uranium dioxide (UOX) fuels, that are considering the use of higher burnup UOX or the introduction of reprocessing and MOX fuels. The mechanical designs of lower burnup UOX and higher burnup UOX or MOX fuel are very similar, but some of the properties (e.g., higher fuel rod internal pressures; higher decay heat; higher specific activity; and degraded cladding mechanical properties of higher burnup UOX and MOX spent fuels) may potentially significantly affect the behavior of the fuel after irradiation. These properties are reviewed. The effects of these property changes on wet and dry storage, transportation, reprocessing, re-fabrication of fuel, and final disposal were evaluated, based on regulatory, safety, and operational considerations. Political and strategic considerations were not taken into account since relative importance of technical, economic and strategic considerations vary from country to country. There will also be an impact of these fuels on issues like non-proliferation, safeguards, and sustainability, but because of the complexity of factors affecting those issues, they are only briefly discussed. Data gaps were also identified during this investigation. The pros and cons of using high burnup UOX or MOX, for each applicable issue in each stage of the back end of the fuel cycle, were evaluated and are discussed.. Although, in theory, higher burnup fuel and MOX fuels mean a smaller quantity of spent fuel, the potential need for some changes in design of spent fuel storage, transportation, handling, reprocessing, re-fabrication, and

  16. Innovative microstructures in nuclear fuels

    International Nuclear Information System (INIS)

    Kutty, T.R.G.; Kumar, Arun; Kamath, H.S.

    2009-01-01

    For cleaner and safe nuclear power, new processes are required to design better nuclear fuels and make more efficient reactors to generate nuclear power. Therefore, one must understand how the microstructure changes during reactor operation. Accordingly, the materials scientists and engineers can then design and fabricate fuels with higher reliability and performance. Microstructure and its evolution are big unknowns in nuclear fuel. The basic requirements for the high performance of a fuel are: a) Soft pellets - To reduce Pellet clad mechanical interaction (PCMI) b) Large grain size - To reduce fission gas release (FGR). The strength of the pellet at room temperature is related to grain size by the Hall-Petch relation. Accordingly, the lower grain sized pellets will have high strength. But at high temperature (above equicohesive temperature) the grain boundaries becomes weaker than grain matrix. Since the small grain sized pellets have more grain boundary areas, these pellet become softer than pellet that have large grain sizes. Also as grain size decreases, creep rate of the fuel increases. Therefore, pellets with small grain size have higher creep rate and better plasticity. Therefore, these pellets will be useful to reduce the PCMI. On the other hand, pellet with large grain size is beneficial to reduce the fission gas release. In developing thermal reactor fuels for high burn-up, this factor should be taken into consideration. The question being asked is whether the microstructure can be tailored for irradiation hardening, fracture resistance, fission-gas release. This paper deals with the role played by microstructure for better irradiation performance. (author)

  17. An automatic procedure for optimizing fuel loading in consideration of the effect of burnup nonuniformity in assembly

    International Nuclear Information System (INIS)

    Wang Guoli.

    1988-01-01

    The effect of burnup nonuniformity across the assembly on optimizing fuel loading in core is investigated. Some new rules which can be used for optimizing fuel loading in the core are proposed. New automatic procedure for optimizing fuel loading in the core is described

  18. Behavior of high burnup fuel rod cladding during long-term dry storage in CASTOR casks

    International Nuclear Information System (INIS)

    Schaberg, A.; Spilker, H.; Goll, W.

    2000-01-01

    Short-time creep and rupture tests were performed to assess the strain potential of cladding of high burnt rods under conditions of dry storage. The tests comprised optimized Zr y-4 cladding samples from fuel rods irradiated to burnups of up to 64 MWd/kg U and were carried out at temperatures of 573 and 643 K at cladding stresses of about 400 and 600 MPa. The stresses, much higher than those occurring in a fuel rod, were chosen to reach circumferential elongations of about 2% within an envisaged testing time of 3-4 days. The creep tests were followed by a low temperature test at 423 K and 100 MPa to assess the long-term behavior of the cladding ductility especially with regard to the effect of a higher hydrogen content in the cladding due to the high burnup. The creep tests showed considerable uniform plastic elongations at these high burnups. It was demonstrated that around 600 K a uniform plastic strain of a least 2% is reached without cladding failure. The low temperature tests at 423 K for up to 5 days revealed no cladding failure under these conditions of reduced cladding ductility. It can be concluded that the increased hydrogen content has no adverse effect on cladding performance. (Authors)

  19. Comparison of matrix exponential methods for fuel burnup calculations

    International Nuclear Information System (INIS)

    Oh, Hyung Suk; Yang, Won Sik

    1999-01-01

    Series expansion methods to compute the exponential of a matrix have been compared by applying them to fuel depletion calculations. Specifically, Taylor, Pade, Chebyshev, and rational Chebyshev approximations have been investigated by approximating the exponentials of bum matrices by truncated series of each method with the scaling and squaring algorithm. The accuracy and efficiency of these methods have been tested by performing various numerical tests using one thermal reactor and two fast reactor depletion problems. The results indicate that all the four series methods are accurate enough to be used for fuel depletion calculations although the rational Chebyshev approximation is relatively less accurate. They also show that the rational approximations are more efficient than the polynomial approximations. Considering the computational accuracy and efficiency, the Pade approximation appears to be better than the other methods. Its accuracy is better than the rational Chebyshev approximation, while being comparable to the polynomial approximations. On the other hand, its efficiency is better than the polynomial approximations and is similar to the rational Chebyshev approximation. In particular, for fast reactor depletion calculations, it is faster than the polynomial approximations by a factor of ∼ 1.7. (author). 11 refs., 4 figs., 2 tabs

  20. PWR AXIAL BURNUP PROFILE ANALYSIS

    International Nuclear Information System (INIS)

    J.M. Acaglione

    2003-01-01

    The purpose of this activity is to develop a representative ''limiting'' axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the ''end-effect''. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package. The scope of this calculation covers an initial enrichment range of 3.0 through 5.0 wt% U-235 and a burnup range of 10 through 50 GWd/MTU. This activity supports the validation of the process for ensuring conservative generation of spent fuel isotopics with respect to criticality safety applications, and the use of burnup credit for commercial spent nuclear fuel. The intended use of these results will be in the development of PWR waste package loading curves, and applications involving burnup credit. Limitations of this evaluation are that the limiting profiles are only confirmed for use with the B andW 15 x 15 fuel assembly design. However, this assembly design is considered bounding of all other typical commercial PWR fuel assembly designs. This calculation is subject to the Quality Assurance Requirements and Description (QARD) because this activity supports investigations of items or barriers on the Q-list (YMP 2001)

  1. Pu-rich MOX agglomerate-by-agglomerate model for fuel pellet burnup analysis

    International Nuclear Information System (INIS)

    Chang, G.S.

    2004-01-01

    In support of potential licensing of the mixed oxide (MOX) fuel made from weapons-grade (WG) plutonium and depleted uranium for use in United States reactors, an experiment containing WG-MOX fuel is being irradiated in the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). The WG-MOX comprises five percent PuO 2 and 95% depleted UO 2 . Based on the Post Irradiation Examination (PIE) observation, the volume fraction (VF) of MOX agglomerates in the fuel pellet is about 16.67%, and PuO 2 concentration of 30.0 = (5 / 16.67 x 100) wt% in the agglomerate. A pressurized water reactor (PWR) unit WG-MOX lattice with Agglomerate-by-Agglomerate Fuel (AbAF) modeling has been developed. The effect of the irregular agglomerate distribution can be addressed through the use of the Monte Carlo AbAF model. The AbAF-calculated cumulative ratio of Agglomerate burnup to U-MAtrix burnup (AG/MA) is 9.17 at the beginning of life, and decreases to 2.88 at 50 GWd/t. The MCNP-AbAF-calculated results can be used to adjust the parameters in the MOX fuel fission gas release modeling. (author)

  2. Preliminary Content Evaluation of the North Anna High Burn-Up Sister Fuel Rod Segments for Transportation in the 10-160B and NAC-LWT

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-09

    The U.S. Department of Energy’s (DOE’s) Used Fuel Disposition Campaign (UFDC) Program has transported high-burnup nuclear sister fuel rods from a commercial nuclear power plant for purposes of evaluation and testing. The evaluation and testing of high-burnup used nuclear fuel is integral to DOE initiatives to collect information useful in determining the integrity of fuel cladding for future safe transportation of the fuel, and for determining the effects of aging, on the integrity of UNF subjected to extended storage and subsequent transportation. The UFDC Program, in collaboration with the U.S. Nuclear Regulatory Commission and the commercial nuclear industry, has obtained individual used nuclear fuel rods for testing. The rods have been received at Oak Ridge National Laboratory (ORNL) for both separate effects testing (SET) and small-scale testing (SST). To meet the research objectives, testing on multiple 6 inch fuel rod pins cut from the rods at ORNL will be performed at Pacific Northwest National Laboratory (PNNL). Up to 10 rod equivalents will be shipped. Options were evaluated for multiple shipments using the 10-160B (based on 4.5 rod equivalents) and a single shipment using the NAC-LWT. Based on the original INL/Virginia Power transfer agreement, the rods are assumed to 152 inches in length with a 0.374-inch diameter. This report provides a preliminary content evaluation for use of the 10-160B and NAC-LWT for transporting those fuel rod pins from ORNL to PNNL. This report documents the acceptability of using these packagings to transport the fuel segments from ORNL to PNNL based on the following evaluations: enrichment, A2 evaluation, Pu-239 FGE evaluation, heat load, shielding (both gamma and neutron), and content weight/structural evaluation.

  3. Burnup credit calculations for criticality safety justification for RBMK-1000 spent fuel of transport and storage systems

    Directory of Open Access Journals (Sweden)

    V. V. Galchenko

    2010-12-01

    Full Text Available In present paper the burnup credit calculations for TK-8 transport container and SVJP-1 spent fuel storage fa-cility of pool type with RBMK-1000 spent fuel during 100-years of cooling time were performed for criticality safety analysis purpose using MCNP and SCALE codes. Only actinides were taken into account for these critical systems. Two approaches were analyzed with isotopes distribution calculations along fuel assembly height and without it. The results show that subcriticality margin is increased considerably using burnup credit and isotopes distribution along fuel assembly height made this value more reasonable.

  4. World nuclear fuel cycle requirements 1990

    International Nuclear Information System (INIS)

    1990-01-01

    This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under three nuclear supply scenarios. Two of these scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries with free market economies (FME countries). A No New Orders scenario is presented only for the United States. These nuclear supply scenarios are described in Commercial Nuclear Power 1990: Prospects for the United States and the World (DOE/EIA-0438(90)). This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the FME projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2030 for the Lower and Upper Reference cases and through 2040, the last year in which spent fuel is discharged, for the No New Orders case. These disaggregated projections are provided at the request of the Department of Energy's Office of Civilian Radioactive Waste Management

  5. Nuclear fuel preheating system

    International Nuclear Information System (INIS)

    Andrea, C.

    1975-01-01

    A nuclear reactor new fuel handling system which conveys new fuel from a fuel preparation room into the reactor containment boundary is described. The handling system is provided with a fuel preheating station which is adaptd to heat the new fuel to reactor refueling temperatures in such a way that the fuel is heated from the top down so that fuel element cladding failure due to thermal expansions is avoided. (U.S.)

  6. Behaviour of fission gas in the rim region of high burn-up UO2 fuel pellets with particular reference to results from an XRF investigation

    International Nuclear Information System (INIS)

    Mogensen, M.; Walker, C.T.

    1999-01-01

    XRF and EPMA results for retained xenon from Battelle's high burn-up effects program are re-evaluated. The data reviewed are from commercial low enriched BWR fuel with burn-ups of 44.8-54.9 GWd/tU and high enriched PWR fuel with burn-ups from 62.5 to 83.1 GWd/tU. It is found that the high burn-up structure penetrated much deeper than initially reported. The local burn-up threshold for the formation of the high burn-up structure in those fuels with grain sizes in the normal range lay between 60 and 75 GWd/tU. The high burn-up structure was not detected by EPMA in a fuel that had a grain size of 78 μm although the local burn-up at the pellet rim had exceeded 80 GWd/tU. It is concluded that fission gas had been released from the high burn-up structure in three PWR fuel sections with burn-ups of 70.4, 72.2 and 83.1 GWd/tU. In the rim region of the last two sections at the locations where XRF indicated gas release the local burn-up was higher than 75 GWd/tU. (orig.)

  7. Nuclear fuel for VVER reactors. Actual state and trends

    International Nuclear Information System (INIS)

    Molchanov, V.

    2011-01-01

    The main tasks concerning development of FA design, development and modernization of structural materials, improvement of technology of structural materials manufacturing and FA fabrication and development of methods and codes are discussed in this paper. The main features and expected benefit of implementation of second generation and third generation fuel assembly for VVER-440 Nuclear Fuel are given. A brief review of VVER-440 and VVER-1000 Nuclear Fuel development before 1997 since 2010 is shown. A summary of VVER-440 and VVER-1000 Nuclear Fuel Today, including details about TVSA-PLUS, TVSA-ALFA, TVSA-12 and NPP-2006 Phase 2 tasks (2010-2012) is presented. In conclusion, as a result of large scope of R and D performed by leading enterprises of nuclear industry modern nuclear fuel for VVER reactors is developed, implemented and successfully operated. Fuel performance (burnup, lifetime, fuel cycles, operating reliability, etc.) meets the level of world's producers of nuclear fuel for commercial reactors

  8. EBSD and TEM Characterization of High Burn-up Mixed Oxide Fuel

    International Nuclear Information System (INIS)

    Teague, Melissa C; Gorman, Brian P.; Miller, Brandon D; King, Jeffrey

    2014-01-01

    Understanding and studying the irradiation behavior of high burn-up oxide fuel is critical to licensing of future fast breeder reactors. Advancements in experimental techniques and equipment are allowing for new insights into previously irradiated samples. In this work dual column focused ion beam (FIB)/scanning electron microscope (SEM) was utilized to prepared transmission electron microscope samples from mixed oxide fuel with a burn-up of 6.7% FIMA. Utilizing the FIB/SEM for preparation resulted in samples with a dose rate of <0.5 mRem/h compared to approximately 1.1 R/h for a traditionally prepared TEM sample. The TEM analysis showed that the sample taken from the cooler rim region of the fuel pellet had approximately 2.5x higher dislocation density than that of the sample taken from the mid-radius due to the lower irradiation temperature of the rim. The dual column FIB/SEM was additionally used to prepared and serially slice approximately 25 um cubes. High quality electron back scatter diffraction (EBSD) were collected from the face at each step, showing, for the first time, the ability to obtain EBSD data from high activity irradiated fuel

  9. A validated methodology for evaluating burn-up credit in spent fuel casks

    International Nuclear Information System (INIS)

    Brady, M.C.; Sanders, T.L.

    1992-01-01

    The concept of allowing reactivity credit for the transmuted state of spent fuel offers both economic and risk incentives. This paper presents a general overview of the technical work being performed in support of the US Department of Energy (USDOE) programme to resolve issues related to the implementation of burn-up credit in spent fuel cask design. An analysis methodology is presented along with information representing the validation of the method against available experimental data. The experimental data that are applicable to burn-up credit include chemical assay data for the validation of the isotopic prediction models, fresh fuel critical experiments for the validation of criticality calculations for various cask geometries, and reactor re-start critical data to validate criticality calculations with spent fuel. The methodology has been specifically developed to be simple and generally applicable, therefore giving rise to uncertainties or sensitivities which are identified and quantified in terms of a percent bias effective multiplication (k eff ). Implementation issues affecting licensing requirements and operational procedures are discussed briefly. (Author)

  10. Development of vibropac MOX fuel pins serviceable up TP superhigh burnups

    International Nuclear Information System (INIS)

    Mayorshin, A.A.; Gadzhiev, G.I.; Kisly, V.A.; Skiba, O.V.; Tzykanov, V.A.

    1998-01-01

    The main results on investigations of fast reactor fuel pins with (UPu)O 2 vibropac fuel to substantiate their serviceability up to the super-high burnups are presented. The BOR-60 reactor fuel pins radiation behaviour in stationary, transient and designed emergency conditions has been determined from the fuel pins dimensional stability analysis having regard to the results of investigation fuel and cladding swelling as well as estimations of fuel and cladding thermal-mechanical and physico-chemical interactions. It is shown that the change of the outer diameter is minimum in fuel pins with VMOX fuel with a getter-metallic uranium powder and ferrito-martensite steel cladding, and the corrosion damage of the cladding inner surface is absent up to 26% h.a. The experiments with over-heating of the irradiated fuel pins cladding up to 850 deg. C did not lead to any changes in pins integrity. The availability of the periphery area of the vibropac fuel cure initial structure provides the minimum level of the thermal-mechanical stress at transient conditions of reactor operation. (author)

  11. Romanian nuclear fuel program

    International Nuclear Information System (INIS)

    Budan, O.

    1999-01-01

    The paper presents and comments the policy adopted in Romania for the production of CANDU-6 nuclear fuel before and after 1990. The CANDU-6 nuclear fuel manufacturing started in Romania in December 1983. Neither AECL nor any Canadian nuclear fuel manufacturer were involved in the Romanian industrial nuclear fuel production before 1990. After January 1990, the new created Romanian Electricity Authority (RENEL) assumed the responsibility for the Romanian Nuclear Power Program. It was RENEL's decision to stop, in June 1990, the nuclear fuel production at the Institute for Nuclear Power Reactors (IRNE) Pitesti. This decision was justified by the Canadian specialists team findings, revealed during a general, but well enough technically founded analysis performed at IRNE in the spring of 1990. All fuel manufactured before June 1990 was quarantined as it was considered of suspect quality. By that time more than 31,000 fuel bundles had already been manufactured. This fuel was stored for subsequent assessment. The paper explains the reasons which provoked this decision. The paper also presents the strategy adopted by RENEL after 1990 regarding the Romanian Nuclear Fuel Program. After a complex program done by Romanian and Canadian partners, in November 1994, AECL issued a temporary certification for the Romanian nuclear fuel plant. During the demonstration manufacturing run, as an essential milestone for the qualification of the Romanian fuel supplier for CANDU-6 reactors, 202 fuel bundles were produced. Of these fuel bundles, 66 were part of the Cernavoda NGS Unit 1 first fuel load (the balance was supplied by Zircatec Precision Industries Inc. ZPI). The industrial nuclear fuel fabrication re-started in Romania in January 1995 under AECL's periodical monitoring. In December 1995, AECL issued a permanent certificate, stating the Romanian nuclear fuel plant as a qualified and authorised CANDU-6 fuel supplier. The re-loading of the Cernavoda NGS Unit 1 started in the middle

  12. An extended version of the SERPENT-2 code to investigate fuel burn-up and core material evolution of the Molten Salt Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aufiero, M.; Cammi, A.; Fiorina, C. [Politecnico di Milano, Department of Energy, CeSNEF (Enrico Fermi Center for Nuclear Studies), via Ponzio, 34/3, I-20133 Milano (Italy); Leppänen, J. [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT (Finland); Luzzi, L., E-mail: lelio.luzzi@polimi.it [Politecnico di Milano, Department of Energy, CeSNEF (Enrico Fermi Center for Nuclear Studies), via Ponzio, 34/3, I-20133 Milano (Italy); Ricotti, M.E. [Politecnico di Milano, Department of Energy, CeSNEF (Enrico Fermi Center for Nuclear Studies), via Ponzio, 34/3, I-20133 Milano (Italy)

    2013-10-15

    In this work, the Monte Carlo burn-up code SERPENT-2 has been extended and employed to study the material isotopic evolution of the Molten Salt Fast Reactor (MSFR). This promising GEN-IV nuclear reactor concept features peculiar characteristics such as the on-line fuel reprocessing, which prevents the use of commonly available burn-up codes. Besides, the presence of circulating nuclear fuel and radioactive streams from the core to the reprocessing plant requires a precise knowledge of the fuel isotopic composition during the plant operation. The developed extension of SERPENT-2 directly takes into account the effects of on-line fuel reprocessing on burn-up calculations and features a reactivity control algorithm. It is here assessed against a dedicated version of the deterministic ERANOS-based EQL3D procedure (PSI-Switzerland) and adopted to analyze the MSFR fuel salt isotopic evolution. Particular attention is devoted to study the effects of reprocessing time constants and efficiencies on the conversion ratio and the molar concentration of elements relevant for solubility issues (e.g., trivalent actinides and lanthanides). Quantities of interest for fuel handling and safety issues are investigated, including decay heat and activities of hazardous isotopes (neutron and high energy gamma emitters) in the core and in the reprocessing stream. The radiotoxicity generation is also analyzed for the MSFR nominal conditions. The production of helium and the depletion in tungsten content due to nuclear reactions are calculated for the nickel-based alloy selected as reactor structural material of the MSFR. These preliminary evaluations can be helpful in studying the radiation damage of both the primary salt container and the axial reflectors.

  13. High burnup fuel onset conditions in dry storage. Prediction of EOL rod internal pressure

    Energy Technology Data Exchange (ETDEWEB)

    Feria, F.; Herranz, L.E.

    2015-07-01

    During dry storage, cladding resistance to failure can be affected by several degrading mechanisms like creep or hydrides radial reorientation. The driving force of these effects is the stress at which the cladding is submitted. The maximum stress in the cladding is determined by the end-of-reactor-life (EOL) rod internal pressure, PEOL, at the maximum temperature attained during dry storage. Thus, PEOL sets the initial conditions of storage for potential time-dependent changes in the cladding. Based on FRAPCON-3.5 calculations, the aim of this work is to analyse the PEOL of a PWR fuel rod irradiated to burnups greater than 60 GWd/tU, where limited information is available. In order to be conservative, demanding irradiation histories have been used with a peak linear power of 44 kW/m. FRAPCON-3.5 results show an increasing exponential trend of PEOL with burnup, from which a simple correlation has been derived. The comparison with experimental data found in the literature confirms the enveloping nature of the predicted curve. Based on that, a conservative prediction of cladding stress in dry storage has been obtained. The comparison with a critical stress threshold related to hydrides embrittlement seems to point out that this issue should not be a concern at burnups below 65 GWd/tU. (Author)

  14. FUEL BURN-UP CALCULATION FOR WORKING CORE OF THE RSG-GAS RESEARCH REACTOR AT BATAN SERPONG

    Directory of Open Access Journals (Sweden)

    Tukiran Surbakti

    2017-12-01

    Full Text Available The neutronic parameters are required in the safety analysis of the RSG-GAS research reactor. The RSG-GAS research reactor, MTR (Material Testing Reactor type is used for research and also in radioisotope production. RSG-GAS has been operating for 30 years without experiencing significant obstacles. It is managed under strict requirements, especially fuel management and fuel burn-up calculations. The reactor is operated under the supervision of the Regulatory Body (BAPETEN and the IAEA (International Atomic Energy Agency. In this paper, the experience of managing RSG-GAS core fuels will be discussed, there are hundred possibilities of fuel placements on the reactor core and the strategy used to operate the reactor will be crucial. However, based on strict calculation and supervision, there is no incorrect placement of the fuels in the core. The calculations were performed on working core by using the WIMSD-5B computer code with ENDFVII.0 data file to generate the macroscopic cross-section of fuel and BATAN-FUEL code were used to obtain the neutronic parameter value such as fuel burn-up fractions. The calculation of the neutronic core parameters of the RSG-GAS research reactor was carried out for U3Si2-Al fuel, 250 grams of mass, with an equilibrium core strategy. The calculations show that on the last three operating cores (T90, T91, T92, all fuels meet the safety criteria and the fuel burn-up does not exceed the maximum discharge burn-up of 59%. Maximum fuel burn-up always exists in the fuel which is close to the position of control rod.

  15. Nuclear fuel lease accounting

    International Nuclear Information System (INIS)

    Danielson, A.H.

    1986-01-01

    The subject of nuclear fuel lease accounting is a controversial one that has received much attention over the years. This has occurred during a period when increasing numbers of utilities, seeking alternatives to traditional financing methods, have turned to leasing their nuclear fuel inventories. The purpose of this paper is to examine the current accounting treatment of nuclear fuel leases as prescribed by the Financial Accounting Standards Board (FASB) and the Federal Energy Regulatory Commission's (FERC's) Uniform System of Accounts. Cost accounting for leased nuclear fuel during the fuel cycle is also discussed

  16. Non-Destructive Methods for Determining Burn-Up in Nuclear Fuel; Methodes Non Destructives d'Evaluation du Taux de Combustion dans le Combustible Nucleaire; Metody opredeleniya vygoraniya v yadernom toplive bez razrusheniya obraztsa; Metodos No Destructivos para Determinai el Grado de Combustion de los Elementos Combustibles Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    McGonnagle, W. J. [Illinois Institute of Technology, Chicago, IL (United States)

    1966-02-15

    Non-destructive methods for quantitative measurement of burn-up in nuclear reactor fuel elements are useful and desirable. The ideal method for fuel assay would be one that requires no special information about the neutron spectra, radiation history, or cooling time. The irradiated fuel element contains a record of the fuel burn-up. This record is in the form of radioactive and stable isotopes resulting from the fission process. Unfortunately, in the non-destructive as well as the destructive fuel assay methods, the neutron spectrum, irradiation history, and cooling period influence this record. Likewise, the lack of precise nuclear data, such as values of nuclear cross-sections, affects any calculations that can be made. Another difficulty in the non-destructive assay is the presence of high radiation fields which contribute to the ''noise'' background of the measurements. The development of useful and realistic standards is difficult. The non-destructive burn-up methods do serve a useful purpose especially when an approximate value of burn-up is required quickly and economically even though in the present state of the art they lack the desired precision and accuracy. Several non-destructive methods for determining burn-up have been used, are being evaluated, or have been proposed. Various types of spectrometers including the bent crystal, magnetic Compton, Compton coincidence, and scintillation have been used to analyse the gamma radiation from the radioactive material formed during the fission process. Other non-destructive methods include foil activation, neutron transmission, activation analysis, measurement of capture gamma rays, and the measurement of prompt and delayed neutrons. The basic principles of each of the above instruments and methods, their sensitivities and their limitations will be reviewed. Non-destructive methods using stable isotopes produced during the fission process are proposed. In the use of stable isotopes, detailed irradiation history

  17. The Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    2011-08-01

    This brochure describes the nuclear fuel cycle, which is an industrial process involving various activities to produce electricity from uranium in nuclear power reactors. The cycle starts with the mining of uranium and ends with the disposal of nuclear waste. The raw material for today's nuclear fuel is uranium. It must be processed through a series of steps to produce an efficient fuel for generating electricity. Used fuel also needs to be taken care of for reuse and disposal. The nuclear fuel cycle includes the 'front end', i.e. preparation of the fuel, the 'service period' in which fuel is used during reactor operation to generate electricity, and the 'back end', i.e. the safe management of spent nuclear fuel including reprocessing and reuse and disposal. If spent fuel is not reprocessed, the fuel cycle is referred to as an 'open' or 'once-through' fuel cycle; if spent fuel is reprocessed, and partly reused, it is referred to as a 'closed' nuclear fuel cycle.

  18. IFPE/IFA-533, Fuel Thermal Behaviour at High Burnup, Halden Reactor

    International Nuclear Information System (INIS)

    Gyori, Cs.; Turnbull, J.A.

    1997-01-01

    Description: After twelve years irradiation in the Halden Boiling Water Reactor two fuel rods (Rod 807 and Rod 808) were re-instrumented with fuel centre thermocouples and reloaded into the reactor in order to investigate the fuel thermal behaviour at high burnup. The fuel rods were pre-irradiated with four other rods in the upper cluster of IFA-409 (IFA=Instrumented Fuel Assembly) from May 1973 to June 1985. After base irradiation the four neighbouring rods were re-instrumented with pressure transducers and ramp tested in IFA-535.5 and IFA-535.6 providing useful data about fission gas release (FGR) presented in the Fuel Performance Database as well (Ref. 1). The two rods re-instrumented with fuel centre thermocouples have been irradiated as IFA-533.2 from April 1992. As the irradiation history of IFA-533.2 in the first months was very similar to the history of the ramp tests, the fuel temperature and FGR data measured in the different IFAs can complement each other, although the fuel-cladding gap sizes were slightly different and due to re-instrumentation the internal gas conditions were also dissimilar

  19. Establishing the fuel burn-up measuring system for 106 irradiated assemblies of Dalat reactor by using gamma spectrometer method

    International Nuclear Information System (INIS)

    Nguyen Minh Tuan; Pham Quang Huy; Tran Tri Vien; Trang Cao Su; Tran Quoc Duong; Dang Tran Thai Nguyen

    2013-01-01

    The fuel burn-up is an important parameter needed to be monitored and determined during a reactor operation and fuel management. The fuel burn-up can be calculated using computer codes and experimentally measured. This work presents the theory and experimental method applied to determine the burn-up of the irradiated and 36% enriched VVR-M2 fuel type assemblies of Dalat reactor. The method is based on measurement of Cs-137 absolute specific activity using gamma spectrometer. Designed measuring system consists of a collimator tube, high purity Germanium detector (HPGe) and associated electronics modules and online computer data acquisition system. The obtained results of measurement are comparable with theoretically calculated results. (author)

  20. Determination of burnup, cooling time and initial enrichment of PWR spent fuel by use of gamma-ray activity ratios

    International Nuclear Information System (INIS)

    Min, D.K.; Park, H.J.; Park, K.J.; Ro, S.G.; Park, H.S.

    1999-01-01

    The Korea Atomic Energy Institute has been developing the algorithms for sequential determination of cooling time, initial enrichment and burnup of the PWR spent fuel assembly by use of gamma ratio measurements, i.e. 134 Cs/ 137 Cs, 154 Eu/ 137 Cs and 106 Ru 137 Cs/( 134 Cs) 2 . Calculations were performed by applying the ORIGEN-S code. This method has advantages over combination techniques of neutron and gamma measurement, because of its simplicity and insensitivity to the measurement geometry. For verifying the algorithms an experiment for determining the cooling time, initial enrichment and burnup of the two PWR spent fuel rods was conducted by use of high-resolution gamma detector (HPGe) system only. This paper describes the method used and interim results of the experiment. This method can be applied for spent fuel characterization, burnup credit and safeguards of the spent fuel management facility

  1. Alternatives for implementing burnup credit in the design and operation of spent fuel transport casks

    International Nuclear Information System (INIS)

    Sanders, T.L.; Lake, W.H.

    1989-01-01

    The traditional assumption used in evaluating criticality safety of spent fuel cask is that the spent fuel is as reactive as when it was fresh (new). This is known as the fresh fuel assumption. It avoids a number of calculational and verification difficulties, but could take a heavy toll in decreased efficiency. The alternative to the fresh fuel assumption is called burnup credit. That is, the reduced reactivity of spent fuel that comes about from depletion of fissile radionuclides and net increase in neutron absorbers (poisons) is taken into account. It is recognizable that the use of burnup credit will in fact increase the percentage of unacceptable or non-specification fuel available for misloading. This could reduce individual cask safety margins if current practices with respect to loading procedures are maintained. As such, additional operational, design, analysis, and validation requirements should be established that, as a minimum, compensate for any potential reduction in fuel loading safety margin. This method is based on a probabilistic (PRA) approach and is called a relative risk comparison. The method assumes a linear risk model, and uses a selected probability function to compare the system of interest and an acceptable reference system by varying the features of each to assess effects on system safety. While risk is the product of an event probability and its consequence, the consequences of criticality in a cask are considered to be both unacceptable and the same, regardless of the initiating sequence. Therefore, only the probability of the event is considered in a relative risk evaluation

  2. Investigation of the CANLUB/sheath interface in CANDU fuel at extended burnup by XPS and SEM/WDX

    International Nuclear Information System (INIS)

    Hocking, W.H.; Behnke, R.; Duclos, A.M.; Gerwing, A.F.; Chan, P.K.

    1997-01-01

    A systematic investigation of the fuel-sheath interface in CANDU fuel as a function of extended burnup has been undertaken by XPS and SEM/WDX analysis. Adherent deposits of UO 2 and fission products, including Cs, Ba, Rb, I, Te, Cd and possibly Ru, have been routinely identified on CANLUB coated and bare Zircaloy surfaces. Some trends in the distribution and chemistry of key fission products have begun to emerge. Several potential mechanisms for degradation of the CANLUB graphite layer at high burnup have been practically excluded. New evidence of carbon relocation within the fuel element and limited reaction with excess oxygen has also been obtained. (author)

  3. State of fuel rods spent in the VVER-1000 reactor up to a fuel burnup of 75 MW·Day/KgU

    International Nuclear Information System (INIS)

    Markov, D.; Zvir, E.; Polenok, V.; Zhitelev, V.; Strozhuk, A.; Volkova, I.

    2011-01-01

    The presented material contains the data on change in form, corrosion state and mechanical properties of fuel rod claddings, change in fuel structure and release of gaseous fission products (GFP) under the cladding. The results of PIEs of the VVER-1000 fuel rods with the high burnup of fuel (average value is 72.3 MW·day/kgU and maximum is 75 MW·day/kgU) carried out in JSC 'SSC RIAR' show that by the basic operational characteristics the lifetime of fuel rods with such burnup of fuel is not exhausted. The state of fuel rods is characterized by following key parameters. The fuel-to-cladding gap on the most part of the fuel meat is absent. With the burnup growth, diameter of the fuel rod increases due to fuel meat swelling. In so doing, the reverse strain achieves the values of 0.40-0.47 %. Ridges on the cladding are formed practically along the entire length of the fuel meat, average height of ridges makes up 25 μm, maximum - 40 μm. At burnups exceeding 55 MW·day/kgU, the rate of the fuel rod elongation is less than at low and average burnups. So if within a burnup range of 20-55 MW·day/kgU, the rate of the fuel rod elongation makes up about 0.330mm per 1 MW·day/kgU, at burnups exceeding 55 MW·day/kgU it is only 0.085mm per 1 MW·day/kgU. Corrosion state of the claddings of fuel rods with high burnup of fuel is satisfactory. The oxide film, as a rule, is uniform, dense, without cracks and exfoliation, its thickness on the external surface does not exceed 13 μm, while on the internal surface - 15 μm. Hydrogenation is insignificant, mass fraction of hydrogen does not exceed 0.01 %. Interaction of fuel rods with spacer grids does not result in significant fretting-corrosion. Based of the results of tests, short-term mechanical properties of the claddings of fuel rods with high burnup of fuel remain at high level. The state of fuel is characterized by absence of the fuel-to-cladding gap on the most part of the fuel meat, fuel is tightly fixed to the cladding

  4. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Nakai, Keiichi

    1983-01-01

    Purpose: To decrease the tensile stresses resulted in a fuel can as well as prevent decladding of fuel pellets into the bore holes by decreasing the inner pressure within the nuclear fuel element. Constitution: A fuel can is filled with hollow fuel pellets, inserted with a spring for retaining the hollow fuel pellets with an appropriate force and, thereafter, closely sealed at the both ends with end plugs. A cylindrical body is disposed into the bore holes of the hollow fuel pellets. Since initial sealing gases and/or gaseous nuclear fission products can thus be excluded from the bore holes where the temperature is at the highest level, the inner pressure of the nuclear fuel element can be reduced to decrease the tensile strength resulted to the fuel can. Furthermore, decladding of fuel pellets into the bore holes can be prevented. (Moriyama, K.)

  5. Nuclear fuel replacement device

    International Nuclear Information System (INIS)

    Ritz, W.C.; Robey, R.M.; Wett, J.F.

    1984-01-01

    A fuel handling arrangement for a liquid metal cooled nuclear reactor having a single rotating plug eccentric to the fuel core and a fuel handling machine radially movable along a slot in the plug with a transfer station disposed outside the fuel core but covered by the eccentric plug and within range of movement of said fuel handling machine to permit transfer of fuel assemblies between the core and the transfer station. (author)

  6. Numerical solution of the point reactor kinetics equations with fuel burn-up and temperature feedback

    International Nuclear Information System (INIS)

    Tashakor, S.; Jahanfarnia, G.; Hashemi-Tilehnoee, M.

    2010-01-01

    Point reactor kinetics equations are solved numerically using one group of delayed neutrons and with fuel burn-up and temperature feedback included. To calculate the fraction of one-group delayed neutrons, a group of differential equations are solved by an implicit time method. Using point reactor kinetics equations, changes in mean neutrons density, temperature, and reactivity are calculated in different times during the reactor operation. The variation of reactivity, temperature, and maximum power with time are compared with the predictions by other methods.

  7. Highlights on R and D work related to the achievement of high burnup with MOX fuel in commercial reactors

    International Nuclear Information System (INIS)

    Lippens, M.; Maldague, Th.; Basselier, J.; Boulanger, D.; Mertens, L.

    2000-01-01

    Part of the R and D work made at BELGONUCLEAIRE in the field of high burnup achievement with MOX fuel in commercial LWRs is made through lnternational Programmes. Special attention is given to the evolution with burnup of fuel neutronic characteristics and of in-reactor rod thermal-mechanical behaviour. Pu burning in MOX is characterized essentially by a drop of Pu 239 content. The other Pu isotopes have an almost unchanged concentration, due to internal breeding. The reactivity drop of MOX versus burnup is consequently much less pronounced than in UO 2 fuel. Concentration of minor actinides Am and Cm becomes significant with burnup increase. These nuclides start to play a role on total reactivity and in the helium production. The thermal-mechanical behaviour of MOX fuel rod is very similar to that of UO 2 . Some specificities are noticed. The better PCI resistance recognized to MOX fuel has recently been confirmed. Three PWR MOX segments pm-irradiated up to 58 GWd/tM were ramped at 100 W/cm.min respectively to 430-450-500 W/cm followed by a hold time of 24 hours. No segment failed. MOX and UO 2 fuels have different reactivities and operate thus at different powers. Moreover, radial distribution of power in MOX pellet is less depressed at high burnup than in UO 2 , leading to higher fuel central temperature for a same rating. The thermal conductivity of MOX fuel decreases with Pu content, typically 4% for 10% Pu. The combination of these three elements (power level, power profile, and conductivity) lead to larger FGR at high burnup compared to UO 2 . Helium production remains low compared to fission gas production (ratio < 0.2). As faster diffusing element, the helium fractional release is much higher than that of fission gas, leading to rod pressure increase comparable to the one resulting from fission gas. (author)

  8. A validated methodology for evaluating burnup credit in spent fuel casks

    International Nuclear Information System (INIS)

    Brady, M.C.; Sanders, T.L.

    1991-01-01

    The concept of allowing reactivity credit for the transmuted state of spent fuel offers both economic and risk incentives. This paper presents a general overview of the technical work being performed in support of the US Department of Energy (DOE) program to resolve issues related to the implementation of burnup credit. An analysis methodology is presented along with information representing the validation of the method against available experimental data. The experimental data that are applicable to burnup credit include chemical assay data for the validation of the isotopic prediction models, fresh fuel critical experiments for the validation of criticality calculations for various cask geometries, and reactor restart critical data to validate criticality calculations with spent fuel. The methodology has been specifically developed to be simple and generally applicable, therefore giving rise to uncertainties or sensitivities which are identified and quantified in terms of a percent bias in k eff . Implementation issues affecting licensing requirements and operational procedures are discussed briefly. 24 refs., 3 tabs

  9. Corrosion performance of optimised and advanced fuel rod cladding in PWRs at high burnups

    International Nuclear Information System (INIS)

    Jourdain, P.; Hallstadius, L.; Pati, S.R.; Smith, G.P.; Garde, A.M.

    1997-01-01

    The corrosion behaviour both in-pile and out-of-pile for a number of cladding alloys developed by ABB to meet the current and future needs for fuel rod cladding with improved corrosion resistance is presented. The cladding materials include: 1) Zircaloy-4 (OPTIN) with optimised composition and processing and Zircaloy-2 optimised for Pressurised Water Reactors (PWR), (Zircaloy-2P), and 2) several alternative zirconium-based alloys with compositions outside the composition range for Zircaloys. The data presented originate from fuel rods irradiated in six PWRs to burnups up to about 66 MWd/kgU and from tests conducted in 360 o water autoclave. Also included are in-pile fuel rod growth measurements on some of the alloys. (UK)

  10. Microprobe study of fission product behavior in high-burnup HTR fuels

    International Nuclear Information System (INIS)

    Kleykamp, H.

    Electron microprobe analysis of irradiated coated particles with high burnup (greater than 50 percent fima) gives detailed information on the chemical state and the transport behavior of the fission products in UO 2 and UC 2 kernels and in the coatings. In oxide fuel kernels, metallic inclusions and ceramic precipitations are observed. The solubility behavior of the fission products in the fuel matrix has been investigated. Fission product inclusions could not be detected in carbide fuel kernels; post irradiation annealed UC 2 kernels, however, give information on the element combinations of some fission product phases. Corresponding to the chemical state in the kernel, Cs, Sr, Ba, Pd, Te and the rare earths are released easily and diffuse through the entire pyrocarbon coating. These fission products can be retained by a silicon carbide layer. The initial stage of a corrosive attack of the SiC coating by the fission products is evidenced

  11. New Fuel Alloys Seeking Optimal Solidus and Phase Behavior for High Burnup and TRU Burning

    International Nuclear Information System (INIS)

    Mariani, R.D.; Porter, D.L.; Kennedy, J.R.; Hayes, S.L.; Blackwood, V.S.; Jones, Z.S.; Olson, D.L.; Mishra, B.

    2015-01-01

    Recent modifications to fast reactor metallic fuels have been directed toward improving the melting and phase behaviors of the fuel alloy, for the purpose of ultra-high burnup and transuranic (TRU) burning. Improved melting temperatures increase the safety margin for uranium-based fast reactor fuel alloys, which is especially important for transuranic burning because the introduction of plutonium and neptunium acts to lower the alloy melting temperature. Improved phase behavior—single-phase, body-centered cubic—is desired because the phase is isotropic and the alloy properties are more predictable. An optimal alloy with both improvements was therefore sought through a comprehensive literature survey and theoretical analyses, and the creation and testing of some alloys selected by the analyses. Summarized here are those analyses, the impact of alloy modifications, and recent experimental results for selected pseudo-binary alloy systems that are hoped to accomplish the goals in a short timeframe. (author)

  12. World nuclear fuel cycle requirements 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under two nuclear supply scenarios. These two scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries in the World Outside Centrally Planned Economic Areas (WOCA). A No New Orders scenarios is also presented for the Unites States. This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the WOCA projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel; discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2020 for the Lower and Upper Reference cases and through 2036, the last year in which spent fuel is discharged, for the No New Orders case

  13. Blind prediction exercise on modeling of PHWR fuel at extended burnup

    International Nuclear Information System (INIS)

    Sah, D.N.; Viswanathan, U.K.; Viswanadham, C.S.; Unnikrishnan, K.; Rath, B.N.

    2008-01-01

    A blind prediction exercise was organised on Indian Pressurised Heavy Water Reactor (PHWR) fuel to investigate the predictive capability of existing codes for their application at extended burnup and to identify areas of improvement. The blind problem for this exercise was based on a PHWR fuel bundle irradiated in Kakrapar Atomic Power Station-I (KAPS-I) up to about 15 000 MWd/tU and subjected to detailed post-irradiation examination (PIE) in the hot cells facility at BARC. Eleven computer codes from seven countries participated in this exercise. The participants provided blind predictions of fuel temperature, fission gas release, internal gas pressure and other performance parameters for the fuel pins. The predictions were compared with the experimental PIE data which included fuel temperature derived from fuel restructuring, fission gas release measured by fuel pin puncturing, internal gas pressure in pin, cladding oxidation and fuel microstructural data. The details of the blind problem and an analysis of the results of blind predictions by the codes vis-a-vis measured data are provided in this paper

  14. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1981-01-01

    An array of rods comprising zirconium alloy sheathed nuclear fuel pellets assembled to form a fuel element for a pressurised water reactor is claimed. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  15. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1984-01-01

    The fuel elements for a pressurised water reactor comprise arrays of rods of zirconium alloy sheathed nuclear fuel pellets. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  16. Cracking and relocation of UO2 fuel during nuclear operation

    International Nuclear Information System (INIS)

    Appelhans, A.D.; Dagbjartsson, S.J.

    1981-01-01

    Cracking and relocation of light water reactor (LWR) fuel pellets affect the axial gas flow path within nuclear reactor fuel rods and the thermal performance of the fuel. As part of the Nuclear Regulatory Commission's Water Reactor Safety Research Fuel Behavior Program, the Thermal Fuels Behavior Program of EG and G Idaho, Inc., is conducting fuel rod behavior studies in the Heavy Boiling Water Reactor in Halden, Norway. The Instrumental Fuel Assembly-430 (IFA-430) operated in that facility is a multipurpose assembly designed to provide information on fuel cracking and relocation, the long-term thermal response of LWR fuel rods subjected to various internal pressures and gas compositions, and the release of fission gases. This report presents the results of an analysis of fuel cracking and relocation phenomena as deduced from fuel rod axial gas flow and fuel temperature data from the first 6.5 GWd/tUO 2 burnup of the IFA-430

  17. The AFA 3G fuel assembly: a proven design for high burnups

    International Nuclear Information System (INIS)

    Forat, C.; Florentin, F.

    1999-01-01

    The AFA 3G fuel assembly design is based on the wide experience gained with the AFA 2G fuel assembly. More than 9500 AFA 2G fuel assemblies have been loaded in different reactors, worldwide, reaching discharged burnups in the range of 45 - 55 GWd/tU. This experience confirmed the features of the AFA 2G, such as the grids and the vanes arrangement for thermal hydraulic performance, the concept of the fuel rod support within the grid which avoids any rod fretting or vibration phenomenon, the efficiency of the anti-debris device. The AFA 3G also relies on and benefits from the results of the world's largest R and D program, in-pile and out-of(pile testing by Framatome with EDF and CEA, with a special focus on corrosion-resistant fuel rod cladding. The AFA 3G exhibits the following enhancements: a reinforced structure, which improves resistance to assembly bow as well as its consequences in terms of RCCA insertion fuel handling and core physics obtained from: MONOBLOC TM guide thimbles, characterized by a thickened and enlarged tube and reinforced dash-pot; a hold down spring system which has been optimized to accommodate fuel assembly hydraulic lift-off forces and to meet the fuel assembly bow resistance requirement; widened recrystallized Zircaloy-4 spacer grids; a high resistance to corrosion due to the M5 TM Zirconium-Niobium-Oxygen alloy for the fuel rod cladding, which contributes also to the bow resistance of the fuel assembly; an enhanced thermal-hydraulic behavior promoted by well proven mixing vane array of AFA 2G spacer grids, combined with three additional Mid Span Mixing Grids; a very effective debris protection with the use of the TRAPPER TM bottom nozzle. With these improvements, the AFA 3G fuel assembly is able to reach discharge burnup of 60 GWd/tU with margins on important characteristics like corrosion behavior, assembly bow and thermal-hydraulic performance. The AFA 3G design is so convincing that major utilities have decided to shift their fuel

  18. Comparative study on plutonium and MA recycling in equilibrium burnup and standard burnup of PWR

    International Nuclear Information System (INIS)

    Waris, Abdul; Kurniadi, Rizal; Su'ud, Zaki; Permana, Sidik

    2005-01-01

    The equilibrium burnup model is a powerful method since its can handle all possible generated nuclides in any nuclear system. Moreover, this method is a simple time independent method. Hence the equilibrium burnup method could be very useful for evaluating and forecasting the characteristics of any nuclear fuel cycle, even the strange one, e.g. all nuclides are confined in the reactor. However, this method needs to be verified since the method is not a standard tool. The present study aimed to compare the characteristics of plutonium recycling and plutonium and minor actinides (MA) recycling in PWR with the equilibrium burnup and the standard burnup. In order to become more comprehensive study, an influence of moderator-to-fuel volume ratio (MFR) changes by changing the pin-pitch of fuel cell has been evaluated. The MFR ranges from 0.5 to 4.0. For the equilibrium burnup we used equilibrium cell-burnup code. We have employed 1368 nuclides in the equilibrium calculation with 129 of them are heavy metals (HMs). For standard burnup, SRAC2002 code has been utilized with 26 HMs and 66 fission products (FPs). The JENDL 3.2 library has been employed for both burnup schemes. The uranium, plutonium and MA vector, which resulted from the equilibrium burnup are directly used as fuel input composition for the standard burnup calculation. Both burnup results demonstrate that plutonium recycling and plutonium and MA recycling can be conducted safer in tight lattice core. They are also show the similar trend in neutron spectrum, which become harder with the increasing number of recycled heavy nuclides as well as the decreasing of the MFR values. However, there are some discrepancy on the effective multiplication factor and the conversion ratio, especially for the reactor core for MFR ≥ 2.0. (author)

  19. Nuclear fuel accounting

    International Nuclear Information System (INIS)

    Aisch, D.E.

    1977-01-01

    After a nuclear power plant has started commercial operation the actual nuclear fuel costs have to be demonstrated in the rate making procedure. For this purpose an accounting system has to be developed which comprises the following features: 1) All costs associated with nuclear fuel shall be correctly recorded; 2) it shall be sufficiently flexible to cover also deviations from proposed core loading patterns; 3) it shall be applicable to different fuel cycle schemes. (orig./RW) [de

  20. Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations

    International Nuclear Information System (INIS)

    Garcia-Herranz, Nuria; Cabellos, Oscar; Sanz, Javier; Juan, Jesus; Kuijper, Jim C.

    2008-01-01

    Two methodologies to propagate the uncertainties on the nuclide inventory in combined Monte Carlo-spectrum and burn-up calculations are presented, based on sensitivity/uncertainty and random sampling techniques (uncertainty Monte Carlo method). Both enable the assessment of the impact of uncertainties in the nuclear data as well as uncertainties due to the statistical nature of the Monte Carlo neutron transport calculation. The methodologies are implemented in our MCNP-ACAB system, which combines the neutron transport code MCNP-4C and the inventory code ACAB. A high burn-up benchmark problem is used to test the MCNP-ACAB performance in inventory predictions, with no uncertainties. A good agreement is found with the results of other participants. This benchmark problem is also used to assess the impact of nuclear data uncertainties and statistical flux errors in high burn-up applications. A detailed calculation is performed to evaluate the effect of cross-section uncertainties in the inventory prediction, taking into account the temporal evolution of the neutron flux level and spectrum. Very large uncertainties are found at the unusually high burn-up of this exercise (800 MWd/kgHM). To compare the impact of the statistical errors in the calculated flux with respect to the cross uncertainties, a simplified problem is considered, taking a constant neutron flux level and spectrum. It is shown that, provided that the flux statistical deviations in the Monte Carlo transport calculation do not exceed a given value, the effect of the flux errors in the calculated isotopic inventory are negligible (even at very high burn-up) compared to the effect of the large cross-section uncertainties available at present in the data files

  1. Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Herranz, Nuria [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, UPM (Spain)], E-mail: nuria@din.upm.es; Cabellos, Oscar [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, UPM (Spain); Sanz, Javier [Departamento de Ingenieria Energetica, Universidad Nacional de Educacion a Distancia, UNED (Spain); Juan, Jesus [Laboratorio de Estadistica, Universidad Politecnica de Madrid, UPM (Spain); Kuijper, Jim C. [NRG - Fuels, Actinides and Isotopes Group, Petten (Netherlands)

    2008-04-15

    Two methodologies to propagate the uncertainties on the nuclide inventory in combined Monte Carlo-spectrum and burn-up calculations are presented, based on sensitivity/uncertainty and random sampling techniques (uncertainty Monte Carlo method). Both enable the assessment of the impact of uncertainties in the nuclear data as well as uncertainties due to the statistical nature of the Monte Carlo neutron transport calculation. The methodologies are implemented in our MCNP-ACAB system, which combines the neutron transport code MCNP-4C and the inventory code ACAB. A high burn-up benchmark problem is used to test the MCNP-ACAB performance in inventory predictions, with no uncertainties. A good agreement is found with the results of other participants. This benchmark problem is also used to assess the impact of nuclear data uncertainties and statistical flux errors in high burn-up applications. A detailed calculation is performed to evaluate the effect of cross-section uncertainties in the inventory prediction, taking into account the temporal evolution of the neutron flux level and spectrum. Very large uncertainties are found at the unusually high burn-up of this exercise (800 MWd/kgHM). To compare the impact of the statistical errors in the calculated flux with respect to the cross uncertainties, a simplified problem is considered, taking a constant neutron flux level and spectrum. It is shown that, provided that the flux statistical deviations in the Monte Carlo transport calculation do not exceed a given value, the effect of the flux errors in the calculated isotopic inventory are negligible (even at very high burn-up) compared to the effect of the large cross-section uncertainties available at present in the data files.

  2. Probabilistic assessment of dry transport with burnup credit

    International Nuclear Information System (INIS)

    Lake, W.H.

    2003-01-01

    The general concept of probabilistic analysis and its application to the use of burnup credit in spent fuel transport is explored. Discussion of the probabilistic analysis method is presented. The concepts of risk and its perception are introduced, and models are suggested for performing probability and risk estimates. The general probabilistic models are used for evaluating the application of burnup credit for dry spent nuclear fuel transport. Two basic cases are considered. The first addresses the question of the relative likelihood of exceeding an established criticality safety limit with and without burnup credit. The second examines the effect of using burnup credit on the overall risk for dry spent fuel transport. Using reasoned arguments and related failure probability and consequence data analysis is performed to estimate the risks of using burnup credit for dry transport of spent nuclear fuel. (author)

  3. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    1998-05-01

    After a short introduction about nuclear power in the world, fission physics and the French nuclear power plants, this brochure describes in a digest way the different steps of the nuclear fuel cycle: uranium prospecting, mining activity, processing of uranium ores and production of uranium concentrates (yellow cake), uranium chemistry (conversion of the yellow cake into uranium hexafluoride), fabrication of nuclear fuels, use of fuels, reprocessing of spent fuels (uranium, plutonium and fission products), recycling of energetic materials, and storage of radioactive wastes. (J.S.)

  4. Technical limitations of nuclear fuel materials and structures

    International Nuclear Information System (INIS)

    Hansson, L.; Planman, T.; Vitikainen, E.

    1993-05-01

    This report gives a summary of the tasks carried out within the project 'Technical limitations of nuclear fuel materials and structures' which belongs to the Finnish national research programme called 'Systems behaviour and operational aspects of safety'. The duration of the project was three years from 1990 to 1992. Most western LWR utilities, including the two Finnish ones have an incentive to implement extended burnup fuel cycles in their nuclear power plants. The aim of this project has been authorities to support them in the assessment and licensing of new fuel designs and materials. The research work of the project was focused on collecting and qualifying fuel performance data and on performing laboratory tests on fresh and irradiated cladding and structural materials. Moreover, knowledge of the high burnup phenomena was obtained through participation in international research projects such as OECD Halden Project and several Studsvik projects. Experimental work within the framework of the VVER fuel cooperative effort was also continued. (orig.)

  5. Calculation Of Fuel Burnup And Radionuclide Inventory In The Syrian Miniature Neutron Source Reactor Using The GETERA Code

    International Nuclear Information System (INIS)

    Khattab, K.; Dawahra, S.

    2011-01-01

    Calculations of the fuel burnup and radionuclide inventory in the Syrian Miniature Neutron Source Reactor (MNSR) after 10 years (the reactor core expected life) of the reactor operation time are presented in this paper using the GETERA code. The code is used to calculate the fuel group constants and the infinite multiplication factor versus the reactor operating time for 10, 20, and 30 kW operating power levels. The amounts of uranium burnup and plutonium produced in the reactor core, the concentrations and radionuclides of the most important fission product and actinide radionuclides accumulated in the reactor core, and the total radioactivity of the reactor core were calculated using the GETERA code as well. It is found that the GETERA code is better than the WIMSD4 code for the fuel burnup calculation in the MNSR reactor since it is newer and has a bigger library of isotopes and more accurate. (author)

  6. Estimation of burnup with cesium isotopes based on gamma-scanning of a instrumented fuel capsule(02F-11K) in hot-cell

    International Nuclear Information System (INIS)

    Song, Ung Sup; Kim, Hee Moon; Park, Dae Gyu; Paik, Seung Je; Lee, Hong Gi; Choo, Yong Sun; Hong Kwon Pyo

    2004-01-01

    Many experimental inspection have been performed to obtain the burnup of fuel. In the case, chemical analysis were popular with high reliability. High radioactivity of fuel was severe problem during destructive procedure. Afterward, many researchers have studied calculation of burnup using gamma detector as the non-destructive method. methodologies of gamma-scanning test have been developed as well as higher accuracy of detector. Generally, Cs-137 and Cs-134 are standard isotopes for long-term cooling s