WorldWideScience

Sample records for burnup determination based

  1. Burnup determination of water reactor fuel

    International Nuclear Information System (INIS)

    The present meeting was scheduled by the International Atomic Energy Agency in consultation with the Members of the International Working Group on Water Reactor Fuel Performance and Technology. The meeting was hosted by the Commission of the European Communities, at the Transuranium Research Laboratory, Joint Research Centre Karlsruhe, in the Federal Republic of Germany. This subject was dealt with for the first time by the IAEA. It was found to correspond adequately to this type of Specialist Meeting and to be suitable at a moment when the extension of burnup constitutes a major technical and economical issue in fuel technology. It was stressed that analysis of highly burnt fuels, mixed oxides and burnable absorber bearing fuels required extension of the experimental data base, to comply with the increasing demand for an improved fuel management, including better qualification of reactor physics codes. Twenty-seven participants from eleven countries plus two international organizations attended the Meeting. Twelve papers were given during three technical sessions, followed by a panel discussion which allowed to formulate the conclusions of the meeting and recommendations to the Agency. In addition, participants were invited to give an outline of their national programmes, related to Burnup Determination of Water Reactor Fuel. A separate abstract was prepared for each of these 12 papers. Refs, figs and tabs

  2. Automated system for determining the burnup of spent nuclear fuel

    Directory of Open Access Journals (Sweden)

    Mokritskii V. A.

    2014-12-01

    Full Text Available The authors analyze their experience in application of semi-conductor detectors and development of a breadboard model of the monitoring system for spent nuclear fuel (SNF. Such system should use CdZnTe-detectors in which one-charging gathering conditions are realized. The proposed technique of real time SNF control during reloading technological operations is based on the obtained research results. Methods for determining the burnup of spent nuclear fuel based on measuring the characteristics of intrinsic radiation are covered in many papers, but those metods do not usually take into account that the nuclear fuel used during the operation has varying degrees of initial enrichment, or a new kind of fuel may be used. Besides, the known methods often do not fit well into the existing technology of fuel loading operations and are not suitable for operational control. Nuclear fuel monitoring (including burnup determination system in this research is based on the measurement of the spectrum of natural gamma-radiation of irradiated fuel assemblies (IFA, as from the point of view of minimizing the time spent, the measurement of IFA gamma spectra directly during fuel loading is optimal. It is the overload time that is regulated rather strictly, and burnup control operations should be coordinated with the schedule of the fuel loading. Therefore, the real time working capacity of the system should be chosen as the basic criterion when constructing the structure of such burnup control systems.

  3. Determination of research reactor fuel burnup

    International Nuclear Information System (INIS)

    This report was prepared by a Consultants Group which met during 12-15 June 1989 at the Jozef Stefan Institute, Yugoslavia, and during 11-13 July 1990 at the IAEA Headquarters in Vienna, Austria, with subsequent contributions from the Consultants. The report is intended to provide information to research reactor operators and managers on the different, most commonly used methods of determining research reactor fuel burnup: 1) reactor physics calculations, 2) measurement of reactivity effects, and 3) gamma ray spectrometry. The advantages and disadvantages of each method are discussed. References are provided to assist the reactor operator planning to establish a programme for burnup determination of fuel. Destructive techniques are not included since such techniques are expensive, time consuming, and not normally performed by the reactor operators. In this report, TRIGA fuel elements are used in most examples to describe the methods. The same techniques however can be used for research reactors which use different types of fuel elements. 22 refs, 13 figs, 2 tabs

  4. Determination of the accuracy of utility spent fuel burnup records. Interim report

    International Nuclear Information System (INIS)

    In order to develop a NRC-licensable burnup credit methodology, the pedigree and uncertainty of commercial spent nuclear fuel assembly burnup records needs to be established. Typically the assembly average burnup for each assembly is maintained in the plant records. It is anticipated that the repository for the disposal of spent fuel will utilize burnup credit and will require knowledge of the uncertainty of reactor burnup records. The uncertainty of the assembly average burnup record depends on the uncertainty of the method used to develop the record. Such records are generally based on core neutronic analysis coupled with analysis of in-core power detector data. This report evaluates the uncertainties in the burnup of fuel assemblies utilizing in-core measurements and core neutronic calculations for a Westinghouse PWR. To quantify the uncertainty, three cycles of in-core movable detector data were used. The data represents a first cycle of operation, a transition cycle and a low leakage cycle. These three cycles of data provide a true test of the uncertainty methodology. Three separate sets of results were used to characterize the burnup uncertainty of the fuel assemblies. The first set of results compared the measured and calculated reaction rates in instrumented assemblies and determined the uncertainty in the reaction rates. The second set of results determined the uncertainty in relative assembly power for both the instrumented and un-instrumented assemblies. The third set of results determined the burnup uncertainty of the discharged fuel in each cycle

  5. Destructive radiochemical analysis of uraniumsilicide fuel for burnup determination

    Energy Technology Data Exchange (ETDEWEB)

    Gysemans, M.; Bocxstaele, M. van; Bree, P. van; Vandevelde, L.; Koonen, E.; Sannen, L. [SCK-CEN, Boeretang, Mol (Belgium); Guigon, B. [CEA, Centre de Cadarache, Saint Paul lez Durance (France)

    2004-07-01

    During the design phase of the French research reactor Jules Horowitz (RJH) several types of low enriched uranium fuels (LEU), i.e. <20% {sup 235}U enrichment, are studied as possible candidate fuel elements for the reactor core. One of the LEU fuels that is taken into consideration is an uraniumsilicide based fuel with U{sub 3}Si{sub 2} dispersed in an aluminium matrix. The development and evaluation of such a new fuel for a research reactor requires an extensive testing and qualification program, which includes destructive radiochemical analysis to determine the burnup of irradiated fuel with a high accuracy. In radiochemistry burnup is expressed as atom percent burnup and is a measure for the number of fissions that have occurred per initial 100 heavy element atoms (%FIMA). It is determined by measuring the number of heavy element atoms in the fuel and the number of atoms of selected key fission products that are proportional to the number of fissions that occurred during irradiation. From the few fission products that are suitable as fission product monitor, the stable Nd-isotopes {sup 143}Nd, {sup 144}Nd, {sup 145}Nd, {sup 146}Nd, {sup 148Nd}, {sup 150}Nd and the gamma-emitters {sup 137}Cs and {sup 144}Ce are selected for analysis. Samples form two curved U{sub 3}Si{sub 2} plates, with a fuel core density of 5.1 and 6.1 g U/cm{sup 3} (35% {sup 235}U) and being irradiated in the BR2 reactor of SCK x CEN{sup [1]}, were analyzed. (orig.)

  6. Non-destructive burnup determination of PWR spent fuel using Cs-134/Cs-137 and Eu-154/Cs-137

    International Nuclear Information System (INIS)

    Burnups for 36 points of five rods in the G23 assembly of Kori unit 1 have been determined on the basis of gamma-ray spectrometric measurement of two isotopic ratios, Cs-134/Cs-137 and Eu-154/Cs-137 in combination with the results calculated by the SCALE4.4 SAS2H module. Benchmarking of the SAS2H module has been done for the existing experimental data of Cs-13134, Cs-137 and Eu-154 isotopic compositions in PWR spent fuel. The gamma ray counts of two isotopic ratios have been corrected with their branching ratios, decay rates and energy dependent counting efficiencies in order to get true ratios. The energy dependent counting efficiencies have been determined as a quadratic equation based on the gamma ray counts for Cs-134 and Eu-154 at fourth energy points. Finally, burnups have been determined by putting true ratios of two isotopic ratios to their burnup-to-ratio fitting functions, respectively. Then the measured burnups have been compared with the declared burnup by the nuclear power plant. It is revealed that burnups determined from Cs-134/Cs-137 are agreeable with the declared burnups in most cases within about 12% error except a measuring point of C13, one of G23 fuel rods. In the case of Eu-154/Cs-137, the measured burnup is much lower than the declared burnup, which seems to be derived from system errors. (author)

  7. Quantitative burnup determination: A comparison of different experimental methods

    International Nuclear Information System (INIS)

    The burn-up of nuclear fuel is defined as the energy produced per mass of fuel and, hence, is related to the inventory of fission products formed in the matrix of the fuel. It affects both neutron-physical and material properties. Therefore, it is essential to have methods available that allow a reliable determination of this important parameter. The burn-up is usually determined by measuring the content of an element that results from the fission process. The isotope 148Nd has proven to be an ideal monitor due to its chemical and neutron physical properties. On the other hand, 148Nd can only be determined by wet-chemistry methods, which means a rather costly and time consuming chemistry process. Another method using the sum of 145Nd and 146Nd is proposed. In case of very high burn-ups of U02 fuel and, especially, MOX fuel this method needs weighed yields for U and Pu to obtain a sufficient accuracy. Among the non-destructive spectrometric methods, the burn-up determination with 137Cs provides adequate results provided the gamma radiation detector is calibrated and self-attenuation effects of Cs together with measurement geometries are considered. (Author)

  8. Determination of burn-up of irradiated PHWR fuel samples from KAPS-1 by mass spectrometry

    International Nuclear Information System (INIS)

    Burn-up was determined experimentally using thermal ionization mass spectrometry for three spent UO2 fuel samples, which had undergone extended irradiation in Kakrapar Atomic Power Station Unit 1 (KAPS-1). The method involves dissolution of the irradiated fuel sample, separation and determination of burn-up monitor, uranium and plutonium. Isotope Dilution-Thermal Ionisation Mass Spectrometry (ID-TIMS) using Triple Spike Mixture consisting of (142Nd+233U+242Pu) was employed for the concentration determination of Nd, U and Pu in the dissolved fuel samples. The atom percent fission was calculated based on 148Nd as a burn-up monitor and also from the changes in the abundances of heavy element isotopes. Fractional fission contributions from the major fissile nuclides were calculated from heavy elemental data and also from the Nd isotopic ratios. (author)

  9. Nondestructive analysis of RA reactor fuel burnup, Program for burnup calculation base on relative yield of 106Ru, 134Cs and 137Cs in the irradiated fuel

    International Nuclear Information System (INIS)

    Burnup of low enriched metal uranium fuel of the RA reactor is described by two chain reactions. Energy balance and material changes in the fuel are described by systems of differential equations. Numerical integration of these equations is base on the the reactor operation data. Neutron flux and percent of Uranium-235 or more frequently yield of epithermal neutrons in the neutron flux, is determined by iteration from the measured contents of 106Ru, 134Cs and 137Cs in the irradiated fuel. The computer program was written in FORTRAN-IV. Burnup is calculated by using the measured activities of fission products. Burnup results are absolute values

  10. ORIGEN computer code use in non-destructive analysis of irradiated fuel elements for burn-up determination

    International Nuclear Information System (INIS)

    An iterative method for burn-up determination in the non-destructive analysis of irradiated fuel elements using the ORIGEN computer code is presented. On the bases of data obtained from ORIGEN code the calibration coefficient for the neutron flux is determined as a function of one fission product activity while the burn-up is determined as a function of the calibration coefficient for a given irradiation history. These functions are used for determining the burn-up of nuclear fuel elements measured by gamma-scanning. The method is tested for fuel elements irradiated in a TRIGA reactor facility. (Author)

  11. Development of high performance liquid chromatography for rapid determination of burn-up of nuclear fuels

    International Nuclear Information System (INIS)

    Burn-up an important parameter during evaluation of the performance of any nuclear fuel. Among the various techniques available, the preferred one for its determination is based on accurate measurement of a suitable fission product monitor and the residual heavy elements. Since isotopes of rare earth elements are generally used as burn-up monitors, conditions were standardized for rapid separation (within 15 minutes) of light rare earths using high performance liquid chromatography based on either anion exchange (Partisil 10 SAX) in methanol-nitric acid medium or by cation exchange on a reverse phase column (Spherisorb 5-ODS-2 or Supelcosil LC-18) dynamically modified with 1-octane sulfonate or camphor-10-sulfonic acid (β). Both these methods were assessed for separation of individual fission product rare earths from their mixtures. A new approach has been examined in detail for rapid assay of neodymium, which appears promising for faster and accurate measurement of burn-up. (author)

  12. Determination of the fuel element burn-up for mixed TRIGA core by measurement and calculation with new TRIGLAV code

    Energy Technology Data Exchange (ETDEWEB)

    Zagar, T.; Ravnik, M.; Persic, A. (J.Stefan Institute, Ljubljana (Slovenia))

    1999-12-15

    Results of fuel element burn-up determination by measurement and calculation are given. Fuel element burn-up was calculated with two different programs TRIGLAV and TRIGAC using different models. New TRIGLAV code is based on cylindrical, two-dimensional geometry with four group diffusion approximation. TRIGAC program uses one-dimensional cylindrical geometry with twogroup diffusion approximation. Fuel element burn-up was measured with reactivity method. In this paper comparison and analysis of these three methods is presented. Results calculated with TRIGLAV show considerably better alignment with measured values than results calculated with TRIGAC. Some two-dimensional effects in fuel element burn-up can be observed, for instance smaller standard fuel element burn-up in mixed core rings and control rod influence on nearby fuel elements. (orig.)

  13. Determination of burnup balance for nuclear reactor fuel on the basis of γ-spectrometric determination of fission products

    International Nuclear Information System (INIS)

    Results are given of experimental investigations in one of the versions of the method for determination of the balance of nuclear fuel burnup process by means of the γ-spectrometry of fission products. In the version being considered a balance of the burnup process was determined on the base of 106Ru, 134Cs.Activity was measured by means of a γ-spectrometer with Ge counter. Investigations were done on the natural uranium metal fuel from the heavy-water moderated reactor of the first Czechoslovakian nuclear power plant A1 in Yaslovske Bohunice. Possibility was checked of determination of the fuel burnup depth as well as of the isotope ratio and content of plutonium. Results were compared with the control data which had been obtained on the base of the mass-spectrometry of U, Pu and Nd. The reasors for deviations were estimated in the cases when they were greater tan error in the control data

  14. Development of high burnup fuel data-base

    International Nuclear Information System (INIS)

    Development of high burnup fuel data base (HBDB) was studied, which stores various performance data of high burnup fuels using a personal computer. Data items of the data base and storing and display methods of time-depending data such as power history were studied. It was shown that compound systems of a personal computer and an engineering work station have capacity for constructing the data base with much efficiency and small cost. And comparison of data items between the data base and the EPRI fuel base FPDB was discussed. (author)

  15. Development of Inverse Estimation Program of Burnup Histories for Nuclear Spent Fuel Based on ORIGEN-S

    International Nuclear Information System (INIS)

    The purpose of this work is to develop a computer program which can accurately estimate burnup histories of spent fuels based on the environmental sample measurements. The burnup histories of spent fuels include initial uranium enrichment, discharge burnup, cooling time after discharge, and nuclear reactor type in which the spent fuel was burnt. The methodologies employed in our program are based on the formulations developed by M. R. Scott1 but we developed a stable bi-section method to correct initial uranium enrichment and used a simplified algorithm without burnup correction. Also, ORIGEN-S2 rather than ORIGEN-23 was used in our program to improve the accuracies by using the new capabilities of burnup dependent cross section libraries of ORIGEN-S. Our program is applied to several benchmark problems including realistic Mihama-3 problems to test the accuracies. We developed a computer program to determine the burnup history such as initial uranium enrichment, burnup, cooling time, and reactor type by using the results of sample measurements as input. Our methodologies are based on the methodologies given in Ref. 1 but we devised a new stable bisection method for the correction of initial uranium enrichment and we used ORIGEN-S rather than ORIGEN-2 to utilize the new capabilities of ORIGEN-S such as burnup dependent cross sections which can be prepared by using SCALE6

  16. Methods used in burn-up determination of the irradiated fuel rods at TRIGA reactor

    International Nuclear Information System (INIS)

    A short presentation of the methods used at INR TRIGA reactor for the burn-up determination is given together with some considerations on ORIGEN 2 computer code used for calculating fission products activities and nuclide concentration. Burn-up is determined by gamma spectroscopy and thermal power monitoring. (Author)

  17. Development of three-dimensional burnup code system based on discrete ordinates (SN) transport method

    International Nuclear Information System (INIS)

    The burnup analysis program based on three dimensional discrete ordinates (SN) neutron/photon transport method has been developed by the FDS team, China, to aid in analysis, prediction, and optimization of fuel burnup performance in a nuclear reactor. The program uses output parameters generated by three-dimensional SN trans- port code to determine the isotopic inventory and anisotropic flux distribution as a function of time. For a fueled region, neutron transmutation, fuel depletion, fission-product poisoning, actinide generation, and burnable poison loading and depletion effects are included in the calculation. The IAEA benchmark test problem has been correctly calculated and analyzed to validate the system. (authors)

  18. Prototype studies on the nondestructive online burnup determination for the modular pebble bed reactors

    International Nuclear Information System (INIS)

    Highlights: • Prototype study of online burnup measurement for HTR proves its feasibility. • Calibration and its correction of burnup assay device is discussed and verified. • Analysis of simulated gamma spectra shows good performance of spectra-unfolding method. - Abstract: The online fuel pebble burnup determination in future modular pebble bed reactor is implemented by measuring nondestructively the activity of the monitoring nuclide Cs-137 with HPGe detector on a pebble-by-pebble basis. Based on a full size prototype the feasibility is investigated. The prototype was first tested by using double sources to show that a precision of 2.8% (1σ) can be achieved in the determination of the Cs-137 net counting rate. Then, the relationship between the Cs-137 activity and the net counting rate recorded in the HPGe detector is calibrated with a standard Cs-137 source contained in the center of a graphite sphere with the same dimension as a real fuel pebble. Because the self attenuation of the calibration source differs with a fuel pebble, a correction factor of 1.07 ± 0.02 (p = 0.95) to the calibration is derived by using the efficiency transfer method. Last, by analyzing the spectra generated with KORIGEN software followed by Monte Carlo simulation, it is predicted that the relative standard deviation of the Cs-137 net counting rate can be still controlled below 3.5% despite of the presence of all the interfering peaks. The results demonstrate the feasibility of utilizing HPGe gamma spectrometry in the online determination of the pebble burnup in future modular pebble bed reactors

  19. Determination of the burn-up of TRIGA fuel elements by calculation and reactivity experiments

    International Nuclear Information System (INIS)

    The burnup of 17 fuel elements of the TRIGA Mark-II reactor in Vienna was measured. Different types of fuel elements had been simultaneously used for several years. The measured burnup values are compared with those calculated on the basis of core configuration and reactor operation history records since the beginning of operation. A one-dimensional, two-group diffusion computer code TRIGAP was used for the calculations. Comparison with burnup values determined by γ-scanning is also made. (orig./HP)

  20. Radiochemical burnup determination and isotope analysis of four IFA 148 samples: Ris/o/ Fission Gas Project

    Energy Technology Data Exchange (ETDEWEB)

    Mogensen, M.; Larsen, E.; Funck, J.; Strauss, T.R.

    1981-06-01

    In the frame of the Ris/o/ Fission Gas Project, radiochemical burnup determinations (Nd-148) and heavy isotope analyses have been carried out on four IFA 148 samples. The Nd-148 burnup determinations serve as a calibration of the Cs-137 gamma scans so that the absolute burnup can be determined in all axial positions from the Cs-137 curves and the Nd-148 burnup results. The analysis of uranium and transuranium isotopes have the objective of establishing the distribution of the total burnup on U-235, Pu-239 and Pu-241 fissions. 6 refs., 9 figs., 3 tabs.

  1. Burnup determination in irradiated fuel by means of isotopic analysis and comparison to CASMO calculations

    International Nuclear Information System (INIS)

    One of the traditional methods for determining the burnup of irradiated Light Water Reactor (LWR) fuel is the 148Nd method according to ASTM E-321. Probably one of the largest sources for systematic errors in this method is the assumed fission yield, requiring knowledge of the fraction of fissions occurring in different fissile nuclides. Another traditional method for burnup determination is based on the uranium and plutonium isotopic composition; however, this method is rarely used for LWR fuel due to its rather simplified and rough assumptions regarding the neutron spectrum and fission fractions. However, modern physics codes like CASMO and HELIOS are instead able to calculate the amount of fission products and actinides formed or consumed during reactor operation in a much more sophisticated way. Isotopic Dilution Analysis with chemical separation of elements of interest, followed by isotopic analysis with a Thermal Ionization Mass Spectrometer (TIMS) is a well established method for determining the content of selected isotopes in samples of dissolved irradiated fuel. This method normally provides very accurate and precise results. High Performance Liquid Chromatography (HPLC) for elemental separations, combined with Inductively Coupled Plasma Mass Spectrometry (ICP-MS) has become a much faster alternative. In general, this method is somewhat less precise. This disadvantage is at least partly compensated by the possibility of analyzing a larger number of nuclides and samples. The local pellet burnup of a well characterised fuel sample irradiated in the Swedish Boiling Water Reactor Forsmark 3 to about 60 MWd/kgU was determined. Weight ratios of neodymium isotopes relative to 238U, analysed by Isotope Dilution Analysis applying HPLC-ICP-MS as well as 235U and 239Pu abundance values were compared to corresponding values calculated by a single-assembly CASMO-4 simulation. Input data were generated by CASMO-4/POLCA7 core tracking calculations. The overall result

  2. Burn-up determination of irradiated thoria samples by isotope dilution-thermal ionisation mass spectrometry

    International Nuclear Information System (INIS)

    Burn-up was determined experimentally using thermal ionization mass spectrometry for two samples from ThO2 bundles irradiated in KAPS-2. This involved quantitative dissolution of the irradiated fuel samples followed by separation and determination of Th, U and a stable fission product burn-up monitor in the dissolved fuel solution. Stable fission product 148Nd was used as a burn-up monitor for determining the number of fissions. Isotope Dilution-Thermal Ionisation Mass Spectrometry (ID-TIMS) using natural U, 229Th and enriched 142Nd as spikes was employed for the determination of U, Th and Nd, respectively. Atom % fission values of 1.25 ± 0.03 were obtained for both the samples. 232U content in 233U determined by alpha spectrometry was about 500 ppm and this was higher by a factor of 5 compared to the theoretically predicted value by ORIGEN-2 code. (author)

  3. Determination of Plutonium Contribution to the Total Burnup of a Spent Nuclear Fuel by Mass Spectrometric Measurements of Uranium and Ruthenium

    International Nuclear Information System (INIS)

    The U and Ru isotope patterns provide information on the real irradiation characteristics which are necessary for evaluating a fuel's performance in a reactor. A comparison of the Pu contribution values determined independently provides a promising way to check on the validity of the results. In order to check the consistency of the post-irradiation analysis results, correlations between the parameters of the irradiated nuclear fuels such as the concentration of the heavy elements and fission products, ratios of their isotopes and burnup were established. These correlations can be used to identify the reactor fuels and to estimate the burnup and Pu production. A new approach was carried out with Ru isotopic ratio for the determination of Pu contribution to the total burnup of a spent nuclear fuel from a power reactor. The principle of this approach was based on the use of the difference in the fission yield ratios of the Ru fission products involved for the three main fissionable nuclides such as 235U, 239Pu, and 241Pu. In this work, to determine the contribution of Pu to the total burnup of the fuel, the following two independent methods have been applied: by measuring the isotope ratios of the stable Ru fission products 101Ru/104Ru, and by determining the total burnup by Nd-148 method and subtracting partial burnup, which is determined form the measured values of U isotope ratios

  4. A computer program for nuclear fuel burnup determination using gamma spectrometric methods

    International Nuclear Information System (INIS)

    In the end of its service life in the reactor, the fuel needs to be characterized for reasons relating both to safety and economy. The main investigations carried out are oriented towards verifying the fuel cladding integrity and determining the fissile content and the fuel burnup. A computer program for fast burnup evaluation was developed at the Post-Irradiation Examination Laboratory (PIEL) from INR Pitesti, the only laboratory of this kind in Romania. The input data consists, on one hand, of axial and radial gamma-scanning profiles (for the experimental evaluation of the number of nuclei of a given fission product - selected as burnup monitor - in the end of irradiation) and, on the other hand, of the history of irradiation (the time length and relative value of the neutron flux for each step of irradiation). Using the equation for the build-up and decay of the burnup monitor during irradiation the flux value is iteratively adjusted until the calculated number of nucleus is equal to the experimental one. Then the flux value is used in the equations of evolution of the fissile and fertile nuclei to determine the number of fissions and consequently the fuel burnup. The program was successfully used in the analysis of more then one hundred of TRIGA and CANDU-type fuel rods. An experimental result is reported in some details. (authors)

  5. An iterative approach for TRIGA fuel burn-up determination using nondestructive gamma-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wang Tienko E-mail: tkw@faculty.nthu.edu.tw; Peir Jinnjer

    2000-01-01

    The purpose of this work is to establish a method for evaluating the burn-up values of the rod-type TRIGA spent fuel by using gamma-ray spectrometry of the short-lived fission products {sup 97}Zr/{sup 97}Nb, {sup 132}I, and {sup 140}La. Fuel irradiation history is not needed in this method. Short-lived fission-product activities were established by re irradiating the spent fuels in a nuclear reactor. Based on the measured activities, {sup 235}U burn-up values can be deduced by iterative calculations. The complication caused by {sup 239}Pu production and fission is also discussed in detail. The burn-up values obtained by this method are in good agreement with those deduced from the conventional method based on long-lived fission products {sup 137}Cs, {sup 134}Cs/{sup 137}Cs ratio and {sup 106}Ru/{sup 137}Cs ratio.

  6. An iterative approach for TRIGA fuel burn-up determination using nondestructive gamma-ray spectrometry

    International Nuclear Information System (INIS)

    The purpose of this work is to establish a method for evaluating the burn-up values of the rod-type TRIGA spent fuel by using gamma-ray spectrometry of the short-lived fission products 97Zr/97Nb, 132I, and 140La. Fuel irradiation history is not needed in this method. Short-lived fission-product activities were established by re irradiating the spent fuels in a nuclear reactor. Based on the measured activities, 235U burn-up values can be deduced by iterative calculations. The complication caused by 239Pu production and fission is also discussed in detail. The burn-up values obtained by this method are in good agreement with those deduced from the conventional method based on long-lived fission products 137Cs, 134Cs/137Cs ratio and 106Ru/137Cs ratio

  7. An iterative approach for TRIGA fuel burn-up determination using nondestructive gamma-ray spectrometry.

    Science.gov (United States)

    Wang, T K; Peir, J J

    2000-01-01

    The purpose of this work is to establish a method for evaluating the burn-up values of the rod-type TRIGA spent fuel by using gamma-ray spectrometry of the short-lived fission products 97Zr/97Nb, 132I, and 140La. Fuel irradiation history is not needed in this method. Short-lived fission-product activities were established by reirradiating the spent fuels in a nuclear reactor. Based on the measured activities, 235U burn-up values can be deduced by iterative calculations. The complication caused by 239Pu production and fission is also discussed in detail. The burn-up values obtained by this method are in good agreement with those deduced from the conventional method based on long-lived fission products 137Cs, 134Cs/137Cs ratio and 106Ru/137Cs ratio. PMID:10670930

  8. Determination of fissile fraction in MOX (mixed U + Pu oxides) fuels for different burnup values

    Energy Technology Data Exchange (ETDEWEB)

    Ozdemir, Levent, E-mail: levent.ozdemir@taek.gov.tr [Department of Nuclear Engineering, Hacettepe University, 06800 Beytepe, Ankara (Turkey); Acar, Banu Bulut; Zabunoglu, Okan H. [Department of Nuclear Engineering, Hacettepe University, 06800 Beytepe, Ankara (Turkey)

    2011-02-15

    When spent Light Water Reactor fuels are processed by the standard Purex method of reprocessing, plutonium (Pu) and uranium (U) in spent fuel are obtained as pure and separate streams. The recovered Pu has a fissile content (consisting of {sup 239}Pu and {sup 241}Pu) greater than 60% typically (although it mainly depends on discharge burnup of spent fuel). The recovered Pu can be recycled as mixed-oxide (MOX) fuel after being blended with a fertile U makeup in a MOX fabrication plant. The burnup that can be obtained from MOX fuel depends on: (1) isotopic composition of Pu, which is closely related to the discharge burnup of spent fuel from which Pu is recovered; (2) the type of fertile U makeup material used (depleted U, natural U, or recovered U); and (3) fraction of makeup material in the mix (blending ratio), which in turn determines the total fissile fraction of MOX. Using the Non-linear Reactivity Model and the code MONTEBURNS, a step-by-step procedure for computing the total fissile content of MOX is introduced. As was intended, the resulting expression is simple enough for quick/hand calculations of total fissile content of MOX required to reach a desired burnup for a given discharge burnup of spent fuel and for a specified fertile U makeup. In any case, due to non-fissile (parasitic) content of recovered Pu, a greater fissile fraction in MOX than that in fresh U is required to obtain the same burnup as can be obtained by the fresh U fuel.

  9. Improving burnup performance of fast sodium cooled reactor by utilizing thorium based fuels

    International Nuclear Information System (INIS)

    To study the improvement of fuel burnup for fast reactors, thorium based fuels are investigated. In order to ensure the projected expansion of nuclear power is achieved in conjunction with reduced risk of nuclear weapons proliferation, new conventional sources of fuel will have to be made available. Thorium fuel cycles have many incentives such as the reduction of plutonium generation and consumption of LWR actinides, the provision of high performance burnup, and the conservation of 235U resources. This work examined the burnup reactivity loss and depletion analysis of thorium versus uranium based metal fuels. When compared the thorium based metallic fuel outperformed uranium based fuel with respect to higher actinide burnup and higher depletion rate of plutonium isotopes. (authors)

  10. A feasibility and optimization study to determine cooling time and burnup of advanced test reactor fuels using a nondestructive technique

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Jorge [Univ. of Utah, Salt Lake City, UT (United States)

    2013-12-01

    The goal of this study presented is to determine the best available non-destructive technique necessary to collect validation data as well as to determine burn-up and cooling time of the fuel elements onsite at the Advanced Test Reactor (ATR) canal. This study makes a recommendation of the viability of implementing a permanent fuel scanning system at the ATR canal and leads3 to the full design of a permanent fuel scan system. The study consisted at first in determining if it was possible and which equipment was necessary to collect useful spectra from ATR fuel elements at the canal adjacent to the reactor. Once it was establish that useful spectra can be obtained at the ATR canal the next step was to determine which detector and which configuration was better suited to predict burnup and cooling time of fuel elements non-destructively. Three different detectors of High Purity Germanium (HPGe), Lanthanum Bromide (LaBr3), and High Pressure Xenon (HPXe) in two system configurations of above and below the water pool were used during the study. The data collected and analyzed was used to create burnup and cooling time calibration prediction curves for ATR fuel. The next stage of the study was to determine which of the three detectors tested was better suited for the permanent system. From spectra taken and the calibration curves obtained, it was determined that although the HPGe detector yielded better results, a detector that could better withstand the harsh environment of the ATR canal was needed. The in-situ nature of the measurements required a rugged fuel scanning system, low in maintenance and easy to control system. Based on the ATR canal feasibility measurements and calibration results it was determined that the LaBr3 detector was the best alternative for canal in-situ measurements; however in order to enhance the quality of the spectra collected using this scintillator a deconvolution method was developed. Following the development of the deconvolution method

  11. Burnup determination and age dating of spent nuclear fuel using noble gas isotopic analysis

    International Nuclear Information System (INIS)

    During the chopping and dissolving phases of reprocessing, gases (such as tritium, krypton, xenon, iodine, carbon dioxide, nitrogen oxide, and steam) are released. These gases are traditionally transferred to a gas-treatment system for treatment, release, and/or recycle. Because of their chemically inert nature, the xenon and krypton noble gases are generally released directly into the loser atmosphere through the facility's stack. These gases (being fission products) contain information about the fuel being reprocessed and may prove a valuable monitor of reprocessing activities. Two properties of the fuel that may prove valuable from a safeguards standpoint are the fuel burnup and the fuel age (or time since discharge from the reactor). Both can be used to aid in confirming declared activities, and the burnup is generally indicative of the usability of the fuel for fabricating nuclear explosives. A study has been ongoing at Los Alamos National Laboratory to develop a methodology to determine spent-fuel parameters from measured xenon and/or krypton isotopic ratios on-stack at reprocessing facilities. This study has resulted in the generation of the NOVA data analysis code, which links to a comprehensive database of reactor physics parameters (calculated using the Monteburns 3.01 code system). NOVA has been satisfactorily tested for burnup determination of weapons-grade fuel from a US production reactor. Less effort has been spent quantifying NOVA's ability to predict burnup and fuel age for power reactor fuel. The authors describe the results predicted by NOVA for xenon and krypton isotopic ratios measured after the dissolution of spent-fuel samples from the Borssele reactor. The Borssele reactor is a 450-MW(electric) pressurized water reactor (PWR) consisting of 15 x 15 KWU assemblies. The spent-fuel samples analyzed were single fuel rods removed from one assembly and dissolved at the La Hague reprocessing facility. The assembly average burnup was estimated at 32

  12. Development of a Burnup Program based on the Krylov Subspace Method

    International Nuclear Information System (INIS)

    The depletion calculation of the DeCART code has been performed by the support of the ORIGEN code. Recently, a burnup program based on the Krylov subspace method is developed and implemented to the DeCART code. Numerical solution for the burnup equation by the Krylov subspace method is well described. Therefore, this paper describes the Krylov subspace method for a burnup equation briefly in Section 2, and focuses on the DeCART solution for a pin cell problem by comparing it with the HELIOS solution

  13. Development of a Burnup Program based on the Krylov Subspace Method

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jin-Young; Shim, Hyung-Jin; Kim, Kang-Seog; Song, Jae-Seung; Lee, Chung-Chan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-10-15

    The depletion calculation of the DeCART code has been performed by the support of the ORIGEN code. Recently, a burnup program based on the Krylov subspace method is developed and implemented to the DeCART code. Numerical solution for the burnup equation by the Krylov subspace method is well described. Therefore, this paper describes the Krylov subspace method for a burnup equation briefly in Section 2, and focuses on the DeCART solution for a pin cell problem by comparing it with the HELIOS solution.

  14. Burnup determination of power reactor fuel elements by gamma spectrometry

    International Nuclear Information System (INIS)

    This report describes a method for determining by γ spectrometry the burn up and the specific power of fuel elements irradiated in power reactors. The energy spectrum of γ rays emitted by fission products is measured by means of a simple equipment using a sodium iodide detector and a multichannel analyzer. In order to extract from the spectrum a quantity proportional to the burn up, it is necessary to: - isolate an activity specific of one emitter,- give the same importance to fissions in uranium and plutonium - take into account the radioactive decay during and after irradiation. One hundred fuel elements were studied and burn up values obtained by γ spectrometry are compared to results given by chemical analyses. Preliminary measurements show that the accuracy of the results is greatly increased by the use of a germanium detector, due to its good resolution. (authors)

  15. Nondestructive methods of determination of isotope composition and burnup of spent fuel from WWER-type reeactor

    International Nuclear Information System (INIS)

    Application of the nondestructive methods of analysis (NDA) is discussed being used for determination of burnup and isotope ratio as well as composition of spent fuel elements in the fuel assemblies of WWER-type reactor. Results are discussed which have been obtained by means of the γ-spectrometric method. Prospects are noted of a semiempiric method of determination of the burnup and isotope ratio of the fuel in WWER-type reactors. This method is based on the combination of the data which have been obtained by the γ-spectroscopy and of calculation. NDA has been considered which is based on the registration of self radiation of neutrons from spent fuel elements and assemblies. This method has some advantages as to compare to the γ-spectrometric one which permits to hope for successful, in the case of it's firther elaboration, appliaction of the neutron passive method both in the fuel cycle and in the safeguard system. In the conclusion, prospects are discussed of development and application of the NDA for spent fuels from nuclear power plants

  16. Development of 3d reactor burnup code based on Monte Carlo method and exponential Euler method

    International Nuclear Information System (INIS)

    Burnup analysis plays a key role in fuel breeding, transmutation and post-processing in nuclear reactor. Burnup codes based on one-dimensional and two-dimensional transport method have difficulties in meeting the accuracy requirements. A three-dimensional burnup analysis code based on Monte Carlo method and Exponential Euler method has been developed. The coupling code combines advantage of Monte Carlo method in complex geometry neutron transport calculation and FISPACT in fast and precise inventory calculation, meanwhile resonance Self-shielding effect in inventory calculation can also be considered. The IAEA benchmark text problem has been adopted for code validation. Good agreements were shown in the comparison with other participants' results. (authors)

  17. A Simple Formula for Local Burnup and Isotope Distributions Based on Approximately Constant Relative Reaction Rate

    Directory of Open Access Journals (Sweden)

    Cenxi Yuan

    2016-01-01

    Full Text Available A simple and analytical formula is suggested to solve the problems of the local burnup and the isotope distributions. The present method considers two extreme conditions of neutrons penetrating the fuel rod. Based on these considerations, the formula is obtained to calculate the reaction rates of 235U, 238U, and 239Pu and straightforward the local burnup and the isotope distributions. Starting from an initial burnup level, the parameters of the formula are fitted to the reaction rates given by a Monte Carlo (MC calculation. Then the present formula independently gives very similar results to the MC calculation from the starting to high burnup level but takes just a few minutes. The relative reaction rates are found to be almost independent of the radius (except (n,γ of  238U and the burnup, providing a solid background for the present formula. A more realistic examination is also performed when the fuel rods locate in an assembly. A combination of the present formula and the MC calculation is expected to have a nice balance between the numerical accuracy and time consumption.

  18. Uranium and plutonium determinations for evaluation of high burnup fuel performance

    International Nuclear Information System (INIS)

    Purpose of this work is to experimentally test computational methods being developed for reactor fuel operation. Described are the analytical techniques used in the determination of uranium and plutonium compositions on PWR fuel that has spanned five power cycles, culminating in 55,000 to 57,000 MWd/T burnup. Analyses have been performed on ten samples excised from selected sections of the fuel rods. Hot cell operations required the separation of fuel from cladding and the comminution of the fuel. These tasks were successfully accomplished using a SpectroMil, a ball pestle impact grinding and blending instrument manufactured by Chemplex Industries, Inc., Eastchester, New York. The fuel was dissolved using strong mineral acids and bomb dissolution techniques. Separation of the fuel from fission products was done by solvent (hexone) extraction. Fuel isotopic compositions and assays were determined by the mass spectrometric isotope dilution (MSID) method using NBS standards SRM-993 and SRM-996. Alpha spectrometry was used to determine the 238Pu composition. Relative correlations of composition with burnup were obtained by gamma-ray spectrometry of selected fission products in the dissolved fuel

  19. Methods For The Calculation Of Pebble Bed High Temperature Reactors With High Burnup Plutonium And Minor Actinide Based Fuel

    International Nuclear Information System (INIS)

    The graphite moderated Modular High Temperature Pebble Bed Reactor enables very flexible loading strategies and is one candidate of the Generation IV reactors. For this reactor fuel cycles with high burnup (about 600 MWd/kg HM) based on plutonium (Pu) and minor actinides (MA) fuel will be investigated. The composition of this fuel is defined in the EU-PuMA-project which aims the reduction of high level waste. There exist nearly no neutronic full core calculations for this fuel composition with high burnup. Two methods (deterministic and Monte Carlo) will be used to determine the neutronics in a full core. The detailed results will be compared with respect to the influence on criticality and safety related parameters. (authors)

  20. Analysis of neodymium 148 in order to determin of nuclear fuel burnup

    International Nuclear Information System (INIS)

    To determine the degree of the nuclear fuel burnup experiments were conducted to introduce improvements in the mass-spectrometric study of neodymium-148 by the method of isotopic dilution with Nd-150 taken as a diluent. The separation of neodymium out of the mixture of the fission products and uranium was carried out in two stages. In the first stage a group of rare earth elements was isolated on the Vofatit SBV anionite in the mixture of nitric acid and methanol. The second stage involved the separation of the rare earth group on the Vofatite KPS cationite with the aid of the complexing agent of α-hydroxy-isobutyric acid. To identify the neodymium fraction, the traces of americium-241 were added at elution. The possibilities of the above analytical method are examplified by the isolation of neodymium out of the burned-up fuel of type EK-10. The isotopic ratios were determined by the spectroscopic method to the accuracy of +-1.2%. A highly enriched compound of neodymium-150 was used as a diluent. The factors are discussed affecting the degree of the burnup obtained by this method

  1. Chemical separation for the burnup determination of the U3Si/Al spent fuels

    International Nuclear Information System (INIS)

    The separation of U, Pu, and Nd for the burnup determination of the U3Si/Al spent fuel samples has been studied. The preliminary experiments were carried out with the simulated spent fuel solution. The solutions were prepared by adding of fission product elements to unirradiated U3Si/Al fuel samples. The fuel samples were dissolved in 6 M HNO3, 6 M HNO3 using mercury catalyst, or applying a mixture of HCl and HNO3 without any catalyst. All dissolved fuel solutions contained a small amount of a residue(silica). The trace silica reprecipitated from the fuel solutions taken for the separation was dissolved in HF and removed by subsequent evaporating to dryness. The separation of U and fission product elements from the various sample solutions was achieved by two sequential anion exchange resin separation procedures. The U, Pu and Nd can be purely isolated from the sample solutions with a large excess of Al by this chromatographic procedures. The dissolution and separation procedure used in this experiment were applied for burnup determination of real U3Si/Al spent fuels from HANARO reactor

  2. Development of base technology for high burnup PWR fuel improvement Volume 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yang Eun; Lee, Sang Hee; Bae, Seong Man [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Chung, Jin Gon; Chung, Sun Kyo; Kim, Sun Du [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of); Kim, Jae Won; Chung, Sun Kyo; Kim, Sun Du [Korea Nuclear Fuel Development Inst., Seoul (Korea, Republic of)

    1995-12-31

    Development of base technology for high burnup nuclear fuel -Development of UO{sub 2} pellet manufacturing technology -Improvement of fuel rod performance code -Improvement of plenum spring design -Study on the mechanical characteristics of fuel cladding -Organization of fuel failure mechanism Establishment of next stage R and D program (author). 226 refs., 100 figs.

  3. Applicability of the cross section adjustment method based on random sampling technique for burnup calculation

    International Nuclear Information System (INIS)

    Applicability of the cross section adjustment method based on random sampling (RS) technique to burnup calculations is investigated. The cross section adjustment method is a technique for reduction of prediction uncertainties in reactor core analysis and has been widely applied to fast reactors. As a practical method, the cross section adjustment method based on RS technique is newly developed for application to light water reactors (LWRs). In this method, covariance among cross sections and neutronics parameters are statistically estimated by the RS technique and cross sections are adjusted without calculation of sensitivity coefficients of neutronics parameters, which are necessary in the conventional cross section adjustment method. Since sensitivity coefficients are not used, the RS-based method is expected to be practically applied to LWR core analysis, in which considerable computational costs are required for estimation of sensitivity coefficients. Through a simple pin-cell burnup calculation, applicability of the present method to burnup calculations is investigated. The calculation results indicate that the present method can adequately adjust cross sections including burnup characteristics. (author)

  4. Development of destructive methods of burn-up determination and their application on WWER type nuclear fuels

    International Nuclear Information System (INIS)

    Results are described of a cooperation between the Central Institute of Nuclear Research Rossendorf and the Radium Institute 'V.G. Chlopin' Leningrad in the field of destructive burn-up determination. Laboratory methods of burn-up determination using the classical monitors 137Cs, 106Ru, 148Nd and isotopes of heavy metals (U, Pu) as well as the usefulness of 90Sr, stable isotopes of Ru and Mo as monitors are dealt with. The analysis of the fuel components uranium (spectrophotometry, potentiometric titration, mass-spectrometric isotope dilution) and plutonium (spectrophotometry, coulometric titration, mass- and alpha-spectrometric isotope dilution) is fully described. Possibilities of increasing the reproducibility (automatic adjusting of measurement conditions) and the sensibility (ion impuls counting) of mass-spectrometric measurements are proposed and applied to a precise determination of Am and Cm isotopic composition. The methods have been used for burn-up analysis of spent WWER (especially WWER-440) fuel. (author)

  5. A relative risk comparison of criticality control strategies based on fresh fuel and burnup credit design bases

    International Nuclear Information System (INIS)

    The fresh fuel design basis provides some margin of safety, i.e., criticality safety is almost independent of loading operations if fuel designs do not change significantly over the next 40 years. However, the design basis enrichment for future nuclear fuel will most likely vary with time. As a result, it cannot be guaranteed that the perceived passivity of the concept will be maintained over the life cycle of a future cask system. Several options are available to ensure that the reliability of a burnup credit system is comparable to or greater than that of a system based on a fresh fuel assumption. Criticality safety and control reliability could increase with burnup credit implementation. The safety of a burnup credit system could be comparable to that for a system based on the fresh fuel assumption. A burnup credit philosophy could be implemented without any cost-benefit tradeoff. A burnup credit design basis could result in a significant reduction in total system risk as well as economic benefits. These reductions occur primarily as a result of increased cask capacities and, thus, fewer shipments. Fewer shipments also result in fewer operations over the useful life of a cask, and opportunities for error decrease. The system concept can be designed such that only benefits occur. These benefits could include enhanced criticality safety and the overall reliability of cask operations, as well as system risk and economic benefits. Thus, burnup credit should be available as an alternative for the criticality design of spent fuel shipping casks

  6. Development of an MCNP-tally based burnup code and validation through PWR benchmark exercises

    International Nuclear Information System (INIS)

    The aim of this study is to evaluate the capabilities of a newly developed burnup code called BUCAL1. The code provides the full capabilities of the Monte Carlo code MCNP5, through the use of the MCNP tally information. BUCAL1 uses the fourth order Runge Kutta method with the predictor-corrector approach as the integration method to determine the fuel composition at a desired burnup step. Validation of BUCAL1 was done by code vs. code comparison. Results of two different kinds of codes are employed. The first one is CASMO-4, a deterministic multi-group two-dimensional transport code. The second kind is MCODE and MOCUP, a link MCNP-ORIGEN codes. These codes use different burnup algorithms to solve the depletion equations system. Eigenvalue and isotope concentrations were compared for two PWR uranium and thorium benchmark exercises at cold (300 K) and hot (900 K) conditions, respectively. The eigenvalue comparison between BUCAL1 and the aforementioned two kinds of codes shows a good prediction of the systems'k-inf values during the entire burnup history, and the maximum difference is within 2%. The differences between the BUCAL1 isotope concentrations and the predictions of CASMO-4, MCODE and MOCUP are generally better, and only for a few sets of isotopes these differences exceed 10%.

  7. Development of a method for xenon determination in the microstructure of high burn-up nuclear fuel[Dissertation 17527

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, M. I

    2008-07-01

    In nuclear fuel, in approximately one quarter of the fissions, one of the two formed fission products is gaseous. These are mainly the noble gases xenon and krypton with isotopes of xenon contributing up to 90% of the product gases. These noble fission gases do not combine with other species, and have a low solubility in the normally used uranium oxide matrix. They can be dissolved in the fuel matrix or precipitate in nanometer-sized bubbles within the fuel grain, in micrometer-sized bubbles at the grain boundaries, and a fraction also precipitates in fuel pores, coming from fuel fabrication. A fraction of the gas can also be released into the plenum of the fuel rod. With increasing fission, and therefore burn-up, the ceramic fuel material experiences a transformation of its structure in the 'cooler' rim region of the fuel. A subdivision occurs of the original fuel grains of few microns size into thousands of small grains of sub-micron sizes. Additionally, larger pores are formed, which also leads into an increasing porosity in the fuel rim, called high burn-up structure. In this structure, only a small fraction of the fission gas remains in the matrix, the major quantity is said to accumulate in these pores. Because of this accumulation, the knowledge of the quantities of gas within these pores is of major interest in consideration to burn-up, fuel performance and especially for safety issues. In case of design based accidents, i.e. rapidly increasing temperature transients, the behavior of the fuel has to be estimated. Various analytical techniques have been used to determine the Xe concentration in nuclear fuel samples. The capabilities of EPMA (Electron Probe Micro-Analyser) and SIMS (Secondary Ion Mass Spectrometry) have been studied and provided some qualitative information, which has been used for determining Xe-matrix concentrations. First approaches combining these two techniques to estimate pore pressures have been recently reported. However

  8. Determination of nuclear fuel burnup by non-destructive gamma spectroscopy

    International Nuclear Information System (INIS)

    The determination of nuclear fuel burnup by the non-destructive gamma spectroscopy method is studied. A MTR (Materials Testing Reactor) -type fuel element is used in the measurement. The fuel element was removed from the reactor core in 1958 and, because of the long decay time, show only one peak in is gamma spectrum at 661.6 Kev. Corresponding to 137Cs. Measurements are made at 330 points of the element using a Nal detector and the final result revealed that the quantity of 235U consumed was 3.3 +- 0,8 milligram in the entire element. The effect of the migration of 137Cs in the element is neglected in view of the fact that it occurs only when the temperature is above 10000C, which is not the case in IEAR-1. (Author)

  9. Burn-Up Determination by High Resolution Gamma Spectrometry: Axial and Diametral Scanning Experiments

    International Nuclear Information System (INIS)

    In the gamma spectrometric determination of burn-up the use of a single fission product as a monitor of the specimen fission rate is subject to errors caused by activity saturation or, in certain cases, fission product migration. Results are presented of experiments in which all the resolvable gamma peaks in the fission product spectrum have been used to calculate the fission rate; these results form a pattern which reflect errors in the literature values of the gamma branching ratios, fission yields etc., and also represent a series of empirical correction factors. Axial and diametral scanning experiments on a long-irradiated low-enrichment fuel element are also described and demonstrate that it is possible to differentiate between fissions in U-235 and in Pu-239 respectively by means of the ratios of the Ru-106 activity to the activities of the other fission products

  10. Determination of axial profit performed burnup credit by SCALE 4.3-system

    International Nuclear Information System (INIS)

    SCALE 4.3 is a modular code system designed for realizing standard computational analysis for licensing evaluation. Since now, spent fuel storage pools criticality analysis have been done considering this fuel as fresh, with its maximum enrichment. With burnup credit we can obtain cheaper and compact configurations. The procedure for calculating a spent fuel storage consists of a burnup calculation plus a criticality calculation. We can perform a conservative approximation for the burnup calculations using 1-D results, but, besides the geometry configurations for the 3-D criticality calculation. we need an appropriate approximation to model the burnup axial variation. We assume that for a burnup profile set, the most conservative profile is between the lower and the upper range of this profile, set. We consider only combinations of the maximum and minimum burnup in each axial region, for each burnup range. This gives an estimation of the different burnup shapes effect and the general characteristics of the most conservative shape. (Author) 6 refs

  11. Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations

    International Nuclear Information System (INIS)

    This report attempts to summarize and consolidate the existing knowledge on axial burnup distribution issues that are important to burnup credit criticality safety calculations. Recently released Nuclear Regulatory Commission (NRC) staff guidance permits limited burnup credit, and thus, has prompted resolution of the axial burnup distribution issue. The reactivity difference between the neutron multiplication factor (keff) calculated with explicit representation of the axial burnup distribution and keff calculated assuming a uniform axial burnup is referred to as the ''end effect.'' This end effect is shown to be dependent on many factors, including the axial-burnup profile, total accumulated burnup, cooling time, initial enrichment, assembly design, and the isotopics considered (i.e., actinide-only or actinides plus fission products). Axial modeling studies, efforts related to the development of axial-profile databases, and the determination of bounding axial profiles are also discussed. Finally, areas that could benefit from further efforts are identified

  12. Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.C.; DeHart, M.D.

    2000-03-01

    This report attempts to summarize and consolidate the existing knowledge on axial burnup distribution issues that are important to burnup credit criticality safety calculations. Recently released Nuclear Regulatory Commission (NRC) staff guidance permits limited burnup credit, and thus, has prompted resolution of the axial burnup distribution issue. The reactivity difference between the neutron multiplication factor (keff) calculated with explicit representation of the axial burnup distribution and keff calculated assuming a uniform axial burnup is referred to as the ``end effect.'' This end effect is shown to be dependent on many factors, including the axial-burnup profile, total accumulated burnup, cooling time, initial enrichment, assembly design, and the isotopics considered (i.e., actinide-only or actinides plus fission products). Axial modeling studies, efforts related to the development of axial-profile databases, and the determination of bounding axial profiles are also discussed. Finally, areas that could benefit from further efforts are identified.

  13. Development of a Burnup Module DECBURN Based on the Krylov Subspace Method

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J. Y.; Kim, K. S.; Shim, H. J.; Song, J. S

    2008-05-15

    This report is to develop a burnup module DECBURN that is essential for the reactor analysis and the assembly homogenization codes to trace the fuel composition change during the core burnup. The developed burnup module solves the burnup equation by the matrix exponential method based on the Krylov Subspace method. The final solution of the matrix exponential is obtained by the matrix scaling and squaring method. To develop DECBURN module, this report includes the followings as: (1) Krylov Subspace Method for Burnup Equation, (2) Manufacturing of the DECBURN module, (3) Library Structure Setup and Library Manufacturing, (4) Examination of the DECBURN module, (5) Implementation to the DeCART code and Verification. DECBURN library includes the decay constants, one-group cross section and the fission yields. Examination of the DECBURN module is performed by manufacturing a driver program, and the results of the DECBURN module is compared with those of the ORIGEN program. Also, the implemented DECBURN module to the DeCART code is applied to the LWR depletion benchmark and a OPR-1000 pin cell problem, and the solutions are compared with the HELIOS code to verify the computational soundness and accuracy. In this process, the criticality calculation method and the predictor-corrector scheme are introduced to the DeCART code for a function of the homogenization code. The examination by a driver program shows that the DECBURN module produces exactly the same solution with the ORIGEN program. DeCART code that equips the DECBURN module produces a compatible solution to the other codes for the LWR depletion benchmark. Also the multiplication factors of the DeCART code for the OPR-1000 pin cell problem agree to the HELIOS code within 100 pcm over the whole burnup steps. The multiplication factors with the criticality calculation are also compatible with the HELIOS code. These results mean that the developed DECBURN module works soundly and produces an accurate solution

  14. Development of a Burnup Module DECBURN Based on the Krylov Subspace Method

    International Nuclear Information System (INIS)

    This report is to develop a burnup module DECBURN that is essential for the reactor analysis and the assembly homogenization codes to trace the fuel composition change during the core burnup. The developed burnup module solves the burnup equation by the matrix exponential method based on the Krylov Subspace method. The final solution of the matrix exponential is obtained by the matrix scaling and squaring method. To develop DECBURN module, this report includes the followings as: (1) Krylov Subspace Method for Burnup Equation, (2) Manufacturing of the DECBURN module, (3) Library Structure Setup and Library Manufacturing, (4) Examination of the DECBURN module, (5) Implementation to the DeCART code and Verification. DECBURN library includes the decay constants, one-group cross section and the fission yields. Examination of the DECBURN module is performed by manufacturing a driver program, and the results of the DECBURN module is compared with those of the ORIGEN program. Also, the implemented DECBURN module to the DeCART code is applied to the LWR depletion benchmark and a OPR-1000 pin cell problem, and the solutions are compared with the HELIOS code to verify the computational soundness and accuracy. In this process, the criticality calculation method and the predictor-corrector scheme are introduced to the DeCART code for a function of the homogenization code. The examination by a driver program shows that the DECBURN module produces exactly the same solution with the ORIGEN program. DeCART code that equips the DECBURN module produces a compatible solution to the other codes for the LWR depletion benchmark. Also the multiplication factors of the DeCART code for the OPR-1000 pin cell problem agree to the HELIOS code within 100 pcm over the whole burnup steps. The multiplication factors with the criticality calculation are also compatible with the HELIOS code. These results mean that the developed DECBURN module works soundly and produces an accurate solution

  15. Experimental Fission Gas Release Determination at High Burnup by Means of Gamma Measurements on Fuel Rods in OL2

    International Nuclear Information System (INIS)

    off between counting statistic and number of fuel rods measured must be exercised. For these measurements, a statistical counting error of 1% or less was achieved for each rod. For the evaluation of the results, a specially designed computer code, LADAKH, was used. The LADAKH program was created in-house at Westinghouse for the sole purpose of determining fission gas release in gamma measured fuel rods. Specifically, LADAKH uses the raw spectrum data along with other inputs such as, for instance, the mechanical characteristics of the fuel rod and individual measurement times to finally determine the percentage of 85Kr released from the fuel matrix. The results showed that the experimentally determined fission gas release agreed well with those values calculated by a fuel performance code in all cases but one, this one case being affected most probably by a relatively large channel bow in that particular assembly. Some efforts were made to evaluate the effect of channel bow on the bundle power distribution and on the rod fission gas release by computer analyses. Another noteworthy point in the fuel performance analyses was that the fission gas release in the rods of a larger diameter were over-predicted by the code, and that this observation was more pronounced when going from four to five cycles of assembly irradiation. Additionally, an estimation based on the amount of fission gas release was done to predict the internal pressure of the fuel rod which, in principle, scales linearly with the fission gas release. In conclusion, all rods were successfully measured for fission gas release and the rod internal pressure was estimated for all rods based upon these measurements. Overall, a successful measurement campaign was conducted adding both valuable data, which will support TVO's burnup increase endeavours as well as additional data for Westinghouse's large data base of measured fuel rods. (authors)

  16. Development of a method for xenon determination in the microstructure of high burn-up nuclear fuel

    International Nuclear Information System (INIS)

    In nuclear fuel, in approximately one quarter of the fissions, one of the two formed fission products is gaseous. These are mainly the noble gases xenon and krypton with isotopes of xenon contributing up to 90% of the product gases. These noble fission gases do not combine with other species, and have a low solubility in the normally used uranium oxide matrix. They can be dissolved in the fuel matrix or precipitate in nanometer-sized bubbles within the fuel grain, in micrometer-sized bubbles at the grain boundaries, and a fraction also precipitates in fuel pores, coming from fuel fabrication. A fraction of the gas can also be released into the plenum of the fuel rod. With increasing fission, and therefore burn-up, the ceramic fuel material experiences a transformation of its structure in the 'cooler' rim region of the fuel. A subdivision occurs of the original fuel grains of few microns size into thousands of small grains of sub-micron sizes. Additionally, larger pores are formed, which also leads into an increasing porosity in the fuel rim, called high burn-up structure. In this structure, only a small fraction of the fission gas remains in the matrix, the major quantity is said to accumulate in these pores. Because of this accumulation, the knowledge of the quantities of gas within these pores is of major interest in consideration to burn-up, fuel performance and especially for safety issues. In case of design based accidents, i.e. rapidly increasing temperature transients, the behavior of the fuel has to be estimated. Various analytical techniques have been used to determine the Xe concentration in nuclear fuel samples. The capabilities of EPMA (Electron Probe Micro-Analyser) and SIMS (Secondary Ion Mass Spectrometry) have been studied and provided some qualitative information, which has been used for determining Xe-matrix concentrations. First approaches combining these two techniques to estimate pore pressures have been recently reported. However, relevant Xe

  17. Evaluation of RSG-GAS Core Management Based on Burnup Calculation

    International Nuclear Information System (INIS)

    Evaluation of RSG-GAS Core Management Based on Burnup Calculation. Presently, U3Si2-Al dispersion fuel is used in RSG-GAS core and had passed the 60th core. At the beginning of each cycle the 5/1 fuel reshuffling pattern is used. Since 52nd core, operators did not use the core fuel management computer code provided by vendor for this activity. They use the manually calculation using excel software as the solving. To know the accuracy of the calculation, core calculation was carried out using two kinds of 2 dimension diffusion codes Batan-2DIFF and SRAC. The beginning of cycle burn-up fraction data were calculated start from 51st to 60th using Batan-EQUIL and SRAC COREBN. The analysis results showed that there is a disparity in reactivity values of the two calculation method. The 60th core critical position resulted from Batan-2DIFF calculation provide the reduction of positive reactivity 1.84 % Δk/k, while the manually calculation results give the increase of positive reactivity 2.19 % Δk/k. The minimum shutdown margin for stuck rod condition for manual and Batan-3DIFF calculation are -3.35 % Δk/k dan -1.13 % Δk/k respectively, it means that both values met the safety criteria, i.e <-0.5 % Δk/k. Excel program can be used for burn-up calculation, but it is needed to provide core management code to reach higher accuracy. (author)

  18. Burn-up determination of irradiated uranium oxide by means of direct gama spectrometry and by radiochemical method

    International Nuclear Information System (INIS)

    The burn-up of thermal neutrons irradiated U3O8 (natural uranium) samples has been determined by using both direct gamma spectrometry and radiochemical methods and the results obtained were compared. The fission products 144Ce, 103Ru, 106Ru, 137Cs and 95Zr were chosen as burn-up monitors. In order to isolate the radioisotopes chosen as monitors, a radiochemical separation procedure has been established, in which the solvent extraction technique was used to separate cerium, cesium and ruthenium one from the other and all of them from uranium. The separation between zirconium and niobium and of both elements from the other radioisotopes and uranium was accomplished by means of adsorption on a silica-gel column, followed by selective elution of zirconium and of niobium. When use was made of the direct gamma-ray spectrometry method, the radioactivity of each nuclide of interest was measured in presence of all others. For this purpose use was made of gamma-ray spectrometry and of a Ge-Li detector. Comparison of burn-up values obtained by both methods was made by means of Student's 't' test, and this showed that results obtained in each case are statistically equal. (Author)

  19. Determination of dependence of fissile fraction in MOX fuels on spent fuel storage period for different burnup values

    International Nuclear Information System (INIS)

    Highlights: ► In a previous study, an expression to calculate fissile fraction of MOX for various burnups was obtained for 5-year cooled SF. ► In this follow-up study, a correction factor for spent fuel storage periods other than 5 years is derived. ► Thus, one major restriction on use of the expression derived in the initial study is eliminated. - Abstract: The purpose of this technical note is to remove one of the limitations of a derived expression in a previously published article (Özdemir et al., 2011). The original article focused on deriving (computationally) an expression for calculating total fissile fraction of mixed oxid (MOX) fuels depending on discharge burnup of spent fuel and desired burnup of MOX fuel; consequently, such an expression was obtained and put forward, together with its limitations. One of the limitations has been that all the computations and therefore the resulting expression are based on the assumption of a spent fuel storage period of 5 years. This follow-up study simply aims to obtain a correction factor for spent fuel storage periods other than 5 years; thus to remove one major restriction on use of the expression derived in the original article

  20. Determination of deuterium–tritium critical burn-up parameter by four temperature theory

    Energy Technology Data Exchange (ETDEWEB)

    Nazirzadeh, M.; Ghasemizad, A. [Department of Physics, University of Guilan, 41335-1914 Rasht (Iran, Islamic Republic of); Khanbabei, B. [School of Physics, Damghan University, 36716-41167 Damghan (Iran, Islamic Republic of)

    2015-12-15

    Conditions for thermonuclear burn-up of an equimolar mixture of deuterium-tritium in non-equilibrium plasma have been investigated by four temperature theory. The photon distribution shape significantly affects the nature of thermonuclear burn. In three temperature model, the photon distribution is Planckian but in four temperature theory the photon distribution has a pure Planck form below a certain cut-off energy and then for photon energy above this cut-off energy makes a transition to Bose-Einstein distribution with a finite chemical potential. The objective was to develop four temperature theory in a plasma to calculate the critical burn up parameter which depends upon initial density, the plasma components initial temperatures, and hot spot size. All the obtained results from four temperature theory model are compared with 3 temperature model. It is shown that the values of critical burn-up parameter calculated by four temperature theory are smaller than those of three temperature model.

  1. Determination of deuterium-tritium critical burn-up parameter by four temperature theory

    Science.gov (United States)

    Nazirzadeh, M.; Ghasemizad, A.; Khanbabei, B.

    2015-12-01

    Conditions for thermonuclear burn-up of an equimolar mixture of deuterium-tritium in non-equilibrium plasma have been investigated by four temperature theory. The photon distribution shape significantly affects the nature of thermonuclear burn. In three temperature model, the photon distribution is Planckian but in four temperature theory the photon distribution has a pure Planck form below a certain cut-off energy and then for photon energy above this cut-off energy makes a transition to Bose-Einstein distribution with a finite chemical potential. The objective was to develop four temperature theory in a plasma to calculate the critical burn up parameter which depends upon initial density, the plasma components initial temperatures, and hot spot size. All the obtained results from four temperature theory model are compared with 3 temperature model. It is shown that the values of critical burn-up parameter calculated by four temperature theory are smaller than those of three temperature model.

  2. Chemical analytical considerations on the determination of burnup in irradiated nuclear fuels

    International Nuclear Information System (INIS)

    Burnup in an irradiated nuclear fuel may be defined as the energy produced per mass unit, from the time the fuel is introduced into the reactor and until a given moment. It is usually shown in megawatt/day or megawatt/hour generated per ton or kilo of fuel. It is also indicated as the number of fission produced per volume unit (cm3) or per every 100 initial fissionable atoms. The yield of a power plant is directly related to the burnup of its fuel load and knowing the latter contributes to optimizing the economy in reactor operation and the related technologies. The development of nuclear fuels and the operation of reactors require doing with exact and accurate methods allowing to know the burnup. Errors in this measurement have an incidence upon the fuel design, the physical and nuclear calculations, the shielding requirements, the design of vehicles for the transportation of irradiated fuels, the engineering of processing plants, etc. All these factors, in turn, have an incidence upon the cost of nuclear power generation. (Author)

  3. High burnup effects on the burst behavior of Zr based alloy claddings under LOCA conditions

    International Nuclear Information System (INIS)

    A current loss of coolant accident (LOCA) criterion is based on the results obtained from non pressurized claddings specimens under simulated LOCA condition. However, integrity of fuel cladding can be significantly affected by ballooning and rupture that caused by pressure difference between inner and outer cladding during LOCA. Ballooning may cause the fuel relocation or fuel dispersal due to its rupture opening during accidents. In addition, wall thickness of cladding can be reduced and local regions near the rupture open would become heavily oxidized and hydride d. Therefore, integral test that can simulate whole process during LOCA should be carried out for comprehensive safety analysis. Although a number of researches have been conducted, most investigations of them were performed using as received cladding specimens. In this study, burst behavior of several kinds of zirconium based alloys was investigated by integral LOCA test and high burnup effects on the burst behavior of fuel cladding were also examined using H charged cladding sample

  4. Preparation of uranium-plutonium carbide-based fuels simulating high burnup by carbothermic reduction and their properties

    International Nuclear Information System (INIS)

    Three types, hypostoichiometric, nearly stoichiometric and hyperstoichiometric, of uranium-plutonium carbide fuels simulating 10 at.% burnup were prepared by carbothermic reduction of oxide containing fission product elements. The carbides contained fission product phases such as the UMoC2 and the U2RuC2 type or the RECsub(1.5-2.0) phases (RE:rare earth). Composite theoretical densities of heterogenious carbides containing the UC, U2C3 type and fission product phases were calculated from the proportions and densities of these phases. By comparison of specific volume of the carbide between of 0 at.% and 10 at.% burnup, the solid fission product swelling rate of a carbide-based fuel was estimated to be 0.4-0.5 % per at.% burnup. (author)

  5. The fuel burn-up determination by combined passive neutron and gamma - spectrometric ND - measurements. Final report for the period 1 July 1980 - 30 April 1988

    International Nuclear Information System (INIS)

    The non-destructive gamma-spectrometric method (HRGS) and the passive neutron technique (PNT) were applied to the determination of WWER 440 reactor spent fuel assemblies burn-up for safeguard purposes. Rapid codes FISPR-2 and BUNECO were compiled on HP-85 and OLIVETTI M24 computers for the IAEA inspectors. An improved equipment was constructed and tested for the fixation of the ''fork detector''. Measurements were carried-out at 1st unit of NPP Bohunice. The correlation between burn-up and fission product ratio 134Cs/137Cs or neutron count rate were analysed. Correlations between concentrations 235U, Pu and burn-up were analysed as well. A simplified procedure for assemblies burn-up check by PNT was proposed for the inspectors. Refs, figs and tabs

  6. Measurement of gamma attenuation coefficients in UO2 and zirconium for self-absorption corrections of burn-up determination

    International Nuclear Information System (INIS)

    UO2 pellets from ALUOX fuel elements were used in measuring the absorption coefficient of gamma radiation in UO2. The results of measurements of the energy dependence of the linear absorption coefficient (within 622 to 796 keV) and of the dependence on pellet density showed that in the given density interval the absorption coefficient was almost constant. The density interval was chosen to be typical for pellet fuel used in water cooled and water moderated power reactors. The results are also shown of the dependence of the mass absorption coefficient of gamma radiation in Zr on radiation energy and compared with the mass absorption coefficient of Mo; these also showed the independence of the absorption coefficient on density. The linear and mass absorption coefficients of UO2 are considerably high and correspond approximately to the absorption coefficient of lead. For the measured energy range the variation of absorption coefficient is about 40%, which causes errors in burnup determination. The efficiency was also determined of Ge(Li) detectors for the energy range 0.5 to 1.2 MeV. The determination of the above coefficients was used for improving the gamma fuel scanning technique in determining the activity and burnup of spent fuel elements. (J.P.)

  7. Burn-up measurements coupling gamma spectrometry and neutron measurement

    International Nuclear Information System (INIS)

    The need to apply for burn-up credit arises with the increase of the initial enrichment of nuclear fuel. When burn-up credit is used in criticality safety studies, it is often necessary to confirm it by measurement. For the last 10 years, CANBERRA has manufactured the PYTHON system for such measurements. However, the method used in the PYTHON itself uses certain reactor data to arrive at burn-up estimates. Based on R and D led by CEA and COGEMA in the framework of burn-up measurement for burn-up credit and safeguards applications, CANBERRA is developing the next generation of burn-up measurement device. This new product, named SMOPY, is able to measure burn-up of any kind of irradiated fuel assembly with a combination of gamma spectrometry and passive neutron measurements. The measurement data is used as input to the CESAR depletion code, which has been developed and qualified by CEA and COGEMA for burn-up credit determinations. In this paper, we explain the complementary nature of the gamma and neutron measurements. In addition, we draw on our previous experience from PYTHON system and from COGEMA La Hague to show what types of evaluations are required to qualify the SMOPY system, to estimate its uncertainties, and to detect discrepancies in the fuel data given by the reactor plant to characterize the irradiated fuel assembly. (authors)

  8. Application of radiochemical-and direct gamma ray spectrometry methods for the determination of the burnup of irradiated uranium oxide

    International Nuclear Information System (INIS)

    The burn-up of U3O8 (natural uranium) samples was determined by using both destructive and non-destructive methods, and comparing the results obtained. The radioisotopes 144Ce, 103Ru, 106Ru, 137Cs and 95Zr were chosen as monitors. In order to isolate the radioisotopes chosen as monitors, a separation scheme has been established in which the solvent extraction technic is used to separate cerium, cesium, and ruthenium one from the other and from uranium. The separation between zirconium and niobium and of both from the others was accomplished by means of adsorption on a silica-gel column. When the non-destructive method was used, the radioactivity of each nuclide of interest was measured in the presence of all others. For this purpose, use was made of gamma-ray spectrometry and a Ge-Li detector. The comparison of burn-up values obtained by both destructive and non-destructive methods was made by means of Student's 't' test, and it has shown that the averages of results obtained in each case are equal. (Author)

  9. Determination of high burn-up nuclear fuel elastic properties with acoustic microscopy

    International Nuclear Information System (INIS)

    Highlights: ► Elastic constants of nuclear fuel were measured by acoustic microscopy. ► Our approach was in line with existing literature on non-irradiated material. ► Measurements on several samples of irradiated fuel (HBRP and N118) were performed. ► A decrease of 25% of the elastic modulus between 0 and 100 GWd/tM was observed. ► This trend is in good agreement with measurements conducted with indentation method. - Abstract: We report the measurement of elastic constants of non-irradiated UO2, SIMFUEL (simulated spent fuel: UO2 with several additives which aim to simulate the effect of burnup) and irradiated fuel by focused acoustic microscopy. To qualify the technique a parametric study was conducted by performing measurements on depleted uranium oxide (with various volume fraction of porosity, Oxygen-to-metal ratios, grain sizes) and SIMFUEL and by comparing them with previous works presented in the literature. Our approach was in line with existing literature for each parameter studied. It was shown that the main parameters influencing the elastic moduli are the amount of fission products in solution (related to burnup) and the pore density and shape, the influence of which has been evaluated. The other parameters (irradiation defects, oxygen-to-metal ratio and grain sizes) mainly increase the attenuation of the ultrasonic wave but do not change the wave velocity, which is used in the proposed method to evaluate Young’s modulus. Measurements on irradiated fuel (HBRP and N118) were then performed. A global decrease of 25% of the elastic modulus between 0 and 100 GWd/tM was observed. This observation is compared to results obtained with measurements conducted at ITU by Knoop indentation techniques.

  10. Burnup analysis of the VVER-1000 reactor using thorium-based fuel

    Energy Technology Data Exchange (ETDEWEB)

    Korkmaz, Mehmet E.; Agar, Osman; Bueyueker, Eylem [Karamanoglu Mehmetbey Univ., Karaman (Turkey). Faculty of Kamil Ozdag Science

    2014-12-15

    This paper aims to investigate {sup 232}Th/{sup 233}U fuel cycles in a VVER-1000 reactor through calculation by computer. The 3D core geometry of VVER-1000 system was designed using the Serpent Monte Carlo 1.1.19 Code. The Serpent Code using parallel programming interface (Message Passing Interface-MPI), was run on a workstation with 12-core and 48 GB RAM. {sup 232}Th/{sup 235}U/{sup 238}U oxide mixture was considered as fuel in the core, when the mass fraction of {sup 232}Th was increased as 0.05-0.1-0.2-0.3-0.4 respectively, the mass fraction of {sup 238}U equally was decreased. In the system, the calculations were made for 3 000 MW thermal power. For the burnup analyses, the core is assumed to deplete from initial fresh core up to a burnup of 16 MWd/kgU without refuelling considerations. In the burnup calculations, a burnup interval of 360 effective full power days (EFPDs) was defined. According to burnup, the mass changes of the {sup 232}Th, {sup 233}U, {sup 238}U, {sup 237}Np, {sup 239}Pu, {sup 241}Am and {sup 244}Cm were evaluated, and also flux and criticality of the system were calculated in dependence of the burnup rate.

  11. Burnup analysis of the VVER-1000 reactor using thorium-based fuel

    International Nuclear Information System (INIS)

    This paper aims to investigate 232Th/233U fuel cycles in a VVER-1000 reactor through calculation by computer. The 3D core geometry of VVER-1000 system was designed using the Serpent Monte Carlo 1.1.19 Code. The Serpent Code using parallel programming interface (Message Passing Interface-MPI), was run on a workstation with 12-core and 48 GB RAM. 232Th/235U/238U oxide mixture was considered as fuel in the core, when the mass fraction of 232Th was increased as 0.05-0.1-0.2-0.3-0.4 respectively, the mass fraction of 238U equally was decreased. In the system, the calculations were made for 3 000 MW thermal power. For the burnup analyses, the core is assumed to deplete from initial fresh core up to a burnup of 16 MWd/kgU without refuelling considerations. In the burnup calculations, a burnup interval of 360 effective full power days (EFPDs) was defined. According to burnup, the mass changes of the 232Th, 233U, 238U, 237Np, 239Pu, 241Am and 244Cm were evaluated, and also flux and criticality of the system were calculated in dependence of the burnup rate.

  12. Irradiation performance and integrity of thorium oxide based coated particle fuels at high burnups

    International Nuclear Information System (INIS)

    In order to utilize thorium in a high temperature gas-cooled reactor (HTGR), a series of the irradiation experiments of thorium oxide based coated particle fuels have been conducted. This experiment is concerned with irradiation of the bonded TRISO- and BISO- coated (Th, U)O2 particles as fissile fuel in several variations of the Th/U ratios, U-235 enrichments, etc., and the bonded BISO- coated ThO2 particles as fertile fuel to investigate their integrity and irradiation behavior with three capsules in JMTR. Irradiation of these coated particles was achieved to a maximum neutron fluence of 2.22x1021n/cm2 (E>0.18MeV) at temperature of 1390degC, where the maximum burnup of the fissile particles was 7.3% FIMA. Both the fissile and fertile particles was 7.3% FIMA. Both the fissile and fertile particles were intact and performed well without coating failure, amoeba effect, and corrosion of the SiC layer by a fission product palladium. The data were also taken on irradiation-induced dimensional changes of the fuel compacts, failure fractions of the coated particles in these compacts measured by a newly developed acid leaching method, and on behavior of the irradiated coated fuel particles at extremely high temperatures (up to 2300degC) by an out-of-pile heating. Besides, the typical aspects of the amoeba effect were discussed on the coated particles which were irradiated in loosely-packed condition to compare irradiation performance with that for the bonded particles. (author)

  13. Changes of the inventory of radioactive materials in reactor fuel from uranium in changing to higher burn-up and determining the important effects of this

    International Nuclear Information System (INIS)

    The knowledge of the nuclide composition during and after use in the reactor is an essential, in order to be able to determine the effects associated with the operation of nuclear plants. The missing reliable data on the inventory of radioactive materials resulting from the expected change to higher burn-ups of uranium fuels in West Germany are calculated. The reliability of the program system used for this, which permits a one-dimensional account taken of the fuel rod cell and measurement of the changes of specific sets of nuclear data depending on burn-up, is confirmed by the comparison with experimentally found concentrations of important nuclides in fuel samples at Obrigheim nuclear power station. Realistic conditions of use are defined for a range of burn-up of 33 GWd/t to 55 GWd/t and the effects of changes of the number of cycles and the use of types of fuel elements being developed on the composition of the inventory are determined. The plutonium compositions during use in the reactor are given and are tabulated with the inventory for decay times up to 30 years. Effects during change to higher burn-ups are examined and discussed for the maximum inventories during use of fuel and for heat generation during final storage. (orig./HP)

  14. Burnup span sensitivity analysis of different burnup coupling schemes

    International Nuclear Information System (INIS)

    Highlights: ► The objective of this work is the burnup span sensitivity analysis of different coupling schemes. ► Three kinds of schemes have been implemented in a new MCNP–ORIGEN linkage program. ► Two kinds of schemes are based predictor–corrector technique and the third is based on Euler explicit method. ► The analysis showed that the predictor–corrector approach better accounts for nonlinear behavior of burnup. ► It is sufficiently good to use the Euler method at small spans but for large spans use of second order scheme is mandatory. - Abstract: The analysis of core composition changes is complicated by the fact that the time and spatial variations in isotopic composition depend on the neutron flux distribution and vice versa. Fortunately, changes in core composition occur relatively slowly and hence the burnup analysis can be performed by dividing the burnup period into some burnup spans and assuming that the averaged flux and cross sections are constant during each burn up span. The burnup span sensitivity analysis attempts to find how much the burnup spans could be increased without any significant change in results. This goal has been achieved by developing a new MCNP–ORIGEN linkage program named MOBC (MCNP–ORIGEN Burnup Calculation). Three kinds of coupling scheme have been implemented in MOBC. Two of these are based on second order predictor–corrector technique and enable us to choose larger time steps, whilst the third one is based on Euler explicit first order method and is faster than the other two. The validity of the developed program has been evaluated by the code vs. code comparison technique. Two different types of codes are employed. The first one is based on deterministic two dimensional transport method, like CASMO-4 and HELIOS codes, and the second one is based on Monte Carlo method, like MCODE code. Only one coupling technique is employed in each of these state of the art codes, while the MOBC excels in its ability to

  15. ABRAC: A microcomputer-based Fortran code for multi-cyle burnup

    International Nuclear Information System (INIS)

    Pressurized-water reactors have reactor physics and fuel management characteristics which are very amenable to simplified analysis. Given models which account for the dominant features of core and fuel performance, it is possible to rapidly perform relatively accurate scoping studies of many years of reactor operation in just a few hours on a modern (386-class) microcomputer. Models are described for burnup-dependent cross-section generation, for burnup of fuel under irradiation, and for computation of radial power distributions in hexagonal geometry assuming hexagonal fuel assemblies. Comparisons with more elaborate methods are given in order to validate the models, and to quantify the accuracy of the results. 16 refs., 5 figs., 5 tabs

  16. Accuracy assessment of a new Monte Carlo based burnup computer code

    International Nuclear Information System (INIS)

    Highlights: ► A new burnup code called BUCAL1 was developed. ► BUCAL1 uses the MCNP tallies directly in the calculation of the isotopic inventories. ► Validation of BUCAL1 was done by code to code comparison using VVER-1000 LEU Benchmark Assembly. ► Differences from BM value were found to be ± 600 pcm for k∞ and ±6% for the isotopic compositions. ► The effect on reactivity due to the burnup of Gd isotopes is well reproduced by BUCAL1. - Abstract: This study aims to test for the suitability and accuracy of a new home-made Monte Carlo burnup code, called BUCAL1, by investigating and predicting the neutronic behavior of a “VVER-1000 LEU Assembly Computational Benchmark”, at lattice level. BUCAL1 uses MCNP tally information directly in the computation; this approach allows performing straightforward and accurate calculation without having to use the calculated group fluxes to perform transmutation analysis in a separate code. ENDF/B-VII evaluated nuclear data library was used in these calculations. Processing of the data library is performed using recent updates of NJOY99 system. Code to code comparisons with the reported Nuclear OECD/NEA results are presented and analyzed.

  17. High burnup experience in PWRs

    International Nuclear Information System (INIS)

    The purpose of this paper is to summarize the high burnup experience of Westinghouse PWR fuel. The emphasis is on two regions of commercial PWR fuel that attained region average burnups greater than 36,000 MWD/MTU. One region operated under load follow conditions. The other region operated at base load conditions with a high average linear heat rating. Coolant activity data and post irradiation data were obtained. The post-irradiation data consisted of visual examinations, crud sampling, rod-to-rod dimensional changes, fuel column length changes, rod and assembly growth, assembly bow, fuel rod profilometry, grid spring relaxation, and fuel assembly sipping tests. The data showed that the fuel operated reliably to this burnup. Plans for irradiation to higher burnups are also discussed

  18. Burnup credit considerations in dry spent-fuel storage licensing

    International Nuclear Information System (INIS)

    Burnup credit has been allowed in reactor basin spent-fuel storage at pressurized water reactors for a number of years. However, such storage occurs under strict administrative, procedural, and design controls. In recent years, dry spent-fuel storage cask vendors have expressed interest in designing cask fuel baskets with allowance for burnup credit. At last year's American Nuclear Society Winter Meeting, an ad hoc session was organized and authorized on burnup credit for dry storage and transportation casks. It has become clear that some utilities are interested in burnup credit for dry storage designs. Given this, the US Nuclear Regulatory Commission (NRC) staff is examining the technical issues involved in allowing burnup credit. Analytical work focused on the development of branch technical positions for determination of burnup credit for dry spent-fuel storage technology designs has begun. Procedural and administrative issues will be examined, based on licensing experience, and will also be the subject of branch technical positions. At an appropriate time, preparation of regulatory guides will be considered

  19. Spatially dependent burnup implementation into the nodal program based on the finite element response matrix method

    International Nuclear Information System (INIS)

    In this work a spatial burnup scheme and feedback effects has been implemented into the FERM ( 'Finite Element Response Matrix' )program. The spatially dependent neutronic parameters have been considered in three levels: zonewise calculation, assembly wise calculation and pointwise calculation. Flux and power distributions and the multiplication factor were calculated and compared with the results obtained by CITATIOn program. These comparisons showed that processing time in the Ferm code has been hundred of times shorter and no significant difference has been observed in the assembly average power distribution. (Author)

  20. Reactivity effects of nonuniform axial burnup distributions on spent fuel

    International Nuclear Information System (INIS)

    When conducting future criticality safety analyses on spent fuel shipping casks, burnup credit may play a significant role in determining the number of fuel assemblies that can be safely loaded into each cask. An important area in burnup credit analysis is the burnup variation along the length of the fuel assembly, which is determined by the location of the assembly in the reactor core and its residence time. A study of the effects of axial burnup distributions on reactivity has been conducted, using data from existing power plant fuel. Utilizing a one-dimensional, two-group diffusion code, named REALAX, the reactivity effects of axial burnup profiles have been calculated for various PWR fuel assemblies. The reactivity effects calculated by the code are defined in terms of k for the axially dependent burnup distribution minus k for a uniform axial burnup distribution at the assembly average burnup divided by k for a uniform axial burnup distribution at the assembly average burnup. Criticality safety specialists can take advantage of the quick-running code to determine axial effects of different assembly burnup profiles. In general, the positive reactivity effects of axial burnup distributions increase as burnup increases, though they do not increase faster than the overall decrease in reactivity due to burnup

  1. Reactivity effects of nonuniform axial burnup distributions on spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Leary, R.W. II; Parish, T.A. [Texas A & M Univ., College Station, TX (United States)

    1995-12-01

    When conducting future criticality safety analyses on spent fuel shipping casks, burnup credit may play a significant role in determining the number of fuel assemblies that can be safely loaded into each cask. An important area in burnup credit analysis is the burnup variation along the length of the fuel assembly, which is determined by the location of the assembly in the reactor core and its residence time. A study of the effects of axial burnup distributions on reactivity has been conducted, using data from existing power plant fuel. Utilizing a one-dimensional, two-group diffusion code, named REALAX, the reactivity effects of axial burnup profiles have been calculated for various PWR fuel assemblies. The reactivity effects calculated by the code are defined in terms of k for the axially dependent burnup distribution minus k for a uniform axial burnup distribution at the assembly average burnup divided by k for a uniform axial burnup distribution at the assembly average burnup. Criticality safety specialists can take advantage of the quick-running code to determine axial effects of different assembly burnup profiles. In general, the positive reactivity effects of axial burnup distributions increase as burnup increases, though they do not increase faster than the overall decrease in reactivity due to burnup.

  2. Burnup determination of silicide MTR fuel elements (20% 235U) in the LFR laboratory

    International Nuclear Information System (INIS)

    The LFR facility is a radiochemical laboratory designed and constructed with a hot-cells line, a glove-box and a fume hood, all of them suited to work radioactive materials. At the beginning of the LFR operation a series of dissolutions of MTR irradiated silicide fuel elements was performed, and determined its isotopic composition of 235U, 239Pu and 148Nd (the last one as burn up monitor), by the thermal ionization mass spectrometry (TIMS). These assays are linked to the IAEA RLA/4/018 Regional Project 'Management of Spent Fuel from Research Reactors'. It is concluded that this technique of burn up measurement is powerful and accurate when properly applied, and permit to validate the calculation codes when isotopic dilution is performed. It is worth noticed the LFR capacity to carry on different research and development programs in the nuclear fuel cycle field, such as the previously mentioned absolute burn up measurements, or the evaluation of radioactive waste immobilization processes and researches on burnable poisons. (author)

  3. Determination of the burn-up in fuels of the MTR type by means of gamma spectroscopy with crystal of INa(Tl)

    International Nuclear Information System (INIS)

    One of the responsibilities of the Laboratory of Analysis by Neutronic Activation of the RA-6 reactor is to determine the burn-up in fuels of the MTR type. In order to gain experience, up to the arrival of the hyperpure Germanium detector (HPGe) to be used in normal operation, preliminary measurements with a crystal of INa(Tl) were made. The fuel elements used are originated in the RA-3 reactor, with a decay superior to the thirteen years. For this reason, the unique visible photoelectric peak is the one of Cs-137, owing to the low resolution of the INa(Tl). After preliminary measurements, the profiles of burn-up, rectified by attenuation, were measured. Once the efficiency of the detector was determined, the calculation of the burn-up was made; for the element No. 144, a value of 21.6 ± 2.9 g was obtained to be compared with the value 21.9 g which was the evaluation made by the operators. (Author)

  4. Future disposal burnup credit process and effort

    International Nuclear Information System (INIS)

    The United States Department of Energy's Office of Civilian Radioactive Waste Management has developed a risk-informed, performance based methodology for disposal criticality analyses. The methodology is documented in the Disposal Criticality Analysis Methodology Topical Report, YMP/TR-004Q (YMP 2000). The methodology includes taking credit for the burnup of irradiated commercial light water reactor fuel in criticality analyses, i.e., burnup credit. This paper summarizes the ongoing and planned future burnup credit activities associated with the methodology. (author)

  5. Optimization of the Trasuranus Burnup Model for GD-Doped WWER-1000 Fuel Pins Based on Results of HELIOS Code

    International Nuclear Information System (INIS)

    This paper describes results of testing of the TRANSURANUS burn-up model (TUBRNP routine) for Gd-doped WWER-1000 fuel pin based on results of HELIOS code. The testing covers the analysis of different types of nuclear fuel rods from a neutronic point of view that one can encounter in the VVER-1000 reactor core. The HELIOS computations simulate the assembly geometry, and combine 4 different 235U enrichment configurations with 4 different Gd2O3-concentrations. For each of these combinations the radial distribution of the concentrations of 155Gd and 157Gd compute in one Gd-doped rod. Based on these results the recommendations on using cross section of Gd in TRANSURANUS TUBRNP model were proposed. (author)

  6. Preliminary TRIGA fuel burn-up evaluation by means of Monte Carlo code and computation based on total energy released during reactor operation

    Energy Technology Data Exchange (ETDEWEB)

    Borio Di Tigliole, A.; Bruni, J.; Panza, F. [Dept. of Nuclear and Theoretical Physics, Univ. of Pavia, 27100 Pavia (Italy); Italian National Inst. of Nuclear Physics INFN, Section of Pavia, Via A. Bassi, 6, 27100 Pavia (Italy); Alloni, D.; Cagnazzo, M.; Magrotti, G.; Manera, S.; Prata, M.; Salvini, A. [Italian National Inst. of Nuclear Physics INFN, Section of Pavia, Via A. Bassi, 6, 27100 Pavia (Italy); Applied Nuclear Energy Laboratory LENA, Univ. of Pavia, Via Aselli, 41, 27100 Pavia (Italy); Chiesa, D.; Clemenza, M.; Pattavina, L.; Previtali, E.; Sisti, M. [Physics Dept. G. Occhialini, Univ. of Milano Bicocca, 20126 Milano (Italy); Italian National Inst. of Nuclear Physics INFN, Section of Milano Bicocca, P.zza della Scienza, 3, 20126 Milano (Italy); Cammi, A. [Italian National Inst. of Nuclear Physics INFN, Section of Milano Bicocca, P.zza della Scienza, 3, 20126 Milano (Italy); Dept. of Energy Enrico Fermi Centre for Nuclear Studies CeSNEF, Polytechnic Univ. of Milan, Via U. Bassi, 34/3, 20100 Milano (Italy)

    2012-07-01

    Aim of this work was to perform a rough preliminary evaluation of the burn-up of the fuel of TRIGA Mark II research reactor of the Applied Nuclear Energy Laboratory (LENA) of the Univ. of Pavia. In order to achieve this goal a computation of the neutron flux density in each fuel element was performed by means of Monte Carlo code MCNP (Version 4C). The results of the simulations were used to calculate the effective cross sections (fission and capture) inside fuel and, at the end, to evaluate the burn-up and the uranium consumption in each fuel element. The evaluation, showed a fair agreement with the computation for fuel burn-up based on the total energy released during reactor operation. (authors)

  7. Preliminary TRIGA fuel burn-up evaluation by means of Monte Carlo code and computation based on total energy released during reactor operation

    International Nuclear Information System (INIS)

    Aim of this work was to perform a rough preliminary evaluation of the burn-up of the fuel of TRIGA Mark II research reactor of the Applied Nuclear Energy Laboratory (LENA) of the Univ. of Pavia. In order to achieve this goal a computation of the neutron flux density in each fuel element was performed by means of Monte Carlo code MCNP (Version 4C). The results of the simulations were used to calculate the effective cross sections (fission and capture) inside fuel and, at the end, to evaluate the burn-up and the uranium consumption in each fuel element. The evaluation, showed a fair agreement with the computation for fuel burn-up based on the total energy released during reactor operation. (authors)

  8. Comparison among MCNP-based depletion codes applied to burnup calculations of pebble-bed HTR lattices

    International Nuclear Information System (INIS)

    The double-heterogeneity characterising pebble-bed high temperature reactors (HTRs) makes Monte Carlo based calculation tools the most suitable for detailed core analyses. These codes can be successfully used to predict the isotopic evolution during irradiation of the fuel of this kind of cores. At the moment, there are many computational systems based on MCNP that are available for performing depletion calculation. All these systems use MCNP to supply problem dependent fluxes and/or microscopic cross sections to the depletion module. This latter then calculates the isotopic evolution of the fuel resolving Bateman's equations. In this paper, a comparative analysis of three different MCNP-based depletion codes is performed: Montburns2.0, MCNPX2.6.0 and BGCore. Monteburns code can be considered as the reference code for HTR calculations, since it has been already verified during HTR-N and HTR-N1 EU project. All calculations have been performed on a reference model representing an infinite lattice of thorium-plutonium fuelled pebbles. The evolution of k-inf as a function of burnup has been compared, as well as the inventory of the important actinides. The k-inf comparison among the codes shows a good agreement during the entire burnup history with the maximum difference lower than 1%. The actinide inventory prediction agrees well. However significant discrepancy in Am and Cm concentrations calculated by MCNPX as compared to those of Monteburns and BGCore has been observed. This is mainly due to different Am-241 (n,γ) branching ratio utilized by the codes. The important advantage of BGCore is its significantly lower execution time required to perform considered depletion calculations. While providing reasonably accurate results BGCore runs depletion problem about two times faster than Monteburns and two to five times faster than MCNPX.

  9. Physical mechanism analysis of burnup actinide composition in light water reactor MOX fuel and its application to uncertainty evaluation

    International Nuclear Information System (INIS)

    Highlights: • We discuss physical mechanisms for burnup actinide compositions in LWR’s MOX fuel. • Mechanisms of 244Cm and 238Pu productions are analyzed in detail with sensitivity. • We can evaluate the indirect effect on actinide productions by nuclear reactions. • Burnup sensitivity is applied to uncertainty evaluation of nuclide production. • Actinides can be categorized into patterns according to a burnup sensitivity trend. - Abstract: In designing radioactive waste management and decommissioning facilities, understanding the physical mechanisms for burnup actinide composition is indispensable to satisfy requirements for its validity and reliability. Therefore, the uncertainty associated with physical quantities, such as nuclear data, needs to be quantitatively analyzed. The present paper illustrates an analysis methodology to investigate the physical mechanisms of burnup actinide composition with nuclear-data sensitivity based on the generalized depletion perturbation theory. The target in this paper is the MOX fuel of the light water reactor. We start with the discussion of the basic physical mechanisms for burnup actinide compositions using the reaction-rate flow chart on the burnup chain. After that, the physical mechanisms of the productions of Cm-244 and Pu-238 are analyzed in detail with burnup sensitivity calculation. Conclusively, we can identify the source of actinide productions and evaluate the indirect influence of the nuclear reactions if the physical mechanisms of burnup actinide composition are analyzed using the reaction-rate flow chart on the burnup chain and burnup sensitivity calculation. Finally, we demonstrate the usefulness of the burnup sensitivity coefficients in an application to determine the priority of accuracy improvement in nuclear data in combination with the covariance of the nuclear data. In addition, the target actinides and reactions are categorized into patterns according to a sensitivity trend

  10. Extended calculations of OECD/NEA phase II-C burnup credit criticality benchmark problem for PWR spent fuel transport cask by using MCNP-4B2 code and JENDL-3.2 library

    International Nuclear Information System (INIS)

    The reactivity effect of the asymmetry of axial burnup profile in burnup credit criticality safety is studied for a realistic PWR spent fuel transport cask proposed in the current OECD/NEA Phase II-C benchmark problem. The axial burnup profiles are simulated in 21 material zones based on in-core flux measurements varying from strong asymmetry to more or less no asymmetry. Criticality calculations in a 3-D model have been performed using the continuous energy Monte Carlo code MCNP-4B2 and the nuclear data library JENDL-3.2. Calculation conditions are determined with consideration of the axial fission source convergence. Calculations are carried out not only for cases proposed in the benchmark but also for additional cases assuming symmetric burnup profile. The actinide-only approach supposed for first domestic introduction of burnup credit into criticality evaluation is also considered in addition to the actinide plus fission product approach adopted in the benchmark. The calculated results show that keff and the end effect increase almost linearly with increasing burnup axial offset that is defined as one of typical parameters showing the intensity of axial burnup asymmetry. The end effect is more sensitive to the asymmetry of burnup profile for the higher burnup. For an axially distributed burnup, the axial fission source distribution becomes strongly asymmetric as its peak shifts toward the top end of the fuel's active zone where the local burnup is less than that of the bottom end. The peak of fission source distribution becomes higher with the increase of either the asymmetry of burnup profile or the assembly-averaged burnup. The conservatism of the assumption of uniform axial burnup based on the actinide-only approach is estimated quantitatively in comparison with the keff result calculated with experiment-based strongest asymmetric axial burnup profile with the actinide plus fission product approach. (author)

  11. A relative risk comparison of criticality control strategies based on fresh fuel and burnup credit design bases

    International Nuclear Information System (INIS)

    The proposed use of burnup credit in spent fuel cask design and operation represents a departure from current regulatory practice, and creates technical issues that ultimately must be resolved for the concept to be implemented. Issues related to specific technical considerations can generally be resolved conclusively. However, an underlying perception may still exist that the use of burnup credit compromises criticality safety. In practice, individual casks are designed to satisfy regulatory requirements in a generally conservative manner. The designer's application of the regulatory requirements involves some engineering judgement, as does the regulator's implementation of them. This does not have an adverse effect on safety, but does make it difficult to objectively compare new or alternative designs and/or operating approaches. 5 refs., 7 figs., 2 tabs

  12. An analysis of nuclear fuel burnup in the AGR-1 TRISO fuel experiment using gamma spectrometry, mass spectrometry, and computational simulation techniques

    International Nuclear Information System (INIS)

    Highlights: • The burnup of irradiated AGR-1 TRISO fuel was analyzed using gamma spectrometry. • The burnup of irradiated AGR-1 TRISO fuel was also analyzed using mass spectrometry. • Agreement between experimental results and neutron physics simulations was excellent. - Abstract: AGR-1 was the first in a series of experiments designed to test US TRISO fuel under high temperature gas-cooled reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post-irradiation examination (PIE) at INL and Oak Ridge National Laboratory. One component of the AGR-1 PIE is the experimental evaluation of the burnup of the fuel by two separate techniques. Gamma spectrometry was used to non-destructively evaluate the burnup of all 72 of the TRISO fuel compacts that comprised the AGR-1 experiment. Two methods for evaluating burnup by gamma spectrometry were developed, one based on the Cs-137 activity and the other based on the ratio of Cs-134 and Cs-137 activities. Burnup values determined from both methods compared well with the values predicted from simulations. The highest measured burnup was 20.1% FIMA (fissions per initial heavy metal atom) for the direct method and 20.0% FIMA for the ratio method (compared to 19.56% FIMA from simulations). An advantage of the ratio method is that the burnup of the cylindrical fuel compacts can be determined in small (2.5 mm) axial increments and an axial burnup profile can be produced. Destructive chemical analysis by inductively coupled mass spectrometry (ICP-MS) was then performed on selected compacts that were representative of the expected range of fuel burnups in the experiment to compare with the burnup values determined by gamma spectrometry. The compacts analyzed by mass spectrometry had a burnup range of 19.3% FIMA to 10.7% FIMA. The mass spectrometry evaluation of burnup for the four compacts agreed well with the gamma

  13. Determination of Fission Gas Inclusion Pressures in High Burnup Nuclear Fuel using Laser Ablation ICP-MS combined with SEM/EPMA and Optical Microscopy

    International Nuclear Information System (INIS)

    In approximately 20% of all fissions at least one of the fission products is gaseous. These are mainly xenon and krypton isotopes contributing up to 90% by the xenon isotopes. Upon reaching a burn-up of 60 - 75 GWd/tHM a so called High Burnup Structure (HBS) is formed in the cooler rim of the fuel. In this region a depletion of the noble fission gases (FG) in the matrix and an enrichment of FG in μm-sized pores can be observed. Recent calculations show that in these pores the pressure at room temperature can be as large as 30 MPa. The knowledge of the FG pressure in pores is important to understand the high burn-up fuel behavior under accident conditions (i.e. RIA or LOCA). With analytical methods routinely used for the characterization of solid samples, i.e. Electron Probe Micro Analysis (EPMA), Secondary Ion Mass Spectrometry (SIMS), the quantification of gaseous inclusions is very difficult to almost impossible. The combination of a laser ablation system (LA) with an inductively coupled plasma mass spectrometer (ICP-MS) offers a powerful tool for quantification of the gaseous pore inventory. This method offers the advantages of high spatial resolution with laser spot sizes down to 10 μm and low detection limits. By coupling with scanning electron microscopy (SEM) for the pore size distribution, EPMA for the FG inventory in the fuel matrix and optical microscopy for the LA-crater sizes, the pressures in the pores and porosity was calculated. As a first application of this calibration technique for gases, measurements were performed on pressurized water reactor (PWR) fuel with a rod average of 105 GWd/tHM to determine the local FG pressure distribution. (authors)

  14. Fuel burnup analysis for the Moroccan TRIGA research reactor

    International Nuclear Information System (INIS)

    Highlights: ► A fuel burnup analysis of the 2 MW TRIGA MARK II Moroccan research reactor was established. ► Burnup calculations were done by means of the in-house developed burnup code BUCAL1. ► BUCAL1 uses the MCNP tallies directly in the calculation of the isotopic inventories. ► The reactor life time was found to be 3360 MW h considering full power operating conditions. ► Power factors and fluxes of the in-core irradiation positions are strongly affected by burnup. -- Abstract: The fundamental advantage and main reason to use Monte Carlo methods for burnup calculations is the possibility to generate extremely accurate burnup dependent one group cross-sections and neutron fluxes for arbitrary core and fuel geometries. Yet, a set of values determined for a material at a given position and time remains accurate only in a local region, in which neutron spectrum and flux vary weakly — and only for a limited period of time, during which changes of the local isotopic composition are minor. This paper presents the approach of fuel burnup evaluation used at the Moroccan TRIGA MARK II research reactor. The approach is essentially based upon the utilization of BUCAL1, an in-house developed burnup code. BUCAL1 is a FORTRAN computer code designed to aid in analysis, prediction, and optimization of fuel burnup performance in nuclear reactors. The code was developed to incorporate the neutron absorption reaction tally information generated directly by MCNP5 code in the calculation of fissioned or neutron-transmuted isotopes for multi-fueled regions. The fuel cycle length and changes in several core parameters such as: core excess reactivity, control rods position, fluxes at the irradiation positions, axial and radial power factors and other parameters are estimated. Besides, this study gives valuable insight into the behavior of the reactor and will ensure better utilization and operation of the reactor during its life-time and it will allow the establishment of

  15. Issues for effective implementation of burnup credit

    International Nuclear Information System (INIS)

    In the United States, burnup credit has been used in the criticality safety evaluation for storage pools at pressurized water reactors (PWRs) and considerable work has been performed to lay the foundation for use of burnup credit in dry storage and transport cask applications and permanent disposal applications. Many of the technical issues related to the basic physics phenomena and parameters of importance are similar in each of these applications. However, the nuclear fuel cycle in the United States has never been fully integrated and the implementation of burnup credit to each of these applications is dependent somewhat on the specific safety bases developed over the history of each operational area. This paper will briefly review the implementation status of burnup credit for each application area and explore some of the remaining issues associated with effective implementation of burnup credit. (author)

  16. TRIGA fuel burn-up calculations and its confirmation

    International Nuclear Information System (INIS)

    The Cesium (Cs-137) isotopic concentration due to irradiation of TRIGA Fuel Elements FE(s) is calculated and measured at the Atominstitute (ATI) of Vienna University of Technology (VUT). The Cs-137 isotope, as proved burn-up indicator, was applied to determine the burn-up of the TRIGA Mark II research reactor FE. This article presents the calculations and measurements of the Cs-137 isotope and its relevant burn-up of six selected Spent Fuel Elements SPE(s). High-resolution gamma-ray spectroscopy based non-destructive method is employed to measure spent fuel parameters. By the employment of this method, the axial distribution of Cesium-137 for six SPE(s) is measured, resulting in the axial burn-up profiles. Knowing the exact irradiation history and material isotopic inventory of an irradiated FE, six SPE(s) are selected for on-site gamma scanning using a special shielded scanning device developed at the ATI. This unique fuel inspection unit allows to scan each millimeter of the FE. For this purpose, each selected FE was transferred to the fuel inspection unit using the standard fuel transfer cask. Each FE was scanned at a scale of 1 cm of its active length and the Cs-137 activity was determined as proved burn-up indicator. The measuring system consists of a high-purity germanium detector (HPGe) together with suitable fast electronics and on-line PC data acquisition module. The absolute activity of each centimeter of the FE was measured and compared with reactor physics calculations. The ORIGEN2, a one-group depletion and radioactive decay computer code, was applied to calculate the activity of the Cs-137 and the burn-up of selected SPE. The deviation between calculations and measurements was in range from 0.82% to 12.64%.

  17. Analysis of high burnup fuel safety issues

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Bock; Kim, D. H.; Bang, J. G.; Kim, Y. M.; Yang, Y. S.; Jung, Y. H.; Jeong, Y. H.; Nam, C.; Baik, J. H.; Song, K. W.; Kim, K. S

    2000-12-01

    Safety issues in steady state and transient behavior of high burnup LWR fuel above 50 - 60 MWD/kgU were analyzed. Effects of burnup extension upon fuel performance parameters was reviewed, and validity of both the fuel safety criteria and the performance analysis models which were based upon the lower burnup fuel test results was analyzed. It was found that further tests would be necessary in such areas as fuel failure and dispersion for RIA, and high temperature cladding corrosion and mechanical deformation for LOCA. Since domestic fuels have been irradiated in PWR up to burnup higher than 55 MWD/kgU-rod. avg., it can be said that Korea is in the same situation as the other countries in the high burnup fuel safety issues. Therefore, necessary research areas to be performed in Korea were derived. Considering that post-irradiation examination(PIE) for the domestic fuel of burnup higher than 30 MWD/kgU has not been done so far at all, it is primarily necessary to perform PIE for high burnup fuel, and then simulation tests for RIA and LOCA could be performed by using high burnup fuel specimens. For the areas which can not be performed in Korea, international cooperation will be helpful to obtain the test results. With those data base, safety of high burnup domestic fuels will be confirmed, current fuel safety criteria will be re-evaluated, and finally transient high burnup fuel behavior analysis technology will be developed through the fuel performance analysis code development.

  18. Analysis of high burnup fuel safety issues

    International Nuclear Information System (INIS)

    Safety issues in steady state and transient behavior of high burnup LWR fuel above 50 - 60 MWD/kgU were analyzed. Effects of burnup extension upon fuel performance parameters was reviewed, and validity of both the fuel safety criteria and the performance analysis models which were based upon the lower burnup fuel test results was analyzed. It was found that further tests would be necessary in such areas as fuel failure and dispersion for RIA, and high temperature cladding corrosion and mechanical deformation for LOCA. Since domestic fuels have been irradiated in PWR up to burnup higher than 55 MWD/kgU-rod. avg., it can be said that Korea is in the same situation as the other countries in the high burnup fuel safety issues. Therefore, necessary research areas to be performed in Korea were derived. Considering that post-irradiation examination(PIE) for the domestic fuel of burnup higher than 30 MWD/kgU has not been done so far at all, it is primarily necessary to perform PIE for high burnup fuel, and then simulation tests for RIA and LOCA could be performed by using high burnup fuel specimens. For the areas which can not be performed in Korea, international cooperation will be helpful to obtain the test results. With those data base, safety of high burnup domestic fuels will be confirmed, current fuel safety criteria will be re-evaluated, and finally transient high burnup fuel behavior analysis technology will be developed through the fuel performance analysis code development

  19. Direct Measurement of Initial Enrichment and Burn-up of Spent Fuel Assembly with a Differential Die-Away Technique Based Instrument

    Energy Technology Data Exchange (ETDEWEB)

    Henzl, Vladimir [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory; Tobin, Stephen J. [Los Alamos National Laboratory

    2012-07-16

    A key objective of the Next Generation Safeguards Initiative (NGSI) is to utilize non-destructive assay (NDA) techniques to determine the elemental plutonium (Pu) content in a commercial-grade nuclear spent fuel assembly (SFA). In the third year of the NGSI Spent Fuel NDA project, the research focus is on the integration of a few NDA techniques. One of the reoccurring challenges to the accurate determination of Pu content has been the explicit dependence of the measured signal on the presence of neutron absorbers which build up in the assembly in accordance with its operating and irradiation history. The history of any SFA is often summarized by the parameters of burn-up (BU), initial enrichment (IE) and cooling time (CT). While such parameters can typically be provided by the operator, the ability to directly measure and verify them would significantly enhance the autonomy of the IAEA inspectorate. Within this paper, we demonstrate that an instrument based on a Differential Die-Away technique is in principle capable of direct measurement of IE and, should the CT be known, also the BU.

  20. Experimental control of burn-up calculations for high temperature reactor fuel by introduction of a special alpha spectrometric method for the determination of transuranium content. An attempt to establish isotopic correlations

    International Nuclear Information System (INIS)

    In the field of high-temperature-reactor (HTR) fuel investigation there is a great interest in the experimental and calculational determination of heavy metal content under the aspects of burn-up physics and for the prediction of reliable data for reprocessing and waste management. Using a laser-micro-boring preparation method, high resolution alpha-spectroscopy and sophisticated computer decomposition programs we identify qualitatively and quantitatively most of the important actinide isotopes in irradiated HTR-fuel. Additionally we use data, delivered by gamma- and mass-spectroscopy of the same fuel samples. The evaluated results are compared with calculational results from the burn-up code ORIGEN, using a special generated HTR-neutron-cross-section library. In a first step we determine new cross sections for the uranium and plutonium isotopes depending on the irradiation conditions. In a second step we calculate correlations between the heavy metal isotopes and the burn-up or the fission products

  1. Activity ratio measurement and burnup analysis for high burnup PWR fuels

    International Nuclear Information System (INIS)

    Applying burnup credit to spent fuel transportation and storage system is beneficial. To take burnup credit to criticality safety design for a spent fuel transportation cask and storage rack, the burnup of target fuel assembly based on core management data must be confirmed by experimental methods. Activity ratio method, in which measured the ratio of the activity of a nuclide to that of another, is one of the ways to confirm burnup history. However, there is no public data of gamma-ray spectrum from high burnup fuels and validation of depletion calculation codes is not sufficient in the evaluation of the burnup or nuclide inventories. In this study, applicability evaluation of activity ratio method was carried out for high burnup fuel samples taken from PWR lead use assembly. In the gamma-ray measurement experiments, energy spectrum was taken in the Reactor Fuel Examination Facility (RFEF) of Japan Atomic Energy Agency (JAEA), and 134Cs/137Cs and 154Eu/137Cs activity ratio were obtained. With the MVP-BURN code, the activity ratios were calculated by depletion calculation tracing the operation history. As a result, 134Cs/137Cs and 154Eu/137Cs activity ratios for UO2 fuel samples show good agreements and the activity ratio method has good applicability to high burnup fuels. 154Eu/134Cs activity ratio for Gd2O3+UO2 fuels also shows good agreements between calculation results and experimental results as well as the activity ratio for UO2 fuels. It also becomes clear that it is necessary to pay attention to not only burnup but also axial burnup distribution history when confirming the burnup of UO2+Gd2O3 fuel with 134Cs/137Cs activity ratios. (author)

  2. Direct Measurement of Initial Enrichment, Burn-up and Cooling Time of Spent Fuel Assembly with a Differential Die-Away Technique Based Instrument

    Energy Technology Data Exchange (ETDEWEB)

    Henzl, Vladimir [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory; Tobin, Stephen J. [Los Alamos National Laboratory

    2012-07-13

    An outline of this presentation of what a Differential Die-Away (DDA) instrument can do are: (1) Principle of operation of DDA instrument; (2) Determination of initial enrichment (IE) ({sigma} < 5%); (3) Determination of burn up (BU) ({sigma} {approx} 6%); (4) Determination of cooling time (CT) ({sigma} {approx} 20-50%); and (5) DDA instrument as a standalone device. DDA response (fresh fuel vs. spent fuel) is: (1) Fresh fuel => DDA response increases (die-away time is longer) with increasing fissile content; and (2) Spent fuel => DDA response decreases (die-away time is shorter) with higher burn-up (i.e. more neutron absorbers present).

  3. FTR tag burnup

    International Nuclear Information System (INIS)

    The gas tag burnup changes investigated were limited to the three tags (Kr-78/Kr-80, Xe-126/Xe-129 and Kr-82/Kr-80) currently accepted as being the most desirable. Control rod tag burnup was significantly greater than fuel rod tag burnup. This occurs because control rods stay in the reactor longer and occupy positions of greater low-energy flux. Thus, minimum tag spacings were set by the control rods as 1.079 for Kr-78/Kr-80, 1.189 for Xe-126/Xe-129 and 1.134 for Kr-82/Kr-80

  4. Review of high burn-up RIA and LOCA database and criteria

    International Nuclear Information System (INIS)

    This document is intended to provide regulators, their technical support organizations and industry with a concise review of existing fuel experimental data at RIA and LOCA conditions and considerations on how these data affect fuel safety criteria at increasing burn-up. It mostly addresses experimental results relevant to BWR and PWR fuel and it encompasses several contributions from the various experts that participated in the CSNI SEGFSM activities. It also covers the information presented at the joint CSNI/CNRA Topical Discussion on high burn-up fuel issues that took place on this subject in December 2004. The report is organized in the following way: the CABRI RIA database (14 tests), the NSRR database (26 tests) and other databases, RIA failure thresholds, comparison of failure thresholds for the HZP case, LOCA database ductility tests and quench tests, LOCA safety limit, provisional burn-up dependent criterion for Zr-4. The conclusions are as follows. On RIA, there is a well-established testing method and a significant and relatively consistent database from NSRR and Cabri tests, especially on high burn-up Zr-2 and Zr-4 cladding. It is encouraging that several correlations have been proposed for the RIA fuel failure threshold. Their predictions are compared and discussed in this paper for a representative PWR case. On LOCA, there are two different test methods, one based on ductility determinations and the other based on 'integral' quench tests. The LOCA database at high burn-up is limited to both testing methods. Ductility tests carried out with pre-hydrided non-irradiated cladding show a pronounced hydrogen effect. Data for actual high burn-up specimens are being gathered in various laboratories and will form the basis for a burn-up dependent LOCA limit. A provisional burn-up dependent criterion is discussed in the paper

  5. Extended burnup: fuel development and performance

    International Nuclear Information System (INIS)

    Fuel Performance for the B and W 15 x 15 (Mark B) and 17 x 17 (Mark C) fuel assembly designs is examined on a plant by plant basis. An extensive data base of fuel assembly and rod bow measurements and tests which demonstrate that these phenomena should not limit the high burnup capability of B and W fuel is presented. Post-irradiation measurements to date for fuel rod and assembly growth show that these phenomena are behaving as predicted and can be adequately evaluated and designed for in high burnup fuel assemblies. Clad creep and ductility data as a function of burnup for B and W fuel is presented with emphasis on their effects on our high burnup targets. Finally, fission gas release and waterside corrosion measurements results are presented

  6. KENOREST - A new coupled code system based on KENO and OREST for criticality and burnup inventory calculations

    International Nuclear Information System (INIS)

    The program system KENOREST version 1998 will be presented, which is a useful tool for burnup and reactivity calculations for LWR fuel. The three-dimensional Monte Carlo code KENO-V.a is coupled with the one-dimensional GRS burnup program system OREST-98. The objective is to achieve a better modelling of plutonium and actinide build-up or burnout for advanced heterogeneous fuel assembly designs. Further objectives are directed to reliable calculations of the pin power distributions and of reactor safety parameters including axial and radial rod temperatures for fuel assemblies of modern design. The stand-alone-code KENO-V.a version is used without any changes in the program source. The OREST-98 system was developed to handle multirod problems and additional burnup dependent moderator conditions which can be applied to stretch-out simulations in the reactor. A new interface module RESPEFF between KENO and OREST transforms the 2-d or 3-d KENO flux results to the one-dimensional lattice code OREST in a fully automated manner to maintain reaction rate balance between the codes. First results for assembly multiplication factors, isotope inventories are compared with OECD results. (author)

  7. Dependence of control rod worth on fuel burnup

    Energy Technology Data Exchange (ETDEWEB)

    Savva, P., E-mail: savvapan@ipta.demokritos.g [NCSR ' DEMOKRITOS' , PoB 60228, 15310 Aghia Paraskevi (Greece); Varvayanni, M., E-mail: melina@ipta.demokritos.g [NCSR ' DEMOKRITOS' , PoB 60228, 15310 Aghia Paraskevi (Greece); Catsaros, N., E-mail: nicos@ipta.demokritos.g [NCSR ' DEMOKRITOS' , PoB 60228, 15310 Aghia Paraskevi (Greece)

    2011-02-15

    Research highlights: Diffusion and MC calculations for rod worth dependence on burnup and Xe in reactors. One-step rod withdrawal/insertion are used for rod worth estimation. The study showed that when Xe is present the rods worth is significantly reduced. Rod worth variation with burnup depends on rod position in core. Rod worth obtained with MC code is higher than that obtained from deterministic. - Abstract: One important parameter in the design and the analysis of a nuclear reactor core is the reactivity worth of the control rods, i.e. their efficiency to absorb excess reactivity. The control rod worth is affected by parameters such as the fuel burnup in the rod vicinity, the Xe concentration in the core, the operational time of the rod and its position in the core. In the present work, two different computational approaches, a deterministic and a stochastic one, were used for the determination of the rods worth dependence on the fuel burnup level and the Xe concentration level in a conceptual, symmetric reactor core, based on the MTR fuel assemblies used in the Greek Research Reactor (GRR-1). For the deterministic approach the neutronics code system composed by the SCALE modules NITAWL and XSDRN and the diffusion code CITATION was used, while for the stochastic one the Monte Carlo code TRIPOLI was applied. The study showed that when Xe is present in the core, the rods worth is significantly reduced, while the rod worth variation with increasing burnup depends on the rods position in the core grid. The rod worth obtained with the use of the Monte Carlo code is higher than the one obtained from the deterministic code.

  8. Burnup credit in Spain

    International Nuclear Information System (INIS)

    The status of development of burnup credit for criticality safety analyses in Spain is described in this paper. Ongoing activities in the country in this field, both national and international, are resumed. Burnup credit is currently being applied to wet storage of PWR fuel, and credit to integral burnable absorbers is given for BWR fuel storage. It is envisaged to apply burnup credit techniques to the new generation of transport casks now in the design phase. The analysis methodologies submitted for the analyses of PWR and BWR fuel wet storage are outlined. Analytical activities in the country are described, as well as international collaborations in this field. Perspectives for future research and development of new applications are finally resumed. (author)

  9. Establishing a PWR burn-up library

    International Nuclear Information System (INIS)

    Starting out from data file ENDF/B IV /1/, a cross-section library has been established for the calculation of operating conditions in pressurized water reactors of the type used in BIBLIS B. The library includes macroscopic, homogenized 2-group cross-sections for all types of fuel elements used in this reactor, including those equipped with boron glass rods. For their calculation the previous irradiation of the fuel has been taken into consideration by approximation. Information on fuel consumption from cell burn-up calculations has been stored in a separate data file. It was designed as a base for the determination of cross sections to be used in the calculation of the incident ''main-steam pipe fracture''. For this library the description of cross sections as a function of the moderator status chose the water densities at 3000C/155 bar, 1900C/140 bar and 1000C/100 bar as fixed values. The burn-up library has been tested by a three-dimensional calculation for the 1sup(st) cycle of the BIBLIS B-reactor using program QUABOX /2/. This showed variances with the anticipated course concerning critically, which can be explained almost quantitatively by known deficiencies of the ENDF/b-IV library. (orig.)

  10. Theory analysis and simple calculation of travelling wave burnup scheme

    International Nuclear Information System (INIS)

    Travelling wave burnup scheme is a new burnup scheme that breeds fuel locally just before it burns. Based on the preliminary theory analysis, the physical imagine was found. Through the calculation of a R-z cylinder travelling wave reactor core with ERANOS code system, the basic physical characteristics of this new burnup scheme were concluded. The results show that travelling wave reactor is feasible in physics, and there are some good features in the reactor physics. (authors)

  11. Systemization of burnup sensitivity analysis code. 2

    International Nuclear Information System (INIS)

    Towards the practical use of fast reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoint of improvements on plant efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by the development of adjusted nuclear library using the cross-section adjustment method, in which the results of criticality experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor 'JOYO'. The analysis of burnup characteristics is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, a burnup sensitivity analysis code, SAGEP-BURN, has been developed and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to users due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functions in the existing large system. It is not sufficient to unify each computational component for the following reasons; the computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore, it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion. For

  12. Implementation of burnup credit in spent fuel management systems

    International Nuclear Information System (INIS)

    Improved calculational methods allow one to take credit for the reactivity reduction associated with fuel burnup. This means reducing the analysis conservatism while maintaining an adequate safety margin. The motivation for using burnup credit in criticality safety applications is based on economic considerations and additional benefits contributing to public health and safety and resource conservation. Interest in the implementation of burnup credit has been shown by many countries. In 1997, the International Atomic Energy Agency (IAEA) started a task to monitor the implementation of burnup credit in spent fuel management systems, to provide a forum to exchange information, to discuss the matter and to gather and disseminate information on the status of national practices of burnup credit implementation in the Member States. The task addresses current and future aspects of burnup credit. This task was continued during the following years. (author)

  13. Application of burnup credit with partial boron credit to PWR spent fuel storage pools

    International Nuclear Information System (INIS)

    The outcome of performing a burnup credit criticality safety analysis of a PWR spent fuel storage pool is the determination of burnup credit loading curves BLC=BLC(e) for the spent fuel storage racks designed for burnup credit, cp. Reference. A burnup credit loading curve BLC=BLC(e) specifies the loading criterion by indicating the minimum burnup BLC(e) necessary for the fuel assembly with a specific initial enrichment e to be placed in storage racks designed for burnup credit. (orig.)

  14. Development of three-dimensional burn-up and activation code based on discrete ordinate transport method

    International Nuclear Information System (INIS)

    By coupling a three-dimensional Discrete Ordinate (SN) code with an Exponential Euler Method inventory code, a three-dimensional code system was developed for accurate and rapid fuel burnup and material activation analyses. Resonance self-shielding effect was corrected dynamically in each step and each fuel zone. The update of compositions and nuclide densities in transport calculation was treated by setting nuclide density limitation, keeping important nuclides and using pseudo fission products (FPeff). The validation was described, which illustrates the robustness and reliability of this code system. (authors)

  15. Non destructive assay of nuclear LEU spent fuels for burnup credit application

    International Nuclear Information System (INIS)

    Criticality safety analysis devoted to spent fuel storage and transportation has to be conservative in order to be sure no accident will ever happen. In the spent fuel storage field, the assumption of freshness has been used to achieve the conservative aspect of criticality safety procedures. Nevertheless, after being irradiated in a reactor core, the fuel elements have obviously lost part of their original reactivity. The concept of taking into account this reactivity loss in criticality safety analysis is known as Burnup credit. To be used, Burnup credit involves obtaining evidence of the reactivity loss with a Burnup measurement. Many non destructive assays (NDA) based on neutron as well as on gamma ray emissions are devoted to spent fuel characterization. Heavy nuclei that compose the fuels are modified during irradiation and cooling. Some of them emit neutrons spontaneously and the link to Burnup is a power link. As a result, burn-up determination with passive neutron measurement is extremely accurate. Some gamma emitters also have interesting properties in order to characterize spent fuels but the convenience of the gamma spectrometric methods is very dependent on characteristics of spent fuel. In addition, contrary to the neutron emission, the gamma signal is mostly representative of the peripheral rods of the fuels. Two devices based on neutron methods but combining different NDA methods which have been studied in the past are described in detail: 1. The PYTHON device is a combination of a passive neutron measurement, a collimated total gamma measurement, and an online depletion code. This device, which has been used in several Nuclear Power Plants in western Europe, gives the average Burnup within a 5% uncertainty and also the extremity Burnup, 2. The NAJA device is an automatic device that involves three nuclear methods and an online depletion code. It is designed to cover the whole fuel assembly panel (Active Neutron Interrogation, Passive Neutron

  16. Study on core radius minimization for long life Pb-Bi cooled CANDLE burnup scheme based fast reactor

    Science.gov (United States)

    Afifah, Maryam; Miura, Ryosuke; Su'ud, Zaki; Takaki, Naoyuki; Sekimoto, H.

    2015-09-01

    Fast Breeder Reactor had been interested to be developed over the world because it inexhaustible source energy, one of those is CANDLE reactor which is have strategy in burn-up scheme, need not control roads for control burn-up, have a constant core characteristics during energy production and don't need fuel shuffling. The calculation was made by basic reactor analysis which use Sodium coolant geometry core parameter as a reference core to study on minimum core reactor radius of CANDLE for long life Pb-Bi cooled, also want to perform pure coolant effect comparison between LBE and sodium in a same geometry design. The result show that the minimum core radius of Lead Bismuth cooled CANDLE is 100 cm and 500 MWth thermal output. Lead-Bismuth coolant for CANDLE reactor enable to reduce much reactor size and have a better void coefficient than Sodium cooled as the most coolant for FBR, then we will have a good point in safety analysis.

  17. Study on core radius minimization for long life Pb-Bi cooled CANDLE burnup scheme based fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Afifah, Maryam, E-mail: maryam.afifah210692@gmail.com; Su’ud, Zaki [Nuclear Research Group, FMIPA, Bandung Institute of Technology Jl. Ganesha 10, Bandung 40132 (Indonesia); Miura, Ryosuke; Takaki, Naoyuki [Department of Nuclear Safety Engineering, Tokyo City University 1-28-1 Tamazutsumi, Setagaya, Tokyo 158-8557 (Japan); Sekimoto, H. [Emerritus Prof. of Research Laboratory for Nuclear Reactors, Tokyo Inst. of Technology (Japan)

    2015-09-30

    Fast Breeder Reactor had been interested to be developed over the world because it inexhaustible source energy, one of those is CANDLE reactor which is have strategy in burn-up scheme, need not control roads for control burn-up, have a constant core characteristics during energy production and don’t need fuel shuffling. The calculation was made by basic reactor analysis which use Sodium coolant geometry core parameter as a reference core to study on minimum core reactor radius of CANDLE for long life Pb-Bi cooled, also want to perform pure coolant effect comparison between LBE and sodium in a same geometry design. The result show that the minimum core radius of Lead Bismuth cooled CANDLE is 100 cm and 500 MWth thermal output. Lead-Bismuth coolant for CANDLE reactor enable to reduce much reactor size and have a better void coefficient than Sodium cooled as the most coolant for FBR, then we will have a good point in safety analysis.

  18. Study on core radius minimization for long life Pb-Bi cooled CANDLE burnup scheme based fast reactor

    International Nuclear Information System (INIS)

    Fast Breeder Reactor had been interested to be developed over the world because it inexhaustible source energy, one of those is CANDLE reactor which is have strategy in burn-up scheme, need not control roads for control burn-up, have a constant core characteristics during energy production and don’t need fuel shuffling. The calculation was made by basic reactor analysis which use Sodium coolant geometry core parameter as a reference core to study on minimum core reactor radius of CANDLE for long life Pb-Bi cooled, also want to perform pure coolant effect comparison between LBE and sodium in a same geometry design. The result show that the minimum core radius of Lead Bismuth cooled CANDLE is 100 cm and 500 MWth thermal output. Lead-Bismuth coolant for CANDLE reactor enable to reduce much reactor size and have a better void coefficient than Sodium cooled as the most coolant for FBR, then we will have a good point in safety analysis

  19. Integrated burnup calculation code system SWAT

    International Nuclear Information System (INIS)

    SWAT is an integrated burnup code system developed for analysis of post irradiation examination, transmutation of radioactive waste, and burnup credit problem. It enables us to analyze the burnup problem using neutron spectrum depending on environment of irradiation, combining SRAC which is Japanese standard thermal reactor analysis code system and ORIGEN2 which is burnup code widely used all over the world. SWAT makes effective cross section library based on results by SRAC, and performs the burnup analysis with ORIGEN2 using that library. SRAC and ORIGEN2 can be called as external module. SWAT has original cross section library on based JENDL-3.2 and libraries of fission yield and decay data prepared from JNDC FP Library second version. Using these libraries, user can use latest data in the calculation of SWAT besides the effective cross section prepared by SRAC. Also, User can make original ORIGEN2 library using the output file of SWAT. This report presents concept and user's manual of SWAT. (author)

  20. Application of the radiochemical - and the direct gamma ray spectrometry method to the burnup determination of irradiated uranium oxide

    International Nuclear Information System (INIS)

    The burn up of natural U3O8 that occurs by the action of thermal neutrons was determined, using the radioisotopes 144Ce, 137Cs, 103Ru, 106Ru and 95Zr as monitors. The determination of the burn up was made using both destructive and non-destructive methods. In the non-destructive method, the technique of direct gamma-ray spectrometry was used and the radioisotopes mentioned were simultaneously counted in a Ge-Li detector. In the radiochemical method the same radioisotopes were isolated one from the other and from all other fission products before counting. The solvent extraction technique was used for the radiochemical separation of uranium, cerium, cesium and ruthenium. To separate zirconium and niobium, adsorption in silica-gel was used. The extraction agent employed to isolate cesium was dipycrilamine and for the separation of the other radioisotopes Di-(2-Ethyl Hexyl) Phosphoric acid (HDEHP) was used. (Author)

  1. Systemization of burnup sensitivity analysis code

    International Nuclear Information System (INIS)

    To practical use of fact reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoints of improvements on plant efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by development of adjusted nuclear library using the cross-section adjustment method, in which the results of critical experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor core 'JOYO'. The analysis of burnup characteristics is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, development of a analysis code for burnup sensitivity, SAGEP-BURN, has been done and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to user due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functionalities in the existing large system. It is not sufficient to unify each computational component for some reasons; computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion. For this

  2. Preliminary safety analysis of Pb-Bi cooled 800 MWt modified CANDLE burn-up scheme based fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Su' ud, Zaki, E-mail: szaki@fi.itba.c.id [Nuclear Physics and Biophysics Research Group, Faculty of Mathematics and Natural Science, Bandung Institute of Technology (Ganesha 10 Bandung, Indonesia) (Indonesia); Sekimoto, H., E-mail: hsekimot@gmail.com [Research Lab. For Nuclear Reactors, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo (Japan)

    2014-09-30

    Pb-Bi Cooled fast reactors with modified CANDLE burn-up scheme with 10 regions and 10 years cycle length has been investigated from neutronic aspects. In this study the safety aspect of such reactors have been investigated and discussed. Several condition of unprotected loss of flow (ULOF) and unprotected rod run-out transient over power (UTOP) have been simulated and the results show that the reactors excellent safety performance. At 80 seconds after unprotected loss of flow condition, the core flow rate drop to about 25% of its initial flow and slowly move toward its natural circulation level. The maximum fuel temperature can be managed below 1000°C and the maximum cladding temperature can be managed below 700°C. The dominant reactivity feedback is radial core expansion and Doppler effect, followed by coolant density effect and fuel axial expansion effect.

  3. The method of correction of irradiation history in burn-up determination using fission product cesium-137, cerium-144, and neodymium-148 as monitors

    International Nuclear Information System (INIS)

    In this paper, for cesium-137, cerium-144 and neodymium-148 nuclids the average yield, the quantity of correction for (n, γ) reaction, the quantity of correction for radioactive decay in reactor and the average fission energy of fissionable nuclide were calculated. The result improved precision of parameter and gave quite well value of burn-up

  4. Kinetic parameter calculation as function of burn-up of candu reactor

    International Nuclear Information System (INIS)

    Kinetic parameter calculation as function of burn-up of candu reactor. Kinetic marameter calculation as function of burp-up of CANDU reactor with Canflex fuel type-CANDU has been done. This type of fuel is currently being develop, so kinetic parameter such as effective delay neutron fraction (.......), delay neutron decay constant ( .... ) and prompt neutron generation time ( ...... ) are very important for analysis of reactor operation safety. WIMS-CRNL code was used to generate macroscopic cross section and reaction rate based on transport theory. Fast and thermal neutron velocity and macroscopic cross section fission product of the unit cell were determined by KINETIC Code. The result of calculation showed that the value of effective delay neutron fraction was 7,785616 x 10-3 at the beginning of operation at burn-up of 0 MWD/T and after the reactor operated at burn-up of 7,2231 x 10-3 MWD/T was 4,962766 x 10-3, or reduced by 36%. The value of prompt generation time was 9,982703 x 10-4 s at the beginning of operation at burn-up of 0 MWD/T and 8,965416 x 10-4 s after the reactor operated at burn-up of 7,2231 x 103 MWD/T, or reduced by 10%. The result of calculation showed that the values of effective delay neutron fraction and prompt neutron generation time are still great enough

  5. Criticality safety analysis of WWER-440 spent fuel cask with radial and axial burnup profile implementation

    International Nuclear Information System (INIS)

    The impact of radial and axial burnup profile on the criticality of WWER-440 spent fuel cask is presented in the paper. The calculations are performed based on two AER Benchmark problems for WWER-440 irradiated fuel assembly. The radial zonewise dependent spent fuel inventory has been calculated by the NESSEL - NUKO code system. The axial dependent isotope concentrations have been determined by the modular code system SCALE4.4. For criticality calculations the SCALE4.4 has been applied. Calculations have been carried out for cask with 30 WWER-440 fuel assemblies with initial enrichment 3.6% of 235U and burnup up to 40 MWd/kgU. The influence of radial and axial burnup credit on the cask criticality has been evaluated

  6. On the theories, techniques, and computer codes used in numerical reactor criticality and burnup calculations

    International Nuclear Information System (INIS)

    The purpose of this paper is to discuss the theories, techniques and computer codes that are frequently used in numerical reactor criticality and burnup calculations. It is a part of an integrated nuclear reactor calculation scheme conducted by the Reactors Department, Inshas Nuclear Research Centre. The crude part in numerical reactor criticality and burnup calculations includes the determination of neutron flux distribution which can be obtained in principle as a solution of Boltzmann transport equation. Numerical methods used for solving transport equations are discussed. Emphasis are made on numerical techniques based on multigroup diffusion theory. These numerical techniques include nodal, modal, and finite difference ones. The most commonly known computer codes utilizing these techniques are reviewed. Some of the main computer codes that have been already developed at the Reactors Department and related to numerical reactor criticality and burnup calculations have been presented

  7. Quantification of the computational accuracy of code systems on the burn-up credit using experimental re-calculations

    International Nuclear Information System (INIS)

    In order to account for the reactivity-reducing effect of burn-up in the criticality safety analysis for systems with irradiated nuclear fuel (''burnup credit''), numerical methods to determine the enrichment and burnup dependent nuclide inventory (''burnup code'') and its resulting multiplication factor keff (''criticality code'') are applied. To allow for reliable conclusions, for both calculation systems the systematic deviations of the calculation results from the respective true values, the bias and its uncertainty, are being quantified by calculation and analysis of a sufficient number of suitable experiments. This quantification is specific for the application case under scope and is also called validation. GRS has developed a methodology to validate a calculation system for the application of burnup credit in the criticality safety analysis for irradiated fuel assemblies from pressurized water reactors. This methodology was demonstrated by applying the GRS home-built KENOREST burnup code and the criticality calculation sequence CSAS5 from SCALE code package. It comprises a bounding approach and alternatively a stochastic, which both have been exemplarily demonstrated by use of a generic spent fuel pool rack and a generic dry storage cask, respectively. Based on publicly available post irradiation examination and criticality experiments, currently the isotopes of uranium and plutonium elements can be regarded for.

  8. Automated generation of burnup chain for reactor analysis applications

    International Nuclear Information System (INIS)

    This paper presents the development of an automated generation of a new burnup chain for reactor analysis applications. The JENDL FP Decay Data File 2011 and Fission Yields Data File 2011 were used as the data sources. The nuclides in the new chain are determined by restrictions of the half-life and cumulative yield of fission products or from a given list. Then, decay modes, branching ratios and fission yields are recalculated taking into account intermediate reactions. The new burnup chain is output according to the format for the SRAC code system. Verification was performed to evaluate the accuracy of the new burnup chain. The results show that the new burnup chain reproduces well the results of a reference one with 193 fission products used in SRAC. Further development and applications are being planned with the burnup chain code. (author)

  9. Thermonuclear burn-up in deuterated methane $CD_4$

    CERN Document Server

    Frolov, Alexei M

    2010-01-01

    The thermonuclear burn-up of highly compressed deuterated methane CD$_4$ is considered in the spherical geometry. The minimal required values of the burn-up parameter $x = \\rho_0 \\cdot r_f$ are determined for various temperatures $T$ and densities $\\rho_0$. It is shown that thermonuclear burn-up in $CD_4$ becomes possible in practice if its initial density $\\rho_0$ exceeds $\\approx 5 \\cdot 10^3$ $g \\cdot cm^{-3}$. Burn-up in CD$_2$T$_2$ methane requires significantly ($\\approx$ 100 times) lower compressions. The developed approach can be used in order to compute the critical burn-up parameters in an arbitrary deuterium containing fuel.

  10. Investigation of burnup credit implementation for BWR fuel

    International Nuclear Information System (INIS)

    Burnup Credit allows considering the reactivity decrease due to fuel irradiation in criticality studies for the nuclear fuel cycle. Its implementation requires to carefully analyze the validity of the assumptions made to define the axial profile of the burnup and void fraction (for BWR), to determine the composition of the irradiated fuel and to compute the criticality simulation. In the framework of Burnup Credit implementation for BWR fuel, this paper proposes to investigate part of these items. The studies presented in this paper concern: the influence of the burnup and of the void fraction on BWR spent fuel content and on the effective multiplication factor of an infinite array of BWR assemblies. A code-to-code comparison for BWR fuel depletion calculations relevant to Burnup Credit is also performed. (authors)

  11. COGEMA/TRANSNUCLEAIRE's experience with burnup credit

    International Nuclear Information System (INIS)

    Facing a continuous increase in the fuel enrichments, COGEMA and TRANSNUCLEAIRE have implemented step by step a burnup credit programme to improve the capacity of their equipment without major physical modification. Many authorizations have been granted by the French competent authority in wet storage, reprocessing and transport since 1981. As concerns transport, numerous authorizations have been validated by foreign competent authorities. Up to now, those authorizations are restricted to PWR Fuel type assemblies made of enriched uranium. The characterization of the irradiated fuel and the reactivity of the systems are evaluated by calculations performed with well qualified French codes developed by the CEA (French Atomic Energy Commission): CESAR as a depletion code and APPOLO-MORET as a criticality code. The authorizations are based on the assurance that the burnup considered is met on the least irradiated part of the fuel assemblies. Besides, the most reactive configuration is calculated and the burnup credit is restricted to major actinides only. This conservative approach allows not to take credit for any axial profile. On the operational side, the procedures have been reevaluated to avoid misloadings and a burnup verification is made before transport, storage and reprocessing. Depending on the level of burnup credit, it consists of a qualitative (go/no-go) verification or of a quantitative measurement. Thus the use of burnup credit is now a common practice in France and Germany and new improvements are still in progress: extended qualifications of the codes are made to enable the use of six selected fission products in the criticality evaluations. (author)

  12. Sensitivity and parametric evaluations of significant aspects of burnup credit for PWR spent fuel packages

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, M.D.

    1996-05-01

    Spent fuel transportation and storage cask designs based on a burnup credit approach must consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For example, the spent fuel composition must be adequately characterized and the criticality analysis model can be complicated by the need to consider axial burnup variations. Parametric analyses are needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel composition and reactivity. Numerical models must be evaluated to determine the sensitivity of criticality safety calculations to modeling assumptions. The purpose of this report is to describe analyses and evaluations performed in order to demonstrate the effect physical parameters and modeling assumptions have on the criticality analysis of spent fuel. The analyses in this report include determination and ranking of the most important actinides and fission products; study of the effect of various depletion scenarios on subsequent criticality calculations; establishment of trends in neutron multiplication as a function of fuel enrichment, burnup, cooling time- and a parametric and modeling evaluation of three-dimensional effects (e.g., axially varying burnup and temperature/density effects) in a conceptual cask design. The sensitivity and parametric evaluations were performed with the consideration of two different burnup credit approaches: (1) only actinides in the fuel are considered in the criticality analysis, and (2) both actinides and fission products are considered. Calculations described in this report were performed using the criticality and depletion sequences available in the SCALE code system and the SCALE 27-group burnup library. Although the results described herein do not constitute a validation of SCALE for use in spent fuel analysis, independent validation efforts have been completed and are described in other reports.

  13. Sensitivity and parametric evaluations of significant aspects of burnup credit for PWR spent fuel packages

    International Nuclear Information System (INIS)

    Spent fuel transportation and storage cask designs based on a burnup credit approach must consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For example, the spent fuel composition must be adequately characterized and the criticality analysis model can be complicated by the need to consider axial burnup variations. Parametric analyses are needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel composition and reactivity. Numerical models must be evaluated to determine the sensitivity of criticality safety calculations to modeling assumptions. The purpose of this report is to describe analyses and evaluations performed in order to demonstrate the effect physical parameters and modeling assumptions have on the criticality analysis of spent fuel. The analyses in this report include determination and ranking of the most important actinides and fission products; study of the effect of various depletion scenarios on subsequent criticality calculations; establishment of trends in neutron multiplication as a function of fuel enrichment, burnup, cooling time- and a parametric and modeling evaluation of three-dimensional effects (e.g., axially varying burnup and temperature/density effects) in a conceptual cask design. The sensitivity and parametric evaluations were performed with the consideration of two different burnup credit approaches: (1) only actinides in the fuel are considered in the criticality analysis, and (2) both actinides and fission products are considered. Calculations described in this report were performed using the criticality and depletion sequences available in the SCALE code system and the SCALE 27-group burnup library. Although the results described herein do not constitute a validation of SCALE for use in spent fuel analysis, independent validation efforts have been completed and are described in other reports

  14. CARMEN-SYSTEM, Programs System for Thermal Neutron Diffusion and Burnup with Feedback

    International Nuclear Information System (INIS)

    1 - Description of problem or function: CARMEN is a system of programs developed for the neutronic calculation of PWR cycles. It includes the whole chain of analysis from cell calculations to core calculations with burnup. The core calculations are based on diffusion theory with cross sections depending on the relevant space-dependent feedback effects which are present at each moment along the cycles. The diffusion calculations are in one, two or three dimensions and in two energy groups. The feedback effects which are treated locally are: burnup, water density, power density and fission products. In order to study in detail these parameters the core should be divided into as many zones as different cross section sets are expected to be required in order to reproduce reality correctly. A relevant difference in any feedback parameter between zones produces different cross section sets for the corresponding zones. CARMEN is also capable to perform the following calculations: - Multiplication factor by burnup step with fixed boron concentration - Buckling and control rod insertion - Buckling search by burnup step - Boron search by burnup step - Control rod insertion search by burnup step. 2 - Method of solution: The cell code (LEOPARD-TRACA) generates the fuel assembly cross sections versus burnup. This is the basic library to be used in the CARMEN code proper. With a planar distribution guess for power density, water density and fluxes, the macroscopic cross sections by zone are calculated by CARMEN, and then a diffusion calculation is done in the whole geometry. With the distribution of power density, heat accumulated in the coolant and the thermal and fast fluxes determined in the diffusion calculation, CARMEN calculates the values of the most relevant parameters that influence the macroscopic cross sections by zone: burnup, water density, effective fuel temperature and fission product concentrations. If these parameters by zone are different from the reference

  15. Effects of axial burnup distributions on the reactivity of spent fuel

    International Nuclear Information System (INIS)

    Criticality safety analyses for spent fuel shipping casks will eventually need to take credit for the decreased reactivity of spent fuel assemblies resulting from burnup. In order to do so, it will be necessary to assess the reactivity effects of the multitude of burnup shapes that can characterize spent fuel. A computer program, CASAX, has been written that allows the analyst to quickly evaluate the reactivity effects of actual and simplified axial burnup distributions on a group of PWR fuel assemblies. CASAX employs one dimensional, two group diffusion calculations to determine the k-effective of a cluster of assemblies. Assembly average, burnup dependent, two group cross sections for CASAX were obtained from CASMO3 using physical properties representative of Westinghouse 17 x 17 assemblies. Reactivity results are presented in terms of (k for the axially dependent burnup distribution minus k for a uniform axial burnup distribution at the assembly average burnup)/(k for a uniform axial burnup distribution at the assembly average burnup). Axial burnup distributions can have both positive and negative effects on the calculated k-effective. Positive reactivity effects generally result at high assembly average burnups and for axial distributions with low burnups in the assembly's tips

  16. Burnup-dependent cross section data for research reactors

    International Nuclear Information System (INIS)

    Studies currently in progress consider research and test reactors which commonly have burnups of 50 atom percent in 235-U and may reach as high a 70 atom percent. At these levels of burnup changes in cross-section data with burnup become significant. Some preliminary studies of these effects lead to the development of a modified version of REBUS-2 which supports changes in cross-section data with burnup. This version of REBUS-2 allows for changes in the cross-section data only at each time sub-interval in the problem, and these cross-section changes for capture and fission are based on a least squares polynomial fit as a function of burnup. In this paper an attempt is made to evaluate the importance of burnup dependent data for the various isotopes and/or groups, and to assess the accuracy of this method by comparing the REBUS-2 results with results obtained from PDQ-7. The 10 MW IAEA benchmark problem has been selected for this study. A description of the reactor and the XY model can be found in the IAEA Guidebook. The EPRI-CELL4 code was used to generate burnup dependent cross section data for use with both REBUS-2 and PDQ-7. Cross-section data were generated at 10 time steps to a burnup of approximately 50 atom percent in 235-U. The agreement between the PDQ-7 results and the REBUS-2 results with fitted burnup dependent cross-section data are quite good. Burnup dependent cross sections are essential for accurate estimates of cycle lengths and reactivities, and low order polynomial fits of capture and fission data for selected isotopes and energy groups can provide this capability

  17. Effect of Self-Shielding on Burn-Up Calculation of ETRR-2 Reactor

    International Nuclear Information System (INIS)

    There exist two approaches for burn-up calculation. The first on is to use cell parameters generated using cell calculation code at different degrees of burn-up. The other is to use microscopic cross sections with self-shielding in order to compensate for the variation of spectrum at different degree of burn-up. The effect of using different forms of self-shielding factors on burn-up calculation for ETRR-2 reactor has been determined. The results of the two approaches are inter-compared up to 50% burn-up

  18. Detailed Burnup Calculations for Testing Nuclear Data

    Science.gov (United States)

    Leszczynski, F.

    2005-05-01

    A general method (MCQ) has been developed by introducing a microscopic burnup scheme that uses the Monte Carlo calculated fluxes and microscopic reaction rates of a complex system and a depletion code for burnup calculations as a basis for solving nuclide material balance equations for each spatial region in which the system is divided. Continuous energy-dependent cross-section libraries and full 3D geometry of the system can be input for the calculations. The resulting predictions for the system at successive burnup time steps are thus based on a calculation route where both geometry and cross sections are accurately represented, without geometry simplifications and with continuous energy data, providing an independent approach for benchmarking other methods and nuclear data of actinides, fission products, and other burnable absorbers. The main advantage of this method over the classical deterministic methods currently used is that the MCQ System is a direct 3D method without the limitations and errors introduced on the homogenization of geometry and condensation of energy of deterministic methods. The Monte Carlo and burnup codes adopted until now are the widely used MCNP and ORIGEN codes, but other codes can be used also. For using this method, there is need of a well-known set of nuclear data for isotopes involved in burnup chains, including burnable poisons, fission products, and actinides. For fixing the data to be included in this set, a study of the present status of nuclear data is performed, as part of the development of the MCQ method. This study begins with a review of the available cross-section data of isotopes involved in burnup chains for power and research nuclear reactors. The main data needs for burnup calculations are neutron cross sections, decay constants, branching ratios, fission energy, and yields. The present work includes results of selected experimental benchmarks and conclusions about the sensitivity of different sets of cross

  19. Application of a burnup verification meter to actinide-only burnup credit for spent PWR fuel

    International Nuclear Information System (INIS)

    A measurement system to verify reactor records for burnup of spent fuel at pressurized water reactors (PWR) has been developed by Sandia National Laboratories and tested at US nuclear utility sites. The system makes use of the Fork detector designed at Los Alamos National Laboratory for the safeguards program of the International Atomic Energy Agency. A single-point measurement of the neutrons and gamma- rays emitted from a PWR assembly is made at the center plane of the assembly while it is partially raised from its rack in the spent fuel pool. The objective of the measurements is to determine the variation in burnup assignments among a group of assemblies, and to identify anomalous assemblies that might adversely affect nuclear criticality safety. The measurements also provide an internal consistency check for reactor records of cooling time and initial enrichment. The burnup verification system has been proposed for qualifying spent fuel assemblies for loading into containers designed using burnup credit techniques. The system is incorporated in the US Department of Energy's.''Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages'' [DOE/RW 19951

  20. Burn-up and cycle length optimization project of the robust fuel programme

    International Nuclear Information System (INIS)

    The Spanish electric sector (UNESA) takes part in the Robust Fuel programme in the different work groups set up by EPRI. Iberinco, with the collaboration of Iberdrola Generacion (TECNO and Cofrentes NPP) and Soluziona Ingenieria, has created a stable multidisciplinary group to assimilate and follow up this program, analyzing in detail the technology generated and evaluating the conclusions to provide the most suitable recommendations for application. Along these lines, one of the most promising projects within technical group 3 (High burn properties) has been the one called Burn-up and cycle Length Optimization. In January 2000 Duke Power published a study on the plants it owns (PWR type) and 18-month cycles, to establish the optimum unloading burn-up of fuel. The conclusion it reached is that the fuel cost drops t a minimum for average unload burn-ups of between 60 and 70 GWd/MTU. As an extension to this study and covering a wider base of considerations, Exelon, with the support of Westinghouse and the University of Pennsylvania, released a study in December 2001 on different reference cores with different cycle lengths. In this study, the optimum burn-up without exceeding current maximum enrichment limits (5%) is determined. Publication of the results of the second phase, considering higher enrichments, was due in the summer of 2002. The design of the core to be refueled and economic analyzes show that both pressurized water reactors (PWR) and boiling water reactors (BWR) can obtain significant benefits by increasing the fuel unloading burn-up above currently licensed limits. However, the optimum unload burn-up level is not reached without exceeding the current enrichment limit of 5% . (Author)

  1. Optimum burnup of BAEC TRIGA research reactor

    International Nuclear Information System (INIS)

    Highlights: ► Optimum loading scheme for BAEC TRIGA core is out-to-in loading with 10 fuels/cycle starting with 5 for the first reload. ► The discharge burnup ranges from 17% to 24% of U235 per fuel element for full power (3 MW) operation. ► Optimum extension of operating core life is 100 MWD per reload cycle. - Abstract: The TRIGA Mark II research reactor of BAEC (Bangladesh Atomic Energy Commission) has been operating since 1986 without any reshuffling or reloading yet. Optimum fuel burnup strategy has been investigated for the present BAEC TRIGA core, where three out-to-in loading schemes have been inspected in terms of core life extension, burnup economy and safety. In considering different schemes of fuel loading, optimization has been searched by only varying the number of fuels discharged and loaded. A cost function has been defined and evaluated based on the calculated core life and fuel load and discharge. The optimum loading scheme has been identified for the TRIGA core, the outside-to-inside fuel loading with ten fuels for each cycle starting with five fuels for the first reload. The discharge burnup has been found ranging from 17% to 24% of U235 per fuel element and optimum extension of core operating life is 100 MWD for each loading cycle. This study will contribute to the in-core fuel management of TRIGA reactor

  2. Fuel burnup characteristics for the NRU research reactor

    International Nuclear Information System (INIS)

    The driver fuel of the NRU research reactor at AECL, Chalk River is a low enriched uranium (LEU) fuel alloy of Al-61 wt% U3Si, consisting of particles of U3Si dispersed in a continuous aluminum matrix, with 19.8% U235 in uranium. This paper describes the burnup characteristics for this type of fuel in NRU, including the determination of fuel depletion using the neutronic simulation code TRIAD, comparisons between simulated and measured burnup values, and the regulatory licensing operational average fuel burnup limit. (author)

  3. Fuel burnup characteristics for the NRU research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Leung, T.C., E-mail: leungt@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-07-01

    The driver fuel of the NRU research reactor at AECL, Chalk River is a low enriched uranium (LEU) fuel alloy of Al-61 wt% U{sub 3}Si, consisting of particles of U{sub 3}Si dispersed in a continuous aluminum matrix, with 19.8% U235 in uranium. This paper describes the burnup characteristics for this type of fuel in NRU, including the determination of fuel depletion using the neutronic simulation code TRIAD, comparisons between simulated and measured burnup values, and the regulatory licensing operational average fuel burnup limit. (author)

  4. Burnup and plutonium distribution of WWER-440 fuel pin at extended burnup

    International Nuclear Information System (INIS)

    The formation of rim region in LWR UO2 based nuclear fuel at high burnup is a common observation. This region has very high porosity due to excessive gas release. Such a region is also characterized by a significantly high plutonium concentration and high local burnup compared to the internal fuel region. Spatial distribution of these parameters has been incorporated with fuel behavior and performance analysis codes by using mostly empirical relations. Variation of these parameters depends on the neutron flux as well as neutron energy spectrum. Detailed neutronics analysis is necessary for the accurate prediction of these parameters. This study is performed by MCNP4B Monte Carlo code for the calculation of local neutron flux, ORIGEN2 for burnup and depletion calculations, and MONTEBURNS for coupling these codes. For the analysis, a typical WWER-440 fuel pin and surrounding water moderator are considered in a hexagonal pin cell. Fuel pin is divided into a number of radial segments. A relatively small mesh size is used at the region near the surface to reveal the rim effect. The variation of plutonium and local burnup are obtained for high burnup. Results are compared with existing experimental observations for WWER-440 fuel and other theoretical predictions

  5. High burnup in DIONISIO code

    International Nuclear Information System (INIS)

    with high precision the neutron flux, burnup and concentration of every isotope, fissile, fissionable or fertile, gaseous or solid, all of them as functions of radius and time. But this formidable task is not suitable to be included in a fuel performance code, which must attend the great number of thermomechanical and thermochemical processes within the fuel rod. To accommodate both requirements, a simplified treatment is adopted consisting of restricting the balance equations to more relevant nuclides and reducing the energy spectrum to a single group. The purpose is to obtain empirical expressions to represent, with the higher possible approximation degree, the absorption, capture and fission cross sections of these isotopes as functions of the initial enrichment in 235U, the average burnup and the radial coordinate. The curves obtained with a so drastic simplification demand a careful testing before incorporation in the general fuel behaviour code. This testing is performed via comparison with the reliable reactor codes. The first antecedent in this type of analysis is found in the RADAR model [4] which was validated against the WIMS [5,6] code. The TUBRNP model, included in the TRANSURANUS code [7] and the RAPID model [8] are also based on the same concept. In this work curves fitted for the cross sections of 235U, 236U, 238U, 239Pu, 240Pu, 241Pu and 242Pu are obtained from the predictions of the reactor cell codes HUEMUL [9] and CONDOR [10] for an average burnup ranging from fresh fuel to 120 MWd/kgHM and for an initial enrichment ranging from natural uranium to 12%. The final purpose is to extend the application range of the DIONISIO code [11,12,13] (originally designed to predict the fuel behavior in normal operation conditions) to the high burnup domain. The predictions of DIONISIO were compared with a large number of experimental data, obtaining an excellent agreement

  6. Revaluation on measured burnup values of fuel assemblies by post-irradiation experiments at BWR plants

    International Nuclear Information System (INIS)

    Fuel composition data for 8x8 UO2, Tsuruga MOX and 9x9-A type UO2 fuel assemblies irradiated in BWR plants were measured. Burnup values for measured fuels based on Nd-148 method were revaluated. In this report, Nd-148 fission yield and energy per fission obtained by burnup analyses for measured fuels were applied and fuel composition data for the measured fuel assemblies were revised. Furthermore, the adequacies of revaluated burnup values were verified through the comparison with burnup values calculated by the burnup analyses for the measured fuel assemblies. (author)

  7. SOURCE OF BURNUP VALUES FOR COMMERCIAL SPENT NUCLEAR FUEL ASSEMBLIES

    International Nuclear Information System (INIS)

    , initial 235U enrichment, and time of discharge from the reactor as well as the assigned burnup, but the distribution. of burnup axially along the assembly length is not provided. The axial burnup profile is maintained within acceptable bounds by the operating conditions of the nuclear reactor and is calculated during preparations to reload a reactor, but the actual burnup profile is not measured. The axial burnup profile is important to the determination of the reactivity of a waste package, so a conservative evaluation of the calculated axial profiles for a large database of SNF has been performed. The product of the axial profile evaluation is a profile that is conservative. Thus, there is no need for physical measurement of the axial profile. The assembly identifier is legible on each SNF assembly and the utility records provide the associated characteristics of the assembly. The conservative methodologies used to determine the criticality loading curve for a waste package provide sufficient margin so that criticality safety is assured for preclosure operations even in the event of a misload. Consideration of misload effects for postclosure time periods is provided by the criticality Features, Events, and Processes (FEPs) analysis. The conservative approaches used to develop and apply the criticality loading curve are thus sufficiently robust that the utility assigned burnup is an adequate source of burnup values, and additional means of verification of assigned burnup through physical measurements are not needed

  8. Establishing the fuel burn-up measuring system for 106 irradiated assemblies of Dalat reactor by using gamma spectrometer method

    International Nuclear Information System (INIS)

    The fuel burn-up is an important parameter needed to be monitored and determined during a reactor operation and fuel management. The fuel burn-up can be calculated using computer codes and experimentally measured. This work presents the theory and experimental method applied to determine the burn-up of the irradiated and 36% enriched VVR-M2 fuel type assemblies of Dalat reactor. The method is based on measurement of Cs-137 absolute specific activity using gamma spectrometer. Designed measuring system consists of a collimator tube, high purity Germanium detector (HPGe) and associated electronics modules and online computer data acquisition system. The obtained results of measurement are comparable with theoretically calculated results. (author)

  9. Calculation study of TNPS spent fuel pool using burnup credit

    International Nuclear Information System (INIS)

    Exampled by the spent fuel pool of TNPS which is consist of 2 × 5 fuel storage racks, the spent fuel high-density storage based on burnup credit (BUC) and related criticality safety issues were studied. The MONK9A code was used to analyze keff, of different enrichment fuels at different burnups. A reference loading curve was proposed in accordance with the system keff's changing with the burnup of different initially enriched nuclear fuels. The capacity of the spent fuel pool increases by 31% compared with the one that does not consider BUC. (authors)

  10. Advanced Burnup Method using Inductively Coupled Plasma Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hilton, Bruce A. [Idaho Natonal Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Glagolenko, Irina; Giglio, Jeffrey J.; Cummings, Daniel G

    2009-06-15

    Nuclear fuel burnup is a key parameter used to assess irradiated fuel performance, to characterize the dependence of property changes due to irradiation, and to perform nuclear materials accountability. For advanced transmutation fuels and high burnup LWR fuels that have multiple fission sources, the existing Nd-148 ASTM burnup determination practice requires input of calculated fission fractions (identifying the specific fission source isotope and neutron energy that yielded fission, e.g., U-235 from thermal neutron, U-238 from fast neutron) from computational neutronics analysis in addition to the measured concentration of a single fission product isotope. We report a novel methodology of nuclear fuel burnup determination, which is completely independent of model predictions and reactor types. The proposed method leverages the capability of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to quantify multiple fission products and actinides and uses these data to develop a system of burnup equations whose solution is the fission fractions. The fission fractions are substituted back in the equations to determine burnup. This technique requires high fidelity fission yield data, which is not uniformly available for all fission products. We discuss different means that can potentially assist in indirect determination, verification and improvement (refinement) of the ambiguously known fission yields. A variety of irradiated fuel samples are characterized by ICP-MS and the results used to test the advanced burnup method. The samples include metallic alloy fuel irradiated in fast spectrum reactor (EBRII) and metallic alloy in a tailored spectrum and dispersion fuel in the thermal spectrum of the Advanced Test Reactor (ATR). The derived fission fractions and measured burnups are compared with calculated values predicted by neutronics models. (authors)

  11. Advanced Burnup Method using Inductively Coupled Plasma Mass Spectrometry

    International Nuclear Information System (INIS)

    Nuclear fuel burnup is a key parameter used to assess irradiated fuel performance, to characterize the dependence of property changes due to irradiation, and to perform nuclear materials accountability. For advanced transmutation fuels and high burnup LWR fuels that have multiple fission sources, the existing Nd-148 ASTM burnup determination practice requires input of calculated fission fractions (identifying the specific fission source isotope and neutron energy that yielded fission, e.g., U-235 from thermal neutron, U-238 from fast neutron) from computational neutronics analysis in addition to the measured concentration of a single fission product isotope. We report a novel methodology of nuclear fuel burnup determination, which is completely independent of model predictions and reactor types. The proposed method leverages the capability of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to quantify multiple fission products and actinides and uses these data to develop a system of burnup equations whose solution is the fission fractions. The fission fractions are substituted back in the equations to determine burnup. This technique requires high fidelity fission yield data, which is not uniformly available for all fission products. We discuss different means that can potentially assist in indirect determination, verification and improvement (refinement) of the ambiguously known fission yields. A variety of irradiated fuel samples are characterized by ICP-MS and the results used to test the advanced burnup method. The samples include metallic alloy fuel irradiated in fast spectrum reactor (EBRII) and metallic alloy in a tailored spectrum and dispersion fuel in the thermal spectrum of the Advanced Test Reactor (ATR). The derived fission fractions and measured burnups are compared with calculated values predicted by neutronics models. (authors)

  12. Increased burnup of fuel elements

    International Nuclear Information System (INIS)

    The specialists' group for fuel elements of the Kerntechnische Gesellschaft e.V. held a meeting on ''Increased Burnup of Fuel Elements'' on 9th and 10th of November 1982 at the GKSS Research Center Geesthacht. Most papers dealt with the problems of burnup increase of fuel elements for light water reactors with respect to fuel manufacturing, power plant operation and reprocessing. Review papers were given on the burnup limits for high temperature gas cooled reactors and sodium fast breeder reactors. The meeting ended with a presentation of the technical equipment of the hot laboratory of the GKSS and the programs which are in progress there. (orig.)

  13. Compressive creep of simulated burnup fuel

    International Nuclear Information System (INIS)

    In order to study the nitride fuel mechanical properties, we measured the compressive steady state creep rates of uranium mononitride (UN) and UN containing neodymium which was simulated burnup fuel. The stress exponent n'' and the apparent activation energy ''Q'' of the creep rate were determined in the range of 27.5 ≤ σ ≤ 200.0 MPa and 950 ≤ T ≤ 1500 degC. (author)

  14. Non-destructive burn-up degree evaluation method for nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Makoto; Kumanomido, Hironori

    1998-01-06

    The present invention concerns a non-destructive burn-up degree evaluation method for spent fuels by a spontaneous neutron releasing rate method. Namely, an equation (1) is provided as: S = ({phi}/P)x(1-k) where {phi} is spontaneous neutron flux, P is the proportional coefficient, S is neutron releasing rate and k is neutron effective multiplication factor. S is further given by an equation (2): S = S4{sub 0}x(1+S2/S4{sub 0})xVxT where S2 is releasing rate from Cm242, S4{sub 0} is releasing rate from other nuclides, v is a void ratio of coolants and T is a time decaying effect, and the equations (1) and (2) are joined. P is determined by theoretical calculation, and S2/S4{sub 0} is determined based on a half decay characteristics of Cm242 to determine a correction amount. S4{sub 0} and V are determined as a correlational function of the burn-up degree: x based on burning calculation while using the Pu enrichment degree {epsilon}, Pu compositional ratio f, and concrete void ratio v. k is determined as a correlational function of v. A first appropriate value of x is obtained while having the burnup degree x{sup (0)} as an initial value. x is determined successively by repeating calculation based on modified k in this case. (I.S.)

  15. Research on burnup physics

    International Nuclear Information System (INIS)

    One of the major problems in burnup studies is the reasonably fast and accurate calculation of the space-and-energy dependent neutron flux and reaction rates for realistic power reactor fuel geometries and compositions, and its optimal integration in the global reactor calculations. The scope of the present research was to develop improved methods trying to satisfy the above requirements. In the epithermal region, simple and efficient approximation is proposed which allows the analytical solution for the space dependence of the spherical harmonics flux moments, and hence the derivation of the recurrence relations between he flux moments at successive lethargy pivotal points. A new matrix formalism to invert the coefficient matrix of band structure resulted in a reduce computer time and memory demands. The research on epithermal region is finalized in computing programme SPLET, which calculates the space-lethargy distribution of the spherical harmonics neutron flux moments, and the related integral quantities as reaction rates and resonance integrals. For partial verification of the above methods a Monte Carlo procedure was developed. Using point-wise representation of variables, a flexible and fast convergent integral transport method SEPT i developed. Expanding the neutron source and flux in finite series of arbitrary polynomials, the space-and-energy dependent integral transport equation is transformed into a general linear algebraic form, which is solved numerically. A simple and efficient procedure for deriving multipoint equations and constructing matrix is proposed and examined, and no unwanted oscillations were noticed. The energy point method was combined with the spherical harmonics method as well. A multi zone few-group program SPECTAR for global reactor calculations was developed. For testing, the flux distribution, neutron leakage and effective multiplication factor for the PWR reactor of the power station San Onofre were calculated. In order to verify

  16. Burnup dependent core neutronic analysis for PBMR

    International Nuclear Information System (INIS)

    The strategy for core neutronics modeling is based on SCALE4.4 code KENOV.a module that uses Monte Carlo calculational methods. The calculations are based on detailed unit cell and detailed core modeling. The fuel pebble is thoroughly modeled by introducing unit cell modeling for the graphite matrix and the fuel kernels in the pebble. The core is then modeled by placing these pebbles randomly throughout the core, yet not loosing track of any one of them. For the burnup model, a cyclic manner is adopted by coupling the KENOV.a and ORIGEN-S modules. Shifting down one slice at each discrete time step, and inserting fresh fuel from the top, this cyclic calculation model continues until equilibrium burnup cycle is achieved. (author)

  17. Behaviour of fuel rods of the second generation at high burnup WWER-440 fuel cycles. Aspects for attainment of burnup 70 MWd/kgU

    International Nuclear Information System (INIS)

    In this report an analysis of WWER-440 fuel of the second generation supplied by Russian JSC TVEL for high burnup fuel cycle is presented. The certificated code START-3 is applied to modeling of fuel rod operation parameters. Reliability of high-burnup fuel on the base of 5-6 year operation is demonstrated. Special attention is paid to aspects for attainment of burnup 70 MWd/kgU, including experimental and fuel modeling support and fuel operation experience

  18. Fission product margin in burnup credit analyses

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) is currently working toward the licensing of a methodology for using actinide-only burnup credit for the transportation of spent nuclear fuel (SNF). Important margins are built into this methodology. By using comparisons with a representative experimental database to determine bias factors, the methodology ensures that actinide concentrations and worths are estimated conservatively; furthermore, the negative net reactivity of certain actinides and all fission products (FPs) is not taken into account, thus providing additional margin. A future step of DOE's effort might aim at establishing an actinide and FP burnup credit methodology. The objective of this work is to establish the uncertainty to be applied to the total FP worth in SNF. This will serve two ends. First, it will support the current actinide-only methodology by demonstrating the margin available from FPs. Second, it will identify the major contributions to the uncertainty and help set priorities for future work

  19. Assessment of Reactivity Margins and Loading Curves for PWR Burnup Credit Cask Designs

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.C.

    2002-12-17

    This report presents studies to assess reactivity margins and loading curves for pressurized water reactor (PWR) burnup-credit criticality safety evaluations. The studies are based on a generic high-density 32-assembly cask and systematically vary individual calculational (depletion and criticality) assumptions to demonstrate the impact on the predicted effective neutron multiplication factor, k{sub eff}, and burnup-credit loading curves. The purpose of this report is to provide a greater understanding of the importance of input parameter variations and quantify the impact of calculational assumptions on the outcome of a burnup-credit evaluation. This study should provide guidance to regulators and industry on the technical areas where improved information will most enhance the estimation of accurate subcritical margins. Based on these studies, areas where future work may provide the most benefit are identified. The report also includes an evaluation of the degree of burnup credit needed for high-density casks to transport the current spent nuclear fuel inventory. By comparing PWR discharge data to actinide-only based loading curves and determining the number of assemblies that meet the loading criteria, this evaluation finds that additional negative reactivity (through either increased credit for fuel burnup or cask design/utilization modifications) is necessary to accommodate the majority of current spent fuel assemblies in high-capacity casks. Assemblies that are not acceptable for loading in the prototypic high-capacity cask may be stored or transported by other means (e.g., lower capacity casks that utilize flux traps and/or increased fixed poison concentrations or high-capacity casks with design/utilization modifications).

  20. Features of fuel performance at high fuel burnups

    International Nuclear Information System (INIS)

    Some features of fuel behavior at high fuel burnups, in particular, initiation and development of rim-layer, increase in the rate of fission gas release from the fuel and increase in the inner gas pressure in the fuel rod are briefly described. Basing on the analysis of the data of post-irradiation examinations of fuel rods of WWER-440 working FA and CR fuel followers, that have been operated for five fuel cycles and got the average fuel burnup or varies as 50MW-day/kgU, a conclusion is made that the WWER-440 fuel burnup can be increased at least to average burnups of 55-58 MW-day/kgU per fuel assembly (Authors)

  1. Quantification of the computational accuracy of code systems on the burn-up credit using experimental re-calculations; Quantifizierung der Rechengenauigkeit von Codesystemen zum Abbrandkredit durch Experimentnachrechnungen

    Energy Technology Data Exchange (ETDEWEB)

    Behler, Matthias; Hannstein, Volker; Kilger, Robert; Moser, Franz-Eberhard; Pfeiffer, Arndt; Stuke, Maik

    2014-06-15

    In order to account for the reactivity-reducing effect of burn-up in the criticality safety analysis for systems with irradiated nuclear fuel (''burnup credit''), numerical methods to determine the enrichment and burnup dependent nuclide inventory (''burnup code'') and its resulting multiplication factor k{sub eff} (''criticality code'') are applied. To allow for reliable conclusions, for both calculation systems the systematic deviations of the calculation results from the respective true values, the bias and its uncertainty, are being quantified by calculation and analysis of a sufficient number of suitable experiments. This quantification is specific for the application case under scope and is also called validation. GRS has developed a methodology to validate a calculation system for the application of burnup credit in the criticality safety analysis for irradiated fuel assemblies from pressurized water reactors. This methodology was demonstrated by applying the GRS home-built KENOREST burnup code and the criticality calculation sequence CSAS5 from SCALE code package. It comprises a bounding approach and alternatively a stochastic, which both have been exemplarily demonstrated by use of a generic spent fuel pool rack and a generic dry storage cask, respectively. Based on publicly available post irradiation examination and criticality experiments, currently the isotopes of uranium and plutonium elements can be regarded for.

  2. Use of burnup credit in criticality safety design analysis of spent fuel storage systems

    International Nuclear Information System (INIS)

    temperature and density, presence of soluble boron in the core (PWR), use of fixed neutron absorbers (control rods, burnable poison rods, axial power shaping rods), use of integral burnable absorbers (gadolinium or erbium bearing fuel rods, IFBA rods). It will be shown how a bounding approach can be obtained for the impact of these parameters on the reactivity of the storage system. The criticality calculation procedure consists in the following main steps: Isotopic selection and validation; Validation of the criticality calculation code applied; Sensitivity studies on the reactivity effects of axial and horizontal burnup profiles of fuel assemblies; Determination of the criticality acceptance criterion (maximum allowable neutron multiplication factor including the impacts of all the mechanical and calculational uncertainties) and determination of the loading curve. The fundamentals of isotopic selection will be defined, and a survey of the benchmark experiments available for isotopic validation and validation of the criticality calculation code applied will be given. Since the parameters and conditions characterizing the benchmark experiments are usually different from the parameters and conditions describing the spent fuel storage system of interest, a method of checking the applicability of such experiments to the storage system will be briefly described. This method bases the applicability on the similarity of sensitivity coefficients which are defined for the underlying nuclear data characterizing the isotopic compositions and their effect on the spent fuel reactivity. The fact that the axial burnup distribution in a fuel assembly is non-uniform must be considered in the analysis of the storage system. The difference between the system's neutron multiplication factor obtained by using an axially varying burnup profile and the system's neutron multiplication factor obtained by assuming a uniform distribution of the averaged burnup of this profile is known as the 'end

  3. Sophistication of burnup analysis system for fast reactor

    International Nuclear Information System (INIS)

    Improvement on prediction accuracy for neutronics property of fast reactor cores is one of the most important study domains in terms of both achievement of high economical plant efficiency based on reasonably advanced designs and increased reliability and safety margins. In former study, considerable improvement on prediction accuracy in neutronics design has been achieved in the development of the unified constants library as a fruit of a series of critical experiments such as JUPITER in application of the reactor constant adjustments. For design of fast reactor cores, however, improvement of not only static properties but also burnup properties is very important. For such purpose, it is necessary to improve the prediction accuracy on burnup properties using actual burnup data of 'JOYO' and 'MONJU', experimental and prototype fast reactors. Recently, study on effective burnup method for minor actinides becomes important theme. However, there is a problem that analysis work tends to become inefficient for lack of functionality suitable for analysis of composition change due to burnup since the conventional analysis system is targeted to critical assembly systems. Therefore development of burnup analysis system for fast reactors with modularity and flexibility is being done that would contribute to actual core design work and improvement of prediction accuracy. In the previous research, we have developed a prototype system which has functions of performing core and burnup calculations using given constant files (PDS files) and information based on simple and easy user input data. It has also functions of fuel shuffling which is indispensable for production systems. In the present study, we implemented functions for cell calculations and burnup calculations. With this, whole steps in analysis can be carried out with only this system. In addition, we modified the specification of user input to improve the convenience of this system. Since implementations being done so

  4. EPRI R and D perspective on burnup credit

    International Nuclear Information System (INIS)

    'Burnup credit' refers to taking credit for the burnup of nuclear fuel in the performance of criticality safety analyses. Historically, criticality safety analyses for transport of spent nuclear fuel have assumed the fuel to be unirradiated (i.e. 'fresh' fuel). In 1999, the U.S. Nuclear Regulatory Commission (NRC) Spent Fuel Project Office issued Interim Staff Guidance - 8 (ISG-8) with recommendations for the use of burnup credit in storage and transportation of pressurized water reactor (PWR) spent fuel. The use of burnup credit offers an opportunity to reduce the number of spent nuclear fuel shipments by ∼30%. A simple analysis shows that the increased risk of a criticality event associated with properly using burnup credit is negligible. Comparing this negligible risk component with the reduction in common transport risks due to the reduced number of spent fuel shipments (higher capacity casks for transporting PWR spent fuel) leads to the conclusion that using 'burnup credit' is preferable to using the 'fresh fuel' assumption. A specific objective of the EPRI program is to support the Goals of the U.S. Industry. These goals are consistent with the original U.S. Department of Energy (DOE) goal defined in 1988: a burnup credit methodology that takes credit for the negative reactivity that is practical (all fissile actinides, most neutron absorbing actinides, and a subset of the fission products that account for the majority of the available credit from all fission products). The determination of the optimum number of fission products to consider in a practical burnup credit methodology validates the approach advocated by researchers from France to first focus on a handful of isotopes that include Sm-149; Rh-103; Nd-143; Gd-155; and Sm-152. (author)

  5. Instrumentation for measuring the burnup of spent nuclear fuel

    International Nuclear Information System (INIS)

    Many different methods or procedures have been developed to measure reactivity of fissil materials. Few of these, however, have been designed specifically for light water reactor fuel or have actually been used to measure the reactivity of spent fuel. The methods that have been used to make measurements of related systems are the 252Cf source-driven noise analysis method, a noise analysis method using natural neutron sources, subcritical assembly measurements, and pulsed neutron techniques. Several different approaches to directly measuring burnup have been developed by various organizations. The experimental work on actual spent nuclear fuel utilizing reactivity measurement techniques is insufficient to provide conclusive evidence of the applicability of these techniques for verifying fuel burnup. The work with burnup meters indicates, however, that good correlations can be obtained with any of the systems. A burnup meter's primary function would be a secondary assurance that the administrative records are not grossly in error. Reactivity measurements provide information relating to the reactivity of the fuel only under the conditions measured. Criticality prevention design requirements will necessitate that casks accommodate a minimum burnup level for a given initial enrichment (i.e., a maximum reactivity). Direct measurement of the burnup will enable an easy determination of whether a particular fuel assembly can be shipped in a specific cask with a minimum number of additional correlations

  6. A Burnup Analysis of PBMR-400MWth Reactor Core

    International Nuclear Information System (INIS)

    The purpose of this study is to analyze the burnup characteristics of 400MWth PBMR using Monte Carlo method. In the world, the deterministic method is widely used to model such that system but it still has a disadvantage which is not flexible in simulating the burnup cycle. Although this method applies some techniques to increase the accuracy of calculation results but it is necessary to model this system by a suitable computer code that can verify and validate the results of the deterministic method. A method which uses a Monte Carlo technique for simulating the burnup cycle was performed. A reactor physics computer code uses in this method is MONTEBURN 2.0 which accurately and efficiently computes the neutronic and material properties of the fuel cycle. MONTEBURN is a fully automated tool that links the MCNP Monte Carlo transport code with a radioactive decay and burnup code ORIGEN. In this model, the calculations are based on a detailed core modeling using MCNP. The fuel pebble is thoroughly modeled by introducing unit cell modeling for the graphite matrix and fuel kernels in the pebble. For the burnup model, a start-up core was studied with considering the movement of pebbles. By shifting down one layer at each discrete time step and inserting fresh fuel from the top, this cyclic calculation is continued until equilibrium burnup cycle is achieved. In this study, the time dependence of multiplication factor keff, the spatial dependence of flux profile, power distribution, burnup, and inventory of isotopes in the start up process are analyzed. The results will provide the basis data of the burnup process and be also utilized as the verified data to validate a compute code for PBMR core analysis which will be developed in near future

  7. Burn-up calculation of different thorium-based fuel matrixes in a thermal research reactor using MCNPX 2.6 code

    Directory of Open Access Journals (Sweden)

    Gholamzadeh Zohreh

    2014-12-01

    Full Text Available Decrease of the economically accessible uranium resources and the inherent proliferation resistance of thorium fuel motivate its application in nuclear power systems. Estimation of the nuclear reactor’s neutronic parameters during different operational situations is of key importance for the safe operation of nuclear reactors. In the present research, thorium oxide fuel burn-up calculations for a demonstrative model of a heavy water- -cooled reactor have been performed using MCNPX 2.6 code. Neutronic parameters for three different thorium fuel matrices loaded separately in the modelled thermal core have been investigated. 233U, 235U and 239Pu isotopes have been used as fissile element in the thorium oxide fuel, separately. Burn-up of three different fuels has been calculated at 1 MW constant power. 135X and 149Sm concentration variations have been studied in the modelled core during 165 days burn-up. Burn-up of thorium oxide enriched with 233U resulted in the least 149Sm and 135Xe productions and net fissile production of 233U after 165 days. The negative fuel, coolant and void reactivity of the used fuel assures safe operation of the modelled thermal core containing (233U-Th O2 matrix. Furthermore, utilisation of thorium breeder fuel demonstrates several advantages, such as good neutronic economy, 233U production and less production of long-lived α emitter high radiotoxic wastes in biological internal exposure point of view

  8. OECD/NEA Burnup Credit Calculational Criticality Benchmark Phase I-B Results

    International Nuclear Information System (INIS)

    Burnup credit is an ongoing technical concern for many countries that operate commercial nuclear power reactors. In a multinational cooperative effort to resolve burnup credit issues, a Burnup Credit Working Group has been formed under the auspices of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development. This working group has established a set of well-defined calculational benchmarks designed to study significant aspects of burnup credit computational methods. These benchmarks are intended to provide a means for the intercomparison of computer codes, methods, and data applied in spent fuel analysis. The benchmarks have been divided into multiple phases, each phase focusing on a particular feature of burnup credit analysis. This report summarizes the results and findings of the Phase I-B benchmark, which was proposed to provide a comparison of the ability of different code systems and data libraries to perform depletion analysis for the prediction of spent fuel isotopic concentrations. Results included here represent 21 different sets of calculations submitted by 16 different organizations worldwide, and are based on a limited set of nuclides determined to have the most important effect on the neutron multiplication factor of light-water-reactor spent fuel. A comparison of all sets of results demonstrates that most methods are in agreement to within 10% in the ability to estimate the spent fuel concentrations of most actinides. All methods are within 11% agreement about the average for all fission products studied. Furthermore, most deviations are less than 10%, and many are less than 5%. The exceptions are 149Sm, 151Sm, and 155Gd

  9. OECD/NEA burnup credit calculational criticality benchmark Phase I-B results

    International Nuclear Information System (INIS)

    In most countries, criticality analysis of LWR fuel stored in racks and casks has assumed that the fuel is fresh with the maximum allowable initial enrichment. This assumption has led to the design of widely spaced and/or highly poisoned storage and transport arrays. If credit is assumed for fuel burnup, initial enrichment limitations can be raised in existing systems, and more compact and economical arrays can be designed. Such reliance on the reduced reactivity of spent fuel for criticality control is referred to as burnup credit. The Burnup Credit Working Group, formed under the auspices of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development, has established a set of well-defined calculational benchmarks designed to study significant aspects of burnup credit computational methods. These benchmarks are intended to provide a means for the intercomparison of computer codes, methods, and data applied in spent fuel analysis. The benchmarks have been divided into multiple phases, each phase focusing on a particular feature of burnup credit analysis. This report summarizes the results and findings of the Phase I-B benchmark, which was proposed to provide a comparison of the ability of different code systems and data libraries to perform depletion analysis for the prediction of spent fuel isotopic concentrations. Results included here represent 21 different sets of calculations submitted by 16 different organizations worldwide and are based on a limited set of nuclides determined to have the most important effect on the neutron multiplication factor of light-water-reactor spent fuel. A comparison of all sets of results demonstrates that most methods agree to within 10% in the ability to estimate the spent fuel concentrations of most actinides. All methods agree within 11% about the average for all fission products studied. Most deviations are less than 10%, and many are less than 5%. The exceptions are Sm 149, Sm 151, and Gd 155

  10. PWR AXIAL BURNUP PROFILE ANALYSIS

    International Nuclear Information System (INIS)

    The purpose of this activity is to develop a representative ''limiting'' axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the ''end-effect''. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package. The scope of this calculation covers an initial enrichment range of 3.0 through 5.0 wt% U-235 and a burnup range of 10 through 50 GWd/MTU. This activity supports the validation of the process for ensuring conservative generation of spent fuel isotopics with respect to criticality safety applications, and the use of burnup credit for commercial spent nuclear fuel. The intended use of these results will be in the development of PWR waste package loading curves, and applications involving burnup credit. Limitations of this evaluation are that the limiting profiles are only confirmed for use with the B andW 15 x 15 fuel assembly design. However, this assembly design is considered bounding of all other typical commercial PWR fuel assembly designs. This calculation is subject to the Quality Assurance Requirements and Description (QARD) because this activity supports investigations of items or barriers on the Q-list (YMP 2001)

  11. PWR AXIAL BURNUP PROFILE ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Acaglione

    2003-09-17

    The purpose of this activity is to develop a representative ''limiting'' axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the ''end-effect''. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package. The scope of this calculation covers an initial enrichment range of 3.0 through 5.0 wt% U-235 and a burnup range of 10 through 50 GWd/MTU. This activity supports the validation of the process for ensuring conservative generation of spent fuel isotopics with respect to criticality safety applications, and the use of burnup credit for commercial spent nuclear fuel. The intended use of these results will be in the development of PWR waste package loading curves, and applications involving burnup credit. Limitations of this evaluation are that the limiting profiles are only confirmed for use with the B&W 15 x 15 fuel assembly design. However, this assembly design is considered bounding of all other typical commercial PWR fuel assembly designs. This calculation is subject to the Quality Assurance Requirements and Description (QARD) because this activity supports investigations of items or barriers on the Q-list (YMP 2001).

  12. Determining initial enrichment, burnup, and cooling time of pressurized-water-reactor spent fuel assemblies by analyzing passive gamma spectra measured at the Clab interim-fuel storage facility in Sweden

    Science.gov (United States)

    Favalli, A.; Vo, D.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Schwalbach, P.; Sjöland, A.; Tobin, S. J.; Trellue, H.; Vaccaro, S.

    2016-06-01

    The purpose of the Next Generation Safeguards Initiative (NGSI)-Spent Fuel (SF) project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins; (3) estimate the plutonium mass [which is also a function of the variables in (1)]; (4) estimate the decay heat; and (5) determine the reactivity of spent fuel assemblies. Since August 2013, a set of measurement campaigns has been conducted at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB). One purpose of the measurement campaigns was to acquire passive gamma spectra with high-purity germanium and lanthanum bromide scintillation detectors from Pressurized Water Reactor and Boiling Water Reactor spent fuel assemblies. The absolute 137Cs count rate and the 154Eu/137Cs, 134Cs/137Cs, 106Ru/137Cs, and 144Ce/137Cs isotopic ratios were extracted; these values were used to construct corresponding model functions (which describe each measured quantity's behavior over various combinations of burnup, cooling time, and initial enrichment) and then were used to determine those same quantities in each measured spent fuel assembly. The results obtained in comparison with the operator declared values, as well as the methodology developed, are discussed in detail in the paper.

  13. CANDU lattice uncertainties during burnup

    International Nuclear Information System (INIS)

    Uncertainties associated with fundamental nuclear data accompany evaluated nuclear data libraries in the form of covariance matrices. As nuclear data are important parameters in reactor physics calculations, any associated uncertainty causes a loss of confidence in the calculation results. The quantification of output uncertainties is necessary to adequately establish safety margins of nuclear facilities. In this work, microscopic cross-section has been propagated through lattice burnup calculations applied to a generic CANDU® model. It was found that substantial uncertainty emerges during burnup even when fission yield fraction and decay rate uncertainties are neglected. (author)

  14. Systemization of burnup sensitivity analysis code (2) (Contract research)

    International Nuclear Information System (INIS)

    Towards the practical use of fast reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoint of improvements on plant economic efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by the development of adjusted nuclear library using the cross-section adjustment method, in which the results of critical experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor 'JOYO'. The analysis of burnup characteristic is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, a burnup sensitivity analysis code, SAGEP-BURN, has been developed and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to users due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functions in the existing large system. It is not sufficient to unify each computational component for the following reasons: the computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore, it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion

  15. Transnucleaire's experience with burnup credit in transport operations

    International Nuclear Information System (INIS)

    Facing a continued increase in fuel enrichment values, Transnucleaire has progressively implemented a burnup credit programme in order to maintain or, where possible, to improve the capacity of its transport packagings without physical modification. Many package design approvals, based on a notion of burnup credit, have been granted by the French competent authority for transport since the early eighties, and many of these approvals have been validated by foreign competent authorities. Up to now, these approvals are restricted to fuel assemblies made of enriched uranium and irradiated in pressurized water reactors (PWR). The characterization of the irradiated fuel and the reactivity of the package are evaluated by calculation, performed using qualified French codes developed by the CEA (Commisariat a l'Energie Atomique/French Atomic Energy Commission): CESAR as a depletion code and APOLO-MORET as a criticality code. The approvals are based on the hypothesis that the burnup considered is that applied on the least irradiated region of the fuel assemblies, the conservative approach being not to take credit for any axial profile of burnup along the fuel assembly. The most reactive configuration is calculated and the burnup credit is also restricted to major actinides only. On the operational side and in compliance with regulatory requirements, verification is made before transport, in order to meet safety objectives as required by the transport regulations. Besides a review of documentation related to the irradiation history of each fuel assembly, it consists of either a qualitative (go/no-go) verification or of a quantitative measurement, depending on the level of burnup credit. Thus the use of burnup credit is now a common practice with Transnucleaire's packages, particularly in France and Germany. New improvements are still in progress and qualifications of the calculation code are now well advanced, which will allow in the near future the use of six selected

  16. Fuel burnup monitor for nuclear reactors

    International Nuclear Information System (INIS)

    An in-service detector is designed using the principle of comparing temperatures in the fuel element and in the detector material. The detector consists of 3 metallic heat conductors insulated with ceramic insulators, two of them with uranium fuel spheres at the end. One sphere is coated with zirconium, the other with zirconium and gold. The precision of measurement of the degree of fuel burnup depends on the precision of the measurement of temperature and is determined from the difference in temperature gradients of the two uranium fuel spheres in the detector. (M.D.)

  17. Burn-up calculation of different thorium-based fuel matrixes in a thermal research reactor using MCNPX 2.6 code

    OpenAIRE

    Gholamzadeh Zohreh; Hossein Feghhi Seyed Amir; Soltani Leila; Rezazadeh Marzieh; Tenreiro Claudio; Joharifard Mahdi

    2014-01-01

    Decrease of the economically accessible uranium resources and the inherent proliferation resistance of thorium fuel motivate its application in nuclear power systems. Estimation of the nuclear reactor’s neutronic parameters during different operational situations is of key importance for the safe operation of nuclear reactors. In the present research, thorium oxide fuel burn-up calculations for a demonstrative model of a heavy water- -cooled reactor have been performed using MCNPX 2.6 code. N...

  18. Checking of the spent fuel assemblies burnup based on the results of the neutron flux measuring using IAEA fork detector at Zaporozhye NPP, Units 1, 2, 4 and 6

    International Nuclear Information System (INIS)

    Burnup calculation for fuel assemblies are made for simulation of a fuel cycle checking the following experimental data: power curve; absorber rods position during the cycle; temperature of cooling water on the active area input; cooling water consumption and boric acid concentration. The burnup is calculated for ten areas along the fuel assembly. The method for the burnup checking is presented

  19. Evaluation of Fission Product Critical Experiments and Associated Biases for Burnup Credit Validation

    International Nuclear Information System (INIS)

    One of the challenges associated with implementation of burnup credit is the validation of criticality calculations used in the safety evaluation; in particular the availability and use of applicable critical experiment data. The purpose of the validation is to quantify the relationship between reality and calculated results. Validation and determination of bias and bias uncertainty require the identification of sets of critical experiments that are similar to the criticality safety models. A principal challenge for crediting fission products (FP) in a burnup credit safety evaluation is the limited availability of relevant FP critical experiments for bias and bias uncertainty determination. This paper provides an evaluation of the available critical experiments that include FPs, along with bounding, burnup-dependent estimates of FP biases generated by combining energy dependent sensitivity data for a typical burnup credit application with the nuclear data uncertainty information distributed with SCALE 6. A method for determining separate bias and bias uncertainty values for individual FPs and illustrative results is presented. Finally, a FP bias calculation method based on data adjustment techniques and reactivity sensitivity coefficients calculated with the SCALE sensitivity/uncertainty tools and some typical results is presented. Using the methods described in this paper, the cross-section bias for a representative high-capacity spent fuel cask associated with the ENDF/B-VII nuclear data for 16 most important stable or near stable FPs is predicted to be no greater than 2% of the total worth of the 16 FPs, or less than 0.13% k/k.

  20. Burnup credit methodology validation against WWER experimental data

    International Nuclear Information System (INIS)

    A methodology for criticality safety analyses with burnup credit application has been developed for WWER spent fuel management facilities. This methodology is based on two worldwide used code systems: SCALE 4.4 for depletion and criticality calculations and NESSEL-NUKO - for depletion calculations. The methodology is in process of extensive validation for WWER applications. The depletion code systems NESSEL-NUKO and SCALE4.4 (control module SAS2H) have been validated on the basis of comparison with the calculated results obtained by other depletion codes for the CB2 Calculational Burnup Credit Benchmark. The validation of these code systems for WWER-440 and WWER-1000 spent fuel assembly depletion analysis based on comparisons with appropriate experimental data commenced last year. In this paper some results from burnup methodology validation against measured nuclide concentration given in the ISTC project 2670 for WWER-440 and from ORNL publication for WWER-1000 are presented. (authors)

  1. A burnup credit calculation methodology for PWR spent fuel transportation

    International Nuclear Information System (INIS)

    A burnup credit calculation methodology for PWR spent fuel transportation has been developed and validated in CEA/Saclay. To perform the calculation, the spent fuel composition are first determined by the PEPIN-2 depletion analysis. Secondly the most important actinides and fission product poisons are automatically selected in PEPIN-2 according to the reactivity worth and the burnup for critically consideration. Then the 3D Monte Carlo critically code TRIMARAN-2 is used to examine the subcriticality. All the resonance self-shielded cross sections used in this calculation system are prepared with the APOLLO-2 lattice cell code. The burnup credit calculation methodology and related PWR spent fuel transportation benchmark results are reported and discussed. (authors)

  2. Burnup measurements with the Los Alamos fork detector

    International Nuclear Information System (INIS)

    The fork detector system can determine the burnup of spent-fuel assemblies. It is a transportable instrument that can be mounted permanently in a spent-fuel pond near a loading area for shipping casks, or be attached to the storage pond bridge for measurements on partially raised spent-fuel assemblies. The accuracy of the predicted burnup has been demonstrated to be as good as 2% from measurements on assemblies in the United States and other countries. Instruments have also been developed at other facilities throughout the world using the same or different techniques, but with similar accuracies. 14 refs., 2 figs., 2 tabs

  3. Power excursion analysis for BWR`s at high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, D.J.; Neymoith, L.; Kohut, P. [Brookhaven National Lab., Upton, NY (United States)

    1996-03-01

    A study has been undertaken to determine the fuel enthalpy during a rod drop accident and during two thermal-hydraulic transients. The objective was to understand the consequences to high burnup fuel and the sources of uncertainty in the calculations. The analysis was done with RAMONA-4B, a computer code that models the neutron kinetics throughout the core along with the thermal-hydraulics in the core, vessel, and steamline. The results showed that the maximum fuel enthalpy in high burnup fuel will be affected by core design, initial conditions, and modeling assumptions. The important parameters in each of these categories are discussed in the paper.

  4. Burn-up measurements at TRIGA fuel elements containing strong burnable poison

    International Nuclear Information System (INIS)

    The reactivity method of determining the burn-up of research reactor fuel elements is applied to the highly enriched FLIP elements of TRIGA reactors. In contrast to other TRIGA fuel element types, the reactivity of FLIP elements increases with burn-up due to consumption of burnable poison. 33 fuel elements with burn-up values between 3% and 14% were investigated. The experiments showed that variations in the initial fuel composition significantly influence the reactivity and, consequently, increase the inaccuracy of the burn-up measurements. Particularly important are variations in the initial concentration of erbium, which is used as burnable poison in FLIP fuel. A method for reducing the effects of the material composition variations on the measured reactivity is presented. If it is applied, the accuracy of the reactivity method for highly poisoned fuel elements becomes comparable to the accuracy of other methods for burn-up determination. (orig.)

  5. Criticality safety evaluation for the direct disposal of used nuclear fuel. Preparation of data for burnup credit evaluation (Contract research)

    International Nuclear Information System (INIS)

    In the direct disposal of used nuclear fuel (UNF), criticality safety evaluation is one of the important issues since UNF contains some amount of fissile material. In the conventional criticality safety evaluation of UNF where the fresh fuel composition is conservatively assumed, neutron multiplication factor is becoming overestimated as the fuel enrichment increases. The recent development of higher-enrichment fuel has therefore enhanced the benefit of the application of burnup credit. When applying the burnup credit to the criticality safety analysis of the disposed fuel system, the safe-side estimation of the reactivity is required taking into account the factors which affect the neutron multiplication factor of the burnt fuel system such as the nuclide composition uncertainties. In this report, the effects of the several parameters on the reactivity of disposal canister model were evaluated for used PWR fuel. The parameters are relevant to the uncertainties of depletion calculation code, irradiation history, and axial and horizontal burnup distribution, which are known to be important effect in the criticality safety evaluation adopting burnup credit. The latest data or methodology was adopted in this evaluation, based on the various latest studies. The appropriate margin of neutron multiplication factor in the criticality safety evaluation for UNF can be determined by adopting the methodology described in the present study. (author)

  6. Design and construction of a prototype advanced on-line fuel burn-up monitoring system for the modular pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Su, Bingjing; Hawari, Ayman, I.

    2004-03-30

    Modular Pebble Bed Reactor (MPBR) is a high temperature gas-cooled nuclear power reactor currently under study as a next generation reactor system. In addition to its inherently safe design, a unique feature of this reactor is its multi-pass fuel circulation in which the fuel pebbles are randomly loaded and continuously cycled through the core until they reach their prescribed End-of-Life burn-up limit. Unlike the situation with a conventional light water reactor, depending solely on computational methods to perform in-core fuel management for MPBR will be highly inaccurate. An on-line measurement system is needed to accurately assess whether a given pebble has reached its End-of-Life burn-up limit and thereby provide an on-line, automated go/no-go decision on fuel disposition on a pebble-by-pebble basis. This project investigated approaches to analyzing fuel pebbles in real time using gamma spectroscopy and possibly using passive neutron counting of spontaneous fission neutrons to provide the speed, accuracy, and burn-up range required for burnup determination of MPBR. It involved all phases necessary to develop and construct a burn-up monitor, including a review of the design requirements of the system, identification of detection methodologies, modeling and development of potential designs, and finally, the construction and testing of an operational detector system. Based upon the research work performed in this project, the following conclusions are made. In terms of using gamma spectrometry, two possible approaches were identified for burnup assay. The first approach is based on the measurement of the absolute activity of Cs-137. However, due to spectral interference and the need for absolute calibration of the spectrometer, the uncertainty in burnup determination using this approach was found to range from {approx} {+-}40% at beginning of life to {approx} {+-}10% at the discharge burnup. An alternative approach is to use a relative burnup indicator. In this

  7. Design and construction of a prototype advanced on-line fuel burn-up monitoring system for the modular pebble bed reactor

    International Nuclear Information System (INIS)

    Modular Pebble Bed Reactor (MPBR) is a high temperature gas-cooled nuclear power reactor currently under study as a next generation reactor system. In addition to its inherently safe design, a unique feature of this reactor is its multi-pass fuel circulation in which the fuel pebbles are randomly loaded and continuously cycled through the core until they reach their prescribed End-of-Life burn-up limit. Unlike the situation with a conventional light water reactor, depending solely on computational methods to perform in-core fuel management for MPBR will be highly inaccurate. An on-line measurement system is needed to accurately assess whether a given pebble has reached its End-of-Life burn-up limit and thereby provide an on-line, automated go/no-go decision on fuel disposition on a pebble-by-pebble basis. This project investigated approaches to analyzing fuel pebbles in real time using gamma spectroscopy and possibly using passive neutron counting of spontaneous fission neutrons to provide the speed, accuracy, and burn-up range required for burnup determination of MPBR. It involved all phases necessary to develop and construct a burn-up monitor, including a review of the design requirements of the system, identification of detection methodologies, modeling and development of potential designs, and finally, the construction and testing of an operational detector system. Based upon the research work performed in this project, the following conclusions are made. In terms of using gamma spectrometry, two possible approaches were identified for burnup assay. The first approach is based on the measurement of the absolute activity of Cs-137. However, due to spectral interference and the need for absolute calibration of the spectrometer, the uncertainty in burnup determination using this approach was found to range from ∼ ±40% at beginning of life to ∼ ±10% at the discharge burnup. An alternative approach is to use a relative burnup indicator. In this case, a self

  8. The burnup dependence of light water reactor spent fuel oxidation

    International Nuclear Information System (INIS)

    Over the temperature range of interest for dry storage or for placement of spent fuel in a permanent repository under the conditions now being considered, UO2 is thermodynamically unstable with respect to oxidation to higher oxides. The multiple valence states of uranium allow for the accommodation of interstitial oxygen atoms in the fuel matrix. A variety of stoichiometric and nonstoichiometric phases is therefore possible as the fuel oxidizers from UO2 to higher oxides. The oxidation of UO2 has been studied extensively for over 40 years. It has been shown that spent fuel and unirradiated UO2 oxidize via different mechanisms and at different rates. The oxidation of LWR spent fuel from UO2 to UO2.4 was studied previously and is reasonably well understood. The study presented here was initiated to determine the mechanism and rate of oxidation from UO2.4 to higher oxides. During the early stages of this work, a large variability in the oxidation behavior of samples oxidized under nearly identical conditions was found. Based on previous work on the effect of dopants on UO2 oxidation and this initial variability, it was hypothesized that the substitution of fission product and actinide impurities for uranium atoms in the spent fuel matrix was the cause of the variable oxidation behavior. Since the impurity concentration is roughly proportional to the burnup of a specimen, the oxidation behavior of spent fuel was expected to be a function of both temperature and burnup. This report (1) summarizes the previous oxidation work for both unirradiated UO2 and spent fuel (Section 2.2) and presents the theoretical basis for the burnup (i.e., impurity concentration) dependence of the rate of oxidation (Sections 2.3, 2.4, and 2.5), (2) describes the experimental approach (Section 3) and results (Section 4) for the current oxidation tests on spent fuel, and (3) establishes a simple model to determine the activation energies associated with spent fuel oxidation (Section 5)

  9. Measurement techniques for verifying burnup

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, R.I. (Sandia National Lab., Albuquerque, NM (US)); Bierman, S.R. (Pacific Northwest Lab., Richland, WA (US))

    1992-05-01

    Measurements of the nuclear radiation from spent reactor fuel are being considered to qualify assemblies for loading into casks that will be used to transport spent fuel from utility sites to a federal storage facility. To ensure nuclear criticality safety, the casks are being designed to accept assemblies that meet restrictions as to burnup, initial enrichment and cooling time. This paper reports that measurements could be used to ensure that only fuel assemblies that meet the restrictions are selected for loading.

  10. Measurement techniques for verifying burnup

    International Nuclear Information System (INIS)

    Measurements of the nuclear radiation from spent reactor fuel are being considered to qualify assemblies for loading into casks that will be used to transport spent fuel from utility sites to a federal storage facility. To ensure nuclear criticality safety, the casks are being designed to accept assemblies that meet restrictions as to burnup, initial enrichment and cooling time. This paper reports that measurements could be used to ensure that only fuel assemblies that meet the restrictions are selected for loading

  11. Implementation of burnup credit in spent fuel management systems. Proceedings of an advisory group meeting

    International Nuclear Information System (INIS)

    The criticality safety analysis of spent fuel systems has traditionally assumed that the fuel is fresh. This results in significant conservatism in the calculated value of the system's reactivity. Improved calculational methods allows one to take credit for the reactivity reduction associated with fuel burnup, hence reducing the analysis conservatism while maintaining an adequate criticality safety margin. Motivation for using burnup credit in criticality safety applications is generally based on economic considerations. Although economics may be a primary factor in deciding to use burnup credit, other benefits may be realized. Many of the additional benefits of burnup credit that are not strictly economic, may be considered to contribute to public health and safety, and resource conservation and environmental quality. Interest in the implementation of burnup credit has been shown by many countries. A summary of the information gathered by the IAEA about ongoing activities and regulatory status of burnup credit in different countries is included. Burnup credit implementation introduces new parameters and effects that should be addressed in the criticality analysis (e.g., axial and radial burnup shapes, fuel irradiation history, and others). Analysis of these parameters introduces new variations as well as the uncertainties, that should be considered in the safety assessment of the system. Also, the need arises to validate the isotopic composition that results from a depletion calculation, as well as to extend the current validation range of criticality codes to cover spent fuel. The use of burnup credit implies a verification of the fuel burnup before loading for transport, storage, disposal, or reprocessing each assembly, to make sure that the burnup level achieved complies with the criteria established. Methods and procedures used in different countries are described in this report

  12. Analysis of Burnup and Economic Potential of Alternative Fuel Materials in Thermal Reactors

    International Nuclear Information System (INIS)

    A strategy is proposed for the assessment of nuclear fuel material economic potential use in future light water reactors (LWRs). In this methodology, both the required enrichment and the fuel performance limits are considered. In order to select the best fuel candidate, the optimal burnup that produces the lowest annual fuel cost within the burnup potential for a given fuel material and smear density ratio is determined.Several nuclear materials are presented as examples of the application of the methodology proposed in this paper. The alternative fuels considered include uranium dioxide (UO2), uranium carbide (UC), uranium nitride (UN), metallic uranium (U-Zr alloy), combined thorium and uranium oxides (ThO2/UO2), and combined thorium and uranium metals (U/Th). For these examples, a typical LWR lattice geometry in a zirconium-based cladding was assumed. The uncertainties in the results presented are large due to the scarcity of experimental data regarding the behavior of the considered materials at high burnups. Also, chemical compatibility issues are to be considered separately.The same methodology can be applied in the future to evaluate the economic potential of other nuclear fuel materials including different cladding designs, dispersions of ceramics into ceramics, dispersions of ceramics into metals, and also for geometries other than the traditional circular fuel pin

  13. Assessment of reactivity transient experiments with high burnup fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ozer, O.; Yang, R.L.; Rashid, Y.R.; Montgomery, R.O.

    1996-03-01

    A few recent experiments aimed at determining the response of high-burnup LWR fuel during a reactivity initiated accident (RIA) have raised concerns that existing failure criteria may be inappropriate for such fuel. In particular, three experiments (SPERT CDC-859, NSRR HBO-1 and CABRI REP Na-1) appear to have resulted in fuel failures at only a fraction of the anticipated enthalpy levels. In evaluating the results of such RIA simulation experiments, however, it is necessary that the following two key considerations be taken into account: (1) Are the experiments representative of conditions that LWR fuel would experience during an in-reactor RIA event? (2) Is the fuel that is being utilized in the tests representative of the present (or anticipated) population of LWR fuel? Conducting experiments under conditions that can not occur in-reactor can trigger response modes that could not take place during in-reactor operation. Similarly, using unrepresentative fuel samples for the tests will produce failure information that is of limited relevance to commercial LWR fuel. This is particularly important for high-burnup fuel since the manner under which the test samples are base-irradiated prior to the test will impact the mechanical properties of the cladding and will therefore affect the RIA response. A good example of this effect can be seen in the results of the SPERT CDC-859 test and in the NSRR JM-4 and JM-5 tests. The conditions under which the fuel used for these tests was fabricated and/or base-irradiated prior to the RIA pulse resulted in the formation of multiple cladding defects in the form of hydride blisters. When this fuel was subjected to the RIA power pulse, it failed by developing multiple cracks that were closely correlated with the locations of the pre-existing hydride blisters. In the case of the JM tests, many of the cracks formed within the blisters themselves and did not propagate beyond the heavily hydrided regions.

  14. Burn-up measurement of irradiated rock-like fuels

    International Nuclear Information System (INIS)

    In order to obtain burn-up data of plutonium rock-like (ROX) fuels irradiated at JRR-3M in JAERI, destructive chemical analysis of zirconia or thoria system ROX fuels was performed after development of a new dissolution method. The dissolution method and procedure have been established using simulated ROX fuel, which is applicable to the hot-cell handling. Specimens for destructive chemical analysis were obtained by applying the present method to irradiated ROX fuels in a hot-cell. Isotopic ratios of neodymium and plutonium were determined by mass-spectrometry using the isotope dilution procedure. Burn-up of the irradiated ROX fuels was calculated by the 148Nd procedure using measured data. The burn-ups of thoria and zirconia system fuels that irradiated same location in the capsule showed almost same values. For the ROX fuel containing thorium, 233U was also determined by the same techniques in order to evaluate the effect of burn-up of thorium. As the result, it was found that the fission of 233U was below 1% of total fission number and could be negligible. In addition, americium and curium were determined by alpha-spectrometry. These data, together with isotopic ratio of plutonium, are important data to analyze the irradiation behavior of plutonium. (author)

  15. Use of axial burnup distribution profile in the nuclear safety analysis of spent nuclear fuel storage for WWER reactors in Ukraine

    International Nuclear Information System (INIS)

    The nuclear safety analysis of spent fuel storages taking into account fuel burnup should allow for burnup distribution along the height of the assembly. We propose a method based on an analysis of the axial burnup profiles of spent fuel assemblies. This method can be used in nuclear safety justification of spent fuel management and storage systems

  16. Burnup credit activities in the United States

    International Nuclear Information System (INIS)

    This report covers progress in burnup credit activities that have occurred in the United States of America (USA) since the International Atomic Energy Agency's (IAEA's) Advisory Group Meeting (AGM) on Burnup Credit was convened in October 1997. The Proceeding of the AGM were issued in April 1998 (IAEA-TECDOC-1013, April 1998). The three applications of the use of burnup credit that are discussed in this report are spent fuel storage, spent fuel transportation, and spent fuel disposal. (author)

  17. Phenomena and Parameters Important to Burnup Credit

    International Nuclear Information System (INIS)

    Since the mid-1980s, a significant number of studies have been directed at understanding the phenomena and parameters important to implementation of burnup credit in out-of-reactor applications involving pressurized-water-reactor (PWR) spent fuel. The efforts directed at burnup credit involving boiling-water-reactor (BWR) spent fuel have been more limited. This paper reviews the knowledge and experience gained from work performed in the US and other countries in the study of burnup credit. Relevant physics and analysis phenomenon are identified, and an assessment of their importance to burnup credit implementation for transport and dry cask storage is given

  18. Phenomena and parameters important to burnup credit

    International Nuclear Information System (INIS)

    Since the mid-1980s, a significant number of studies have been directed at understanding the phenomena and parameters important to implementation of burnup credit in out-of-reactor applications involving pressurized-water- reactor (PWR) spent fuel. The efforts directed at burnup credit involving boiling-water-reactor (BWR) spent fuel have been more limited. This paper reviews the knowledge and experience gained from work performed in the United States and other countries in the study of burnup credit. Relevant physics and analysis phenomenon are identified, and an assessment of their importance to burnup credit implementation for transport and dry cask storage is given. (author)

  19. A survey of previous and current industry-wide efforts regarding burnup credit

    International Nuclear Information System (INIS)

    Sandia has examined the matter of burnup credit from the perspective of physics, logistics, risk, and economics. A limited survey of the nuclear industry has been conducted to get a feeling for the actual application of burnup credit. Based on this survey, it can be concluded that the suppliers of spent fuel storage and transport casks are in general agreement that burnup credit offers the potential for improvements in cask efficiency without increasing the risk of accidental criticality. The actual improvement is design-specific but limited applications have demonstrated that capacity increases in the neighborhood of 20 percent are not unrealistic. A number of these vendors acknowledge that burnup credit has not been reduced to practice in cask applications and suggest that operational considerations may be more important to regulatory acceptance than to the physics. Nevertheless, the importance of burnup credit to the nuclear industry as a cask design and analysis tool has been confirmed by this survey

  20. Fast reactor 3D core and burnup analysis using VESTA

    Energy Technology Data Exchange (ETDEWEB)

    Luciano, N.; Shamblin, J.; Maldonado, I. [Nuclear Engineering Dept., Univ. of Tennessee, Knoxville, TN 37996-2300 (United States)

    2012-07-01

    Burnup analyses using the VESTA code have been performed on a MOX-fuelled fast reactor model as specified by an IAEA computational benchmark. VESTA is a relatively new code that has been used for burnup credit calculations and thermal reactor models, but not typically for fast reactor applications. The detailed input and results of the IAEA benchmark provides an opportunity to gauge the use of VESTA in a fast reactor application. VESTA employs an ultra-fine multi-group binning approach that accelerates Monte Carlo burnup calculations. Using VESTA to compute the end of cycle (EOC) power fractions by enrichment zone showed agreement with the published values within 5%. When comparing the ultra-fine multi-group binning approach to the tally-based approach, EOC isotopic masses also agree within 5%. Using the ultra-fine multi-group binning approach, we obtain a wall-time speedup factor of 35 when compared to the tally-based approach for computing a k{sub eff} eigenvalue with burnup problem. The authors conclude the use of VESTA's ultra-fine multi-group binning approach with Monte Carlo transport performs accurate depletion calculations for this fast reactor benchmark. (authors)

  1. Ultrasonic measurement of high burn-up fuel elastic properties

    International Nuclear Information System (INIS)

    The ultrasonic method developed for the evaluation of high burn-up fuel elastic properties is presented hereafter. The objective of the method is to provide data for fuel thermo-mechanical calculation codes in order to improve industrial nuclear fuel and materials or to design new reactor components. The need for data is especially crucial for high burn-up fuel modelling for which the fuel mechanical properties are essential and for which a wide range of experiments in MTR reactors and high burn-up commercial reactor fuel examinations have been included in programmes worldwide. To contribute to the acquisition of this knowledge the LAIN activity is developing in two directions. First one is development of an ultrasonic focused technique adapted to active materials study. This technique was used few years ago in the EdF laboratory in Chinon to assess the ageing of materials under irradiation. It is now used in a hot cell at ITU Karlsruhe to determine the elastic moduli of high burnup fuels from 0 to 110 GWd/tU. Some of this work is presented here. The second on going programme is related to the qualification of acoustic sensors in nuclear environments, which is of a great interest for all the methods, which work, in a hostile nuclear environment

  2. RAPID program to predict radial power and burnup distribution of UO{sub 2} fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Bock; Song, Jae Sung; Bang, Je Gun; Kim, Dae Ho [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-02-01

    Due to the radial variation of the neutron flux and its energy spectrum inside UO{sub 2} fuel, the fission density and fissile isotope production rates are varied radially in the pellet, and it becomes necessary to know the accurate radial power and burnup variation to predict the high burnup fuel behavior such as rim effects. Therefore, to predict the radial distribution of power, burnup and fissionable nuclide densities in the pellet with the burnup and U-235 enrichment, RAPID(RAdial power and burnup Prediction by following fissile Isotope Distribution in the pellet) program was developed. It considers the specific radial variation of the neutron reaction of the nuclides while the constant radial variation of neutron reaction except neutron absorption of U-238 regardless of the nuclides, the burnup and U-235 enrichment is assumed in TUBRNP model which is recognized as the one of the most reliable models. Therefore, it is expected that RAPID may be more accurate than TUBRNP, specially at high burnup region. RAPID is based upon and validated by the detailed reactor physics code, HELIOS which is one of few codes that can calculates the radial variations of the nuclides inside the pellet. Comparison of RAPID prediction with the measured data of the irradiated fuels showed very good agreement. RAPID can be used to calculate the local variations of the fissionable nuclide concentrations as well as the local power and burnup inside that pellet as a function of the burnup up to 10 w/o U-235 enrichment and 150 MWD/kgU burnup under the LWR environment. (author). 8 refs., 50 figs., 1 tab.

  3. Review of Technical Studies in the United States in Support of Burnup Credit Regulatory Guidance

    International Nuclear Information System (INIS)

    Taking credit for the reduction in reactivity associated with fuel depletion can enable more cost-effective, higher-density storage, transport, disposal, and reprocessing of spent nuclear fuel (SNF) while maintaining sufficient subcritical margin to establish an adequate safety basis. Consequently, there continues to be considerable interest in the United States (U.S.), as well as internationally, in the increased use of burnup credit in SNF operations, particularly related to storage, transport, and disposal of commercial SNF. This interest has motivated numerous technical studies related to the application of burnup credit, both domestically and internationally, as well as the design of SNF storage, transport and disposal systems that rely on burnup credit for maintaining subcriticality. Responding to industry requests and needs, the U.S. Nuclear Regulatory Commission (NRC) initiated a burnup credit research program in 1999, with support from the Oak Ridge National Laboratory (ORNL), to develop regulatory guidance and the supporting technical bases for allowing and expanding the use of burnup credit in pressurized-water reactor SNF storage and transport applications. Although this NRC research program has not been continuous since its inception, considerable progress has been achieved in many key areas in terms of increased understanding of relevant phenomena and issues, availability of relevant information and data, and subsequently updated regulatory guidance for expanded use of burnup credit. This paper reviews technical studies performed by ORNL for the U.S. NRC burnup credit research program. Examples of topics include reactivity effects associated with reactor operating characteristics, fuel assembly characteristics, burnable absorbers, control rods, spatial burnup distributions, cooling time, and assembly misloading; methods and data for validation of isotopic composition predictions; methods and data for validation of criticality calculations; and

  4. An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Isotopic Composition Predictions

    International Nuclear Information System (INIS)

    The expanded use of burnup credit in the United States (U.S.) for storage and transport casks, particularly in the acceptance of credit for fission products, has been constrained by the availability of experimental fission product data to support code validation. The U.S. Nuclear Regulatory Commission (NRC) staff has noted that the rationale for restricting the Interim Staff Guidance on burnup credit for storage and transportation casks (ISG-8) to actinide-only is based largely on the lack of clear, definitive experiments that can be used to estimate the bias and uncertainty for computational analyses associated with using burnup credit. To address the issues of burnup credit criticality validation, the NRC initiated a project with the Oak Ridge National Laboratory to (1) develop and establish a technically sound validation approach for commercial spent nuclear fuel (SNF) criticality safety evaluations based on best-available data and methods and (2) apply the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The purpose of this paper is to describe the isotopic composition (depletion) validation approach and resulting observations and recommendations. Validation of the criticality calculations is addressed in a companion paper at this conference. For isotopic composition validation, the approach is to determine burnup-dependent bias and uncertainty in the effective neutron multiplication factor (keff) due to bias and uncertainty in isotopic predictions, via comparisons of isotopic composition predictions (calculated) and measured isotopic compositions from destructive radiochemical assay utilizing as much assay data as is available, and a best-estimate Monte Carlo based method. This paper (1) provides a detailed description of the burnup credit isotopic validation approach and its technical bases, (2) describes the application of the approach for

  5. Characterisation of high-burnup LWR fuel rods through gamma tomography

    International Nuclear Information System (INIS)

    Current fuel management strategies for light water reactors (LWRs), in countries with high back-end costs, progressively extend the discharge burnup at the expense of increasing the 235U enrichment of the fresh UO2 fuel loaded. In this perspective, standard non-destructive assay techniques, which are very attractive because they are fast, cheap, and preserve the fuel integrity, in contrast to destructive approaches, require further validation when burnup values become higher than 50 GWd/t. This doctoral work has been devoted to the development and optimisation of non-destructive assay techniques based on gamma-ray emissions from irradiated fuel. It represents an important extension of the unique, high-burnup related database, generated in the framework of the LWR PROTEUS Phase II experiments. A novel tomographic measurement station has been designed and developed for the investigation of irradiated fuel rod segments. A unique feature of the station is that it allows both gamma-ray transmission and emission computerised tomography to be performed on single fuel rods. Four burnt UO2 fuel rod segments of 400 mm length have been investigated, two with very high (52 GWd/t and 71 GWd/t) and two with ultra-high (91 GWd/t and 126 GWd/t) burnup. Several research areas have been addressed, as described below. The application of transmission tomography to spent fuel rods has been a major task, because of difficulties of implementation and the uniqueness of the experiments. The main achievements, in this context, have been the determination of fuel rod average material density (a linear relationship between density and burnup was established), fuel rod linear attenuation coefficient distribution (for use in emission tomography), and fuel rod material density distribution. The non-destructive technique of emission computerised tomography (CT) has been applied to the very high and ultra-high burnup fuel rod samples for determining their within-rod distributions of caesium and

  6. Extension of the TRANSURANUS burn-up model

    International Nuclear Information System (INIS)

    The validation range of the model in the TRANSURANUS fuel performance code for calculating the radial power density and burn-up in UO2 fuel has been extended from 64 MWd/kgHM up to 102 MWd/kgHM, thereby improving also its precision. In addition, the first verification of calculations with post-irradiation examination data is reported for LWR-MOX fuel with a rod average burn-up up to 45 MWd/kgHM. The extension covers the inclusion of new isotopes in order to account for the production of 238Pu. The corresponding one-group cross-sections used in the equations rely on results obtained with ALEPH, a new Monte Carlo burn-up code. The experimental verification is based on electron probe microanalysis (EPMA) and on secondary ion mass spectrometry (SIMS) as well as radiochemical data of fuel irradiated in commercial power plants. The deviations are quantified in terms of frequency distributions of the relative errors. The relative errors on the burn-up distributions in both fuel types remain below 12%, corresponding to the experimental scatter

  7. Prediction of fission gas pressure from high burnup oxide fuel

    International Nuclear Information System (INIS)

    The ELESIM fuel performance code incorporates a fundamentally based treatment of the relevant physical processes affecting fission gas release. The fission gas release model treats fission gas diffusion, formation and subsequent interlinkage of intergranular bubbles, grain boundary storage of gas, grain growth and fuel swelling. The latter case considers the contributions of thermal expansion, densification, solid fission products, and gas bubbles. The effect of porosity on fuel thermal conductivity is taken into account. Previously we showed predictions of the gas release model agreed well with measured values for oxide fuel with burnups to about 300 MW.h/kg U. The applicability of the model to high burnup fuel is examined using examples from the literature. The fission gas release range considered is about 1-100% for burnups to 1000 MW.h/kg U in thermal reactor fuel and 2400 MW.h/kg U in fast reactor fuel. Predicted and measured releases are shown to be in good agreement, suggesting that the fundamental model is correct. In some models, empirical correction factors are required at high burnup to achieve agreement between predicted and measured release values; no such factor is required in ELESIM. (auth)

  8. HAMCIND, Cell Burnup with Fission Products Poisoning

    International Nuclear Information System (INIS)

    1 - Description of program or function: HAMCIND is a cell burnup code based in a coupling between HAMMER-TECHNION and CINDER. The fission product poisoning is taken into account in an explicit fashion. 2 - Method of solution: The nonlinear coupled set of equations for the neutron transport and nuclide transmutation equations and nuclide transmutation equations in a unit cell is solved by HAMCIND in a quasi-static approach. The spectral transport equation is solved by HAMMER-TECHNION at the beginning of each time-step while the nuclide transmutation equations are solved by CINDER for every time-step. The HAMMER-TECHNION spectral calculations are performed taking into account the fission product contribution to the macroscopic cross sections (fast and thermal), in the inelastic scattering matrix and even in the thermal scattering matrices. 3 - Restrictions on the complexity of the problem: Restrictions and/or limitations for HAMCIND depend upon the local operating system

  9. Sophistication of burnup analysis system for fast reactor (2)

    International Nuclear Information System (INIS)

    Improvement on prediction accuracy for neutronics characteristics of fast reactor cores is one of the most important study domains in terms of both achievement of high economical plant efficiency based on reasonably advanced designs and increased reliability and safety margins. In former study, considerable improvement on prediction accuracy in neutronics design has been achieved in the development of the unified cross-section set as a fruit of a series of critical experiments such as JUPITER in application of the reactor constant adjustments. For design of fast reactor cores improvement of not only static characteristics but also burnup characteristics is very important. For such purpose, it is necessary to improve the prediction accuracy on burnup characteristics using actual burnup data of 'JOYO' and 'MONJU', experimental and prototype fast reactors. Recently, study on effective burnup method for minor actinides becomes important theme. However, there is a problem that analysis work tends to become inefficient for lack of functionality suitable for analysis of composition change due to burnup since the conventional analysis system is targeted to critical assembly systems. Therefore development of burnup analysis system for fast reactors with modularity and flexibility is being done that would contribute to actual core design work and improvement of prediction accuracy. In the previous study, we have developed a prototype system which has functions of performing core and burnup calculations using given constant files (PDS files) and information based on simple and easy user input data. It has also functions of fuel shuffling which is indispensable for power reactor analysis systems. In the present study, by extending the prototype system, features for handling of control rods and energy collapse of group constants have been designed and implemented. Computational results from the present analysis system are stored into restart files which can be accessible by

  10. High burnup fuel development program in Japan

    International Nuclear Information System (INIS)

    A step wise burnup extension program has been progressing in Japan to reduce the LWR fuel cycle cost. At present, the maximum assembly burnup limit of BWR 8 Χ 8 type fuel (B. Step II fuel) is 50GWd/t and a limited numbers of 9 Χ 9 type fuel (B. Step III fuel) with 55GWd/t maximum assembly burnup has been licensed by regulatory agencies recently. Though present maximum assembly burnup limit for PWR fuel is 48GWd/t (P. Step I fuel), the licensing work has been progressing for irradiation testing on a limited number of fuel assemblies with extended burnup of up to 55GWd/t (p. Step II fuel) Design of high burnup fuel and fabrication test are carried out by vendors, and subsequent irradiation test of fuel rods is conducted jointly by utilities and vendors to prepare for licensing. It is usual to make an irradiation test for vectarion, using lead use assemblies by government to confirm fuel integrity and reliability and win the public confidence. Nuclear Power Engineering Corporation (NUPE C) is responsible for verification test. The fuel are subjected to post irradiation examination (PIE) and no unfavorable indications of fuel behavior have found both in NUPE C verification test and joint irradiation test by utilities and vendors. Burnup extension is an urgent task for LWR fuel in Japan in order to establish the domestic fuel cycle. It is conducted in joint efforts of industries, government and institutes. However, watching a situation of burnup extension in the world, we are not going ahead of other countries in the achievement of burnup extension. It is due to a conservative policy in the nuclear safety of the country. This is the reason why the burnup extension program in Japan is progressing 'slow and steady' As for the data obtained, no unfavorable indications of fuel behavior have found both in NUPE C verification test and joint irradiation test by utilities and vendors until now

  11. Twenty-fifth water reactor safety information meeting: Proceedings. Volume 2: Human reliability analysis and human performance evaluation; Technical issues related to rulemakings; Risk-informed, performance-based initiatives; High burn-up fuel research

    International Nuclear Information System (INIS)

    This three-volume report contains papers presented at the conference. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Japan, Norway, and Russia. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume contains the following: (1) human reliability analysis and human performance evaluation; (2) technical issues related to rulemakings; (3) risk-informed, performance-based initiatives; and (4) high burn-up fuel research

  12. High burnup models in computer code fair

    International Nuclear Information System (INIS)

    An advanced fuel analysis code FAIR has been developed for analyzing the behavior of fuel rods of water cooled reactors under severe power transients and high burnups. The code is capable of analyzing fuel pins of both collapsible clad, as in PHWR and free standing clad as in LWR. The main emphasis in the development of this code is on evaluating the fuel performance at extended burnups and modelling of the fuel rods for advanced fuel cycles. For this purpose, a number of suitable models have been incorporated in FAIR. For modelling the fission gas release, three different models are implemented, namely Physically based mechanistic model, the standard ANS 5.4 model and the Halden model. Similarly the pellet thermal conductivity can be modelled by the MATPRO equation, the SIMFUEL relation or the Halden equation. The flux distribution across the pellet is modelled by using the model RADAR. For modelling pellet clad interaction (PCMI)/ stress corrosion cracking (SCC) induced failure of sheath, necessary routines are provided in FAIR. The validation of the code FAIR is based on the analysis of fuel rods of EPRI project ''Light water reactor fuel rod modelling code evaluation'' and also the analytical simulation of threshold power ramp criteria of fuel rods of pressurized heavy water reactors. In the present work, a study is carried out by analysing three CRP-FUMEX rods to show the effect of various combinations of fission gas release models and pellet conductivity models, on the fuel analysis parameters. The satisfactory performance of FAIR may be concluded through these case studies. (author). 12 refs, 5 figs

  13. Analysis on burnup step effect for evaluating reactor criticality and fuel breeding ratio

    International Nuclear Information System (INIS)

    Criticality condition of the reactors is one of the important factors for evaluating reactor operation and nuclear fuel breeding ratio is another factor to show nuclear fuel sustainability. This study analyzes the effect of burnup steps and cycle operation step for evaluating the criticality condition of the reactor as well as the performance of nuclear fuel breeding or breeding ratio (BR). Burnup step is performed based on a day step analysis which is varied from 10 days up to 800 days and for cycle operation from 1 cycle up to 8 cycles reactor operations. In addition, calculation efficiency based on the variation of computer processors to run the analysis in term of time (time efficiency in the calculation) have been also investigated. Optimization method for reactor design analysis which is used a large fast breeder reactor type as a reference case was performed by adopting an established reactor design code of JOINT-FR. The results show a criticality condition becomes higher for smaller burnup step (day) and for breeding ratio becomes less for smaller burnup step (day). Some nuclides contribute to make better criticality when smaller burnup step due to individul nuclide half-live. Calculation time for different burnup step shows a correlation with the time consuming requirement for more details step calculation, although the consuming time is not directly equivalent with the how many time the burnup time step is divided

  14. Development and Applications of a Prototypic SCALE Control Module for Automated Burnup Credit Analysis

    International Nuclear Information System (INIS)

    Consideration of the depletion phenomena and isotopic uncertainties in burnup-credit criticality analysis places an increasing reliance on computational tools and significantly increases the overall complexity of the calculations. An automated analysis and data management capability is essential for practical implementation of large-scale burnup credit analyses that can be performed in a reasonable amount of time. STARBUCS is a new prototypic analysis sequence being developed for the SCALE code system to perform automated criticality calculations of spent fuel systems employing burnup credit. STARBUCS is designed to help analyze the dominant burnup credit phenomena including spatial burnup gradients and isotopic uncertainties. A search capability also allows STARBUCS to iterate to determine the spent fuel parameters (e.g., enrichment and burnup combinations) that result in a desired keff for a storage configuration. Although STARBUCS was developed to address the analysis needs for spent fuel transport and storage systems, it provides sufficient flexibility to allow virtually any configuration of spent fuel to be analyzed, such as storage pools and reprocessing operations. STARBUCS has been used extensively at Oak Ridge National Laboratory (ORNL) to study burnup credit phenomena in support of the NRC Research program

  15. Analysis of high burnup spent nuclear fuel by ICP-MS

    International Nuclear Information System (INIS)

    Inductively coupled plasma mass spectrometry (ICP-MS) as the primary tool for determining concentrations of a suite of nuclides in samples excised from high-burnup spent nuclear fuel rods taken from light water nuclear reactors. The complete analysis included the determination of 95Mo, 99Tc, 101Ru, 103Rh, 109Ag, 137Cs, 143Nd, 145Nd, 148Nd, 147Sm, 149Sm, 150Sm, 151Sm, 152Sm, 151Eu, 153Eu, 155Eu, 155Gd, 237Np, 234U, 235U, 236U, 238U, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 242mAm, and 243Am. The isotopic composition of fissiogenic lanthanide elements was determined using high-performance liquid chromatography (HPLC) with ICP-MS detection. These analytical results allow the determination of fuel burn-up based on 148Nd, Pu, and U content, as well as provide input for storage and disposal criticality calculations. Results show that ICP-MS along with HPLC-ICP-MS are suitable of performing routine determinations of most of these nuclides, with an uncertainty of ±10% at the 95% confidence level. (author)

  16. Considerations on burn-up dependent RIA and LOCA criteria

    International Nuclear Information System (INIS)

    For RIA transients, a fuel failure threshold has been derived and compared with recent experimental data relevant for BWR and PWR fuel. The threshold can be applied to HZP and CZP transients, account taken for the different initial enthalpy and for the lower ductility at cold conditions. It can also be used for non-zero power transients, provided that a term accounting for the initial power is incorporated. The proposed threshold predicts reasonably well the results obtained in the CABRI and NSRR tests when the different state of the cladding, i.e. ductile or brittle, is taken into account. Apart from some exceptions discussed in the paper, such as the effect of oxide spalling, one should consider ductile state for HZP conditions and brittle state for CZP conditions. The threshold applies equally well to UO2 and MOX fuel, but the database on MOX is limited. For LOCA transients, the cladding limit may decrease with burn-up due to cladding corrosion and hydrogen pick-up. A provisional criterion shows that the predicted burn-up effect is moderate or negligible if one uses the results obtained with actual high burn-up cladding. On the other hand, a large effect is predicted based on the results obtained with non-irradiated, pre-hydrided cladding specimens. There is a question however on as to whether these specimens can be representative for high burn-up material. The experimental evidence is still scarce and more data on high burn-up cladding is needed in order to arrive to firm conclusions. Most of the data currently available relates to Zr-4 cladding. The experiments made on ZIRLO and M5 cladding show that these alloys have a RIA and LOCA behaviour similar to or better than Zr-4. However, the data is limited, especially for LOCA conditions, where only un-irradiated specimens have been tested so far. (author)

  17. Recommendations for Addressing Axial Burnup in the PWR Burnup Credit Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.C.

    2002-10-23

    This report presents studies performed to support the development of a technically justifiable approach for addressing the axial-burnup distribution in pressurized-water reactor (PWR) burnup-credit criticality safety analyses. The effect of the axial-burnup distribution on reactivity and proposed approaches for addressing the axial-burnup distribution are briefly reviewed. A publicly available database of profiles is examined in detail to identify profiles that maximize the neutron multiplication factor, k{sub eff}, assess its adequacy for PWR burnup credit analyses, and investigate the existence of trends with fuel type and/or reactor operations. A statistical evaluation of the k{sub eff} values associated with the profiles in the axial-burnup-profile database was performed, and the most reactive (bounding) profiles were identified as statistical outliers. The impact of these bounding profiles on k{sub eff} is quantified for a high-density burnup credit cask. Analyses are also presented to quantify the potential reactivity consequence of loading assemblies with axial-burnup profiles that are not bounded by the database. The report concludes with a discussion on the issues for consideration and recommendations for addressing axial burnup in criticality safety analyses using burnup credit for dry cask storage and transportation.

  18. Taking burnup credit for interim storage and transportation system for BWR fuels

    International Nuclear Information System (INIS)

    In order to establish a realistic burnup credit design system, a calculation system has been developed for determining isotope compositions, burnup, and criticality. The calculation system consists of several modules such as TGBLA, ORIGEN, CITATION, MCNP, and KENO. The TGBLA code is a fuel design code for LWR fuels developed in TOSHIBA Corporation. A compact measurement system for a fuel assembly has been being developed to meet requirements for the burnup determination, the neutron emission-rate evaluation, and the nuclear materials management. For a spent MOX fuel, a neutron emission rate measurement method has been being developed. The system consists of Cd-Te detectors and / or fission chambers. Some model calculations were carried out for the latest design BWR fuels. The effect of taking burnup credit for a transportation cask is shown. (authors)

  19. Alternatives for implementing burnup credit in the design and operation of spent fuel transport casks

    International Nuclear Information System (INIS)

    It is possible to develop an optimal strategy for implementing burnup credit in spent fuel transport casks. For transport, the relative risk is rapidly reduced if additional pre-transport controls such as a cavity dryness verifications are conducted prior to transport. Some other operational and design features that could be incorporated into a burnup credit cask strategy are listed. These examples represent many of the system features and alternatives already available for use in developing a broadly based criticality safety strategy for implementing burnup credit in the design and operation of spent fuel transport casks. 4 refs., 1 tab

  20. Burnup credit issues in transportation and storage

    International Nuclear Information System (INIS)

    Reliance on the reduced reactivity of spent fuel for criticality control during transportation and storage is referred to as burnup credit. This concept has attracted international interest and is being actively pursued in the United States in the development of a new generation of transport casks. An overview of the US experience in developing a methodology to implement burnup credit in an integrated approach to transport cask design is presented in this paper. Specifically, technical issues related to the analysis, validation and implementation of burnup credit are identified and discussed

  1. Burnup credit issues in transportation and storage

    International Nuclear Information System (INIS)

    Reliance on the reduced reactivity of spent fuel for criticality control during transportation and storage is referred to as burnup credit. This concept has attracted international interest and is being actively pursued in the United States in the development of a new generation of transport casks. An overview of the U.S. experience in developing a methodology to implement burnup credit in an integrated approach to transport cask design is presented in this paper. Specifically, technical issues related to the analysis, validation and implementation of burnup credit are identified and discussed. (author)

  2. Development of burnup analysis system for fast reactor (3) (Contract research)

    International Nuclear Information System (INIS)

    Improvement of the prediction accuracy for neutronics property of fast reactor cores is one of the most important study domains in terms of both achievement of high economical plant efficiency based on reasonably advanced designs and increased reliability and safety margins. In the previous study, considerable improvement of the prediction accuracy in neutronics design has been achieved in the development of the unified constants library as a fruit of a series of critical experiments such as JUPITER in application of the reactor constant adjustments. For design of fast reactor cores, however, improvement of not only static properties but also burnup properties is very important. For such purposes, it is necessary to improve the prediction accuracy of burnup properties using actual burnup data of 'JOYO' and 'MONJU', experimental and prototype fast reactors. Recently, study on effective burnup method for minor actinides becomes important theme. However, there is a problem that analysis work tends to become inefficient for lack of functionality suitable for analysis of composition change due to burnup since the conventional analysis system is targeted to critical assembly systems. Therefore development of burnup analysis system for fast reactors with modularity and flexibility is being done that would contribute to actual core design work and improvement of the prediction accuracy. In the previous study on 'Development of Burnup Analysis System for Fast Reactors (2)' in FY2006, design and implementation of models for detailed geometry of assembly, fuel loading pattern and so on, accompanied with specification and implementation of input file handling to construct data models. In the present study, a prototype system has been implemented in which functionalities are embedded for calculation of macroscopic cross section, core calculation and burnup calculation applying the fruits of the study 'Development of a Framework for the Neutronics Analysis System for Next

  3. Addressing the Axial Burnup Distribution in PWR Burnup Credit Criticality Safety

    International Nuclear Information System (INIS)

    This paper summarizes efforts related to developing a technically justifiable approach for addressing the axial burnup distribution in PWR burnup-credit criticality safety analyses. The paper reviews available data on the axial variation in burnup and the effect of axial burnup profiles on reactivity in a SNF cask. A publicly available database of profiles is examined to identify profiles that maximize the neutron multiplication factor, keff, assess its adequacy for general PWR burnup credit analyses, and investigate the existence of trends with fuel type and/or reactor operations. For this assessment, a statistical evaluation of the keff values associated with the profiles in the axial burnup profile database was performed that identifies the most reactive profiles as statistical outliers that are not representative of typical discharged SNF assemblies. The impact of these bounding profiles on the neutron multiplication factor for a high-density burnup credit cask is quantified. Finally, analyses are presented to quantify the potential reactivity consequence of assemblies with axial profiles that are not bounded by the existing database. The paper concludes with findings for addressing the axial burnup distribution in burnup credit analyses

  4. Technical Development on Burn-up Credit for Spent LWR Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gauld, I.C.

    2001-12-26

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled ''Technical Development on Criticality Safety Management for Spent LWR Fuels.'' Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burnup and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report.

  5. Technical Development on Burn-up Credit for Spent LWR Fuel

    International Nuclear Information System (INIS)

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled ''Technical Development on Criticality Safety Management for Spent LWR Fuels.'' Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burnup and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report

  6. Burnup calculation code system COMRAD96

    International Nuclear Information System (INIS)

    COMRAD was one of the burnup code system developed by JAERI. COMRAD96 is a transfered version of COMRAD to Engineering Work Station. It is divided to several functional modules, 'Cross Section Treatment', 'Generation and Depletion Calculation', and 'Post Process'. It enables us to analyze a burnup problem considering a change of neutron spectrum using UNITBURN. Also it can display the γ Spectrum on a terminal. This report is the general description and user's manual of COMRAD96. (author)

  7. VVER-related burnup credit calculations

    International Nuclear Information System (INIS)

    The calculations related to a VVER burnup credit calculational benchmark proposed to the Eastern and Central European research community in collaboration with the OECD/NEA/NSC Burnup Credit Criticality Benchmark Working Group (working under WPNCS - Working Party on Nuclear Criticality Safety) are described. The results of a three-year effort by analysts from the Czech Republic, Finland, Germany, Hungary, Russia, Slovakia and the United Kingdom are summarized and commented on. (author)

  8. REBUS: A burnup credit experimental programme

    International Nuclear Information System (INIS)

    An international programme called REBUS (REactivity tests for a direct evaluation of the Burn-Up credit on Selected irradiated LWR fuel bundles) for the investigation of the burn-up credit has been initiated by the Belgian Nuclear Research Center SCK-CEN and Belgonucleaire. At present it is sponsored by USNRC, EdF from France and VGB, representing German nuclear utilities. The programme aims to establish a neutronic benchmark for reactor physics codes. This benchmark would qualify the codes to perform calculations of the burn-up credit. The benchmark exercise will investigate the following fuel types with associated burn-up. 1. Reference absorber test bundle, 2. Fresh commercial PWR UO2 fuel, 3. Irradiated commercial PWR UO2 fuel (50 GWd/tM), 4. Fresh PWR UO2 fuel, 5. Irradiated PWR UO2 fuel (30 GWd/tM). Reactivity effects will be measured in the critical facility VENUS. The accumulated burn-up of all rods will be measured non-destructively by gamma-spectrometry. Some rods will be analyzed destructively with respect to accumulated burn-up, actinides content and TOP-18 fission products (i.e. those non-gaseous fission products that have most implications on the reactivity). The experimental implementation of the programme will start in 2000. (author)

  9. Burnup credit implementation in spent fuel management

    International Nuclear Information System (INIS)

    The criticality safety analysis of spent fuel management systems has traditionally assumed that the fuel is fresh. This results in significant conservatism in the calculated value of the system's reactivity. The concept of allowing reactivity credit for spent fuel offers economic incentives. Burnup Credit (BUC) could reduce mass limitation during dissolution of highly enriched PWR assemblies at the La Hague reprocessing plant. Furthermore, accounting for burnup credit enables the operator to avoid the use of Gd soluble poison in the dissolver for MOX assemblies. Analyses performed by DOE and its contractors have indicated that using BUC to maximize spent fuel transportation cask capacities is a justifiable concept that would result in public risk benefits and cost savings while fully maintaining criticality safety margins. In order to allow for Fission Products and Actinides in Criticality-Safety analyses, an extensive BUC experimental programme has been developed in France in the framework of the CEA-COGEMA collaboration. The use of burnup credit implies a verification of the fuel burnup before loading for transport, storage, disposal, or reprocessing each assembly, to make sure that the burnup level achieved complies with the criteria established. Independent measurement systems, e.g. gamma spectrum detection systems, are needed to perform a true independent measurement of assembly burnup, without reliance on reactor records, using the gamma emission signatures fission products (mainly Cesium isotopes). (author)

  10. Experimental studies of spent fuel burn-up in WWR-SM reactor

    Energy Technology Data Exchange (ETDEWEB)

    Alikulov, Sh. A.; Baytelesov, S.A.; Boltaboev, A.F.; Kungurov, F.R. [Institute of Nuclear Physics, Ulughbek township, 100214, Tashkent (Uzbekistan); Menlove, H.O.; O’Connor, W. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Osmanov, B.S., E-mail: bari_osmanov@yahoo.com [Research Institute of Applied Physics, Vuzgorodok, 100174 Tashkent (Uzbekistan); Salikhbaev, U.S. [Institute of Nuclear Physics, Ulughbek township, 100214, Tashkent (Uzbekistan)

    2014-10-01

    Highlights: • Uranium burn-up measurement from {sup 137}Cs activity in spent reactor fuel. • Comparison to reference sample with known burn-up value (ratio method). • Cross-check of the approach with neutron-based measurement technique. - Abstract: The article reports the results of {sup 235}U burn-up measurements using {sup 137}Cs activity technique for 12 nuclear fuel assemblies of WWR-SM research reactor after 3-year cooling time. The discrepancy between the measured and the calculated burn-up values was about 3%. To increase the reliability of the data and for cross-check purposes, neutron measurement approach was also used. Average discrepancy between two methods was around 12%.

  11. Development of high-burnup fuel analysis code EXBURN-I

    International Nuclear Information System (INIS)

    A computer code EXBURN-I has been developed which analyses LWR fuel behavior in high-burnup region in normal operation and transient conditions. In the high-burnup region, fuel behavior is affected considerably by such burnup-dependent factors as FP gas release, waterside corrosion of cladding, and pellet property change. To analyze these phenomena, in the present version, the base code FEMAXI-IV has been improved and incorporated such new models as pellet thermal conductivity change, burnup-dependent FP gas release rate, and cladding waterside corrosion. The present report describes the whole structure of the code, adopted models, and material properties, followed by input manual and sample input/output. Verification and further improvement of the code performance by experimental data will be done in the next stage. (author)

  12. U.S. Regulatory Research Program for Implementation of Burnup Credit in Transport Casks

    International Nuclear Information System (INIS)

    In 1999 the U.S. Nuclear Regulatory Commission (U.S. NRC) initiated a research program to support the development of technical bases and guidance that would facilitate the implementation of burnup credit into licensing activities for transport and dry cask storage. This paper reviews the following major areas of investigation: (1) specification of axial burnup profiles, (2) assumption on cooling time, (3) allowance for assemblies with fixed and removable neutron absorbers, (4) the need for a burnup margin for fuel with initial enrichments over 4 wt %, and (5) evaluation of assay data and critical experiments. The capabilities of a new computational tool that facilitates the performance and coupling of the depletion and criticality analyses needed for burnup credit are also discussed

  13. COREBN: A core burn-up calculation module for SRAC2006

    International Nuclear Information System (INIS)

    COREBN is an auxiliary code of the SRAC system for multi-dimensional core burn-up calculation based on the diffusion theory and interpolation of macroscopic cross-sections tabulated to local parameters such as burn-up degree, moderator temperature and so on. The macroscopic cross-sections are prepared by cell burn-up calculations with the collision probability method of SRAC. SRAC and COREBN have wide applicability for various types of cell and core geometries. They have been used mainly for the purpose of core burn-up management of research reactors in Japan Atomic Energy Agency. The report is a revision of the users manual for the latest version of COREBN served with the SRAC released in 2006. (author)

  14. Experimental studies of spent fuel burn-up in WWR-SM reactor

    International Nuclear Information System (INIS)

    Highlights: • Uranium burn-up measurement from 137Cs activity in spent reactor fuel. • Comparison to reference sample with known burn-up value (ratio method). • Cross-check of the approach with neutron-based measurement technique. - Abstract: The article reports the results of 235U burn-up measurements using 137Cs activity technique for 12 nuclear fuel assemblies of WWR-SM research reactor after 3-year cooling time. The discrepancy between the measured and the calculated burn-up values was about 3%. To increase the reliability of the data and for cross-check purposes, neutron measurement approach was also used. Average discrepancy between two methods was around 12%

  15. Burnup of fusion produced tritons and 3He ions in PLT and PDX

    International Nuclear Information System (INIS)

    The d(d,p)t and d(d,n)3He fusion reactions produce 1 MeV tritons and 0.8 MeV 3He ions which can subsequently undergo d(t,n)α and d(3He,p)α fusion reactions. The magnitude of this triton and 3He ion burnup was measured on the PLT and PDX tokamaks by detection of the 14 MeV neutron and 15 MeV proton emission. In discharges with B/sub phi/ greater than or equal to 2 T, the measured 3He burnup agrees well with predictions based on classical theories of ion confinement and slowing down, while the triton burnup was about four times lower than theoretically predicted. In discharges with weaker toroidal fields, the burnup of both ions fell by more than a factor of ten

  16. Development and validation of Monte-Carlo burnup calculation code MCNTRANS

    International Nuclear Information System (INIS)

    A new nuclear fuel burnup calculation code MCNTRANS based on MCNP was introduced in this paper. The neutronics calculation parameter was extracted from the MCNP5 reaction rate tally result, while a graph theory algorithm was implemented to track the burnup chain and the analytic solution of the Bateman equation was given. At the same time, the detailed physical process was considered to improve the accuracy and serviceability of this code, and prediction-correction method was used to allow a large burnup step. The OECD/NEA and JAERI pin cell benchmark problems were used to validate the code MCNTRANS while a reference result was given by other code. It can be concluded that the calculation results of MCNTRANS are generally consistent with the experimental result and that of the other burnup codes, and part of the actinides and fission products calculation result show better accuracy. (authors)

  17. Burn-up effect on instant release from an initial corrosion of UO2 and MOX fuel under anoxic conditions

    International Nuclear Information System (INIS)

    The objective of the work is to obtain instant release experimental values for different radionuclides as a function of spent fuel type (UO2 and MOX) and burn-up (from 30 to 63 MWd/kgU) that will be useful for the performance assessment studies related to the behaviour of spent fuel under repository conditions or, in any case, spent fuel conditions in which labile radionuclides can be released. To determine the instant release source terms, sets of leaching experiments were conducted with spent UO2 and MOX fuel with burnups ranging from 30 to 63 MWd/kg U in presence of cladding as the container material. The fuels were leached in carbonated groundwater (CW) having a buffered pH of 7.5 at room temperature. Some observations are also made of the differences in matrix dissolution behaviour of the different fuels based on observed U, Pu and Np concentrations The ultimate issue is to evaluate the differences in the ''instant'' inventory measurements for spent fuels in order to provide experimental data that allow to evaluate the source terms used in the safety-assessment calculations, and to improve the accuracy of such data for the future. It is important to remark that the quality of the experimental results obtained describes the influence of the spent fuel (SF) burn-up on fast release of inventory fraction (release under 200 days). (authors)

  18. Results of post-irradiation examination to validate WWER-440 and WWER-1000 fuel efficiency at high burnups

    International Nuclear Information System (INIS)

    During the last 10 years on the basis of commercial operation of WWER reactors, a conversion from three to four year fuel cycle operation has been succeeded for WWER-440 fuel. This paper presents the examinations of fuel rods and fuel assemblies operated at different NPPs of Russia and Eastern Europe. Three WWER-440 fuel assemblies with different burnups and different irradiation in the core (3, 4 and 5 years fuel cycle) have passed full-scale examinations including both: destructive and non-destructive methods. The results of examinations have revealed that the irregularity of the field of the energy release may result in increased cladding oxidation. A validation of WWER-440 and WWER-1000 fuel efficiency during 4 and 5 years fuel cycles is also made on the basis of assessment of fuel rod and assembly mechanical state and changes in their geometry. The status of the fuel column including grain size, fuel swelling, rim layer and fission gas release depending on fuel burnup are investigated. During examinations mechanical properties and oxidation of the cladding, mechanical and corrosion state of the spacer grid, ultimate stress, hardness and plasticity of central tube and relaxation of spring unit are studied at the maximal fuel burnup 64 MWd/kgU for WWER-440 and 58 MWd/kgU for WWER-1000. Based on the examination results for the principal parameters determined fuel resource (variation in form, material structure and properties, corrosion resistance of the claddings, FGR form the fuel, fuel cladding interaction degree) reliable fuel operation at the burnups corresponding to four and five fuel cycles may be predicted. None of fuel efficiency factors in up-to date FA design are limited for operation during five fuel cycles

  19. Recent view to the results of pulse tests in the IGR reactor with high burn-up fuel

    Energy Technology Data Exchange (ETDEWEB)

    Asmolov, V.; Yegorova, L. [Russian Research Centre, Moscow (Russian Federation)

    1996-03-01

    Testing of 43 fuel elements (13 fuel elements with high burn-up fuel, 10 fuel elements with preirradiated cladding and fresh fuel, and 20 non-irradiated fuel elements) was carried out in the IGR pulse reactor with a half width of the reactor power pulse of about 0.7 sec. Tests were conducted in capsules with no coolant flow and with standard initial conditions in the capsule of 20{degrees}C and 0.2 MPa. Two types of coolant were used: water and air. One purpose of the test program was to determine the thresholds and mechanisms of fuel rod failure under RIA conditions for VVER fuel rods over their entire exposure range, from zero to high burn-up. These failure thresholds are often used in safety analyses. The tests and analyses were designed to reveal the influence on fuel rod failure of (1) the mechanical properties of the cladding, (2) the pellet-to-cladding gap, (3) fuel burn-up, (4) fuel-to-coolant heat transfer, and other parameters. The resulting data base can also be used for validation of computer codes used for analyzing fuel rod behavior. Three types of test specimens were used in the tests, and diagrams of these specimens are shown in Fig. 1. {open_quotes}Type-C{close_quotes} specimens were re-fabricated from commercial fuel rods of the VVER-1000 type that had been subjected to many power cycles of operation in the Novovoronezh Nuclear Power Plant (NV NPP). {open_quotes}Type-D{close_quotes} specimens were fabricated from the same commercial fuel rods used above, but the high burn-up oxide fuel was removed from the cladding and was replaced with fresh oxide fuel pellets. {open_quotes}Type-D{close_quotes} specimens thus provided a means of separating the effects of the cladding and the oxide fuel pellets and were used to examine cladding effects only.

  20. Pore pressure calculation of the UO2 high burnup structure

    International Nuclear Information System (INIS)

    Highlights: • Pore pressure is calculated based on local burnup, density and porosity. • Ronchi's equations of state are used instead of van der Waals’ equation. • Pore pressure increases as HBS transformation begins and then stays constant. • A best approximated parameter used for pore pressure calculation is recommended. -- Abstract: UO2 high burnup structure has an important impact on fuel behavior, especially in case of reactivity initiated accident (RIA). Pore relaxation enhances local fuel swelling and puts additional load to the fuel cladding, which makes fuel more susceptible to pellet–cladding mechanical interaction induced failure. Therefore, pore pressure calculation becomes vital when evaluating the fuel failure. In this paper pore pressure is calculated as a function of pellet radial local burnup based on the basic characteristics of HBS using Ronchi's correlation. The results indicate that pore pressure will approach a stable value as HBS is developing. A best approximated C value of 55 N/m is recommended for pore pressure calculation

  1. The applications of burnup credit and the measurement techniques of burnup verification

    International Nuclear Information System (INIS)

    The factors of influencing criticality safety, implementing criticality control conditions, the calculation methods for predicting criticality, casks design and cask loading graph are described. The problems in the application of burnup credit and the dominant error in burnup credit operation are analysed. In order to avoid the operation error, requirements of measurement techniques and the most suitable measurement method are introduced

  2. New burnup calculation of TRIGA IPR-R1 reactor

    International Nuclear Information System (INIS)

    The IPR-R1 TRIGA Mark I research reactor, located at the Nuclear Technology Development Center - CDTN, Belo Horizonte, Brazil, operates since 1960.The reactor is operating for more than fifty years and has a long history of operation. Determining the current composition of the fuel is very important to calculate various parameters. The reactor burnup calculation has been performed before, however, new techniques, methods, software and increase of the processing capacity of the new computers motivates new investigations to be performed. This work presents the evolution of effective multiplication constant and the results of burnup. This new model has a more detailed geometry with the introduction of the new devices, like the control rods and the samarium discs. This increase of materials in the simulation in burnup calculation was very important for results. For these series of simulations a more recently cross section library, ENDF/B-VII, was used. To perform the calculations two Monte Carlo particle transport code were used: Serpent and MCNPX. The results obtained from two codes are presented and compared with previous studies in the literature. (author)

  3. Burnup performances of boron nitride and boron coated nuclear fuels

    International Nuclear Information System (INIS)

    The nuclear fuels of urania (UOV) and 5% and 10% gadolinia (Gd2O3) containing UO2 previously produced by sol-gel technique were coated with first boron nitride (BN) then boron (B) thin layer by chemical vapor deposition (CVD) and also by plasma enhanced chemical vapor deposition (PECVD) techniques to increase the fuel cycle length and to improve the physical properties. From the cross-sectional view of BN and B layers taken from scanning electron microscope (SEM), the excellent adherence of BN onto fuel and B onto BN layer was observed in both cases. The behavior of fuel burnup, depletion of BN and B, the effect of coating thickness and also Gd2O3 content on the burnup performances of the fuels were identified by using the code WIMS-D/4 for Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) cores. The optimum thickness ratio of B to BN was found as 4 and their thicknesses were chosen as 40 mm and 10 mm respectively in both reactor types to get extended cycle length. The assemblies consisting of fuels with 5% Gd2O3 and also coated with 10 mm BN and 40 mm B layers were determined as candidates for getting higher burnup in both types of reactors

  4. The Fork+ burnup measurement system: Design and first measurement campaign

    International Nuclear Information System (INIS)

    Previous work with the original Fork detector showed that burnup as determined by reactor records could be accurately allocated to spent nuclear fuel assemblies. The original Fork detector, designed by Los Alamos National Laboratory, used an ion chamber to measure gross gamma count and a fission chamber to measure neutrons from an activation source, 244Cm. In its review of the draft Topical Report on Burnup Credit, the US Nuclear Regulatory Commission indicated it felt uncomfortable with a measurement system that depended on reactor records for calibration. The Fork+ system was developed at Sandia National Laboratories under the sponsorship of the Electric Power Research Institute with the aim of providing this independent measurement capability. The initial Fork+ prototype was used in a measurement campaign at the Maine Yankee reactor. The campaign confirmed the applicability of the sensor approach in the Fork+ system and the efficiency of the hand-portable Fork+ prototype in making fuel assembly measurements. It also indicated potential design modifications that will be necessary before the Fork+ can be used effectively on high-burnup spent fuel

  5. New burnup calculation of TRIGA IPR-R1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Meireles, Sincler P. de; Campolina, Daniel de A.M.; Santos, Andre A. Campagnole dos; Menezes, Maria A.B.C.; Mesquita, Amir Z., E-mail: sinclercdtn@hotmail.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The IPR-R1 TRIGA Mark I research reactor, located at the Nuclear Technology Development Center - CDTN, Belo Horizonte, Brazil, operates since 1960.The reactor is operating for more than fifty years and has a long history of operation. Determining the current composition of the fuel is very important to calculate various parameters. The reactor burnup calculation has been performed before, however, new techniques, methods, software and increase of the processing capacity of the new computers motivates new investigations to be performed. This work presents the evolution of effective multiplication constant and the results of burnup. This new model has a more detailed geometry with the introduction of the new devices, like the control rods and the samarium discs. This increase of materials in the simulation in burnup calculation was very important for results. For these series of simulations a more recently cross section library, ENDF/B-VII, was used. To perform the calculations two Monte Carlo particle transport code were used: Serpent and MCNPX. The results obtained from two codes are presented and compared with previous studies in the literature. (author)

  6. Investigation of Burnup Credit Issues in BWR Fuel

    International Nuclear Information System (INIS)

    Calculations for long-term-disposal criticality safety of spent nuclear fuel requires the application of burnup credit because of the large mass of fissile material that will be present in the repository. Burnup credit calculations are based on depletion calculations that provide a conservative estimate of spent fuel contents, followed by criticality calculations to assess the value of keff for a spent fuel cask or a fuel configuration under a variety of probabilistically derived events. In order to ensure that the depletion calculation is conservative, it is necessary to both qualify and quantify assumptions that can be made in depletion models used to characterize spent fuel. Most effort in the United States this decade has focused on burnup issues related to pressurized-water reactors. However, requirements for the permanent disposal of fuel from boiling-water reactors has necessitated development of methods for prediction of spent fuel contents for such fuels. Concomitant with such analyses, validation is also necessary. This paper provides a summary of initial efforts at the Oak Ridge National Laboratory to better understand and validate spent fuel analyses for boiling-water-reactor fuel

  7. Fuel rod behaviour at high burnup WWER fuel cycles

    International Nuclear Information System (INIS)

    The modernisation of WWER fuel cycles is carried out on the base of complete modelling and experimental justification of fuel rods up to 70 MWd/kgU. The modelling justification of the reliability of fuel rod and fuel rod with gadolinium is carried out with the use of certified START-3 code. START-3 code has a continuous experimental support. The thermophysical and strength reliability of WWER-440 fuel is justified for fuel rod and pellet burnups 65 MWd/kgU and 74 MWd/U, accordingly. Results of analysis are demonstrated by the example of uranium-gadolinium fuel assemblies of second generation under 5-year cycle with a portion of 6-year assemblies and by the example of successfully completed pilot operation of 5-year cycle fuel assemblies during 6 years at unit 3 of Kolskaja NPP. The thermophysical and strength reliability of WWER-1000 fuel is justified for a fuel rod burnup 66 MWd/kgU by the example of fuel operation under 4-year cycles and 6-year test operation of fuel assemblies at unit 1 of Kalininskaya NPP. By the example of 5-year cycle at Dukovany NPP Unit 2 it was demonstrated that WWER fuel rod of a burnup 58 MWd/kgU ensure reliable operation under load following conditions. The analysis has confirmed sufficient reserves of Russian fuel to implement program of JSC 'TVEL' in order to improve technical and economical parameters of WWER fuel cycles

  8. Gross Gamma Dose Rate Measurements for TRIGA Spent Nuclear Fuel Burnup Validation

    International Nuclear Information System (INIS)

    Gross gamma-ray dose rates from six spent TRIGA fuel elements were measured and compared to calculated values as a means to validate the reported element burnups. A newly installed and functional gamma-ray detection subsystem of the In-Cell Examination System was used to perform the measurements and is described in some detail. The analytical methodology used to calculate the corresponding dose rates is presented along with the calculated values. Comparison of the measured and calculated dose rates for the TRIGA fuel elements indicates good agreement (less than a factor of 2 difference). The intent of the subsystem is to measure the gross gamma dose rate and correlate the measurement to a calculated dose rate based on the element s known burnup and other pertinent spent fuel information. Although validation of the TRIGA elements' burnup is of primary concern in this paper, the measurement and calculational techniques can be used to either validate an element's reported burnup or provide a burnup estimate for an element with an unknown burnup. (authors)

  9. Development and validation of a fast reactor core burnup code - FARCOB

    Energy Technology Data Exchange (ETDEWEB)

    Mohanakrishnan, P. [Indira Gandhi Centre for the Atomic Research, CDO, Reactor Physics Division, Kalpakkam, TN 603 102 (India)], E-mail: mohana@igcar.gov.in

    2008-02-15

    A large fast breeder reactor requires the accurate estimation of power produced in different parts of the reactor core and blanket during any operating condition for a safe and economic operation through out reactor life time. A fast reactor core simulation code FARCOB based on multigroup diffusion theory has been developed in IGCAR for core simulation of PFBR reactor under construction. FARCOB uses centre mesh differencing scheme with triangular meshes in the X-Y plane. Steady state solution results match exactly with those of other reputed codes DIF3D and VENTURE for SNR-300 benchmarks. For burnup simulation, core is divided into radial and axial burnup zones and burnup equations are solved at constant power. Burnable fuel and blanket number densities are found and stored for each mesh, so that the user can alter burnup zones and core geometry after a burnup step. For validation, results of FARCOB has been compared with results of other institutes in two burnup benchmarks (ANL 1000 MWe benchmark and BN-600 hybrid core benchmark). It is found that FARCOB results match well with those of the other institutes.

  10. OREST, LWR Burnup Simulation Using Program HAMMER and ORIGEN

    International Nuclear Information System (INIS)

    printer-output. 3 - Restrictions on the complexity of the problem: NEA version is limited for 100 loops, 1000 burnup time-steps and 10 post-irradiation steps. GRS recommends the use of LWR fuels based on oxygen and on the main HAMMER isotopes 235-U, 236-U, 238-U, 237-Np, 238-Pu, 239-Pu, 240-Pu, 241-Pu, 242-Pu, 241-Am and 243-Am. Gadolinium entries should be handled with care if singular positions of Gd-rods in real assemblies are found. Other mixture entries at start of calculation should only be impurities. Cladding should be Zr, Al or stainless steel. Special options for handling other materials can be found in the user description. Activation of structure materials is not calculated. Strong heterogeneous assembly problems outside of the input data processor should be pre-calculated by using more-dimensional codes to achieve a neutron spectra equivalent HAMMER lattice (FEC-method). Coolant pressure, coolant temperatures and coolant steam contents are assumed to be constant during burnup. During each program loop neutron spectra and cross sections are assumed to be constant

  11. Triton burnup study in JT-60U

    International Nuclear Information System (INIS)

    The behavior of 1 MeV tritons produced in the d(d,p)t reaction is important to predict the properties of D-T produced 3.5 MeV alphas because 1 MeV tritons and 3.5 MeV alphas have similar kinematic properties, such as Larmor radius and precession frequency. The confinement and slowing down of the fast tritons were investigated by measuring the 14 MeV and the 2.5 MeV neutron production rates. Here the time resolved triton burnup measurements have been performed using a new type 14 MeV neutron detector based on scintillating fibers, as part of a US-Japan tokamak collaboration. Loss of alpha particles due to toroidal ripple is one of the most important issues to be solved for a fusion reactor such as ITER. The authors investigated the toroidal ripple effect on the fast triton by analyzing the time history of the 14 MeV emission after NB turn-off

  12. Radionuclide Release from High Burnup Fuel

    International Nuclear Information System (INIS)

    In this paper we investigate the production, evolution and release of radioactive fission products in a light water reactor. The production of the nuclides is determined by the neutronics, their evolution in the fuel by local temperature and by the fuel microstructure and the rate of release is governed by the scenario and the properties of the microstructure where the nuclides reside. The problem combines fields of reactor physics, fuel behaviour analysis and accident analysis. Radionuclide evolution during fuel reactor life is also important for determination of instant release fraction of final repository analysis. The source term problem is investigated by literature study and simulations with reactor physics code Serpent as well as fuel performance code ENIGMA. The capabilities of severe accident management codes MELCOR and ASTEC for describing high burnup structure effects are reviewed. As the problem is multidisciplinary in nature the transfer of information between the codes is studied. While the combining of the different fields as they currently are is challenging, there are some possibilities to synergy. Using reactor physics tools capable of spatial discretization is necessary for determining the HBS inventory. Fuel performance studies can provide insight how the HBS should be modelled in severe accident codes, however the end effect is probably very small considering the energetic nature of the postulated accidents in these scenarios. Nuclide release in severe accidents is affected by fuel oxidation, which is not taken into account by ANSI/ANS-5.4 but could be important in some cases, and as such, following the example of severe accident models would benefit the development of fuel performance code models. (author)

  13. Corrosion studies with high burnup light water reactor fuel. Release of nuclides into simulated groundwater during accumulated contact time of up to two years

    Energy Technology Data Exchange (ETDEWEB)

    Zwicky, Hans-Urs (Zwicky Consulting GmbH, Remigen (Switzerland)); Low, Jeanett; Ekeroth, Ella (Studsvik Nuclear AB, Nykoeping (Sweden))

    2011-03-15

    In the framework of comprehensive research work supporting the development of a Swedish concept for the disposal of highly radioactive waste and spent fuel, Studsvik has performed a significant number of spent fuel corrosion studies under a variety of different conditions. These experiments, performed between 1990 and 2002, covered a burnup range from 27 to 49 MWd/kgU, which was typical for fuel to be disposed at that time. As part of this work, the so called Series 11 tests were performed under oxidising conditions in synthetic groundwater with fuel samples from a rod irradiated in the Ringhals 1 Boiling Water Reactor (BWR). In the meantime, Swedish utilities tend to increase the discharge burnup of fuel operated in their reactors. This means that knowledge of spent fuel corrosion performance has to be extended to higher burnup as well. Therefore, a series of experiments has been started at Studsvik, aiming at extending the data base acquired in the Series 11 corrosion tests to higher burnup fuel. Fuel burnup leads to complex and significant changes in the composition and properties of the fuel. The transformed microstructure, which is referred to as the high burnup structure or rim structure in the outer region of the fuel, consists of small grains of submicron size and a high concentration of pores of typical diameter 1 to 2 mum. This structure forms in UO{sub 2} fuel at a local burnup above 50 MWd/kgU, as long as the temperature is below 1,000-1,100 deg C. The high burnup at the pellet periphery is the consequence of plutonium build-up by neutron capture in 238U followed by fission of the formed plutonium. The amount of fission products in the fuel increases more or less linearly with burnup, in contrast to alpha emitting actinides that increase above average. As burnup across a spent fuel pellet is not uniform, but increases towards the periphery, the radiation field is also larger at the pellet surface. At the same time, it is easier for water to access the

  14. Fission gas release and pellet microstructure change of high burnup BWR fuel

    International Nuclear Information System (INIS)

    UO2 fuel, with and without Gadolinium, irradiated for three, five, and six irradiation cycles up to about 60 GWd/t pellet burnup in a commercial BWR were studied. The fission gas release and the rim effect were investigated by the puncture test and gas analysis method, OM (optical microscope), SEM (scanning electron microscope), and EPMA (electron probe microanalyzer). The fission gas release rate of the fuel rods irradiated up to six cycles was below a few percent; there was no tendency for the fission gas release to increase abruptly with burnup. On the other hand, microstructure changes were revealed by OM and SEM examination at the rim position with burnup increase. Fission gas was found depleted at both the rim position and the pellet center region using EPMA. There was no correlation between the fission gas release measured by the puncture test and the fission gas depletion at the rim position using EPMA. However, the depletion of fission gas in the center region had good correlation with the fission gas release rate determined by the puncture test. In addition, because the burnup is very large at the rim position of high burnup fuel and also due to the fission rate of the produced Pu, the Xe/Kr ratio at the rim position of high burnup fuel is close to the value of the fission yield of Pu. The Xe/Kr ratio determined by the gas analysis after the puncture test was equivalent to the fuel average but not to the pellet rim position. From the results, it was concluded that fission gas at the rim position was released from the UO2 matrix in high burnup, however, most of this released fission gas was held in the porous structure and not released from the pellet to the free volume. (author)

  15. ISOTOPIC MODEL FOR COMMERCIAL SNF BURNUP CREDIT

    International Nuclear Information System (INIS)

    The purpose of this report is to demonstrate a process for selecting bounding depletion parameters, show that they are conservative for pressurized water reactor (PWR) and boiling water reactor (BWR) spent nuclear fuel (SNF), and establish the range of burnup for which the parameters are conservative. The general range of applicability is for commercial light water reactor (LWR) SNF with initial enrichments between 2.0 and 5.0 weight percent 235U and burnups between 10 and 50 gigawatt-day per metric ton of uranium (GWd/MTU)

  16. ISOTOPIC MODEL FOR COMMERCIAL SNF BURNUP CREDIT

    Energy Technology Data Exchange (ETDEWEB)

    A.H. Wells

    2004-11-17

    The purpose of this report is to demonstrate a process for selecting bounding depletion parameters, show that they are conservative for pressurized water reactor (PWR) and boiling water reactor (BWR) spent nuclear fuel (SNF), and establish the range of burnup for which the parameters are conservative. The general range of applicability is for commercial light water reactor (LWR) SNF with initial enrichments between 2.0 and 5.0 weight percent {sup 235}U and burnups between 10 and 50 gigawatt-day per metric ton of uranium (GWd/MTU).

  17. Burnup analysis of the power reactor, 3

    International Nuclear Information System (INIS)

    The atomic number densities of uranium and transuranium were measured for JPDR-1. For the purpose of the study, the program has been prepared. It solves the burnup equation by the exponential matrix method. The void fraction and exposure distribution of the required data were calculated by three-dimensional nuclear-thermal-hydro-dynamic program FLORA under the operating conditions. The distribution of each atomic number density was obtained. The results agree with the measured values. The programs calculating nuclear constants in the cell were evaluated by obtaining the effective cross sections from the atomic number densities and the burnup. (auth.)

  18. Fission gas release modelling at high burnup

    International Nuclear Information System (INIS)

    A large quantity of experimental data on fission gas release is now available in the public domain. It covers a wide variety of fuel types and burnups of up to more than 70 GWd/tU. This data, together with gas release measurements from British Energy's AGRs, has been used to build a comprehensive validation database for the fuel performance code ENIGMA. Validation of ENIGMA version 5.11 against this database has identified a requirement for model development to improve predictions at high burnup. A modified gas release model has been produced and tested. (author)

  19. Nuclear fuel burn-up economy

    International Nuclear Information System (INIS)

    In the period 1981-1985, for the needs of Utility Organization, Beograd, and with the support of the Scientific Council of SR Srbija, work has been performed on the study entitled 'Nuclear Fuel Burn-up Economy'. The forst [phase, completed during the year 1983 comprised: comparative analysis of commercial NPP from the standpoint of nuclear fuel requirements; development of methods for fuel burn-up analysis; specification of elements concerning the nuclear fuel for the tender documentation. The present paper gives the short description of the purpose, content and results achieved in the up-to-now work on the study. (author)

  20. Simulation of fuel cycles with minor actinide management using a fast burnup calculation tool

    International Nuclear Information System (INIS)

    The paper presents a fast and flexible burnup model for fuel cycle simulations which is based on the description of the one-group cross-sections as analytic functions of the isotopic composition. This was accomplished by multi-dimensional regression based on the results of numerous core calculations. The developed model is able to determine the spent fuel composition in reasonable CPU time, and was integrated into a simplified fuel cycle model containing Gas Cooled Fast Reactors (GFR) and conventional light water reactors (LWRs). The fuel cycle simulations revealed an advantageous effect of increased minor actinide content in the GFR core on the fuel utilization parameters. In order to explore the processes that lay behind this effect the neutronics balance of the GFR was investigated in equilibrium cycle conditions. (author)

  1. Tritium release from EXOTIC-7 orthosilicate pebbles. Effect of burnup and contact with beryllium during irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Werle, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik

    1998-03-01

    EXOTIC-7 was the first in-pile test with {sup 6}Li-enriched (50%) lithium orthosilicate (Li{sub 4}SiO{sub 4}) pebbles and with DEMO representative Li-burnup. Post irradiation examinations of the Li{sub 4}SiO{sub 4} have been performed at the Forschungszentrum Karlsruhe (FZK), mainly to investigate the tritium release kinetics as well as the effect of Li-burnup and/or contact with beryllium during irradiation. The release rate of Li{sub 4}SiO{sub 4} from pure Li{sub 4}SiO{sub 4} bed of capsule 28.1-1 is characterized by a broad main peak at about 400degC and by a smaller peak at about 800degC, and that from the mixed beds of capsule 28.2 and 26.2-1 shows again these two peaks, but most of the tritium is now released from the 800degC peak. This shift of release from low to high temperature may be due to the higher Li-burnup and/or due to contact with Be during irradiation. Due to the very difficult interpretation of the in-situ tritium release data, residence times have been estimated on the basis of the out-of-pile tests. The residence time for Li{sub 4}SiO{sub 4} from caps. 28.1-1 irradiated at 10% Li-burnup agrees quite well with that of the same material irradiated at Li-burnup lower than 3% in the EXOTIC-6 experiment. In spite of the observed shift in the release peaks from low to high temperature, also the residence time for Li{sub 4}SiO{sub 4} from caps. 26.2-1 irradiated at 13% Li-burnup agrees quite well with the data from EXOTIC-6 experiment. On the other hand, the residence time for Li{sub 4}SiO{sub 4} from caps. 28.2 (Li-burnup 18%) is about a factor 1.7-3.8 higher than that for caps. 26.2-1. Based on these data on can conclude that up to 13% Li-burnup neither the contact with beryllium nor the Li-burnup have a detrimental effect on the tritium release of Li{sub 4}SiO{sub 4} pebbles, but at 18% Li-burnup the residence time is increased by about a factor three. (J.P.N.)

  2. Technical Data to Justify Full Burnup Credit in Criticality Safety Licensing Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Enercon Services, Inc.

    2011-03-14

    ENERCON's understanding of the difficult issues related to obtaining and analyzing additional cross section test data to support Full Burnup Credit. A PIRT (Phenomena Identification and Ranking Table) analysis was performed by ENERCON to evaluate the costs and benefits of acquiring different types of nuclear data in support of Full Burnup Credit. A PIRT exercise is a formal expert elicitation process with the final output being the ranking tables. The PIRT analysis (Table 7-4: Results of PIRT Evaluation) showed that the acquisition of additional Actinide-Only experimental data, although beneficial, was associated with high cost and is not necessarily needed. The conclusion was that the existing Radiochemical Assay (RCA) data plus the French Haut Taux de Combustion (HTC)2 and handbook Laboratory Critical Experiment (LCE) data provide adequate benchmark validation for Actinide-Only Burnup Credit. The PIRT analysis indicated that the costs and schedule to obtain sufficient additional experimental data to support the addition of 16 fission products to Actinide-Only Burnup Credit to produce Full Burnup Credit are quite substantial. ENERCON estimates the cost to be $50M to $100M with a schedule of five or more years. The PIRT analysis highlights another option for fission product burnup credit, which is the application of computer-based uncertainty analyses (S/U - Sensitivity/Uncertainty methodologies), confirmed by the limited experimental data that is already available. S/U analyses essentially transform cross section uncertainty information contained in the cross section libraries into a reactivity bias and uncertainty. Recent work by ORNL and EPRI has shown that a methodology to support Full Burnup Credit is possible using a combination of traditional RCA and LCE validation plus S/U validation for fission product isotopics and cross sections. Further, the most recent cross section data (ENDF/B-VII) can be incorporated into the burnup credit codes at a reasonable cost

  3. Technical Data to Justify Full Burnup Credit in Criticality Safety Licensing Analysis

    International Nuclear Information System (INIS)

    ENERCON's understanding of the difficult issues related to obtaining and analyzing additional cross section test data to support Full Burnup Credit. A PIRT (Phenomena Identification and Ranking Table) analysis was performed by ENERCON to evaluate the costs and benefits of acquiring different types of nuclear data in support of Full Burnup Credit. A PIRT exercise is a formal expert elicitation process with the final output being the ranking tables. The PIRT analysis (Table 7-4: Results of PIRT Evaluation) showed that the acquisition of additional Actinide-Only experimental data, although beneficial, was associated with high cost and is not necessarily needed. The conclusion was that the existing Radiochemical Assay (RCA) data plus the French Haut Taux de Combustion (HTC)2 and handbook Laboratory Critical Experiment (LCE) data provide adequate benchmark validation for Actinide-Only Burnup Credit. The PIRT analysis indicated that the costs and schedule to obtain sufficient additional experimental data to support the addition of 16 fission products to Actinide-Only Burnup Credit to produce Full Burnup Credit are quite substantial. ENERCON estimates the cost to be $50M to $100M with a schedule of five or more years. The PIRT analysis highlights another option for fission product burnup credit, which is the application of computer-based uncertainty analyses (S/U - Sensitivity/Uncertainty methodologies), confirmed by the limited experimental data that is already available. S/U analyses essentially transform cross section uncertainty information contained in the cross section libraries into a reactivity bias and uncertainty. Recent work by ORNL and EPRI has shown that a methodology to support Full Burnup Credit is possible using a combination of traditional RCA and LCE validation plus S/U validation for fission product isotopics and cross sections. Further, the most recent cross section data (ENDF/B-VII) can be incorporated into the burnup credit codes at a reasonable cost

  4. Studies on future application of burnup credit in Hungary

    International Nuclear Information System (INIS)

    This paper describes the present status of the fuel storage and the possible future applications of burnup credit in wet and dry storage systems in Hungary. It gives a survey of the activities planned in AERI concerning the burnup credit. Some part of these investigations dealing with the influence of the axial changing of the assembly burnup are given in more details. (author)

  5. Burnup verification measurements on spent fuel assemblies at Arkansas Nuclear One

    International Nuclear Information System (INIS)

    Burnup verification measurements have been performed using the Fork system at Arkansas Nuclear One, Units 1 and 2, operated by Energy Operations, Inc. Passive neutron and gamma-ray measurements on individual spent fuel assemblies were correlated with the reactor records for burnup, cooling time, and initial enrichment. The correlation generates an internal calibration for the system in the form of a power law determined by a least squares fit to the neutron data. The values of the exponent in the power laws were 3.83 and 4.35 for Units 1 and 2, respectively. The average deviation of the reactor burnup records from the calibration determined from the measurements is a measure of the random error in the burnup records. The observed average deviations were 2.7% and 3.5% for assemblies at Units 1 and 2, respectively, indicating a high degree of consistency in the reactor records. Two non-standard assemblies containing neutron sources were studied at Unit 2. No anomalous measurements were observed among the standard assemblies at either Unit. The effectiveness of the Fork system for verification of reactor records is due to the sensitivity of the neutron yield to burnup, the self-calibration generated by a series of measurements, the redundancy provided by three independent detection systems, and the operational simplicity and flexibility of the design

  6. Modeling of WWER-440 fuel pin behavior at extended burn-up

    Energy Technology Data Exchange (ETDEWEB)

    El-Koliel, Moustafa S. E-mail: moustafa_elkoliel@yahoo.com; Abou-Zaid, Attya A.; El-Kafas, A.A

    2004-04-01

    Currently, there is an ongoing effort to increase fuel discharge burn-up of all LWRs fuel including WWERs as much as possible in order to decrease power production cost. Therefore, burn-up is expected to be increased from 60 to 70 MWd/kg U. The change in the fuel radial power distribution as a function of fuel burn-up can affect the radial fuel temperature distribution as well as the fuel microstructure in the fuel pellet rim. Both of these features, commonly termed the 'rim effect'. High burn-up phenomena in WWER-440 UO{sub 2} fuel pin, which are important for fission gas release (FGR) were modeled. The radial burn-up as a function of the pellet radius and enrichment has to be known to determine the local thermal conductivity. In this paper, the radial burn-up and fissile products distributions of WWER-440 UO{sub 2} fuel pin were evaluated using MCNP4B and ORIGEN2 codes. The impact of the thermal conductivity on predicted FGR calculations is needed. For the analysis, a typical WWER-440 fuel pin and surrounding water moderator are considered in a hexagonal pin well. The thermal release and the athermal release from the pellet rim were modeled separately. The fraction of the rim structure and the excessive porosity in the rim structure in isothermal irradiation as a function of the fuel burn-up was predicted. A computer program; RIMSC-01, is developed to perform the required FGR calculations. Finally, the relevant phenomena and the corresponding models together with their validation are presented.

  7. Modeling of WWER-440 fuel pin behavior at extended burn-up

    International Nuclear Information System (INIS)

    Currently, there is an ongoing effort to increase fuel discharge burn-up of all LWRs fuel including WWERs as much as possible in order to decrease power production cost. Therefore, burn-up is expected to be increased from 60 to 70 MWd/kg U. The change in the fuel radial power distribution as a function of fuel burn-up can affect the radial fuel temperature distribution as well as the fuel microstructure in the fuel pellet rim. Both of these features, commonly termed the 'rim effect'. High burn-up phenomena in WWER-440 UO2 fuel pin, which are important for fission gas release (FGR) were modeled. The radial burn-up as a function of the pellet radius and enrichment has to be known to determine the local thermal conductivity. In this paper, the radial burn-up and fissile products distributions of WWER-440 UO2 fuel pin were evaluated using MCNP4B and ORIGEN2 codes. The impact of the thermal conductivity on predicted FGR calculations is needed. For the analysis, a typical WWER-440 fuel pin and surrounding water moderator are considered in a hexagonal pin well. The thermal release and the athermal release from the pellet rim were modeled separately. The fraction of the rim structure and the excessive porosity in the rim structure in isothermal irradiation as a function of the fuel burn-up was predicted. A computer program; RIMSC-01, is developed to perform the required FGR calculations. Finally, the relevant phenomena and the corresponding models together with their validation are presented

  8. Transient behaviour of high burnup fuel

    International Nuclear Information System (INIS)

    The main subjects of the meeting were the discussion of regulatory background, integral tests and analysis, plant calculations, separate-effect test and analysis, concerning high burnup phenomena during RIA accidents in reactors, especially LWR, BWR and PWR type reactors. 32 papers were abstracted and indexed individually for the INIS database. (R.P.)

  9. A criticality analysis of the GBC-32 dry storage cask with Hanbit nuclear power plant unit 3 fuel assemblies from the viewpoint of burnup credit

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hyung Ju; Kim, Do Yeon; Park, Kwang Heon; Hong, Ser Gi [Dept. of Nuclear Engineering, Kyung Hee University, Seoul (Korea, Republic of)

    2016-06-15

    Nuclear criticality safety analyses (NCSAs) considering burnup credit were performed for the GBC-32 cask. The used nuclear fuel assemblies (UNFAs) discharged from Hanbit Nuclear Power Plant Unit 3 Cycle 6 were loaded into the cask. Their axial burnup distributions and average discharge burnups were evaluated using the DeCART and Multi-purpose Analyzer for Static and Transient Effects of Reactors (MASTER) codes, and NCSAs were performed using SCALE 6.1/STandardized Analysis of Reactivity for Burnup Credit using SCALE (STARBUCS) and Monte Carlo N-Particle transport code, version 6 (MCNP 6). The axial burnup distributions were determined for 20 UNFAs with various initial enrichments and burnups, which were applied to the criticality analysis for the cask system. The UNFAs for 20- and 30-year cooling times were assumed to be stored in the cask. The criticality analyses indicated that keff values for UNFAs with nonuniform axial burnup distributions were larger than those with a uniform distribution, that is, the end effects were positive but much smaller than those with the reference distribution. The axial burnup distributions for 20 UNFAs had shapes that were more symmetrical with a less steep gradient in the upper region than the reference ones of the United States Department of Energy. These differences in the axial burnup distributions resulted in a significant reduction in end effects compared with the reference.

  10. Safety margins for high-burnup zircaloy-4 cladding behaviour during LOCA in PWRs

    International Nuclear Information System (INIS)

    Because of major advantages in fuel-cycle costs and waste management, the current trend in the nuclear industry is to increase fuel discharge burnup. At high burnup, pressurized-water reactor (PWR) fuel rod claddings fabricated from low-tin Zircaloy-4 exhibit significant oxidation and related hydriding; hydriding may enhance the embrittlement, directly below the Leidenfrost temperature, and indirectly by enhancing oxygen solubility in the beta phase. Performance of high-burnup low-tin Zircaloy-4 under hypothetical loss-of-coolant (LOCA) situations is not well understood at this time. Therefore, it is important to reevaluate the safety margins for High-burnup fuel cladding. In recognition of this, LOCA-related behavior of high-burnup low-tin Zircaloy-4 is being actively investigated in several countries. The rationale and data bases used to established the current LOCA embrittlement criteria (1973 Emergency Core Cooling System (ECCS) Rule-Making Hearing) are reminded and clarified. Results obtained for hydrided Zircaloy-4 cladding in the 1980s from JAERI slow-ring-compression tests, and more recently from similar AEKI tests are evaluated. They show the importance of clad hydriding during reactor operation and make it feasible to provisionally estimate the limit of equivalent oxidation rate (ECR) which would provide the same safety margin for high-burnup low-tin Zircaloy-4, than that provided by the 17% value, tied with the use of the Baker-Just correlation, for fresh Zircaloy-4. This value is compared with the current methodology of the French and U.S. Safety Authorities, that consists to cumulate the initial oxidation (due to reactor operation) and the transient oxidation (due to LOCA); this comparison is not in accordance with an opinion published last year. Continued testing is necessary to establish embrittlement thresholds that provide sufficient safety margin to high-burnup operation. (author)

  11. Development of burnup analysis system for fast reactors (2) (Contract research)

    International Nuclear Information System (INIS)

    Improvement on prediction accuracy for neutronics property of fast reactor cores is one of the most important study domains in terms of both achievement of high economical plant efficiency based on reasonably advanced designs and increased reliability and safety margins. In former study, considerable improvement on prediction accuracy in neutronics design has been achieved in the development of the unified constants library as a fruit of a series of critical experiments such as JUPITER in application of the reactor constant adjustments. For design of fast reactor cores, however, improvement of not only static properties but also burnup properties is very important. For such purpose, it is necessary to improve the prediction accuracy on burnup properties using actual burnup data of 'JOYO' and 'MONJU', experimental and prototype fast reactors. Recently, study on effective burnup method for minor actinides becomes an important theme. However, there is a problem that analysis work tends to become inefficient for lack of functionality suitable for analysis of composition change due to burnup since the conventional analysis system is targeted to critical assembly systems. Therefore development of burnup analysis system for fast reactors with modularity and flexibility can contribute actual core design work and improvement of prediction accuracy. In the previous study on 'Development of Burnup Analysis System (for Fast Reactors)' in FY2005, basic design was conducted to define each component in the system (input, solver, edit) and how to drive them. In this study, detailed design of the system and implementation of the I/O component were conducted according to the results in the basic design followed by proto-typing implementation. (author)

  12. Present status and future developments of the implementation of burnup credit in spent fuel management systems in Germany

    International Nuclear Information System (INIS)

    This paper describes the experience gained in Germany in implementing burnup credit in wet storage and dry transport systems of spent PWR, BWR, and MOX fuel. It gives a survey of the levels of burnup credit presently used, the regulatory status and activities planned, the fuel depletion codes and criticality calculation codes employed, the verification methods used for validating these codes, the modeling assumptions made to ensure that the burnup credit criticality analysis is based on a fuel irradiation history which leads to bounding neutron multiplication factors, and the implementation of procedures used for fuel loading verification. (author)

  13. Technical Basis for Peak Reactivity Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, William BJ J [ORNL; Ade, Brian J [ORNL; Bowman, Stephen M [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL; Mertyurek, Ugur [ORNL; Radulescu, Georgeta [ORNL

    2015-01-01

    Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate application of burnup credit for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase (1) investigates applicability of peak reactivity methods currently used in spent fuel pools (SFPs) to storage and transportation systems and (2) evaluates validation of both reactivity (keff) calculations and burnup credit nuclide concentrations within these methods. The second phase will focus on extending burnup credit beyond peak reactivity. This paper documents the first phase, including an analysis of lattice design parameters and depletion effects, as well as both validation components. Initial efforts related to extended burnup credit are discussed in a companion paper. Peak reactivity analyses have been used in criticality analyses for licensing of BWR fuel in SFPs over the last 20 years. These analyses typically combine credit for the gadolinium burnable absorber present in the fuel with a modest amount of burnup credit. Gadolinium burnable absorbers are used in BWR assemblies to control core reactivity. The burnable absorber significantly reduces assembly reactivity at beginning of life, potentially leading to significant increases in assembly reactivity for burnups less than 15–20 GWd/MTU. The reactivity of each fuel lattice is dependent on gadolinium loading. The number of gadolinium-bearing fuel pins lowers initial lattice reactivity, but it has a small impact on the burnup and reactivity of the peak. The gadolinium concentration in each pin has a small impact on initial lattice reactivity but a significant effect on the reactivity of the peak and the burnup at which the peak occurs. The importance of the lattice parameters and depletion conditions are primarily determined by their impact on the gadolinium depletion. Criticality code validation for BWR burnup

  14. Investigation of research and development subjects for very high burnup fuel. Development of fuel cladding materials

    Energy Technology Data Exchange (ETDEWEB)

    Nagase, Fumihisa; Suzuki, Masahide; Furuta, Teruo; Suzuki, Yasufumi; Hayashi, Kimio; Amano, Hidetoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1993-05-01

    Plutonium use as well as burnup extension of UO{sub 2} fuel is an important subject for the strategy of utilization of the nuclear energy in LWRs. A higher burnup is favorable to MOX fuel in economic respect and for effective use of plutonium. Therefore, the concept of a `very high burnup` aiming at the maximum bundle burnup of 100GWd/t has been proposed assuming use of MOX fuel. The authors have investigated research and development subjects for the fuel pellet and the cladding material to be developed. The present report shows the results on the cladding material. In order to achieve a very high burnup, development of the cladding material with higher corrosion and radiation resistance compared with Zircaloy is necessary. In this report, zirconium based alloy, stainless steel, nickel and titanium based alloys, ceramics, etc. were reviewed considering water corrosion resistance, thermal and mechanical properties, radiation effects, etc. Furthermore, capability of these materials as the fuel cladding was discussed focusing on water side corrosion and radiation effect on mechanical properties. As a result, candidate materials at present and the required research tasks were shown with issues for the development. (author) 66 refs.

  15. Investigation of research and development subjects for very high burnup fuel

    International Nuclear Information System (INIS)

    Plutonium use as well as burnup extension of UO2 fuel is an important subject for the strategy of utilization of the nuclear energy in LWRs. A higher burnup is favorable to MOX fuel in economic respect and for effective use of plutonium. Therefore, the concept of a 'very high burnup' aiming at the maximum bundle burnup of 100GWd/t has been proposed assuming use of MOX fuel. The authors have investigated research and development subjects for the fuel pellet and the cladding material to be developed. The present report shows the results on the cladding material. In order to achieve a very high burnup, development of the cladding material with higher corrosion and radiation resistance compared with Zircaloy is necessary. In this report, zirconium based alloy, stainless steel, nickel and titanium based alloys, ceramics, etc. were reviewed considering water corrosion resistance, thermal and mechanical properties, radiation effects, etc. Furthermore, capability of these materials as the fuel cladding was discussed focusing on water side corrosion and radiation effect on mechanical properties. As a result, candidate materials at present and the required research tasks were shown with issues for the development. (author) 66 refs

  16. LOLA-SYSTEM, JEN-UPM PWR Fuel Management System Burnup Code System

    International Nuclear Information System (INIS)

    1 - Description of program or function: The LOLA-SYSTEM is a part of the JEN-UPM code package for PWR fuel management, scope or design calculations. It is a code package for core burnup calculations using nodal theory based on a FLARE type code. The LOLA-SYSTEM includes four modules: the first one (MELON-3) generates the constants of the K-inf and M2 correlations to be input into SIMULA-3. It needs the K-inf and M2 fuel assembly values at different conditions of moderator temperature, Boron concentration, burnup, etc., which are provided by MARIA fuel assembly calculations. The main module (SIMULA-3) is the core burnup calculation code in three dimensions and one group of energy. It normally uses a geometrical representation of one node per fuel assembly or per quarter of fuel assembly. It has included a thermal hydraulic feedback on flow and voids and criticality searches on boron concentration and control rods insertion. The CONCON code makes the calculation of the albedo, transport factors, K-inf and M2 correction factors to be input into SIMULA-3. The calculation is made in the XY transversal plane. The CONAXI code is similar to CONCON, but in the axial direction. 2 - Method of solution: MELON-3 makes a mean squares fit of K-inf and M2 values at different conditions in order to determine the constants of the feedback correlations. SIMULA-3 uses a modified one-group nodal theory, with a new transport kernel that provides the same node interface leakages as a fine mesh diffusion calculation. CONCON and CONAXI determine the transport and correction factors, as well as the albedo, to be input into SIMULA-3. They are determined by a method of leakages equivalent to the detailed diffusion calculation of CARMEN or VENTURE; these factors also include the heterogeneity effects inside the node. 3 - Restrictions on the complexity of the problem: Number of axial nodes less than or equal 34. Number of material types less than or equal 30. Number of fuel assembly types less

  17. Preliminary assessment of the benefits of derating a cask for increasing age/burnup capability

    International Nuclear Information System (INIS)

    This study was performed to determine the extent to which the age/burnup capability of the Babcock and Wilcox BR-100 rail cask could be extended by reducing the number of fuel assemblies. Since cask shielding was seen as the limiting design feature, the criterion used to assess the derating was the calculated dose 2 m from the rail car. The reference calculations were based on the 70% design of the BR-100 cask with 21 PWR fuel assemblies. Seven different basket/assembly loading configurations were investigated. The results indicate that both an alternate 18-assembly basket configuration and a 17-assembly/4-empty-hole configuration for the 21-element basket offer substantial gains over the fully loaded reference 21-element basket configuration

  18. Advances in applications of burnup credit to enhance spent fuel transportation, storage, reprocessing and disposition. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    Given a trend towards higher burnup power reactor fuel, the IAEA began an active programme in burnup credit (BUC) with major meetings in 1997 (IAEA-TECDOC-1013), 2000 (IAEA-TECDOC-1241) and 2002 (IAEA-TECDOC-1378) exploring worldwide interest in using BUC in spent fuel management systems. This publication contains the proceedings of the IAEA's 4th major BUC meeting, held in London. Sixty participants from 18 countries addressed calculation methodology, validation and criticality, safety criteria, procedural compliance with safety criteria, benefits of BUC applications, and regulatory aspects in BUC. This meeting encouraged the IAEA to continue its activities on burnup credit including dissemination of related information, given the number of Member States having to deal with increased spent fuel quantities and extended durations. A 5th major meeting on burnup credit is planned 2008. Burnup credit is a concept that takes credit for the reduced reactivity of fuel discharged from the reactor to improve loading density of irradiated fuel assemblies in storage, transportation, and disposal applications, relative to the assumption of fresh fuel nuclide inventories in loading calculations. This report has described a general four phase approach to be considered in burnup credit implementation. Much if not all of the background research and data acquisition necessary for successful burnup credit development in preparation for licensing has been completed. Many fuel types, facilities, and analysis methods are encompassed in the public knowledge base, such that in many cases this guidance will provide a means for rapid development of a burnup credit program. For newer assembly designs, higher enrichment fuels, and more extensive nuclide credit, additional research and development may be necessary, but even this work can build on the foundation that has been established to date. Those, it is hoped that this report will serve as a starting point with sufficient reference to

  19. BISON, 1-D Burnup and Transport in Slab, Cylindrical, Spherical Geometry

    International Nuclear Information System (INIS)

    1 - Description of problem or function: BISON-1.5 solves the one- dimensional Boltzmann transport equation for neutron and gamma-rays and transmutation equations for fuel nuclides. 2 - Method of solution: In the transport calculation stage the one- dimensional Boltzmann transport equation is solved by the discrete ordinates method. In the burnup calculation stage, transmutation equations for fuel nuclides are solved by Bateman's method. The neutron flux obtained in the transport calculation stage is used to determine the transmutation rates in the burnup calculation stage. Both stages are repeated in tandem till the end of the burnup cycle. 3 - Restrictions on the complexity of the problem: A 42-group neutron and 21-group gamma-ray cross section library is prepared in the code package. Core storage for array variables is dynamically allocated by the code, so there are no restrictions on the size of each array

  20. Burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1

    Directory of Open Access Journals (Sweden)

    Muhammad Atta

    2011-01-01

    Full Text Available The burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1, reference operating core, has been carried out utilizing standard computer codes WIMS/D4, CITATION, and RELAP5/MOD3.4. Reactor codes WIMS/D4 and CITATION have been used for the calculations of neutronic parameters including peaking factors and power profiles at different burn-up considering a xenon free core and also the equilibrium xenon values. RELAP5/MOD3.4 code was utilized for the determination of peak fuel centerline, clad and coolant temperatures to ensure the safety of the reactor throughout the cycle. The calculations reveal that the reactor is safe and no nucleate boiling will commence at any part of the core throughout the cycle and that the safety margin increases with burnup as peaking factors decrease.

  1. Burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1

    International Nuclear Information System (INIS)

    The burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1, reference operating core, has been carried out utilizing standard computer codes WIMS/D4, CITATION, and RELAP5/MOD3.4. Reactor codes WIMS/D4 and CITATION have been used for the calculations of neutronic parameters including peaking factors and power profiles at different burn-up considering a xenon free core and also the equilibrium xenon values. RELAP5/MOD3.4 code was utilized for the determination of peak fuel centerline, clad and coolant temperatures to ensure the safety of the reactor throughout the cycle. The calculations reveal that the reactor is safe and no nucleate boiling will commence at any part of the core throughout the cycle and that the safety margin increases with burnup as peaking factors decrease. (author)

  2. In-core fuel management amd attainable fuel burn-up in TRIGA

    International Nuclear Information System (INIS)

    The principles of in-core fuel management in research reactors, and especially in TRIGA, are discussed. Calculations made to determine the attainable fuel burn-up values of various fuel element types in the Otaniemi TRIGA Mark II reactor are described and the results obtained are given. Recommendations are given of how to perform the in-core fuel management to achieve good fuel utilization. The results obtained indicate that burn-up values of up to 5 and 2.5 MWd/element can be achieved for the 8 wt-% U Al clad and the 8.5 wt-% U SS clad elements, respectively. (author)

  3. Burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1

    OpenAIRE

    Muhammad Atta; Iqbal Masood; Mahmood Tayyab

    2011-01-01

    The burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1, reference operating core, has been carried out utilizing standard computer codes WIMS/D4, CITATION, and RELAP5/MOD3.4. Reactor codes WIMS/D4 and CITATION have been used for the calculations of neutronic parameters including peaking factors and power profiles at different burn-up considering a xenon free core and also the equilibrium xenon values. RELAP5/MOD3.4 code was utilized for the determin...

  4. Model for evolution of grain size in the rim region of high burnup UO2 fuel

    Science.gov (United States)

    Xiao, Hongxing; Long, Chongsheng; Chen, Hongsheng

    2016-04-01

    The restructuring process of the high burnup structure (HBS) formation in UO2 fuel results in sub-micron size grains that accelerate the fission gas swelling, which will raise some concern over the safety of extended the nuclear fuel operation life in the reactor. A mechanistic and engineering model for evolution of grain size in the rim region of high burnup UO2 fuel based on the experimental observations of the HBS in the literature is presented. The model takes into account dislocations evolution under irradiation and the grain subdivision occur successively at increasing local burnup. It is assumed that the original driving force for subdivision of grain in the HBS of UO2 fuel is the production and accumulation of dislocation loops during irradiation. The dislocation loops can also be annealed through thermal diffusion when the temperature is high enough. The capability of this model is validated by the comparison with the experimental data of temperature threshold of subdivision, dislocation density and sub-grain size as a function of local burnup. It is shown that the calculated results of the dislocation density and subdivided grain size as a function of local burnup are in good agreement with the experimental results.

  5. Modification of the code SCTEMP and RIA transient analysis at high burnup

    International Nuclear Information System (INIS)

    The code SCTEMP has been modified for RIA analysis of high burnup fuel. New models were introduced for this purpose, including rim type radial power profile, thermal conductivity degradation, and heat transfer coefficient covering different regimes. Thus, the thermal response during a RIA transient at high burnup can be simulated. An analytical exercise was made with parameter variations of pulse time amplitude, radial power profile, thermal conductivity degradation, energy deposition and heat transfer boundary conditions. In order to keep this exercise within a realistic frame, the fuel used as reference is a high burnup fuel which was tested at Halden and for which the fuel thermal characteristics are known based on in-pile fuel temperature measurements. The calculation results are analysed and discussed in terms of their significance for fuel behaviour under the transient and for design of possible RIA experiments. Pulse time amplitude effects and energy deposition effects of high burnup fuel were evaluated quantitatively. The rim of high burnup fuel is assumed to play a very important role for RIA transients. (author)

  6. Benchmark calculation with MOSRA-SRAC for burnup of a BWR fuel assembly

    International Nuclear Information System (INIS)

    The Japan Atomic Energy Agency has developed the Modular Reactor Analysis Code System MOSRA to improve the applicability of neutronic characteristics modeling. The cell calculation module MOSRA-SRAC is based on the collision probability method and is one of the core modules of the MOSRA system. To test the module on a real-world problem, it was combined with the benchmark program 'Burnup Credit Criticality Benchmark Phase IIIC.' In this program participants are requested to submit the neutronic characteristics of burnup calculations for a BWR fuel assembly containing fuel rods poisoned with gadolinium (Gd2O3), which is similar to the fuel assembly at TEPCO's Fukushima Daiichi Nuclear Power Station. Because of certain restrictions of the MOSRA-SRAC burnup calculations part of the geometry model was homogenized. In order to verify the validity of MOSRA-SRAC, including the effects of the homogenization, the calculated burnup dependent infinite multiplication factor and the nuclide compositions were compared with those obtained with the burnup calculation code MVP-BURN which had already been validated for many benchmark problems. As a result of the comparisons, the applicability of MOSRA-SRAC module for the BWR assembly has been verified. Furthermore, it can be shown that the effects of the homogenization are smaller than the effects due to the calculation method for both multiplication factor and compositions. (author)

  7. Serviceability of VVER-1000 fuel rods at extended burn-up

    International Nuclear Information System (INIS)

    To-day in Russia fuel cycles are under development intended for fuel assembly burn-up up to 65MW.day/kgU. To validate the fuel serviceability standard VVER-1000 fuel assemblies are in trial operation to reach the burn-up >60MW.day/kgU. Late in 2002 fuel assemblies that reached the burn-up of 55MW.day/kgU after 5 years of operation were discharged from the Balakovo NPP. A series of assemblies will continue their trial operation during the 6th year. The post-irradiation examinations of high burn-up UO2 base fuel rods of the VVER type reveal that one of the most important consequences of burn-up extension is the so-called rim-effect. The term 'rim-effect' assumes a complex of specific features of the structure and thermophysical behaviour of a fuel rod related to processes proceeding in a fuel layer that is on the periphery of a fuel pellet

  8. Program package for 2D burnup calculation

    International Nuclear Information System (INIS)

    The program package for 2 dimension burnup calculation was developed for TRIGA Mark III reactor. The package consists of 3 modules: PRESIX, SIXTUS-2, and BURN; 1 library, and 2 input files. PRESIX module prepared cross sections for diffusion calculation. SIXTUS-2 module, a two dimensional diffusion code in hexagonal geometry, calculates keff, neutron fluxes and power distributions. BURN module performs the burnup of fuel elements and stored the result in the ELEM.DAT file. PRESIX.LIB is two group cross section library for major reactor core components prepared using WIMS-D4 code. PRES.INP, the first input file, reads information on reactor power and core loading pattern. ELEM.DAT, the second input file, is prepared for specific TRIGA reactor and dependent on operation history. To verify the reactor model and computational methods, the calculated excess reactivities were compared to the measurement. The results are in good agreement. (author)

  9. Study of nuclear fuel burn-up

    International Nuclear Information System (INIS)

    The authors approach theoretical treatment of isotopic composition changement for nuclear fuel in nuclear reactors. They show the difficulty of exhaustive treatment of burn-up problems and introduce the principal simplifying principles. Due to these principles they write and solve analytically the evolution equations of the concentration for the principal nuclides both in the case of fast and thermal reactors. Finally, they expose and comment the results obtained in the case of a power fast reactor. (author)

  10. Derivation of a stable coupling scheme for Monte Carlo burnup calculations with the thermal-hydraulic feedback

    OpenAIRE

    Dufek, Jan; Anglart, Henryk

    2013-01-01

    Numerically stable Monte Carlo burnup calculations of nuclear fuel cycles are now possible with the previously derived Stochastic Implicit Euler method based coupling scheme. In this paper, we show that this scheme can be easily extended to include the thermal-hydraulic feedback during the Monte Carlo burnup simulations, while preserving its unconditional stability property. At each time step, the implicit solution (for the end-of-step neutron flux, fuel nuclide densities and thermal-hydrauli...

  11. Development of burnup calculation function in reactor Monte Carlo code RMC

    International Nuclear Information System (INIS)

    This paper presents the burnup calculation capability of RMC, which is a new Monte Carlo (MC) neutron transport code developed by Reactor Engineering Analysis Laboratory (REAL) in Tsinghua University of China. Unlike most of existing MC depletion codes which explicitly couple the depletion module, RMC incorporates ORIGEN 2.1 in an implicit way. Different burn step strategies, including the middle-of-step approximation and the predictor-corrector method, are adopted by RMC to assure the accuracy under large burnup step size. RMC employs a spectrum-based method of tallying one-group cross section, which can considerably saves computational time with negligible accuracy loss. According to the validation results of benchmarks and examples, it is proved that the burnup function of RMC performs quite well in accuracy and efficiency. (authors)

  12. Siemens PWR burnup credit criticality analysis methodology: Depletion code and verification methods

    International Nuclear Information System (INIS)

    Application of burnup credit requires knowledge of the reactivity state of the irradiated fuel for which burnup credit is taken. The isotopic inventory of the irradiated fuel has to be calculated, therefore, by means of depletion codes. Siemens performs depletion calculations for PWR fuel burnup credit applications with the aid of the code package SAV. This code package is based on the first principles approach, i.e., avoids cycle or reactor specific fitting or adjustment parameters. This approach requires a general and comprehensive qualification of SAV by comparing experimental with calculational results. In the paper on hand the attention is focused mainly on the evaluation of chemical assay data received from different experimental programmes. (author)

  13. Application of scale-4 depletion/criticality sequences in burnup credit analyses

    International Nuclear Information System (INIS)

    The concept of allowing reactivity credit for the transmuted state of spent fuel complicates the criticality analysis by requiring the specification of the fuel mixture to potentially include large numbers of isotopes representative of the fuel conditions. These conditions include the initial enrichment, local or average burnup conditions depending on the analysis approach, and the post-shutdown cooling time. In the development of an analysis methodology to evaluate spent fuel shipping and transport casks (flasks) based on this burnup credit, commercial reactor critical configurations were evaluated as potential experimental spent fuel criticals. This paper describes how the SCALE-4 depletion sequences (SAS2H), the cross-section processing sequence (CSASN), and the criticality module (KENO V.a) were used to evaluate these reactor criticals. A description of a newly developed sequence for linking SAS2H calculated burnup-dependent isotopics to KENO V.a mixing tables [SAS2H Nuclide Inventories for KENO Runs (SNIKR)] is also included

  14. OECD/NEA Burnup Credit Criticality Benchmark

    International Nuclear Information System (INIS)

    The report describes the final result of the phase-1A of the Burnup Credit Criticality Benchmark conducted by OECD/NEA. The phase-1A benchmark problem is an infinite array of a simple PWR spent fuel rod. The analysis has been performed for the PWR spent fuels of 30 and 40 GWd/t after 1 and 5 years of cooling time. In total, 25 results from 19 institutes of 11 countries have been submitted. For the nuclides in spent fuel, 7 major actinides and 15 major fission products (FP) are selected for the benchmark calculation. In the case of 30 GWd/t burnup, it is found that the major actinides and the major FPs contribute more than 50% and 30% of the total reactivity loss due to burnup, respectively. Therefore, more than 80% of the reactivity loss can be covered by 22 nuclides. However, the larger deviation among the reactivity losses by participants has been found for cases including EPs than the cases with only actinides, indicating the existence of relatively large uncertainties in FP cross sections. The large deviation seen also in the case of the fresh fuel has been found to reduce sufficiently by replacing the cross section library from ENDF-B/IV with that from ENDF-B/V and taking the known bias of MONK6 into account. (author)

  15. High burnup effects in WWER fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, V.; Smirnov, A. [RRC Research Institute of Atomic Reactors, Dimitrovqrad (Russian Federation)

    1996-03-01

    Since 1987 at the Research Institute of Atomic Reactors, the examinations of the WWER spent fuel assemblies has been carried out. These investigations are aimed to gain information on WWER spent fuel conditions in order to validate the fuel assemblies use during the 3 and 4 year fuel cycle in the WWER-440 and WWER-1000 units. At present time, the aim is to reach an average fuel burnup of 55 MWd/kgU. According to this aim, a new investigation program on the WWER spent fuel elements is started. The main objectives of this program are to study the high burnup effects and their influence on the WWER fuel properties. This paper presented the main statistical values of the WWER-440 and WWER-1000 reactors` fuel assemblies and their fragment parameters. Average burnup of fuel in the investigated fuel assemblies was in the range of 13 to 49.7 MWd/kgU. In this case, the numer of fuel cycles was from 1 to 4 during operation of the fuel assemblies.

  16. MTR core loading pattern optimization using burnup dependent group constants

    Directory of Open Access Journals (Sweden)

    Iqbal Masood

    2008-01-01

    Full Text Available A diffusion theory based MTR fuel management methodology has been developed for finding superior core loading patterns at any stage for MTR systems, keeping track of burnup of individual fuel assemblies throughout their history. It is based on using burnup dependent group constants obtained by the WIMS-D/4 computer code for standard fuel elements and control fuel elements. This methodology has been implemented in a computer program named BFMTR, which carries out detailed five group diffusion theory calculations using the CITATION code as a subroutine. The core-wide spatial flux and power profiles thus obtained are used for calculating the peak-to-average power and flux-ratios along with the available excess reactivity of the system. The fuel manager can use the BFMTR code for loading pattern optimization for maximizing the excess reactivity, keeping the peak-to-average power as well as flux-ratio within constraints. The results obtained by the BFMTR code have been found to be in good agreement with the corresponding experimental values for the equilibrium core of the Pakistan Research Reactor-1.

  17. ZZ CANDULIB-AECL, Burnup-Dependent ORIGEN-S Cross-Section Libraries for Candu Reactor Fuels

    International Nuclear Information System (INIS)

    1 - Historical background and information: - 28-element fuel cross-section library: Format: Designed for use with the ORIGEN-S isotope generation and depletion code. Materials: Co, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Lu, Ta, W, Re, Au, Th, Pa, U, Np, Pu, Am, Cm. Origin: ENDSF, ENDF/B-IV, -V and -VI Weighting spectrum: determined using WIMS-AECL transport code. - 37-element fuel cross-section library: Format: Designed for use with the ORIGEN-S isotope generation and depletion code. Materials: Co, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Lu, Ta, W, Re, Au, Th, Pa, U, Np, Pu, Am, Cm. Origin: ENDSF, ENDF/B-IV, -V and -VI Weighting spectrum: determined using WIMS-AECL transport code. In 1995, updated ORIGEN-S cross-section libraries were created as part of a program to upgrade and standardize the computer codes and nuclear data employed for used fuel characterization. This effort was funded through collaboration between Atomic Energy of Canada Limited and the Canadian Nuclear Power Utilities, under the Candu Owners Group (COG). The updated cross sections were generated using the WIMS-AECL lattice code and ENDF/B-V and -VI based data to provide cross section consistency with reactor physics codes. 2 - Application of the data: The libraries in this data collection are designed for characterising used fuel from Candu pressurized heavy water reactors. Two libraries are provided: one for the standard 28-element fuel bundle design, the other for the 37-element fuel bundle design. The libraries were generated for typical reactor operating conditions. The libraries are designed for use with the ORIGEN-S isotope generation and depletion code. 3 - Source and scope of data: The Candu libraries are updated with cross sections from a variety of different sources. Capture

  18. High-conversion and high-burnup core concepts for pressure-tube-type heavy water reactors

    International Nuclear Information System (INIS)

    A high-conversion and a high-burnup core concept for a pressure-tube-type heavy water reactor are presented and analyzed from the standpoint of neutronics. These core concepts are based on the fact that neutron spectrum can be shifted by adjusting the amount of heavy water moderator outside the pressure tubes without affecting core-cooling capability. For the high-conversion core, where the heavy water moderator is replaced by a gas such as CO2 [carbon dioxide], a conversion ratio of more than 0.8 and an average discharge fuel burnup of 50GWd/t have been estimated to be attained with standard design fuel assemblies having 7.5% fissile Pu enrichment. For the high-burnup core, where fuel assemblies burned in the high-conversion (gas) region are relocated into the burner (heavy water) region, an average discharge fuel burnup of 110GWd/t has been estimated

  19. Key issues in nuclear fuel cycle concerning high burn-up strategy

    International Nuclear Information System (INIS)

    In the present high burn-up strategy in Japan, the economic efficiency and reduction of the spent nuclear fuel have been in progress. On the other hand, in the further progress of the strategy, several issues may appear. The amount and activity of nuclides, heat generation, and radiation for a fuel pin in the typical 17x17 PWR assembly were calculated as functions of burn-up and cooling time, using the SWAT code system. Waste loading in glass waste forms from spent UO2 fuel and MOX fuel were discussed, assuming the number of glass canisters of 150 liter per THM is 1.25 at 45 GWd/THM. The number of glass canisters per GWd is almost constant in the range of burn-up up to 70 GWd/THM. The amount of molybdate from Pu-239 fissions linearly increases as a function of burn-up similarly like increase from U-235 fissions. The current vitrification technology may not face serious situation to be required substantial reduction in waste loading relating to molybdate up to 70 GWd/THM. The initial cooling period prior to vitrification, the waste loading and the interim storage period prior to final disposal are major factors which determine the way of storage and final disposal. The higher burn-up above 45 GWd/THM may require pretreatment of HLLW or substantial reduction in waste loading to retain the integrity of the ceramic melter for e.g. five years. Further promotion of high burn-up strategy should be consistent with nuclear fuel cycle including waste management. A potential approach, a conceptual new reprocessing system for thermal reactors is described. (author)

  20. Taking burnup credit for interim storage and transportation system for BWR fuels

    International Nuclear Information System (INIS)

    In the back-end issues of nuclear fuel cycle, selection of reprocessing or one-through is a big issue. For both of the cases, a reasonable interim storage and transportation system is required. This study proposes an advanced practical monitoring and evaluation system. The system features the followings: (l) Storage racks and transportation casks taking credit for burnup. (2) A burnup estimation system using a compact monitor with Cd- Te detectors and fission chambers. (3) A neutron emission-rate evaluation methodology, especially important for high burnup MOX fuels. (4) A nuclear materials management system for safeguards. Current storage system and transport casks are designed on the basis of a fresh fuel assumption. The assumption is too conservative. Taking burnup credit gives a reasonable design while keeping conservatism. In order to establish a reasonable burnup credit design system, a calculation system has been developed for determining isotope compositions, burnup, and criticality. The calculation system consists of some modules such as TGBLA, ORIGEN, CITATION, MCNP and KENO. The TGBLA code is a fuel design code for LWR fuels developed in TOSHIBA Corporation. The code takes operational history such as, power density, void fraction into account. This code is applied to the back-end issues for a more accurate design of a storage and a transportation system. The ORIGEN code is well-known one-point isotope depletion code. In the calculation system, the code calculates isotope compositions using libraries generated from the TGBLA code. The CITATION code, the MCNP code, and the KENO code are three dimensional diffusion code, continuous energy Monte Carlo code, discrete energy Monte Carlo code, respectively. Those codes calculate k- effective of the storage and transportation systems using isotope compositions generated from the ORIGEN code. The CITATION code and the KENO code are usually used for practical designs. The MCNP code is used for reference

  1. Burnup effects of MOX fuel pincells in PWR - OECD/NEA burnup credit benchmark analysis -

    International Nuclear Information System (INIS)

    The burnup effects were analyzed for various cases of MOX fuel pincells of fresh and irradiated fuels by using the HELIOS, MCNP-4/B, CRX and CDP computer codes. The investigated parameters were burnup, cooling time and combinations of nuclides in the fuel region. The fuel compositions for each case were provided by BNFL (British Nuclear Fuel Limited) as a part of the problem specification so that the results could be focused on the calculation of the neutron multiplication factor. The results of the analysis show that the largest saving effect of the neutron multiplication factor due to burnup credit is 30 %. This is mainly due to the consideration of actinides and fission products in the criticality analysis

  2. Development of advanced cladding material for burnup extension

    International Nuclear Information System (INIS)

    The development of new cladding materials is one of the critical issues on burnup extension. The practical life of Zircaloy would be limited by the growth of oxide films and by the ductility loss due to hydride precipitation, oxygen absorption and radiation damage. In the case of high burnup using MOX fuels, the low neutron adsorption cross section of Zircaloy is not a dominant factor for selecting the cladding material, because MOX fuels can be enriched up to 20%Pu. Austenitic stainless steel, titanium alloy, niobium alloy, ferritic steel and nickel base superalloy are considered as candidate materials. The corrosion resistance, mechanical properties and the irradiation resistance of these materials were examined for evaluating the practical possibility as a cladding material. The austenitic stainless steel with high g phase stability was selected as the primary candidate material. However, it is required to improve the resistance to irradiation associated stress corrosion cracking through the experience in LWR plants. In the JAERI, the austenitic stainless steel with intergranular corrosion resistance has been developed by the adjustment of the chemical composition, the modification of the metallographic structure by thermo-mechanical treatment and the purification by electron beam melting. (author)

  3. Revised Burnup Code System SWAT: Description and Validation Using Postirradiation Examination Data

    International Nuclear Information System (INIS)

    The burnup code system Step-Wise Burnup Analysis Code System (SWAT) is revised for use in a burnup credit analysis. An important feature of the revised SWAT is that its functions are achieved by calling validated neutronics codes without any changes to the original codes. This feature is realized with a system function of the operating system, which allows the revised SWAT to be independent of the development status of each code.A package of the revised SWAT contains the latest libraries based on JENDL-3.2 and the second version of the JNDC FP library. These libraries allow us to analyze burnup problems, such as an analysis of postirradiation examination (PIE), using the latest evaluated data of not only cross sections but also fission yield and decay constants.Another function of the revised SWAT is a library generator for the ORIGEN2 code, which is one of the most reliable burnup codes. ORIGEN2 users can obtain almost the same results with the revised SWAT using the library prepared by this function.The validation of the revised SWAT is conducted by calculation of the Organization for Economic Cooperation and Development/Nuclear Energy Agency burnup credit criticality safety benchmark Phase I-B and analyses of PIE data for spent fuel from Takahama Unit 3. The analysis of PIE data shows that the revised SWAT can predict the isotopic composition of main uranium and plutonium with a deviation of 5% from experimental results taken from UO2 fuels of 17 x 17 fuel assemblies. Many results of fission products including samarium are within a deviation of 10%. This means that the revised SWAT has high reliability to predict the isotopic composition for pressurized water reactor spent fuel

  4. Review of Halden Reactor Project high burnup fuel data that can be used in safety analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wiesenack, W. [OECD Halden Reactor Project (Norway)

    1996-03-01

    The fuels and materials testing programmes carried out at the OECD Halden Reactor Project are aimed at providing data in support of a mechanistic understanding of phenomena, especially as related to high burnup fuel. The investigations are focused on identifying long term property changes, and irradiation techniques and instrumentation have been developed over the years which enable to assess fuel behaviour and properties in-pile. The fuel-cladding gap has an influence on both thermal and mechanical behaviour. Improved gap conductance due to gap closure at high exposure is observed even in the case of a strong contamination with released fission gas. On the other hand, pellet-cladding mechanical interaction, which is measured with cladding elongation detectors and diameter gauges, is re-established after a phase with less interaction and is increasing. These developments are exemplified with data showing changes of fuel temperature, hydraulic diameter and cladding elongation with burnup. Fuel swelling and cladding primary and secondary creep have been successfully measured in-pile. They provide data for, e.g., the possible cladding lift-off to be accounted for at high burnup. Fuel conductivity degradation is observed as a gradual temperature increase with burnup. This affects stored heat, fission gas release and temperature dependent fuel behaviour in general. The Halden Project`s data base on fission gas release shows that the phenomenon is associated with an accumulation of gas atoms at the grain boundaries to a critical concentration before appreciable release occurs. This is accompanied by an increase of the surface-to-volume ratio measured in-pile in gas flow experiments. A typical observation at high burnup is also that a burst release of fission gas may occur during a power decrease. Gas flow and pressure equilibration experiments have shown that axial communication is severely restricted at high burnup.

  5. Preliminary neutronic design of high burnup OTTO cycle pebble bed reactor

    International Nuclear Information System (INIS)

    The pebble bed type High Temperature Gas-cooled Reactor (HTGR) is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR) which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO) cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor design in general, is improving the nuclear fuel utilization which is shown by attaining a higher burnup value. This study performed a preliminary neutronic design study of a 200 MWt OTTO cycle PBR with high burnup while fulfilling the safety criteria of the PBR design.The safety criteria of the design was represented by the per-fuel-pebble maximum power generation of 4.5 kW/pebble. The maximum burnup value was also limited by the tested maximum burnup value which maintained the integrity of the pebble fuel. Parametric surveys were performed to obtain the optimized parameters used in this study, which are the fuel enrichment, per-pebble heavy metal (HM) loading, and the average axial speed of the fuel. An optimum design with burnup value of 131.1 MWd/Kg-HM was achieved in this study which is much higher compare to the burnup of the reference design HTR-MODUL and a previously proposed OTTO-cycle PBR design. This optimum design uses 17% U-235 enrichment with 4 g HM-loading per fuel pebble. (author)

  6. Preliminary Neutronic Design of High Burnup OTTO Cycle Pebble Bed Reactor

    Directory of Open Access Journals (Sweden)

    T. Setiadipura

    2015-04-01

    Full Text Available The pebble bed type High Temperature Gas-cooled Reactor (HTGR is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor design in general, is improving the nuclear fuel utilization which is shown by attaining a higher burnup value. This study performed a preliminary neutronic design study of a 200 MWt OTTO cycle PBR with high burnup while fulfilling the safety criteria of the PBR design.The safety criteria of the design was represented by the per-fuel-pebble maximum power generation of 4.5 kW/pebble. The maximum burnup value was also limited by the tested maximum burnup value which maintained the integrity of the pebble fuel. Parametric surveys were performed to obtain the optimized parameters used in this study, which are the fuel enrichment, per-pebble heavy metal (HM loading, and the average axial speed of the fuel. An optimum design with burnup value of 131.1 MWd/Kg-HM was achieved in this study which is much higher compare to the burnup of the reference design HTR-MODUL and a previously proposed OTTO-cycle PBR design. This optimum design uses 17% U-235 enrichment with 4 g HM-loading per fuel pebble

  7. The US department of energy's transportation burnup credit program

    International Nuclear Information System (INIS)

    Aspects of the U. S. Department of Energy's (DOE's) transportation burnup credit program, the Department's motivation for conducting the program, and the status of burnup credit activities are presented. The benefits, technical, and regulatory considerations associated with using burnup credit for transport of irradiated nuclear fuel are discussed. The methods used in the DOE's actinide-only topical report are described in terms of the technical and regulatory issues. (authors)

  8. Application of Genetic Algorithm methodologies in fuel bundle burnup optimization of Pressurized Heavy Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jayalal, M.L., E-mail: jayalal@igcar.gov.in [Electronics, Instrumentation and Radiological Safety Group (EIRSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India); Ramachandran, Suja [Electronics, Instrumentation and Radiological Safety Group (EIRSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India); Rathakrishnan, S. [Reactor Physics Section, Madras Atomic Power Station (MAPS), Kalpakkam, Tamil Nadu (India); Satya Murty, S.A.V. [Electronics, Instrumentation and Radiological Safety Group (EIRSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India); Sai Baba, M. [Resources Management Group (RMG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India)

    2015-01-15

    Highlights: • We study and compare Genetic Algorithms (GA) in the fuel bundle burnup optimization of an Indian Pressurized Heavy Water Reactor (PHWR) of 220 MWe. • Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are considered. • For the selected problem, Multi Objective GA performs better than Penalty Functions based GA. • In the present study, Multi Objective GA outperforms Penalty Functions based GA in convergence speed and better diversity in solutions. - Abstract: The work carried out as a part of application and comparison of GA techniques in nuclear reactor environment is presented in the study. The nuclear fuel management optimization problem selected for the study aims at arriving appropriate reference discharge burnup values for the two burnup zones of 220 MWe Pressurized Heavy Water Reactor (PHWR) core. Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are applied in this study. The study reveals, for the selected problem of PHWR fuel bundle burnup optimization, Multi Objective GA is more suitable than Penalty Functions based GA in the two aspects considered: by way of producing diverse feasible solutions and the convergence speed being better, i.e. it is capable of generating more number of feasible solutions, from earlier generations. It is observed that for the selected problem, the Multi Objective GA is 25.0% faster than Penalty Functions based GA with respect to CPU time, for generating 80% of the population with feasible solutions. When average computational time of fixed generations are considered, Penalty Functions based GA is 44.5% faster than Multi Objective GA. In the overall performance, the convergence speed of Multi Objective GA surpasses the computational time advantage of Penalty Functions based GA. The ability of Multi Objective GA in producing more diverse feasible solutions is a desired feature of the problem selected, that helps the

  9. Application of Genetic Algorithm methodologies in fuel bundle burnup optimization of Pressurized Heavy Water Reactor

    International Nuclear Information System (INIS)

    Highlights: • We study and compare Genetic Algorithms (GA) in the fuel bundle burnup optimization of an Indian Pressurized Heavy Water Reactor (PHWR) of 220 MWe. • Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are considered. • For the selected problem, Multi Objective GA performs better than Penalty Functions based GA. • In the present study, Multi Objective GA outperforms Penalty Functions based GA in convergence speed and better diversity in solutions. - Abstract: The work carried out as a part of application and comparison of GA techniques in nuclear reactor environment is presented in the study. The nuclear fuel management optimization problem selected for the study aims at arriving appropriate reference discharge burnup values for the two burnup zones of 220 MWe Pressurized Heavy Water Reactor (PHWR) core. Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are applied in this study. The study reveals, for the selected problem of PHWR fuel bundle burnup optimization, Multi Objective GA is more suitable than Penalty Functions based GA in the two aspects considered: by way of producing diverse feasible solutions and the convergence speed being better, i.e. it is capable of generating more number of feasible solutions, from earlier generations. It is observed that for the selected problem, the Multi Objective GA is 25.0% faster than Penalty Functions based GA with respect to CPU time, for generating 80% of the population with feasible solutions. When average computational time of fixed generations are considered, Penalty Functions based GA is 44.5% faster than Multi Objective GA. In the overall performance, the convergence speed of Multi Objective GA surpasses the computational time advantage of Penalty Functions based GA. The ability of Multi Objective GA in producing more diverse feasible solutions is a desired feature of the problem selected, that helps the

  10. Core burnup characteristics of high conversion light water reactor, (1)

    International Nuclear Information System (INIS)

    In order to evaluate core burnup characteristics of a high conversion light water reactor (HCLWR) with tight pitched lattice, core burnup calculation was made using two dimensional diffusion method. The volume ratio of moderator to fuel is about 0.8 in the reactor (HCLWR-J1) under study. The burnup calculations were carried out under the assumption of three batch and out-in fuel loading from the first cycle to the equilibrium cycle. A detailed evaluation was made for discharge burnup, conversion ratio, power distribution, and reactivity coefficients and so on. (author)

  11. Burnup measurements of leader fuel elements

    International Nuclear Information System (INIS)

    Some time ago the CCHEN authorities decided to produce a set of 50 low enrichment fuel elements. These elements were produced in the PEC (Fuel Elements Plant), located at CCHEN offices in Lo Aguirre. These new fuel elements have basically the same geometrical characteristics of previous ones, which were British and made with raw material from the U.S. The principal differences between our fuel elements and the British ones is the density of fissile material, U-235, which was increased to compensate the reduction in enrichment. Last year, the Fuel Elements Plant (PEC) delivered the shipment's first four (4) fuel elements, called leaders, to the RECH1. A test element was delivered too, and the complete set was introduced into the reactor's nucleus, following the normal routine, but performing a special follow-up on their behavior inside the nucleus. This experimental element has only one outside fuel plate, and the remaining (15) structural plates are aluminum. In order to study the burnup, the test element was taken out of the nucleus, in mid- November 1999, and left to decay until June 2000, when it was moved to the laboratory (High Activity Cell), to start the burnup measurements, with a gamma spectroscopy system. This work aims to show the results of these measurements and in addition to meet the following objectives: (a) Visual test of the plate's general condition; (b) Sipping test of fission products; (c) Study of burn-up distribution in the plate; (d) Check and improve the calculus algorithm; (e) Comparison of the results obtained from the spectroscopy with the ones from neutron calculus

  12. High Burnup Fuel Performance and Safety Research

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Je Keun; Lee, Chan Bok; Kim, Dae Ho (and others)

    2007-03-15

    The worldwide trend of nuclear fuel development is to develop a high burnup and high performance nuclear fuel with high economies and safety. Because the fuel performance evaluation code, INFRA, has a patent, and the superiority for prediction of fuel performance was proven through the IAEA CRP FUMEX-II program, the INFRA code can be utilized with commercial purpose in the industry. The INFRA code was provided and utilized usefully in the universities and relevant institutes domesticallly and it has been used as a reference code in the industry for the development of the intrinsic fuel rod design code.

  13. Fuel and fuel cycles with high burnup for WWER reactors

    International Nuclear Information System (INIS)

    The paper discusses the status and trends in development of nuclear fuel and fuel cycles for WWER reactors. Parameters and main stages of implementation of new fuel cycles will be presented. At present, these new fuel cycles are offered to NPPs. Development of new fuel and fuel cycles based on the following principles: profiling fuel enrichment in a cross section of fuel assemblies; increase of average fuel enrichment in fuel assemblies; use of refuelling schemes with lower neutron leakage ('in-in-out'); use of integrated fuel gadolinium-based burnable absorber (for a five-year fuel cycle); increase of fuel burnup in fuel assemblies; improving the neutron balance by using structural materials with low neutron absorption; use of zirconium alloy claddings which are highly resistant to irradiation and corrosion. The paper also presents the results of fuel operation. (author)

  14. Evaluation of burnup credit for accommodating PWR spent nuclear fuel in high-capacity cask designs

    International Nuclear Information System (INIS)

    This paper presents an evaluation of the amount of burnup credit needed for high-density casks to transport the current U.S. inventory of commercial spent nuclear fuel (SNF) assemblies. A prototypic 32-assembly cask and the current regulatory guidance were used as bases for this evaluation. By comparing actual pressurized-water-reactor (PWR) discharge data (i.e., fuel burnup and initial enrichment specifications for fuel assemblies discharged from U.S. PWRs) with actinide-only-based loading curves, this evaluation finds that additional negative reactivity (through either increased credit for fuel burnup or cask design/utilization modifications) is necessary to accommodate the majority of SNF assemblies in high-capacity storage and transportation casks. The impact of varying selected calculational assumptions is also investigated, and considerable improvement in effectiveness is shown with the inclusion of the principal fission products (FPs) and minor actinides and the use of a bounding best-estimate approach for isotopic validation. Given sufficient data for validation, the most significant component that would improve accuracy, and subsequently enhance the utilization of burnup credit, is the inclusion of FPs. (author)

  15. Mechanical Fatigue Testing of High Burnup Fuel for Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-05-01

    This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using a set up with three linear variable differential transformers (LVDTs).

  16. Solvent extraction studies with high-burnup Fast Flux Test Facility fuel in the Solvent Extraction Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Benker, D.E.; Bigelow, J.E.; Bond, W.D.; Chattin, F.R.; King, L.J.; Kitts, F.G.; Ross, R.G.; Stacy, R.G.

    1986-10-01

    A batch of high-burnup fuel from the Fast Flux Test Facility (FFTF) was processed in the Solvent Extraction Test Facility (SETF) during Campaign 9. The fuel had a burnup of {similar_to}0 MWd/kg and a cooling time of {similar_to} year. Two runs were made with this fuel; in the first, the solvent contained 30% tri-n-butyl phosphate (TBP) and partitioning of the uranium and plutonium was effected by reducing the plutonium with hydroxylamine nitrate (HAN); in the second, the solvent contained 10% TBP and a low operating temperature was used in an attempt to partition without reducing the plutonium valence. The plutonium reoxidation problem, which was present in previous runs that used HAN, may have been solved by lowering the temperature and acidity in the partition contactor. An automatic control system was used to maintain high loadings of heavy metals in the coextraction-coscrub contactor in order to increase its efficiency while maintaining low losses of uranium and plutonium to the aqueous raffinate. An in-line photometer system was used to measure the plutonium concentration in an intermediate extraction stage; and based on this data, a computer algorithm determined the appropriate adjustments in the addition rate of the extractant. The control system was successfully demonstrated in a preliminary run with purified uranium. However, a variety of equipment and start up problems prevented an extended demonstration from being accomplished during the runs with the FFTF fuel.

  17. Power ramped cladding stresses and strains in 3D simulations with burnup-dependent pellet–clad friction

    International Nuclear Information System (INIS)

    Highlights: ► This paper presents 2D plane strain and 3D simulations of pellet–cladding interaction during base irradiation and ramp tests. ► Inverse analysis is used to estimate the evolution of friction at the pellet–clad interface with burnup. ► The number of radial cracks that form in ramped rodlets is the main parameter on which inverse analysis is based. ► Calculations show that the sole evolution of the friction coefficient with burnup is sufficient to capture the radial crack pattern. ► A simple relation between the friction coefficient and the burnup is thus proposed and used in 3D simulations of PCI. - Abstract: This paper presents 2D(r, θ) plane strain and 3D simulations of PCI during base irradiation and ramp tests. Inverse analysis is used to estimate the evolution of friction at the pellet–clad interface with burnup. The number of radial cracks that form during power ramp tests in seventeen UO2-Zy4 rodlets with burnups in the range 20–60 GWd/tU is the main parameter on which inverse analysis is based. It is shown that the sole evolution of the friction coefficient with burnup is sufficient to capture the radial crack pattern of the rodlets after power ramping. A simple relation between the friction coefficient and the burnup variation after initial pellet–clad contact is thus proposed and used in 3D simulations of PCI. The delayed gap closing at mid-pellet level with respect to inter-pellet level leads to an axial variation of the friction coefficient, with maximum values near the pellet ends. The consequences in terms of PCI failure propensity are then discussed.

  18. Study on the criticality safety evaluation method for burnup credit in JAERI

    International Nuclear Information System (INIS)

    In relation to burnup credit, three tasks have been carried out at the Japan Atomic Energy Research Institute (JAERI) for establishing the evaluation method of criticality safety for a spent-fuel system, such as storage age ponds and transport casks. The first task is to prepare a benchmark database of criticality experiments and nuclide compositions of spent fuels. The database of nuclide composition is formed by data treasured at JAERI and data collected from the literature. For the database of criticality experiments, the effective multiplication factor of a spent-fuel assembly has been measured at JAERI and data collected from the literature. For the database of criticality experiments, the effective multiplication factor of a spent-fuel assembly has been measured at JAERI. The next task is to develop computer codes. The burnup and criticality codes have been developed and validated by analyzing a large number of benchmarks stored in the aforementioned database. The last task needed to establish the methodology in order to confirm the subcriticality of a spent-fuel system applying burnup credit is described. A reference fuel assembly is introduced so that the criticality of a system can be evaluated by using it, instead of modeling all fuel assemblies explicitly. To determine the nuclide composition of a spent fuel, a simple method is studied utilizing a large number of nuclide composition data stored in the database. Further, the effects of the axial burnup profile and calculation errors are discussed, and the remaining tasks are identified

  19. Validation of a new continuous Monte Carlo burnup code using a Mox fuel assembly

    International Nuclear Information System (INIS)

    The reactivity of nuclear fuel decreases with irradiation (or burnup) due to the transformation of heavy nuclides and the formation of fission products. Burnup credit studies aim at accounting for fuel irradiation in criticality studies of the nuclear fuel cycle (transport, storage, etc...). The principal objective of this study is to evaluate the potential capabilities of a newly developed burnup code called 'BUCAL1'. BUCAL1 differs in comparison with other burnup codes as it does not use the calculated neutron flux as input to other computer codes to generate the nuclide inventory for the next time step. Instead, BUCAL1 directly uses the neutron reaction tally information generated by MCNP for each nuclide of interest to determine the new nuclides inventory. This allows the full capabilities of MCNP to be incorporated into the calculation and a more accurate and robust analysis to be performed. Validation of BUCAL1 was processed by code-to-code comparisons using predictions of several codes from the NEA/OCED. Infinite multiplication factors (k∞) and important fission product and actinide concentrations were compared for a MOX core benchmark exercise. Results of calculations are analysed and discussed.

  20. Impact of High Burnup Uranium Oxide and Mixed Uranium-Plutonium Oxide Water Reactor Fuel on Spent Fuel Management

    International Nuclear Information System (INIS)

    There is increasing worldwide use of uranium oxide (UOX) nuclear fuel with higher enrichments and burnups as the reliability of UOX fuel increases and the economics of moving to higher burnup fuel improves. Burnup extension affects all important stages of the nuclear fuel cycle and thus concerns the entire nuclear industry. There are many aspects of switching to higher burnup UOX or MOX fuels, such as reliability, safety, and economics, that decision makers need to take into account. The potential physical changes to the fuel rods and assemblies will affect the operation of the components of the back end of the fuel cycle. The objective of this report is to provide information on the impacts on spent fuel management to those countries operating LWRs and HWRs with zirconium alloy clad UOX fuels who are considering the use of higher burnup UOX or the introduction of reprocessing and MOX fuels. The mechanical designs of lower burnup UOX and higher burnup UOX or MOX fuel are very similar, but some of the properties of higher burnup UOX and MOX are potentially significant. Examples of the differences in properties between lower burnup UOX and higher burnup UOX and MOX include: higher fuel rod internal pressures; higher decay heat; higher specific activity; and degraded cladding mechanical properties. Higher burnup UOX or MOX usage affects all spent fuel management components, such as wet and dry storage, transportation, reprocessing, re-fabricated fuel and final disposal. This report briefly reviews the current fuel characteristics of UOX and MOX and the potential for characteristic changes with increased burnup. In addition, the components of the back end of the fuel cycle are discussed. Evaluation of these effects on the back end of the fuel cycle was based on the particular fuel behaviour, regulatory, safety, sustainability, or operational issues that might be impacted by the increased burnup or switch to MOX. Other than a brief mention, an economic evaluation of the

  1. Power excursion analysis for high burnup cores

    International Nuclear Information System (INIS)

    A study was undertaken of power excursions in high burnup cores. There were three objectives in this study. One was to identify boiling water reactor (BWR) and pressurized water reactor (PWR) transients in which there is significant energy deposition in the fuel. Another was to analyze the response of BWRs to the rod drop accident (RDA) and other transients in which there is a power excursion. The last objective was to investigate the sources of uncertainty in the RDA analysis. In a boiling water reactor, the events identified as having significant energy deposition in the fuel were a rod drop accident, a recirculation flow control failure, and the overpressure events; in a pressurized water reactor, they were a rod ejection accident and boron dilution events. The RDA analysis was done with RAMONA-4B, a computer code that models the space- dependent neutron kinetics throughout the core along with the thermal hydraulics in the core, vessel, and steamline. The results showed that the calculated maximum fuel enthalpy in high burnup fuel will be affected by core design, initial conditions, and modeling assumptions. The important uncertainties in each of these categories are discussed in the report

  2. BURNCAL: A Nuclear Reactor Burnup Code Using MCNP Tallies

    International Nuclear Information System (INIS)

    BURNCAL is a Fortran computer code designed to aid in analysis, prediction, and optimization of fuel burnup performance in a nuclear reactor. The code uses output parameters generated by the Monte Carlo neutronics code MCNP to determine the isotopic inventory as a function of time and power density. The code allows for multiple fueled regions to be analyzed. The companion code, RELOAD, can be used to shuffle fueled regions or reload regions with fresh fuel. BURNCAL can be used to study the reactivity effects and isotopic inventory as a function of time for a nuclear reactor system. Neutron transmutation, fission, and radioactive decay are included in the modeling of the production and removal terms for each isotope of interest. For a fueled region, neutron transmutation, fuel depletion, fission-product poisoning, actinide generation, and burnable poison loading and depletion effects are included in the calculation. Fueled and un-fueled regions, such as cladding and moderator, can be analyzed simultaneously. The nuclides analyzed are limited only by the neutron cross section availability in the MCNP cross-section library. BURNCAL is unique in comparison to other burnup codes in that it does not use the calculated neutron flux as input to other computer codes to generate the nuclide mixture for the next time step. Instead, BURNCAL directly uses the neutron absorption tally/reaction information generated by MCNP for each nuclide of interest to determine the nuclide inventory for that region. This allows for the full capabilities of MCNP to be incorporated into the calculation and a more accurate and robust analysis to be performed

  3. Revised SWAT. The integrated burnup calculation code system

    International Nuclear Information System (INIS)

    SWAT is an integrated burnup code system developed for analysis of post irradiation examination, transmutation of radioactive waste, and burnup credit problem. This report shows an outline and a user's manual of revised SWAT. This revised SWAT includes expansion of functions, increasing supported machines, and correction of several bugs reported from users of previous SWAT. (author)

  4. Revised SWAT. The integrated burnup calculation code system

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya; Mochizuki, Hiroki [Department of Fuel Cycle Safety Research, Nuclear Safety Research Center, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Kiyosumi, Takehide [The Japan Research Institute, Ltd., Tokyo (Japan)

    2000-07-01

    SWAT is an integrated burnup code system developed for analysis of post irradiation examination, transmutation of radioactive waste, and burnup credit problem. This report shows an outline and a user's manual of revised SWAT. This revised SWAT includes expansion of functions, increasing supported machines, and correction of several bugs reported from users of previous SWAT. (author)

  5. Effects of high burnup on spent-fuel casks

    International Nuclear Information System (INIS)

    Utility fuel managers have become very interested in higher burnup fuels as a means to reduce the impact of refueling outages. High-burnup fuels have significant effects on spent-fuel storage or transportation casks because additional heat rejection and shielding capabilities are required. Some existing transportation casks have useful margins that allow shipment of high-burnup fuel, especially the NLI-1/2 truck cask, which has been relicensed to carry pressurized water reactor (PWR) fuel with 56,000 MWd/ton U burnup at 450 days of cooling time. New cask designs should consider the effects of high burnup for future use, even though it is not commercially desirable to include currently unneeded capability. In conclusion, the increased heat and gamma radiation of high-burnup fuels can be accommodated by additional cooling time, but the increased neutron radiation source cannot be accommodated unless the balance of neutron and gamma contributions to the overall dose rate is properly chosen in the initial cask design. Criticality control of high-burnup fuels is possible with heavily poisoned baskets, but burnup credit in licensing is a much more direct means of demonstrating criticality safety

  6. Implementation of burnup credit in PWR spent fuel storage pools

    International Nuclear Information System (INIS)

    Implementation of burnup credit in spent fuel storage of LWR fuel at nuclear power plants is approved in Germany since the beginning of 2000. The burnup credit methods applied have to comply with the newly developed German criticality safety standard DIN 25471 passed in November 1999 and published in September 2000, cp. (orig.)

  7. Method of compensating distribution of reactor burnup degree

    International Nuclear Information System (INIS)

    An object of the present invention is to attain an appropriate power distribution and a burnup degree distribution during an operation cycle, thereby improving the succeeding operation cycle in a BWR type reactor. That is, a deviation between a distribution of an actual axial burnup degree and that of an aimed axial burnup degree in a reactor core is measured upon completion of the operation cycle by using a burnup degree distribution measuring device. Then, the content of burnable poisons in fresh fuels to be charged to the reactor core is controlled in accordance with the deviation, to compensate the distribution of the axial burnup degree in the reactor core in the next operation cycle. Accordingly, the distribution of the axial burnup degree in the reactor core can be made closer to the aimed distribution of the burnup degree in the next operation cycle. Further, appropriate power distribution and a burnup degree distribution can be obtained by improving the axial power distribution in the reactor core with the characteristics of the fresh fuels themselves to be loaded, without depending only on changes of a control rod pattern. Accordingly, fuel economy and operation performance can be improved. (I.S.)

  8. Parametric Study of the Effect of Burnable Poison Rods for PWR Burnup Credit

    International Nuclear Information System (INIS)

    The Interim Staff Guidance on burnup credit (ISG-8) issued by the United States (U.S.) Nuclear Regulatory Commission's (NRC) Spent Fuel Project Office recommends restricting the use of burnup credit to assemblies that have not used burnable absorbers. This recommended restriction eliminates a large portion of the currently discharged spent fuel assemblies from cask loading, and thus severely limits the practical usefulness of burnup credit. In the absence of readily available information on burnable poison rod (BPR) design specifications and usage in U.S. pressurized water reactors (PWRs), and the subsequent reactivity effect of BPR exposure on discharged spent nuclear fuel (SNF), NRC staff has indicated a need for additional information in these areas. In response, this report presents a parametric study of the effect of BPR exposure on the reactivity of SNF for various BPR designs, fuel enrichments, and exposure conditions, and documents BPR design specifications. Trends in the reactivity effects of BPRs are established with infinite pin-cell and assembly array calculations with the SCALE and HELIOS code packages, respectively. Subsequently, the reactivity effects of BPRs for typical initial enrichment and burnup combinations are quantified based on three-dimensional (3-D) KENO V.a Monte Carlo calculations with a realistic rail-type cask designed for burnup credit. The calculations demonstrate that the positive reactivity effect due to BPR exposure increases nearly linearly with burnup and is dependent on the number, poison loading, and design of the BPRs and the initial fuel enrichment. Expected typical reactivity increases, based on one-cycle BPR exposure, were found to be less than 1% Δk. Based on the presented analysis, guidance is offered on an appropriate approach for calculating bounding SNF isotopic data for assemblies exposed to BPRs. Although the analyses do not address the issue of validation of depletion methods for assembly designs with BPRs, they

  9. Parametric Study of the Effect of Burnable Poison Rods for PWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.C.

    2001-09-28

    The Interim Staff Guidance on burnup credit (ISG-8) issued by the United States Nuclear Regulatory Commission's (U.S. NRC) Spent Fuel Project Office recommends restricting the use of burnup credit to assemblies that have not used burnable absorbers. This recommended restriction eliminates a large portion of the currently discharged spent fuel assemblies from cask loading, and thus severely limits the practical usefulness of burnup credit. In the absence of readily available information on burnable poison rod (BPR) design specifications and usage in U.S. pressurized-water-reactors (PWRs), and the subsequent reactivity effect of BPR exposure on discharged spent nuclear fuel (SNF), NRC staff has indicated a need for additional information in these areas. In response, this report presents a parametric study of the effect of BPR exposure on the reactivity of SNF for various BPR designs, fuel enrichments, and exposure conditions, and documents BPR design specifications. Trends in the reactivity effects of BPRs are established with infinite pin-cell and assembly array calculations with the SCALE and HELIOS code packages, respectively. Subsequently, the reactivity effects of BPRs for typical initial enrichment and burnup combinations are quantified based on three-dimensional (3-D) KENO V.a Monte Carlo calculations with a realistic rail-type cask designed for burnup credit. The calculations demonstrate that the positive reactivity effect due to BPR exposure increases nearly linearly with burnup and is dependent on the number, poison loading, and design of the BPRs and the initial fuel enrichment. Expected typical reactivity increases, based on one-cycle BPR exposure, were found to be less than 1% {Delta}k. Based on the presented analysis, guidance is offered on an appropriate approach for calculating bounding SNF isotopic data for assemblies exposed to BPRs. Although the analyses do not address the issue of validation of depletion methods for assembly designs with BPRs

  10. Finnish contribution to the CB4 burnup credit benchmark

    International Nuclear Information System (INIS)

    The CB4 phase of the WWER burnup credit benchmark series studies the effect of flat and realistic axial burnup profiles on the multiplication factor of a conceptual WWER cask loaded with spent fuel. The benchmark was calculated at VTT Energy with MCNP4C, using mainly ENDF/B-V1 cross sections. According to the calculation results the effect of the axial homogenization on the keff estimate is complex. At low burnups the use of a axial profile overestimates keff but at high burnups the reverse is the case. Ignoring fission products leads to conservative keff and the effect of axial homogenization on the multiplication factor is similar to a reduction of the burnup (Authors)

  11. Probabilistic assessment of dry transport with burnup credit

    International Nuclear Information System (INIS)

    The general concept of probabilistic analysis and its application to the use of burnup credit in spent fuel transport is explored. Discussion of the probabilistic analysis method is presented. The concepts of risk and its perception are introduced, and models are suggested for performing probability and risk estimates. The general probabilistic models are used for evaluating the application of burnup credit for dry spent nuclear fuel transport. Two basic cases are considered. The first addresses the question of the relative likelihood of exceeding an established criticality safety limit with and without burnup credit. The second examines the effect of using burnup credit on the overall risk for dry spent fuel transport. Using reasoned arguments and related failure probability and consequence data analysis is performed to estimate the risks of using burnup credit for dry transport of spent nuclear fuel. (author)

  12. Lipase Based Biosensors for Triglyceride Determination

    OpenAIRE

    Rosli Nurul Huwaida; Mohd Zain Zainiharyati; Ahmad Nor Monica

    2016-01-01

    A review of methods development in lipase based biosensor for triglyceride determination was briefly discussed. This review focuses on the basic principle of triglyceride biosensor that includes performances of triglyceride biosensor such as limit of detection, response time, and optimization.

  13. Burnup calculation capability in the PSG2 / Serpent Monte Carlo reactor physics code

    International Nuclear Information System (INIS)

    The PSG continuous-energy Monte Carlo reactor physics code has been developed at VTT Technical Research Centre of Finland since 2004. The code is mainly intended for group constant generation for coupled reactor simulator calculations and other tasks traditionally handled using deterministic lattices physics codes. The name was recently changed from acronym PSG to 'Serpent', and the capabilities have been extended by implementing built-in burnup calculation routines that enable the code to be used for fuel cycle studies and the modelling of irradiated fuels. This paper presents the methodology used for burnup calculation. Serpent has two fundamentally different options for solving the Bateman depletion equations: 1) the Transmutation Trajectory Analysis method (TTA), based on the analytical solution of linearized depletion chains and 2) the Chebyshev Rational Approximation Method (CRAM), an advanced matrix exponential solution developed at VTT. The first validation results are compared to deterministic CASMO-4E calculations. It is also shown that the overall running time in Monte Carlo burnup calculation can be significantly reduced using specialized calculation techniques, and that the continuous-energy Monte Carlo method is becoming a viable alternative to deterministic assembly burnup codes. (authors)

  14. Analysis of bubble pressure in the rim region of high burnup PWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Yang Hyun; Lee, Byung Ho; Sohn, Dong Seong [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-02-01

    Bubble pressure in the rim region of high burnup PWR UO{sub 2} fuel has been modeled based on measured rim width, porosity and bubble density. Using the assumption that excessive bubble pressure in the rim is inversely proportional to its radius, proportionality constant is derived as a function of average pellet burnup and bubble radius. This approach is possible because the integration of the number of Xe atoms retained in the rim bubbles, which can be calculated as a function of bubble radius, over the bubble radius gives the total number of Xe atoms in the rim bubbles. Here the total number of Xe atoms in the rim bubbles can be derived from the measured Xe depletion fraction in the matrix and the calculated rim thickness. Then the rim bubble pressure is obtained as a function of fuel burnup and bubble size from the proportionality constant. Therefore, the present model can provide some useful information that would be required to analyze the behavior of high burnup PWR UO{sub 2} fuel under both normal and transient operating conditions. 28 refs., 9 figs. (Author)

  15. Spent fuel pool storage calculations using the ISOCRIT burnup credit tool

    International Nuclear Information System (INIS)

    Highlights: ► Depletion isotopics are needed for burnup credit in spent fuel pool analyses. ► We developed ISOCRIT to generate the isotopics using conservative depletion assumptions. ► ISOCRIT works in an automated fashion passing data between lattice physics and 3D Monte Carlo codes. ► Analyses to assess the impact of different depletion parameters on the reactivity of the spent fuel in pool conditions. - Abstract: In order to conservatively apply burnup credit in spent fuel pool criticality safety analyses, Westinghouse has developed a software tool, ISOCRIT, for generating depletion isotopics. This tool is used to create isotopics data based on specific reactor input parameters, such as design basis assembly type; bounding power/burnup profiles; reactor specific moderator temperature profiles; pellet percent theoretical density; burnable absorbers, axial blanket regions, and bounding ppm boron concentration. ISOCRIT generates burnup dependent isotopics using PARAGON; Westinghouse’s state-of-the-art and licensed lattice physics code. Generation of isotopics and passing the data to the subsequent 3D KENO calculations are performed in an automated fashion, thus reducing the chance for human error. Furthermore, ISOCRIT provides the means for responding to any customer request regarding re-analysis due to changed parameters (e.g., power uprate, exit temperature changes, etc.) with a quick turnaround.

  16. Actinide-only burnup credit methodology for PWR spent nuclear fuel

    International Nuclear Information System (INIS)

    A conservative methodology is presented that would allow taking credit for burnup in the criticality safety analysis of spent nuclear fuel (SNF) packages. The method is based on the assumption that the isotopic concentration in the SNF and cross sections of each isotope for which credit is taken must be supported by validation experiments. The method allows credit for the changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps: 1. Validate a computer code system to calculate isotopic concentrations of spent nuclear fuel created during burnup in the reactor core and subsequent decay. 2. Validate a computer code system to predict the subcritical multiplication factor, keff, of a spent nuclear fuel package by use of UO2 and UO2/Puo2 critical experiments. 3. Establish conditions for the SNF (depletion analysis) and package (criticality analysis) which bounds keff. 4. Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). 5. Verify by measurement that SNF assemblies meet the package loading criteria and confirm proper assembly selection prior to loading. (author)

  17. Fuel burnup calculation for HEU and LEU cores of Ghana MNSR

    International Nuclear Information System (INIS)

    Fuel burnup calculations have been performed using a computer program developed as part of this research work for both Highly Enriched Uranium (90.2 % U-235) and Low Enriched Uranium (12.6 % U-235) cores for Ghana Research Reactor-1 (GHARR-1). Fuel depletion analyses of the GHARR-1 core was also performed which provided an inventory of the actinides formed as a result of burnup. The effect of the production of plutonium isotopes with burnup on reactor operation was also estimated. A FORTRAN 95 code was written based on the three group model approach namely fast, resonance and slow (thermal) neutron reactions. The time rate of change of each fuel isotope density is given by a first order differential equation. A general solution for each fuel isotope rate equation was used as input for the computer code. These results are particularized to the case of constant power during a short time interval, during which the slow (thermal) neutron flux is considered constant. The results obtained for the HEU were in good agreement with those found in literature. Therefore, this code can be used to estimate the burnup of LEU fuel for core conversion from HEU to LEU. (au)

  18. Overview of the burnup credit activities at OECD/NEA/NSC

    International Nuclear Information System (INIS)

    This article summarizes activities of the OECD/NEA Burnup Credit Expert Panel, a subordinate group to the Working Party on Nuclear Criticality Safety (WPNCS). The WPNCS of the OECD/NEA coordinates and carries out work in the domain of criticality safety at the international level. Particular attention is devoted to establishing sound databases required in this area and to addressing issues of high relevance such as burnup credit. The activities of the expert panel are aimed toward improving safety and identifying economic solutions to issues concerning the back-end of the fuel cycle. The main objective of the activities of the OECD/NEA Burnup Credit Expert Panel is to demonstrate that the available criticality safety calculational tools are appropriate for application to burned fuel systems and that a reasonable safety margin can be established. The method established by the expert panel for investigating the physics and predictability of burnup credit is based on the specification and comparison of calculational benchmark problems. A wide range of fuel types, including PWR, BWR, MOX, and VVER fuels, has been or are being addressed by the expert panel. The objective and status of each of these benchmark problems is reviewed in this article. It is important to note that the focus of the expert panel is the comparison of the results submitted by each participant to assess the capability of commonly used code systems, not to quantify the physical phenomena investigated in the comparisons or to make recommendations for licensing action. (author)

  19. Radiochemical analysis of nuclear fuel burn-up and spent fuel key nuclides

    International Nuclear Information System (INIS)

    Destructive radiochemical analysis of spent nuclear fuels is an important tool to determine burn-up with high accuracy and to better understand the process of depletion and formation of actinides and fission products during irradiation as a result of fission and successive neutron capture. The resulting isotope inventories and nuclear databases that are created, are of high importance to evaluate the performance of nuclear fuels in a reactor, to evaluate computer codes applied for a safe transport, storage and disposal/reprocessing of spent fuels and to safeguard fissile material. The objective is to provide chemical and radiochemical analyses procedures for an accurate determination of isotopic compositions and concentrations of actinides and fission products in different types of industrial (UO2, MOX) and experimental nuclear fuels (UAlx, U3Si2, UMo, ...). For a burn-up determination program typically 21 actinides and fission products are analyzed. For an extended characterization program this can increase to up to approximately 50 isotopes

  20. Analytical and numerical study of radiation effect up to high burnup in power reactor fuels

    International Nuclear Information System (INIS)

    In the present work the behavior of fuel pellets for power reactors in the high burnup range (average burnup higher than 50 MWd/kgHM) is analyzed. For extended irradiation periods, a considerable Pu concentration is reached in the pellet periphery (rim zone), that contributes to local burnup, as long as a new microstructure develops, characterized by small grains and large pores as compared with those of the original material. In this region Xe is absent from the solid lattice (although it continues to be dissolved in the rest of the pellet). The porous microstructure in the pellet edge causes local changes in the mechanical and thermal properties, thus affecting the overall fuel behaviour. The evolution of porosity in the high burnup structure (HBS) is assumed to be determinant of the retention capacity of the fission gases released by the matrix. This is the reason why, during the latest years a considerable effort has been devoted to characterizing the parameters that influence porosity. Starting from several works published in the open literature, a model was developed to describe the behaviour and evolution of porosity at local burnup values ranging from 60 to 300 MWd/KgHM. The model is mathematically expressed by a system of non-linear differential equations that take into account the open and closed porosity, the interactions between pores and the free surface and phenomena like pore's coalescence and migration and gas venting. Interactions of different orders between open and closed pores, growth of pores radius by vacancies trapping, the evolution of the pores number density, the internal pressure and over pressure within the pores, the fission gas retained in the matrix and released to the free volume are analyzed. The results of the simulations performed in the present work are in excellent agreement with experimental data available in the open literature and with results calculated by other authors (author)

  1. Benefits of the delta K of depletion benchmarks for burnup credit validation

    International Nuclear Information System (INIS)

    Pressurized Water Reactor (PWR) burnup credit validation is demonstrated using the benchmarks for quantifying fuel reactivity decrements, published as 'Benchmarks for Quantifying Fuel Reactivity Depletion Uncertainty,' EPRI Report 1022909 (August 2011). This demonstration uses the depletion module TRITON available in the SCALE 6.1 code system followed by criticality calculations using KENO-Va. The difference between the predicted depletion reactivity and the benchmark's depletion reactivity is a bias for the criticality calculations. The uncertainty in the benchmarks is the depletion reactivity uncertainty. This depletion bias and uncertainty is used with the bias and uncertainty from fresh UO2 critical experiments to determine the criticality safety limits on the neutron multiplication factor, keff. The analysis shows that SCALE 6.1 with the ENDF/B-VII 238-group cross section library supports the use of a depletion bias of only 0.0015 in delta k if cooling is ignored and 0.0025 if cooling is credited. The uncertainty in the depletion bias is 0.0064. Reliance on the ENDF/B V cross section library produces much larger disagreement with the benchmarks. The analysis covers numerous combinations of depletion and criticality options. In all cases, the historical uncertainty of 5% of the delta k of depletion ('Kopp memo') was shown to be conservative for fuel with more than 30 GWD/MTU burnup. Since this historically assumed burnup uncertainty is not a function of burnup, the Kopp memo's recommended bias and uncertainty may be exceeded at low burnups, but its absolute magnitude is small. (authors)

  2. Parametric Study of Control Rod Exposure for PWR Burnup Credit Criticality Safety Analyses

    International Nuclear Information System (INIS)

    The Interim Staff Guidance on burnup credit (ISG-8) for pressurized water reactor (PWR) spent nuclear fuel (SNF), issued by the Nuclear Regulatory Commission's (NRC) Spent Fuel Project Office, recommends the use of analyses that provide an ''adequate representation of the physics'' and notes particular concern with the ''need to consider the more reactive actinide compositions of fuels burned with fixed absorbers or with control rods fully or partly inserted.'' In the absence of readily available information on the extent of control rod (CR) usage in U.S. PWRs and the subsequent reactivity effect of CR exposure on discharged SNF, NRC staff have indicated a need for greater understanding in these areas. In response, this paper presents results of a parametric study of the effect of CR exposure on the reactivity of discharged SNF for various CR designs (including Axial Power Shaping Rods), fuel enrichments, and exposure conditions (i.e., burnup and axial insertion). The study is performed in two parts. In the first part, two-dimensional calculations are performed, effectively assuming full axial CR insertion. These calculations are intended to bound the effect of CR exposure and facilitate comparisons of the various CR designs. In the second part, three-dimensional calculations are performed to determine the effect of various axial insertion conditions and gain a better understanding of reality. The results from the study demonstrate that the reactivity effect increases with increasing CR exposure (e.g., burnup) and decreasing initial fuel enrichment (for a fixed burnup). Additionally, the results show that even for significant burnup exposures, minor axial CR insertions (e.g., eff of a spent fuel cask

  3. Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Ade, Brian J [ORNL; Marshall, William BJ J [ORNL; Martinez-Gonzalez, Jesus S [ORNL

    2015-05-01

    Oak Ridge National Laboratory (ORNL) and the US Nuclear Regulatory Commission (NRC) have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation systems (often referred to as casks) and spent fuel pools (SFPs). This work is divided into two main phases. The first phase investigated the applicability of peak reactivity methods currently used in SFPs to transportation and storage casks and the validation of reactivity calculations and spent fuel compositions within these methods. The second phase focuses on extending BUC beyond peak reactivity. This paper documents the analysis of the effects of control blade insertion history, and moderator density and burnup axial profiles for extended BWR BUC.

  4. The commercial impact of burnup increase

    International Nuclear Information System (INIS)

    Deregulation has a dramatic effect on competition in the electricity markets. This will lead to a continued pressure on the prices in virtually all areas of the nuclear fuel cycle and will encourage further optimization, technical and technological progress and innovations with respect to further cost reductions of power production. The permission of direct disposal, in Germany legally granted in 1994 as an alternative to the reprocessing path, made possible cost savings and has consequently resulted in a decline of reprocessing prices. In addition, suppliers as well as operators are making considerable efforts to reduce the disposal costs fraction by optimizing disposal technologies and concepts. The increase of discharge has essentially contributed to the reduction the disposal cost fraction. Compared to former scenarios, the economic potential of burn-up increase is decreasing

  5. Experimental programmes related to high burnup fuel

    International Nuclear Information System (INIS)

    The experimental programmes undertaken at IGCAR with regard to high burn-up fuels fall under the following categories: a) studies on fuel behaviour, b) development of extractants for aqueous reprocessing and c) development of non-aqueous reprocessing techniques. An experimental programme to measure the carbon potential in U/Pu-FP-C systems by methane-hydrogen gas equilibration technique has been initiated at IGCAR in order to understand the evolution of fuel and fission product phases in carbide fuel at high burn-up. The carbon potentials in U-Mo-C system have been measured by this technique. The free energies and enthalpies of formation of LaC2, NdC2 and SmC2 have been measured by measuring the vapor pressures of CO over the region Ln2O3-LnC2-C during the carbothermic reduction of Ln2O3 by C. The decontamination from fission products achieved in fuel reprocessing depends strongly on the actinide loading of the extractant phase. Tri-n-butyl phosphate (TBP), presently used as the extractant, does not allow high loadings due to its propensity for third phase formation in the extraction of Pu(IV). A detailed study of the allowable Pu loadings in TBP and other extractants has been undertaken in IGCAR, the results of which are presented in this paper. The paper also describes the status of our programme to develop a non-aqueous route for the reprocessing of fast reactor fuels. (author)

  6. Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Herranz, Nuria [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, UPM (Spain)], E-mail: nuria@din.upm.es; Cabellos, Oscar [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, UPM (Spain); Sanz, Javier [Departamento de Ingenieria Energetica, Universidad Nacional de Educacion a Distancia, UNED (Spain); Juan, Jesus [Laboratorio de Estadistica, Universidad Politecnica de Madrid, UPM (Spain); Kuijper, Jim C. [NRG - Fuels, Actinides and Isotopes Group, Petten (Netherlands)

    2008-04-15

    Two methodologies to propagate the uncertainties on the nuclide inventory in combined Monte Carlo-spectrum and burn-up calculations are presented, based on sensitivity/uncertainty and random sampling techniques (uncertainty Monte Carlo method). Both enable the assessment of the impact of uncertainties in the nuclear data as well as uncertainties due to the statistical nature of the Monte Carlo neutron transport calculation. The methodologies are implemented in our MCNP-ACAB system, which combines the neutron transport code MCNP-4C and the inventory code ACAB. A high burn-up benchmark problem is used to test the MCNP-ACAB performance in inventory predictions, with no uncertainties. A good agreement is found with the results of other participants. This benchmark problem is also used to assess the impact of nuclear data uncertainties and statistical flux errors in high burn-up applications. A detailed calculation is performed to evaluate the effect of cross-section uncertainties in the inventory prediction, taking into account the temporal evolution of the neutron flux level and spectrum. Very large uncertainties are found at the unusually high burn-up of this exercise (800 MWd/kgHM). To compare the impact of the statistical errors in the calculated flux with respect to the cross uncertainties, a simplified problem is considered, taking a constant neutron flux level and spectrum. It is shown that, provided that the flux statistical deviations in the Monte Carlo transport calculation do not exceed a given value, the effect of the flux errors in the calculated isotopic inventory are negligible (even at very high burn-up) compared to the effect of the large cross-section uncertainties available at present in the data files.

  7. In-reactor thermo-mechanical measurements on LWR fuel rods in the high burnup range

    International Nuclear Information System (INIS)

    The extension of fuel burn-up beyond previously accepted levels is currently being applied in varying degrees throughout the nuclear industry, with the aim of improving fuel economics and reducing the spent fuel volume. So it is necessary that the current fuel knowledge base should be extended. Modifications of fuel rod/assembly concepts, together with fuel management schemes, should be gradually implemented so that the operation of power reactors becomes even more reliable and flexible than it is today. Extrapolation to extended burn-up levels does not cause concern but will have to be made in steps, in order to demonstrate expected performance trends. The fuel testing programmes at the OECD Halden Reactor Project have over the years significantly contributed to the understanding of LWR fuel behaviour in the high burn-up range. A broad range of versatile and integrated in-reactor test rigs and high pressure loops have been developed which allow simulations of LWR irradiation conditions, comparative testing of alternative fuel rod designs and use of test segments pre-irradiated in power reactors. A number of in-core instruments and experimental techniques have been developed for detailed investigations of various aspects related to the thermal behaviour, fission product release and mechanical response of high burn-up LWR fuel rods, under a variety of operating conditions. The paper reviews recent measurements in the area of burnup-dependent steady-state and transient thermal behaviour of fuel rods, intermixing of fission and helium filler gases in the pellet cladding gap, fission gas release kinetics under changing heat loads and power excursions (burst release) and dimensional changes of fuel rods subjected to cyclic load changes. (author). 14 refs, 12 figs

  8. Investigation and basic evaluation for ultra-high burnup fuel cladding material

    International Nuclear Information System (INIS)

    In ultra-high burnup of the power reactor, it is an essential problem to develop the cladding with excellent durability. First, development history and approach of the safety assessment of Zircaloy for the high burnup fuel were summarized in the report. Second, the basic evaluation and investigation were carried out on the material with high practicability in order to select the candidate materials for the ultra-high burnup fuel. In addition, the basic research on modification technology of the cladding surface was carried out from the viewpoint of the addition of safety margin as a cladding. From the development history of the zirconium alloy including the Zircaloy, it is hard to estimate the results of in-pile test from those of the conventional corrosion test (out-pile test). Therefore, the development of the new testing technology that can simulate the actual environment and the elucidation of the corrosion-controlling factor of the cladding are desired. In cases of RIA (Reactivity Initiated Accident) and LOCA (Loss of Coolant Accident), it seems that the loss of ductility in zirconium alloys under heavy irradiation and boiling of high temperature water restricts the extension of fuel burnup. From preliminary evaluation on the high corrosion-resistance materials (austenitic stainless steel, iron or nickel base superalloys, titanium alloy, niobium alloy, vanadium alloy and ferritic stainless steel), stabilized austenitic stainless steels with a capability of future improvement and high-purity niobium alloys with a expectation of the good corrosion resistance were selected as candidate materials of ultra-high burnup cladding. (author)

  9. Review of Technical Issues Related to Predicting Isotopic Compositions and Source Terms for High-Burnup LWR Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gauld, I. C.; Parks, C. V.

    2000-12-11

    This report has been prepared to review the technical issues important to the prediction of isotopic compositions and source terms for high-burnup, light-water-reactor (LWR) fuel as utilized in the licensing of spent fuel transport and storage systems. The current trend towards higher initial 235U enrichments, more complex assembly designs, and more efficient fuel management schemes has resulted in higher spent fuel burnups than seen in the past. This trend has led to a situation where high-burnup assemblies from operating LWRs now extend beyond the area where available experimental data can be used to validate the computational methods employed to calculate spent fuel inventories and source terms. This report provides a brief review of currently available validation data, including isotopic assays, decay heat measurements, and shielded dose-rate measurements. Potential new sources of experimental data available in the near term are identified. A review of the background issues important to isotopic predictions and some of the perceived technical challenges that high-burnup fuel presents to the current computational methods are discussed. Based on the review, the phenomena that need to be investigated further and the technical issues that require resolution are presented. The methods and data development that may be required to address the possible shortcomings of physics and depletion methods in the high-burnup and high-enrichment regime are also discussed. Finally, a sensitivity analysis methodology is presented. This methodology is currently being investigated at the Oak Ridge National Laboratory as a computational tool to better understand the changing relative significance of the underlying nuclear data in the different enrichment and burnup regimes and to identify the processes that are dominant in the high-burnup regime. The potential application of the sensitivity analysis methodology to help establish a range of applicability for experimental

  10. IAEA Consultancy on Technical Influence of High Burnup UOX and MOX LWR Fuel on Spent Fuel Management

    International Nuclear Information System (INIS)

    This paper reviews the results of the International Atomic Energy Agency (IAEA) project investigating the influence of high burnup and mixed-oxide (MOX) fuels, from water power reactors, on SFM. These data will provide information on the impacts, regarding SFM, for those countries operating light-water reactors (LWR) and heavy-water reactors (HWR)s with zirconium alloy-clad uranium dioxide (UOX) fuels, that are considering the use of higher burnup UOX or the introduction of reprocessing and MOX fuels. The mechanical designs of lower burnup UOX and higher burnup UOX or MOX fuel are very similar, but some of the properties (e.g., higher fuel rod internal pressures; higher decay heat; higher specific activity; and degraded cladding mechanical properties of higher burnup UOX and MOX spent fuels) may potentially significantly affect the behavior of the fuel after irradiation. The effects of these property changes on wet and dry storage, transportation, reprocessing, refabrication of fuel, and final disposal were evaluated, based on regulatory, safety, and operational considerations. Political and strategic considerations were not taken into account since relative importance of technical, economic and strategic considerations vary from country to country. There will also be an impact of these fuels on issues like non-proliferation, safeguards, and sustainability, but because of the complexity of factors affecting those issues, they are only briefly discussed. The advantages and drawbacks of using high burnup UOX or MOX, for each applicable issue in each stage of the back end of the fuel cycle, were evaluated and are discussed. Although, in theory, higher burnup fuel and MOX fuels mean a smaller quantity of spent fuel, the potential need for some changes in design of spent fuel storage, transportation, handling, reprocessing, refabrication, and disposal will have to be balanced with the benefits of their use. (author)

  11. Analysis of burnup credit on spent fuel storage

    International Nuclear Information System (INIS)

    Chemical analyses were carried out on high burnup UO2 (65 GWd/t) and MOX (45 GWd/t) spent fuel pins. Measured data of the composition of nuclides from 234U to 242Pu were used for evaluation of ORIGEN-2/82 code. Criticality calculations were executed for the casks which were being designed to store 52 BWR or 21 PWR spent fuel assemblies. The reactivity biases were evaluated for (1) axial and horizontal profiles of burnup, and void history (BWR), (2) operational histories such as control rod insertion history, BPR insertion history and others, and (3) calculational accuracy of ORIGEN-2/82 code on the composition of nuclides. Present evaluation shows that introduction of burnup credit has a substantial merit in criticality safety analysis of the cask, even if these reactivity biases are considered. The concept of equivalent uniform burnup was adapted for present reactivity bias evaluation and showed a possibility of simplifying the reactivity bias evaluation in burnup credit. Finally, adapting procedures of burnup credit such as the burnup meter were evaluated. (author)

  12. Light a CANDLE. An innovative burnup strategy of nuclear reactors

    International Nuclear Information System (INIS)

    CANDLE is a new burnup strategy for nuclear reactors, which stands for Constant Axial Shape of Neutron Flux, Nuclide Densities and Power Shape During Life of Energy Production. When this candle-like burnup strategy is adopted, although the fuel is fixed in a reactor core, the burning region moves, at a speed proportionate to the power output, along the direction of the core axis without changing the spatial distribution of the number density of the nuclides, neutron flux, and power density. Excess reactivity is not necessary for burnup and the shape of the power distribution and core characteristics do not change with the progress of burnup. It is not necessary to use control rods for the control of the burnup. This booklet described the concept of the CANDLE burnup strategy with basic explanations of excess neutrons and its specific application to a high-temperature gas-cooled reactor and a fast reactor with excellent neutron economy. Supplementary issues concerning the initial core and high burnup were also referred. (T. Tanaka)

  13. Current Status of Burnup Evaluation for Test Fuel at HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seong Woo; Park, Seung Jae; Shin, Yoon Taeg; Choo, Kee Nam; Cho, Man Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    For the research reactor, 8 mini plate fuels were irradiation-tested during 4 irradiation cycles. 2 more irradiation capsules were fabricated for additional test of plate type fuel. Also fission Mo target for the performance verification and the demonstration of Mo-99 extraction process will be irradiated at HANARO. It is important to evaluate the burnup history of test fuel. The burnup of test fuel has been calculated using HANARO Fuel Management System (HANAFMS). Although it is proper to evaluate the burnup of HANARO fuel, it is difficult to accurately calculate the burnup of test fuel due to the limitation of HANAFMS model. Therefore, the improvement of burnup evaluation for the recent irradiated test fuel is conducted and reported in this paper. To evaluate the burnup of test fuel, HANAFMS has been used; however, HANAFMS model is not proper to apply plate type fuel. Therefore, MCNP burned core model was developed for HAMP-1 burnup calculation. Throughout the comparison of fuel assembly power, MCNP burned core model showed the good agreement with HANAFMS.

  14. Improved and consistent determination of the nuclear inventory of spent PWR-fuel on the basis of time-dependent cell-calculations with KORIGEN

    International Nuclear Information System (INIS)

    For safe handling, processing and storage of spent nuclear fuel a reliable, experimentally validated method is needed to determine fuel and waste characteristics: composition, radioactivity, heat and radiation. For PWR's, a cell-burnup procedure has been developed which is able to calculate the inventory in consistency with cell geometry, initial enrichment, and reactor control. Routine calculations can be performed with KORIGEN using consistent cross-section sets - burnup-dependent and based on the latest Karlsruhe evaluations for actinides - which were calculated previously with the cell-burnup procedure. Extensive comparisons between calculations and experiments validate the presented procedure. For the use of the KORIGEN code the input description and sample problems are added. Improvements in the calculational method and in data are described, results from KORIGEN, ORIGEN and ORIGEN2 calculations are compared. Fuel and waste inventories are given for BIBLIS-type fuel of different burnup. (orig.)

  15. Advanced Corrosion-Resistant Zr Alloys for High Burnup and Generation IV Applications

    Energy Technology Data Exchange (ETDEWEB)

    Arthur Motta; Yong Hwan Jeong; R.J. Comstock; G.S. Was; Y.S. Kim

    2006-10-31

    The objective of this collaboration between four institutions in the US and Korea is to demonstrate a technical basis for the improvement of the corrosion resistance of zirconium-based alloys in more extreme operating environments (such as those present in severe fuel duty,cycles (high burnup, boiling, aggressive chemistry) andto investigate the feasibility (from the point of view of corrosion rate) of using advanced zirconium-based alloys in a supercritical water environment.

  16. Burnup calculation methodology in the serpent 2 Monte Carlo code

    International Nuclear Information System (INIS)

    This paper presents two topics related to the burnup calculation capabilities in the Serpent 2 Monte Carlo code: advanced time-integration methods and improved memory management, accomplished by the use of different optimization modes. The development of the introduced methods is an important part of re-writing the Serpent source code, carried out for the purpose of extending the burnup calculation capabilities from 2D assembly-level calculations to large 3D reactor-scale problems. The progress is demonstrated by repeating a PWR test case, originally carried out in 2009 for the validation of the newly-implemented burnup calculation routines in Serpent 1. (authors)

  17. BNFL assessment of methods of attaining high burnup MOX fuel

    International Nuclear Information System (INIS)

    It is clear that in order to maintain competitiveness with UO2 fuel, the burnups achievable in MOX fuel must be enhanced beyond the levels attainable today. There are two aspects which require attention when studying methods of increased burnups - cladding integrity and fuel performance. Current irradiation experience indicates that one of the main performance issues for MOX fuel is fission gas retention. MOX, with its lower thermal conductivity, runs at higher temperatures than UO2 fuel; this can result in enhanced fission gas release. This paper explores methods of effectively reducing gas release and thereby improving MOX burnup potential. (author)

  18. Burnup credit demands for spent fuel management in Ukraine

    International Nuclear Information System (INIS)

    In fact, till now, burnup credit has not be applied in Ukrainian nuclear power for spent fuel management systems (storage and transport). However, application of advanced fuel at VVER reactors, arising spent fuel amounts, represent burnup credit as an important resource to decrease spent fuel management costs. The paper describes spent fuel management status in Ukraine from viewpoint of subcriticality assurance under spent fuel storage and transport. It also considers: 1. Regulation basis concerning subcriticality assurance, 2. Basic spent fuel and transport casks characteristics, 3. Possibilities and demands for burnup credit application at spent fuel management systems in Ukraine. (author)

  19. Estimate of preliminary experiments to study the burn-up of gadolinium as a poison

    International Nuclear Information System (INIS)

    Full text: Proposed preliminary experiments to determine the burn-up of Gd2O3 as a poison in different reactors are discussed. Estimates are given of parameters such as the weight of the sample to be irradiated, irradiation and decay times, expected activity and photon spectrum. 1 g samples of natural UO2 with 8 % of Gd2O3, 3 days irradiation time and 30 days decay time are recommended

  20. A Genesis breakup and burnup analysis in off-nominal Earth return and atmospheric entry

    Science.gov (United States)

    Salama, Ahmed; Ling, Lisa; McRonald, Angus

    2005-01-01

    The Genesis project conducted a detailed breakup/burnup analysis before the Earth return to determine if any spacecraft component could survive and reach the ground intact in case of an off-nominal entry. In addition, an independent JPL team was chartered with the responsibility of analyzing several definitive breakup scenarios to verify the official project analysis. This paper presents the analysis and results of this independent team.

  1. Coolant Density and Control Blade History Effects in Extended BWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Ade, Brian J [ORNL; Marshall, William BJ J [ORNL; Bowman, Stephen M [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL; Martinez-Gonzalez, Jesus S [ORNL

    2015-01-01

    Oak Ridge National Laboratory and the US Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (keff) calculations and predicted spent fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date investigating some aspects of extended BUC. (The technical basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper.) Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC: (1) the effect of axial void profile and (2) the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of a modern operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. Although a single cycle does not provide complete data, the data obtained are sufficient to determine the primary effects and to identify conservative modeling approaches. These data were used in a study of the effect of axial void profile. The first stage of the study was determination of the necessary moderator density temporal fidelity in depletion modeling. After the required temporal fidelity was established, multiple void profiles were used to examine the effect on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied was control blade history. Control blades are inserted in

  2. Evaluation and Selection of Boundary Isotopic Composition for Burnup Credit Criticality Safety Analysis of RBMK Spent Fuel Management

    International Nuclear Information System (INIS)

    The on-site wet-type spent fuel storage facility ISF-1 is currently used for interim storage of spent nuclear fuel removed from Chernobyl NPP power units. The results of ISF-1 preliminary criticality analyses demonstrated the need for using the burnup credit principle in nuclear safety analysis. This paper provides results from the selection and testing of computer codes for determining the isotopic composition of RBMK spent fuel. Assessment is carried out and conclusions are made on conservative approaches to fuel burnup credit in subsequent ISF-1 safety assessment. (author)

  3. Parametric neutronic analyses related to burnup credit cask design

    International Nuclear Information System (INIS)

    The consideration of spent fuel histories (burnup credit) in the design of spent fuel shipping casks will result in cost savings and public risk benefits in the overall fuel transportation system. The purpose of this paper is to describe the depletion and criticality analyses performed in conjunction with and supplemental to the referenced analysis. Specifically, the objectives are to indicate trends in spent fuel isotopic composition with burnup and decay time; provide spent fuel pin lattice values as a function of burnup, decay time, and initial enrichment; demonstrate the variation of keff for infinite arrays of spent fuel assemblies separated by generic cask basket designs (borated and unborated) of varying thicknesses; and verify the potential cask reactivity margin available with burnup credit via analysis with generic cask models

  4. Final evaluation of the CB3+burnup credit benchmark addition

    International Nuclear Information System (INIS)

    In 1966 a series of benchmarks focused on the application of burnup credit in WWER spent fuel management system was launched by L.Markova (1). The four phases of the proposed benchmark series corresponded to the phases of the Burnup Credit Criticality Benchmark organised by the OECD/NEA.These phases referred as CB1, CB2, CB3 and CB4 benchmarks were designed to investigate the main features of burnup credit in WWER spent fuel management systems. In the CB1 step, the multiplication factor of an infinite array of spent fuel rods was calculated taking the burnup, cooling time and different group of nuclides as parameters. The fuel compositions was given in the benchmark specification (Authors)

  5. Prediction of fission gas release at high burn-up

    International Nuclear Information System (INIS)

    Reliable design of LWR fuel rods requires the fission gas release to be predicted as accurately as possible. Indeed that physical phenomenon governs both the fuel temperatures and the inner gas pressure. Fission gas release data have been reviewed by the NRC and it has been concluded that a fission gas release enhancement occurs at burn-up above 20 GWd/tM. To correct deficient fission gas release models which do not include burn-up dependence, the NRC developed an empirical correction method to describe burn-up enhancement effect. BELGONUCLEAIRE has developed its own fission gas release model which is utilized in licensing calculation through the COMETHE code. Fission gas release predictions at high burn-up are confronted to the experimental data as well as to the predictions of the NRC correlation. The physics of the fission gas release phenomenon is discussed

  6. 2005 status and future of burnup credit in the USA

    International Nuclear Information System (INIS)

    At the beginning of 2005 in the USA burnup credit is licensed for PWR and BWR spent fuel pools, is under license review for a transport cask, is under discussion for disposal criticality. Two basic approaches exist for burnup credit. The first approach, which is licensed for spent fuel pools, utilizes criticality experience with spent fuel that has not been chemically assayed. The second approach to burnup credit comes from utilizing chemical assay data to validate the depletion calculations and then clean critical experiments to validate the criticality calculation. A burnup credit standard (ANS/ANSI-8.27) is under development where the two approaches are actively discussed. Issues related to the two approaches are presented as well as possible ways of resolving the issues. (author)

  7. Impact of extended burnup on the nuclear fuel cycle

    International Nuclear Information System (INIS)

    The Advisory Group Meeting was held in Vienna from 2 to 5 December 1991, to review, analyse, and discuss the effects of burnup extension in both light and heavy water reactors on all aspects of the fuel cycle. Twenty experts from thirteen countries participated in this meeting. There was consensus that both economic and environmental benefits are driving forces toward the achievement of higher burnups and that the present trend of burnup extension may be expected to continue. The extended burnup has been considered for the three main stages of the fuel cycle: the front end, in-reactor issues and the back end. Thirteen papers were presented. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  8. TRIGA criticality experiment for testing burn-up calculations

    Energy Technology Data Exchange (ETDEWEB)

    Persic, Andreja; Ravnik, Matjaz; Zagar, Tomaz [Jozef Stefan Institute, Reactor Physics Division, Ljubljana (Slovenia)

    1999-07-01

    A criticality experiment with partly burned TRIGA fuel is described. 20 wt % enriched standard TRIGA fuel elements initially containing 12 wt % U are used. Their average burn-up is 1.4 MWd. Fuel element burn-up is calculated in 2-D four group diffusion approximation using TRIGLAV code. The burn-up of several fuel elements is also measured by reactivity method. The excess reactivity of several critical and subcritical core configurations is measured. Two core configurations contain the same fuel elements in the same arrangement as were used in the fresh TRIGA fuel criticality experiment performed in 1991. The results of the experiment may be applied for testing the computer codes used for fuel burn-up calculations. (author)

  9. Draft evaluation of the frequency for gas sampling for the high burnup confirmatory data project

    Energy Technology Data Exchange (ETDEWEB)

    Stockman, Christine T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Alsaed, Halim A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bryan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-26

    This report fulfills the M3 milestone M3FT-15SN0802041, “Draft Evaluation of the Frequency for Gas Sampling for the High Burn-up Storage Demonstration Project” under Work Package FT-15SN080204, “ST Field Demonstration Support – SNL”. This report provides a technically based gas sampling frequency strategy for the High Burnup (HBU) Confirmatory Data Project. The evaluation of: 1) the types and magnitudes of gases that could be present in the project cask and, 2) the degradation mechanisms that could change gas compositions culminates in an adaptive gas sampling frequency strategy. This adaptive strategy is compared against the sampling frequency that has been developed based on operational considerations. Gas sampling will provide information on the presence of residual water (and byproducts associated with its reactions and decomposition) and breach of cladding, which could inform the decision of when to open the project cask.

  10. Comparisons of the predicted and measured isotopic composition for high burnup PWR spent fuels

    International Nuclear Information System (INIS)

    Comparisons between the calculated and measured isotopic composition for high burnup Korean PWR spent fuel samples were carried out. Spent fuel samples used in this study were obtained from commercial Korean PWRs, Ulchin unit 2 and Yonggwang unit 1. A radiochemical analysis of the spent fuel samples was performed to determine the isotopic compositions of U, Pu, and Nd. The depletion calculations which were carried out using the SAS2H control module in Version 5.1 of the SCALE code system were compared with the results of the radiochemical analyses. The results derived from the measured and calculated concentrations for each isotope of the corresponding samples were generally consistent with the earlier studies and the results were different within a few percent. The validity of the SAS2H control module in Version 5.1 of the SCALE code system could be confirmed in a high burnup spent fuel above 45 GWd/MTU

  11. Monte Carlo studies on the burnup measurement for the high temperature gas cooling reactor

    International Nuclear Information System (INIS)

    Online fuel pebble burnup measurement in a future high temperature gas cooling reactor is proposed for implementation through a high purity germanium (HPGe) gamma spectrometer. By using KORIGEN software and MCNP Monte Carlo simulations, the single pebble gamma radiations to be recorded in the detector are simulated under different irradiation histories. A specially developed algorithm is applied to analyze the generated spectra to reconstruct the gamma activity of the 137Cs monitoring nuclide. It is demonstrated that by taking into account the intense interfering peaks, the 137Cs activity in the spent pebbles can be derived with a standard deviation of 3.0% (1σ). The results support the feasibility of utilizing the HPGe spectrometry in the online determination of the pebble burnup in future modular pebble bed reactors. (authors)

  12. A guide introducing burnup credit, preliminary version. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    It is examined to take burnup credit into account for criticality safety control of facility treating spent fuel. This work is a collection of current technical status of predicting isotopic composition and criticality of spent fuel, points to be specially considered for safety evaluation, and current status of legal affairs for the purpose of applying burnup credit to the criticality safety evaluation of the facility treating spent fuel in Japan. (author)

  13. A burn-up module coupling to an AMPX system

    International Nuclear Information System (INIS)

    The Reactors and Neutrons Division of the Bariloche Atomic Center uses the AMPX system for the study of high conversion reactors (HCR). Such system allows to make neutronic calculations from the nuclear data library (ENDF/B-IV). The Nuclear Engineering career of the Balseiro Institute developed and implemented a burn-up module at a μ-cell level (BUM: Burn-up Module) which agrees with the requirement to be coupled to the AMPX system. (Author)

  14. A guide introducing burnup credit, preliminary version. Contract research

    International Nuclear Information System (INIS)

    It is examined to take burnup credit into account for criticality safety control of facility treating spent fuel. This work is a collection of current technical status of predicting isotopic composition and criticality of spent fuel, points to be specially considered for safety evaluation, and current status of legal affairs for the purpose of applying burnup credit to the criticality safety evaluation of the facility treating spent fuel in Japan. (author)

  15. PLD-IDMS studies towards direct measurement of burn-up of nuclear fuel

    International Nuclear Information System (INIS)

    A method based on Pulsed laser deposition followed by Isotope dilution mass spectrometric method is evaluated towards the possibility of direct measurement of burn up of nuclear fuel and also to find out spatial distribution of burn-up along the pellet. The wave length dependent results show larger error with 1064 nm, compared to 532 nm laser beam. Much less error is expected with shorter wave length and shorter pulse width laser beam. Further work is being carried out in this direction

  16. Instabilities of Monte-Carlo burnup calculations for nuclear reactors—Demonstration and dependence from time step model

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Continuous Energy Monte-Carlo burnup code. • Instabilities of depletion calculation in loosely coupled system. • Advanced step model for burnup calculations. • Xenon profile oscillation in thermal reactor. • Parametrical study of instabilities. - Abstract: In this paper we use the Continuous Energy Monte-Carlo tool to expose the problem of burnup instabilities occurring in 1D and 2D systems based on PWR geometry. The intensity of power profile oscillations is studied as a function of geometry properties and time step length. We compare two step models for depletion procedure: classic staircase step model and stochastic implicit Euler method, that belongs to the family of predictor–corrector schemes. What is more, we consider the usage of better neutron source intensity value than beginning-of-step approximation. Required methodology was implemented into MCB5 simulation code. The practical conclusions about depletion calculations were formulated and the efficiency of advanced step model was confirmed

  17. Comparison of Computational Estimations of Reactivity Margin From Fission Products and Minor Actinides in PWR Burnup Credit

    International Nuclear Information System (INIS)

    This paper has presented the results of a computational benchmark and independent calculations to verify the benchmark calculations for the estimation of the additional reactivity margin available from fission products and minor actinides in a PWR burnup credit storage/transport environment. The calculations were based on a generic 32 PWR-assembly cask. The differences between the independent calculations and the benchmark lie within 1% for the uniform axial burnup distribution, which is acceptable. The Δk for KENO - MCNP results are generally lower than the other Δk values, due to the fact that HELIOS performed the depletion part of the calculation for both the KENO and MCNP results. The differences between the independent calculations and the benchmark for the non-uniform axial burnup distribution were within 1.1%

  18. A PWR PCI failure criterion to burnups of 60 GW·d/t using the ENIGMA code

    International Nuclear Information System (INIS)

    A fuel performance modelling code (ENIGMA) has been used to analyse the empirical PCI failure criterion in terms of a clad failure stress as a function of burnup and fast neutron dose. The Studsvik database has been analysed. Results indicate a rising and then saturating failure stress with burnup and fast neutron dose. Using the PCI failure limits, equivalent to 95/95 confidence limits, an ENIGMA stress-based methodology is used to derive PWR PCI failure limits up to 60 GW·d/t U using a conservative assumption that the failure stress does not increase at high burnup and neutron dose. In addition experimental ramp data on gadolinia-doped fuel rods do not indicate any increased susceptibility to PCI failure implying that the UO2 criterion can be used for gadolinia doped fuel. (author)

  19. Application of Candle burnup to small fast reactor

    International Nuclear Information System (INIS)

    A new reactor burnup strategy CANDLE (Constant Axial shape of Neutron flux, nuclide densities and power shape During Life of Energy producing reactor) was proposed, where shapes of neutron flux, nuclide densities and power density distributions remain constant but move to an axial direction. An equilibrium state was obtained for a large fast reactor (core radius is 2 m and reflector thickness is 0.5 m) successfully by using a newly developed direct analysis code. However, it is difficult to apply this burnup strategy to small reactors, since its neutron leakage becomes large and neutron economy becomes worse. Fuel enrichment should be increased in order to sustain the criticality. However, higher enrichment of fresh fuel makes the CANDLE burnup difficult. We try to find some small reactor designs, which can realize the CANDLE burnup. We have successfully find a design, which is not the CANDLE burnup in the strict meaning, but satisfies qualitatively its characteristics mentioned at the top of this abstract. In the final paper, the general description of CANDLE burnup and some results on the obtained small fast reactor design are presented.(author)

  20. Research on irradiation behavior of superhigh burnup fuel

    International Nuclear Information System (INIS)

    In Japan Atomic Energy Research Institute, the special team for LWR future technology development project was organized in Tokai Research Establishment from October, 1991 to the end of fiscal year 1993. Due to the delay of the introduction of fast reactors, LWRs are expected to be used for considerably long period also in 21st century, therefore, it aimed at the further advancement of LWRs, and as one of its embodiments, the concept of superhigh burnup fuel was investigated. The superhigh burnup fuel aims at the attainment of 100 GWd/t burnup, and it succeeded the achievement of the conceptual design study on 'superlong life LWRs'. It is generally recognized that the development of the new material that substitutes for zircaloy is indispensable for superhigh burnup fuel. The concept of superhigh burnup core and the specification of fuel, the research and development of superhigh burnup fuel, the research on the irradiation behavior and irradiation damage of fuel and the damage by ion irradiation, and the method and the results of the irradiation experiment using a tandem accelerator are reported. (K.I.)

  1. Research on irradiation behavior of superhigh burnup fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Kimio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1995-03-01

    In Japan Atomic Energy Research Institute, the special team for LWR future technology development project was organized in Tokai Research Establishment from October, 1991 to the end of fiscal year 1993. Due to the delay of the introduction of fast reactors, LWRs are expected to be used for considerably long period also in 21st century, therefore, it aimed at the further advancement of LWRs, and as one of its embodiments, the concept of superhigh burnup fuel was investigated. The superhigh burnup fuel aims at the attainment of 100 GWd/t burnup, and it succeeded the achievement of the conceptual design study on `superlong life LWRs`. It is generally recognized that the development of the new material that substitutes for zircaloy is indispensable for superhigh burnup fuel. The concept of superhigh burnup core and the specification of fuel, the research and development of superhigh burnup fuel, the research on the irradiation behavior and irradiation damage of fuel and the damage by ion irradiation, and the method and the results of the irradiation experiment using a tandem accelerator are reported. (K.I.).

  2. Ductile-to-brittle transition temperature for high-burnup cladding alloys exposed to simulated drying-storage conditions

    Science.gov (United States)

    Billone, M. C.; Burtseva, T. A.; Einziger, R. E.

    2013-02-01

    Structural analyses of dry casks containing high-burnup fuel require cladding mechanical properties and failure limits to assess fuel behavior. Pre-storage drying-transfer operations and early stage storage subject cladding to higher temperatures and much higher pressure-induced tensile hoop stresses relative to in-reactor operation and pool storage. Under these conditions, radial hydrides may precipitate during slow cooling and provide an additional embrittlement mechanism as the cladding temperature decreases below the ductile-to-brittle transition temperature (DBTT). A test procedure was developed to simulate the effects of drying-storage temperature histories. Following drying-storage simulation, samples were subjected to ring-compression test (RCT) loading, which was used as a ductility screening test and to simulate pinch-type loading that may occur during cask transport. RCT samples with 50% wall cracking were assessed as brittle. Prior to testing high-burnup cladding, many tests were conducted with pre-hydrided Zircaloy-4 (Zry-4) and ZIRLO™ to determine target 400 °C hoop stresses for high-burnup rodlets. Zry-4 cladding segments, from a 67-GWd/MTU fuel rod, with 520-620 wppm hydrogen and ZIRLO™ cladding segments from a 70-GWd/MTU fuel rod, with 350-650 wppm hydrogen were defueled and tested. Following drying-storage simulation, the extent of radial-hydride precipitation was characterized by the radial-hydride continuity factor. It was found that the DBTT was dependent on: cladding material, irradiation conditions, and drying-storage histories (stress at maximum temperature). High-burnup ZIRLO™ exhibited higher susceptible to radial-hydride formation and embrittlement than high-burnup Zry-4. It was also observed that uniformly pre-hydrided, non-irradiated cladding was not a good surrogate for high-burnup cladding because of the high density of circumferential hydrides across the wall and the high metal-matrix ductility for pre-hydrided cladding.

  3. Development and validation of burnup function in reactor Monte Carlo RMC

    International Nuclear Information System (INIS)

    This paper presents the burnup calculation capability of RMC, which is a new Monte Carlo (MC) neutron transport code developed by Reactor Engineering Analysis Laboratory (REAL) in Tsinghua University of China. Unlike most of existing MC depletion codes which explicitly couple the depletion module, RMC incorporates ORIGEN 2.1 in an implicit way. Different burn step strategies, including middle-of-step approximation and predictor-corrector method, are adopted by RMC to assure accuracy under large step size. RMC employs a spectrum-based method of tallying one-group cross section, which can considerably save computational time with negligible accuracy loss. According to validation results of benchmarks and examples, it is proved that the burnup function of RMC performs quite well in accuracy and efficiency. (author)

  4. Effect of burnup dependence of fuel cladding gap properties on WWER core characteristics

    International Nuclear Information System (INIS)

    Dependence of gas gap properties on burnup has been obtained with use of TRANSURANUS code. Implemented dependency on burnup is based on TRANSURANUS calculations of different fuel pins upon different linear power Ql. Obtained dependence was implemented into DYN3D code and results of new dependence effect on characteristics of WWER fuel loadings are presented. The work was performed in framework of orders BMU SR 2511 and BMU R0801504 (SR2611). The report describes the opinion and view of the contractor-State Scientific and Technical Centre on Nuclear and Radiation Safety-and does not necessarily represent the opinion of the ordering party-BMU-BfS/GRS and TUEV SUED. (Authors)

  5. Microstructural Modeling of Thermal Conductivity of High Burn-up Mixed Oxide Fuel

    International Nuclear Information System (INIS)

    Predicting the thermal conductivity of oxide fuels as a function of burn-up and temperature is fundamental to the efficient and safe operation of nuclear reactors. However, modeling the thermal conductivity of fuel is greatly complicated by the radially inhomogeneous nature of irradiated fuel in both composition and microstructure. In this work, radially and temperature-dependent models for effective thermal conductivity were developed utilizing optical micrographs of high burn-up mixed oxide fuel. The micrographs were employed to create finite element meshes with the OOF2 software. The meshes were then used to calculate the effective thermal conductivity of the microstructures using the BISON fuel performance code. The new thermal conductivity models were used to calculate thermal profiles at end of life for the fuel pellets. These results were compared to thermal conductivity models from the literature, and comparison between the new finite element-based thermal conductivity model and the Duriez-Lucuta model was favorable

  6. FRAPCON-3: Modifications to fuel rod material properties and performance models for high-burnup application

    Energy Technology Data Exchange (ETDEWEB)

    Lanning, D.D.; Beyer, C.E.; Painter, C.L.

    1997-12-01

    This volume describes the fuel rod material and performance models that were updated for the FRAPCON-3 steady-state fuel rod performance code. The property and performance models were changed to account for behavior at extended burnup levels up to 65 Gwd/MTU. The property and performance models updated were the fission gas release, fuel thermal conductivity, fuel swelling, fuel relocation, radial power distribution, solid-solid contact gap conductance, cladding corrosion and hydriding, cladding mechanical properties, and cladding axial growth. Each updated property and model was compared to well characterized data up to high burnup levels. The installation of these properties and models in the FRAPCON-3 code along with input instructions are provided in Volume 2 of this report and Volume 3 provides a code assessment based on comparison to integral performance data. The updated FRAPCON-3 code is intended to replace the earlier codes FRAPCON-2 and GAPCON-THERMAL-2. 94 refs., 61 figs., 9 tabs.

  7. Mechanistic model for the fragmentation of the high-burnup structure during LOCA

    Science.gov (United States)

    Kulacsy, Katalin

    2015-11-01

    A model was developed to account for the fragmentation of the high-burnup structure in fuel pellets during a loss-of-coolant accident. The basic assumptions of the model are that the pores have reached the dislocation punching overpressure during base irradiation and that the increasing overpressure due to rising temperature causes fuel fracturing. The distribution of the pore sizes is taken into account, not only the mean value. The model predicts the existence of a minimum pore size in normal operation, the decrease of threshold burnup for fuel fragmentation when the last-cycle power rating of the rod is high and a reduced fragmentation when a strong PCMI restraint is present during the transient. It can reproduce experimental results in terms of temperature range for fragmentation.

  8. FRAPCON-3: Modifications to fuel rod material properties and performance models for high-burnup application

    International Nuclear Information System (INIS)

    This volume describes the fuel rod material and performance models that were updated for the FRAPCON-3 steady-state fuel rod performance code. The property and performance models were changed to account for behavior at extended burnup levels up to 65 Gwd/MTU. The property and performance models updated were the fission gas release, fuel thermal conductivity, fuel swelling, fuel relocation, radial power distribution, solid-solid contact gap conductance, cladding corrosion and hydriding, cladding mechanical properties, and cladding axial growth. Each updated property and model was compared to well characterized data up to high burnup levels. The installation of these properties and models in the FRAPCON-3 code along with input instructions are provided in Volume 2 of this report and Volume 3 provides a code assessment based on comparison to integral performance data. The updated FRAPCON-3 code is intended to replace the earlier codes FRAPCON-2 and GAPCON-THERMAL-2. 94 refs., 61 figs., 9 tabs

  9. IFPE/FUMEX-I, Data from OECD Halden Reactor Project for FUMEX-1 (Fuel Modelling at Extended Burnup)

    International Nuclear Information System (INIS)

    This set contains the experimental data from the OECD Halden Reactor Project made available for the FUMEX-I exercise (Fuel Modelling at Extended Burnup) carried out under the auspices of the IAEA. The six cases are: FUMEX 1: This data set represents the irradiation of production line PWR type fuel under benign conditions. Temperatures remained low but increased slightly with burnup. FUMEX 2:This was a small diameter rod designed to achieve rapid accumulation of burnup. Temperatures were estimated to remain low. The internal pin pressure was measured in-pile and an assessment of FGR was also provided by PIE. FUMEX 3: This case consisted of 3 short rods equipped with centreline thermocouples each with a different gap and fill gas composition. After steady state irradiation to ∼30 MW.d/kg UO2, they were given a severe increase in power (power ramp). FUMEX 4: Two rods filled with 3 bar He and 1 bar He/Xe mixture were irradiated to ∼33 MW.d/kg UO2. Both rods experienced a period of increased power part way through the irradiation. FUMEX 5: The test case comprised a single rod base irradiated at low power to 16 MW.d/kg UO2 with a power ramp and a hold period at the end of life. The main purpose of this case was to assess pellet clad mechanical interaction (PCMI) and fission gas release (FGR) under ramp conditions. FUMEX 6: Two rods were base irradiated at low power. The rods were re-fabricated to include pressure transducers. Rod internal pressure was monitored during power ramps, one fast, one slow. Irradiation conditions in the Halden Reactor: The Halden Reactor is a heavy water moderated and cooled boiling water reactor. The nominal operation conditions are 240 deg. C coolant temperature and a corresponding saturation pressure of 34 bar. These conditions imply decreased uncertainties for some effects with an influence on experimental results and data evaluation, namely: cladding creep-down is very small, cladding oxidation can be practically neglected, boiling

  10. ANS/ENS tutorial session: Burnup credit issues in spent fuel transportation: Overview and objectives

    International Nuclear Information System (INIS)

    A number of opportunities exist to increase the efficiency of the next generation of spent fuel shipping casks. Improving cask efficiency will not only reduce life cycle transportation costs, but also is consistent with maintaining public and occupational radiological risks and, more importantly, total risks (radiological and nonradiological) within the guidelines of the ''as low as reasonably achievable'' (ALARA) philosophy. Increases in cask capacities will reduce both the total number of shipments required to transport a given amount of fuel and the number of handling operations at both shipping and receiving facilities. Additional capacity increases can be achieved by implementing various design strategies based on new concepts and/or the actual characteristics of the majority of the spent fuel to be shipped in the future. For example, it has been determined that additional capacity increases can be achieved by taking credit for burnup, the reduced reactivity that results when fuel has been used to produce power in a nuclear reactor. That is, as the fuel is used the atoms of fissile material decrease, and neutron absorbers (or ''poisons'') that tend to retard the fission process are produced. 7 refs., 1 fig

  11. Preliminary Content Evaluation of the North Anna High Burn-Up Sister Fuel Rod Segments for Transportation in the 10-160B and NAC-LWT

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-09

    The U.S. Department of Energy’s (DOE’s) Used Fuel Disposition Campaign (UFDC) Program has transported high-burnup nuclear sister fuel rods from a commercial nuclear power plant for purposes of evaluation and testing. The evaluation and testing of high-burnup used nuclear fuel is integral to DOE initiatives to collect information useful in determining the integrity of fuel cladding for future safe transportation of the fuel, and for determining the effects of aging, on the integrity of UNF subjected to extended storage and subsequent transportation. The UFDC Program, in collaboration with the U.S. Nuclear Regulatory Commission and the commercial nuclear industry, has obtained individual used nuclear fuel rods for testing. The rods have been received at Oak Ridge National Laboratory (ORNL) for both separate effects testing (SET) and small-scale testing (SST). To meet the research objectives, testing on multiple 6 inch fuel rod pins cut from the rods at ORNL, will be performed at Pacific Northwest National Laboratory (PNNL). Up to 10 rod equivalents will be shipped. Options were evaluated for multiple shipments using the 10-160B (based on 4.5 rod equivalents) and a single shipment using the NAC-LWT.

  12. Pore pressure calculation of the UO{sub 2} high burnup structure

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Lijun, E-mail: lijungaothu@gmail.com [Tsinghua University, 100084 Beijing (China); Science and Technology on Reactor System Design Technology Laboratory, P.O. Box 622-500, 610041 Chengdu (China); Chen, Bingde [Nuclear Power Institute of China, 610041 Chengdu (China); Xiao, Zhong [National Energy R and D Center on Advanced Nuclear Fuel, 610041 Chengdu (China); Jiang, Shengyao; Yu, Jiyang [Tsinghua University, 100084 Beijing (China)

    2013-07-15

    Highlights: • Pore pressure is calculated based on local burnup, density and porosity. • Ronchi's equations of state are used instead of van der Waals’ equation. • Pore pressure increases as HBS transformation begins and then stays constant. • A best approximated parameter used for pore pressure calculation is recommended. -- Abstract: UO{sub 2} high burnup structure has an important impact on fuel behavior, especially in case of reactivity initiated accident (RIA). Pore relaxation enhances local fuel swelling and puts additional load to the fuel cladding, which makes fuel more susceptible to pellet–cladding mechanical interaction induced failure. Therefore, pore pressure calculation becomes vital when evaluating the fuel failure. In this paper pore pressure is calculated as a function of pellet radial local burnup based on the basic characteristics of HBS using Ronchi's correlation. The results indicate that pore pressure will approach a stable value as HBS is developing. A best approximated C value of 55 N/m is recommended for pore pressure calculation.

  13. A technique of melting temperature measurement and its application for irradiated high-burnup MOX fuels

    International Nuclear Information System (INIS)

    A melting temperature measurement technique for irradiated oxide fuels is described. In this technique, the melting temperature was determined from a thermal arrest on a heating curve of the specimen which was enclosed in a tungsten capsule to maintain constant chemical composition of the specimen during measurement. The measurement apparatus was installed in an alpha-tight steel box within a gamma-shielding cell and operated by remote handling. The temperature of the specimen was measured with a two-color pyrometer sighted on a black-body well at the bottom of the tungsten capsule. The diameter of the black-body well was optimized so that the uncertainties of measurement were reduced. To calibrate the measured temperature, two reference melting temperature materials, tantalum and molybdenum, were encapsulated and run before and after every oxide fuel test. The melting temperature data on fast reactor mixed oxide fuels irradiated up to 124 GWd/t were obtained. In addition, simulated high-burnup mixed oxide fuel up to 250 GWd/t by adding non-radioactive soluble fission products was examined. These data shows that the melting temperature decrease with increasing burnup and saturated at high burnup region. (author)

  14. Computational Benchmark for Estimation of Reactivity Margin from Fission Products and Minor Actinides in PWR Burnup Credit

    International Nuclear Information System (INIS)

    This report proposes and documents a computational benchmark problem for the estimation of the additional reactivity margin available in spent nuclear fuel (SNF) from fission products and minor actinides in a burnup-credit storage/transport environment, relative to SNF compositions containing only the major actinides. The benchmark problem/configuration is a generic burnup credit cask designed to hold 32 pressurized water reactor (PWR) assemblies. The purpose of this computational benchmark is to provide a reference configuration for the estimation of the additional reactivity margin, which is encouraged in the U.S. Nuclear Regulatory Commission (NRC) guidance for partial burnup credit (ISG8), and document reference estimations of the additional reactivity margin as a function of initial enrichment, burnup, and cooling time. Consequently, the geometry and material specifications are provided in sufficient detail to enable independent evaluations. Estimates of additional reactivity margin for this reference configuration may be compared to those of similar burnup-credit casks to provide an indication of the validity of design-specific estimates of fission-product margin. The reference solutions were generated with the SAS2H-depletion and CSAS25-criticality sequences of the SCALE 4.4a package. Although the SAS2H and CSAS25 sequences have been extensively validated elsewhere, the reference solutions are not directly or indirectly based on experimental results. Consequently, this computational benchmark cannot be used to satisfy the ANS 8.1 requirements for validation of calculational methods and is not intended to be used to establish biases for burnup credit analyses

  15. Experimental techniques and results related to high burn-up investigations at the OECD Halden Reactor Project

    International Nuclear Information System (INIS)

    Investigations of phenomena associated with extended or high burn-up comprise a considerable part of the fuel and materials research programme carried out at the OECD Halden Reactor Project, reflecting the interests and priorities of the nuclear industry in this area. For this purpose, sensors, re-instrumentation techniques, irradiation rigs and data evaluation methods have been developed and successfully applied which allow tests to be conducted at extended burn-up with high data quality. Re-instrumentation of base-irradiated fuel rods (50 MWd/kgU) with pressure transducers has been carried out with several rods, which were then subjected to high power, to study fission gas release. The results as well as those from another high burn-up test confirm the empirical fission gas release threshold developed at Halden, which predicts the onset of FGR to be about 1100 deg. C at this burn-up. The related interlinkage-resintering effects can be studied in special assemblies allowing sweep-out and analysis of fission products. Comprehensive investigations of fuel temperature data suggest a gradual degradation of UO2 thermal conductivity with burn-up. A special experiment is presently being irradiated to burn-up beyond 60 MWd/kgU, where the accuracy of temperature measurements is maintained by utilising expansion thermometers, insensitive to irradiation induced decalibration. A preliminary evaluation of the temperature increase points to a UO2 conductivity degradation of 35% at 50 MWd/kgUO2 and 600 deg. C. (author). 5 refs, 5 figs

  16. Computational Benchmark for Estimation of Reactivity Margin from Fission Products and Minor Actinides in PWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.C.

    2001-08-02

    This report proposes and documents a computational benchmark problem for the estimation of the additional reactivity margin available in spent nuclear fuel (SNF) from fission products and minor actinides in a burnup-credit storage/transport environment, relative to SNF compositions containing only the major actinides. The benchmark problem/configuration is a generic burnup credit cask designed to hold 32 pressurized water reactor (PWR) assemblies. The purpose of this computational benchmark is to provide a reference configuration for the estimation of the additional reactivity margin, which is encouraged in the U.S. Nuclear Regulatory Commission (NRC) guidance for partial burnup credit (ISG8), and document reference estimations of the additional reactivity margin as a function of initial enrichment, burnup, and cooling time. Consequently, the geometry and material specifications are provided in sufficient detail to enable independent evaluations. Estimates of additional reactivity margin for this reference configuration may be compared to those of similar burnup-credit casks to provide an indication of the validity of design-specific estimates of fission-product margin. The reference solutions were generated with the SAS2H-depletion and CSAS25-criticality sequences of the SCALE 4.4a package. Although the SAS2H and CSAS25 sequences have been extensively validated elsewhere, the reference solutions are not directly or indirectly based on experimental results. Consequently, this computational benchmark cannot be used to satisfy the ANS 8.1 requirements for validation of calculational methods and is not intended to be used to establish biases for burnup credit analyses.

  17. Burnup instabilities in the full-core HTR model simulation

    International Nuclear Information System (INIS)

    Highlights: • We performed full-core burnup calculation coupled with Monte Carlo code. • Depletion instabilities have been detected for HTR system at high burnup. • We assess the stability of time step models in application to core calculation. • Discussion of the modeling factors related to burnup core simulation is presented. - Abstract: The phenomenon of numerical instabilities present in the Monte Carlo burnup calculations has been shown and explained by many authors using models of LWR, often simplified. Some theoretical considerations about origins of oscillations are very general, however it may be difficult to apply it easily to other models as a prediction of stability. Physics of HTR core differs significantly from the properties of light water system and the reliable extrapolation of the current numerical results is not possible. Moreover, most of the works concerning HTR burnup calculations put no emphasis on the spatial stability of the simulation and apply very long time steps. The awareness in this field of research seems to be not sufficient. In this paper, we focus on the demonstration of depletion instabilities in the simulations of HTR core dedicated for deep burnup of plutonium and minor actinides. We apply various methodology of time step implemented in advanced Continuous Energy Monte Carlo burnup code MCB version 5. Stability analysis is very rare for the full core calculations and the awareness of the oscillation’s problem is obligatory for the reliable modeling of a fuel cycle. In the summary of this work we systematize and discuss factors related to the stability of depletion and review available solutions

  18. Dissolution of low burnup Fast Flux Test reactor fuel

    International Nuclear Information System (INIS)

    The first Fast-Flux Test Facility reactor fuel [mixed (U,Pu)O2 composition] has been used in dissolution tests for fuel reprocessing. The fuel tested here had a peak burnup of 0.22 at. %, with peak centerline temperatures of 19970C. Linear dissolution rates of 0.99 to 1.57 mm/h were determined for dissolver solution and fresh acid, respectively. Insoluble residues from dissolution at 950C ranged from 0.18 to 0.28% of the original fuel. From 2 to 37 wt % of the residue was recoverable plutonium. Dissolution at 290C yielded residues of 0.56 to 0.64% of the original fuel. The major elements present in the HF leached residue included Ru, Mo, and Rh. The recovered cladding from the 950C dissolution contained the equivalent of 198 mg of 239Pu per 100 g of hulls, while the cladding from the 290c experiments contained only 0.21 mg of 239Pu per 100 g of hulls. 9 references, 5 figures

  19. Burnup credit calculations on long-term disposal

    International Nuclear Information System (INIS)

    One of the considered options for handling of irradiated nuclear fuel is the final disposal in some kind of repository. This necessitates the long-term investigation of subcriticality, heat production, public dose etc. NEA WPNCS Burnup Credit Expert Group defined a new benchmark to test the codes and data used for such problems. The effect of cooling time should be investigated. This implies that the decay data and not the cross sections influence the results. Composition of 4.5 % UO2 fuel with 50 MWd/kgU is given at the assembly removal from the core. Change of composition should be evaluated for 30 values of cooling time up to 1 million years. Keff should be evaluated with these compositions for a container housing 21 fuel assemblies. Initial concentration of 115 isotopes is given. For criticality calculations the usual 'burnup credit set' is used (14 actinides and 15 fission products). Results for additional isotopes is not presented now. The investigated fuel is 17 x 17 PWR UO2 type, with 25 guide tubes. The selected cooling times covers the time intervals of the usual handling procedures around the reactors (few years storing in storage pool, transport), interim storage (hundred years), and the long time scale of disposal up to 1 million years. Results: 1) For major actinides, ORIGEN and MULTICELL based keff results are practically identical up to 1000 years, far beyond the cooling times it was intended. 2) For actinides and fission products, the agreement is excellent up to 100 years, which covers the interim storage. 3) The difference of keff results about 0.02 at 1000 years. The reason is mainly the presence of Np-237, not considered in the previous case. It is produced from Am-241 by α-decay (432 years). Compositions calculated by ORIGEN and TIBSO results the same keff values for cooling times up to 1 million years. Changes in keff with cooling time have clear physical explanation. Compositions calculated by ORIGEN and MULTICELL results the same keff

  20. The SMOPY system: Quantitative burn-up measurement monitor combining gamma spectrometry and neutron measurement for safeguards applications

    International Nuclear Information System (INIS)

    Full text: IAEA uses today FORK Detector in attended and unattended mode for the verification of spent fuels. This system uses a neutron fission chamber and an ionisation chamber to combine total neutron counting and total gamma counting. CANBERRA now proposes the new SMOPY system, which enhances performance as it combines a fission chamber and a CZT gamma spectrometer. This new measurement capability associated with a depletion code embedded in the interpretation software of the system allows a complete identification of the burn-up of any type of fuel (also MOX for example). A first prototype of the SMOPY system was developed in collaboration between AREVA NC CEA and CANBERRA for safeguards but also burn-up credit applications. This prototype has been already used by the IAEA. CANBERRA has now completed the industrialization of this system adding new functionalities. The system allows also axial scanning of the fuel assembly instead of a single point measurement. Two types of interpretation of the measurement have been developed. The first one requires the irradiation history to determine very precisely the burn-up of the fuel assembly, thus allow to verify the operator's declaration. The second method is less precise but doesn't require any data of the fuel to determine the cooling time, burn-up, and the fuel type (MOX or LEU). The new CANBERRA industrialized SMOPY system will allow new possibilities of IAEA verifications and will also permit to address new scenarios of IAEA safeguards activities. (author)

  1. Analysis of the effect of UO2 high burnup microstructure on fission gas release

    International Nuclear Information System (INIS)

    This report deals with high-burnup phenomena with relevance to fission gas release from UO2 nuclear fuel. In particular, we study how the fission gas release is affected by local buildup of fissile plutonium isotopes and fission products at the fuel pellet periphery, with subsequent formation of a characteristic high-burnup rim zone micro-structure. An important aspect of these high-burnup effects is the degradation of fuel thermal conductivity, for which prevalent models are analysed and compared with respect to their theoretical bases and supporting experimental data. Moreover, the Halden IFA-429/519.9 high-burnup experiment is analysed by use of the FRAPCON3 computer code, into which modified and extended models for fission gas release are introduced. These models account for the change in Xe/Kr-ratio of produced and released fission gas with respect to time and space. In addition, several alternative correlations for fuel thermal conductivity are implemented, and their impact on calculated fission gas release is studied. The calculated fission gas release fraction in IFA-429/519.9 strongly depends on what correlation is used for the fuel thermal conductivity, since thermal release dominates over athermal release in this particular experiment. The conducted calculations show that athermal release processes account for less than 10% of the total gas release. However, athermal release from the fuel pellet rim zone is presumably underestimated by our models. This conclusion is corroborated by comparisons between measured and calculated Xe/Kr-ratios of the released fission gas

  2. Analysis of the effect of UO{sub 2} high burnup microstructure on fission gas release

    Energy Technology Data Exchange (ETDEWEB)

    Jernkvist, Lars Olof; Massih, Ali [Quantum Technologies AB, Uppsala Science Park (Sweden)

    2002-10-01

    This report deals with high-burnup phenomena with relevance to fission gas release from UO{sub 2} nuclear fuel. In particular, we study how the fission gas release is affected by local buildup of fissile plutonium isotopes and fission products at the fuel pellet periphery, with subsequent formation of a characteristic high-burnup rim zone micro-structure. An important aspect of these high-burnup effects is the degradation of fuel thermal conductivity, for which prevalent models are analysed and compared with respect to their theoretical bases and supporting experimental data. Moreover, the Halden IFA-429/519.9 high-burnup experiment is analysed by use of the FRAPCON3 computer code, into which modified and extended models for fission gas release are introduced. These models account for the change in Xe/Kr-ratio of produced and released fission gas with respect to time and space. In addition, several alternative correlations for fuel thermal conductivity are implemented, and their impact on calculated fission gas release is studied. The calculated fission gas release fraction in IFA-429/519.9 strongly depends on what correlation is used for the fuel thermal conductivity, since thermal release dominates over athermal release in this particular experiment. The conducted calculations show that athermal release processes account for less than 10% of the total gas release. However, athermal release from the fuel pellet rim zone is presumably underestimated by our models. This conclusion is corroborated by comparisons between measured and calculated Xe/Kr-ratios of the released fission gas.

  3. Burn-up credit in criticality safety of PWR spent fuel

    International Nuclear Information System (INIS)

    Highlights: • Designing spent fuel wet storage using WIMS-5D and MCNP-5 code. • Studying fresh and burned fuel with/out absorber like “B4C and Ag–In–Cd” in racks. • Sub-criticality was confirmed for fresh and burned fuel under specific cases. • Studies for BU credit recommend increasing fuel burn-up to 60.0 GWD/MTU. • Those studies require new core structure materials, fuel composition and cladding. - Abstract: The criticality safety calculations were performed for a proposed design of a wet spent fuel storage pool. This pool will be used for the storage of spent fuel discharged from a typical pressurized water reactor (PWR). The mathematical model based on the international validated codes, WIMS-5 and MCNP-5 were used for calculating the effective multiplication factor, keff, for the spent fuel stored in the pool. The data library for the multi-group neutron microscopic cross-sections was used for the cell calculations. The keff was calculated for several changes in water density, water level, assembly pitch and burn-up with different initial fuel enrichment and new types and amounts of fixed absorbers. Also, keff was calculated for the conservative fresh fuel case. The results of the calculations confirmed that the effective multiplication factor for the spent fuel storage is sub-critical for all normal and abnormal states. The future strategy for the burn-up credit recommends increasing the fuel burn-up to a value >60.0 GWD/MTU, which requires new fuel composition and new fuel cladding material with the assessment of the effects of negative reactivity build up

  4. Review and Prioritization of Technical Issues Related to Burnup Credit for LWR Fuel

    International Nuclear Information System (INIS)

    This report has been prepared to review relevant background information and provide technical discussion that will help initiate a PIRT (Phenomena Identification and Ranking Tables) process for use of burnup credit in light-water reactor (LWR) spent fuel storage and transport cask applications. The PIRT process will be used by the NRC Office of Nuclear Regulatory Research to help prioritize and guide a coordinated program of research and as a means to obtain input/feedback from industry and other interested parties. The review and discussion in this report are based on knowledge and experience gained from work performed in the United States and other countries. Current regulatory practice and perceived industry needs are also reviewed as a background for prioritizing technical needs that will facilitate safe practice in the use of burnup credit. Relevant physics and analysis phenomenon are identified, and an assessment of their importance to burnup credit implementation is given. Finally, phenomena that need to be better understood for effective licensing, together with technical issues that require resolution, are presented and discussed in the form of a prioritization ranking and initial draft program plan

  5. Cladding metallurgy and fracture behavior during reactivity-initiated accidents at high burnup

    International Nuclear Information System (INIS)

    High-burnup fuel failure during a reactivity-initiated accident has been the subject of safety-related concern. Because of wide variations in metallurgical and simulation test conditions, it has been difficult to understand the complex failure behavior from major tests in NSRR and CABRI reactors. In this paper, a failure model based on fracture toughness and microstructural characteristics is proposed in which fracture toughness of high-burnup cladding is assumed to be sensitive to temperature and exhibit ductile-brittle transition phenomena similar to those of irradiated bcc alloys. Significant effects of temperature and shape of the pulse are predicted when a simulated test is conducted near the material's transition temperature. Temperature dependence of fracture toughness is, in turn, sensitive to cladding microstructure such as density, distribution, and orientation of hydrides, oxygen distribution in the metallic phase, and irradiation-induced damage. Because all these factors are strongly influenced by corrosion, the key parameters that influence susceptibility to failure are oxide layer thickness and hydriding behavior. Therefore, fuel failure is predicted to be strongly dependent on cladding axial location as well as on burnup. 10 figs, 21 refs

  6. Investigation of fuel rod behaviour under extended 1 burnup conditions with ROFEM fuel performance code

    Energy Technology Data Exchange (ETDEWEB)

    Horhoianu, G.; Moscalu, D.R.; Popescu, I.A

    1998-06-01

    Extending burnup is a practical way to improve the economics of water-reactor operation, via enhanced fuel utilisation and reduced spent fuel volume. A dedicated fuel behaviour modeling computer code (entitled ROFEM-1B) has been developed in order to analyse high burnup fuel performance. The code was benchmarked on an experimental data base which include a significant number of irradiation experiments performed in TRIGA-INR Pitesti research reactor. Five fuel rod behaviour during irradiation up to 50 MWd kg{sup -1}UO{sub 2}{sup -1} burnup have been analysed by the code in the framework of the first phase of the international FUMEX code exercise co-ordinated by IAEA Vienna. The input experimental data package has been prepared by IFE-OECD Halden, Norway laboratory. In the second phase of the FUMEX exercise the participants have analysed eight simplified theoretical cases. The paper presents and discuss the results obtained with ROFEM-1B in this exercise and the comparison between code predictions and experimental data.

  7. Review and Prioritization of Technical Issues Related to Burnup Credit for LWR Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Parks, C V; DeHart, M D [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wagner, John C [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2000-03-13

    This report has been prepared to review relevant background information and provide technical discussion that will help initiate a PIRT (Phenomena Identification and Ranking Tables) process for use of burnup credit in light-water reactor (LWR) spent fuel storage and transport cask applications. The PIRT process will be used by the NRC Office of Nuclear Regulatory Research to help prioritize and guide a coordinated program of research and as a means to obtain input/feedback from industry and other interested parties. The review and discussion in this report are based on knowledge and experience gained from work performed in the United States and other countries. Current regulatory practice and perceived industry needs are also reviewed as a background for prioritizing technical needs that will facilitate safe practice in the use of burnup credit. Relevant physics and analysis phenomenon are identified, and an assessment of their importance to burnup credit implementation is given. Finally, phenomena that need to be better understood for effective licensing, together with technical issues that require resolution, are presented and discussed in the form of a prioritization ranking and initial draft program plan.

  8. The impact of burn-up credit in criticality studies

    International Nuclear Information System (INIS)

    Nowadays optimization goes with everything. So French engineering firms try to demonstrate that fuel transport casks and storage pools are able to receive assemblies with higher 235U initial enrichments. Fuel Burnup distribution contributes to demonstrate it. This instruction has to elaborate a way to take credit of burnup effects on criticality safety designs. The calculation codes used are CESAR 4.21-APOLLO 1-MORET III. The assembly studied (UO2) is irradiated in a French Pressurized Water Reactor like EDF nuclear power reactor: PWR 1300 MWe, 17 x 17 array. Its initial enrichment in 235U equals 4.5%. The studies exposed in this report have evaluated the effects of: i) the 15 fission products considered in Burnup Credit (95Mo, 99Tc, 101Ru, 103Rh, 109Ag, 133Cs, 143Nd, 145Nd, 147Sm, 149Sm, 150Sm, 151Sm, 152Sm, 153Eu, 155Gd), ii) the calculated abundances corrected or not by fixed factors, iii) the choice of one cross sections library used by CESAR 4.21, iu) the zone number elected in the axial burnup distribution zoning, u) the kind of cut applied on (regular/optimized). Two axial distribution profiles are studied: one with 44 GWd/t average burnup, the other with 20 GWd/t average burnup. The second one considers a shallow control rods insertion in the upper limit of the assembly. The results show a margin in reactivity about 0.045 with consideration of the 6 most absorbent fission products (103Rh, 133Cs, 143Nd, 149Sm, 152Sm, 155Gd), and about 0.06 for all Burnup Credit fission products whole. Those results have been calculated with an average burnup of 44 GWj/t. In a conservative approach, corrective factors must be apply on the abundance of some fission products. The cross sections library used by CESAR 4.21 (BBL 4) is sufficient and gives satisfactory results. The zoning of the assembly axial distribution burnup in 9 regular zones grants a satisfying calculation time/result precision compromise. (author)

  9. Applications of ''candle'' burn-up strategy to several reactors

    International Nuclear Information System (INIS)

    The new burn-up strategy CANDLE is proposed, and the calculation procedure for its equilibrium state is presented. Using this strategy, the power shape does not change as time passes, and the excess reactivity and reactivity coefficient are constant during burn-up. No control mechanism for the burn-up reactivity is required, and power control is very easy. The reactor lifetime can be prolonged by elongating the core height. This burn-up strategy can be applied to several kinds of reactors whose maximum neutron multiplication factor changes from less than unity to more than unity, and then to less than unity. In the present paper it is applied to some fast reactors, thus requiring some fissile material such as plutonium for the nuclear ignition region of the core, but only natural uranium is required for the other region of the initial reactor and for succeeding reactors. The drift speed of the burning region for this reactor is about 4 cm/year, which is a preferable value for designing a long-life reactor. The average burn-up of the spent fuel is about 40%; that is, equivalent to 40% utilisation of the natural uranium without the reprocessing and enrichment. (author)

  10. Triton burnup measurements by neutron activation at JT-60U

    International Nuclear Information System (INIS)

    This paper describes measurements on triton burnup in a deuterium plasma by the detection of the 2.5 MeV neutrons (from DD fusion) and the 14 MeV neutrons (from DT fusion). The 2.5 MeV neutrons have been measured by fission chambers and activation of indium foils while the 14 MeV neutrons have been detected by activation of silicon, aluminum, and copper foils. The measured yields of the 2.5 MeV neutrons utilizing In foils are similar 20-40% higher than the yields obtained from fission chambers depending on what calibration factors are used. The deviation decreases with the plasma major radius (or increasing plasma volume). When the triton burnup is measured by utilizing neutron threshold reactions (En>2.5 MeV) and In foils, then systematic errors in the calibration factors cancel and the maximum deviation between the measured triton burnup for different calibration factors is reduced to similar 5%. The measurements indicate that triton burnup increases with the 14 MeV neutron yield, indicating that the relative yield of 14 MeV neutrons increases depending on the time duration of the deuterium neutral beam injection (NBI). Furthermore, the triton burnup decreases with an increased plasma major radius, indicating increased triton ripple losses, and increases with plasma current, indicating reduced banana orbit losses. (orig.)

  11. Disposal criticality analysis methodology's principal isotope burnup credit

    International Nuclear Information System (INIS)

    This paper presents the burnup credit aspects of the United States Department of Energy Yucca Mountain Project's methodology for performing criticality analyses for commercial light-water-reactor fuel. The disposal burnup credit methodology uses a 'principal isotope' model, which takes credit for the reduced reactivity associated with the build-up of the primary principal actinides and fission products in irradiated fuel. Burnup credit is important to the disposal criticality analysis methodology and to the design of commercial fuel waste packages. The burnup credit methodology developed for disposal of irradiated commercial nuclear fuel can also be applied to storage and transportation of irradiated commercial nuclear fuel. For all applications a series of loading curves are developed using a best estimate methodology and depending on the application, an additional administrative safety margin may be applied. The burnup credit methodology better represents the 'true' reactivity of the irradiated fuel configuration, and hence the real safety margin, than do evaluations using the 'fresh fuel' assumption. (author)

  12. The commercial and technological impact of high burnup

    International Nuclear Information System (INIS)

    Deregulation of electricity markets is driving prices downward. Consequently utilities continue to demand the minimization of electrical production costs. Fuel cycle cost savings are valued as a strong contributor, although directly representing only about one third of electricity generating costs. Burnups consistent with the current enrichment limit of 5 w/0 will be required. Significant progress has already been achieved by Siemens in meeting the demands of utilities for increased fuel burnup. The technological challenges imposed are mainly related to corrosion and hydrogen pickup of the clad, the properties of the fuel and the dimensional changes of the structure. Clad materials with increased corrosion resistance have been developed. The high burnup behaviour of the fuel has been extensively investigated and the decrease of thermal conductivity, the rim effect and the increase of fission gas release can be described, with good accuracy, in fuel rod computer codes. Advanced statistical design methods have been developed and introduced. In summary, most of the questions about the fuel operational behaviour and reliability in the high burnup range have been solved or the solutions are visible. The main licensing challenges for high burnup fuel are currently seen for accident condition analyses, especially for RIA and LOCA. (author)

  13. Burnup credit in nuclear waste transport: An economic analysis

    International Nuclear Information System (INIS)

    The US DOE is responsible for transporting nuclear spent fuel from commercial reactors to monitored retrievable storage (MRS) facilities and/or to repositories. Current plans call for approximately 110,000 metric tons uranium (MTU) to be transported over approximately 40 years beginning in 1998. Because of the large volume of spent fuel to be transported, new generations of spent fuel transportation casks are being planned. These casks will embody the latest technology and will be designated to accommodate the spent fuel in a way that maximizes the overall efficiency of the cask. In planning for the new generation of transport casks, the DOE is investigating the possibility of tailoring the cask design for the extent to which spent fuel has been used in the reactors, or, for spent fuel burnup. Granting design credit for burnup would allow one to fabricate casks with relatively larger capacities than would be possible otherwise. The remainder of the paper discusses the economic implications of using burnup credit in cask design, discusses the approach used in analyzing the economics of burnup credit, describes the results of the analysis, and offers some conclusions about the economic value of the burnup credit option

  14. Burnup monitoring of VVER-440 spent fuel assemblies

    International Nuclear Information System (INIS)

    This paper reports on the results of the experiments performed on spent VVER-440 fuel assemblies at the Paks Nuclear Power Plant (NPP), Hungary. The fuel assemblies submerged in the service pit were examined by high-resolution gamma spectrometry (HRGS). The assemblies were moved to the front of a collimator tube built in the concrete wall of the pit in the reactor block at the NPP, and lifted down and up under water for scanning by the refueling machine. The HPGe detector was placed behind the collimator in an outside staircase. The measurements involved scanning of the assemblies along their length of all the 6 sides, at 5-12 measurement positions side by side. Axial and azimuthal burnup profiles were taken in this way. Assembly groups for measurements were selected according to their burnup (10–50 GWd/tU) and special positions (e. g. control assembly, neighbour of control assembly). Burnup differences were well observable between assembly sides looking towards the center of the core and opposite directions. Also, burnup profiles were different for control assemblies and normal (working) fuel assemblies. The ratio of the measured activities of Cs-134 and Cs-137 was evaluated by relative efficiency (intrinsic) calibration. Measurement uncertainty is around 3 %. Taking into account irradiation history and cooling time (i. e.the time elapsed since the discharge of the assembly out of the core), the activity ratio Cs-134/Cs-137 shows good correlation with the declared burnup.

  15. Fuel cycle economical improvement by reaching high fuel burnup

    International Nuclear Information System (INIS)

    Improvements of fuel utilization in the light water reactors, burnup increase have led to a necessity to revise strategic approaches of the fuel cycle development. Different trends of the fuel cycle development are necessary to consider in accordance with the type of reactors used, the uranium market and other features that correspond to the nuclear and economic aspects of the fuel cycle. The fuel burnup step-by-step extension Program that successfully are being realized by the leading, firms - fuel manufacturers and the research centres allow to say that there are no serious technical obstacles for licensing in the near future of water cooling reactors fuel rod burnup (average) limit to 65-70 MWd/kgU and fuel assembly (average) limit to (60-65) MWd/kgU. The operating experience of Ukrainian NPPs with WWER-1000 is 130 reactor * years. At the beginning of 1999, a total quantity of the fuel FA discharged during all time of operation of 11 reactors was 5819 (110 fuel cycles). Economical improvement is reached by increase of fuel burn-up by using of some FA of 3 fuel cycles design in 4th fuel loading cycle. Fuel reliability is satisfactory. The further improvement of FA is necessary, that will allow to reduce the front-end fuel cycle cost (specific natural uranium expenditure), to reduce spent fuel amount and, respectively, the fuel cycle back end costs, and to increase burn-up of the fuel. (author)

  16. Achieving High Burnup Targets With Mox Fuels: Techno Economic Implications

    International Nuclear Information System (INIS)

    For a typical MOX fuelled SFR of power reactor size, Implications due to higher burnup have been quantified. Advantages: – Improvement in the economy is seen upto 200 GWd/ t; Disadvantages: – Design changes > 150 GWd/ t bu; – Need for 8/ 16 more fuel SA at 150/ 200 GWd/ t bu; – Higher enrichment of B4C in CSR/ DSR at higher bu; – Reduction in LHR may be required at higher bu; – Structural material changes beyond 150 GWd/ t bu; – Reprocessing point of view-Sp Activity & Decay heat increase. Need for R & D is a must before increasing burnup. bu- refers burnup. Efforts to increase MOX fuel burnup beyond 200 GWd/ t may not be highly lucrative; • MOX fuelled FBR would be restricted to two or four further reactors; • Imported MOX fuelled FBRs may be considered; • India looks towards launching metal fuel FBRs in the future. – Due to high Breeding Ratio; – High burnup capability

  17. Miniature neutron source reactor burnup calculations using IRBURN code system

    International Nuclear Information System (INIS)

    Highlights: ► Fuel consumption of Iranian MNSR during 15 years of operation has been investigated. ► Calculations have been performed by the IRBURN code. Precision and accuracy of the implemented model has been validated. ► Our study shows the consumption rate of MNSR is about 1%. - Abstract: Fuel consumption of Iranian miniature neutron source reactor (MNSR) during 15 years of operation has been investigated. Reactor core neutronic parameters such as flux and power distributions, control rod worth and effective multiplication factor at BOL and after 15 years of irradiation has been calculated. The Monte Carlo-based depletion code system IRBURN has been used for studying the reactor core neutronic parameters as well as the isotopic inventory of the fuel during burnup. The precision and accuracy of the implemented model has been verified via validation the results for neutronic parameters in the MNSR final safety analysis report. The results show that keff decreases from 1.0034 to 0.9897 and the total U-235 consumption in the core is about 13.669 g after 15 years of operational time. Finally, our studying shows the consumption rate of MNSR is about 1%.

  18. Fuel cycle cost considerations of increased discharge burnups

    International Nuclear Information System (INIS)

    Evaluations are presented that indicate the attainment of increased discharge burnups in light water reactors will depend on economic factors particular to individual operators. In addition to pure resource conserving effects and assuming continued reliable fuel performance, a substantial economic incentive must exist to justify the longer operating times necessary to achieve higher burnups. Whether such incentive will exist or not will depend on relative price levels of all fuel cycle cost components, utility operating practices, and resolution of uncertainties associated with the back-end of the fuel cycle. It is concluded that implementation of increased burnups will continue at a graduated pace similar to past experience, rather than finding universal acceptance of particular increased levels at any particular time

  19. Mechanical Property Evaluation of High Burnup PHWR Fuel Clads

    International Nuclear Information System (INIS)

    Assurance of clad integrity is of vital importance for the safe and reliable extension of fuel burnup. In order to study the effect of extended burnup of 15,000 MW∙d/tU on the performance of Pressurised Heavy Water Reactor (PHWR) fuel bundles of 19-element design, a couple of bundles were irradiated in Indian PHWR. The tensile property of irradiated cladding from one such bundle was evaluated using the ring tension test method. Using a similar method, claddings of mixed oxide (MOX) fuel elements irradiated in the pressurized water loop (PWL) of CIRUS to a burnup of 10,000 MW∙d/THM were tested. The tests were carried out both at ambient temperature and at 300°C. The paper will describe the test procedure, results generated and discuss the findings. (author)

  20. Study on the conservative factors for burnup credit criticality calculation

    International Nuclear Information System (INIS)

    When applies the burnup credit technology to perform criticality safety analysis for spent fuel storage or transportation problems, it is important for one to confirm that all the conditions adopted are adequate to cover the severest conditions that may encounter in the engineering applications. Taking the OECD/NEA burnup credit criticality benchmarks as sample problems, we study the effect of some important factors that may affect the conservatism of' the results for spent fuel system criticality safety analysis. Effects caused by different nuclides credit strategy, different cooling time and axial burnup profile are studied by use of the STARBUCS module of SCALE5. 1 software package, and related conclusions about the conservatism of these factors are drawn. (authors)

  1. High-burnup fuel and the impact on fuel management

    International Nuclear Information System (INIS)

    Competition in the electric utility industry has forced utilities to reduce cost. For a nuclear utility, this means a reduction of both the nuclear fuel cost and the operating and maintenance cost. To this extent, utilities are pursuing longer cycles. To reduce the nuclear fuel cost, utilities are trying to reduce batch size while increasing cycle length. Yankee Atomic Electric Company has performed a number of fuel cycle studies to optimize both batch size and cycle length; however, certain burnup-related constraints are encountered. As a result of these circumstances, longer fuel cycles make it increasingly difficult to simultaneously meet the burnup-related fuel design constraints and the technical specification limits. Longer cycles require fuel assemblies to operate for longer times at relatively high power. If utilities continue to pursue longer cycles to help reduce nuclear fuel cost, changes may need to be made to existing fuel burnup limits

  2. Validation issues for depletion and criticality analysis in burnup credit

    International Nuclear Information System (INIS)

    This paper reviews validation issues associated with implementation of burnup credit in transport, dry storage, and disposal. The issues discussed are ones that have been identified by one or more constituents of the United States technical community (national laboratories, licensees, and regulators) that have been exploring the use of burnup credit. There is not necessarily agreement on the importance of the various issues, which sometimes is what creates the issue. The broad issues relate to the paucity of available experimental data (radiochemical assays and critical experiments) covering the full range and characteristics of spent nuclear fuel in away-from-reactor systems. The paper will also introduce recent efforts initiated at Oak Ridge National Laboratory (ORNL) to provide technical information that can help better assess the value of different experiments. The focus of the paper is on experience with validation issues related to use of burnup credit for transport and dry storage applications. (author)

  3. An empirical formulation to describe the evolution of the high burnup structure

    International Nuclear Information System (INIS)

    In the present work the behavior of fuel pellets for LWR power reactors in the high burnup range (average burnup higher than about 45 MWd/kgU) is analyzed. For extended irradiation periods, a considerable Pu concentration is reached in the pellet periphery (rim zone), that contributes to local burnup. Gradually, a new microstructure develops in that ring, characterized by small grains and large pores as compared with those of the original material. In this region Xe is absent from the solid lattice (although it continues to be dissolved in the rest of the pellet). The porous microstructure in the pellet edge causes local changes in the mechanical and thermal properties, thus affecting the overall fuel behavior. It is generally accepted that the evolution of porosity in the high burnup structure (HBS) is determinant of the retention capacity of the fission gases rejected from the fuel matrix. This is the reason why, during the latest years a considerable effort has been devoted to characterizing the parameters that influence porosity. Although the mechanisms governing the microstructural transformation have not been completely elucidated yet, some empirical expressions can be given, and this is the intention of the present work, for representing the main physical parameters. Starting from several works published in the open literature, some mathematical expressions were developed to describe the behavior and progress of porosity at local burnup values ranging from 60 to 300 MWd/kgU. The analysis includes the interactions of different orders between pores, the growth of the pore radius by capturing vacancies, the evolution of porosity, pore number density and overpressure within the closed pores, the inventory of fission gas dissolved in the matrix and retained in the pores. The model is mathematically expressed by a system of non-linear differential equations. In the present work, results of this calculation scheme are compared with experimental data available in

  4. An empirical formulation to describe the evolution of the high burnup structure

    Energy Technology Data Exchange (ETDEWEB)

    Lemes, Martín; Soba, Alejandro; Denis, Alicia

    2015-01-15

    In the present work the behavior of fuel pellets for LWR power reactors in the high burnup range (average burnup higher than about 45 MWd/kgU) is analyzed. For extended irradiation periods, a considerable Pu concentration is reached in the pellet periphery (rim zone), that contributes to local burnup. Gradually, a new microstructure develops in that ring, characterized by small grains and large pores as compared with those of the original material. In this region Xe is absent from the solid lattice (although it continues to be dissolved in the rest of the pellet). The porous microstructure in the pellet edge causes local changes in the mechanical and thermal properties, thus affecting the overall fuel behavior. It is generally accepted that the evolution of porosity in the high burnup structure (HBS) is determinant of the retention capacity of the fission gases rejected from the fuel matrix. This is the reason why, during the latest years a considerable effort has been devoted to characterizing the parameters that influence porosity. Although the mechanisms governing the microstructural transformation have not been completely elucidated yet, some empirical expressions can be given, and this is the intention of the present work, for representing the main physical parameters. Starting from several works published in the open literature, some mathematical expressions were developed to describe the behavior and progress of porosity at local burnup values ranging from 60 to 300 MWd/kgU. The analysis includes the interactions of different orders between pores, the growth of the pore radius by capturing vacancies, the evolution of porosity, pore number density and overpressure within the closed pores, the inventory of fission gas dissolved in the matrix and retained in the pores. The model is mathematically expressed by a system of non-linear differential equations. In the present work, results of this calculation scheme are compared with experimental data available in

  5. Strategies for Application of Isotopic Uncertainties in Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Gauld, I.C.

    2002-12-23

    Uncertainties in the predicted isotopic concentrations in spent nuclear fuel represent one of the largest sources of overall uncertainty in criticality calculations that use burnup credit. The methods used to propagate the uncertainties in the calculated nuclide concentrations to the uncertainty in the predicted neutron multiplication factor (k{sub eff}) of the system can have a significant effect on the uncertainty in the safety margin in criticality calculations and ultimately affect the potential capacity of spent fuel transport and storage casks employing burnup credit. Methods that can provide a more accurate and realistic estimate of the uncertainty may enable increased spent fuel cask capacity and fewer casks needing to be transported, thereby reducing regulatory burden on licensee while maintaining safety for transporting spent fuel. This report surveys several different best-estimate strategies for considering the effects of nuclide uncertainties in burnup-credit analyses. The potential benefits of these strategies are illustrated for a prototypical burnup-credit cask design. The subcritical margin estimated using best-estimate methods is discussed in comparison to the margin estimated using conventional bounding methods of uncertainty propagation. To quantify the comparison, each of the strategies for estimating uncertainty has been performed using a common database of spent fuel isotopic assay measurements for pressurized-light-water reactor fuels and predicted nuclide concentrations obtained using the current version of the SCALE code system. The experimental database applied in this study has been significantly expanded to include new high-enrichment and high-burnup spent fuel assay data recently published for a wide range of important burnup-credit actinides and fission products. Expanded rare earth fission-product measurements performed at the Khlopin Radium Institute in Russia that contain the only known publicly-available measurement for {sup 103

  6. Economics of VVER Fuel Cycles Leading to High Discharge Burnup

    International Nuclear Information System (INIS)

    Economic characteristics of equilibrium VVER fuel cycles leading to high discharge burnup are investigated by supposing two scenarios named optimistic and pessimistic. The optimistic and pessimistic terms are used in the sense whether the high burnup fuel cycles are economically advantageous or the increasing enrichment cost can increase the specific fuel cycle cost above a certain discharge burnup value. Therefore in case of the optimistic scenario, maximum fabrication and back end costs and minimum enrichment and raw uranium costs were applied, while in case of the pessimistic scenario vice-versa. The applied costs are detailed in Table 1. Table1 Cost data of the two different scenarios. Concerning the transport and storage during the front end fuel cycle, it was assumed that application of burnable poison solves the criticality problems caused by the increased enrichment. By using the advantage of the burnup credit, the subcriticality of the spent fuel storage and transport devices can also be proved. Large reserve in the biological shielding is supposed. According to the above argumentation, fixed cost of the front and back end fuel cycle was used in the calculations, except the enrichment, but a 700 $/pin extra fabrication cost of the burnable poison was taken into account. Instead of fixed batch fraction, fixed cycle length was assumed which is advantageous for maximizing the discharge burnup and for minimizing the burnable poison extra cost but disadvantageous concerning the availability factor, which is constant in the given calculations. Beside the economic characteristics, the feasibility of the cycles are investigated from the point of view of the most important safety related parameters like reactivity coefficients and shut down margin. The figure below shows the burnup dependent fuel cycle cost for the above two scenarios. (author)

  7. Burnup credit implementation plan and preparation work at JAERI

    International Nuclear Information System (INIS)

    Application of the burnup credit concept is considered to be very effective to the design of spent fuel transport and storage facilities. This technology is all the more important when considering construction of the intermediate spent fuel storage facility, which is to be commissioned by 2010 due to increasing amount of accumulated spent fuel in Japan. Until reprocessing and recycling all the spent fuel arising, they will be stored as an energy stockpile until such time as they can be reprocessed. On the other hand, the burnup credit has been partly taken into account for the spent fuel management at Rokkasho Reprocessing Plant, which is to be commissioned in 2005. They have just finished the calibration tests for their burnup monitor with initially accepted several spent fuel assemblies. Because this monitoring system is employed with highly conservative safety margin, it is considered necessary to develop the more rational and simplified method to confirm burnup of spent fuel. A research program has been instituted to improve the present method employed at the spent fuel management system for the Spent Fuel Receiving and Storage Pool of Rokkasho Reprocessing Plant. This program is jointly performed by Japan Nuclear Fuel Limited (JNFL) and JAERI.This presentation describes the current status of spent fuel accumulation discharged from PWR and BWR in Japan and the recent incentive to introduce burnup credit into design of spent fuel storage and transport facilities. This also includes the content of the joint research program initiated by JNFL and JAERI. The relevant study has been continued at JAERI. The results by these research programs will be included in the Burnup Credit Guide Original Version compiled by JAERI. (author)

  8. WWER fuel behaviour and characteristics at high burnup

    International Nuclear Information System (INIS)

    The increase of fuel burnup in fuel rods is a task that provides a considerable cost reduction of WWER fuel cycle in case of its solution. Investigations on fuel and cladding behaviour and change in fuel characteristics under irradiation are carried out in the Russian Federation for standard and as well as for experimental fuel rods to validate the reliable and safe operation of the fuel rods at high burnups. The paper presents the results of examinations on cracking, dimensional, structural and density changes of fuel pellets as well as the results of examination on corrosion and mechanical properties of WWER-440 and WWER-1000 fuel rod claddings. (author)

  9. CB2 result evaluation (VVER-440 burnup credit benchmark)

    International Nuclear Information System (INIS)

    The second portion of the four-piece international calculational benchmark on the VVER burnup credit (CB2) prepared in the collaboration with the OECD/NEA/NSC Burnup Credit Criticality Benchmarks Working Group and proposed to the AER research community has been evaluated. The evaluated results of calculations performed by analysts from Cuba, the Czech Republic, Finland, Germany, Russia, Slovakia and the United Kingdom are presented. The goal of this study is to compare isotopic concentrations calculated by the participants using various codes and libraries for depletion of the VVER-440 fuel pin cell. No measured values were available for the comparison. (author)

  10. Consequences of the increase of burnup on the fuel

    International Nuclear Information System (INIS)

    The examinations carried out on the FRAGEMA fuel of EDF reactors show its good behavior in service. The results of research and development programs developed by EDF, FGA and the CEA show that this fuel can be irradiated up to a high burnup, and allow to point out the axies of research to improve still the performance of the product in a more and more soliciting environment (increase of power and burnup coupled with load following). Among the solutions considered, there are the design and fabrication adjustments (geometry, initial pressurization), more fundamental changes concerning fuel cans and fuel pellets, which need still research and development programs

  11. Perturbation and sensitivity theory for reactor burnup analysis

    International Nuclear Information System (INIS)

    Perturbation theory is developed for the nonlinear burnup equations describing the time-dependent behavior of the neutron and nuclide fields in a reactor core. General aspects of adjoint equations for nonlinear systems are first discussed and then various approximations to the burnup equations are rigorously derived and their areas for application presented. In particular, the concept of coupled neutron/nuclide fields (in which perturbations in either the neutron or nuclide field are allowed to influence the behavior of the other field) is contrasted to the uncoupled approximation

  12. Performance of fast reactor irradiated fueled emitters at goal burnup

    International Nuclear Information System (INIS)

    UO2-fueled W emitters were examined that had been irradiated to goal burnups of approximately 4 at.% at emitter surface temperatures to 1820 K in a fast reactor to establish their performance for use in thermionic reactors with power levels from tens of kilowatts to multimegawatts. The examinations provided first-time data on structural integrity, dimensional stability, component compatibility, and fuel and fission product behavior. The data are consistent with similar measurements at approximately 2 at.% burnup with the exception of one emitter which breached the W during irradiation

  13. Size Design of CdZnTe Detector Shield for Measuring Burnup of Spent Fuel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>It is important to measure the burnup of spent fuel for nuclear safeguards, burnup credit and critical safety in spent-fuel reprocessing process. The purpose of this work is designing a portable device to

  14. Fuel Modelling at Extended Burnup (Fumex-II). Report of a Coordinated Research Project 2002-2007

    International Nuclear Information System (INIS)

    to fuel licensing. This report describes the results of the coordinated research project on fuel modelling at extended burnup (FUMEX-II). This programme was initiated in 2000 and completed in 2006. It followed previous programmes on fuel modelling, D-COM which was conducted between 1982 and 1984, and the FUMEX programme which was conducted between 1993 and 1996. The participants used a mixture of data, derived from actual irradiation histories, in particular those with PIE measurements from high burnup commercial and experimental fuels, combined with idealized power histories intended to represent possible future extended dwell, commercial irradiations, to test code capabilities at high burnup. All participants have carried out calculations on the six priority cases selected from the 27 cases identified to them at the first research coordination meeting (RCM). At the second RCM, three further priority cases were identified and have been modelled. These priority cases have been chosen as the best available to help determine which of the many high burnup models used in the codes best reflect reality. The participants are using the remaining cases for verification and validation purposes as well as inter-code comparisons. The codes participating in the exercise have been developed for a wide variety of purposes, including predictions for fuel operation in PWR, BWR, WWER, the pressurized HWR type, CANDU and other reactor types. They are used as development tools as well as for routine licensing calculations, where code configuration is strictly controlled.

  15. The dependence of the global neutronic parameters on the fuel burnup for CANDU SEU43 core

    Energy Technology Data Exchange (ETDEWEB)

    Balaceanu, V. [Institute for Nuclear Research, Pitesti (Romania); Pavelescu, M. [Academy of Romanian Scientists, Bucharest (Romania)

    2010-05-15

    In order to reduce the total fuel costs for the CANDU reactors, mainly by extending the fuel burnup limits, some fuel bundle concepts have been developed in different CANDU owner countries. Therefore, in our Institute the SEU43 (Slightly Enriched Uranium with 43 fuel elements) project was started in early '90s. The neutronic behavior analysis of the CANDU core with SEU43 fuel was an important step in our project design. The objective of this paper is to highline an analysis of the neutronic behavior of the CANDU SEU43 core with the fuel burnup. More exactly, the study refers to the dependence of some global neutronic parameters, mainly the reactivity, on the fuel burnup. Two types of CANDU core were taken into consideration: reference core (without any reactivity devices) and perturbed core (with a strong reactivity system inserted). The considered reactivity system is the Mechanical Control Absorber (MCA) one. The performed parameters are: k{sub eff.} values, the MCA reactivity worth and flux distributions. The fuel bundles in the core are SEU43, with the fuel enrichment in U{sup 235} of 0.96% and at nominal power. For the fuel burnup the values are: 0.00 GWd/tU (fresh fuel); 8.00 GWd/tU and 25.00 GWd/tU. For reaching this objective, a global neutronic calculation system named WIMSPIJXYZ LEGENTR is used. Starting from a 69-groups ENDF/B-V based library, this system uses three transport codes: (1) the standard lattice-cell code WIMS, for generating macroscopic cross sections in supercell option and also for burnup calculations; (2) the PIJXYZ code for 3D simulation of the MCA reactivity devices and the 3D correction of the macroscopic cross sections; (3) the LEGENTR 3D transport code for estimating global neutronic parameters (CANDU core). The analysis of the neutronic parameters consists of comparing the obtained results with the similar results calculated with the DRAGON and DIREN codes. This comparison shows a good agreement between these results. (orig.)

  16. ALEPH 1.1.2: A Monte Carlo burn-up code

    International Nuclear Information System (INIS)

    In the last 40 years, Monte Carlo particle transport has been applied to a multitude of problems such as shielding and medical applications, to various types of nuclear reactors, . . . The success of the Monte Carlo method is mainly based on its broad application area, on its ability to handle nuclear data not only in its most basic but also most complex form (namely continuous energy cross sections, complex interaction laws, detailed energy-angle correlations, multi-particle physics, . . . ), on its capability of modeling geometries from simple 1D to complex 3D, . . . There is also a current trend in Monte Carlo applications toward high detail 3D calculations (for instance voxel-based medical applications), something for which deterministic codes are neither suited nor performant as to computational time and precision. Apart from all these fields where Monte Carlo particle transport has been applied successfully, there is at least one area where Monte Carlo has had limited success, namely burn-up and activation calculations where the time parameter is added to the problem. The concept of Monte Carlo burn-up consists of coupling a Monte Carlo code to a burn-up module to improve the accuracy of depletion and activation calculations. For every time step the Monte Carlo code will provide reaction rates to the burn-up module which will return new material compositions to the Monte Carlo code. So if static Monte Carlo particle transport is slow, then Monte Carlo particle transport with burn-up will be even slower as calculations have to be performed for every time step in the problem. The computational issues to perform accurate Monte Carlo calculations are however continuously reduced due to improvements made in the basic Monte Carlo algorithms, due to the development of variance reduction techniques and due to developments in computer architecture (more powerful processors, the so-called brute force approach through parallel processors and networked systems

  17. Using ORIGEN and MCNP to calculate reactor criticals and burnup effects

    International Nuclear Information System (INIS)

    The purpose of this modeling effort was to verify the applicability of using ORIGEN-S and MCNP to the analysis of spent fuel of various enrichments and burnups. By comparing the results of criticality studies using MCNP and ORIGEN-S with the measured keff of 1.0, the suitability of the coupled ORIGEN-S/ MCNP package was determined. This study presents the results of the benchmark modeling of five pressurized water reactor (PWR) critical configurations. For these analyses, a combination of ORIGEN-S and MCNP was used to analyze the fuel depletion and criticality of five power reactor core configuration

  18. Validation of IRBURN calculation code system through burnup benchmark analysis

    International Nuclear Information System (INIS)

    Assessment of the reactor fuel composition during the irradiation time, fuel management and criticality safety analysis require the utilization of a validated burnup calculation code system. In this work a newly developed burnup calculation code system, IRBURN, is introduced for the estimation and analysis of the fuel burnup in LWR reactors. IRBURN provides the full capabilities of the Monte Carlo neutron and photon transport code MCNP4C as well as the versatile code for calculating the buildup and decay of nuclides in nuclear materials, ORIGEN2.1, along with other data processing and linking subroutines. This code has the capability of using different depletion calculation schemes. The accuracy and precision of the implemented algorithms to estimate the eigenvalue and spent fuel isotope concentrations are demonstrated by validation against reliable benchmark problem analyses. A comparison of IRBURN results with experimental data demonstrates that the code predicts the spent fuel concentrations within 10% accuracy. Furthermore, standard deviations of the average values for isotopic concentrations including IRBURN data decreases considerably in comparison with the same parameter excluding IRBURN results, except for a few sets of isotopes. The eigenvalue comparison between our results and the benchmark problems shows a good prediction of the k-inf values during the entire burnup history with the maximum difference of 1% at 100 MWd/kgU.

  19. PWR fuel performance and burnup extension programme in Japan

    International Nuclear Information System (INIS)

    Since the first PWR nuclear power plant Mihama Unit 1 initiated commercial operation in 1970, Japanese utilities and manufacturers have expended much of their resources and efforts on improving the technology of PWRs. The results can already be seen by the significantly improved performance of the PWR plants now in operation. Mitsubishi Heavy Industries, Ltd supplied the nuclear fuel assemblies, which now amount to almost 5000. Although some trouble with fuel was experienced in the beginning, the progressive efforts made to improve the fuel design and manufacturing technology have resulted in the superior performance of Mitsubishi fuels. Since fuel of current design should comply with the limitation set in Japan for a maximum discharged fuel assembly average burnup of less than 39,000 MW·d/t, the maximum burnup is now around 37,000 MW·d/t. However, an increase in this burnup limitation has been strongly requested by Japanese utilities in order to make nuclear power more economic and thus more competitive with other power generation methods. A summary is given of the design improvements made on Mitsubishi fuel, as well as demonstration programmes of current design fuel to prove its superior reliability and to prepare the database for a future extension of burnup. (author)

  20. Impacts of the use of spent nuclear fuel burnup credit on DOE advanced technology legal weight truck cask GA-4 fleet size

    International Nuclear Information System (INIS)

    The object of this paper is to study the impact of full and partial spent fuel burnup credit on the capacity of the Legal Weight Truck Spent Fuel Shipping Cask (GA-4) and to determine the numbers of additional spent fuel assemblies which could be accommodated as a result. The scope of the study comprised performing nuclear criticality safety scoping calculations using the SCALE-PC software package and the 1993 spent fuel database to determine logistics for number of spent fuel assemblies to be shipped. The results of the study indicate that more capacity than 2 or 3 pressurized water reactor assemblies could be gained for GA-4 casks when burnup credit is considered. Reduction in GA-4 fleet size and number of shipments are expected to result from the acceptance of spent fuel burnup credit

  1. Need for higher fuel burnup at the Hatch Plant

    International Nuclear Information System (INIS)

    Hatch is a BWR 4 and has been in operation for some time. The first unit became commercial about 1975. Obtaining higher burnups, or higher average discharge exposures, is nothing new at Hatch. Since we have started, the discharge exposure of the plant has increased. Now, of course, we are not approaching the numbers currently being discussed but, the average discharge exposure has increased from around 20,000 MWD/MTU in the early to mid-1980s to 34,000 MWD/MTU in 1994, I am talking about batch average values. There are also peak bundle and peak rod values. You will have to make the conversions if you think in one way or the other because I am talking in batch averages. During Hatch's operating history we have had some problems with fuel failure. Higher burnup fuel raises a concern about how much fuel failure you are going to have. Fuel failure is, of course, an economic issue with us. Back in the early 1980s, we had a problem with crud-induced localized corrosion, known as CILC. We have gotten over that, but we had some times when it was up around 27 fuel failures a year. That is not a pleasant time to live through because it is not what you want from an economic viewpoint or any other. We have gotten that down. We have had some fuel failures recently, but they have not been related to fuel burnup or to corrosion. In fact, the number of failures has decreased from the early 1980s to the 90s even though burnup increased during that time. The fuel failures are more debris-related-type failures. In addition to increasing burnups, utilities are actively evaluating or have already incorporated power uprate and longer fuel cycles (e.g., 2-year cycles). The goal is to balance out the higher power density, longer cycles, higher burnup, and to have no leakers. Why do we as an industry want to have higher burnup fuel? That is what I want to tell you a little bit about

  2. Need for higher fuel burnup at the Hatch Plant

    Energy Technology Data Exchange (ETDEWEB)

    Beckhman, J.T. [Georgia Power Co., Birmingham, AL (United States)

    1996-03-01

    Hatch is a BWR 4 and has been in operation for some time. The first unit became commercial about 1975. Obtaining higher burnups, or higher average discharge exposures, is nothing new at Hatch. Since we have started, the discharge exposure of the plant has increased. Now, of course, we are not approaching the numbers currently being discussed but, the average discharge exposure has increased from around 20,000 MWD/MTU in the early to mid-1980s to 34,000 MWD/MTU in 1994, I am talking about batch average values. There are also peak bundle and peak rod values. You will have to make the conversions if you think in one way or the other because I am talking in batch averages. During Hatch`s operating history we have had some problems with fuel failure. Higher burnup fuel raises a concern about how much fuel failure you are going to have. Fuel failure is, of course, an economic issue with us. Back in the early 1980s, we had a problem with crud-induced localized corrosion, known as CILC. We have gotten over that, but we had some times when it was up around 27 fuel failures a year. That is not a pleasant time to live through because it is not what you want from an economic viewpoint or any other. We have gotten that down. We have had some fuel failures recently, but they have not been related to fuel burnup or to corrosion. In fact, the number of failures has decreased from the early 1980s to the 90s even though burnup increased during that time. The fuel failures are more debris-related-type failures. In addition to increasing burnups, utilities are actively evaluating or have already incorporated power uprate and longer fuel cycles (e.g., 2-year cycles). The goal is to balance out the higher power density, longer cycles, higher burnup, and to have no leakers. Why do we as an industry want to have higher burnup fuel? That is what I want to tell you a little bit about.

  3. The measurement of burn-up level in HTR-10

    International Nuclear Information System (INIS)

    Without shutting down the HTR-10, each fuel ball unloaded from the core must be measured. Judgment is made whether the desired burn-up level is reached. A fuel ball should be reloaded into the core when its burn-up level is less than 72,000 Mwd/tu. Since the measurement of burn-up level for a ball containing 0.9g 235U at most must be nondestructive, a γ spectroscopy method with high-resolution for the fission product 137Cs is typically chosen. However, because the HTR-10 is not provided with any kind of external calibrating source, it is impossible to achieve the goal that the accuracy of measurement is up to 2% by the above method. The method measuring burn-up levels without external source uses the ratio of 134Cs to 137Cs and gets bogged down in something unusual that both successful and failed examples have alternated in publications. The inner calibrating method is proposed in the paper. It is necessary to solve the following problems: a) The simple relationship between 134Cs/137Cs and burn-up level is held only in a specified range, but not for a spent ball. b) The migration must be ignored. c) How to deal with the neutron spectrum within HTR-10? The paper also introduces such useful method as neutron spectrum correction, picking out the graphite balls and extraction of 137Cs from γ spectra of reactor. The appropriate instrumentation that discriminates out the spent fuel balls and picks out the graphite balls is described. (author)

  4. Investigation of several methods to set burnup for criticality safety assessment of spent fuel transport casks

    International Nuclear Information System (INIS)

    Several currently available methods to set burnup for depletion calculation are reviewed and discussed about its adequacy for criticality safety assessment of spent fuel (SF) transport casks by taking burnup credit (BC) into accounts. Various errors associated with BC criticality analyses are evaluated and converted to equivalent burnup to compare each other. Methods are proposed to use some reduced burnups equivalent to compensation of these associated errors. Effects of assumption of axial burnup distribution on criticality calculation and irradiation history parameter variation on depletion calculation are evaluated with OECD/NEA BC international benchmark data. (author)

  5. Evaluation technology for burnup and generated amount of plutonium by measurement of Xenon isotopic ratio in dissolver off-gas at reprocessing facility (Joint research)

    International Nuclear Information System (INIS)

    The amount of Pu in the spent fuel was evaluated from Xe isotopic ratio in off-gas in reprocessing facility, is related to burnup. Six batches of dissolver off-gas (DOG) at spent fuel dissolution process were sampled from the main stack in Tokai Reprocessing Plant (TRP) during BWR fuel (approx. 30GWD/MTU) reprocessing campaign. Xenon isotopic ratio was determined with Gas Chromatography/Mass Spectrometry. Burnup and generated amount of Pu were evaluated with Noble Gas Environmental Monitoring Application code (NOVA), developed by Los Alamos National Laboratory. Inferred burnup evaluated by Xe isotopic measurements and NOVA were in good agreement with those of the declared burnup in the range from -3.8% to 7.1%. Also, the inferred amount of Pu in spent fuel was in good agreed with those of the declared amount of Pu calculated by ORIGEN code in the range from -0.9% to 4.7%. The evaluation technique is applicable for both burnup credit to achieve efficient criticality safety control and a new measurement method for safeguards inspection. (author)

  6. Burnup measurement and its relation to the amounts of 149Sm and 150Sm and the ratios of 154Eu/155Eu and 154Eu/152Eu in spent fuel of a power reactor

    International Nuclear Information System (INIS)

    The amounts of 148Nd, 149Sm and 150Sm by the isotope dilution mass spectrography and the ratios of 154Eu/155Eu and 154Eu/152Eu by the γ-spectrography in the spent fuel of a power reactor have been measured. The amouns of 150Sm is directly proportional to that of 148Nd and burnup can be determined by 150Sm. Relation of the ratios of 154Eu/155Eu with respect to the burnup is plotted

  7. Numerical study of fuel–clad mechanical interaction during long-term burnup of WWER1000

    International Nuclear Information System (INIS)

    Highlights: • The fuel–clad mechanical interaction during long-term burnup in PWRs is studied. • Thermo-mechanical responses regarding creep, swelling, etc. are considered. • The FEM is implied to the algorithm that is based on principle of virtual work. • The results for AP1000 and WWER1000 are compromised against experimental data. • The 1200 days (50.8 MWd/kgU) is estimated for mechanical FCI in the BNPP. - Abstract: Thermo-mechanical behavior of fuel rod is of great importance for safety assessment of nuclear reactors. This paper deals essentially with the mechanical description of pressurized water reactor (PWR) fuel rods under long-term burnups. The main goal of the work is generation of a numerical code for study of pellet–cladding interaction (PCI) as long-term phenomena in Bushehr nuclear power plant (BNPP). In this way, a basic modeling hypothesis with particular attention being paid to the numerical treatment of stress relaxation and interaction of fuel swelling and clad creep down have been implemented. In this model, the mechanical equilibrium equations are integrated on principle of virtual work with generalized plane strain assumption and the numerical algorithm is based on finite element method. Afterward, the generated code, IR-FRA (Iranian Fuel Rod Analysis), is developed for long-term behavior study of fuel rods. For validating the IR-FRA code, the pellet–cladding interaction results in some test cases are compared with the FROBA, BISON codes and experimental data. These comparisons demonstrated the accuracy and capability of the presented code for prediction of fuel rods thermo-mechanical behavior. Eventually, the fuel and cladding mechanical interaction during long-term burnup of WWER1000 for the BNPP is simulated and results show good agreement with experimental and published data

  8. An economic evaluation of a storage system for casks with burnup credit

    International Nuclear Information System (INIS)

    It is generally recognized that casks designed with burnup credit are more economical than those without burnup credit. To estimate how much more economical they are, we made conceptual designs of transport/storage casks with and without burnup credit for PWR and BWR fuels of various uranium enrichment. The casks were designed to contain the maximum number of fuel assemblies under the necessary weight and dimensional limitations as well as the criticality and shielding criteria. The results showed that approximately 8 % to 44 % more fuel assemblies could be contained in casks with burnup credit. We then evaluated the economy of cask storage system incorporating the cask designs obtained above both with and without burnup credit. The results showed that the cost of storing casks with burnup credit is approximately 7 % to 30 % less expensive than storing casks without burnup credit. (J.P.N.)

  9. Application of SCALE4.4 system for burnup credit criticality analysis of PWR spent fuel

    International Nuclear Information System (INIS)

    An investigation on the application of burnup credit for a PWR spent fuel storage pool has been carried out with the use of the SCALE 4.4 computer code system consisting of SAS2H and CSAS6 modules in association with 44-group SCALE cross-section library. Prior to the application of the computer code system, a series of bench markings have been performed in comparison with available data. A benchmarking of the SAS2h module has been done for experimental concentration data of 54 PWR spent fuel and then correction factors with a 95% probability at a 95% confidence level have been determined on the basis of the calculated and measured concentrations of 38 nuclides. After that, the bias which might have resulted from the use of the CSAS6 module has been calculated for 46 criticality experimental data of UO2 fuel and MOX fuel assemblies. The calculation bias with one-sided tolerance limit factor (2.086) corresponding to a 95% probability at a 95% confidence level has consequently been obtained to be 0.00834. Burnup credit criticality analysis has been done for the PWR spent fuel storage pool by means of the benchmarked or validated code system. It is revealed that the minimum burnup for safe storage is 7560 MWd/tU in 5 wt% enriched fuel if both actinides and fission products in spent fuel are taken into account. However, the minimum value required seems to be 9,565 MWd/tU in the same enriched fuel provided that only the actinides are taken into consideration. (author)

  10. Transient fission gas release from UO2 fuel for high temperature and high burnup

    International Nuclear Information System (INIS)

    In the present paper it is assumed that the fission gas release kinetics from an irradiated UO2 fuel for high temperature is determined by the kinetics of grain growth. A well founded assumption that Vitanza curve describes the change of uranium dioxide re-crystallization temperature and the experimental results referring to the limiting grain size presented in the literature are used to modify the grain growth model. Algorithms of fission gas release due to re-crystallization of uranium dioxide grains are worked out. The defect trap model of fission gas behaviour described in the earlier papers is supplemented with the algorithms. Calculations of fission gas release in function of time, temperature, burn-up and initial grain sizes are obtained. Computation of transient fission gas release in the paper is limited to the case where steady state of irradiation to accumulate a desired burn-up is performed below the temperature of re-crystallization then the subsequent step temperature increase follows. There are considered two kinds of step temperature increase for different burn-up: the final temperature of the step increase is below and above the re-crystallization temperature. Calculations show that bursts of fission gas are predicted in both kinds. The release rate of gas liberated for the final temperature above the re-crystallization temperature is much higher than for final temperature below the re-crystallization temperature. The time required for the burst to subside is longer due to grain growth than due to diffusion of bubbles and knock-out release. The theoretical results explain qualitatively the experimental data but some of them need to be verified since this sort of experimental data are not found in the available literature. (author)

  11. Monte Carlo burnup code acceleration with the correlated sampling method. Preliminary test on an UOX cell with TRIPOLI-4{sup R}

    Energy Technology Data Exchange (ETDEWEB)

    Dieudonne, C.; Dumonteil, E.; Malvagi, F.; Diop, C. M. [Commissariat a l' Energie Atomique et aux Energies Alternatives CEA, Service d' Etude des Reacteurs et de Mathematiques Appliquees, DEN/DANS/DM2S/SERMA/LTSD, F91191 Gif-sur-Yvette cedex (France)

    2013-07-01

    For several years, Monte Carlo burnup/depletion codes have appeared, which couple a Monte Carlo code to simulate the neutron transport to a deterministic method that computes the medium depletion due to the neutron flux. Solving Boltzmann and Bateman equations in such a way allows to track fine 3 dimensional effects and to get rid of multi-group hypotheses done by deterministic solvers. The counterpart is the prohibitive calculation time due to the time-expensive Monte Carlo solver called at each time step. Therefore, great improvements in term of calculation time could be expected if one could get rid of Monte Carlo transport sequences. For example, it may seem interesting to run an initial Monte Carlo simulation only once, for the first time/burnup step, and then to use the concentration perturbation capability of the Monte Carlo code to replace the other time/burnup steps (the different burnup steps are seen like perturbations of the concentrations of the initial burnup step). This paper presents some advantages and limitations of this technique and preliminary results in terms of speed up and figure of merit. Finally, we will detail different possible calculation scheme based on that method. (authors)

  12. Use of burnup credit in criticality evaluation for spent fuel storage pool

    International Nuclear Information System (INIS)

    Boraflex is a polymer based material which is used as matrix to contain a neutron absorber material, boron carbide. In a typical spent fuel pool the irradiated Boraflex has been known as a significant source of silica. Since 1996, it was reported that elevated silica levels were measured in the Ulchin Unit 2 spent fuel pool water. Therefore, the Ulchin Unit 2 spent fuel storage racks were needed to be reanalyzed to allow storage of fuel assemblies with normal enrichments up to 5.0w/o U-235 in all storage cell locations using credit for burnup. The analysis does not take any credit for the presence of the spent fuel rack Boraflex neutron absorber panels. In region 2, the calculations were performed by assuming in an infinite radial array of storage cells. No credit is taken for axial or radial neutron leakage. The water in the spent fuel storage pool was assumed to be pure. In the evaluation of the Ulchin Unit 2 spent fuel storage pool, criticality analyses were performed with the CASMO-3 code. A reactivity uncertainty in the fuel depletion calculations was combined with other calculational uncertainty. The manufacturing tolerances were considered, as well. From the calculation, the acceptable burnup domain in region 2 of the spent fuel storage pool. where the curve identifies conditions of equal reactivity for various initial enrichments between 1.6w/o and 5.0w/o, was evaluated. In region 2, the maximum keff including all uncertainties, is 0.94648 for the enrichment-burnup combination from loading curve. (author)

  13. Burnup studies of the subcritical fusion-driven in-zinerator

    International Nuclear Information System (INIS)

    A fusion-driven subcritical core, 'In-Zinerator', has been proposed for nuclear waste transmutation [1]. In this concept, a powerful Z-pinch neutron source will produce pulses of 14 MeV neutrons that multiply in a surrounding subcritical core consisting of spent fuel from the LWR fuel cycle or from deep burn high temperature reactors. The proposed design has pulse frequency 0.1 Hz and a thermal power of 3 GWth. The Z-pinch fusion experiment is located at Sandia Laboratories, USA, and can today fire once a day. However, investigations have been made how to increase the frequency to several fires per minute. Each fire yields 300 MJ corresponding to 1020 neutrons per pulse. The source chamber will in the In-Zinerator concept be surrounded by spent fuel to reach an effective multiplication factor, keff, of 0.97. The core will be cooled by liquid lead. In this paper, the burnup of different fuel compositions in the In-Zinerator will be studied as function of initial keff. The Monte Carlo based continuous energy burnup code MCB [2][3]will be used. References: [1] B.B. Cipiti, Fusion Transmutation of Waste and the Role of the In-Zinerator in the Nuclear Fuel Cycle, Sandia Report SAND2006-3522, Sandia National Laboratories, USA, 2006. [2] J. Cetnar, J Wallenius and W Gudowski, MCB: A continuous energy Monte-Carlo burnup simulation code, Actinide and fission product partitioning and transmutation, Proc. of the Fifth Int. Information Exchange Meeting, Mol, Belgium, 25-27 November 1998, 523, OECD/NEA, 1998. [3] http://www.nea.fr/abs/html/nea-1643.html

  14. Verification of the OREST (HAMMER-ORIGEN) burn-up program system in the post-irradiation analyses of fuel elements BE-168, 170, 171 and 176 of the Obrigheim reactor

    International Nuclear Information System (INIS)

    The burn-up code OREST has a spectrum code assigned to it, which determines the neutron spectrum in the actual fuel element mixture at the start and during burn-up and carries out the resonance treatment for the most important uranium and transuranic element isotopes. The reliability of the OREST system is shown for UO2 burn-up in PWR's. Post-irradiation analyses of five UO2 fuel elements of KWO with an initial enrichment of 3.13% by weight of U235 and a mean burn-up of 28.4 GWd/tV are used for comparison. The reliability of OREST information for UO2 fuel in PWR's is proved by the good agreement between experiment and calculation, also compared with KfK's results. (orig./HP)

  15. Actinide-only burnup credit for spent fuel transport

    International Nuclear Information System (INIS)

    A conservative methodology is described that would allow taking credit for burn up in the criticality safety analysis of spent nuclear fuel packages. Requirements for its implementation include isotopic and criticality validation, generation of package loading criteria using limiting parameters, and assembly burn up verification by measurement. The method allows credit for the changes in the 234U, 235U, 236U, 238U, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, and 241Am concentrations with burnup. No credit for fission product neutron absorbers is taken. Analyses are included regarding the methodology's financial benefits and conservative margin. It is estimated that the proposed actinide-only burnup credit methodology would save 20% of the transport costs. Nevertheless, the methodology includes a substantial margin. Conservatism due to the isotopic correction factors, limiting modelling parameters, limiting axial profiles and exclusion of the fission products ranges from 10 to 25% k. (author)

  16. Advances In Burnup Credit Criticality Safety Analysis Methods And Applications

    International Nuclear Information System (INIS)

    An International Workshop on “Advances in Applications of Burnup Credit for Spent Fuel Storage, Transport, Reprocessing, and Disposition” organized by the Nuclear Safety Council of Spain (CSN) in cooperation with the International Atomic Energy Agency (IAEA) was held at Córdoba, Spain, on October 27– 30, 2009. The objectives of this workshop were to identify the benefits that accrue from recent improvements of the burnup credit (BUC) analysis methodologies, to analyze the implications of applying improved BUC methodologies, focusing on both the safety-related and operational aspects, and to foster the exchange of international experience in licensing and implementation of BUC applications. In the paper on hand the attention is focused on the improvements of BUC analysis methodologies. (author)

  17. Burnup calculations using serpent code in accelerator driven thorium reactors

    International Nuclear Information System (INIS)

    In this study, burnup calculations have been performed for a sodium cooled Accelerator Driven Thorium Reactor (ADTR) using the Serpent 1.1.16 Monte Carlo code. The ADTR has been designed for burning minor actinides, mixed 232Th and mixed 233U fuels. A solid Pb-Bi spallation target in the center of the core is used and sodium as coolant. The system is designed for a heating power of 2 000 MW and for an operation time of 600 days. For burnup calculations the Advanced Matrix Exponential Method CRAM (Chebyshev Rational Approximation Method) and different nuclear data libraries (ENDF7, JEF2.2, JEFF3.1.1) were used. The effective multiplication factor change from 0.93 to 0.97 for different nuclear data libraries during the reactor operation period. (orig.)

  18. Burnup calculations using serpent code in accelerator driven thorium reactors

    Energy Technology Data Exchange (ETDEWEB)

    Korkmaz, M.E.; Agar, O. [Karamanoglu Mehmetbey Univ., Karaman (Turkey). Physics Dept.; Yigit, M. [Aksaray Univ. (Turkey). Physics Dept.

    2013-07-15

    In this study, burnup calculations have been performed for a sodium cooled Accelerator Driven Thorium Reactor (ADTR) using the Serpent 1.1.16 Monte Carlo code. The ADTR has been designed for burning minor actinides, mixed {sup 232}Th and mixed {sup 233}U fuels. A solid Pb-Bi spallation target in the center of the core is used and sodium as coolant. The system is designed for a heating power of 2 000 MW and for an operation time of 600 days. For burnup calculations the Advanced Matrix Exponential Method CRAM (Chebyshev Rational Approximation Method) and different nuclear data libraries (ENDF7, JEF2.2, JEFF3.1.1) were used. The effective multiplication factor change from 0.93 to 0.97 for different nuclear data libraries during the reactor operation period. (orig.)

  19. Testing of a burnup measuring prototype. Final report

    International Nuclear Information System (INIS)

    The analyses of gamma spectroscopy measurements of spherical fuel elements are reported, which have been performed in order to prove the feasibility of burnup measurement by way of Cs-137 spectroscopy. The detailed analysis and evaluation of the FRJ2-KA2) irradiation experiment carried out in the DIDO reactor supplied clear evidence that it is possible to measure an HTR-Modul fuel pebble with a target burnup ob 80,000 MWd/t after a decay time of 55 h, within a period of 10 seconds and with an accuracy of <5%, with 1 σ confidence, and that there is no need for developing measuring instruments with a higher counting rate. There are commercial peak unfolding programs available. (orig./HP)

  20. Transient behaviour of high burnup fuel. Status report

    International Nuclear Information System (INIS)

    This Status Report is a follow-on to the CSNI Specialist Meeting on Transient Behaviour of High Burnup Fuel which was held in Cadarache, France, from September 12. to 14., 1995. The Status Report identifies the needs and rationale for any further work to better understand the transient behaviour of high burnup fuel. The different options to perform that work, from analytical to experimental activities, and discussion on the potential benefits of performing new integral tests are also addressed. A brief description of the major on-going and short-term planned activities in this field is included as additional information. The main conclusions from this effort are highlighted. (K.A.)

  1. OREST - The hammer-origen burnup program system

    International Nuclear Information System (INIS)

    Reliable prediction of the characteristics of irradiated light water reactor fuels (e.g., afterheat power, neutron and gamma radiation sources, final uranium and plutonium contents) is needed for many aspects of the nuclear fuel cycle. Two main problems must be solved: the simulation of all isotopic nuclear reactions and the simulation of neutron fluxes setting the reactions in motion. In state-of-the-art computer techniques, a combination of specialized codes for lattice cell and burnup calculations is preferred to solve these cross-linked problems in time or burnup step approximation. In the program system OREST, developed for official and commercial tasks in the Federal Republic of Germany nuclear fuel cycle, the well-known codes HAMMER and ORIGEN and directly coupled with a fuel rod temperature module

  2. Minor Actinide Transmutation Performance in Fast Reactor Metal Fuel. Isotope Ratio Change in Actinide Elements upon Low-Burnup Irradiation

    International Nuclear Information System (INIS)

    Metal fuel alloys containing 5 wt% or less minor actinide (MA) and rare earth (RE) were irradiated in the fast reactor Phénix. After nondestructive postirradiation tests, a chemical analysis of the alloys irradiated for 120 effective full power days was carried out by the inductively coupled plasma - mass spectrometry (ICP-MS) technique. From the analysis results, it was determined that the discharged burnups of U-19Pu-10Zr, U-19Pu-10Zr-2MA-2RE, and U-19Pu-10Zr-5MA were 2.17, 2.48, and 2.36 at.%, respectively. Actinide isotope ratio analyses before and after the irradiation experiment revealed that Pu, Am, and Cm nuclides added to U-Pu-Zr alloy and irradiated up to 2.0 - 2.5 at.% burnups in a fast reactor are transmuted properly as predicted by ORIGEN2 calculations. (author)

  3. Application of depletion perturbation theory to fuel cycle burnup analysis

    International Nuclear Information System (INIS)

    Over the past several years static perturbation theory methods have been increasingly used for reactor analysis in lieu of more detailed and costly direct computations. Recently, perturbation methods incorporating time dependence have also received attention, and several authors have demonstrated their applicability to fuel burnup analysis. The objective of the work described here is to demonstrate that a time-dependent perturbation method can be easily and accurately applied to realistic depletion problems

  4. Burn-up credit criticality benchmark. Phase 4-A: reactivity prediction calculations for infinite arrays of PWR MOX fuel pin cells

    International Nuclear Information System (INIS)

    The OECD/NEA Expert Group on Burn-up Credit was established in 1991 to address scientific and technical issues connected with the use of burn-up credit in nuclear fuel cycle operations. Following the completion of six benchmark exercises with uranium oxide fuels irradiated in pressurised water reactors (PWRs) and boiling water reactors (BWRs), the present report concerns mixed uranium and plutonium oxide (MOX) fuels irradiated in PWRs. The report summarises and analyses the solutions to the specified exercises provided by 37 contributors from 10 countries. The exercises were based upon the calculation of infinite PWR fuel pin cell reactivity for fresh and irradiated MOX fuels with various MOX compositions, burn-ups and cooling times. In addition, several representations of the MOX fuel assembly were tested in order to check various levels of approximations commonly used in reactor physics calculations. (authors)

  5. The implementation of burnup credit in VVER-440 spent fuel

    International Nuclear Information System (INIS)

    The countries using Russian reactors VVER-440 cooperate in reactor physics in Atomic Energy Research (AER). One of topic areas is 'Physical Problems of Spent Fuel, Radwaste and Decommissioning' (Working Group E). In this article, in the first part is an overview about our activity for numerical and experimental verification of codes which participants use for calculation of criticality, isotopic concentration, activity, neutron and gamma sources and shielding is shown. The set of numerical benchmarks (CB1, CB2, CB3 and CB4) is very similar (the same idea, the VVER-440) to the OECD/NEA/NSC Burnup Credit Criticality Benchmarks, Phases 1 and 2. In the second part, verification of the SCALE 4.4 system (only criticality and nuclide concentrations) for VVER-440 fuel is shown. In the third part, dependence of criticality on burnup (only actinides and actinides + fission products) for transport cask C30 with VVER-440 fuel by optimal moderation is shown. In the last part, current status in implementation burnup credit in Slovakia is shown. (author)

  6. Value of 236U to actinide-only burnup credit

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) submitted a topical report to the US Nuclear Regulatory Commission (NRC) in May 1995 in order to gain approval of a method for criticality analysis of transport packages that takes account for the change in actinide isotopes with burnup [pressurized water reactors (PWRs) only]. Historically, the NRC has conservatively assumed that the fuel was in its initial conditions (without any burnable absorbers). In order to permit credit for the changes in actinide content, the NRC has required validation of the depletion and criticality codes for spent nuclear fuel, justification of conservative depletion modeling, and finally confirmation measurements before loading. The NRC requested additional information on March 22, 1996. The DOE responded by a revision of the topical report in May 1997. The NRC again responded with another set of requests of additional information in April 1998. In that set of questions, the NRC challenged the use of 236U in burnup credit. Uranium-236 is not found in any significant amount in any available critical experiments. The authors explore the value of 236U to actinide-only burnup credit

  7. Evolution of the ELESTRES code for application to extended burnups

    International Nuclear Information System (INIS)

    The computer code ELESTRES is frequently used at Atomic Energy of Canada Limited to assess the integrity of CANDU fuel under normal operating conditions. The code also provides initial conditions for evaluating fuel behaviour during high-temperature transients. This paper describes recent improvements in the code in the areas of pellet expansion and of fission gas release. Both of these are very important considerations in ensuring fuel integrity at extended burnups. Firstly, in calculations of pellet expansion, the code now accounts for the effect of thermal stresses on the volume of gas bubbles at the boundaries of UO2 grains. This has a major influence on the expansion of the pellet during power-ramps. Secondly, comparisons with data showed that the previous fission gas package significantly underpredicted the fission gas release at high burnups. This package has now been improved via modifications to the following modules: distance between neighbouring bubbles on grain boundaries; diffusivity; and thermal conductivity. The predictions of the revised version of the code show reasonable agreement with measurements of ridge strains and of fission gas release. An illustrative example demonstrates that the code can be used to identify a fuel design that would: reduce the sheath stresses at circumferential ridges by a factor of 2-10; and keep the gas pressure at very high burnups to below the coolant pressure

  8. The REBUS experimental programme for burn-up credit

    International Nuclear Information System (INIS)

    An international programme called REBUS for the investigation of the burn-up credit has been initiated by the Belgian Nuclear Research Centre SCK·CEN and Belgonucleaire with the support of EdF and IRSN from France and VGB, representing German nuclear utilities and NUPEC, representing the Japanese industry. Recently also ORNL from the U.S. jointed the programme. The programme aims to establish a neutronic benchmark for reactor physics codes in order to qualify the codes for calculations of the burn-up credit. The benchmark exercise investigate the following fuel types with associated burn-up: reference fresh 3.3% enriched UO2 fuel, fresh commercial PWR UO2 fuel and irradiated commercial PWR UO2 fuel (54 GWd/tM), fresh PWR MOX fuel and irradiated PWR MOX fuel (20 GWd/tM). The experiments on the three configurations with fresh fuel have been completed. The experiments show a good agreement between calculation and experiments for the different measured parameters: critical water level, reactivity effect of the water level and fission-rate and flux distributions. In 2003 the irradiated BR3 MOX fuel bundle was loaded into the VENUS reactor and the associated experimental programme was carried out. The reactivity measurements in this configuration with irradiated fuel show a good agreement between experimental and preliminary calculated values. (author)

  9. Observations on the CANDLE burn-up in various geometries

    International Nuclear Information System (INIS)

    We have looked at all geometrical conditions under which an auto catalytically propagating burnup wave (CANDLE burn-up) is possible. Thereby, the Sine Gordon equation finds a new place in the burn-up theory of nuclear fission reactors. For a practical reactor design the axially burning 'spaghetti' reactor and the azimuthally burning 'pancake' reactor, respectively, seem to be the most promising geometries for a practical reactor design. Radial and spherical burn-waves in cylindrical and spherical geometry, respectively, are principally impossible. Also, the possible applicability of such fission burn-waves on the OKLO-phenomenon and the GEOREACTOR in the center of Earth, postulated by Herndon, is discussed. A fast CANDLE-reactor can work with only depleted uranium. Therefore, uranium mining and uranium-enrichment are not necessary anymore. Furthermore, it is also possible to dispense with reprocessing because the uranium utilization factor is as high as about 40%. Thus, this completely new reactor type can open a new era of reactor technology

  10. CEA contribution to power plant operation with high burnup level

    International Nuclear Information System (INIS)

    High level burnup in PWR leads to investigate again the choices carried out in the field of fuel management. French CEA has studied the economic importance of reshuffling technique, cycle length, discharge burnup, and non-operation period between two cycles. Power plants operators wish to work with increased length cycles of 18 months instead of 12. That leads to control problems because the core reactivity cannot be controlled with the only soluble boron: moderator temperature coefficient must be negative. With such cycles, it is necessary to use burnable poisons and for economic reasons with a low penalty in end of cycle. CEA has studied the use of Gd2O3 mixed with fuel or with inert element like Al2O3. Parametric studies of specific weights, efficacities relatively to the fuel burnup and the fuel enrichment have been carried out. Particular studies of 1 month cycles with Gd2O3 have shown the possibility to control power distribution with a very low reactivity penalty in EOC. In the same time, in the 100 MW PWR-CAP, control reactivity has been made with large use of gadolinia in parallel with soluble boron for the two first cycles

  11. Advanced fuel cycles and burnup increase of WWER-440 fuel

    International Nuclear Information System (INIS)

    Analyses of operational experience of 4.4% enriched fuel in the 5-year fuel cycle at Kola NPP Unit 3 and fuel assemblies with Uranium-Gadolinium fuel at Kola NPP Unit 4 are made. The operability of WWER-440 fuel under high burnup is studied. The obtained results indicate that the fuel rods of WWER-440 assemblies intended for operation within six years of the reviewed fuel cycle totally preserve their operability. Performed analyses have demonstrated the possibility of the fuel rod operability during the fuel cycle. 12 assemblies were loaded into the reactor unit of Kola 3 in 2001. The predicted burnup in six assemblies was 59.2 MWd/kgU. Calculated values of the burnup after operation for working fuel assemblies were ∼57 MWd/kgU, for fuel rods - up to ∼61 MWd/kgU. Data on the coolant activity, specific activity of the benchmark iodine radionuclides of the reactor primary circuit, control of the integrity of fuel rods of the assemblies that were operated for six years indicate that not a single assembly has reached the criterion for the early discharge

  12. Data Mining Techniques to Estimate Plutonium, Initial Enrichment, Burnup, and Cooling Time in Spent Fuel Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Trellue, Holly Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fugate, Michael Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tobin, Stephen Joesph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-19

    The Next Generation Safeguards Initiative (NGSI), Office of Nonproliferation and Arms Control (NPAC), National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE) has sponsored a multi-laboratory, university, international partner collaboration to (1) detect replaced or missing pins from spent fuel assemblies (SFA) to confirm item integrity and deter diversion, (2) determine plutonium mass and related plutonium and uranium fissile mass parameters in SFAs, and (3) verify initial enrichment (IE), burnup (BU), and cooling time (CT) of facility declaration for SFAs. A wide variety of nondestructive assay (NDA) techniques were researched to achieve these goals [Veal, 2010 and Humphrey, 2012]. In addition, the project includes two related activities with facility-specific benefits: (1) determination of heat content and (2) determination of reactivity (multiplication). In this research, a subset of 11 integrated NDA techniques was researched using data mining solutions at Los Alamos National Laboratory (LANL) for their ability to achieve the above goals.

  13. Practical issues with implementation of burnup credit in the USA for storage and transportation

    International Nuclear Information System (INIS)

    The US NRC issued an interim staff guidance (ISG8 rev1) allowing for burnup credit applications for storage and transport casks in July of 1999. In over two and a half years there has still not been a license submittal using burnup credit. ISG8 rev1 does not provide sufficient burnup credit to allow loading of 5 wt% enriched fuel in a 32 PWR assembly cask without the addition of absorber rod inserts. Pressure to allow all assemblies to contain inserts from the utility, force continued investigation into alternative levels of burnup credit. Utilities do not wish to measure to confirm burnup. This measurement costs, which range form $10 000 to $50 000 per cask and must be done prior to loading. Since burnup credit is actually only needed for transport, and transport is not expected for many years, many utilities are considering keeping the money in the bank until the time of transport. In order to address the need perceived for additional burnup credit beyond actinide-only burnup credit (ISG8), investigations have moved beyond into assuming moderator exclusion during transport and the use of burnup credit to cover a beyond design basis accident assumption of flooding. Burnup credit analysis requirements for a beyond design basis accident should be less than that for criticality control for normal operation. It is proposed that burnup credit analysis to cover the beyond design basis accident of flooding should be consistent with the beyond design basis dilution event in PWR spent fuel pools. The US NRC precedence for this type of burnup credit allows for all isotopes, a 5% reduction in the delta k of burnup, and an allowable keff of less than 1.0 after biases and uncertainties. (author)

  14. OECD/NEA burnup credit criticality benchmarks phase IIIB: Burnup calculations of BWR fuel assemblies for storage and transport

    International Nuclear Information System (INIS)

    The report describes the final results of the Phase IIIB Benchmark conducted by the Expert Group on Burnup Credit Criticality Safety under the auspices of the Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD). The Benchmark was intended to compare the predictability of current computer code and data library combinations for the atomic number densities of an irradiated PWR fuel assembly model. The fuel assembly was irradiated under specific power of 25.6 MW/tHM up to 40 GWd/tHM and cooled for five years. The void fraction was assumed to be uniform throughout the channel box and constant, at 0, 40 and 70%, during burnup. In total, 16 results were submitted from 13 institutes of 7 countries. The calculated atomic number densities of 12 actinides and 20 fission product nuclides were found to be for the most part within a range of ±10% relative to the average, although some results, esp. 155Eu and gadolinium isotopes, exceeded the band, which will require further investigation. Pin-wise burnup results agreed well among the participants. The results in the infinite neutron multiplication factor k∞ also accorded well with each other for void fractions of 0 and 40%; however some results deviated from the averaged value noticeably for the void fraction of 70%. (author)

  15. OECD/NEA burnup credit criticality benchmarks phase IIIB. Burnup calculations of BWR fuel assemblies for storage and transport

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, Hiroshi; Naito, Yoshitaka; Suyama, Kenya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-02-01

    The report describes the final results of the Phase IIIB Benchmark conducted by the Expert Group on Burnup Credit Criticality Safety under the auspices of the Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD). The Benchmark was intended to compare the predictability of current computer code and data library combinations for the atomic number densities of an irradiated PWR fuel assembly model. The fuel assembly was irradiated under specific power of 25.6 MW/tHM up to 40 GWd/tHM and cooled for five years. The void fraction was assumed to be uniform throughout the channel box and constant, at 0, 40 and 70%, during burnup. In total, 16 results were submitted from 13 institutes of 7 countries. The calculated atomic number densities of 12 actinides and 20 fission product nuclides were found to be for the most part within a range of {+-}10% relative to the average, although some results, esp. {sup 155}Eu and gadolinium isotopes, exceeded the band, which will require further investigation. Pin-wise burnup results agreed well among the participants. The results in the infinite neutron multiplication factor k{sub {infinity}} also accorded well with each other for void fractions of 0 and 40%; however some results deviated from the averaged value noticeably for the void fraction of 70%. (author)

  16. Modeling of PWR fuel at extended burnup

    International Nuclear Information System (INIS)

    Since FRAPCON-3 series was rolled out, many improvements have been implanted in fuel performance codes, based on most recent literature, to promote better predictions against current data. Much of this advances include: improving fuel gas release prediction, hydrogen pickup model, cladding corrosion, and many others. An example of those modifications has been new cladding materials has added into hydrogen pickup model to support M5™, ZIRLO™, and ZIRLO™ optimized family under pressurized water reactor (PWR) conditions. Recently some research have been made over USNRC's steady-state fuel performance code, assessments against FUMEX-III's data have concluded that FRAPCON provides best-estimate calculation of fuel performance. Face of this, a study is required to summarize all those modifications and new implementations, as well as to compare this result against FRAPCON's older version, scrutinizing FRAPCON-3 series documentation to understand the real goal and literature base of any improvements. We have concluded that FRAPCON's latest modifications are based on strong literature review. Those modifications were tested against most recent data to assure these results will be the best evaluation as possible. Many improvements have been made to allow USNRC to have an audit tool with the last improvements. (author)

  17. Propagation of uncertainty in system parameters of a LWR model by sampling MCNPX calculations - Burnup analysis

    International Nuclear Information System (INIS)

    For all the physical components that comprise a nuclear system there is an uncertainty. Assessing the impact of uncertainties in the simulation of fissionable material systems is essential for a best estimate calculation that has been replacing the conservative model calculations as the computational power increases. The propagation of uncertainty in a simulation using a Monte Carlo code by sampling the input parameters is recent because of the huge computational effort required. In this work a sample space of MCNPX calculations was used to propagate the uncertainty. The sample size was optimized using the Wilks formula for a 95. percentile and a two-sided statistical tolerance interval of 95%. Uncertainties in input parameters of the reactor considered included geometry dimensions and densities. It was showed the capacity of the sampling-based method for burnup when the calculations sample size is optimized and many parameter uncertainties are investigated together, in the same input. Particularly it was shown that during the burnup, the variances when considering all the parameters uncertainties is equivalent to the sum of variances if the parameter uncertainties are sampled separately

  18. Analysis of the burnup credit benchmark with an updated WIMS-D Library

    International Nuclear Information System (INIS)

    The OECD/NEA Burnup Credit Benchmark was analyzed with the WIMSD5B code using a fully updated library based on ENDF/B-VI Revision 5 data. Parts-1A and 1B were considered. The criticality prediction tested in Part-1A was in very good agreement with the reference result. A slight trend to overestimate the absorption rate by the fission products was noted, which can be explained by spectral effects resulting from the coarseness of the WIMS-D 69-group energy grid. The isotopic composition prediction tested in Part-1B was within the uncertainty interval of the reference results, except for 109 Ag at lower burnup and 155 Gd in all the cases. For 109 Ag the cause of the discrepancy was the use of old fission yield data in generating the reference solution. Similarly for 155 Gd the difference was due to old 155 Eu capture cross sections. Compared to the measurements, a serious underprediction of Sm isotopes is observed. This could be due to problems in the measured values or in the nuclear data of Sm precursors. We conclude that our processing methods do not introduce significant errors to the basic nuclear data. Care should be taken in the interpretation of the reference average benchmark solution due to a possible bias towards the ENDF/B-V evaluated nuclear data files

  19. FUNDAMENTAL MECHANISMS OF CORROSION OF ADVANCED LIGHT WATER REACTOR FUEL CLADDING ALLOYS AT HIGH BURNUP

    International Nuclear Information System (INIS)

    OAK (B204) The corrosion behavior of nuclear fuel cladding is a key factor limiting the performance of nuclear fuel elements, improved cladding alloys, which resist corrosion and radiation damage, will facilitate higher burnup core designs. The objective of this project is to understand the mechanisms by which alloy composition, heat treatment and microstructure affect corrosion rate. This knowledge can be used to predict the behavior of existing alloys outside the current experience base (for example, at high burn-up) and predict the effects of changes in operation conditions on zirconium alloy behavior. Zirconium alloys corrode by the formation f a highly adherent protective oxide layer. The working hypothesis of this project is that alloy composition, microstructure and heat treatment affect corrosion rates through their effect on the protective oxide structure and ion transport properties. The experimental task in this project is to identify these differences and understand how they affect corrosion behavior. To do this, several microstructural examination techniques including transmission electron microscope (TEM), electrochemical impedance spectroscopy (EIS) and a selection of fluorescence and diffraction techniques using synchrotron radiation at the Advanced Photon Source (APS) were employed

  20. X-Ray Pulsar Based Navigation and Time Determination Project

    Data.gov (United States)

    National Aeronautics and Space Administration — DARPA recently initiated the XNAV program to undertake development of GPS independent, precision navigation and time determination based on observations of certain...

  1. Taking burnup credit into account in criticality studies: the situation as it is now and the prospect for the future

    International Nuclear Information System (INIS)

    As enrichment of the fuel has become higher than the limits used at the designing stages, it seemed necessary to consider fuel depletion during irradiation to guarantee the criticality safety for relatively high enriched fuels transportation, storage or reprocessing. This burnup credit will make it possible to use the devices for spent fuels which are initially relatively high enriched. For that purpose, a method was developed considering: (i) partial Uranium-and-Plutonium burnup credit in the criticality studies, and (ii) a conservative assumption concerning the axial profile; this actinides-only method was supported by an experimental program called HTC. The method was accepted by the French Safety Authority. Moreover, in order to reduce again the calculated values of the reactivity for irradiated fuels, a French working group was set up in 1997 to define a conservative method which enables industrial companies to take burnup credit into account with some of the fission products and using a more precise profile. The work of this group has been divided into four tasks related to: the determination of (i) the composition of the fuel, (ii) a conservative profile, (iii) a conservative irradiation history, and (iv) the calculation scheme. This work is also supported by experimental programs related to the validation of the fission products effects, in terms of reactivity

  2. Feasibility assessment of burnup credit in the criticality analysis of shipping casks with boiling water reactor spent fuel

    International Nuclear Information System (INIS)

    Considerable interest in the allowance of reactivity credit for the exposure history of power reactor fuel currently exists. This ''burnup credit'' issue has the potential to greatly reduce risk and cost when applied to the design and certification of spent fuel casks used for transportation and storage. Recently, analyses have demonstrated the technical feasibility and estimated the risk and economic incentives for allowing burnup credit in pressurized water reactor (PWR) spent fuel shipping cask applications. This report summarizes the extension of the previous PWR technical feasibility assessment to boiling water reactor (BWR) fuel. This feasibility analysis aims to apply simple methods that adequately characterize the time-dependent isotopic compositions of typical BWR fuel. An initial analysis objective was to identify a simple and reliable method for characterizing BWR spent fuel. Two different aspects of fuel characterization were considered:l first, the generation of burn- up dependent material interaction probabilities; second, the prediction of material inventories over time (depletion). After characterizing the spent fuel at various stages of exposure and decay, three dimensional (3-D) models for an infinite array of assemblies and, in several cases, infinite arrays of assemblies in a typical shipping cask basket were analyzed. Results for assemblies without a basket provide reactivity control requirements as a function of burnup and decay, while results including the basket allow assessment of typical basket configurations to provide sufficient reactivity control for spent BWR fuel. Resulting basket worths and reactivity trends over time are then evaluated to determine whether burnup credit is needed and feasible in BWR applications

  3. Validation of BGCore System for Burnup Calculations

    International Nuclear Information System (INIS)

    BGCore is a software package for comprehensive computer simulation of nuclear reactor systems and their fuel cycles. BGCore interfaces the Monte Carlo particles transport code MCNP4C with a SARAF module - an independently developed code for calculating fuel composition during irradiation and spent fuel emissions following discharge. In BGCore system, depletion coupling methodology is based on the multi-group approach that significantly reduces computation time and allows tracking of large number of nuclides during calculations. The objective of this study is validation of the BGCore system against well established and verified, state of the art computer codes for thermal and fast spectrum lattices

  4. Research on Integrity of High Burnup Spent Fuel Under the Long Term Dry Storage

    International Nuclear Information System (INIS)

    Objectives were to acquire the following behaviour data by dynamic load impact tests on high burnup spent fuel rods of BWR and PWR and to improve the guidance of regulation of spent fuel storage and transportation. (1) The limit of load and strain for high burnup fuel in the cask drop accident. (2) The amount of deformation of high burnup fuel rods under dynamic load impact. (3) The amount of fuel pellet material released from fuel rods under dynamic load impact

  5. Nuclear fuel burn-up credit for criticality safety justification of spent nuclear fuel storage systems

    International Nuclear Information System (INIS)

    Burn-up credit analysis of RBMK-1000 an WWER-1000 spent nuclear fuel accounting only for actinides is carried out and a method is proposed for actinide burn-up credit. Two burn-up credit approaches are analyzed, which consider a system without and with the distribution of isotopes along the height of the fuel assembly. Calculations are performed using SCALE and MCNP computer codes

  6. Study on burn-up credit and minor actinide in post-irradiation analysis

    International Nuclear Information System (INIS)

    Accuracy of burnup calculation for actinide is very important as to the study of burn-up credit. For minor-actinides such as Am243 and Cm244, however, typical burnup calculation codes are not accurate enough. The accuracy for both nuclides was studied by using the SWAT code. The study showed that the C/E values of both nuclides could be improved at the same time by changing the cross section of Pu242. A study of burnup calculation related to the cross section of Pu242 should be performed to improve the accuracy for both nuclides. (author)

  7. Results of the isotopic concentrations of VVER calculational burnup credit benchmark No. 2(CB2)

    International Nuclear Information System (INIS)

    Results of the nuclide concentrations are presented of VVER Burnup Credit Benchmark No. 2(CB2) that were performed in The Nuclear Technology Center of Cuba with available codes and libraries. The CB2 benchmark specification as the second phase of the VVER burnup credit benchmark is summarized. The CB2 benchmark focused on VVER burnup credit study proposed on the 97' AER Symposium. The obtained results are isotopic concentrations of spent fuel as a function of the burnup and cooling time. The depletion point 'ORIGEN2' code and other codes were used for the calculation of the spent fuel concentration. (author)

  8. Effect of fuel burnup history on neutronic characteristics of WWER-1000 core

    International Nuclear Information System (INIS)

    The paper analyzes fuel burnup history effect on neutronic characteristics of WWER-1000 core with use of the DYN3D codes. The DYN3D code employs the local Pu-239 concentration as an indicator of burnup spectral history. The calculations have been performed for the first four fuel loadings of Khmelnitsky NPP unit 2 and stationary fuel loading with TVSA. The effect of fuel burnup history is shown both on macro-characteristics on the reactor core and on local values of burnup and power

  9. Burnup analysis of the power reactor, 1

    International Nuclear Information System (INIS)

    Several years of endeavors has been devoted to development of three-dimensional nuclear-thermal-hydro-dynamic simulators and research by basing the progress on the merits and demerits of the variational method, the functional approximation method, etc. As the result, the three-dimensional nuclear-thermal-hydro-dynamic code FLORA has been prepared. It has the following features. (1) The executive time is one third -- half as much as that by the convensional programs. (2) Numerical error is small when neutron spectrum mismatches. (3) In the fuels in which the distributions of Gd2O3 and enrichments are localized axially in the reactor core, three-dimensional nuclear-thermal-hydro-dynamic calculations are possible. (4) The transport kernel can be obtained by the coarse mesh method and the functional approximation method. (5) Albedo can be calculated by the two-group diffusion theory. (6) Power distribution can be obtained in the case of partial control rods inserted in the core. The course taken to the preparation, the theoretical background and example calculations with FLORA are described. The present report can be also used as a manual. (auth.)

  10. Characterization of the non-uniqueness of used nuclear fuel burnup signatures through a Mesh-Adaptive Direct Search

    Science.gov (United States)

    Skutnik, Steven E.; Davis, David R.

    2016-05-01

    The use of passive gamma and neutron signatures from fission indicators is a common means of estimating used fuel burnup, enrichment, and cooling time. However, while characteristic fission product signatures such as 134Cs, 137Cs, 154Eu, and others are generally reliable estimators for used fuel burnup within the context where the assembly initial enrichment and the discharge time are known, in the absence of initial enrichment and/or cooling time information (such as when applying NDA measurements in a safeguards/verification context), these fission product indicators no longer yield a unique solution for assembly enrichment, burnup, and cooling time after discharge. Through the use of a new Mesh-Adaptive Direct Search (MADS) algorithm, it is possible to directly probe the shape of this "degeneracy space" characteristic of individual nuclides (and combinations thereof), both as a function of constrained parameters (such as the assembly irradiation history) and unconstrained parameters (e.g., the cooling time before measurement and the measurement precision for particular indicator nuclides). In doing so, this affords the identification of potential means of narrowing the uncertainty space of potential assembly enrichment, burnup, and cooling time combinations, thereby bounding estimates of assembly plutonium content. In particular, combinations of gamma-emitting nuclides with distinct half-lives (e.g., 134Cs with 137Cs and 154Eu) in conjunction with gross neutron counting (via 244Cm) are able to reasonably constrain the degeneracy space of possible solutions to a space small enough to perform useful discrimination and verification of fuel assemblies based on their irradiation history.

  11. Application of integral ex-core and differential in-core neutron measurements for adjustment of fuel burn-up distributions in VVER-1000

    Energy Technology Data Exchange (ETDEWEB)

    Borodkin, P. G.; Borodkin, G. I.; Khrennikov, N. N. [SEC NRS, Moscow, (Russian Federation)

    2009-07-01

    The paper deals with calculational and semi-analytical evaluations of VVER-1000 reactor core neutron source distributions and their influence on measurements and calculations of the integral through-vessel neutron leakage. Time-integrated neutron source distributions used for DORT calculations were prepared by two different approaches based on a) calculated fuel burn-up (standard routine procedure) and b) in-core measurements by means of SPD (self-powered detectors) and TC (thermocouples) in a new approach. Taking into account that fuel burn-up distributions in operating VVER may be evaluated now by analytical methods (calculations) it is only needed to develop new approaches for testing and correcting calculational evaluations. Results presented in this paper allow to consider a reverse task of alternative estimation of fuel burn-up distributions. The approach proposed is based on adjustment (fitting) of time-integrated neutron source distributions, and hence fuel burn-up patterns in some part of reactor core, on the base of ex-core neutron leakage measurement, neutron-physical calculation and in-core SPD and TC measurement data. (authors)

  12. Methods of RECORD, an LWR fuel assembly burnup code

    International Nuclear Information System (INIS)

    The RECORD computer code is a detailed rector physics code for performing efficient LWR fuel assembly calculations, taking into account most of the features found in BWR and PWR fuel designs. The code calculates neutron spectrum, reaction rates and reactivity as a function of fuel burnup, and it generates the few-group data required for use in full scale core simulation and fuel management calculations. The report describes the methods of the RECORD computer code and the basis for fundamental models selected, and gives a review of code qualifications against measured data. (Auth. /RF)

  13. Modelling of fission gas behaviour in high burnup nuclear fuel

    International Nuclear Information System (INIS)

    The safe and economic operation of nuclear power plants (NPPs) requires that the behaviour and performance of the fuel can be calculated reliably over its expected lifetime. This requires highly developed codes that treat the nuclear fuel in a general manner and which take into account the large number of influences on fuel behaviour, in particular the trend of NPP operators to increase the fuel burnup. With higher burnup, more fission events impact the material characteristics of the fuel and significant restructuring can be observed. At local burnups in excess of 60-75 MWd/kgU, the microstructure of nuclear fuel pellets differs markedly from the as-fabricated structure. This high burnup structure (HBS) is characterised by three principal features: 1) low matrix xenon concentration, 2) sub-micron grains and 3) a high volume fraction of micrometer-sized pores. The peculiar features of the HBS affect the fuel performance and safety; the large retention of fission gas within the HBS could lead to significant gas release at high burnups, either through the degradation of thermal conductivity or through direct release. The present work has focussed on the development and evaluation of HBS fission gas transport models, especially on two features: the equilibrium xenon concentration in the matrix of the HBS in UO2 fuel pellets, and the growth of the HBS porosity and its effect on fission gas release. A steady-state fission gas model has been developed to examine the importance of grain boundary diffusion for the gas dynamics in the HBS. It was possible to simulate the ∼0.2 wt% experimentally observed xenon concentration. The value of the grain boundary diffusion coefficient is not important for diffusion coefficient ratios in excess of ∼10”4. The model exhibits a high sensitivity to principally three parameters: the grain diffusion coefficient, the bubble number density and the re-solution rate coefficient. The model can reproduce the observed HBS xenon depletion

  14. The Design Method for the ATR High Burnup MOX Fuel

    International Nuclear Information System (INIS)

    The Power Reactor and Nuclear Fuel Development Corporation (PNC) has developed the advanced thermal reactor (ATR). PNC is demonstrating MOX fuel utilization in a prototype of ATR, Fugen (165 MWe), in which 638 MOX fuel assemblies have been loaded without a failure since 1979. PNC is developing the high burn-up MOX fuel for the ATR to contribute to MOX fuels for thermal reactors. The statistical design evaluation method that included the MOX fuel rod performance evaluation code 'FEMAXI-ATR' was developed for the ATR high bum-up MOX fuel rod; it was verified that the integrity of the fuel could be maintained over the whole irradiation period

  15. Development and verification of Monte Carlo burnup calculation system

    International Nuclear Information System (INIS)

    Monte Carlo burnup calculation code system has been developed to evaluate accurate various quantities required in the backend field. From the Actinide Research in a Nuclear Element (ARIANE) program, by using, the measured nuclide compositions of fuel rods in the fuel assemblies irradiated in the commercial Netherlands BWR, the analyses have been performed for the code system verification. The code system developed in this paper has been verified through analysis for MOX and UO2 fuel rods. This system enables to reduce large margin assumed in the present criticality analysis for LWR spent fuels. (J.P.N.)

  16. New results from the NSRR experiments with high burnup fuel

    Energy Technology Data Exchange (ETDEWEB)

    Fuketa, Toyoshi; Ishijima, Kiyomi; Mori, Yukihide [Japan Atomic Research Institute, Toaki, Ibaraki (Japan)] [and others

    1996-03-01

    Results obtained in the NSRR power burst experiments with irradiated PWR fuel rods with fuel burnup up to 50 MWd/kgU are described and discussed in this paper. Data concerning test method, test fuel rod, pulse irradiation, transient records during the pulse and post irradiation examination are described, and interpretations and discussions on fission gas release and fuel pellet fragmentation are presented. During the pulse-irradiation experiment with 50 MWd/kgU PWR fuel rod, the fuel rod failed at considerably low energy deposition level, and large amount of fission gas release and fragmentation of fuel pellets were observed.

  17. OTTER 3 - A single channel, axial burnup code

    International Nuclear Information System (INIS)

    OTTER 3 is a single channel, axial burnup code, written in Fortran for the KDF 9 computer, and suitable for studying fuel management schemes of the continuous charge/discharge type. A general fuel shuffling scheme is allowed, and both unidirectional and bidirectional fuel feed can be studied. A 2-group neutron diffusion code is incorporated, the flux equations being solved by the forward elimination - backward substitution technique for the inner problem and a source iteration technique accelerated by Chebyshev extrapolation for the outer problem. (author)

  18. Comparison of nuclear data uncertainty propagation methodologies for PWR burn-up simulations

    CERN Document Server

    Diez, Carlos Javier; Hoefer, Axel; Porsch, Dieter; Cabellos, Oscar

    2014-01-01

    Several methodologies using different levels of approximations have been developed for propagating nuclear data uncertainties in nuclear burn-up simulations. Most methods fall into the two broad classes of Monte Carlo approaches, which are exact apart from statistical uncertainties but require additional computation time, and first order perturbation theory approaches, which are efficient for not too large numbers of considered response functions but only applicable for sufficiently small nuclear data uncertainties. Some methods neglect isotopic composition uncertainties induced by the depletion steps of the simulations, others neglect neutron flux uncertainties, and the accuracy of a given approximation is often very hard to quantify. In order to get a better sense of the impact of different approximations, this work aims to compare results obtained based on different approximate methodologies with an exact method, namely the NUDUNA Monte Carlo based approach developed by AREVA GmbH. In addition, the impact ...

  19. Simplified models for pebble-bed HTR core burn-up calculations with Monteburns2.0©

    International Nuclear Information System (INIS)

    Highlights: ► PBMR-400 annular core is very difficult to simulate in a reliable way. ► Nuclide evolutions given by different lattice models can differ significantly. ► To split fixed lattice models into two axial zones does not affect results significantly. ► We can choose a (simplified) core model on the basis of the analysis aim. ► Monteburns gives by survey burn-up calculations reasonable nuclide evolution trends. - Abstract: This paper aims at comparing some simplified models to simulate irradiation cycles of Pu fuelled pebble-bed reactors with Monteburns2.0© code. As a reference core, the PBMR-400 (proposed in the framework of the EU PUMA project, where this kind of core fuelled by a Pu and Pu–Np fuel has been studied) was taken into account. Pebble-bed High Temperature Reactor (HTR) cores consist of hundreds of thousands pebbles arranged stochastically in a cylindrical or annular space and each pebble is a single fuel element, and it is able to reach ultra-high burn-ups, i.e. up to 750 GWd/tHM (for Pu-based fuels). Additionally, pebble-bed cores are characterised by a continuous recirculation of pebbles from the top to the bottom of the core. Modelling accurately with current computer codes such an arrangement, in order to predict the behaviour of the core itself, is a very difficult task and any depletion code specifically devoted to pebble-bed burn-up calculation is not available at the moment. Because of limitations of the most common current MCNP-based depletion codes as well as huge calculation times, simplified models have to be implemented. After an analysis of the literature available on pebble-bed models for criticality and burn-up calculations, a preliminary assessment of the impact of different kind of simplified models for a Pu-Np fuelled Pebble-Bed Modular Reactor (PBMR), proposed in the framework of the EU PUMA project, is shown, particularly as far as burn-up prediction with Monteburns2.0© code is concerned.

  20. Instant release fraction and matrix release of high burn-up UO2 spent nuclear fuel: Effect of high burn-up structure and leaching solution composition

    International Nuclear Information System (INIS)

    Two weak points in Performance Assessment (PA) exercises regarding the alteration of Spent Nuclear Fuel (SNF) are the contribution of the so-called Instant Release Fraction (IRF) and the effect of High Burn-Up Structure (HBS). This manuscript focuses on the effect of HBS in matrix (long term) and instant release of a Pressurised Water Reactor (PWR) SNF irradiated in a commercial reactor with a mean Burn-Up (BU) of 60 GWd/tU. In order to study the HBS contribution, two samples from different radial positions have been prepared. One from the centre of the SNF, labelled CORE, and one from the periphery, enriched with HBS and labelled OUT. Static leaching experiments have been carried out with two synthetic leaching solutions: bicarbonate (BIC) and Bentonitic Granitic Groundwater (BGW), and in all cases under oxidising conditions. IRF values have been calculated from the determined Fraction of Inventory in Aqueous Phase (FIAP). In all studied cases, some radionuclides (RN): Rb, Sr and Cs, have shown higher release rates than uranium, especially at the beginning of the experiment, and have been considered as IRF. Redox sensitive RN like Mo and Tc have been found to dissolve slightly faster than uranium and further studies might be needed to confirm if they can also be considered part of the IRF. Most of the remaining studied RN, mainly actinides and lanthanides, have been found to dissolve congruently with the uranium matrix. Finally, Zr, Ru and Rh presented lower release rates than the matrix. Higher matrix release has been determined for CORE than for OUT samples showing that the formation of HBS might have a protective effect against the oxidative corrosion of the SNF. On the contrary, no significant differences have been observed between the two studied leaching solutions (BIC and BGW). Two different IRF contributions have been determined. One corresponding to the fraction of inventory segregated in the external open grain boundaries, directly available to water and