WorldWideScience

Sample records for burnup code system

  1. Burnup calculation code system COMRAD96

    International Nuclear Information System (INIS)

    COMRAD was one of the burnup code system developed by JAERI. COMRAD96 is a transfered version of COMRAD to Engineering Work Station. It is divided to several functional modules, 'Cross Section Treatment', 'Generation and Depletion Calculation', and 'Post Process'. It enables us to analyze a burnup problem considering a change of neutron spectrum using UNITBURN. Also it can display the γ Spectrum on a terminal. This report is the general description and user's manual of COMRAD96. (author)

  2. Revised SWAT. The integrated burnup calculation code system

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya; Mochizuki, Hiroki [Department of Fuel Cycle Safety Research, Nuclear Safety Research Center, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Kiyosumi, Takehide [The Japan Research Institute, Ltd., Tokyo (Japan)

    2000-07-01

    SWAT is an integrated burnup code system developed for analysis of post irradiation examination, transmutation of radioactive waste, and burnup credit problem. This report shows an outline and a user's manual of revised SWAT. This revised SWAT includes expansion of functions, increasing supported machines, and correction of several bugs reported from users of previous SWAT. (author)

  3. Systemization of burnup sensitivity analysis code (2) (Contract research)

    International Nuclear Information System (INIS)

    Towards the practical use of fast reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoint of improvements on plant economic efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by the development of adjusted nuclear library using the cross-section adjustment method, in which the results of critical experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor 'JOYO'. The analysis of burnup characteristic is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, a burnup sensitivity analysis code, SAGEP-BURN, has been developed and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to users due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functions in the existing large system. It is not sufficient to unify each computational component for the following reasons: the computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore, it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion

  4. Miniature neutron source reactor burnup calculations using IRBURN code system

    International Nuclear Information System (INIS)

    Highlights: ► Fuel consumption of Iranian MNSR during 15 years of operation has been investigated. ► Calculations have been performed by the IRBURN code. Precision and accuracy of the implemented model has been validated. ► Our study shows the consumption rate of MNSR is about 1%. - Abstract: Fuel consumption of Iranian miniature neutron source reactor (MNSR) during 15 years of operation has been investigated. Reactor core neutronic parameters such as flux and power distributions, control rod worth and effective multiplication factor at BOL and after 15 years of irradiation has been calculated. The Monte Carlo-based depletion code system IRBURN has been used for studying the reactor core neutronic parameters as well as the isotopic inventory of the fuel during burnup. The precision and accuracy of the implemented model has been verified via validation the results for neutronic parameters in the MNSR final safety analysis report. The results show that keff decreases from 1.0034 to 0.9897 and the total U-235 consumption in the core is about 13.669 g after 15 years of operational time. Finally, our studying shows the consumption rate of MNSR is about 1%.

  5. LOLA-SYSTEM, JEN-UPM PWR Fuel Management System Burnup Code System

    International Nuclear Information System (INIS)

    1 - Description of program or function: The LOLA-SYSTEM is a part of the JEN-UPM code package for PWR fuel management, scope or design calculations. It is a code package for core burnup calculations using nodal theory based on a FLARE type code. The LOLA-SYSTEM includes four modules: the first one (MELON-3) generates the constants of the K-inf and M2 correlations to be input into SIMULA-3. It needs the K-inf and M2 fuel assembly values at different conditions of moderator temperature, Boron concentration, burnup, etc., which are provided by MARIA fuel assembly calculations. The main module (SIMULA-3) is the core burnup calculation code in three dimensions and one group of energy. It normally uses a geometrical representation of one node per fuel assembly or per quarter of fuel assembly. It has included a thermal hydraulic feedback on flow and voids and criticality searches on boron concentration and control rods insertion. The CONCON code makes the calculation of the albedo, transport factors, K-inf and M2 correction factors to be input into SIMULA-3. The calculation is made in the XY transversal plane. The CONAXI code is similar to CONCON, but in the axial direction. 2 - Method of solution: MELON-3 makes a mean squares fit of K-inf and M2 values at different conditions in order to determine the constants of the feedback correlations. SIMULA-3 uses a modified one-group nodal theory, with a new transport kernel that provides the same node interface leakages as a fine mesh diffusion calculation. CONCON and CONAXI determine the transport and correction factors, as well as the albedo, to be input into SIMULA-3. They are determined by a method of leakages equivalent to the detailed diffusion calculation of CARMEN or VENTURE; these factors also include the heterogeneity effects inside the node. 3 - Restrictions on the complexity of the problem: Number of axial nodes less than or equal 34. Number of material types less than or equal 30. Number of fuel assembly types less

  6. Quantification of the computational accuracy of code systems on the burn-up credit using experimental re-calculations

    International Nuclear Information System (INIS)

    In order to account for the reactivity-reducing effect of burn-up in the criticality safety analysis for systems with irradiated nuclear fuel (''burnup credit''), numerical methods to determine the enrichment and burnup dependent nuclide inventory (''burnup code'') and its resulting multiplication factor keff (''criticality code'') are applied. To allow for reliable conclusions, for both calculation systems the systematic deviations of the calculation results from the respective true values, the bias and its uncertainty, are being quantified by calculation and analysis of a sufficient number of suitable experiments. This quantification is specific for the application case under scope and is also called validation. GRS has developed a methodology to validate a calculation system for the application of burnup credit in the criticality safety analysis for irradiated fuel assemblies from pressurized water reactors. This methodology was demonstrated by applying the GRS home-built KENOREST burnup code and the criticality calculation sequence CSAS5 from SCALE code package. It comprises a bounding approach and alternatively a stochastic, which both have been exemplarily demonstrated by use of a generic spent fuel pool rack and a generic dry storage cask, respectively. Based on publicly available post irradiation examination and criticality experiments, currently the isotopes of uranium and plutonium elements can be regarded for.

  7. High burnup in DIONISIO code

    International Nuclear Information System (INIS)

    When the residence time of nuclear fuel rods exceeds a given threshold value, several properties of the pellet material suffer changes and hence the posterior behaviour of the rod is significantly altered. Structural modifications start at the pellet periphery, which is usually referred to as rim zone. It is presently believed that these changes are a consequence of the localized absorption of epithermal neutrons by 238U, which effective cross section presents resonant peaks. Due to the chain of nuclear reactions that take place, several Pu isotopes are born especially at the rim. In particular, the fissile character of 239Pu and 241Pu is the cause of the increased number of fission events that occur in the pellet periphery. For this reason, the power generation rate and the burnup adopt a non uniform distribution in the pellet, reaching at the rim values two or three times higher than the average [1]. The rim zone starts to form for a burnup threshold value of about 50-60 MWd/kgHM and its width increases as the irradiation progresses. The microstructure of this zone is characterized by the presence of small grains, with a typical size of 200 nm, and large pores, of some μm. Even though the rim zone is very thin, it has a significant effect on the mechanical integrity of the pellet, particularly when it makes contact with the cladding, and on the temperature distribution in the whole pellet, because of its low thermal conductivity [1,2]. The numerical codes designed to simulate fuel behaviour under irradiation must include the phenomena associated to high burnup if they aim at extending the prediction range, and this is the purpose with our DIONISIO code. But a detailed analysis of the phenomena that take place in this region demands the use of neutronic codes that solve the Boltzmann transport equations [3] in a number of energy intervals (groups), including adequate considerations in the region of the resonant absorption peaks of 238U. These cell codes predict

  8. Quantification of the computational accuracy of code systems on the burn-up credit using experimental re-calculations; Quantifizierung der Rechengenauigkeit von Codesystemen zum Abbrandkredit durch Experimentnachrechnungen

    Energy Technology Data Exchange (ETDEWEB)

    Behler, Matthias; Hannstein, Volker; Kilger, Robert; Moser, Franz-Eberhard; Pfeiffer, Arndt; Stuke, Maik

    2014-06-15

    In order to account for the reactivity-reducing effect of burn-up in the criticality safety analysis for systems with irradiated nuclear fuel (''burnup credit''), numerical methods to determine the enrichment and burnup dependent nuclide inventory (''burnup code'') and its resulting multiplication factor k{sub eff} (''criticality code'') are applied. To allow for reliable conclusions, for both calculation systems the systematic deviations of the calculation results from the respective true values, the bias and its uncertainty, are being quantified by calculation and analysis of a sufficient number of suitable experiments. This quantification is specific for the application case under scope and is also called validation. GRS has developed a methodology to validate a calculation system for the application of burnup credit in the criticality safety analysis for irradiated fuel assemblies from pressurized water reactors. This methodology was demonstrated by applying the GRS home-built KENOREST burnup code and the criticality calculation sequence CSAS5 from SCALE code package. It comprises a bounding approach and alternatively a stochastic, which both have been exemplarily demonstrated by use of a generic spent fuel pool rack and a generic dry storage cask, respectively. Based on publicly available post irradiation examination and criticality experiments, currently the isotopes of uranium and plutonium elements can be regarded for.

  9. Re-evaluation of Assay Data of Spent Nuclear Fuel obtained at Japan Atomic Energy Research Institute for validation of burnup calculation code systems

    International Nuclear Information System (INIS)

    Highlights: → The specifications required for the analyses of the destructive assay data taken from irradiated fuel in Ohi-1 and Ohi-2 PWRs were documented in this paper. → These data were analyzed using the SWAT2.1 code, and the calculation results showed good agreement with experimental results. → These destructive assay data are suitable for the benchmarking of the burnup calculation code systems. - Abstract: The isotopic composition of spent nuclear fuels is vital data for studies on the nuclear fuel cycle and reactor physics. The Japan Atomic Energy Agency (JAEA) has been active in obtaining such data for pressurized water reactor (PWR) and boiling water reactor (BWR) fuels, and some data has already been published. These data have been registered with the international Spent Fuel Isotopic Composition Database (SFCOMPO) and widely used as international benchmarks for burnup calculation codes and libraries. In this paper, Assay Data of Spent Nuclear Fuel from two fuel assemblies irradiated in the Ohi-1 and Ohi-2 PWRs in Japan are shown. The destructive assay data from Ohi-2 have already been published. However, these data were not suitable for the benchmarking of calculation codes and libraries because several important specifications and data were not included. This paper summarizes the details of destructive assay data and specifications required for analyses of isotopic composition from Ohi-1 and Ohi-2. For precise burnup analyses, the burnup values of destructive assay samples were re-evaluated in this study. These destructive assay data were analyzed using the SWAT2.1 code, and the calculation results showed good agreement with experimental results. This indicates that the quality of destructive assay data from Ohi-1 and Ohi-2 PWRs is high, and that these destructive assay data are suitable for the benchmarking of burnup calculation code systems.

  10. Burnup calculations using serpent code in accelerator driven thorium reactors

    International Nuclear Information System (INIS)

    In this study, burnup calculations have been performed for a sodium cooled Accelerator Driven Thorium Reactor (ADTR) using the Serpent 1.1.16 Monte Carlo code. The ADTR has been designed for burning minor actinides, mixed 232Th and mixed 233U fuels. A solid Pb-Bi spallation target in the center of the core is used and sodium as coolant. The system is designed for a heating power of 2 000 MW and for an operation time of 600 days. For burnup calculations the Advanced Matrix Exponential Method CRAM (Chebyshev Rational Approximation Method) and different nuclear data libraries (ENDF7, JEF2.2, JEFF3.1.1) were used. The effective multiplication factor change from 0.93 to 0.97 for different nuclear data libraries during the reactor operation period. (orig.)

  11. Burnup calculations using serpent code in accelerator driven thorium reactors

    Energy Technology Data Exchange (ETDEWEB)

    Korkmaz, M.E.; Agar, O. [Karamanoglu Mehmetbey Univ., Karaman (Turkey). Physics Dept.; Yigit, M. [Aksaray Univ. (Turkey). Physics Dept.

    2013-07-15

    In this study, burnup calculations have been performed for a sodium cooled Accelerator Driven Thorium Reactor (ADTR) using the Serpent 1.1.16 Monte Carlo code. The ADTR has been designed for burning minor actinides, mixed {sup 232}Th and mixed {sup 233}U fuels. A solid Pb-Bi spallation target in the center of the core is used and sodium as coolant. The system is designed for a heating power of 2 000 MW and for an operation time of 600 days. For burnup calculations the Advanced Matrix Exponential Method CRAM (Chebyshev Rational Approximation Method) and different nuclear data libraries (ENDF7, JEF2.2, JEFF3.1.1) were used. The effective multiplication factor change from 0.93 to 0.97 for different nuclear data libraries during the reactor operation period. (orig.)

  12. Burnup Estimation for Plate Type Fuel Assembly Using SCALE6 Code

    Energy Technology Data Exchange (ETDEWEB)

    Alawneh, Luay M.; Park, Chang Je; Lee, Byungchul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    Accurate burnup estimation is not an easy job due to several reasons such as the effect of fission products and the power change caused by fuel refueling and depletion. The presence of fission products may distort the linear relationship between burnup and input parameters including power density and enrichment. The feasibility test of this approach has been done by comparing the results with a Monte Carlo code results. In this paper, it has been tried to get a crude formula to estimate burnup for an open pool type research reactor. In addition, we want to investigate the perturbation of each factor on burnup, and then combine the effects in one fitted formula for each cycle. This work is focused on calculating burnup for plate type fuel assembly of research reactors through a couple of code systems such as TRITON/NEWT and ORIGEN-ARP. Several sensitivity calculations have been done and the least square fitting is carried out to express a unified formula for burnup. The estimated burnup is compared with that of McCARD calculation. It is founded that the fitted burnup agrees well with the McCARD results.

  13. Nuclear fuel burn-up credit for criticality safety justification of spent nuclear fuel storage systems

    International Nuclear Information System (INIS)

    Burn-up credit analysis of RBMK-1000 an WWER-1000 spent nuclear fuel accounting only for actinides is carried out and a method is proposed for actinide burn-up credit. Two burn-up credit approaches are analyzed, which consider a system without and with the distribution of isotopes along the height of the fuel assembly. Calculations are performed using SCALE and MCNP computer codes

  14. Progress on burnup calculation methods coupling Monte Carlo and depletion codes

    Energy Technology Data Exchange (ETDEWEB)

    Leszczynski, Francisco [Comision Nacional de Energia Atomica, San Carlos de Bariloche, RN (Argentina). Centro Atomico Bariloche]. E-mail: lesinki@cab.cnea.gob.ar

    2005-07-01

    Several methods of burnup calculations coupling Monte Carlo and depletion codes that were investigated and applied for the author last years are described. here. Some benchmark results and future possibilities are analyzed also. The methods are: depletion calculations at cell level with WIMS or other cell codes, and use of the resulting concentrations of fission products, poisons and actinides on Monte Carlo calculation for fixed burnup distributions obtained from diffusion codes; same as the first but using a method o coupling Monte Carlo (MCNP) and a depletion code (ORIGEN) at a cell level for obtaining the concentrations of nuclides, to be used on full reactor calculation with Monte Carlo code; and full calculation of the system with Monte Carlo and depletion codes, on several steps. All these methods were used for different problems for research reactors and some comparisons with experimental results of regular lattices were performed. On this work, a resume of all these works is presented and discussion of advantages and problems found are included. Also, a brief description of the methods adopted and MCQ system for coupling MCNP and ORIGEN codes is included. (author)

  15. Taking burnup credit for interim storage and transportation system for BWR fuels

    International Nuclear Information System (INIS)

    In order to establish a realistic burnup credit design system, a calculation system has been developed for determining isotope compositions, burnup, and criticality. The calculation system consists of several modules such as TGBLA, ORIGEN, CITATION, MCNP, and KENO. The TGBLA code is a fuel design code for LWR fuels developed in TOSHIBA Corporation. A compact measurement system for a fuel assembly has been being developed to meet requirements for the burnup determination, the neutron emission-rate evaluation, and the nuclear materials management. For a spent MOX fuel, a neutron emission rate measurement method has been being developed. The system consists of Cd-Te detectors and / or fission chambers. Some model calculations were carried out for the latest design BWR fuels. The effect of taking burnup credit for a transportation cask is shown. (authors)

  16. Detailed description and user`s manual of high burnup fuel analysis code EXBURN-I

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Motoe [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Saitou, Hiroaki

    1997-11-01

    EXBURN-I has been developed for the analysis of LWR high burnup fuel behavior in normal operation and power transient conditions. In the high burnup region, phenomena occur which are different in quality from those expected for the extension of behaviors in the mid-burnup region. To analyze these phenomena, EXBURN-I has been formed by the incorporation of such new models as pellet thermal conductivity change, burnup-dependent FP gas release rate, and cladding oxide layer growth to the basic structure of low- and mid-burnup fuel analysis code FEMAXI-IV. The present report describes in detail the whole structure of the code, models, and materials properties. Also, it includes a detailed input manual and sample output, etc. (author). 55 refs.

  17. Determination of axial profit performed burnup credit by SCALE 4.3-system

    International Nuclear Information System (INIS)

    SCALE 4.3 is a modular code system designed for realizing standard computational analysis for licensing evaluation. Since now, spent fuel storage pools criticality analysis have been done considering this fuel as fresh, with its maximum enrichment. With burnup credit we can obtain cheaper and compact configurations. The procedure for calculating a spent fuel storage consists of a burnup calculation plus a criticality calculation. We can perform a conservative approximation for the burnup calculations using 1-D results, but, besides the geometry configurations for the 3-D criticality calculation. we need an appropriate approximation to model the burnup axial variation. We assume that for a burnup profile set, the most conservative profile is between the lower and the upper range of this profile, set. We consider only combinations of the maximum and minimum burnup in each axial region, for each burnup range. This gives an estimation of the different burnup shapes effect and the general characteristics of the most conservative shape. (Author) 6 refs

  18. Triton burnup measurements in KSTAR using a neutron activation system

    Science.gov (United States)

    Jo, Jungmin; Cheon, MunSeong; Kim, Jun Young; Rhee, T.; Kim, Junghee; Shi, Yue-Jiang; Isobe, M.; Ogawa, K.; Chung, Kyoung-Jae; Hwang, Y. S.

    2016-11-01

    Measurements of the time-integrated triton burnup for deuterium plasma in Korea Superconducting Tokamak Advanced Research (KSTAR) have been performed following the simultaneous detection of the d-d and d-t neutrons. The d-d neutrons were measured using a 3He proportional counter, fission chamber, and activated indium sample, whereas the d-t neutrons were detected using activated silicon and copper samples. The triton burnup ratio from KSTAR discharges is found to be in the range 0.01%-0.50% depending on the plasma conditions. The measured burnup ratio is compared with the prompt loss fraction of tritons calculated with the Lorentz orbit code and the classical slowing-down time. The burnup ratio is found to increase as plasma current and classical slowing-down time increase.

  19. CARMEN-SYSTEM, Programs System for Thermal Neutron Diffusion and Burnup with Feedback

    International Nuclear Information System (INIS)

    1 - Description of problem or function: CARMEN is a system of programs developed for the neutronic calculation of PWR cycles. It includes the whole chain of analysis from cell calculations to core calculations with burnup. The core calculations are based on diffusion theory with cross sections depending on the relevant space-dependent feedback effects which are present at each moment along the cycles. The diffusion calculations are in one, two or three dimensions and in two energy groups. The feedback effects which are treated locally are: burnup, water density, power density and fission products. In order to study in detail these parameters the core should be divided into as many zones as different cross section sets are expected to be required in order to reproduce reality correctly. A relevant difference in any feedback parameter between zones produces different cross section sets for the corresponding zones. CARMEN is also capable to perform the following calculations: - Multiplication factor by burnup step with fixed boron concentration - Buckling and control rod insertion - Buckling search by burnup step - Boron search by burnup step - Control rod insertion search by burnup step. 2 - Method of solution: The cell code (LEOPARD-TRACA) generates the fuel assembly cross sections versus burnup. This is the basic library to be used in the CARMEN code proper. With a planar distribution guess for power density, water density and fluxes, the macroscopic cross sections by zone are calculated by CARMEN, and then a diffusion calculation is done in the whole geometry. With the distribution of power density, heat accumulated in the coolant and the thermal and fast fluxes determined in the diffusion calculation, CARMEN calculates the values of the most relevant parameters that influence the macroscopic cross sections by zone: burnup, water density, effective fuel temperature and fission product concentrations. If these parameters by zone are different from the reference

  20. Comparison between SERPENT and MONTEBURNS codes applied to burnup calculations of a GFR-like configuration

    Energy Technology Data Exchange (ETDEWEB)

    Chersola, Davide [GeNERG – DIME/TEC, University of Genova, via all’Opera Pia 15/a, 16145 Genova (Italy); INFN, via Dodecaneso 33, 16146 Genova (Italy); Lomonaco, Guglielmo, E-mail: guglielmo.lomonaco@unige.it [GeNERG – DIME/TEC, University of Genova, via all’Opera Pia 15/a, 16145 Genova (Italy); INFN, via Dodecaneso 33, 16146 Genova (Italy); Marotta, Riccardo [GeNERG – DIME/TEC, University of Genova, via all’Opera Pia 15/a, 16145 Genova (Italy); INFN, via Dodecaneso 33, 16146 Genova (Italy); Mazzini, Guido [Centrum výzkumu Řež (Research Centre Rez), Husinec-Rez, cp. 130, 25068 Rez (Czech Republic)

    2014-07-01

    Highlights: • MC codes are widely adopted to analyze nuclear facilities, including GEN-IV reactors. • Burnup calculations are an efficient tool to test neutronic Monte Carlo codes. • In this comparison the used codes show some differences but a good agreement exists. - Abstract: This paper presents the comparison between two Monte Carlo based burnup codes: SERPENT and MONTEBURNS. Monte Carlo codes are fully and worldwide adopted to perform analyses on nuclear facilities, also in the frame of Generation IV advanced reactors simulations. Thus, faster and most powerful calculation codes are needed with the aim to analyze complex geometries and specific neutronic behaviors. Burnup calculations are an efficient tool to test neutronic Monte Carlo codes: indeed these calculations couple transport and depletion procedures, so that neutronic reactor behavior can be simulated in its totality. Comparisons have been performed on a configuration representing the Allegro MOX 75 MW{sub th} reactor proposed by the European GoFastR (Gas-cooled Fast Reactor) Project in the frame of the 7th Euratom Framework Program. Although in burnup and criticality comparisons the codes used in simulations show different calculation times and some differences in amounts and in precision (in term of statistical errors), a reasonably good agreement between them exists.

  1. New high burnup fuel models for NRC`s licensing audit code, FRAPCON

    Energy Technology Data Exchange (ETDEWEB)

    Lanning, D.D.; Beyer, C.E.; Painter, C.L. [Pacific Northwest Laboratory, Richland, WA (United States)

    1996-03-01

    Fuel behavior models have recently been updated within the U.S. Nuclear Regulatory Commission steady-state FRAPCON code used for auditing of fuel vendor/utility-codes and analyses. These modeling updates have concentrated on providing a best estimate prediction of steady-state fuel behavior up to the maximum burnup level s of current data (60 to 65 GWd/MTU rod-average). A decade has passed since these models were last updated. Currently, some U.S. utilities and fuel vendors are requesting approval for rod-average burnups greater than 60 GWd/MTU; however, until these recent updates the NRC did not have valid fuel performance models at these higher burnup levels. Pacific Northwest Laboratory (PNL) has reviewed 15 separate effects models within the FRAPCON fuel performance code (References 1 and 2) and identified nine models that needed updating for improved prediction of fuel behavior at high burnup levels. The six separate effects models not updated were the cladding thermal properties, cladding thermal expansion, cladding creepdown, fuel specific heat, fuel thermal expansion and open gap conductance. Comparison of these models to the currently available data indicates that these models still adequately predict the data within data uncertainties. The nine models identified as needing improvement for predicting high-burnup behavior are fission gas release (FGR), fuel thermal conductivity (accounting for both high burnup effects and burnable poison additions), fuel swelling, fuel relocation, radial power distribution, fuel-cladding contact gap conductance, cladding corrosion, cladding mechanical properties and cladding axial growth. Each of the updated models will be described in the following sections and the model predictions will be compared to currently available high burnup data.

  2. Development of Monteburns: A Code That Links MCNP and ORIGEN2 in an Automated Fashion for Burnup Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Holly R. Trellue

    1998-12-01

    Monteburns is a fully automated tool that links the Monte Carlo transport code MCNP with the radioactive decay and burnup code 0RIGEN2. Monteburns produces many criticality and burnup computational parameters based on material feed/removal specifications, power(s), and time intervals. This code processes input from the user indicating the system geometry, initial material compositions, feed/removal, and other code-specific parameters. Results from MCNP, 0RIGEN2, and other calculations are then output successively as the code runs. The principle function of monteburns is to first transfer one-group cross sections and fluxes from MCNP to 0RIGEN2, and then transfer the resulting material compositions (after irradiation and/or decay) from 0RIGEN2 back to MCNP in a repeated, cyclic fashion. The main requirement of the code is that the user have a working MCNP input file and other input parameters; all interaction with 0RIGEN2 and other calculations are performed by monteburns. This report presents the results obtained from the benchmarking of monteburns to measured and previously obtained data from traditional Light Water Reactor systems. The majority of the differences seen between the two were less than five percent. These were primarily a result of variances in cross sections between MCNP, cross section libraries used by other codes, and observed values. With this understanding, this code can now be used with confidence for burnup calculations in three-dimensional systems. It was designed for use in the Accelerator Transmutation of Waste project at Los Alamos National Laboratory but is also being applied to the analysis of isotopic production/destruction of transuranic actinides in a reactor system. The code has now been shown to sufficiently support these calculations.

  3. Development of burnup calculation function in reactor Monte Carlo code RMC

    International Nuclear Information System (INIS)

    This paper presents the burnup calculation capability of RMC, which is a new Monte Carlo (MC) neutron transport code developed by Reactor Engineering Analysis Laboratory (REAL) in Tsinghua University of China. Unlike most of existing MC depletion codes which explicitly couple the depletion module, RMC incorporates ORIGEN 2.1 in an implicit way. Different burn step strategies, including the middle-of-step approximation and the predictor-corrector method, are adopted by RMC to assure the accuracy under large burnup step size. RMC employs a spectrum-based method of tallying one-group cross section, which can considerably saves computational time with negligible accuracy loss. According to the validation results of benchmarks and examples, it is proved that the burnup function of RMC performs quite well in accuracy and efficiency. (authors)

  4. Using SERPENT Monte Carlo and Burnup code to model Traveling Wave Reactors - TWR

    International Nuclear Information System (INIS)

    This paper is mainly devoted to the proof-of-principle implementation of the SERPENT code for the simulation of traveling wave reactors. Traveling wave reactors are both fast reactors and nuclear burning wave reactors in which the breeding and burning of nuclear fuel appear almost simultaneously. SERPENT is a neutron transport code whose last official update package is SERPENT 1.1.19 and whose SERPENT 2 version is currently in progress. The investigation of SERPENT 1.1.19 and of SERPENT 2 codes for multiprocessor tasks with long burnup steps was performed. It appears that SERPENT 2 has eliminated parallelization problems efficiently. Methods to remove the influence of the ignition zone were considered, and neutron transport simulations with various fragmentations of the burnup zone were performed. (authors)

  5. Verification of spectral burn-up codes on 2D fuel assemblies of the GFR demonstrator ALLEGRO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Čerba, Štefan, E-mail: stefan.cerba@stuba.sk [Slovak University of Technology in Bratislava, Faculty of Electrical Engineering and Information Technology, Institute of Nuclear and Physical Engineering, Ilkovičova 3, 812 19 Bratislava (Slovakia); Vrban, Branislav; Lüley, Jakub [Slovak University of Technology in Bratislava, Faculty of Electrical Engineering and Information Technology, Institute of Nuclear and Physical Engineering, Ilkovičova 3, 812 19 Bratislava (Slovakia); Dařílek, Petr [VUJE a.s., Okružná 5, 918 64 Trnava (Slovakia); Zajac, Radoslav, E-mail: radoslav.zajac@vuje.sk [VUJE a.s., Okružná 5, 918 64 Trnava (Slovakia); Nečas, Vladimír; Haščik, Ján [Slovak University of Technology in Bratislava, Faculty of Electrical Engineering and Information Technology, Institute of Nuclear and Physical Engineering, Ilkovičova 3, 812 19 Bratislava (Slovakia)

    2014-02-15

    Highlights: • Verification of the MCNPX, HELIOS and SCALE codes. • MOX and ceramic fuel assembly. • Gas-cooled fast reactor. • Burnup calculation. - Abstract: The gas-cooled fast reactor, which is one of the six GEN IV reactor concepts, is characterized by high operational temperatures and a hard neutron spectrum. The utilization of commonly used spectral codes, developed mainly for LWR reactors operated in the thermal/epithermal neutron spectrum, may be connected with systematic deviations since the main development effort of these codes has been focused on the thermal part of the neutron spectrum. To be able to carry out proper calculations for fast systems the used codes have to account for neutron resonances including the self-shielding effect. The presented study aims at verifying the spectral HELIOS, MCNPX and SCALE codes on the basis of depletion calculations of 2D MOX and ceramic fuel assemblies of the ALLEGRO gas-cooled fast reactor demonstrator in infinite lattice.

  6. Development of a fuel rod thermal-mechanical analysis code for high burnup fuel

    International Nuclear Information System (INIS)

    The thermal-mechanical analysis code for high burnup BWR fuel rod has been developed by NFI. The irradiation data accumulated up to the assembly burnup of 55 GWd/t in commercial BWRs were adopted for the modeling. In the code, pellet thermal conductivity degradation with burnup progress was considered. Effects of the soluble FPs, irradiation defects and porosity increase due to RIM effect were taken into the model. In addition to the pellet thermal conductivity degradation, the pellet swelling due to the RIM porosity was studied. The modeling for the high burnup effects was also carried out for (U, Gd)O2 and MOX fuel. The thermal conductivities of all pellet types, UO2, (U, Gd)O2 and (U, Pu)O2 pellets, are expressed by the same form of equation with individual coefficient γ in the code. The pellet center temperature was calculated using this modeling code, and compared with measured values for the code verification. The pellet center temperature calculated using the thermal conductivity degradation model agreed well with the measured values within ±150 deg. C. The influence of rim porosity on pellet center temperature is small, and the temperature increase in only 30 deg. C at 75 GWd/t and 200 W/cm. The pellet center temperature of MOX fuel was also calculated, and it was found that the pellet center temperature of MOX fuel with 10wt% PuO2 is about 60 deg. C higher than UO2 fuel at 75 GWd/t and 200 W/cm. (author)

  7. Sophistication of burnup analysis system for fast reactor (2)

    International Nuclear Information System (INIS)

    Improvement on prediction accuracy for neutronics characteristics of fast reactor cores is one of the most important study domains in terms of both achievement of high economical plant efficiency based on reasonably advanced designs and increased reliability and safety margins. In former study, considerable improvement on prediction accuracy in neutronics design has been achieved in the development of the unified cross-section set as a fruit of a series of critical experiments such as JUPITER in application of the reactor constant adjustments. For design of fast reactor cores improvement of not only static characteristics but also burnup characteristics is very important. For such purpose, it is necessary to improve the prediction accuracy on burnup characteristics using actual burnup data of 'JOYO' and 'MONJU', experimental and prototype fast reactors. Recently, study on effective burnup method for minor actinides becomes important theme. However, there is a problem that analysis work tends to become inefficient for lack of functionality suitable for analysis of composition change due to burnup since the conventional analysis system is targeted to critical assembly systems. Therefore development of burnup analysis system for fast reactors with modularity and flexibility is being done that would contribute to actual core design work and improvement of prediction accuracy. In the previous study, we have developed a prototype system which has functions of performing core and burnup calculations using given constant files (PDS files) and information based on simple and easy user input data. It has also functions of fuel shuffling which is indispensable for power reactor analysis systems. In the present study, by extending the prototype system, features for handling of control rods and energy collapse of group constants have been designed and implemented. Computational results from the present analysis system are stored into restart files which can be accessible by

  8. Determination of the fuel element burn-up for mixed TRIGA core by measurement and calculation with new TRIGLAV code

    Energy Technology Data Exchange (ETDEWEB)

    Zagar, T.; Ravnik, M.; Persic, A. (J.Stefan Institute, Ljubljana (Slovenia))

    1999-12-15

    Results of fuel element burn-up determination by measurement and calculation are given. Fuel element burn-up was calculated with two different programs TRIGLAV and TRIGAC using different models. New TRIGLAV code is based on cylindrical, two-dimensional geometry with four group diffusion approximation. TRIGAC program uses one-dimensional cylindrical geometry with twogroup diffusion approximation. Fuel element burn-up was measured with reactivity method. In this paper comparison and analysis of these three methods is presented. Results calculated with TRIGLAV show considerably better alignment with measured values than results calculated with TRIGAC. Some two-dimensional effects in fuel element burn-up can be observed, for instance smaller standard fuel element burn-up in mixed core rings and control rod influence on nearby fuel elements. (orig.)

  9. MODRIB - a zero dimensional code for criticality and burn-up of LWR's

    International Nuclear Information System (INIS)

    The computer program MODRIB is a zero-dimensional code for calculating criticality and burn-up of light water reactors (LWR's). It is a version of an Italian code RIBOT-2 with an updated cross-section data library. The nuclear constants of MODRIB-code are calculated with a two group scheme (fast and thermal), where the fast group is an average of three fast groups. The code requires as input data essential extensive reactor parameters such as fuel rod radius, clad thickness, fuel enrichment, lattice pitch, water density and temperature etc. A summary of the physical model description and the input-output procedures are given in this report. Selected results of two sample problems are also given for the purpose of checking the validity and reliability of the code. The first is BWR and the second is PWR. The calculation time for a criticality problem with burn-up is about 8 seconds for the first time step and about 3 seconds for each subsequent time step on the ICL-1906 computer facility. The requirements on the memory size is less than 32 K-word. (author)

  10. Technical Basis for Peak Reactivity Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, William BJ J [ORNL; Ade, Brian J [ORNL; Bowman, Stephen M [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL; Mertyurek, Ugur [ORNL; Radulescu, Georgeta [ORNL

    2015-01-01

    Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate application of burnup credit for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase (1) investigates applicability of peak reactivity methods currently used in spent fuel pools (SFPs) to storage and transportation systems and (2) evaluates validation of both reactivity (keff) calculations and burnup credit nuclide concentrations within these methods. The second phase will focus on extending burnup credit beyond peak reactivity. This paper documents the first phase, including an analysis of lattice design parameters and depletion effects, as well as both validation components. Initial efforts related to extended burnup credit are discussed in a companion paper. Peak reactivity analyses have been used in criticality analyses for licensing of BWR fuel in SFPs over the last 20 years. These analyses typically combine credit for the gadolinium burnable absorber present in the fuel with a modest amount of burnup credit. Gadolinium burnable absorbers are used in BWR assemblies to control core reactivity. The burnable absorber significantly reduces assembly reactivity at beginning of life, potentially leading to significant increases in assembly reactivity for burnups less than 15–20 GWd/MTU. The reactivity of each fuel lattice is dependent on gadolinium loading. The number of gadolinium-bearing fuel pins lowers initial lattice reactivity, but it has a small impact on the burnup and reactivity of the peak. The gadolinium concentration in each pin has a small impact on initial lattice reactivity but a significant effect on the reactivity of the peak and the burnup at which the peak occurs. The importance of the lattice parameters and depletion conditions are primarily determined by their impact on the gadolinium depletion. Criticality code validation for BWR burnup

  11. ELESTRES 2.1 computer code for high burnup CANDU fuel performance analysis

    International Nuclear Information System (INIS)

    The ELESTRES (ELEment Simulation and sTRESses) computer code models the thermal, mechanical and micro structural behaviours of CANDU® fuel element under normal operating conditions. The main purpose of the code is to calculate fuel temperatures, fission gas release, internal gas pressure, fuel pellet deformation, and fuel sheath strains in fuel element design analysis and assessments. It is also used to provide initial conditions for evaluating fuel behaviour during high temperature transients. ELESTRES 2.1 was developed for high burnup fuel application, based on an industry standard tool version of the code, through the implementation or modification to code models such as fission gas release, fuel pellet densification, flux depression (radial power distribution in the fuel pellet), fuel pellet thermal conductivity, fuel sheath creep, fuel sheath yield strength, fuel sheath oxidation, two dimensional heat transfer between the fuel pellet and the fuel sheath; and an automatic finite element meshing capability to handle various fuel pellet shapes. The ELESTRES 2.1 code design and development was planned, implemented, verified, validated, and documented in accordance with the AECL software quality assurance program, which meets the requirements of the Canadian Standards Association standard for software quality assurance CSA N286.7-99. This paper presents an overview of the ELESTRES 2.1 code with descriptions of the code's theoretical background, solution methodologies, application range, input data, and interface with other analytical tools. Code verification and validation results, which are also discussed in the paper, have confirmed that ELESTRES 2.1 is capable of modelling important fuel phenomena and the code can be used in the design assessment and the verification of high burnup fuels. (author)

  12. Use of burnup credit in criticality safety design analysis of spent fuel storage systems

    International Nuclear Information System (INIS)

    temperature and density, presence of soluble boron in the core (PWR), use of fixed neutron absorbers (control rods, burnable poison rods, axial power shaping rods), use of integral burnable absorbers (gadolinium or erbium bearing fuel rods, IFBA rods). It will be shown how a bounding approach can be obtained for the impact of these parameters on the reactivity of the storage system. The criticality calculation procedure consists in the following main steps: Isotopic selection and validation; Validation of the criticality calculation code applied; Sensitivity studies on the reactivity effects of axial and horizontal burnup profiles of fuel assemblies; Determination of the criticality acceptance criterion (maximum allowable neutron multiplication factor including the impacts of all the mechanical and calculational uncertainties) and determination of the loading curve. The fundamentals of isotopic selection will be defined, and a survey of the benchmark experiments available for isotopic validation and validation of the criticality calculation code applied will be given. Since the parameters and conditions characterizing the benchmark experiments are usually different from the parameters and conditions describing the spent fuel storage system of interest, a method of checking the applicability of such experiments to the storage system will be briefly described. This method bases the applicability on the similarity of sensitivity coefficients which are defined for the underlying nuclear data characterizing the isotopic compositions and their effect on the spent fuel reactivity. The fact that the axial burnup distribution in a fuel assembly is non-uniform must be considered in the analysis of the storage system. The difference between the system's neutron multiplication factor obtained by using an axially varying burnup profile and the system's neutron multiplication factor obtained by assuming a uniform distribution of the averaged burnup of this profile is known as the 'end

  13. New Burnup Calculation System for Fusion-Fission Hybrid System

    International Nuclear Information System (INIS)

    Investigation of nuclear waste incineration has positively been carried out worldwide from the standpoint of environmental issues. Some candidates such as ADS, FBR are under discussion for possible incineration technology. Fusion reactor is one of such technologies, because it supplies a neutron-rich and volumetric irradiation field, and in addition the energy is higher than nuclear reactor. However, it is still hard to realize fusion reactor right now, as well known. An idea of combination of fusion and fission concepts, so-called fusion-fission hybrid system, was thus proposed for the nuclear waste incineration. Even for a relatively lower plasma condition, neutrons can be well multiplied by fission in the nuclear fuel, tritium is thus bred so as to attain its self-sufficiency, enough energy multiplication is then expected and moreover nuclear waste incineration is possible. In the present study, to realize it as soon as possible with the presently proven technology, i.e., using ITER model with the achieved plasma condition of JT60 in JAEA, Japan, a new calculation system for fusion-fission hybrid reactor including transport by MCNP and burnup by ORIGEN has been developed for the precise prediction of the neutronics performance. The author's group already has such a calculation system developed by them. But it had a problem that the cross section libraries in ORIGEN did not have a cross section library, which is suitable specifically for fusion-fission hybrid reactors. So far, those for FBR were approximately used instead in the analysis. In the present study, exact derivation of the collapsed cross section for ORIGEN has been investigated, which means it is directly evaluated from calculated track length by MCNP and point-wise nuclear data in the evaluated nuclear data file like JENDL-3.3. The system realizes several-cycle calculation one time, each of which consists of MCNP criticality calculation, MCNP fixed source calculation with a 3-dimensional precise

  14. Applicability of the MCNP-ACAB system to inventory prediction in high-burnup fuels: sensitivity/uncertainty estimates

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Herranz, N.; Cabellos, O. [Madrid Polytechnic Univ., Dept. of Nuclear Engineering (Spain); Cabellos, O.; Sanz, J. [Madrid Polytechnic Univ., 2 Instituto de Fusion Nuclear (Spain); Sanz, J. [Univ. Nacional Educacion a Distancia, Dept. of Power Engineering, Madrid (Spain)

    2005-07-01

    We present a new code system which combines the Monte Carlo neutron transport code MCNP-4C and the inventory code ACAB as a suitable tool for high burnup calculations. Our main goal is to show that the system, by means of ACAB capabilities, enables us to assess the impact of neutron cross section uncertainties on the inventory and other inventory-related responses in high burnup applications. The potential impact of nuclear data uncertainties on some response parameters may be large, but only very few codes exist which can treat this effect. In fact, some of the most reported effective code systems in dealing with high burnup problems, such as CASMO-4, MCODE and MONTEBURNS, lack this capability. As first step, the potential of our system, ruling out the uncertainty capability, has been compared with that of those code systems, using a well referenced high burnup pin-cell benchmark exercise. It is proved that the inclusion of ACAB in the system allows to obtain results at least as reliable as those obtained using other inventory codes, such as ORIGEN2. Later on, the uncertainty analysis methodology implemented in ACAB, including both the sensitivity-uncertainty method and the uncertainty analysis by the Monte Carlo technique, is applied to this benchmark problem. We estimate the errors due to activation cross section uncertainties in the prediction of the isotopic content up to the high-burnup spent fuel regime. The most relevant uncertainties are remarked, and some of the most contributing cross sections to those uncertainties are identified. For instance, the most critical reaction for Am{sup 242m} is Am{sup 241}(n,{gamma}-m). At 100 MWd/kg, the cross-section uncertainty of this reaction induces an error of 6.63% on the Am{sup 242m} concentration.The uncertainties in the inventory of fission products reach up to 30%.

  15. An economic evaluation of a storage system for casks with burnup credit

    International Nuclear Information System (INIS)

    It is generally recognized that casks designed with burnup credit are more economical than those without burnup credit. To estimate how much more economical they are, we made conceptual designs of transport/storage casks with and without burnup credit for PWR and BWR fuels of various uranium enrichment. The casks were designed to contain the maximum number of fuel assemblies under the necessary weight and dimensional limitations as well as the criticality and shielding criteria. The results showed that approximately 8 % to 44 % more fuel assemblies could be contained in casks with burnup credit. We then evaluated the economy of cask storage system incorporating the cask designs obtained above both with and without burnup credit. The results showed that the cost of storing casks with burnup credit is approximately 7 % to 30 % less expensive than storing casks without burnup credit. (J.P.N.)

  16. Burnup simulations of different fuel grades using the MCNPX Monte Carlo code

    Directory of Open Access Journals (Sweden)

    Asah-Opoku Fiifi

    2014-01-01

    Full Text Available Global energy problems range from the increasing cost of fuel to the unequal distribution of energy resources and the potential climate change resulting from the burning of fossil fuels. A sustainable nuclear energy would augment the current world energy supply and serve as a reliable future energy source. This research focuses on Monte Carlo simulations of pressurized water reactor systems. Three different fuel grades - mixed oxide fuel (MOX, uranium oxide fuel (UOX, and commercially enriched uranium or uranium metal (CEU - are used in this simulation and their impact on the effective multiplication factor (Keff and, hence, criticality and total radioactivity of the reactor core after fuel burnup analyzed. The effect of different clad materials on Keff is also studied. Burnup calculation results indicate a buildup of plutonium isotopes in UOX and CEU, as opposed to a decline in plutonium radioisotopes for MOX fuel burnup time. For MOX fuel, a decrease of 31.9% of the fissile plutonium isotope is observed, while for UOX and CEU, fissile plutonium isotopes increased by 82.3% and 83.8%, respectively. Keff results show zircaloy as a much more effective clad material in comparison to zirconium and stainless steel.

  17. Burn-up calculation of different thorium-based fuel matrixes in a thermal research reactor using MCNPX 2.6 code

    OpenAIRE

    Gholamzadeh Zohreh; Hossein Feghhi Seyed Amir; Soltani Leila; Rezazadeh Marzieh; Tenreiro Claudio; Joharifard Mahdi

    2014-01-01

    Decrease of the economically accessible uranium resources and the inherent proliferation resistance of thorium fuel motivate its application in nuclear power systems. Estimation of the nuclear reactor’s neutronic parameters during different operational situations is of key importance for the safe operation of nuclear reactors. In the present research, thorium oxide fuel burn-up calculations for a demonstrative model of a heavy water- -cooled reactor have been performed using MCNPX 2.6 code. N...

  18. Application of SCALE4.4 system for burnup credit criticality analysis of PWR spent fuel

    International Nuclear Information System (INIS)

    An investigation on the application of burnup credit for a PWR spent fuel storage pool has been carried out with the use of the SCALE 4.4 computer code system consisting of SAS2H and CSAS6 modules in association with 44-group SCALE cross-section library. Prior to the application of the computer code system, a series of bench markings have been performed in comparison with available data. A benchmarking of the SAS2h module has been done for experimental concentration data of 54 PWR spent fuel and then correction factors with a 95% probability at a 95% confidence level have been determined on the basis of the calculated and measured concentrations of 38 nuclides. After that, the bias which might have resulted from the use of the CSAS6 module has been calculated for 46 criticality experimental data of UO2 fuel and MOX fuel assemblies. The calculation bias with one-sided tolerance limit factor (2.086) corresponding to a 95% probability at a 95% confidence level has consequently been obtained to be 0.00834. Burnup credit criticality analysis has been done for the PWR spent fuel storage pool by means of the benchmarked or validated code system. It is revealed that the minimum burnup for safe storage is 7560 MWd/tU in 5 wt% enriched fuel if both actinides and fission products in spent fuel are taken into account. However, the minimum value required seems to be 9,565 MWd/tU in the same enriched fuel provided that only the actinides are taken into consideration. (author)

  19. Burn-up calculation of different thorium-based fuel matrixes in a thermal research reactor using MCNPX 2.6 code

    Directory of Open Access Journals (Sweden)

    Gholamzadeh Zohreh

    2014-12-01

    Full Text Available Decrease of the economically accessible uranium resources and the inherent proliferation resistance of thorium fuel motivate its application in nuclear power systems. Estimation of the nuclear reactor’s neutronic parameters during different operational situations is of key importance for the safe operation of nuclear reactors. In the present research, thorium oxide fuel burn-up calculations for a demonstrative model of a heavy water- -cooled reactor have been performed using MCNPX 2.6 code. Neutronic parameters for three different thorium fuel matrices loaded separately in the modelled thermal core have been investigated. 233U, 235U and 239Pu isotopes have been used as fissile element in the thorium oxide fuel, separately. Burn-up of three different fuels has been calculated at 1 MW constant power. 135X and 149Sm concentration variations have been studied in the modelled core during 165 days burn-up. Burn-up of thorium oxide enriched with 233U resulted in the least 149Sm and 135Xe productions and net fissile production of 233U after 165 days. The negative fuel, coolant and void reactivity of the used fuel assures safe operation of the modelled thermal core containing (233U-Th O2 matrix. Furthermore, utilisation of thorium breeder fuel demonstrates several advantages, such as good neutronic economy, 233U production and less production of long-lived α emitter high radiotoxic wastes in biological internal exposure point of view

  20. Neutron transport-burnup code MCORGS and its application in fusion fission hybrid blanket conceptual research

    Science.gov (United States)

    Shi, Xue-Ming; Peng, Xian-Jue

    2016-09-01

    Fusion science and technology has made progress in the last decades. However, commercialization of fusion reactors still faces challenges relating to higher fusion energy gain, irradiation-resistant material, and tritium self-sufficiency. Fusion Fission Hybrid Reactors (FFHR) can be introduced to accelerate the early application of fusion energy. Traditionally, FFHRs have been classified as either breeders or transmuters. Both need partition of plutonium from spent fuel, which will pose nuclear proliferation risks. A conceptual design of a Fusion Fission Hybrid Reactor for Energy (FFHR-E), which can make full use of natural uranium with lower nuclear proliferation risk, is presented. The fusion core parameters are similar to those of the International Thermonuclear Experimental Reactor. An alloy of natural uranium and zirconium is adopted in the fission blanket, which is cooled by light water. In order to model blanket burnup problems, a linkage code MCORGS, which couples MCNP4B and ORIGEN-S, is developed and validated through several typical benchmarks. The average blanket energy Multiplication and Tritium Breeding Ratio can be maintained at 10 and 1.15 respectively over tens of years of continuous irradiation. If simple reprocessing without separation of plutonium from uranium is adopted every few years, FFHR-E can achieve better neutronic performance. MCORGS has also been used to analyze the ultra-deep burnup model of Laser Inertial Confinement Fusion Fission Energy (LIFE) from LLNL, and a new blanket design that uses Pb instead of Be as the neutron multiplier is proposed. In addition, MCORGS has been used to simulate the fluid transmuter model of the In-Zinerater from Sandia. A brief comparison of LIFE, In-Zinerater, and FFHR-E will be given.

  1. Propagation of uncertainty in system parameters of a LWR model by sampling MCNPX calculations - Burnup analysis

    International Nuclear Information System (INIS)

    For all the physical components that comprise a nuclear system there is an uncertainty. Assessing the impact of uncertainties in the simulation of fissionable material systems is essential for a best estimate calculation that has been replacing the conservative model calculations as the computational power increases. The propagation of uncertainty in a simulation using a Monte Carlo code by sampling the input parameters is recent because of the huge computational effort required. In this work a sample space of MCNPX calculations was used to propagate the uncertainty. The sample size was optimized using the Wilks formula for a 95. percentile and a two-sided statistical tolerance interval of 95%. Uncertainties in input parameters of the reactor considered included geometry dimensions and densities. It was showed the capacity of the sampling-based method for burnup when the calculations sample size is optimized and many parameter uncertainties are investigated together, in the same input. Particularly it was shown that during the burnup, the variances when considering all the parameters uncertainties is equivalent to the sum of variances if the parameter uncertainties are sampled separately

  2. Development and validation of burnup dependent computational schemes for the analysis of assemblies with advanced lattice codes

    Science.gov (United States)

    Ramamoorthy, Karthikeyan

    The main aim of this research is the development and validation of computational schemes for advanced lattice codes. The advanced lattice code which forms the primary part of this research is "DRAGON Version4". The code has unique features like self shielding calculation with capabilities to represent distributed and mutual resonance shielding effects, leakage models with space-dependent isotropic or anisotropic streaming effect, availability of the method of characteristics (MOC), burnup calculation with reaction-detailed energy production etc. Qualified reactor physics codes are essential for the study of all existing and envisaged designs of nuclear reactors. Any new design would require a thorough analysis of all the safety parameters and burnup dependent behaviour. Any reactor physics calculation requires the estimation of neutron fluxes in various regions of the problem domain. The calculation goes through several levels before the desired solution is obtained. Each level of the lattice calculation has its own significance and any compromise at any step will lead to poor final result. The various levels include choice of nuclear data library and energy group boundaries into which the multigroup library is cast; self shielding of nuclear data depending on the heterogeneous geometry and composition; tracking of geometry, keeping error in volume and surface to an acceptable minimum; generation of regionwise and groupwise collision probabilities or MOC-related information and their subsequent normalization thereof, solution of transport equation using the previously generated groupwise information and obtaining the fluxes and reaction rates in various regions of the lattice; depletion of fuel and of other materials based on normalization with constant power or constant flux. Of the above mentioned levels, the present research will mainly focus on two aspects, namely self shielding and depletion. The behaviour of the system is determined by composition of resonant

  3. Implementation of burnup credit in spent fuel management systems. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    The purpose of this Technical Committee Meeting was to explore the status of international activities related to the use of burnup credit for spent fuel applications. This was the second major meeting on the issues of burnup credit for spent fuel management systems held since the IAEA began to monitor the uses of burnup credit in spent fuel management systems in 1997. Burnup credit for wet and dry storage systems is needed in many Member States to allow for increased initial fuel enrichment, and to increase the storage capacity and thus to avoid the need for extensive modifications of the spent fuel management systems involved. This document contains 31 individual papers presented at the Meeting; each of the papers was indexed separately

  4. Theory analysis and simple calculation of travelling wave burnup scheme

    International Nuclear Information System (INIS)

    Travelling wave burnup scheme is a new burnup scheme that breeds fuel locally just before it burns. Based on the preliminary theory analysis, the physical imagine was found. Through the calculation of a R-z cylinder travelling wave reactor core with ERANOS code system, the basic physical characteristics of this new burnup scheme were concluded. The results show that travelling wave reactor is feasible in physics, and there are some good features in the reactor physics. (authors)

  5. Activity ratio measurement and burnup analysis for high burnup PWR fuels

    International Nuclear Information System (INIS)

    Applying burnup credit to spent fuel transportation and storage system is beneficial. To take burnup credit to criticality safety design for a spent fuel transportation cask and storage rack, the burnup of target fuel assembly based on core management data must be confirmed by experimental methods. Activity ratio method, in which measured the ratio of the activity of a nuclide to that of another, is one of the ways to confirm burnup history. However, there is no public data of gamma-ray spectrum from high burnup fuels and validation of depletion calculation codes is not sufficient in the evaluation of the burnup or nuclide inventories. In this study, applicability evaluation of activity ratio method was carried out for high burnup fuel samples taken from PWR lead use assembly. In the gamma-ray measurement experiments, energy spectrum was taken in the Reactor Fuel Examination Facility (RFEF) of Japan Atomic Energy Agency (JAEA), and 134Cs/137Cs and 154Eu/137Cs activity ratio were obtained. With the MVP-BURN code, the activity ratios were calculated by depletion calculation tracing the operation history. As a result, 134Cs/137Cs and 154Eu/137Cs activity ratios for UO2 fuel samples show good agreements and the activity ratio method has good applicability to high burnup fuels. 154Eu/134Cs activity ratio for Gd2O3+UO2 fuels also shows good agreements between calculation results and experimental results as well as the activity ratio for UO2 fuels. It also becomes clear that it is necessary to pay attention to not only burnup but also axial burnup distribution history when confirming the burnup of UO2+Gd2O3 fuel with 134Cs/137Cs activity ratios. (author)

  6. PLUTON: Three-group neutronic code for burnup analysis of isotope generation and depletion in highly irradiated LWR fuel rods

    International Nuclear Information System (INIS)

    PLUTON is a three-group neutronic code analyzing, as functions of time and burnup, the change of radial profiles, together with average values, of power density, burnup, concentration of trans-uranium elements, plutonium buildup, depletion of fissile elements, and fission product generation in water reactor fuel rod with standard UO2, UO2-Gd2O3, inhomogeneous MOX, and UO2-ThO2. The PLUTON code, which has been designed to be run on Windows PC, has adopted a theoretical shape function of neutron attenuation in pellet, which enables users to perform a very fast and accurate calculation easily. The present code includes the irradiation conditions of the Halden Reactor which gives verification data for the code. The total list of trans-uranium elements included in the calculations consists of 92U233-239, 93Np237-239, 94Pu238-243, 95Am241-244 (including isomers), and 96Cm242-245. Poisoning fission products are represented by 54Xe131,133,135, 48Cd113, 62Sm149,151,152, 64Gd154-160, 63Eu153,155, 36Kr83,85, 42Mo95, 43Tc99, 45Rh103, 47Ag109, 53I127,129,131, 55Cs133, 57La139, 59Pr141, 60Nd143-150, 61Pm147. Fission gases and volatiles included in the code are 36Kr83-86, 54Xe129-136, 52Te125-130, 53I127-131, 55Cs133-137, and 56Ba135-140. Verification has been performed up to 83 GWd/tU, and a satisfactory agreement has been obtained. (author)

  7. Monte Carlo burnup code acceleration with the correlated sampling method. Preliminary test on an UOX cell with TRIPOLI-4{sup R}

    Energy Technology Data Exchange (ETDEWEB)

    Dieudonne, C.; Dumonteil, E.; Malvagi, F.; Diop, C. M. [Commissariat a l' Energie Atomique et aux Energies Alternatives CEA, Service d' Etude des Reacteurs et de Mathematiques Appliquees, DEN/DANS/DM2S/SERMA/LTSD, F91191 Gif-sur-Yvette cedex (France)

    2013-07-01

    For several years, Monte Carlo burnup/depletion codes have appeared, which couple a Monte Carlo code to simulate the neutron transport to a deterministic method that computes the medium depletion due to the neutron flux. Solving Boltzmann and Bateman equations in such a way allows to track fine 3 dimensional effects and to get rid of multi-group hypotheses done by deterministic solvers. The counterpart is the prohibitive calculation time due to the time-expensive Monte Carlo solver called at each time step. Therefore, great improvements in term of calculation time could be expected if one could get rid of Monte Carlo transport sequences. For example, it may seem interesting to run an initial Monte Carlo simulation only once, for the first time/burnup step, and then to use the concentration perturbation capability of the Monte Carlo code to replace the other time/burnup steps (the different burnup steps are seen like perturbations of the concentrations of the initial burnup step). This paper presents some advantages and limitations of this technique and preliminary results in terms of speed up and figure of merit. Finally, we will detail different possible calculation scheme based on that method. (authors)

  8. Development and validation of ALEPH2 Monte Carlo burn-up code

    Energy Technology Data Exchange (ETDEWEB)

    Van Den Eynde, G.; Stankovskiy, A.; Fiorito, L.; Broustaut, M. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium)

    2013-07-01

    The ALEPH2 Monte Carlo depletion code has two principal features that make it a flexible and powerful tool for reactor analysis. First of all, its comprehensive nuclear data library ensures the consistency between steady-state Monte Carlo and deterministic depletion modules. It covers neutron and proton induced reactions, neutron and proton fission product yields, spontaneous fission product yields, radioactive decay data and total recoverable energies per fission. Secondly, ALEPH2 uses an advanced numerical solver for the first order ordinary differential equations describing the isotope balances, namely a Radau IIA implicit Runge-Kutta method. The versatility of the code allows using it for time behavior simulation of various systems ranging from single pin model to full-scale reactor model. The code is extensively used for the neutronics design of the MYRRHA research fast spectrum facility which will operate in both critical and sub-critical modes. The code has been validated on the decay heat data from JOYO experimental fast reactor. (authors)

  9. A study of fuel failure behavior in high burnup HTGR fuel. Analysis by STRESS3 and STAPLE codes

    Energy Technology Data Exchange (ETDEWEB)

    Martin, David G.; Sawa, Kazuhiro; Ueta, Shouhei; Sumita, Junya [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2001-05-01

    In current high temperature gas-cooled reactors (HTGRs), Tri-isotropic coated fuel particles are employed as fuel. In safety design of the HTGR fuels, it is important to retain fission products within particles so that their release to primary coolant does not exceed an acceptable level. From this point of view, the basic design criteria for the fuel are to minimize the failure fraction of as-fabricated fuel coating layers and to prevent significant additional fuel failures during operation. This report attempts to model fuel behavior in irradiation tests using the U.K. codes STRESS3 and STAPLE. Test results in 91F-1A and HRB-22 capsules irradiation tests, which were carried out at the Japan Materials Testing Reactor of JAERI and at the High Flux Isotope Reactor of Oak Ridge National Laboratory, respectively, were employed in the calculation. The maximum burnup and fast neutron fluence were about 10%FIMA and 3 x 10{sup 25} m{sup -2}, respectively. The fuel for the irradiation tests was called high burnup fuel, whose target burnup and fast neutron fluence were higher than those of the first-loading fuel of the High Temperature Engineering Test Reactor. The calculation results demonstrated that if only mean fracture stress values of PyC and SiC are used in the calculation it is not possible to predict any particle failures, by which is meant when all three load bearing layers have failed. By contrast, when statistical variations in the fracture stresses and particle specifications are taken into account, as is done in the STAPLE code, failures can be predicted. In the HRB-22 irradiation test, it was concluded that the first two particles which had failed were defective in some way, but that the third and fourth failures can be accounted for by the pressure vessel model. In the 91F-1A irradiation test, the result showed that 1 or 2 particles had failed towards the end of irradiation in the upper capsule and no particles failed in the lower capsule. (author)

  10. Extended calculations of OECD/NEA phase II-C burnup credit criticality benchmark problem for PWR spent fuel transport cask by using MCNP-4B2 code and JENDL-3.2 library

    Energy Technology Data Exchange (ETDEWEB)

    Kuroishi, Takeshi; Hoang, Anh Tuan; Nomura, Yasushi; Okuno, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The reactivity effect of the asymmetry of axial burnup profile in burnup credit criticality safety is studied for a realistic PWR spent fuel transport cask proposed in the current OECD/NEA Phase II-C benchmark problem. The axial burnup profiles are simulated in 21 material zones based on in-core flux measurements varying from strong asymmetry to more or less no asymmetry. Criticality calculations in a 3-D model have been performed using the continuous energy Monte Carlo code MCNP-4B2 and the nuclear data library JENDL-3.2. Calculation conditions are determined with consideration of the axial fission source convergence. Calculations are carried out not only for cases proposed in the benchmark but also for additional cases assuming symmetric burnup profile. The actinide-only approach supposed for first domestic introduction of burnup credit into criticality evaluation is also considered in addition to the actinide plus fission product approach adopted in the benchmark. The calculated results show that k{sub eff} and the end effect increase almost linearly with increasing burnup axial offset that is defined as one of typical parameters showing the intensity of axial burnup asymmetry. The end effect is more sensitive to the asymmetry of burnup profile for the higher burnup. For an axially distributed burnup, the axial fission source distribution becomes strongly asymmetric as its peak shifts toward the top end of the fuel's active zone where the local burnup is less than that of the bottom end. The peak of fission source distribution becomes higher with the increase of either the asymmetry of burnup profile or the assembly-averaged burnup. The conservatism of the assumption of uniform axial burnup based on the actinide-only approach is estimated quantitatively in comparison with the k{sub eff} result calculated with experiment-based strongest asymmetric axial burnup profile with the actinide plus fission product approach. (author)

  11. Automated generation of burnup chain for reactor analysis applications

    International Nuclear Information System (INIS)

    This paper presents the development of an automated generation of a new burnup chain for reactor analysis applications. The JENDL FP Decay Data File 2011 and Fission Yields Data File 2011 were used as the data sources. The nuclides in the new chain are determined by restrictions of the half-life and cumulative yield of fission products or from a given list. Then, decay modes, branching ratios and fission yields are recalculated taking into account intermediate reactions. The new burnup chain is output according to the format for the SRAC code system. Verification was performed to evaluate the accuracy of the new burnup chain. The results show that the new burnup chain reproduces well the results of a reference one with 193 fission products used in SRAC. Further development and applications are being planned with the burnup chain code. (author)

  12. PLUTON: Three-group neutronic code for burnup analysis of isotope generation and depletion in highly irradiated LWR fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Lemehov, Sergei E; Suzuki, Motoe [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-08-01

    PLUTON is a three-group neutronic code analyzing, as functions of time and burnup, the change of radial profiles, together with average values, of power density, burnup, concentration of trans-uranium elements, plutonium buildup, depletion of fissile elements, and fission product generation in water reactor fuel rod with standard UO{sub 2}, UO{sub 2}-Gd{sub 2}O{sub 3}, inhomogeneous MOX, and UO{sub 2}-ThO{sub 2}. The PLUTON code, which has been designed to be run on Windows PC, has adopted a theoretical shape function of neutron attenuation in pellet, which enables users to perform a very fast and accurate calculation easily. The present code includes the irradiation conditions of the Halden Reactor which gives verification data for the code. The total list of trans-uranium elements included in the calculations consists of {sub 92}U{sup 233-239}, {sub 93}Np{sup 237-239}, {sub 94}Pu{sup 238-243}, {sub 95}Am{sup 241-244} (including isomers), and {sub 96}Cm{sup 242-245}. Poisoning fission products are represented by {sub 54}Xe{sup 131,133,135}, {sub 48}Cd{sup 113}, {sub 62}Sm{sup 149,151,152}, {sub 64}Gd{sup 154-160}, {sub 63}Eu{sup 153,155}, {sub 36}Kr{sup 83,85}, {sub 42}Mo{sup 95}, {sub 43}Tc{sup 99}, {sub 45}Rh{sup 103}, {sub 47}Ag{sup 109}, {sub 53}I{sup 127,129,131}, {sub 55}Cs{sup 133}, {sub 57}La{sup 139}, {sub 59}Pr{sup 141}, {sub 60}Nd{sup 143-150}, {sub 61}Pm{sup 147}. Fission gases and volatiles included in the code are {sub 36}Kr{sup 83-86}, {sub 54}Xe{sup 129-136}, {sub 52}Te{sup 125-130}, {sub 53}I{sup 127-131}, {sub 55}Cs{sup 133-137}, and {sub 56}Ba{sup 135-140}. Verification has been performed up to 83 GWd/tU, and a satisfactory agreement has been obtained. (author)

  13. Russian system of computerized analysis for licensing at atomic industry (SCALA) and its validation on ICSBEP handbook data and some burnup calculations

    International Nuclear Information System (INIS)

    The System of Computerized Analysis for Licensing at Atomic industry (SCALA) is a Russian analogue of the well-known SCALE system. For criticality evaluations the ABBN-93 system is used with TWODANT and with joined American KENO and Russian MMK Monte-Carlo code MMKKENO. Using the same cross sections and input models, all these codes give results that coincide within the statistical uncertainties (for Monte-Carlo codes). Validation of criticality calculations using SCALA was performed using data presented in the International Handbook of Evaluated Criticality Safety Benchmark Experiments. Another task of the work was to test the burnup capability of SCALA system in complex geometry in compare with other codes. Benchmark models of VVER type reactor assemblies with UO2 and MOX fuel including the cases with burnable gadolinium absorbers were calculated. KENO-VI and MMK codes were used for power distribution calculations, ORIGEN code was used for the isotopic kinetics calculations. (authors)

  14. Preliminary TRIGA fuel burn-up evaluation by means of Monte Carlo code and computation based on total energy released during reactor operation

    International Nuclear Information System (INIS)

    Aim of this work was to perform a rough preliminary evaluation of the burn-up of the fuel of TRIGA Mark II research reactor of the Applied Nuclear Energy Laboratory (LENA) of the Univ. of Pavia. In order to achieve this goal a computation of the neutron flux density in each fuel element was performed by means of Monte Carlo code MCNP (Version 4C). The results of the simulations were used to calculate the effective cross sections (fission and capture) inside fuel and, at the end, to evaluate the burn-up and the uranium consumption in each fuel element. The evaluation, showed a fair agreement with the computation for fuel burn-up based on the total energy released during reactor operation. (authors)

  15. SFR whole core burnup calculations with TRIPOLI-4 Monte Carlo code

    International Nuclear Information System (INIS)

    Under the Working Party on Scientific Issues of Reactor Systems (WPRS) of the OECD/NEA, an international collaboration benchmark was recently established on the neutronic analysis of four Sodium-cooled Fast Reactor (SFR) concepts of the Generation- IV nuclear energy systems. As the whole core Monte Carlo depletion calculation is one of the essential challenges of current reactor physics studies, the continuous-energy TRIPOLI-4 Monte Carlo transport code was firstly used in this study to perform whole core 3D neutronic calculations for these four SFR cores. Two medium size (1000 MWt) and two large size (3600 MWt) SFR of GEN-IV systems were analyzed. The medium size SFR concepts are from the Advanced Burner Reactors (ABR). The large size SFR concepts are from the self-breeding reactors. The TRIPOLI-4 depletion calculations were made with MOX and metallic U-Pu-Zr fuels for the ABR cores and with MOX and Carbide (U,Pu)C fuels for the self-breeding cores. The whole core reactor physics parameters calculations were performed for the BOEC and EOEC (Beginning and End of Equilibrium Cycle) conditions. This paper summarizes the TRIPOLI-4 calculation results of Keff, βeff, sodium void worth, Doppler constant, control rod worth, and core power distributions for the BOEC and EOEC conditions. The one-cycle depletion calculation results of the core inventory of U and TRU (Pu, Am, Cm, and Np) are also analyzed, after 328.5 days depletion irradiation for the ABR cores, 410 days for the large MOX core, and 500 days for the large carbide core. (author)

  16. Burn-up measurements coupling gamma spectrometry and neutron measurement

    International Nuclear Information System (INIS)

    The need to apply for burn-up credit arises with the increase of the initial enrichment of nuclear fuel. When burn-up credit is used in criticality safety studies, it is often necessary to confirm it by measurement. For the last 10 years, CANBERRA has manufactured the PYTHON system for such measurements. However, the method used in the PYTHON itself uses certain reactor data to arrive at burn-up estimates. Based on R and D led by CEA and COGEMA in the framework of burn-up measurement for burn-up credit and safeguards applications, CANBERRA is developing the next generation of burn-up measurement device. This new product, named SMOPY, is able to measure burn-up of any kind of irradiated fuel assembly with a combination of gamma spectrometry and passive neutron measurements. The measurement data is used as input to the CESAR depletion code, which has been developed and qualified by CEA and COGEMA for burn-up credit determinations. In this paper, we explain the complementary nature of the gamma and neutron measurements. In addition, we draw on our previous experience from PYTHON system and from COGEMA La Hague to show what types of evaluations are required to qualify the SMOPY system, to estimate its uncertainties, and to detect discrepancies in the fuel data given by the reactor plant to characterize the irradiated fuel assembly. (authors)

  17. SRAC95; general purpose neutronics code system

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Keisuke; Tsuchihashi, Keichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kaneko, Kunio

    1996-03-01

    SRAC is a general purpose neutronics code system applicable to core analyses of various types of reactors. Since the publication of JAERI-1302 for the revised SRAC in 1986, a number of additions and modifications have been made for nuclear data libraries and programs. Thus, the new version SRAC95 has been completed. The system consists of six kinds of nuclear data libraries(ENDF/B-IV, -V, -VI, JENDL-2, -3.1, -3.2), five modular codes integrated into SRAC95; collision probability calculation module (PIJ) for 16 types of lattice geometries, Sn transport calculation modules(ANISN, TWOTRAN), diffusion calculation modules(TUD, CITATION) and two optional codes for fuel assembly and core burn-up calculations(newly developed ASMBURN, revised COREBN). In this version, many new functions and data are implemented to support nuclear design studies of advanced reactors, especially for burn-up calculations. SRAC95 is available not only on conventional IBM-compatible computers but also on scalar or vector computers with the UNIX operating system. This report is the SRAC95 users manual which contains general description, contents of revisions, input data requirements, detail information on usage, sample input data and list of available libraries. (author).

  18. Burnup study of 18 months and 16/20 months cycle AP1000 cores using CASMO4E and SIMULATE-3 codes

    International Nuclear Information System (INIS)

    AP1000 reactor is an advanced pressurized water reactor equipped with passive safety systems. AP1000 reactor core is designed for 18 month cycle length and can also be used for 16/20 month alternate cycle lengths to meet energy requirements during high demand periods. The purpose of this study is to analyze the feasibility of AP1000 core for both 18 and 16/20 alternate cycle lengths by using CASMO4E and SIMULATE-3 code package. For this purpose, burnup analysis of both the schemes is carried out from initial core loading through optimized transition cores to equilibrium core. The study is performed by modeling three dimensional full core in SIMULATE-3 with each fuel assembly divided into 40 axial and 4 radial quadrant nodes. Once and twice burned fuel reloading from one cycle to the next and removal of burnable poison rods from the core after first cycle options are used in these codes. The results of this study indicate that both the cycle schemes can be utilized by varying the core loading pattern. Moreover, reactivity coefficients, total power peaking factors and enthalpy rise factors are calculated which indicate that the AP1000 core provide adequate safety margins in both the cycle schemes. (author)

  19. Development of the next generation reactor analysis code system, MARBLE

    International Nuclear Information System (INIS)

    A next generation reactor analysis code system, MARBLE, has been developed. MARBLE is a successor of the fast reactor neutronics analysis code systems, JOINT-FR and SAGEP-FR (conventional systems), which were developed for so-called JUPITER standard analysis methods. MARBLE has the equivalent analysis capability to the conventional system because MARBLE can utilize sub-codes included in the conventional system without any change. On the other hand, burnup analysis functionality for power reactors is improved compared with the conventional system by introducing models on fuel exchange treatment and control rod operation and so on. In addition, MARBLE has newly developed solvers and some new features of burnup calculation by the Krylov sub-space method and nuclear design accuracy evaluation by the extended bias factor method. In the development of MARBLE, the object oriented technology was adopted from the view-point of improvement of the software quality such as flexibility, expansibility, facilitation of the verification by the modularization and assistance of co-development. And, software structure called the two-layer system consisting of scripting language and system development language was applied. As a result, MARBLE is not an independent analysis code system which simply receives input and returns output, but an assembly of components for building an analysis code system (i.e. framework). Furthermore, MARBLE provides some pre-built analysis code systems such as the fast reactor neutronics analysis code system. SCHEME, which corresponds to the conventional code and the fast reactor burnup analysis code system, ORPHEUS. (author)

  20. COGEMA/TRANSNUCLEAIRE's experience with burnup credit

    International Nuclear Information System (INIS)

    Facing a continuous increase in the fuel enrichments, COGEMA and TRANSNUCLEAIRE have implemented step by step a burnup credit programme to improve the capacity of their equipment without major physical modification. Many authorizations have been granted by the French competent authority in wet storage, reprocessing and transport since 1981. As concerns transport, numerous authorizations have been validated by foreign competent authorities. Up to now, those authorizations are restricted to PWR Fuel type assemblies made of enriched uranium. The characterization of the irradiated fuel and the reactivity of the systems are evaluated by calculations performed with well qualified French codes developed by the CEA (French Atomic Energy Commission): CESAR as a depletion code and APPOLO-MORET as a criticality code. The authorizations are based on the assurance that the burnup considered is met on the least irradiated part of the fuel assemblies. Besides, the most reactive configuration is calculated and the burnup credit is restricted to major actinides only. This conservative approach allows not to take credit for any axial profile. On the operational side, the procedures have been reevaluated to avoid misloadings and a burnup verification is made before transport, storage and reprocessing. Depending on the level of burnup credit, it consists of a qualitative (go/no-go) verification or of a quantitative measurement. Thus the use of burnup credit is now a common practice in France and Germany and new improvements are still in progress: extended qualifications of the codes are made to enable the use of six selected fission products in the criticality evaluations. (author)

  1. Incorporation of the variation in conductivity with burnup in the stability of code predictive LAPUR

    International Nuclear Information System (INIS)

    In the field of nuclear safety, the analysis of the stability of boiling water reactors is one of the biggest challenges for researchers. LAPUR code that allows to obtain the parameters of stability of the plant (Decay rate and frequency), being one of the programs used by IBERDROLA can be used for these calculations. With the collaboration of the research group TIN of the Polytechnic University of Valencia, a model of loss of conductivity of uranium has joined with the burned LAPUR. This update allows you to play the phenomenon in a more realistic way. This improvement has been validated and verified contrasting results with reference values.

  2. Development of a Mobile CZT Detector System for Burnup Measurement of Spent Fuel Assembly and On-Site Application

    International Nuclear Information System (INIS)

    The advantages of mobile CdZnTe (CZT) detector for nuclear safeguard applications of spent fuel burnup inspection in assembly storage pond are compactness, low cost and ease of operations. In this work, a mobile detection system shield with tungsten alloy was designed and then performed on-site. Net count rate of the 662 keV line of 137Cs was produced linearly with burnup as experimental data simulations shows, in which the deviation from linearity is smaller than 9%. As a result, the feasibility of the method using CZT detector to monitor spent nuclear fuel assembly burnup in a fuel pond was validated. The results calculated with Monte Carlo procedure Geant4 can provide a theoretical guide for the further burnup measurement. (author)

  3. Calculation study of TNPS spent fuel pool using burnup credit

    International Nuclear Information System (INIS)

    Exampled by the spent fuel pool of TNPS which is consist of 2 × 5 fuel storage racks, the spent fuel high-density storage based on burnup credit (BUC) and related criticality safety issues were studied. The MONK9A code was used to analyze keff, of different enrichment fuels at different burnups. A reference loading curve was proposed in accordance with the system keff's changing with the burnup of different initially enriched nuclear fuels. The capacity of the spent fuel pool increases by 31% compared with the one that does not consider BUC. (authors)

  4. Analysis of the burnup of the control rods with the COREMASTER-Presto code

    International Nuclear Information System (INIS)

    An evaluation of the capacity of the COREMASTER-Presto code, to evaluate generically the burnt of the control bars in the Laguna Verde reactors plant (CLV) is made. It was found that the code only reports burnt values of the control rods in MWD/TM, in spite of having with a second order polynomial model, for the conversion to remainder of the Boron-10 (B-10). It was observed that said model is adequate only for burnt smaller to 45,000 MWD/TM. To evaluate the burnt of the control rods it was reproduced the balance cycle of 18 months for the CLV, executing Cm-Presto during 13 consecutive cycles. First without rod burnt, taking this as the base case. Later on, cases with 1, 2 and up to 13 cycles with rod burnt were generated. When comparing results it was observed that the control rods pattern it loses reactivity lineally with the burnt one. By each 10 G Wd/T of burnt of the nucleus it is decreased the reactivity of the pattern rods ∼ 1 pcm in hot condition and of ∼ 20 pcm in cold condition. When burning three cycles those rods more burnt reached the 13,900 MWD/TM, equivalent to 36% of B-10 reduction, near value to 34% proposed by aging in the one lost study of B-10. It was observed that Cm-Presto it doesn't burn the superior node of the control rods when these are completely extracted. A one big lost of B-10, of the order of 50%, it represents only a decrease of 11% of the reactivity value of the rod. One can affirm that even when it is strongly decreased the content of B-10, the rod is continue considering as a black absorber, that is to say, thermal neutron that enters in the neutron rod that is absorbed. (Author)

  5. Application of the RTOP-CA code for analysis of MIR-reactor high burnup experiments and activity release from WWER fuel of new generation

    International Nuclear Information System (INIS)

    Results of the RTOP-CA code calculations for experiments in the research MIR reactor are presented. The MIR-reactor tests were made to study the activity release from defective WWER fuel at high burnup (∼60 MWd/kgU). The RTOP-CA calculations are compared to experimental data on radial distributions of burnup as well as radial profiles of Pu and Xe concentrations in fuel pellets. The RTOP-CA predictions are also compared to the data on activity release (radionuclides of I, Cs, Xe and Kr) from the test fuel rod with an artificial defect in cladding. Additional calculations were performed for WWER-1000 fuel of an advanced design. In these calculation series the effect of design innovations on activity release from defective fuel rods was estimated. It is demonstrated that in case of a failure the new generation of WWER fuel shows lower levels of activity release into primary coolant. (authors)

  6. Tokamak Systems Code

    International Nuclear Information System (INIS)

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged

  7. Analysis of some antecipated transients without scram for PWR type reactors by coupling of the CORAN code to the ALMOD code system

    International Nuclear Information System (INIS)

    This study investigates some antecipated transients without scram for a pressurized water cooled reactor, using coupling of the containment CORAN code to the ALMOD code system, under severe random conditions. This coupling has the objective of including containment model as part of an unified code system. These severe conditions include failure of reactor scram, following a station black-out and emergency power initiation for the burn-up status at the beginning and end of the cycle. Furthermore, for the burn-up status at the end of the cycle, a failure in the closure of the pressurizer relief valve was also investigated. (Author)

  8. SRAC2006: A comprehensive neutronics calculation code system

    International Nuclear Information System (INIS)

    The SRAC is a code system applicable to neutronics analysis of a variety of reactor types. Since the publication of the second version of the users manual (JAERI-1302) in 1986 for the SRAC system, a number of additions and modifications to the functions and the library data have been made to establish a comprehensive neutronics code system. The current system includes major neutron data libraries (JENDL-3.3, JENDL-3.2, ENDF/B-VII, ENDF/B-VI.8, JEFF-3.1, JEF-2.2, etc.), and integrates five elementary codes for neutron transport and diffusion calculation; PIJ based on the collision probability method applicable to 16 kind of lattice models, SN transport codes ANISN(1D) and TWOTRN(2D), diffusion codes TUD(1D) and CITATION(multi-D). The system also includes an auxiliary code COREBN for multi-dimensional core burn-up calculation. (author)

  9. Detailed Burnup Calculations for Testing Nuclear Data

    Science.gov (United States)

    Leszczynski, F.

    2005-05-01

    A general method (MCQ) has been developed by introducing a microscopic burnup scheme that uses the Monte Carlo calculated fluxes and microscopic reaction rates of a complex system and a depletion code for burnup calculations as a basis for solving nuclide material balance equations for each spatial region in which the system is divided. Continuous energy-dependent cross-section libraries and full 3D geometry of the system can be input for the calculations. The resulting predictions for the system at successive burnup time steps are thus based on a calculation route where both geometry and cross sections are accurately represented, without geometry simplifications and with continuous energy data, providing an independent approach for benchmarking other methods and nuclear data of actinides, fission products, and other burnable absorbers. The main advantage of this method over the classical deterministic methods currently used is that the MCQ System is a direct 3D method without the limitations and errors introduced on the homogenization of geometry and condensation of energy of deterministic methods. The Monte Carlo and burnup codes adopted until now are the widely used MCNP and ORIGEN codes, but other codes can be used also. For using this method, there is need of a well-known set of nuclear data for isotopes involved in burnup chains, including burnable poisons, fission products, and actinides. For fixing the data to be included in this set, a study of the present status of nuclear data is performed, as part of the development of the MCQ method. This study begins with a review of the available cross-section data of isotopes involved in burnup chains for power and research nuclear reactors. The main data needs for burnup calculations are neutron cross sections, decay constants, branching ratios, fission energy, and yields. The present work includes results of selected experimental benchmarks and conclusions about the sensitivity of different sets of cross

  10. Burnup span sensitivity analysis of different burnup coupling schemes

    International Nuclear Information System (INIS)

    Highlights: ► The objective of this work is the burnup span sensitivity analysis of different coupling schemes. ► Three kinds of schemes have been implemented in a new MCNP–ORIGEN linkage program. ► Two kinds of schemes are based predictor–corrector technique and the third is based on Euler explicit method. ► The analysis showed that the predictor–corrector approach better accounts for nonlinear behavior of burnup. ► It is sufficiently good to use the Euler method at small spans but for large spans use of second order scheme is mandatory. - Abstract: The analysis of core composition changes is complicated by the fact that the time and spatial variations in isotopic composition depend on the neutron flux distribution and vice versa. Fortunately, changes in core composition occur relatively slowly and hence the burnup analysis can be performed by dividing the burnup period into some burnup spans and assuming that the averaged flux and cross sections are constant during each burn up span. The burnup span sensitivity analysis attempts to find how much the burnup spans could be increased without any significant change in results. This goal has been achieved by developing a new MCNP–ORIGEN linkage program named MOBC (MCNP–ORIGEN Burnup Calculation). Three kinds of coupling scheme have been implemented in MOBC. Two of these are based on second order predictor–corrector technique and enable us to choose larger time steps, whilst the third one is based on Euler explicit first order method and is faster than the other two. The validity of the developed program has been evaluated by the code vs. code comparison technique. Two different types of codes are employed. The first one is based on deterministic two dimensional transport method, like CASMO-4 and HELIOS codes, and the second one is based on Monte Carlo method, like MCODE code. Only one coupling technique is employed in each of these state of the art codes, while the MOBC excels in its ability to

  11. An extended version of the SERPENT-2 code to investigate fuel burn-up and core material evolution of the Molten Salt Fast Reactor

    Science.gov (United States)

    Aufiero, M.; Cammi, A.; Fiorina, C.; Leppänen, J.; Luzzi, L.; Ricotti, M. E.

    2013-10-01

    In this work, the Monte Carlo burn-up code SERPENT-2 has been extended and employed to study the material isotopic evolution of the Molten Salt Fast Reactor (MSFR). This promising GEN-IV nuclear reactor concept features peculiar characteristics such as the on-line fuel reprocessing, which prevents the use of commonly available burn-up codes. Besides, the presence of circulating nuclear fuel and radioactive streams from the core to the reprocessing plant requires a precise knowledge of the fuel isotopic composition during the plant operation. The developed extension of SERPENT-2 directly takes into account the effects of on-line fuel reprocessing on burn-up calculations and features a reactivity control algorithm. It is here assessed against a dedicated version of the deterministic ERANOS-based EQL3D procedure (PSI-Switzerland) and adopted to analyze the MSFR fuel salt isotopic evolution. Particular attention is devoted to study the effects of reprocessing time constants and efficiencies on the conversion ratio and the molar concentration of elements relevant for solubility issues (e.g., trivalent actinides and lanthanides). Quantities of interest for fuel handling and safety issues are investigated, including decay heat and activities of hazardous isotopes (neutron and high energy gamma emitters) in the core and in the reprocessing stream. The radiotoxicity generation is also analyzed for the MSFR nominal conditions. The production of helium and the depletion in tungsten content due to nuclear reactions are calculated for the nickel-based alloy selected as reactor structural material of the MSFR. These preliminary evaluations can be helpful in studying the radiation damage of both the primary salt container and the axial reflectors.

  12. Coupling CFD code with system code and neutron kinetic code

    International Nuclear Information System (INIS)

    Highlights: • Coupling interface between CFD code Fluent and system code Athlet was created. • Athlet code is internally coupled with neutron kinetic code Dyn3D. • Explicit coupling of overlapped computational domains was used. • A coupled system of Athlet/Dyn3D+Fluent codes was successfully tested on a real case. - Abstract: The aim of this work was to develop the coupling interface between CFD code Fluent and system code Athlet internally coupled with neutron kinetic code Dyn3D. The coupling interface is intended for simulation of complex transients such as Main Steam Line Break scenarios, which cannot be modeled separately first by system and neutron kinetic code and then by CFD code, because of the feedback between the codes. In the first part of this article, the coupling method is described. Explicit coupling of overlapped computational domains is used in this work. The second part of the article presents a demonstration simulation performed by the coupled system of Athlet/Dyn3D and Fluent. The “Opening a Steam Dump to the Atmosphere” test carried out at the Temelin NPP (VVER-1000) was simulated by the coupled system. In this simulation, the primary and secondary circuits were modeled by Athlet, mixing in downcomer and lower plenum was simulated by Fluent and heat generation in the core was calculated by Dyn3D. The results of the simulation with Athlet/Dyn3D+Fluent were compared with the experimental data and the results from a calculation performed with Athlet/Dyn3D without Fluent

  13. A guide to the AUS modular neutronics code system

    International Nuclear Information System (INIS)

    A general description is given of the AUS modular neutronics code system, which may be used for calculations of a very wide range of fission reactors, fusion blankets and other neutron applications. The present system has cross-section libraries derived from ENDF/B-IV and includes modules which provide for lattice calculations, one-dimensional transport calculations, and one, two, and three-dimensional diffusion calculations, burnup calculations and the flexible editing of results. Details of all system aspects of AUS are provided but the major individual modules are only outlined. Sufficient information is given to enable other modules to be added to the system

  14. A burnup credit calculation methodology for PWR spent fuel transportation

    International Nuclear Information System (INIS)

    A burnup credit calculation methodology for PWR spent fuel transportation has been developed and validated in CEA/Saclay. To perform the calculation, the spent fuel composition are first determined by the PEPIN-2 depletion analysis. Secondly the most important actinides and fission product poisons are automatically selected in PEPIN-2 according to the reactivity worth and the burnup for critically consideration. Then the 3D Monte Carlo critically code TRIMARAN-2 is used to examine the subcriticality. All the resonance self-shielded cross sections used in this calculation system are prepared with the APOLLO-2 lattice cell code. The burnup credit calculation methodology and related PWR spent fuel transportation benchmark results are reported and discussed. (authors)

  15. Accumulative Landings System Code Tables

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Code Tables Used In Landings System. These tables assign meanings to the codes that appear in the data tables. Code tables exist for species, gear, state, county,...

  16. Validation of the burn-up code EVOLCODE 2.0 with PWR experimental data and with a Sensitivity/Uncertainty analysis

    International Nuclear Information System (INIS)

    Highlights: • A successful validation of the burn-up simulation system EVOLCODE is presented here. • A Sensitivity/Uncertainty model was applied for uncertainty propagation/assessment. • Cross sections are for most cases the main contributors to inventory uncertainties. • The improved model helps to explain some simulation-experiment discrepancies. • Some hints for the improvement of basic data libraries are provided. - Abstract: A validation of the burn-up simulation system EVOLCODE 2.0 is presented here, involving the experimental measurement of U and Pu isotopes and some fission fragments production ratios after a burn-up of around 30 GWd/tU in a Pressurized Light Water Reactor (PWR). This work provides an in-depth analysis of the validation results, including the possible sources of the uncertainties. An uncertainty analysis based on the sensitivity methodology has been also performed, providing the uncertainties in the isotopic content propagated from the cross sections uncertainties. An improvement of the classical Sensitivity/Uncertainty (S/U) model has been developed to take into account the implicit dependence of the neutron flux normalization, that is, the effect of the constant power of the reactor. The improved S/U methodology, neglected in this kind of studies, has proven to be an important contribution to the explanation of some simulation-experiment discrepancies for which, in general, the cross section uncertainties are, for the most relevant actinides, an important contributor to the simulation uncertainties, of the same order of magnitude and sometimes even larger than the experimental uncertainties and the experiment-simulation differences. Additionally, some hints for the improvement of the JEFF3.1.1 fission yield library and for the correction of some errata in the experimental data are presented

  17. Advanced video coding systems

    CERN Document Server

    Gao, Wen

    2015-01-01

    This comprehensive and accessible text/reference presents an overview of the state of the art in video coding technology. Specifically, the book introduces the tools of the AVS2 standard, describing how AVS2 can help to achieve a significant improvement in coding efficiency for future video networks and applications by incorporating smarter coding tools such as scene video coding. Topics and features: introduces the basic concepts in video coding, and presents a short history of video coding technology and standards; reviews the coding framework, main coding tools, and syntax structure of AV

  18. WWER expert system for fuel failure analysis using the RTOP-CA code

    International Nuclear Information System (INIS)

    The computer expert system for fuel failure analysis of WWER during operation is presented. The diagnostics is based on the measurement of specific activity of reference nuclides in reactor primary coolant and application of a computer code for the data interpretation. The data analysis includes an evaluation of tramp uranium mass in reactor core, detection of failures by iodine and caesium spikes, evaluation of burnup of defective fuel. Evaluation of defective fuel burnup was carried out by applying the relation of caesium nuclides activity in spikes and relations of activities of gaseous fission products for steady state operational conditions. The method of burnup evaluation of defective fuel by use of fission gas activity is presented in details. The neural-network analysis is performed for determination of failed fuel rod number and defect size. Results of the expert system application are illustrated for several fuel campaigns on operating WWER NPPs. (authors)

  19. Dependence of control rod worth on fuel burnup

    Energy Technology Data Exchange (ETDEWEB)

    Savva, P., E-mail: savvapan@ipta.demokritos.g [NCSR ' DEMOKRITOS' , PoB 60228, 15310 Aghia Paraskevi (Greece); Varvayanni, M., E-mail: melina@ipta.demokritos.g [NCSR ' DEMOKRITOS' , PoB 60228, 15310 Aghia Paraskevi (Greece); Catsaros, N., E-mail: nicos@ipta.demokritos.g [NCSR ' DEMOKRITOS' , PoB 60228, 15310 Aghia Paraskevi (Greece)

    2011-02-15

    Research highlights: Diffusion and MC calculations for rod worth dependence on burnup and Xe in reactors. One-step rod withdrawal/insertion are used for rod worth estimation. The study showed that when Xe is present the rods worth is significantly reduced. Rod worth variation with burnup depends on rod position in core. Rod worth obtained with MC code is higher than that obtained from deterministic. - Abstract: One important parameter in the design and the analysis of a nuclear reactor core is the reactivity worth of the control rods, i.e. their efficiency to absorb excess reactivity. The control rod worth is affected by parameters such as the fuel burnup in the rod vicinity, the Xe concentration in the core, the operational time of the rod and its position in the core. In the present work, two different computational approaches, a deterministic and a stochastic one, were used for the determination of the rods worth dependence on the fuel burnup level and the Xe concentration level in a conceptual, symmetric reactor core, based on the MTR fuel assemblies used in the Greek Research Reactor (GRR-1). For the deterministic approach the neutronics code system composed by the SCALE modules NITAWL and XSDRN and the diffusion code CITATION was used, while for the stochastic one the Monte Carlo code TRIPOLI was applied. The study showed that when Xe is present in the core, the rods worth is significantly reduced, while the rod worth variation with increasing burnup depends on the rods position in the core grid. The rod worth obtained with the use of the Monte Carlo code is higher than the one obtained from the deterministic code.

  20. ThO{sub 2}-UO{sub 2} annular pins for high burnup fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caner, Marc; Dugan, Edward T

    2000-06-01

    The main purpose of this work is to investigate the use of annular fuel pins (particularly pins containing thorium dioxide) for high burnup fuel. The following parameters were evaluated and compared between postulated mixed thorium-uranium dioxide standard and annular (9% void fraction) type fuel assemblies, as a function of burnup: the infinite multiplication factor, the uranium and plutonium isotopic compositions, the fuel temperature coefficient of reactivity and the conversion ratio. We used the SCALE-4.3 code system. The calculation method consisted in obtaining actinide and fission product number densities as functions of assembly burnup, by means of a 1-D transport calculation combined with a 0-D burnup calculation. These number densities were then used in a 3-D Monte Carlo code for obtaining k{sub {infinity}} from two-dimensional-symmetry 'snapshots'.

  1. Advanced Method for Calculations of Core Burn-Up, Activation of Structural Materials, and Spallation Products Accumulation in Accelerator-Driven Systems

    Directory of Open Access Journals (Sweden)

    A. Stankovskiy

    2012-01-01

    Full Text Available The ALEPH2 Monte Carlo depletion code has two principal features that make it a flexible and powerful tool for reactor analysis. First of all, it uses a nuclear data library covering neutron- and proton-induced reactions, neutron and proton fission product yields, spontaneous fission product yields, radioactive decay data, and total recoverable energies per fission. Secondly, it uses a state-of-the-art numerical solver for the first-order ordinary differential equations describing the isotope balances, namely, a Radau IIA implicit Runge-Kutta method. The versatility of the code allows using it for time behavior simulation of various systems ranging from single pin model to full-scale reactor model, including such specific facilities as accelerator-driven systems. The core burn-up, activation of the structural materials, irradiation of samples, and, in addition, accumulation of spallation products in accelerator-driven systems can be calculated in a single ALEPH2 run. The code is extensively used for the neutronics design of the MYRRHA research facility which will operate in both critical and subcritical modes.

  2. End effect analysis with various axial burnup distributions in high density spent fuel storage racks

    International Nuclear Information System (INIS)

    Highlights: • Criticality tests are carried out with various axial burnup distributions of fuel assemblies for spent fuel storage racks. • KENO-Va code system was used to obtain criticalities with 10 axial segments. • ORIGEN-S code system was used to obtain burnup dependent axial compositions. • The criticality and burnup dependent reactivity difference are obtained from the results. • End effect quantifications are satisfactory confirming the previous suggestions. - Abstract: End effect of spent fuel comes from the difference between uniform and actual axial burnup distributions of fuel assemblies. It is significant to control the criticality safety in spent fuel storage and transportation. This work is focused on estimation of end effect in the spent fuel of light water reactor for the spent fuel storage rack region-II. High and low burnups of corresponding different uranium enrichments are taken into consideration to analyze the end effect with different axial burnup distributions such as uniform, MOC and EOC profiles. Two types of fuel assemblies such as CE type and Westinghouse type are considered. The whole calculations have been carried out by using the SCALE6 code including ORIGEN-S and KENO-Va

  3. Development and Applications of a Prototypic SCALE Control Module for Automated Burnup Credit Analysis

    International Nuclear Information System (INIS)

    Consideration of the depletion phenomena and isotopic uncertainties in burnup-credit criticality analysis places an increasing reliance on computational tools and significantly increases the overall complexity of the calculations. An automated analysis and data management capability is essential for practical implementation of large-scale burnup credit analyses that can be performed in a reasonable amount of time. STARBUCS is a new prototypic analysis sequence being developed for the SCALE code system to perform automated criticality calculations of spent fuel systems employing burnup credit. STARBUCS is designed to help analyze the dominant burnup credit phenomena including spatial burnup gradients and isotopic uncertainties. A search capability also allows STARBUCS to iterate to determine the spent fuel parameters (e.g., enrichment and burnup combinations) that result in a desired keff for a storage configuration. Although STARBUCS was developed to address the analysis needs for spent fuel transport and storage systems, it provides sufficient flexibility to allow virtually any configuration of spent fuel to be analyzed, such as storage pools and reprocessing operations. STARBUCS has been used extensively at Oak Ridge National Laboratory (ORNL) to study burnup credit phenomena in support of the NRC Research program

  4. Preparation of data relevant to ''Equivalent Uniform Burnup'' and Equivalent Initial Enrichment'' for burnup credit evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Yasushi; Okuno, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Murazaki, Minoru [Tokyo Nuclear Service Inc., Tokyo (Japan)

    2001-11-01

    Based on the PWR spent fuel composition data measured at JAERI, two kinds of simplified methods such as ''Equivalent Uniform Burnup'' and ''Equivalent Initial Enrichment'' have been introduced. And relevant evaluation curves have been prepared for criticality safety evaluation of spent fuel storage pool and transport casks, taking burnup of spent fuel into consideration. These simplified methods can be used to obtain an effective neutron multiplication factor for a spent fuel storage/transportation system by using the ORIGEN2.1 burnup code and the KENO-Va criticality code without considering axial burnup profile in spent fuel and other various factors introducing calculated errors. ''Equivalent Uniform Burnup'' is set up for its criticality analysis to be reactivity equivalent with the detailed analysis, in which the experimentally obtained isotopic composition together with a typical axial burnup profile and various factors such as irradiation history are considered on the conservative side. On the other hand, Equivalent Initial Enrichment'' is set up for its criticality analysis to be reactivity equivalent with the detailed analysis such as above when it is used in the so called fresh fuel assumption. (author)

  5. Validation of SWAT for burnup credit problems by analysis of post irradiation examination of 17*17 PWR fuel assembly

    International Nuclear Information System (INIS)

    For adopting burnup credit in transport or storage of spent fuel (SF), development of a reliable burnup calculation code is crucial. For this purpose, data of Post Irradiation Examination (PIE) have been extensively analyzed to evaluate accuracy of burnup calculation codes for a 14*14 or 15*15 PWR fuel assembly. This study shows results of analysis of this latest PIE with SWAT and ORIGEN2.1. SWAT is an integrated burnup code system for a 17*17 PWR fuel assembly that has been developed by Tohoku University and JAERI. The results show that SWAT can more precisely predict nuclide composition of latest PWR assembly than ORIGEN2.1. (O.M.)

  6. A criticality analysis of the GBC-32 dry storage cask with Hanbit nuclear power plant unit 3 fuel assemblies from the viewpoint of burnup credit

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hyung Ju; Kim, Do Yeon; Park, Kwang Heon; Hong, Ser Gi [Dept. of Nuclear Engineering, Kyung Hee University, Seoul (Korea, Republic of)

    2016-06-15

    Nuclear criticality safety analyses (NCSAs) considering burnup credit were performed for the GBC-32 cask. The used nuclear fuel assemblies (UNFAs) discharged from Hanbit Nuclear Power Plant Unit 3 Cycle 6 were loaded into the cask. Their axial burnup distributions and average discharge burnups were evaluated using the DeCART and Multi-purpose Analyzer for Static and Transient Effects of Reactors (MASTER) codes, and NCSAs were performed using SCALE 6.1/STandardized Analysis of Reactivity for Burnup Credit using SCALE (STARBUCS) and Monte Carlo N-Particle transport code, version 6 (MCNP 6). The axial burnup distributions were determined for 20 UNFAs with various initial enrichments and burnups, which were applied to the criticality analysis for the cask system. The UNFAs for 20- and 30-year cooling times were assumed to be stored in the cask. The criticality analyses indicated that keff values for UNFAs with nonuniform axial burnup distributions were larger than those with a uniform distribution, that is, the end effects were positive but much smaller than those with the reference distribution. The axial burnup distributions for 20 UNFAs had shapes that were more symmetrical with a less steep gradient in the upper region than the reference ones of the United States Department of Energy. These differences in the axial burnup distributions resulted in a significant reduction in end effects compared with the reference.

  7. Burnup analysis of the VVER-1000 reactor using thorium-based fuel

    Energy Technology Data Exchange (ETDEWEB)

    Korkmaz, Mehmet E.; Agar, Osman; Bueyueker, Eylem [Karamanoglu Mehmetbey Univ., Karaman (Turkey). Faculty of Kamil Ozdag Science

    2014-12-15

    This paper aims to investigate {sup 232}Th/{sup 233}U fuel cycles in a VVER-1000 reactor through calculation by computer. The 3D core geometry of VVER-1000 system was designed using the Serpent Monte Carlo 1.1.19 Code. The Serpent Code using parallel programming interface (Message Passing Interface-MPI), was run on a workstation with 12-core and 48 GB RAM. {sup 232}Th/{sup 235}U/{sup 238}U oxide mixture was considered as fuel in the core, when the mass fraction of {sup 232}Th was increased as 0.05-0.1-0.2-0.3-0.4 respectively, the mass fraction of {sup 238}U equally was decreased. In the system, the calculations were made for 3 000 MW thermal power. For the burnup analyses, the core is assumed to deplete from initial fresh core up to a burnup of 16 MWd/kgU without refuelling considerations. In the burnup calculations, a burnup interval of 360 effective full power days (EFPDs) was defined. According to burnup, the mass changes of the {sup 232}Th, {sup 233}U, {sup 238}U, {sup 237}Np, {sup 239}Pu, {sup 241}Am and {sup 244}Cm were evaluated, and also flux and criticality of the system were calculated in dependence of the burnup rate.

  8. Burnup analysis of the VVER-1000 reactor using thorium-based fuel

    International Nuclear Information System (INIS)

    This paper aims to investigate 232Th/233U fuel cycles in a VVER-1000 reactor through calculation by computer. The 3D core geometry of VVER-1000 system was designed using the Serpent Monte Carlo 1.1.19 Code. The Serpent Code using parallel programming interface (Message Passing Interface-MPI), was run on a workstation with 12-core and 48 GB RAM. 232Th/235U/238U oxide mixture was considered as fuel in the core, when the mass fraction of 232Th was increased as 0.05-0.1-0.2-0.3-0.4 respectively, the mass fraction of 238U equally was decreased. In the system, the calculations were made for 3 000 MW thermal power. For the burnup analyses, the core is assumed to deplete from initial fresh core up to a burnup of 16 MWd/kgU without refuelling considerations. In the burnup calculations, a burnup interval of 360 effective full power days (EFPDs) was defined. According to burnup, the mass changes of the 232Th, 233U, 238U, 237Np, 239Pu, 241Am and 244Cm were evaluated, and also flux and criticality of the system were calculated in dependence of the burnup rate.

  9. Burn-up Function of Fuel Management Code for Aqueous Homogeneous Reactors and Its Validation%溶液堆物理计算程序FMCAHR燃耗功能及其验证

    Institute of Scientific and Technical Information of China (English)

    汪量子; 姚栋; 王侃

    2011-01-01

    介绍了FMCAHR程序的燃耗计算模型及流程,并使用燃耗基准题和DRAGON程序对燃耗计算结果进行验证.验证结果表明,FMCAHR燃耗计算功能的准确性较高,适用于溶液堆的燃耗计算分析.%Fuel Management Code for Aqueous Homogeneous Reactors(FMCAHR)is developed based on the Monte Carlo transport method,to analyze the physics characteristics of aqueous homogeneous reactors. FMCAHR has the ability of doing resonance treatment,searching for critical rod heights,thermal hydraulic parameters calculation,radiolytic-gas bubbles' calculation and burn-up calculation. This paper introduces the theory model and scheme of its bum-up function,and then compares its calculation results with benchmarks and with DRAGON'S burn-up results,which confirms its burn-up computing precision and its applicability in the burn-up calculation and analysis for aqueous solution reactors.

  10. Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages

    International Nuclear Information System (INIS)

    The objective of this topical report is to present to the NRC for review and acceptance a methodology for using burnup credit in the design of criticality control systems for PWR spent fuel transportation packages, while maintaining the criticality safety margins and related requirements of 10 CFR Part 71 and 72. The proposed methodology consists of five major steps as summarized below: (1) Validate a computer code system to calculate isotopic concentrations in SNF created during burnup in the reactor core and subsequent decay. (2) Validate a computer code system to predict the subcritical multiplication factor, keff, of a spent nuclear fuel package. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). and (5) Verify that SNF assemblies meet the package loading criteria and confirm proper fuel assembly selection prior to loading. (This step is required but the details are outside the scope of this topical report.) When reviewed and accepted by the NRC, this topical report will serve as a criterion document for criticality control analysts and will provide steps for the use of actinide-only burnup credit in the design of criticality control systems. The NRC-accepted burnup credit methodology will be used by commercial SNF storage and transportation package designers. Design-specific burnup credit criticality analyses will be defined, developed, and documented in the Safety Analysis Report (SAR) for each specific storage or transportation package that uses burnup credit. These SARs will then be submitted to the NRC for review and approval. This topical report is expected to be referenced in a number of storage and transportation cask applications to be submitted by commercial cask and canister designers to the NRC. Therefore, NRC acceptance of this topical report will result in increased efficiency of the

  11. Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1998-09-01

    The objective of this topical report is to present to the NRC for review and acceptance a methodology for using burnup credit in the design of criticality control systems for PWR spent fuel transportation packages, while maintaining the criticality safety margins and related requirements of 10 CFR Part 71 and 72. The proposed methodology consists of five major steps as summarized below: (1) Validate a computer code system to calculate isotopic concentrations in SNF created during burnup in the reactor core and subsequent decay. (2) Validate a computer code system to predict the subcritical multiplication factor, keff, of a spent nuclear fuel package. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). and (5) Verify that SNF assemblies meet the package loading criteria and confirm proper fuel assembly selection prior to loading. (This step is required but the details are outside the scope of this topical report.) When reviewed and accepted by the NRC, this topical report will serve as a criterion document for criticality control analysts and will provide steps for the use of actinide-only burnup credit in the design of criticality control systems. The NRC-accepted burnup credit methodology will be used by commercial SNF storage and transportation package designers. Design-specific burnup credit criticality analyses will be defined, developed, and documented in the Safety Analysis Report (SAR) for each specific storage or transportation package that uses burnup credit. These SARs will then be submitted to the NRC for review and approval. This topical report is expected to be referenced in a number of storage and transportation cask applications to be submitted by commercial cask and canister designers to the NRC. Therefore, NRC acceptance of this topical report will result in increased efficiency of the

  12. Topical report on actinide-only burnup credit for PWR spent nuclear fuel packages. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1997-04-01

    A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay. A set of chemical assay benchmarks is presented for this purpose as well as a method for assessing the calculational bias and uncertainty, and conservative correction factors for each isotope. (2) Validate a computer code system to predict the subcritical multiplication factor, k{sub eff}, of a spent nuclear fuel package. Fifty-seven UO{sub 2}, UO{sub 2}/Gd{sub 2}O{sub 3}, and UO{sub 2}/PuO{sub 2} critical experiments have been selected to cover anticipated conditions of SNF. The method uses an upper safety limit on k{sub eff} (which can be a function of the trending parameters) such that the biased k{sub eff}, when increased for the uncertainty is less than 0.95. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. Three bounding axial profiles have been established to assure the ''end effect'' is accounted for conservatively. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). Burnup credit loading curves show the minimum burnup required for a given initial enrichment. The utility burnup record is compared to this requirement after the utility accounts for the uncertainty in its record. Separate curves may be generated for each assembly design, various minimum cooling times and burnable absorber histories. (5) Verify that SNF assemblies meet the package

  13. TOPICAL REPORT ON ACTINIDE-ONLY BURNUP CREDIT FOR PWR SPENT NUCLEAR FUEL PACKAGES

    International Nuclear Information System (INIS)

    A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay. A set of chemical assay benchmarks is presented for this purpose as well as a method for assessing the calculational bias and uncertainty, and conservative correction factors for each isotope. (2) Validate a computer code system to predict the subcritical multiplication factor, keff, of a spent nuclear fuel package. Fifty-seven UO2, UO2/Gd2O3, and UO2/PuO2 critical experiments have been selected to cover anticipated conditions of SNF. The method uses an upper safety limit on keff (which can be a function of the trending parameters) such that the biased keff, when increased for the uncertainty is less than 0.95. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. Three bounding axial profiles have been established to assure the ''end effect'' is accounted for conservatively. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). Burnup credit loading curves show the minimum burnup required for a given initial enrichment. The utility burnup record is compared to this requirement after the utility accounts for the uncertainty in its record. Separate curves may be generated for each assembly design, various minimum cooling times and burnable absorber histories. (5) Verify that SNF assemblies meet the package loading criteria and confirm proper assembly selection prior to loading

  14. Strategies for Application of Isotopic Uncertainties in Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Gauld, I.C.

    2002-12-23

    Uncertainties in the predicted isotopic concentrations in spent nuclear fuel represent one of the largest sources of overall uncertainty in criticality calculations that use burnup credit. The methods used to propagate the uncertainties in the calculated nuclide concentrations to the uncertainty in the predicted neutron multiplication factor (k{sub eff}) of the system can have a significant effect on the uncertainty in the safety margin in criticality calculations and ultimately affect the potential capacity of spent fuel transport and storage casks employing burnup credit. Methods that can provide a more accurate and realistic estimate of the uncertainty may enable increased spent fuel cask capacity and fewer casks needing to be transported, thereby reducing regulatory burden on licensee while maintaining safety for transporting spent fuel. This report surveys several different best-estimate strategies for considering the effects of nuclide uncertainties in burnup-credit analyses. The potential benefits of these strategies are illustrated for a prototypical burnup-credit cask design. The subcritical margin estimated using best-estimate methods is discussed in comparison to the margin estimated using conventional bounding methods of uncertainty propagation. To quantify the comparison, each of the strategies for estimating uncertainty has been performed using a common database of spent fuel isotopic assay measurements for pressurized-light-water reactor fuels and predicted nuclide concentrations obtained using the current version of the SCALE code system. The experimental database applied in this study has been significantly expanded to include new high-enrichment and high-burnup spent fuel assay data recently published for a wide range of important burnup-credit actinides and fission products. Expanded rare earth fission-product measurements performed at the Khlopin Radium Institute in Russia that contain the only known publicly-available measurement for {sup 103

  15. Improvement of JRR-4 core management code system

    Energy Technology Data Exchange (ETDEWEB)

    Izumo, H.; Watanabe, S.; Nagatomi, H.; Hori, N. [Department of Research Reactor, Tokai Research Establishment, Japan Atomic Energy Institute, Tokai, Ibaraki (Japan)

    2000-10-01

    In the modification of JRR-4, the fuel was changed from 93% high enrichment uranium aluminized fuel to 20% low enriched uranium silicide fuel in conformity with the framework of reduced enrichment program on JAERI research reactors. As changing of this, JRR-4 core management code system which estimates excess reactivity of core, fuel burn-up and so on, was improved too. It had been difficult for users to operate the former code system because its input-output form was text-form. But, in the new code system (COMMAS-JRR), users are able to operate the code system without using difficult text-form input. The estimation results of excess reactivity of JRR-4 LEU fuel core were showed very good agreements with the measured value. It is the strong points of this new code system to be operated simply by using the windows form pictures act on a personal workstation equip with the graphical-user-interface (GUI), and to estimate accurately the specific characteristics of the LEU core. (author)

  16. Elements of algebraic coding systems

    CERN Document Server

    Cardoso da Rocha, Jr, Valdemar

    2014-01-01

    Elements of Algebraic Coding Systems is an introductory textto algebraic coding theory. In the first chapter, you'll gain insideknowledge of coding fundamentals, which is essential for a deeperunderstanding of state-of-the-art coding systems.This book is a quick reference for those who are unfamiliar withthis topic, as well as for use with specific applications such as cryptographyand communication. Linear error-correcting block codesthrough elementary principles span eleven chapters of the text.Cyclic codes, some finite field algebra, Goppa codes, algebraic decodingalgorithms, and applications in public-key cryptography andsecret-key cryptography are discussed, including problems and solutionsat the end of each chapter. Three appendices cover the Gilbertbound and some related derivations, a derivation of the Mac-Williams' identities based on the probability of undetected error,and two important tools for algebraic decoding-namely, the finitefield Fourier transform and the Euclidean algorithm for polynomials.

  17. Design and construction of a prototype advanced on-line fuel burn-up monitoring system for the modular pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Su, Bingjing; Hawari, Ayman, I.

    2004-03-30

    Modular Pebble Bed Reactor (MPBR) is a high temperature gas-cooled nuclear power reactor currently under study as a next generation reactor system. In addition to its inherently safe design, a unique feature of this reactor is its multi-pass fuel circulation in which the fuel pebbles are randomly loaded and continuously cycled through the core until they reach their prescribed End-of-Life burn-up limit. Unlike the situation with a conventional light water reactor, depending solely on computational methods to perform in-core fuel management for MPBR will be highly inaccurate. An on-line measurement system is needed to accurately assess whether a given pebble has reached its End-of-Life burn-up limit and thereby provide an on-line, automated go/no-go decision on fuel disposition on a pebble-by-pebble basis. This project investigated approaches to analyzing fuel pebbles in real time using gamma spectroscopy and possibly using passive neutron counting of spontaneous fission neutrons to provide the speed, accuracy, and burn-up range required for burnup determination of MPBR. It involved all phases necessary to develop and construct a burn-up monitor, including a review of the design requirements of the system, identification of detection methodologies, modeling and development of potential designs, and finally, the construction and testing of an operational detector system. Based upon the research work performed in this project, the following conclusions are made. In terms of using gamma spectrometry, two possible approaches were identified for burnup assay. The first approach is based on the measurement of the absolute activity of Cs-137. However, due to spectral interference and the need for absolute calibration of the spectrometer, the uncertainty in burnup determination using this approach was found to range from {approx} {+-}40% at beginning of life to {approx} {+-}10% at the discharge burnup. An alternative approach is to use a relative burnup indicator. In this

  18. TRIGA fuel burn-up calculations and its confirmation

    International Nuclear Information System (INIS)

    The Cesium (Cs-137) isotopic concentration due to irradiation of TRIGA Fuel Elements FE(s) is calculated and measured at the Atominstitute (ATI) of Vienna University of Technology (VUT). The Cs-137 isotope, as proved burn-up indicator, was applied to determine the burn-up of the TRIGA Mark II research reactor FE. This article presents the calculations and measurements of the Cs-137 isotope and its relevant burn-up of six selected Spent Fuel Elements SPE(s). High-resolution gamma-ray spectroscopy based non-destructive method is employed to measure spent fuel parameters. By the employment of this method, the axial distribution of Cesium-137 for six SPE(s) is measured, resulting in the axial burn-up profiles. Knowing the exact irradiation history and material isotopic inventory of an irradiated FE, six SPE(s) are selected for on-site gamma scanning using a special shielded scanning device developed at the ATI. This unique fuel inspection unit allows to scan each millimeter of the FE. For this purpose, each selected FE was transferred to the fuel inspection unit using the standard fuel transfer cask. Each FE was scanned at a scale of 1 cm of its active length and the Cs-137 activity was determined as proved burn-up indicator. The measuring system consists of a high-purity germanium detector (HPGe) together with suitable fast electronics and on-line PC data acquisition module. The absolute activity of each centimeter of the FE was measured and compared with reactor physics calculations. The ORIGEN2, a one-group depletion and radioactive decay computer code, was applied to calculate the activity of the Cs-137 and the burn-up of selected SPE. The deviation between calculations and measurements was in range from 0.82% to 12.64%.

  19. Analysis of high burnup fuel safety issues

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Bock; Kim, D. H.; Bang, J. G.; Kim, Y. M.; Yang, Y. S.; Jung, Y. H.; Jeong, Y. H.; Nam, C.; Baik, J. H.; Song, K. W.; Kim, K. S

    2000-12-01

    Safety issues in steady state and transient behavior of high burnup LWR fuel above 50 - 60 MWD/kgU were analyzed. Effects of burnup extension upon fuel performance parameters was reviewed, and validity of both the fuel safety criteria and the performance analysis models which were based upon the lower burnup fuel test results was analyzed. It was found that further tests would be necessary in such areas as fuel failure and dispersion for RIA, and high temperature cladding corrosion and mechanical deformation for LOCA. Since domestic fuels have been irradiated in PWR up to burnup higher than 55 MWD/kgU-rod. avg., it can be said that Korea is in the same situation as the other countries in the high burnup fuel safety issues. Therefore, necessary research areas to be performed in Korea were derived. Considering that post-irradiation examination(PIE) for the domestic fuel of burnup higher than 30 MWD/kgU has not been done so far at all, it is primarily necessary to perform PIE for high burnup fuel, and then simulation tests for RIA and LOCA could be performed by using high burnup fuel specimens. For the areas which can not be performed in Korea, international cooperation will be helpful to obtain the test results. With those data base, safety of high burnup domestic fuels will be confirmed, current fuel safety criteria will be re-evaluated, and finally transient high burnup fuel behavior analysis technology will be developed through the fuel performance analysis code development.

  20. Plutonium and Minor Actinides Recycling in Standard BWR using Equilibrium Burnup Model

    Directory of Open Access Journals (Sweden)

    Abdul Waris

    2008-03-01

    Full Text Available Plutonium (Pu and minor actinides (MA recycling in standard BWR with equilibrium burnup model has been studied. We considered the equilibrium burnup model as a simple time independent burnup method, which can manage all possible produced nuclides in any nuclear system. The equilibrium burnup code was bundled with a SRAC cell-calculation code to become a coupled cell-burnup calculation code system. The results show that the uranium enrichment for the criticality of the reactor, the amount of loaded fuel and the required natural uranium supply per year decrease for the Pu recycling and even much lower for the Pu & MA recycling case compared to those of the standard once-through BWR case. The neutron spectra become harder with the increasing number of recycled heavy nuclides in the reactor core. The total fissile rises from 4.77% of the total nuclides number density in the reactor core for the standard once-through BWR case to 6.64% and 6.72% for the Plutonium recycling case and the Pu & MA recycling case, respectively. The two later data may become the main basis why the required uranium enrichment declines and consequently diminishes the annual loaded fuel and the required natural uranium supply. All these facts demonstrate the advantage of plutonium and minor actinides recycling in BWR.

  1. A simplified burnup calculation strategy with refueling in static molten salt reactor

    International Nuclear Information System (INIS)

    Molten Salt Reactors, by nature can be refuelled and reprocessed online. Thus, a simulation methodology has to be developed which can consider online refueling and reprocessing aspect of the reactor. To cater such needs a simplified burnup calculation strategy to account for refueling and removal of molten salt fuel at any desired burnup has been identified in static molten salt reactor in batch mode as a first step of way forward. The features of in-house code ITRAN has been explored for such calculations. The code also enables us to estimate the reactivity introduced in the system due to removal of any number of considered nuclides at any burnup. The effect of refueling fresh fuel and removal of burned fuel has been studied in batch mode with in-house code ITRAN. The effect of refueling and burnup on change in reactivity per day has been analyzed. The analysis of removal of 233Pa at a particular burnup has been carried out. The similar analysis has been performed for some other nuclides also. (author)

  2. Results of the isotopic concentrations of VVER calculational burnup credit benchmark no. 2(cb2

    International Nuclear Information System (INIS)

    The characterization of the irradiated fuel materials is becoming more important with the Increasing use of nuclear energy in the world. The purpose of this document is to present the results of the nuclide concentrations calculated Using Calculation VVER Burnup Credit Benchmark No. 2(CB2). The calculations were Performed in The Nuclear Technology Center of Cuba. The CB2 benchmark specification as the second phase of the VVER burnup credit benchmark is Summarized in [1]. The CB2 benchmark focused on VVER burnup credit study proposed on the 97' AER Symposium [2]. It should provide a comparison of the ability of various code systems And data libraries to predict VVER-440 spent fuel isotopes (isotopic concentrations) using Depletion analysis. This phase of the benchmark calculations is still in progress. CB2 should be finished by summer 1999 and evaluated results could be presented on the next AER Symposium. The obtained results are isotopic concentrations of spent fuel as a function of the burnup and Cooling time. The depletion point ORIGEN2[3] code was used for the calculation of the spent Fuel concentration. The depletion analysis was performed using the VVER-440 irradiated fuel assemblies with in-core Irradiation time of 3 years, burnup of the 30000 mwd/TU, and an after discharge cooling Time of 0 and 1 year. This work also comprises the results obtained by other codes[4].

  3. ETR/ITER systems code

    Energy Technology Data Exchange (ETDEWEB)

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.; Bulmer, R.H.; Busigin, A.; DuBois, P.F.; Fenstermacher, M.E.; Fink, J.; Finn, P.A.; Galambos, J.D.; Gohar, Y.; Gorker, G.E.; Haines, J.R.; Hassanein, A.M.; Hicks, D.R.; Ho, S.K.; Kalsi, S.S.; Kalyanam, K.M.; Kerns, J.A.; Lee, J.D.; Miller, J.R.; Miller, R.L.; Myall, J.O.; Peng, Y-K.M.; Perkins, L.J.; Spampinato, P.T.; Strickler, D.J.; Thomson, S.L.; Wagner, C.E.; Willms, R.S.; Reid, R.L. (ed.)

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs.

  4. ETR/ITER systems code

    International Nuclear Information System (INIS)

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs

  5. Analysis of some antecipated transients without scram for a pressurized water cooled reactor (PWR) using coupling of the containment code CORAN to the system model code ALMOD

    International Nuclear Information System (INIS)

    Some antecipated transients without scram (ATWS) for a pressurized water cooled reactor, model KWU 1300 MWe, are studied using coupling of the containment code CORAN to the system model code ALMOD, under severe random conditions. This coupling has the objective of including containment model as part of a unified code system. These severe conditions include failure of reactor scram, following a station black-out and emergency power initiation for the burn-up status at the beginning and end of the cycle. Furthermore, for the burn-up status at the end of the cycle a failure in the closure of the pressurizer relief valve was also investigated. For the beginning of the cycle, the containment participates actively during the transient. It is noted that the effect of the burn-up in the fuel is to reduce the seriousness of these transients. On the other hand, the failure in the closure of the pressurized relief valve makes this transients more severe. Moreover, the containment safety or radiological public safety is not affected in any of the cases. (Author)

  6. Development of core fuel management code system for WWER-type reactors

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this article, a core fuel management program for hexagonal pressurized water type WWER reactors (CFMHEX) has been developed, which is based on advanced three-dimensional nodal method and integrated with thermal hydraulic code to realize the coupling of neutronics and thermal-hydraulics. In CFMHEX, all these feedback effects such as burnup, power distribution, moderator density, and control rod insertion are considered. The verification and validation of the code system have been examined through the IAEA WWER-1000-type Kalinin NPP benchmark problem. The numerical results are in good agreement with measurements and are close to those of other international institutes.

  7. Summary of high burnup fuel issues and NRC`s plan of action

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, R.O.

    1997-01-01

    For the past two years the Office of Nuclear Regulatory Research has concentrated mostly on the so-called reactivity-initiated accidents -- the RIAs -- in this session of the Water Reactor Safety Information Meeting, but this year there is a more varied agenda. RIAs are, of course, not the only events of interest for reactor safety that are affected by extended burnup operation. Their has now been enough time to consider a range of technical issues that arise at high burnup, and a list of such issues being addressed in their research program is given here. (1) High burnup capability of the steady-state code (FRAPCON) used for licensing audit calculations. (2) General capability (including high burnup) of the transient code (FRAPTRAN) used for special studies. (3) Adequacy at high burnup of fuel damage criteria used in regulation for reactivity accidents. (4) Adequacy at high burnup of models and fuel related criteria used in regulation for loss-of-coolant accidents (LOCAs). (5) Effect of high burnup on fuel system damage during normal operation, including control rod insertion problems. A distinction is made between technical issues, which may or may not have direct licensing impacts, and licensing issues. The RIAs became a licensing issue when the French test in CABRI showed that cladding failures could occur at fuel enthalpies much lower than a value currently used in licensing. Fuel assembly distortion became a licensing issue when control rod insertion was affected in some operating plants. In this presentation, these technical issues will be described and the NRC`s plan of action to address them will be discussed.

  8. Modular ORIGEN-S for multi-physics code systems

    Energy Technology Data Exchange (ETDEWEB)

    Yesilyurt, Gokhan; Clarno, Kevin T.; Gauld, Ian C., E-mail: yesilyurtg@ornl.gov, E-mail: clarnokt@ornl.gov, E-mail: gauldi@ornl.gov [Oak Ridge National Laboratory, TN (United States); Galloway, Jack, E-mail: jack@galloways.net [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2011-07-01

    The ORIGEN-S code in the SCALE 6.0 nuclear analysis code suite is a well-validated tool to calculate the time-dependent concentrations of nuclides due to isotopic depletion, decay, and transmutation for many systems in a wide range of time scales. Application areas include nuclear reactor and spent fuel storage analyses, burnup credit evaluations, decay heat calculations, and environmental assessments. Although simple to use within the SCALE 6.0 code system, especially with the ORIGEN-ARP graphical user interface, it is generally complex to use as a component within an externally developed code suite because of its tight coupling within the infrastructure of the larger SCALE 6.0 system. The ORIGEN2 code, which has been widely integrated within other simulation suites, is no longer maintained by Oak Ridge National Laboratory (ORNL), has obsolete data, and has a relatively small validation database. Therefore, a modular version of the SCALE/ORIGEN-S code was developed to simplify its integration with other software packages to allow multi-physics nuclear code systems to easily incorporate the well-validated isotopic depletion, decay, and transmutation capability to perform realistic nuclear reactor and fuel simulations. SCALE/ORIGEN-S was extensively restructured to develop a modular version that allows direct access to the matrix solvers embedded in the code. Problem initialization and the solver were segregated to provide a simple application program interface and fewer input/output operations for the multi-physics nuclear code systems. Furthermore, new interfaces were implemented to access and modify the ORIGEN-S input variables and nuclear cross-section data through external drivers. Three example drivers were implemented, in the C, C++, and Fortran 90 programming languages, to demonstrate the modular use of the new capability. This modular version of SCALE/ORIGEN-S has been embedded within several multi-physics software development projects at ORNL, including

  9. Development of Three-dimensional Reactor Analysis Code System for Accelerator-Driven System, ADS3D

    International Nuclear Information System (INIS)

    To investigate an Accelerator-Driven System (ADS) with sub-criticality control mechanism such as control rods or burnable poison, the ADS3D code has been developed on MARBLE which is a next generation reactor analysis code system developed by JAEA. In the past neutronics calculation for the ADS, JAEA employed RZ calculation models to realize efficient investigations. However, it was very difficult to model sub-criticality control mechanisms in RZ calculation models. The ADS3D code system is able to calculate the transportation of protons and neutrons, the burn-up calculation and the fuel exchange in three-dimensional calculation models. It means this code system can treat ADS concepts with sub-criticality control mechanism and makes it possible to investigate a new concept of ADS. (author)

  10. Investigation of burnup credit implementation for BWR fuel

    International Nuclear Information System (INIS)

    Burnup Credit allows considering the reactivity decrease due to fuel irradiation in criticality studies for the nuclear fuel cycle. Its implementation requires to carefully analyze the validity of the assumptions made to define the axial profile of the burnup and void fraction (for BWR), to determine the composition of the irradiated fuel and to compute the criticality simulation. In the framework of Burnup Credit implementation for BWR fuel, this paper proposes to investigate part of these items. The studies presented in this paper concern: the influence of the burnup and of the void fraction on BWR spent fuel content and on the effective multiplication factor of an infinite array of BWR assemblies. A code-to-code comparison for BWR fuel depletion calculations relevant to Burnup Credit is also performed. (authors)

  11. Burnup credit implementation in spent fuel management

    International Nuclear Information System (INIS)

    The criticality safety analysis of spent fuel management systems has traditionally assumed that the fuel is fresh. This results in significant conservatism in the calculated value of the system's reactivity. The concept of allowing reactivity credit for spent fuel offers economic incentives. Burnup Credit (BUC) could reduce mass limitation during dissolution of highly enriched PWR assemblies at the La Hague reprocessing plant. Furthermore, accounting for burnup credit enables the operator to avoid the use of Gd soluble poison in the dissolver for MOX assemblies. Analyses performed by DOE and its contractors have indicated that using BUC to maximize spent fuel transportation cask capacities is a justifiable concept that would result in public risk benefits and cost savings while fully maintaining criticality safety margins. In order to allow for Fission Products and Actinides in Criticality-Safety analyses, an extensive BUC experimental programme has been developed in France in the framework of the CEA-COGEMA collaboration. The use of burnup credit implies a verification of the fuel burnup before loading for transport, storage, disposal, or reprocessing each assembly, to make sure that the burnup level achieved complies with the criteria established. Independent measurement systems, e.g. gamma spectrum detection systems, are needed to perform a true independent measurement of assembly burnup, without reliance on reactor records, using the gamma emission signatures fission products (mainly Cesium isotopes). (author)

  12. Computer access security code system

    Science.gov (United States)

    Collins, Earl R., Jr. (Inventor)

    1990-01-01

    A security code system for controlling access to computer and computer-controlled entry situations comprises a plurality of subsets of alpha-numeric characters disposed in random order in matrices of at least two dimensions forming theoretical rectangles, cubes, etc., such that when access is desired, at least one pair of previously unused character subsets not found in the same row or column of the matrix is chosen at random and transmitted by the computer. The proper response to gain access is transmittal of subsets which complete the rectangle, and/or a parallelepiped whose opposite corners were defined by first groups of code. Once used, subsets are not used again to absolutely defeat unauthorized access by eavesdropping, and the like.

  13. Approaches to modeling of high burn-up structure and analysis of its effects on the behaviour of light water reactor fuels in the START-3 fuel performance code

    International Nuclear Information System (INIS)

    An advanced model GRSWEL-A for fission gas behavior and micro-structural evolutions in Light Water Reactor (LWR) fuels was developed for and embedded in the START-3 fuel performance code. This paper represents the physical basis and verification of the model with emphasis on analysis of High Burn-up Structure (HBS), which is generally ascribed to a so-called rim-layer of high burn-up fuel pellets. Specifically, the issues of microscopic polygonization, loss of matrix fission gas, growth of fuel porosity and fission gas release are highlighted. The effects of HBS on total fission gas release, temperature distribution in the pellet, pellet swelling and permanent strain of the cladding are considered in the appropriate section of the paper by means of comparative and sensitivity analysis with the use of both modeling and available experimental data. In all the cases, an accounting for the present effects is found to be an important integral part of thorough analysis of LWR fuel behavior. Aside from the description of current capabilities of modeling, some priority directions of further improvement are outlined. (author)

  14. High Burnup Fuel Performance and Safety Research

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Je Keun; Lee, Chan Bok; Kim, Dae Ho (and others)

    2007-03-15

    The worldwide trend of nuclear fuel development is to develop a high burnup and high performance nuclear fuel with high economies and safety. Because the fuel performance evaluation code, INFRA, has a patent, and the superiority for prediction of fuel performance was proven through the IAEA CRP FUMEX-II program, the INFRA code can be utilized with commercial purpose in the industry. The INFRA code was provided and utilized usefully in the universities and relevant institutes domesticallly and it has been used as a reference code in the industry for the development of the intrinsic fuel rod design code.

  15. A PWR Thorium Pin Cell Burnup Benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Kevan Dean; Zhao, X.; Pilat, E. E; Hejzlar, P.

    2000-05-01

    As part of work to evaluate the potential benefits of using thorium in LWR fuel, a thorium fueled benchmark comparison was made in this study between state-of-the-art codes, MOCUP (MCNP4B + ORIGEN2), and CASMO-4 for burnup calculations. The MOCUP runs were done individually at MIT and INEEL, using the same model but with some differences in techniques and cross section libraries. Eigenvalue and isotope concentrations were compared on a PWR pin cell model up to high burnup. The eigenvalue comparison as a function of burnup is good: the maximum difference is within 2% and the average absolute difference less than 1%. The isotope concentration comparisons are better than a set of MOX fuel benchmarks and comparable to a set of uranium fuel benchmarks reported in the literature. The actinide and fission product data sources used in the MOCUP burnup calculations for a typical thorium fuel are documented. Reasons for code vs code differences are analyzed and discussed.

  16. Estimating Burnup for UMo Plate Type Fuel with Least Square Fitting

    Energy Technology Data Exchange (ETDEWEB)

    Alawneh, Luay M.; Jaradat, Mustafa K. [Univ. of Science and Technology, Daejeon (Korea, Republic of); Park, Chang Je; Lee, Byungchul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The feasibility test of this approach has been done by comparing the results with a Monte Carlo code results. UMo fuel is a promising candidate for a high performance research reactor and provides better fuel performance including an extended burnup and swelling resistance. Additionally, its relatively high uranium content provides high power density. However, when irradiating UMo fuel in the core, lots of pores are produced due to an extensive interaction between the UMo and Al matrix. The pore leads to an expansion of fuel meat and may result in a fuel failure after all. This problem has almost been solved by using an optimal Si additive to depress the interaction layer. An international program has been performed to manufacture a robust UMo fuel. However, in terms of neutronics, the absorption cross section of Mo is much higher than that of Si, and thus a slightly high uranium density of UMo fuel is required to provide equivalent characteristics to U{sub 3}Si{sub 2} fuel. Recently, Korea considers U-Mo fuel for the KJRR design, which is under design stage. This work is focused on calculating burnup for plate type UMo fuel through a couple of code systems such as TRITON/NEWT and ORIGEN-ARP. The estimated burnup is compared with that of MCNPX calculation. It is founded that the fitted burnup agrees well with the MCNPX results. This approach will be applicable to easily estimate discharge burnup in research reactor without additional burden. However, some sensitivity tests required for another parameters in order to obtain burnup exactly.

  17. The implementation of burnup credit in VVER-440 spent fuel

    International Nuclear Information System (INIS)

    The countries using Russian reactors VVER-440 cooperate in reactor physics in Atomic Energy Research (AER). One of topic areas is 'Physical Problems of Spent Fuel, Radwaste and Decommissioning' (Working Group E). In this article, in the first part is an overview about our activity for numerical and experimental verification of codes which participants use for calculation of criticality, isotopic concentration, activity, neutron and gamma sources and shielding is shown. The set of numerical benchmarks (CB1, CB2, CB3 and CB4) is very similar (the same idea, the VVER-440) to the OECD/NEA/NSC Burnup Credit Criticality Benchmarks, Phases 1 and 2. In the second part, verification of the SCALE 4.4 system (only criticality and nuclide concentrations) for VVER-440 fuel is shown. In the third part, dependence of criticality on burnup (only actinides and actinides + fission products) for transport cask C30 with VVER-440 fuel by optimal moderation is shown. In the last part, current status in implementation burnup credit in Slovakia is shown. (author)

  18. Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.C.; DeHart, M.D.

    2000-03-01

    This report attempts to summarize and consolidate the existing knowledge on axial burnup distribution issues that are important to burnup credit criticality safety calculations. Recently released Nuclear Regulatory Commission (NRC) staff guidance permits limited burnup credit, and thus, has prompted resolution of the axial burnup distribution issue. The reactivity difference between the neutron multiplication factor (keff) calculated with explicit representation of the axial burnup distribution and keff calculated assuming a uniform axial burnup is referred to as the ``end effect.'' This end effect is shown to be dependent on many factors, including the axial-burnup profile, total accumulated burnup, cooling time, initial enrichment, assembly design, and the isotopics considered (i.e., actinide-only or actinides plus fission products). Axial modeling studies, efforts related to the development of axial-profile databases, and the determination of bounding axial profiles are also discussed. Finally, areas that could benefit from further efforts are identified.

  19. Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations

    International Nuclear Information System (INIS)

    This report attempts to summarize and consolidate the existing knowledge on axial burnup distribution issues that are important to burnup credit criticality safety calculations. Recently released Nuclear Regulatory Commission (NRC) staff guidance permits limited burnup credit, and thus, has prompted resolution of the axial burnup distribution issue. The reactivity difference between the neutron multiplication factor (keff) calculated with explicit representation of the axial burnup distribution and keff calculated assuming a uniform axial burnup is referred to as the ''end effect.'' This end effect is shown to be dependent on many factors, including the axial-burnup profile, total accumulated burnup, cooling time, initial enrichment, assembly design, and the isotopics considered (i.e., actinide-only or actinides plus fission products). Axial modeling studies, efforts related to the development of axial-profile databases, and the determination of bounding axial profiles are also discussed. Finally, areas that could benefit from further efforts are identified

  20. Expansion of the CHR bone code system

    International Nuclear Information System (INIS)

    This report describes the coding system used in the Center for Human Radiobiology (CHR) to identify individual bones and portions of bones of a complete skeletal system. It includes illustrations of various bones and bone segments with their respective code numbers. Codes are also presented for bone groups and for nonbone materials

  1. Neutronic and burnup studies of accelerator-driven systems dedicated to nuclear waste transmutation

    OpenAIRE

    Tucek, Kamil

    2004-01-01

    Partitioning and transmutation of plutonium, americium, and curium is inevitable if the radiotoxic inventory of spent nuclear fuel is to be reduced by more than a factor of 100. But, admixing minor actinides into the fuel severely degrades system safety parameters, particularly coolant void reactivity, Doppler effect, and (effective) delayed neutron fractions. The incineration process is therefore envisioned to be carried out in dedicated, accelerator-driven sub-critical reactors (ADS). Howev...

  2. Results of the isotopic concentrations of VVER calculational burnup credit benchmark No. 2(CB2)

    International Nuclear Information System (INIS)

    Results of the nuclide concentrations are presented of VVER Burnup Credit Benchmark No. 2(CB2) that were performed in The Nuclear Technology Center of Cuba with available codes and libraries. The CB2 benchmark specification as the second phase of the VVER burnup credit benchmark is summarized. The CB2 benchmark focused on VVER burnup credit study proposed on the 97' AER Symposium. The obtained results are isotopic concentrations of spent fuel as a function of the burnup and cooling time. The depletion point 'ORIGEN2' code and other codes were used for the calculation of the spent fuel concentration. (author)

  3. Impact investigation of reactor fuel operating parameters on reactivity for use in burnup credit applications

    Science.gov (United States)

    Sloma, Tanya Noel

    When representing the behavior of commercial spent nuclear fuel (SNF), credit is sought for the reduced reactivity associated with the net depletion of fissile isotopes and the creation of neutron-absorbing isotopes, a process that begins when a commercial nuclear reactor is first operated at power. Burnup credit accounts for the reduced reactivity potential of a fuel assembly and varies with the fuel burnup, cooling time, and the initial enrichment of fissile material in the fuel. With regard to long-term SNF disposal and transportation, tremendous benefits, such as increased capacity, flexibility of design and system operations, and reduced overall costs, provide an incentive to seek burnup credit for criticality safety evaluations. The Nuclear Regulatory Commission issued Interim Staff Guidance 8, Revision 2 in 2002, endorsing burnup credit of actinide composition changes only; credit due to actinides encompasses approximately 30% of exiting pressurized water reactor SNF inventory and could potentially be increased to 90% if fission product credit were accepted. However, one significant issue for utilizing full burnup credit, compensating for actinide and fission product composition changes, is establishing a set of depletion parameters that produce an adequately conservative representation of the fuel's isotopic inventory. Depletion parameters can have a significant effect on the isotopic inventory of the fuel, and thus the residual reactivity. This research seeks to quantify the reactivity impact on a system from dominant depletion parameters (i.e., fuel temperature, moderator density, burnable poison rod, burnable poison rod history, and soluble boron concentration). Bounding depletion parameters were developed by statistical evaluation of a database containing reactor operating histories. The database was generated from summary reports of commercial reactor criticality data. Through depletion calculations, utilizing the SCALE 6 code package, several light

  4. AUS98 - The 1998 version of the AUS modular neutronic code system

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, G.S.; Harrington, B.V

    1998-07-01

    AUS is a neutronics code system which may be used for calculations of a wide range of fission reactors, fusion blankets and other neutron applications. The present version, AUS98, has a nuclear cross section library based on ENDF/B-VI and includes modules which provide for reactor lattice calculations, one-dimensional transport calculations, multi-dimensional diffusion calculations, cell and whole reactor burnup calculations, and flexible editing of results. Calculations of multi-region resonance shielding, coupled neutron and photon transport, energy deposition, fission product inventory and neutron diffusion are combined within the one code system. The major changes from the previous AUS publications are the inclusion of a cross-section library based on ENDF/B-VI, the addition of the MICBURN module for controlling whole reactor burnup calculations, and changes to the system as a consequence of moving from IBM main-frame computers to UNIX workstations This report gives details of all system aspects of AUS and all modules except the POW3D multi-dimensional diffusion module refs., tabs.

  5. Analysis of burnup credit on spent fuel storage

    International Nuclear Information System (INIS)

    Chemical analyses were carried out on high burnup UO2 (65 GWd/t) and MOX (45 GWd/t) spent fuel pins. Measured data of the composition of nuclides from 234U to 242Pu were used for evaluation of ORIGEN-2/82 code. Criticality calculations were executed for the casks which were being designed to store 52 BWR or 21 PWR spent fuel assemblies. The reactivity biases were evaluated for (1) axial and horizontal profiles of burnup, and void history (BWR), (2) operational histories such as control rod insertion history, BPR insertion history and others, and (3) calculational accuracy of ORIGEN-2/82 code on the composition of nuclides. Present evaluation shows that introduction of burnup credit has a substantial merit in criticality safety analysis of the cask, even if these reactivity biases are considered. The concept of equivalent uniform burnup was adapted for present reactivity bias evaluation and showed a possibility of simplifying the reactivity bias evaluation in burnup credit. Finally, adapting procedures of burnup credit such as the burnup meter were evaluated. (author)

  6. Tandem Mirror Reactor Systems Code (Version I)

    International Nuclear Information System (INIS)

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost

  7. Characterizing Video Coding Computing in Conference Systems

    NARCIS (Netherlands)

    Tuquerres, G.

    2000-01-01

    In this paper, a number of coding operations is provided for computing continuous data streams, in particular, video streams. A coding capability of the operations is expressed by a pyramidal structure in which coding processes and requirements of a distributed information system are represented. Th

  8. TRIGA criticality experiment for testing burn-up calculations

    Energy Technology Data Exchange (ETDEWEB)

    Persic, Andreja; Ravnik, Matjaz; Zagar, Tomaz [Jozef Stefan Institute, Reactor Physics Division, Ljubljana (Slovenia)

    1999-07-01

    A criticality experiment with partly burned TRIGA fuel is described. 20 wt % enriched standard TRIGA fuel elements initially containing 12 wt % U are used. Their average burn-up is 1.4 MWd. Fuel element burn-up is calculated in 2-D four group diffusion approximation using TRIGLAV code. The burn-up of several fuel elements is also measured by reactivity method. The excess reactivity of several critical and subcritical core configurations is measured. Two core configurations contain the same fuel elements in the same arrangement as were used in the fresh TRIGA fuel criticality experiment performed in 1991. The results of the experiment may be applied for testing the computer codes used for fuel burn-up calculations. (author)

  9. Criticality evaluation of high density spent fuel storge rack under normal condition using burnup credit

    International Nuclear Information System (INIS)

    The high density spent fuel storage rack Boraflex was known to experience changes of its physical property and to dissolve under exposure to radiation in an aqueous environment for long period of time. In this study, the criticality evaluation for spent fuel storage rack of Ulchin Unit 2 under normal condition was performed assuming complete loss of 10B from the Boraflex and applying burnup credit. Criticality evaluation code KENO-V.a. from SCALE4.4 system was benchmarked against critical experiments to obtain the calculation bias and bias uncertainties. The manufacturing tolerances of nuclear fuel and storage rack and their reactivity uncertainties were derived, as well. Considering those bias and uncertainties of calculation, the criticality of spent fuel storage under normal condition was conservatively evaluated. The criticality evaluation result using burnup credit can be presented as a spent fuel loading curve that indicates the acceptable burnup domain in spent fuel storage pool. The spent fuels with various initial enrichments and discharge fuel burnup can be safely accommodated in the storage without taking any boron credit from Boraflex, provided the combination falls within the acceptable domain in the loading curve. The spent fuel with initial enrichment of 5.0w/o was evaluated to meet the subcritical safety if its burnup is over 43.0GWD/MTU. The criticality evaluation result also showed that spent fuels with the initial enrichment less than 1.6w/o were able to be stored in the storage pool regardless of their burnup. Conclusively, in the Region 2 of the spent fuel storage pool, the maximum keff , considering all uncertainties, was calculated as 0.94818

  10. Sensitivity and parametric evaluations of significant aspects of burnup credit for PWR spent fuel packages

    International Nuclear Information System (INIS)

    Spent fuel transportation and storage cask designs based on a burnup credit approach must consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For example, the spent fuel composition must be adequately characterized and the criticality analysis model can be complicated by the need to consider axial burnup variations. Parametric analyses are needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel composition and reactivity. Numerical models must be evaluated to determine the sensitivity of criticality safety calculations to modeling assumptions. The purpose of this report is to describe analyses and evaluations performed in order to demonstrate the effect physical parameters and modeling assumptions have on the criticality analysis of spent fuel. The analyses in this report include determination and ranking of the most important actinides and fission products; study of the effect of various depletion scenarios on subsequent criticality calculations; establishment of trends in neutron multiplication as a function of fuel enrichment, burnup, cooling time- and a parametric and modeling evaluation of three-dimensional effects (e.g., axially varying burnup and temperature/density effects) in a conceptual cask design. The sensitivity and parametric evaluations were performed with the consideration of two different burnup credit approaches: (1) only actinides in the fuel are considered in the criticality analysis, and (2) both actinides and fission products are considered. Calculations described in this report were performed using the criticality and depletion sequences available in the SCALE code system and the SCALE 27-group burnup library. Although the results described herein do not constitute a validation of SCALE for use in spent fuel analysis, independent validation efforts have been completed and are described in other reports

  11. Sensitivity and parametric evaluations of significant aspects of burnup credit for PWR spent fuel packages

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, M.D.

    1996-05-01

    Spent fuel transportation and storage cask designs based on a burnup credit approach must consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For example, the spent fuel composition must be adequately characterized and the criticality analysis model can be complicated by the need to consider axial burnup variations. Parametric analyses are needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel composition and reactivity. Numerical models must be evaluated to determine the sensitivity of criticality safety calculations to modeling assumptions. The purpose of this report is to describe analyses and evaluations performed in order to demonstrate the effect physical parameters and modeling assumptions have on the criticality analysis of spent fuel. The analyses in this report include determination and ranking of the most important actinides and fission products; study of the effect of various depletion scenarios on subsequent criticality calculations; establishment of trends in neutron multiplication as a function of fuel enrichment, burnup, cooling time- and a parametric and modeling evaluation of three-dimensional effects (e.g., axially varying burnup and temperature/density effects) in a conceptual cask design. The sensitivity and parametric evaluations were performed with the consideration of two different burnup credit approaches: (1) only actinides in the fuel are considered in the criticality analysis, and (2) both actinides and fission products are considered. Calculations described in this report were performed using the criticality and depletion sequences available in the SCALE code system and the SCALE 27-group burnup library. Although the results described herein do not constitute a validation of SCALE for use in spent fuel analysis, independent validation efforts have been completed and are described in other reports.

  12. Evaluation of Isotopic Measurements and Burn-up Value of Sample GU3 of ARIANE Project

    Energy Technology Data Exchange (ETDEWEB)

    Tore, C.; Rodriguez Rivada, A.

    2014-07-01

    Estimation of the burn-up value of irradiated fuel and its isotopic composition are important for criticality analysis, spent fuel management and source term estimation. The practical way to estimate the irradiated fuel composition and burn.up value is calculation with validated code and nuclear data. Such validation of the neutronic codes and nuclear data requires the benchmarking with measured values. (Author)

  13. ELCOS: the PSI code system for LWR core analysis. Part II: user`s manual for the fuel assembly code BOXER

    Energy Technology Data Exchange (ETDEWEB)

    Paratte, J.M.; Grimm, P.; Hollard, J.M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-02-01

    ELCOS is a flexible code system for the stationary simulation of light water reactor cores. It consists of the four computer codes ETOBOX, BOXER, CORCOD and SILWER. The user`s manual of the second one is presented here. BOXER calculates the neutronics in cartesian geometry. The code can roughly be divided into four stages: - organisation: choice of the modules, file manipulations, reading and checking of input data, - fine group fluxes and condensation: one-dimensional calculation of fluxes and computation of the group constants of homogeneous materials and cells, - two-dimensional calculations: geometrically detailed simulation of the configuration in few energy groups, - burnup: evolution of the nuclide densities as a function of time. This manual shows all input commands which can be used while running the different modules of BOXER. (author) figs., tabs., refs.

  14. Burnup effects of MOX fuel pincells in PWR - OECD/NEA burnup credit benchmark analysis -

    International Nuclear Information System (INIS)

    The burnup effects were analyzed for various cases of MOX fuel pincells of fresh and irradiated fuels by using the HELIOS, MCNP-4/B, CRX and CDP computer codes. The investigated parameters were burnup, cooling time and combinations of nuclides in the fuel region. The fuel compositions for each case were provided by BNFL (British Nuclear Fuel Limited) as a part of the problem specification so that the results could be focused on the calculation of the neutron multiplication factor. The results of the analysis show that the largest saving effect of the neutron multiplication factor due to burnup credit is 30 %. This is mainly due to the consideration of actinides and fission products in the criticality analysis

  15. Burnup determination and age dating of spent nuclear fuel using noble gas isotopic analysis

    International Nuclear Information System (INIS)

    During the chopping and dissolving phases of reprocessing, gases (such as tritium, krypton, xenon, iodine, carbon dioxide, nitrogen oxide, and steam) are released. These gases are traditionally transferred to a gas-treatment system for treatment, release, and/or recycle. Because of their chemically inert nature, the xenon and krypton noble gases are generally released directly into the loser atmosphere through the facility's stack. These gases (being fission products) contain information about the fuel being reprocessed and may prove a valuable monitor of reprocessing activities. Two properties of the fuel that may prove valuable from a safeguards standpoint are the fuel burnup and the fuel age (or time since discharge from the reactor). Both can be used to aid in confirming declared activities, and the burnup is generally indicative of the usability of the fuel for fabricating nuclear explosives. A study has been ongoing at Los Alamos National Laboratory to develop a methodology to determine spent-fuel parameters from measured xenon and/or krypton isotopic ratios on-stack at reprocessing facilities. This study has resulted in the generation of the NOVA data analysis code, which links to a comprehensive database of reactor physics parameters (calculated using the Monteburns 3.01 code system). NOVA has been satisfactorily tested for burnup determination of weapons-grade fuel from a US production reactor. Less effort has been spent quantifying NOVA's ability to predict burnup and fuel age for power reactor fuel. The authors describe the results predicted by NOVA for xenon and krypton isotopic ratios measured after the dissolution of spent-fuel samples from the Borssele reactor. The Borssele reactor is a 450-MW(electric) pressurized water reactor (PWR) consisting of 15 x 15 KWU assemblies. The spent-fuel samples analyzed were single fuel rods removed from one assembly and dissolved at the La Hague reprocessing facility. The assembly average burnup was estimated at 32

  16. OECD/NEA burnup credit calculational criticality benchmark Phase I-B results

    International Nuclear Information System (INIS)

    In most countries, criticality analysis of LWR fuel stored in racks and casks has assumed that the fuel is fresh with the maximum allowable initial enrichment. This assumption has led to the design of widely spaced and/or highly poisoned storage and transport arrays. If credit is assumed for fuel burnup, initial enrichment limitations can be raised in existing systems, and more compact and economical arrays can be designed. Such reliance on the reduced reactivity of spent fuel for criticality control is referred to as burnup credit. The Burnup Credit Working Group, formed under the auspices of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development, has established a set of well-defined calculational benchmarks designed to study significant aspects of burnup credit computational methods. These benchmarks are intended to provide a means for the intercomparison of computer codes, methods, and data applied in spent fuel analysis. The benchmarks have been divided into multiple phases, each phase focusing on a particular feature of burnup credit analysis. This report summarizes the results and findings of the Phase I-B benchmark, which was proposed to provide a comparison of the ability of different code systems and data libraries to perform depletion analysis for the prediction of spent fuel isotopic concentrations. Results included here represent 21 different sets of calculations submitted by 16 different organizations worldwide and are based on a limited set of nuclides determined to have the most important effect on the neutron multiplication factor of light-water-reactor spent fuel. A comparison of all sets of results demonstrates that most methods agree to within 10% in the ability to estimate the spent fuel concentrations of most actinides. All methods agree within 11% about the average for all fission products studied. Most deviations are less than 10%, and many are less than 5%. The exceptions are Sm 149, Sm 151, and Gd 155

  17. Assesment of advanced step models for steady state Monte Carlo burnup calculations in application to prismatic HTGR

    Directory of Open Access Journals (Sweden)

    Kępisty Grzegorz

    2015-09-01

    Full Text Available In this paper, we compare the methodology of different time-step models in the context of Monte Carlo burnup calculations for nuclear reactors. We discuss the differences between staircase step model, slope model, bridge scheme and stochastic implicit Euler method proposed in literature. We focus on the spatial stability of depletion procedure and put additional emphasis on the problem of normalization of neutron source strength. Considered methodology has been implemented in our continuous energy Monte Carlo burnup code (MCB5. The burnup simulations have been performed using the simplified high temperature gas-cooled reactor (HTGR system with and without modeling of control rod withdrawal. Useful conclusions have been formulated on the basis of results.

  18. Study on burn-up credit and minor actinide in post-irradiation analysis

    International Nuclear Information System (INIS)

    Accuracy of burnup calculation for actinide is very important as to the study of burn-up credit. For minor-actinides such as Am243 and Cm244, however, typical burnup calculation codes are not accurate enough. The accuracy for both nuclides was studied by using the SWAT code. The study showed that the C/E values of both nuclides could be improved at the same time by changing the cross section of Pu242. A study of burnup calculation related to the cross section of Pu242 should be performed to improve the accuracy for both nuclides. (author)

  19. Review of Technical Issues Related to Predicting Isotopic Compositions and Source Terms for High-Burnup LWR Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gauld, I. C.; Parks, C. V.

    2000-12-11

    This report has been prepared to review the technical issues important to the prediction of isotopic compositions and source terms for high-burnup, light-water-reactor (LWR) fuel as utilized in the licensing of spent fuel transport and storage systems. The current trend towards higher initial 235U enrichments, more complex assembly designs, and more efficient fuel management schemes has resulted in higher spent fuel burnups than seen in the past. This trend has led to a situation where high-burnup assemblies from operating LWRs now extend beyond the area where available experimental data can be used to validate the computational methods employed to calculate spent fuel inventories and source terms. This report provides a brief review of currently available validation data, including isotopic assays, decay heat measurements, and shielded dose-rate measurements. Potential new sources of experimental data available in the near term are identified. A review of the background issues important to isotopic predictions and some of the perceived technical challenges that high-burnup fuel presents to the current computational methods are discussed. Based on the review, the phenomena that need to be investigated further and the technical issues that require resolution are presented. The methods and data development that may be required to address the possible shortcomings of physics and depletion methods in the high-burnup and high-enrichment regime are also discussed. Finally, a sensitivity analysis methodology is presented. This methodology is currently being investigated at the Oak Ridge National Laboratory as a computational tool to better understand the changing relative significance of the underlying nuclear data in the different enrichment and burnup regimes and to identify the processes that are dominant in the high-burnup regime. The potential application of the sensitivity analysis methodology to help establish a range of applicability for experimental

  20. Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Herranz, Nuria [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, UPM (Spain)], E-mail: nuria@din.upm.es; Cabellos, Oscar [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, UPM (Spain); Sanz, Javier [Departamento de Ingenieria Energetica, Universidad Nacional de Educacion a Distancia, UNED (Spain); Juan, Jesus [Laboratorio de Estadistica, Universidad Politecnica de Madrid, UPM (Spain); Kuijper, Jim C. [NRG - Fuels, Actinides and Isotopes Group, Petten (Netherlands)

    2008-04-15

    Two methodologies to propagate the uncertainties on the nuclide inventory in combined Monte Carlo-spectrum and burn-up calculations are presented, based on sensitivity/uncertainty and random sampling techniques (uncertainty Monte Carlo method). Both enable the assessment of the impact of uncertainties in the nuclear data as well as uncertainties due to the statistical nature of the Monte Carlo neutron transport calculation. The methodologies are implemented in our MCNP-ACAB system, which combines the neutron transport code MCNP-4C and the inventory code ACAB. A high burn-up benchmark problem is used to test the MCNP-ACAB performance in inventory predictions, with no uncertainties. A good agreement is found with the results of other participants. This benchmark problem is also used to assess the impact of nuclear data uncertainties and statistical flux errors in high burn-up applications. A detailed calculation is performed to evaluate the effect of cross-section uncertainties in the inventory prediction, taking into account the temporal evolution of the neutron flux level and spectrum. Very large uncertainties are found at the unusually high burn-up of this exercise (800 MWd/kgHM). To compare the impact of the statistical errors in the calculated flux with respect to the cross uncertainties, a simplified problem is considered, taking a constant neutron flux level and spectrum. It is shown that, provided that the flux statistical deviations in the Monte Carlo transport calculation do not exceed a given value, the effect of the flux errors in the calculated isotopic inventory are negligible (even at very high burn-up) compared to the effect of the large cross-section uncertainties available at present in the data files.

  1. OECD/NEA Burnup Credit Calculational Criticality Benchmark Phase I-B Results

    International Nuclear Information System (INIS)

    Burnup credit is an ongoing technical concern for many countries that operate commercial nuclear power reactors. In a multinational cooperative effort to resolve burnup credit issues, a Burnup Credit Working Group has been formed under the auspices of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development. This working group has established a set of well-defined calculational benchmarks designed to study significant aspects of burnup credit computational methods. These benchmarks are intended to provide a means for the intercomparison of computer codes, methods, and data applied in spent fuel analysis. The benchmarks have been divided into multiple phases, each phase focusing on a particular feature of burnup credit analysis. This report summarizes the results and findings of the Phase I-B benchmark, which was proposed to provide a comparison of the ability of different code systems and data libraries to perform depletion analysis for the prediction of spent fuel isotopic concentrations. Results included here represent 21 different sets of calculations submitted by 16 different organizations worldwide, and are based on a limited set of nuclides determined to have the most important effect on the neutron multiplication factor of light-water-reactor spent fuel. A comparison of all sets of results demonstrates that most methods are in agreement to within 10% in the ability to estimate the spent fuel concentrations of most actinides. All methods are within 11% agreement about the average for all fission products studied. Furthermore, most deviations are less than 10%, and many are less than 5%. The exceptions are 149Sm, 151Sm, and 155Gd

  2. V.S.O.P. (99/05) computer code system

    Energy Technology Data Exchange (ETDEWEB)

    Ruetten, H.J.; Haas, K.A.; Brockmann, H.; Scherer, W.

    2005-11-01

    V.S.O.P. is a computer code system for the comprehensive numerical simulation of the physics of thermal reactors. It implies the setup of the reactor and of the fuel element, processing of cross sections, neutron spectrum evaluation, neutron diffusion calculation in two or three dimensions, fuel burnup, fuel shuffling, reactor control, thermal hydraulics and fuel cycle costs. The thermal hydraulics part (steady state and time-dependent) is restricted to HTRs and to two spatial dimensions. The code can simulate the reactor operation from the initial core towards the equilibrium core. V.S.O.P.(99 / 05) represents the further development of V.S.O.P. (99). Compared to its precursor, the code system has been improved in many details. Major improvements and extensions have been included concerning the neutron spectrum calculation, the 3-d neutron diffusion options, and the thermal hydraulic section with respect to 'multi-pass'-fuelled pebblebed cores. This latest code version was developed and tested under the WINDOWS-XP - operating system. The storage requirement for the executables and the basic libraries associated with the code amounts to about 15 MB. Another 5 MB are required - if desired - for storage of the source code ({approx}65000 Fortran statements). (orig.)

  3. Application of CASMO-3/MASTER Code System to the OPR1000

    Energy Technology Data Exchange (ETDEWEB)

    You, Guk Jong; Sim, Jung Hoon; Kim, Han Gon [KHN, Daejeon (Korea, Republic of)

    2007-10-15

    MASTER(Multi-purpose Analyzer for Static and Transient Effects of Reactors), which was developed by KAERI, is the nuclear design code having the capability of static core design, transient core analysis and operational support. And CASMO-3, which is a fuel assembly burnup program, is the lattice calculation code to generate cross sections for core design code. To validate the core design of APR1400 CASMO- 3/MASTER codes have been selected as independent code system. The core design of APR1400, however, is in progress and the final design data and analysis results are not produced. Therefore, OPR1000, which has sufficient information, is selected as a reference plant to demonstrate the performance of CASMO-3/MASTER code package. This demonstration has been performed using design data of UCN no.4 Cycle1 and the results are compared to Nuclear Design Report(NDR) of the UCN no.4 Cycle 1. The performance of the code package is verified through uncertainty quantification according to the uncertainty evaluation report written by KAERI.

  4. The EGS5 Code System

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, Hideo; Namito, Yoshihito; /KEK, Tsukuba; Bielajew, Alex F.; Wilderman, Scott J.; U., Michigan; Nelson, Walter R.; /SLAC

    2005-12-20

    In the nineteen years since EGS4 was released, it has been used in a wide variety of applications, particularly in medical physics, radiation measurement studies, and industrial development. Every new user and every new application bring new challenges for Monte Carlo code designers, and code refinements and bug fixes eventually result in a code that becomes difficult to maintain. Several of the code modifications represented significant advances in electron and photon transport physics, and required a more substantial invocation than code patching. Moreover, the arcane MORTRAN3[48] computer language of EGS4, was highest on the complaint list of the users of EGS4. The size of the EGS4 user base is difficult to measure, as there never existed a formal user registration process. However, some idea of the numbers may be gleaned from the number of EGS4 manuals that were produced and distributed at SLAC: almost three thousand. Consequently, the EGS5 project was undertaken. It was decided to employ the FORTRAN 77 compiler, yet include as much as possible, the structural beauty and power of MORTRAN3. This report consists of four chapters and several appendices. Chapter 1 is an introduction to EGS5 and to this report in general. We suggest that you read it. Chapter 2 is a major update of similar chapters in the old EGS4 report[126] (SLAC-265) and the old EGS3 report[61] (SLAC-210), in which all the details of the old physics (i.e., models which were carried over from EGS4) and the new physics are gathered together. The descriptions of the new physics are extensive, and not for the faint of heart. Detailed knowledge of the contents of Chapter 2 is not essential in order to use EGS, but sophisticated users should be aware of its contents. In particular, details of the restrictions on the range of applicability of EGS are dispersed throughout the chapter. First-time users of EGS should skip Chapter 2 and come back to it later if necessary. With the release of the EGS4 version

  5. Application of a burnup verification meter to actinide-only burnup credit for spent PWR fuel

    International Nuclear Information System (INIS)

    A measurement system to verify reactor records for burnup of spent fuel at pressurized water reactors (PWR) has been developed by Sandia National Laboratories and tested at US nuclear utility sites. The system makes use of the Fork detector designed at Los Alamos National Laboratory for the safeguards program of the International Atomic Energy Agency. A single-point measurement of the neutrons and gamma- rays emitted from a PWR assembly is made at the center plane of the assembly while it is partially raised from its rack in the spent fuel pool. The objective of the measurements is to determine the variation in burnup assignments among a group of assemblies, and to identify anomalous assemblies that might adversely affect nuclear criticality safety. The measurements also provide an internal consistency check for reactor records of cooling time and initial enrichment. The burnup verification system has been proposed for qualifying spent fuel assemblies for loading into containers designed using burnup credit techniques. The system is incorporated in the US Department of Energy's.''Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages'' [DOE/RW 19951

  6. Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation - Vandellos II Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [ORNL; Gauld, Ian C [ORNL

    2011-01-01

    This report is one of the several recent NUREG/CR reports documenting benchmark-quality radiochemical assay data and the use of the data to validate computer code predictions of isotopic composition for spent nuclear fuel, to establish the uncertainty and bias associated with code predictions. The experimental data analyzed in the current report were acquired from a high-burnup fuel program coordinated by Spanish organizations. The measurements included extensive actinide and fission product data of importance to spent fuel safety applications, including burnup credit, decay heat, and radiation source terms. Six unique spent fuel samples from three uranium oxide fuel rods were analyzed. The fuel rods had a 4.5 wt % {sup 235}U initial enrichment and were irradiated in the Vandellos II pressurized water reactor operated in Spain. The burnups of the fuel samples range from 42 to 78 GWd/MTU. The measurements were used to validate the two-dimensional depletion sequence TRITON in the SCALE computer code system.

  7. Transnucleaire's experience with burnup credit in transport operations

    International Nuclear Information System (INIS)

    Facing a continued increase in fuel enrichment values, Transnucleaire has progressively implemented a burnup credit programme in order to maintain or, where possible, to improve the capacity of its transport packagings without physical modification. Many package design approvals, based on a notion of burnup credit, have been granted by the French competent authority for transport since the early eighties, and many of these approvals have been validated by foreign competent authorities. Up to now, these approvals are restricted to fuel assemblies made of enriched uranium and irradiated in pressurized water reactors (PWR). The characterization of the irradiated fuel and the reactivity of the package are evaluated by calculation, performed using qualified French codes developed by the CEA (Commisariat a l'Energie Atomique/French Atomic Energy Commission): CESAR as a depletion code and APOLO-MORET as a criticality code. The approvals are based on the hypothesis that the burnup considered is that applied on the least irradiated region of the fuel assemblies, the conservative approach being not to take credit for any axial profile of burnup along the fuel assembly. The most reactive configuration is calculated and the burnup credit is also restricted to major actinides only. On the operational side and in compliance with regulatory requirements, verification is made before transport, in order to meet safety objectives as required by the transport regulations. Besides a review of documentation related to the irradiation history of each fuel assembly, it consists of either a qualitative (go/no-go) verification or of a quantitative measurement, depending on the level of burnup credit. Thus the use of burnup credit is now a common practice with Transnucleaire's packages, particularly in France and Germany. New improvements are still in progress and qualifications of the calculation code are now well advanced, which will allow in the near future the use of six selected

  8. Burnup dependent core neutronic analysis for PBMR

    International Nuclear Information System (INIS)

    The strategy for core neutronics modeling is based on SCALE4.4 code KENOV.a module that uses Monte Carlo calculational methods. The calculations are based on detailed unit cell and detailed core modeling. The fuel pebble is thoroughly modeled by introducing unit cell modeling for the graphite matrix and the fuel kernels in the pebble. The core is then modeled by placing these pebbles randomly throughout the core, yet not loosing track of any one of them. For the burnup model, a cyclic manner is adopted by coupling the KENOV.a and ORIGEN-S modules. Shifting down one slice at each discrete time step, and inserting fresh fuel from the top, this cyclic calculation model continues until equilibrium burnup cycle is achieved. (author)

  9. Standard- and extended-burnup PWR [pressurized-water reactor] and BWR [boiling-water reactor] reactor models for the ORIGEN2 computer code

    International Nuclear Information System (INIS)

    The purpose of this report is to describe an updated set of reactor models for pressurized-water reactors (PWRs) and boiling-water reactors (BWRs) operating on uranium fuel cycles and the methods used to generate the information for these models. Since new fuel cycle schemes and reactor core designs are introduced from time to time by reactor manufacturers and fuel vendors, an effort has been made to update these reactor models periodically and to expand the data bases used by the ORIGEN2 computer code. In addition, more sophisticated computational techniques than previously available were used to calculate the resulting reactor model cross-section libraries. The PWR models were based on a Westinghouse design, while the BWR models were based on a General Electric BWR/6 design. The specific reactor types considered in this report are as follows (see Glossary for the definition of these and other terms): (1) PWR-US, (2) PWR-UE, (3) BWR-US, (4) BWR-USO, and (5) BWR-UE. Each reactor model includes a unique data library that may be used to simulate the buildup and deletion of isotopes in nuclear materials using the ORIGEN2 computer code. 33 refs., 44 tabs

  10. SRAC: JAERI thermal reactor standard code system for reactor design and analysis

    International Nuclear Information System (INIS)

    The SRAC (Standard Reactor Analysis Code) is a code system for nuclear reactor analysis and design. It is composed of neutron cross section libraries and auxiliary processing codes, neutron spectrum routines, a variety of transport, 1-, 2- and 3-D diffusion routines, dynamic parameters and cell burn-up routines. By making the best use of the individual code function in the SRAC system, the user can select either the exact method for an accurate estimate of reactor characteristics or the economical method aiming at a shorter computer time, depending on the purpose of study. The user can select cell or core calculation; fixed source or eigenvalue problem; transport (collision probability or Sn) theory or diffusion theory. Moreover, smearing and collapsing of macroscopic cross sections are separately done by the user's selection. And a special attention is paid for double heterogeneity. Various techniques are employed to access the data storage and to optimize the internal data transfer. Benchmark calculations using the SRAC system have been made extensively for the Keff values of various types of critical assemblies (light water, heavy water and graphite moderated systems, and fast reactor systems). The calculated results show good prediction for the experimental Keff values. (author)

  11. Analysis of the burnup of the control rods with the COREMASTER-Presto code; Analisis del quemado de barras de control con el codigo COREMASTER-PRESTO

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, J.L.; Alonso, G.; Perusquia, R.; Montes, J.L.; Hernandez, H. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: jlhm@nuclear.inin-mx

    2003-07-01

    An evaluation of the capacity of the COREMASTER-Presto code, to evaluate generically the burnt of the control bars in the Laguna Verde reactors plant (CLV) is made. It was found that the code only reports burnt values of the control rods in MWD/TM, in spite of having with a second order polynomial model, for the conversion to remainder of the Boron-10 (B-10). It was observed that said model is adequate only for burnt smaller to 45,000 MWD/TM. To evaluate the burnt of the control rods it was reproduced the balance cycle of 18 months for the CLV, executing Cm-Presto during 13 consecutive cycles. First without rod burnt, taking this as the base case. Later on, cases with 1, 2 and up to 13 cycles with rod burnt were generated. When comparing results it was observed that the control rods pattern it loses reactivity lineally with the burnt one. By each 10 G Wd/T of burnt of the nucleus it is decreased the reactivity of the pattern rods {approx} 1 pcm in hot condition and of {approx} 20 pcm in cold condition. When burning three cycles those rods more burnt reached the 13,900 MWD/TM, equivalent to 36% of B-10 reduction, near value to 34% proposed by aging in the one lost study of B-10. It was observed that Cm-Presto it doesn't burn the superior node of the control rods when these are completely extracted. A one big lost of B-10, of the order of 50%, it represents only a decrease of 11% of the reactivity value of the rod. One can affirm that even when it is strongly decreased the content of B-10, the rod is continue considering as a black absorber, that is to say, thermal neutron that enters in the neutron rod that is absorbed. (Author)

  12. Code Formal Verification of Operation System

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2010-12-01

    Full Text Available with the increasing pressure on non-function attributes (security, safety and reliability requirements of an operation system, high–confidence operation system is becoming more important. Formal verification is the only known way to guarantee that a system is free of programming errors. We research on formal verification of operation system kernel in system code level and take theorem proving and model checking as the main technical methods to resolve the key techniques of verifying operation system kernel in C code level. We present a case study to the verification of real-world C systems code derived from an implementation of μC/OS – II in the end.

  13. Fuel burnup analysis for the Moroccan TRIGA research reactor

    International Nuclear Information System (INIS)

    Highlights: ► A fuel burnup analysis of the 2 MW TRIGA MARK II Moroccan research reactor was established. ► Burnup calculations were done by means of the in-house developed burnup code BUCAL1. ► BUCAL1 uses the MCNP tallies directly in the calculation of the isotopic inventories. ► The reactor life time was found to be 3360 MW h considering full power operating conditions. ► Power factors and fluxes of the in-core irradiation positions are strongly affected by burnup. -- Abstract: The fundamental advantage and main reason to use Monte Carlo methods for burnup calculations is the possibility to generate extremely accurate burnup dependent one group cross-sections and neutron fluxes for arbitrary core and fuel geometries. Yet, a set of values determined for a material at a given position and time remains accurate only in a local region, in which neutron spectrum and flux vary weakly — and only for a limited period of time, during which changes of the local isotopic composition are minor. This paper presents the approach of fuel burnup evaluation used at the Moroccan TRIGA MARK II research reactor. The approach is essentially based upon the utilization of BUCAL1, an in-house developed burnup code. BUCAL1 is a FORTRAN computer code designed to aid in analysis, prediction, and optimization of fuel burnup performance in nuclear reactors. The code was developed to incorporate the neutron absorption reaction tally information generated directly by MCNP5 code in the calculation of fissioned or neutron-transmuted isotopes for multi-fueled regions. The fuel cycle length and changes in several core parameters such as: core excess reactivity, control rods position, fluxes at the irradiation positions, axial and radial power factors and other parameters are estimated. Besides, this study gives valuable insight into the behavior of the reactor and will ensure better utilization and operation of the reactor during its life-time and it will allow the establishment of

  14. Benefits of the delta K of depletion benchmarks for burnup credit validation

    International Nuclear Information System (INIS)

    Pressurized Water Reactor (PWR) burnup credit validation is demonstrated using the benchmarks for quantifying fuel reactivity decrements, published as 'Benchmarks for Quantifying Fuel Reactivity Depletion Uncertainty,' EPRI Report 1022909 (August 2011). This demonstration uses the depletion module TRITON available in the SCALE 6.1 code system followed by criticality calculations using KENO-Va. The difference between the predicted depletion reactivity and the benchmark's depletion reactivity is a bias for the criticality calculations. The uncertainty in the benchmarks is the depletion reactivity uncertainty. This depletion bias and uncertainty is used with the bias and uncertainty from fresh UO2 critical experiments to determine the criticality safety limits on the neutron multiplication factor, keff. The analysis shows that SCALE 6.1 with the ENDF/B-VII 238-group cross section library supports the use of a depletion bias of only 0.0015 in delta k if cooling is ignored and 0.0025 if cooling is credited. The uncertainty in the depletion bias is 0.0064. Reliance on the ENDF/B V cross section library produces much larger disagreement with the benchmarks. The analysis covers numerous combinations of depletion and criticality options. In all cases, the historical uncertainty of 5% of the delta k of depletion ('Kopp memo') was shown to be conservative for fuel with more than 30 GWD/MTU burnup. Since this historically assumed burnup uncertainty is not a function of burnup, the Kopp memo's recommended bias and uncertainty may be exceeded at low burnups, but its absolute magnitude is small. (authors)

  15. Design of a physical format coding system

    Science.gov (United States)

    Hu, Beibei; Pei, Jing; Zhang, Qicheng; Liu, Hailong; Tang, Yi

    2008-12-01

    A novel design of physical format coding system (PFCS) is presented based on Multi-level read-only memory disc (ML ROM) in order to solve the problem of low efficiency and long period of disc testing during system development. The PFCS is composed of four units, which are 'Encode', 'Add Noise', 'Decode', 'Error Rate', and 'Information'. It is developed with MFC under the environment of VC++ 6.0, and capable to visually simulate the procedure of data processing for ML ROM. This system can also be used for developing other optical disc storage system or similar channel coding system.

  16. Methods used in burn-up determination of the irradiated fuel rods at TRIGA reactor

    International Nuclear Information System (INIS)

    A short presentation of the methods used at INR TRIGA reactor for the burn-up determination is given together with some considerations on ORIGEN 2 computer code used for calculating fission products activities and nuclide concentration. Burn-up is determined by gamma spectroscopy and thermal power monitoring. (Author)

  17. Code Formal Verification of Operation System

    OpenAIRE

    Yu Zhang; Yunwei Dong; Huo Hong; Fan Zhang

    2010-01-01

    with the increasing pressure on non-function attributes (security, safety and reliability) requirements of an operation system, high–confidence operation system is becoming more important. Formal verification is the only known way to guarantee that a system is free of programming errors. We research on formal verification of operation system kernel in system code level and take theorem proving and model checking as the main technical methods to resolve the key techniques of verifying operatio...

  18. Increased burnup of fuel elements

    International Nuclear Information System (INIS)

    The specialists' group for fuel elements of the Kerntechnische Gesellschaft e.V. held a meeting on ''Increased Burnup of Fuel Elements'' on 9th and 10th of November 1982 at the GKSS Research Center Geesthacht. Most papers dealt with the problems of burnup increase of fuel elements for light water reactors with respect to fuel manufacturing, power plant operation and reprocessing. Review papers were given on the burnup limits for high temperature gas cooled reactors and sodium fast breeder reactors. The meeting ended with a presentation of the technical equipment of the hot laboratory of the GKSS and the programs which are in progress there. (orig.)

  19. Code system for fast reactor neutronics analysis

    International Nuclear Information System (INIS)

    A code system for analysis of fast reactor neutronics has been developed for the purpose of handy use and error reduction. The JOINT code produces the input data file to be used in the neutronics calculation code and also prepares the cross section library file with an assigned format. The effective cross sections are saved in the PDS file with an unified format. At the present stage, this code system includes the following codes; SLAROM, ESELEM5, EXPANDA-G for the production of effective cross sections and CITATION-FBR, ANISN-JR, TWOTRAN2, PHENIX, 3DB, MORSE, CIPER and SNPERT. In the course of the development, some utility programs and service programs have been additionaly developed. These are used for access of PDS file, edit of the cross sections and graphic display. Included in this report are a description of input data format of the JOINT and other programs, and of the function of each subroutine and utility programs. The usage of PDS file is also explained. In Appendix A, the input formats are described for the revised version of the CIPER code. (author)

  20. Principles of the reactor code system RHEIN

    International Nuclear Information System (INIS)

    A description is given of the principles of the reactor code system RHEIN which is applied in connection with a BESM6-type computer. In transfering data between the components of the system external storage is used. The programme passage is controlled by the input data. (author)

  1. Development of an interface between MCNP and ORIGEN codes for calculations of fuel evolution in nuclear systems. Initial project

    International Nuclear Information System (INIS)

    In Many situations of nuclear system study, it is necessary to know the detailed particle flux in a geometry. Deterministic 1-D and 2-D methods aren't suitable to represent some strong 3-D behavior configurations, for example in cores where the neutron flux varies considerably in the space and Monte Carlo analysis are necessary. The majority of Monte Carlo transport calculation codes, performs time static simulations, in terms of fuel isotopic composition. This work is a initial project to incorporate depletion capability to the MCNP code, by means of a connection with ORIGEN2.1 burnup code. The method to develop the program proposed followed the methodology of other programs used to the same purpose. Essentially, MCNP data library are used to generate one group microscopic cross sections that override default ORIGEN libraries. To verify the actual implemented part, comparisons which MCNPX (version 2.6.0) results were made. The neutron flux and criticality value of core agree. The neutron flux and criticality value of the core agree, especially in beginning of burnup when the influence of fission products are not very considerable. The small difference encountered was probably caused by the difference in the number of isotopes considered in the transport models (89 MCNPX x 25 GB). Next step of this work is to adapt MCNP version 4C to work with a memory higher than its standard value (4MB), in order to allow a greater number of isotopes in the transport model. (author)

  2. Calibration of burnup monitor in the Rokkasho reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Oheda, K.; Naito, H.; Hirota, M. [Japan Nuclear Fuel Ltd., Aomori (Japan); Natsume, K. [Toshiba Corp., Yokohama, Kawasaki, Kanagawa (Japan); Kumanomido, H. [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    1998-07-01

    The Rokkasho Reprocessing Plant has adopted a credit for burnup in criticality control in the Spent Fuel Storage Facility (SFSF) and the Dissolution Facility. The burnup monitor system, prepared for BWR and PWR type fuel assemblies, nondestructively measures the burnup value and determines the residual U-235 enrichment in a spent fuel assembly, and criticality is controlled by the value of residual U-235 enrichment in SFSF and by the value of top 50 cm average burnup in the Dissolution Facility. The burnup monitor consists of three measurement systems; a Boss gamma-ray profile measurement system, a high resolution gamma-ray spectrometry system, and a passive neutron measurement system. The monitor sensitivity is calibrated against operator-declared burnup values through repetitive measurements of 100 spent fuel assemblies: BWR 8 X 8, PWR 14 X 14. and 17 X 17. The outline of the measurement methods, objectives of the calibration, actual calibration method, and an example of calibration performed in a demonstration experiment are presented. (author)

  3. MOSRA-SRAC. Lattice calculation module of the modular code system for nuclear reactor analyses MOSRA

    International Nuclear Information System (INIS)

    MOSRA-SRAC is a lattice calculation module of the Modular code System for nuclear Reactor Analyses (MOSRA). This module performs the neutron transport calculation for various types of fuel elements including existing light water reactors, research reactors, etc. based on the collision probability method with a set of the 200-group cross-sections generated from the Japanese Evaluated Nuclear Data Library JENDL-4.0. It has also a function of the isotope generation and depletion calculation for up to 234 nuclides in each fuel material in the lattice. In these ways, MOSRA-SRAC prepares the burn-up dependent effective microscopic and macroscopic cross-section data to be used in core calculations. A CD-ROM is attached as an appendix. (J.P.N.)

  4. Analysis of burnup credit on spent fuel transport / storage casks - estimation of reactivity bias

    International Nuclear Information System (INIS)

    Chemical analyses of high burnup UO2 (65 GWd/t) and MOX (45 GWd/t) spent fuel pins were carried out. Measured data of nuclides' composition from U234 to P 242 were used for evaluation of ORIGEN-2/82 code and a nuclear fuel design code (NULIF). Critically calculations were executed for transport and storage casks for 52 BWR or 21 PWR spent fuel assemblies. The reactivity biases were evaluated for axial and horizontal profiles of burnup, and historical void fraction (BWR), operational histories such as control rod insertion history, BPR insertion history and others, and calculational accuracy of ORIGEN-2/82 on nuclides' composition. This study shows that introduction of burnup credit has a large merit in criticality safety analysis of casks, even if these reactivity biases are considered. The concept of equivalent uniform burnup was adapted for the present reactivity bias evaluation and showed the possibility of simplifying the reactivity bias evaluation in burnup credit. (authors)

  5. V.S.O.P. (99/09) computer code system for reactor physics and fuel cycle simulation. Version 2009

    Energy Technology Data Exchange (ETDEWEB)

    Ruetten, H.J.; Haas, K.A.; Brockmann, H.; Ohlig, U.; Pohl, C.; Scherer, W.

    2010-07-15

    V.S.O.P. (99/ 09) represents the further development of V.S.O.P. (99/ 05). Compared to its precursor, the code system has been improved again in many details. The main motivation for this new code version was to update the basic nuclear libraries used by the code system. Thus, all cross section libraries involved in the code have now been based on ENDF/B-VII. V.S.O.P. is a computer code system for the comprehensive numerical simulation of the physics of thermal reactors. It implies the setup of the reactor and of the fuel element, processing of cross sections, neutron spectrum evaluation, neutron diffusion calculation in two or three dimensions, fuel burnup, fuel shuffling, reactor control, thermal hydraulics and fuel cycle costs. The thermal hydraulics part (steady state and time-dependent) is restricted to gas-cooled reactors and to two spatial dimensions. The code can simulate the reactor operation from the initial core towards the equilibrium core. This latest code version was developed and tested under the WINDOWS-XP - operating system. (orig.)

  6. High burnup experience in PWRs

    International Nuclear Information System (INIS)

    The purpose of this paper is to summarize the high burnup experience of Westinghouse PWR fuel. The emphasis is on two regions of commercial PWR fuel that attained region average burnups greater than 36,000 MWD/MTU. One region operated under load follow conditions. The other region operated at base load conditions with a high average linear heat rating. Coolant activity data and post irradiation data were obtained. The post-irradiation data consisted of visual examinations, crud sampling, rod-to-rod dimensional changes, fuel column length changes, rod and assembly growth, assembly bow, fuel rod profilometry, grid spring relaxation, and fuel assembly sipping tests. The data showed that the fuel operated reliably to this burnup. Plans for irradiation to higher burnups are also discussed

  7. Criticality safety evaluation for the direct disposal of used nuclear fuel. Preparation of data for burnup credit evaluation (Contract research)

    International Nuclear Information System (INIS)

    In the direct disposal of used nuclear fuel (UNF), criticality safety evaluation is one of the important issues since UNF contains some amount of fissile material. In the conventional criticality safety evaluation of UNF where the fresh fuel composition is conservatively assumed, neutron multiplication factor is becoming overestimated as the fuel enrichment increases. The recent development of higher-enrichment fuel has therefore enhanced the benefit of the application of burnup credit. When applying the burnup credit to the criticality safety analysis of the disposed fuel system, the safe-side estimation of the reactivity is required taking into account the factors which affect the neutron multiplication factor of the burnt fuel system such as the nuclide composition uncertainties. In this report, the effects of the several parameters on the reactivity of disposal canister model were evaluated for used PWR fuel. The parameters are relevant to the uncertainties of depletion calculation code, irradiation history, and axial and horizontal burnup distribution, which are known to be important effect in the criticality safety evaluation adopting burnup credit. The latest data or methodology was adopted in this evaluation, based on the various latest studies. The appropriate margin of neutron multiplication factor in the criticality safety evaluation for UNF can be determined by adopting the methodology described in the present study. (author)

  8. CB2 result evaluation (VVER-440 burnup credit benchmark)

    International Nuclear Information System (INIS)

    The second portion of the four-piece international calculational benchmark on the VVER burnup credit (CB2) prepared in the collaboration with the OECD/NEA/NSC Burnup Credit Criticality Benchmarks Working Group and proposed to the AER research community has been evaluated. The evaluated results of calculations performed by analysts from Cuba, the Czech Republic, Finland, Germany, Russia, Slovakia and the United Kingdom are presented. The goal of this study is to compare isotopic concentrations calculated by the participants using various codes and libraries for depletion of the VVER-440 fuel pin cell. No measured values were available for the comparison. (author)

  9. Power excursion analysis for BWR`s at high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, D.J.; Neymoith, L.; Kohut, P. [Brookhaven National Lab., Upton, NY (United States)

    1996-03-01

    A study has been undertaken to determine the fuel enthalpy during a rod drop accident and during two thermal-hydraulic transients. The objective was to understand the consequences to high burnup fuel and the sources of uncertainty in the calculations. The analysis was done with RAMONA-4B, a computer code that models the neutron kinetics throughout the core along with the thermal-hydraulics in the core, vessel, and steamline. The results showed that the maximum fuel enthalpy in high burnup fuel will be affected by core design, initial conditions, and modeling assumptions. The important parameters in each of these categories are discussed in the paper.

  10. Bar-code automated waste tracking system

    International Nuclear Information System (INIS)

    The Bar-Code Automated Waste Tracking System was designed to be a site-Specific program with a general purpose application for transportability to other facilities. The system is user-friendly, totally automated, and incorporates the use of a drive-up window that is close to the areas dealing in container preparation, delivery, pickup, and disposal. The system features ''stop-and-go'' operation rather than a long, tedious, error-prone manual entry. The system is designed for automation but allows operators to concentrate on proper handling of waste while maintaining manual entry of data as a backup. A large wall plaque filled with bar-code labels is used to input specific details about any movement of waste

  11. Bar-code automated waste tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Hull, T.E.

    1994-10-01

    The Bar-Code Automated Waste Tracking System was designed to be a site-Specific program with a general purpose application for transportability to other facilities. The system is user-friendly, totally automated, and incorporates the use of a drive-up window that is close to the areas dealing in container preparation, delivery, pickup, and disposal. The system features ``stop-and-go`` operation rather than a long, tedious, error-prone manual entry. The system is designed for automation but allows operators to concentrate on proper handling of waste while maintaining manual entry of data as a backup. A large wall plaque filled with bar-code labels is used to input specific details about any movement of waste.

  12. User Instructions for the Systems Assessment Capability, Rev. 1, Computer Codes Volume 3: Utility Codes

    Energy Technology Data Exchange (ETDEWEB)

    Eslinger, Paul W.; Aaberg, Rosanne L.; Lopresti, Charles A.; Miley, Terri B.; Nichols, William E.; Strenge, Dennis L.

    2004-09-14

    This document contains detailed user instructions for a suite of utility codes developed for Rev. 1 of the Systems Assessment Capability. The suite of computer codes for Rev. 1 of Systems Assessment Capability performs many functions.

  13. Advanced Burnup Method using Inductively Coupled Plasma Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hilton, Bruce A. [Idaho Natonal Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Glagolenko, Irina; Giglio, Jeffrey J.; Cummings, Daniel G

    2009-06-15

    Nuclear fuel burnup is a key parameter used to assess irradiated fuel performance, to characterize the dependence of property changes due to irradiation, and to perform nuclear materials accountability. For advanced transmutation fuels and high burnup LWR fuels that have multiple fission sources, the existing Nd-148 ASTM burnup determination practice requires input of calculated fission fractions (identifying the specific fission source isotope and neutron energy that yielded fission, e.g., U-235 from thermal neutron, U-238 from fast neutron) from computational neutronics analysis in addition to the measured concentration of a single fission product isotope. We report a novel methodology of nuclear fuel burnup determination, which is completely independent of model predictions and reactor types. The proposed method leverages the capability of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to quantify multiple fission products and actinides and uses these data to develop a system of burnup equations whose solution is the fission fractions. The fission fractions are substituted back in the equations to determine burnup. This technique requires high fidelity fission yield data, which is not uniformly available for all fission products. We discuss different means that can potentially assist in indirect determination, verification and improvement (refinement) of the ambiguously known fission yields. A variety of irradiated fuel samples are characterized by ICP-MS and the results used to test the advanced burnup method. The samples include metallic alloy fuel irradiated in fast spectrum reactor (EBRII) and metallic alloy in a tailored spectrum and dispersion fuel in the thermal spectrum of the Advanced Test Reactor (ATR). The derived fission fractions and measured burnups are compared with calculated values predicted by neutronics models. (authors)

  14. The commercial and technological impact of high burnup

    International Nuclear Information System (INIS)

    Deregulation of electricity markets is driving prices downward. Consequently utilities continue to demand the minimization of electrical production costs. Fuel cycle cost savings are valued as a strong contributor, although directly representing only about one third of electricity generating costs. Burnups consistent with the current enrichment limit of 5 w/0 will be required. Significant progress has already been achieved by Siemens in meeting the demands of utilities for increased fuel burnup. The technological challenges imposed are mainly related to corrosion and hydrogen pickup of the clad, the properties of the fuel and the dimensional changes of the structure. Clad materials with increased corrosion resistance have been developed. The high burnup behaviour of the fuel has been extensively investigated and the decrease of thermal conductivity, the rim effect and the increase of fission gas release can be described, with good accuracy, in fuel rod computer codes. Advanced statistical design methods have been developed and introduced. In summary, most of the questions about the fuel operational behaviour and reliability in the high burnup range have been solved or the solutions are visible. The main licensing challenges for high burnup fuel are currently seen for accident condition analyses, especially for RIA and LOCA. (author)

  15. A Students Attendance System Using QR Code

    Directory of Open Access Journals (Sweden)

    Fadi Masalha

    2014-01-01

    Full Text Available Smartphones are becoming more preferred companions to users than desktops or notebooks. Knowing that smartphones are most popular with users at the age around 26, using smartphones to speed up the process of taking attendance by university instructors would save lecturing time and hence enhance the educational process. This paper proposes a system that is based on a QR code, which is being displayed for students during or at the beginning of each lecture. The students will need to scan the code in order to confirm their attendance. The paper explains the high level implementation details of the proposed system. It also discusses how the system verifies student identity to eliminate false registrations.

  16. Validation of the Monteburns code for criticality calculation of TRIGA reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dalle, Hugo Moura [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Jeraj, Robert [Jozef Stafan Institute, Ljubljana (Slovenia)

    2002-07-01

    Use of Monte Carlo methods in burnup calculations of nuclear fuel has become practical due to increased speed of computers. Monteburns is an automated computational tool that links the Monte Carlo code MCNP with the burnup and decay code ORIGEN2.1. This code system was used to simulate a criticality benchmark experiment with burned fuel on a TRIGA Mark II research reactor. Two core configurations were simulated and k{sub eff} values calculated. The comparison between the calculated and experimental values shows good agreement, which indicates that the MCNP/Monteburns/ORIGEN2.1 system gives reliable results for neutronic simulations of TRIGA reactors. (author)

  17. EAI-oriented information classification code system in manufacturing enterprises

    Institute of Scientific and Technical Information of China (English)

    Junbiao WANG; Hu DENG; Jianjun JIANG; Binghong YANG; Bailing WANG

    2008-01-01

    Although the traditional information classifi-cation coding system in manufacturing enterprises (MEs) emphasizes the construction of code standards, it lacks the management of the code creation, code data transmission and so on. According to the demands of enterprise application integration (EAI) in manufacturing enter-prises, an enterprise application integration oriented information classification code system (EAIO-ICCS) is proposed. EAIO-ICCS expands the connotation of the information classification code system and assures the identity of the codes in manufacturing enterprises with unified management of codes at the view of its lifecycle.

  18. HELIAS module development for systems codes

    Energy Technology Data Exchange (ETDEWEB)

    Warmer, F., E-mail: Felix.Warmer@ipp.mpg.de; Beidler, C.D.; Dinklage, A.; Egorov, K.; Feng, Y.; Geiger, J.; Schauer, F.; Turkin, Y.; Wolf, R.; Xanthopoulos, P.

    2015-02-15

    In order to study and design next-step fusion devices such as DEMO, comprehensive systems codes are commonly employed. In this work HELIAS-specific models are proposed which are designed to be compatible with systems codes. The subsequently developed models include: a geometry model based on Fourier coefficients which can represent the complex 3-D plasma shape, a basic island divertor model which assumes diffusive cross-field transport and high radiation at the X-point, and a coil model which combines scaling aspects based on the HELIAS 5-B reactor design in combination with analytic inductance and field calculations. In addition, stellarator-specific plasma transport is discussed. A strategy is proposed which employs a predictive confinement time scaling derived from 1-D neoclassical and 3-D turbulence simulations. This paper reports on the progress of the development of the stellarator-specific models while an implementation and verification study within an existing systems code will be presented in a separate work. This approach is investigated to ultimately allow one to conduct stellarator system studies, develop design points of HELIAS burning plasma devices, and to facilitate a direct comparison between tokamak and stellarator DEMO and power plant designs.

  19. Fuel burnup analysis of the TRIGA Mark II Reactor at the University of Pavia

    OpenAIRE

    Chiesa, Davide; Clemenza, Massimiliano; Pozzi, Stefano; Previtali, Ezio; Sisti, Monica; Alloni, Daniele; Magrotti, Giovanni; Manera, Sergio; Prata, Michele; Salvini, Andrea; Cammi, Antonio; Zanetti, Matteo; Sartori, Alberto

    2015-01-01

    A time evolution model was developed to study fuel burnup for the TRIGA Mark II reactor at the University of Pavia. The results were used to predict the effects of a complete core reconfiguration and the accuracy of this prediction was tested experimentally. We used the Monte Carlo code MCNP5 to reproduce system neutronics in different operating conditions and to analyse neutron fluxes in the reactor core. The software that took care of time evolution, completely designed in-house, used the n...

  20. Analysis of Fuel Temperature Reactivity Coefficients According to Burn-up and Pu-239 Production in CANDU Reactor

    International Nuclear Information System (INIS)

    The resonances for some kinds of nuclides such as U-238 and Pu-239 are not easy to be accurately processed. In addition, the Pu-239 productions from burnup are also significant in CANDU, where the natural uranium is used as a fuel. In this study, the FTCs were analyzed from the viewpoints of the resonance self-shielding methodology and Pu-239 build-up. The lattice burnup calculations were performed using the TRITON module in the SCALE6 code system, and the BONAMI module was executed to obtain self-shielded cross sections using the Bondarenko approach. Two libraries, ENDF/B-VI.8 and ENDF/B-VII.0, were used to compare the Pu-239 effect on FTC, since the ENDF/B-VII has updated the Pu-239 cross section data. The FTCs of the CANDU reactor were newly analyzed using the TRITON module in the SCALE6 code system, and the BONAMI module was executed to apply the Bondarenko approach for self-shielded cross sections. When compared with some reactor physics codes resulting in slightly positive FTC in the specific region, the FTCs evaluated in this study showed a clear negativity over the entire fuel temperature range on fresh/equilibrium fuel. In addition, the FTCs at 960.15 K were slightly negative during the entire burnup. The effects on FTCs from the library difference between ENDF/B-VI.8 and ENDF/B-VII.0 are recognized to not be large; however, they appear more positive when more Pu-239 productions with burnup are considered. This feasibility study needs an additional benchmark evaluation for FTC calculations, but it can be used as a reference for a new FTC analysis in CANDU reactors

  1. A Students Attendance System Using QR Code

    OpenAIRE

    Fadi Masalha; Nael Hirzallah

    2014-01-01

    Smartphones are becoming more preferred companions to users than desktops or notebooks. Knowing that smartphones are most popular with users at the age around 26, using smartphones to speed up the process of taking attendance by university instructors would save lecturing time and hence enhance the educational process. This paper proposes a system that is based on a QR code, which is being displayed for students during or at the beginning of each lecture. The students will need to scan the co...

  2. Cooperative Regenerating Codes for Distributed Storage Systems

    OpenAIRE

    Shum, Kenneth W.

    2011-01-01

    When there are multiple node failures in a distributed storage system, regenerating the failed storage nodes individually in a one-by-one manner is suboptimal as far as repair-bandwidth minimization is concerned. If data exchange among the newcomers is enabled, we can get a better tradeoff between repair bandwidth and the storage per node. An explicit and optimal construction of cooperative regenerating code is illustrated.

  3. Fission-gas release at extended burnups: effect of two-dimensional heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tayal, M. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Yu, S.D. [Ryerson Polytechnic Univ., Toronto, Ontario (Canada); Lau, J.H.K

    2000-09-01

    To better simulate the performance of high-burnup CANDU fuel, a two-dimensional model for heat transfer between the pellet and the sheath has been added to the computer code ELESTRES. The model covers four relative orientations of the pellet and the sheath and their impacts on heat transfer and fission-gas release. The predictions of the code were compared to a database of 27 experimental irradiations involving extended burnups and normal burnups. The calculated values of fission gas release matched the measurements to an average of 94%. Thus, the two-dimensional heat transfer model increases the versatility of the ELESTRES code to better simulate fuels at normal as well as at extended burnups. (author)

  4. The impact of burn-up credit in criticality studies

    International Nuclear Information System (INIS)

    Nowadays optimization goes with everything. So French engineering firms try to demonstrate that fuel transport casks and storage pools are able to receive assemblies with higher 235U initial enrichments. Fuel Burnup distribution contributes to demonstrate it. This instruction has to elaborate a way to take credit of burnup effects on criticality safety designs. The calculation codes used are CESAR 4.21-APOLLO 1-MORET III. The assembly studied (UO2) is irradiated in a French Pressurized Water Reactor like EDF nuclear power reactor: PWR 1300 MWe, 17 x 17 array. Its initial enrichment in 235U equals 4.5%. The studies exposed in this report have evaluated the effects of: i) the 15 fission products considered in Burnup Credit (95Mo, 99Tc, 101Ru, 103Rh, 109Ag, 133Cs, 143Nd, 145Nd, 147Sm, 149Sm, 150Sm, 151Sm, 152Sm, 153Eu, 155Gd), ii) the calculated abundances corrected or not by fixed factors, iii) the choice of one cross sections library used by CESAR 4.21, iu) the zone number elected in the axial burnup distribution zoning, u) the kind of cut applied on (regular/optimized). Two axial distribution profiles are studied: one with 44 GWd/t average burnup, the other with 20 GWd/t average burnup. The second one considers a shallow control rods insertion in the upper limit of the assembly. The results show a margin in reactivity about 0.045 with consideration of the 6 most absorbent fission products (103Rh, 133Cs, 143Nd, 149Sm, 152Sm, 155Gd), and about 0.06 for all Burnup Credit fission products whole. Those results have been calculated with an average burnup of 44 GWj/t. In a conservative approach, corrective factors must be apply on the abundance of some fission products. The cross sections library used by CESAR 4.21 (BBL 4) is sufficient and gives satisfactory results. The zoning of the assembly axial distribution burnup in 9 regular zones grants a satisfying calculation time/result precision compromise. (author)

  5. MCCOOR Code System for Burnup Calculation%用于燃耗计算的三维MCCOOR程序系统

    Institute of Scientific and Technical Information of China (English)

    李金鸿; 张松柏; E.F.Kryuchkov; G.V.Tikhomirov

    2006-01-01

    介绍了由标准程序MCNP、COUPLE、ORIGEN-S组成的耦合程序系统MCCOOR的结构和功能,用VVER等轻水堆栅元和燃料组件的多个Benchmark模型进行了检验.本文列举了在VVER-1000带可燃毒物Gd的燃料组件Benchmark模型上,分别用UO2和MOX燃料的检验结果.所有检验结果表明:MCCOOR的反应性和核素成分的计算结果与Benchmark的结果在误差范围内一致.

  6. Blind Recognition Algorithm of Turbo Codes for Communication Intelligence Systems

    Directory of Open Access Journals (Sweden)

    Ali Naseri

    2011-11-01

    Full Text Available Turbo codes are widely used in land and space radio communication systems, and because of complexity of structure, are custom in military communication systems. In electronic warfare, COMINT systems make attempt to recognize codes by blind ways. In this Paper, the algorithm is proposed for blind recognition of turbo code parameters like code kind, code-word length, code rate, length of interleaver and delay blocks number of convolution code. The algorithm calculations volume is0.5L3+1.25L, therefore it is suitable for real time systems.

  7. Vectorization of nuclear codes 88-1

    International Nuclear Information System (INIS)

    In this report, we describe the vectorization of thermal reactor standard neutronics code system SRAC, three dimensional neutron diffusion code CITATION, two dimensional discrete ordinates transport code TWOTRAN-II, multi-dimensional core burn-up calculation code COREBN, two and three dimensional neutron diffusion code CITATION-FBR. CITATION code, TWOTRAN code, collision probability method code PIJ in SRAC system are also vectorized. The performance ratio of the vectorized version to the original one is from 1.8 to 8.6 for SRC, from 2.3 to 10.1 for CITATION, 4.2 for TWOTRAN-II, from 2.9 to 10.4 for COREBN, from 3.9 to 13.3 for CITATION-FBR. In this report, we describe sample input data, summary of the codes, vectorization techniques and performance evaluation of the vectorized codes. (author)

  8. RAPID program to predict radial power and burnup distribution of UO{sub 2} fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Bock; Song, Jae Sung; Bang, Je Gun; Kim, Dae Ho [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-02-01

    Due to the radial variation of the neutron flux and its energy spectrum inside UO{sub 2} fuel, the fission density and fissile isotope production rates are varied radially in the pellet, and it becomes necessary to know the accurate radial power and burnup variation to predict the high burnup fuel behavior such as rim effects. Therefore, to predict the radial distribution of power, burnup and fissionable nuclide densities in the pellet with the burnup and U-235 enrichment, RAPID(RAdial power and burnup Prediction by following fissile Isotope Distribution in the pellet) program was developed. It considers the specific radial variation of the neutron reaction of the nuclides while the constant radial variation of neutron reaction except neutron absorption of U-238 regardless of the nuclides, the burnup and U-235 enrichment is assumed in TUBRNP model which is recognized as the one of the most reliable models. Therefore, it is expected that RAPID may be more accurate than TUBRNP, specially at high burnup region. RAPID is based upon and validated by the detailed reactor physics code, HELIOS which is one of few codes that can calculates the radial variations of the nuclides inside the pellet. Comparison of RAPID prediction with the measured data of the irradiated fuels showed very good agreement. RAPID can be used to calculate the local variations of the fissionable nuclide concentrations as well as the local power and burnup inside that pellet as a function of the burnup up to 10 w/o U-235 enrichment and 150 MWD/kgU burnup under the LWR environment. (author). 8 refs., 50 figs., 1 tab.

  9. Burnup determination of water reactor fuel

    International Nuclear Information System (INIS)

    The present meeting was scheduled by the International Atomic Energy Agency in consultation with the Members of the International Working Group on Water Reactor Fuel Performance and Technology. The meeting was hosted by the Commission of the European Communities, at the Transuranium Research Laboratory, Joint Research Centre Karlsruhe, in the Federal Republic of Germany. This subject was dealt with for the first time by the IAEA. It was found to correspond adequately to this type of Specialist Meeting and to be suitable at a moment when the extension of burnup constitutes a major technical and economical issue in fuel technology. It was stressed that analysis of highly burnt fuels, mixed oxides and burnable absorber bearing fuels required extension of the experimental data base, to comply with the increasing demand for an improved fuel management, including better qualification of reactor physics codes. Twenty-seven participants from eleven countries plus two international organizations attended the Meeting. Twelve papers were given during three technical sessions, followed by a panel discussion which allowed to formulate the conclusions of the meeting and recommendations to the Agency. In addition, participants were invited to give an outline of their national programmes, related to Burnup Determination of Water Reactor Fuel. A separate abstract was prepared for each of these 12 papers. Refs, figs and tabs

  10. Blind Recognition Algorithm of Turbo Codes for Communication Intelligence Systems

    OpenAIRE

    Ali Naseri; Omid Azmoon; Samad Fazeli

    2011-01-01

    Turbo codes are widely used in land and space radio communication systems, and because of complexity of structure, are custom in military communication systems. In electronic warfare, COMINT systems make attempt to recognize codes by blind ways. In this Paper, the algorithm is proposed for blind recognition of turbo code parameters like code kind, code-word length, code rate, length of interleaver and delay blocks number of convolution code. The algorithm calculations volume is0.5L3+1.25L, th...

  11. Problems of optimal data coding in hodoscopic systems

    International Nuclear Information System (INIS)

    An analogy system of algebraic coding theory and of hodoscopic system coding theory is considered. The connection between main parameters of coding devices and parameters of parallel coders applied in hodoscopic systems is established. The efficiency of using a proposed analogy system is illustrated on some examples of designing parallel coders with given properties

  12. System analysis of bar code laser scanner

    Science.gov (United States)

    Wang, Jianpu; Chen, Zhaofeng; Lu, Zukang

    1996-10-01

    This paper focuses on realizing the three important aspects of bar code scanner: generating a high quality scanning light beam, acquiring a fairly even distribution characteristic of light collection, achieving a low signal dynamic range over a large depth of field. To do this, we analyze the spatial distribution and propagation characteristics of scanning laser beam, the vignetting characteristic of optical collection system and their respective optimal design; propose a novel optical automatic gain control method to attain a constant collection over a large working depth.

  13. Code system BCG for gamma-ray skyshine calculation

    International Nuclear Information System (INIS)

    A code system BCG has been developed for calculating conveniently and efficiently gamma-ray skyshine doses using the transport calculation codes ANISN and DOT and the point-kernel calculation codes G-33 and SPAN. To simplify the input forms to the system, the forms for these codes are unified, twelve geometric patterns are introduced to give material regions, and standard data are available as a library. To treat complex arrangements of source and shield, it is further possible to use successively the code such that the results from one code may be used as input data to the same or other code. (author)

  14. Determination of the burn-up of TRIGA fuel elements by calculation and reactivity experiments

    International Nuclear Information System (INIS)

    The burnup of 17 fuel elements of the TRIGA Mark-II reactor in Vienna was measured. Different types of fuel elements had been simultaneously used for several years. The measured burnup values are compared with those calculated on the basis of core configuration and reactor operation history records since the beginning of operation. A one-dimensional, two-group diffusion computer code TRIGAP was used for the calculations. Comparison with burnup values determined by γ-scanning is also made. (orig./HP)

  15. Technical Development on Burn-up Credit for Spent LWR Fuel

    International Nuclear Information System (INIS)

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled ''Technical Development on Criticality Safety Management for Spent LWR Fuels.'' Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burnup and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report

  16. Technical Development on Burn-up Credit for Spent LWR Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gauld, I.C.

    2001-12-26

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled ''Technical Development on Criticality Safety Management for Spent LWR Fuels.'' Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burnup and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report.

  17. Biases and statistical errors in Monte Carlo burnup calculations: an unbiased stochastic scheme to solve Boltzmann/Bateman coupled equations

    International Nuclear Information System (INIS)

    External linking scripts between Monte Carlo transport codes and burnup codes, and complete integration of burnup capability into Monte Carlo transport codes, have been or are currently being developed. Monte Carlo linked burnup methodologies may serve as an excellent benchmark for new deterministic burnup codes used for advanced systems; however, there are some instances where deterministic methodologies break down (i.e., heavily angularly biased systems containing exotic materials without proper group structure) and Monte Carlo burn up may serve as an actual design tool. Therefore, researchers are also developing these capabilities in order to examine complex, three-dimensional exotic material systems that do not contain benchmark data. Providing a reference scheme implies being able to associate statistical errors to any neutronic value of interest like k(eff), reaction rates, fluxes, etc. Usually in Monte Carlo, standard deviations are associated with a particular value by performing different independent and identical simulations (also referred to as 'cycles', 'batches', or 'replicas'), but this is only valid if the calculation itself is not biased. And, as will be shown in this paper, there is a bias in the methodology that consists of coupling transport and depletion codes because Bateman equations are not linear functions of the fluxes or of the reaction rates (those quantities being always measured with an uncertainty). Therefore, we have to quantify and correct this bias. This will be achieved by deriving an unbiased minimum variance estimator of a matrix exponential function of a normal mean. The result is then used to propose a reference scheme to solve Boltzmann/Bateman coupled equations, thanks to Monte Carlo transport codes. Numerical tests will be performed with an ad hoc Monte Carlo code on a very simple depletion case and will be compared to the theoretical results obtained with the reference scheme. Finally, the statistical error propagation

  18. MTR coded PRML systems for perpendicular magnetic recording

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Yoshihiro E-mail: okamoto@rec.ee.ehime-u.ac.jp; Sato, Mitsuteru; Osawa, Hisashi; Saito, Hidetoshi; Muraoka, Hiroaki; Nakamura, Yoshihisa

    2001-10-01

    We evaluate the BER performance of various MTR coded PRML systems characterized by the polynomials with only positive coefficients in a perpendicular magnetic recording channel using a double-layered medium with jitter-like noise by computer simulation. The results show that ((3)/(4)) MTR coded PRML systems exhibit good performances compared with ((16)/(17)) MTR coded PRML systems.

  19. Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Ade, Brian J [ORNL; Marshall, William BJ J [ORNL; Martinez-Gonzalez, Jesus S [ORNL

    2015-05-01

    Oak Ridge National Laboratory (ORNL) and the US Nuclear Regulatory Commission (NRC) have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation systems (often referred to as casks) and spent fuel pools (SFPs). This work is divided into two main phases. The first phase investigated the applicability of peak reactivity methods currently used in SFPs to transportation and storage casks and the validation of reactivity calculations and spent fuel compositions within these methods. The second phase focuses on extending BUC beyond peak reactivity. This paper documents the analysis of the effects of control blade insertion history, and moderator density and burnup axial profiles for extended BWR BUC.

  20. DESIGN OF EXACT REGENERATING HIERARCHICAL CODE FOR DISTRIBUTED STORAGE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Hao Jie; Lu Yanbo; Liu Xinji; Xia Shutao

    2013-01-01

    Erasure code is widely used as the redundancy scheme in distributed storage system.When a storage node fails,the repair process often requires to transfer a large amount of data.Regenerating code and hierarchical code are two classes of codes proposed to reduce the repair bandwidth cost.Regenerating codes reduce the amount of data transferred by each helping node,while hierarchical codes reduce the number of nodes participating in the repair process.In this paper,we propose a "sub-code nesting framework" to combine them together.The resulting regenerating hierarchical code has low repair degree as hierarchical code and lower repair cost than hierarchical code.Our code can achieve exact regeneration of the failed node,and has the additional property of low updating complexity.

  1. Thermal Hydraulic Analysis of 3 MW TRIGA Research Reactor of Bangladesh Considering Different Cycles of Burnup

    OpenAIRE

    M. H. Altaf; Badrun, N. H.

    2014-01-01

    Burnup dependent steady state thermal hydraulic analysis of TRIGA Mark-II research reactor has been carried out utilizing coupled point kinetics, neutronics and thermal hydraulics code EUREKA-2/RR. From the previous calculations of neutronics parameters including percentage burnup of individual fuel elements performed so far for 700 MWD burnt core of TRIGA reactor showed that the fuel rod predicted as hottest at the beginning of cycle (fresh core) was found to remain as the hottest until 200 ...

  2. SINFAC - SYSTEMS IMPROVED NUMERICAL FLUIDS ANALYSIS CODE

    Science.gov (United States)

    Costello, F. A.

    1994-01-01

    The Systems Improved Numerical Fluids Analysis Code, SINFAC, consists of additional routines added to the April 1983 revision of SINDA, a general thermal analyzer program. The purpose of the additional routines is to allow for the modeling of active heat transfer loops. The modeler can simulate the steady-state and pseudo-transient operations of 16 different heat transfer loop components including radiators, evaporators, condensers, mechanical pumps, reservoirs and many types of valves and fittings. In addition, the program contains a property analysis routine that can be used to compute the thermodynamic properties of 20 different refrigerants. SINFAC can simulate the response to transient boundary conditions. SINFAC was first developed as a method for computing the steady-state performance of two phase systems. It was then modified using CNFRWD, SINDA's explicit time-integration scheme, to accommodate transient thermal models. However, SINFAC cannot simulate pressure drops due to time-dependent fluid acceleration, transient boil-out, or transient fill-up, except in the accumulator. SINFAC also requires the user to be familiar with SINDA. The solution procedure used by SINFAC is similar to that which an engineer would use to solve a system manually. The solution to a system requires the determination of all of the outlet conditions of each component such as the flow rate, pressure, and enthalpy. To obtain these values, the user first estimates the inlet conditions to the first component of the system, then computes the outlet conditions from the data supplied by the manufacturer of the first component. The user then estimates the temperature at the outlet of the third component and computes the corresponding flow resistance of the second component. With the flow resistance of the second component, the user computes the conditions down stream, namely the inlet conditions of the third. The computations follow for the rest of the system, back to the first component

  3. Burnup measurements of leader fuel elements

    International Nuclear Information System (INIS)

    Some time ago the CCHEN authorities decided to produce a set of 50 low enrichment fuel elements. These elements were produced in the PEC (Fuel Elements Plant), located at CCHEN offices in Lo Aguirre. These new fuel elements have basically the same geometrical characteristics of previous ones, which were British and made with raw material from the U.S. The principal differences between our fuel elements and the British ones is the density of fissile material, U-235, which was increased to compensate the reduction in enrichment. Last year, the Fuel Elements Plant (PEC) delivered the shipment's first four (4) fuel elements, called leaders, to the RECH1. A test element was delivered too, and the complete set was introduced into the reactor's nucleus, following the normal routine, but performing a special follow-up on their behavior inside the nucleus. This experimental element has only one outside fuel plate, and the remaining (15) structural plates are aluminum. In order to study the burnup, the test element was taken out of the nucleus, in mid- November 1999, and left to decay until June 2000, when it was moved to the laboratory (High Activity Cell), to start the burnup measurements, with a gamma spectroscopy system. This work aims to show the results of these measurements and in addition to meet the following objectives: (a) Visual test of the plate's general condition; (b) Sipping test of fission products; (c) Study of burn-up distribution in the plate; (d) Check and improve the calculus algorithm; (e) Comparison of the results obtained from the spectroscopy with the ones from neutron calculus

  4. Fuel burnup calculation of a research reactor plate element

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Nadia Rodrigues dos; Lima, Zelmo Rodrigues de; Moreira, Maria de Lourdes, E-mail: nadiasam@gmail.com, E-mail: zrlima@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    This work consists in simulating the burnup of two different plate type fuel elements, where one is the benchmark MTR of the IAEA, which is made of an alloy of uranium and aluminum, while the other belonging to a typical multipurpose reactor is composed of an alloy of uranium and silicon. The simulation is performed using the WIMSD-5B computer code, which makes use of deterministic methods for solving neutron transport. In developing this task, fuel element equivalent cells were calculated representing each of the reactors to obtain the initial concentrations of each isotope constituent element of the fuel cell and the thicknesses corresponding to each region of the cell, since this information is part of the input data. The compared values of the k∞ showed a similar behavior for the case of the MTR calculated with the WIMSD-5B and EPRI-CELL codes. Relating the graphs of the concentrations in the burnup of both reactors, there are aspects very similar to each isotope selected. The application WIMSD-5B code to calculate isotopic concentrations and burnup of the fuel element, proved to be satisfactory for the fulfillment of the objective of this work. (author)

  5. An empirical formulation to describe the evolution of the high burnup structure

    Science.gov (United States)

    Lemes, Martín; Soba, Alejandro; Denis, Alicia

    2015-01-01

    In the present work the behavior of fuel pellets for LWR power reactors in the high burnup range (average burnup higher than about 45 MWd/kgU) is analyzed. For extended irradiation periods, a considerable Pu concentration is reached in the pellet periphery (rim zone), that contributes to local burnup. Gradually, a new microstructure develops in that ring, characterized by small grains and large pores as compared with those of the original material. In this region Xe is absent from the solid lattice (although it continues to be dissolved in the rest of the pellet). The porous microstructure in the pellet edge causes local changes in the mechanical and thermal properties, thus affecting the overall fuel behavior. It is generally accepted that the evolution of porosity in the high burnup structure (HBS) is determinant of the retention capacity of the fission gases rejected from the fuel matrix. This is the reason why, during the latest years a considerable effort has been devoted to characterizing the parameters that influence porosity. Although the mechanisms governing the microstructural transformation have not been completely elucidated yet, some empirical expressions can be given, and this is the intention of the present work, for representing the main physical parameters. Starting from several works published in the open literature, some mathematical expressions were developed to describe the behavior and progress of porosity at local burnup values ranging from 60 to 300 MWd/kgU. The analysis includes the interactions of different orders between pores, the growth of the pore radius by capturing vacancies, the evolution of porosity, pore number density and overpressure within the closed pores, the inventory of fission gas dissolved in the matrix and retained in the pores. The model is mathematically expressed by a system of non-linear differential equations. In the present work, results of this calculation scheme are compared with experimental data available in

  6. An empirical formulation to describe the evolution of the high burnup structure

    Energy Technology Data Exchange (ETDEWEB)

    Lemes, Martín; Soba, Alejandro; Denis, Alicia

    2015-01-15

    In the present work the behavior of fuel pellets for LWR power reactors in the high burnup range (average burnup higher than about 45 MWd/kgU) is analyzed. For extended irradiation periods, a considerable Pu concentration is reached in the pellet periphery (rim zone), that contributes to local burnup. Gradually, a new microstructure develops in that ring, characterized by small grains and large pores as compared with those of the original material. In this region Xe is absent from the solid lattice (although it continues to be dissolved in the rest of the pellet). The porous microstructure in the pellet edge causes local changes in the mechanical and thermal properties, thus affecting the overall fuel behavior. It is generally accepted that the evolution of porosity in the high burnup structure (HBS) is determinant of the retention capacity of the fission gases rejected from the fuel matrix. This is the reason why, during the latest years a considerable effort has been devoted to characterizing the parameters that influence porosity. Although the mechanisms governing the microstructural transformation have not been completely elucidated yet, some empirical expressions can be given, and this is the intention of the present work, for representing the main physical parameters. Starting from several works published in the open literature, some mathematical expressions were developed to describe the behavior and progress of porosity at local burnup values ranging from 60 to 300 MWd/kgU. The analysis includes the interactions of different orders between pores, the growth of the pore radius by capturing vacancies, the evolution of porosity, pore number density and overpressure within the closed pores, the inventory of fission gas dissolved in the matrix and retained in the pores. The model is mathematically expressed by a system of non-linear differential equations. In the present work, results of this calculation scheme are compared with experimental data available in

  7. Study on the conservative factors for burnup credit criticality calculation

    International Nuclear Information System (INIS)

    When applies the burnup credit technology to perform criticality safety analysis for spent fuel storage or transportation problems, it is important for one to confirm that all the conditions adopted are adequate to cover the severest conditions that may encounter in the engineering applications. Taking the OECD/NEA burnup credit criticality benchmarks as sample problems, we study the effect of some important factors that may affect the conservatism of' the results for spent fuel system criticality safety analysis. Effects caused by different nuclides credit strategy, different cooling time and axial burnup profile are studied by use of the STARBUCS module of SCALE5. 1 software package, and related conclusions about the conservatism of these factors are drawn. (authors)

  8. On Analyzing LDPC Codes over Multiantenna MC-CDMA System

    Directory of Open Access Journals (Sweden)

    S. Suresh Kumar

    2014-01-01

    Full Text Available Multiantenna multicarrier code-division multiple access (MC-CDMA technique has been attracting much attention for designing future broadband wireless systems. In addition, low-density parity-check (LDPC code, a promising near-optimal error correction code, is also being widely considered in next generation communication systems. In this paper, we propose a simple method to construct a regular quasicyclic low-density parity-check (QC-LDPC code to improve the transmission performance over the precoded MC-CDMA system with limited feedback. Simulation results show that the coding gain of the proposed QC-LDPC codes is larger than that of the Reed-Solomon codes, and the performance of the multiantenna MC-CDMA system can be greatly improved by these QC-LDPC codes when the data rate is high.

  9. Improved FEC Code Based on Concatenated Code for Optical Transmission Systems

    Institute of Scientific and Technical Information of China (English)

    YUAN Jian-guo; JIANG Ze; MAO You-ju

    2006-01-01

    The improved three novel schemes of the super forward error correction(super-FEC) concatenated codes are proposed after the development trend of long-haul optical transmission systems and the defects of the existing FEC codes have been analyzed. The performance simulation of the Reed-Solomon(RS)+Bose-Chaudhuri-Hocguenghem(BCH) inner-outer serial concatenated code is implemented and the conceptions of encoding/decoding the parallel-concatenated code are presented. Furthermore,the simulation results for the RS(255,239)+RS(255,239) code and the RS(255,239)+RS(255,223) code show that the two consecutive concatenated codes are a superior coding scheme with such advantages as the better error correction,moderate redundancy and easy realization compared to the classic RS(255,239) code and other codes,and their signal to noise ratio gains are respectively 2~3 dB more than that of the RS(255,239)code at the bit error rate of 1×10-13. Finally,the frame structure of the novel consecutive concatenated code is arranged to lay a firm foundation in designing its hardware.

  10. Measurement techniques for verifying burnup

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, R.I. (Sandia National Lab., Albuquerque, NM (US)); Bierman, S.R. (Pacific Northwest Lab., Richland, WA (US))

    1992-05-01

    Measurements of the nuclear radiation from spent reactor fuel are being considered to qualify assemblies for loading into casks that will be used to transport spent fuel from utility sites to a federal storage facility. To ensure nuclear criticality safety, the casks are being designed to accept assemblies that meet restrictions as to burnup, initial enrichment and cooling time. This paper reports that measurements could be used to ensure that only fuel assemblies that meet the restrictions are selected for loading.

  11. Measurement techniques for verifying burnup

    International Nuclear Information System (INIS)

    Measurements of the nuclear radiation from spent reactor fuel are being considered to qualify assemblies for loading into casks that will be used to transport spent fuel from utility sites to a federal storage facility. To ensure nuclear criticality safety, the casks are being designed to accept assemblies that meet restrictions as to burnup, initial enrichment and cooling time. This paper reports that measurements could be used to ensure that only fuel assemblies that meet the restrictions are selected for loading

  12. Radionuclide Release from High Burnup Fuel

    International Nuclear Information System (INIS)

    In this paper we investigate the production, evolution and release of radioactive fission products in a light water reactor. The production of the nuclides is determined by the neutronics, their evolution in the fuel by local temperature and by the fuel microstructure and the rate of release is governed by the scenario and the properties of the microstructure where the nuclides reside. The problem combines fields of reactor physics, fuel behaviour analysis and accident analysis. Radionuclide evolution during fuel reactor life is also important for determination of instant release fraction of final repository analysis. The source term problem is investigated by literature study and simulations with reactor physics code Serpent as well as fuel performance code ENIGMA. The capabilities of severe accident management codes MELCOR and ASTEC for describing high burnup structure effects are reviewed. As the problem is multidisciplinary in nature the transfer of information between the codes is studied. While the combining of the different fields as they currently are is challenging, there are some possibilities to synergy. Using reactor physics tools capable of spatial discretization is necessary for determining the HBS inventory. Fuel performance studies can provide insight how the HBS should be modelled in severe accident codes, however the end effect is probably very small considering the energetic nature of the postulated accidents in these scenarios. Nuclide release in severe accidents is affected by fuel oxidation, which is not taken into account by ANSI/ANS-5.4 but could be important in some cases, and as such, following the example of severe accident models would benefit the development of fuel performance code models. (author)

  13. Use of axial burnup distribution profile in the nuclear safety analysis of spent nuclear fuel storage for WWER reactors in Ukraine

    International Nuclear Information System (INIS)

    The nuclear safety analysis of spent fuel storages taking into account fuel burnup should allow for burnup distribution along the height of the assembly. We propose a method based on an analysis of the axial burnup profiles of spent fuel assemblies. This method can be used in nuclear safety justification of spent fuel management and storage systems

  14. Evaluation of the HTTR criticality and burnup calculations with continuous-energy and multigroup cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Min-Han; Wang, Jui-Yu [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China); Sheu, Rong-Jiun, E-mail: rjsheu@mx.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China); Department of Engineering System and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China); Liu, Yen-Wan Hsueh [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China); Department of Engineering System and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China)

    2014-05-01

    The High Temperature Engineering Test Reactor (HTTR) in Japan is a helium-cooled graphite-moderated reactor designed and operated for the future development of high-temperature gas-cooled reactors. Two detailed full-core models of HTTR have been established by using SCALE6 and MCNP5/X, respectively, to study its neutronic properties. Several benchmark problems were repeated first to validate the calculation models. Careful code-to-code comparisons were made to ensure that two calculation models are both correct and equivalent. Compared with experimental data, the two models show a consistent bias of approximately 20–30 mk overestimation in effective multiplication factor for a wide range of core states. Most of the bias could be related to the ENDF/B-VII.0 cross-section library or incomplete modeling of impurities in graphite. After that, a series of systematic analyses was performed to investigate the effects of cross sections on the HTTR criticality and burnup calculations, with special interest in the comparison between continuous-energy and multigroup results. Multigroup calculations in this study were carried out in 238-group structure and adopted the SCALE double-heterogeneity treatment for resonance self-shielding. The results show that multigroup calculations tend to underestimate the system eigenvalue by a constant amount of ∼5 mk compared to their continuous-energy counterparts. Further sensitivity studies suggest the differences between multigroup and continuous-energy results appear to be temperature independent and also insensitive to burnup effects.

  15. SCALE Code System 6.2.1

    Energy Technology Data Exchange (ETDEWEB)

    Rearden, Bradley T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jessee, Matthew Anderson [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministic and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.

  16. Calibration of burnup monitor installed in Rokkasho Reprocessing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Oeda, Kaoru; Naito, Hirofumi; Hirota, Masanari [Japan Nuclear Fuel Co. Ltd., Rokkasho, Aomori (Japan); Natsume, Koichiro [Isogo Engineering Center, Toshiba Corporation, Yokohama, Kanagawa (Japan); Kumanomido, Hironori [Nuclear Engineering Laboratory, Toshiba Corporation, Kawasaki, Kanagawa (Japan)

    2000-06-01

    Rokkasho Reprocessing Plant uses burnup credit for criticality control at the Spent Fuel Storage Facility (SFSF) and the Dissolution Facility. A burnup monitor measures nondestructively burnup value of a spent fuel assembly and guarantees the credit for burnup. For practical reasons, a standard radiation source is not used in calibration of the burnup monitor, but the burnup values of many spent fuel assemblies are measured based on operator-declared burnup values. This paper describes the concept of burnup credit, the burnup monitor, and the calibration method. It is concluded, from the results of calibration tests, that the calibration method is valid. (author)

  17. Study on the entire system of maintenance codes and standards

    International Nuclear Information System (INIS)

    In this study, a structure of code and standard system for plant maintenance is discussed along a process of maintenance activities. As a result of consideration, it was concluded as follows. (1) It is assumed that the entire system of maintenance codes and standards consists of four standards, that is, standards regarding maintenance planning, maintenance implementation, evaluation of inspection/maintenance results and corrective measures. (2) The maintenance guidelines and fitness-for-service codes discussed already so far occupies a position in the entire system of maintenance codes and standards. (3) Maintenance codes and standards, which have higher priority, should be developed. (author)

  18. Nondestructive analysis of RA reactor fuel burnup, Program for burnup calculation base on relative yield of 106Ru, 134Cs and 137Cs in the irradiated fuel

    International Nuclear Information System (INIS)

    Burnup of low enriched metal uranium fuel of the RA reactor is described by two chain reactions. Energy balance and material changes in the fuel are described by systems of differential equations. Numerical integration of these equations is base on the the reactor operation data. Neutron flux and percent of Uranium-235 or more frequently yield of epithermal neutrons in the neutron flux, is determined by iteration from the measured contents of 106Ru, 134Cs and 137Cs in the irradiated fuel. The computer program was written in FORTRAN-IV. Burnup is calculated by using the measured activities of fission products. Burnup results are absolute values

  19. A New Arithmetic Coding System Combining Source Channel Coding and MAP Decoding

    Institute of Scientific and Technical Information of China (English)

    PANG Yu-ye; SUN Jun; WANG Jia

    2007-01-01

    A new arithmetic coding system combining source channel coding and maximum a posteriori decoding were proposed.It combines source coding and error correction tasks into one unified process by introducing an adaptive forbidden symbol.The proposed system achieves fixed length code words by adaptively adjusting the probability of the forbidden symbol and adding tail digits of variable length.The corresponding improved MAP decoding metric was derived.The proposed system can improve the performance.Simulations were performed on AWGN channels with various noise levels by using both hard and soft decision with BPSK modulation.The results show its performance is slightly better than that of our adaptive arithmetic error correcting coding system using a forbidden symbol.

  20. Burnup credit activities in the United States

    International Nuclear Information System (INIS)

    This report covers progress in burnup credit activities that have occurred in the United States of America (USA) since the International Atomic Energy Agency's (IAEA's) Advisory Group Meeting (AGM) on Burnup Credit was convened in October 1997. The Proceeding of the AGM were issued in April 1998 (IAEA-TECDOC-1013, April 1998). The three applications of the use of burnup credit that are discussed in this report are spent fuel storage, spent fuel transportation, and spent fuel disposal. (author)

  1. Communication Systems Simulator with Error Correcting Codes Using MATLAB

    Science.gov (United States)

    Gomez, C.; Gonzalez, J. E.; Pardo, J. M.

    2003-01-01

    In this work, the characteristics of a simulator for channel coding techniques used in communication systems, are described. This software has been designed for engineering students in order to facilitate the understanding of how the error correcting codes work. To help students understand easily the concepts related to these kinds of codes, a…

  2. Deductive Glue Code Synthesis for Embedded Software Systems Based on Code Patterns

    Science.gov (United States)

    Liu, Jian; Fu, Jicheng; Zhang, Yansheng; Bastani, Farokh; Yen, I-Ling; Tai, Ann; Chau, Savio N.

    2006-01-01

    Automated code synthesis is a constructive process that can be used to generate programs from specifications. It can, thus, greatly reduce the software development cost and time. The use of formal code synthesis approach for software generation further increases the dependability of the system. Though code synthesis has many potential benefits, the synthesis techniques are still limited. Meanwhile, components are widely used in embedded system development. Applying code synthesis to component based software development (CBSD) process can greatly enhance the capability of code synthesis while reducing the component composition efforts. In this paper, we discuss the issues and techniques for applying deductive code synthesis techniques to CBSD. For deductive synthesis in CBSD, a rule base is the key for inferring appropriate component composition. We use the code patterns to guide the development of rules. Code patterns have been proposed to capture the typical usages of the components. Several general composition operations have been identified to facilitate systematic composition. We present the technique for rule development and automated generation of new patterns from existing code patterns. A case study of using this method in building a real-time control system is also presented.

  3. Phenomena and Parameters Important to Burnup Credit

    International Nuclear Information System (INIS)

    Since the mid-1980s, a significant number of studies have been directed at understanding the phenomena and parameters important to implementation of burnup credit in out-of-reactor applications involving pressurized-water-reactor (PWR) spent fuel. The efforts directed at burnup credit involving boiling-water-reactor (BWR) spent fuel have been more limited. This paper reviews the knowledge and experience gained from work performed in the US and other countries in the study of burnup credit. Relevant physics and analysis phenomenon are identified, and an assessment of their importance to burnup credit implementation for transport and dry cask storage is given

  4. New burnup calculation of TRIGA IPR-R1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Meireles, Sincler P. de; Campolina, Daniel de A.M.; Santos, Andre A. Campagnole dos; Menezes, Maria A.B.C.; Mesquita, Amir Z., E-mail: sinclercdtn@hotmail.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The IPR-R1 TRIGA Mark I research reactor, located at the Nuclear Technology Development Center - CDTN, Belo Horizonte, Brazil, operates since 1960.The reactor is operating for more than fifty years and has a long history of operation. Determining the current composition of the fuel is very important to calculate various parameters. The reactor burnup calculation has been performed before, however, new techniques, methods, software and increase of the processing capacity of the new computers motivates new investigations to be performed. This work presents the evolution of effective multiplication constant and the results of burnup. This new model has a more detailed geometry with the introduction of the new devices, like the control rods and the samarium discs. This increase of materials in the simulation in burnup calculation was very important for results. For these series of simulations a more recently cross section library, ENDF/B-VII, was used. To perform the calculations two Monte Carlo particle transport code were used: Serpent and MCNPX. The results obtained from two codes are presented and compared with previous studies in the literature. (author)

  5. The REBUS experimental programme for burn-up credit

    International Nuclear Information System (INIS)

    An international programme called REBUS for the investigation of the burn-up credit has been initiated by the Belgian Nuclear Research Centre SCK·CEN and Belgonucleaire with the support of EdF and IRSN from France and VGB, representing German nuclear utilities and NUPEC, representing the Japanese industry. Recently also ORNL from the U.S. jointed the programme. The programme aims to establish a neutronic benchmark for reactor physics codes in order to qualify the codes for calculations of the burn-up credit. The benchmark exercise investigate the following fuel types with associated burn-up: reference fresh 3.3% enriched UO2 fuel, fresh commercial PWR UO2 fuel and irradiated commercial PWR UO2 fuel (54 GWd/tM), fresh PWR MOX fuel and irradiated PWR MOX fuel (20 GWd/tM). The experiments on the three configurations with fresh fuel have been completed. The experiments show a good agreement between calculation and experiments for the different measured parameters: critical water level, reactivity effect of the water level and fission-rate and flux distributions. In 2003 the irradiated BR3 MOX fuel bundle was loaded into the VENUS reactor and the associated experimental programme was carried out. The reactivity measurements in this configuration with irradiated fuel show a good agreement between experimental and preliminary calculated values. (author)

  6. Recent developments in the Los Alamos radiation transport code system

    Energy Technology Data Exchange (ETDEWEB)

    Forster, R.A.; Parsons, K. [Los Alamos National Lab., NM (United States)

    1997-06-01

    A brief progress report on updates to the Los Alamos Radiation Transport Code System (LARTCS) for solving criticality and fixed-source problems is provided. LARTCS integrates the Diffusion Accelerated Neutral Transport (DANT) discrete ordinates codes with the Monte Carlo N-Particle (MCNP) code. The LARCTS code is being developed with a graphical user interface for problem setup and analysis. Progress in the DANT system for criticality applications include a two-dimensional module which can be linked to a mesh-generation code and a faster iteration scheme. Updates to MCNP Version 4A allow statistical checks of calculated Monte Carlo results.

  7. MELCOR Accident Consequence Code System (MACCS)

    Energy Technology Data Exchange (ETDEWEB)

    Jow, H.N.; Sprung, J.L.; Ritchie, L.T. (Sandia National Labs., Albuquerque, NM (USA)); Rollstin, J.A. (GRAM, Inc., Albuquerque, NM (USA)); Chanin, D.I. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (USA))

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previously used CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. Volume I, the User's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems. Volume II, the Model Description, describes the underlying models that are implemented in the code, and Volume III, the Programmer's Reference Manual, describes the code's structure and database management. 59 refs., 14 figs., 15 tabs.

  8. MELCOR Accident Consequence Code System (MACCS)

    International Nuclear Information System (INIS)

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previously used CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. Volume I, the User's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems. Volume II, the Model Description, describes the underlying models that are implemented in the code, and Volume III, the Programmer's Reference Manual, describes the code's structure and database management. 59 refs., 14 figs., 15 tabs

  9. Module type plant system dynamics analysis code (MSG-COPD). Code manual

    International Nuclear Information System (INIS)

    MSG-COPD is a module type plant system dynamics analysis code which involves a multi-dimensional thermal-hydraulics calculation module to analyze pool type of fast breeder reactors. Explanations of each module and the methods for the input data are described in this code manual. (author)

  10. Morse Monte Carlo Radiation Transport Code System

    Energy Technology Data Exchange (ETDEWEB)

    Emmett, M.B.

    1975-02-01

    The report contains sections containing descriptions of the MORSE and PICTURE codes, input descriptions, sample problems, deviations of the physical equations and explanations of the various error messages. The MORSE code is a multipurpose neutron and gamma-ray transport Monte Carlo code. Time dependence for both shielding and criticality problems is provided. General three-dimensional geometry may be used with an albedo option available at any material surface. The PICTURE code provide aid in preparing correct input data for the combinatorial geometry package CG. It provides a printed view of arbitrary two-dimensional slices through the geometry. By inspecting these pictures one may determine if the geometry specified by the input cards is indeed the desired geometry. 23 refs. (WRF)

  11. Review of Technical Studies in the United States in Support of Burnup Credit Regulatory Guidance

    International Nuclear Information System (INIS)

    Taking credit for the reduction in reactivity associated with fuel depletion can enable more cost-effective, higher-density storage, transport, disposal, and reprocessing of spent nuclear fuel (SNF) while maintaining sufficient subcritical margin to establish an adequate safety basis. Consequently, there continues to be considerable interest in the United States (U.S.), as well as internationally, in the increased use of burnup credit in SNF operations, particularly related to storage, transport, and disposal of commercial SNF. This interest has motivated numerous technical studies related to the application of burnup credit, both domestically and internationally, as well as the design of SNF storage, transport and disposal systems that rely on burnup credit for maintaining subcriticality. Responding to industry requests and needs, the U.S. Nuclear Regulatory Commission (NRC) initiated a burnup credit research program in 1999, with support from the Oak Ridge National Laboratory (ORNL), to develop regulatory guidance and the supporting technical bases for allowing and expanding the use of burnup credit in pressurized-water reactor SNF storage and transport applications. Although this NRC research program has not been continuous since its inception, considerable progress has been achieved in many key areas in terms of increased understanding of relevant phenomena and issues, availability of relevant information and data, and subsequently updated regulatory guidance for expanded use of burnup credit. This paper reviews technical studies performed by ORNL for the U.S. NRC burnup credit research program. Examples of topics include reactivity effects associated with reactor operating characteristics, fuel assembly characteristics, burnable absorbers, control rods, spatial burnup distributions, cooling time, and assembly misloading; methods and data for validation of isotopic composition predictions; methods and data for validation of criticality calculations; and

  12. MARS code manual volume I: code structure, system models, and solution methods

    International Nuclear Information System (INIS)

    Korea Advanced Energy Research Institute (KAERI) conceived and started the development of MARS code with the main objective of producing a state-of-the-art realistic thermal hydraulic systems analysis code with multi-dimensional analysis capability. MARS achieves this objective by very tightly integrating the one dimensional RELAP5/MOD3 with the multi-dimensional COBRA-TF codes. The method of integration of the two codes is based on the dynamic link library techniques, and the system pressure equation matrices of both codes are implicitly integrated and solved simultaneously. In addition, the Equation-Of-State (EOS) for the light water was unified by replacing the EOS of COBRA-TF by that of the RELAP5. This theory manual provides a complete list of overall information of code structure and major function of MARS including code architecture, hydrodynamic model, heat structure, trip / control system and point reactor kinetics model. Therefore, this report would be very useful for the code users. The overall structure of the manual is modeled on the structure of the RELAP5 and as such the layout of the manual is very similar to that of the RELAP. This similitude to RELAP5 input is intentional as this input scheme will allow minimum modification between the inputs of RELAP5 and MARS3.1. MARS3.1 development team would like to express its appreciation to the RELAP5 Development Team and the USNRC for making this manual possible

  13. Burn-up measurement of irradiated rock-like fuels

    International Nuclear Information System (INIS)

    In order to obtain burn-up data of plutonium rock-like (ROX) fuels irradiated at JRR-3M in JAERI, destructive chemical analysis of zirconia or thoria system ROX fuels was performed after development of a new dissolution method. The dissolution method and procedure have been established using simulated ROX fuel, which is applicable to the hot-cell handling. Specimens for destructive chemical analysis were obtained by applying the present method to irradiated ROX fuels in a hot-cell. Isotopic ratios of neodymium and plutonium were determined by mass-spectrometry using the isotope dilution procedure. Burn-up of the irradiated ROX fuels was calculated by the 148Nd procedure using measured data. The burn-ups of thoria and zirconia system fuels that irradiated same location in the capsule showed almost same values. For the ROX fuel containing thorium, 233U was also determined by the same techniques in order to evaluate the effect of burn-up of thorium. As the result, it was found that the fission of 233U was below 1% of total fission number and could be negligible. In addition, americium and curium were determined by alpha-spectrometry. These data, together with isotopic ratio of plutonium, are important data to analyze the irradiation behavior of plutonium. (author)

  14. Basic concept of common reactor physics code systems. Final report of working party on common reactor physics code systems (CCS)

    International Nuclear Information System (INIS)

    A working party was organized for two years (2001-2002) on common reactor physics code systems under the Research Committee on Reactor Physics of JAERI. This final report is compilation of activity of the working party on common reactor physics code systems during two years. Objectives of the working party is to clarify basic concept of common reactor physics code systems to improve convenience of reactor physics code systems for reactor physics researchers in Japan on their various field of research and development activities. We have held four meetings during 2 years, investigated status of reactor physics code systems and innovative software technologies, and discussed basic concept of common reactor physics code systems. (author)

  15. MCOR - Monte Carlo depletion code for reference LWR calculations

    Energy Technology Data Exchange (ETDEWEB)

    Puente Espel, Federico, E-mail: fup104@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States); Tippayakul, Chanatip, E-mail: cut110@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States); Ivanov, Kostadin, E-mail: kni1@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States); Misu, Stefan, E-mail: Stefan.Misu@areva.com [AREVA, AREVA NP GmbH, Erlangen (Germany)

    2011-04-15

    Research highlights: > Introduction of a reference Monte Carlo based depletion code with extended capabilities. > Verification and validation results for MCOR. > Utilization of MCOR for benchmarking deterministic lattice physics (spectral) codes. - Abstract: The MCOR (MCnp-kORigen) code system is a Monte Carlo based depletion system for reference fuel assembly and core calculations. The MCOR code is designed as an interfacing code that provides depletion capability to the LANL Monte Carlo code by coupling two codes: MCNP5 with the AREVA NP depletion code, KORIGEN. The physical quality of both codes is unchanged. The MCOR code system has been maintained and continuously enhanced since it was initially developed and validated. The verification of the coupling was made by evaluating the MCOR code against similar sophisticated code systems like MONTEBURNS, OCTOPUS and TRIPOLI-PEPIN. After its validation, the MCOR code has been further improved with important features. The MCOR code presents several valuable capabilities such as: (a) a predictor-corrector depletion algorithm, (b) utilization of KORIGEN as the depletion module, (c) individual depletion calculation of each burnup zone (no burnup zone grouping is required, which is particularly important for the modeling of gadolinium rings), and (d) on-line burnup cross-section generation by the Monte Carlo calculation for 88 isotopes and usage of the KORIGEN libraries for PWR and BWR typical spectra for the remaining isotopes. Besides the just mentioned capabilities, the MCOR code newest enhancements focus on the possibility of executing the MCNP5 calculation in sequential or parallel mode, a user-friendly automatic re-start capability, a modification of the burnup step size evaluation, and a post-processor and test-matrix, just to name the most important. The article describes the capabilities of the MCOR code system; from its design and development to its latest improvements and further ameliorations. Additionally

  16. AVS 3D Video Coding Technology and System

    Institute of Scientific and Technical Information of China (English)

    Siwei Ma; Shiqi Wang; Wen Gao

    2012-01-01

    Following the success of the audio video standard (AVS) for 2D video coding, in 2008, the China AVS workgroup started developing 3D video (3DV) coding techniques. In this paper, we discuss the background, technical features, and applications of AVS 3DV coding technology. We introduce two core techniques used in AVS 3DV coding: inter-view prediction and enhanced stereo packing coding. We elaborate on these techniques, which are used in the AVS real-time 3DV encoder. An application of the AVS 3DV coding system is presented to show the great practical value of this system. Simulation results show that the advanced techniques used in AVS 3DV coding provide remarkable coding gain compared with techniques used in a simulcast scheme.

  17. Generalized optical code construction for enhanced and Modified Double Weight like codes without mapping for SAC-OCDMA systems

    Science.gov (United States)

    Kumawat, Soma; Ravi Kumar, M.

    2016-07-01

    Double Weight (DW) code family is one of the coding schemes proposed for Spectral Amplitude Coding-Optical Code Division Multiple Access (SAC-OCDMA) systems. Modified Double Weight (MDW) code for even weights and Enhanced Double Weight (EDW) code for odd weights are two algorithms extending the use of DW code for SAC-OCDMA systems. The above mentioned codes use mapping technique to provide codes for higher number of users. A new generalized algorithm to construct EDW and MDW like codes without mapping for any weight greater than 2 is proposed. A single code construction algorithm gives same length increment, Bit Error Rate (BER) calculation and other properties for all weights greater than 2. Algorithm first constructs a generalized basic matrix which is repeated in a different way to produce the codes for all users (different from mapping). The generalized code is analysed for BER using balanced detection and direct detection techniques.

  18. MELCOR Accident Consequence Code System (MACCS)

    International Nuclear Information System (INIS)

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previous CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. This document, Volume 1, the Users's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems

  19. MELCOR Accident Consequence Code System (MACCS)

    Energy Technology Data Exchange (ETDEWEB)

    Chanin, D.I. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (USA)); Sprung, J.L.; Ritchie, L.T.; Jow, Hong-Nian (Sandia National Labs., Albuquerque, NM (USA))

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previous CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. This document, Volume 1, the Users's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems.

  20. Study of adaptive modulation and LDPC coding in multicarrier systems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An adaptive modulation (AM) algorithm is proposed and the application of the adapting algorithm together with low-density parity-check (LDPC) codes in multicarrier systems is investigated.The AM algorithm is based on minimizing the average bit error rate (BER) of systems,the combination of AM algorithm and LDPC codes with different code rates (half and three-fourths) are studied.The proposed AM algorithm with that of Fischer et al is compared.Simulation results show that the performance of the proposed AM algorithm is better than that of the Fischer's algorithm.The results also show that application of the proposed AM algorithm together with LDPC codes can greatly improve the performance of multicarrier systems.Results also show that the performance of the proposed algorithm is degraded with an increase in code rate when code length is the same.

  1. Digital system detects binary code patterns containing errors

    Science.gov (United States)

    Muller, R. M.; Tharpe, H. M., Jr.

    1966-01-01

    System of square loop magnetic cores associated with code input registers to react to input code patterns by reference to a group of control cores in such a manner that errors are canceled and patterns containing errors are accepted for amplification and processing. This technique improves reception capabilities in PCM telemetry systems.

  2. High burnup fuel development program in Japan

    International Nuclear Information System (INIS)

    A step wise burnup extension program has been progressing in Japan to reduce the LWR fuel cycle cost. At present, the maximum assembly burnup limit of BWR 8 Χ 8 type fuel (B. Step II fuel) is 50GWd/t and a limited numbers of 9 Χ 9 type fuel (B. Step III fuel) with 55GWd/t maximum assembly burnup has been licensed by regulatory agencies recently. Though present maximum assembly burnup limit for PWR fuel is 48GWd/t (P. Step I fuel), the licensing work has been progressing for irradiation testing on a limited number of fuel assemblies with extended burnup of up to 55GWd/t (p. Step II fuel) Design of high burnup fuel and fabrication test are carried out by vendors, and subsequent irradiation test of fuel rods is conducted jointly by utilities and vendors to prepare for licensing. It is usual to make an irradiation test for vectarion, using lead use assemblies by government to confirm fuel integrity and reliability and win the public confidence. Nuclear Power Engineering Corporation (NUPE C) is responsible for verification test. The fuel are subjected to post irradiation examination (PIE) and no unfavorable indications of fuel behavior have found both in NUPE C verification test and joint irradiation test by utilities and vendors. Burnup extension is an urgent task for LWR fuel in Japan in order to establish the domestic fuel cycle. It is conducted in joint efforts of industries, government and institutes. However, watching a situation of burnup extension in the world, we are not going ahead of other countries in the achievement of burnup extension. It is due to a conservative policy in the nuclear safety of the country. This is the reason why the burnup extension program in Japan is progressing 'slow and steady' As for the data obtained, no unfavorable indications of fuel behavior have found both in NUPE C verification test and joint irradiation test by utilities and vendors until now

  3. RELAP5/MOD3 code manual: Code structure, system models, and solution methods. Volume 1

    International Nuclear Information System (INIS)

    The RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents, and operational transients, such as anticipated transient without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling, approach is used that permits simulating a variety of thermal hydraulic systems. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater systems. RELAP5/MOD3 code documentation is divided into seven volumes: Volume I provides modeling theory and associated numerical schemes

  4. RELAP5/MOD3 code manual: Code structure, system models, and solution methods. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents, and operational transients, such as anticipated transient without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling, approach is used that permits simulating a variety of thermal hydraulic systems. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater systems. RELAP5/MOD3 code documentation is divided into seven volumes: Volume I provides modeling theory and associated numerical schemes.

  5. OPAL- the in-core fuel management code system for WWER reactors

    International Nuclear Information System (INIS)

    Fuel management optimization is a complex problem namely for WWER reactors, which at present are utilizing burnable poisons (BP) to great extent. In this paper, first the concept and methodologies of a fuel management system for WWER 440 (NPP Dukovany) and NPP WWER 1000 (NPP Temelin) under development in Skoda JS a.s. are described and followed by some practical applications. The objective of this advanced system is to minimize fuel cost by preserving all safety constraints and margins. Future enhancements of the system will allow is it to perform fuel management optimization in the multi-cycle mode. The general objective functions of the system are the maximization of EOC reactivity, the maximization of discharge burnup, the minimization of fresh fuel inventory / or the minimization of feed enrichment, the minimization of the BP inventory. There are also safety related constraints, in which the minimization of power peaking plays a dominant role. The core part of the system requires meeting the major objective: maximizing the EOC Keff for a given fuel cycle length and consists of four coupled calculation steps. The first is the calculation of a Loading Priority Scheme (LPS). which is used to rank the core positions in terms of assembly Kinf values. In the second step the Haling power distribution is calculated and by using fuel shuffle and/or enrichment splitting algorithms and heuristic rules the core pattern is modified to meet core constraints. In this second step a directive/evolutionary algorithm with expert rules based optimization code is used. The optimal BP assignment is alternatively considered to be a separate third step of the procedure. In the fourth step the core is depleted in normal up to 3D pin wise level using the BP distribution developed in step three and meeting all constraints is checked. One of the options of this optimization system is expert friendly interactive mode (Authors)

  6. Experimental programmes related to high burnup fuel

    International Nuclear Information System (INIS)

    The experimental programmes undertaken at IGCAR with regard to high burn-up fuels fall under the following categories: a) studies on fuel behaviour, b) development of extractants for aqueous reprocessing and c) development of non-aqueous reprocessing techniques. An experimental programme to measure the carbon potential in U/Pu-FP-C systems by methane-hydrogen gas equilibration technique has been initiated at IGCAR in order to understand the evolution of fuel and fission product phases in carbide fuel at high burn-up. The carbon potentials in U-Mo-C system have been measured by this technique. The free energies and enthalpies of formation of LaC2, NdC2 and SmC2 have been measured by measuring the vapor pressures of CO over the region Ln2O3-LnC2-C during the carbothermic reduction of Ln2O3 by C. The decontamination from fission products achieved in fuel reprocessing depends strongly on the actinide loading of the extractant phase. Tri-n-butyl phosphate (TBP), presently used as the extractant, does not allow high loadings due to its propensity for third phase formation in the extraction of Pu(IV). A detailed study of the allowable Pu loadings in TBP and other extractants has been undertaken in IGCAR, the results of which are presented in this paper. The paper also describes the status of our programme to develop a non-aqueous route for the reprocessing of fast reactor fuels. (author)

  7. Value of 236U to actinide-only burnup credit

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) submitted a topical report to the US Nuclear Regulatory Commission (NRC) in May 1995 in order to gain approval of a method for criticality analysis of transport packages that takes account for the change in actinide isotopes with burnup [pressurized water reactors (PWRs) only]. Historically, the NRC has conservatively assumed that the fuel was in its initial conditions (without any burnable absorbers). In order to permit credit for the changes in actinide content, the NRC has required validation of the depletion and criticality codes for spent nuclear fuel, justification of conservative depletion modeling, and finally confirmation measurements before loading. The NRC requested additional information on March 22, 1996. The DOE responded by a revision of the topical report in May 1997. The NRC again responded with another set of requests of additional information in April 1998. In that set of questions, the NRC challenged the use of 236U in burnup credit. Uranium-236 is not found in any significant amount in any available critical experiments. The authors explore the value of 236U to actinide-only burnup credit

  8. Path Weight Complementary Convolutional Code for Type-II Bit-Interleaved Coded Modulation Hybrid ARQ System

    Institute of Scientific and Technical Information of China (English)

    CHENG Yuxin; ZHANG Lei; YI Na; XIANG Haige

    2007-01-01

    Bit-interleaved coded modulation (BICM) is suitable to bandwidth-efficient communication systems. Hybrid automatic repeat request (HARQ) can provide more reliability to high-speed wireless data transmission. A new path weight complementary convolutional (PWCC) code used in the type-ll BICM-HARQ system is proposed. The PWCC code is composed of the original code and the complimentary code. The path in trellis with large hamming weight of the complimentary code is designed to compensate for the path in trellis with small hamming weight of the original code. Hence, both of the original code and the complimentary code can achieve the performance of the good code criterion of corresponding code rate. The throughput efficiency of the BICM-HARQ system wit PWCC code is higher than repeat code system, a little higher than puncture code system in low signal-to-noise ratio (SNR) values and much higher than puncture code system, the same as repeat code system in high SNR values. These results are confirmed by the simulation.

  9. Partial iterated function system-based fractal image coding

    Science.gov (United States)

    Wang, Zhou; Yu, Ying Lin

    1996-06-01

    A recent trend in computer graphics and image processing has been to use iterated function system (IFS) to generate and describe images. Barnsley et al. presented the conception of fractal image compression and Jacquin was the first to propose a fully automatic gray scale still image coding algorithm. This paper introduces a generalization of basic IFS, leading to a conception of partial iterated function system (PIFS). A PIFS operator is contractive under certain conditions and when it is applied to generate an image, only part of it is actually iteratedly applied. PIFS provides us a flexible way to combine fractal coding with other image coding techniques and many specific algorithms can be derived from it. On the basis of PIFS, we implement a partial fractal block coding (PFBC) algorithm and compare it with basic IFS based fractal block coding algorithm. Experimental results show that coding efficiency is improved and computation time is reduced while image fidelity does not degrade very much.

  10. Programme Code for Projecting of WDM Fiber Optic Sensor Systems

    OpenAIRE

    Probstner, R.; J. Turan

    1993-01-01

    Wavelength division multiplex (WDM) offers a potentially powerful technique for use within optical fibre sensor systems. The paper deals with short description of methodology and a programme code for WDM fiber optic sensor system projecting with use of CAD.

  11. Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes

    Energy Technology Data Exchange (ETDEWEB)

    Baratta, A.J.

    1997-07-01

    To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts and engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together.

  12. System Measures Errors Between Time-Code Signals

    Science.gov (United States)

    Cree, David; Venkatesh, C. N.

    1993-01-01

    System measures timing errors between signals produced by three asynchronous time-code generators. Errors between 1-second clock pulses resolved to 2 microseconds. Basic principle of computation of timing errors as follows: central processing unit in microcontroller constantly monitors time data received from time-code generators for changes in 1-second time-code intervals. In response to any such change, microprocessor buffers count of 16-bit internal timer.

  13. Recommendations for Addressing Axial Burnup in the PWR Burnup Credit Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.C.

    2002-10-23

    This report presents studies performed to support the development of a technically justifiable approach for addressing the axial-burnup distribution in pressurized-water reactor (PWR) burnup-credit criticality safety analyses. The effect of the axial-burnup distribution on reactivity and proposed approaches for addressing the axial-burnup distribution are briefly reviewed. A publicly available database of profiles is examined in detail to identify profiles that maximize the neutron multiplication factor, k{sub eff}, assess its adequacy for PWR burnup credit analyses, and investigate the existence of trends with fuel type and/or reactor operations. A statistical evaluation of the k{sub eff} values associated with the profiles in the axial-burnup-profile database was performed, and the most reactive (bounding) profiles were identified as statistical outliers. The impact of these bounding profiles on k{sub eff} is quantified for a high-density burnup credit cask. Analyses are also presented to quantify the potential reactivity consequence of loading assemblies with axial-burnup profiles that are not bounded by the database. The report concludes with a discussion on the issues for consideration and recommendations for addressing axial burnup in criticality safety analyses using burnup credit for dry cask storage and transportation.

  14. BISON, 1-D Burnup and Transport in Slab, Cylindrical, Spherical Geometry

    International Nuclear Information System (INIS)

    1 - Description of problem or function: BISON-1.5 solves the one- dimensional Boltzmann transport equation for neutron and gamma-rays and transmutation equations for fuel nuclides. 2 - Method of solution: In the transport calculation stage the one- dimensional Boltzmann transport equation is solved by the discrete ordinates method. In the burnup calculation stage, transmutation equations for fuel nuclides are solved by Bateman's method. The neutron flux obtained in the transport calculation stage is used to determine the transmutation rates in the burnup calculation stage. Both stages are repeated in tandem till the end of the burnup cycle. 3 - Restrictions on the complexity of the problem: A 42-group neutron and 21-group gamma-ray cross section library is prepared in the code package. Core storage for array variables is dynamically allocated by the code, so there are no restrictions on the size of each array

  15. Study of nuclear computer code maintenance and management system

    International Nuclear Information System (INIS)

    Software maintenance is one of the most important problems since late 1970's.We wish to develop a nuclear computer code system to maintenance and manage KAERI's nuclear software. As a part of this system, we have developed three code management programs for use on CYBER and PC systems. They are used in systematic management of computer code in KAERI. The first program is embodied on the CYBER system to rapidly provide information on nuclear codes to the users. The second and the third programs were embodied on the PC system for the code manager and for the management of data in korean language, respectively. In the requirement analysis, we defined each code, magnetic tape, manual and abstract information data. In the conceptual design, we designed retrieval, update, and output functions. In the implementation design, we described the technical considerations of database programs, utilities, and directions for the use of databases. As a result of this research, we compiled the status of nuclear computer codes which belonged KAERI until September, 1988. Thus, by using these three database programs, we could provide the nuclear computer code information to the users more rapidly. (Author)

  16. OECD/NEA burnup credit criticality benchmarks phase IIIB. Burnup calculations of BWR fuel assemblies for storage and transport

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, Hiroshi; Naito, Yoshitaka; Suyama, Kenya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-02-01

    The report describes the final results of the Phase IIIB Benchmark conducted by the Expert Group on Burnup Credit Criticality Safety under the auspices of the Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD). The Benchmark was intended to compare the predictability of current computer code and data library combinations for the atomic number densities of an irradiated PWR fuel assembly model. The fuel assembly was irradiated under specific power of 25.6 MW/tHM up to 40 GWd/tHM and cooled for five years. The void fraction was assumed to be uniform throughout the channel box and constant, at 0, 40 and 70%, during burnup. In total, 16 results were submitted from 13 institutes of 7 countries. The calculated atomic number densities of 12 actinides and 20 fission product nuclides were found to be for the most part within a range of {+-}10% relative to the average, although some results, esp. {sup 155}Eu and gadolinium isotopes, exceeded the band, which will require further investigation. Pin-wise burnup results agreed well among the participants. The results in the infinite neutron multiplication factor k{sub {infinity}} also accorded well with each other for void fractions of 0 and 40%; however some results deviated from the averaged value noticeably for the void fraction of 70%. (author)

  17. Technical Data to Justify Full Burnup Credit in Criticality Safety Licensing Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Enercon Services, Inc.

    2011-03-14

    ENERCON's understanding of the difficult issues related to obtaining and analyzing additional cross section test data to support Full Burnup Credit. A PIRT (Phenomena Identification and Ranking Table) analysis was performed by ENERCON to evaluate the costs and benefits of acquiring different types of nuclear data in support of Full Burnup Credit. A PIRT exercise is a formal expert elicitation process with the final output being the ranking tables. The PIRT analysis (Table 7-4: Results of PIRT Evaluation) showed that the acquisition of additional Actinide-Only experimental data, although beneficial, was associated with high cost and is not necessarily needed. The conclusion was that the existing Radiochemical Assay (RCA) data plus the French Haut Taux de Combustion (HTC)2 and handbook Laboratory Critical Experiment (LCE) data provide adequate benchmark validation for Actinide-Only Burnup Credit. The PIRT analysis indicated that the costs and schedule to obtain sufficient additional experimental data to support the addition of 16 fission products to Actinide-Only Burnup Credit to produce Full Burnup Credit are quite substantial. ENERCON estimates the cost to be $50M to $100M with a schedule of five or more years. The PIRT analysis highlights another option for fission product burnup credit, which is the application of computer-based uncertainty analyses (S/U - Sensitivity/Uncertainty methodologies), confirmed by the limited experimental data that is already available. S/U analyses essentially transform cross section uncertainty information contained in the cross section libraries into a reactivity bias and uncertainty. Recent work by ORNL and EPRI has shown that a methodology to support Full Burnup Credit is possible using a combination of traditional RCA and LCE validation plus S/U validation for fission product isotopics and cross sections. Further, the most recent cross section data (ENDF/B-VII) can be incorporated into the burnup credit codes at a reasonable cost

  18. Technical Data to Justify Full Burnup Credit in Criticality Safety Licensing Analysis

    International Nuclear Information System (INIS)

    ENERCON's understanding of the difficult issues related to obtaining and analyzing additional cross section test data to support Full Burnup Credit. A PIRT (Phenomena Identification and Ranking Table) analysis was performed by ENERCON to evaluate the costs and benefits of acquiring different types of nuclear data in support of Full Burnup Credit. A PIRT exercise is a formal expert elicitation process with the final output being the ranking tables. The PIRT analysis (Table 7-4: Results of PIRT Evaluation) showed that the acquisition of additional Actinide-Only experimental data, although beneficial, was associated with high cost and is not necessarily needed. The conclusion was that the existing Radiochemical Assay (RCA) data plus the French Haut Taux de Combustion (HTC)2 and handbook Laboratory Critical Experiment (LCE) data provide adequate benchmark validation for Actinide-Only Burnup Credit. The PIRT analysis indicated that the costs and schedule to obtain sufficient additional experimental data to support the addition of 16 fission products to Actinide-Only Burnup Credit to produce Full Burnup Credit are quite substantial. ENERCON estimates the cost to be $50M to $100M with a schedule of five or more years. The PIRT analysis highlights another option for fission product burnup credit, which is the application of computer-based uncertainty analyses (S/U - Sensitivity/Uncertainty methodologies), confirmed by the limited experimental data that is already available. S/U analyses essentially transform cross section uncertainty information contained in the cross section libraries into a reactivity bias and uncertainty. Recent work by ORNL and EPRI has shown that a methodology to support Full Burnup Credit is possible using a combination of traditional RCA and LCE validation plus S/U validation for fission product isotopics and cross sections. Further, the most recent cross section data (ENDF/B-VII) can be incorporated into the burnup credit codes at a reasonable cost

  19. The Effect of Pitch, Burnup, and Absorbers on a TRIGA Spent-Fuel Pool Criticality Safety

    International Nuclear Information System (INIS)

    It has been shown that supercriticality might occur for some postulated accident conditions at the TRIGA spent-fuel pool. However, the effect of burnup was not accounted for in previous studies. In this work, the combined effect of fuel burnup, pitch among fuel elements, and number of uniformly mixed absorber rods for a square arrangement on the spent-fuel pool keff is investigated.The Monte Carlo computer code MCNP4B with the ENDF-B/VI library and detailed three dimensional geometry was used. The WIMS-D code was used to model the isotopic composition of the standard TRIGA and FLIP fuel for 5, 10, 20 and 30% burnup level and 2- and 4-yr cooling time.The results show that out of the three studied effects, pitch from contact (3.75 cm) up to rack design pitch (8 cm), number of absorbers from zero to eight, and burnup up to 30%, the pitch has the greatest influence on the multiplication factor keff. In the interval in which the pitch was changed, keff decreased for up to ∼0.4 for standard and ∼0.3 for FLIP fuel. The number of absorber rods affects the multiplication factor much less. This effect is bigger for more compact arrangements, e.g., for contact of standard fuel elements with eight absorber rods among them, keff values are smaller for ∼0.2 (∼0.1 for FLIP) than for arrangements without absorber rods almost regardless of the burnup. The effect of burnup is the smallest. For standard fuel elements, it is ∼0.1 for almost all pitches and numbers of absorbers. For FLIP fuel, it is smaller for a factor of 3, but increases with the burnup for compact arrangements. Cooling time of fuel has just a minor effect on the keff of spent-fuel pool and can be neglected in spent-fuel pool design

  20. Non destructive assay of nuclear LEU spent fuels for burnup credit application

    International Nuclear Information System (INIS)

    Criticality safety analysis devoted to spent fuel storage and transportation has to be conservative in order to be sure no accident will ever happen. In the spent fuel storage field, the assumption of freshness has been used to achieve the conservative aspect of criticality safety procedures. Nevertheless, after being irradiated in a reactor core, the fuel elements have obviously lost part of their original reactivity. The concept of taking into account this reactivity loss in criticality safety analysis is known as Burnup credit. To be used, Burnup credit involves obtaining evidence of the reactivity loss with a Burnup measurement. Many non destructive assays (NDA) based on neutron as well as on gamma ray emissions are devoted to spent fuel characterization. Heavy nuclei that compose the fuels are modified during irradiation and cooling. Some of them emit neutrons spontaneously and the link to Burnup is a power link. As a result, burn-up determination with passive neutron measurement is extremely accurate. Some gamma emitters also have interesting properties in order to characterize spent fuels but the convenience of the gamma spectrometric methods is very dependent on characteristics of spent fuel. In addition, contrary to the neutron emission, the gamma signal is mostly representative of the peripheral rods of the fuels. Two devices based on neutron methods but combining different NDA methods which have been studied in the past are described in detail: 1. The PYTHON device is a combination of a passive neutron measurement, a collimated total gamma measurement, and an online depletion code. This device, which has been used in several Nuclear Power Plants in western Europe, gives the average Burnup within a 5% uncertainty and also the extremity Burnup, 2. The NAJA device is an automatic device that involves three nuclear methods and an online depletion code. It is designed to cover the whole fuel assembly panel (Active Neutron Interrogation, Passive Neutron

  1. Development of tokamak reactor system analysis code NEW-TORSAC

    Science.gov (United States)

    Kasai, Masao; Ida, Toshio; Nishikawa, Masana; Kameari, Akihisa; Nishio, Satoshi; Tone, Tatsuzo

    1987-07-01

    A systems analysis code named NEW-TORSAC (TOkamak Reactor Systems Analysis Code) has been developed by modifying the TORSAC which had been already developed by us. The NEW-TORSAC is available for tokamak reactor designs and evaluations from experimental machines to commercial reactor plants. It has functions to design tokamaks automatically from plasma parameter setting to determining configurations of reactor equipments and calculating main characteristics parameters of auxiliary systems and the capital costs. In the case of analyzing tokamak reactor plants, the code can calculate busbar energy costs. In addition to numerical output, some output of this code such as a reactor configuration, plasma equilibrium, electro-magnetic forces, etc., are graphically displayed. The code has been successfully applied to the scoping studies of the next generation machines and commercial reactor plants.

  2. Arithmetic coding as a non-linear dynamical system

    Science.gov (United States)

    Nagaraj, Nithin; Vaidya, Prabhakar G.; Bhat, Kishor G.

    2009-04-01

    In order to perform source coding (data compression), we treat messages emitted by independent and identically distributed sources as imprecise measurements (symbolic sequence) of a chaotic, ergodic, Lebesgue measure preserving, non-linear dynamical system known as Generalized Luröth Series (GLS). GLS achieves Shannon's entropy bound and turns out to be a generalization of arithmetic coding, a popular source coding algorithm, used in international compression standards such as JPEG2000 and H.264. We further generalize GLS to piecewise non-linear maps (Skewed-nGLS). We motivate the use of Skewed-nGLS as a framework for joint source coding and encryption.

  3. Code system to compute radiation dose in human phantoms

    International Nuclear Information System (INIS)

    Monte Carlo photon transport code and a code using Monte Carlo integration of a point kernel have been revised to incorporate human phantom models for an adult female, juveniles of various ages, and a pregnant female at the end of the first trimester of pregnancy, in addition to the adult male used earlier. An analysis code has been developed for deriving recommended values of specific absorbed fractions of photon energy. The computer code system and calculational method are described, emphasizing recent improvements in methods

  4. Optical Code Processing System, Device, and its Application

    Directory of Open Access Journals (Sweden)

    Naoya Wada

    2010-02-01

    Full Text Available Recent progress of optical code processing technology_ is explained. Ultra-high speed time domain, spectral domain, hybrid_ domain, and multiple optical code processing deices and systems are shown. As application of these technologies, OCDMA-PON, OPS network, and ultra high-speed optical clock generation will be demonstrated.

  5. Burnup credit issues in transportation and storage

    International Nuclear Information System (INIS)

    Reliance on the reduced reactivity of spent fuel for criticality control during transportation and storage is referred to as burnup credit. This concept has attracted international interest and is being actively pursued in the United States in the development of a new generation of transport casks. An overview of the US experience in developing a methodology to implement burnup credit in an integrated approach to transport cask design is presented in this paper. Specifically, technical issues related to the analysis, validation and implementation of burnup credit are identified and discussed

  6. Burnup credit issues in transportation and storage

    International Nuclear Information System (INIS)

    Reliance on the reduced reactivity of spent fuel for criticality control during transportation and storage is referred to as burnup credit. This concept has attracted international interest and is being actively pursued in the United States in the development of a new generation of transport casks. An overview of the U.S. experience in developing a methodology to implement burnup credit in an integrated approach to transport cask design is presented in this paper. Specifically, technical issues related to the analysis, validation and implementation of burnup credit are identified and discussed. (author)

  7. Kinetic parameter calculation as function of burn-up of candu reactor

    International Nuclear Information System (INIS)

    Kinetic parameter calculation as function of burn-up of candu reactor. Kinetic marameter calculation as function of burp-up of CANDU reactor with Canflex fuel type-CANDU has been done. This type of fuel is currently being develop, so kinetic parameter such as effective delay neutron fraction (.......), delay neutron decay constant ( .... ) and prompt neutron generation time ( ...... ) are very important for analysis of reactor operation safety. WIMS-CRNL code was used to generate macroscopic cross section and reaction rate based on transport theory. Fast and thermal neutron velocity and macroscopic cross section fission product of the unit cell were determined by KINETIC Code. The result of calculation showed that the value of effective delay neutron fraction was 7,785616 x 10-3 at the beginning of operation at burn-up of 0 MWD/T and after the reactor operated at burn-up of 7,2231 x 10-3 MWD/T was 4,962766 x 10-3, or reduced by 36%. The value of prompt generation time was 9,982703 x 10-4 s at the beginning of operation at burn-up of 0 MWD/T and 8,965416 x 10-4 s after the reactor operated at burn-up of 7,2231 x 103 MWD/T, or reduced by 10%. The result of calculation showed that the values of effective delay neutron fraction and prompt neutron generation time are still great enough

  8. The JAERI code system for evaluation of BWR ECCS performance

    International Nuclear Information System (INIS)

    Development of respective computer code system of BWR and PWR for evaluation of ECCS has been conducted since 1973 considering the differences of the reactor cooling system, core structure and ECCS. The first version of the BWR code system, of which developmental work started earlier than that of the PWR, has been completed. The BWR code system is designed to provide computational tools to analyze all phases of LOCAs and to evaluate the performance of the ECCS including an ''Evaluation Model (EM)'' feature in compliance with the requirements of the current Japanese Evaluation Guideline of ECCS. The BWR code system could be used for licensing purpose, i.e. for ECCS performance evaluation or audit calculations to cross-examine the methods and results of applicants or vendors. The BWR code system presented in this report comprises several computer codes, each of which analyzes a particular phase of a LOCA or a system blowdown depending on a range of LOCAs, i.e. large and small breaks in a variety of locations in the reactor system. The system includes ALARM-B1, HYDY-B1 and THYDE-B1 for analysis of the system blowdown for various break sizes, THYDE-B-REFLOOD for analysis of the reflood phase and SCORCH-B2 for the calculation of the fuel assembl hot plane temperature. When the multiple codes are used to analyze a broad range of LOCA as stated above, it is very important to evaluate the adequacy and consistency between the codes used to cover an entire break spectrum. The system consistency together with the system performance are discussed for a large commercial BWR. (author)

  9. Concatenated coding systems employing a unit-memory convolutional code and a byte-oriented decoding algorithm

    Science.gov (United States)

    Lee, L.-N.

    1977-01-01

    Concatenated coding systems utilizing a convolutional code as the inner code and a Reed-Solomon code as the outer code are considered. In order to obtain very reliable communications over a very noisy channel with relatively modest coding complexity, it is proposed to concatenate a byte-oriented unit-memory convolutional code with an RS outer code whose symbol size is one byte. It is further proposed to utilize a real-time minimal-byte-error probability decoding algorithm, together with feedback from the outer decoder, in the decoder for the inner convolutional code. The performance of the proposed concatenated coding system is studied, and the improvement over conventional concatenated systems due to each additional feature is isolated.

  10. The Design Method for the ATR High Burnup MOX Fuel

    International Nuclear Information System (INIS)

    The Power Reactor and Nuclear Fuel Development Corporation (PNC) has developed the advanced thermal reactor (ATR). PNC is demonstrating MOX fuel utilization in a prototype of ATR, Fugen (165 MWe), in which 638 MOX fuel assemblies have been loaded without a failure since 1979. PNC is developing the high burn-up MOX fuel for the ATR to contribute to MOX fuels for thermal reactors. The statistical design evaluation method that included the MOX fuel rod performance evaluation code 'FEMAXI-ATR' was developed for the ATR high bum-up MOX fuel rod; it was verified that the integrity of the fuel could be maintained over the whole irradiation period

  11. MORSE Monte Carlo radiation transport code system

    International Nuclear Information System (INIS)

    For a number of years the MORSE user community has requested additional help in setting up problems using various options. The sample problems distributed with MORSE did not fully demonstrate the capability of the code. At Oak Ridge National Laboratory the code originators had a complete set of sample problems, but funds for documenting and distributing them were never available. Recently the number of requests for listings of input data and results for running some particular option the user was trying to implement has increased to the point where it is not feasible to handle them on an individual basis. Consequently it was decided to package a set of sample problems which illustrates more adequately how to run MORSE. This write-up may be added to Part III of the MORSE report. These sample problems include a combined neutron-gamma case, a neutron only case, a gamma only case, an adjoint case, a fission case, a time-dependent fission case, the collision density case, an XCHEKR run and a PICTUR run

  12. Development, implementation, and verification of multicycle depletion perturbation theory for reactor burnup analysis

    Energy Technology Data Exchange (ETDEWEB)

    White, J.R.

    1980-08-01

    A generalized depletion perturbation formulation based on the quasi-static method for solving realistic multicycle reactor depletion problems is developed and implemented within the VENTURE/BURNER modular code system. The present development extends the original formulation derived by M.L. Williams to include nuclide discontinuities such as fuel shuffling and discharge. This theory is first described in detail with particular emphasis given to the similarity of the forward and adjoint quasi-static burnup equations. The specific algorithm and computational methods utilized to solve the adjoint problem within the newly developed DEPTH (Depletion Perturbation Theory) module are then briefly discussed. Finally, the main features and computational accuracy of this new method are illustrated through its application to several representative reactor depletion problems.

  13. Development, implementation, and verification of multicycle depletion perturbation theory for reactor burnup analysis

    International Nuclear Information System (INIS)

    A generalized depletion perturbation formulation based on the quasi-static method for solving realistic multicycle reactor depletion problems is developed and implemented within the VENTURE/BURNER modular code system. The present development extends the original formulation derived by M.L. Williams to include nuclide discontinuities such as fuel shuffling and discharge. This theory is first described in detail with particular emphasis given to the similarity of the forward and adjoint quasi-static burnup equations. The specific algorithm and computational methods utilized to solve the adjoint problem within the newly developed DEPTH (Depletion Perturbation Theory) module are then briefly discussed. Finally, the main features and computational accuracy of this new method are illustrated through its application to several representative reactor depletion problems

  14. Utilizing the burnup capability in MCNPX to perform depletion analysis of an MNSR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Boafo, Emmanuel [Ghana atomic Energy Commission, Accra (Ghana)

    2013-07-01

    The burnup capability in the MCNPX code was utilized to perform fuel depletion analysis of the MNSR LEU core by estimating the amount of fissile material (U-235) consumed as well as the amount of plutonium formed after the reactor core expected life. The decay heat removal rate for the MNSR after reactor shutdown was also investigated due to its significance to reactor safety. The results show that 0.568 % of U-235 was burnt up after 200 days of reactor operation while the amount of plutonium formed was not significant. The study also found that the decay heat decreased exponentially after reactor shutdown confirming that the decay heat will be removed from the system by natural circulation after shut down and hence safety of the reactor is assured.

  15. Addressing the Axial Burnup Distribution in PWR Burnup Credit Criticality Safety

    International Nuclear Information System (INIS)

    This paper summarizes efforts related to developing a technically justifiable approach for addressing the axial burnup distribution in PWR burnup-credit criticality safety analyses. The paper reviews available data on the axial variation in burnup and the effect of axial burnup profiles on reactivity in a SNF cask. A publicly available database of profiles is examined to identify profiles that maximize the neutron multiplication factor, keff, assess its adequacy for general PWR burnup credit analyses, and investigate the existence of trends with fuel type and/or reactor operations. For this assessment, a statistical evaluation of the keff values associated with the profiles in the axial burnup profile database was performed that identifies the most reactive profiles as statistical outliers that are not representative of typical discharged SNF assemblies. The impact of these bounding profiles on the neutron multiplication factor for a high-density burnup credit cask is quantified. Finally, analyses are presented to quantify the potential reactivity consequence of assemblies with axial profiles that are not bounded by the existing database. The paper concludes with findings for addressing the axial burnup distribution in burnup credit analyses

  16. CODING IN THE MAMMALIAN GUSTATORY SYSTEM

    Science.gov (United States)

    Carleton, Alan; Accolla, Riccardo; Simon, Sidney A.

    2010-01-01

    To understand gustatory physiology and associated dysfunctions it is important to know how stimuli placed in the mouth are encoded both in the periphery and in taste-related brain centres. The identification of distinct taste receptors, together with electrophysiological recordings and behavioural assessments in response to taste stimuli, suggest that information about distinct taste modalities (e.g., sweet versus bitter) are transmitted from the periphery to the brain via segregated pathways. In contrast, gustatory neurons throughout the brain are more broadly tuned, indicating that ensembles of neurons encode taste qualities. Recent evidence reviewed here suggests that the coding of gustatory stimuli is not immutable, but is dependant on a variety of factors including appetite regulating molecules and associative learning. PMID:20493563

  17. MULTIPLE TRELLIS CODED ORTHOGONAL TRANSMIT SCHEME FOR MULTIPLE ANTENNA SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, a novel multiple trellis coded orthogonal transmit scheme is proposed to exploit transmit diversity in fading channels. In this scheme, a unique vector from a set of orthogonal vectors is assigned to each transmit antenna. Each of the output symbols from the multiple trellis encoder is multiplied with one of these orthogonal vectors and transmitted from corresponding transmit antennas. By correlating with corresponding orthogonal vectors, the receiver separates symbols transmitted from different transmit antennas.This scheme can be adopted in coherent/differential systems with any number of transmit antennas. It is shown that the proposed scheme encompasses the conventional trellis coded unitary space-time modulation based on the optimal cyclic group codes as a special case. We also propose two better designs over the conventional trellis coded unitary space-time modulation. The first design uses 8 Phase Shift Keying (8-PSK) constellations instead of 16 Phase Shift Keying (16-PSK) constellations in the conventional trellis coded unitary space-time modulation. As a result, the product distance of this new design is much larger than that of the conventional trellis coded unitary space-time modulation. The second design introduces constellations with multiple levels of amplitudes into the design of the multiple trellis coded orthogonal transmit scheme. For both designs, simulations show that multiple trellis coded orthogonal transmit schemes can achieve better performance than the conventional trellis coded unitary space-time schemes.

  18. Fission Gas Release in LWR Fuel Rods Exhibiting Very High Burn-Up

    DEFF Research Database (Denmark)

    Carlsen, H.

    1980-01-01

    uses an empirical gas release model combined with a strongly burn-up dependent correction term, developed by the US Nuclear Regulatory Commission. The paper presents the experimental results and the code calculations. It is concluded that the model predictions are in reasonable agreement (within 15...

  19. Development of base technology for high burnup PWR fuel improvement Volume 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yang Eun; Lee, Sang Hee; Bae, Seong Man [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Chung, Jin Gon; Chung, Sun Kyo; Kim, Sun Du [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of); Kim, Jae Won; Chung, Sun Kyo; Kim, Sun Du [Korea Nuclear Fuel Development Inst., Seoul (Korea, Republic of)

    1995-12-31

    Development of base technology for high burnup nuclear fuel -Development of UO{sub 2} pellet manufacturing technology -Improvement of fuel rod performance code -Improvement of plenum spring design -Study on the mechanical characteristics of fuel cladding -Organization of fuel failure mechanism Establishment of next stage R and D program (author). 226 refs., 100 figs.

  20. Codes, standards, and PV power systems. A 1996 status report

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, J

    1996-06-01

    As photovoltaic (PV) electrical power systems gain increasing acceptance for both off-grid and utility-interactive applications, the safety, durability, and performance of these systems gains in importance. Local and state jurisdictions in many areas of the country require that all electrical power systems be installed in compliance with the requirements of the National Electrical Code{reg_sign} (NEC{reg_sign}). Utilities and governmental agencies are now requiring that PV installations and components also meet a number of Institute of Electrical and Electronic Engineers (IEEE) standards. PV installers are working more closely with licensed electricians and electrical contractors who are familiar with existing local codes and installation practices. PV manufacturers, utilities, balance of systems manufacturers, and standards representatives have come together to address safety and code related issues for future PV installations. This paper addresses why compliance with the accepted codes and standards is needed and how it is being achieved.

  1. ARC Code TI: Optimal Alarm System Design and Implementation

    Data.gov (United States)

    National Aeronautics and Space Administration — An optimal alarm system can robustly predict a level-crossing event that is specified over a fixed prediction horizon. The code contained in this packages provides...

  2. Study on New Concatenated Code in WDM Optical Transmission Systems

    Institute of Scientific and Technical Information of China (English)

    YUAN Jian-guo; JIANG Ze; MAO You-ju; YE Wen-wei

    2007-01-01

    A new concatenated code of RS(255,239)+BCH(2 040,1 930) code to be suitable for WDM optical transmission systems is proposed.The simulation results show that this new concatenated code,compared with the RS(255,239)+CSOC(k0/n0=6/7,J=8) code in ITU-T G.75.1,has a lower redundancy and better error-correction performance,furthermore,its net coding gain(NCG) is respectively 0.46 dB,0.43 dB more than that of RS(255,239)+CSOC(k0/n0 =6/7,J=8) code and BCH(3 860,3 824)+BCH(2 040,1 930) code in ITU-T G.75.1 at the third iteration for the bit error rate(BER) of 10-12.Therefore,the new super forward error correction(Super-FEC) concatenated code can be better used in ultra long-haul,ultra large-capacity and ultra high-speed WDM optical communication systems.

  3. Code-modulated interferometric imaging system using phased arrays

    Science.gov (United States)

    Chauhan, Vikas; Greene, Kevin; Floyd, Brian

    2016-05-01

    Millimeter-wave (mm-wave) imaging provides compelling capabilities for security screening, navigation, and bio- medical applications. Traditional scanned or focal-plane mm-wave imagers are bulky and costly. In contrast, phased-array hardware developed for mass-market wireless communications and automotive radar promise to be extremely low cost. In this work, we present techniques which can allow low-cost phased-array receivers to be reconfigured or re-purposed as interferometric imagers, removing the need for custom hardware and thereby reducing cost. Since traditional phased arrays power combine incoming signals prior to digitization, orthogonal code-modulation is applied to each incoming signal using phase shifters within each front-end and two-bit codes. These code-modulated signals can then be combined and processed coherently through a shared hardware path. Once digitized, visibility functions can be recovered through squaring and code-demultiplexing operations. Pro- vided that codes are selected such that the product of two orthogonal codes is a third unique and orthogonal code, it is possible to demultiplex complex visibility functions directly. As such, the proposed system modulates incoming signals but demodulates desired correlations. In this work, we present the operation of the system, a validation of its operation using behavioral models of a traditional phased array, and a benchmarking of the code-modulated interferometer against traditional interferometer and focal-plane arrays.

  4. VVER-related burnup credit calculations

    International Nuclear Information System (INIS)

    The calculations related to a VVER burnup credit calculational benchmark proposed to the Eastern and Central European research community in collaboration with the OECD/NEA/NSC Burnup Credit Criticality Benchmark Working Group (working under WPNCS - Working Party on Nuclear Criticality Safety) are described. The results of a three-year effort by analysts from the Czech Republic, Finland, Germany, Hungary, Russia, Slovakia and the United Kingdom are summarized and commented on. (author)

  5. Recording and Replaying System Specific, Source Code Transformations

    OpenAIRE

    Santos, Gustavo; Etien, Anne; Anquetil, Nicolas; Ducasse, Stéphane; Tulio Valente, Marco

    2015-01-01

    International audience During its lifetime, a software system is under continuous maintenance to remain useful. Maintenance can be achieved in activities such as adding new features, fixing bugs, improving the system's structure, or adapting to new APIs. In such cases, developers sometimes perform sequences of code changes in a systematic way. These sequences consist of small code changes (e.g., create a class, then extract a method to this class), which are applied to groups of related co...

  6. Optimal Coding Predicts Attentional Modulation of Activity in Neural Systems

    OpenAIRE

    Jaramillo, Santiago; Pearlmutter, Barak A.

    2007-01-01

    Neuronal activity in response to a fixed stimulus has been shown to change as a function of attentional state, implying that the neural code also changes with attention. We propose an information-theoretic account of such modulation: that the nervous system adapts to optimally encode sensory stimuli while taking into account the changing relevance of different features. We show using computer simulation that such modulation emerges in a coding system informed about the uneven relevance of ...

  7. Development of tokamak reactor systems analysis code 'TORSAC'

    International Nuclear Information System (INIS)

    This report describes Tokamak Reactor Systems Analysis Code ''TORSAC'' which has been developed in order to assess the impact of the design choises on reactor systems and to improve tokamak designs in wide parameter range. This computer code has following functions. (1) Systematic sensitivity analysis for a set of given design parameters, (2) Cost calculation of a new reactor concept designed automatically as a result of systematic sensitivity analysis. (author)

  8. Models for fuel rod behaviour at high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Jernkvist, Lars O.; Massih, Ali R. [Quantum Technologies AB, Uppsala Science Park, Uppsala (Sweden)

    2004-12-01

    This report deals with release of fission product gases and irradiation-induced restructuring in uranium dioxide nuclear fuel. Waterside corrosion of zirconium alloy clad tubes to light water reactor fuel rods is also discussed. Computational models, suitable for implementation in the FRAPCON-3.2 computer code, are proposed for these potentially life-limiting phenomena. Hence, an integrated model for the calculation or thermal fission gas release by intragranular diffusion, gas trapping in grain boundaries, irradiation-induced re-solution, grain boundary saturation, and grain boundary sweeping in UO{sub 2} fuel, under time varying temperature loads, is formulated. After a brief review of the status of thermal fission gas release modelling, we delineate the governing equations for the aforementioned processes. Grain growth kinetic modelling is briefly reviewed and pertinent data on grain growth of high burnup fuel obtained during power ramps in the Third Risoe Fission Gas Release Project are evaluated. Sample computations are performed, which clearly show the connection between fission gas release and gram growth as a function of time at different isotherms. Models are also proposed for the restructuring of uranium dioxide fuel at high burnup, the so-called rim formation, and its effect on fuel porosity build-up, fuel thermal conductivity and fission gas release. These models are assessed by use of recent experimental data from the High Burnup Rim Project, as well as from post irradiation examinations of high-burnup fuel, irradiated in power reactors. Moreover, models for clad oxide growth and hydrogen pickup in PWRs, applicable to Zircaloy-4, ZIRLO or M5 cladding, are formulated, based on recent in-reactor corrosion data for high-burnup fuel rods. Our evaluation of these data indicates that the oxidation rate of ZIRLO-type materials is about 20% lower than for standard Zircaloy-4 cladding under typical PWR conditions. Likewise, the oxidation rate of M5 seems to be

  9. Sequence Coding and Search System for licensee event reports: code listings. Volume 2

    International Nuclear Information System (INIS)

    Operating experience data from nuclear power plants are essential for safety and reliability analyses, especially analyses of trends and patterns. The licensee event reports (LERs) that are submitted to the Nuclear Regulatory Commission (NRC) by the nuclear power plant utilities contain much of this data. The NRC's Office for Analysis and Evaluation of Operational Data (AEOD) has developed, under contract with NSIC, a system for codifying the events reported in the LERs. The primary objective of the Sequence Coding and Search System (SCSS) is to reduce the descriptive text of the LERs to coded sequences that are both computer-readable and computer-searchable. This system provides a structured format for detailed coding of component, system, and unit effects as well as personnel errors. The database contains all current LERs submitted by nuclear power plant utilities for events occurring since 1981 and is updated on a continual basis. Volume 2 contains all valid and acceptable codes used for searching and encoding the LER data. This volume contains updated material through amendment 1 to revision 1 of the working version of ORNL/NSIC-223, Vol. 2

  10. JEMs and incompatible occupational coding systems: Effect of manual and automatic recoding of job codes on exposure assignment

    NARCIS (Netherlands)

    Koeman, T.; Offermans, N.S.M.; Christopher-De Vries, Y.; Slottje, P.; Brandt, P.A. van den; Goldbohm, R.A.; Kromhout, H.; Vermeulen, R.

    2013-01-01

    Background: In epidemiological studies, occupational exposure estimates are often assigned through linkage of job histories to job-exposure matrices (JEMs). However, available JEMs may have a coding system incompatible with the coding system used to code the job histories, necessitating a translatio

  11. Unidirectional Error Correcting Codes for Memory Systems: A Comparative Study

    CERN Document Server

    Al-Ani, Muzhir

    2010-01-01

    In order to achieve fault tolerance, highly reliable system often require the ability to detect errors as soon as they occur and prevent the speared of erroneous information throughout the system. Thus, the need for codes capable of detecting and correcting byte errors are extremely important since many memory systems use b-bit-per-chip organization. Redundancy on the chip must be put to make fault-tolerant design available. This paper examined several methods of computer memory systems, and then a proposed technique is designed to choose a suitable method depending on the organization of memory systems. The constructed codes require a minimum number of check bits with respect to codes used previously, then it is optimized to fit the organization of memory systems according to the requirements for data and byte lengths.

  12. SIMULATE-3K linkage with reactor systems codes

    International Nuclear Information System (INIS)

    SIMULATE-3K is Studsvik Scandpower's best-estimate three-dimensional core kinetics code. SIMULATE-3K has been coupled to several best-estimate reactor systems codes including, RELAP5-3D, RELAP5-3.3, TRACE V5.0, and RETRAN-3D. The coupled codes can be applied to existing reactors and to advanced reactor designs. The S3K linkage to each of the systems codes is a direct, explicit coupling of the two codes on a synchronous time-step basis. The coupling provides an execution method for the S3K three-dimensional neutronic model using the Nuclear Steam Supply System (NSSS) boundary conditions calculated by the systems code. Also, it allows the S3K calculated total core power and core power distributions to drive the system model core. Detailed calculations from the component codes result in a methodology for analyzing limiting transients such as steam line breaks, rod drops/ejections, and ATWS scenarios. These transient events require detailed three- dimensional core data and information about the behavior of NSSS components. A coupled analysis of these transients is important because the core behavior is closely tied to the NSSS system. For example, to capture the timing and characteristics of the important thermal-hydraulic phenomena and/or operations events, such as valve closures, safety injection, or control system interactions, requires a detailed plant model. The Peach Bottom 2 turbine trip transient is used to assess the accuracy of the coupled code calculations. Comparisons of the important plant parameters to results from RELAP5-3D, RELAP5-3.3, and TRACE V5.0 calculations are shown and discussed. The MSLB benchmark is also used to demonstrate the capabilities of the coupled code systems. Comparisons of the calculated reactor power to the reference data are shown can discussed. The comparisons demonstrate the applicability of S3K, either standalone or coupled with a system analysis code, to properly model system response during accident scenarios. (author)

  13. Construction Zero Cross Correlation Code using Permutation Matrix for SAC-OCDMA Systems

    OpenAIRE

    Nisar, K. S.

    2016-01-01

    This paper present a new method for constructing zero cross correlation code with the help of permutation matrices. The benefits of this newly proposed code are easy way code construction, the code weight exist for every natural number and the code length is acceptable. The numerical comparison shows that the proposed code has better or compatible code length compared with other existing zero cross correlation code in Optical Spectrum Code Division Multiple Access (OSCDMA) systems.

  14. Automatic code generation for distributed robotic systems

    International Nuclear Information System (INIS)

    Hetero Helix is a software environment which supports relatively large robotic system development projects. The environment supports a heterogeneous set of message-passing LAN-connected common-bus multiprocessors, but the programming model seen by software developers is a simple shared memory. The conceptual simplicity of shared memory makes it an extremely attractive programming model, especially in large projects where coordinating a large number of people can itself become a significant source of complexity. We present results from three system development efforts conducted at Oak Ridge National Laboratory over the past several years. Each of these efforts used automatic software generation to create 10 to 20 percent of the system

  15. Hydrogen detection systems leak response codes

    International Nuclear Information System (INIS)

    A loss in tightness of a water tube inside a Steam Generator Unit of a Fast Reactor is usually monitored by hydrogen detection systems. Such systems have demonstrated in the past their ability to detect a leak in a SGU. However, the increase in size of the SGU or the choice of ferritic material entails improvement of these systems in order to avoid secondary leak or to limit damages to the tube bundle. The R and D undertaken in France on this subject is presented. (author). 11 refs, 10 figs

  16. Building Secure Networked Systems with Code Attestation

    Science.gov (United States)

    Perrig, Adrian

    Attestation is a promising approach for building secure systems. The recent development of a Trusted Platform Module (TPM) by the Trusted Computing Group (TCG) that is starting to be deployed in common laptop and desktop platforms is fueling research in attestation mechanisms. In this talk, we will present approaches on how to build secure systems with advanced TPM architectures. In particular, we have designed an approach for fine-grained attestation that enables the design of efficient secure distributed systems, and other network protocols.We demonstrate this approach by designing a secure routing protocol.

  17. JPEG2000 COMPRESSION CODING USING HUMAN VISUAL SYSTEM MODEL

    Institute of Scientific and Technical Information of China (English)

    Xiao Jiang; Wu Chengke

    2005-01-01

    In order to apply the Human Visual System (HVS) model to JPEG2000 standard,several implementation alternatives are discussed and a new scheme of visual optimization isintroduced with modifying the slope of rate-distortion. The novelty is that the method of visual weighting is not lifting the coefficients in wavelet domain, but is complemented by code stream organization. It remains all the features of Embedded Block Coding with Optimized Truncation (EBCOT) such as resolution progressive, good robust for error bit spread and compatibility of lossless compression. Well performed than other methods, it keeps the shortest standard codestream and decompression time and owns the ability of VIsual Progressive (VIP) coding.

  18. The applications of burnup credit and the measurement techniques of burnup verification

    International Nuclear Information System (INIS)

    The factors of influencing criticality safety, implementing criticality control conditions, the calculation methods for predicting criticality, casks design and cask loading graph are described. The problems in the application of burnup credit and the dominant error in burnup credit operation are analysed. In order to avoid the operation error, requirements of measurement techniques and the most suitable measurement method are introduced

  19. Effects of bar coding on a pharmacy stock replenishment system.

    Science.gov (United States)

    Chester, M I; Zilz, D A

    1989-07-01

    A bar-code stock ordering system installed in the ambulatory-care pharmacy and sterile products area of a hospital pharmacy was compared with a manual paper system to quantify overall time demands and determine the error rate associated with each system. The bar-code system was implemented in the ambulatory-care pharmacy in November 1987 and in the sterile products area in January 1988. It consists of a Trakker 9440 transaction manager with a digital scanner; labels are printed with a dot matrix printer. Electronic scanning of bar-code labels and entry of the amount required using the key-pad on the transaction manager replaced use of a preprinted form for ordering items. With the bar-code system, ordering information is transferred electronically via cable to the pharmacy inventory computer; with the manual system, this information was input by a stockroom technician. To compare the systems, the work of technicians in the ambulatory-care pharmacy and sterile products area was evaluated before and after implementation of the bar-code system. The time requirements for information gathering and data transfer were recorded by direct observation; the prevalence of errors under each system was determined by comparing unprocessed ordering information with the corresponding computer-generated "pick lists" (itemized lists including the amount of each product ordered). Time consumed in extra trips to the stockroom to replace out-of-stock items was self-reported. Significantly less time was required to order stock and transfer data to the pharmacy inventory computer with the bar-code system than with the manual system.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2757044

  20. Development of burnup dependent fuel rod model in COBRA-TF

    Science.gov (United States)

    Yilmaz, Mine Ozdemir

    The purpose of this research was to develop a burnup dependent fuel thermal conductivity model within Pennsylvania State University, Reactor Dynamics and Fuel Management Group (RDFMG) version of the subchannel thermal-hydraulics code COBRA-TF (CTF). The model takes into account first, the degradation of fuel thermal conductivity with high burnup; and second, the fuel thermal conductivity dependence on the Gadolinium content for both UO2 and MOX fuel rods. The modified Nuclear Fuel Industries (NFI) model for UO2 fuel rods and Duriez/Modified NFI Model for MOX fuel rods were incorporated into CTF and fuel centerline predictions were compared against Halden experimental test data and FRAPCON-3.4 predictions to validate the burnup dependent fuel thermal conductivity model in CTF. Experimental test cases from Halden reactor fuel rods for UO2 fuel rods at Beginning of Life (BOL), through lifetime without Gd2O3 and through lifetime with Gd 2O3 and a MOX fuel rod were simulated with CTF. Since test fuel rod and FRAPCON-3.4 results were based on single rod measurements, CTF was run for a single fuel rod surrounded with a single channel configuration. Input decks for CTF were developed for one fuel rod located at the center of a subchannel (rod-centered subchannel approach). Fuel centerline temperatures predicted by CTF were compared against the measurements from Halden experimental test data and the predictions from FRAPCON-3.4. After implementing the new fuel thermal conductivity model in CTF and validating the model with experimental data, CTF model was applied to steady state and transient calculations. 4x4 PWR fuel bundle configuration from Purdue MOX benchmark was used to apply the new model for steady state and transient calculations. First, one of each high burnup UO2 and MOX fuel rods from 4x4 matrix were selected to carry out single fuel rod calculations and fuel centerline temperatures predicted by CTF/TORT-TD were compared against CTF /TORT-TD /FRAPTRAN

  1. The FORTRAN static source code analyzer program (SAP) system description

    Science.gov (United States)

    Decker, W.; Taylor, W.; Merwarth, P.; Oneill, M.; Goorevich, C.; Waligora, S.

    1982-01-01

    A source code analyzer program (SAP) designed to assist personnel in conducting studies of FORTRAN programs is described. The SAP scans FORTRAN source code and produces reports that present statistics and measures of statements and structures that make up a module. The processing performed by SAP and of the routines, COMMON blocks, and files used by SAP are described. The system generation procedure for SAP is also presented.

  2. Gross Gamma Dose Rate Measurements for TRIGA Spent Nuclear Fuel Burnup Validation

    International Nuclear Information System (INIS)

    Gross gamma-ray dose rates from six spent TRIGA fuel elements were measured and compared to calculated values as a means to validate the reported element burnups. A newly installed and functional gamma-ray detection subsystem of the In-Cell Examination System was used to perform the measurements and is described in some detail. The analytical methodology used to calculate the corresponding dose rates is presented along with the calculated values. Comparison of the measured and calculated dose rates for the TRIGA fuel elements indicates good agreement (less than a factor of 2 difference). The intent of the subsystem is to measure the gross gamma dose rate and correlate the measurement to a calculated dose rate based on the element s known burnup and other pertinent spent fuel information. Although validation of the TRIGA elements' burnup is of primary concern in this paper, the measurement and calculational techniques can be used to either validate an element's reported burnup or provide a burnup estimate for an element with an unknown burnup. (authors)

  3. Comparison: RELAP5-3D systems analysis code and fluent CFD code momentum equation formulations

    International Nuclear Information System (INIS)

    Recently the Idaho National Engineering and Environmental Laboratory (INEEL), in conjunction with Fluent Corporation, have developed a new analysis tool by coupling the Fluent computational fluid dynamics (CFD) code to the RELAP5-3D advanced thermal-hydraulic analysis code. This tool enables researchers to perform detailed, two- or three-dimensional analyses using Fluent's CFD capability while the boundary conditions required by the Fluent calculation are provided by the balance-of-system model created using RELAP5-3D. Fluent and RELAP5-3D have strengths that complement one another. CFD codes, such as Fluent, are commonly used to analyze the flow behavior in regions of a system where complex flow patterns are expected or present. On the other hand, RELAP5-3D was developed to analyze the behavior of two-phase systems that could be modeled in one-dimension. Empirical relationships were used where first-principle physics were not well developed. Both Fluent and RELAP5-3D are exemplary in their areas of specialization. The differences between Fluent and RELAP5 fundamentally stem from their field equations. This study focuses on the differences between the momentum equation representations in the two codes (the continuity equation formulations are equivalent for single phase flow). First the differences between the momentum equations are summarized. Next the effect of the differences in the momentum equations are examined by comparing the results obtained using both codes to study the same problem, i.e., fully-developed turbulent pipe flow. Finally, conclusions regarding the significance of the differences are given. (author)

  4. Overview of the burnup credit activities of the Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA)

    International Nuclear Information System (INIS)

    This article summarises activities of the Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA) Expert Group on Burnup Credit Criticality, a subordinate group to the Working Part on Nuclear Criticality Safety (WPNCS). The WPNCS of the OECD/NEA coordinates and carries out work in the domain of criticality safety at the international level. Particular attention is devoted to establishing sound databases required in this area and to addressing issues of high relevance such as burnup credit. The activities of the expert group are aimed toward improving safety and identifying economic solutions to issues concerning the back-end of the fuel cycle. The main objective of the activities of the OECD/NEA Expert Group on Burnup Credit Criticality is to demonstrate that the available criticality safety calculational tools are appropriate for application to irradiated (burned) nuclear fuel systems and that a reasonable safety margin can be established. The method established by the expert group for investigating the physics and predictability of burnup credit is based on the specification and comparison of calculational benchmark problems. A wide range of fuel types, including PWR, BWR, MOX, and VVER fuels, has been or is being addressed by the expert group. The objective and status of each of these benchmark problems is reviewed in this article. It is important to note that the focus of the expert group is the comparison of the results submitted by each participant to assess the capability of commonly used code systems, not to quantify the physical phenomena investigated in the comparisons or to make recommendations for licensing action. (author)

  5. Methods and computer codes for nuclear systems calculations

    Indian Academy of Sciences (India)

    B P Kochurov; A P Knyazev; A Yu Kwaretzkheli

    2007-02-01

    Some numerical methods for reactor cell, sub-critical systems and 3D models of nuclear reactors are presented. The methods are developed for steady states and space–time calculations. Computer code TRIFON solves space-energy problem in (, ) systems of finite height and calculates heterogeneous few-group matrix parameters of reactor cells. These parameters are used as input data in the computer code SHERHAN solving the 3D heterogeneous reactor equation for steady states and 3D space–time neutron processes simulation. Modification of TRIFON was developed for the simulation of space–time processes in sub-critical systems with external sources. An option of SHERHAN code for the system with external sources is under development.

  6. Application bar-code system for solid radioactive waste management

    International Nuclear Information System (INIS)

    Solid radioactive wastes are generated from the post-irradiated fuel examination facility, the irradiated material examination facility, the research reactor, and the laboratories at KAERI. A bar-code system for a solid radioactive waste management of a research organization became necessary while developing the RAWMIS(Radioactive Waste Management Integration System) which it can generate personal history management for efficient management of a waste, documents, all kinds of statistics. This paper introduces an input and output application program design to do to database with data in the results and a stream process of a treatment that analyzed the waste occurrence present situation and data by bar-code system

  7. 3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors

    Energy Technology Data Exchange (ETDEWEB)

    Langenbuch, S.; Velkov, K. [GRS, Garching (Germany); Lizorkin, M. [Kurchatov-Institute, Moscow (Russian Federation)] [and others

    1997-07-01

    This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.

  8. Sub-channel analysis by RELAP5 system code

    Energy Technology Data Exchange (ETDEWEB)

    Alessandro Petruzzi; Anis Bousbia Salah [DIMNP, Universit y of Pisa, Via Diotisalvi 2, 56126 Pisa (Italy); Francesco D' Auria [DIMNP, Universit y of Pisa, Via Diotisalvi 2, 56126 Pisa (Italy)

    2005-07-01

    Full text of publication follows: Recent progress in computer technology has increased the possibilities for code calculations in predicting realistically transient scenarios in nuclear power plants. Several attempts have been engaged in order to enlarge the domain for code applications, and to allow best estimate core simulation including interaction effects between neutronics and thermal-hydraulics. In this context, Relap5/Mod3.3 system thermalhydraulic code was used as a sub-channel code for the simulation of the low-pressure boil off experiment No 5002 of Neptun test facility. The experiment constitutes one of the separate effects test (SET) in the OECD/CSNI matrix for thermalhydraulic code validation related to phase separation and vertical flow 'with or without mixture level'. The drying out of the heated elements is expect to occur at very low coolant flow rates, low pressure (about 1.1 bar) and low power level (24.6 kW). The main aim of the activity discussed in the paper is to develop a 'nodalization technology' for accurately modeling the sub-channel grade void distribution problem and in the same way to assess the degree of success in using the Relap5 system code as a sub-channel code for the analysis of local quantities during transients in nuclear reactors. All thermal-hydraulic parameters, such as the collapsed liquid level, critical heat flux time occurrence and heaters surface temperature have been predicted with reasonable accuracy. A series of sensitivity analyses were also performed in order to assess the code prediction capabilities. More accurate results have been obtained considering the surface to surface radiation heat transfer model, as well as more cross flow nodes between the test section rods. The overall analysis confirms the possibility of using the Relap5/Mod3.3 system thermal-hydraulic code as sub-channel code to predict the evolution of relevant local quantities measured during 'relevant' experiments

  9. Optical System Design For High Speed Bar Code Scanning

    Science.gov (United States)

    Hellekson, Ronald; Reddersen, Brad; Campbell, Scott

    1987-04-01

    Spectra-Physics recently introduced the Model 750 SL scanner for use in the European point-of-sale market, to meet the European requirement for a scanner of less than 13 cm height. The model 750 SL uses a higher density computer designed scan pattern with a retrodirective collection system to scan and detect UPC, EAN, and JAN bar codes. The scanner "reads" these bar codes in such a way that the user need not precisely align the bar code symbol with respect to the window in the scanner even at package speeds up to 100 inches per second. By using a unique geometrical arrangement of mirrors, a polygonal mirror assembly, and a custom-designed plastic bifocal lens, a design was developed to meet these requirements. This paper describes the design of this new low cost scanner, the use of computer-aided design in the development of this scanner, and some observations on the future of bar code scanning.

  10. Programme Code for Projecting of WDM Fiber Optic Sensor Systems

    Directory of Open Access Journals (Sweden)

    R. Probstner

    1993-04-01

    Full Text Available Wavelength division multiplex (WDM offers a potentially powerful technique for use within optical fibre sensor systems. The paper deals with short description of methodology and a programme code for WDM fiber optic sensor system projecting with use of CAD.

  11. System-Level Genetic Codes Using a Transposable Element-Like Mechanism with Applications to Cancer

    OpenAIRE

    McGowan, John F.

    2000-01-01

    A system-level genetic code is a hypothetical genetic code that exclusively or preferentially codes systems of interacting coadapted parts. System-level genetic codes differ from part-level genetic codes in which each discrete part is coded independently. In general, a system-level genetic code requires coding discrete interacting parts such as organs or proteins in an interdependent way. Changing a single symbol or "gene" in a system-level genetic code affects two or more parts in a coordina...

  12. Development of the point-depletion code DEPTH

    International Nuclear Information System (INIS)

    Highlights: ► The DEPTH code has been developed for the large-scale depletion system. ► DEPTH uses the data library which is convenient to couple with MC codes. ► TTA and matrix exponential methods are implemented and compared. ► DEPTH is able to calculate integral quantities based on the matrix inverse. ► Code-to-code comparisons prove the accuracy and efficiency of DEPTH. -- Abstract: The burnup analysis is an important aspect in reactor physics, which is generally done by coupling of transport calculations and point-depletion calculations. DEPTH is a newly-developed point-depletion code of handling large burnup depletion systems and detailed depletion chains. For better coupling with Monte Carlo transport codes, DEPTH uses data libraries based on the combination of ORIGEN-2 and ORIGEN-S and allows users to assign problem-dependent libraries for each depletion step. DEPTH implements various algorithms of treating the stiff depletion systems, including the Transmutation trajectory analysis (TTA), the Chebyshev Rational Approximation Method (CRAM), the Quadrature-based Rational Approximation Method (QRAM) and the Laguerre Polynomial Approximation Method (LPAM). Three different modes are supported by DEPTH to execute the decay, constant flux and constant power calculations. In addition to obtaining the instantaneous quantities of the radioactivity, decay heats and reaction rates, DEPTH is able to calculate the integral quantities by a time-integrated solver. Through calculations compared with ORIGEN-2, the validity of DEPTH in point-depletion calculations is proved. The accuracy and efficiency of depletion algorithms are also discussed. In addition, an actual pin-cell burnup case is calculated to illustrate the DEPTH code performance in coupling with the RMC Monte Carlo code

  13. A systems neurophysiology approach to voluntary event coding.

    Science.gov (United States)

    Petruo, Vanessa A; Stock, Ann-Kathrin; Münchau, Alexander; Beste, Christian

    2016-07-15

    Mechanisms responsible for the integration of perceptual events and appropriate actions (sensorimotor processes) have been subject to intense research. Different theoretical frameworks have been put forward with the "Theory of Event Coding (TEC)" being one of the most influential. In the current study, we focus on the concept of 'event files' within TEC and examine what sub-processes being dissociable by means of cognitive-neurophysiological methods are involved in voluntary event coding. This was combined with EEG source localization. We also introduce reward manipulations to delineate the neurophysiological sub-processes most relevant for performance variations during event coding. The results show that processes involved in voluntary event coding included predominantly stimulus categorization, feature unbinding and response selection, which were reflected by distinct neurophysiological processes (the P1, N2 and P3 ERPs). On a system's neurophysiological level, voluntary event-file coding is thus related to widely distributed parietal-medial frontal networks. Attentional selection processes (N1 ERP) turned out to be less important. Reward modulated stimulus categorization in parietal regions likely reflecting aspects of perceptual decision making but not in other processes. The perceptual categorization stage appears central for voluntary event-file coding. PMID:27153981

  14. Methodology for coding the energy emergency management information system. [Facility ID's and energy codes

    Energy Technology Data Exchange (ETDEWEB)

    D' Acierno, J.; Hermelee, A.; Fredrickson, C.P.; Van Valkenburg, K.

    1979-11-01

    The coding methodology for creating facility ID's and energy codes from information existing in EIA data systems currently being mapped into the EEMIS data structure is presented. A comprehensive approach is taken to facilitate implementation of EEMIS. A summary of EIA data sources which will be a part of the final system is presented in a table showing the intersection of 19 EIA data systems with the EEMIS data structure. The methodology for establishing ID codes for EIA sources and the corresponding EEMIS facilities in this table is presented. Detailed energy code translations from EIA source systems to the EEMIS energy codes are provided in order to clarify the transfer of energy data from many EIA systems which use different coding schemes. 28 tables.

  15. ISOTOPIC MODEL FOR COMMERCIAL SNF BURNUP CREDIT

    Energy Technology Data Exchange (ETDEWEB)

    A.H. Wells

    2004-11-17

    The purpose of this report is to demonstrate a process for selecting bounding depletion parameters, show that they are conservative for pressurized water reactor (PWR) and boiling water reactor (BWR) spent nuclear fuel (SNF), and establish the range of burnup for which the parameters are conservative. The general range of applicability is for commercial light water reactor (LWR) SNF with initial enrichments between 2.0 and 5.0 weight percent {sup 235}U and burnups between 10 and 50 gigawatt-day per metric ton of uranium (GWd/MTU).

  16. Burnup analysis of the power reactor, 3

    International Nuclear Information System (INIS)

    The atomic number densities of uranium and transuranium were measured for JPDR-1. For the purpose of the study, the program has been prepared. It solves the burnup equation by the exponential matrix method. The void fraction and exposure distribution of the required data were calculated by three-dimensional nuclear-thermal-hydro-dynamic program FLORA under the operating conditions. The distribution of each atomic number density was obtained. The results agree with the measured values. The programs calculating nuclear constants in the cell were evaluated by obtaining the effective cross sections from the atomic number densities and the burnup. (auth.)

  17. Rateless Space Time Block Code for Massive MIMO Systems

    Directory of Open Access Journals (Sweden)

    Ali H. Alqahtani

    2014-01-01

    Full Text Available This paper presents a rateless space time block code (RSTBC for massive MIMO systems. The paper illustrates the basis of rateless space time codes deployments in massive MIMO transmissions over wireless erasure channels. In such channels, data may be lost or is not decodable at the receiver due to a variety of factors such as channel fading, interference, or antenna element failure. We show that RSTBC guarantees the reliability of the system in such cases, even when the data loss rate is 25% or more. In such a highly lossy channel, the conventional fixed-rate codes fail to perform well, particularly when channel state information is not available at the transmitter. Simulation results are provided to demonstrate the BER performance and the spectral efficiency of the proposed scheme.

  18. Computational simulation of fuel burnup estimation for research reactors plate type

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Nadia Rodrigues dos, E-mail: nadiasam@gmail.com [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio de Janeiro (IFRJ), Paracambi, RJ (Brazil); Lima, Zelmo Rodrigues de; Moreira, Maria de Lourdes, E-mail: zrlima@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The aim of this study is to estimate the spatial fuel burnup, through computational simulation, in two research reactors plate type, loaded with dispersion fuel: the benchmark Material Test Research - International Atomic Energy Agency (MTR-IAEA) and a typical multipurpose reactor (MR). The first composed of plates with uranium oxide dispersed in aluminum (UAlx-Al) and a second composed with uranium silicide (U{sub 3}Si{sub 2}) dispersed in aluminum. To develop this work we used the deterministic code, WIMSD-5B, which performs the cell calculation solving the neutron transport equation, and the DF3DQ code, written in FORTRAN, which solves the three-dimensional neutron diffusion equation using the finite difference method. The methodology used was adequate to estimate the spatial fuel burnup , as the results was in accordance with chosen benchmark, given satisfactorily to the proposal presented in this work, even showing the possibility to be applied to other research reactors. For future work are suggested simulations with other WIMS libraries, other settings core and fuel types. Comparisons the WIMSD-5B results with programs often employed in fuel burnup calculations and also others commercial programs, are suggested too. Another proposal is to estimate the fuel burnup, taking into account the thermohydraulics parameters and the Xenon production. (author)

  19. Spent fuel pool storage calculations using the ISOCRIT burnup credit tool

    International Nuclear Information System (INIS)

    Highlights: ► Depletion isotopics are needed for burnup credit in spent fuel pool analyses. ► We developed ISOCRIT to generate the isotopics using conservative depletion assumptions. ► ISOCRIT works in an automated fashion passing data between lattice physics and 3D Monte Carlo codes. ► Analyses to assess the impact of different depletion parameters on the reactivity of the spent fuel in pool conditions. - Abstract: In order to conservatively apply burnup credit in spent fuel pool criticality safety analyses, Westinghouse has developed a software tool, ISOCRIT, for generating depletion isotopics. This tool is used to create isotopics data based on specific reactor input parameters, such as design basis assembly type; bounding power/burnup profiles; reactor specific moderator temperature profiles; pellet percent theoretical density; burnable absorbers, axial blanket regions, and bounding ppm boron concentration. ISOCRIT generates burnup dependent isotopics using PARAGON; Westinghouse’s state-of-the-art and licensed lattice physics code. Generation of isotopics and passing the data to the subsequent 3D KENO calculations are performed in an automated fashion, thus reducing the chance for human error. Furthermore, ISOCRIT provides the means for responding to any customer request regarding re-analysis due to changed parameters (e.g., power uprate, exit temperature changes, etc.) with a quick turnaround.

  20. Study of the acceleration of nuclide burnup calculation using GPU with CUDA

    International Nuclear Information System (INIS)

    The computation costs of neutronics calculation code become higher as physics models and methods are complicated. The degree of them in neutronics calculation tends to be limited due to available computing power. In order to open a door to the new world, use of GPU for general purpose computing, called GPGPU, has been studied [1]. GPU has multi-threads computing mechanism enabled with multi-processors which realize mush higher performance than CPUs. NVIDIA recently released the CUDA language for general purpose computation which is a C-like programming language. It is relatively easy to learn compared to the conventional ones used for GPGPU, such as OpenGL or CG. Therefore application of GPU to the numerical calculation became much easier. In this paper, we tried to accelerate nuclide burnup calculation, which is important to predict nuclides time dependence in the core, using GPU with CUDA. We chose the 4.-order Runge-Kutta method to solve the nuclide burnup equation. The nuclide burnup calculation and the 4.-order Runge-Kutta method were suitable to the first step of introduction CUDA into numerical calculation because these consist of simple operations of matrices and vectors of single precision where actual codes were written in the C++ language. Our experimental results showed that nuclide burnup calculations with GPU have possibility of speedup by factor of 100 compared to that with CPU. (authors)

  1. Analysis of an XADS Target with the System Code TRACE

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Wadim; Sanchez Espinoza, Victor H. [Forschungszentrum Karlsruhe GmbH, Institute for Reactor Safety, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Feng, Bo [Massachusetts Institute of Technology, 77 Massachusetts Avenue, NW12-219, Cambridge, MA 02139 (United States)

    2008-07-01

    Accelerator-driven systems (ADS) present an option to reduce the radioactive waste of the nuclear industry. The experimental Accelerator-Driven System (XADS) has been designed to investigate the feasibility of using ADS on an industrial scale to burn minor actinides. The target section lies in the middle of the subcritical core and is bombarded by a proton beam to produce spallation neutrons. The thermal energy produced from this reaction requires a heat removal system for the target section. The target is cooled by liquid lead-bismuth-eutectics (LBE) in the primary system which in turn transfers the heat via a heat exchanger (HX) to the secondary coolant, Diphyl THT (DTHT), a synthetic diathermic fluid. Since this design is still in development, a detailed investigation of the system is necessary to evaluate the behavior during normal and transient operations. Due to the lack of experimental facilities and data for ADS, the analyses are mostly done using thermal hydraulic codes. In addition to evaluating the thermal hydraulics of the XADS, this paper also benchmarks a new code developed by the NRC, TRACE, against other established codes. The events used in this study are beam power switch-on/off transients and a loss of heat sink accident. The obtained results from TRACE were in good agreement with the results of various other codes. (authors)

  2. The Facial Expression Coding System (FACES): Development, Validation, and Utility

    Science.gov (United States)

    Kring, Ann M.; Sloan, Denise M.

    2007-01-01

    This article presents information on the development and validation of the Facial Expression Coding System (FACES; A. M. Kring & D. Sloan, 1991). Grounded in a dimensional model of emotion, FACES provides information on the valence (positive, negative) of facial expressive behavior. In 5 studies, reliability and validity data from 13 diverse…

  3. Development of BERMUDA: a radiation transport code system, 1

    International Nuclear Information System (INIS)

    A radiation transport code system BERMUDA has been developed for one-, two- and three-dimensional geometries. The time-independent transport equation is numerically solved using a direct integration method in a multigroup model, to obtain spatial, angular and energy distributions of neutron, gamma rays or adjoint neutron flux. As to group constants, a library with an any structure of energy groups is capable to be produced from a data base JSSTDL, or by a processing code PROF-GROUCH-G/B, selecting objective nuclear data through a retrieval system EDFSRS. Validity of the present code system has been tested by analyzing the shielding benchmark experiments. The test has shown that accurate results are obtainable with this system especially in deep penetration calculation. Described are the devised calculation method and the results of validity tests. Input data specification, job control languages and output data are also described as a user's manual for the following four neutron transport codes: BERMUDA-1DN : sphere, slab(S20), BERMUDA-2DN : cylinder (S8), BERMUDA-2DN-S16 : cylinder (S16), and BERMUDA-3DN : rectangular parallelpiped (S8). (J.P.N.)

  4. Determination of fissile fraction in MOX (mixed U + Pu oxides) fuels for different burnup values

    Energy Technology Data Exchange (ETDEWEB)

    Ozdemir, Levent, E-mail: levent.ozdemir@taek.gov.tr [Department of Nuclear Engineering, Hacettepe University, 06800 Beytepe, Ankara (Turkey); Acar, Banu Bulut; Zabunoglu, Okan H. [Department of Nuclear Engineering, Hacettepe University, 06800 Beytepe, Ankara (Turkey)

    2011-02-15

    When spent Light Water Reactor fuels are processed by the standard Purex method of reprocessing, plutonium (Pu) and uranium (U) in spent fuel are obtained as pure and separate streams. The recovered Pu has a fissile content (consisting of {sup 239}Pu and {sup 241}Pu) greater than 60% typically (although it mainly depends on discharge burnup of spent fuel). The recovered Pu can be recycled as mixed-oxide (MOX) fuel after being blended with a fertile U makeup in a MOX fabrication plant. The burnup that can be obtained from MOX fuel depends on: (1) isotopic composition of Pu, which is closely related to the discharge burnup of spent fuel from which Pu is recovered; (2) the type of fertile U makeup material used (depleted U, natural U, or recovered U); and (3) fraction of makeup material in the mix (blending ratio), which in turn determines the total fissile fraction of MOX. Using the Non-linear Reactivity Model and the code MONTEBURNS, a step-by-step procedure for computing the total fissile content of MOX is introduced. As was intended, the resulting expression is simple enough for quick/hand calculations of total fissile content of MOX required to reach a desired burnup for a given discharge burnup of spent fuel and for a specified fertile U makeup. In any case, due to non-fissile (parasitic) content of recovered Pu, a greater fissile fraction in MOX than that in fresh U is required to obtain the same burnup as can be obtained by the fresh U fuel.

  5. Assessing the Effect of Fuel Burnup on Control Rod Worth for HEU and LEU Cores of Gharr-1

    Directory of Open Access Journals (Sweden)

    E.K. Boafo

    2013-02-01

    Full Text Available An important parameter in the design and analysis of a nuclear reactor is the reactivity worth of the control rod which is a measure of the efficiency of the control rod to absorb excess reactivity. During reactor operation, the control rod worth is affected by factors such as the fuel burnup, Xenon concentration, Samarium concentration and the position of the control rod in the core. This study investigates the effect of fuel burnup on the control rod worth by comparing results of a fresh and an irradiated core of Ghana's Miniature Neutron Source Reactor for both HEU and LEU cores. In this study, two codes have been utilized namely BURNPRO for fuel burnup calculation and MCNP5 which uses densities of actinides of the irradiated fuel obtained from BURNPRO. Results showed a decrease of the control rod worth with burnup for the LEU while rod worth increased with burnup for the HEU core. The average thermal flux in both inner and outer irradiation sites also decreased significantly with burnup for both cores.

  6. Neutron Transport and Nuclear Burnup Analysis for the Laser Inertial Confinement Fusion-Fission Energy (LIFE) Engine

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, K J; Latkowski, J F; Abbott, R P; Boyd, J K; Powers, J J; Seifried, J E

    2008-10-24

    Lawrence Livermore National Laboratory is currently developing a hybrid fusion-fission nuclear energy system, called LIFE, to generate power and burn nuclear waste. We utilize inertial confinement fusion to drive a subcritical fission blanket surrounding the fusion chamber. It is composed of TRISO-based fuel cooled by the molten salt flibe. Low-yield (37.5 MJ) targets and a repetition rate of 13.3 Hz produce a 500 MW fusion source that is coupled to the subcritical blanket, which provides an additional gain of 4-8, depending on the fuel. In the present work, we describe the neutron transport and nuclear burnup analysis. We utilize standard analysis tools including, the Monte Carlo N-Particle (MCNP) transport code, ORIGEN2 and Monteburns to perform the nuclear design. These analyses focus primarily on a fuel composed of depleted uranium not requiring chemical reprocessing or enrichment. However, other fuels such as weapons grade plutonium and highly-enriched uranium are also under consideration. In addition, we have developed a methodology using {sup 6}Li as a burnable poison to replace the tritium burned in the fusion targets and to maintain constant power over the lifetime of the engine. The results from depleted uranium analyses suggest up to 99% burnup of actinides is attainable while maintaining full power at 2GW for more than five decades.

  7. Benchmark calculation of SCALE-PC 4.3 CSAS6 module and burnup credit criticality analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee Sung; Ro, Seong Gy; Shin, Young Joon; Kim, Ik Soo [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-12-01

    Calculation biases of SCALE-PC CSAS6 module for PWR spent fuel, metallized spent fuel and solution of nuclear materials have been determined on the basis of the benchmark to be 0.01100, 0.02650 and 0.00997, respectively. With the aid of the code system, nuclear criticality safety analysis for the spent fuel storage pool has been carried out to determine the minimum burnup of spent fuel required for safe storage. The criticality safety analysis is performed using three types of isotopic composition of spent fuel: ORIGEN2-calculated isotopic compositions; the conservative inventory obtained from the multiplication of ORIGEN2-calculated isotopic compositions by isotopic correction factors; the conservative inventory of only U, Pu and {sup 241}Am. The results show that the minimum burnup for three cases are 990,6190 and 7270 MWd/tU, respectively in the case of 5.0 wt% initial enriched spent fuel. (author). 74 refs., 68 figs., 35 tabs.

  8. Extension and validation of the TRANSURANUS burn-up model for helium production in high burn-up LWR fuels

    Science.gov (United States)

    Botazzoli, Pietro; Luzzi, Lelio; Brémier, Stephane; Schubert, Arndt; Van Uffelen, Paul; Walker, Clive T.; Haeck, Wim; Goll, Wolfgang

    2011-12-01

    The TRANSURANUS burn-up model (TUBRNP) calculates the local concentration of the actinides, the main fission products, and 4He as a function of the radial position across a fuel rod. In this paper, the improvements in the helium production model as well as the extensions in the simulation of 238-242Pu, 241Am, 243Am and 242-245Cm isotopes are described. Experimental data used for the extended validation include new EPMA measurements of the local concentrations of Nd and Pu and recent SIMS measurements of the radial distributions of Pu, Am and Cm isotopes, both in a 3.5% enriched commercial PWR UO 2 fuel with a burn-up of 80 and 65 MWd/kgHM, respectively. Good agreement has been found between TUBRNP and the experimental data. The analysis has been complemented by detailed neutron transport calculations (VESTA code), and also revealed the need to update the branching ratio for the 241Am(n,γ) 242mAm reaction in typical PWR conditions.

  9. Optimum burnup of BAEC TRIGA research reactor

    International Nuclear Information System (INIS)

    Highlights: ► Optimum loading scheme for BAEC TRIGA core is out-to-in loading with 10 fuels/cycle starting with 5 for the first reload. ► The discharge burnup ranges from 17% to 24% of U235 per fuel element for full power (3 MW) operation. ► Optimum extension of operating core life is 100 MWD per reload cycle. - Abstract: The TRIGA Mark II research reactor of BAEC (Bangladesh Atomic Energy Commission) has been operating since 1986 without any reshuffling or reloading yet. Optimum fuel burnup strategy has been investigated for the present BAEC TRIGA core, where three out-to-in loading schemes have been inspected in terms of core life extension, burnup economy and safety. In considering different schemes of fuel loading, optimization has been searched by only varying the number of fuels discharged and loaded. A cost function has been defined and evaluated based on the calculated core life and fuel load and discharge. The optimum loading scheme has been identified for the TRIGA core, the outside-to-inside fuel loading with ten fuels for each cycle starting with five fuels for the first reload. The discharge burnup has been found ranging from 17% to 24% of U235 per fuel element and optimum extension of core operating life is 100 MWD for each loading cycle. This study will contribute to the in-core fuel management of TRIGA reactor

  10. Assessment of systems codes and their coupling with CFD codes in thermal–hydraulic applications to innovative reactors

    International Nuclear Information System (INIS)

    Highlights: • The assessment of RELAP5, TRACE and CATHARE system codes on integral experiments is presented. • Code benchmark of CATHARE, DYN2B, and ATHLET on PHENIX natural circulation experiment. • Grid-free pool modelling based on proper orthogonal decomposition for system codes is explained. • The code coupling methodologies are explained. • The coupling of several CFD/system codes is tested against integral experiments. - Abstract: The THINS project of the 7th Framework EU Program on nuclear fission safety is devoted to the investigation of crosscutting thermal–hydraulic issues for innovative nuclear systems. A significant effort in the project has been dedicated to the qualification and validation of system codes currently employed in thermal–hydraulic transient analysis for nuclear reactors. This assessment is based either on already available experimental data, or on the data provided by test campaigns carried out in the frame of THINS project activities. Data provided by TALL and CIRCE facilities were used in the assessment of system codes for HLM reactors, while the PHENIX ultimate natural circulation test was used as reference for a benchmark exercise among system codes for sodium-cooled reactor applications. In addition, a promising grid-free pool model based on proper orthogonal decomposition is proposed to overcome the limits shown by the thermal–hydraulic system codes in the simulation of pool-type systems. Furthermore, multi-scale system-CFD solutions have been developed and validated for innovative nuclear system applications. For this purpose, data from the PHENIX experiments have been used, and data are provided by the tests conducted with new configuration of the TALL-3D facility, which accommodates a 3D test section within the primary circuit. The TALL-3D measurements are currently used for the validation of the coupling between system and CFD codes

  11. An Algorithm for Constructing All Families of Codes of Arbitrary Requirement in an OCDMA System

    OpenAIRE

    Lu, Xiang; Chen, Jiajia; He, Sailing

    2006-01-01

    A novel code construction algorithm is presented to find all the possible code families for code reconfiguration in an OCDMA system. The algorithm is developed through searching all the complete subgraphs of a constructed graph. The proposed algorithm is flexible and practical for constructing optical orthogonal codes (OOCs) of arbitrary requirement. Simulation results show that one should choose an appropriate code length in order to obtain sufficient number of code families for code reconfi...

  12. Computation of classical triton burnup with high plasma temperature and current

    International Nuclear Information System (INIS)

    For comparison with experiment, the expected production of 14-MeV neutrons from the burnup of tritons produced in the d(d,t)p reaction must be computed. An effort was undertaken to compare in detail the computer codes used for this purpose at TFTR and JET. The calculation of the confined fraction of tritons by the different codes agrees to within a few percent. The high electron temperature in the experiments has raised the critical energy of the tritons that are slowing down to near or above the peak of the D-T reactivity, making the ion drag terms more important. When the different codes use the same slowing down formulas, the calculated burnup was within 6% for a case where orbit effects are expected to be small. Then results from codes with and without the effects of finite radial orbit excursions were compared for two test cases. For medium to high current discharges the finite radius effects are only of order 10%. A new version of the TFTR burnup code using an implicit Fokker-Planck solution was written to include the effects of energy diffusion and charge exchange. These effects change the time-integrated yields by only a few percent, but can significantly affect the instantaneous rates in time. Significant populations of hot ions can affect the fusion reactivity, and this effect was also studied. In particular, the d(d,p)t rate can be 10%--15% less than the d(d,3He)n rate which is usually used as a direct monitor of the triton source. Finally, a finite particle confinement time for the thermalized tritons can increase the apparent ''burn-up'' either if there is a high thermal deuteron temperature or if there exists a significant beam deuteron density

  13. Upgrades to the NESS (Nuclear Engine System Simulation) Code

    Science.gov (United States)

    Fittje, James E.

    2007-01-01

    In support of the President's Vision for Space Exploration, the Nuclear Thermal Rocket (NTR) concept is being evaluated as a potential propulsion technology for human expeditions to the moon and Mars. The need for exceptional propulsion system performance in these missions has been documented in numerous studies, and was the primary focus of a considerable effort undertaken during the 1960's and 1970's. The NASA Glenn Research Center is leveraging this past NTR investment in their vehicle concepts and mission analysis studies with the aid of the Nuclear Engine System Simulation (NESS) code. This paper presents the additional capabilities and upgrades made to this code in order to perform higher fidelity NTR propulsion system analysis and design.

  14. Phase-Space Analysis of Wavefront Coding Imaging Systems

    Institute of Scientific and Technical Information of China (English)

    YANG Qing-Guo; SUN Jian-Feng; LIU Li-Ren

    2006-01-01

    @@ We explore the use of the Radon-Wigner transform, which is associated with the fractional Fourier transform of the pupil function, for determining the point spread function (PSF) of an incoherent defocused optical system.Then we introduce these phase-space tools to analyse the wavefront coding imaging system. It is shown that the shape of the PSF for such a system is highly invariant to the defocus-related aberrations except for a lateral shift.The optical transfer function of this system is also investigated briefly from a new understanding of ambiguity function.

  15. Advances in applications of burnup credit to enhance spent fuel transportation, storage, reprocessing and disposition. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    Given a trend towards higher burnup power reactor fuel, the IAEA began an active programme in burnup credit (BUC) with major meetings in 1997 (IAEA-TECDOC-1013), 2000 (IAEA-TECDOC-1241) and 2002 (IAEA-TECDOC-1378) exploring worldwide interest in using BUC in spent fuel management systems. This publication contains the proceedings of the IAEA's 4th major BUC meeting, held in London. Sixty participants from 18 countries addressed calculation methodology, validation and criticality, safety criteria, procedural compliance with safety criteria, benefits of BUC applications, and regulatory aspects in BUC. This meeting encouraged the IAEA to continue its activities on burnup credit including dissemination of related information, given the number of Member States having to deal with increased spent fuel quantities and extended durations. A 5th major meeting on burnup credit is planned 2008. Burnup credit is a concept that takes credit for the reduced reactivity of fuel discharged from the reactor to improve loading density of irradiated fuel assemblies in storage, transportation, and disposal applications, relative to the assumption of fresh fuel nuclide inventories in loading calculations. This report has described a general four phase approach to be considered in burnup credit implementation. Much if not all of the background research and data acquisition necessary for successful burnup credit development in preparation for licensing has been completed. Many fuel types, facilities, and analysis methods are encompassed in the public knowledge base, such that in many cases this guidance will provide a means for rapid development of a burnup credit program. For newer assembly designs, higher enrichment fuels, and more extensive nuclide credit, additional research and development may be necessary, but even this work can build on the foundation that has been established to date. Those, it is hoped that this report will serve as a starting point with sufficient reference to

  16. Simulation of triton burn-up in JET plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Loughlin, M.J.; Balet, B.; Jarvis, O.N.; Stubberfield, P.M. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    This paper presents the first triton burn-up calculations for JET plasmas using the transport code TRANSP. Four hot ion H-mode deuterium plasmas are studied. For these discharges, the 2.5 MeV emission rises rapidly and then collapses abruptly. This phenomenon is not fully understood but in each case the collapse phase is associated with a large impurity influx known as the ``carbon bloom``. The peak 14 MeV emission occurs at this time, somewhat later than that of the 2.5 MeV neutron peak. The present results give a clear indication that there are no significant departures from classical slowing down and spatial diffusion for tritons in JET plasmas. (authors). 7 refs., 3 figs., 1 tab.

  17. Impact of Different Spreading Codes Using FEC on DWT Based MC-CDMA System

    OpenAIRE

    Masum, Saleh; Kabir, M. Hasnat; Islam, Md. Matiqul; Shams, Rifat Ara; Ullah, Shaikh Enayet

    2012-01-01

    The effect of different spreading codes in DWT based MC-CDMA wireless communication system is investigated. In this paper, we present the Bit Error Rate (BER) performance of different spreading codes (Walsh-Hadamard code, Orthogonal gold code and Golay complementary sequences) using Forward Error Correction (FEC) of the proposed system. The data is analyzed and is compared among different spreading codes in both coded and uncoded cases. It is found via computer simulation that the performance...

  18. Development and validation of burnup function in reactor Monte Carlo RMC

    International Nuclear Information System (INIS)

    This paper presents the burnup calculation capability of RMC, which is a new Monte Carlo (MC) neutron transport code developed by Reactor Engineering Analysis Laboratory (REAL) in Tsinghua University of China. Unlike most of existing MC depletion codes which explicitly couple the depletion module, RMC incorporates ORIGEN 2.1 in an implicit way. Different burn step strategies, including middle-of-step approximation and predictor-corrector method, are adopted by RMC to assure accuracy under large step size. RMC employs a spectrum-based method of tallying one-group cross section, which can considerably save computational time with negligible accuracy loss. According to validation results of benchmarks and examples, it is proved that the burnup function of RMC performs quite well in accuracy and efficiency. (author)

  19. Effect of burnup dependence of fuel cladding gap properties on WWER core characteristics

    International Nuclear Information System (INIS)

    Dependence of gas gap properties on burnup has been obtained with use of TRANSURANUS code. Implemented dependency on burnup is based on TRANSURANUS calculations of different fuel pins upon different linear power Ql. Obtained dependence was implemented into DYN3D code and results of new dependence effect on characteristics of WWER fuel loadings are presented. The work was performed in framework of orders BMU SR 2511 and BMU R0801504 (SR2611). The report describes the opinion and view of the contractor-State Scientific and Technical Centre on Nuclear and Radiation Safety-and does not necessarily represent the opinion of the ordering party-BMU-BfS/GRS and TUEV SUED. (Authors)

  20. Photovoltaic power systems and the National Electrical Code: Suggested practices

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, J. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

    1996-12-01

    This guide provides information on how the National Electrical Code (NEC) applies to photovoltaic systems. The guide is not intended to supplant or replace the NEC; it paraphrases the NEC where it pertains to photovoltaic systems and should be used with the full text of the NEC. Users of this guide should be thoroughly familiar with the NEC and know the engineering principles and hazards associated with electrical and photovoltaic power systems. The information in this guide is the best available at the time of publication and is believed to be technically accurate; it will be updated frequently. Application of this information and results obtained are the responsibility of the user.

  1. Channel estimation for physical layer network coding systems

    CERN Document Server

    Gao, Feifei; Wang, Gongpu

    2014-01-01

    This SpringerBrief presents channel estimation strategies for the physical later network coding (PLNC) systems. Along with a review of PLNC architectures, this brief examines new challenges brought by the special structure of bi-directional two-hop transmissions that are different from the traditional point-to-point systems and unidirectional relay systems. The authors discuss the channel estimation strategies over typical fading scenarios, including frequency flat fading, frequency selective fading and time selective fading, as well as future research directions. Chapters explore the performa

  2. Parametric Study of the Effect of Burnable Poison Rods for PWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.C.

    2001-09-28

    The Interim Staff Guidance on burnup credit (ISG-8) issued by the United States Nuclear Regulatory Commission's (U.S. NRC) Spent Fuel Project Office recommends restricting the use of burnup credit to assemblies that have not used burnable absorbers. This recommended restriction eliminates a large portion of the currently discharged spent fuel assemblies from cask loading, and thus severely limits the practical usefulness of burnup credit. In the absence of readily available information on burnable poison rod (BPR) design specifications and usage in U.S. pressurized-water-reactors (PWRs), and the subsequent reactivity effect of BPR exposure on discharged spent nuclear fuel (SNF), NRC staff has indicated a need for additional information in these areas. In response, this report presents a parametric study of the effect of BPR exposure on the reactivity of SNF for various BPR designs, fuel enrichments, and exposure conditions, and documents BPR design specifications. Trends in the reactivity effects of BPRs are established with infinite pin-cell and assembly array calculations with the SCALE and HELIOS code packages, respectively. Subsequently, the reactivity effects of BPRs for typical initial enrichment and burnup combinations are quantified based on three-dimensional (3-D) KENO V.a Monte Carlo calculations with a realistic rail-type cask designed for burnup credit. The calculations demonstrate that the positive reactivity effect due to BPR exposure increases nearly linearly with burnup and is dependent on the number, poison loading, and design of the BPRs and the initial fuel enrichment. Expected typical reactivity increases, based on one-cycle BPR exposure, were found to be less than 1% {Delta}k. Based on the presented analysis, guidance is offered on an appropriate approach for calculating bounding SNF isotopic data for assemblies exposed to BPRs. Although the analyses do not address the issue of validation of depletion methods for assembly designs with BPRs

  3. Parametric Study of the Effect of Burnable Poison Rods for PWR Burnup Credit

    International Nuclear Information System (INIS)

    The Interim Staff Guidance on burnup credit (ISG-8) issued by the United States (U.S.) Nuclear Regulatory Commission's (NRC) Spent Fuel Project Office recommends restricting the use of burnup credit to assemblies that have not used burnable absorbers. This recommended restriction eliminates a large portion of the currently discharged spent fuel assemblies from cask loading, and thus severely limits the practical usefulness of burnup credit. In the absence of readily available information on burnable poison rod (BPR) design specifications and usage in U.S. pressurized water reactors (PWRs), and the subsequent reactivity effect of BPR exposure on discharged spent nuclear fuel (SNF), NRC staff has indicated a need for additional information in these areas. In response, this report presents a parametric study of the effect of BPR exposure on the reactivity of SNF for various BPR designs, fuel enrichments, and exposure conditions, and documents BPR design specifications. Trends in the reactivity effects of BPRs are established with infinite pin-cell and assembly array calculations with the SCALE and HELIOS code packages, respectively. Subsequently, the reactivity effects of BPRs for typical initial enrichment and burnup combinations are quantified based on three-dimensional (3-D) KENO V.a Monte Carlo calculations with a realistic rail-type cask designed for burnup credit. The calculations demonstrate that the positive reactivity effect due to BPR exposure increases nearly linearly with burnup and is dependent on the number, poison loading, and design of the BPRs and the initial fuel enrichment. Expected typical reactivity increases, based on one-cycle BPR exposure, were found to be less than 1% Δk. Based on the presented analysis, guidance is offered on an appropriate approach for calculating bounding SNF isotopic data for assemblies exposed to BPRs. Although the analyses do not address the issue of validation of depletion methods for assembly designs with BPRs, they

  4. Neural map formation and sensory coding in the vomeronasal system.

    Science.gov (United States)

    Brignall, Alexandra C; Cloutier, Jean-François

    2015-12-01

    Sensory systems enable us to encode a clear representation of our environment in the nervous system by spatially organizing sensory stimuli being received. The organization of neural circuitry to form a map of sensory activation is critical for the interpretation of these sensory stimuli. In rodents, social communication relies strongly on the detection of chemosignals by the vomeronasal system, which regulates a wide array of behaviours, including mate recognition, reproduction, and aggression. The binding of these chemosignals to receptors on vomeronasal sensory neurons leads to activation of second-order neurons within glomeruli of the accessory olfactory bulb. Here, vomeronasal receptor activation by a stimulus is organized into maps of glomerular activation that represent phenotypic qualities of the stimuli detected. Genetic, electrophysiological and imaging studies have shed light on the principles underlying cell connectivity and sensory map formation in the vomeronasal system, and have revealed important differences in sensory coding between the vomeronasal and main olfactory system. In this review, we summarize the key factors and mechanisms that dictate circuit formation and sensory coding logic in the vomeronasal system, emphasizing differences with the main olfactory system. Furthermore, we discuss how detection of chemosignals by the vomeronasal system regulates social behaviour in mice, specifically aggression. PMID:26329476

  5. Pairwise codeword error probability for coded atmospheric optical communication systems

    Institute of Scientific and Technical Information of China (English)

    HAN Jia-jia; RONG Jian; ZHONG Xiao-chun

    2006-01-01

    To study the performance of various error-control coding schemes,exact expressions and upper bounds on the pairwise codeword error probability(PEP)for several modulation schemes(OOK,SC-BPSK,BPPM)used in atmospheric optical communication systems are derived.To simplify the computation,this research was under the assumption of weak turbulence.Moreover,by simulation of expressions,the performances of PEP in different modulation schemes are compared and the best one of them is given.

  6. Microhardness and Young's modulus of high burn-up UO2 fuel

    Science.gov (United States)

    Cappia, F.; Pizzocri, D.; Marchetti, M.; Schubert, A.; Van Uffelen, P.; Luzzi, L.; Papaioannou, D.; Macián-Juan, R.; Rondinella, V. V.

    2016-10-01

    Vickers microhardness (HV0.1) and Young's modulus (E) measurements of LWR UO2 fuel at burn-up ≥60 GWd/tHM are presented. Their ratio HV0.1/E was found constant in the range 60-110 GWd/tHM. From the ratio and the microhardness values vs porosity, the Young's modulus dependence on porosity was derived and extended to the full radial profile, including the high burn-up structure (HBS). The dependence is well represented by a linear correlation. The data were compared to fuel performance codes correlations. A burn-up dependent factor was introduced in the Young's modulus expression. The modifications extend the experimental validation range of the TRANSURANUS correlation from un-irradiated to irradiated UO2 and up to 20% porosity. First simulations of LWR fuel rod irradiations were performed in order to illustrate the impact on fuel performance. In the specific cases selected, the simulations suggest a limited effect of the Young's modulus decrease due to burn-up on integral fuel performance.

  7. Depletion of gadolinium burnable poison in a PWR assembly with high burnup fuel

    International Nuclear Information System (INIS)

    A tendency to increase the discharge burnup of nuclear fuel for Advanced Pressurized Water Reactors (PWR) has been a characteristic of its operation for many years. It will be able to burn at very high burnup of about 70 GWd/t with UO2 fuels. The U-235 enrichment must be higher than 5 %, which leads to the necessity of using an extremely efficient burnable poison like Gadolinium oxide. Using gadolinium isotope is significant due to its particular depletion behavior (''Onion-Skin'' effect). In this paper, the MCNPX2.7 code is used to calculate the important neutronic parameters of the next generation fuels of PWR. K-infinity, local peaking factor and fission rate distributions are calculated for a PWR assembly which burn at very high burnup reaching 70 GWd/t. The calculations are performed using the recently released evaluated Gadolinium cross section data. The results obtained are close to those of a LWR next generation fuel benchmark problem. This demonstrates that the calculation scheme used is able to accurately model a PWR assembly that operates at high burnup values.

  8. Depletion of gadolinium burnable poison in a PWR assembly with high burnup fuel

    Energy Technology Data Exchange (ETDEWEB)

    Refeat, Riham Mahmoud [Nuclear and Radiological Regulatory Authority (NRRA), Cairo (Egypt). Safety Engineering Dept.

    2015-12-15

    A tendency to increase the discharge burnup of nuclear fuel for Advanced Pressurized Water Reactors (PWR) has been a characteristic of its operation for many years. It will be able to burn at very high burnup of about 70 GWd/t with UO{sub 2} fuels. The U-235 enrichment must be higher than 5 %, which leads to the necessity of using an extremely efficient burnable poison like Gadolinium oxide. Using gadolinium isotope is significant due to its particular depletion behavior (''Onion-Skin'' effect). In this paper, the MCNPX2.7 code is used to calculate the important neutronic parameters of the next generation fuels of PWR. K-infinity, local peaking factor and fission rate distributions are calculated for a PWR assembly which burn at very high burnup reaching 70 GWd/t. The calculations are performed using the recently released evaluated Gadolinium cross section data. The results obtained are close to those of a LWR next generation fuel benchmark problem. This demonstrates that the calculation scheme used is able to accurately model a PWR assembly that operates at high burnup values.

  9. A simple gamma spectrometry method for evaluating the burnup of MTR-type HEU fuel elements

    Science.gov (United States)

    Makmal, T.; Aviv, O.; Gilad, E.

    2016-10-01

    A simple method for the evaluation of the burnup of a materials testing reactor (MTR) fuel element by gamma spectrometry is presented. The method was applied to a highly enriched uranium MTR nuclear fuel element that was irradiated in a 5 MW pool-type research reactor for a total period of 34 years. The experimental approach is based on in-situ measurements of the MTR fuel element in the reactor pool by a portable high-purity germanium detector located in a gamma cell. To corroborate the method, analytical calculations (based on the irradiation history of the fuel element) and computer simulations using a dedicated fuel cycle burnup code ORIGEN2 were performed. The burnup of the MTR fuel element was found to be 52.4±8.8%, which is in good agreement with the analytical calculations and the computer simulations. The method presented here is suitable for research reactors with either a regular or an irregular irradiation regime and for reactors with limited infrastructure and/or resources. In addition, its simplicity and the enhanced safety it confers may render this method suitable for IAEA inspectors in fuel element burnup assessments during on-site inspections.

  10. Research of Wavelet Based Multicarrier Modulation System with Near Shannon Limited Codes

    Institute of Scientific and Technical Information of China (English)

    ZHANGHaixia; YUANDongfeng; ZHAOFeng

    2005-01-01

    In this paper, by using turbo codes and Low density parity codes (LDPC) as channel correcting code scheme, Wavelet based multicarrier modulation (WMCM) systems are proposed and investigated on different transmission scenarios. The Bit error rate (BER) performance of these two near Shannon limited codes is simulated and compared with various code parameters. Simulated results show that Turbo coded WMCM (TCWMCM) performs better than LDPC coded WMCM (LDPC-CWMCM) on both AWGN and Rayleigh fading channels when these two kinds of codes are of the same code parameters.

  11. Stellarator-specific developments for the systems code PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Warmer, Felix; Beidler, Craig; Dinklage, Andreas; Feng, Yuehe; Geiger, Joachim; Schauer, Felix; Turkin, Yuriy; Wolf, Robert; Xanthopoulos, Pavlos [Max-Planck-Institut fuer Plasmaphysik, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Knight, Peter; Ward, David [Culham Centre for Fusion Energy, Abingdon, Oxfordshire, OX14 3DB (United Kingdom)

    2014-07-01

    The ultimate goal of fusion research is to demonstrate the feasibility of economic production of electricity. The most promising concepts to achieve this by magnetic confinement are the Tokamak and the Stellarator. System codes are used to study the general properties of a fusion power plant. Built in a modular way systems codes describe the physical and technical properties of the power plant components. For the Helical Advanced Stellarator (HELIAS) concept modules have been developed in the frame of the existing Tokamak systems code PROCESS. These include: A geometry model based on Fourier coefficients which represent the complex 3-D plasma shape, a divertor model which assumes diffusive cross-field transport and high radiation at the X-point, a coil model which uses a scaling based on the HELIAS design and a transport model which either employs empirical confinement time scalings or sophisticated 1-D collisional and turbulent transport calculations. This approach aims at a direct comparison between Tokamak and Stellarator power plant designs.

  12. The ICPC coding system in pharmacy : developing a subset, ICPC-Ph

    NARCIS (Netherlands)

    van Mil, JWF; Brenninkmeijer, R; Tromp, TFJ

    1998-01-01

    The ICPC system is a coding system developed for general medical practice, to be able to code the GP-patient encounters and other actions. Some of the codes can be easily used by community pharmacists to code complaints and diseases in pharmaceutical care practice. We developed a subset of the ICPC

  13. Fission product margin in burnup credit analyses

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) is currently working toward the licensing of a methodology for using actinide-only burnup credit for the transportation of spent nuclear fuel (SNF). Important margins are built into this methodology. By using comparisons with a representative experimental database to determine bias factors, the methodology ensures that actinide concentrations and worths are estimated conservatively; furthermore, the negative net reactivity of certain actinides and all fission products (FPs) is not taken into account, thus providing additional margin. A future step of DOE's effort might aim at establishing an actinide and FP burnup credit methodology. The objective of this work is to establish the uncertainty to be applied to the total FP worth in SNF. This will serve two ends. First, it will support the current actinide-only methodology by demonstrating the margin available from FPs. Second, it will identify the major contributions to the uncertainty and help set priorities for future work

  14. Advanced coding techniques for few mode transmission systems.

    Science.gov (United States)

    Okonkwo, Chigo; van Uden, Roy; Chen, Haoshuo; de Waardt, Huug; Koonen, Ton

    2015-01-26

    We experimentally verify the advantage of employing advanced coding schemes such as space-time coding and 4 dimensional modulation formats to enhance the transmission performance of a 3-mode transmission system. The performance gain of space-time block codes for extending the optical signal-to-noise ratio tolerance in multiple-input multiple-output optical coherent spatial division multiplexing transmission systems with respect to single-mode transmission performance are evaluated. By exploiting the spatial diversity that few-mode-fibers offer, with respect to single mode fiber back-to-back performance, significant OSNR gains of 3.2, 4.1, 4.9, and 6.8 dB at the hard-decision forward error correcting limit are demonstrated for DP-QPSK 8, 16 and 32 QAM, respectively. Furthermore, by employing 4D constellations, 6 × 28Gbaud 128 set partitioned quadrature amplitude modulation is shown to outperform conventional 8 QAM transmission performance, whilst carrying an additional 0.5 bit/symbol.

  15. Research and implementation of flexible coding system oriented multi-view

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xuhui; ZHANG Xu; NING Ruxin

    2007-01-01

    On the basis of the requirements of a product data management system (PDM) for the flexible coding system,the principle of the flexible coding system oriented multiview is analyzed. Generation and utilization of coding should be associated with the context of the object. The architecture of the flexible coding system oriented multi-view is studied and the implementation class diagram of the system is designed. The system can support the establishment of five types of code segments, provide the tools of flexible defining coding rules and drive the automatic generation of object coding in different views (contexts). On the foundation of the characteristics of the system, coding for parts is taken as a sample to validate and elaborate the flexible coding process of the system.

  16. Nexus: A modular workflow management system for quantum simulation codes

    Science.gov (United States)

    Krogel, Jaron T.

    2016-01-01

    The management of simulation workflows represents a significant task for the individual computational researcher. Automation of the required tasks involved in simulation work can decrease the overall time to solution and reduce sources of human error. A new simulation workflow management system, Nexus, is presented to address these issues. Nexus is capable of automated job management on workstations and resources at several major supercomputing centers. Its modular design allows many quantum simulation codes to be supported within the same framework. Current support includes quantum Monte Carlo calculations with QMCPACK, density functional theory calculations with Quantum Espresso or VASP, and quantum chemical calculations with GAMESS. Users can compose workflows through a transparent, text-based interface, resembling the input file of a typical simulation code. A usage example is provided to illustrate the process.

  17. Security Concerns and Countermeasures in Network Coding Based Communications Systems

    DEFF Research Database (Denmark)

    Talooki, Vahid; Bassoli, Riccardo; Roetter, Daniel Enrique Lucani;

    2015-01-01

    This survey paper shows the state of the art in security mechanisms, where a deep review of the current research and the status of this topic is carried out. We start by introducing network coding and its variety applications in enhancing current traditional networks. In particular, we analyze two...... key protocol types, namely, state-aware and stateless protocols, specifying the benefits and disadvantages of each one of them. We also present the key security assumptions of network coding (NC) systems as well as a detailed analysis of the security goals and threats, both passive and active....... This paper also presents a detailed taxonomy and a timeline of the different NC security mechanisms and schemes reported in the literature. Current proposed security mechanisms and schemes for NC in the literature are classified later. Finally a timeline of these mechanism and schemes is presented....

  18. Advanced Error-Control Coding Methods Enhance Reliability of Transmission and Storage Data Systems

    Directory of Open Access Journals (Sweden)

    K. Vlcek

    2003-04-01

    Full Text Available Iterative coding systems are currently being proposed and acceptedfor many future systems as next generation wireless transmission andstorage systems. The text gives an overview of the state of the art initerative decoded FEC (Forward Error-Correction error-control systems.Such systems can typically achieve capacity to within a fraction of adB at unprecedented low complexities. Using a single code requires verylong code words, and consequently very complex coding system. One wayaround the problem of achieving very low error probabilities is turbocoding (TC application. A general model of concatenated coding systemis shown - an algorithm of turbo codes is given in this paper.

  19. A study on the nuclear computer code maintenance and management system

    International Nuclear Information System (INIS)

    According to current software development and quality assurance trends. It is necessary to develop computer code management system for nuclear programs. For this reason, the project started in 1987. Main objectives of the project are to establish a nuclear computer code management system, to secure software reliability, and to develop nuclear computer code packages. Contents of performing the project in this year were to operate and maintain computer code information system of KAERI computer codes, to develop application tool, AUTO-i, for solving the 1st and 2nd moments of inertia on polygon or circle, and to research nuclear computer code conversion between different machines. For better supporting the nuclear code availability and reliability, assistance from users who are using codes is required. Lastly, for easy reference about the codes information, we presented list of code names and information on the codes which were introduced or developed during this year. (Author)

  20. High burnup effects in WWER fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, V.; Smirnov, A. [RRC Research Institute of Atomic Reactors, Dimitrovqrad (Russian Federation)

    1996-03-01

    Since 1987 at the Research Institute of Atomic Reactors, the examinations of the WWER spent fuel assemblies has been carried out. These investigations are aimed to gain information on WWER spent fuel conditions in order to validate the fuel assemblies use during the 3 and 4 year fuel cycle in the WWER-440 and WWER-1000 units. At present time, the aim is to reach an average fuel burnup of 55 MWd/kgU. According to this aim, a new investigation program on the WWER spent fuel elements is started. The main objectives of this program are to study the high burnup effects and their influence on the WWER fuel properties. This paper presented the main statistical values of the WWER-440 and WWER-1000 reactors` fuel assemblies and their fragment parameters. Average burnup of fuel in the investigated fuel assemblies was in the range of 13 to 49.7 MWd/kgU. In this case, the numer of fuel cycles was from 1 to 4 during operation of the fuel assemblies.

  1. Evaluation and Selection of Boundary Isotopic Composition for Burnup Credit Criticality Safety Analysis of RBMK Spent Fuel Management

    International Nuclear Information System (INIS)

    The on-site wet-type spent fuel storage facility ISF-1 is currently used for interim storage of spent nuclear fuel removed from Chernobyl NPP power units. The results of ISF-1 preliminary criticality analyses demonstrated the need for using the burnup credit principle in nuclear safety analysis. This paper provides results from the selection and testing of computer codes for determining the isotopic composition of RBMK spent fuel. Assessment is carried out and conclusions are made on conservative approaches to fuel burnup credit in subsequent ISF-1 safety assessment. (author)

  2. Applicability of the SCALE code system to MOX fuel transport systems for criticality safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Toshihiro; Naito, Yoshitaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Hayashi, Toshiaki; Takasugi, Masahiro; Natsume, Toshihiro; Tsuda, Kazuaki

    1996-11-01

    In order to ascertain feasibilities of the SCALE code system for MOX fuel transport systems, criticality analyses were performed for MOX fuel (Pu enrichment; 3.0 wt.%) criticality experiments at JAERI`s TCA and for infinite fuel rod arrays as parameters of Pu enrichment and lattice pitch. The comparison with a combination of the continuous energy Monte Carlo code MCNP and JENDL-3.2 indicated that the SCALE code system with GAM-THERMOS 123-group library can produce feasible results. Though HANSEN-ROACH 16-group library gives poorer results for MOS fuel transport systems, the errors are conservative except for high enriched fuels. (author)

  3. Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, William BJ J [ORNL

    2016-01-01

    A technical basis for peak reactivity boiling water reactor (BWR) burnup credit (BUC) methods was recently generated, and the technical basis for extended BWR BUC is now being developed. In this paper, a number of effects related to extended BWR BUC are analyzed, including three major operational effects in BWRs: the coolant density axial distribution, the use of control blades during operation, and the axial burnup profile. Specifically, uniform axial moderator density profiles are analyzed and compared to previous results and an additional temporal fidelity study combing moderator density profiles for three different fuel assemblies is presented. Realistic control blade histories and cask criticality results are compared to previously generated constructed control blade histories. Finally, a preliminary study of the axial burnup profile is provided.

  4. New Parallel Interference Cancellation for Convolutionally Coded CDMA Systems

    Institute of Scientific and Technical Information of China (English)

    Xu Guo-xiong; Gan Liang-cai; Huang Tian-xi

    2004-01-01

    Based on BCJR algorithm proposed by Bahl et al and linear soft decision feedback, a reduced-complexity parallel interference cancellation (simplified PIC) for convolutionally coded DS CDMA systems is proposed. By computer simulation, we compare the simplified PIC with the exact PIC. It shows that the simplified PIC can achieve the performance close to the exact PIC if the mean values of coded symbols are linearly computed in terms of the sum of initial a prior log-likelihood rate (LLR) and updated a prior LLR, while a significant performance loss will occur if the mean values of coded symbols are linearly computed in terms of the updated a prior LLR only. Meanwhile, we also compare the simplified PIC with MF receiver and conventional PICs. The simulation results show that the simplified PIC dominantly outperforms the MF receiver and conventional PICs, at signal-noise rate (SNR) of 7 dB, for example, the bit error rate is about 10-4 for the simplified PIC, which is far below that of matched-filter receiver and conventional PIC.

  5. THYDE-NEU: Nuclear reactor system analysis code

    International Nuclear Information System (INIS)

    THYDE-NEU is applicable not only to transient analyses, but also to steady state analyses of nuclear reactor systems (NRSs). In a steady state analysis, the code generates a solution satisfying the transient equations without external disturbances. In a transient analysis, the code calculates temporal NRS behaviors in response to various external disturbances in such a way that mass and energy of the coolant as well as the number of neutrons conserve. The first half of the report is the description of the methods and models for use in the THYDE-NEU code, i.e., (1) the thermal-hydraulic network model, (2) the spatial kinetics model, (3) the heat sources in fuel, (4) the heat transfer correlations, (5) the mechanical behavior of clad and fuel, and (6) the steady state adjustment. The second half of the report is the users' mannual containing the items; (1) the program control, (2) the input requirements, (3) the execution of THYDE-NEU jobs, (4) the output specifications and (5) the sample calculation. (author)

  6. Code Based Analysis for Object-Oriented Systems

    Institute of Scientific and Technical Information of China (English)

    Swapan Bhattacharya; Ananya Kanjilal

    2006-01-01

    The basic features of object-oriented software makes it difficult to apply traditional testing methods in objectoriented systems. Control Flow Graph (CFG) is a well-known model used for identification of independent paths in procedural software. This paper highlights the problem of constructing CFG in object-oriented systems and proposes a new model named Extended Control Flow Graph (ECFG) for code based analysis of Object-Oriented (OO) software. ECFG is a layered CFG where nodes refer to methods rather than statements. A new metrics - Extended Cyclomatic Complexity (E-CC) is developed which is analogous to McCabe's Cyclomatic Complexity (CC) and refers to the number of independent execution paths within the OO software. The different ways in which CFG's of individual methods are connected in an ECFG are presented and formulas for E-CC for these different cases are proposed. Finally we have considered an example in Java and based on its ECFG, applied these cases to arrive at the E-CC of the total system as well as proposed a methodology for calculating the basis set, i.e., the set of independent paths for the OO system that will help in creation of test cases for code testing.

  7. Angra 1 high burnup fuel behaviour under reactivity initiated accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel de Souza; Silva, Antonio Teixeira e, E-mail: dsgomes@ipen.b, E-mail: teixeira@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The 16x16 NGF (Next Generation Fuel) fuel assembly, comprising of highly corrosive-resistant ZIRLO clad fuel rods, been replacing the current 16x16 Standard (16STD) fuel assembly in the Angra 1, a pressurized water reactor, with a net output of 626 MWe. The 16x16 NGF fuel assemblies are designed for a peak rod average burnup of up to 75 GWd/MTU, thus improving fuel utilization and reducing spent fuel storage issues. A design basis accident, the Reactivity Initiated Accident (RIA), became a concern for a further increase in burnup as the simulated RIA tests revealed a lower enthalpy threshold for fuel failure. Two fuel performance codes, FRAPCON and FRAPTRAN, were used to predict high burnup behavior of Angra 1, during an RIA. The maximum average linear fuel rating used was 17.62 KW/m. The FRAPCON 3.4 code was applied to simulate the steady-state performance of the 16 NGF fuel rods up to a burnup of 55 GWd/MTU. With FRAPTRAN-1.4 the fuel behavior was simulated for an RIA power pulse of 4.5 ms (FHWH), and enthalpy peak of 130 Cal/g. With FRAPCON-3.4, the corrosion and hydrogen pickup characteristics of the advanced ZIRLO clad fuel rods were added to the code by modifying the actual corrosion model for Zircaloy-4 through the multiplication of empirical factors, which were appropriate to each alloy, and by means of reducing the current hydrogen pickup fraction. (author)

  8. System Design Considerations In Bar-Code Laser Scanning

    Science.gov (United States)

    Barkan, Eric; Swartz, Jerome

    1984-08-01

    The unified transfer function approach to the design of laser barcode scanner signal acquisition hardware is considered. The treatment of seemingly disparate system areas such as the optical train, the scanning spot, the electrical filter circuits, the effects of noise, and printing errors is presented using linear systems theory. Such important issues as determination of depth of modulation, filter specification, tolerancing of optical components, and optimi-zation of system performance in the presence of noise are discussed. The concept of effective spot size to allow for impact of optical system and analog processing circuitry upon depth of modulation is introduced. Considerations are limited primarily to Gaussian spot profiles, but also apply to more general cases. Attention is paid to realistic bar-code symbol models and to implications with respect to printing tolerances.

  9. Multiple Description Coding for Closed Loop Systems over Erasure Channels

    DEFF Research Database (Denmark)

    Østergaard, Jan; Quevedo, Daniel

    2013-01-01

    ) and the decoder (plant). The feedback channel from the decoder to the encoder is assumed noiseless. Since the forward channel is digital, we need to employ quantization.We combine two techniques to enhance the reliability of the system. First, in order to guarantee that the system remains stable during packet......In this paper, we consider robust source coding in closed-loop systems. In particular, we consider a (possibly) unstable LTI system, which is to be stabilized via a network. The network has random delays and erasures on the data-rate limited (digital) forward channel between the encoder (controller....... In particular, we transmit M redundant packets, which are constructed such that when receiving any J packets, the current control signal as well as J-1 future control signals can be reliably reconstructed at the decoder. We prove stability subject to quantization constraints, random dropouts, and delays...

  10. Russian system of computerized analysis for licensing at atomic industry (SCALA) and its validation on ICSBEP handbook data and on some burnup calculations

    International Nuclear Information System (INIS)

    Validation of criticality calculations using SCALA was performed using data presented in the International Handbook of Evaluated Criticality Safety Benchmark Experiments. This paper contains the results of statistical analysis of discrepancies between calculated and benchmark-model keff and conclusions about uncertainties of criticality prediction for different types of multiplying systems following from this analysis. (authors)

  11. EquiFACS: The Equine Facial Action Coding System.

    Directory of Open Access Journals (Sweden)

    Jen Wathan

    Full Text Available Although previous studies of horses have investigated their facial expressions in specific contexts, e.g. pain, until now there has been no methodology available that documents all the possible facial movements of the horse and provides a way to record all potential facial configurations. This is essential for an objective description of horse facial expressions across a range of contexts that reflect different emotional states. Facial Action Coding Systems (FACS provide a systematic methodology of identifying and coding facial expressions on the basis of underlying facial musculature and muscle movement. FACS are anatomically based and document all possible facial movements rather than a configuration of movements associated with a particular situation. Consequently, FACS can be applied as a tool for a wide range of research questions. We developed FACS for the domestic horse (Equus caballus through anatomical investigation of the underlying musculature and subsequent analysis of naturally occurring behaviour captured on high quality video. Discrete facial movements were identified and described in terms of the underlying muscle contractions, in correspondence with previous FACS systems. The reliability of others to be able to learn this system (EquiFACS and consistently code behavioural sequences was high--and this included people with no previous experience of horses. A wide range of facial movements were identified, including many that are also seen in primates and other domestic animals (dogs and cats. EquiFACS provides a method that can now be used to document the facial movements associated with different social contexts and thus to address questions relevant to understanding social cognition and comparative psychology, as well as informing current veterinary and animal welfare practices.

  12. EquiFACS: The Equine Facial Action Coding System.

    Science.gov (United States)

    Wathan, Jen; Burrows, Anne M; Waller, Bridget M; McComb, Karen

    2015-01-01

    Although previous studies of horses have investigated their facial expressions in specific contexts, e.g. pain, until now there has been no methodology available that documents all the possible facial movements of the horse and provides a way to record all potential facial configurations. This is essential for an objective description of horse facial expressions across a range of contexts that reflect different emotional states. Facial Action Coding Systems (FACS) provide a systematic methodology of identifying and coding facial expressions on the basis of underlying facial musculature and muscle movement. FACS are anatomically based and document all possible facial movements rather than a configuration of movements associated with a particular situation. Consequently, FACS can be applied as a tool for a wide range of research questions. We developed FACS for the domestic horse (Equus caballus) through anatomical investigation of the underlying musculature and subsequent analysis of naturally occurring behaviour captured on high quality video. Discrete facial movements were identified and described in terms of the underlying muscle contractions, in correspondence with previous FACS systems. The reliability of others to be able to learn this system (EquiFACS) and consistently code behavioural sequences was high--and this included people with no previous experience of horses. A wide range of facial movements were identified, including many that are also seen in primates and other domestic animals (dogs and cats). EquiFACS provides a method that can now be used to document the facial movements associated with different social contexts and thus to address questions relevant to understanding social cognition and comparative psychology, as well as informing current veterinary and animal welfare practices.

  13. Nonterminals, homomorphisms and codings in different variations of OL-systems. II. Nondeterministic systems

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Rozenberg, Grzegorz; Salomaa, Arto;

    1974-01-01

    Continuing the work begun in Part I of this paper, we consider now variations of nondeterministic OL-systems. The present Part II of the paper contains a systematic classification of the effect of nonterminals, codings, weak codings, nonerasing homomorphisms and homomorphisms for all basic variat...

  14. Electronic health record standards, coding systems, frameworks, and infrastructures

    CERN Document Server

    Sinha, Pradeep K; Bendale, Prashant; Mantri, Manisha; Dande, Atreya

    2013-01-01

    Discover How Electronic Health Records Are Built to Drive the Next Generation of Healthcare Delivery The increased role of IT in the healthcare sector has led to the coining of a new phrase ""health informatics,"" which deals with the use of IT for better healthcare services. Health informatics applications often involve maintaining the health records of individuals, in digital form, which is referred to as an Electronic Health Record (EHR). Building and implementing an EHR infrastructure requires an understanding of healthcare standards, coding systems, and frameworks. This book provides an

  15. [Data coding in the Israeli healthcare system - do choices provide the answers to our system's needs?].

    Science.gov (United States)

    Zelingher, Julian; Ash, Nachman

    2013-05-01

    The IsraeLi healthcare system has undergone major processes for the adoption of health information technologies (HIT), and enjoys high Levels of utilization in hospital and ambulatory care. Coding is an essential infrastructure component of HIT, and ts purpose is to represent data in a simplified and common format, enhancing its manipulation by digital systems. Proper coding of data enables efficient identification, storage, retrieval and communication of data. UtiLization of uniform coding systems by different organizations enables data interoperability between them, facilitating communication and integrating data elements originating in different information systems from various organizations. Current needs in Israel for heaLth data coding include recording and reporting of diagnoses for hospitalized patients, outpatients and visitors of the Emergency Department, coding of procedures and operations, coding of pathology findings, reporting of discharge diagnoses and causes of death, billing codes, organizational data warehouses and national registries. New national projects for cLinicaL data integration, obligatory reporting of quality indicators and new Ministry of Health (MOH) requirements for HIT necessitate a high Level of interoperability that can be achieved only through the adoption of uniform coding. Additional pressures were introduced by the USA decision to stop the maintenance of the ICD-9-CM codes that are also used by Israeli healthcare, and the adoption of ICD-10-C and ICD-10-PCS as the main coding system for billing purpose. The USA has also mandated utilization of SNOMED-CT as the coding terminology for the ELectronic Health Record problem list, and for reporting quality indicators to the CMS. Hence, the Israeli MOH has recently decided that discharge diagnoses will be reported using ICD-10-CM codes, and SNOMED-CT will be used to code the cLinical information in the EHR. We reviewed the characteristics, strengths and weaknesses of these two coding

  16. The US department of energy's transportation burnup credit program

    International Nuclear Information System (INIS)

    Aspects of the U. S. Department of Energy's (DOE's) transportation burnup credit program, the Department's motivation for conducting the program, and the status of burnup credit activities are presented. The benefits, technical, and regulatory considerations associated with using burnup credit for transport of irradiated nuclear fuel are discussed. The methods used in the DOE's actinide-only topical report are described in terms of the technical and regulatory issues. (authors)

  17. Coded aper ture compressive imaging array applied for surveillance systems

    Institute of Scientific and Technical Information of China (English)

    Jing Chen; Yongtian Wang; Hanxiao Wu

    2013-01-01

    This paper proposes an application of compressive imaging systems to the problem of wide-area video surveil ance systems. A paral el coded aperture compressive imaging sys-tem and a corresponding motion target detection algorithm in video using compressive image data are developed. Coded masks with random Gaussian, Toeplitz and random binary are utilized to simulate the compressive image respectively. For compres-sive images, a mixture of the Gaussian distribution is applied to the compressed image field to model the background. A simple threshold test in compressive sampling image is used to declare motion objects. Foreground image retrieval from underdetermined measurement using the total variance optimization algorithm is explored. The signal-to-noise ratio (SNR) is employed to evalu-ate the image quality recovered from the compressive sampling signals, and receiver operation characteristic (ROC) curves are used to quantify the performance of the motion detection algo-rithm. Experimental results demonstrate that the low dimensional compressed imaging representation is sufficient to determine spa-tial motion targets. Compared with the random Gaussian and Toeplitz mask, motion detection algorithms using the random bi-nary phase mask can yield better detection results. However using the random Gaussian and Toeplitz phase mask can achieve high resolution reconstructed images.

  18. The Application Programming Interface for the PVMEXEC Program and Associated Code Coupling System

    Energy Technology Data Exchange (ETDEWEB)

    Walter L. Weaver III

    2005-03-01

    This report describes the Application Programming Interface for the PVMEXEC program and the code coupling systems that it implements. The information in the report is intended for programmers wanting to add a new code into the coupling system.

  19. Coarse time-step integration method for burnup calculation of LWR lattice containing gadolinium-poisoned rods

    International Nuclear Information System (INIS)

    For the purpose of enhancing the efficiency of the burnup calculation of LWR lattice, two coarse time-step integration methods have been developed, both of which are to be used in combination with the ordinary Runge-Kutta-Gill method. It has been ensured through the numerical results of model problems simulating the depletion of 157Gd in a gadolinium-poisoned rod that the maximum time-step size allowed by the proposed methods is roughly 4 or 5 times larger than that achieved by the Predictor-Corrector method known as an effective coarse time-step method, and consequently that the proposed methods would reduce the computation time to a half or less when applied to an LWR lattice burnup calculation. The factor of reduction of computation time is still more significant if compared with other conventional methods such as the Runge-Kutta-Gill method etc. In addition, it has been demonstrated through their application to the LWR lattice physics code TGBLA that no appreciable error is observed over the range of time-step size up to 1GWd/t in the burnup calculation for a typical BWR lattice containing gadolinium-poisoned rods. Although the method development and verification presented here place emphasis on the cases of LWR lattice burnup, it is expected that the proposed methods would be applicable equally well to general problems dealing with the nuclide transmutation due to burnup. (author)

  20. Calculation of the CB1 burnup credit benchmark reaction rates with MCNP4B

    International Nuclear Information System (INIS)

    The first calculational VVER-440 burnup credit benchmark CB1 in 1996. VTT Energy participated in the calculation of the CB1 benchmark with three different codes: CASMO-4, KENO-VI and MCNP4B. However, the reaction rates and the fission ν were calculated only with CASMO-4. Now, the neutron absorption and production reaction rates and the fission ν values have been calculated at VTT Energy with the MCNP4B Monte Carlo code using the ENDF60 neutron data library. (author)

  1. Calculation Study of TNPS Spent Fuel Pool Using Burnup Credit%田湾核电站乏燃料水池采用燃耗信任制的计算研究

    Institute of Scientific and Technical Information of China (English)

    夏兆东; 周小平; 李晓波; 吕牛; 郑继业

    2013-01-01

    Exampled by the spent fuel pool of TNPS which is consist of 2 × 5 fuel storage racks ,the spent fuel high-density storage based on burnup credit (BUC) and related criticality safety issues were studied .The MONK9A code was used to analyze kef of dif-ferent enrichment fuels at different burnups .A reference loading curve was proposed in accordance with the system kef ’s changing with the burnup of different initially enriched nuclear fuels .The capacity of the spent fuel pool increases by 31% compared with the one that does not consider BUC .%以田湾核电站(TNPS)2×5排列的贮存格架构成的乏燃料水池为例,研究采用燃耗信任制技术的密集贮存和临界安全问题。采用M ONK9A程序计算分析不同富集度、不同燃耗的乏燃料装载情况下系统的 ke f 。根据系统 ke f随不同初始富集度燃料的燃耗变化情况给出了水池的参考装载曲线。采用燃耗信任制技术的密集贮存方案能提高贮存能力31%。

  2. Microstructural Modeling of Thermal Conductivity of High Burn-up Mixed Oxide Fuel

    International Nuclear Information System (INIS)

    Predicting the thermal conductivity of oxide fuels as a function of burn-up and temperature is fundamental to the efficient and safe operation of nuclear reactors. However, modeling the thermal conductivity of fuel is greatly complicated by the radially inhomogeneous nature of irradiated fuel in both composition and microstructure. In this work, radially and temperature-dependent models for effective thermal conductivity were developed utilizing optical micrographs of high burn-up mixed oxide fuel. The micrographs were employed to create finite element meshes with the OOF2 software. The meshes were then used to calculate the effective thermal conductivity of the microstructures using the BISON fuel performance code. The new thermal conductivity models were used to calculate thermal profiles at end of life for the fuel pellets. These results were compared to thermal conductivity models from the literature, and comparison between the new finite element-based thermal conductivity model and the Duriez-Lucuta model was favorable

  3. Overview of particle and heavy ion transport code system PHITS

    International Nuclear Information System (INIS)

    Highlights: • We developed a general-purpose Monte Carlo particle transport code PHITS. • PHITS can deal with the transport of nearly all particles over wide energy ranges. • More than 1500 researchers have been used PHITS for various applications. • Physics models and special functions implemented in PHITS are briefly summarized. - Abstract: A general purpose Monte Carlo Particle and Heavy Ion Transport code System, PHITS, is being developed through the collaboration of several institutes in Japan and Europe. The Japan Atomic Energy Agency is responsible for managing the entire project. PHITS can deal with the transport of nearly all particles, including neutrons, protons, heavy ions, photons, and electrons, over wide energy ranges using various nuclear reaction models and data libraries. It is written in Fortran language and can be executed on almost all computers. All components of PHITS such as its source, executable and data-library files are assembled in one package and then distributed to many countries via the Research Organization for Information Science and Technology, the Data Bank of the Organization for Economic Co-operation and Development’s Nuclear Energy Agency, and the Radiation Safety Information Computational Center. More than 1500 researchers have been registered as PHITS users, and they apply the code to various research and development fields such as nuclear technology, accelerator design, medical physics, and cosmic-ray research. This paper briefly summarizes the physics models implemented in PHITS, and introduces some important functions useful for specific applications, such as an event generator mode and beam transport functions

  4. Analysis the Performance of Coded WSK-DWDM Transmission System

    Directory of Open Access Journals (Sweden)

    Bobby Barua

    2012-12-01

    Full Text Available Dense Wavelength Division Multiplexing (DWDM is the system with more than eight active wavelengths per fiber. Again high data rates as well as long spans between amplifiers in a chain require high optical power per channel to satisfy the signal to noise ratio (SNR requirements. So the DWDM systems with long repeater-less spans, the simultaneous requirements of high launched power and low dispersion fibers lead to the generation of new waves by four-wave mixing (FWM, which degrades the performance of a multi-channel transmission system. Several methods have been proposed to mitigate the effect of FWM crosstalk. All these works are performed considering only binary WSK scheme. Although M-ary WSK (M>2 schemes have higher spectral efficiency than binary WSK system. Again, the BER performances for M-ary WDM system are not satisfactory with the effect of FWM. Therefore, in this paper we include the effect of FWM on the performance of an M-ary WDM system and try to mitigate the effect by employing the energy efficient convolution code in a normal dispersive fiber as well as in a dispersion shifted fiber (DSF.

  5. FPGA based digital phase-coding quantum key distribution system

    Science.gov (United States)

    Lu, XiaoMing; Zhang, LiJun; Wang, YongGang; Chen, Wei; Huang, DaJun; Li, Deng; Wang, Shuang; He, DeYong; Yin, ZhenQiang; Zhou, Yu; Hui, Cong; Han, ZhengFu

    2015-12-01

    Quantum key distribution (QKD) is a technology with the potential capability to achieve information-theoretic security. Phasecoding is an important approach to develop practical QKD systems in fiber channel. In order to improve the phase-coding modulation rate, we proposed a new digital-modulation method in this paper and constructed a compact and robust prototype of QKD system using currently available components in our lab to demonstrate the effectiveness of the method. The system was deployed in laboratory environment over a 50 km fiber and continuously operated during 87 h without manual interaction. The quantum bit error rate (QBER) of the system was stable with an average value of 3.22% and the secure key generation rate is 8.91 kbps. Although the modulation rate of the photon in the demo system was only 200 MHz, which was limited by the Faraday-Michelson interferometer (FMI) structure, the proposed method and the field programmable gate array (FPGA) based electronics scheme have a great potential for high speed QKD systems with Giga-bits/second modulation rate.

  6. Fuel burnup monitor for nuclear reactors

    International Nuclear Information System (INIS)

    An in-service detector is designed using the principle of comparing temperatures in the fuel element and in the detector material. The detector consists of 3 metallic heat conductors insulated with ceramic insulators, two of them with uranium fuel spheres at the end. One sphere is coated with zirconium, the other with zirconium and gold. The precision of measurement of the degree of fuel burnup depends on the precision of the measurement of temperature and is determined from the difference in temperature gradients of the two uranium fuel spheres in the detector. (M.D.)

  7. Burn-up credit in criticality safety of PWR spent fuel

    International Nuclear Information System (INIS)

    Highlights: • Designing spent fuel wet storage using WIMS-5D and MCNP-5 code. • Studying fresh and burned fuel with/out absorber like “B4C and Ag–In–Cd” in racks. • Sub-criticality was confirmed for fresh and burned fuel under specific cases. • Studies for BU credit recommend increasing fuel burn-up to 60.0 GWD/MTU. • Those studies require new core structure materials, fuel composition and cladding. - Abstract: The criticality safety calculations were performed for a proposed design of a wet spent fuel storage pool. This pool will be used for the storage of spent fuel discharged from a typical pressurized water reactor (PWR). The mathematical model based on the international validated codes, WIMS-5 and MCNP-5 were used for calculating the effective multiplication factor, keff, for the spent fuel stored in the pool. The data library for the multi-group neutron microscopic cross-sections was used for the cell calculations. The keff was calculated for several changes in water density, water level, assembly pitch and burn-up with different initial fuel enrichment and new types and amounts of fixed absorbers. Also, keff was calculated for the conservative fresh fuel case. The results of the calculations confirmed that the effective multiplication factor for the spent fuel storage is sub-critical for all normal and abnormal states. The future strategy for the burn-up credit recommends increasing the fuel burn-up to a value >60.0 GWD/MTU, which requires new fuel composition and new fuel cladding material with the assessment of the effects of negative reactivity build up

  8. Burn-up credit in criticality safety of PWR spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Rowayda F., E-mail: Rowayda_mahmoud@yahoo.com [Metallurgy Department, Nuclear Research Center, Atomic Energy Authority (Egypt); Shaat, Mohamed K. [Nuclear Engineering, Reactors Department, Nuclear Research Center, Atomic Energy Authority (Egypt); Nagy, M.E.; Agamy, S.A. [Professor of Nuclear Engineering, Nuclear and Radiation Department, Alexandria University (Egypt); Abdelrahman, Adel A. [Metallurgy Department, Nuclear Research Center, Atomic Energy Authority (Egypt)

    2014-12-15

    Highlights: • Designing spent fuel wet storage using WIMS-5D and MCNP-5 code. • Studying fresh and burned fuel with/out absorber like “B{sub 4}C and Ag–In–Cd” in racks. • Sub-criticality was confirmed for fresh and burned fuel under specific cases. • Studies for BU credit recommend increasing fuel burn-up to 60.0 GWD/MTU. • Those studies require new core structure materials, fuel composition and cladding. - Abstract: The criticality safety calculations were performed for a proposed design of a wet spent fuel storage pool. This pool will be used for the storage of spent fuel discharged from a typical pressurized water reactor (PWR). The mathematical model based on the international validated codes, WIMS-5 and MCNP-5 were used for calculating the effective multiplication factor, k{sub eff}, for the spent fuel stored in the pool. The data library for the multi-group neutron microscopic cross-sections was used for the cell calculations. The k{sub eff} was calculated for several changes in water density, water level, assembly pitch and burn-up with different initial fuel enrichment and new types and amounts of fixed absorbers. Also, k{sub eff} was calculated for the conservative fresh fuel case. The results of the calculations confirmed that the effective multiplication factor for the spent fuel storage is sub-critical for all normal and abnormal states. The future strategy for the burn-up credit recommends increasing the fuel burn-up to a value >60.0 GWD/MTU, which requires new fuel composition and new fuel cladding material with the assessment of the effects of negative reactivity build up.

  9. Fuel burnup analysis of the TRIGA Mark II Reactor at the University of Pavia

    CERN Document Server

    Chiesa, Davide; Pozzi, Stefano; Previtali, Ezio; Sisti, Monica; Alloni, Daniele; Magrotti, Giovanni; Manera, Sergio; Prata, Michele; Salvini, Andrea; Cammi, Antonio; Zanetti, Matteo; Sartori, Alberto

    2015-01-01

    A time evolution model was developed to study fuel burnup for the TRIGA Mark II reactor at the University of Pavia. The results were used to predict the effects of a complete core reconfiguration and the accuracy of this prediction was tested experimentally. We used the Monte Carlo code MCNP5 to reproduce system neutronics in different operating conditions and to analyse neutron fluxes in the reactor core. The software that took care of time evolution, completely designed in-house, used the neutron fluxes obtained by MCNP5 to evaluate fuel consumption. This software was developed specifically to keep into account some features that differentiate experimental reactors from power ones, such as the daily ON/OFF cycle and the long fuel lifetime. These effects can not be neglected to properly account for neutron poison accumulation. We evaluated the effect of 48 years of reactor operation and predicted a possible new configuration for the reactor core: the objective was to remove some of the fuel elements from the...

  10. Propagation of nuclear data uncertainties for ELECTRA burn-up calculations

    CERN Document Server

    ostrand, H; Duan, J; Gustavsson, C; Koning, A; Pomp, S; Rochman, D; Osterlund, M

    2013-01-01

    The European Lead-Cooled Training Reactor (ELECTRA) has been proposed as a training reactor for fast systems within the Swedish nuclear program. It is a low-power fast reactor cooled by pure liquid lead. In this work, we propagate the uncertainties in Pu-239 transport data to uncertainties in the fuel inventory of ELECTRA during the reactor life using the Total Monte Carlo approach (TMC). Within the TENDL project the nuclear models input parameters were randomized within their uncertainties and 740 Pu-239 nuclear data libraries were generated. These libraries are used as inputs to reactor codes, in our case SERPENT, to perform uncertainty analysis of nuclear reactor inventory during burn-up. The uncertainty in the inventory determines uncertainties in: the long-term radio-toxicity, the decay heat, the evolution of reactivity parameters, gas pressure and volatile fission product content. In this work, a methodology called fast TMC is utilized, which reduces the overall calculation time. The uncertainty in the ...

  11. Propagation of Nuclear Data Uncertainties for ELECTRA Burn-up Calculations

    Science.gov (United States)

    Sjöstrand, H.; Alhassan, E.; Duan, J.; Gustavsson, C.; Koning, A. J.; Pomp, S.; Rochman, D.; Österlund, M.

    2014-04-01

    The European Lead-Cooled Training Reactor (ELECTRA) has been proposed as a training reactor for fast systems within the Swedish nuclear program. It is a low-power fast reactor cooled by pure liquid lead. In this work, we propagate the uncertainties in 239Pu transport data to uncertainties in the fuel inventory of ELECTRA during the reactor lifetime using the Total Monte Carlo approach (TMC). Within the TENDL project, nuclear models input parameters were randomized within their uncertainties and 740 239Pu nuclear data libraries were generated. These libraries are used as inputs to reactor codes, in our case SERPENT, to perform uncertainty analysis of nuclear reactor inventory during burn-up. The uncertainty in the inventory determines uncertainties in: the long-term radio-toxicity, the decay heat, the evolution of reactivity parameters, gas pressure and volatile fission product content. In this work, a methodology called fast TMC is utilized, which reduces the overall calculation time. The uncertainty of some minor actinides were observed to be rather large and therefore their impact on multiple recycling should be investigated further. It was also found that, criticality benchmarks can be used to reduce inventory uncertainties due to nuclear data. Further studies are needed to include fission yield uncertainties, more isotopes, and a larger set of benchmarks.

  12. Overview of Particle and Heavy Ion Transport Code System PHITS

    Science.gov (United States)

    Sato, Tatsuhiko; Niita, Koji; Matsuda, Norihiro; Hashimoto, Shintaro; Iwamoto, Yosuke; Furuta, Takuya; Noda, Shusaku; Ogawa, Tatsuhiko; Iwase, Hiroshi; Nakashima, Hiroshi; Fukahori, Tokio; Okumura, Keisuke; Kai, Tetsuya; Chiba, Satoshi; Sihver, Lembit

    2014-06-01

    A general purpose Monte Carlo Particle and Heavy Ion Transport code System, PHITS, is being developed through the collaboration of several institutes in Japan and Europe. The Japan Atomic Energy Agency is responsible for managing the entire project. PHITS can deal with the transport of nearly all particles, including neutrons, protons, heavy ions, photons, and electrons, over wide energy ranges using various nuclear reaction models and data libraries. It is written in Fortran language and can be executed on almost all computers. All components of PHITS such as its source, executable and data-library files are assembled in one package and then distributed to many countries via the Research organization for Information Science and Technology, the Data Bank of the Organization for Economic Co-operation and Development's Nuclear Energy Agency, and the Radiation Safety Information Computational Center. More than 1,000 researchers have been registered as PHITS users, and they apply the code to various research and development fields such as nuclear technology, accelerator design, medical physics, and cosmic-ray research. This paper briefly summarizes the physics models implemented in PHITS, and introduces some important functions useful for specific applications, such as an event generator mode and beam transport functions.

  13. Comparative study of Barcode, QR-code and RFID System

    Directory of Open Access Journals (Sweden)

    Trupti Lotlikar

    2013-09-01

    Full Text Available Wireless sensors are standard measurement tools equipped with transmitters to convert signals from process control instruments into a radio transmission. The radio signal is interpreted by a receiver which then converts the wireless signal to a specific, desired output, such as an analog current or data analysis via computer software. The paper gives a brief on wireless sensors and their types like Barcode, QR code, RFID along with their characteristics and working components. The Barcode is an optical machine-readable representation of data relating to the object to which it is attached. On the other hand the Radio-frequency identification (RFID is the use of a wireless non-contact system that uses radio-frequency electromagnetic fields to transfer data from a tag attached to an object, for the purposes of automatic identification and tracking. Quick response (QR codes are a very convenient way to display a small bit of information that is easily scanned and processed typically by mobile devices allowing physical items to almost become interactive, by providing information that is easily scanned like a website URL. Finally this paper will compare all the three technologies on various grounds like durability, cost, information capacity, read range etc. to determine best out of it.

  14. PERFORMANCE EVALUATION OF LOW DENSITY PARITY CHECK CODES FOR DIGITAL RADIO MONDIALE (DRM) SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In Digital Radio Mondiale (DRM) system, achieving good audio quality becomes a challenge due to its limited band-width of 9 or 10kHz and the very bad fading channels. Therefore, DRM needs highly efficient channel coding schemes. This paper, proposes the schemes which use the Low-Density Parity-Check (LDPC) coded Bit-Interleaved Coded Modulation (BICM) schemes for the implementation of DRM systems.Simulation results show that the proposed system is more efficient than the Rate Compatible Punctured Convolutional (RCPC) coded DRM system on various broadcast channels, and may be recommended as a coding technology for Digital Amplitude Modulation Broadcasting (DAMB) systems of China.

  15. High Burnup Dry Storage Cask Research and Development Project, Final Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-02-27

    EPRI is leading a project team to develop and implement the first five years of a Test Plan to collect data from a SNF dry storage system containing high burnup fuel.12 The Test Plan defined in this document outlines the data to be collected, and the storage system design, procedures, and licensing necessary to implement the Test Plan.13 The main goals of the proposed test are to provide confirmatory data14 for models, future SNF dry storage cask design, and to support license renewals and new licenses for ISFSIs. To provide data that is most relevant to high burnup fuel in dry storage, the design of the test storage system must mimic real conditions that high burnup SNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to the ISFSI for multi-year storage.15 Along with other optional modeling, SETs, and SSTs, the data collected in this Test Plan can be used to evaluate the integrity of dry storage systems and the high burnup fuel contained therein over many decades. It should be noted that the Test Plan described in this document discusses essential activities that go beyond the first five years of Test Plan implementation.16 The first five years of the Test Plan include activities up through loading the cask, initiating the data collection, and beginning the long-term storage period at the ISFSI. The Test Plan encompasses the overall project that includes activities that may not be completed until 15 or more years from now, including continued data collection, shipment of the Research Project Cask to a Fuel Examination Facility, opening the cask at the Fuel Examination Facility, and examining the high burnup fuel after the initial storage period.

  16. Mechanical Fatigue Testing of High Burnup Fuel for Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-05-01

    This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using a set up with three linear variable differential transformers (LVDTs).

  17. Implementation of burnup credit in PWR spent fuel storage pools

    International Nuclear Information System (INIS)

    Implementation of burnup credit in spent fuel storage of LWR fuel at nuclear power plants is approved in Germany since the beginning of 2000. The burnup credit methods applied have to comply with the newly developed German criticality safety standard DIN 25471 passed in November 1999 and published in September 2000, cp. (orig.)

  18. Effects of high burnup on spent-fuel casks

    International Nuclear Information System (INIS)

    Utility fuel managers have become very interested in higher burnup fuels as a means to reduce the impact of refueling outages. High-burnup fuels have significant effects on spent-fuel storage or transportation casks because additional heat rejection and shielding capabilities are required. Some existing transportation casks have useful margins that allow shipment of high-burnup fuel, especially the NLI-1/2 truck cask, which has been relicensed to carry pressurized water reactor (PWR) fuel with 56,000 MWd/ton U burnup at 450 days of cooling time. New cask designs should consider the effects of high burnup for future use, even though it is not commercially desirable to include currently unneeded capability. In conclusion, the increased heat and gamma radiation of high-burnup fuels can be accommodated by additional cooling time, but the increased neutron radiation source cannot be accommodated unless the balance of neutron and gamma contributions to the overall dose rate is properly chosen in the initial cask design. Criticality control of high-burnup fuels is possible with heavily poisoned baskets, but burnup credit in licensing is a much more direct means of demonstrating criticality safety

  19. Method of compensating distribution of reactor burnup degree

    International Nuclear Information System (INIS)

    An object of the present invention is to attain an appropriate power distribution and a burnup degree distribution during an operation cycle, thereby improving the succeeding operation cycle in a BWR type reactor. That is, a deviation between a distribution of an actual axial burnup degree and that of an aimed axial burnup degree in a reactor core is measured upon completion of the operation cycle by using a burnup degree distribution measuring device. Then, the content of burnable poisons in fresh fuels to be charged to the reactor core is controlled in accordance with the deviation, to compensate the distribution of the axial burnup degree in the reactor core in the next operation cycle. Accordingly, the distribution of the axial burnup degree in the reactor core can be made closer to the aimed distribution of the burnup degree in the next operation cycle. Further, appropriate power distribution and a burnup degree distribution can be obtained by improving the axial power distribution in the reactor core with the characteristics of the fresh fuels themselves to be loaded, without depending only on changes of a control rod pattern. Accordingly, fuel economy and operation performance can be improved. (I.S.)

  20. Optimal transmissions for space-time coded OFDM UWB systems

    Institute of Scientific and Technical Information of China (English)

    WANG Jun-fang; ZHU Guang-xi; JIN Jiang

    2005-01-01

    The emerging ultra-wideband (UWB) system offers a great potential for the design of high-speed short-range communications. Compared with great progress at physical layer, the corresponding medium access control (MAC) layer designs are naturally placed on the schedules. We focus on the optimal power load scheme, which is an integral part of the MAC layer protocol design, for UWB space-time coded (STC) orthogonal frequency-division multiplexing (OFDM)transmissions. Assumed the transmitter has perfect or partial channel stage information (CSI). Based on the optimization criteria of maximizing capacity, three kinds of power load schemes were presented with different tradeoff among performance, complexity and feedback bandwidth overhead. The proposed schemes are verified and compared under the channel prototype proposed by IEEE 802.15.3a Task Group.

  1. Pressure vessel codes: Their application to nuclear reactor systems

    International Nuclear Information System (INIS)

    A survey has been made by the International Atomic Energy Agency of how the problems of applying national pressure vessel codes to nuclear reactor systems have been treated in those Member States that had pressurized reactors in operation or under construction at the beginning of 1963. Fifteen answers received to an official inquiry form the basis of this report, which also takes into account some recently published material. Although the answers to the inquiry in some cases data back to 1963 and also reflect the difficulty of describing local situations in answer to standard questions, it is hoped that the report will be of interest to reactor engineers. 21 refs, 1 fig., 2 tabs

  2. Hybrid Compton camera/coded aperture imaging system

    Science.gov (United States)

    Mihailescu, Lucian; Vetter, Kai M.

    2012-04-10

    A system in one embodiment includes an array of radiation detectors; and an array of imagers positioned behind the array of detectors relative to an expected trajectory of incoming radiation. A method in another embodiment includes detecting incoming radiation with an array of radiation detectors; detecting the incoming radiation with an array of imagers positioned behind the array of detectors relative to a trajectory of the incoming radiation; and performing at least one of Compton imaging using at least the imagers and coded aperture imaging using at least the imagers. A method in yet another embodiment includes detecting incoming radiation with an array of imagers positioned behind an array of detectors relative to a trajectory of the incoming radiation; and performing Compton imaging using at least the imagers.

  3. Biometric iris image acquisition system with wavefront coding technology

    Science.gov (United States)

    Hsieh, Sheng-Hsun; Yang, Hsi-Wen; Huang, Shao-Hung; Li, Yung-Hui; Tien, Chung-Hao

    2013-09-01

    Biometric signatures for identity recognition have been practiced for centuries. Basically, the personal attributes used for a biometric identification system can be classified into two areas: one is based on physiological attributes, such as DNA, facial features, retinal vasculature, fingerprint, hand geometry, iris texture and so on; the other scenario is dependent on the individual behavioral attributes, such as signature, keystroke, voice and gait style. Among these features, iris recognition is one of the most attractive approaches due to its nature of randomness, texture stability over a life time, high entropy density and non-invasive acquisition. While the performance of iris recognition on high quality image is well investigated, not too many studies addressed that how iris recognition performs subject to non-ideal image data, especially when the data is acquired in challenging conditions, such as long working distance, dynamical movement of subjects, uncontrolled illumination conditions and so on. There are three main contributions in this paper. Firstly, the optical system parameters, such as magnification and field of view, was optimally designed through the first-order optics. Secondly, the irradiance constraints was derived by optical conservation theorem. Through the relationship between the subject and the detector, we could estimate the limitation of working distance when the camera lens and CCD sensor were known. The working distance is set to 3m in our system with pupil diameter 86mm and CCD irradiance 0.3mW/cm2. Finally, We employed a hybrid scheme combining eye tracking with pan and tilt system, wavefront coding technology, filter optimization and post signal recognition to implement a robust iris recognition system in dynamic operation. The blurred image was restored to ensure recognition accuracy over 3m working distance with 400mm focal length and aperture F/6.3 optics. The simulation result as well as experiment validates the proposed code

  4. Modelling guidelines for core exit temperature simulations with system codes

    Energy Technology Data Exchange (ETDEWEB)

    Freixa, J., E-mail: jordi.freixa-terradas@upc.edu [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain); Paul Scherrer Institut (PSI), 5232 Villigen (Switzerland); Martínez-Quiroga, V., E-mail: victor.martinez@nortuen.com [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain); Zerkak, O., E-mail: omar.zerkak@psi.ch [Paul Scherrer Institut (PSI), 5232 Villigen (Switzerland); Reventós, F., E-mail: francesc.reventos@upc.edu [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain)

    2015-05-15

    Highlights: • Core exit temperature is used in PWRs as an indication of core heat up. • Modelling guidelines of CET response with system codes. • Modelling of heat transfer processes in the core and UP regions. - Abstract: Core exit temperature (CET) measurements play an important role in the sequence of actions under accidental conditions in pressurized water reactors (PWR). Given the difficulties in placing measurements in the core region, CET readings are used as criterion for the initiation of accident management (AM) procedures because they can indicate a core heat up scenario. However, the CET responses have some limitation in detecting inadequate core cooling and core uncovery simply because the measurement is not placed inside the core. Therefore, it is of main importance in the field of nuclear safety for PWR power plants to assess the capabilities of system codes for simulating the relation between the CET and the peak cladding temperature (PCT). The work presented in this paper intends to address this open question by making use of experimental work at integral test facilities (ITF) where experiments related to the evolution of the CET and the PCT during transient conditions have been carried out. In particular, simulations of two experiments performed at the ROSA/LSTF and PKL facilities are presented. The two experiments are part of a counterpart exercise between the OECD/NEA ROSA-2 and OECD/NEA PKL-2 projects. The simulations are used to derive guidelines in how to correctly reproduce the CET response during a core heat up scenario. Three aspects have been identified to be of main importance: (1) the need for a 3-dimensional representation of the core and Upper Plenum (UP) regions in order to model the heterogeneity of the power zones and axial areas, (2) the detailed representation of the active and passive heat structures, and (3) the use of simulated thermocouples instead of steam temperatures to represent the CET readings.

  5. Dependence of heavy metal burnup on nuclear data libraries for fast reactors

    CERN Document Server

    Ohki, S

    2003-01-01

    Japan Nuclear Cycle Development Institute (JNC) is considering the highly burnt fuel as well as the recycling of minor actinide (MA) in the development of commercialized fast reactor cycle systems. Higher accuracy in burnup calculation is going to be required for higher mass plutonium isotopes ( sup 2 sup 4 sup 0 Pu, etc.) and MA nuclides. In the framework of research and development aiming at the validation and necessary improvements of fast reactor burnup calculation, we investigated the differences among the burnup calculation results with the major nuclear data libraries: JEF-2.2, ENDF/B-VI Release 5, JENDL-3.2, and JENDL-3.3. We focused on the heavy metal nuclides such as plutonium and MA in the central core region of a conventional sodium-cooled fast reactor. For main heavy metal nuclides ( sup 2 sup 3 sup 5 U, sup 2 sup 3 sup 8 U, sup 2 sup 3 sup 9 Pu, sup 2 sup 4 sup 0 Pu, and sup 2 sup 4 sup 1 Pu), number densities after 1-cycle burnup did not change over one or two percent. Library dependence was re...

  6. Evaluation of Cross-Section Sensitivities in Computing Burnup Credit Fission Product Concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Gauld, I.C.

    2005-08-12

    U.S. Nuclear Regulatory Commission Interim Staff Guidance 8 (ISG-8) for burnup credit covers actinides only, a position based primarily on the lack of definitive critical experiments and adequate radiochemical assay data that can be used to quantify the uncertainty associated with fission product credit. The accuracy of fission product neutron cross sections is paramount to the accuracy of criticality analyses that credit fission products in two respects: (1) the microscopic cross sections determine the reactivity worth of the fission products in spent fuel and (2) the cross sections determine the reaction rates during irradiation and thus influence the accuracy of predicted final concentrations of the fission products in the spent fuel. This report evaluates and quantifies the importance of the fission product cross sections in predicting concentrations of fission products proposed for use in burnup credit. The study includes an assessment of the major fission products in burnup credit and their production precursors. Finally, the cross-section importances, or sensitivities, are combined with the importance of each major fission product to the system eigenvalue (k{sub eff}) to determine the net importance of cross sections to k{sub eff}. The importances established the following fission products, listed in descending order of priority, that are most likely to benefit burnup credit when their cross-section uncertainties are reduced: {sup 151}Sm, {sup 103}Rh, {sup 155}Eu, {sup 150}Sm, {sup 152}Sm, {sup 153}Eu, {sup 154}Eu, and {sup 143}Nd.

  7. PERFORMANCE ANALYSIS OF CHANNEL ESTIMATION FOR LDPC-CODED OFDM SYSTEM IN MULTIPATH FADING CHANNEL

    Institute of Scientific and Technical Information of China (English)

    Zhu Qi; Li Hao; Feng Guangzeng

    2006-01-01

    In this paper, the channel estimation techniques for Orthogonal Frequency Division Multiplexing (OFDM) systems based on pilot arrangement are studied and we apply Low Density Parity Check (LDPC) codes to the system of IEEE 802.16a with OFDM modulation. First investigated is the influence of channel estimation schemes on LDPC-code based OFDM system in static and multipath fading channels. According to the different propagation environments in 802.16a system, a dynamic channel estimation scheme is proposed.A good irregular LDPC code is designed with code rate of 1/2 and code length of 1200. Simulation results show that the performance of LDPC coded OFDM system proposed in this paper is better than that of the convolution Turbo coded OFDM system proposed in IEEE standard 802.16a.

  8. Development and verification of a thermo-hydraulic simulation code for systems transient in 'Monju' (COPD code)

    International Nuclear Information System (INIS)

    Large system simulation codes are needed for design and safety analysis. A thermal-hydraulic simulation code for systems transient in ''Monju'' (COPD code) was developed and verified with experimental data from an experimental LMFBR ''Joyo'', 50 MWt steam generator test facility and scaled test sections of reactor vessel plenum. This paper summarizes numerical models of this code and their verifications with experimental data. Especially, a simplified analytical model to predict the transient behavior in a reactor vessel plenum is presented in detail, since this behavior has an important effect that must be taken into account in a plant thermal transient, while the reactor is tripped. The COPD is applied to design and safety analysis in ''Monju'' as follows ; (1) Safety analysis with regard to core cooling in anticipated incidents. (2) Plant thermo-hydraulic analysis for setting the design condition in thermal stress analysis and evaluation of components and pipings. (3) Control performance analysis on plant operation for design and evaluation of plant control system. Each of the above analyses requires different predictions of plant response to be analyzed. Therefore, appropriate models and input data are used in the design and evaluation according to the purpose of the analysis. This code was developed and verified under a contract with PNC. (author)

  9. Multilevel LDPC Codes Design for Multimedia Communication CDMA System

    Directory of Open Access Journals (Sweden)

    Hou Jia

    2004-01-01

    Full Text Available We design multilevel coding (MLC with a semi-bit interleaved coded modulation (BICM scheme based on low density parity check (LDPC codes. Different from the traditional designs, we joined the MLC and BICM together by using the Gray mapping, which is suitable to transmit the data over several equivalent channels with different code rates. To perform well at signal-to-noise ratio (SNR to be very close to the capacity of the additive white Gaussian noise (AWGN channel, random regular LDPC code and a simple semialgebra LDPC (SA-LDPC code are discussed in MLC with parallel independent decoding (PID. The numerical results demonstrate that the proposed scheme could achieve both power and bandwidth efficiency.

  10. Enlarged Halden programme group meeting on man-machine systems research and high burn-up fuel performance, safety and reliability and degradation of in-core materials and water chemistry effects. Volume I

    International Nuclear Information System (INIS)

    Academy of Sciences, KFKI Atomic Energy Research Institute, the N.V. KEMA, the Netherlands, the Russian Research Centre 'Kurchatov Institute', the Slovakian VUJE - Nuclear Power Plant Research Institute, and from USA: the ABB Combustion Engineering Inc., the Electric Power Research Institute (EPRI), and the General Electric Co. The right to utilise information originating from the research work of the Halden Project is limited to persons and undertakings specifically given this right by one of these Project member organisations. The activities in the area of fuel and materials performance are based on extensive in-reactor measurements. The programmes are expanding in the areas of fuel performance at extended burn-ups, waterside corrosion and material testing in general. Development of in-core instruments is an important activity in support of the experimental programmes. The research programme at the Halden Project addresses the research needs of the nuclear industry in connection with introduction of digital I and C systems in NPPs. The programme provides information supporting design and licensing of upgraded, computer-based control room systems, and demonstrates the benefits of such systems through validation experiments in Halden's experimental research facility, HAMMLAB and pilot installations in NPPs. The Enlarged Halden Programme Group Meeting at Loen, Norway, was arranged to provide an opportunity to present results of work carried out at Halden and within participating organisations, and to encourage comments and impulses related to future Halden Project work. This HPR-352 relates to the man-machine systems research part of the meeting and is in one volume, HPR-352 Volume I. The corresponding collection of papers in the fuel and materials research are given in two volumes, HPR-351 Volume I and HPR-351 Volume II. The overall programme of the Loen Enlarged Meeting covering the man-machine systems research is given in the following pages. The papers with

  11. Current applications of actinide-only burn-up credit within the Cogema group and R and D programme to take fission products into account

    Energy Technology Data Exchange (ETDEWEB)

    Toubon, H. [Cogema, 78 - Saint Quentin en Yvelines (France); Guillou, E. [Cogema Etablissement de la Hague, D/SQ/SMT, 50 - Beaumont Hague (France); Cousinou, P. [CEA Fontenay aux Roses, Inst. de Protection et de Surete Nucleaire, 92 (France); Barbry, F. [CEA Valduc, Inst. de Protection et de Surete Nucleaire, 21 - Is sur Tille (France); Grouiller, J.P.; Bignan, G. [CEA Cadarache, 13 - Saint Paul lez Durance (France)

    2001-07-01

    Burn-up credit can be defined as making allowance for absorbent radioactive isotopes in criticality studies, in order to optimise safety margins and avoid over-engineering of nuclear facilities. As far as the COGEMA Group is concerned, the three fields in which burn-up credit proves to be an advantage are the transport of spent fuel assemblies, their interim storage in spent fuel pools and reprocessing. In the case of transport, burn-up credit means that cask size do not need to be altered, despite an increase in the initial enrichment of the fuel assemblies. Burn-up credit also makes it possible to offer new cask designs with higher capacity. Burn-up credit means that fuel assemblies with a higher initial enrichment can be put into interim storage in existing facilities and opens the way to the possibility of more compact ones. As far as reprocessing is concerned, burn-up credit makes it possible to keep up current production rates, despite an increase in the initial enrichment of the fuel assemblies being reprocessed. In collaboration with the French Atomic Energy Commission and the Institute for Nuclear Safety and Protection, the COGEMA Group is participating in an extensive experimental programme and working to qualify criticality and fuel depletion computer codes. The research programme currently underway should mean that by 2003, allowance will be made for fission products in criticality safety analysis.

  12. Monte Carlo Code System Development for Liquid Metal Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hyo; Shim, Hyung Jin; Han, Beom Seok; Park, Ho Jin; Park, Dong Gyu [Seoul National University, Seoul (Korea, Republic of)

    2007-03-15

    We have implemented the composition cell class and the use cell to MCCARD for hierarchy input processing. For the inputs of KALlMER-600 core consisted of 336 assemblies, we require the geometric data of 91,056 pin cells. Using hierarchy input processing, it was observed that the system geometries are correctly handled with the geometric data of total 611 cells; 2 cells for fuel rods, 2 cells for guide holes, 271 translation cells for rods, and 336 translation cells for assemblies. We have developed monte carlo decay-chain models based on decay chain model of REBUS code for liquid metal reactor analysis. Using developed decay-chain models, the depletion analysis calculations have performed for the homogeneous and heterogeneous model of KALlMER-600. The k-effective for the depletion analysis agrees well with that of REBUS code. and the developed decay chain models shows more efficient performance for time and memories, as compared with the existing decay chain model The chi-square criterion has been developed to diagnose the temperature convergence for the MC TjH feedback calculations. From the application results to the KALlMER pin and fuel assembly problem, it is observed that the new criterion works well Wc have applied the high efficiency variance reduction technique by splitting Russian roulette to estimate the PPPF of the KALIMER core at BOC. The PPPF of KALlMER core at BOC is 1.235({+-}0.008). The developed technique shows four time faster calculation, as compared with the existin2 calculation Subject Keywords Monte Carlo

  13. Coding of object location in the vibrissal thalamocortical system.

    Science.gov (United States)

    Yu, Chunxiu; Horev, Guy; Rubin, Naama; Derdikman, Dori; Haidarliu, Sebastian; Ahissar, Ehud

    2015-03-01

    In whisking rodents, object location is encoded at the receptor level by a combination of motor and sensory related signals. Recoding of the encoded signals can result in various forms of internal representations. Here, we examined the coding schemes occurring at the first forebrain level that receives inputs necessary for generating such internal representations--the thalamocortical network. Single units were recorded in 8 thalamic and cortical stations in artificially whisking anesthetized rats. Neuronal representations of object location generated across these stations and expressed in response latency and magnitude were classified based on graded and binary coding schemes. Both graded and binary coding schemes occurred across the entire thalamocortical network, with a general tendency of graded-to-binary transformation from thalamus to cortex. Overall, 63% of the neurons of the thalamocortical network coded object position in their firing. Thalamocortical responses exhibited a slow dynamics during which the amount of coded information increased across 4-5 whisking cycles and then stabilized. Taken together, the results indicate that the thalamocortical network contains dynamic mechanisms that can converge over time on multiple coding schemes of object location, schemes which essentially transform temporal coding to rate coding and gradual to labeled-line coding.

  14. Verification of a Multi-group Cross Section Library for Burnup Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Daing, Aung Tharn; Kim, Myung Hyun [Kyung Hee Univ., Yongin (Korea, Republic of); Joo, Hang Yu [Seoul National Univ., Seoul (Korea, Republic of)

    2013-05-15

    Despite satisfying the estimation of the neutronic parameters without depletion to some extent, it still requires detailed investigation of the behavior of a fuel with strong neutron absorber over its operating life time by nTRACER, the direct whole core calculation code with the conventional semi Predictor-Corrector method. This study is mainly focused on the verification of the newly generated multi-group library for burnup calculation by nTRACER through the analysis of its performance of depletion calculation of UO{sub 2} fuel with strong neutron absorbers such as Gadolinium. Firstly, the depletion calculation results of nTRACER are presented by comparing the evolution of k-inf and the inventories of commonly found important isotopes as a function of burnup in the cases of gadolinia(GAD)-bearing fuel pin and fuel assembly (FA) with those of MCNPX-version.2.6.0. The newly generated multi-group library for burnup calculation by nTRACER was verified through GAD-bearing fuel after the new approach of resonance treatment had been employed. Though very good agreement in the overall effect reflected on the multiplication factor of FA at BOC, the evolution of k-inf along fuel irradiation history was systematically well underestimated by nTRACER when compared to Monte Carlo results.

  15. Thermal Hydraulic Analysis of 3 MW TRIGA Research Reactor of Bangladesh Considering Different Cycles of Burnup

    Directory of Open Access Journals (Sweden)

    M.H. Altaf

    2014-12-01

    Full Text Available Burnup dependent steady state thermal hydraulic analysis of TRIGA Mark-II research reactor has been carried out utilizing coupled point kinetics, neutronics and thermal hydraulics code EUREKA-2/RR. From the previous calculations of neutronics parameters including percentage burnup of individual fuel elements performed so far for 700 MWD burnt core of TRIGA reactor showed that the fuel rod predicted as hottest at the beginning of cycle (fresh core was found to remain as the hottest until 200 MWD of burn, but, with the progress of core burn, the hottest rod was found to be shifted and another rod in the core became the hottest. The present study intends to evaluate the thermal hydraulic parameters of these hottest fuel rods at different cycles of burnup, from beginning to 700 MWD core burnt considering reactor operates under steady state condition. Peak fuel centerline temperature, maximum cladding and coolant temperatures of the hottest channels were calculated. It revealed that maximum temperature reported for fuel clad and fuel centerline found to lie below their melting points which indicate that there is no chance of burnout on the fuel cladding surface and no blister in the fuel meat throughout the considered cycles of core burnt.

  16. Thermal hydraulic analysis of 3 MW TRIGA research reactor of bangladesh considering different cycles of burnup

    International Nuclear Information System (INIS)

    Burnup dependent steady state thermal hydraulic analysis of TRIGA Mark-II research reactor has been carried out utilizing coupled point kinetics, neutronics and thermal hydraulics code EUREKA-2/RR. From the previous calculations of neutronics parameters including percentage burnup of individual fuel elements performed so far for 700 MWD burnt core of TRIGA reactor showed that the fuel rod predicted as hottest at the beginning of cycle (fresh core) was found to remain as the hottest until 200 MWD of burn, but, with the progress of core burn, the hottest rod was found to be shifted and another rod in the core became the hottest. The present study intends to evaluate the thermal hydraulic parameters of these hottest fuel rods at different cycles of burnup, from beginning to 700 MWD core burnt considering reactor operates under steady state condition. Peak fuel centerline temperature, maximum cladding and coolant temperatures of the hottest channels were calculated. It revealed that maximum temperature reported for fuel clad and fuel centerline found to lie below their melting points which indicate that there is no chance of burnout on the fuel cladding surface and no blister in the fuel meat throughout the considered cycles of core burnt. (author)

  17. Evaluation and implementation of QR Code Identity Tag system for Healthcare in Turkey.

    Science.gov (United States)

    Uzun, Vassilya; Bilgin, Sami

    2016-01-01

    For this study, we designed a QR Code Identity Tag system to integrate into the Turkish healthcare system. This system provides QR code-based medical identification alerts and an in-hospital patient identification system. Every member of the medical system is assigned a unique QR Code Tag; to facilitate medical identification alerts, the QR Code Identity Tag can be worn as a bracelet or necklace or carried as an ID card. Patients must always possess the QR Code Identity bracelets within hospital grounds. These QR code bracelets link to the QR Code Identity website, where detailed information is stored; a smartphone or standalone QR code scanner can be used to scan the code. The design of this system allows authorized personnel (e.g., paramedics, firefighters, or police) to access more detailed patient information than the average smartphone user: emergency service professionals are authorized to access patient medical histories to improve the accuracy of medical treatment. In Istanbul, we tested the self-designed system with 174 participants. To analyze the QR Code Identity Tag system's usability, the participants completed the System Usability Scale questionnaire after using the system. PMID:27652030

  18. Evaluation and implementation of QR Code Identity Tag system for Healthcare in Turkey.

    Science.gov (United States)

    Uzun, Vassilya; Bilgin, Sami

    2016-01-01

    For this study, we designed a QR Code Identity Tag system to integrate into the Turkish healthcare system. This system provides QR code-based medical identification alerts and an in-hospital patient identification system. Every member of the medical system is assigned a unique QR Code Tag; to facilitate medical identification alerts, the QR Code Identity Tag can be worn as a bracelet or necklace or carried as an ID card. Patients must always possess the QR Code Identity bracelets within hospital grounds. These QR code bracelets link to the QR Code Identity website, where detailed information is stored; a smartphone or standalone QR code scanner can be used to scan the code. The design of this system allows authorized personnel (e.g., paramedics, firefighters, or police) to access more detailed patient information than the average smartphone user: emergency service professionals are authorized to access patient medical histories to improve the accuracy of medical treatment. In Istanbul, we tested the self-designed system with 174 participants. To analyze the QR Code Identity Tag system's usability, the participants completed the System Usability Scale questionnaire after using the system.

  19. Saphyr: a code system from reactor design to reference calculations

    International Nuclear Information System (INIS)

    In this paper we briefly present the package SAPHYR (in French Advanced System for Reactor Physics) which is devoted to reactor calculations, safety analysis and design. This package is composed of three main codes: APOLLO2 for lattice calculations, CRONOS2 for whole core neutronic calculations and FLICA4 for thermohydraulics. Thanks to a continuous development effort, the SAPHYR system is an outstanding tool covering a large domain of applications, from sophisticated 'research and development' studies that need state-of-the-art methodology to routine industrial calculations for reactor and criticality analysis. SAPHYR is powerful enough to carry out calculations for all types of reactors and is invaluable to understand complex phenomena. SAPHYR components are in use in various nuclear companies such as 'Electricite de France', Framatome-ANP, Cogema, SGN, Transnucleaire and Technicatome. Waiting for the next generation tools (DESCARTES for neutronics and NEPTUNE for thermohydraulics) to be available for such a variety of use, with a better level of flexibility and at least equivalent validation and qualification level, the improvement of SAPHYR is going on, to acquire new functions constantly required by users and to improve current performance levels

  20. Saphyr: a code system from reactor design to reference calculations

    Energy Technology Data Exchange (ETDEWEB)

    Akherraz, B.; Baudron, A.M.; Buiron, L.; Coste-Delclaux, M.; Fedon-Magnaud, C.; Lautard, J.J.; Moreau, F.; Nicolas, A.; Sanchez, R.; Zmijarevic, I. [CEA Saclay, Direction de l' Energie Nucleaire, Departement de Modelisation des Systemes et Structures, Service d' Etudes des Reacteurs et de Modelisation Avancee (DENDMSS/SERMA), 91 - Gif sur Yvette (France); Bergeron, A.; Caruge, D.; Fillion, P.; Gallo, D.; Royer, E. [CEA Saclay, Direction de l' Energie Nucleaire, Departement de Modelisation des Systemes et Structures, Service Fluides numeriques, Modelisations et Etudes (DEN/DMSS/SFNME), 91 - Gif sur Yvette (France); Loubiere, S. [CEA Saclay, Direction de l' Energie Nucleaire, Direction de la Simulation et des Outils Experimentaux, 91- Gif sur Yvette (France)

    2003-07-01

    In this paper we briefly present the package SAPHYR (in French Advanced System for Reactor Physics) which is devoted to reactor calculations, safety analysis and design. This package is composed of three main codes: APOLLO2 for lattice calculations, CRONOS2 for whole core neutronic calculations and FLICA4 for thermohydraulics. Thanks to a continuous development effort, the SAPHYR system is an outstanding tool covering a large domain of applications, from sophisticated 'research and development' studies that need state-of-the-art methodology to routine industrial calculations for reactor and criticality analysis. SAPHYR is powerful enough to carry out calculations for all types of reactors and is invaluable to understand complex phenomena. SAPHYR components are in use in various nuclear companies such as 'Electricite de France', Framatome-ANP, Cogema, SGN, Transnucleaire and Technicatome. Waiting for the next generation tools (DESCARTES for neutronics and NEPTUNE for thermohydraulics) to be available for such a variety of use, with a better level of flexibility and at least equivalent validation and qualification level, the improvement of SAPHYR is going on, to acquire new functions constantly required by users and to improve current performance levels.

  1. A Secure Code-Based Authentication Scheme for RFID Systems

    Directory of Open Access Journals (Sweden)

    Noureddine Chikouche

    2015-08-01

    Full Text Available Two essential problems are still posed in terms of Radio Frequency Identification (RFID systems, including: security and limitation of resources. Recently, Li et al.'s proposed a mutual authentication scheme for RFID systems in 2014, it is based on Quasi Cyclic-Moderate Density Parity Check (QC-MDPC McEliece cryptosystem. This cryptosystem is designed to reducing the key sizes. In this paper, we found that this scheme does not provide untraceability and forward secrecy properties. Furthermore, we propose an improved version of this scheme to eliminate existing vulnerabilities of studied scheme. It is based on the QC-MDPC McEliece cryptosystem with padding the plaintext by a random bit-string. Our work also includes a security comparison between our improved scheme and different code-based RFID authentication schemes. We prove secrecy and mutual authentication properties by AVISPA (Automated Validation of Internet Security Protocols and Applications tools. Concerning the performance, our scheme is suitable for low-cost tags with resource limitation.

  2. Analytical and numerical study of radiation effect up to high burnup in power reactor fuels

    International Nuclear Information System (INIS)

    In the present work the behavior of fuel pellets for power reactors in the high burnup range (average burnup higher than 50 MWd/kgHM) is analyzed. For extended irradiation periods, a considerable Pu concentration is reached in the pellet periphery (rim zone), that contributes to local burnup, as long as a new microstructure develops, characterized by small grains and large pores as compared with those of the original material. In this region Xe is absent from the solid lattice (although it continues to be dissolved in the rest of the pellet). The porous microstructure in the pellet edge causes local changes in the mechanical and thermal properties, thus affecting the overall fuel behaviour. The evolution of porosity in the high burnup structure (HBS) is assumed to be determinant of the retention capacity of the fission gases released by the matrix. This is the reason why, during the latest years a considerable effort has been devoted to characterizing the parameters that influence porosity. Starting from several works published in the open literature, a model was developed to describe the behaviour and evolution of porosity at local burnup values ranging from 60 to 300 MWd/KgHM. The model is mathematically expressed by a system of non-linear differential equations that take into account the open and closed porosity, the interactions between pores and the free surface and phenomena like pore's coalescence and migration and gas venting. Interactions of different orders between open and closed pores, growth of pores radius by vacancies trapping, the evolution of the pores number density, the internal pressure and over pressure within the pores, the fission gas retained in the matrix and released to the free volume are analyzed. The results of the simulations performed in the present work are in excellent agreement with experimental data available in the open literature and with results calculated by other authors (author)

  3. A dual-sided coded-aperture radiation detection system

    Science.gov (United States)

    Penny, R. D.; Hood, W. E.; Polichar, R. M.; Cardone, F. H.; Chavez, L. G.; Grubbs, S. G.; Huntley, B. P.; Kuharski, R. A.; Shyffer, R. T.; Fabris, L.; Ziock, K. P.; Labov, S. E.; Nelson, K.

    2011-10-01

    We report the development of a large-area, mobile, coded-aperture radiation imaging system for localizing compact radioactive sources in three dimensions while rejecting distributed background. The 3D Stand-Off Radiation Detection System (SORDS-3D) has been tested at speeds up to 95 km/h and has detected and located sources in the millicurie range at distances of over 100 m. Radiation data are imaged to a geospatially mapped world grid with a nominal 1.25- to 2.5-m pixel pitch at distances out to 120 m on either side of the platform. Source elevation is also extracted. Imaged radiation alarms are superimposed on a side-facing video log that can be played back for direct localization of sources in buildings in urban environments. The system utilizes a 37-element array of 5×5×50 cm 3 cesium-iodide (sodium) detectors. Scintillation light is collected by a pair of photomultiplier tubes placed at either end of each detector, with the detectors achieving an energy resolution of 6.15% FWHM (662 keV) and a position resolution along their length of 5 cm FWHM. The imaging system generates a dual-sided two-dimensional image allowing users to efficiently survey a large area. Imaged radiation data and raw spectra are forwarded to the RadioNuclide Analysis Kit (RNAK), developed by our collaborators, for isotope ID. An intuitive real-time display aids users in performing searches. Detector calibration is dynamically maintained by monitoring the potassium-40 peak and digitally adjusting individual detector gains. We have recently realized improvements, both in isotope identification and in distinguishing compact sources from background, through the installation of optimal-filter reconstruction kernels.

  4. Experimental Fission Gas Release Determination at High Burnup by Means of Gamma Measurements on Fuel Rods in OL2

    International Nuclear Information System (INIS)

    This article presents the results from the gamma measurements performed on a selection of fuel rods from two SVEA-96 Optima fuel assemblies in Olkiluoto unit 2 (OL2) during February 2008. The measurements were funded by Teollisuuden Voima Oyj (TVO) and carried out by Westinghouse Electric Sweden AB (WSE). The goal of the measurements was to obtain plant specific fission gas release data from OL2 which will later be used to support TVO's burnup increase. The measurements were performed by means of detecting and recording information on gamma rays emanating from radioactive fission products within the fuel rods. A fuel assembly under operation in the reactor will be subject to fission gas release, meaning that gaseous fission products in the fuel matrix will leak out into the fuel rod free volumes, including the upper fuel rod plenum. The magnitude of fission gas release is closely related to the operation conditions, such as burnup and the pellet power/temperature history. Fission gas which is released into the plenum leads to an increased pressure within the fuel rod. Since the gas plenum is a volume free of fuel pellets, radioactive gases present here are therefore relatively easy to measure. A suitable gaseous radioactive fission product is 85Kr which has a gamma energy of 514 keV, and a half life of 10.8 years. Measuring the amount of 85Kr can then be used to quantify the amount of fission gases release during operation. Other sources of gamma rays in the plenum with similar energies are the β+-emitting 58Co and the 106Ru. The half lives of 58Co and 106Ru are 71 days and 372 days, respectively, with corresponding gamma ray energies of 511 keV and 512 keV, respectively. In total, three different gamma rays with similar energies must be resolved by the detector system. In order to perform the measurements, 58Co must have decayed to an extent that allows the 514 keV line to be resolved from the 511 keV positron annihilation gamma ray. The 106Ru is, on the other

  5. Enlarged Halden programme group meeting on high burn-up fuel performance, safety and reliability and degradation of in-core materials and water chemistry effects and man-machine systems research. Volume I

    International Nuclear Information System (INIS)

    Academy of Sciences, KFKI Atomic Energy Research Institute, the N.V. KEMA, the Netherlands, the Russian Research Centre 'Kurchatov Institute', the Slovakian VUJE - Nuclear Power Plant Research Institute, and from USA: the ABB Combustion Engineering Inc., the Electric Power Research Institute (EPRI), and the General Electric Co. The right to utilise information originating from the research work of the Halden Project is limited to persons and undertakings specifically given this right by one of these Project member organisations. The activities in the area of fuel and materials performance are based on extensive in-reactor measurements. The programmes are expanding in the areas of fuel performance at extended burn-ups, waterside corrosion and material testing in general. Development of in-core instruments is an important activity in support of the experimental programmes. The research programme at the Halden Project addresses the research needs of the nuclear industry in connection with introduction of digital I and C systems in NPPs. The programme provides information supporting design and licensing of upgraded, computer-based control room systems, and demonstrates the benefits of such systems through validation experiments in Halden's experimental research facility, HAMMLAB and pilot installations in NPPs. The Enlarged Halden Programme Group Meeting at Loen, Norway, was arranged to provide an opportunity to present results of work carried out at Halden and within participating organisations, and to encourage comments and impulses related to future Halden Project work. This HPR-351 relates to the fuel and materials part of the meeting and is divided in two volumes, HPR-351 Volume I and HPR-351 Volume II. The corresponding collection of papers in the man-machine area are given in one volume, HPR-352 Volume I. The overall programme of the Loen Enlarged Meeting covering the Fuel and Materials Research is given in the following pages. The papers with denomination HWR have

  6. Analysis of the effect of UO2 high burnup microstructure on fission gas release

    International Nuclear Information System (INIS)

    This report deals with high-burnup phenomena with relevance to fission gas release from UO2 nuclear fuel. In particular, we study how the fission gas release is affected by local buildup of fissile plutonium isotopes and fission products at the fuel pellet periphery, with subsequent formation of a characteristic high-burnup rim zone micro-structure. An important aspect of these high-burnup effects is the degradation of fuel thermal conductivity, for which prevalent models are analysed and compared with respect to their theoretical bases and supporting experimental data. Moreover, the Halden IFA-429/519.9 high-burnup experiment is analysed by use of the FRAPCON3 computer code, into which modified and extended models for fission gas release are introduced. These models account for the change in Xe/Kr-ratio of produced and released fission gas with respect to time and space. In addition, several alternative correlations for fuel thermal conductivity are implemented, and their impact on calculated fission gas release is studied. The calculated fission gas release fraction in IFA-429/519.9 strongly depends on what correlation is used for the fuel thermal conductivity, since thermal release dominates over athermal release in this particular experiment. The conducted calculations show that athermal release processes account for less than 10% of the total gas release. However, athermal release from the fuel pellet rim zone is presumably underestimated by our models. This conclusion is corroborated by comparisons between measured and calculated Xe/Kr-ratios of the released fission gas

  7. Light a CANDLE. An innovative burnup strategy of nuclear reactors

    International Nuclear Information System (INIS)

    CANDLE is a new burnup strategy for nuclear reactors, which stands for Constant Axial Shape of Neutron Flux, Nuclide Densities and Power Shape During Life of Energy Production. When this candle-like burnup strategy is adopted, although the fuel is fixed in a reactor core, the burning region moves, at a speed proportionate to the power output, along the direction of the core axis without changing the spatial distribution of the number density of the nuclides, neutron flux, and power density. Excess reactivity is not necessary for burnup and the shape of the power distribution and core characteristics do not change with the progress of burnup. It is not necessary to use control rods for the control of the burnup. This booklet described the concept of the CANDLE burnup strategy with basic explanations of excess neutrons and its specific application to a high-temperature gas-cooled reactor and a fast reactor with excellent neutron economy. Supplementary issues concerning the initial core and high burnup were also referred. (T. Tanaka)

  8. Development of methods for the analysis of accident scenarios with steam line breaks and boron dilution by the help of the code system ATHLET-DYN3D. Final report. Pt. 1

    International Nuclear Information System (INIS)

    Libraries of two-group neutron-diffusion parameters for a Siemens-KWU-Konvoi Pressurized Water Reactor have been generated at Forschungszentrum Rossendorf and TUeV Bau und Betrieb GmbH by using the codes HELIOS and CASMO, respectively. The libraries have been coupled to the reactor-dynamics code DYN3D. For a generic PWR core containing MOX fuel elements, DYN3D macro-burnup calculations and the calculation of different operation states have been carried out. The results will be used for the investigation of possible accident scenarios. Reactivity coefficients calculated by DYN3D are needed for accident analyses by the 1-D thermal-hydraulic code ATHLET. Using the cross section data, more detailed analyses can be carried out by applying the coupled-code system DYN3D-ATHLET, considering 3D neutron kinetics. The comparison of the results calculated by DYN3D with two different diffusion-parameter libraries can give an idea of how uncertainties in diffusion data influence the accuracy of reactor simulation. (orig.)

  9. TASS/SMR Code Topical Report for SMART Plant, Vol. I: Code Structure, System Models, and Solution Methods

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Young Jong; Kim, Soo Hyoung; Kim, See Darl (and others)

    2008-10-15

    The TASS/SMR code has been developed with domestic technologies for the safety analysis of the SMART plant which is an integral type pressurized water reactor. It can be applied to the analysis of design basis accidents including non-LOCA (loss of coolant accident) and LOCA of the SMART plant. The TASS/SMR code can be applied to any plant regardless of the structural characteristics of a reactor since the code solves the same governing equations for both the primary and secondary system. The code has been developed to meet the requirements of the safety analysis code. This report describes the overall structure of the TASS/SMR, input processing, and the processes of a steady state and transient calculations. In addition, basic differential equations, finite difference equations, state relationships, and constitutive models are described in the report. First, the conservation equations, a discretization process for numerical analysis, search method for state relationship are described. Then, a core power model, heat transfer models, physical models for various components, and control and trip models are explained.

  10. Environmental performance of green building code and certification systems.

    Science.gov (United States)

    Suh, Sangwon; Tomar, Shivira; Leighton, Matthew; Kneifel, Joshua

    2014-01-01

    We examined the potential life-cycle environmental impact reduction of three green building code and certification (GBCC) systems: LEED, ASHRAE 189.1, and IgCC. A recently completed whole-building life cycle assessment (LCA) database of NIST was applied to a prototype building model specification by NREL. TRACI 2.0 of EPA was used for life cycle impact assessment (LCIA). The results showed that the baseline building model generates about 18 thousand metric tons CO2-equiv. of greenhouse gases (GHGs) and consumes 6 terajoule (TJ) of primary energy and 328 million liter of water over its life-cycle. Overall, GBCC-compliant building models generated 0% to 25% less environmental impacts than the baseline case (average 14% reduction). The largest reductions were associated with acidification (25%), human health-respiratory (24%), and global warming (GW) (22%), while no reductions were observed for ozone layer depletion (OD) and land use (LU). The performances of the three GBCC-compliant building models measured in life-cycle impact reduction were comparable. A sensitivity analysis showed that the comparative results were reasonably robust, although some results were relatively sensitive to the behavioral parameters, including employee transportation and purchased electricity during the occupancy phase (average sensitivity coefficients 0.26-0.29). PMID:24483287

  11. Overview of Particle and Heavy Ion Transport Code System PHITS

    International Nuclear Information System (INIS)

    A general purpose Monte Carlo Particle and Heavy Ion Transport code System, PHITS, is being developed through the collaboration of several institutes in Japan and Europe. PHITS can deal with the transport of nearly all particles, including neutrons, protons, heavy ions, photons, and electrons, over wide energy ranges using various nuclear reaction models and data libraries. It is written in Fortran language and can be executed on almost all computers. All components of PHITS such as its source, executable and data-library files are assembled in one package and then distributed to many countries via the Research organization for Information Science and Technology, the Data Bank of the Organization for Economic Co-operation and Development's Nuclear Energy Agency, and the Radiation Safety Information Computational Center. This paper briefly summarizes the physics models implemented in PHITS, and introduces some important functions useful for specific applications. The important functions of PHITS are an event generator mode for low-energy neutron interaction, beam transport functions, a function for calculating the displacement per atom (DPA), and a microdosimetric tally function. PHITS has been used by more than 1,000 users in various research and development fields, such as nuclear technology, accelerator design, medical physics, and cosmic-ray research

  12. Evaluation of the analysis models in the ASTRA nuclear design code system

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nam Jin; Park, Chang Jea; Kim, Do Sam; Lee, Kyeong Taek; Kim, Jong Woon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2000-11-15

    In the field of nuclear reactor design, main practice was the application of the improved design code systems. During the process, a lot of basis and knowledge were accumulated in processing input data, nuclear fuel reload design, production and analysis of design data, et al. However less efforts were done in the analysis of the methodology and in the development or improvement of those code systems. Recently, KEPO Nuclear Fuel Company (KNFC) developed the ASTRA (Advanced Static and Transient Reactor Analyzer) code system for the purpose of nuclear reactor design and analysis. In the code system, two group constants were generated from the CASMO-3 code system. The objective of this research is to analyze the analysis models used in the ASTRA/CASMO-3 code system. This evaluation requires indepth comprehension of the models, which is important so much as the development of the code system itself. Currently, most of the code systems used in domestic Nuclear Power Plant were imported, so it is very difficult to maintain and treat the change of the situation in the system. Therefore, the evaluation of analysis models in the ASTRA nuclear reactor design code system in very important.

  13. BNFL assessment of methods of attaining high burnup MOX fuel

    International Nuclear Information System (INIS)

    It is clear that in order to maintain competitiveness with UO2 fuel, the burnups achievable in MOX fuel must be enhanced beyond the levels attainable today. There are two aspects which require attention when studying methods of increased burnups - cladding integrity and fuel performance. Current irradiation experience indicates that one of the main performance issues for MOX fuel is fission gas retention. MOX, with its lower thermal conductivity, runs at higher temperatures than UO2 fuel; this can result in enhanced fission gas release. This paper explores methods of effectively reducing gas release and thereby improving MOX burnup potential. (author)

  14. Iterative codes and their application in systems for event registration in multichannel charged particle detectors

    International Nuclear Information System (INIS)

    Questions on the use of iterative codes for data registration in hodoscopic systems are considered. The method of construction and properties of the most interesting codes from the practical point of view are considered. These codes can be used to construct effective coding circuits applicable to the systems which have a large number of registration channels (more than one hundred). Examples of the construction of coding circuits for a large number of inputs are given. A long-term application of the iterative codes for the creation of trigger systems used for spectrometers-calorimeters is considered. Efficiency on the use of the iterative codes depending on the number of registration channels is discussed

  15. On the Performance of Synchronous DS—CDMA Systems with Generalized Orthogonal Spreading Codes

    Institute of Scientific and Technical Information of China (English)

    HAOLi; FANPingzhi

    2003-01-01

    A new synchronous DS-CDMA system em-ploying generalized orthogonal (GO) spreading codes and maximum ratio combining (MRC) scheme is presented in this paper. In particular, the forward link of the system is discussed in detail. The GO codes are used to combat the interference caused by multipath components. The aver-age correlation properties of GO codes are evaluated andthe signal interference ratio (SIR) expressions based on the Rayleigh and Racian fading multipath channel models are derived respectively. The link performance in terms of bit error rate (BER) is obtained for GO codes with different orthogonal zones by Gaussian Approximation and Monte-Carlo simulation respectively. The results reveal that the GO codes appear better BER performance than traditional orthogonal codes in synchronous CDMA systems, and the GO code with larger orthogonal zone exhibits larger per-formance gain.

  16. Evaluation technology for burnup and generated amount of plutonium by measurement of Xenon isotopic ratio in dissolver off-gas at reprocessing facility (Joint research)

    International Nuclear Information System (INIS)

    The amount of Pu in the spent fuel was evaluated from Xe isotopic ratio in off-gas in reprocessing facility, is related to burnup. Six batches of dissolver off-gas (DOG) at spent fuel dissolution process were sampled from the main stack in Tokai Reprocessing Plant (TRP) during BWR fuel (approx. 30GWD/MTU) reprocessing campaign. Xenon isotopic ratio was determined with Gas Chromatography/Mass Spectrometry. Burnup and generated amount of Pu were evaluated with Noble Gas Environmental Monitoring Application code (NOVA), developed by Los Alamos National Laboratory. Inferred burnup evaluated by Xe isotopic measurements and NOVA were in good agreement with those of the declared burnup in the range from -3.8% to 7.1%. Also, the inferred amount of Pu in spent fuel was in good agreed with those of the declared amount of Pu calculated by ORIGEN code in the range from -0.9% to 4.7%. The evaluation technique is applicable for both burnup credit to achieve efficient criticality safety control and a new measurement method for safeguards inspection. (author)

  17. Spatially dependent burnup implementation into the nodal program based on the finite element response matrix method

    International Nuclear Information System (INIS)

    In this work a spatial burnup scheme and feedback effects has been implemented into the FERM ( 'Finite Element Response Matrix' )program. The spatially dependent neutronic parameters have been considered in three levels: zonewise calculation, assembly wise calculation and pointwise calculation. Flux and power distributions and the multiplication factor were calculated and compared with the results obtained by CITATIOn program. These comparisons showed that processing time in the Ferm code has been hundred of times shorter and no significant difference has been observed in the assembly average power distribution. (Author)

  18. Experimental transport analysis code system in JT-60

    International Nuclear Information System (INIS)

    Transport analysis codes have been developed in order to study confinement properties related to particle and energy balance in ohmically and neutral beam heated plasmas of JT-60. The analysis procedure is divided into three steps as follows: 1) LOOK ; The shape of the plasma boundary is identified with a fast boundary identification code of FBI by using magnetic data, and flux surfaces are calculated with a MHD equilibrium code of SELENE. The diagnostic data are mapped to flux surfaces for neutral beam heating calculation and/or for radial transport analysis. 2) OFMC ; On the basis of transformed data, an orbit following Monte Carlo code of OFMC calculates both profiles of power deposition and particle source of neutral beam injected into a plasma. 3) SCOOP ; In the last stage, a one dimensional transport code of SCOOP solves particle and energy balance for electron and ion, in order to evaluate transport coefficients as well as global parameters such as energy confinement time and the stored energy. The analysis results are provided to a data bank of DARTS that is used to find an overview of important consideration on confinement with a regression analysis code of RAC. (author)

  19. Kinetic parameters study based on burn-up for improving the performance of research reactor equilibrium core

    Directory of Open Access Journals (Sweden)

    Muhammad Atta

    2014-01-01

    Full Text Available In this study kinetic parameters, effective delayed neutron fraction and prompt neutron generation time have been investigated at different burn-up stages for research reactor's equilibrium core utilizing low enriched uranium high density fuel (U3Si2-Al fuel with 4.8 g/cm3 of uranium. Results have been compared with reference operating core of Pakistan research Reactor-1. It was observed that by increasing fuel burn-up, effective delayed neutron fraction is decreased while prompt neutron generation time is increased. However, over all ratio beff/L is decreased with increasing burn-up. Prompt neutron generation time L in the understudy core is lower than reference operating core of reactor at all burn-up steps due to hard spectrum. It is observed that beff is larger in the understudy core than reference operating core of due to smaller size. Calculations were performed with the help of computer codes WIMSD/4 and CITATION.

  20. Study on burnup credit evaluation method at JAERI towards securing criticality safety rationale for management of spent fuel

    International Nuclear Information System (INIS)

    A higher initial 235U enrichment is currently required in the nuclear fuel fabrication specification to realize higher fuel burnup. Traditionally, in the criticality safety design of spent fuel (SF) storage and transportation (S/T) casks or facilities, the fuel is usually assumed to be at its full initial enrichment (so called fresh fuel assumption) to provide a large safety allowance, which is sometimes excessively given, for example requiring unnecessarily large space between fuel assemblies. The burnup credit taken for criticality safety design is firstly implemented to the SF Storage Rack of Rokkasho Reprocessing Facility, which is completed and expected for operation soon. Except for that, no burnup credit has been taken in criticality safety design for SF S/T casks or intermediate storage facilities in Japan. Since in the near future it is considered inevitable to handle spent fuel massively, it is desired to implement the rational S/T design saving safety and economy by taking into account the fuel burnup in the criticality safety control. Computer codes and data which are vital to assess criticality safety in the design stage of nuclear fuel cycle facility have been developed and prepared to constitute a Japanese criticality safety handbook at JAERI

  1. Analysis of the KUCA MEU experiments using the ANL code system

    Energy Technology Data Exchange (ETDEWEB)

    Shiroya, S.; Hayashi, M.; Kanda, K.; Shibata, T.; Woodruff, W.L.; Matos, J.E.

    1982-01-01

    This paper provides some preliminary results on the analysis of the KUCA critical experiments using the ANL code system. Since this system was employed in the earlier neutronics calculations for the KUHFR, it is important to assess its capabilities for the KUHFR. The KUHFR has a unique core configuration which is difficult to model precisely with current diffusion theory codes. This paper also provides some results from a finite-element diffusion code (2D-FEM-KUR), which was developed in a cooperative research program between KURRI and JAERI. This code provides the capability for mockup of a complex core configuration as the KUHFR. Using the same group constants generated by the EPRI-CELL code, the results of the 2D-FEM-KUR code are compared with the finite difference diffusion code (DIF3D(2D) which is mainly employed in this analysis.

  2. Coding Across Multicodes and Time in CDMA Systems Employing MMSE Multiuser Detector

    Directory of Open Access Journals (Sweden)

    Park Jeongsoon

    2004-01-01

    Full Text Available When combining a multicode CDMA system with convolutional coding, two methods have been considered in the literature. In one method, coding is across time in each multicode channel while in the other the coding is across both multicodes and time. In this paper, a performance/complexity analysis of decoding metrics and trellis structures for the two schemes is carried out. It is shown that the latter scheme can exploit the multicode diversity inherent in convolutionally coded direct sequence code division multiple access (DS-CDMA systems which employ minimum mean squared error (MMSE multiuser detectors. In particular, when the MMSE detector provides sufficiently different signal-to-interference ratios (SIRs for the multicode channels, coding across multicodes and time can obtain significant performance gain over coding across time, with nearly the same decoding complexity.

  3. High-Speed Turbo-TCM-Coded Orthogonal Frequency-Division Multiplexing Ultra-Wideband Systems

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available One of the UWB proposals in the IEEE P802.15 WPAN project is to use a multiband orthogonal frequency-division multiplexing (OFDM system and punctured convolutional codes for UWB channels supporting a data rate up to 480 Mbps. In this paper, we improve the proposed system using turbo TCM with QAM constellation for higher data rate transmission. We construct a punctured parity-concatenated trellis codes, in which a TCM code is used as the inner code and a simple parity-check code is employed as the outer code. The result shows that the system can offer a much higher spectral efficiency, for example, 1.2 Gbps, which is 2.5 times higher than the proposed system. We identify several essential requirements to achieve the high rate transmission, for example, frequency and time diversity and multilevel error protection. Results are confirmed by density evolution.

  4. High Burn-Up Spent Nuclear Fuel Vibration Integrity Study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jiang, Hao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevard, Bruce Balkcom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Rob L [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scaglione, John M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    The Oak Ridge National Laboratory (ORNL) has developed the cyclic integrated reversible-bending fatigue tester (CIRFT) approach to successfully demonstrate the controllable fatigue fracture on high burnup (HBU) spent nuclear fuel (SNF) in a normal vibration mode. CIRFT enables examination of the underlying mechanisms of SNF system dynamic performance. Due to the inhomogeneous composite structure of the SNF system, the detailed mechanisms of the pellet-pellet and pellet-clad interactions and the stress concentration effects at the pellet-pellet interface cannot be readily obtained from a CIRFT system measurement. Therefore, finite element analyses (FEAs) are used to translate the global moment-curvature measurement into local stress-strain profiles for further investigation. The major findings of CIRFT on the HBU SNF are as follows: SNF system interface bonding plays an important role in SNF vibration performance. Fuel structure contributes to SNF system stiffness. There are significant variations in stress and curvature of SNF systems during vibration cycles resulting from segment pellets and clad interactions. SNF failure initiates at the pellet-pellet interface region and appears to be spontaneous.

  5. Features of fuel performance at high fuel burnups

    International Nuclear Information System (INIS)

    Some features of fuel behavior at high fuel burnups, in particular, initiation and development of rim-layer, increase in the rate of fission gas release from the fuel and increase in the inner gas pressure in the fuel rod are briefly described. Basing on the analysis of the data of post-irradiation examinations of fuel rods of WWER-440 working FA and CR fuel followers, that have been operated for five fuel cycles and got the average fuel burnup or varies as 50MW-day/kgU, a conclusion is made that the WWER-440 fuel burnup can be increased at least to average burnups of 55-58 MW-day/kgU per fuel assembly (Authors)

  6. Extended burnup core management for once-through uranium fuel cycles in LWRS. First annual report for the period 1 July 1979-30 June 1980

    International Nuclear Information System (INIS)

    Detailed core management arrangements are developed requiring four operating cycles for the transition from present three-batch loading to an extended burnup four-batch plan for Zion-1. The ARMP code EPRI-NODE-P was used for core modeling. Although this work is preliminary, uranium and economic savings during the transition cycles appear of the order of 6 percent

  7. The research of breakdown structure and coding system for construction project

    Institute of Scientific and Technical Information of China (English)

    丁大勇; 金维兴; 李培

    2004-01-01

    Whether the breakdown structure and coding system of construction projects are reasonable or not determines to a large degree the pepfofmance level of the entire project management. We analyze in detail the similarities and differences of two kinds of decomposing methods classified by type of work and construction elements based on the discussion of international typical coding standards system designing. We then deduce the differential coefficient relation between project breakdown strueture(PBS) and work breakdown structure (WBS). At the same time we constitute a comprehensive construction project breakdown system including element code and type of work code and make a further schematic presentation of the implementation of the sysrem' s functions.

  8. A guide introducing burnup credit, preliminary version. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    It is examined to take burnup credit into account for criticality safety control of facility treating spent fuel. This work is a collection of current technical status of predicting isotopic composition and criticality of spent fuel, points to be specially considered for safety evaluation, and current status of legal affairs for the purpose of applying burnup credit to the criticality safety evaluation of the facility treating spent fuel in Japan. (author)

  9. Rotated Walsh-Hadamard Spreading with Robust Channel Estimation for a Coded MC-CDMA System

    Directory of Open Access Journals (Sweden)

    Raulefs Ronald

    2004-01-01

    Full Text Available We investigate rotated Walsh-Hadamard spreading matrices for a broadband MC-CDMA system with robust channel estimation in the synchronous downlink. The similarities between rotated spreading and signal space diversity are outlined. In a multiuser MC-CDMA system, possible performance improvements are based on the chosen detector, the channel code, and its Hamming distance. By applying rotated spreading in comparison to a standard Walsh-Hadamard spreading code, a higher throughput can be achieved. As combining the channel code and the spreading code forms a concatenated code, the overall minimum Hamming distance of the concatenated code increases. This asymptotically results in an improvement of the bit error rate for high signal-to-noise ratio. Higher convolutional channel code rates are mostly generated by puncturing good low-rate channel codes. The overall Hamming distance decreases significantly for the punctured channel codes. Higher channel code rates are favorable for MC-CDMA, as MC-CDMA utilizes diversity more efficiently compared to pure OFDMA. The application of rotated spreading in an MC-CDMA system allows exploiting diversity even further. We demonstrate that the rotated spreading gain is still present for a robust pilot-aided channel estimator. In a well-designed system, rotated spreading extends the performance by using a maximum likelihood detector with robust channel estimation at the receiver by about 1 dB.

  10. Validation of system codes for plant application on selected experiments

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Marco K.; Risken, Tobias; Agethen, Kathrin; Bratfisch, Christoph [Bochum Univ. (Germany). Reactor Simulation and Safety Group

    2016-05-15

    For decades, the Reactor Simulation and Safety Group at Ruhr-Universitaet Bochum (RUB) contributes to nuclear safety by computer code validation and model development for nuclear safety analysis. Severe accident analysis codes are relevant tools for the understanding and the development of accident management measures. The accidents in the plants Three Mile Island (USA) in 1979 and Fukushima Daiichi (Japan) in 2011 influenced these research activities significantly due to the observed phenomena, such as molten core concrete interaction and hydrogen combustion. This paper gives a brief outline of recent research activities at RUB in the named fields, contributing to code preparation for plant applications. Simulations of the molten core concrete interaction tests CCI-2 and CCI-3 with ASTEC and the hydrogen combustion test Ix9 with COCOSYS are presented exemplarily. Additionally, the application on plants is demonstrated on chosen results of preliminary Fukushima calculations.

  11. Automotive Gas Turbine Power System-Performance Analysis Code

    Science.gov (United States)

    Juhasz, Albert J.

    1997-01-01

    An open cycle gas turbine numerical modelling code suitable for thermodynamic performance analysis (i.e. thermal efficiency, specific fuel consumption, cycle state points, working fluid flowrates etc.) of automotive and aircraft powerplant applications has been generated at the NASA Lewis Research Center's Power Technology Division. The use this code can be made available to automotive gas turbine preliminary design efforts, either in its present version, or, assuming that resources can be obtained to incorporate empirical models for component weight and packaging volume, in later version that includes the weight-volume estimator feature. The paper contains a brief discussion of the capabilities of the presently operational version of the code, including a listing of input and output parameters and actual sample output listings.

  12. Validation of system codes for plant application on selected experiments

    International Nuclear Information System (INIS)

    For decades, the Reactor Simulation and Safety Group at Ruhr-Universitaet Bochum (RUB) contributes to nuclear safety by computer code validation and model development for nuclear safety analysis. Severe accident analysis codes are relevant tools for the understanding and the development of accident management measures. The accidents in the plants Three Mile Island (USA) in 1979 and Fukushima Daiichi (Japan) in 2011 influenced these research activities significantly due to the observed phenomena, such as molten core concrete interaction and hydrogen combustion. This paper gives a brief outline of recent research activities at RUB in the named fields, contributing to code preparation for plant applications. Simulations of the molten core concrete interaction tests CCI-2 and CCI-3 with ASTEC and the hydrogen combustion test Ix9 with COCOSYS are presented exemplarily. Additionally, the application on plants is demonstrated on chosen results of preliminary Fukushima calculations.

  13. SEACC: the systems engineering and analysis computer code for small wind systems

    Energy Technology Data Exchange (ETDEWEB)

    Tu, P.K.C.; Kertesz, V.

    1983-03-01

    The systems engineering and analysis (SEA) computer program (code) evaluates complete horizontal-axis SWECS performance. Rotor power output as a function of wind speed and energy production at various wind regions are predicted by the code. Efficiencies of components such as gearbox, electric generators, rectifiers, electronic inverters, and batteries can be included in the evaluation process to reflect the complete system performance. Parametric studies can be carried out for blade design characteristics such as airfoil series, taper rate, twist degrees and pitch setting; and for geometry such as rotor radius, hub radius, number of blades, coning angle, rotor rpm, etc. Design tradeoffs can also be performed to optimize system configurations for constant rpm, constant tip speed ratio and rpm-specific rotors. SWECS energy supply as compared to the load demand for each hour of the day and during each session of the year can be assessed by the code if the diurnal wind and load distributions are known. Also available during each run of the code is blade aerodynamic loading information.

  14. Research on irradiation behavior of superhigh burnup fuel

    International Nuclear Information System (INIS)

    In Japan Atomic Energy Research Institute, the special team for LWR future technology development project was organized in Tokai Research Establishment from October, 1991 to the end of fiscal year 1993. Due to the delay of the introduction of fast reactors, LWRs are expected to be used for considerably long period also in 21st century, therefore, it aimed at the further advancement of LWRs, and as one of its embodiments, the concept of superhigh burnup fuel was investigated. The superhigh burnup fuel aims at the attainment of 100 GWd/t burnup, and it succeeded the achievement of the conceptual design study on 'superlong life LWRs'. It is generally recognized that the development of the new material that substitutes for zircaloy is indispensable for superhigh burnup fuel. The concept of superhigh burnup core and the specification of fuel, the research and development of superhigh burnup fuel, the research on the irradiation behavior and irradiation damage of fuel and the damage by ion irradiation, and the method and the results of the irradiation experiment using a tandem accelerator are reported. (K.I.)

  15. Research on irradiation behavior of superhigh burnup fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Kimio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1995-03-01

    In Japan Atomic Energy Research Institute, the special team for LWR future technology development project was organized in Tokai Research Establishment from October, 1991 to the end of fiscal year 1993. Due to the delay of the introduction of fast reactors, LWRs are expected to be used for considerably long period also in 21st century, therefore, it aimed at the further advancement of LWRs, and as one of its embodiments, the concept of superhigh burnup fuel was investigated. The superhigh burnup fuel aims at the attainment of 100 GWd/t burnup, and it succeeded the achievement of the conceptual design study on `superlong life LWRs`. It is generally recognized that the development of the new material that substitutes for zircaloy is indispensable for superhigh burnup fuel. The concept of superhigh burnup core and the specification of fuel, the research and development of superhigh burnup fuel, the research on the irradiation behavior and irradiation damage of fuel and the damage by ion irradiation, and the method and the results of the irradiation experiment using a tandem accelerator are reported. (K.I.).

  16. Nurses' Attitudes Toward the Use of the Bar-coding Medication Administration System

    NARCIS (Netherlands)

    S.D. Marini; A. Hasman; H.A.S. Huijer; H. Dimassi

    2010-01-01

    This study determines nurses' attitudes toward bar-coding medication administration system use. Some of the factors underlying the successful use of bar-coding medication administration systems that are viewed as a connotative indicator of users' attitudes were used to gather data that describe the

  17. A Coding System for Qualitative Studies of the Information-Seeking Process in Computer Science Research

    Science.gov (United States)

    Moral, Cristian; de Antonio, Angelica; Ferre, Xavier; Lara, Graciela

    2015-01-01

    Introduction: In this article we propose a qualitative analysis tool--a coding system--that can support the formalisation of the information-seeking process in a specific field: research in computer science. Method: In order to elaborate the coding system, we have conducted a set of qualitative studies, more specifically a focus group and some…

  18. Proposing a Web-Based Tutorial System to Teach Malay Language Braille Code to the Sighted

    Science.gov (United States)

    Wah, Lee Lay; Keong, Foo Kok

    2010-01-01

    The "e-KodBrailleBM Tutorial System" is a web-based tutorial system which is specially designed to teach, facilitate and support the learning of Malay Language Braille Code to individuals who are sighted. The targeted group includes special education teachers, pre-service teachers, and parents. Learning Braille code involves memorisation…

  19. Internal Corrosion Control of Water Supply Systems Code of Practice

    Science.gov (United States)

    This Code of Practice is part of a series of publications by the IWA Specialist Group on Metals and Related Substances in Drinking Water. It complements the following IWA Specialist Group publications: 1. Best Practice Guide on the Control of Lead in Drinking Water 2. Best Prac...

  20. Energy efficient error-correcting coding for wireless systems

    NARCIS (Netherlands)

    Shao, Xiaoying

    2010-01-01

    The wireless channel is a hostile environment. The transmitted signal does not only suffers multi-path fading but also noise and interference from other users of the wireless channel. That causes unreliable communications. To achieve high-quality communications, error correcting coding is required t

  1. Performance of Coded Systems with Generalized Selection Diversity in Nakagami Fading

    Directory of Open Access Journals (Sweden)

    Zummo SalamA

    2008-01-01

    Full Text Available Abstract We investigate the performance of coded diversity systems employing generalized selection combining (GSC over Nakagami fading channels. In particular, we derive a numerical evaluation method for the cutoff rate of the GSC systems. In addition, we derive a new union bound on the bit-error probability based on the code's transfer function. The proposed bound is general to any coding scheme with a known weight distribution such as convolutional and trellis codes. Results show that the new bound is tight to simulation results for wide ranges of diversity order, Nakagami fading parameter, and signal-to-noise ratio (SNR.

  2. A bar-code reader for an alpha-beta automatic counting system - FAG

    International Nuclear Information System (INIS)

    A bar-code laser system for sample number reading was integrated into the FAG Alpha-Beta automatic counting system. The sample identification by means of an attached bar-code label enables unmistakable and reliable attribution of results to the counted sample. Installation of the bar-code reader system required several modifications: Mechanical changes in the automatic sample changer, design and production of new sample holders, modification of the sample planchettes, changes in the electronic system, update of the operating software of the system (authors)

  3. COMPLEMENT BLOCK CODING SCHEME FOR REDUCING PEAK-TO-AVERAGE POWER RATIO OF OFDM SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Jiang Tao; Zhu Guangxi

    2004-01-01

    A new scheme termed as Complement Block Coding (CBC) technique is proposed to reduce the Peak-to-Average Power Ratio (PAPR) of OFDM signals. Utilizing the complement bits which are added to the original information bits,this method can effectively reduce the PAPR of OFDM systems with random frame size N and the coding rate R ≤ (N - k)/N, where kis a positive integer and k ≤ N/2. The performance results obtained with CBC are given and compared with that of some well known schemes, such as Simple Block Coding (SBC), Modified Simple Block Coding (MSBC) and Simple Odd Parity Code (SOPC) for the same purpose. The results show that, at the same coding rate 3/4, the CBC can achieve almost the same performance as SBC, MSBC, but with lower complexity, and that the same performance can be obtained with higher coding rate by using CBC. At the same coding rate (N - 1)/N, the PAPR reduction of CBC is almost the twice as that of SOPC when N ≥ 16. Further more, the PAPR reductions with coding rate (N - 1)/N are almost the same as that with coding rate less than (N - 1)/N,so the proposed scheme CBC is more suitable for the large frame size with high coding rate and can provide error detection.

  4. Research and verification of Monte Carlo burnup calculations based on Chebyshev rational approximation method%基于切比雪夫有理逼近方法的蒙特卡罗燃耗计算研究与验证

    Institute of Scientific and Technical Information of China (English)

    范文玎; 孙光耀; 张彬航; 陈锐; 郝丽娟

    2016-01-01

    燃耗计算在反应堆设计、分析研究中起着重要作用.相比于传统点燃耗算法,切比雪夫有理逼近方法(Chebyshev rational approximation method,CRAM)具有计算速度快、精度高的优点.基于超级蒙特卡罗核计算仿真软件系统SuperMC(Super Monte Carlo Simulation Program for Nuclear and Radiation Process),采用切比雪夫有理逼近方法和桶排序能量查找方法,进行了蒙特卡罗燃耗计算的初步研究与验证.通过燃料棒燃耗例题以及IAEA-ADS(International Atomic Energy Agency-Accelerator Driven Systems)国际基准题,初步验证了该燃耗计算方法的正确性,且IAEA-ADS基准题测试表明,与统一能量网格方法相比,桶排序能量查找方法在保证了计算效率的同时减少了内存开销.%Background:Burnup calculation is the key point of reactor design and analysis. It's significant to calculate the burnup situation and isotopic atom density accurately while a reactor is being designed.Purpose:Based on the Monte Carlo particle simulation code SuperMC (Super Monte Carlo Simulation Program for Nuclear and Radiation Process), this paper aimed to conduct preliminary study and verification on Monte Carlo burnup calculations. Methods:For the characteristics of accuracy, this paper adopted Chebyshev rational approximation method (CRAM) as the point-burnup algorithm. Moreover, instead of the union energy grids method, this paper adopted an energy searching method based on bucket sort algorithm, which reduced the memory overhead on the condition that the calculation efficiency is ensured.Results:By calculating the fuel rod burnup problem and the IAEA-ADS (International Atomic Energy Agency - Accelerator Driven Systems) international benchmark, the simulation results were basically consistent with Serpent and other counties' results, respectively. In addition, the bucket sort energy searching method reduced about 95% storage space compared with union energy grids method for IAEA

  5. Comparative study among simulations of an internal monitoring system using different Monte Carlo codes

    International Nuclear Information System (INIS)

    Computational Monte Carlo (MC) codes have been used for simulation of nuclear installations mainly for internal monitoring of workers, the well known as Whole Body Counters (WBC). The main goal of this project was the modeling and simulation of the counting efficiency (CE) of a WBC system using three different MC codes: MCNPX, EGSnrc and VMC in-vivo. The simulations were performed for three different groups of analysts. The results shown differences between the three codes, as well as in the results obtained by the same code and modeled by different analysts. Moreover, all the results were also compared to the experimental results obtained in laboratory for meaning of validation and final comparison. In conclusion, it was possible to detect the influence on the results when the system is modeled by different analysts using the same MC code and in which MC code the results were best suited, when comparing to the experimental data result. (author)

  6. Simplified models for pebble-bed HTR core burn-up calculations with Monteburns2.0©

    International Nuclear Information System (INIS)

    Highlights: ► PBMR-400 annular core is very difficult to simulate in a reliable way. ► Nuclide evolutions given by different lattice models can differ significantly. ► To split fixed lattice models into two axial zones does not affect results significantly. ► We can choose a (simplified) core model on the basis of the analysis aim. ► Monteburns gives by survey burn-up calculations reasonable nuclide evolution trends. - Abstract: This paper aims at comparing some simplified models to simulate irradiation cycles of Pu fuelled pebble-bed reactors with Monteburns2.0© code. As a reference core, the PBMR-400 (proposed in the framework of the EU PUMA project, where this kind of core fuelled by a Pu and Pu–Np fuel has been studied) was taken into account. Pebble-bed High Temperature Reactor (HTR) cores consist of hundreds of thousands pebbles arranged stochastically in a cylindrical or annular space and each pebble is a single fuel element, and it is able to reach ultra-high burn-ups, i.e. up to 750 GWd/tHM (for Pu-based fuels). Additionally, pebble-bed cores are characterised by a continuous recirculation of pebbles from the top to the bottom of the core. Modelling accurately with current computer codes such an arrangement, in order to predict the behaviour of the core itself, is a very difficult task and any depletion code specifically devoted to pebble-bed burn-up calculation is not available at the moment. Because of limitations of the most common current MCNP-based depletion codes as well as huge calculation times, simplified models have to be implemented. After an analysis of the literature available on pebble-bed models for criticality and burn-up calculations, a preliminary assessment of the impact of different kind of simplified models for a Pu-Np fuelled Pebble-Bed Modular Reactor (PBMR), proposed in the framework of the EU PUMA project, is shown, particularly as far as burn-up prediction with Monteburns2.0© code is concerned.

  7. Effect of burn-up and high burn-up structure on spent nuclear fuel alteration

    Energy Technology Data Exchange (ETDEWEB)

    Clarens, F.; Gonzalez-Robles, E.; Gimenez, F. J.; Casas, I.; Pablo, J. de; Serrano, D.; Wegen, D.; Glatz, J. P.; Martinez-Esparza, A.

    2009-07-01

    In this report the results of the experimental work carried out within the collaboration project between ITU-ENRESA-UPC/CTM on spent fuel (SF) covering the period 2005-2007 were presented. Studies on both RN release (Fast Release Fraction and matrix dissolution rate) and secondary phase formation were carried out by static and flow through experiments. Experiments were focussed on the study of the effect of BU with two PWR SF irradiated in commercial reactors with mean burn-ups of 48 and 60 MWd/KgU and; the effect of High Burn-up Structure (HBS) using powdered samples prepared from different radial positions. Additionally, two synthetic leaching solutions, bicarbonate and granitic bentonite ground wa ter were used. Higher releases were determined for RN from SF samples prepared from the center in comparison with the fuel from the periphery. However, within the studied range, no BU effect was observed. After one year of contact time, secondary phases were observed in batch experiments, covering the SF surface. Part of the work was performed for the Project NF-PRO of the European Commission 6th Framework Programme under contract no 2389. (Author)

  8. A comparison of thermal algorithms of fuel rod performance code systems

    International Nuclear Information System (INIS)

    The goal of the fuel rod performance is to identify the robustness of a fuel rod with cladding material. Computer simulation of the fuel rod performance becomes one of important parts to designed and evaluate new nuclear fuels and claddings. To construct a computing code system for the fuel rod performance, several algorithms of the existing fuel rod performance code systems are compared and are summarized as a preliminary work. Among several code systems, FRAPCON, and FEMAXI for LWR, ELESTRES for CANDU reactor, and LIFE for fast reactor are reviewed. Thermal algorithms of the above codes are investigated including methodologies and subroutines. This work will be utilized to construct a computing code system for dry process fuel rod performance

  9. DANTSYS: A diffusion accelerated neutral particle transport code system

    Energy Technology Data Exchange (ETDEWEB)

    Alcouffe, R.E.; Baker, R.S.; Brinkley, F.W.; Marr, D.R.; O`Dell, R.D.; Walters, W.F.

    1995-06-01

    The DANTSYS code package includes the following transport codes: ONEDANT, TWODANT, TWODANT/GQ, TWOHEX, and THREEDANT. The DANTSYS code package is a modular computer program package designed to solve the time-independent, multigroup discrete ordinates form of the boltzmann transport equation in several different geometries. The modular construction of the package separates the input processing, the transport equation solving, and the post processing (or edit) functions into distinct code modules: the Input Module, one or more Solver Modules, and the Edit Module, respectively. The Input and Edit Modules are very general in nature and are common to all the Solver Modules. The ONEDANT Solver Module contains a one-dimensional (slab, cylinder, and sphere), time-independent transport equation solver using the standard diamond-differencing method for space/angle discretization. Also included in the package are solver Modules named TWODANT, TWODANT/GQ, THREEDANT, and TWOHEX. The TWODANT Solver Module solves the time-independent two-dimensional transport equation using the diamond-differencing method for space/angle discretization. The authors have also introduced an adaptive weighted diamond differencing (AWDD) method for the spatial and angular discretization into TWODANT as an option. The TWOHEX Solver Module solves the time-independent two-dimensional transport equation on an equilateral triangle spatial mesh. The THREEDANT Solver Module solves the time independent, three-dimensional transport equation for XYZ and RZ{Theta} symmetries using both diamond differencing with set-to-zero fixup and the AWDD method. The TWODANT/GQ Solver Module solves the 2-D transport equation in XY and RZ symmetries using a spatial mesh of arbitrary quadrilaterals. The spatial differencing method is based upon the diamond differencing method with set-to-zero fixup with changes to accommodate the generalized spatial meshing.

  10. Comparative study of Barcode, QR-code and RFID System

    OpenAIRE

    Trupti Lotlikar; Rohan Kankapurkar; Anand Parekar; Akshay Mohite

    2013-01-01

    Wireless sensors are standard measurement tools equipped with transmitters to convert signals from process control instruments into a radio transmission. The radio signal is interpreted by a receiver which then converts the wireless signal to a specific, desired output, such as an analog current or data analysis via computer software. The paper gives a brief on wireless sensors and their types like Barcode, QR code, RFID along with their characteristics and working components. The Barcode is ...

  11. Nuclide Importance to Criticality Safety, Decay Heating, and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gauld, I. C.; Ryman, J. C.

    2000-12-11

    This report investigates trends in the radiological decay properties and changes in relative nuclide importance associated with increasing enrichments and burnup for spent LWR fuel as they affect the areas of criticality safety, thermal analysis (decay heat), and shielding analysis of spent fuel transport and storage casks. To facilitate identifying the changes in the spent fuel compositions that most directly impact these application areas, the dominant nuclides in each area have been identified and ranked by importance. The importance is investigated as a function of increasing burnup to assist in identifying the key changes in spent fuel characteristics between conventional- and extended-burnup regimes. Studies involving both pressurized water-reactor (PWR) fuel assemblies and boiling-water-reactor (BWR) assemblies are included. This study is seen to be a necessary first step in identifying the high-burnup spent fuel characteristics that may adversely affect the accuracy of current computational methods and data, assess the potential impact on previous guidance on isotopic source terms and decay-heat values, and thus help identify areas for methods and data improvement. Finally, several recommendations on the direction of possible future code validation efforts for high-burnup spent fuel predictions are presented.

  12. Near-Capacity Coding for Discrete Multitone Systems with Impulse Noise

    Directory of Open Access Journals (Sweden)

    Kschischang Frank R

    2006-01-01

    Full Text Available We consider the design of near-capacity-achieving error-correcting codes for a discrete multitone (DMT system in the presence of both additive white Gaussian noise and impulse noise. Impulse noise is one of the main channel impairments for digital subscriber lines (DSL. One way to combat impulse noise is to detect the presence of the impulses and to declare an erasure when an impulse occurs. In this paper, we propose a coding system based on low-density parity-check (LDPC codes and bit-interleaved coded modulation that is capable of taking advantage of the knowledge of erasures. We show that by carefully choosing the degree distribution of an irregular LDPC code, both the additive noise and the erasures can be handled by a single code, thus eliminating the need for an outer code. Such a system can perform close to the capacity of the channel and for the same redundancy is significantly more immune to the impulse noise than existing methods based on an outer Reed-Solomon (RS code. The proposed method has a lower implementation complexity than the concatenated coding approach.

  13. Analysis of airborne antenna systems using geometrical theory of diffraction and moment method computer codes

    Science.gov (United States)

    Hartenstein, Richard G., Jr.

    1985-08-01

    Computer codes have been developed to analyze antennas on aircraft and in the presence of scatterers. The purpose of this study is to use these codes to develop accurate computer models of various aircraft and antenna systems. The antenna systems analyzed are a P-3B L-Band antenna, an A-7E UHF relay pod antenna, and traffic advisory antenna system installed on a Bell Long Ranger helicopter. Computer results are compared to measured ones with good agreement. These codes can be used in the design stage of an antenna system to determine the optimum antenna location and save valuable time and costly flight hours.

  14. Coupled CFD - system-code simulation of a gas cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yizhou; Rizwan-uddin, E-mail: yizhou.yan@shawgrp.com, E-mail: rizwan@illinois.edu [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, IL(United States)

    2011-07-01

    A generic coupled CFD - system-code thermal hydraulic simulation approach was developed based on FLUENT and RELAP-3D, and applied to LWRs. The flexibility of the coupling methodology enables its application to advanced nuclear energy systems. Gas Turbine - Modular Helium Reactor (GT-MHR) is a Gen IV reactor design which can benefit from this innovative coupled simulation approach. Mixing in the lower plenum of the GT-MHR is investigated here using the CFD - system-code coupled simulation tool. Results of coupled simulations are presented and discussed. The potential of the coupled CFD - system-code approach for next generation of nuclear power plants is demonstrated. (author)

  15. Finite mixture models for sensitivity analysis of thermal hydraulic codes for passive safety systems analysis

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, Francesco, E-mail: francesco.dimaio@polimi.it [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Nicola, Giancarlo [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Zio, Enrico [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Chair on System Science and Energetic Challenge Fondation EDF, Ecole Centrale Paris and Supelec, Paris (France); Yu, Yu [School of Nuclear Science and Engineering, North China Electric Power University, 102206 Beijing (China)

    2015-08-15

    Highlights: • Uncertainties of TH codes affect the system failure probability quantification. • We present Finite Mixture Models (FMMs) for sensitivity analysis of TH codes. • FMMs approximate the pdf of the output of a TH code with a limited number of simulations. • The approach is tested on a Passive Containment Cooling System of an AP1000 reactor. • The novel approach overcomes the results of a standard variance decomposition method. - Abstract: For safety analysis of Nuclear Power Plants (NPPs), Best Estimate (BE) Thermal Hydraulic (TH) codes are used to predict system response in normal and accidental conditions. The assessment of the uncertainties of TH codes is a critical issue for system failure probability quantification. In this paper, we consider passive safety systems of advanced NPPs and present a novel approach of Sensitivity Analysis (SA). The approach is based on Finite Mixture Models (FMMs) to approximate the probability density function (i.e., the uncertainty) of the output of the passive safety system TH code with a limited number of simulations. We propose a novel Sensitivity Analysis (SA) method for keeping the computational cost low: an Expectation Maximization (EM) algorithm is used to calculate the saliency of the TH code input variables for identifying those that most affect the system functional failure. The novel approach is compared with a standard variance decomposition method on a case study considering a Passive Containment Cooling System (PCCS) of an Advanced Pressurized reactor AP1000.

  16. The calculational VVER burnup Credit Benchmark No.3 results with the ENDF/B-VI rev.5 (1999)

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Gual, Maritza [Centro de Tecnologia Nuclear, La Habana (Cuba). E-mail: mrgual@ctn.isctn.edu.cu

    2000-07-01

    The purpose of this papers to present the results of CB3 phase of the VVER calculational benchmark with the recent evaluated nuclear data library ENDF/B-VI Rev.5 (1999). This results are compared with the obtained from the other participants in the calculations (Czech Republic, Finland, Hungary, Slovaquia, Spain and the United Kingdom). The phase (CB3) of the VVER calculation benchmark is similar to the Phase II-A of the OECD/NEA/INSC BUC Working Group benchmark for PWR. The cases without burnup profile (BP) were performed with the WIMS/D-4 code. The rest of the cases have been carried with DOTIII discrete ordinates code. The neutron library used was the ENDF/B-VI rev. 5 (1999). The WIMS/D-4 (69 groups) is used to collapse cross sections from the ENDF/B-VI Rev. 5 (1999) to 36 groups working library for 2-D calculations. This work also comprises the results of CB1 (obtained with ENDF/B-VI rev. 5 (1999), too) and CB3 for cases with Burnup of 30 MWd/TU and cooling time of 1 and 5 years and for case with Burnup of 40 MWd/TU and cooling time of 1 year. (author)

  17. Application of burnup credit with partial boron credit to PWR spent fuel storage pools

    International Nuclear Information System (INIS)

    The outcome of performing a burnup credit criticality safety analysis of a PWR spent fuel storage pool is the determination of burnup credit loading curves BLC=BLC(e) for the spent fuel storage racks designed for burnup credit, cp. Reference. A burnup credit loading curve BLC=BLC(e) specifies the loading criterion by indicating the minimum burnup BLC(e) necessary for the fuel assembly with a specific initial enrichment e to be placed in storage racks designed for burnup credit. (orig.)

  18. OECD/NEA burnup credit criticality benchmark. Result of phase IIA

    International Nuclear Information System (INIS)

    The report describes the final result of the Phase IIA of the Burnup Credit Criticality Benchmark conducted by OECD/NEA. In the Phase IIA benchmark problems, the effect of an axial burnup profile of PWR spent fuels on criticality (end effect) has been studied. The axial profiles at 10, 30 and 50 GWd/t burnup have been considered. In total, 22 results from 18 institutes of 10 countries have been submitted. The calculated multiplication factors from the participants have lain within the band of ± 1% Δk. For the irradiation up to 30 GWd/t, the end effect has been found to be less than 1.0% Δk. But, for the 50 GWd/t case, the effect is more than 4.0% Δk when both actinides and FPs are taken into account, whereas it remains less than 1.0% Δk when only actinides are considered. The fission density data have indicated the importance end regions have in the criticality safety analysis of spent fuel systems. (author)

  19. Benchmark analyses of sodium convection in the upper plenum of the MONJU reactor vessel - Comparison between plant system analysis code CERES and CFD code -

    International Nuclear Information System (INIS)

    In the CRP of IAEA, the data of the upper plenum geometry of the prototype FBR“MONJU” and the boundary conditions of the plant trip test were provided by JAEA. A plant system analysis code CERES for FBRs was developed by CRIEPI. To verify the CERES code, analyses had been performed for the system test of the MONJU, the results of which showed good agreement with the test. However, the difficulty of accurately reproducing the temperature variation arising from a complex flow in the upper plenum was identified. By using the general-purpose analysis code STAR-CCM+, detailed analysis in the upper plenum was enabled. Based on comparison between analyses of the CERES and STAR-CCM+ codes, parameters that had to be considered to simulate the flow pattern appropriately for plant system analysis codes were discussed. And, the analysis capability of CERES code with appropriate parameter was able to be confirmed. (author)

  20. Implantation of Magint-Maggraf code in the Microvax-3600 system

    International Nuclear Information System (INIS)

    An auxiliary code, named MAGGRAF, was developed and implemented on the MicroVAX-3600 system of the Plasma Laboratory at the Institute for Space Research, in order to perform the graphical output of the numerical results provided by the magnetic field calculation code MAGINT. In this report we present a brief description of the graphical code, of the parameters which specify the different output options, and of the structure of the data file containing these parameters. Some examples are shown to illustrate the versatility of the code, as well as the quality of the graphs. (author)

  1. Demonstration of Vibrational Braille Code Display Using Large Displacement Micro-Electro-Mechanical Systems Actuators

    Science.gov (United States)

    Watanabe, Junpei; Ishikawa, Hiroaki; Arouette, Xavier; Matsumoto, Yasuaki; Miki, Norihisa

    2012-06-01

    In this paper, we present a vibrational Braille code display with large-displacement micro-electro-mechanical systems (MEMS) actuator arrays. Tactile receptors are more sensitive to vibrational stimuli than to static ones. Therefore, when each cell of the Braille code vibrates at optimal frequencies, subjects can recognize the codes more efficiently. We fabricated a vibrational Braille code display that used actuators consisting of piezoelectric actuators and a hydraulic displacement amplification mechanism (HDAM) as cells. The HDAM that encapsulated incompressible liquids in microchambers with two flexible polymer membranes could amplify the displacement of the MEMS actuator. We investigated the voltage required for subjects to recognize Braille codes when each cell, i.e., the large-displacement MEMS actuator, vibrated at various frequencies. Lower voltages were required at vibration frequencies higher than 50 Hz than at vibration frequencies lower than 50 Hz, which verified that the proposed vibrational Braille code display is efficient by successfully exploiting the characteristics of human tactile receptors.

  2. Development of environmental dose assessment system (EDAS) code of PC version

    CERN Document Server

    Taki, M; Kobayashi, H; Yamaguchi, T

    2003-01-01

    A computer code (EDAS) was developed to assess the public dose for the safety assessment to get the license of nuclear reactor operation. This code system is used for the safety analysis of public around the nuclear reactor in normal operation and severe accident. This code was revised and composed for personal computer user according to the Nuclear Safety Guidelines reflected the ICRP1990 recommendation. These guidelines are revised by Nuclear Safety Commission on March, 2001, which are 'Weather analysis guideline for the safety assessment of nuclear power reactor', 'Public dose around the facility assessment guideline corresponding to the objective value for nuclear power light water reactor' and 'Public dose assessment guideline for safety review of nuclear power light water reactor'. This code has been already opened for public user by JAERI, and English version code and user manual are also prepared. This English version code is helpful for international cooperation concerning the nuclear safety assessme...

  3. A good performance watermarking LDPC code used in high-speed optical fiber communication system

    Science.gov (United States)

    Zhang, Wenbo; Li, Chao; Zhang, Xiaoguang; Xi, Lixia; Tang, Xianfeng; He, Wenxue

    2015-07-01

    A watermarking LDPC code, which is a strategy designed to improve the performance of the traditional LDPC code, was introduced. By inserting some pre-defined watermarking bits into original LDPC code, we can obtain a more correct estimation about the noise level in the fiber channel. Then we use them to modify the probability distribution function (PDF) used in the initial process of belief propagation (BP) decoding algorithm. This algorithm was tested in a 128 Gb/s PDM-DQPSK optical communication system and results showed that the watermarking LDPC code had a better tolerances to polarization mode dispersion (PMD) and nonlinearity than that of traditional LDPC code. Also, by losing about 2.4% of redundancy for watermarking bits, the decoding efficiency of the watermarking LDPC code is about twice of the traditional one.

  4. A NEW UEP SCHEME FOR ROBUST VIDEO TRANSMISSION IN LDPC CODED MIMO-OFDM SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Ru Congchong; Zheng Haifeng; Yin Liuguo; Lu Jianhua; Chen Changwen

    2007-01-01

    In order to improve the video transmission performance in Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing(MIMO-OFDM)system,a new scheme,which integrates Multiple Description Coding(MDC),Low Density Parity Check(LDPC)coding and hybrid space time coding,is proposed in this letter.In particular,a hybrid space time coding algorithm is combined with LDPC codes to perform Unequal Error Protection(UEP)of MDC encoded video streams.Comparing with the UEP transmission with only LDPC codes,the proposed scheme achieves more than 1dB gain in terms of Signal to Noise Ratio(SNR)when the Peak Signal to Noise Ratio(PSNR)of reconstructed video is above 30dB.

  5. PERFORMANCE ANALYSIS OF OPTICAL CDMA SYSTEM USING VC CODE FAMILY UNDER VARIOUS OPTICAL PARAMETERS

    Directory of Open Access Journals (Sweden)

    HASSAN YOUSIF AHMED

    2012-06-01

    Full Text Available The intent of this paper is to study the performance of spectral-amplitude coding optical code-division multiple-access (OCDMA systems using Vector Combinatorial (VC code under various optical parameters. This code can be constructed by an algebraic way based on Euclidian vectors for any positive integer number. One of the important properties of this code is that the maximum cross-correlation is always one which means that multi-user interference (MUI and phase induced intensity noise are reduced. Transmitter and receiver structures based on unchirped fiber Bragg grating (FBGs using VC code and taking into account effects of the intensity, shot and thermal noise sources is demonstrated. The impact of the fiber distance effects on bit error rate (BER is reported using a commercial optical systems simulator, virtual photonic instrument, VPITM. The VC code is compared mathematically with reported codes which use similar techniques. We analyzed and characterized the fiber link, received power, BER and channel spacing. The performance and optimization of VC code in SAC-OCDMA system is reported. By comparing the theoretical and simulation results taken from VPITM, we have demonstrated that, for a high number of users, even if data rate is higher, the effective power source is adequate when the VC is used. Also it is found that as the channel spacing width goes from very narrow to wider, the BER decreases, best performance occurs at a spacing bandwidth between 0.8 and 1 nm. We have shown that the SAC system utilizing VC code significantly improves the performance compared with the reported codes.

  6. The Marriage of Residential Energy Codes and Rating Systems: Conflict Resolution or Just Conflict?

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Zachary T.; Mendon, Vrushali V.

    2014-08-21

    After three decades of coexistence at a distance, model residential energy codes and residential energy rating systems have come together in the 2015 International Energy Conservation Code. At the October, 2013, International Code Council’s Public Comment Hearing, a new compliance path based on an Energy Rating Index was added to the IECC. Although not specifically named in the code, RESNET’s HERS rating system is the likely candidate Index for most jurisdictions. While HERS has been a mainstay in various beyond-code programs for many years, its direct incorporation into the most popular model energy code raises questions about the equivalence of a HERS-based compliance path and the traditional IECC performance compliance path, especially because the two approaches use different efficiency metrics, are governed by different simulation rules, and have different scopes with regard to energy impacting house features. A detailed simulation analysis of more than 15,000 house configurations reveals a very large range of HERS Index values that achieve equivalence with the IECC’s performance path. This paper summarizes the results of that analysis and evaluates those results against the specific Energy Rating Index values required by the 2015 IECC. Based on the home characteristics most likely to result in disparities between HERS-based compliance and performance path compliance, potential impacts on the compliance process, state and local adoption of the new code, energy efficiency in the next generation of homes subject to this new code, and future evolution of model code formats are discussed.

  7. HDL code analysis for ASICs in mobile systems

    OpenAIRE

    Wickberg, Fredrik

    2007-01-01

    The complex work of designing new ASICs today and the increasing costs of time to market (TTM) delays are putting high responsibility on the research and development teams to make fault free designs. The main purpose of implementing a static rule checking tool in the design flow today is to find errors and bugs in the hardware definition language (HDL) code as fast and soon as possible. The sooner you find a bug in the design, the shorter the turnaround time becomes, and thereby both time and...

  8. Applications of ''candle'' burn-up strategy to several reactors

    International Nuclear Information System (INIS)

    The new burn-up strategy CANDLE is proposed, and the calculation procedure for its equilibrium state is presented. Using this strategy, the power shape does not change as time passes, and the excess reactivity and reactivity coefficient are constant during burn-up. No control mechanism for the burn-up reactivity is required, and power control is very easy. The reactor lifetime can be prolonged by elongating the core height. This burn-up strategy can be applied to several kinds of reactors whose maximum neutron multiplication factor changes from less than unity to more than unity, and then to less than unity. In the present paper it is applied to some fast reactors, thus requiring some fissile material such as plutonium for the nuclear ignition region of the core, but only natural uranium is required for the other region of the initial reactor and for succeeding reactors. The drift speed of the burning region for this reactor is about 4 cm/year, which is a preferable value for designing a long-life reactor. The average burn-up of the spent fuel is about 40%; that is, equivalent to 40% utilisation of the natural uranium without the reprocessing and enrichment. (author)

  9. Burnup credit in nuclear waste transport: An economic analysis

    International Nuclear Information System (INIS)

    The US DOE is responsible for transporting nuclear spent fuel from commercial reactors to monitored retrievable storage (MRS) facilities and/or to repositories. Current plans call for approximately 110,000 metric tons uranium (MTU) to be transported over approximately 40 years beginning in 1998. Because of the large volume of spent fuel to be transported, new generations of spent fuel transportation casks are being planned. These casks will embody the latest technology and will be designated to accommodate the spent fuel in a way that maximizes the overall efficiency of the cask. In planning for the new generation of transport casks, the DOE is investigating the possibility of tailoring the cask design for the extent to which spent fuel has been used in the reactors, or, for spent fuel burnup. Granting design credit for burnup would allow one to fabricate casks with relatively larger capacities than would be possible otherwise. The remainder of the paper discusses the economic implications of using burnup credit in cask design, discusses the approach used in analyzing the economics of burnup credit, describes the results of the analysis, and offers some conclusions about the economic value of the burnup credit option

  10. Analysis of Coded FHSS Systems with Multiple Access Interference over Generalized Fading Channels

    OpenAIRE

    Zummo SalamA

    2008-01-01

    Abstract We study the effect of interference on the performance of coded FHSS systems. This is achieved by modeling the physical channel in these systems as a block fading channel. In the derivation of the bit error probability over Nakagami fading channels, we use the exact statistics of the multiple access interference (MAI) in FHSS systems. Due to the mathematically intractable expression of the Rician distribution, we use the Gaussian approximation to derive the error probability of coded...

  11. The application of PDA and 2D bar code in material fuel storage management system

    International Nuclear Information System (INIS)

    This paper extends a management system based on PDA and 2D bar code technology, system design and solutions concerned with domestic transfer, storehouse entry and setting, transfer among storehouses, physical inventory are described as well. The system fits business processes well and optimizes data acquisition and processing effectively by u sing the following key technologies: bar code material and paste stand under radioactive conditions, two dimensional storage space emulation, information cascade protection. (authors)

  12. Introduction to Coding Theory for Flow Equations of Complex Systems Models

    OpenAIRE

    Nescolarde Selva, Josué; Usó i Domènech, Josep Lluís; Lloret Climent, Miguel

    2014-01-01

    The modeling of complex dynamic systems depends on the solution of a differential equations system. Some problems appear because we do not know the mathematical expressions of the said equations. Enough numerical data of the system variables are known. The authors, think that it is very important to establish a code between the different languages to let them codify and decodify information. Coding permits us to reduce the study of some objects to others. Mathematical expressions are used to ...

  13. Nuclear fuel behaviour modelling at high burnup and its experimental support. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    The Technical Committee Meeting (TCM) included separate sessions on the specific topics of fuel thermal performance and fission product retention. On thermal performance, it is apparent that the capability exists to measure conductivity in high burnup fuel either by out-of-pile measurement or by instrumentation of test reactor rods. State-of-the-art modelling codes contain models for the conductivity degradation process, and hence adequate predictions of fuel temperature are achievable. Concerning fission product release, it is clear that many groups around the world are actively investigating the subject, with experimental and modelling programmes being pursued. However, a general consensus on the exact mechanisms of gas release and related gas bubble swelling has yet to emerge, even at medium burnup levels. Fission gas phenomena, not only the release to open volumes, but the whole sequence of processes taking place prior to this, need to be modelled in any modern fuel performance code. The presence of gaseous fission products may generate rapid fuel swelling during power transients, and this can cause PCI and rod failure. At high burnups, the quantity of released gases could give rise to pressures exceeding the safe limits. Modelling of pellet-cladding interaction (PCI) effects during transient operation is also an active area of study for many groups. In some situations a purely empirical approach to failure modelling can be justified, while for other applications a more detailed mechanistic approach is required. Another aspect of cladding modelling which was featured at the TCM concerned corrosion and hydriding. Although this issue can be the main life-limiting factor on fuel duty, it is apparent that modelling methods, and the experimental measurement techniques that underpin them, are adequate. A session was included on MOX fuel modelling. Substantial programmes of work, especially by the MOX vendors, appear to be underway to bring the level of understanding

  14. Thermal-Hydraulic System Codes in Nulcear Reactor Safety and Qualification Procedures

    Directory of Open Access Journals (Sweden)

    Alessandro Petruzzi

    2008-01-01

    Full Text Available In the last four decades, large efforts have been undertaken to provide reliable thermal-hydraulic system codes for the analyses of transients and accidents in nuclear power plants. Whereas the first system codes, developed at the beginning of the 1970s, utilized the homogenous equilibrium model with three balance equations to describe the two-phase flow, nowadays the more advanced system codes are based on the so-called “two-fluid model” with separation of the water and vapor phases, resulting in systems with at least six balance equations. The wide experimental campaign, constituted by the integral and separate effect tests, conducted under the umbrella of the OECD/CSNI was at the basis of the development and validation of the thermal-hydraulic system codes by which they have reached the present high degree of maturity. However, notwithstanding the huge amounts of financial and human resources invested, the results predicted by the code are still affected by errors whose origins can be attributed to several reasons as model deficiencies, approximations in the numerical solution, nodalization effects, and imperfect knowledge of boundary and initial conditions. In this context, the existence of qualified procedures for a consistent application of qualified thermal-hydraulic system code is necessary and implies the drawing up of specific criteria through which the code-user, the nodalization, and finally the transient results are qualified.

  15. Development of a system of computer codes for severe accident analyses and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Hong; Cheon, Moon Heon; Cho, Nam jin; No, Hui Cheon; Chang, Hyeon Seop; Moon, Sang Kee; Park, Seok Jeong; Chung, Jee Hwan [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1991-12-15

    The objectives of this study is to develop a system of computer codes for postulated severe accident analyses in Nuclear Power Plants. This system of codes is necessary to conduct individual plant examination for domestic nuclear power plants. As a result of this study, one can conduct severe accident assessments more easily, and can extract the plant-specific vulnerabilities for severe accidents and at the same time the ideas for enhancing overall accident resistance. The scope and contents of this study are as follows : development of a system of computer codes for severe accident analyses, development of severe accident management strategy.

  16. Development of a system of computer codes for severe accident analyses and its applications

    International Nuclear Information System (INIS)

    The objectives of this study is to develop a system of computer codes for postulated severe accident analyses in Nuclear Power Plants. This system of codes is necessary to conduct individual plant examination for domestic nuclear power plants. As a result of this study, one can conduct severe accident assessments more easily, and can extract the plant-specific vulnerabilities for severe accidents and at the same time the ideas for enhancing overall accident resistance. The scope and contents of this study are as follows : development of a system of computer codes for severe accident analyses, development of severe accident management strategy

  17. WWER Expert System for Fuel Failure Analysis Using Data on Primary Coolant Activity

    International Nuclear Information System (INIS)

    The computer expert system for fuel failure analysis of WWER during operation is presented. The diagnostics is based on the measurement of specific activity of reference nuclides in reactor primary coolant and application of a computer code for the data interpretation. The data analysis includes an evaluation of tramp uranium mass in reactor core, detection of failures by iodine and caesium spikes, evaluation of burnup of defective fuel. Evaluation of defective fuel burnup was carried out by applying the relation of caesium nuclides activity in spikes and relations of activities of gaseous fission products for steady state operational conditions. The method of burnup evaluation of defective fuel by use of fission gas activity is presented in detail. The neural-network analysis is performed for determination of failed fuel rod number and defect size. Results of the expert system application are illustrated for several fuel campaigns on operating WWER NPPs. (authors)

  18. Use of burnup credit in criticality evaluation for spent fuel storage pool

    Energy Technology Data Exchange (ETDEWEB)

    Chon, Je Keun; Kim, Jae Chun; Koh, Duck Joon; Kim Byung Tae [Nuclear Environment Technology Institute, Korea Electric Power Corporation, Taejon (Korea, Republic of)

    1999-07-01

    Boraflex is a polymer based material which is used as matrix to contain a neutron absorber material, boron carbide. In a typical spent fuel pool the irradiated Boraflex has been known as a significant source of silica. Since 1996, it was reported that elevated silica levels were measured in the Ulchin Unit 2 spent fuel pool water. Therefore, the Ulchin Unit 2 spent fuel storage racks were needed to be reanalyzed to allow storage of fuel assemblies with normal enrichments up to 5.0w/o U-235 in all storage cell locations using credit for burnup. The analysis does not take any credit for the presence of the spent fuel rack Boraflex neutron absorber panels. In region 2, the calculations were performed by assuming in an infinite radial array of storage cells. No credit is taken for axial or radial neutron leakage. The water in the spent fuel storage pool was assumed to be pure. In the evaluation of the Ulchin Unit 2 spent fuel storage pool, criticality analyses were performed with the CASMO-3 code. A reactivity uncertainty in the fuel depletion calculations was combined with other calculational uncertainty. The manufacturing tolerances were considered, as well. From the calculation, the acceptable burnup domain in region 2 of the spent fuel storage pool. where the curve identifies conditions of equal reactivity for various initial enrichments between 1.6w/o and 5.0w/o, was evaluated. In region 2, the maximum k{sub e}ff including all uncertainties, is 0.94648 for the enrichment-burnup combination from loading curve. (author)

  19. High burnup (41 - 61 GWd/tU) BWR fuel behavior under reactivity initiated accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Takehiko; Kusagaya, Kazuyuki; Yoshinaga, Makio; Uetsuka, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    High burnup boiling water reactor (BWR) fuel was pulse irradiated in the Nuclear Safety Research Reactor (NSRR) to investigate fuel behavior under cold startup reactivity initiated accident (RIA) conditions. Temperature, deformation, failure, and fission gas release behavior under the simulated RIA condition was studied in the tests. Fuel failure due to pellet-cladding mechanical interaction (PCMI) did not occur in the tests with typical domestic BWR fuel at burnups up to 56 GWd/tU, because they had limited cladding embrittlement due to hydrogen absorption of about 100 ppm or less. However, the cladding failure occurred in tests with fuel at a burnup of 61 GWd/tU, in which the peak hydrogen content in the cladding was above 150 ppm. This type of failure was observed for the first time in BWR fuels. The cladding failure occurred at fuel enthalpies of 260 to 360 J/g (62 to 86 cal/g), which were higher than the PCMI failure thresholds decided by the Japanese Nuclear Safety Commission. From post-test examinations of the failed fuel, it was found that the crack in the BWR cladding progressed in a manner different from the one in PWR cladding failed in earlier tests, owing to its more randomly oriented hydride distribution. Because of these differences, the BWR fuel was judged to have failed at hydrogen contents lower than those of the PWR fuel. Comparison of the test results with code calculations revealed that the PCMI failure was caused by thermal expansion of pellets, rather than by the fission gas expansion in the pellets. The gas expansion, however, was found to cause large cladding hoop deformation later after the cladding temperature escalated. (author)

  20. Use of burnup credit in criticality evaluation for spent fuel storage pool

    International Nuclear Information System (INIS)

    Boraflex is a polymer based material which is used as matrix to contain a neutron absorber material, boron carbide. In a typical spent fuel pool the irradiated Boraflex has been known as a significant source of silica. Since 1996, it was reported that elevated silica levels were measured in the Ulchin Unit 2 spent fuel pool water. Therefore, the Ulchin Unit 2 spent fuel storage racks were needed to be reanalyzed to allow storage of fuel assemblies with normal enrichments up to 5.0w/o U-235 in all storage cell locations using credit for burnup. The analysis does not take any credit for the presence of the spent fuel rack Boraflex neutron absorber panels. In region 2, the calculations were performed by assuming in an infinite radial array of storage cells. No credit is taken for axial or radial neutron leakage. The water in the spent fuel storage pool was assumed to be pure. In the evaluation of the Ulchin Unit 2 spent fuel storage pool, criticality analyses were performed with the CASMO-3 code. A reactivity uncertainty in the fuel depletion calculations was combined with other calculational uncertainty. The manufacturing tolerances were considered, as well. From the calculation, the acceptable burnup domain in region 2 of the spent fuel storage pool. where the curve identifies conditions of equal reactivity for various initial enrichments between 1.6w/o and 5.0w/o, was evaluated. In region 2, the maximum keff including all uncertainties, is 0.94648 for the enrichment-burnup combination from loading curve. (author)