WorldWideScience

Sample records for burnup code system

  1. The octopus burnup and criticality code system

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, J.L.; Kuijper, J.C. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Leege, P.F.A. de

    1996-09-01

    The OCTOPUS burnup and criticality code system is described. This system links the spectrum codes from the SCALE4.1, WIMS7 and MCNP4A packages to the ORIGEN-S and FISPACT4.2 fuel depletion and activation codes, which enables us to perform very accurate burnup calculations in complicated three-dimensional geometries. The data used by all codes are consistently based on the JEF2.2 evaluated nuclear data file. Some special features of OCTOPUS not available in other codes are described, as well as the validation of the system. (author)

  2. The OCTOPUS burnup and criticality code system

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, J.L. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Kuijper, J.C. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Leege, P.F.A. de [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.

    1996-06-01

    The OCTOPUS burnup and criticality code system is described. This system links the spectrum codes from the SCALE4.1, WIMS7 and MCNP4A packages to the ORIGEN-S and FISPACT4.2 fuel depletion and activation codes, which enables us to perform very accurate burnup calculations in complicated three-dimensional goemetries. The data used by all codes are consistently based on the JEF2.2 evaluated nuclear data file. Some special features of OCTOPUS not available in other codes are described, as well as the validation of the system. (orig.).

  3. The octopus burnup and criticality code system

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Kuijper, J.C.; Leege, P.F.A. de.

    1996-01-01

    The OCTOPUS burnup and criticality code system is described. This system links the spectrum codes from the SCALE4.1, WIMS7 and MCNP4A packages to the ORIGEN-S and FISPACT4.2 fuel depletion and activation codes, which enables us to perform very accurate burnup calculations in complicated three-dimensional geometries. The data used by all codes are consistently based on the JEF2.2 evaluated nuclear data file. Some special features of OCTOPUS not available in other codes are described, as well as the validation of the system. (author)

  4. The OCTOPUS burnup and criticality code system

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Kuijper, J.C.; Leege, P.F.A. de

    1996-06-01

    The OCTOPUS burnup and criticality code system is described. This system links the spectrum codes from the SCALE4.1, WIMS7 and MCNP4A packages to the ORIGEN-S and FISPACT4.2 fuel depletion and activation codes, which enables us to perform very accurate burnup calculations in complicated three-dimensional goemetries. The data used by all codes are consistently based on the JEF2.2 evaluated nuclear data file. Some special features of OCTOPUS not available in other codes are described, as well as the validation of the system. (orig.)

  5. Burnup calculation code system COMRAD96

    International Nuclear Information System (INIS)

    Suyama, Kenya; Masukawa, Fumihiro; Ido, Masaru; Enomoto, Masaki; Takyu, Shuiti; Hara, Toshiharu.

    1997-06-01

    COMRAD was one of the burnup code system developed by JAERI. COMRAD96 is a transfered version of COMRAD to Engineering Work Station. It is divided to several functional modules, 'Cross Section Treatment', 'Generation and Depletion Calculation', and 'Post Process'. It enables us to analyze a burnup problem considering a change of neutron spectrum using UNITBURN. Also it can display the γ Spectrum on a terminal. This report is the general description and user's manual of COMRAD96. (author)

  6. Burnup calculation code system COMRAD96

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Masukawa, Fumihiro; Ido, Masaru; Enomoto, Masaki; Takyu, Shuiti; Hara, Toshiharu

    1997-06-01

    COMRAD was one of the burnup code system developed by JAERI. COMRAD96 is a transfered version of COMRAD to Engineering Work Station. It is divided to several functional modules, `Cross Section Treatment`, `Generation and Depletion Calculation`, and `Post Process`. It enables us to analyze a burnup problem considering a change of neutron spectrum using UNITBURN. Also it can display the {gamma} Spectrum on a terminal. This report is the general description and user`s manual of COMRAD96. (author)

  7. Systemization of burnup sensitivity analysis code. 2

    International Nuclear Information System (INIS)

    Tatsumi, Masahiro; Hyoudou, Hideaki

    2005-02-01

    Towards the practical use of fast reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoint of improvements on plant efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by the development of adjusted nuclear library using the cross-section adjustment method, in which the results of criticality experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor 'JOYO'. The analysis of burnup characteristics is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, a burnup sensitivity analysis code, SAGEP-BURN, has been developed and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to users due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functions in the existing large system. It is not sufficient to unify each computational component for the following reasons; the computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore, it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion. For

  8. Integrated burnup calculation code system SWAT

    International Nuclear Information System (INIS)

    Suyama, Kenya; Hirakawa, Naohiro; Iwasaki, Tomohiko.

    1997-11-01

    SWAT is an integrated burnup code system developed for analysis of post irradiation examination, transmutation of radioactive waste, and burnup credit problem. It enables us to analyze the burnup problem using neutron spectrum depending on environment of irradiation, combining SRAC which is Japanese standard thermal reactor analysis code system and ORIGEN2 which is burnup code widely used all over the world. SWAT makes effective cross section library based on results by SRAC, and performs the burnup analysis with ORIGEN2 using that library. SRAC and ORIGEN2 can be called as external module. SWAT has original cross section library on based JENDL-3.2 and libraries of fission yield and decay data prepared from JNDC FP Library second version. Using these libraries, user can use latest data in the calculation of SWAT besides the effective cross section prepared by SRAC. Also, User can make original ORIGEN2 library using the output file of SWAT. This report presents concept and user's manual of SWAT. (author)

  9. Systemization of burnup sensitivity analysis code

    International Nuclear Information System (INIS)

    Tatsumi, Masahiro; Hyoudou, Hideaki

    2004-02-01

    To practical use of fact reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoints of improvements on plant efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by development of adjusted nuclear library using the cross-section adjustment method, in which the results of critical experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor core 'JOYO'. The analysis of burnup characteristics is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, development of a analysis code for burnup sensitivity, SAGEP-BURN, has been done and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to user due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functionalities in the existing large system. It is not sufficient to unify each computational component for some reasons; computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion. For this

  10. Revised SWAT. The integrated burnup calculation code system

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya; Mochizuki, Hiroki [Department of Fuel Cycle Safety Research, Nuclear Safety Research Center, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Kiyosumi, Takehide [The Japan Research Institute, Ltd., Tokyo (Japan)

    2000-07-01

    SWAT is an integrated burnup code system developed for analysis of post irradiation examination, transmutation of radioactive waste, and burnup credit problem. This report shows an outline and a user's manual of revised SWAT. This revised SWAT includes expansion of functions, increasing supported machines, and correction of several bugs reported from users of previous SWAT. (author)

  11. Revised SWAT. The integrated burnup calculation code system

    International Nuclear Information System (INIS)

    Suyama, Kenya; Mochizuki, Hiroki; Kiyosumi, Takehide

    2000-07-01

    SWAT is an integrated burnup code system developed for analysis of post irradiation examination, transmutation of radioactive waste, and burnup credit problem. This report shows an outline and a user's manual of revised SWAT. This revised SWAT includes expansion of functions, increasing supported machines, and correction of several bugs reported from users of previous SWAT. (author)

  12. Systemization of burnup sensitivity analysis code (2) (Contract research)

    International Nuclear Information System (INIS)

    Tatsumi, Masahiro; Hyoudou, Hideaki

    2008-08-01

    Towards the practical use of fast reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoint of improvements on plant economic efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by the development of adjusted nuclear library using the cross-section adjustment method, in which the results of critical experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor 'JOYO'. The analysis of burnup characteristic is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, a burnup sensitivity analysis code, SAGEP-BURN, has been developed and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to users due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functions in the existing large system. It is not sufficient to unify each computational component for the following reasons: the computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore, it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion

  13. Restructuring of burnup sensitivity analysis code system by using an object-oriented design approach

    International Nuclear Information System (INIS)

    Kenji, Yokoyama; Makoto, Ishikawa; Masahiro, Tatsumi; Hideaki, Hyoudou

    2005-01-01

    A new burnup sensitivity analysis code system was developed with help from the object-oriented technique and written in Python language. It was confirmed that they are powerful to support complex numerical calculation procedure such as reactor burnup sensitivity analysis. The new burnup sensitivity analysis code system PSAGEP was restructured from a complicated old code system and reborn as a user-friendly code system which can calculate the sensitivity coefficients of the nuclear characteristics considering multicycle burnup effect based on the generalized perturbation theory (GPT). A new encapsulation framework for conventional codes written in Fortran was developed. This framework supported to restructure the software architecture of the old code system by hiding implementation details and allowed users of the new code system to easily calculate the burnup sensitivity coefficients. The framework can be applied to the other development projects since it is carefully designed to be independent from PSAGEP. Numerical results of the burnup sensitivity coefficient of a typical fast breeder reactor were given with components based on GPT and the multicycle burnup effects on the sensitivity coefficient were discussed. (authors)

  14. CHAR and BURNMAC - burnup modules of the AUS neutronics code system

    International Nuclear Information System (INIS)

    Robinson, G.S.

    1986-03-01

    In the AUS neutronics code system, the burnup module CHAR solves the nuclide depletion equations by an analytic technique in a number of spatial zones. CHAR is usually used as one component of a lattice burnup calculation but contains features which also make it suitable for some global burnup calculations. BURNMAC is a simple accounting module based on the assumption that cross sections for a rector zone depend only on irradiation. BURNMAC is used as one component of a global calculation in which burnup is achieved by interpolation in the cross sections produced from a previous lattice calculation

  15. SWAT3.1 - the integrated burnup code system driving continuous energy Monte Carlo codes MVP and MCNP

    International Nuclear Information System (INIS)

    Suyama, Kenya; Mochizuki, Hiroki; Takada, Tomoyuki; Ryufuku, Susumu; Okuno, Hiroshi; Murazaki, Minoru; Ohkubo, Kiyoshi

    2009-05-01

    Integrated burnup calculation code system SWAT is a system that combines neutronics calculation code SRAC,which is widely used in Japan, and point burnup calculation code ORIGEN2. It has been used to evaluate the composition of the uranium, plutonium, minor actinides and the fission products in the spent nuclear fuel. Based on this idea, the integrated burnup calculation code system SWAT3.1 was developed by combining the continuous energy Monte Carlo code MVP and MCNP, and ORIGEN2. This enables us to treat the arbitrary fuel geometry and to generate the effective cross section data to be used in the burnup calculation with few approximations. This report describes the outline, input data instruction and several examples of the calculation. (author)

  16. MONTEBURNS 2.0: An Automated, Multi-Step Monte Carlo Burnup Code System

    International Nuclear Information System (INIS)

    2007-01-01

    A - Description of program or function: MONTEBURNS Version 2 calculates coupled neutronic/isotopic results for nuclear systems and produces a large number of criticality and burnup results based on various material feed/removal specifications, power(s), and time intervals. MONTEBURNS is a fully automated tool that links the LANL MCNP Monte Carlo transport code with a radioactive decay and burnup code. Highlights on changes to Version 2 are listed in the transmittal letter. Along with other minor improvements in MONTEBURNS Version 2, the option was added to use CINDER90 instead of ORIGEN2 as the depletion/decay part of the system. CINDER90 is a multi-group depletion code developed at LANL and is not currently available from RSICC, nor from the NEA Databank. This MONTEBURNS release was tested with various combinations of CCC-715/MCNPX 2.4.0, CCC-710/MCNP5, CCC-700/MCNP4C, CCC-371/ORIGEN2.2, ORIGEN2.1 and CINDER90. Perl is required software and is not included in this distribution. MCNP, ORIGEN2, and CINDER90 are not included. The following changes have been made: 1) An increase in the number of removal group information that must be provided for each material in each step in the feed input file. 2) The capability to use CINDER90 instead of ORIGEN2.1 as the depletion/decay part of the code. 3) ORIGEN2.2 can also be used instead of ORIGEN2.1 in Monteburns. 4) The correction of including the capture cross sections to metastable as well as ground states if applicable for an isotope (i.e. Am-241 and Am-243 in particular). 5) The ability to use a MCNP input file that has a title card starting with 'm' (this was a bug in the first version of Monteburns). 6) A decrease in run time for cases involving decay-only steps (power of 0.0). Monteburns does not run MCNP to calculate cross sections for a step unless it is an irradiation step. 7) The ability to change the cross section libraries used each step. If different cross section libraries are desired for multiple steps. 8

  17. KENOREST - A new coupled code system based on KENO and OREST for criticality and burnup inventory calculations

    International Nuclear Information System (INIS)

    Hesse, U.; Gmal, B.; Voggenberger, Th.; Baleanu, M.; Langenbuch, S.

    2001-01-01

    The program system KENOREST version 1998 will be presented, which is a useful tool for burnup and reactivity calculations for LWR fuel. The three-dimensional Monte Carlo code KENO-V.a is coupled with the one-dimensional GRS burnup program system OREST-98. The objective is to achieve a better modelling of plutonium and actinide build-up or burnout for advanced heterogeneous fuel assembly designs. Further objectives are directed to reliable calculations of the pin power distributions and of reactor safety parameters including axial and radial rod temperatures for fuel assemblies of modern design. The stand-alone-code KENO-V.a version is used without any changes in the program source. The OREST-98 system was developed to handle multirod problems and additional burnup dependent moderator conditions which can be applied to stretch-out simulations in the reactor. A new interface module RESPEFF between KENO and OREST transforms the 2-d or 3-d KENO flux results to the one-dimensional lattice code OREST in a fully automated manner to maintain reaction rate balance between the codes. First results for assembly multiplication factors, isotope inventories are compared with OECD results. (author)

  18. Validation of integrated burnup code system SWAT2 by the analyses of isotopic composition of spent nuclear fuel

    International Nuclear Information System (INIS)

    Suyama, K.; Mochizuki, H.; Okuno, H.; Miyoshi, Y.

    2004-01-01

    This paper provides validation results of SWAT2, the revised version of SWAT, which is a code system combining point burnup code ORIGEN2 and continuous energy Monte Carlo code MVP, by the analysis of post irradiation examinations (PIEs). Some isotopes show differences of calculation results between SWAT and SWAT2. However, generally, the differences are smaller than the error of PIE analysis that was reported in previous SWAT validation activity, and improved results are obtained for several important fission product nuclides. This study also includes comparison between an assembly and a single pin cell geometry models. (authors)

  19. SWAT4.0 - The integrated burnup code system driving continuous energy Monte Carlo codes MVP, MCNP and deterministic calculation code SRAC

    International Nuclear Information System (INIS)

    Kashima, Takao; Suyama, Kenya; Takada, Tomoyuki

    2015-03-01

    There have been two versions of SWAT depending on details of its development history: the revised SWAT that uses the deterministic calculation code SRAC as a neutron transportation solver, and the SWAT3.1 that uses the continuous energy Monte Carlo code MVP or MCNP5 for the same purpose. It takes several hours, however, to execute one calculation by the continuous energy Monte Carlo code even on the super computer of the Japan Atomic Energy Agency. Moreover, two-dimensional burnup calculation is not practical using the revised SWAT because it has problems on production of effective cross section data and applying them to arbitrary fuel geometry when a calculation model has multiple burnup zones. Therefore, SWAT4.0 has been developed by adding, to SWAT3.1, a function to utilize the deterministic code SARC2006, which has shorter calculation time, as an outer module of neutron transportation solver for burnup calculation. SWAT4.0 has been enabled to execute two-dimensional burnup calculation by providing an input data template of SRAC2006 to SWAT4.0 input data, and updating atomic number densities of burnup zones in each burnup step. This report describes outline, input data instruction, and examples of calculations of SWAT4.0. (author)

  20. Analysis of recent post irradiation tests by Japanese and French burnup analysis code systems

    International Nuclear Information System (INIS)

    Iwasaki, Tomohiko; Hiraizumi, Hiroaki; Youinou, Gilles

    2002-01-01

    Benchmark problem based on Japanese Post Irradiation Experiment (PIE) data was analyzed by Japanese burnup analysis code and French one under the cooperative research program between the Japanese University Association (JUA) in Japan and Commissariat a l'Enegie Atomique (CEA) in France. Significant discrepancies over 10% were found between the Japanese and French results for 238 Pu, 243 Am, 244 Cm, 125 Sb, 154 Eu, 134 Cs and 144 Ce. It is supposed that the difference of C/E for 243 Am and 244 Cm between Japanese results and French ones is due to the (n,gamma) reaction of 242m Am. For 125 Sb and 154 Eu, the C/E values are improved by using new cross section and fission yield libraries. (author)

  1. Quantification of the computational accuracy of code systems on the burn-up credit using experimental re-calculations; Quantifizierung der Rechengenauigkeit von Codesystemen zum Abbrandkredit durch Experimentnachrechnungen

    Energy Technology Data Exchange (ETDEWEB)

    Behler, Matthias; Hannstein, Volker; Kilger, Robert; Moser, Franz-Eberhard; Pfeiffer, Arndt; Stuke, Maik

    2014-06-15

    In order to account for the reactivity-reducing effect of burn-up in the criticality safety analysis for systems with irradiated nuclear fuel (''burnup credit''), numerical methods to determine the enrichment and burnup dependent nuclide inventory (''burnup code'') and its resulting multiplication factor k{sub eff} (''criticality code'') are applied. To allow for reliable conclusions, for both calculation systems the systematic deviations of the calculation results from the respective true values, the bias and its uncertainty, are being quantified by calculation and analysis of a sufficient number of suitable experiments. This quantification is specific for the application case under scope and is also called validation. GRS has developed a methodology to validate a calculation system for the application of burnup credit in the criticality safety analysis for irradiated fuel assemblies from pressurized water reactors. This methodology was demonstrated by applying the GRS home-built KENOREST burnup code and the criticality calculation sequence CSAS5 from SCALE code package. It comprises a bounding approach and alternatively a stochastic, which both have been exemplarily demonstrated by use of a generic spent fuel pool rack and a generic dry storage cask, respectively. Based on publicly available post irradiation examination and criticality experiments, currently the isotopes of uranium and plutonium elements can be regarded for.

  2. Fuel analysis code FAIR and its high burnup modelling capabilities

    International Nuclear Information System (INIS)

    Prasad, P.S.; Dutta, B.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1995-01-01

    A computer code FAIR has been developed for analysing performance of water cooled reactor fuel pins. It is capable of analysing high burnup fuels. This code has recently been used for analysing ten high burnup fuel rods irradiated at Halden reactor. In the present paper, the code FAIR and its various high burnup models are described. The performance of code FAIR in analysing high burnup fuels and its other applications are highlighted. (author). 21 refs., 12 figs

  3. Advanced burnup calculation code system in a subcritical state with continuous-energy Monte Carlo code for fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Matsunaka, Masayuki; Ohta, Masayuki; Miyamaru, Hiroyuki; Murata, Isao

    2009-01-01

    The fusion-fission (FF) hybrid reactor is a promising energy source that is thought to act as a bridge between the existing fission reactor and the genuine fusion reactor in the future. The burnup calculation system that aims at precise burnup calculations of a subcritical system was developed for the detailed design of the FF hybrid reactor, and the system consists of MCNP, ORIGEN, and postprocess codes. In the present study, the calculation system was substantially modified to improve the calculation accuracy and at the same time the calculation speed as well. The reaction rate estimation can be carried out accurately with the present system that uses track-length (TL) data in the continuous-energy treatment. As for the speed-up of the reaction rate calculation, a new TL data bunching scheme was developed so that only necessary TL data are used as long as the accuracy of the point-wise nuclear data is conserved. With the present system, an example analysis result for our proposed FF hybrid reactor is described, showing that the computation time could really be saved with the same accuracy as before. (author)

  4. Re-evaluation of Assay Data of Spent Nuclear Fuel obtained at Japan Atomic Energy Research Institute for validation of burnup calculation code systems

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya, E-mail: suyama.kenya@jaea.go.jp [Office of International Relations, Nuclear Safety Division, Ministry of Education, Culture, Sports, Science and Technology - Japan, 3-2-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-8959 (Japan); Murazaki, Minoru; Ohkubo, Kiyoshi [Fuel Cycle Safety Research Group, Nuclear Safety Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Nakahara, Yoshinori [Research Group for Analytical Science, Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Uchiyama, Gunzo [Fuel Cycle Safety Research Group, Nuclear Safety Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki 319-1195 (Japan)

    2011-05-15

    Highlights: > The specifications required for the analyses of the destructive assay data taken from irradiated fuel in Ohi-1 and Ohi-2 PWRs were documented in this paper. > These data were analyzed using the SWAT2.1 code, and the calculation results showed good agreement with experimental results. > These destructive assay data are suitable for the benchmarking of the burnup calculation code systems. - Abstract: The isotopic composition of spent nuclear fuels is vital data for studies on the nuclear fuel cycle and reactor physics. The Japan Atomic Energy Agency (JAEA) has been active in obtaining such data for pressurized water reactor (PWR) and boiling water reactor (BWR) fuels, and some data has already been published. These data have been registered with the international Spent Fuel Isotopic Composition Database (SFCOMPO) and widely used as international benchmarks for burnup calculation codes and libraries. In this paper, Assay Data of Spent Nuclear Fuel from two fuel assemblies irradiated in the Ohi-1 and Ohi-2 PWRs in Japan are shown. The destructive assay data from Ohi-2 have already been published. However, these data were not suitable for the benchmarking of calculation codes and libraries because several important specifications and data were not included. This paper summarizes the details of destructive assay data and specifications required for analyses of isotopic composition from Ohi-1 and Ohi-2. For precise burnup analyses, the burnup values of destructive assay samples were re-evaluated in this study. These destructive assay data were analyzed using the SWAT2.1 code, and the calculation results showed good agreement with experimental results. This indicates that the quality of destructive assay data from Ohi-1 and Ohi-2 PWRs is high, and that these destructive assay data are suitable for the benchmarking of burnup calculation code systems.

  5. A Monte Carlo burnup code linking MCNP and REBUS

    International Nuclear Information System (INIS)

    Hanan, N. A.

    1998-01-01

    The REBUS-3 burnup code, used in the ANL RERTR Program, is a very general code that uses diffusion theory (DIF3D) to obtain the fluxes required for reactor burnup analyses. Diffusion theory works well for most reactors. However, to include the effects of exact geometry and strong absorbers that are difficult to model using diffusion theory, a Monte Carlo method is required. MCNP, a general-purpose, generalized-geometry, time-dependent, Monte Carlo transport code, is the most widely used Monte Carlo code. This paper presents a linking of the MCNP code and the REBUS burnup code to perform these difficult burnup analyses. The linked code will permit the use of the full capabilities of REBUS which include non-equilibrium and equilibrium burnup analyses. Results of burnup analyses using this new linked code are also presented

  6. The DACC system. Code burnup of cell for projection of the fuel elements in the power net work PWR and BWR

    International Nuclear Information System (INIS)

    Cepraga, D.; Boeriu, St.; Gheorghiu, E.; Cristian, I.; Patrulescu, I.; Cimporescu, D.; Ciuvica, P.; Velciu, E.

    1975-01-01

    The calculation system DACC-5 is a zero-dimensional reactor physics code used to calculate the criticality and burn-up of light-water reactors. The code requires as input essential extensive reactor parameters (fuel rod radius, water density, etc.). The nuclear constants (intensive parameters) are calculated with a five-group model (2 thermal and 3 fast groups). A fitting procedure is systematically employed to reduce the computation time of the code. Zero-dimensional burn-up calculations are made in an automatic way. Part one of the paper contains the code physical model and computer structure. Part two of the paper will contain tests of DACC-5 credibility for different light-water power lattices

  7. MCB. A continuous energy Monte Carlo burnup simulation code

    International Nuclear Information System (INIS)

    Cetnar, J.; Wallenius, J.; Gudowski, W.

    1999-01-01

    A code for integrated simulation of neutrinos and burnup based upon continuous energy Monte Carlo techniques and transmutation trajectory analysis has been developed. Being especially well suited for studies of nuclear waste transmutation systems, the code is an extension of the well validated MCNP transport program of Los Alamos National Laboratory. Among the advantages of the code (named MCB) is a fully integrated data treatment combined with a time-stepping routine that automatically corrects for burnup dependent changes in reaction rates, neutron multiplication, material composition and self-shielding. Fission product yields are treated as continuous functions of incident neutron energy, using a non-equilibrium thermodynamical model of the fission process. In the present paper a brief description of the code and applied methods are given. (author)

  8. High burnup models in computer code fair

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, B K; Swami Prasad, P; Kushwaha, H S; Mahajan, S C; Kakodar, A [Bhabha Atomic Research Centre, Bombay (India)

    1997-08-01

    An advanced fuel analysis code FAIR has been developed for analyzing the behavior of fuel rods of water cooled reactors under severe power transients and high burnups. The code is capable of analyzing fuel pins of both collapsible clad, as in PHWR and free standing clad as in LWR. The main emphasis in the development of this code is on evaluating the fuel performance at extended burnups and modelling of the fuel rods for advanced fuel cycles. For this purpose, a number of suitable models have been incorporated in FAIR. For modelling the fission gas release, three different models are implemented, namely Physically based mechanistic model, the standard ANS 5.4 model and the Halden model. Similarly the pellet thermal conductivity can be modelled by the MATPRO equation, the SIMFUEL relation or the Halden equation. The flux distribution across the pellet is modelled by using the model RADAR. For modelling pellet clad interaction (PCMI)/ stress corrosion cracking (SCC) induced failure of sheath, necessary routines are provided in FAIR. The validation of the code FAIR is based on the analysis of fuel rods of EPRI project ``Light water reactor fuel rod modelling code evaluation`` and also the analytical simulation of threshold power ramp criteria of fuel rods of pressurized heavy water reactors. In the present work, a study is carried out by analysing three CRP-FUMEX rods to show the effect of various combinations of fission gas release models and pellet conductivity models, on the fuel analysis parameters. The satisfactory performance of FAIR may be concluded through these case studies. (author). 12 refs, 5 figs.

  9. High burnup models in computer code fair

    International Nuclear Information System (INIS)

    Dutta, B.K.; Swami Prasad, P.; Kushwaha, H.S.; Mahajan, S.C.; Kakodar, A.

    1997-01-01

    An advanced fuel analysis code FAIR has been developed for analyzing the behavior of fuel rods of water cooled reactors under severe power transients and high burnups. The code is capable of analyzing fuel pins of both collapsible clad, as in PHWR and free standing clad as in LWR. The main emphasis in the development of this code is on evaluating the fuel performance at extended burnups and modelling of the fuel rods for advanced fuel cycles. For this purpose, a number of suitable models have been incorporated in FAIR. For modelling the fission gas release, three different models are implemented, namely Physically based mechanistic model, the standard ANS 5.4 model and the Halden model. Similarly the pellet thermal conductivity can be modelled by the MATPRO equation, the SIMFUEL relation or the Halden equation. The flux distribution across the pellet is modelled by using the model RADAR. For modelling pellet clad interaction (PCMI)/ stress corrosion cracking (SCC) induced failure of sheath, necessary routines are provided in FAIR. The validation of the code FAIR is based on the analysis of fuel rods of EPRI project ''Light water reactor fuel rod modelling code evaluation'' and also the analytical simulation of threshold power ramp criteria of fuel rods of pressurized heavy water reactors. In the present work, a study is carried out by analysing three CRP-FUMEX rods to show the effect of various combinations of fission gas release models and pellet conductivity models, on the fuel analysis parameters. The satisfactory performance of FAIR may be concluded through these case studies. (author). 12 refs, 5 figs

  10. A Monte Carlo burnup code linking MCNP and REBUS

    International Nuclear Information System (INIS)

    Hanan, N.A.; Olson, A.P.; Pond, R.B.; Matos, J.E.

    1998-01-01

    The REBUS-3 burnup code, used in the anl RERTR Program, is a very general code that uses diffusion theory (DIF3D) to obtain the fluxes required for reactor burnup analyses. Diffusion theory works well for most reactors. However, to include the effects of exact geometry and strong absorbers that are difficult to model using diffusion theory, a Monte Carlo method is required. MCNP, a general-purpose, generalized-geometry, time-dependent, Monte Carlo transport code, is the most widely used Monte Carlo code. This paper presents a linking of the MCNP code and the REBUS burnup code to perform these difficult analyses. The linked code will permit the use of the full capabilities of REBUS which include non-equilibrium and equilibrium burnup analyses. Results of burnup analyses using this new linked code are also presented. (author)

  11. CONHOR. Code system for determination of power distribution and burnup for the HOR reactor. Version 1.0.. User's manual

    International Nuclear Information System (INIS)

    Serov, I.V.; Hoogenboom, J.E.

    1993-07-01

    The main calculational tool is the CITATION code. CITATION is used for both static and burnup calculations. The pointwise flux density and power distributions obtained from these calculations are used to obtain the values of the desired quantities at the beginning of a burnup cycle. To obtain the most trustful values of the desired quantities CONHOR employs experimental information together with the CITATION calculated flux distributions. Axially averaged foil activation rates are obtained based on both CITATION pointwise flux density distributions and measured foil activity counts. These two sets of activation rates are called the distributions of auxiliary quantities and are compared with each other in order to pick up the corrections to the U-235 number densities in fuel containing elements. The methodical corrections to the calculational auxiliary quantities are obtained on this basis as well. They are used to obtain the methodical corrections to the desired quantities. The corrected desired quantities are the recommended ones. The correction procedure requires the knowledge of the sensitivity coefficients of the average foil activation rates with respect to the U-235 number densities (through the text of this manual U-235 is denoted also and especially in the input-output description sections as a BUrning-COrrected material, or 'BuCo' material). These sensitivity coefficients are calculated by the CONHOR SENS module. CITATION is employed to perform the calculations with perturbed values of U-235 number densities. Burnup calculations can be performed being based on either corrected or uncorrected U-235 number densities. Through the text of this manual XXXX means a 4-symbol identification of the burnup cycle to be studied. XX-1 and XX+1 mean correspondingly the previous and the following cycles. (orig./HP)

  12. Burnup code for fuel assembly by Monte Carlo code. MKENO-BURN

    International Nuclear Information System (INIS)

    Naito, Yoshitaka; Suyama, Kenya; Masukawa, Fumihiro; Matsumoto, Kiyoshi; Kurosawa, Masayoshi; Kaneko, Toshiyuki.

    1996-12-01

    The evaluation of neutron spectrum is so important for burnup calculation of the heterogeneous geometry like recent BWR fuel assembly. MKENO-BURN is a multi dimensional burnup code that based on the three dimensional monte carlo neutron transport code 'MULTI-KENO' and the routine for the burnup calculation of the one dimensional burnup code 'UNITBURN'. MKENO-BURN analyzes the burnup problem of arbitrary regions after evaluating the neutron spectrum and making one group cross section in three dimensional geometry with MULTI-KENO. It enables us to do three dimensional burnup calculation. This report consists of general description of MKENO-BURN and the input data. (author)

  13. Burnup code for fuel assembly by Monte Carlo code. MKENO-BURN

    Energy Technology Data Exchange (ETDEWEB)

    Naito, Yoshitaka; Suyama, Kenya; Masukawa, Fumihiro; Matsumoto, Kiyoshi; Kurosawa, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kaneko, Toshiyuki

    1996-12-01

    The evaluation of neutron spectrum is so important for burnup calculation of the heterogeneous geometry like recent BWR fuel assembly. MKENO-BURN is a multi dimensional burnup code that based on the three dimensional monte carlo neutron transport code `MULTI-KENO` and the routine for the burnup calculation of the one dimensional burnup code `UNITBURN`. MKENO-BURN analyzes the burnup problem of arbitrary regions after evaluating the neutron spectrum and making one group cross section in three dimensional geometry with MULTI-KENO. It enables us to do three dimensional burnup calculation. This report consists of general description of MKENO-BURN and the input data. (author)

  14. Burnup calculation methodology in the serpent 2 Monte Carlo code

    International Nuclear Information System (INIS)

    Leppaenen, J.; Isotalo, A.

    2012-01-01

    This paper presents two topics related to the burnup calculation capabilities in the Serpent 2 Monte Carlo code: advanced time-integration methods and improved memory management, accomplished by the use of different optimization modes. The development of the introduced methods is an important part of re-writing the Serpent source code, carried out for the purpose of extending the burnup calculation capabilities from 2D assembly-level calculations to large 3D reactor-scale problems. The progress is demonstrated by repeating a PWR test case, originally carried out in 2009 for the validation of the newly-implemented burnup calculation routines in Serpent 1. (authors)

  15. Analyses of PWR spent fuel composition using SCALE and SWAT code systems to find correction factors for criticality safety applications adopting burnup credit

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee Sung; Suyama, Kenya; Mochizuki, Hiroki; Okuno, Hiroshi; Nomura, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-01-01

    The isotopic composition calculations were performed for 26 spent fuel samples from the Obrigheim PWR reactor and 55 spent fuel samples from 7 PWR reactors using the SAS2H module of the SCALE4.4 code system with 27, 44 and 238 group cross-section libraries and the SWAT code system with the 107 group cross-section library. For the analyses of samples from the Obrigheim PWR reactor, geometrical models were constructed for each of SCALE4.4/SAS2H and SWAT. For the analyses of samples from 7 PWR reactors, the geometrical model already adopted in the SCALE/SAS2H was directly converted to the model of SWAT. The four kinds of calculation results were compared with the measured data. For convenience, the ratio of the measured to calculated values was used as a parameter. When the ratio is less than unity, the calculation overestimates the measurement, and the ratio becomes closer to unity, they have a better agreement. For many important nuclides for burnup credit criticality safety evaluation, the four methods applied in this study showed good coincidence with measurements in general. More precise observations showed, however: (1) Less unity ratios were found for Pu-239 and -241 for selected 16 samples out of the 26 samples from the Obrigheim reactor (10 samples were deselected because their burnups were measured with Cs-137 non-destructive method, less reliable than Nd-148 method the rest 16 samples were measured with); (2) Larger than unity ratios were found for Am-241 and Cm-242 for both the 16 and 55 samples; (3) Larger than unity ratios were found for Sm-149 for the 55 samples; (4) SWAT was generally accompanied by larger ratios than those of SAS2H with some exceptions. Based on the measured-to-calculated ratios for 71 samples of a combined set in which 16 selected samples and 55 samples were included, the correction factors that should be multiplied to the calculated isotopic compositions were generated for a conservative estimate of the neutron multiplication factor

  16. BEAVRS full core burnup calculation in hot full power condition by RMC code

    International Nuclear Information System (INIS)

    Liu, Shichang; Liang, Jingang; Wu, Qu; Guo, JuanJuan; Huang, Shanfang; Tang, Xiao; Li, Zeguang; Wang, Kan

    2017-01-01

    Highlights: • TMS and thermal scattering interpolation were developed to treat cross sections OTF. • Hybrid coupling system was developed for HFP burnup calculation of BEAVRS benchmark. • Domain decomposition was applied to handle memory problem of full core burnup. • Critical boron concentration with burnup by RMC agrees with the benchmark results. • RMC is capable of multi-physics coupling for simulations of nuclear reactors in HFP. - Abstract: Monte Carlo method can provide high fidelity neutronics analysis of different types of nuclear reactors, owing to its advantages of the flexible geometry modeling and the use of continuous-energy nuclear cross sections. However, nuclear reactors are complex systems with multi-physics interacting and coupling. MC codes can couple with depletion solver and thermal-hydraulics (T/H) codes simultaneously for the “transport-burnup-thermal-hydraulics” coupling calculations. MIT BEAVRS is a typical “transport-burnup-thermal-hydraulics” coupling benchmark. In this paper, RMC was coupled with sub-channel code COBRA, equipped with on-the-fly temperature-dependent cross section treatment and large-scale detailed burnup calculation based on domain decomposition. Then RMC was applied to the full core burnup calculations of BEAVRS benchmark in hot full power (HFP) condition. The numerical tests show that domain decomposition method can achieve the consistent results compared with original version of RMC while enlarging the computational burnup regions. The results of HFP by RMC agree well with the reference values of BEAVRS benchmark and also agree well with those of MC21. This work proves the feasibility and accuracy of RMC in multi-physics coupling and lifecycle simulations of nuclear reactors.

  17. Burnup verification using the FORK measurement system

    International Nuclear Information System (INIS)

    Ewing, R.I.

    1994-01-01

    Verification measurements may be used to help ensure nuclear criticality safety when burnup credit is applied to spent fuel transport and storage systems. The FORK measurement system, designed at Los Alamos National Laboratory for the International Atomic Energy Agency safeguards program, has been used to verify reactor site records for burnup and cooling time for many years. The FORK system measures the passive neutron and gamma-ray emission from spent fuel assemblies while in the storage pool. This report deals with the application of the FORK system to burnup credit operations based on measurements performed on spent fuel assemblies at the Oconee Nuclear Station of Duke Power Company

  18. COMRAD96, Nuclear Fuel Burnup and Depletion Calculation System

    International Nuclear Information System (INIS)

    Suyama, K.; Masukawa, F.; Ido, M.; Enomoto, M.; Takyu, S.; Hara, T.

    2002-01-01

    1 - Description of program or function: Burn-up calculation of nuclear fuel. 2 - Methods: Matrix exponential method, Bateman Equation. 3 - Restrictions on the complexity of the problem: a) One-grouped cross section library should be prepared for the fuel system to be analyzed using UNITBURN. However, UNITBURN is not available now for UNIX systems. b) Gamma ray spectrometry calculation will fail using the attached piflib routine. This problem has already been rectified in the internal version. 4 - Typical running time: Two minutes for standard burn-up calculation on Sun ULTRA 30. 5 - Unusual features - a) Selection of Matrix exponential method, or Bateman Equation. b) JDDL, a detailed decay chain data based on ENSDF. 6 - Related or auxiliary programs: UNITBURN: Burnup calculation code unit cell system

  19. CONHOR. Code system for determination of power distribution and burnup for the HOR reactor. Version 1.0.. User`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Serov, I V; Hoogenboom, J E

    1993-07-01

    The main calculational tool is the CITATION code. CITATION is used for both static and burnup calculations. The pointwise flux density and power distributions obtained from these calculations are used to obtain the values of the desired quantities at the beginning of a burnup cycle. To obtain the most trustful values of the desired quantities CONHOR employs experimental information together with the CITATION calculated flux distributions. Axially averaged foil activation rates are obtained based on both CITATION pointwise flux density distributions and measured foil activity counts. These two sets of activation rates are called the distributions of auxiliary quantities and are compared with each other in order to pick up the corrections to the U-235 number densities in fuel containing elements. The methodical corrections to the calculational auxiliary quantities are obtained on this basis as well. They are used to obtain the methodical corrections to the desired quantities. The corrected desired quantities are the recommended ones. The correction procedure requires the knowledge of the sensitivity coefficients of the average foil activation rates with respect to the U-235 number densities (through the text of this manual U-235 is denoted also and especially in the input-output description sections as a BUrning-COrrected material, or `BuCo` material). These sensitivity coefficients are calculated by the CONHOR SENS module. CITATION is employed to perform the calculations with perturbed values of U-235 number densities. Burnup calculations can be performed being based on either corrected or uncorrected U-235 number densities. Through the text of this manual XXXX means a 4-symbol identification of the burnup cycle to be studied. XX-1 and XX+1 mean correspondingly the previous and the following cycles. (orig./HP).

  20. Development of a BWR core burn-up calculation code COREBN-BWR

    International Nuclear Information System (INIS)

    Morimoto, Yuichi; Okumura, Keisuke

    1992-05-01

    In order to evaluate core performances of BWR type reactors, the three dimensional core burnup calculation code COREBN-BWR and the fuel management code HIST-BWR have been developed. In analyses of BWR type reactors, thermal hydraulics calculations must be coupled with neutronics calculations to evaluate core performances, because steam void distribution changes according to the change of the power distribution. By installing new functions as follows to the three dimensional core burnup code COREBN2 developed in JAERI for PWR type reactor analyses, the code system becomes to be applicable to burnup analyses of BWR type reactors. (1) Macroscopic cross section calculation function taking into account of coolant void distribution. (2) Thermal hydraulics calculation function to evaluate core flow split, coolant void distribution and thermal margin. (3) Burnup calculation function under the Haling strategy. (4) Fuel management function to incorporate the thermal hydraulics information. This report consists of the general description, calculational models, input data requirements and their explanations, detailed information on usage and sample input. (author)

  1. Implementation of burnup in FERM nodal computer code

    International Nuclear Information System (INIS)

    Yoriyaz, H.; Nakata, H.

    1986-01-01

    In this work a spatial burnup scheme and feedback effects has been implemented into the FERM [1] ('Finite Element Response Matrix') program. The spatially dependent neutronic parameters have been considered in three levels: zonewise calculation, assemblywise calculation and pointwise calculation. The results have been compared with the results obtained by CITATION [2] program and showed that the processing time in the FERM code has been hundred of times shorter and no significant difference has been observed in the assembly average power distribution. (Author) [pt

  2. Accuracy assessment of a new Monte Carlo based burnup computer code

    International Nuclear Information System (INIS)

    El Bakkari, B.; ElBardouni, T.; Nacir, B.; ElYounoussi, C.; Boulaich, Y.; Meroun, O.; Zoubair, M.; Chakir, E.

    2012-01-01

    Highlights: ► A new burnup code called BUCAL1 was developed. ► BUCAL1 uses the MCNP tallies directly in the calculation of the isotopic inventories. ► Validation of BUCAL1 was done by code to code comparison using VVER-1000 LEU Benchmark Assembly. ► Differences from BM value were found to be ± 600 pcm for k ∞ and ±6% for the isotopic compositions. ► The effect on reactivity due to the burnup of Gd isotopes is well reproduced by BUCAL1. - Abstract: This study aims to test for the suitability and accuracy of a new home-made Monte Carlo burnup code, called BUCAL1, by investigating and predicting the neutronic behavior of a “VVER-1000 LEU Assembly Computational Benchmark”, at lattice level. BUCAL1 uses MCNP tally information directly in the computation; this approach allows performing straightforward and accurate calculation without having to use the calculated group fluxes to perform transmutation analysis in a separate code. ENDF/B-VII evaluated nuclear data library was used in these calculations. Processing of the data library is performed using recent updates of NJOY99 system. Code to code comparisons with the reported Nuclear OECD/NEA results are presented and analyzed.

  3. Development and verification of Monte Carlo burnup calculation system

    International Nuclear Information System (INIS)

    Ando, Yoshihira; Yoshioka, Kenichi; Mitsuhashi, Ishi; Sakurada, Koichi; Sakurai, Shungo

    2003-01-01

    Monte Carlo burnup calculation code system has been developed to evaluate accurate various quantities required in the backend field. From the Actinide Research in a Nuclear Element (ARIANE) program, by using, the measured nuclide compositions of fuel rods in the fuel assemblies irradiated in the commercial Netherlands BWR, the analyses have been performed for the code system verification. The code system developed in this paper has been verified through analysis for MOX and UO2 fuel rods. This system enables to reduce large margin assumed in the present criticality analysis for LWR spent fuels. (J.P.N.)

  4. Monte Carlo burnup codes acceleration using the correlated sampling method

    International Nuclear Information System (INIS)

    Dieudonne, C.

    2013-01-01

    For several years, Monte Carlo burnup/depletion codes have appeared, which couple Monte Carlo codes to simulate the neutron transport to deterministic methods, which handle the medium depletion due to the neutron flux. Solving Boltzmann and Bateman equations in such a way allows to track fine 3-dimensional effects and to get rid of multi-group hypotheses done by deterministic solvers. The counterpart is the prohibitive calculation time due to the Monte Carlo solver called at each time step. In this document we present an original methodology to avoid the repetitive and time-expensive Monte Carlo simulations, and to replace them by perturbation calculations: indeed the different burnup steps may be seen as perturbations of the isotopic concentration of an initial Monte Carlo simulation. In a first time we will present this method, and provide details on the perturbative technique used, namely the correlated sampling. In a second time we develop a theoretical model to study the features of the correlated sampling method to understand its effects on depletion calculations. In a third time the implementation of this method in the TRIPOLI-4 code will be discussed, as well as the precise calculation scheme used to bring important speed-up of the depletion calculation. We will begin to validate and optimize the perturbed depletion scheme with the calculation of a REP-like fuel cell depletion. Then this technique will be used to calculate the depletion of a REP-like assembly, studied at beginning of its cycle. After having validated the method with a reference calculation we will show that it can speed-up by nearly an order of magnitude standard Monte-Carlo depletion codes. (author) [fr

  5. The CORSYS neutronics code system

    International Nuclear Information System (INIS)

    Caner, M.; Krumbein, A.D.; Saphier, D.; Shapira, M.

    1994-01-01

    The purpose of this work is to assemble a code package for LWR core physics including coupled neutronics, burnup and thermal hydraulics. The CORSYS system is built around the cell code WIMS (for group microscopic cross section calculations) and 3-dimension diffusion code CITATION (for burnup and fuel management). We are implementing such a system on an IBM RS-6000 workstation. The code was rested with a simplified model of the Zion Unit 2 PWR. (authors). 6 refs., 8 figs., 1 tabs

  6. Development of a Fully-Automated Monte Carlo Burnup Code Monteburns

    International Nuclear Information System (INIS)

    Poston, D.I.; Trellue, H.R.

    1999-01-01

    Several computer codes have been developed to perform nuclear burnup calculations over the past few decades. In addition, because of advances in computer technology, it recently has become more desirable to use Monte Carlo techniques for such problems. Monte Carlo techniques generally offer two distinct advantages over discrete ordinate methods: (1) the use of continuous energy cross sections and (2) the ability to model detailed, complex, three-dimensional (3-D) geometries. These advantages allow more accurate burnup results to be obtained, provided that the user possesses the required computing power (which is required for discrete ordinate methods as well). Several linkage codes have been written that combine a Monte Carlo N-particle transport code (such as MCNP TM ) with a radioactive decay and burnup code. This paper describes one such code that was written at Los Alamos National Laboratory: monteburns. Monteburns links MCNP with the isotope generation and depletion code ORIGEN2. The basis for the development of monteburns was the need for a fully automated code that could perform accurate burnup (and other) calculations for any 3-D system (accelerator-driven or a full reactor core). Before the initial development of monteburns, a list of desired attributes was made and is given below. o The code should be fully automated (that is, after the input is set up, no further user interaction is required). . The code should allow for the irradiation of several materials concurrently (each material is evaluated collectively in MCNP and burned separately in 0RIGEN2). o The code should allow the transfer of materials (shuffling) between regions in MCNP. . The code should allow any materials to be added or removed before, during, or after each step in an automated fashion. . The code should not require the user to provide input for 0RIGEN2 and should have minimal MCNP input file requirements (other than a working MCNP deck). . The code should be relatively easy to use

  7. Assessment of US NRC fuel rod behavior codes to extended burnup

    International Nuclear Information System (INIS)

    Laats, E.T.; Croucher, D.W.; Haggag, F.M.

    1982-01-01

    The purpose of this paper is to report the status of assessing the capabilities of the NRC fuel rod performance codes for calculating extended burnup rod behavior. As part of this effort, a large spectrum of fuel rod behavior phenomena was examined, and the phenomena deemed as being influential during extended burnup operation were identified. Then, the experiment data base addressing these identified phenomena was examined for availability and completeness at extended burnups. Calculational capabilities of the NRC's steady state FRAPCON-2 and transient FRAP-T6 fuel rod behavior codes were examined for each of the identified phenomenon. Parameters calculated by the codes were compared with the available data base, and judgments were made regarding model performance. Overall, the FRAPCON-2 code was found to be moderately well assessed to extended burnups, but the FRAP-T6 code cannot be adequately assessed until more transient high burnup data are available

  8. Burnup verification tests with the FORK measurement system-implementation for burnup credit

    International Nuclear Information System (INIS)

    Ewing, R.I.

    1994-01-01

    Verification measurements may be used to help ensure nuclear criticality safety when burnup credit is applied to spent fuel transport and storage systems. The FORK system measures the passive neutron and gamma-ray emission from spent fuel assemblies while in the storage pool. It was designed at Los Alamos National Laboratory for the International Atomic Energy Agency safeguards program and is well suited to verify burnup and cooling time records at commercial Pressurized Water Reactor (PWR) sites. This report deals with the application of the FORK system to burnup credit operations

  9. Development of burnup methods and capabilities in Monte Carlo code RMC

    International Nuclear Information System (INIS)

    She, Ding; Liu, Yuxuan; Wang, Kan; Yu, Ganglin; Forget, Benoit; Romano, Paul K.; Smith, Kord

    2013-01-01

    Highlights: ► The RMC code has been developed aiming at large-scale burnup calculations. ► Matrix exponential methods are employed to solve the depletion equations. ► The Energy-Bin method reduces the time expense of treating ACE libraries. ► The Cell-Mapping method is efficient to handle massive amounts of tally cells. ► Parallelized depletion is necessary for massive amounts of burnup regions. -- Abstract: The Monte Carlo burnup calculation has always been a challenging problem because of its large time consumption when applied to full-scale assembly or core calculations, and thus its application in routine analysis is limited. Most existing MC burnup codes are usually external wrappers between a MC code, e.g. MCNP, and a depletion code, e.g. ORIGEN. The code RMC is a newly developed MC code with an embedded depletion module aimed at performing burnup calculations of large-scale problems with high efficiency. Several measures have been taken to strengthen the burnup capabilities of RMC. Firstly, an accurate and efficient depletion module called DEPTH has been developed and built in, which employs the rational approximation and polynomial approximation methods. Secondly, the Energy-Bin method and the Cell-Mapping method are implemented to speed up the transport calculations with large numbers of nuclides and tally cells. Thirdly, the batch tally method and the parallelized depletion module have been utilized to better handle cases with massive amounts of burnup regions in parallel calculations. Burnup cases including a PWR pin and a 5 × 5 assembly group are calculated, thereby demonstrating the burnup capabilities of the RMC code. In addition, the computational time and memory requirements of RMC are compared with other MC burnup codes.

  10. Preparation of computer codes for analyzing sensitivity coefficients of burnup characteristics (2) (Contract research, translated document)

    International Nuclear Information System (INIS)

    Hanaki, Hiroshi; Sanda, Toshio; Ohashi, Masahisa

    2008-10-01

    To develop nuclear design of LMFBR cores, they are important subjects of research and development to improve the accuracy in nuclear design of large LMFBR cores and to design highly efficient core more rationally. The adjusted nuclear cross-sections library has been made by being reflected the result of critical experiment of the JUPITER, etc. effectively as much as possible. And the distinct improvement of the accuracy in nuclear design of large LMFBR cores has been achieved. In the design of large LMFBR cores, however, it is important to accurately estimate not only nuclear characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. Therefore, it is thought to improve the prediction accuracy for burnup characteristics using many burnup data of 'Joyo' effectively. It is thought the best way to adjust cross sections using sensitivity coefficients of burnup characteristics to utilize burnup data of 'Joyo'. It is able to know the accuracy quantitatively for burnup characteristics of large LMFBR by analyzing the sensitivity coefficients. Therefore in this work computer codes for analyzing sensitivity coefficients of burnup characteristics had been prepared since 1992. In 1992 cross-section adjustment was done by using the data of 'Joyo' and the effect was studied. In this year the adequacy of the codes was studied with a view of applying of design of large LMFBR cores. The results are as follows: (1) The computer codes which could analyze sensitivity coefficients of burnup characteristics taking into consideration plural cycles and refueling were prepared, therefore it came of be able to adjust cross sections using burnup data and to estimate the accuracy for design of large LMFBR cores. The characteristics are not only burnup reactivity loss, breeding ratio but also number density, criticality, reactivity worth, reaction rate ratio, and reaction rate

  11. Taking burnup credit for interim storage and transportation system for BWR fuels

    International Nuclear Information System (INIS)

    Yoshioka, Ken-ichi; Ando, Y.; Kumanomido, H.; Sasaki, T.; Mitsuhashi, I.; Ueda, M.

    2001-01-01

    In order to establish a realistic burnup credit design system, a calculation system has been developed for determining isotope compositions, burnup, and criticality. The calculation system consists of several modules such as TGBLA, ORIGEN, CITATION, MCNP, and KENO. The TGBLA code is a fuel design code for LWR fuels developed in TOSHIBA Corporation. A compact measurement system for a fuel assembly has been being developed to meet requirements for the burnup determination, the neutron emission-rate evaluation, and the nuclear materials management. For a spent MOX fuel, a neutron emission rate measurement method has been being developed. The system consists of Cd-Te detectors and / or fission chambers. Some model calculations were carried out for the latest design BWR fuels. The effect of taking burnup credit for a transportation cask is shown. (authors)

  12. Calculation of isotope burn-up and change in efficiency of absorbing elements of WWER-1000 control and protection system during burn-up

    International Nuclear Information System (INIS)

    Timofeeva, O.A.; Kurakin, K.U.

    2006-01-01

    The report deals with fast and thermal neutron flows distribution in structural elements of WWER-1000 fuel assembly and absorbing rods, determination of absorbing isotope burn-up and worth variation in WWER reactor control and protection system rods. Simulation of absorber rod burn-up is provided using code package SAPPHIRE 9 5 end RC W WER allowing detailed description of the core segment spatial model. Maximum burn-up of absorbing rods and respective worth variation of control and protection system rods is determined on the basis of a number of calculations considering known characteristics of fuel cycles (Authors)

  13. Implementation of burnup credit in spent fuel management systems. Proceedings of an advisory group meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The criticality safety analysis of spent fuel systems has traditionally assumed that the fuel is fresh. This results in significant conservatism in the calculated value of the system`s reactivity. Improved calculational methods allows one to take credit for the reactivity reduction associated with fuel burnup, hence reducing the analysis conservatism while maintaining an adequate criticality safety margin. Motivation for using burnup credit in criticality safety applications is generally based on economic considerations. Although economics may be a primary factor in deciding to use burnup credit, other benefits may be realized. Many of the additional benefits of burnup credit that are not strictly economic, may be considered to contribute to public health and safety, and resource conservation and environmental quality. Interest in the implementation of burnup credit has been shown by many countries. A summary of the information gathered by the IAEA about ongoing activities and regulatory status of burnup credit in different countries is included. Burnup credit implementation introduces new parameters and effects that should be addressed in the criticality analysis (e.g., axial and radial burnup shapes, fuel irradiation history, and others). Analysis of these parameters introduces new variations as well as the uncertainties, that should be considered in the safety assessment of the system. Also, the need arises to validate the isotopic composition that results from a depletion calculation, as well as to extend the current validation range of criticality codes to cover spent fuel. The use of burnup credit implies a verification of the fuel burnup before loading for transport, storage, disposal, or reprocessing each assembly, to make sure that the burnup level achieved complies with the criteria established. Methods and procedures used in different countries are described in this report. Refs, figs, tabs.

  14. Burnup credit implementation in WWER spent fuel management systems: Status and future aspects

    International Nuclear Information System (INIS)

    Manolova, M.

    1998-01-01

    This paper describes the motivation for possible burnup credit implementation in WWER spent fuel management systems in Bulgaria. The activities being done are described, namely: the development and verification of a 3D few-group diffusion burnup model; the application of the KORIGEN code for evaluation of WWER fuel nuclear inventory during reactor core lifetime and after spent fuel discharge; using the SCALE modular system (PC Version 4.1) for criticality safety analyses of spent fuel storage facilities. Future plans involving such important tasks as validation and verification of computer systems and libraries for WWER burnup credit analysis are shown. (author)

  15. Detailed description and user`s manual of high burnup fuel analysis code EXBURN-I

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Motoe [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Saitou, Hiroaki

    1997-11-01

    EXBURN-I has been developed for the analysis of LWR high burnup fuel behavior in normal operation and power transient conditions. In the high burnup region, phenomena occur which are different in quality from those expected for the extension of behaviors in the mid-burnup region. To analyze these phenomena, EXBURN-I has been formed by the incorporation of such new models as pellet thermal conductivity change, burnup-dependent FP gas release rate, and cladding oxide layer growth to the basic structure of low- and mid-burnup fuel analysis code FEMAXI-IV. The present report describes in detail the whole structure of the code, models, and materials properties. Also, it includes a detailed input manual and sample output, etc. (author). 55 refs.

  16. Implementation of burnup credit in spent fuel management systems. Proceedings of an advisory group meeting

    International Nuclear Information System (INIS)

    1998-04-01

    The criticality safety analysis of spent fuel systems has traditionally assumed that the fuel is fresh. This results in significant conservatism in the calculated value of the system's reactivity. Improved calculational methods allows one to take credit for the reactivity reduction associated with fuel burnup, hence reducing the analysis conservatism while maintaining an adequate criticality safety margin. Motivation for using burnup credit in criticality safety applications is generally based on economic considerations. Although economics may be a primary factor in deciding to use burnup credit, other benefits may be realized. Many of the additional benefits of burnup credit that are not strictly economic, may be considered to contribute to public health and safety, and resource conservation and environmental quality. Interest in the implementation of burnup credit has been shown by many countries. A summary of the information gathered by the IAEA about ongoing activities and regulatory status of burnup credit in different countries is included. Burnup credit implementation introduces new parameters and effects that should be addressed in the criticality analysis (e.g., axial and radial burnup shapes, fuel irradiation history, and others). Analysis of these parameters introduces new variations as well as the uncertainties, that should be considered in the safety assessment of the system. Also, the need arises to validate the isotopic composition that results from a depletion calculation, as well as to extend the current validation range of criticality codes to cover spent fuel. The use of burnup credit implies a verification of the fuel burnup before loading for transport, storage, disposal, or reprocessing each assembly, to make sure that the burnup level achieved complies with the criteria established. Methods and procedures used in different countries are described in this report

  17. Determination of axial profit performed burnup credit by SCALE 4.3-system

    International Nuclear Information System (INIS)

    Miro, R.; Verdu, G.; Munoz-Cobo, J. L.

    1998-01-01

    SCALE 4.3 is a modular code system designed for realizing standard computational analysis for licensing evaluation. Since now, spent fuel storage pools criticality analysis have been done considering this fuel as fresh, with its maximum enrichment. With burnup credit we can obtain cheaper and compact configurations. The procedure for calculating a spent fuel storage consists of a burnup calculation plus a criticality calculation. We can perform a conservative approximation for the burnup calculations using 1-D results, but, besides the geometry configurations for the 3-D criticality calculation. we need an appropriate approximation to model the burnup axial variation. We assume that for a burnup profile set, the most conservative profile is between the lower and the upper range of this profile, set. We consider only combinations of the maximum and minimum burnup in each axial region, for each burnup range. This gives an estimation of the different burnup shapes effect and the general characteristics of the most conservative shape. (Author) 6 refs

  18. Implementation of burnup credit in spent fuel management systems

    International Nuclear Information System (INIS)

    Dyck, H.P.

    2001-01-01

    Improved calculational methods allow one to take credit for the reactivity reduction associated with fuel burnup. This means reducing the analysis conservatism while maintaining an adequate safety margin. The motivation for using burnup credit in criticality safety applications is based on economic considerations and additional benefits contributing to public health and safety and resource conservation. Interest in the implementation of burnup credit has been shown by many countries. In 1997, the International Atomic Energy Agency (IAEA) started a task to monitor the implementation of burnup credit in spent fuel management systems, to provide a forum to exchange information, to discuss the matter and to gather and disseminate information on the status of national practices of burnup credit implementation in the Member States. The task addresses current and future aspects of burnup credit. This task was continued during the following years. (author)

  19. Development of continuous energy Monte Carlo burn-up calculation code MVP-BURN

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Nakagawa, Masayuki; Sasaki, Makoto

    2001-01-01

    Burn-up calculations based on the continuous energy Monte Carlo method became possible by development of MVP-BURN. To confirm the reliably of MVP-BURN, it was applied to the two numerical benchmark problems; cell burn-up calculations for High Conversion LWR lattice and BWR lattice with burnable poison rods. Major burn-up parameters have shown good agreements with the results obtained by a deterministic code (SRAC95). Furthermore, spent fuel composition calculated by MVP-BURN was compared with measured one. Atomic number densities of major actinides at 34 GWd/t could be predicted within 10% accuracy. (author)

  20. Calculation of pellet radial power distributions with a Monte Carlo burnup code

    International Nuclear Information System (INIS)

    Suzuki, Motomu; Yamamoto, Toru; Nakata, Tetsuo

    2010-01-01

    The Japan Nuclear Energy Safety Organization (JNES) has been working on an irradiation test program of high-burnup MOX fuel at Halden Boiling Water Reactor (HBWR). MOX and UO 2 fuel rods had been irradiated up to about 64 GWd/t (rod avg.) as a Japanese utilities research program (1st phase), and using those fuel rods, in-situ measurement of fuel pellet centerline temperature was done during the 2nd phase of irradiation as the JNES test program. As part of analysis of the temperature data, power distributions in a pellet radial direction were analyzed by using a Monte Carlo burnup code MVP-BURN. In addition, the calculated results of deterministic burnup codes SRAC and PLUTON for the same problem were compared with those of MVP-BURN to evaluate their accuracy. Burnup calculations with an assembly model were performed by using MVP-BURN and those with a pin cell model by using SRAC and PLUTON. The cell pitch and, therefore, fuel to moderator ratio in the pin cell calculation was determined from the comparison of neutron energy spectra with those of MVP-BURN. The fuel pellet radial distributions of burnup and fission reaction rates at the end of the 1st phase irradiation were compared between the three codes. The MVP-BURN calculation results show a large peaking in the burnup and fission rates in the pellet outer region for the UO 2 and MOX pellets. The SRAC calculations give very close results to those of the MVP-BURN. On the other hand, the PLUTON calculations show larger burnup for the UO 2 and lower burnup for the MOX pellets in the pellet outer region than those of MVP-BURN, which lead to larger fission rates for the UO 2 and lower fission rates for the MOX pellets, respectively. (author)

  1. Triton burnup measurements in KSTAR using a neutron activation system

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jungmin; Shi, Yue-Jiang; Chung, Kyoung-Jae, E-mail: jkjlsh1@snu.ac.k; Hwang, Y. S. [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Cheon, MunSeong; Rhee, T.; Kim, Junghee [National Fusion Research Institute, Daejeon 34133 (Korea, Republic of); Kim, Jun Young [Korea University of Science and Technology, Daejeon 34133 (Korea, Republic of); Isobe, M.; Ogawa, K. [National Institute for Fusion Science, Toki-shi (Japan); SOKENDAI (The Graduate University for Advanced Studies), Toki-shi (Japan)

    2016-11-15

    Measurements of the time-integrated triton burnup for deuterium plasma in Korea Superconducting Tokamak Advanced Research (KSTAR) have been performed following the simultaneous detection of the d-d and d-t neutrons. The d-d neutrons were measured using a {sup 3}He proportional counter, fission chamber, and activated indium sample, whereas the d-t neutrons were detected using activated silicon and copper samples. The triton burnup ratio from KSTAR discharges is found to be in the range 0.01%–0.50% depending on the plasma conditions. The measured burnup ratio is compared with the prompt loss fraction of tritons calculated with the Lorentz orbit code and the classical slowing-down time. The burnup ratio is found to increase as plasma current and classical slowing-down time increase.

  2. Present status and future developments of the implementation of burnup credit in spent fuel management systems in Germany

    International Nuclear Information System (INIS)

    Neuber, J.C.; Kuehl, H.

    2001-01-01

    This paper describes the experience gained in Germany in implementing burnup credit in wet storage and dry transport systems of spent PWR, BWR, and MOX fuel. It gives a survey of the levels of burnup credit presently used, the regulatory status and activities planned, the fuel depletion codes and criticality calculation codes employed, the verification methods used for validating these codes, the modeling assumptions made to ensure that the burnup credit criticality analysis is based on a fuel irradiation history which leads to bounding neutron multiplication factors, and the implementation of procedures used for fuel loading verification. (author)

  3. Present status and future developments of the implementation of burnup credit in spent fuel management systems in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Neuber, J C [Siemens Nuclear Power GmbH, Offenbach (Germany); Kuehl, H [Wissenschaftlich-Technische Ingenieurberatung WTI GmbH, Juelich (Germany)

    2001-08-01

    This paper describes the experience gained in Germany in implementing burnup credit in wet storage and dry transport systems of spent PWR, BWR, and MOX fuel. It gives a survey of the levels of burnup credit presently used, the regulatory status and activities planned, the fuel depletion codes and criticality calculation codes employed, the verification methods used for validating these codes, the modeling assumptions made to ensure that the burnup credit criticality analysis is based on a fuel irradiation history which leads to bounding neutron multiplication factors, and the implementation of procedures used for fuel loading verification. (author)

  4. CARMEN-SYSTEM, Programs System for Thermal Neutron Diffusion and Burnup with Feedback

    International Nuclear Information System (INIS)

    Ahnert, Carol; Aragones, Jose M.

    1983-01-01

    1 - Description of problem or function: CARMEN is a system of programs developed for the neutronic calculation of PWR cycles. It includes the whole chain of analysis from cell calculations to core calculations with burnup. The core calculations are based on diffusion theory with cross sections depending on the relevant space-dependent feedback effects which are present at each moment along the cycles. The diffusion calculations are in one, two or three dimensions and in two energy groups. The feedback effects which are treated locally are: burnup, water density, power density and fission products. In order to study in detail these parameters the core should be divided into as many zones as different cross section sets are expected to be required in order to reproduce reality correctly. A relevant difference in any feedback parameter between zones produces different cross section sets for the corresponding zones. CARMEN is also capable to perform the following calculations: - Multiplication factor by burnup step with fixed boron concentration - Buckling and control rod insertion - Buckling search by burnup step - Boron search by burnup step - Control rod insertion search by burnup step. 2 - Method of solution: The cell code (LEOPARD-TRACA) generates the fuel assembly cross sections versus burnup. This is the basic library to be used in the CARMEN code proper. With a planar distribution guess for power density, water density and fluxes, the macroscopic cross sections by zone are calculated by CARMEN, and then a diffusion calculation is done in the whole geometry. With the distribution of power density, heat accumulated in the coolant and the thermal and fast fluxes determined in the diffusion calculation, CARMEN calculates the values of the most relevant parameters that influence the macroscopic cross sections by zone: burnup, water density, effective fuel temperature and fission product concentrations. If these parameters by zone are different from the reference

  5. On the theories, techniques, and computer codes used in numerical reactor criticality and burnup calculations

    International Nuclear Information System (INIS)

    El-Osery, I.A.

    1981-01-01

    The purpose of this paper is to discuss the theories, techniques and computer codes that are frequently used in numerical reactor criticality and burnup calculations. It is a part of an integrated nuclear reactor calculation scheme conducted by the Reactors Department, Inshas Nuclear Research Centre. The crude part in numerical reactor criticality and burnup calculations includes the determination of neutron flux distribution which can be obtained in principle as a solution of Boltzmann transport equation. Numerical methods used for solving transport equations are discussed. Emphasis are made on numerical techniques based on multigroup diffusion theory. These numerical techniques include nodal, modal, and finite difference ones. The most commonly known computer codes utilizing these techniques are reviewed. Some of the main computer codes that have been already developed at the Reactors Department and related to numerical reactor criticality and burnup calculations have been presented

  6. Present status and future developments of the implementation of burnup credit in spent fuel management systems in Germany

    International Nuclear Information System (INIS)

    Neuber, J.C.

    1998-01-01

    The paper describes the experience gained in Germany in applying burnup credit methodologies to wet storage and dry transport systems of spent LWR fuel. It gives a survey of the levels of burnup credit presently used or intended to be used, the regulatory status and future developments planned, the codes used for performing depletion and criticality calculations, the methods applied to verification of these codes, and the methods used to treat parameters specific of burnup credit. In particular it is shown that the effect of axial burnup profiles on wet PWR storage designs based on burnup credit varies from fuel type to fuel type. For wet BWR storage systems the method of estimating a loading curve is described which provides for a given BWR fuel assembly design the minimum required initial burnable absorber content as a function of the initial enrichment of the fuel. (author)

  7. DELIGHT-B/REDEL, point reactivity burnup code for high-temperature gas-cooled reactor cells

    International Nuclear Information System (INIS)

    Shindo, Ryuiti; Watanabe, Takashi.

    1977-03-01

    Code DELIGHT-2 was previously developed to analyze cell burnup characteristics and to produce few-group constants for core burnup calculation in high-temperature gas-cooled reactors. In the code, burnup dependency of the burnable poison, boron-10, is considered with the homogeneous model of space. In actuality, however, the burnable poison is used as homogeneous rods or uniform rods of small granular poison and graphite, to control the reactivity and power distribution. Precise analysis of the burnup characteristics is thus difficult because of the heterogeneity due to the configuration of poison rods. In cell burnup calculation, the DELIGHT-B, which is a modification of DELIGHT-2, takes into consideration this heterogeneous effect. The auxiliary code REDEL, a reduction of DELIGHT-B, used in combination with 3 dimensional diffusion code CITATION, is for core burnup calculation with the macro-scopic cross section model. (auth.)

  8. A burn-up module coupling to an AMPX system

    International Nuclear Information System (INIS)

    Salvatore Duque, M.; Gomez, S.E.; Patino, N.E.; Abbate, M.J.; Sbaffoni, M.M.

    1990-01-01

    The Reactors and Neutrons Division of the Bariloche Atomic Center uses the AMPX system for the study of high conversion reactors (HCR). Such system allows to make neutronic calculations from the nuclear data library (ENDF/B-IV). The Nuclear Engineering career of the Balseiro Institute developed and implemented a burn-up module at a μ-cell level (BUM: Burn-up Module) which agrees with the requirement to be coupled to the AMPX system. (Author) [es

  9. VAMPIR - A two-group two-dimensional diffusion computer code for burnup calculation

    International Nuclear Information System (INIS)

    Zmijarevic, I.; Petrovic, I.

    1985-01-01

    VAMPIR is a computer code which simulates the burnup within a reactor coe. It computes the neutron flux, power distribution and burnup taking into account spatial variations of temperature and xenon poisoning. Its overall reactor calculation uses diffusion theory with finite differences approximation in X-Y or R-Z geometry. Two-group macroscopic cross section data are prepared by the lattice cell code WIMS-D4 and stored in the library form of multi entry tabulation against the various parameters that significantly affect the physical conditions in the reactor core. herein, the main features of the program are presented. (author)

  10. Validation of a new continuous Monte Carlo burnup code using a Mox fuel assembly

    International Nuclear Information System (INIS)

    El bakkari, B.; El Bardouni, T.; Merroun, O.; El Younoussi, C.; Boulaich, Y.; Boukhal, H.; Chakir, E.

    2009-01-01

    The reactivity of nuclear fuel decreases with irradiation (or burnup) due to the transformation of heavy nuclides and the formation of fission products. Burnup credit studies aim at accounting for fuel irradiation in criticality studies of the nuclear fuel cycle (transport, storage, etc...). The principal objective of this study is to evaluate the potential capabilities of a newly developed burnup code called 'BUCAL1'. BUCAL1 differs in comparison with other burnup codes as it does not use the calculated neutron flux as input to other computer codes to generate the nuclide inventory for the next time step. Instead, BUCAL1 directly uses the neutron reaction tally information generated by MCNP for each nuclide of interest to determine the new nuclides inventory. This allows the full capabilities of MCNP to be incorporated into the calculation and a more accurate and robust analysis to be performed. Validation of BUCAL1 was processed by code-to-code comparisons using predictions of several codes from the NEA/OCED. Infinite multiplication factors (k ∞ ) and important fission product and actinide concentrations were compared for a MOX core benchmark exercise. Results of calculations are analysed and discussed.

  11. LASER-R a computer code for reactor cell and burnup calculations in neutron transport theory

    International Nuclear Information System (INIS)

    Cristian, I.; Cirstoiu, B.; Dumitrache, I.; Cepraga, D.

    1976-04-01

    The LASER-R code is an IBM 370/135 version of the Westinghouse code, LASER, based on the THERMOS and MUFT codes developped by Poncelet. It can be used to perform thermal reactor cell calculations and burnup calculations. The cell exhibits 3-4 concentric areas: fuel, cladding, moderator and scattering ring. Besides directions for use, a short description of the physical model, numerical methods and output is presented

  12. New approach to derive linear power/burnup history input for CANDU fuel codes

    International Nuclear Information System (INIS)

    Lac Tang, T.; Richards, M.; Parent, G.

    2003-01-01

    The fuel element linear power / burnup history is a required input for the ELESTRES code in order to simulate CANDU fuel behavior during normal operating conditions and also to provide input for the accident analysis codes ELOCA and SOURCE. The purpose of this paper is to present a new approach to derive 'true', or at least more realistic linear power / burnup histories. Such an approach can be used to recreate any typical bundle power history if only a single pair of instantaneous values of bundle power and burnup, together with the position in the channel, are known. The histories obtained could be useful to perform more realistic simulations for safety analyses for cases where the reference (overpower) history is not appropriate. (author)

  13. Sophistication of burnup analysis system for fast reactor

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Hirai, Yasushi; Hyoudou, Hideaki; Tatsumi, Masahiro

    2010-02-01

    Improvement on prediction accuracy for neutronics property of fast reactor cores is one of the most important study domains in terms of both achievement of high economical plant efficiency based on reasonably advanced designs and increased reliability and safety margins. In former study, considerable improvement on prediction accuracy in neutronics design has been achieved in the development of the unified constants library as a fruit of a series of critical experiments such as JUPITER in application of the reactor constant adjustments. For design of fast reactor cores, however, improvement of not only static properties but also burnup properties is very important. For such purpose, it is necessary to improve the prediction accuracy on burnup properties using actual burnup data of 'JOYO' and 'MONJU', experimental and prototype fast reactors. Recently, study on effective burnup method for minor actinides becomes important theme. However, there is a problem that analysis work tends to become inefficient for lack of functionality suitable for analysis of composition change due to burnup since the conventional analysis system is targeted to critical assembly systems. Therefore development of burnup analysis system for fast reactors with modularity and flexibility is being done that would contribute to actual core design work and improvement of prediction accuracy. In the previous research, we have developed a prototype system which has functions of performing core and burnup calculations using given constant files (PDS files) and information based on simple and easy user input data. It has also functions of fuel shuffling which is indispensable for production systems. In the present study, we implemented functions for cell calculations and burnup calculations. With this, whole steps in analysis can be carried out with only this system. In addition, we modified the specification of user input to improve the convenience of this system. Since implementations being done so

  14. Burnup calculation of a CANDU6 reactor using the Serpent and MCNP6 codes

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, M.S.; Bonin, H.W., E-mail: mohamed.hussein@rmc.ca, E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, ON (Canada); Lewis, B.J., E-mail: Brent.Lewis@uoit.ca [Univ. of Ontario Inst. of Tech., Faculty of Energy Systems and Nuclear Science, Oshawa, ON (Canada)

    2014-07-01

    A study of fuel burnup for the CANDU6 reactor is carried out to validate the most recent versions of the probabilistic transport code (MCNP6) and the continuous energy burnup calculation code (Serpent). These two codes allow for 3-D geometry calculation accounting for a detailed analysis without unit-cell homogenization. On the other hand, the WIMS-AECL computer program is used to model neutron transport in nuclear-reactor lattices for design, safety analysis, and operation. It works with two-dimensional regions and can perform collision probability calculations for a periodic structure of the lattice cell. In the present work, the multiplication factor, the total flux and fuel burnup could be calculated for a CANDU6 nuclear reactor based on the GENTILLY-2 core design. The MCNP6 and Serpent codes provide a calculation of the track length estimated flux per neutron source. This estimated flux is then scaled with normalization to the reactor power in order to provide a flux in unit of n/cm{sup 2}s. Good agreement is observed between the actual total flux calculated by MCNP6, Serpent and WIMS-AECL. The effective multiplication factors of the whole core CANDU6 reactor are further calculated as a function of burnup and further compared to those calculated by WIMS-AECL where excellent agreement is also obtained. (author)

  15. Burnup calculation of a CANDU6 reactor using the Serpent and MCNP6 codes

    International Nuclear Information System (INIS)

    Hussein, M.S.; Bonin, H.W.; Lewis, B.J.

    2014-01-01

    A study of fuel burnup for the CANDU6 reactor is carried out to validate the most recent versions of the probabilistic transport code (MCNP6) and the continuous energy burnup calculation code (Serpent). These two codes allow for 3-D geometry calculation accounting for a detailed analysis without unit-cell homogenization. On the other hand, the WIMS-AECL computer program is used to model neutron transport in nuclear-reactor lattices for design, safety analysis, and operation. It works with two-dimensional regions and can perform collision probability calculations for a periodic structure of the lattice cell. In the present work, the multiplication factor, the total flux and fuel burnup could be calculated for a CANDU6 nuclear reactor based on the GENTILLY-2 core design. The MCNP6 and Serpent codes provide a calculation of the track length estimated flux per neutron source. This estimated flux is then scaled with normalization to the reactor power in order to provide a flux in unit of n/cm 2 s. Good agreement is observed between the actual total flux calculated by MCNP6, Serpent and WIMS-AECL. The effective multiplication factors of the whole core CANDU6 reactor are further calculated as a function of burnup and further compared to those calculated by WIMS-AECL where excellent agreement is also obtained. (author)

  16. A new approach to make collapsed cross section for burnup calculation of subcritical system

    International Nuclear Information System (INIS)

    Matsunaka, Masayuki; Kondo, Keitaro; Miyamaru, Hiroyuki; Murata, Isao

    2008-01-01

    A general-purpose transport and burnup code system for precise analysis of subcritical reactors like a fusion-fission (FF) hybrid reactor was developed and used for analyzing their performance. The FF hybrid reactor is a subcritical system, which has a concept of fusion reactor with a blanket region containing nuclear fuel and has been under discussion by author's group for years because the present burnup calculation system mainly consists of a general-purpose Monte Carlo code MCNP-4B, a point burnup code ORIGEN2. JENDL-3.3 pointwise cross section library and JENDL Activation Cross Section File 96 were used as base cross section libraries to make group constant for burnup calculation. A new method has been proposed to make group constant for the burnup calculation as accurate as possible directly using output data of the neutron transport calculation by MCNP and evaluated nuclear data libraries. This method is strict and a general procedure to make one group cross sections in Monte Carlo calculations, while it takes very long computation time. Some speed-up techniques were discussed for the present group constant making process so as to decrease calculation time. Adoption of postprocessing to make group constant improved the calculation accuracy because of increasing number of cross sections to be updated in each burnup cycle. The present calculation system is capable of performing neutronics analysis of subcritical reactors more precise than our previous one. However, at the moment, it still takes long computation time to make group constants. Further speed-up techniques are now under investigation so as to apply the present system to neutronics design analysis for various subcritical systems. (author)

  17. Recent developments of the TRANSURANUS code with emphasis on high burnup phenomena

    International Nuclear Information System (INIS)

    Lassmann, K.; Schubert, A.; Laar, J. van de; Vennix, C.W.H.M.

    2001-01-01

    TRANSURANUS is a computer program for the thermal and mechanical analysis of fuel rods in nuclear reactors, which is developed at the Institute for Transuranium Elements. The code is in use in several European organisations, both in research and industry. In the paper the recent developments are summarised: the burnup degradation of the fuel thermal conductivity as well as the effects of gadolinium on the radial power distribution and thermal conductivity. Fission gas release from the High Burnup Structure is discussed. Finally, a new numerical method is outlined that is able to treat the highly non-linear mechanical equations in transients (RIAs and LOCAs). (author)

  18. Burn-up function of fuel management code for aqueous homogeneous reactors and its validation

    International Nuclear Information System (INIS)

    Wang Liangzi; Yao Dong; Wang Kan

    2011-01-01

    Fuel Management Code for Aqueous Homogeneous Reactors (FMCAHR) is developed based on the Monte Carlo transport method, to analyze the physics characteristics of aqueous homogeneous reactors. FMCAHR has the ability of doing resonance treatment, searching for critical rod heights, thermal hydraulic parameters calculation, radiolytic-gas bubbles' calculation and bum-up calculation. This paper introduces the theory model and scheme of its burn-up function, and then compares its calculation results with benchmarks and with DRAGON's burn-up results, which confirms its bum-up computing precision and its applicability in the bum-up calculation and analysis for aqueous solution reactors. (authors)

  19. Modification in the FUDA computer code to predict fuel performance at high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Das, M; Arunakumar, B V; Prasad, P N [Nuclear Power Corp., Mumbai (India)

    1997-08-01

    The computer code FUDA (FUel Design Analysis) participated in the blind exercises organized by the IAEA CRP (Co-ordinated Research Programme) on FUMEX (Fuel Modelling at Extended Burnup). While the code prediction compared well with the experiments at Halden under various parametric and operating conditions, the fission gas release and fission gas pressure were found to be slightly over-predicted, particularly at high burnups. In view of the results of 6 FUMEX cases, the main models and submodels of the code were reviewed and necessary improvements were made. The new version of the code FUDA MOD 2 is now able to predict fuel performance parameter for burn-ups up to 50000 MWD/TeU. The validation field of the code has been extended to prediction of thorium oxide fuel performance. An analysis of local deformations at pellet interfaces and near the end caps is carried out considering the hourglassing of the pellet by finite element technique. (author). 15 refs, 1 fig.

  20. Modification in the FUDA computer code to predict fuel performance at high burnup

    International Nuclear Information System (INIS)

    Das, M.; Arunakumar, B.V.; Prasad, P.N.

    1997-01-01

    The computer code FUDA (FUel Design Analysis) participated in the blind exercises organized by the IAEA CRP (Co-ordinated Research Programme) on FUMEX (Fuel Modelling at Extended Burnup). While the code prediction compared well with the experiments at Halden under various parametric and operating conditions, the fission gas release and fission gas pressure were found to be slightly over-predicted, particularly at high burnups. In view of the results of 6 FUMEX cases, the main models and submodels of the code were reviewed and necessary improvements were made. The new version of the code FUDA MOD 2 is now able to predict fuel performance parameter for burn-ups up to 50000 MWD/TeU. The validation field of the code has been extended to prediction of thorium oxide fuel performance. An analysis of local deformations at pellet interfaces and near the end caps is carried out considering the hourglassing of the pellet by finite element technique. (author). 15 refs, 1 fig

  1. MCNPX and MCB coupled methodology for the burnup calculation of the KIPT accelerator driven subcritical system

    International Nuclear Information System (INIS)

    Zhong, Z.; Gohar, Y.; Talamo, A.

    2009-01-01

    Argonne National Laboratory (ANL) of USA and Kharkov Inst. of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an electron accelerator driven subcritical facility (ADS). The facility will be utilized for basic research, medical isotopes production, and training young nuclear specialists. The burnup methodology and analysis of the KIPT ADS are presented in this paper. MCNPX and MCB Monte Carlo computer codes have been utilized. MCNPX has the capability of performing electron, photon and neutron coupled transport problems, but it lacks the burnup capability for driven subcritical systems. MCB has the capability for performing the burnup calculation of driven subcritical systems, while it cannot transport electrons. A calculational methodology coupling MCNPX and MCB has been developed, which can exploit the electrons transport capability of MCNPX for neutron production and the burnup capability of MCB for driven subcritical systems. In this procedure, a neutron source file is generated using MCNPX transport calculation, preserving the neutrons yield from photonuclear reactions initiated by electrons, and this source file is utilized by MCB for the burnup analyses with the same geometrical model. In this way, the ADS depletion calculation can be accurately. (authors)

  2. Verification of spectral burn-up codes on 2D fuel assemblies of the GFR demonstrator ALLEGRO reactor

    International Nuclear Information System (INIS)

    Čerba, Štefan; Vrban, Branislav; Lüley, Jakub; Dařílek, Petr; Zajac, Radoslav; Nečas, Vladimír; Haščik, Ján

    2014-01-01

    Highlights: • Verification of the MCNPX, HELIOS and SCALE codes. • MOX and ceramic fuel assembly. • Gas-cooled fast reactor. • Burnup calculation. - Abstract: The gas-cooled fast reactor, which is one of the six GEN IV reactor concepts, is characterized by high operational temperatures and a hard neutron spectrum. The utilization of commonly used spectral codes, developed mainly for LWR reactors operated in the thermal/epithermal neutron spectrum, may be connected with systematic deviations since the main development effort of these codes has been focused on the thermal part of the neutron spectrum. To be able to carry out proper calculations for fast systems the used codes have to account for neutron resonances including the self-shielding effect. The presented study aims at verifying the spectral HELIOS, MCNPX and SCALE codes on the basis of depletion calculations of 2D MOX and ceramic fuel assemblies of the ALLEGRO gas-cooled fast reactor demonstrator in infinite lattice

  3. Role of measurement systems in burnup credit operations

    International Nuclear Information System (INIS)

    Ewing, R.I.; Sanders, T.L.

    1991-01-01

    Spent fuel transport casks designed using burnup credit have increased payloads that may greatly reduce the number of shipments required to transport spent fuel from reactor sites to repositories. Burnup credit is obtained by applying the reduced reactivity of spent fuel to considerations of nuclear criticality in the design of transport casks. Although it does not appear to be possible to directly measure the criticality of spent fuel assemblies, measurements can be employed to ensure that the only assemblies loaded into a cask have the characteristics appropriate to that cask design. An effective on-site measurement system must be matched to the characteristics of the spent fuel cask design and to the inventory of spent fuel. For operation reasons the system should be simple, accurate, efficient, and easily calibrated. This paper is part of a study to examine the effects of the spent fuel inventory in the U.S. on the selection of measurement systems useful in burnup credit operations

  4. THE INVESTIGATION OF BURNUP CHARACTERISTICS USING THE SERPENT MONTE CARLO CODE FOR A SODIUM COOLED FAST REACTOR

    Directory of Open Access Journals (Sweden)

    MEHMET E. KORKMAZ

    2014-06-01

    Full Text Available In this research, we investigated the burnup characteristics and the conversion of fertile 232Th into fissile 233U in the core of a Sodium-Cooled Fast Reactor (SFR. The SFR fuel assemblies were designed for burning 232Th fuel (fuel pin 1 and 233U fuel (fuel pin 2 and include mixed minor actinide compositions. Monte Carlo simulations were performed using Serpent Code1.1.19 to compare with CRAM (Chebyshev Rational Approximation Method and TTA (Transmutation Trajectory Analysis method in the burnup calculation mode. The total heating power generated in the system was assumed to be 2000 MWth. During the reactor operation period of 600 days, the effective multiplication factor (keff was between 0.964 and 0.954 and peaking factor is 1.88867.

  5. First steps towards a validation of the new burnup and depletion code TNT

    Energy Technology Data Exchange (ETDEWEB)

    Herber, S.C.; Allelein, H.J. [RWTH Aachen (Germany). Inst. for Reactor Safety and Reactor Technology; Research Center Juelich (Germany). Inst. for Energy and Climate Research - Nuclear Waste Disposal and Reactor Safety (IEK-6); Friege, N. [RWTH Aachen (Germany). Inst. for Reactor Safety and Reactor Technology; Kasselmann, S. [Research Center Juelich (Germany). Inst. for Energy and Climate Research - Nuclear Waste Disposal and Reactor Safety (IEK-6)

    2012-11-01

    In the frame of the fusion of the core design calculation capabilities, represented by V.S.O.P., and the accident calculation capabilities, represented by MGT(-3D), the successor of the TINTE code, difficulties were observed in defining an interface between a program backbone and the ORIGEN code respectively the ORIGENJUEL code. The estimation of the effort of refactoring the ORIGEN code or to write a new burnup code from scratch, led to the decision that it would be more efficient writing a new code, which could benefit from existing programming and software engineering tools from the computer code side and which can use the latest knowledge of nuclear reactions, e.g. consider all documented reaction channels. Therefore a new code with an object-oriented approach was developed at IEK-6. Object-oriented programming is currently state of the art and provides mostly an improved extensibility and maintainability. The new code was named TNT which stands for Topological Nuclide Transformation, since the code makes use of the real topology of the nuclear reactions. Here we want to present some first validation results from code to code benchmarks with the codes ORIGEN V2.2 and FISPACT2005 and whenever possible analytical results also used for the comparison. The 2 reference codes were chosen due to their high reputation in the field of fission reactor analysis (ORIGEN) and fusion facilities (FISPACT). (orig.)

  6. Revised SRAC code system

    International Nuclear Information System (INIS)

    Tsuchihashi, Keichiro; Ishiguro, Yukio; Kaneko, Kunio; Ido, Masaru.

    1986-09-01

    Since the publication of JAERI-1285 in 1983 for the preliminary version of the SRAC code system, a number of additions and modifications to the functions have been made to establish an overall neutronics code system. Major points are (1) addition of JENDL-2 version of data library, (2) a direct treatment of doubly heterogeneous effect on resonance absorption, (3) a generalized Dancoff factor, (4) a cell calculation based on the fixed boundary source problem, (5) the corresponding edit required for experimental analysis and reactor design, (6) a perturbation theory calculation for reactivity change, (7) an auxiliary code for core burnup and fuel management, etc. This report is a revision of the users manual which consists of the general description, input data requirements and their explanation, detailed information on usage, mathematics, contents of libraries and sample I/O. (author)

  7. Sophistication of burnup analysis system for fast reactor (2)

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Hirai, Yasushi; Tatsumi, Masahiro

    2010-10-01

    Improvement on prediction accuracy for neutronics characteristics of fast reactor cores is one of the most important study domains in terms of both achievement of high economical plant efficiency based on reasonably advanced designs and increased reliability and safety margins. In former study, considerable improvement on prediction accuracy in neutronics design has been achieved in the development of the unified cross-section set as a fruit of a series of critical experiments such as JUPITER in application of the reactor constant adjustments. For design of fast reactor cores improvement of not only static characteristics but also burnup characteristics is very important. For such purpose, it is necessary to improve the prediction accuracy on burnup characteristics using actual burnup data of 'JOYO' and 'MONJU', experimental and prototype fast reactors. Recently, study on effective burnup method for minor actinides becomes important theme. However, there is a problem that analysis work tends to become inefficient for lack of functionality suitable for analysis of composition change due to burnup since the conventional analysis system is targeted to critical assembly systems. Therefore development of burnup analysis system for fast reactors with modularity and flexibility is being done that would contribute to actual core design work and improvement of prediction accuracy. In the previous study, we have developed a prototype system which has functions of performing core and burnup calculations using given constant files (PDS files) and information based on simple and easy user input data. It has also functions of fuel shuffling which is indispensable for power reactor analysis systems. In the present study, by extending the prototype system, features for handling of control rods and energy collapse of group constants have been designed and implemented. Computational results from the present analysis system are stored into restart files which can be accessible by

  8. Discrete rod burnup analysis capability in the Westinghouse advanced nodal code

    International Nuclear Information System (INIS)

    Buechel, R.J.; Fetterman, R.J.; Petrunyak, M.A.

    1992-01-01

    Core design analysis in the last several years has evolved toward the adoption of nodal-based methods to replace traditional fine-mesh models as the standard neutronic tool for first core and reload design applications throughout the nuclear industry. The accuracy, speed, and reduction in computation requirements associated with the nodal methods have made three-dimensional modeling the preferred approach to obtain the most realistic core model. These methods incorporate detailed rod power reconstruction as well. Certain design applications such as confirmation of fuel rod design limits and fuel reconstitution considerations, for example, require knowledge of the rodwise burnup distribution to avoid unnecessary conservatism in design analyses. The Westinghouse Advanced Nodal Code (ANC) incorporates the capability to generate the intra-assembly pin burnup distribution using an efficient algorithm

  9. Modeling CANDU type fuel behaviour during extended burnup irradiations using a revised version of the ELESIM code

    International Nuclear Information System (INIS)

    Arimescu, V.I.; Richmond, W.R.

    1992-05-01

    The high-burnup database for CANDU fuel, with a variety of cases, offers a good opportunity to check models of fuel behaviour, and to identify areas for improvement. Good agreement of calculated values of fission-gas release, and sheath hoop strain, with experimental data indicates that the global behaviour of the fuel element is adequately simulated by a computer code. Using, the ELESIM computer code, the fission-gas release, swelling, and fuel pellet expansion models were analysed, and changes made for gaseous swelling, and diffusional release of fission-gas atoms to the grain boundaries. Using this revised version of ELESIM, satisfactory agreement between measured values of fission-gas release was found for most of the high-burnup database cases. It is concluded that the revised version of the ELESIM code is able to simulate with reasonable accuracy high-burnup as well as low-burnup CANDU fuel

  10. MODRIB - a zero dimensional code for criticality and burn-up of LWR's

    International Nuclear Information System (INIS)

    Gaafar, M.A.; El-Cherif, A.I.

    1980-01-01

    The computer program MODRIB is a zero-dimensional code for calculating criticality and burn-up of light water reactors (LWR's). It is a version of an Italian code RIBOT-2 with an updated cross-section data library. The nuclear constants of MODRIB-code are calculated with a two group scheme (fast and thermal), where the fast group is an average of three fast groups. The code requires as input data essential extensive reactor parameters such as fuel rod radius, clad thickness, fuel enrichment, lattice pitch, water density and temperature etc. A summary of the physical model description and the input-output procedures are given in this report. Selected results of two sample problems are also given for the purpose of checking the validity and reliability of the code. The first is BWR and the second is PWR. The calculation time for a criticality problem with burn-up is about 8 seconds for the first time step and about 3 seconds for each subsequent time step on the ICL-1906 computer facility. The requirements on the memory size is less than 32 K-word. (author)

  11. Modelling of high burnup structure in UO2 fuel with the RTOP code

    International Nuclear Information System (INIS)

    Likhanskii, V.; Zborovskii, V.; Evdokimov, I.; Kanyukova, V.; Sorokin, A.

    2008-01-01

    The present work deals with self-consistent physical approach aimed to derive the criterion of fuel restructuring avoiding correlations. The approach is based on study of large over pressurized bubbles formation on dislocations, at grain boundaries and in grain volume. At first, stage of formation of bubbles non-destroyable by fission fragments is examined using consistent modelling of point defects and fission gas behavior near dislocation and in grain volume. Then, evolution of formed large non-destroyable bubbles is considered using results of the previous step as initial values. Finally, condition of dislocation loops punching by sufficiently large over pressurized bubbles is regarded as the criterion of fuel restructuring onset. In the present work consideration of large over pressurized bubbles evolution is applied to modelling of the restructuring threshold depending on temperature, burnup and grain size. Effect of grain size predicted by the model is in qualitative agreement with experimental observations. Restructuring threshold criterion as an analytical function of local burnup and fuel temperature is derived and compared with HBRP project data. To predict rim-layer width formation depending on fuel burnup and irradiation conditions the model is implemented into the mechanistic fuel performance code RTOP. Calculated dependencies give upper estimate for the width of restructured region. Calculations show that one needs to consider temperature distribution within pellet which depends on irradiation history in order to model rim-structure formation

  12. Calculation Of Fuel Burnup And Radionuclide Inventory In The Syrian Miniature Neutron Source Reactor Using The GETERA Code

    International Nuclear Information System (INIS)

    Khattab, K.; Dawahra, S.

    2011-01-01

    Calculations of the fuel burnup and radionuclide inventory in the Syrian Miniature Neutron Source Reactor (MNSR) after 10 years (the reactor core expected life) of the reactor operation time are presented in this paper using the GETERA code. The code is used to calculate the fuel group constants and the infinite multiplication factor versus the reactor operating time for 10, 20, and 30 kW operating power levels. The amounts of uranium burnup and plutonium produced in the reactor core, the concentrations and radionuclides of the most important fission product and actinide radionuclides accumulated in the reactor core, and the total radioactivity of the reactor core were calculated using the GETERA code as well. It is found that the GETERA code is better than the WIMSD4 code for the fuel burnup calculation in the MNSR reactor since it is newer and has a bigger library of isotopes and more accurate. (author)

  13. New Burnup Calculation System for Fusion-Fission Hybrid System

    International Nuclear Information System (INIS)

    Isao Murata; Shoichi Shido; Masayuki Matsunaka; Keitaro Kondo; Hiroyuki Miyamaru

    2006-01-01

    Investigation of nuclear waste incineration has positively been carried out worldwide from the standpoint of environmental issues. Some candidates such as ADS, FBR are under discussion for possible incineration technology. Fusion reactor is one of such technologies, because it supplies a neutron-rich and volumetric irradiation field, and in addition the energy is higher than nuclear reactor. However, it is still hard to realize fusion reactor right now, as well known. An idea of combination of fusion and fission concepts, so-called fusion-fission hybrid system, was thus proposed for the nuclear waste incineration. Even for a relatively lower plasma condition, neutrons can be well multiplied by fission in the nuclear fuel, tritium is thus bred so as to attain its self-sufficiency, enough energy multiplication is then expected and moreover nuclear waste incineration is possible. In the present study, to realize it as soon as possible with the presently proven technology, i.e., using ITER model with the achieved plasma condition of JT60 in JAEA, Japan, a new calculation system for fusion-fission hybrid reactor including transport by MCNP and burnup by ORIGEN has been developed for the precise prediction of the neutronics performance. The author's group already has such a calculation system developed by them. But it had a problem that the cross section libraries in ORIGEN did not have a cross section library, which is suitable specifically for fusion-fission hybrid reactors. So far, those for FBR were approximately used instead in the analysis. In the present study, exact derivation of the collapsed cross section for ORIGEN has been investigated, which means it is directly evaluated from calculated track length by MCNP and point-wise nuclear data in the evaluated nuclear data file like JENDL-3.3. The system realizes several-cycle calculation one time, each of which consists of MCNP criticality calculation, MCNP fixed source calculation with a 3-dimensional precise

  14. Technical Basis for Peak Reactivity Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, William BJ J [ORNL; Ade, Brian J [ORNL; Bowman, Stephen M [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL; Mertyurek, Ugur [ORNL; Radulescu, Georgeta [ORNL

    2015-01-01

    Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate application of burnup credit for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase (1) investigates applicability of peak reactivity methods currently used in spent fuel pools (SFPs) to storage and transportation systems and (2) evaluates validation of both reactivity (keff) calculations and burnup credit nuclide concentrations within these methods. The second phase will focus on extending burnup credit beyond peak reactivity. This paper documents the first phase, including an analysis of lattice design parameters and depletion effects, as well as both validation components. Initial efforts related to extended burnup credit are discussed in a companion paper. Peak reactivity analyses have been used in criticality analyses for licensing of BWR fuel in SFPs over the last 20 years. These analyses typically combine credit for the gadolinium burnable absorber present in the fuel with a modest amount of burnup credit. Gadolinium burnable absorbers are used in BWR assemblies to control core reactivity. The burnable absorber significantly reduces assembly reactivity at beginning of life, potentially leading to significant increases in assembly reactivity for burnups less than 15–20 GWd/MTU. The reactivity of each fuel lattice is dependent on gadolinium loading. The number of gadolinium-bearing fuel pins lowers initial lattice reactivity, but it has a small impact on the burnup and reactivity of the peak. The gadolinium concentration in each pin has a small impact on initial lattice reactivity but a significant effect on the reactivity of the peak and the burnup at which the peak occurs. The importance of the lattice parameters and depletion conditions are primarily determined by their impact on the gadolinium depletion. Criticality code validation for BWR burnup

  15. DRAGON, Reactor Cell Calculation System with Burnup

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: DRAGON is a collection of models to simulate the neutronic behavior of a unit cell or a fuel assembly in a nuclear reactor. It includes all of the functions that characterize a lattice cell code, namely: interpolation of microscopic cross sections supplied by means of standard libraries; resonance self-shielding calculations in multidimensional geometries; multigroup and multidimensional neutron flux calculations which can take into account neutron leakage; transport-transport or transport-diffusion equivalence calculations as well as editing of condensed and homogenized nuclear properties for reactor calculations; and finally isotopic depletion calculations. The user must supply cross sections. DRAGON can access directly standard microscopic cross-section libraries in the following formats: DRAGON, MATXS (TRANSX-CTR), WIMSD4, WIMS-AECL, and APOLLO. It has the capability of exchanging macroscopic and microscopic cross-section libraries with a code such as PSR-0206/TRANSX-CTR or PSR-0317/TRANSX-2 by the use of the GOXS and ISOTXS format files. Macroscopic cross sections can also be read in DRAGON via the input data stream. 2 - Method of solution: DRAGON contains a multigroup iterator conceived to control a number of different algorithms for the solution of the neutron transport equation. Each of these algorithms is presented in the form of a one-group solution procedure where the contributions from other energy groups are included in a source term. The current version, DRAGON 9 71124 (Release 3.02), which was released in January 1998, contains three such algorithms. The JPM option solves the integral transport equation using the interface current method applied to homogeneous blocks; the SYBIL option solves the integral transport equation using the collision probability method for simple one-dimensional (1-D) or two-dimensional (2-D) geometries and the interface current method for 2-D Cartesian or hexagonal assemblies; and the

  16. Burnup calculations for KIPT accelerator driven subcritical facility using Monte Carlo computer codes-MCB and MCNPX

    International Nuclear Information System (INIS)

    Gohar, Y.; Zhong, Z.; Talamo, A.

    2009-01-01

    produced neutrons and photons but the current version of MCNPX doesn't support depletion/burnup calculation of the subcritical system with the generated neutron source from the target. MCB can perform neutron transport and burnup calculation for subcritical system using external neutron source, however it cannot perform electron transport calculations. To solve this problem, a hybrid procedure is developed by coupling these two computer codes. The user tally subroutine of MCNPX is developed and utilized to record the information of the each generated neutron from the photonuclear reactions resulted from the electron beam interactions. MCB reads the recorded information of each generated neutron thorough the user source subroutine. In this way, the neutron source generated by electron reactions could be utilized in MCB calculations, without the need for MCB to transport the electrons. Using the source subroutines, MCB could get the external neutron source, which is prepared by MCNPX, and perform depletion calculation for the driven subcritical facility.

  17. A validation study of the BURNUP and associated options of the MONTE CARLO neutronics code MONK5W

    International Nuclear Information System (INIS)

    Howard, E.A.

    1985-11-01

    This is a report on the validation of the burnup option of the Monte Carlo Neutronics Code MONK5W, together with the associated facilities which allow for control rod movements and power changes. The validation uses reference solutions produced by the Deterministic Neutronics Code LWR-WIMS for a 2D model which represents a whole reactor calculation with control rod movements. (author)

  18. Comparison of MCB and MONTEBURNS Monte Carlo burnup codes on a one-pass deep burn

    International Nuclear Information System (INIS)

    Talamo, Alberto; Ji, Wei; Cetnar, Jerzy; Gudowski, Waclaw

    2006-01-01

    Numerical applications implemented on the Monte Carlo method have developed in line with the increase of computer power; nowadays, in the field of nuclear reactor physics, it is possible to perform burnup simulations in a detailed 3D geometry and a continuous energy description by the Monte Carlo method; moreover, the required computing time can be abundantly reduced by taking advantage of a computer cluster. In this paper we focused on comparing the results of the two major Monte Carlo burnup codes, MONTEBURNS and MCB, when they share the same MCNP geometry, nuclear data library, core thermal power, and they apply the same refueling and shuffling schedule. While simulating a total operation time of the Gas Turbine-Modular Helium Reactor of 2100 effective full power days and a one-pass deep burn in-core fuel management schedule, we have found that the two Monte Carlo codes produce very similar results both on the criticality value of the core and the transmutation of the key actinides

  19. Comparison of MCB and MONTEBURNS Monte Carlo burnup codes on a one-pass deep burn

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Royal Institute of Technology (KTH), Roslagstullsbacken 21, Stockholm S-10691 (Sweden)]. E-mail: alby@anl.gov; Ji, Wei [University of Michigan, Bonisteel Boulevard 2355, Ann Arbor, MI 48109-2104 (United States); Cetnar, Jerzy [AGH-University of Science and Technology, Al. Mickiewicza 30 Cracow (Poland); Gudowski, Waclaw [Royal Institute of Technology (KTH), Roslagstullsbacken 21, Stockholm S-10691 (Sweden)

    2006-09-15

    Numerical applications implemented on the Monte Carlo method have developed in line with the increase of computer power; nowadays, in the field of nuclear reactor physics, it is possible to perform burnup simulations in a detailed 3D geometry and a continuous energy description by the Monte Carlo method; moreover, the required computing time can be abundantly reduced by taking advantage of a computer cluster. In this paper we focused on comparing the results of the two major Monte Carlo burnup codes, MONTEBURNS and MCB, when they share the same MCNP geometry, nuclear data library, core thermal power, and they apply the same refueling and shuffling schedule. While simulating a total operation time of the Gas Turbine-Modular Helium Reactor of 2100 effective full power days and a one-pass deep burn in-core fuel management schedule, we have found that the two Monte Carlo codes produce very similar results both on the criticality value of the core and the transmutation of the key actinides.

  20. Advancements in reactor physics modelling methodology of Monte Carlo Burnup Code MCB dedicated to higher simulation fidelity of HTR cores

    International Nuclear Information System (INIS)

    Cetnar, Jerzy

    2014-01-01

    The recent development of MCB - Monte Carlo Continuous Energy Burn-up code is directed towards advanced description of modern reactors, including double heterogeneity structures that exist in HTR-s. In this, we exploit the advantages of MCB methodology in integrated approach, where physics, neutronics, burnup, reprocessing, non-stationary process modeling (control rod operation) and refined spatial modeling are carried in a single flow. This approach allows for implementations of advanced statistical options like analysis of error propagation, perturbation in time domain, sensitivity and source convergence analyses. It includes statistical analysis of burnup process, emitted particle collection, thermal-hydraulic coupling, automatic power profile calculations, advanced procedures of burnup step normalization and enhanced post processing capabilities. (author)

  1. Burnup simulations of different fuel grades using the MCNPX Monte Carlo code

    Directory of Open Access Journals (Sweden)

    Asah-Opoku Fiifi

    2014-01-01

    Full Text Available Global energy problems range from the increasing cost of fuel to the unequal distribution of energy resources and the potential climate change resulting from the burning of fossil fuels. A sustainable nuclear energy would augment the current world energy supply and serve as a reliable future energy source. This research focuses on Monte Carlo simulations of pressurized water reactor systems. Three different fuel grades - mixed oxide fuel (MOX, uranium oxide fuel (UOX, and commercially enriched uranium or uranium metal (CEU - are used in this simulation and their impact on the effective multiplication factor (Keff and, hence, criticality and total radioactivity of the reactor core after fuel burnup analyzed. The effect of different clad materials on Keff is also studied. Burnup calculation results indicate a buildup of plutonium isotopes in UOX and CEU, as opposed to a decline in plutonium radioisotopes for MOX fuel burnup time. For MOX fuel, a decrease of 31.9% of the fissile plutonium isotope is observed, while for UOX and CEU, fissile plutonium isotopes increased by 82.3% and 83.8%, respectively. Keff results show zircaloy as a much more effective clad material in comparison to zirconium and stainless steel.

  2. Development and validation of ALEPH Monte Carlo burn-up code

    International Nuclear Information System (INIS)

    Stankovskiy, A.; Van den Eynde, G.; Vidmar, T.

    2011-01-01

    The Monte-Carlo burn-up code ALEPH is being developed in SCK-CEN since 2004. Belonging to the category of shells coupling Monte Carlo transport (MCNP or MCNPX) and 'deterministic' depletion codes (ORIGEN-2.2), ALEPH possess some unique features that distinguish it from other codes. The most important feature is full data consistency between steady-state Monte Carlo and time-dependent depletion calculations. Recent improvements of ALEPH concern full implementation of general-purpose nuclear data libraries (JEFF-3.1.1, ENDF/B-VII, JENDL-3.3). The upgraded version of the code is capable to treat isomeric branching ratios, neutron induced fission product yields, spontaneous fission yields and energy release per fission recorded in ENDF-formatted data files. The alternative algorithm for time evolution of nuclide concentrations is added. A predictor-corrector mechanism and the calculation of nuclear heating are available as well. The validation of the code on REBUS experimental programme results has been performed. The upgraded version of ALEPH has shown better agreement with measured data than other codes, including previous version of ALEPH. (authors)

  3. Accelerator-driven transmutation reactor analysis code system (ATRAS)

    Energy Technology Data Exchange (ETDEWEB)

    Sasa, Toshinobu; Tsujimoto, Kazufumi; Takizuka, Takakazu; Takano, Hideki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-03-01

    JAERI is proceeding a design study of the hybrid type minor actinide transmutation system which mainly consist of an intense proton accelerator and a fast subcritical core. Neutronics and burnup characteristics of the accelerator-driven system is important from a view point of the maintenance of subcriticality and energy balance during the system operation. To determine those characteristics accurately, it is necessary to involve reactions at high-energy region, which are not treated on ordinary reactor analysis codes. The authors developed a code system named ATRAS to analyze the neutronics and burnup characteristics of accelerator-driven subcritical reactor systems. ATRAS has a function of burnup analysis taking account of the effect of spallation neutron source. ATRAS consists of a spallation analysis code, a neutron transport codes and a burnup analysis code. Utility programs for fuel exchange, pre-processing and post-processing are also incorporated. (author)

  4. An economic evaluation of a storage system for casks with burnup credit

    International Nuclear Information System (INIS)

    Mimura, Masahiro; Tsuda, Kazuaki; Yamada, Nobuyuki; O-iwa, Akio.

    1993-01-01

    It is generally recognized that casks designed with burnup credit are more economical than those without burnup credit. To estimate how much more economical they are, we made conceptual designs of transport/storage casks with and without burnup credit for PWR and BWR fuels of various uranium enrichment. The casks were designed to contain the maximum number of fuel assemblies under the necessary weight and dimensional limitations as well as the criticality and shielding criteria. The results showed that approximately 8 % to 44 % more fuel assemblies could be contained in casks with burnup credit. We then evaluated the economy of cask storage system incorporating the cask designs obtained above both with and without burnup credit. The results showed that the cost of storing casks with burnup credit is approximately 7 % to 30 % less expensive than storing casks without burnup credit. (J.P.N.)

  5. Burnup credit calculations for criticality safety justification for RBMK-1000 spent fuel of transport and storage systems

    Directory of Open Access Journals (Sweden)

    V. V. Galchenko

    2010-12-01

    Full Text Available In present paper the burnup credit calculations for TK-8 transport container and SVJP-1 spent fuel storage fa-cility of pool type with RBMK-1000 spent fuel during 100-years of cooling time were performed for criticality safety analysis purpose using MCNP and SCALE codes. Only actinides were taken into account for these critical systems. Two approaches were analyzed with isotopes distribution calculations along fuel assembly height and without it. The results show that subcriticality margin is increased considerably using burnup credit and isotopes distribution along fuel assembly height made this value more reasonable.

  6. Development of a code and models for high burnup fuel performance analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, M; Kitajima, S [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1997-08-01

    First the high burnup LWR fuel behavior is discussed and necessary models for the analysis are reviewed. These aspects of behavior are the changes of power history due to the higher enrichment, the temperature feedback due to fission gas release and resultant degradation of gap conductance, axial fission gas transport in fuel free volume, fuel conductivity degradation due to fission product solution and modification of fuel micro-structure. Models developed for these phenomena, modifications in the code, and the benchmark results mainly based on Risoe fission gas project is presented. Finally the rim effect which is observe only around the fuel periphery will be discussed focusing into the fuel conductivity degradation and swelling due to the porosity development. (author). 18 refs, 13 figs, 3 tabs.

  7. Establishing the fuel burn-up measuring system for 106 irradiated assemblies of Dalat reactor by using gamma spectrometer method

    International Nuclear Information System (INIS)

    Nguyen Minh Tuan; Pham Quang Huy; Tran Tri Vien; Trang Cao Su; Tran Quoc Duong; Dang Tran Thai Nguyen

    2013-01-01

    The fuel burn-up is an important parameter needed to be monitored and determined during a reactor operation and fuel management. The fuel burn-up can be calculated using computer codes and experimentally measured. This work presents the theory and experimental method applied to determine the burn-up of the irradiated and 36% enriched VVR-M2 fuel type assemblies of Dalat reactor. The method is based on measurement of Cs-137 absolute specific activity using gamma spectrometer. Designed measuring system consists of a collimator tube, high purity Germanium detector (HPGe) and associated electronics modules and online computer data acquisition system. The obtained results of measurement are comparable with theoretically calculated results. (author)

  8. SWAT2: The improved SWAT code system by incorporating the continuous energy Monte Carlo code MVP

    International Nuclear Information System (INIS)

    Mochizuki, Hiroki; Suyama, Kenya; Okuno, Hiroshi

    2003-01-01

    SWAT is a code system, which performs the burnup calculation by the combination of the neutronics calculation code, SRAC95 and the one group burnup calculation code, ORIGEN2.1. The SWAT code system can deal with the cell geometry in SRAC95. However, a precise treatment of resonance absorptions by the SRAC95 code using the ultra-fine group cross section library is not directly applicable to two- or three-dimensional geometry models, because of restrictions in SRAC95. To overcome this problem, SWAT2 which newly introduced the continuous energy Monte Carlo code, MVP into SWAT was developed. Thereby, the burnup calculation by the continuous energy in any geometry became possible. Moreover, using the 147 group cross section library called SWAT library, the reactions which are not dealt with by SRAC95 and MVP can be treated. OECD/NEA burnup credit criticality safety benchmark problems Phase-IB (PWR, a single pin cell model) and Phase-IIIB (BWR, fuel assembly model) were calculated as a verification of SWAT2, and the results were compared with the average values of calculation results of burnup calculation code of each organization. Through two benchmark problems, it was confirmed that SWAT2 was applicable to the burnup calculation of the complicated geometry. (author)

  9. Comparison of the ENIGMA code with experimental data on thermal performance, stable fission gas and iodine release at high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Killeen, J C [Nuclear Electric plc, Barnwood (United Kingdom)

    1997-08-01

    The predictions of the ENIGMA code have been compared with data from high burn-up fuel experiments from the Halden and RISO reactors. The experiments modelled were IFA-504 and IFA-558 from Halden and the test II-5 from the RISO power burnup test series. The code has well modelled the fuel thermal performance and has provided a good measure of iodine release from pre-interlinked fuel. After interlinkage the iodine predictions remain a good fit for one experiment, but there is significant overprediction for a second experiment (IFA-558). Stable fission gas release is also well modelled and the predictions are within the expected uncertainly band throughout the burn-up range. This report presents code predictions for stable fission gas release to 40GWd/tU, iodine release measurements to 50GWd/tU and thermal performance (fuel centre temperature) to 55GWd/tU. Fuel ratings of up to 38kW/m were modelled at the high burn-up levels. The code is shown to accurately or conservatively predict all these parameters. (author). 1 ref., 6 figs.

  10. Core burn-up calculation method of JRR-3

    International Nuclear Information System (INIS)

    Kato, Tomoaki; Yamashita, Kiyonobu

    2007-01-01

    SRAC code system is utilized for core burn-up calculation of JRR-3. SRAC code system includes calculation modules such as PIJ, PIJBURN, ANISN and CITATION for making effective cross section and calculation modules such as COREBN and HIST for core burn-up calculation. As for calculation method for JRR-3, PIJBURN (Cell burn-up calculation module) is used for making effective cross section of fuel region at each burn-up step. PIJ, ANISN and CITATION are used for making effective cross section of non-fuel region. COREBN and HIST is used for core burn-up calculation and fuel management. This paper presents details of NRR-3 core burn-up calculation. FNCA Participating countries are expected to carry out core burn-up calculation of domestic research reactor by SRAC code system by utilizing the information of this paper. (author)

  11. Burn-up calculation of different thorium-based fuel matrixes in a thermal research reactor using MCNPX 2.6 code

    Directory of Open Access Journals (Sweden)

    Gholamzadeh Zohreh

    2014-12-01

    Full Text Available Decrease of the economically accessible uranium resources and the inherent proliferation resistance of thorium fuel motivate its application in nuclear power systems. Estimation of the nuclear reactor’s neutronic parameters during different operational situations is of key importance for the safe operation of nuclear reactors. In the present research, thorium oxide fuel burn-up calculations for a demonstrative model of a heavy water- -cooled reactor have been performed using MCNPX 2.6 code. Neutronic parameters for three different thorium fuel matrices loaded separately in the modelled thermal core have been investigated. 233U, 235U and 239Pu isotopes have been used as fissile element in the thorium oxide fuel, separately. Burn-up of three different fuels has been calculated at 1 MW constant power. 135X and 149Sm concentration variations have been studied in the modelled core during 165 days burn-up. Burn-up of thorium oxide enriched with 233U resulted in the least 149Sm and 135Xe productions and net fissile production of 233U after 165 days. The negative fuel, coolant and void reactivity of the used fuel assures safe operation of the modelled thermal core containing (233U-Th O2 matrix. Furthermore, utilisation of thorium breeder fuel demonstrates several advantages, such as good neutronic economy, 233U production and less production of long-lived α emitter high radiotoxic wastes in biological internal exposure point of view

  12. User's manual for the reactor burnup system, REBUS

    International Nuclear Information System (INIS)

    Olson, A.P.; Regis, J.P.; Meneley, D.A.; Hoover, L.J.

    1972-01-01

    A user's manual for the REBUS System (REactor BUrnup System) is presented. Its primary purpose is to provide sufficient information about the REBUS capability to the user to ensure its efficient utilization. The current REBUS System either solves for the infinite time (equilibrium) operating conditions of a recycle system under fixed conditions, or solves for operating conditions during a single time step (non-equilibrium). The capability of studying various in-reactor fuel management and ex-reactor fuel management schemes has been included. REBUS has been operated with one- and two-dimensional diffusion theory neutronics solutions up to the present time. The model was specifically designed for extension to other neutronics models such as three-dimensional diffusion or transport theory and direct or synthesis solutions

  13. Technical description of the burn-up software system MOP

    International Nuclear Information System (INIS)

    Schutte, C.K.

    1991-05-01

    The burn-up software system MOP is a research tool primary intended to study the behaviour of fission products in any reactor composition. Input data are multi-group cross-sections and data concerning the nuclide chains. An option is available to calculate a fundamental mode neutron spectrum for the specified reactor composition. A separate program can test the consistency of the specified nuclide chains. Options are available to calculate time-dependent cross-sections of lumped fission products and to take account of the leakage of gaseous fission products from the reactor core. The system is written in FORTRAN77 for a CYBER computer, using the operating system NOS/BE. The report gives a detailed technical description of the applied algorithms and the flow and storage of data. Information is provided for adapting the system to other computer configurations. (author). 5 refs.; 11 figs

  14. Neutron transport-burnup code MCORGS and its application in fusion fission hybrid blanket conceptual research

    Science.gov (United States)

    Shi, Xue-Ming; Peng, Xian-Jue

    2016-09-01

    Fusion science and technology has made progress in the last decades. However, commercialization of fusion reactors still faces challenges relating to higher fusion energy gain, irradiation-resistant material, and tritium self-sufficiency. Fusion Fission Hybrid Reactors (FFHR) can be introduced to accelerate the early application of fusion energy. Traditionally, FFHRs have been classified as either breeders or transmuters. Both need partition of plutonium from spent fuel, which will pose nuclear proliferation risks. A conceptual design of a Fusion Fission Hybrid Reactor for Energy (FFHR-E), which can make full use of natural uranium with lower nuclear proliferation risk, is presented. The fusion core parameters are similar to those of the International Thermonuclear Experimental Reactor. An alloy of natural uranium and zirconium is adopted in the fission blanket, which is cooled by light water. In order to model blanket burnup problems, a linkage code MCORGS, which couples MCNP4B and ORIGEN-S, is developed and validated through several typical benchmarks. The average blanket energy Multiplication and Tritium Breeding Ratio can be maintained at 10 and 1.15 respectively over tens of years of continuous irradiation. If simple reprocessing without separation of plutonium from uranium is adopted every few years, FFHR-E can achieve better neutronic performance. MCORGS has also been used to analyze the ultra-deep burnup model of Laser Inertial Confinement Fusion Fission Energy (LIFE) from LLNL, and a new blanket design that uses Pb instead of Be as the neutron multiplier is proposed. In addition, MCORGS has been used to simulate the fluid transmuter model of the In-Zinerater from Sandia. A brief comparison of LIFE, In-Zinerater, and FFHR-E will be given.

  15. A PWR PCI failure criterion to burnups of 60 GW·d/t using the ENIGMA code

    International Nuclear Information System (INIS)

    Clarke, A.P.; Tempest, P.A.; Shea, J.H.

    2000-01-01

    A fuel performance modelling code (ENIGMA) has been used to analyse the empirical PCI failure criterion in terms of a clad failure stress as a function of burnup and fast neutron dose. The Studsvik database has been analysed. Results indicate a rising and then saturating failure stress with burnup and fast neutron dose. Using the PCI failure limits, equivalent to 95/95 confidence limits, an ENIGMA stress-based methodology is used to derive PWR PCI failure limits up to 60 GW·d/t U using a conservative assumption that the failure stress does not increase at high burnup and neutron dose. In addition experimental ramp data on gadolinia-doped fuel rods do not indicate any increased susceptibility to PCI failure implying that the UO 2 criterion can be used for gadolinia doped fuel. (author)

  16. A comparison study of the 1MeV triton burn-up in JET using the HECTOR and SOCRATE codes

    International Nuclear Information System (INIS)

    Gorini, G.; Kovanen, M.A.

    1988-01-01

    The burn-up of the 1MeV tritons in deuterium plasmas has been measured in JET for various plasma conditions. To interpret these measurements the containment, slowing down and burn-up of fast tritons needs to be modelled with a reasonable accuracy. The numerical code SOCRATE has been written for this specific purpose and a second code, HECTOR, has been adapted to study the triton burn-up problem. In this paper we compare the results from the two codes in order to exclude possible errors in the numerical models, to assess their accuracy and to study the sensitivity of the calculation to various physical effects. (author)

  17. BASHAN: A few-group three-dimensional diffusion code with burnup and fuel management features

    International Nuclear Information System (INIS)

    Pearce, D.F.

    1970-12-01

    The diffusion equation for a two or three-dimensional, two-group or multi-group downscatter problem is solved by conventional finite difference techniques. An x-y-z geometry is assumed with an 'in-channel' mesh point representation. Options are available which allow representation of a soluble poison dispersed throughout the reactor, and also absorber rods in specified channels. The power distribution and multiplication factor k eff are calculated and a point rating map is used to advance the irradiation at each mesh point by a specified time-step so that burnup is followed. Fuel changes may be made so that radial shuffling and axial shuffling fuel management schemes can be studies. The code has been written in FORTRAN S2 for an IBM 7030 (STRETCH) computer which, with a fast store of 80,000 locations, allows problems of up to 15,000 mesh points to be dealt with. Conversion to FORTRAN IV for IBM 360 has now been completed. (author)

  18. Improvements on burnup chain model and group cross section library in the SRAC system

    International Nuclear Information System (INIS)

    Akie, Hiroshi; Okumura, Keisuke; Takano, Hideki; Ishiguro, Yukio; Kaneko, Kunio.

    1992-01-01

    Data and functions of the cell burnup calculation of the SRAC system were revised to improve mainly the accuracy of the burnup calculation of high conversion light water reactors (HCLWRs). New burnup chain models were developed in order to treat fission products (FPs) and actinide nuclides in detail. Group cross section library, SRACLIB-JENDL2, was generated based on JENDL-2 nuclear data file. In generating this library, emphasis was placed on FPs and actinides. Also revised were the data such as the average energy release per fission for various actinides. These improved data were verified by performing the burnup analysis of PWR spent fuels. Some new functions were added to the SRAC system for the convenience to yield macroscopic cross sections used in the core burnup process. (author)

  19. Implementation of burnup credit in spent fuel management systems. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-08-01

    The purpose of this Technical Committee Meeting was to explore the status of international activities related to the use of burnup credit for spent fuel applications. This was the second major meeting on the issues of burnup credit for spent fuel management systems held since the IAEA began to monitor the uses of burnup credit in spent fuel management systems in 1997. Burnup credit for wet and dry storage systems is needed in many Member States to allow for increased initial fuel enrichment, and to increase the storage capacity and thus to avoid the need for extensive modifications of the spent fuel management systems involved. This document contains 31 individual papers presented at the Meeting; each of the papers was indexed separately.

  20. Implementation of burnup credit in spent fuel management systems. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2001-08-01

    The purpose of this Technical Committee Meeting was to explore the status of international activities related to the use of burnup credit for spent fuel applications. This was the second major meeting on the issues of burnup credit for spent fuel management systems held since the IAEA began to monitor the uses of burnup credit in spent fuel management systems in 1997. Burnup credit for wet and dry storage systems is needed in many Member States to allow for increased initial fuel enrichment, and to increase the storage capacity and thus to avoid the need for extensive modifications of the spent fuel management systems involved. This document contains 31 individual papers presented at the Meeting; each of the papers was indexed separately

  1. Effect of burn-up on the radioactivation behavior of cladding hull materials studied using the ORIGEN-S code

    International Nuclear Information System (INIS)

    Min Ku Jeon; Chang Hwa Lee; Jung Hoon Choi; In Hak Cho; Kweon Ho Kang; Hwan-Seo Park; Geun Il Park; Chang Je Park

    2013-01-01

    The effect of fuel burn-up on the radioactivation behavior of cladding hull materials was investigated using the ORIGEN-S code for various materials of Zircaloy-4, Zirlo, HANA-4, and HANA-6 and for various fuel burn-ups of 30, 45, 60, and 75 GWD/MTU. The Zircaloy-4 material is the only one that does not contain Nb as an alloy constituent, and it was revealed that 125 Sb, 125m Te, and 55 Fe are the major sources of radioactivity. On the other hand, 93m Nb was identified as the most radioactive nuclide for the other materials although minor radioactive nuclides varied owing to their different initial constituents. The radioactivity of 94 Nb was of particular focus owing to its acceptance limit against a Korean intermediate-/low-level waste repository. The radioactivation calculation results revealed that only Zircaloy-4 is acceptable for the Korean repository, while the other materials required at least 4,900 of Nb decontamination factor owing to the high radioactivity of 94 Nb regardless of the fuel burn-up. A discussion was also made on the feasibility of Zr recovery methods (chlorination and electrorefining) for selective recovery of Zr so that it can be disposed of in the Korean repository. (author)

  2. Automated generation of burnup chain for reactor analysis applications

    International Nuclear Information System (INIS)

    Tran, Viet-Phu; Tran, Hoai-Nam; Yamamoto, Akio; Endo, Tomohiro

    2017-01-01

    This paper presents the development of an automated generation of burnup chain for reactor analysis applications. Algorithms are proposed to reevaluate decay modes, branching ratios and effective fission product (FP) cumulative yields of a given list of important FPs taking into account intermediate reactions. A new burnup chain is generated using the updated data sources taken from the JENDL FP decay data file 2011 and Fission yields data file 2011. The new burnup chain is output according to the format for the SRAC code system. Verification has been performed to evaluate the accuracy of the new burnup chain. The results show that the new burnup chain reproduces well the results of a reference one with 193 fission products used in SRAC. Burnup calculations using the new burnup chain have also been performed based on UO_2 and MOX fuel pin cells and compared with a reference chain th2cm6fp193bp6T.

  3. Automated generation of burnup chain for reactor analysis applications

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Viet-Phu [VINATOM, Hanoi (Viet Nam). Inst. for Nuclear Science and Technology; Tran, Hoai-Nam [Duy Tan Univ., Da Nang (Viet Nam). Inst. of Research and Development; Yamamoto, Akio; Endo, Tomohiro [Nagoya Univ., Nagoya-shi (Japan). Dept. of Materials, Physics and Energy Engineering

    2017-05-15

    This paper presents the development of an automated generation of burnup chain for reactor analysis applications. Algorithms are proposed to reevaluate decay modes, branching ratios and effective fission product (FP) cumulative yields of a given list of important FPs taking into account intermediate reactions. A new burnup chain is generated using the updated data sources taken from the JENDL FP decay data file 2011 and Fission yields data file 2011. The new burnup chain is output according to the format for the SRAC code system. Verification has been performed to evaluate the accuracy of the new burnup chain. The results show that the new burnup chain reproduces well the results of a reference one with 193 fission products used in SRAC. Burnup calculations using the new burnup chain have also been performed based on UO{sub 2} and MOX fuel pin cells and compared with a reference chain th2cm6fp193bp6T.

  4. Computer modelling of the WWER fuel elements under high burnup conditions by the computer codes PIN-W and RODQ2D

    International Nuclear Information System (INIS)

    Valach, M.; Zymak, J.; Svoboda, R.

    1997-01-01

    This paper presents the development status of the computer codes for the WWER fuel elements thermomechanical behavior modelling under high burnup conditions at the Nuclear Research Institute Rez. The accent is given on the analysis of the results from the parametric calculations, performed by the programmes PIN-W and RODQ2D, rather than on their detailed theoretical description. Several new optional correlations for the UO2 thermal conductivity with degradation effect caused by burnup were implemented into the both codes. Examples of performed calculations document differences between previous and new versions of both programmes. Some recommendations for further development of the codes are given in conclusion. (author). 6 refs, 9 figs

  5. Computer modelling of the WWER fuel elements under high burnup conditions by the computer codes PIN-W and RODQ2D

    Energy Technology Data Exchange (ETDEWEB)

    Valach, M; Zymak, J; Svoboda, R [Nuclear Research Inst. Rez plc, Rez (Czech Republic)

    1997-08-01

    This paper presents the development status of the computer codes for the WWER fuel elements thermomechanical behavior modelling under high burnup conditions at the Nuclear Research Institute Rez. The accent is given on the analysis of the results from the parametric calculations, performed by the programmes PIN-W and RODQ2D, rather than on their detailed theoretical description. Several new optional correlations for the UO2 thermal conductivity with degradation effect caused by burnup were implemented into the both codes. Examples of performed calculations document differences between previous and new versions of both programmes. Some recommendations for further development of the codes are given in conclusion. (author). 6 refs, 9 figs.

  6. Theory analysis and simple calculation of travelling wave burnup scheme

    International Nuclear Information System (INIS)

    Zhang Jian; Yu Hong; Gang Zhi

    2012-01-01

    Travelling wave burnup scheme is a new burnup scheme that breeds fuel locally just before it burns. Based on the preliminary theory analysis, the physical imagine was found. Through the calculation of a R-z cylinder travelling wave reactor core with ERANOS code system, the basic physical characteristics of this new burnup scheme were concluded. The results show that travelling wave reactor is feasible in physics, and there are some good features in the reactor physics. (authors)

  7. VENTURE-PC 1.1, Reactor Analysis System with Sensitivity and Burnup

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Description of program or function: The VENTURE program solves the usual neutronics eigenvalue, adjoint, fixed source, and criticality search problems. It treats up to three dimensions, maps power density, and does first-order perturbation analysis at the macroscopic cross section level. The BURNER code solves the nuclide chain equations to estimate the nuclide concentrations and burnup at the end of an exposure time or after a shutdown period. This package is based on the CCC-459/BOLD VENTURE IV code system developed at Oak Ridge National Laboratory. In January 1989 the University of Cincinnati contributed the first VENTURE-PC package to RSICC's collection. It was a subset of the mainframe version consisting of the VENTURE and BURNER modules plus several processing modules. VENTURE-PC was distributed as CCC-459 until July 1997 when a new version (with updated source code compatible with newer FORTRAN-77 compilers, some revisions, and extensions to solve much larger problems) was contributed by Argonne National Laboratory. The principle code modules included in the VENTURE-PC system are: VENTURE: Multigroup neutronics finite-difference diffusion theory. BURNER: Depletion calculation for reactor core analysis. Other modules within VENTURE-PC are: DVENTR: Venture input processor; DCRSPR: Neutron cross section processor; DUTLIN: Control file (CNTRL) input processor; DCMACR: Citation format cross section input processor; CRXSPR: Cross section processor; DENMAN: Fuel repositioning module. In August of 1999, Argonne again contributed an updated version of the code which overcomes problem size constraints caused by binary record length limits inherent to the Fortran 90 compiler. The need for long records is detected and avoided by sub-blocking them. Also, the latest Fortran 95 compiler offers substantial speed gains on the newest processors. The source code is updated to be compatible with either Fortran 90 or Fortran 95. In August 2002, the package was updated with

  8. Comparative study on plutonium and MA recycling in equilibrium burnup and standard burnup of PWR

    International Nuclear Information System (INIS)

    Waris, Abdul; Kurniadi, Rizal; Su'ud, Zaki; Permana, Sidik

    2005-01-01

    The equilibrium burnup model is a powerful method since its can handle all possible generated nuclides in any nuclear system. Moreover, this method is a simple time independent method. Hence the equilibrium burnup method could be very useful for evaluating and forecasting the characteristics of any nuclear fuel cycle, even the strange one, e.g. all nuclides are confined in the reactor. However, this method needs to be verified since the method is not a standard tool. The present study aimed to compare the characteristics of plutonium recycling and plutonium and minor actinides (MA) recycling in PWR with the equilibrium burnup and the standard burnup. In order to become more comprehensive study, an influence of moderator-to-fuel volume ratio (MFR) changes by changing the pin-pitch of fuel cell has been evaluated. The MFR ranges from 0.5 to 4.0. For the equilibrium burnup we used equilibrium cell-burnup code. We have employed 1368 nuclides in the equilibrium calculation with 129 of them are heavy metals (HMs). For standard burnup, SRAC2002 code has been utilized with 26 HMs and 66 fission products (FPs). The JENDL 3.2 library has been employed for both burnup schemes. The uranium, plutonium and MA vector, which resulted from the equilibrium burnup are directly used as fuel input composition for the standard burnup calculation. Both burnup results demonstrate that plutonium recycling and plutonium and MA recycling can be conducted safer in tight lattice core. They are also show the similar trend in neutron spectrum, which become harder with the increasing number of recycled heavy nuclides as well as the decreasing of the MFR values. However, there are some discrepancy on the effective multiplication factor and the conversion ratio, especially for the reactor core for MFR ≥ 2.0. (author)

  9. UABUC - Single energy point model burnup computer code for water reactors

    International Nuclear Information System (INIS)

    El-Meshad, Y.; Morsy, S.; El-Osery, I.A.

    1981-01-01

    UABUC is a single energy point reactor burnup computer program in FORTRAN language. The program calculates the change in the isotopic composition of the uranium fuel as a function of irradiation time with all its associated quantities such as the average point flux, the conversion ratio, macroscopic fuel cross sections, and the point reactivity profile. A step-wise time analytical solution was developed for the nonlinear first order burnup differential equations. The ''Westcott'' convention of the effective cross sections was used except for plutonium-240 and uranium-238. For plutonium-240, an effective microscopic cross section was derived from the direct physical arguments taking into account the selfshielding effect of plutonium-240 as well as the 1 ev. resonance absorption. For uranium-238, an effective cross section, reflecting the effect of fast fission and resonance absorption was used. The fission products were treated in the three groups with 50, 300, and 800 barns. The yields in the groups were treated as functions of the type of fissionable nuclides, the effective neutron temperature, and the epithermal index. Xenon-135 and Samarium-149 were treated separately as functions of irradiation time. (author)

  10. A study of fuel failure behavior in high burnup HTGR fuel. Analysis by STRESS3 and STAPLE codes

    International Nuclear Information System (INIS)

    Martin, David G.; Sawa, Kazuhiro; Ueta, Shouhei; Sumita, Junya

    2001-05-01

    In current high temperature gas-cooled reactors (HTGRs), Tri-isotropic coated fuel particles are employed as fuel. In safety design of the HTGR fuels, it is important to retain fission products within particles so that their release to primary coolant does not exceed an acceptable level. From this point of view, the basic design criteria for the fuel are to minimize the failure fraction of as-fabricated fuel coating layers and to prevent significant additional fuel failures during operation. This report attempts to model fuel behavior in irradiation tests using the U.K. codes STRESS3 and STAPLE. Test results in 91F-1A and HRB-22 capsules irradiation tests, which were carried out at the Japan Materials Testing Reactor of JAERI and at the High Flux Isotope Reactor of Oak Ridge National Laboratory, respectively, were employed in the calculation. The maximum burnup and fast neutron fluence were about 10%FIMA and 3 x 10 25 m -2 , respectively. The fuel for the irradiation tests was called high burnup fuel, whose target burnup and fast neutron fluence were higher than those of the first-loading fuel of the High Temperature Engineering Test Reactor. The calculation results demonstrated that if only mean fracture stress values of PyC and SiC are used in the calculation it is not possible to predict any particle failures, by which is meant when all three load bearing layers have failed. By contrast, when statistical variations in the fracture stresses and particle specifications are taken into account, as is done in the STAPLE code, failures can be predicted. In the HRB-22 irradiation test, it was concluded that the first two particles which had failed were defective in some way, but that the third and fourth failures can be accounted for by the pressure vessel model. In the 91F-1A irradiation test, the result showed that 1 or 2 particles had failed towards the end of irradiation in the upper capsule and no particles failed in the lower capsule. (author)

  11. PLUTON: Three-group neutronic code for burnup analysis of isotope generation and depletion in highly irradiated LWR fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Lemehov, Sergei E; Suzuki, Motoe [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-08-01

    PLUTON is a three-group neutronic code analyzing, as functions of time and burnup, the change of radial profiles, together with average values, of power density, burnup, concentration of trans-uranium elements, plutonium buildup, depletion of fissile elements, and fission product generation in water reactor fuel rod with standard UO{sub 2}, UO{sub 2}-Gd{sub 2}O{sub 3}, inhomogeneous MOX, and UO{sub 2}-ThO{sub 2}. The PLUTON code, which has been designed to be run on Windows PC, has adopted a theoretical shape function of neutron attenuation in pellet, which enables users to perform a very fast and accurate calculation easily. The present code includes the irradiation conditions of the Halden Reactor which gives verification data for the code. The total list of trans-uranium elements included in the calculations consists of {sub 92}U{sup 233-239}, {sub 93}Np{sup 237-239}, {sub 94}Pu{sup 238-243}, {sub 95}Am{sup 241-244} (including isomers), and {sub 96}Cm{sup 242-245}. Poisoning fission products are represented by {sub 54}Xe{sup 131,133,135}, {sub 48}Cd{sup 113}, {sub 62}Sm{sup 149,151,152}, {sub 64}Gd{sup 154-160}, {sub 63}Eu{sup 153,155}, {sub 36}Kr{sup 83,85}, {sub 42}Mo{sup 95}, {sub 43}Tc{sup 99}, {sub 45}Rh{sup 103}, {sub 47}Ag{sup 109}, {sub 53}I{sup 127,129,131}, {sub 55}Cs{sup 133}, {sub 57}La{sup 139}, {sub 59}Pr{sup 141}, {sub 60}Nd{sup 143-150}, {sub 61}Pm{sup 147}. Fission gases and volatiles included in the code are {sub 36}Kr{sup 83-86}, {sub 54}Xe{sup 129-136}, {sub 52}Te{sup 125-130}, {sub 53}I{sup 127-131}, {sub 55}Cs{sup 133-137}, and {sub 56}Ba{sup 135-140}. Verification has been performed up to 83 GWd/tU, and a satisfactory agreement has been obtained. (author)

  12. Validation of a continuous-energy Monte Carlo burn-up code MVP-BURN and its application to analysis of post irradiation experiment

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Mori, Takamasa; Nakagawa, Masayuki; Kaneko, Kunio

    2000-01-01

    In order to confirm the reliability of a continuous-energy Monte Carlo burn-up calculation code MVP-BURN, it was applied to the burn-up benchmark problems for a high conversion LWR lattice and a BWR lattice with burnable poison rods. The results of MVP-BURN have shown good agreements with those of a deterministic code SRAC95 for burn-up changes of infinite neutron multiplication factor, conversion ratio, power distribution, and number densities of major fuel nuclides. Serious propagation of statistical errors along burn-up was not observed even in a highly heterogeneous lattice. MVP-BURN was applied to the analysis of a post irradiation experiment for a sample fuel irradiated up to 34.1 GWd/t, together with SRAC95 and SWAT. It was confirmed that the effect of statistical errors of MVP-BURN on a burned fuel composition was sufficiently small, and it could give a reference solution for other codes. In the analysis, the results of the three codes with JENDL-3.2 agreed with measured values within an error of 10% for most nuclides. However, large underestimation by about 20% was observed for 238 Pu, 242m Am and 244 Cm. It is probable that these discrepancies are a common problem for most current nuclear data files. (author)

  13. Burnup verification measurements at a US nuclear utility using the FORK measurement system

    International Nuclear Information System (INIS)

    Ewing, R.I.; Bosler, G.E.; Walden, G.

    1993-01-01

    The FORK measurement system, designed at Los Alamos National Laboratory (LANL) for the International Atomic Energy Agency (IAEA) safeguards program, has been used to examine spent reactor fuel assemblies at Duke Power Company's Oconee Nuclear Station. The FORK system measures the passive neutron and gamma-ray emission from spent fuel assemblies while in the storage pool. These measurements can be correlated with burnup and cooling time, and can be used to verify the reactor site records. Verification measurements may be used to help ensure nuclear criticality safety when burnup credit is applied to spent fuel transport and storage systems. By taking into account the reduced reactivity of spent fuel due to its burnup in the reactor, burnup credit results in more efficient and economic transport and storage. The objectives of these tests are to demonstrate the applicability of the FORK system to verify reactor records and to develop optimal procedures compatible with utility operations. The test program is a cooperative effort supported by Sandia National Laboratories, the Electric Power Research Institute (EPRI), Los Alamos National Laboratory, and the Duke Power Company

  14. Summary - COG: A new point-wise Monte Carlo code for burnup credit analysis

    International Nuclear Information System (INIS)

    Alesso, H.P.

    1989-01-01

    COG, a new point-wise Monte Carlo code being developed and tested at Lawrence Livermore National Laboratory (LLNL) for the Cray-1, solves the Boltzmann equation for the transport of neutrons, photons, and (in future versions) other particles. Techniques included in the code for modifying the random walk of particles make COG most suitable for solving deep-penetration (shielding) problems and a wide variety of criticality problems. COG is similar to a number of other computer codes used in the shielding community. Each code is a little different in its geometry input and its random-walk modification options. COG is a Monte Carlo code specifically designed for the CRAY (in 1986) to be as precise as the current state of physics knowledge. It has been extensively benchmarked and used as a shielding code at LLNL since 1986, and has recently been extended to accomplish criticality calculations. It will make an excellent tool for future shipping cask studies

  15. Investigation of high burnup structures in uranium dioxide applying cellular automata: algorithms and codes

    International Nuclear Information System (INIS)

    Akishina, E.P.; Kostenko, B.F.; Ivanov, V.V.

    2003-01-01

    A new method of research in spatial structures that result from uranium dioxide burning in nuclear reactors of modern atomic plants is suggested. The method is based on the presentation of images of the mentioned structures in the form of the working field of a cellular automaton (CA). First, it has allowed one to extract some important quantitative characteristics of the structures directly from the micrographs of the uranium fuel surface. Secondly, the CA has been found out to allow one to formulate easily the dynamics of the evolution of the studied structures in terms of such micrograph elements as spots, spots' boundaries, cracks, etc. Relation has been found between the dynamics and some exactly solvable models of the theory of cellular automata, in particular, the Ising model and the vote model. This investigation gives a detailed description of some CA algorithms which allow one to perform the fuel surface image processing and to model its evolution caused by burnup or chemical etching. (author)

  16. Sample design and gamma-ray counting strategy of neutron activation system for triton burnup measurements in KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jungmin [Department of Energy System Engineering, Seoul National University, Seoul (Korea, Republic of); Cheon, Mun Seong [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); Chung, Kyoung-Jae, E-mail: jkjlsh1@snu.ac.kr [Department of Energy System Engineering, Seoul National University, Seoul (Korea, Republic of); Hwang, Y.S. [Department of Energy System Engineering, Seoul National University, Seoul (Korea, Republic of)

    2016-11-01

    Highlights: • Sample design for triton burnup ratio measurement is carried out. • Samples for 14.1 MeV neutron measurements are selected for KSTAR. • Si and Cu are the most suitable materials for d-t neutron measurements. • Appropriate γ-ray counting strategies for each selected sample are established. - Abstract: On the purpose of triton burnup measurements in Korea Superconducting Tokamak Advanced Research (KSTAR) deuterium plasmas, appropriate neutron activation system (NAS) samples for 14.1 MeV d-t neutron measurements have been designed and gamma-ray counting strategy is established. Neutronics calculations are performed with the MCNP5 neutron transport code for the KSTAR neutral beam heated deuterium plasma discharges. Based on those calculations and the assumed d-t neutron yield, the activities induced by d-t neutrons are estimated with the inventory code FISPACT-2007 for candidate sample materials: Si, Cu, Al, Fe, Nb, Co, Ti, and Ni. It is found that Si, Cu, Al, and Fe are suitable for the KSATR NAS in terms of the minimum detectable activity (MDA) calculated based on the standard deviation of blank measurements. Considering background gamma-rays radiated from surrounding structures activated by thermalized fusion neutrons, appropriate gamma-ray counting strategy for each selected sample is established.

  17. Estimating NIRR-1 burn-up and core life time expectancy using the codes WIMS and CITATION

    Science.gov (United States)

    Yahaya, B.; Ahmed, Y. A.; Balogun, G. I.; Agbo, S. A.

    The Nigeria Research Reactor-1 (NIRR-1) is a low power miniature neutron source reactor (MNSR) located at the Centre for Energy Research and Training, Ahmadu Bello University, Zaria Nigeria. The reactor went critical with initial core excess reactivity of 3.77 mk. The NIRR-1 cold excess reactivity measured at the time of commissioning was determined to be 4.97 mk, which is more than the licensed range of 3.5-4 mk. Hence some cadmium poison worth -1.2 mk was inserted into one of the inner irradiation sites which act as reactivity regulating device in order to reduce the core excess reactivity to 3.77 mk, which is within recommended licensed range of 3.5 mk and 4.0 mk. In this present study, the burn-up calculations of the NIRR-1 fuel and the estimation of the core life time expectancy after 10 years (the reactor core expected cycle) have been conducted using the codes WIMS and CITATION. The burn-up analyses carried out indicated that the excess reactivity of NIRR-1 follows a linear decreasing trend having 216 Effective Full Power Days (EFPD) operations. The reactivity worth of top beryllium shim data plates was calculated to be 19.072 mk. The result of depletion analysis for NIRR-1 core shows that (7.9947 ± 0.0008) g of U-235 was consumed for the period of 12 years of operating time. The production of the build-up of Pu-239 was found to be (0.0347 ± 0.0043) g. The core life time estimated in this research was found to be 30.33 years. This is in good agreement with the literature

  18. The burnup capabilities of the Deep Burn Modular Helium Reactor analyzed by the Monte Carlo Continuous Energy Code MCB

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto E-mail: alby@neutron.kth.se; Gudowski, Waclaw E-mail: wacek@neutron.kth.se; Venneri, Francesco E-mail: venneri@lanl.gov

    2004-01-01

    We have investigated the waste actinide burnup capabilities of a Gas Turbine Modular Helium Reactor (GT-MHR, similar to the reactor being designed by General Atomics and Minatom for surplus weapons plutonium destruction) with the Monte Carlo Continuous Energy Burnup Code MCB, an extension of MCNP developed at the Royal Institute of Technology in Stockholm and University of Mining and Metallurgy in Krakow. The GT-MHR is a gas-cooled, graphite-moderated reactor, which can be powered with a wide variety of fuels, like thorium, uranium or plutonium. In the present work, the GT-MHR is fueled with the transuranic actinides contained in Light Water Reactors (LWRs) spent fuel for the purpose of destroying them as completely as possible with minimum reliance on multiple reprocessing steps. After uranium extraction from the LWR spent fuel (UREX), the remaining waste actinides, including plutonium are partitioned into two distinct types of fuel for use in the GT-MHR: Driver Fuel (DF) and Transmutation Fuel (TF). The DF supplies the neutrons to maintain the fission chain reaction, whereas the TF emphasizes neutron capture to induce a deep burn transmutation and provide reactivity control by a negative feedback. When used in this mode, the GT-MHR is called Deep Burn Modular Helium Reactor (DB-MHR). Both fuels are contained in a structure of triple isotropic coated layers, TRISO coating, which has been proven to retain fission products up to 1600 deg. C and is expected to remain intact for hundreds of thousands of years after irradiation. Other benefits of this reactor consist of: a well-developed technology, both for the graphite-moderated core and the TRISO structure, a high energy conversion efficiency (about 50%), well established passive safety mechanism and a competitive cost. The destruction of more than 94% of {sup 239}Pu and the other geologically problematic actinide species makes this reactor a valid proposal for the reduction of nuclear waste and the prevention of

  19. The burnup capabilities of the Deep Burn Modular Helium Reactor analyzed by the Monte Carlo Continuous Energy Code MCB

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gudowski, Waclaw; Venneri, Francesco

    2004-01-01

    We have investigated the waste actinide burnup capabilities of a Gas Turbine Modular Helium Reactor (GT-MHR, similar to the reactor being designed by General Atomics and Minatom for surplus weapons plutonium destruction) with the Monte Carlo Continuous Energy Burnup Code MCB, an extension of MCNP developed at the Royal Institute of Technology in Stockholm and University of Mining and Metallurgy in Krakow. The GT-MHR is a gas-cooled, graphite-moderated reactor, which can be powered with a wide variety of fuels, like thorium, uranium or plutonium. In the present work, the GT-MHR is fueled with the transuranic actinides contained in Light Water Reactors (LWRs) spent fuel for the purpose of destroying them as completely as possible with minimum reliance on multiple reprocessing steps. After uranium extraction from the LWR spent fuel (UREX), the remaining waste actinides, including plutonium are partitioned into two distinct types of fuel for use in the GT-MHR: Driver Fuel (DF) and Transmutation Fuel (TF). The DF supplies the neutrons to maintain the fission chain reaction, whereas the TF emphasizes neutron capture to induce a deep burn transmutation and provide reactivity control by a negative feedback. When used in this mode, the GT-MHR is called Deep Burn Modular Helium Reactor (DB-MHR). Both fuels are contained in a structure of triple isotropic coated layers, TRISO coating, which has been proven to retain fission products up to 1600 deg. C and is expected to remain intact for hundreds of thousands of years after irradiation. Other benefits of this reactor consist of: a well-developed technology, both for the graphite-moderated core and the TRISO structure, a high energy conversion efficiency (about 50%), well established passive safety mechanism and a competitive cost. The destruction of more than 94% of 239 Pu and the other geologically problematic actinide species makes this reactor a valid proposal for the reduction of nuclear waste and the prevention of

  20. BOLD/VENTURE-4, Reactor Analysis System with Sensitivity and Burnup

    International Nuclear Information System (INIS)

    1998-01-01

    cross section variation or correlation on nuclide concentrations is provided, but a temperature dependence is coded. Steady state condition with continuous fueling is established by a global iterative scheme that applies the criticality search scheme in the neutronics and models fuel movement directly in the exposure code. Time-dependent sensitivity data applies the forward march, reverse importance approach. The codes do not process data from the user input data stream allowing flexible task assignment along selected calculational paths. Multigroup cross section data are produced locally using the PSR-0063/AMPX II or CCC-0450/SCALE-2 code systems to produce resonance shielding (NITAWL) and cell weighted (XSDRN) microscopic cross sections. Locally, each code is compiled and loaded, and only one version is maintained in a quality assurance state in load module form. An on-line catalog procedure, installed with system support, provides job control instructions with nominal default of space allocation to files. Executing the catalog procedure makes the driver memory resident. The first user input data line must be the control module name used for the run. VENTURE-PC: The VENTURE module applies the finite-difference diffusion or a simple P1 approximation. VENTURE uses an outer-inner iteration scheme with several different data handling methods. Over-relaxation is applied to the inner and outer iterations, and succeeding flux iterates may be accelerated with the Chebychev process. - The BURNER code (module EXPOSURE) uses a difference formulation based on average generation rates; or a matrix exponential formulation to approximate the solution of the coupled burnup differential equations; or an explicit solution for simply coupled nuclide chains. Space dependence is included by working with zone averaged fluxes

  1. Russian system of computerized analysis for licensing at atomic industry (SCALA) and its validation on ICSBEP handbook data and some burnup calculations

    International Nuclear Information System (INIS)

    Ivanova, T.; Nikolaev, M.; Polyakov, A.; Saraeva, T.; Tsiboulia, A.

    2000-01-01

    The System of Computerized Analysis for Licensing at Atomic industry (SCALA) is a Russian analogue of the well-known SCALE system. For criticality evaluations the ABBN-93 system is used with TWODANT and with joined American KENO and Russian MMK Monte-Carlo code MMKKENO. Using the same cross sections and input models, all these codes give results that coincide within the statistical uncertainties (for Monte-Carlo codes). Validation of criticality calculations using SCALA was performed using data presented in the International Handbook of Evaluated Criticality Safety Benchmark Experiments. Another task of the work was to test the burnup capability of SCALA system in complex geometry in compare with other codes. Benchmark models of VVER type reactor assemblies with UO 2 and MOX fuel including the cases with burnable gadolinium absorbers were calculated. KENO-VI and MMK codes were used for power distribution calculations, ORIGEN code was used for the isotopic kinetics calculations. (authors)

  2. Reactivity effect of spent fuel due to spatial distributions for coolant temperature and burnup

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, T.; Yamane, Y. [Nagoya Univ., Dept. of Nuclear Engineering, Nagoya, Aichi (Japan); Suyama, K. [OECD/NEA, Paris (France); Mochizuki, H. [Japan Research Institute, Ltd., Tokyo (Japan)

    2002-03-01

    We investigated the reactivity effect of spent fuel caused by the spatial distributions of coolant temperature and burnup by using the integrated burnup calculation code system SWAT. The reactivity effect which arises from taking account of the spatial coolant temperature distribution increases as the average burnup increases, and reaches the maximum value of 0.69%{delta}k/k at 50 GWd/tU when the burnup distribution is concurrently considered. When the burnup distribution is ignored, the reactivity effect decreases by approximately one-third. (author)

  3. Automated generation of burnup chain for reactor analysis applications

    International Nuclear Information System (INIS)

    Tran Viet Phu; Tran Hoai Nam; Akio Yamamoto; Tomohiro Endo

    2015-01-01

    This paper presents the development of an automated generation of a new burnup chain for reactor analysis applications. The JENDL FP Decay Data File 2011 and Fission Yields Data File 2011 were used as the data sources. The nuclides in the new chain are determined by restrictions of the half-life and cumulative yield of fission products or from a given list. Then, decay modes, branching ratios and fission yields are recalculated taking into account intermediate reactions. The new burnup chain is output according to the format for the SRAC code system. Verification was performed to evaluate the accuracy of the new burnup chain. The results show that the new burnup chain reproduces well the results of a reference one with 193 fission products used in SRAC. Further development and applications are being planned with the burnup chain code. (author)

  4. SRAC95; general purpose neutronics code system

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Tsuchihashi, Keichiro; Kaneko, Kunio.

    1996-03-01

    SRAC is a general purpose neutronics code system applicable to core analyses of various types of reactors. Since the publication of JAERI-1302 for the revised SRAC in 1986, a number of additions and modifications have been made for nuclear data libraries and programs. Thus, the new version SRAC95 has been completed. The system consists of six kinds of nuclear data libraries(ENDF/B-IV, -V, -VI, JENDL-2, -3.1, -3.2), five modular codes integrated into SRAC95; collision probability calculation module (PIJ) for 16 types of lattice geometries, Sn transport calculation modules(ANISN, TWOTRAN), diffusion calculation modules(TUD, CITATION) and two optional codes for fuel assembly and core burn-up calculations(newly developed ASMBURN, revised COREBN). In this version, many new functions and data are implemented to support nuclear design studies of advanced reactors, especially for burn-up calculations. SRAC95 is available not only on conventional IBM-compatible computers but also on scalar or vector computers with the UNIX operating system. This report is the SRAC95 users manual which contains general description, contents of revisions, input data requirements, detail information on usage, sample input data and list of available libraries. (author)

  5. SRAC95; general purpose neutronics code system

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Keisuke; Tsuchihashi, Keichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kaneko, Kunio

    1996-03-01

    SRAC is a general purpose neutronics code system applicable to core analyses of various types of reactors. Since the publication of JAERI-1302 for the revised SRAC in 1986, a number of additions and modifications have been made for nuclear data libraries and programs. Thus, the new version SRAC95 has been completed. The system consists of six kinds of nuclear data libraries(ENDF/B-IV, -V, -VI, JENDL-2, -3.1, -3.2), five modular codes integrated into SRAC95; collision probability calculation module (PIJ) for 16 types of lattice geometries, Sn transport calculation modules(ANISN, TWOTRAN), diffusion calculation modules(TUD, CITATION) and two optional codes for fuel assembly and core burn-up calculations(newly developed ASMBURN, revised COREBN). In this version, many new functions and data are implemented to support nuclear design studies of advanced reactors, especially for burn-up calculations. SRAC95 is available not only on conventional IBM-compatible computers but also on scalar or vector computers with the UNIX operating system. This report is the SRAC95 users manual which contains general description, contents of revisions, input data requirements, detail information on usage, sample input data and list of available libraries. (author).

  6. Numerical Tests for the Problem of U-Pu Fuel Burnup in Fuel Rod and Polycell Models Using the MCNP Code

    Science.gov (United States)

    Muratov, V. G.; Lopatkin, A. V.

    An important aspect in the verification of the engineering techniques used in the safety analysis of MOX-fuelled reactors, is the preparation of test calculations to determine nuclide composition variations under irradiation and analysis of burnup problem errors resulting from various factors, such as, for instance, the effect of nuclear data uncertainties on nuclide concentration calculations. So far, no universally recognized tests have been devised. A calculation technique has been developed for solving the problem using the up-to-date calculation tools and the latest versions of nuclear libraries. Initially, in 1997, a code was drawn up in an effort under ISTC Project No. 116 to calculate the burnup in one VVER-1000 fuel rod, using the MCNP Code. Later on, the authors developed a computation technique which allows calculating fuel burnup in models of a fuel rod, or a fuel assembly, or the whole reactor. It became possible to apply it to fuel burnup in all types of nuclear reactors and subcritical blankets.

  7. Burnup calculations using Monte Carlo method

    International Nuclear Information System (INIS)

    Ghosh, Biplab; Degweker, S.B.

    2009-01-01

    In the recent years, interest in burnup calculations using Monte Carlo methods has gained momentum. Previous burn up codes have used multigroup transport theory based calculations followed by diffusion theory based core calculations for the neutronic portion of codes. The transport theory methods invariably make approximations with regard to treatment of the energy and angle variables involved in scattering, besides approximations related to geometry simplification. Cell homogenisation to produce diffusion, theory parameters adds to these approximations. Moreover, while diffusion theory works for most reactors, it does not produce accurate results in systems that have strong gradients, strong absorbers or large voids. Also, diffusion theory codes are geometry limited (rectangular, hexagonal, cylindrical, and spherical coordinates). Monte Carlo methods are ideal to solve very heterogeneous reactors and/or lattices/assemblies in which considerable burnable poisons are used. The key feature of this approach is that Monte Carlo methods permit essentially 'exact' modeling of all geometrical detail, without resort to ene and spatial homogenization of neutron cross sections. Monte Carlo method would also be better for in Accelerator Driven Systems (ADS) which could have strong gradients due to the external source and a sub-critical assembly. To meet the demand for an accurate burnup code, we have developed a Monte Carlo burnup calculation code system in which Monte Carlo neutron transport code is coupled with a versatile code (McBurn) for calculating the buildup and decay of nuclides in nuclear materials. McBurn is developed from scratch by the authors. In this article we will discuss our effort in developing the continuous energy Monte Carlo burn-up code, McBurn. McBurn is intended for entire reactor core as well as for unit cells and assemblies. Generally, McBurn can do burnup of any geometrical system which can be handled by the underlying Monte Carlo transport code

  8. Development of the next generation reactor analysis code system, MARBLE

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Hazama, Taira; Nagaya, Yasunobu; Chiba, Go; Kugo, Teruhiko; Ishikawa, Makoto; Tatsumi, Masahiro; Hirai, Yasushi; Hyoudou, Hideaki; Numata, Kazuyuki; Iwai, Takehiko; Jin, Tomoyuki

    2011-03-01

    A next generation reactor analysis code system, MARBLE, has been developed. MARBLE is a successor of the fast reactor neutronics analysis code systems, JOINT-FR and SAGEP-FR (conventional systems), which were developed for so-called JUPITER standard analysis methods. MARBLE has the equivalent analysis capability to the conventional system because MARBLE can utilize sub-codes included in the conventional system without any change. On the other hand, burnup analysis functionality for power reactors is improved compared with the conventional system by introducing models on fuel exchange treatment and control rod operation and so on. In addition, MARBLE has newly developed solvers and some new features of burnup calculation by the Krylov sub-space method and nuclear design accuracy evaluation by the extended bias factor method. In the development of MARBLE, the object oriented technology was adopted from the view-point of improvement of the software quality such as flexibility, expansibility, facilitation of the verification by the modularization and assistance of co-development. And, software structure called the two-layer system consisting of scripting language and system development language was applied. As a result, MARBLE is not an independent analysis code system which simply receives input and returns output, but an assembly of components for building an analysis code system (i.e. framework). Furthermore, MARBLE provides some pre-built analysis code systems such as the fast reactor neutronics analysis code system. SCHEME, which corresponds to the conventional code and the fast reactor burnup analysis code system, ORPHEUS. (author)

  9. Tokamak Systems Code

    International Nuclear Information System (INIS)

    Reid, R.L.; Barrett, R.J.; Brown, T.G.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged

  10. An analysis of water reactor burnup data with the METHUSELAH II code

    International Nuclear Information System (INIS)

    Floyd, M.; Hicks, D.

    1964-10-01

    The METHUSELAH II code has been used to predict long term reactivity and isotopic changes in the YANKEE, Dresden and NRX reactors. In general it is shown that there is a satisfactory measure of agreement and the first core lives of YANKEE and Dresden appear well predicted. However there are discrepancies in the isotopic composition of the plutonium formed which appear to be correlated with the degree of hardness of the reactor spectrum. It is demonstrated that plausible changes in nuclear data could reduce the discrepancies. (author)

  11. Incorporation of the variation in conductivity with burnup in the stability of code predictive LAPUR

    International Nuclear Information System (INIS)

    Escriba, A.; Munoz-cobo, J. L.; Merino, R.; Melara, J.; Albendea, M.

    2013-01-01

    In the field of nuclear safety, the analysis of the stability of boiling water reactors is one of the biggest challenges for researchers. LAPUR code that allows to obtain the parameters of stability of the plant (Decay rate and frequency), being one of the programs used by IBERDROLA can be used for these calculations. With the collaboration of the research group TIN of the Polytechnic University of Valencia, a model of loss of conductivity of uranium has joined with the burned LAPUR. This update allows you to play the phenomenon in a more realistic way. This improvement has been validated and verified contrasting results with reference values.

  12. Analysis of the burnup of the control rods with the COREMASTER-Presto code

    International Nuclear Information System (INIS)

    Hernandez, J.L.; Alonso, G.; Perusquia, R.; Montes, J.L.; Hernandez, H.

    2003-01-01

    An evaluation of the capacity of the COREMASTER-Presto code, to evaluate generically the burnt of the control bars in the Laguna Verde reactors plant (CLV) is made. It was found that the code only reports burnt values of the control rods in MWD/TM, in spite of having with a second order polynomial model, for the conversion to remainder of the Boron-10 (B-10). It was observed that said model is adequate only for burnt smaller to 45,000 MWD/TM. To evaluate the burnt of the control rods it was reproduced the balance cycle of 18 months for the CLV, executing Cm-Presto during 13 consecutive cycles. First without rod burnt, taking this as the base case. Later on, cases with 1, 2 and up to 13 cycles with rod burnt were generated. When comparing results it was observed that the control rods pattern it loses reactivity lineally with the burnt one. By each 10 G Wd/T of burnt of the nucleus it is decreased the reactivity of the pattern rods ∼ 1 pcm in hot condition and of ∼ 20 pcm in cold condition. When burning three cycles those rods more burnt reached the 13,900 MWD/TM, equivalent to 36% of B-10 reduction, near value to 34% proposed by aging in the one lost study of B-10. It was observed that Cm-Presto it doesn't burn the superior node of the control rods when these are completely extracted. A one big lost of B-10, of the order of 50%, it represents only a decrease of 11% of the reactivity value of the rod. One can affirm that even when it is strongly decreased the content of B-10, the rod is continue considering as a black absorber, that is to say, thermal neutron that enters in the neutron rod that is absorbed. (Author)

  13. Burn-up measurements coupling gamma spectrometry and neutron measurement

    Energy Technology Data Exchange (ETDEWEB)

    Toubon, H.; Pin, P. [AREVA/CANBERRA, 1 rue des Herons, 78182 St Quentin-en-Yvelines Cedex (France); Lebrun, A. [IAEA, Wagramer Strasse 5, PO Box 100, Vienna (Austria); Oriol, L.; Saurel, N. [CEA Cadarache, 13108 Saint Paul Lez Durance Cedex (France); Gain, T. [AREVA/COGEMA Reprocessing Business Unit, La Hague, 50444 Beaumont Hague Cedex (France)

    2006-07-01

    The need to apply for burn-up credit arises with the increase of the initial enrichment of nuclear fuel. When burn-up credit is used in criticality safety studies, it is often necessary to confirm it by measurement. For the last 10 years, CANBERRA has manufactured the PYTHON system for such measurements. However, the method used in the PYTHON itself uses certain reactor data to arrive at burn-up estimates. Based on R and D led by CEA and COGEMA in the framework of burn-up measurement for burn-up credit and safeguards applications, CANBERRA is developing the next generation of burn-up measurement device. This new product, named SMOPY, is able to measure burn-up of any kind of irradiated fuel assembly with a combination of gamma spectrometry and passive neutron measurements. The measurement data is used as input to the CESAR depletion code, which has been developed and qualified by CEA and COGEMA for burn-up credit determinations. In this paper, we explain the complementary nature of the gamma and neutron measurements. In addition, we draw on our previous experience from PYTHON system and from COGEMA La Hague to show what types of evaluations are required to qualify the SMOPY system, to estimate its uncertainties, and to detect discrepancies in the fuel data given by the reactor plant to characterize the irradiated fuel assembly. (authors)

  14. Burn-up measurements coupling gamma spectrometry and neutron measurement

    International Nuclear Information System (INIS)

    Toubon, H.; Pin, P.; Lebrun, A.; Oriol, L.; Saurel, N.; Gain, T.

    2006-01-01

    The need to apply for burn-up credit arises with the increase of the initial enrichment of nuclear fuel. When burn-up credit is used in criticality safety studies, it is often necessary to confirm it by measurement. For the last 10 years, CANBERRA has manufactured the PYTHON system for such measurements. However, the method used in the PYTHON itself uses certain reactor data to arrive at burn-up estimates. Based on R and D led by CEA and COGEMA in the framework of burn-up measurement for burn-up credit and safeguards applications, CANBERRA is developing the next generation of burn-up measurement device. This new product, named SMOPY, is able to measure burn-up of any kind of irradiated fuel assembly with a combination of gamma spectrometry and passive neutron measurements. The measurement data is used as input to the CESAR depletion code, which has been developed and qualified by CEA and COGEMA for burn-up credit determinations. In this paper, we explain the complementary nature of the gamma and neutron measurements. In addition, we draw on our previous experience from PYTHON system and from COGEMA La Hague to show what types of evaluations are required to qualify the SMOPY system, to estimate its uncertainties, and to detect discrepancies in the fuel data given by the reactor plant to characterize the irradiated fuel assembly. (authors)

  15. COGEMA/TRANSNUCLEAIRE's experience with burnup credit

    International Nuclear Information System (INIS)

    Chanzy, Y.; Guillou, E.

    1998-01-01

    Facing a continuous increase in the fuel enrichments, COGEMA and TRANSNUCLEAIRE have implemented step by step a burnup credit programme to improve the capacity of their equipment without major physical modification. Many authorizations have been granted by the French competent authority in wet storage, reprocessing and transport since 1981. As concerns transport, numerous authorizations have been validated by foreign competent authorities. Up to now, those authorizations are restricted to PWR Fuel type assemblies made of enriched uranium. The characterization of the irradiated fuel and the reactivity of the systems are evaluated by calculations performed with well qualified French codes developed by the CEA (French Atomic Energy Commission): CESAR as a depletion code and APPOLO-MORET as a criticality code. The authorizations are based on the assurance that the burnup considered is met on the least irradiated part of the fuel assemblies. Besides, the most reactive configuration is calculated and the burnup credit is restricted to major actinides only. This conservative approach allows not to take credit for any axial profile. On the operational side, the procedures have been reevaluated to avoid misloadings and a burnup verification is made before transport, storage and reprocessing. Depending on the level of burnup credit, it consists of a qualitative (go/no-go) verification or of a quantitative measurement. Thus the use of burnup credit is now a common practice in France and Germany and new improvements are still in progress: extended qualifications of the codes are made to enable the use of six selected fission products in the criticality evaluations. (author)

  16. SRAC2006: A comprehensive neutronics calculation code system

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Kugo, Teruhiko; Kaneko, Kunio; Tsuchihashi, Keichiro

    2007-02-01

    The SRAC is a code system applicable to neutronics analysis of a variety of reactor types. Since the publication of the second version of the users manual (JAERI-1302) in 1986 for the SRAC system, a number of additions and modifications to the functions and the library data have been made to establish a comprehensive neutronics code system. The current system includes major neutron data libraries (JENDL-3.3, JENDL-3.2, ENDF/B-VII, ENDF/B-VI.8, JEFF-3.1, JEF-2.2, etc.), and integrates five elementary codes for neutron transport and diffusion calculation; PIJ based on the collision probability method applicable to 16 kind of lattice models, S N transport codes ANISN(1D) and TWOTRN(2D), diffusion codes TUD(1D) and CITATION(multi-D). The system also includes an auxiliary code COREBN for multi-dimensional core burn-up calculation. (author)

  17. SASSYS LMFBR systems code

    International Nuclear Information System (INIS)

    Dunn, F.E.; Prohammer, F.G.; Weber, D.P.

    1983-01-01

    The SASSYS LMFBR systems analysis code is being developed mainly to analyze the behavior of the shut-down heat-removal system and the consequences of failures in the system, although it is also capable of analyzing a wide range of transients, from mild operational transients through more severe transients leading to sodium boiling in the core and possible melting of clad and fuel. The code includes a detailed SAS4A multi-channel core treatment plus a general thermal-hydraulic treatment of the primary and intermediate heat-transport loops and the steam generators. The code can handle any LMFBR design, loop or pool, with an arbitrary arrangement of components. The code is fast running: usually faster than real time

  18. Improvements for Monte Carlo burnup calculation

    Energy Technology Data Exchange (ETDEWEB)

    Shenglong, Q.; Dong, Y.; Danrong, S.; Wei, L., E-mail: qiangshenglong@tsinghua.org.cn, E-mail: d.yao@npic.ac.cn, E-mail: songdr@npic.ac.cn, E-mail: luwei@npic.ac.cn [Nuclear Power Inst. of China, Cheng Du, Si Chuan (China)

    2015-07-01

    Monte Carlo burnup calculation is development trend of reactor physics, there would be a lot of work to be done for engineering applications. Based on Monte Carlo burnup code MOI, non-fuel burnup calculation methods and critical search suggestions will be mentioned in this paper. For non-fuel burnup, mixed burnup mode will improve the accuracy of burnup calculation and efficiency. For critical search of control rod position, a new method called ABN based on ABA which used by MC21 will be proposed for the first time in this paper. (author)

  19. Analysis of some antecipated transients without scram for PWR type reactors by coupling of the CORAN code to the ALMOD code system

    International Nuclear Information System (INIS)

    Carvalho, F. de A.T. de.

    1985-01-01

    This study investigates some antecipated transients without scram for a pressurized water cooled reactor, using coupling of the containment CORAN code to the ALMOD code system, under severe random conditions. This coupling has the objective of including containment model as part of an unified code system. These severe conditions include failure of reactor scram, following a station black-out and emergency power initiation for the burn-up status at the beginning and end of the cycle. Furthermore, for the burn-up status at the end of the cycle, a failure in the closure of the pressurizer relief valve was also investigated. (Author) [pt

  20. Effect of Core Configurations on Burn-Up Calculations For MTR Type Reactors

    International Nuclear Information System (INIS)

    Hussein, H.M.; Sakr, A.M.; Amin, E.H.

    2011-01-01

    Three-dimensional burn-up calculations of MTR-type research reactor were performed using different patterns of control rods , to examine their effect on power density and neutron flux distributions throughout the entire core and on the local burn-up distribution. Calculations were performed using the computer codes' package M TR P C system , using the cell calculation transport code WIMS-D4 and the core calculation diffusion code CITVAP. A depletion study was done and the effects on the reactor fuel were studied, then an empirical formula was generated for every fuel element type, to correlate irradiation to burn-up percentage. Keywords: Neutronic Calculations, Burn-Up, MTR-Type Research Reactors, MTR P C Package, Empirical Formula For Fuel Burn-Up.

  1. FRAPCON-3: A computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup

    International Nuclear Information System (INIS)

    Berna, G.A.; Beyer, G.A.; Davis, K.L.; Lanning, D.D.

    1997-12-01

    FRAPCON-3 is a FORTRAN IV computer code that calculates the steady-state response of light water reactor fuel rods during long-term burnup. The code calculates the temperature, pressure, and deformation of a fuel rod as functions of time-dependent fuel rod power and coolant boundary conditions. The phenomena modeled by the code include (1) heat conduction through the fuel and cladding, (2) cladding elastic and plastic deformation, (3) fuel-cladding mechanical interaction, (4) fission gas release, (5) fuel rod internal gas pressure, (6) heat transfer between fuel and cladding, (7) cladding oxidation, and (8) heat transfer from cladding to coolant. The code contains necessary material properties, water properties, and heat-transfer correlations. The codes' integral predictions of mechanical behavior have not been assessed against a data base, e.g., cladding strain or failure data. Therefore, it is recommended that the code not be used for analyses of cladding stress or strain. FRAPCON-3 is programmed for use on both mainframe computers and UNIX-based workstations such as DEC 5000 or SUN Sparcstation 10. It is also programmed for personal computers with FORTRAN compiler software and at least 8 to 10 megabytes of random access memory (RAM). The FRAPCON-3 code is designed to generate initial conditions for transient fuel rod analysis by the FRAPTRAN computer code (formerly named FRAP-T6)

  2. An extended version of the SERPENT-2 code to investigate fuel burn-up and core material evolution of the Molten Salt Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aufiero, M.; Cammi, A.; Fiorina, C. [Politecnico di Milano, Department of Energy, CeSNEF (Enrico Fermi Center for Nuclear Studies), via Ponzio, 34/3, I-20133 Milano (Italy); Leppänen, J. [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT (Finland); Luzzi, L., E-mail: lelio.luzzi@polimi.it [Politecnico di Milano, Department of Energy, CeSNEF (Enrico Fermi Center for Nuclear Studies), via Ponzio, 34/3, I-20133 Milano (Italy); Ricotti, M.E. [Politecnico di Milano, Department of Energy, CeSNEF (Enrico Fermi Center for Nuclear Studies), via Ponzio, 34/3, I-20133 Milano (Italy)

    2013-10-15

    In this work, the Monte Carlo burn-up code SERPENT-2 has been extended and employed to study the material isotopic evolution of the Molten Salt Fast Reactor (MSFR). This promising GEN-IV nuclear reactor concept features peculiar characteristics such as the on-line fuel reprocessing, which prevents the use of commonly available burn-up codes. Besides, the presence of circulating nuclear fuel and radioactive streams from the core to the reprocessing plant requires a precise knowledge of the fuel isotopic composition during the plant operation. The developed extension of SERPENT-2 directly takes into account the effects of on-line fuel reprocessing on burn-up calculations and features a reactivity control algorithm. It is here assessed against a dedicated version of the deterministic ERANOS-based EQL3D procedure (PSI-Switzerland) and adopted to analyze the MSFR fuel salt isotopic evolution. Particular attention is devoted to study the effects of reprocessing time constants and efficiencies on the conversion ratio and the molar concentration of elements relevant for solubility issues (e.g., trivalent actinides and lanthanides). Quantities of interest for fuel handling and safety issues are investigated, including decay heat and activities of hazardous isotopes (neutron and high energy gamma emitters) in the core and in the reprocessing stream. The radiotoxicity generation is also analyzed for the MSFR nominal conditions. The production of helium and the depletion in tungsten content due to nuclear reactions are calculated for the nickel-based alloy selected as reactor structural material of the MSFR. These preliminary evaluations can be helpful in studying the radiation damage of both the primary salt container and the axial reflectors.

  3. Development of methods for burn-up calculations for LWR's

    International Nuclear Information System (INIS)

    Jaschik, W.

    1978-01-01

    This method is based on all burn-up depending data, namely particle densities and neutron spectra, being available in a burn-up library. This one is created by means of a small number of cell burn-up calculations which can easily be carried out and in which the heterogeneous cell structure and self-shielding effects can explicitly be accounted for. Then the cluster burn-up is simulated by adequate correlation of the burn-up data. The advantage of this method is given by - an exact determination of the real spectrum distribution in the individual fuel element clusters; - an exact determination of the burn-up related spectrum variations for each fuel rod and for each burn-up value obtained; - accounting for heterogeneity of the fuel rod cells and the self-shielding in the fuel; high accuracy of the results of a comparably low effort and - simple handling by largely automating the process of computation. Programed realization was achieved by establishing the RSYST modules ABRAJA, MITHOM, and SIMABB and their implementation within the code system. (orig./HP) [de

  4. Calculation and analysis of burnup and optimum core design in accelerator driven sub-critical system

    International Nuclear Information System (INIS)

    Wang Yuwei; Yang Yongwei; Cui Pengfei

    2011-01-01

    The premise of the accelerator driven sub-critical system (ADS) in the accident is still subcritical, the biggest k eff change with burn time is less than 1.5% and the cladding material, HT9 steel, can withstand the maximum radiation damage, core fuel area is divided into fuel transmutation area and fuel multiplication area, and fuel transmutation area maintains the same fuel composition in the whole process. Through the analysis of the composition of the fuel, shape of core layout and the power distribution, etc., supposed outer and inner Pu enrichment ratio range of 1.0-1.5, then the fuel components of fuel multiplication area was adjusted. Time evolution of k eff was calculated by COUPLED2 which coupled with MCNP and ORIGEN. At the same time the power peaking factors, minoractinides transmutation rate desired to maximization and burnup were considered. A sub-critical system fitting for engineering practice was established. (authors)

  5. Monte Carlo burnup simulation of the TAKAHAMA-3 benchmark experiment

    International Nuclear Information System (INIS)

    Dalle, Hugo M.

    2009-01-01

    High burnup PWR fuel is currently being studied at CDTN/CNEN-MG. Monte Carlo burnup code system MONTEBURNS is used to characterize the neutronic behavior of the fuel. In order to validate the code system and calculation methodology to be used in this study the Japanese Takahama-3 Benchmark was chosen, as it is the single burnup benchmark experimental data set freely available that partially reproduces the conditions of the fuel under evaluation. The burnup of the three PWR fuel rods of the Takahama-3 burnup benchmark was calculated by MONTEBURNS using the simplest infinite fuel pin cell model and also a more complex representation of an infinite heterogeneous fuel pin cells lattice. Calculations results for the mass of most isotopes of Uranium, Neptunium, Plutonium, Americium, Curium and some fission products, commonly used as burnup monitors, were compared with the Post Irradiation Examinations (PIE) values for all the three fuel rods. Results have shown some sensitivity to the MCNP neutron cross-section data libraries, particularly affected by the temperature in which the evaluated nuclear data files were processed. (author)

  6. Influence of FIMA burnup on actinides concentrations in PWR reactors

    Directory of Open Access Journals (Sweden)

    Oettingen Mikołaj

    2016-01-01

    Full Text Available In the paper we present the study on the dependence of actinides concentrations in the spent nuclear fuel on FIMA burnup. The concentrations of uranium, plutonium, americium and curium isotopes obtained in numerical simulation are compared with the result of the post irradiation assay of two spent fuel samples. The samples were cut from the fuel rod irradiated during two reactor cycles in the Japanese Ohi-2 Pressurized Water Reactor. The performed comparative analysis assesses the reliability of the developed numerical set-up, especially in terms of the system normalization to the measured FIMA burnup. The numerical simulations were preformed using the burnup and radiation transport mode of the Monte Carlo Continuous Energy Burnup Code – MCB, developed at the Department of Nuclear Energy, Faculty of Energy and Fuels of AGH University of Science and Technology.

  7. Uncertainties in calculations of nuclear design code system for the high temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Shindo, R.; Yamashita, K.; Murata, I.

    1991-01-01

    The nuclear design code system for the HTTR consists of one dimensional cell burnup computer code, developed in JAERI and the TWOTRAN-2 transport code. In order to satisfy related design criteria, uncertainty of the calculation was investigated by comparing the calculated and experimental results. The experiments were performed with a graphite moderated critical assembly. It was confirmed that discrepancies between calculations and experiments were small enough to be allowed in the nuclear design of HTTR. 8 refs, 6 figs

  8. Advanced video coding systems

    CERN Document Server

    Gao, Wen

    2015-01-01

    This comprehensive and accessible text/reference presents an overview of the state of the art in video coding technology. Specifically, the book introduces the tools of the AVS2 standard, describing how AVS2 can help to achieve a significant improvement in coding efficiency for future video networks and applications by incorporating smarter coding tools such as scene video coding. Topics and features: introduces the basic concepts in video coding, and presents a short history of video coding technology and standards; reviews the coding framework, main coding tools, and syntax structure of AV

  9. A guide to the AUS modular neutronics code system

    International Nuclear Information System (INIS)

    Robinson, G.S.

    1987-04-01

    A general description is given of the AUS modular neutronics code system, which may be used for calculations of a very wide range of fission reactors, fusion blankets and other neutron applications. The present system has cross-section libraries derived from ENDF/B-IV and includes modules which provide for lattice calculations, one-dimensional transport calculations, and one, two, and three-dimensional diffusion calculations, burnup calculations and the flexible editing of results. Details of all system aspects of AUS are provided but the major individual modules are only outlined. Sufficient information is given to enable other modules to be added to the system

  10. Validation and Improvement of the FEMAXI-JNES Code by Using PIE Data at Extended Burnup. Final Report for FUMEX-III

    International Nuclear Information System (INIS)

    Hirose, Tsutomu; Miura, Hiromichi; Kitamura, Toshiya; Kamimura, Katsuichiro

    2013-01-01

    Japan Nuclear Energy Safety Organization (JNES) has participated in the IAEA FUMEX-III Coordinated Research Project (CRP) on the Improvement of Computer Codes Used for Fuel Behaviour Simulation for the following purpose. 1. Cooperate between member states and exchange information and expertise for understanding of fuel modelling and improvement 2. Develop and improve the FEMAXI-JNES code as an audit code for Japanese safety licensing review of fuel rod design, especially, - High burnup fuel - MOX fuel 3. Set the standard models for the FEMAXI-JNES code to provide best-estimate predictions of the thermal and mechanical performance of LWR fuel rod This is the JNES's final report for the FUMEX-III CRP. During the period of the CRP, JNES has modified pellet swelling and fission gas release models, and demonstrated the predictive capability relative to fuel centerline temperature, fission gas release, fuel rod internal gas pressure, cladding diametral deformation and cladding elongation by comparisons of integral code predictions of these parameters to experimental (measured) data from OECD/NEA IFPE database. (author)

  11. Appropriate burnup measurements for transportation burnup credit

    International Nuclear Information System (INIS)

    Lancaster, D.; Fuentes, E.

    1997-01-01

    This paper addresses two of the measurement specifications used in analyzing spent fuel packages to gain burnup credit. The philosophy and calculation of rejection criteria and measurement accuracy are discussed. Any assembly for which the declared measured value and reactor record value deviate by more than 10% will be rejected. Measurement accuracy requirements are established for dependent and independent systems. The requirements have been tested and are achievable, ensuring safe operation without extra cost. 6 refs

  12. Burnup calculation for a tokamak commercial hybrid reactor

    International Nuclear Information System (INIS)

    Feng Kaiming; Xie Zhongyou

    1990-08-01

    A computer code ISOGEN-III and its associated data library BULIB have been developed for fusion-fission hybrid reactor burnup calculations. These are used to calcuate burnup of a tokamak commercial hybrid reactor. The code and library are introduced briefly, and burnup calculation results are given

  13. Development of a FBR fuel bundle-duct interaction analysis code-BAMBOO. Analysis model and verification by Phenix high burn-up fuel subassemblies

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Ito, Masahiro; Ukai, Shigeharu

    2005-01-01

    The bundle-duct interaction analysis code ''BAMBOO'' has been developed for the purpose of predicting deformation of a wire-wrapped fuel pin bundle of a fast breeder reactor (FBR). The BAMBOO code calculates helical bowing and oval-distortion of all the fuel pins in a fuel subassembly. We developed deformation models in order to precisely analyze the irradiation induced deformation by the code: a model to analyze fuel pin self-bowing induced by circumferential gradient of void swelling as well as thermal expansion, and a model to analyze dispersion of the orderly arrangement of a fuel pin bundle. We made deformation analyses of high burn-up fuel subassemblies in Phenix reactor and compared the calculated results with the post irradiation examination data of these subassemblies for the verification of these models. From the comparison we confirmed that the calculated values of the oval-distortion and bowing reasonably agreed with the PIE results if these models were used in the analysis of the code. (author)

  14. Studies of a deep burn fuel cycle for the incineration of military plutonium in the GT-MHR using the Monte-Carlo burnup code

    International Nuclear Information System (INIS)

    Talamo, A.; Gudowski, W.

    2004-01-01

    The deep burn fuel cycle for the incineration of military plutonium in the GT-MHR is studied using the Monte-Carlo burnup code. The irradiation is DF is so rich in fissile isotopes that the TF cannot guarantee a negative reactive feedback, and the presence of erbium as burnable poison is absolutely necessary for the reactivity safety reasons. At beginning of life (BOL) the fuel composed of DF, consisting of fresh military plutonium, after an irradiation period of three years the fuel is reprocessed into post driver fuel (PDF). The mass flow of the GT-MHR fuelled by military plutonium at the equilibrium of the fuel composition shows that 66% of 239 Pu is burned in three years and 92% in six years. (authors)

  15. PROMETHEUS - a code system for dynamic 3-D analysis of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Khotylev, V.A.; Hoogenboom, J.E.; Leege, P.F.A. de [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.

    1996-09-01

    The paper presents a multidimensional, general-purpose neutronics code system. It solves a number of steady-state and/or transient problems with coupled thermal hydraulics in one-, two-, or three-dimensional geometry. Due to a number of specialized features such as cavity treatment, automated convergence control, burnup treatment using the full isotopic transition matrix, the code system can be applied for the analysis of fast and slow transients in small, large, and innovative reactor cores. (author)

  16. High burnup issues and modelling strategies

    International Nuclear Information System (INIS)

    Dutta, B.K.

    2005-01-01

    The performance of high burnup fuel is affected by a number of phenomena, such as, conductivity degradation, modified radial flux profile, fission gas release from high burnup structures, PCMI, burnup dependent thermo-mechanical properties, etc. The modelling strategies of some of these phenomena are available in literature. These can be readily incorporated in a fuel modelling performance code. The computer code FAIR has been developed in BARC over the years to evaluate the fuel performance at extended burnup and modelling of the fuel rods for advanced fuel cycles. The present paper deals with the high burnup issues in the fuel pins, their modelling strategies and results of the case studies specifically involving high burnup fuel. (author)

  17. Fuel management and core design code systems for pressurized water reactor neutronic calculations

    International Nuclear Information System (INIS)

    Ahnert, C.; Arayones, J.M.

    1985-01-01

    A package of connected code systems for the neutronic calculations relevant in fuel management and core design has been developed and applied for validation to the startup tests and first operating cycle of a 900MW (electric) PWR. The package includes the MARIA code system for the modeling of the different types of PWR fuel assemblies, the CARMEN code system for detailed few group diffusion calculations for PWR cores at operating and burnup conditions, and the LOLA code system for core simulation using onegroup nodal theory parameters explicitly calculated from the detailed solutions

  18. Validation of the VTT's reactor physics code system

    International Nuclear Information System (INIS)

    Tanskanen, A.

    1998-01-01

    At VTT Energy several international reactor physics codes and nuclear data libraries are used in a variety of applications. The codes and libraries are under constant development and every now and then new updated versions are released, which are taken in use as soon as they have been validated at VTT Energy. The primary aim of the validation is to ensure that the code works properly, and that it can be used correctly. Moreover, the applicability of the codes and libraries are studied in order to establish their advantages and weak points. The capability of generating program-specific nuclear data for different reactor physics codes starting from the same evaluated data is sometimes of great benefit. VTT Energy has acquired a nuclear data processing system based on the NJOY-94.105 and TRANSX-2.15 processing codes. The validity of the processing system has been demonstrated by generating pointwise (MCNP) and groupwise (ANISN) temperature-dependent cross section sets for the benchmark calculations of the Doppler coefficient of reactivity. At VTT Energy the KENO-VI three-dimensional Monte Carlo code is used in criticality safety analyses. The KENO-VI code and the 44GROUPNDF5 data library have been validated at VTT Energy against the ZR-6 and LR-0 critical experiments. Burnup Credit refers to the reduction in reactivity of burned nuclear fuel due to the change in composition during irradiation. VTT Energy has participated in the calculational VVER-440 burnup credit benchmark in order to validate criticality safety calculation tools. (orig.)

  19. Comparison of scale/triton and helios burnup calculations for high burnup LWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tittelbach, S.; Mispagel, T.; Phlippen, P.W. [WTI Wissenschaftlich-Technische Ingenieurberatung GmbH, Juelich (Germany)

    2009-07-01

    The presented analyses provide information about the suitability of the lattice burnup code HELIOS and the recently developed code SCALE/TRITON for the prediction of isotopic compositions of high burnup LWR fuel. The accurate prediction of the isotopic inventory of high burnt spent fuel is a prerequisite for safety analyses in and outside of the reactor core, safe loading of spent fuel into storage casks, design of next generation spent fuel casks and for any consideration of burnup credit. Depletion analyses are performed with both burnup codes for PWR and BWR fuel samples which were irradiated far beyond 50 GWd/t within the LWR-PROTEUS Phase II project. (orig.)

  20. WWER expert system for fuel failure analysis using the RTOP-CA code

    International Nuclear Information System (INIS)

    Likhanskii, V.; Evdokimov, I.; Sorokin, A.; Khromov, A.; Kanukova, V.; Apollonova, O.; Ugryumov, A.

    2008-01-01

    The computer expert system for fuel failure analysis of WWER during operation is presented. The diagnostics is based on the measurement of specific activity of reference nuclides in reactor primary coolant and application of a computer code for the data interpretation. The data analysis includes an evaluation of tramp uranium mass in reactor core, detection of failures by iodine and caesium spikes, evaluation of burnup of defective fuel. Evaluation of defective fuel burnup was carried out by applying the relation of caesium nuclides activity in spikes and relations of activities of gaseous fission products for steady state operational conditions. The method of burnup evaluation of defective fuel by use of fission gas activity is presented in details. The neural-network analysis is performed for determination of failed fuel rod number and defect size. Results of the expert system application are illustrated for several fuel campaigns on operating WWER NPPs. (authors)

  1. Elements of algebraic coding systems

    CERN Document Server

    Cardoso da Rocha, Jr, Valdemar

    2014-01-01

    Elements of Algebraic Coding Systems is an introductory text to algebraic coding theory. In the first chapter, you'll gain inside knowledge of coding fundamentals, which is essential for a deeper understanding of state-of-the-art coding systems. This book is a quick reference for those who are unfamiliar with this topic, as well as for use with specific applications such as cryptography and communication. Linear error-correcting block codes through elementary principles span eleven chapters of the text. Cyclic codes, some finite field algebra, Goppa codes, algebraic decoding algorithms, and applications in public-key cryptography and secret-key cryptography are discussed, including problems and solutions at the end of each chapter. Three appendices cover the Gilbert bound and some related derivations, a derivation of the Mac- Williams' identities based on the probability of undetected error, and two important tools for algebraic decoding-namely, the finite field Fourier transform and the Euclidean algorithm f...

  2. Burnup dependent core neutronic calculations for research and training reactors via SCALE4.4

    International Nuclear Information System (INIS)

    Tombakoglu, M.; Cecen, Y.

    2001-01-01

    In this work, the full core modelling is performed to improve neutronic analyses capability for nuclear research reactors using SCALE4.4 code system. KENOV.a module of SCALE4.4 code system is utilized for full core neutronic analysis. The ORIGEN-S module is coupled with the KENOV.a module to perform burnup dependent neutronic analyses. Results of neutronic calculations for 1 st cycle of Cekmece TR-2 research reactor are presented. In particular, coupling of KENOV.a and ORIGEN-S modules of SCALE4.4 is discussed. The preliminary results of 2-D burnup dependent neutronic calculations are also given. These results are extended to burnup dependent core calculations of TRIGA Mark-II research reactors. The code system developed here is similar to the code system that couples MCNP and ORIGEN2.(author)

  3. SCALE Code System

    Energy Technology Data Exchange (ETDEWEB)

    Jessee, Matthew Anderson [ORNL

    2016-04-01

    The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministic and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.SCALE 6.2 provides many new capabilities and significant improvements of existing features.New capabilities include:• ENDF/B-VII.1 nuclear data libraries CE and MG with enhanced group structures,• Neutron covariance data based on ENDF/B-VII.1 and supplemented with ORNL data,• Covariance data for fission product yields and decay constants,• Stochastic uncertainty and correlation quantification for any SCALE sequence with Sampler,• Parallel calculations with KENO,• Problem-dependent temperature corrections for CE calculations,• CE shielding and criticality accident alarm system analysis with MAVRIC,• CE

  4. Simulation of the burnup in cell calculation using the WIMSD-5B Code considering different nuclear data libraries

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Desirée Yael de Sena; Silva, Adilson Costa da; Lima, Zelmo Rodrigues de, E-mail: zelmolima@yahoo.com.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    This work proposes to implement the cell calculation considering the fuel burning using the WIMSD-5B code. The cell calculation procedure allows to determine the nuclear parameters present in the multi-group neutron diffusion equation and for this purpose the neutron transport theory is used in a problem with dimensional reduction, but in contrast is considered a large number of groups associated with the neutron spectrum. There are a variety of reactor physics codes that determine the nuclear parameters by solving the neutron transport equation applied to an equivalent cell representing a fuel element. The WIMSD-5B code is a deterministic code that solves the transport equation using collision probability method. The simulation of fuel burning in the cell calculation took into account different nuclear data libraries. The WIMSD-5B code supports several nuclear data libraries and in the present work the following libraries were used: IAEA, ENDFB-VII.1, JENDL3.2, JEFF3.1 and JEF2.2, all formatted for 69 energy groups. (author)

  5. Simulation of the burnup in cell calculation using the WIMSD-5B Code considering different nuclear data libraries

    International Nuclear Information System (INIS)

    Tavares, Desirée Yael de Sena; Silva, Adilson Costa da; Lima, Zelmo Rodrigues de

    2017-01-01

    This work proposes to implement the cell calculation considering the fuel burning using the WIMSD-5B code. The cell calculation procedure allows to determine the nuclear parameters present in the multi-group neutron diffusion equation and for this purpose the neutron transport theory is used in a problem with dimensional reduction, but in contrast is considered a large number of groups associated with the neutron spectrum. There are a variety of reactor physics codes that determine the nuclear parameters by solving the neutron transport equation applied to an equivalent cell representing a fuel element. The WIMSD-5B code is a deterministic code that solves the transport equation using collision probability method. The simulation of fuel burning in the cell calculation took into account different nuclear data libraries. The WIMSD-5B code supports several nuclear data libraries and in the present work the following libraries were used: IAEA, ENDFB-VII.1, JENDL3.2, JEFF3.1 and JEF2.2, all formatted for 69 energy groups. (author)

  6. System Based Code: Principal Concept

    International Nuclear Information System (INIS)

    Yasuhide Asada; Masanori Tashimo; Masahiro Ueta

    2002-01-01

    This paper introduces a concept of the 'System Based Code' which has initially been proposed by the authors intending to give nuclear industry a leap of progress in the system reliability, performance improvement, and cost reduction. The concept of the System Based Code intends to give a theoretical procedure to optimize the reliability of the system by administrating every related engineering requirement throughout the life of the system from design to decommissioning. (authors)

  7. Burnup credit for storage and transportation casks

    International Nuclear Information System (INIS)

    Wells, A.H.

    1988-01-01

    The application of burnup credit to storage and transportation cask licensing results in a significant improvement in cask capacity and an associated reduction of the cost per kilogram of uranium in the cask contents. The issues for licensing with burnup credit deal primarily with the treatment of fission product poisons and methods of verification of burnup during cask operations. Other issues include benchmarking of cross-section sets and codes and the effect of spatial variation of burnup within an assembly. The licensing of burnup credit for casks will be complex, although the criticality calculations are not themselves difficult. Attention should be directed to the use of fission product poisons and the uncertainties that they introduce. Verification of burnup by measurements will remove some of the concerns for criticality safety. Calculations for burnup credit casks should consider rod-to-rod and axial variations of burnup, as well as variability of burnable poisons it they are used in the assembly. In spite of the complexity of cask burnup credit licensing issues, these issues appear to be resolvable within the current state of the art of criticality safety

  8. Development and Applications of a Prototypic SCALE Control Module for Automated Burnup Credit Analysis

    International Nuclear Information System (INIS)

    Gauld, I.C.

    2001-01-01

    Consideration of the depletion phenomena and isotopic uncertainties in burnup-credit criticality analysis places an increasing reliance on computational tools and significantly increases the overall complexity of the calculations. An automated analysis and data management capability is essential for practical implementation of large-scale burnup credit analyses that can be performed in a reasonable amount of time. STARBUCS is a new prototypic analysis sequence being developed for the SCALE code system to perform automated criticality calculations of spent fuel systems employing burnup credit. STARBUCS is designed to help analyze the dominant burnup credit phenomena including spatial burnup gradients and isotopic uncertainties. A search capability also allows STARBUCS to iterate to determine the spent fuel parameters (e.g., enrichment and burnup combinations) that result in a desired k eff for a storage configuration. Although STARBUCS was developed to address the analysis needs for spent fuel transport and storage systems, it provides sufficient flexibility to allow virtually any configuration of spent fuel to be analyzed, such as storage pools and reprocessing operations. STARBUCS has been used extensively at Oak Ridge National Laboratory (ORNL) to study burnup credit phenomena in support of the NRC Research program

  9. Improvement of JRR-4 core management code system

    International Nuclear Information System (INIS)

    Izumo, H.; Watanabe, S.; Nagatomi, H.; Hori, N.

    2000-01-01

    In the modification of JRR-4, the fuel was changed from 93% high enrichment uranium aluminized fuel to 20% low enriched uranium silicide fuel in conformity with the framework of reduced enrichment program on JAERI research reactors. As changing of this, JRR-4 core management code system which estimates excess reactivity of core, fuel burn-up and so on, was improved too. It had been difficult for users to operate the former code system because its input-output form was text-form. But, in the new code system (COMMAS-JRR), users are able to operate the code system without using difficult text-form input. The estimation results of excess reactivity of JRR-4 LEU fuel core were showed very good agreements with the measured value. It is the strong points of this new code system to be operated simply by using the windows form pictures act on a personal workstation equip with the graphical-user-interface (GUI), and to estimate accurately the specific characteristics of the LEU core. (author)

  10. Preparation of data relevant to ''Equivalent Uniform Burnup'' and Equivalent Initial Enrichment'' for burnup credit evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Yasushi; Okuno, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Murazaki, Minoru [Tokyo Nuclear Service Inc., Tokyo (Japan)

    2001-11-01

    Based on the PWR spent fuel composition data measured at JAERI, two kinds of simplified methods such as ''Equivalent Uniform Burnup'' and ''Equivalent Initial Enrichment'' have been introduced. And relevant evaluation curves have been prepared for criticality safety evaluation of spent fuel storage pool and transport casks, taking burnup of spent fuel into consideration. These simplified methods can be used to obtain an effective neutron multiplication factor for a spent fuel storage/transportation system by using the ORIGEN2.1 burnup code and the KENO-Va criticality code without considering axial burnup profile in spent fuel and other various factors introducing calculated errors. ''Equivalent Uniform Burnup'' is set up for its criticality analysis to be reactivity equivalent with the detailed analysis, in which the experimentally obtained isotopic composition together with a typical axial burnup profile and various factors such as irradiation history are considered on the conservative side. On the other hand, Equivalent Initial Enrichment'' is set up for its criticality analysis to be reactivity equivalent with the detailed analysis such as above when it is used in the so called fresh fuel assumption. (author)

  11. Conceptual cask design with burnup credit

    International Nuclear Information System (INIS)

    Lee, Seong Hee; Ahn, Joon Gi; Hwang, Hae Ryong

    2003-01-01

    Conceptual design has been performed for a spent fuel transport cask with burnup credit and a neutron-absorbing material to maximize transportation capacity. Both fresh and burned fuel are assumed to be stored in the cask and boral and borated stainless steel are selected for the neutron-absorbing materials. Three different sizes of cask with typical 14, 21 and 52 PWR fuel assemblies are modeled and analyzed with the SCALE 4.4 code system. In this analysis, the biases and uncertainties through validation calculations for both isotopic predictions and criticality calculation for the spent fuel have been taken into account. All of the reactor operating parameters, such as moderator density, soluble boron concentration, fuel temperature, specific power, and operating history, have been selected in a conservative way for the criticality analysis. Two different burnup credit loading curves are developed for boral and borated stainless steel absorbing materials. It is concluded that the spent fuel transport cask design with burnup credit is feasible and is expected to increase cask payloads. (author)

  12. ESCADRE and ICARE code systems

    International Nuclear Information System (INIS)

    Reocreux, M.; Gauvain, J.

    1992-01-01

    The French sever accident code development program is following two parallel approaches: the first one is dealing with ''integral codes'' which are designed for giving immediate engineer answers, the second one is following a more mechanistic way in order to have the capability of detailed analysis of experiments, in order to get a better understanding of the scaling problem and reach a better confidence in plant calculations. In the first approach a complete system has been developed and is being used for practical cases: this is the ESCADRE system. In the second approach, a set of codes dealing first with primary circuit is being developed: a mechanistic core degradation code, ICARE, has been issued and is being coupled with the advanced thermalhydraulic code CATHARE. Fission product codes have been also coupled to CATHARE. The ''integral'' ESCADRE system and the mechanistic ICARE and associated codes are described. Their main characteristics are reviewed and the status of their development and assessment given. Future studies are finally discussed. 36 refs, 4 figs, 1 tab

  13. SPECTRAL AMPLITUDE CODING OCDMA SYSTEMS USING ENHANCED DOUBLE WEIGHT CODE

    Directory of Open Access Journals (Sweden)

    F.N. HASOON

    2006-12-01

    Full Text Available A new code structure for spectral amplitude coding optical code division multiple access systems based on double weight (DW code families is proposed. The DW has a fixed weight of two. Enhanced double-weight (EDW code is another variation of a DW code family that can has a variable weight greater than one. The EDW code possesses ideal cross-correlation properties and exists for every natural number n. A much better performance can be provided by using the EDW code compared to the existing code such as Hadamard and Modified Frequency-Hopping (MFH codes. It has been observed that theoretical analysis and simulation for EDW is much better performance compared to Hadamard and Modified Frequency-Hopping (MFH codes.

  14. Measurement of burnup in FBR MOX fuel irradiated to high burnup

    International Nuclear Information System (INIS)

    Koyama, Shin-ichi; Osaka, Masahiko; Sekine, Takashi; Morozumi, Katsufumi; Namekawa, Takashi; Itoh, Masahiko

    2003-01-01

    The burnup of fuel pins in the subassemblies irradiated at the range from 0.003 to 13.28% FIMA in the JOYO MK-II core were measured by the isotope dilution analysis. For the measurement, 75 and 51 specimens were taken from the fuel pins of driver fuel and irradiation test subassemblies, respectively. The data of burnup could be obtained within an experimental error of 4%, and were compared with the ones calculated by 3-dimensional neutron diffusion codes MAGI and ESPRIT-J, which are used for JOYO core management system. Both data of burnup almost agree with each other within an error of 5%. For the fuel pins loaded at the outer region of the subassembly in the 4th row, which was adjacent to reflectors, however, some of the calculation results were 15% less at most than the measured values. It is suggested from the calculation by a Monte Carlo code MCNP-4A that this difference between the calculated and the measured data attribute from the softening of neutron flux in the region adjacent to the reflector. (author)

  15. ETR/ITER systems code

    Energy Technology Data Exchange (ETDEWEB)

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.; Bulmer, R.H.; Busigin, A.; DuBois, P.F.; Fenstermacher, M.E.; Fink, J.; Finn, P.A.; Galambos, J.D.; Gohar, Y.; Gorker, G.E.; Haines, J.R.; Hassanein, A.M.; Hicks, D.R.; Ho, S.K.; Kalsi, S.S.; Kalyanam, K.M.; Kerns, J.A.; Lee, J.D.; Miller, J.R.; Miller, R.L.; Myall, J.O.; Peng, Y-K.M.; Perkins, L.J.; Spampinato, P.T.; Strickler, D.J.; Thomson, S.L.; Wagner, C.E.; Willms, R.S.; Reid, R.L. (ed.)

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs.

  16. ETR/ITER systems code

    International Nuclear Information System (INIS)

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs

  17. A criticality analysis of the GBC-32 dry storage cask with Hanbit nuclear power plant unit 3 fuel assemblies from the viewpoint of burnup credit

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hyung Ju; Kim, Do Yeon; Park, Kwang Heon; Hong, Ser Gi [Dept. of Nuclear Engineering, Kyung Hee University, Seoul (Korea, Republic of)

    2016-06-15

    Nuclear criticality safety analyses (NCSAs) considering burnup credit were performed for the GBC-32 cask. The used nuclear fuel assemblies (UNFAs) discharged from Hanbit Nuclear Power Plant Unit 3 Cycle 6 were loaded into the cask. Their axial burnup distributions and average discharge burnups were evaluated using the DeCART and Multi-purpose Analyzer for Static and Transient Effects of Reactors (MASTER) codes, and NCSAs were performed using SCALE 6.1/STandardized Analysis of Reactivity for Burnup Credit using SCALE (STARBUCS) and Monte Carlo N-Particle transport code, version 6 (MCNP 6). The axial burnup distributions were determined for 20 UNFAs with various initial enrichments and burnups, which were applied to the criticality analysis for the cask system. The UNFAs for 20- and 30-year cooling times were assumed to be stored in the cask. The criticality analyses indicated that keff values for UNFAs with nonuniform axial burnup distributions were larger than those with a uniform distribution, that is, the end effects were positive but much smaller than those with the reference distribution. The axial burnup distributions for 20 UNFAs had shapes that were more symmetrical with a less steep gradient in the upper region than the reference ones of the United States Department of Energy. These differences in the axial burnup distributions resulted in a significant reduction in end effects compared with the reference.

  18. Burnup-dependent core neutronics analysis of plate-type research reactor using deterministic and stochastic methods

    International Nuclear Information System (INIS)

    Liu, Shichang; Wang, Guanbo; Liang, Jingang; Wu, Gaochen; Wang, Kan

    2015-01-01

    Highlights: • DRAGON & DONJON were applied in burnup calculations of plate-type research reactors. • Continuous-energy Monte Carlo burnup calculations by RMC were chosen as references. • Comparisons of keff, isotopic densities and power distribution were performed. • Reasons leading to discrepancies between two different approaches were analyzed. • DRAGON & DONJON is capable of burnup calculations with appropriate treatments. - Abstract: The burnup-dependent core neutronics analysis of the plate-type research reactors such as JRR-3M poses a challenge for traditional neutronics calculational tools and schemes for power reactors, due to the characteristics of complex geometry, highly heterogeneity, large leakage and the particular neutron spectrum of the research reactors. Two different theoretical approaches, the deterministic and the stochastic methods, are used for the burnup-dependent core neutronics analysis of the JRR-3M plate-type research reactor in this paper. For the deterministic method the neutronics codes DRAGON & DONJON are used, while the continuous-energy Monte Carlo code RMC (Reactor Monte Carlo code) is employed for the stochastic one. In the first stage, the homogenizations of few-group cross sections by DRAGON and the full core diffusion calculations by DONJON have been verified by comparing with the detailed Monte Carlo simulations. In the second stage, the burnup-dependent calculations of both assembly level and the full core level were carried out, to examine the capability of the deterministic code system DRAGON & DONJON to reliably simulate the burnup-dependent behavior of research reactors. The results indicate that both RMC and DRAGON & DONJON code system are capable of burnup-dependent neutronics analysis of research reactors, provided that appropriate treatments are applied in both assembly and core levels for the deterministic codes

  19. SASSYS LMFBR systems analysis code

    International Nuclear Information System (INIS)

    Dunn, F.E.; Prohammer, F.G.

    1982-01-01

    The SASSYS code provides detailed steady-state and transient thermal-hydraulic analyses of the reactor core, inlet and outlet coolant plenums, primary and intermediate heat-removal systems, steam generators, and emergency shut-down heat removal systems in liquid-metal-cooled fast-breeder reactors (LMFBRs). The main purpose of the code is to analyze the consequences of failures in the shut-down heat-removal system and to determine whether this system can perform its mission adequately even with some of its components inoperable. The code is not plant-specific. It is intended for use with any LMFBR, using either a loop or a pool design, a once-through steam generator or an evaporator-superheater combination, and either a homogeneous core or a heterogeneous core with internal-blanket assemblies

  20. TOPICAL REPORT ON ACTINIDE-ONLY BURNUP CREDIT FOR PWR SPENT NUCLEAR FUEL PACKAGES

    International Nuclear Information System (INIS)

    DOE

    1997-01-01

    A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay. A set of chemical assay benchmarks is presented for this purpose as well as a method for assessing the calculational bias and uncertainty, and conservative correction factors for each isotope. (2) Validate a computer code system to predict the subcritical multiplication factor, k eff , of a spent nuclear fuel package. Fifty-seven UO 2 , UO 2 /Gd 2 O 3 , and UO 2 /PuO 2 critical experiments have been selected to cover anticipated conditions of SNF. The method uses an upper safety limit on k eff (which can be a function of the trending parameters) such that the biased k eff , when increased for the uncertainty is less than 0.95. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. Three bounding axial profiles have been established to assure the ''end effect'' is accounted for conservatively. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). Burnup credit loading curves show the minimum burnup required for a given initial enrichment. The utility burnup record is compared to this requirement after the utility accounts for the uncertainty in its record. Separate curves may be generated for each assembly design, various minimum cooling times and burnable absorber histories. (5) Verify that SNF assemblies meet the package loading criteria and confirm proper assembly selection

  1. Topical report on actinide-only burnup credit for PWR spent nuclear fuel packages. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1997-04-01

    A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay. A set of chemical assay benchmarks is presented for this purpose as well as a method for assessing the calculational bias and uncertainty, and conservative correction factors for each isotope. (2) Validate a computer code system to predict the subcritical multiplication factor, k{sub eff}, of a spent nuclear fuel package. Fifty-seven UO{sub 2}, UO{sub 2}/Gd{sub 2}O{sub 3}, and UO{sub 2}/PuO{sub 2} critical experiments have been selected to cover anticipated conditions of SNF. The method uses an upper safety limit on k{sub eff} (which can be a function of the trending parameters) such that the biased k{sub eff}, when increased for the uncertainty is less than 0.95. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. Three bounding axial profiles have been established to assure the ''end effect'' is accounted for conservatively. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). Burnup credit loading curves show the minimum burnup required for a given initial enrichment. The utility burnup record is compared to this requirement after the utility accounts for the uncertainty in its record. Separate curves may be generated for each assembly design, various minimum cooling times and burnable absorber histories. (5) Verify that SNF assemblies meet the package

  2. Carmen system: a code block for neutronic PWR calculation by diffusion theory with spacedependent feedback effects

    International Nuclear Information System (INIS)

    Ahnert, C.; Aragones, J.M.

    1982-01-01

    The Carmen code (theory and user's manual) is described. This code for assembly and core calculations uses diffusion theory (Citation), with feedback in the cross sections by zone due to the effects of burnup, water density, fuel temperature, Xenon and Samarium. The burnup calculation of a full cycle is solved in only an execution of Carmen, and in a reduced computer time. (auth.)

  3. Burn-up physics in a coupled Hammer-Technion/Cinder-2 system and ENDF/B-V aggregate fission product thermal cross section validation

    International Nuclear Information System (INIS)

    Santos, A. dos.

    1990-01-01

    The new methodology developed in this work has the following purposes: a) to implement a burnup capability into the HAMMER-TECHNION/9/computer code by using the CINDER-2/10/computer code to perform the transmutation analysis for the actinides and fission products; b) to implement a reduced version of the CINDER-2 fission product chain structure to treat explicity nearly 99% of all original CINDER-2 fission product absorption in a typical PWR unit cell; c) to treat the effect of the fission product neutron absorption in an unit cell in a multigroup basis; d) to develop a tentative validation procedure for the ENOF/C-V stable and long-lived fission product nuclear data based on the available experimental data/11-14/. The analysis will be performed by using the reduce chain in the coupled system CINDER-2 to generate the time dependent effective four group cross sections for actinides and fission products and CINDER-2 to perform the complete transmutation analysis with its built-in chain structure. (author)

  4. Interrelations of codes in human semiotic systems.

    OpenAIRE

    Somov, Georgij

    2016-01-01

    Codes can be viewed as mechanisms that enable relations of signs and their components, i.e., semiosis is actualized. The combinations of these relations produce new relations as new codes are building over other codes. Structures appear in the mechanisms of codes. Hence, codes can be described as transformations of structures from some material systems into others. Structures belong to different carriers, but exist in codes in their "pure" form. Building of codes over other codes fosters t...

  5. Burnup calculations for cadmium. A case study for HFR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pijlgroms, B.J.; Sciolla, C.M

    2000-09-11

    This report describes the pre-design burnup calculations performed for a cadmium shielded high fluence irradiation experiment in the HFR. The very high absorption cross section in cadmium causes problems in the calculations for two different reasons. Firstly, because of the large reaction rates the assumption that the flux and the cross sections remain piecewise constant is no longer true. Therefore the correct solution can only be obtained when using extremely small time steps which leads to excessive computing times. Secondly, the self-shielding in the cadmium becomes complete (black absorber) causing the depletion to progress in a shell-wise manner. As a consequence the depletion evolves nearly linear instead of exponential with time. Because of this the depletion codes are used in a regime for which these have not been designed leading to a systematic error. The analysis shows however that a good estimate for the burnup time can be obtained by extrapolation from calculations with practically sized time steps and a correction is derived to compensate the systematic error. The calculations were done using the OCTOPUS burnup code system, including the 3-D Monte-Carlo spectrum code MCNP-4B and the depletion code FISPACT-4.2. Verifications were performed with the WIMS code system. The first part of the report describes the study of the cadmium burnup calculations for a shielded steel sample with the emphasis on analyzing the requirements for obtaining the correct solution. The second part describes the time-dependent power production calculations with the steel replaced by lithium containing ceramic material such as to be used in the 'High Fluence Irradiation of Ceramics for Fusion' (HICU) experiment. 12 refs.

  6. Choosing the optimum burnup

    International Nuclear Information System (INIS)

    Geller, L.; Goldstein, L.; Franks, W.A.

    1986-01-01

    This paper reviews some of the considerations utilities must evaluate when going to higher discharge burnups. The advantages and disadvantages of higher discharge burnups are described, as well as a consistent approach for evaluating optimum discharge burnup and its comparison to current practice. When an analysis is performed over the life of the plant, the design of the terminal cycles has significant impact on the lifetime savings from higher burnups. Designs for high burnup cycles have a greater average inventory value in the core. As one goes to higher burnup, there is a greater likelihood of discarding a larger value in unused fuel unless the terminal cycles are designed carefully. This effect can be large enough in some cases to wipe out the lifetime cost savings relative to operating with a higher discharge burnup cycle

  7. Application of burnup credit for PWR spent fuel storage pool

    International Nuclear Information System (INIS)

    Shin, Hee Sung; Ro, Seung-Gy; Bae, Kang Mok; Kim, Ik Soo; Shin, Young Joon

    1999-01-01

    A study on the application of burnup credit for a PWR spent fuel storage pool has been investigated using a computer code system such as CSAS6 module of SCALE 4.3 in association with 44-group SCALE cross-section library. The calculation bias of the code system at a 95% probability with a 95% confidence level seems to be 0.00951 by benchmarking the system for forty six experimental data. With the aid of this computer code system, criticality analysis has been performed for the PWR spent fuel storage pool. Uncertainties due to postulated abnormal and accidental conditions, and manufacturing tolerance such as stainless steel thickness of storage rack, fuel enrichment, fuel density and box size have statistically been combined and resulted in 0.00674. Also, isotopic correction factor which was based on the calculated and measured concentration of 43 isotopes for both selected actinides and fission products important in burnup credit application has been taken into account in the criticality analysis. It is revealed that the minimum burnup with the corrected isotopic concentrations as required for the safe storage is 5,730 MWd/tU in enriched fuel of 5.0 wt%. (author)

  8. ELCOS: the PSI code system for LWR core analysis. Part II: user's manual for the fuel assembly code BOXER

    International Nuclear Information System (INIS)

    Paratte, J.M.; Grimm, P.; Hollard, J.M.

    1996-02-01

    ELCOS is a flexible code system for the stationary simulation of light water reactor cores. It consists of the four computer codes ETOBOX, BOXER, CORCOD and SILWER. The user's manual of the second one is presented here. BOXER calculates the neutronics in cartesian geometry. The code can roughly be divided into four stages: - organisation: choice of the modules, file manipulations, reading and checking of input data, - fine group fluxes and condensation: one-dimensional calculation of fluxes and computation of the group constants of homogeneous materials and cells, - two-dimensional calculations: geometrically detailed simulation of the configuration in few energy groups, - burnup: evolution of the nuclide densities as a function of time. This manual shows all input commands which can be used while running the different modules of BOXER. (author) figs., tabs., refs

  9. System Design Description for the TMAD Code

    International Nuclear Information System (INIS)

    Finfrock, S.H.

    1995-01-01

    This document serves as the System Design Description (SDD) for the TMAD Code System, which includes the TMAD code and the LIBMAKR code. The SDD provides a detailed description of the theory behind the code, and the implementation of that theory. It is essential for anyone who is attempting to review or modify the code or who otherwise needs to understand the internal workings of the code. In addition, this document includes, in Appendix A, the System Requirements Specification for the TMAD System

  10. PWR AXIAL BURNUP PROFILE ANALYSIS

    International Nuclear Information System (INIS)

    J.M. Acaglione

    2003-01-01

    The purpose of this activity is to develop a representative ''limiting'' axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the ''end-effect''. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package. The scope of this calculation covers an initial enrichment range of 3.0 through 5.0 wt% U-235 and a burnup range of 10 through 50 GWd/MTU. This activity supports the validation of the process for ensuring conservative generation of spent fuel isotopics with respect to criticality safety applications, and the use of burnup credit for commercial spent nuclear fuel. The intended use of these results will be in the development of PWR waste package loading curves, and applications involving burnup credit. Limitations of this evaluation are that the limiting profiles are only confirmed for use with the B andW 15 x 15 fuel assembly design. However, this assembly design is considered bounding of all other typical commercial PWR fuel assembly designs. This calculation is subject to the Quality Assurance Requirements and Description (QARD) because this activity supports investigations of items or barriers on the Q-list (YMP 2001)

  11. Analysis of high burnup fuel safety issues

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Kim, D. H.; Bang, J. G.; Kim, Y. M.; Yang, Y. S.; Jung, Y. H.; Jeong, Y. H.; Nam, C.; Baik, J. H.; Song, K. W.; Kim, K. S

    2000-12-01

    Safety issues in steady state and transient behavior of high burnup LWR fuel above 50 - 60 MWD/kgU were analyzed. Effects of burnup extension upon fuel performance parameters was reviewed, and validity of both the fuel safety criteria and the performance analysis models which were based upon the lower burnup fuel test results was analyzed. It was found that further tests would be necessary in such areas as fuel failure and dispersion for RIA, and high temperature cladding corrosion and mechanical deformation for LOCA. Since domestic fuels have been irradiated in PWR up to burnup higher than 55 MWD/kgU-rod. avg., it can be said that Korea is in the same situation as the other countries in the high burnup fuel safety issues. Therefore, necessary research areas to be performed in Korea were derived. Considering that post-irradiation examination(PIE) for the domestic fuel of burnup higher than 30 MWD/kgU has not been done so far at all, it is primarily necessary to perform PIE for high burnup fuel, and then simulation tests for RIA and LOCA could be performed by using high burnup fuel specimens. For the areas which can not be performed in Korea, international cooperation will be helpful to obtain the test results. With those data base, safety of high burnup domestic fuels will be confirmed, current fuel safety criteria will be re-evaluated, and finally transient high burnup fuel behavior analysis technology will be developed through the fuel performance analysis code development

  12. Analysis of high burnup fuel safety issues

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Bock; Kim, D. H.; Bang, J. G.; Kim, Y. M.; Yang, Y. S.; Jung, Y. H.; Jeong, Y. H.; Nam, C.; Baik, J. H.; Song, K. W.; Kim, K. S

    2000-12-01

    Safety issues in steady state and transient behavior of high burnup LWR fuel above 50 - 60 MWD/kgU were analyzed. Effects of burnup extension upon fuel performance parameters was reviewed, and validity of both the fuel safety criteria and the performance analysis models which were based upon the lower burnup fuel test results was analyzed. It was found that further tests would be necessary in such areas as fuel failure and dispersion for RIA, and high temperature cladding corrosion and mechanical deformation for LOCA. Since domestic fuels have been irradiated in PWR up to burnup higher than 55 MWD/kgU-rod. avg., it can be said that Korea is in the same situation as the other countries in the high burnup fuel safety issues. Therefore, necessary research areas to be performed in Korea were derived. Considering that post-irradiation examination(PIE) for the domestic fuel of burnup higher than 30 MWD/kgU has not been done so far at all, it is primarily necessary to perform PIE for high burnup fuel, and then simulation tests for RIA and LOCA could be performed by using high burnup fuel specimens. For the areas which can not be performed in Korea, international cooperation will be helpful to obtain the test results. With those data base, safety of high burnup domestic fuels will be confirmed, current fuel safety criteria will be re-evaluated, and finally transient high burnup fuel behavior analysis technology will be developed through the fuel performance analysis code development.

  13. Analysis of some antecipated transients without scram for a pressurized water cooled reactor (PWR) using coupling of the containment code CORAN to the system model code ALMOD

    International Nuclear Information System (INIS)

    Carvalho, F. de A.T. de.

    1985-01-01

    Some antecipated transients without scram (ATWS) for a pressurized water cooled reactor, model KWU 1300 MWe, are studied using coupling of the containment code CORAN to the system model code ALMOD, under severe random conditions. This coupling has the objective of including containment model as part of a unified code system. These severe conditions include failure of reactor scram, following a station black-out and emergency power initiation for the burn-up status at the beginning and end of the cycle. Furthermore, for the burn-up status at the end of the cycle a failure in the closure of the pressurizer relief valve was also investigated. For the beginning of the cycle, the containment participates actively during the transient. It is noted that the effect of the burn-up in the fuel is to reduce the seriousness of these transients. On the other hand, the failure in the closure of the pressurized relief valve makes this transients more severe. Moreover, the containment safety or radiological public safety is not affected in any of the cases. (Author) [pt

  14. Modular ORIGEN-S for multi-physics code systems

    International Nuclear Information System (INIS)

    Yesilyurt, Gokhan; Clarno, Kevin T.; Gauld, Ian C.; Galloway, Jack

    2011-01-01

    The ORIGEN-S code in the SCALE 6.0 nuclear analysis code suite is a well-validated tool to calculate the time-dependent concentrations of nuclides due to isotopic depletion, decay, and transmutation for many systems in a wide range of time scales. Application areas include nuclear reactor and spent fuel storage analyses, burnup credit evaluations, decay heat calculations, and environmental assessments. Although simple to use within the SCALE 6.0 code system, especially with the ORIGEN-ARP graphical user interface, it is generally complex to use as a component within an externally developed code suite because of its tight coupling within the infrastructure of the larger SCALE 6.0 system. The ORIGEN2 code, which has been widely integrated within other simulation suites, is no longer maintained by Oak Ridge National Laboratory (ORNL), has obsolete data, and has a relatively small validation database. Therefore, a modular version of the SCALE/ORIGEN-S code was developed to simplify its integration with other software packages to allow multi-physics nuclear code systems to easily incorporate the well-validated isotopic depletion, decay, and transmutation capability to perform realistic nuclear reactor and fuel simulations. SCALE/ORIGEN-S was extensively restructured to develop a modular version that allows direct access to the matrix solvers embedded in the code. Problem initialization and the solver were segregated to provide a simple application program interface and fewer input/output operations for the multi-physics nuclear code systems. Furthermore, new interfaces were implemented to access and modify the ORIGEN-S input variables and nuclear cross-section data through external drivers. Three example drivers were implemented, in the C, C++, and Fortran 90 programming languages, to demonstrate the modular use of the new capability. This modular version of SCALE/ORIGEN-S has been embedded within several multi-physics software development projects at ORNL, including

  15. Modular ORIGEN-S for multi-physics code systems

    Energy Technology Data Exchange (ETDEWEB)

    Yesilyurt, Gokhan; Clarno, Kevin T.; Gauld, Ian C., E-mail: yesilyurtg@ornl.gov, E-mail: clarnokt@ornl.gov, E-mail: gauldi@ornl.gov [Oak Ridge National Laboratory, TN (United States); Galloway, Jack, E-mail: jack@galloways.net [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2011-07-01

    The ORIGEN-S code in the SCALE 6.0 nuclear analysis code suite is a well-validated tool to calculate the time-dependent concentrations of nuclides due to isotopic depletion, decay, and transmutation for many systems in a wide range of time scales. Application areas include nuclear reactor and spent fuel storage analyses, burnup credit evaluations, decay heat calculations, and environmental assessments. Although simple to use within the SCALE 6.0 code system, especially with the ORIGEN-ARP graphical user interface, it is generally complex to use as a component within an externally developed code suite because of its tight coupling within the infrastructure of the larger SCALE 6.0 system. The ORIGEN2 code, which has been widely integrated within other simulation suites, is no longer maintained by Oak Ridge National Laboratory (ORNL), has obsolete data, and has a relatively small validation database. Therefore, a modular version of the SCALE/ORIGEN-S code was developed to simplify its integration with other software packages to allow multi-physics nuclear code systems to easily incorporate the well-validated isotopic depletion, decay, and transmutation capability to perform realistic nuclear reactor and fuel simulations. SCALE/ORIGEN-S was extensively restructured to develop a modular version that allows direct access to the matrix solvers embedded in the code. Problem initialization and the solver were segregated to provide a simple application program interface and fewer input/output operations for the multi-physics nuclear code systems. Furthermore, new interfaces were implemented to access and modify the ORIGEN-S input variables and nuclear cross-section data through external drivers. Three example drivers were implemented, in the C, C++, and Fortran 90 programming languages, to demonstrate the modular use of the new capability. This modular version of SCALE/ORIGEN-S has been embedded within several multi-physics software development projects at ORNL, including

  16. A simplified burnup calculation strategy with refueling in static molten salt reactor

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Gupta, Anurag; Krishnani, P.D.

    2015-01-01

    Molten Salt Reactors, by nature can be refuelled and reprocessed online. Thus, a simulation methodology has to be developed which can consider online refueling and reprocessing aspect of the reactor. To cater such needs a simplified burnup calculation strategy to account for refueling and removal of molten salt fuel at any desired burnup has been identified in static molten salt reactor in batch mode as a first step of way forward. The features of in-house code ITRAN has been explored for such calculations. The code also enables us to estimate the reactivity introduced in the system due to removal of any number of considered nuclides at any burnup. The effect of refueling fresh fuel and removal of burned fuel has been studied in batch mode with in-house code ITRAN. The effect of refueling and burnup on change in reactivity per day has been analyzed. The analysis of removal of 233 Pa at a particular burnup has been carried out. The similar analysis has been performed for some other nuclides also. (author)

  17. Lattice cell burnup calculation

    International Nuclear Information System (INIS)

    Pop-Jordanov, J.

    1977-01-01

    Accurate burnup prediction is a key item for design and operation of a power reactor. It should supply information on isotopic changes at each point in the reactor core and the consequences of these changes on the reactivity, power distribution, kinetic characters, control rod patterns, fuel cycles and operating strategy. A basic stage in the burnup prediction is the lattice cell burnup calculation. This series of lectures attempts to give a review of the general principles and calculational methods developed and applied in this area of burnup physics

  18. Physical models for high burnup fuel

    International Nuclear Information System (INIS)

    Kanyukova, V.; Khoruzhii, O.; Likhanskii, V.; Solodovnikov, G.; Sorokin, A.

    2003-01-01

    In this paper some models of processes in high burnup fuel developed in Src of Russia Troitsk Institute for Innovation and Fusion Research are presented. The emphasis is on the description of the degradation of the fuel heat conductivity, radial profiles of the burnup and the plutonium accumulation, restructuring of the pellet rim, mechanical pellet-cladding interaction. The results demonstrate the possibility of rather accurate description of the behaviour of the fuel of high burnup on the base of simplified models in frame of the fuel performance code if the models are physically ground. The development of such models requires the performance of the detailed physical analysis to serve as a test for a correct choice of allowable simplifications. This approach was applied in the SRC of Russia TRINITI to develop a set of models for the WWER fuel resulting in high reliability of predictions in simulation of the high burnup fuel

  19. A comparative study of MONTEBURNS and MCNPX 2.6.0 codes in ADS simulations

    International Nuclear Information System (INIS)

    Barros, Graiciany P.; Pereira, Claubia; Veloso, Maria A.F.; Velasquez, Carlos E.; Costa, Antonella L.

    2013-01-01

    The possible use of the MONTEBURNS and MCNPX 2.6.0 codes in Accelerator-driven systems (ADSs) simulations for fuel evolution description is discussed. ADSs are investigated for fuel breeding and long-lived fission product transmutation so simulations of fuel evolution have a great relevance. The burnup/depletion capability is present in both studied codes. MONTEBURNS code links Monte Carlo N-Particle Transport Code (MCNP) to the radioactive decay burnup code ORIGEN2, whereas MCNPX depletion/ burnup capability is a linked process involving steady-state flux calculations by MCNPX and nuclide depletion calculations by CINDER90. A lead-cooled accelerator-driven system fueled with thorium was simulated and the results obtained using MONTEBURNS code and the results from MCNPX 2.6.0 code were compared. The system criticality and the variation of the actinide inventory during the burnup were evaluated and the results indicate a similar behavior between the results of each code. (author)

  20. Computer access security code system

    Science.gov (United States)

    Collins, Earl R., Jr. (Inventor)

    1990-01-01

    A security code system for controlling access to computer and computer-controlled entry situations comprises a plurality of subsets of alpha-numeric characters disposed in random order in matrices of at least two dimensions forming theoretical rectangles, cubes, etc., such that when access is desired, at least one pair of previously unused character subsets not found in the same row or column of the matrix is chosen at random and transmitted by the computer. The proper response to gain access is transmittal of subsets which complete the rectangle, and/or a parallelepiped whose opposite corners were defined by first groups of code. Once used, subsets are not used again to absolutely defeat unauthorized access by eavesdropping, and the like.

  1. Effect of high burn-up and MOX fuel on reprocessing, vitrification and disposal of PWR and BWR spent fuels based on accurate burn-up calculation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, T.; Iwasaki, T.; Wada, K. [Tohoku Univ., Graduate School of Engineering, Dept. of Quantum Science and Energy Engineering, Sendai 980-8579 (Japan); Suyama, K. [Japan Atomic Energy Agency, Shirakata-Shirane 2-4, Naka-gun, Ibaraki-ken 319-1195 (Japan)

    2006-07-01

    To examine the procedures of the reprocessing, the vitrification and the geologic disposal, precise burn-up calculation for high burn-up and MOX fuels has been performed for not only PWR but also BWR by using SWAT and SWAT2 codes which are the integrated bum-up calculation code systems combined with the bum-up calculation code, ORIGEN2, and the transport calculation code, SRAC (the collision probability method) or MVP (the continuous energy Monte Carlo method), respectively. The calculation results shows that all of the evaluated items (heat generation and concentrations of Mo and Pt) largely increase and those significantly effect to the current procedures of the vitrification and the geologic disposal. The calculation result by SWAT2 confirms that the bundle calculation is required for BWR to be discussed about those effects in details, especially for the MOX fuel. (authors)

  2. Studies on validation possibilities for computational codes for criticality and burnup calculations of boiling water reactor fuel; Untersuchungen zu Validierungsmoeglichkeiten von Rechencodes fuer Kritikalitaets- und Abbrandrechnungen von Siedewasserreaktor-Brennstoff

    Energy Technology Data Exchange (ETDEWEB)

    Behler, Matthais; Hannstein, Volker; Kilger, Robert; Sommer, Fabian; Stuke, Maik

    2017-06-15

    The Application of the method of Burn-up Credit on Boiling Water Reactor fuel is much more complex than in the case of Pressurized Water Reactors due to the increased heterogeneity and complexity of the fuel assemblies. Strongly varying enrichments, complex fuel assembly geometries, partial length fuel rods, and strong axial variations of the moderator density make the verification of conservative irradiation conditions difficult. In this Report, it was investigated whether it is possible to take into account the burn-up in criticality analyses for systems with irradiated Boiling Water Reactor fuel on the basis of freely available experimental data and by additionally applying stochastic methods. In order to achieve this goal, existing methods for stochastic analysis were adapted and further developed in order to being applicable to the specific conditions needed in Boiling Water Reactor analysis. The aim was to gain first insight whether a workable scheme for using burn-up credit in Boiling Water Reactor applications can be derived. Due to the fact that the different relevant quantities, like e.g. moderator density and the axial power profile, are strongly correlated, the GRS-tool SUnCISTT for Monte-Carlo uncertainty quantification was used in the analysis. This tool was coupled to a simplified, consistent model for the irradiation conditions. In contrast to conventional methods, this approach allows to simultaneously analyze all involved effects.

  3. DRAGON 3.05D, Reactor Cell Calculation System with Burnup

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: The computer code DRAGON contains a collection of models that can simulate the neutron behavior of a unit cell or a fuel assembly in a nuclear reactor. It includes all of the functions that characterize a lattice cell code, namely: the interpolation of microscopic cross sections supplied by means of standard libraries; resonance self-shielding calculations in multidimensional geometries; multigroup and multidimensional neutron flux calculations that can take into account neutron leakage; transport-transport or transport-diffusion equivalence calculations as well as editing of condensed and homogenized nuclear properties for reactor calculations; and finally isotopic depletion calculations. 2 - Methods: The code DRAGON contains a multigroup flux solver conceived that can use a various algorithms to solve the neutron transport equation for the spatial and angular distribution of the flux. Each of these algorithms is presented in the form of a one-group solution procedure where the contributions from other energy groups are considered as sources. The current release of DRAGON contains five such algorithms. The JPM option that solves the integral transport equation using the J+- method, (interface current method applied to homogeneous blocks); the SYBIL option that solves the integral transport equation using the collision probability method for simple one dimensional (1-D) or two dimensional (2-D) geometries and the interface current method for 2-D Cartesian or hexagonal assemblies; the EXCELL/NXT option to solve the integral transport equation using the collision probability method for more general 2-D geometries and for three dimensional (3-D) assemblies; the MOCC option to solve the transport equation using the method of cyclic characteristics in 2-D Cartesian, and finally the MCU option to solve the transport equation using the method of characteristics (non cyclic) for 3-D Cartesian geometries. The execution of DRAGON is

  4. High Burnup Effects Program

    International Nuclear Information System (INIS)

    Barner, J.O.; Cunningham, M.E.; Freshley, M.D.; Lanning, D.D.

    1990-04-01

    This is the final report of the High Burnup Effects Program (HBEP). It has been prepared to present a summary, with conclusions, of the HBEP. The HBEP was an international, group-sponsored research program managed by Battelle, Pacific Northwest Laboratories (BNW). The principal objective of the HBEP was to obtain well-characterized data related to fission gas release (FGR) for light water reactor (LWR) fuel irradiated to high burnup levels. The HBEP was organized into three tasks as follows: Task 1 -- high burnup effects evaluations; Task 2 -- fission gas sampling; and Task 3 -- parameter effects study. During the course of the HBEP, a program that extended over 10 years, 82 fuel rods from a variety of sources were characterized, irradiated, and then examined in detail after irradiation. The study of fission gas release at high burnup levels was the principal objective of the program and it may be concluded that no significant enhancement of fission gas release at high burnup levels was observed for the examined rods. The rim effect, an as yet unquantified contributor to athermal fission gas release, was concluded to be the one truly high-burnup effect. Though burnup enhancement of fission gas release was observed to be low, a full understanding of the rim region and rim effect has not yet emerged and this may be a potential area of further research. 25 refs., 23 figs., 4 tabs

  5. Expansion of the CHR bone code system

    International Nuclear Information System (INIS)

    Farnham, J.E.; Schlenker, R.A.

    1976-01-01

    This report describes the coding system used in the Center for Human Radiobiology (CHR) to identify individual bones and portions of bones of a complete skeletal system. It includes illustrations of various bones and bone segments with their respective code numbers. Codes are also presented for bone groups and for nonbone materials

  6. Development of a coupled code system based on system transient code, RETRAN, and 3-D neutronics code, MASTER

    International Nuclear Information System (INIS)

    Kim, K. D.; Jung, J. J.; Lee, S. W.; Cho, B. O.; Ji, S. K.; Kim, Y. H.; Seong, C. K.

    2002-01-01

    A coupled code system of RETRAN/MASTER has been developed for best-estimate simulations of interactions between reactor core neutron kinetics and plant thermal-hydraulics by incorporation of a 3-D reactor core kinetics analysis code, MASTER into system transient code, RETRAN. The soundness of the consolidated code system is confirmed by simulating the MSLB benchmark problem developed to verify the performance of a coupled kinetics and system transient codes by OECD/NEA

  7. Coding-Spreading Tradeoff in CDMA Systems

    National Research Council Canada - National Science Library

    Bolas, Eduardo

    2002-01-01

    .... Comparing different combinations of coding and spreading with a traditional DS-CDMA, as defined in the IS-95 standard, allows the criteria to be defined for the best coding-spreading tradeoff in CDMA systems...

  8. HAMCIND, Cell Burnup with Fission Products Poisoning

    International Nuclear Information System (INIS)

    Abe, Alfredo Y.; Dos Santos, Adimir

    2002-01-01

    1 - Description of program or function: HAMCIND is a cell burnup code based in a coupling between HAMMER-TECHNION and CINDER. The fission product poisoning is taken into account in an explicit fashion. 2 - Method of solution: The nonlinear coupled set of equations for the neutron transport and nuclide transmutation equations and nuclide transmutation equations in a unit cell is solved by HAMCIND in a quasi-static approach. The spectral transport equation is solved by HAMMER-TECHNION at the beginning of each time-step while the nuclide transmutation equations are solved by CINDER for every time-step. The HAMMER-TECHNION spectral calculations are performed taking into account the fission product contribution to the macroscopic cross sections (fast and thermal), in the inelastic scattering matrix and even in the thermal scattering matrices. 3 - Restrictions on the complexity of the problem: Restrictions and/or limitations for HAMCIND depend upon the local operating system

  9. Some uncertainty results obtained by the statistical version of the KARATE code system related to core design and safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Panka, Istvan; Hegyi, Gyoergy; Maraczy, Csaba; Temesvari, Emese [Hungarian Academy of Sciences, Budapest (Hungary). Reactor Analysis Dept.

    2017-11-15

    The best-estimate KARATE code system has been widely used for core design calculations and simulations of slow transients of VVER reactors. Recently there has been an increasing need for assessing the uncertainties of such calculations by propagating the basic input uncertainties of the models through the full calculation chain. In order to determine the uncertainties of quantities of interest during the burnup, the statistical version of the KARATE code system has been elaborated. In the first part of the paper, the main features of the new code system are discussed. The applied statistical method is based on Monte-Carlo sampling of the considered input data taking into account mainly the covariance matrices of the cross sections and/or the technological uncertainties. In the second part of the paper, only the uncertainties of cross sections are considered and an equilibrium cycle related to a VVER-440 type reactor is investigated. The burnup dependence of the uncertainties of some safety related parameters (e.g. critical boron concentration, rod worth, feedback coefficients, assembly-wise radial power and burnup distribution) are discussed and compared to the recently used limits.

  10. A SAS2H/KENO-V methodology for 3D fuel burnup analysis

    International Nuclear Information System (INIS)

    Milosevic, M.; Greenspan, E.; Vujic, J.

    2002-01-01

    An efficient methodology for 3D fuel burnup analysis of LWR reactors is described in this paper. This methodology is founded on coupling Monte Carlo method for 3D calculation of node power distribution, and transport method for depletion calculation in ID Wigner-Seitz equivalent cell for each node independently. The proposed fuel burnup modeling, based on application of SCALE-4.4a control modules SAS2H and KENO-V.a is verified for the case of 2D x-y model of IRIS 15 x 15 fuel assembly (with reflective boundary condition) by using two well benchmarked code systems. The one is MOCUP, a coupled MCNP-4C and ORIGEN2.1 utility code, and the second is KENO-V.a/ORIGEN2.1 code system recently developed by authors of this paper. The proposed SAS2H/KENO-V.a methodology was applied for 3D burnup analysis of IRIS-1000 benchmark.44 core. Detailed k sub e sub f sub f and power density evolution with burnup are reported. (author)

  11. OREST, LWR Burnup Simulation Using Program HAMMER and ORIGEN

    International Nuclear Information System (INIS)

    Hesse, Ulrich; Sieberer, Johann

    2006-01-01

    1 - Description of program or function: In OREST, the 1-dimensional lattice code HAMMER and the isotope generation and depletion code ORIGEN are directly coupled for burnup simulation in light-water reactor fuels (GRS recommended). Additionally heavy water and graphite moderated systems can be calculated. New version differs from the previous version in the following features: An 84-group-library LIB84 for up to 200 isotopes is used to update the 3-group -POISON-XS. LIB84 uses the same energy boundaries as THERMOS and HAMLET in . In this way, high flexibility is achieved in very different reactor models. The coupling factor between THERMOS and HAMLET is now directly transferred from HAMMER to THERES and omits the equation 4 (see page 6 of the manual). Sandwich-reactor fuel reactivity and burnup calculations can be started with NGEOM = 1. Thorium graphite reactivity and burnup calculations can be started with NLIBE = 1. High enriched U-235 heavy water moderated reactivity and burnup calculations can be started. HAMLET libraries in for U-235, U-236, U-238, Np-237, Pu-238, Pu-239, Pu-240, Pu-242, Am-241, Am-243 and Zirconium are updated using resonance parameters. NEA-1324/04: A new version of the module hamme97.f has replaced the old one. 2 - Method of solution: For the user-defined irradiation history, an input data processor generates program loops over small burnup steps for the main codes HAMMER and ORIGEN. The user defined assembly description is transformed to an equivalent HAMMER fuel cell. HAMMER solves the integral neutron transport equation in a four-region cylindrical or sandwiched model with reflecting boundaries and runs with fuel power calculated rod temperatures. ORIGEN runs with HAMMER-calculated cross sections and neutron spectra and calculates isotope concentrations during burnup by solving the buildup-, depletion- and decay-chain equations. An output data processor samples the outputs of the program modules and generates tabular works for the

  12. Tandem Mirror Reactor Systems Code (Version I)

    International Nuclear Information System (INIS)

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost

  13. Reconstruction of pin burnup characteristics from nodal calculations in hexagonal geometry

    International Nuclear Information System (INIS)

    Yang, W.S.; Finck, P.J.; Khalil, H.S.

    1990-01-01

    A reconstruction method has been developed for recovering pin burnup characteristics from fuel cycle calculations performed in hexagonal-z geometry using the nodal diffusion option of the DIF3D/REBUS-3 code system. Intra-modal distributions of group fluxes, nuclide densities, power density, burnup, and fluence are efficiently computed using polynomial shapes constrained to satisfy nodal information. The accuracy of the method has been tested by performing several numerical benchmark calculations and by comparing predicted local burnups to values measured for experimental assemblies in EBR-11. The results indicate that the reconstruction methods are quite accurate, yielding maximum errors in power and nuclide densities that are less than 2% for driver assemblies and typically less than 5% for blanket assemblies. 14 refs., 2 figs., 5 tabs

  14. MTR core loading pattern optimization using burnup dependent group constants

    Directory of Open Access Journals (Sweden)

    Iqbal Masood

    2008-01-01

    Full Text Available A diffusion theory based MTR fuel management methodology has been developed for finding superior core loading patterns at any stage for MTR systems, keeping track of burnup of individual fuel assemblies throughout their history. It is based on using burnup dependent group constants obtained by the WIMS-D/4 computer code for standard fuel elements and control fuel elements. This methodology has been implemented in a computer program named BFMTR, which carries out detailed five group diffusion theory calculations using the CITATION code as a subroutine. The core-wide spatial flux and power profiles thus obtained are used for calculating the peak-to-average power and flux-ratios along with the available excess reactivity of the system. The fuel manager can use the BFMTR code for loading pattern optimization for maximizing the excess reactivity, keeping the peak-to-average power as well as flux-ratio within constraints. The results obtained by the BFMTR code have been found to be in good agreement with the corresponding experimental values for the equilibrium core of the Pakistan Research Reactor-1.

  15. High Burnup Fuel Performance and Safety Research

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Je Keun; Lee, Chan Bok; Kim, Dae Ho (and others)

    2007-03-15

    The worldwide trend of nuclear fuel development is to develop a high burnup and high performance nuclear fuel with high economies and safety. Because the fuel performance evaluation code, INFRA, has a patent, and the superiority for prediction of fuel performance was proven through the IAEA CRP FUMEX-II program, the INFRA code can be utilized with commercial purpose in the industry. The INFRA code was provided and utilized usefully in the universities and relevant institutes domesticallly and it has been used as a reference code in the industry for the development of the intrinsic fuel rod design code.

  16. High dynamic range coding imaging system

    Science.gov (United States)

    Wu, Renfan; Huang, Yifan; Hou, Guangqi

    2014-10-01

    We present a high dynamic range (HDR) imaging system design scheme based on coded aperture technique. This scheme can help us obtain HDR images which have extended depth of field. We adopt Sparse coding algorithm to design coded patterns. Then we utilize the sensor unit to acquire coded images under different exposure settings. With the guide of the multiple exposure parameters, a series of low dynamic range (LDR) coded images are reconstructed. We use some existing algorithms to fuse and display a HDR image by those LDR images. We build an optical simulation model and get some simulation images to verify the novel system.

  17. A PWR Thorium Pin Cell Burnup Benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Kevan Dean; Zhao, X.; Pilat, E. E; Hejzlar, P.

    2000-05-01

    As part of work to evaluate the potential benefits of using thorium in LWR fuel, a thorium fueled benchmark comparison was made in this study between state-of-the-art codes, MOCUP (MCNP4B + ORIGEN2), and CASMO-4 for burnup calculations. The MOCUP runs were done individually at MIT and INEEL, using the same model but with some differences in techniques and cross section libraries. Eigenvalue and isotope concentrations were compared on a PWR pin cell model up to high burnup. The eigenvalue comparison as a function of burnup is good: the maximum difference is within 2% and the average absolute difference less than 1%. The isotope concentration comparisons are better than a set of MOX fuel benchmarks and comparable to a set of uranium fuel benchmarks reported in the literature. The actinide and fission product data sources used in the MOCUP burnup calculations for a typical thorium fuel are documented. Reasons for code vs code differences are analyzed and discussed.

  18. Whole core burnup calculations using 'MCNP'

    International Nuclear Information System (INIS)

    Haran, O.; Shaham, Y.

    1996-01-01

    Core parameters such as the reactivity, the power distribution and different reactivity coefficients calculated in simulations play an important role in the nuclear reactor handling. Operational safety margins are decided upon, based on the calculated parameters. Thus, the ability to accurately calculate those parameters is of uppermost importance. Such ability exists for fresh cores, using the Monte-Carlo method. The change in the core parameters that results from the core burnup is nowadays calculated within transport codes that simplifies the transport process by using approximations such as the diffusion approximation. The inaccuracy in the burned core parameters arising from the use of such approximations is hard to quantify, leading to an increased gap between the operational routines and the safety limits. A Monte Carlo transport code that caries out accurate static calculations in three dimensional geometries using continuous-energy neutron cross-section data such as the MCNP can be used to generate accurate reaction rates for burnup purposes. Monte Carlo method is statistical by nature, so that the reaction rates calculated will be accurate only to a certain known extent. The purpose of this work was to create a burnup routine that uses the capabilities of the Monte Carlo based MCNP code. It should be noted that burnup using Monte Carlo has been reported in the literatures, but this work is the result of an independent effort (authors)

  19. Whole core burnup calculations using `MCNP`

    Energy Technology Data Exchange (ETDEWEB)

    Haran, O; Shaham, Y [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev

    1996-12-01

    Core parameters such as the reactivity, the power distribution and different reactivity coefficients calculated in simulations play an important role in the nuclear reactor handling. Operational safety margins are decided upon, based on the calculated parameters. Thus, the ability to accurately calculate those parameters is of uppermost importance. Such ability exists for fresh cores, using the Monte-Carlo method. The change in the core parameters that results from the core burnup is nowadays calculated within transport codes that simplifies the transport process by using approximations such as the diffusion approximation. The inaccuracy in the burned core parameters arising from the use of such approximations is hard to quantify, leading to an increased gap between the operational routines and the safety limits. A Monte Carlo transport code that caries out accurate static calculations in three dimensional geometries using continuous-energy neutron cross-section data such as the MCNP can be used to generate accurate reaction rates for burnup purposes. Monte Carlo method is statistical by nature, so that the reaction rates calculated will be accurate only to a certain known extent. The purpose of this work was to create a burnup routine that uses the capabilities of the Monte Carlo based MCNP code. It should be noted that burnup using Monte Carlo has been reported in the literatures, but this work is the result of an independent effort (authors).

  20. AUS98 - The 1998 version of the AUS modular neutronic code system

    International Nuclear Information System (INIS)

    Robinson, G.S.; Harrington, B.V.

    1998-07-01

    AUS is a neutronics code system which may be used for calculations of a wide range of fission reactors, fusion blankets and other neutron applications. The present version, AUS98, has a nuclear cross section library based on ENDF/B-VI and includes modules which provide for reactor lattice calculations, one-dimensional transport calculations, multi-dimensional diffusion calculations, cell and whole reactor burnup calculations, and flexible editing of results. Calculations of multi-region resonance shielding, coupled neutron and photon transport, energy deposition, fission product inventory and neutron diffusion are combined within the one code system. The major changes from the previous AUS publications are the inclusion of a cross-section library based on ENDF/B-VI, the addition of the MICBURN module for controlling whole reactor burnup calculations, and changes to the system as a consequence of moving from IBM main-frame computers to UNIX workstations This report gives details of all system aspects of AUS and all modules except the POW3D multi-dimensional diffusion module

  1. AUS98 - The 1998 version of the AUS modular neutronic code system

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, G.S.; Harrington, B.V

    1998-07-01

    AUS is a neutronics code system which may be used for calculations of a wide range of fission reactors, fusion blankets and other neutron applications. The present version, AUS98, has a nuclear cross section library based on ENDF/B-VI and includes modules which provide for reactor lattice calculations, one-dimensional transport calculations, multi-dimensional diffusion calculations, cell and whole reactor burnup calculations, and flexible editing of results. Calculations of multi-region resonance shielding, coupled neutron and photon transport, energy deposition, fission product inventory and neutron diffusion are combined within the one code system. The major changes from the previous AUS publications are the inclusion of a cross-section library based on ENDF/B-VI, the addition of the MICBURN module for controlling whole reactor burnup calculations, and changes to the system as a consequence of moving from IBM main-frame computers to UNIX workstations This report gives details of all system aspects of AUS and all modules except the POW3D multi-dimensional diffusion module refs., tabs.

  2. Improvements of MCOR: A Monte Carlo depletion code system for fuel assembly reference calculations

    Energy Technology Data Exchange (ETDEWEB)

    Tippayakul, C.; Ivanov, K. [Pennsylvania State Univ., Univ. Park (United States); Misu, S. [AREVA NP GmbH, An AREVA and SIEMENS Company, Erlangen (Germany)

    2006-07-01

    This paper presents the improvements of MCOR, a Monte Carlo depletion code system for fuel assembly reference calculations. The improvements of MCOR were initiated by the cooperation between the Penn State Univ. and AREVA NP to enhance the original Penn State Univ. MCOR version in order to be used as a new Monte Carlo depletion analysis tool. Essentially, a new depletion module using KORIGEN is utilized to replace the existing ORIGEN-S depletion module in MCOR. Furthermore, the online burnup cross section generation by the Monte Carlo calculation is implemented in the improved version instead of using the burnup cross section library pre-generated by a transport code. Other code features have also been added to make the new MCOR version easier to use. This paper, in addition, presents the result comparisons of the original and the improved MCOR versions against CASMO-4 and OCTOPUS. It was observed in the comparisons that there were quite significant improvements of the results in terms of k{sub inf}, fission rate distributions and isotopic contents. (authors)

  3. Burnup Measurement of Spent Fuel Assembly by CZT-based Gamma-ray Spectroscopy for Input Nuclear Material Accountancy of Pyroprocessing

    International Nuclear Information System (INIS)

    Seo, Hee; Oh, Jong-Myeong; Shin, Hee-Sung; Kim, Ho-Dong; Lee, Seung-Kyu; Park, Se-Hwan

    2013-06-01

    Input nuclear material accountancy is crucial for a pyroprocessing facility safeguards. Until a direct Pu measurement technique is established, an indirect method based on code calculations with burnup measurement and neutron counting for 244 Cm could be a practical option. Burnup can be determined by destructive analysis (DA) for final dispositive accuracy or by nondestructive assay (NDA) for near-real time accountancy. In the present study, an underwater burnup measurement system based on gamma-ray spectroscopy with the CZT detector was developed and tested on a spent fuel assembly. Burnup was determined according to the 134 Cs/ 137 Cs activity ratio with efficiency correction by Geant4 Monte Carlo simulations. The activity ratio as a function of burnup was obtained by ORIGEN calculations. The measured burnup error was 8.6%, which was within the measurement uncertainty. It is expected that the underwater burnup measurement system could fulfill an important role as a means of near-real time accountancy at a future pyroprocessing facility. (authors)

  4. Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations

    International Nuclear Information System (INIS)

    Wagner, J.C.; DeHart, M.D.

    2000-01-01

    This report attempts to summarize and consolidate the existing knowledge on axial burnup distribution issues that are important to burnup credit criticality safety calculations. Recently released Nuclear Regulatory Commission (NRC) staff guidance permits limited burnup credit, and thus, has prompted resolution of the axial burnup distribution issue. The reactivity difference between the neutron multiplication factor (keff) calculated with explicit representation of the axial burnup distribution and keff calculated assuming a uniform axial burnup is referred to as the ''end effect.'' This end effect is shown to be dependent on many factors, including the axial-burnup profile, total accumulated burnup, cooling time, initial enrichment, assembly design, and the isotopics considered (i.e., actinide-only or actinides plus fission products). Axial modeling studies, efforts related to the development of axial-profile databases, and the determination of bounding axial profiles are also discussed. Finally, areas that could benefit from further efforts are identified

  5. Burnup credit in Spain

    International Nuclear Information System (INIS)

    Conde, J.M.; Recio, M.

    2001-01-01

    The status of development of burnup credit for criticality safety analyses in Spain is described in this paper. Ongoing activities in the country in this field, both national and international, are resumed. Burnup credit is currently being applied to wet storage of PWR fuel, and credit to integral burnable absorbers is given for BWR fuel storage. It is envisaged to apply burnup credit techniques to the new generation of transport casks now in the design phase. The analysis methodologies submitted for the analyses of PWR and BWR fuel wet storage are outlined. Analytical activities in the country are described, as well as international collaborations in this field. Perspectives for future research and development of new applications are finally resumed. (author)

  6. Conservative axial burnup distributions for actinide-only burnup credit

    International Nuclear Information System (INIS)

    Kang, C.; Lancaster, D.

    1997-11-01

    Unlike the fresh fuel approach, which assumes the initial isotopic compositions for criticality analyses, any burnup credit methodology must address the proper treatment of axial burnup distributions. A straightforward way of treating a given axial burnup distribution is to segment the fuel assembly into multiple meshes and to model each burnup mesh with the corresponding isotopic compositions. Although this approach represents a significant increase in modeling efforts compared to the uniform average burnup approach, it can adequately determine the reactivity effect of the axial burnup distribution. A major consideration is what axial burnup distributions are appropriate for use in light of many possible distributions depending on core operating conditions and histories. This paper summarizes criticality analyses performed to determine conservative axial burnup distributions. The conservative axial burnup distributions presented in this paper are included in the Topical Report on Actinide-Only Burnup Credit for Pressurized Water Reactor Spent Nuclear Fuel Packages, Revision 1 submitted in May 1997 by the US Department of Energy (DOE) to the US Nuclear Regulatory Commission (NRC). When approved by NRC, the conservative axial burnup distributions may be used to model PWR spent nuclear fuel for the purpose of gaining actinide only burnup credit

  7. Burnup calculation in microcells of high conversion reactors

    International Nuclear Information System (INIS)

    Gomez, S.E.; Salvatore, M.; Patino, N.E.; Abbate, M.J.

    1991-01-01

    The development of high converter reactors (HCR) requires careful burnup calculations because their main goals are reach high discharge burnup levels (Up to 50 GWd/T) and a close to one conversion ratio. Then, it is necessary a revision of design elements used for this type of calculation. In this work, a burnup module (BUM) developed in order to use nuclear data directly from evaluated data files is presented; these was included in the AMPX system. (author)

  8. Validation of SCALE-4 for burnup credit applications

    International Nuclear Information System (INIS)

    Bowman, S.M.; DeHart, M.D.; Parks, C.V.

    1995-01-01

    In the past, a criticality analysis of PWR fuel stored in racks and casks has assumed that the fuel is fresh with the maximum allowable initial enrichment. If credit is allowed for fuel burnup in the design of casks that are used in the transport of spent light water reactor fuel to a repository, the increase in payload can lead to a significant reduction in the cost of transport and a potential reduction in the risk to the public. A portion of the work has been performed at ORNL in support of the US DOE efforts to demonstrate a validation approach for criticality safety methods to be used in burnup credit cask design. To date, the SCALE code system developed at ORNL has been the primary computational tool used by DOE to investigate technical issues related to burnup credit. The ANSI/ANS-8.1 criticality safety standard requires validation and benchmarking of the calculational methods used in evaluating criticality safety limits for applications outside reactors by correlation against critical experiments that are applicable. Numerous critical experiments for fresh PWR-type fuel in storage and transport configurations exist and can be used as part of a validation database. However, there are no critical experiments with burned PWR-type fuel in storage and transport configurations. As an alternative, commercial reactors offer an excellent source of measured critical configurations. The results reported demonstrate the ability of the ORNL SCALE-4 methodology to predict a value of k eff very close to the known value of 1.0, both for fresh fuel criticals and for the more complex reactor criticals. Beyond these results, additional work in the determination of biases and uncertainties is necessary prior to use in burnup credit applications

  9. Technological and licensing challenges for high burnup fuel

    International Nuclear Information System (INIS)

    Gross, H.; Urban, P.; Fenzlein, C.

    2002-01-01

    Deregulation of electricity markets is driving electricity prices downward as well in the U.S. as in Europe. As a consequence high burnup fuel will be demanded by utilities using either the storage or the reprocessing option. At a minimum, burnups consistent with the current political enrichment limit of 5 w/o will be required for both markets.Significant progress has been achieved in the past by Siemens in meeting the demands of utilities for increased fuel burnup. The technological challenges posed by the increased burnup are mainly related to the corrosion and hydrogen pickup of the clad, the high burnup properties of the fuel and the dimensional changes of the fuel assembly structure. Clad materials with increased corrosion resistance appropriate for high burnup have been developed. The high burnup behaviour of the fuel has been extensively investigated and the decrease of thermal conductivity with burnup, the rim effect of the pellet and the increase of fission gas release with burnup can be described, with good accuracy, in fuel rod computer codes. Advanced statistical design methods have been developed and introduced. Materials with increased corrosion resistance are also helpful controlling the dimensional changes of the fuel assembly structure. In summary, most of the questions about the fuel operational behaviour and reliability in the high burnup range have been solved - some of them are still in the process of verification - or the solutions are visible. This fact is largely acknowledged by regulators too. The main licensing challenges for high burnup fuel are currently seen for accident condition analyses, especially for RIA and LOCA. (author)

  10. The EGS5 Code System

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, Hideo; Namito, Yoshihito; /KEK, Tsukuba; Bielajew, Alex F.; Wilderman, Scott J.; U., Michigan; Nelson, Walter R.; /SLAC

    2005-12-20

    In the nineteen years since EGS4 was released, it has been used in a wide variety of applications, particularly in medical physics, radiation measurement studies, and industrial development. Every new user and every new application bring new challenges for Monte Carlo code designers, and code refinements and bug fixes eventually result in a code that becomes difficult to maintain. Several of the code modifications represented significant advances in electron and photon transport physics, and required a more substantial invocation than code patching. Moreover, the arcane MORTRAN3[48] computer language of EGS4, was highest on the complaint list of the users of EGS4. The size of the EGS4 user base is difficult to measure, as there never existed a formal user registration process. However, some idea of the numbers may be gleaned from the number of EGS4 manuals that were produced and distributed at SLAC: almost three thousand. Consequently, the EGS5 project was undertaken. It was decided to employ the FORTRAN 77 compiler, yet include as much as possible, the structural beauty and power of MORTRAN3. This report consists of four chapters and several appendices. Chapter 1 is an introduction to EGS5 and to this report in general. We suggest that you read it. Chapter 2 is a major update of similar chapters in the old EGS4 report[126] (SLAC-265) and the old EGS3 report[61] (SLAC-210), in which all the details of the old physics (i.e., models which were carried over from EGS4) and the new physics are gathered together. The descriptions of the new physics are extensive, and not for the faint of heart. Detailed knowledge of the contents of Chapter 2 is not essential in order to use EGS, but sophisticated users should be aware of its contents. In particular, details of the restrictions on the range of applicability of EGS are dispersed throughout the chapter. First-time users of EGS should skip Chapter 2 and come back to it later if necessary. With the release of the EGS4 version

  11. ELCOS: the PSI code system for LWR core analysis. Part II: user`s manual for the fuel assembly code BOXER

    Energy Technology Data Exchange (ETDEWEB)

    Paratte, J.M.; Grimm, P.; Hollard, J.M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-02-01

    ELCOS is a flexible code system for the stationary simulation of light water reactor cores. It consists of the four computer codes ETOBOX, BOXER, CORCOD and SILWER. The user`s manual of the second one is presented here. BOXER calculates the neutronics in cartesian geometry. The code can roughly be divided into four stages: - organisation: choice of the modules, file manipulations, reading and checking of input data, - fine group fluxes and condensation: one-dimensional calculation of fluxes and computation of the group constants of homogeneous materials and cells, - two-dimensional calculations: geometrically detailed simulation of the configuration in few energy groups, - burnup: evolution of the nuclide densities as a function of time. This manual shows all input commands which can be used while running the different modules of BOXER. (author) figs., tabs., refs.

  12. DANDE-a linked code system for core neutronics/depletion analysis

    International Nuclear Information System (INIS)

    LaBauve, R.J.; England, T.R.; George, D.C.; MacFarlane, R.E.; Wilson, W.B.

    1986-01-01

    This report describes DANDE-a modular neutronics, depletion code system for reactor analysis. It consists of nuclear data processing, core physics, and fuel depletion modules, and allows one to use diffusion and transport methods interchangeably in core neutronics calculations. This latter capability is especially important in the design of small modular cores. Additional unique features include the capability of updating the nuclear data file during a calculation; a detailed treatment of depletion, burnable poisons as well as fuel; and the ability to make geometric changes such as control rod repositioning and fuel relocation in the course of a calculation. The detailed treatment of reactor fuel burnup, fission-product creation and decay, as well as inventories of higher-order actinides is a necessity when predicting the behavior of the reactor fuel under increased burn conditions. The operation of the code system is illustrated in this report by two actual problems

  13. DANDE: a linked code system for core neutronics/depletion analysis

    International Nuclear Information System (INIS)

    LaBauve, R.J.; England, T.R.; George, D.C.; MacFarlane, R.E.; Wilson, W.B.

    1986-01-01

    This report describes DANDE - a modular neutronics, depletion code system for reactor analysis. It consists of nuclear data processing, core physics, and fuel depletion modules, and allows one to use diffusion and transport methods interchangeably in core neutronics calculations. This latter capability is especially important in the design of small modular cores. Additional unique features include the capability of updating the nuclear data file during a calculation; a detailed treatment of depletion, burnable poisons as well as fuel; and the ability to make geometric changes such as control rod repositioning and fuel relocation in the cource of a calculation. The detailed treatment of reactor fuel burnup, fission-product creation and decay, as well as inventories of higher-order actinides is a necessity when predicting the behavior of reactor fuel under increased burn conditions. The operation of the code system is illustrated in this report by two sample problems. 25 refs

  14. DANDE: a linked code system for core neutronics/depletion analysis

    International Nuclear Information System (INIS)

    LaBauve, R.J.; England, T.R.; George, D.C.; MacFarlane, R.E.; Wilson, W.B.

    1985-06-01

    This report describes DANDE - a modular neutronics, depletion code system for reactor analysis. It consists of nuclear data processing, core physics, and fuel depletion modules, and allows one to use diffusion and transport methods interchangeably in core neutronics calculations. This latter capability is especially important in the design of small modular cores. Additional unique features include the capability of updating the nuclear data file during a calculation; a detailed treatment of depletion, burnable poisons as well as fuel; and the ability to make geometric changes such as control rod repositioning and fuel relocation in the course of a calculation. The detailed treatment of reactor fuel burnup, fission-product creation and decay, as well as inventories of higher-order actinides is a necessity when predicting the behavior of reactor fuel under increased burn conditions. The operation of the code system is made clear in this report by following a sample problem

  15. Triton burnup in JET

    International Nuclear Information System (INIS)

    Chipsham, E.; Jarvis, O.N.; Sadler, G.

    1989-01-01

    Triton burnup measurements have been made at JET using time-integrated copper activation and time-resolved silicon detector techniques. The results confirm the classical nature of both the confinement and the slowing down of the 1 MeV tritons in a plasma. (author) 8 refs., 3 figs

  16. Estimation of the impact of manufacturing tolerances on burn-up calculations using Monte Carlo techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bock, M.; Wagner, M. [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH, Garching (Germany). Forschungszentrum

    2012-11-01

    tool SUnCISTT (Sensitivities and Uncertainties in Criticality Inventory and Source Term Tool). The SUnCISTT defines an interface between the well established GRS tool for uncertainty and sensitivity analyses SUSA and codes used in the nuclear fuel cycle. In the context of the analysis presented here, the GRS burn-up system OREST is coupled. The coupling between these two tools will be outlined, the available features of this new application will be presented, and exemplary results will be shown. Finally, an outlook on future developments and future applications will be given. (orig.)

  17. Polynomial expansion methodology for microscopic cross sections to use in spatial burnup calculations

    International Nuclear Information System (INIS)

    Conti Filho, P.; Oliveira Barroso, A.C. de

    1985-01-01

    It was developed a computer code to generate polynomial coefficients which represent homogenized microscopic cross sections in function of the local accumulated burnup and concentration of soluble boron, presented in fuel element, for each step of burnup reactor. Afterward, it was developed a coupling between LEOPARD-GERADOR DE POLINOMIOS - CITATION computer codes to interpret and build homogenized microscopic cross sections according with local characteristics of each fuel element during the burnup calculation of reactor core. (M.C.K.) [pt

  18. V.S.O.P. (99/05) computer code system

    International Nuclear Information System (INIS)

    Ruetten, H.J.; Haas, K.A.; Brockmann, H.; Scherer, W.

    2005-11-01

    V.S.O.P. is a computer code system for the comprehensive numerical simulation of the physics of thermal reactors. It implies the setup of the reactor and of the fuel element, processing of cross sections, neutron spectrum evaluation, neutron diffusion calculation in two or three dimensions, fuel burnup, fuel shuffling, reactor control, thermal hydraulics and fuel cycle costs. The thermal hydraulics part (steady state and time-dependent) is restricted to HTRs and to two spatial dimensions. The code can simulate the reactor operation from the initial core towards the equilibrium core. V.S.O.P.(99 / 05) represents the further development of V.S.O.P. (99). Compared to its precursor, the code system has been improved in many details. Major improvements and extensions have been included concerning the neutron spectrum calculation, the 3-d neutron diffusion options, and the thermal hydraulic section with respect to 'multi-pass'-fuelled pebblebed cores. This latest code version was developed and tested under the WINDOWS-XP - operating system. The storage requirement for the executables and the basic libraries associated with the code amounts to about 15 MB. Another 5 MB are required - if desired - for storage of the source code (∼65000 Fortran statements). (orig.)

  19. V.S.O.P. (99/05) computer code system

    Energy Technology Data Exchange (ETDEWEB)

    Ruetten, H.J.; Haas, K.A.; Brockmann, H.; Scherer, W.

    2005-11-01

    V.S.O.P. is a computer code system for the comprehensive numerical simulation of the physics of thermal reactors. It implies the setup of the reactor and of the fuel element, processing of cross sections, neutron spectrum evaluation, neutron diffusion calculation in two or three dimensions, fuel burnup, fuel shuffling, reactor control, thermal hydraulics and fuel cycle costs. The thermal hydraulics part (steady state and time-dependent) is restricted to HTRs and to two spatial dimensions. The code can simulate the reactor operation from the initial core towards the equilibrium core. V.S.O.P.(99 / 05) represents the further development of V.S.O.P. (99). Compared to its precursor, the code system has been improved in many details. Major improvements and extensions have been included concerning the neutron spectrum calculation, the 3-d neutron diffusion options, and the thermal hydraulic section with respect to 'multi-pass'-fuelled pebblebed cores. This latest code version was developed and tested under the WINDOWS-XP - operating system. The storage requirement for the executables and the basic libraries associated with the code amounts to about 15 MB. Another 5 MB are required - if desired - for storage of the source code ({approx}65000 Fortran statements). (orig.)

  20. Corrections to the 148Nd method of evaluation of burnup for the PIE samples from Mihama-3 and Genkai-1 reactors

    International Nuclear Information System (INIS)

    Suyama, Kenya; Mochizuki, Hiroki

    2006-01-01

    The value of the burnup is one of the most important parameters of samples taken by post-irradiation examination (PIE). Generally, it is evaluated by the Neodymium-148 method. Precise evaluation of the burnup value requires: (1) an effective fission yield of 148 Nd; (2) neutron capture reactions of 147 Nd and 148 Nd; (3) a conversion factor from fissions per initial heavy metal to the burnup unit GWd/t. In this study, the burnup values of the PIE data from Mihama-3 and Genkai-1 PWRs, which were taken by the Japan Atomic Energy Research Institute, were re-evaluated using more accurate corrections for each of these three items. The PIE data were then re-analyzed using SWAT and SWAT2 code systems with JENDL-3.3 library. The re-evaluation of the effective fission yield of 148 Nd has an effect of 1.5-2.0% on burnup values. Considering the neutron capture reactions of 147 Nd and 148 Nd removes dependence of C/E values of 148 Nd on the burnup value. The conversion factor from FIMA(%) to GWd/t changes according to the burnup value. Its effect on the burnup evaluation is small for samples having burnup of larger than 30 GWd/t. The analyses using the corrected burnup values showed that the calculated 148 Nd concentrations and the PIE data is approximately 1%, whereas this was 3-5% in prior analyses. This analysis indicates that the burnup values of samples from Mihama-3 and Genkai-1 PWRs should be corrected by 2-3%. The effect of re-evaluation of the burnup value on the neutron multiplication factor is an approximately 0.6% change in PIE samples having the burnup of larger than 30 GWd/t. Finally, comparison between calculation results using a single pin-cell model and an assembly model is carried out. Because the results agreed with each other within a few percent, we concluded that the single pin-cell model is suitable for the analysis of PIE samples and that the underestimation of plutonium isotopes, which occurred in the previous analyses, does not result from a geometry

  1. Corrections to the {sup 148}Nd method of evaluation of burnup for the PIE samples from Mihama-3 and Genkai-1 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya [Fuel Cycle Facility Safety Research Group, Nuclear Safety Research Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)]. E-mail: suyama.kenya@jaea.go.jp; Mochizuki, Hiroki [Japan Research Institute, Limited, 16 Ichiban-cho, Chiyoda-ku, Tokyo 102-0082 (Japan)

    2006-03-15

    The value of the burnup is one of the most important parameters of samples taken by post-irradiation examination (PIE). Generally, it is evaluated by the Neodymium-148 method. Precise evaluation of the burnup value requires: (1) an effective fission yield of {sup 148}Nd; (2) neutron capture reactions of {sup 147}Nd and {sup 148}Nd; (3) a conversion factor from fissions per initial heavy metal to the burnup unit GWd/t. In this study, the burnup values of the PIE data from Mihama-3 and Genkai-1 PWRs, which were taken by the Japan Atomic Energy Research Institute, were re-evaluated using more accurate corrections for each of these three items. The PIE data were then re-analyzed using SWAT and SWAT2 code systems with JENDL-3.3 library. The re-evaluation of the effective fission yield of {sup 148}Nd has an effect of 1.5-2.0% on burnup values. Considering the neutron capture reactions of {sup 147}Nd and {sup 148}Nd removes dependence of C/E values of {sup 148}Nd on the burnup value. The conversion factor from FIMA(%) to GWd/t changes according to the burnup value. Its effect on the burnup evaluation is small for samples having burnup of larger than 30 GWd/t. The analyses using the corrected burnup values showed that the calculated {sup 148}Nd concentrations and the PIE data is approximately 1%, whereas this was 3-5% in prior analyses. This analysis indicates that the burnup values of samples from Mihama-3 and Genkai-1 PWRs should be corrected by 2-3%. The effect of re-evaluation of the burnup value on the neutron multiplication factor is an approximately 0.6% change in PIE samples having the burnup of larger than 30 GWd/t. Finally, comparison between calculation results using a single pin-cell model and an assembly model is carried out. Because the results agreed with each other within a few percent, we concluded that the single pin-cell model is suitable for the analysis of PIE samples and that the underestimation of plutonium isotopes, which occurred in the previous

  2. Advanced thermionic reactor systems design code

    International Nuclear Information System (INIS)

    Lewis, B.R.; Pawlowski, R.A.; Greek, K.J.; Klein, A.C.

    1991-01-01

    An overall systems design code is under development to model an advanced in-core thermionic nuclear reactor system for space applications at power levels of 10 to 50 kWe. The design code is written in an object-oriented programming environment that allows the use of a series of design modules, each of which is responsible for the determination of specific system parameters. The code modules include a neutronics and core criticality module, a core thermal hydraulics module, a thermionic fuel element performance module, a radiation shielding module, a module for waste heat transfer and rejection, and modules for power conditioning and control. The neutronics and core criticality module determines critical core size, core lifetime, and shutdown margins using the criticality calculation capability of the Monte Carlo Neutron and Photon Transport Code System (MCNP). The remaining modules utilize results of the MCNP analysis along with FORTRAN programming to predict the overall system performance

  3. A microcomputer program for coupled cycle burnup calculations

    International Nuclear Information System (INIS)

    Driscoll, M.J.; Downar, T.J.; Taylor, E.L.

    1986-01-01

    A program, designated BRACC (Burnup, Reactivity, And Cycle Coupling), has been developed for fuel management scoping calculations, and coded in the BASIC language in an interactive format for use with microcomputers. BRACC estimates batch and cycle burnups for sequential reloads for a variety of initial core conditions, and permits the user to specify either reload batch properties (enrichment, burnable poison reactivity) or the target cycle burnup. Most important fuel management tactics (out-in or low-leakage loading, coastdown, variation in number of assemblies charged) can be simulated

  4. Two dimensional burn-up calculation of TRIGA core

    International Nuclear Information System (INIS)

    Persic, A.; Ravnik, M.; Slavic, S.

    1996-01-01

    TRIGLAV is a new computer program for burn-up calculation of mixed core of research reactors. The code is based on diffusion model in two dimensions and iterative procedure is applied for its solution. The material data used in the model are calculated with the transport program WIMS. In regard to fission density distribution and energy produced by the reactor the burn-up increment of fuel elements is determined. In this paper the calculation model of diffusion constants and burn-up calculation are described and some results of calculations for TRIGA MARK II reactor are presented. (author)

  5. TRIGA criticality experiment for testing burn-up calculations

    International Nuclear Information System (INIS)

    Persic, Andreja; Ravnik, Matjaz; Zagar, Tomaz

    1999-01-01

    A criticality experiment with partly burned TRIGA fuel is described. 20 wt % enriched standard TRIGA fuel elements initially containing 12 wt % U are used. Their average burn-up is 1.4 MWd. Fuel element burn-up is calculated in 2-D four group diffusion approximation using TRIGLAV code. The burn-up of several fuel elements is also measured by reactivity method. The excess reactivity of several critical and subcritical core configurations is measured. Two core configurations contain the same fuel elements in the same arrangement as were used in the fresh TRIGA fuel criticality experiment performed in 1991. The results of the experiment may be applied for testing the computer codes used for fuel burn-up calculations. (author)

  6. ETF system code: composition and applications

    International Nuclear Information System (INIS)

    Reid, R.L.; Wu, K.F.

    1980-01-01

    A computer code has been developed for application to ETF tokamak system and conceptual design studies. The code determines cost, performance, configuration, and technology requirements as a function of tokamak parameters. The ETF code is structured in a modular fashion in order to allow independent modeling of each major tokamak component. The primary benefit of modularization is that it allows updating of a component module, such as the TF coil module, without disturbing the remainder of the system code as long as the input/output to the modules remains unchanged. The modules may be run independently to perform specific design studies, such as determining the effect of allowable strain on TF coil structural requirements, or the modules may be executed together as a system to determine global effects, such as defining the impact of aspect ratio on the entire tokamak system

  7. Sensitivity and parametric evaluations of significant aspects of burnup credit for PWR spent fuel packages

    International Nuclear Information System (INIS)

    DeHart, M.D.

    1996-05-01

    Spent fuel transportation and storage cask designs based on a burnup credit approach must consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For example, the spent fuel composition must be adequately characterized and the criticality analysis model can be complicated by the need to consider axial burnup variations. Parametric analyses are needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel composition and reactivity. Numerical models must be evaluated to determine the sensitivity of criticality safety calculations to modeling assumptions. The purpose of this report is to describe analyses and evaluations performed in order to demonstrate the effect physical parameters and modeling assumptions have on the criticality analysis of spent fuel. The analyses in this report include determination and ranking of the most important actinides and fission products; study of the effect of various depletion scenarios on subsequent criticality calculations; establishment of trends in neutron multiplication as a function of fuel enrichment, burnup, cooling time- and a parametric and modeling evaluation of three-dimensional effects (e.g., axially varying burnup and temperature/density effects) in a conceptual cask design. The sensitivity and parametric evaluations were performed with the consideration of two different burnup credit approaches: (1) only actinides in the fuel are considered in the criticality analysis, and (2) both actinides and fission products are considered. Calculations described in this report were performed using the criticality and depletion sequences available in the SCALE code system and the SCALE 27-group burnup library. Although the results described herein do not constitute a validation of SCALE for use in spent fuel analysis, independent validation efforts have been completed and are described in other reports

  8. Sensitivity and parametric evaluations of significant aspects of burnup credit for PWR spent fuel packages

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, M.D.

    1996-05-01

    Spent fuel transportation and storage cask designs based on a burnup credit approach must consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For example, the spent fuel composition must be adequately characterized and the criticality analysis model can be complicated by the need to consider axial burnup variations. Parametric analyses are needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel composition and reactivity. Numerical models must be evaluated to determine the sensitivity of criticality safety calculations to modeling assumptions. The purpose of this report is to describe analyses and evaluations performed in order to demonstrate the effect physical parameters and modeling assumptions have on the criticality analysis of spent fuel. The analyses in this report include determination and ranking of the most important actinides and fission products; study of the effect of various depletion scenarios on subsequent criticality calculations; establishment of trends in neutron multiplication as a function of fuel enrichment, burnup, cooling time- and a parametric and modeling evaluation of three-dimensional effects (e.g., axially varying burnup and temperature/density effects) in a conceptual cask design. The sensitivity and parametric evaluations were performed with the consideration of two different burnup credit approaches: (1) only actinides in the fuel are considered in the criticality analysis, and (2) both actinides and fission products are considered. Calculations described in this report were performed using the criticality and depletion sequences available in the SCALE code system and the SCALE 27-group burnup library. Although the results described herein do not constitute a validation of SCALE for use in spent fuel analysis, independent validation efforts have been completed and are described in other reports.

  9. Burnup credit in a dry storage module

    International Nuclear Information System (INIS)

    Thornton, J.R.

    1989-01-01

    Comparison of spent fuel storage expansion options available to Oconee Nuclear Station revealed that dry storage could be economically competitive with transshipment and rod consolidation. Economic competitiveness, however, mandated large unit capacity while existing cask handling facilities at Oconee severely limited size and weight. The dry storage concept determined to best satisfy these conflicting criteria is a 24 pressurized water reactor (PWR) fuel assembly capacity NUTECH Horizontal Modular Storage (NUHOMS) system. The Oconee version of the NUHOMS system takes advantage of burnup credit in demonstrating criticality safety. The burnup credit criticality analysis was performed by Duke Power Company's Design Engineering Department. This paper was prepared to summarize the criticality control design features employed in the Oconee NUHOMS-24P DSC basket and to describe the incentives for pursuing a burnup credit design. Principal criticality design parameters, criteria, and analysis methodology are also presented

  10. A bar coding system for environmental projects

    International Nuclear Information System (INIS)

    Barber, R.B.; Hunt, B.J.; Burgess, G.M.

    1988-01-01

    This paper presents BeCode systems, a bar coding system which provides both nuclear and commercial clients with a data capture and custody management program that is accurate, timely, and beneficial to all levels of project operations. Using bar code identifiers is an essentially paperless and error-free method which provides more efficient delivery of data through its menu card-driven structure, which speeds collection of essential data for uploading to a compatible device. The effects of this sequence include real-time information for operator analysis, management review, audits, planning, scheduling, and cost control

  11. Arabic Natural Language Processing System Code Library

    Science.gov (United States)

    2014-06-01

    Adelphi, MD 20783-1197 This technical note provides a brief description of a Java library for Arabic natural language processing ( NLP ) containing code...for training and applying the Arabic NLP system described in the paper "A Cross-Task Flexible Transition Model for Arabic Tokenization, Affix...and also English) natural language processing ( NLP ), containing code for training and applying the Arabic NLP system described in Stephen Tratz’s

  12. Analysis on burn-up behaviors for accelerator-driven sub-critical facility

    International Nuclear Information System (INIS)

    Liu Guisheng; Zhao Zhixiang; Zhang Baocheng; Shen Qinbiao; Ding Dazhao

    2000-01-01

    An analysis is performed on burn-up behaviors for accelerator-driven sub-critical reactor by means of the code PASC-1 for neutronics calculation, the code CBURN for burn-up calculation and 44 group constants is processed by CENDL-2 and ENDF/B-6 using NJOY-91.91

  13. Evaluation of Isotopic Measurements and Burn-up Value of Sample GU3 of ARIANE Project

    Energy Technology Data Exchange (ETDEWEB)

    Tore, C.; Rodriguez Rivada, A.

    2014-07-01

    Estimation of the burn-up value of irradiated fuel and its isotopic composition are important for criticality analysis, spent fuel management and source term estimation. The practical way to estimate the irradiated fuel composition and burn.up value is calculation with validated code and nuclear data. Such validation of the neutronic codes and nuclear data requires the benchmarking with measured values. (Author)

  14. OECD/NEA burnup credit calculational criticality benchmark Phase I-B results

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, M.D.; Parks, C.V. [Oak Ridge National Lab., TN (United States); Brady, M.C. [Sandia National Labs., Las Vegas, NV (United States)

    1996-06-01

    In most countries, criticality analysis of LWR fuel stored in racks and casks has assumed that the fuel is fresh with the maximum allowable initial enrichment. This assumption has led to the design of widely spaced and/or highly poisoned storage and transport arrays. If credit is assumed for fuel burnup, initial enrichment limitations can be raised in existing systems, and more compact and economical arrays can be designed. Such reliance on the reduced reactivity of spent fuel for criticality control is referred to as burnup credit. The Burnup Credit Working Group, formed under the auspices of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development, has established a set of well-defined calculational benchmarks designed to study significant aspects of burnup credit computational methods. These benchmarks are intended to provide a means for the intercomparison of computer codes, methods, and data applied in spent fuel analysis. The benchmarks have been divided into multiple phases, each phase focusing on a particular feature of burnup credit analysis. This report summarizes the results and findings of the Phase I-B benchmark, which was proposed to provide a comparison of the ability of different code systems and data libraries to perform depletion analysis for the prediction of spent fuel isotopic concentrations. Results included here represent 21 different sets of calculations submitted by 16 different organizations worldwide and are based on a limited set of nuclides determined to have the most important effect on the neutron multiplication factor of light-water-reactor spent fuel. A comparison of all sets of results demonstrates that most methods agree to within 10% in the ability to estimate the spent fuel concentrations of most actinides. All methods agree within 11% about the average for all fission products studied. Most deviations are less than 10%, and many are less than 5%. The exceptions are Sm 149, Sm 151, and Gd 155.

  15. OECD/NEA burnup credit calculational criticality benchmark Phase I-B results

    International Nuclear Information System (INIS)

    DeHart, M.D.; Parks, C.V.; Brady, M.C.

    1996-06-01

    In most countries, criticality analysis of LWR fuel stored in racks and casks has assumed that the fuel is fresh with the maximum allowable initial enrichment. This assumption has led to the design of widely spaced and/or highly poisoned storage and transport arrays. If credit is assumed for fuel burnup, initial enrichment limitations can be raised in existing systems, and more compact and economical arrays can be designed. Such reliance on the reduced reactivity of spent fuel for criticality control is referred to as burnup credit. The Burnup Credit Working Group, formed under the auspices of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development, has established a set of well-defined calculational benchmarks designed to study significant aspects of burnup credit computational methods. These benchmarks are intended to provide a means for the intercomparison of computer codes, methods, and data applied in spent fuel analysis. The benchmarks have been divided into multiple phases, each phase focusing on a particular feature of burnup credit analysis. This report summarizes the results and findings of the Phase I-B benchmark, which was proposed to provide a comparison of the ability of different code systems and data libraries to perform depletion analysis for the prediction of spent fuel isotopic concentrations. Results included here represent 21 different sets of calculations submitted by 16 different organizations worldwide and are based on a limited set of nuclides determined to have the most important effect on the neutron multiplication factor of light-water-reactor spent fuel. A comparison of all sets of results demonstrates that most methods agree to within 10% in the ability to estimate the spent fuel concentrations of most actinides. All methods agree within 11% about the average for all fission products studied. Most deviations are less than 10%, and many are less than 5%. The exceptions are Sm 149, Sm 151, and Gd 155

  16. Calculations of fuel burn-up and radionuclide inventory in the syrian miniature neutron source reactor using the WIMSD4 code

    International Nuclear Information System (INIS)

    Khattab, K.

    2005-01-01

    Calculations of the fuel burn up and radionuclide inventory in the Miniature Neutron Source Reactor after 10 years (the reactor core expected life) of the reactor operating time are presented in this paper. The WIMSD4 code is used to generate the fuel group constants and the infinite multiplication factor versus the reactor operating time for 10, 20, and 30 kW operating power levels. The amounts of uranium burnt up and plutonium produced in the reactor core, the concentrations and radioactivities of the most important fission product and actinide radionuclides accumulated in the reactor core, and the total radioactivity of the reactor core are calculated using the WIMSD4 code as well

  17. Confluence of calculational and experimental information for determination of power distribution and burnup

    International Nuclear Information System (INIS)

    Serov, I.V.; Hoogenboom, J.E.

    1996-01-01

    A technique for the statistical confluence of any number of possibly correlated informational sources employed in reactor analysis can be used to improve the estimates of physical quantities given by the sources taken separately. The formulas of the presented technique being based on multivariate Bayesian conditioning are general and can be employed in different applications. Insight into the nature of the informational source allows different types of data associated with the source to be improved. Estimation of biases, variances and correlation coefficients for the systematic and statistical errors associated with the informational sources is reliable confluence, but pays off by providing optimal estimates. The technique of the calculational and experimental information confluence is applied to the determination of the power distribution and burnup for the research reactor HOR of the Delft University of Technology. The code system CONHOR carries out all the stages of the calculation for the HOR reactor, using an existing code for static core calculations and burnup calculations. (author)

  18. Confluence of calculational and experimental information for determination of power distribution and burnup

    Energy Technology Data Exchange (ETDEWEB)

    Serov, I.V.; Hoogenboom, J.E. [Interuniversitair Reactor Inst., Delft (Netherlands)

    1996-05-01

    A technique for the statistical confluence of any number of possibly correlated informational sources employed in reactor analysis can be used to improve the estimates of physical quantities given by the sources taken separately. The formulas of the presented technique being based on multivariate Bayesian conditioning are general and can be employed in different applications. Insight into the nature of the informational source allows different types of data associated with the source to be improved. Estimation of biases, variances and correlation coefficients for the systematic and statistical errors associated with the informational sources is reliable confluence, but pays off by providing optimal estimates. The technique of the calculational and experimental information confluence is applied to the determination of the power distribution and burnup for the research reactor HOR of the Delft University of Technology. The code system CONHOR carries out all the stages of the calculation for the HOR reactor, using an existing code for static core calculations and burnup calculations. (author).

  19. Parallel GPU implementation of PWR reactor burnup

    International Nuclear Information System (INIS)

    Heimlich, A.; Silva, F.C.; Martinez, A.S.

    2016-01-01

    Highlights: • Three GPU algorithms used to evaluate the burn-up in a PWR reactor. • Exhibit speed improvement exceeding 200 times over the sequential. • The C++ container is expansible to accept new nuclides chains. - Abstract: This paper surveys three methods, implemented for multi-core CPU and graphic processor unit (GPU), to evaluate the fuel burn-up in a pressurized light water nuclear reactor (PWR) using the solutions of a large system of coupled ordinary differential equations. The reactor physics simulation of a PWR reactor spends a long execution time with burnup calculations, so performance improvement using GPU can imply in better core design and thus extended fuel life cycle. The results of this study exhibit speed improvement exceeding 200 times over the sequential solver, within 1% accuracy.

  20. Overview of the burnup credit activities at OECD/NEA/NSC

    International Nuclear Information System (INIS)

    Brady Raap, M.C.; Nomura, Y.; Sartori, E.

    2001-01-01

    This article summarizes activities of the OECD/NEA Burnup Credit Expert Panel, a subordinate group to the Working Party on Nuclear Criticality Safety (WPNCS). The WPNCS of the OECD/NEA coordinates and carries out work in the domain of criticality safety at the international level. Particular attention is devoted to establishing sound databases required in this area and to addressing issues of high relevance such as burnup credit. The activities of the expert panel are aimed toward improving safety and identifying economic solutions to issues concerning the back-end of the fuel cycle. The main objective of the activities of the OECD/NEA Burnup Credit Expert Panel is to demonstrate that the available criticality safety calculational tools are appropriate for application to burned fuel systems and that a reasonable safety margin can be established. The method established by the expert panel for investigating the physics and predictability of burnup credit is based on the specification and comparison of calculational benchmark problems. A wide range of fuel types, including PWR, BWR, MOX, and VVER fuels, has been or are being addressed by the expert panel. The objective and status of each of these benchmark problems is reviewed in this article. It is important to note that the focus of the expert panel is the comparison of the results submitted by each participant to assess the capability of commonly used code systems, not to quantify the physical phenomena investigated in the comparisons or to make recommendations for licensing action. (author)

  1. Assesment of advanced step models for steady state Monte Carlo burnup calculations in application to prismatic HTGR

    Directory of Open Access Journals (Sweden)

    Kępisty Grzegorz

    2015-09-01

    Full Text Available In this paper, we compare the methodology of different time-step models in the context of Monte Carlo burnup calculations for nuclear reactors. We discuss the differences between staircase step model, slope model, bridge scheme and stochastic implicit Euler method proposed in literature. We focus on the spatial stability of depletion procedure and put additional emphasis on the problem of normalization of neutron source strength. Considered methodology has been implemented in our continuous energy Monte Carlo burnup code (MCB5. The burnup simulations have been performed using the simplified high temperature gas-cooled reactor (HTGR system with and without modeling of control rod withdrawal. Useful conclusions have been formulated on the basis of results.

  2. Determination of burnup, cooling time and initial enrichment of PWR spent fuel by use of gamma-ray activity ratios

    International Nuclear Information System (INIS)

    Min, D.K.; Park, H.J.; Park, K.J.; Ro, S.G.; Park, H.S.

    1999-01-01

    The Korea Atomic Energy Institute has been developing the algorithms for sequential determination of cooling time, initial enrichment and burnup of the PWR spent fuel assembly by use of gamma ratio measurements, i.e. 134 Cs/ 137 Cs, 154 Eu/ 137 Cs and 106 Ru 137 Cs/( 134 Cs) 2 . Calculations were performed by applying the ORIGEN-S code. This method has advantages over combination techniques of neutron and gamma measurement, because of its simplicity and insensitivity to the measurement geometry. For verifying the algorithms an experiment for determining the cooling time, initial enrichment and burnup of the two PWR spent fuel rods was conducted by use of high-resolution gamma detector (HPGe) system only. This paper describes the method used and interim results of the experiment. This method can be applied for spent fuel characterization, burnup credit and safeguards of the spent fuel management facility

  3. SRAC: JAERI thermal reactor standard code system for reactor design and analysis

    International Nuclear Information System (INIS)

    Tsuchihashi, Keichiro; Takano, Hideki; Horikami, Kunihiko; Ishiguro, Yukio; Kaneko, Kunio; Hara, Toshiharu.

    1983-01-01

    The SRAC (Standard Reactor Analysis Code) is a code system for nuclear reactor analysis and design. It is composed of neutron cross section libraries and auxiliary processing codes, neutron spectrum routines, a variety of transport, 1-, 2- and 3-D diffusion routines, dynamic parameters and cell burn-up routines. By making the best use of the individual code function in the SRAC system, the user can select either the exact method for an accurate estimate of reactor characteristics or the economical method aiming at a shorter computer time, depending on the purpose of study. The user can select cell or core calculation; fixed source or eigenvalue problem; transport (collision probability or Sn) theory or diffusion theory. Moreover, smearing and collapsing of macroscopic cross sections are separately done by the user's selection. And a special attention is paid for double heterogeneity. Various techniques are employed to access the data storage and to optimize the internal data transfer. Benchmark calculations using the SRAC system have been made extensively for the Keff values of various types of critical assemblies (light water, heavy water and graphite moderated systems, and fast reactor systems). The calculated results show good prediction for the experimental Keff values. (author)

  4. Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations

    International Nuclear Information System (INIS)

    Garcia-Herranz, Nuria; Cabellos, Oscar; Sanz, Javier; Juan, Jesus; Kuijper, Jim C.

    2008-01-01

    Two methodologies to propagate the uncertainties on the nuclide inventory in combined Monte Carlo-spectrum and burn-up calculations are presented, based on sensitivity/uncertainty and random sampling techniques (uncertainty Monte Carlo method). Both enable the assessment of the impact of uncertainties in the nuclear data as well as uncertainties due to the statistical nature of the Monte Carlo neutron transport calculation. The methodologies are implemented in our MCNP-ACAB system, which combines the neutron transport code MCNP-4C and the inventory code ACAB. A high burn-up benchmark problem is used to test the MCNP-ACAB performance in inventory predictions, with no uncertainties. A good agreement is found with the results of other participants. This benchmark problem is also used to assess the impact of nuclear data uncertainties and statistical flux errors in high burn-up applications. A detailed calculation is performed to evaluate the effect of cross-section uncertainties in the inventory prediction, taking into account the temporal evolution of the neutron flux level and spectrum. Very large uncertainties are found at the unusually high burn-up of this exercise (800 MWd/kgHM). To compare the impact of the statistical errors in the calculated flux with respect to the cross uncertainties, a simplified problem is considered, taking a constant neutron flux level and spectrum. It is shown that, provided that the flux statistical deviations in the Monte Carlo transport calculation do not exceed a given value, the effect of the flux errors in the calculated isotopic inventory are negligible (even at very high burn-up) compared to the effect of the large cross-section uncertainties available at present in the data files

  5. OECD/NEA Burnup Credit Calculational Criticality Benchmark Phase I-B Results

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, M.D.

    1993-01-01

    Burnup credit is an ongoing technical concern for many countries that operate commercial nuclear power reactors. In a multinational cooperative effort to resolve burnup credit issues, a Burnup Credit Working Group has been formed under the auspices of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development. This working group has established a set of well-defined calculational benchmarks designed to study significant aspects of burnup credit computational methods. These benchmarks are intended to provide a means for the intercomparison of computer codes, methods, and data applied in spent fuel analysis. The benchmarks have been divided into multiple phases, each phase focusing on a particular feature of burnup credit analysis. This report summarizes the results and findings of the Phase I-B benchmark, which was proposed to provide a comparison of the ability of different code systems and data libraries to perform depletion analysis for the prediction of spent fuel isotopic concentrations. Results included here represent 21 different sets of calculations submitted by 16 different organizations worldwide, and are based on a limited set of nuclides determined to have the most important effect on the neutron multiplication factor of light-water-reactor spent fuel. A comparison of all sets of results demonstrates that most methods are in agreement to within 10% in the ability to estimate the spent fuel concentrations of most actinides. All methods are within 11% agreement about the average for all fission products studied. Furthermore, most deviations are less than 10%, and many are less than 5%. The exceptions are {sup 149}Sm, {sup 151}Sm, and {sup 155}Gd.

  6. OECD/NEA Burnup Credit Calculational Criticality Benchmark Phase I-B Results

    International Nuclear Information System (INIS)

    DeHart, M.D.

    1993-01-01

    Burnup credit is an ongoing technical concern for many countries that operate commercial nuclear power reactors. In a multinational cooperative effort to resolve burnup credit issues, a Burnup Credit Working Group has been formed under the auspices of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development. This working group has established a set of well-defined calculational benchmarks designed to study significant aspects of burnup credit computational methods. These benchmarks are intended to provide a means for the intercomparison of computer codes, methods, and data applied in spent fuel analysis. The benchmarks have been divided into multiple phases, each phase focusing on a particular feature of burnup credit analysis. This report summarizes the results and findings of the Phase I-B benchmark, which was proposed to provide a comparison of the ability of different code systems and data libraries to perform depletion analysis for the prediction of spent fuel isotopic concentrations. Results included here represent 21 different sets of calculations submitted by 16 different organizations worldwide, and are based on a limited set of nuclides determined to have the most important effect on the neutron multiplication factor of light-water-reactor spent fuel. A comparison of all sets of results demonstrates that most methods are in agreement to within 10% in the ability to estimate the spent fuel concentrations of most actinides. All methods are within 11% agreement about the average for all fission products studied. Furthermore, most deviations are less than 10%, and many are less than 5%. The exceptions are 149 Sm, 151 Sm, and 155 Gd

  7. Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Herranz, Nuria [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, UPM (Spain)], E-mail: nuria@din.upm.es; Cabellos, Oscar [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, UPM (Spain); Sanz, Javier [Departamento de Ingenieria Energetica, Universidad Nacional de Educacion a Distancia, UNED (Spain); Juan, Jesus [Laboratorio de Estadistica, Universidad Politecnica de Madrid, UPM (Spain); Kuijper, Jim C. [NRG - Fuels, Actinides and Isotopes Group, Petten (Netherlands)

    2008-04-15

    Two methodologies to propagate the uncertainties on the nuclide inventory in combined Monte Carlo-spectrum and burn-up calculations are presented, based on sensitivity/uncertainty and random sampling techniques (uncertainty Monte Carlo method). Both enable the assessment of the impact of uncertainties in the nuclear data as well as uncertainties due to the statistical nature of the Monte Carlo neutron transport calculation. The methodologies are implemented in our MCNP-ACAB system, which combines the neutron transport code MCNP-4C and the inventory code ACAB. A high burn-up benchmark problem is used to test the MCNP-ACAB performance in inventory predictions, with no uncertainties. A good agreement is found with the results of other participants. This benchmark problem is also used to assess the impact of nuclear data uncertainties and statistical flux errors in high burn-up applications. A detailed calculation is performed to evaluate the effect of cross-section uncertainties in the inventory prediction, taking into account the temporal evolution of the neutron flux level and spectrum. Very large uncertainties are found at the unusually high burn-up of this exercise (800 MWd/kgHM). To compare the impact of the statistical errors in the calculated flux with respect to the cross uncertainties, a simplified problem is considered, taking a constant neutron flux level and spectrum. It is shown that, provided that the flux statistical deviations in the Monte Carlo transport calculation do not exceed a given value, the effect of the flux errors in the calculated isotopic inventory are negligible (even at very high burn-up) compared to the effect of the large cross-section uncertainties available at present in the data files.

  8. Establishment of Technical Collaboration basis between Korea and France for the development of severe accident assessment computer code under high burnup condition

    International Nuclear Information System (INIS)

    Kim, H. D.; Kim, D. H.; Park, S. Y.; Park, J. H.

    2005-10-01

    This project was performed by KAERI in the frame of construction of the international cooperative basis on the nuclear energy. This was supported from MOST under the title of 'Establishment of Technical Collaboration basis between Korea and France for the development of severe accident assessment computer code under high burn up condition'. The current operating NPP are converting the burned fuel to the wasted fuel after burn up of 40 GWD/MTU. But in Korea, burn up of more than 60 GWD/MTU will be expected because of the high fuel efficiency but also cost saving for storing the wasted fuel safely. The domestic research for the purpose of developing the fuel and the cladding that can be used under the high burn up condition up to 100 GWD/MTU is in progress now. But the current computer code adopts the model and the data that are valid only up to the 40 GWD/MTU at most. Therefore the current model could not take into account the phenomena that may cause differences in the fission product release behavior or in the core damage process due to the high burn up operation (more than 40 GWD/MTU). To evaluate the safety of the NPP with the high burn up fuel, the improvement of current severe accident code against the high burn up condition is an important research item. Also it should start without any delay. Therefore, in this study, an expert group was constructed to establish the research basis for the severe accident under high burn up conditions. From this expert group, the research items regarding the high burn up condition were selected and identified through discussion and technical seminars. Based on these selected items, the meeting between IRSN and KAERI to find out the cooperative research items on the severe accident under the high burn up condition was held in the IRSN headquater in Paris. After the meeting, KAERI and IRSN agreed to cooperate with each other on the selected items, and to co-host the international seminar, and to develop the model and to

  9. Burn-up Credit Criticality Safety Benchmark Phase III-C. Nuclide Composition and Neutron Multiplication Factor of a Boiling Water Reactor Spent Fuel Assembly for Burn-up Credit and Criticality Control of Damaged Nuclear Fuel

    International Nuclear Information System (INIS)

    Suyama, K.; Uchida, Y.; Kashima, T.; Ito, T.; Miyaji, T.

    2016-01-01

    longer process time (CPU) is required. Treatment of the gadolinium rod is still a key issue. The difference of the neutron multiplication factor generated by the burn-up calculation results was confirmed by the analysis using the same criticality calculation code, MVP. It was less than 3% when the latest code system was used, including continuous-energy Monte Carlo codes and deterministic codes. This is the first time this kind of value has been shown by an extensive international benchmark problem. These results show that even if calculation codes are benchmarked using the well-qualified experimental data before being adopted in the safety review process, it should be understood that some uncertainty in the evaluation of the neutron multiplication factor arising from the uncertainty of the burn-up calculation methodology used still remains

  10. Fast decoding algorithms for coded aperture systems

    International Nuclear Information System (INIS)

    Byard, Kevin

    2014-01-01

    Fast decoding algorithms are described for a number of established coded aperture systems. The fast decoding algorithms for all these systems offer significant reductions in the number of calculations required when reconstructing images formed by a coded aperture system and hence require less computation time to produce the images. The algorithms may therefore be of use in applications that require fast image reconstruction, such as near real-time nuclear medicine and location of hazardous radioactive spillage. Experimental tests confirm the efficacy of the fast decoding techniques

  11. Studying the fuel burnup of MNSR reactor and estimating the concentrations of main fission products using the codes WIMS-D4 and CITATION

    International Nuclear Information System (INIS)

    Haj Hassan, H.; Ghazi, N.; Hainoun, A.

    2007-01-01

    The codes WIMSD-4 and BORGLES - part of the MTR-PC code package- have been applied to prepare the microscopic cross section library for the main elements of MNSR core for 6 neutron energy groups. The generated library was utilized from the 3D code CITATION to perform the calculation of fuel burn up and depletion including the identification of main fission products and its effects on the multiplication factor. In this regard some modifications have been introduced to the subroutine NUCY in CITATION to incorporate estimating the concentration of the related actinides and fission products. The burn up results indicated that the core life time of MNSR is being mainly estimated by Sm-149 following by Gd-157 and Cd-113. The accumulation of these actinides during 100 continuous operation days caused a reduction of ca. 2 mk for the excess reactivity. This result seems to be in good agreement with the available empirical value of 1.8 mk which relates to the whole discontinuous operation period of the reactor since its start and up to now. The calculation procedure simulates the sporadic operation with an adequate continuous operation period. This approximation is valid for the long lived actinides that mainly dictate the core life time. However, it is an overestimation for the concentration of short lived radioactive products like Xe-135. In the framework of this analysis the possibility of replacement of current MNSR fuel through low enriched fuels has been explored for two the fuel types U02-Mg and U3Si-Al. The results indicate that the first type (UO2-Mg) realize the criticality conditions with low enrichment of 20%, whereas the second type (U3Si-Al) required increasing the uranium enrichment up to 33%. For both fuel types the contribution of plutonium isotopes on the criticality has been also evaluated. Additionally, the influence of mixing burnable absorbers (Gd-113, Cd- 113) with the fresh fuels was investigated to identify their long-term control effect on the

  12. Code system for fast reactor neutronics analysis

    International Nuclear Information System (INIS)

    Nakagawa, Masayuki; Abe, Junji; Sato, Wakaei.

    1983-04-01

    A code system for analysis of fast reactor neutronics has been developed for the purpose of handy use and error reduction. The JOINT code produces the input data file to be used in the neutronics calculation code and also prepares the cross section library file with an assigned format. The effective cross sections are saved in the PDS file with an unified format. At the present stage, this code system includes the following codes; SLAROM, ESELEM5, EXPANDA-G for the production of effective cross sections and CITATION-FBR, ANISN-JR, TWOTRAN2, PHENIX, 3DB, MORSE, CIPER and SNPERT. In the course of the development, some utility programs and service programs have been additionaly developed. These are used for access of PDS file, edit of the cross sections and graphic display. Included in this report are a description of input data format of the JOINT and other programs, and of the function of each subroutine and utility programs. The usage of PDS file is also explained. In Appendix A, the input formats are described for the revised version of the CIPER code. (author)

  13. Analysis of the burnup of the control rods with the COREMASTER-Presto code; Analisis del quemado de barras de control con el codigo COREMASTER-PRESTO

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, J.L.; Alonso, G.; Perusquia, R.; Montes, J.L.; Hernandez, H. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: jlhm@nuclear.inin-mx

    2003-07-01

    An evaluation of the capacity of the COREMASTER-Presto code, to evaluate generically the burnt of the control bars in the Laguna Verde reactors plant (CLV) is made. It was found that the code only reports burnt values of the control rods in MWD/TM, in spite of having with a second order polynomial model, for the conversion to remainder of the Boron-10 (B-10). It was observed that said model is adequate only for burnt smaller to 45,000 MWD/TM. To evaluate the burnt of the control rods it was reproduced the balance cycle of 18 months for the CLV, executing Cm-Presto during 13 consecutive cycles. First without rod burnt, taking this as the base case. Later on, cases with 1, 2 and up to 13 cycles with rod burnt were generated. When comparing results it was observed that the control rods pattern it loses reactivity lineally with the burnt one. By each 10 G Wd/T of burnt of the nucleus it is decreased the reactivity of the pattern rods {approx} 1 pcm in hot condition and of {approx} 20 pcm in cold condition. When burning three cycles those rods more burnt reached the 13,900 MWD/TM, equivalent to 36% of B-10 reduction, near value to 34% proposed by aging in the one lost study of B-10. It was observed that Cm-Presto it doesn't burn the superior node of the control rods when these are completely extracted. A one big lost of B-10, of the order of 50%, it represents only a decrease of 11% of the reactivity value of the rod. One can affirm that even when it is strongly decreased the content of B-10, the rod is continue considering as a black absorber, that is to say, thermal neutron that enters in the neutron rod that is absorbed. (Author)

  14. Fuel element burnup determination in HEU-LEU mixed TRIGA research reactor core

    International Nuclear Information System (INIS)

    Zagar, Tomaz; Ravnik, Matjaz

    2000-01-01

    This paper presents the results of a burnup calculations and burnup measurements for TRIGA FLIP HEU fuel elements and standard TRIGA LEU fuel elements used simultaneously in small TRIGA Mark II research reactor in Ljubljana, Slovenija. The fuel element burnup for approximately 15 years of operation was calculated with two different in house computer codes TRIGAP and TRIGLAV (both codes are available at OECD NEA Data Bank). The calculation is performed in one-dimensional radial geometry in TRIGAP and in two-dimensional (r,φ) geometry in TRIGLAV. Inter-comparison of results shows important influence of in-core water gaps, irradiation channels and mixed rings on burnup calculation accuracy. Burnup of 5 HEU and 27 LEU fuel elements was also measured with reactivity method. Measured and calculated burnup values are inter-compared for these elements (author)

  15. Implementing a modular system of computer codes

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.

    1983-07-01

    A modular computation system has been developed for nuclear reactor core analysis. The codes can be applied repeatedly in blocks without extensive user input data, as needed for reactor history calculations. The primary control options over the calculational paths and task assignments within the codes are blocked separately from other instructions, admitting ready access by user input instruction or directions from automated procedures and promoting flexible and diverse applications at minimum application cost. Data interfacing is done under formal specifications with data files manipulated by an informed manager. This report emphasizes the system aspects and the development of useful capability, hopefully informative and useful to anyone developing a modular code system of much sophistication. Overall, this report in a general way summarizes the many factors and difficulties that are faced in making reactor core calculations, based on the experience of the authors. It provides the background on which work on HTGR reactor physics is being carried out

  16. Plotting system for the MINCS code

    International Nuclear Information System (INIS)

    Watanabe, Tadashi

    1990-08-01

    The plotting system for the MINCS code is described. The transient two-phase flow analysis code MINCS has been developed to provide a computational tool for analysing various two-phase flow phenomena in one-dimensional ducts. Two plotting systems, namely the SPLPLOT system and the SDPLOT system, can be used as the plotting functions. The SPLPLOT system is used for plotting time transients of variables, while the SDPLOT system is for spatial distributions. The SPLPLOT system is based on the SPLPACK system, which is used as a general tool for plotting results of transient analysis codes or experiments. The SDPLOT is based on the GPLP program, which is also regarded as one of the general plotting programs. In the SPLPLOT and the SDPLOT systems, the standardized data format called the SPL format is used in reading data to be plotted. The output data format of MINCS is translated into the SPL format by using the conversion system called the MINTOSPL system. In this report, how to use the plotting functions is described. (author)

  17. Burnup credit effect on proposed cask payloads

    International Nuclear Information System (INIS)

    Hall, I.K.

    1989-01-01

    The purpose of the Cask Systems Development Program (CSDP) is to develop a variety of cask systems which will allow safe and economical movement of commercial spent nuclear fuel and high-level waste from the generator to the Federal repository or Monitored Retrievable Storage (MRS) facility. Program schedule objectives for the initial phase of the CSDP include the development of certified spent fuel cask systems by 1995 to support Office of Civilian Radioactive Waste Management shipments from the utilities beginning in the late 1990s. Forty-nine proposals for developing a family of spent fuel casks were received and comparisons made. General conclusions that can be drawn from the comparisons are that (1) the new generation of casks will have substantially increased payloads in comparison to current casks, and (2) an even greater payload increase may be achievable with burnup credit. The ranges in the payload estimates do not allow a precise separation of the payload increase attributable to the proposed allowance of fuel burnup credit, as compared wilt the no-burnup-credit case. The beneficial effects of cask payload increases on overall costs and risks of transporting spent fuel are significant; therefore further work aimed toward taking advantage of burnup credit is warranted

  18. Improved decoding for a concatenated coding system

    DEFF Research Database (Denmark)

    Paaske, Erik

    1990-01-01

    The concatenated coding system recommended by CCSDS (Consultative Committee for Space Data Systems) uses an outer (255,233) Reed-Solomon (RS) code based on 8-b symbols, followed by the block interleaver and an inner rate 1/2 convolutional code with memory 6. Viterbi decoding is assumed. Two new...... decoding procedures based on repeated decoding trials and exchange of information between the two decoders and the deinterleaver are proposed. In the first one, where the improvement is 0.3-0.4 dB, only the RS decoder performs repeated trials. In the second one, where the improvement is 0.5-0.6 dB, both...... decoders perform repeated decoding trials and decoding information is exchanged between them...

  19. NALAP: an LMFBR system transient code

    International Nuclear Information System (INIS)

    Martin, B.A.; Agrawal, A.K.; Albright, D.C.; Epel, L.G.; Maise, G.

    1975-07-01

    NALAP is a LMFBR system transient code. This code, adapted from the light water reactor transient code RELAP 3B, simulates thermal-hydraulic response of sodium cooled fast breeder reactors when subjected to postulated accidents such as a massive pipe break as well as a variety of other upset conditions that do not disrupt the system geometry. Various components of the plant are represented by control volumes. These control volumes are connected by junctions some of which may be leak or fill junctions. The fluid flow equations are modeled as compressible, single-stream flow with momentum flux in one dimension. The transient response is computed by integrating the thermal-hydraulic conservation equations from user-initialized operating conditions by an implicit numerical scheme. Point kinetics approximation is used to represent the time dependent heat generation in the reactor core

  20. ABB high burnup fuel

    International Nuclear Information System (INIS)

    Andersson, S.; Helmersson, S.; Nilsson, S.; Jourdain, P.; Karlsson, L.; Limback, M.; Garde, A.M.

    1999-01-01

    Fuel designed and fabricated by ABB is now operating in 40 PWRs and BWRs in Europe, the United States and Korea. An excellent fuel reliability track record has been established. High burnups are proven for both PWR and BWR. Thermal margin improving features and advanced burnable absorber concepts enable the utilities to adopt demanding duty cycles to meet new economic objectives. In particular we note the excellent reliability record of ABB PWR fuel equipped with Guardian TM debris filter proven to meet the 6 rod-cycles fuel failure goal, and the out-standing operating record of the SVEA 10 x 10 fuel, where ABB is the only vendor to date with batch experience to high burnup. ABB is dedicated to maintain high fuel reliability as well as continually improve and develop a broad line of PWR and BWR products. ABB's development and fuel follow-up activities are performed in close co-operation with its utility customers. This paper provides an overview of recent fuel performance and reliability experience at ABB. Selected development and validation activities for PWR and BWR fuel are presented, for which the ABB test facilities in Windsor (TF-2 loop, mechanical test laboratory) and Vaesteras (FRIGG, BURE) are essential. (authors)

  1. Symbol synchronization in convolutionally coded systems

    Science.gov (United States)

    Baumert, L. D.; Mceliece, R. J.; Van Tilborg, H. C. A.

    1979-01-01

    Alternate symbol inversion is sometimes applied to the output of convolutional encoders to guarantee sufficient richness of symbol transition for the receiver symbol synchronizer. A bound is given for the length of the transition-free symbol stream in such systems, and those convolutional codes are characterized in which arbitrarily long transition free runs occur.

  2. ERANOS 2.0, Modular code and data system for fast reactor neutronics analyses

    International Nuclear Information System (INIS)

    2008-01-01

    1 - Description of program or function: The European Reactor Analysis Optimized calculation System, ERANOS, has been developed and validated with the aim of providing a suitable basis for reliable neutronic calculations of current as well as advanced fast reactor cores. It consists of data libraries, deterministic codes and calculation procedures which have been developed within the European Collaboration on Fast Reactors over the past 20 years or so, in order to answer the needs of both industrial and R and D organisations. The whole system counts roughly 250 functions and 3000 subroutines totalling 450000 lines of FORTRAN-77 and ESOPE instructions. ERANOS is written using the ALOS software which requires only standard FORTRAN compilers and includes advanced programming features. A modular structure was adopted for easier evolution and incorporation of new functionalities. Blocks of data (SETs) can be created or used by the modules themselves or by the user via the LU control language. Programming, and dynamic memory allocation, are performed by means of the ESOPE language. External temporary storage and permanent storage capabilities are provided by the GEMAT and ARCHIVE functions, respectively. ESOPE, LU, GEMAT and ARCHIVE are all part of the ALOS software. This modular structure allows different modules to be linked together in procedures corresponding to recommended calculation routes ranging from fast-running and moderately-accurate 'routine' procedures to slow-running but highly-accurate 'reference' procedures. The main contents of the ERANOS-2.0 package are: nuclear data libraries (multigroup cross-sections from the JEF-2.2 evaluated nuclear data file, and other specific data files), a cell and lattice code (ECCO), reactor flux solvers (diffusion, Sn transport, nodal variational transport), a burn-up module, various processing modules (material and neutron balance, breeding gains,...), tools related to perturbation theory and sensitivity analysis, core

  3. Coding and decoding for code division multiple user communication systems

    Science.gov (United States)

    Healy, T. J.

    1985-01-01

    A new algorithm is introduced which decodes code division multiple user communication signals. The algorithm makes use of the distinctive form or pattern of each signal to separate it from the composite signal created by the multiple users. Although the algorithm is presented in terms of frequency-hopped signals, the actual transmitter modulator can use any of the existing digital modulation techniques. The algorithm is applicable to error-free codes or to codes where controlled interference is permitted. It can be used when block synchronization is assumed, and in some cases when it is not. The paper also discusses briefly some of the codes which can be used in connection with the algorithm, and relates the algorithm to past studies which use other approaches to the same problem.

  4. The Impact of Operating Parameters and Correlated Parameters for Extended BWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Ade, Brian J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Marshall, William B. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Betzler, Benjamin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bowman, Stephen M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-01

    Applicants for certificates of compliance for spent nuclear fuel (SNF) transportation and dry storage systems perform analyses to demonstrate that these systems are adequately subcritical per the requirements of Title 10 of the Code of Federal Regulations (10 CFR) Parts 71 and 72. For pressurized water reactor (PWR) SNF, these analyses may credit the reduction in assembly reactivity caused by depletion of fissile nuclides and buildup of neutron-absorbing nuclides during power operation. This credit for reactivity reduction during depletion is commonly referred to as burnup credit (BUC). US Nuclear Regulatory Commission (NRC) staff review BUC analyses according to the guidance in the Division of Spent Fuel Storage and Transportation Interim Staff Guidance (ISG) 8, Revision 3, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transportation and Storage Casks.

  5. Performance of code 'FAIR' in IAEA CRP on FUMEX

    International Nuclear Information System (INIS)

    Swami Prasad, P.; Dutta, B.K.; Kushwaha, H.S.; Kakodkar, A.

    1996-01-01

    A modern fuel performance analysis code FAIR has been developed for analysing high burnup fuel pins of water/heavy water cooled reactors. The code employs finite element method for modelling thermo mechanical behaviour of fuel pins and mechanistic models for modelling various physical and chemical phenomena affecting the behaviour of nuclear reactor fuel pins. High burnup affects such as pellet thermal conductivity degradation, enhanced fission gas release and radial flux redistribution are incorporated in the code FAIR. The code FAIR is capable of performing statistical analysis of fuel pins using Monte Carlo technique. The code is implemented on BARC parallel processing system ANUPAM. The code has recently participated in an International Atomic Energy Agency (IAEA) coordinated research program (CRP) on fuel modelling at extended burnups (FUMEX). Nineteen agencies from different countries participated in this exercise. In this CRP, spread over a period of three years, a number of high burnup fuel pins irradiated at Halden reactor are analysed. The first phase of the CRP is a blind code comparison exercise, where the computed results are compared with experimental results. The second phase consists of modifications to the code based on the experimental results of first phase and statistical analysis of fuel pins. The performance of the code FAIR in this CRP has been very good. The present report highlights the main features of code FAIR and its performance in the IAEA CRP on FUMEX. 14 refs., 5 tabs., ills

  6. Bar-code automated waste tracking system

    International Nuclear Information System (INIS)

    Hull, T.E.

    1994-10-01

    The Bar-Code Automated Waste Tracking System was designed to be a site-Specific program with a general purpose application for transportability to other facilities. The system is user-friendly, totally automated, and incorporates the use of a drive-up window that is close to the areas dealing in container preparation, delivery, pickup, and disposal. The system features ''stop-and-go'' operation rather than a long, tedious, error-prone manual entry. The system is designed for automation but allows operators to concentrate on proper handling of waste while maintaining manual entry of data as a backup. A large wall plaque filled with bar-code labels is used to input specific details about any movement of waste

  7. Simulation of integral local tests with high-burnup fuel

    International Nuclear Information System (INIS)

    Gyori, G.

    2011-01-01

    The behaviour of nuclear fuel under LOCA conditions may strongly depend on the burnup-dependent fuel characteristics, as it has been indicated by recent integral experiments. Fuel fragmentation and the associated fission gas release can influence the integral fuel behaviour, the rod rupture and the radiological release. The TRANSURANUS fuel performance code is a proper tool for the consistent simulation of burnup-dependent phenomena during normal operation and the thermo-mechanical behaviour of the fuel rod in a subsequent accident. The code has been extended with an empirical model for micro-cracking induced FGR and fuel fragmentation and verified against integral LOCA tests of international projects. (author)

  8. Burnup credit demands for spent fuel management in Ukraine

    International Nuclear Information System (INIS)

    Medun, V.

    2001-01-01

    In fact, till now, burnup credit has not be applied in Ukrainian nuclear power for spent fuel management systems (storage and transport). However, application of advanced fuel at VVER reactors, arising spent fuel amounts, represent burnup credit as an important resource to decrease spent fuel management costs. The paper describes spent fuel management status in Ukraine from viewpoint of subcriticality assurance under spent fuel storage and transport. It also considers: 1. Regulation basis concerning subcriticality assurance, 2. Basic spent fuel and transport casks characteristics, 3. Possibilities and demands for burnup credit application at spent fuel management systems in Ukraine. (author)

  9. MOSRA-SRAC. Lattice calculation module of the modular code system for nuclear reactor analyses MOSRA

    International Nuclear Information System (INIS)

    Okumura, Keisuke

    2015-10-01

    MOSRA-SRAC is a lattice calculation module of the Modular code System for nuclear Reactor Analyses (MOSRA). This module performs the neutron transport calculation for various types of fuel elements including existing light water reactors, research reactors, etc. based on the collision probability method with a set of the 200-group cross-sections generated from the Japanese Evaluated Nuclear Data Library JENDL-4.0. It has also a function of the isotope generation and depletion calculation for up to 234 nuclides in each fuel material in the lattice. In these ways, MOSRA-SRAC prepares the burn-up dependent effective microscopic and macroscopic cross-section data to be used in core calculations. A CD-ROM is attached as an appendix. (J.P.N.)

  10. Fuel burnup analysis for the Moroccan TRIGA research reactor

    International Nuclear Information System (INIS)

    El Bakkari, B.; El Bardouni, T.; Nacir, B.; El Younoussi, C.; Boulaich, Y.; Boukhal, H.; Zoubair, M.

    2013-01-01

    Highlights: ► A fuel burnup analysis of the 2 MW TRIGA MARK II Moroccan research reactor was established. ► Burnup calculations were done by means of the in-house developed burnup code BUCAL1. ► BUCAL1 uses the MCNP tallies directly in the calculation of the isotopic inventories. ► The reactor life time was found to be 3360 MW h considering full power operating conditions. ► Power factors and fluxes of the in-core irradiation positions are strongly affected by burnup. -- Abstract: The fundamental advantage and main reason to use Monte Carlo methods for burnup calculations is the possibility to generate extremely accurate burnup dependent one group cross-sections and neutron fluxes for arbitrary core and fuel geometries. Yet, a set of values determined for a material at a given position and time remains accurate only in a local region, in which neutron spectrum and flux vary weakly — and only for a limited period of time, during which changes of the local isotopic composition are minor. This paper presents the approach of fuel burnup evaluation used at the Moroccan TRIGA MARK II research reactor. The approach is essentially based upon the utilization of BUCAL1, an in-house developed burnup code. BUCAL1 is a FORTRAN computer code designed to aid in analysis, prediction, and optimization of fuel burnup performance in nuclear reactors. The code was developed to incorporate the neutron absorption reaction tally information generated directly by MCNP5 code in the calculation of fissioned or neutron-transmuted isotopes for multi-fueled regions. The fuel cycle length and changes in several core parameters such as: core excess reactivity, control rods position, fluxes at the irradiation positions, axial and radial power factors and other parameters are estimated. Besides, this study gives valuable insight into the behavior of the reactor and will ensure better utilization and operation of the reactor during its life-time and it will allow the establishment of

  11. V.S.O.P. (99/09) computer code system for reactor physics and fuel cycle simulation. Version 2009

    International Nuclear Information System (INIS)

    Ruetten, H.J.; Haas, K.A.; Brockmann, H.; Ohlig, U.; Pohl, C.; Scherer, W.

    2010-07-01

    V.S.O.P. (99/ 09) represents the further development of V.S.O.P. (99/ 05). Compared to its precursor, the code system has been improved again in many details. The main motivation for this new code version was to update the basic nuclear libraries used by the code system. Thus, all cross section libraries involved in the code have now been based on ENDF/B-VII. V.S.O.P. is a computer code system for the comprehensive numerical simulation of the physics of thermal reactors. It implies the setup of the reactor and of the fuel element, processing of cross sections, neutron spectrum evaluation, neutron diffusion calculation in two or three dimensions, fuel burnup, fuel shuffling, reactor control, thermal hydraulics and fuel cycle costs. The thermal hydraulics part (steady state and time-dependent) is restricted to gas-cooled reactors and to two spatial dimensions. The code can simulate the reactor operation from the initial core towards the equilibrium core. This latest code version was developed and tested under the WINDOWS-XP - operating system. (orig.)

  12. V.S.O.P. (99/09) computer code system for reactor physics and fuel cycle simulation. Version 2009

    Energy Technology Data Exchange (ETDEWEB)

    Ruetten, H.J.; Haas, K.A.; Brockmann, H.; Ohlig, U.; Pohl, C.; Scherer, W.

    2010-07-15

    V.S.O.P. (99/ 09) represents the further development of V.S.O.P. (99/ 05). Compared to its precursor, the code system has been improved again in many details. The main motivation for this new code version was to update the basic nuclear libraries used by the code system. Thus, all cross section libraries involved in the code have now been based on ENDF/B-VII. V.S.O.P. is a computer code system for the comprehensive numerical simulation of the physics of thermal reactors. It implies the setup of the reactor and of the fuel element, processing of cross sections, neutron spectrum evaluation, neutron diffusion calculation in two or three dimensions, fuel burnup, fuel shuffling, reactor control, thermal hydraulics and fuel cycle costs. The thermal hydraulics part (steady state and time-dependent) is restricted to gas-cooled reactors and to two spatial dimensions. The code can simulate the reactor operation from the initial core towards the equilibrium core. This latest code version was developed and tested under the WINDOWS-XP - operating system. (orig.)

  13. Development of an interface between MCNP and ORIGEN codes for calculations of fuel evolution in nuclear systems. Initial project

    International Nuclear Information System (INIS)

    Campolina, Daniel de Almeida Magalhaes

    2009-01-01

    In Many situations of nuclear system study, it is necessary to know the detailed particle flux in a geometry. Deterministic 1-D and 2-D methods aren't suitable to represent some strong 3-D behavior configurations, for example in cores where the neutron flux varies considerably in the space and Monte Carlo analysis are necessary. The majority of Monte Carlo transport calculation codes, performs time static simulations, in terms of fuel isotopic composition. This work is a initial project to incorporate depletion capability to the MCNP code, by means of a connection with ORIGEN2.1 burnup code. The method to develop the program proposed followed the methodology of other programs used to the same purpose. Essentially, MCNP data library are used to generate one group microscopic cross sections that override default ORIGEN libraries. To verify the actual implemented part, comparisons which MCNPX (version 2.6.0) results were made. The neutron flux and criticality value of core agree. The neutron flux and criticality value of the core agree, especially in beginning of burnup when the influence of fission products are not very considerable. The small difference encountered was probably caused by the difference in the number of isotopes considered in the transport models (89 MCNPX x 25 GB). Next step of this work is to adapt MCNP version 4C to work with a memory higher than its standard value (4MB), in order to allow a greater number of isotopes in the transport model. (author)

  14. Benefits of the delta K of depletion benchmarks for burnup credit validation

    International Nuclear Information System (INIS)

    Lancaster, D.; Machiels, A.

    2012-01-01

    Pressurized Water Reactor (PWR) burnup credit validation is demonstrated using the benchmarks for quantifying fuel reactivity decrements, published as 'Benchmarks for Quantifying Fuel Reactivity Depletion Uncertainty,' EPRI Report 1022909 (August 2011). This demonstration uses the depletion module TRITON available in the SCALE 6.1 code system followed by criticality calculations using KENO-Va. The difference between the predicted depletion reactivity and the benchmark's depletion reactivity is a bias for the criticality calculations. The uncertainty in the benchmarks is the depletion reactivity uncertainty. This depletion bias and uncertainty is used with the bias and uncertainty from fresh UO 2 critical experiments to determine the criticality safety limits on the neutron multiplication factor, k eff . The analysis shows that SCALE 6.1 with the ENDF/B-VII 238-group cross section library supports the use of a depletion bias of only 0.0015 in delta k if cooling is ignored and 0.0025 if cooling is credited. The uncertainty in the depletion bias is 0.0064. Reliance on the ENDF/B V cross section library produces much larger disagreement with the benchmarks. The analysis covers numerous combinations of depletion and criticality options. In all cases, the historical uncertainty of 5% of the delta k of depletion ('Kopp memo') was shown to be conservative for fuel with more than 30 GWD/MTU burnup. Since this historically assumed burnup uncertainty is not a function of burnup, the Kopp memo's recommended bias and uncertainty may be exceeded at low burnups, but its absolute magnitude is small. (authors)

  15. Application of Candle burnup to small fast reactor

    International Nuclear Information System (INIS)

    Sekimoto, H.; Satoshi, T.

    2004-01-01

    A new reactor burnup strategy CANDLE (Constant Axial shape of Neutron flux, nuclide densities and power shape During Life of Energy producing reactor) was proposed, where shapes of neutron flux, nuclide densities and power density distributions remain constant but move to an axial direction. An equilibrium state was obtained for a large fast reactor (core radius is 2 m and reflector thickness is 0.5 m) successfully by using a newly developed direct analysis code. However, it is difficult to apply this burnup strategy to small reactors, since its neutron leakage becomes large and neutron economy becomes worse. Fuel enrichment should be increased in order to sustain the criticality. However, higher enrichment of fresh fuel makes the CANDLE burnup difficult. We try to find some small reactor designs, which can realize the CANDLE burnup. We have successfully find a design, which is not the CANDLE burnup in the strict meaning, but satisfies qualitatively its characteristics mentioned at the top of this abstract. In the final paper, the general description of CANDLE burnup and some results on the obtained small fast reactor design are presented.(author)

  16. HELIAS module development for systems codes

    Energy Technology Data Exchange (ETDEWEB)

    Warmer, F., E-mail: Felix.Warmer@ipp.mpg.de; Beidler, C.D.; Dinklage, A.; Egorov, K.; Feng, Y.; Geiger, J.; Schauer, F.; Turkin, Y.; Wolf, R.; Xanthopoulos, P.

    2015-02-15

    In order to study and design next-step fusion devices such as DEMO, comprehensive systems codes are commonly employed. In this work HELIAS-specific models are proposed which are designed to be compatible with systems codes. The subsequently developed models include: a geometry model based on Fourier coefficients which can represent the complex 3-D plasma shape, a basic island divertor model which assumes diffusive cross-field transport and high radiation at the X-point, and a coil model which combines scaling aspects based on the HELIAS 5-B reactor design in combination with analytic inductance and field calculations. In addition, stellarator-specific plasma transport is discussed. A strategy is proposed which employs a predictive confinement time scaling derived from 1-D neoclassical and 3-D turbulence simulations. This paper reports on the progress of the development of the stellarator-specific models while an implementation and verification study within an existing systems code will be presented in a separate work. This approach is investigated to ultimately allow one to conduct stellarator system studies, develop design points of HELIAS burning plasma devices, and to facilitate a direct comparison between tokamak and stellarator DEMO and power plant designs.

  17. A Study for Burn-up Calculation applied on 400MWth PBMR Core

    International Nuclear Information System (INIS)

    Luu, Nam Hai; Kim, Hong Chul; Kim, Soon Young; Kim, Jong Kyung; Noh, Jae Man

    2007-01-01

    The 400MWth Pebble-bed Modular Reactor (PBMR) is an advanced high temperature gas cooled-reactor (HTGR). It possesses a very high efficiency and attractive economics without compromising the high levels of passive safety expected of advanced nuclear designs. With this reason, PBMR is a target which researchers especially in nuclear engineering field study carefully and therefore it is regarded as the leader in the power generation field. There are many research results about benchmark problems but results of the burn-up process are still poor. Hence, in this study a burn-up calculation was performed with PBMR using MONTEBURNS code in which MCNP modeling linked a depletion systems is used

  18. TRIGA fuel element burnup determination by measurement and calculation

    International Nuclear Information System (INIS)

    Zagar, T.; Ravnik, M.; Persic, A.; Jeraj, R.

    2000-01-01

    To estimate the accuracy of the fuel element burnup calculation different factors influencing the calculation were studied. To cover different aspects of burnup calculations, two in-house developed computer codes were used in calculations. The first (TRIGAP) is based on a one-dimensional two-group diffusion approximation, and the second (TRIGLAV) is based on a two-dimensional four-group diffusion equation. Both codes use WIMSD program with different libraries forunit-cell cross section data calculation. The burnup accumulated during the operating history of the TRIGA reactor at Josef Stefan Institute was calculated for all fuel elements. Elements used in the core during this period were standard SS 8.5% fuel elements, standard SS 12% fuel elements and highly enriched FLIP fuel elements. During the considerable period of operational history, FLIP and standard fuel elements were used simultaneously in mixed cores. (authors)

  19. Analog system for computing sparse codes

    Science.gov (United States)

    Rozell, Christopher John; Johnson, Don Herrick; Baraniuk, Richard Gordon; Olshausen, Bruno A.; Ortman, Robert Lowell

    2010-08-24

    A parallel dynamical system for computing sparse representations of data, i.e., where the data can be fully represented in terms of a small number of non-zero code elements, and for reconstructing compressively sensed images. The system is based on the principles of thresholding and local competition that solves a family of sparse approximation problems corresponding to various sparsity metrics. The system utilizes Locally Competitive Algorithms (LCAs), nodes in a population continually compete with neighboring units using (usually one-way) lateral inhibition to calculate coefficients representing an input in an over complete dictionary.

  20. A Consistent System for Coding Laboratory Samples

    Science.gov (United States)

    Sih, John C.

    1996-07-01

    A formal laboratory coding system is presented to keep track of laboratory samples. Preliminary useful information regarding the sample (origin and history) is gained without consulting a research notebook. Since this system uses and retains the same research notebook page number for each new experiment (reaction), finding and distinguishing products (samples) of the same or different reactions becomes an easy task. Using this system multiple products generated from a single reaction can be identified and classified in a uniform fashion. Samples can be stored and filed according to stage and degree of purification, e.g. crude reaction mixtures, recrystallized samples, chromatographed or distilled products.

  1. Analysis of high burnup pressurized water reactor fuel using uranium, plutonium, neodymium, and cesium isotope correlations with burnup

    International Nuclear Information System (INIS)

    Kim, Jung Suk; Jeon, Young Shin; Park, Soon Dal; Ha, Yeong Keong; Song, Kyu Seok

    2015-01-01

    The correlation of the isotopic composition of uranium, plutonium, neodymium, and cesium with the burnup for high burnup pressurized water reactor fuels irradiated in nuclear power reactors has been experimentally investigated. The total burnup was determined by Nd-148 and the fractional 235 U burnup was determined by U and Pu mass spectrometric methods. The isotopic compositions of U, Pu, Nd, and Cs after their separation from the irradiated fuel samples were measured using thermal ionization mass spectrometry. The contents of these elements in the irradiated fuel were determined through an isotope dilution mass spectrometric method using 233 U, 242 Pu, 150 Nd, and 133 Cs as spikes. The activity ratios of Cs isotopes in the fuel samples were determined using gamma-ray spectrometry. The content of each element and its isotopic compositions in the irradiated fuel were expressed by their correlation with the total and fractional burnup, burnup parameters, and the isotopic compositions of different elements. The results obtained from the experimental methods were compared with those calculated using the ORIGEN-S code

  2. A mean field theory of coded CDMA systems

    International Nuclear Information System (INIS)

    Yano, Toru; Tanaka, Toshiyuki; Saad, David

    2008-01-01

    We present a mean field theory of code-division multiple-access (CDMA) systems with error-control coding. On the basis of the relation between the free energy and mutual information, we obtain an analytical expression of the maximum spectral efficiency of the coded CDMA system, from which a mean-field description of the coded CDMA system is provided in terms of a bank of scalar Gaussian channels whose variances in general vary at different code symbol positions. Regular low-density parity-check (LDPC)-coded CDMA systems are also discussed as an example of the coded CDMA systems

  3. A mean field theory of coded CDMA systems

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Toru [Graduate School of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa 223-8522 (Japan); Tanaka, Toshiyuki [Graduate School of Informatics, Kyoto University, Yoshida Hon-machi, Sakyo-ku, Kyoto-shi, Kyoto 606-8501 (Japan); Saad, David [Neural Computing Research Group, Aston University, Birmingham B4 7ET (United Kingdom)], E-mail: yano@thx.appi.keio.ac.jp

    2008-08-15

    We present a mean field theory of code-division multiple-access (CDMA) systems with error-control coding. On the basis of the relation between the free energy and mutual information, we obtain an analytical expression of the maximum spectral efficiency of the coded CDMA system, from which a mean-field description of the coded CDMA system is provided in terms of a bank of scalar Gaussian channels whose variances in general vary at different code symbol positions. Regular low-density parity-check (LDPC)-coded CDMA systems are also discussed as an example of the coded CDMA systems.

  4. Increased burnup of fuel elements

    International Nuclear Information System (INIS)

    Ahlf, J.

    1983-01-01

    The specialists' group for fuel elements of the Kerntechnische Gesellschaft e.V. held a meeting on ''Increased Burnup of Fuel Elements'' on 9th and 10th of November 1982 at the GKSS Research Center Geesthacht. Most papers dealt with the problems of burnup increase of fuel elements for light water reactors with respect to fuel manufacturing, power plant operation and reprocessing. Review papers were given on the burnup limits for high temperature gas cooled reactors and sodium fast breeder reactors. The meeting ended with a presentation of the technical equipment of the hot laboratory of the GKSS and the programs which are in progress there. (orig.) [de

  5. Validating analysis methodologies used in burnup credit criticality calculations

    International Nuclear Information System (INIS)

    Brady, M.C.; Napolitano, D.G.

    1992-01-01

    The concept of allowing reactivity credit for the depleted (or burned) state of pressurized water reactor fuel in the licensing of spent fuel facilities introduces a new challenge to members of the nuclear criticality community. The primary difference in this analysis approach is the technical ability to calculate spent fuel compositions (or inventories) and to predict their effect on the system multiplication factor. Isotopic prediction codes are used routinely for in-core physics calculations and the prediction of radiation source terms for both thermal and shielding analyses, but represent an innovation for criticality specialists. This paper discusses two methodologies currently being developed to specifically evaluate isotopic composition and reactivity for the burnup credit concept. A comprehensive approach to benchmarking and validating the methods is also presented. This approach involves the analysis of commercial reactor critical data, fuel storage critical experiments, chemical assay isotopic data, and numerical benchmark calculations

  6. Improvement of burnup analysis for pebble bed reactors with an accumulative fuel loading scheme

    International Nuclear Information System (INIS)

    Simanullang, Irwan Liapto; Obara, Toru

    2015-01-01

    Given the limitations of natural uranium resources, innovative nuclear power plant concepts that increase the efficiency of nuclear fuel utilization are needed. The Pebble Bed Reactor (PBR) shows some potential to achieve high efficiency in natural uranium utilization. To simplify the PBR concept, PBR with an accumulation fuel loading scheme was introduced and the Fuel Handling System (FHS) removed. In this concept, the pebble balls are added little by little into the reactor core until the pebble balls reach the top of the reactor core, and all pebble balls are discharged from the core at the end of the operation period. A code based on the MVP/MVP-BURN method has been developed to perform an analysis of a PBR with the accumulative fuel loading scheme. The optimum fuel composition was found using the code for high burnup performance. Previous efforts provided several motivations to improve the burnup performance: First, some errors in the input code were corrected. This correction, and an overall simplification of the input code, was implemented for easier analysis of a PBR with the accumulative fuel loading scheme. Second, the optimum fuel design had been obtained in the infinite geometry. To improve the optimum fuel composition, a parametric survey was obtained by varying the amount of Heavy Metal (HM) uranium per pebble and the degree of uranium enrichment. Moreover, an entire analysis of the parametric survey was obtained in the finite geometry. The results show that improvements in the fuel composition can lead to more accurate analysis with the code. (author)

  7. Research on burnup physics

    Energy Technology Data Exchange (ETDEWEB)

    Pop-Jordanov, J [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1974-07-01

    One of the major problems in burnup studies is the reasonably fast and accurate calculation of the space-and-energy dependent neutron flux and reaction rates for realistic power reactor fuel geometries and compositions, and its optimal integration in the global reactor calculations. The scope of the present research was to develop improved methods trying to satisfy the above requirements. In the epithermal region, simple and efficient approximation is proposed which allows the analytical solution for the space dependence of the spherical harmonics flux moments, and hence the derivation of the recurrence relations between he flux moments at successive lethargy pivotal points. A new matrix formalism to invert the coefficient matrix of band structure resulted in a reduce computer time and memory demands. The research on epithermal region is finalized in computing programme SPLET, which calculates the space-lethargy distribution of the spherical harmonics neutron flux moments, and the related integral quantities as reaction rates and resonance integrals. For partial verification of the above methods a Monte Carlo procedure was developed. Using point-wise representation of variables, a flexible and fast convergent integral transport method SEPT i developed. Expanding the neutron source and flux in finite series of arbitrary polynomials, the space-and-energy dependent integral transport equation is transformed into a general linear algebraic form, which is solved numerically. A simple and efficient procedure for deriving multipoint equations and constructing matrix is proposed and examined, and no unwanted oscillations were noticed. The energy point method was combined with the spherical harmonics method as well. A multi zone few-group program SPECTAR for global reactor calculations was developed. For testing, the flux distribution, neutron leakage and effective multiplication factor for the PWR reactor of the power station San Onofre were calculated. In order to verify

  8. Coupling the severe accident code SCDAP with the system thermal hydraulic code MARS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Jin; Chung, Bub Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    MARS is a best-estimate system thermal hydraulics code with multi-dimensional modeling capability. One of the aims in MARS code development is to make it a multi-functional code system with the analysis capability to cover the entire accident spectrum. For this purpose, MARS code has been coupled with a number of other specialized codes such as CONTEMPT for containment analysis, and MASTER for 3-dimensional kinetics. And in this study, the SCDAP code has been coupled with MARS to endow the MARS code system with severe accident analysis capability. With the SCDAP, MARS code system now has acquired the capability to simulate such severe accident related phenomena as cladding oxidation, melting and slumping of fuel and reactor structures.

  9. Coupling the severe accident code SCDAP with the system thermal hydraulic code MARS

    International Nuclear Information System (INIS)

    Lee, Young Jin; Chung, Bub Dong

    2004-01-01

    MARS is a best-estimate system thermal hydraulics code with multi-dimensional modeling capability. One of the aims in MARS code development is to make it a multi-functional code system with the analysis capability to cover the entire accident spectrum. For this purpose, MARS code has been coupled with a number of other specialized codes such as CONTEMPT for containment analysis, and MASTER for 3-dimensional kinetics. And in this study, the SCDAP code has been coupled with MARS to endow the MARS code system with severe accident analysis capability. With the SCDAP, MARS code system now has acquired the capability to simulate such severe accident related phenomena as cladding oxidation, melting and slumping of fuel and reactor structures

  10. Use of system code to estimate equilibrium tritium inventory in fusion DT machines, such as ARIES-AT and components testing facilities

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Merrill, B.

    2014-01-01

    Highlights: • With the use of a system code, tritium burn-up fraction (f burn ) can be determined. • Initial tritium inventory for steady state DT machines can be estimated. • f burn of ARIES-AT, CFETR and FNSF-AT are in the range of 1–2.8%. • Respective total tritium inventories of are 7.6 kg, 6.1 kg, and 5.2 kg. - Abstract: ITER is under construction and will begin operation in 2020. This is the first 500 MW fusion class DT device, and since it is not going to breed tritium, it will consume most of the limited supply of tritium resources in the world. Yet, in parallel, DT fusion nuclear component testing machines will be needed to provide technical data for the design of DEMO. It becomes necessary to estimate the tritium burn-up fraction and corresponding initial tritium inventory and the doubling time of these machines for the planning of future supply and utilization of tritium. With the use of a system code, tritium burn-up fraction and initial tritium inventory for steady state DT machines can be estimated. Estimated tritium burn-up fractions of FNSF-AT, CFETR-R and ARIES-AT are in the range of 1–2.8%. Corresponding total equilibrium tritium inventories of the plasma flow and tritium processing system, and with the DCLL blanket option are 7.6 kg, 6.1 kg, and 5.2 kg for ARIES-AT, CFETR-R and FNSF-AT, respectively

  11. Use of system code to estimate equilibrium tritium inventory in fusion DT machines, such as ARIES-AT and components testing facilities

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.P.C., E-mail: wongc@fusion.gat.com [General Atomics, San Diego, CA (United States); Merrill, B. [Idaho National Laboratory, Idaho Falls, ID (United States)

    2014-10-15

    Highlights: • With the use of a system code, tritium burn-up fraction (f{sub burn}) can be determined. • Initial tritium inventory for steady state DT machines can be estimated. • f{sub burn} of ARIES-AT, CFETR and FNSF-AT are in the range of 1–2.8%. • Respective total tritium inventories of are 7.6 kg, 6.1 kg, and 5.2 kg. - Abstract: ITER is under construction and will begin operation in 2020. This is the first 500 MW{sub fusion} class DT device, and since it is not going to breed tritium, it will consume most of the limited supply of tritium resources in the world. Yet, in parallel, DT fusion nuclear component testing machines will be needed to provide technical data for the design of DEMO. It becomes necessary to estimate the tritium burn-up fraction and corresponding initial tritium inventory and the doubling time of these machines for the planning of future supply and utilization of tritium. With the use of a system code, tritium burn-up fraction and initial tritium inventory for steady state DT machines can be estimated. Estimated tritium burn-up fractions of FNSF-AT, CFETR-R and ARIES-AT are in the range of 1–2.8%. Corresponding total equilibrium tritium inventories of the plasma flow and tritium processing system, and with the DCLL blanket option are 7.6 kg, 6.1 kg, and 5.2 kg for ARIES-AT, CFETR-R and FNSF-AT, respectively.

  12. PENBURN - A 3-D Zone-Based Depletion/Burnup Solver

    International Nuclear Information System (INIS)

    Manalo, Kevin; Plower, Thomas; Rowe, Mireille; Mock, Travis; Sjoden, Glenn E.

    2008-01-01

    PENBURN (Parallel Environment Burnup) is a general depletion/burnup solver which, when provided with zone-based reaction rates, computes time-dependent isotope concentrations for a set of actinides and fission products. Burnup analysis in PENBURN is performed with a direct Bateman-solver chain solution technique. Specifically, in tandem with PENBURN is the use of PENTRAN, a parallel multi-group anisotropic Sn code for 3-D Cartesian geometries. In PENBURN, the linear chain method is actively used to solve individual isotope chains which are then fully attributed by the burnup code to yield integrated isotope concentrations for each nuclide specified. Included with the discussion of code features, a single PWR fuel pin calculation with the burnup code is performed and detailed with a benchmark comparison to PIE (Post-Irradiation Examination) data within the SFCOMPO (Spent Fuel Composition / NEA) database, and also with burnup codes in SCALE5.1. Conclusions within the paper detail, in PENBURN, the accuracy of major actinides, flux profile behavior as a function of burnup, and criticality calculations for the PWR fuel pin model. (authors)

  13. Determination of reactor fuel burnup using passive neutron assay

    International Nuclear Information System (INIS)

    Kodeli, I.; Trkov, A.; Najzer, M.; Ertek, C.

    1988-01-01

    Passive neutron assay (PNA) method was developed to verify the fissile inventory of the irradiated reactor fuels. The characteristics of the method were studied at 'Jozef Stefan' Institute. The dependence of neutron source in the fuel on burnup, cooling time, initial enrichment and specific power were investigated and the accuracy of the method, using available computer codes was estimated. (author)

  14. The use of burnup credit for spent fuel cask design

    International Nuclear Information System (INIS)

    Lake, W.H.

    1993-01-01

    A new generation of high capacity spent fuel transport casks is being developed by the U.S. Department of Energy (DOE) as part of the Federal Waste Management System (FWMS). Burnup credit, which recognizes the reduced reactivity of spent fuel is being used for these casks. Two cask designs being developed for DOE by Babcock and Wilcox and General Atomics use burnup credit. The cask designs must be certified by the U.S. Nuclear Regulatory Commission (NRC) if they are to be used in the FWMS. Certification of these casks by the NRC would not require any change in the NRC's transport regulations, and would be consistent with past practices. Furthermore, use of burnup credit casks appears to be consistent with current International Atomic Energy Agency (IAEA) rules and regulations. To support NRC certification, DOE has identified the technical issues related to burnup credit, and embarked on a development program to resolve them. (J.P.N.)

  15. Burn-up measurement in the HTR-module-reactor

    International Nuclear Information System (INIS)

    Gerhards, E.

    1993-05-01

    The burn-up status of spherical HTR-fuel elements is determined by a γ-spectrometric analysis of Cs-137 activity. The γ-spectrum recorded by a semiconductor detector up to now is analyzed by complex mathematical and time-consuming methods. For the operation of the HTR-Module-Reactor, however, a fast evaluation of the burn-up status is necessary. It is shown that this can be ensured by a comparison between the measured spectra and simulation results. Using the computer-program HTROGEN and the program system SPECCALC especially developed for this problem the γ-spectra are evaluated as a function of the burn-up status. The method is applied to results available from the operation of the AVR-reactor. The burn-up status determined with different methods corresponds very well within the limits of accuracy. (orig.)

  16. Parametric neutronic analyses related to burnup credit cask design

    International Nuclear Information System (INIS)

    Parks, C.V.

    1989-01-01

    The consideration of spent fuel histories (burnup credit) in the design of spent fuel shipping casks will result in cost savings and public risk benefits in the overall fuel transportation system. The purpose of this paper is to describe the depletion and criticality analyses performed in conjunction with and supplemental to the referenced analysis. Specifically, the objectives are to indicate trends in spent fuel isotopic composition with burnup and decay time; provide spent fuel pin lattice values as a function of burnup, decay time, and initial enrichment; demonstrate the variation of k eff for infinite arrays of spent fuel assemblies separated by generic cask basket designs (borated and unborated) of varying thicknesses; and verify the potential cask reactivity margin available with burnup credit via analysis with generic cask models

  17. Implementation of the KASKAD computer code system for WWER-440 at Kozloduy NPP

    International Nuclear Information System (INIS)

    Antonov, A.; Georgieva, N.; Spasova, V.

    2003-01-01

    Since 2002 at Kozloduy NPP - EP1 the code package KASKAD is used for WWER-440 reactor core calculations. The main codes entering this package are: BIPR-7A: 3-D diffusion and core analysis code; PERMAK-A: 2-D fine mesh diffusion code. The burnup calculations were performed for all cycles of the Kozloduy NPP Unit 1, Unit 2, Unit 3 and Unit 4. For the last 4-5 cycles of the Units were calculated control rods worth, critical boron concentration at zero power, reactivity coefficients and linear power. These results were analysed and were compared with experimental data. Some results were given in this paper

  18. Underestimation of nuclear fuel burnup – theory, demonstration and solution in numerical models

    Directory of Open Access Journals (Sweden)

    Gajda Paweł

    2016-01-01

    Full Text Available Monte Carlo methodology provides reference statistical solution of neutron transport criticality problems of nuclear systems. Estimated reaction rates can be applied as an input to Bateman equations that govern isotopic evolution of reactor materials. Because statistical solution of Boltzmann equation is computationally expensive, it is in practice applied to time steps of limited length. In this paper we show that simple staircase step model leads to underprediction of numerical fuel burnup (Fissions per Initial Metal Atom – FIMA. Theoretical considerations indicates that this error is inversely proportional to the length of the time step and origins from the variation of heating per source neutron. The bias can be diminished by application of predictor-corrector step model. A set of burnup simulations with various step length and coupling schemes has been performed. SERPENT code version 1.17 has been applied to the model of a typical fuel assembly from Pressurized Water Reactor. In reference case FIMA reaches 6.24% that is equivalent to about 60 GWD/tHM of industrial burnup. The discrepancies up to 1% have been observed depending on time step model and theoretical predictions are consistent with numerical results. Conclusions presented in this paper are important for research and development concerning nuclear fuel cycle also in the context of Gen4 systems.

  19. Fuel element burnup measurements for the equilibrium LEU silicide RSG GAS (MPR-30) core under a new fuel management strategy

    International Nuclear Information System (INIS)

    Pinem, Surian; Liem, Peng Hong; Sembiring, Tagor Malem; Surbakti, Tukiran

    2016-01-01

    Highlights: • Burnup measurement of fuel elements comprising the new equilibrium LEU silicide core of RSG GAS. • The burnup measurement method is based on a linear relationship between reactivity and burnup. • Burnup verification was conducted using an in-house, in-core fuel management code BATAN-FUEL. • A good agreement between the measured and calculated burnup was confirmed. • The new fuel management strategy was confirmed and validated. - Abstract: After the equilibrium LEU silicide core of RSG GAS was achieved, there was a strong need to validate the new fuel management strategy by measuring burnup of fuel elements comprising the core. Since the regulatory body had a great concern on the safety limit of the silicide fuel element burnup, amongst the 35 burnt fuel elements we selected 22 fuel elements with high burnup classes i.e. from 20 to 53% loss of U-235 (declared values) for the present measurements. The burnup measurement method was based on a linear relationship between reactivity and burnup where the measurements were conducted under subcritical conditions using two fission counters of the reactor startup channel. The measurement results were compared with the declared burnup evaluated by an in-house in-core fuel management code, BATAN-FUEL. A good agreement between the measured burnup values and the calculated ones was found within 8% uncertainties. Possible major sources of differences were identified, i.e. large statistical errors (i.e. low fission counters’ count rates), variation of initial U-235 loading per fuel element and accuracy of control rod indicators. The measured burnup of the 22 fuel elements provided the confirmation of the core burnup distribution planned for the equilibrium LEU silicide core under the new fuel management strategy.

  20. Development of intelligent code system to support conceptual design of nuclear reactor core

    International Nuclear Information System (INIS)

    Kugo, Teruhiko; Nakagawa, Masayuki; Tsuchihashi, Keichiro

    1997-01-01

    An intelligent reactor design system IRDS has been developed to support conceptual design of new type reactor cores in the fields of neutronics, thermal-hydraulics and fuel behavior. The features of IRDS are summarized as follows: 1) a variety of computer codes to cover various design tasks relevant to 'static' and 'burnup' problems are implemented, 2) all the information necessary to the codes implemented is unified in a data base, 3) several data and knowledge bases are referred to in order to proceed design process efficiently for non-expert users, 4) advanced man-machine interface to communicate with the system through an interactive and graphical user interface is equipped and 5) a function to search automatically a design window, which is defined as a feasible parameter range to satisfy design requirement and criteria is employed to support the optimization or satisfication process. Applicability and productivity of the system are demonstrated by the design study of fuel pin for new type FBR cores. (author)

  1. Code system BCG for gamma-ray skyshine calculation

    International Nuclear Information System (INIS)

    Ryufuku, Hiroshi; Numakunai, Takao; Miyasaka, Shun-ichi; Minami, Kazuyoshi.

    1979-03-01

    A code system BCG has been developed for calculating conveniently and efficiently gamma-ray skyshine doses using the transport calculation codes ANISN and DOT and the point-kernel calculation codes G-33 and SPAN. To simplify the input forms to the system, the forms for these codes are unified, twelve geometric patterns are introduced to give material regions, and standard data are available as a library. To treat complex arrangements of source and shield, it is further possible to use successively the code such that the results from one code may be used as input data to the same or other code. (author)

  2. Concatenated coding system with iterated sequential inner decoding

    DEFF Research Database (Denmark)

    Jensen, Ole Riis; Paaske, Erik

    1995-01-01

    We describe a concatenated coding system with iterated sequential inner decoding. The system uses convolutional codes of very long constraint length and operates on iterations between an inner Fano decoder and an outer Reed-Solomon decoder......We describe a concatenated coding system with iterated sequential inner decoding. The system uses convolutional codes of very long constraint length and operates on iterations between an inner Fano decoder and an outer Reed-Solomon decoder...

  3. Use of computer codes for system reliability analysis

    International Nuclear Information System (INIS)

    Sabek, M.; Gaafar, M.; Poucet, A.

    1988-01-01

    This paper gives a collective summary of the studies performed at the JRC, ISPRA on the use of computer codes for complex systems analysis. The computer codes dealt with are: CAFTS-SALP software package, FRANTIC, FTAP, computer code package RALLY, and BOUNDS codes. Two reference study cases were executed by each code. The results obtained logic/probabilistic analysis as well as computation time are compared

  4. Some Thermodynamic Features of Uranium-Plutonium Nitride Fuel in the Course of Burnup

    Science.gov (United States)

    Rusinkevich, A. A.; Ivanov, A. S.; Belov, G. V.; Skupov, M. V.

    2017-12-01

    Calculation studies on the effect of carbon and oxygen impurities on the chemical and phase compositions of nitride uranium-plutonium fuel in the course of burnup are performed using the IVTANTHERMO code. It is shown that the number of moles of UN decreases with increasing burnup level, whereas UN1.466, UN1.54, and UN1.73 exhibit a considerable increase. The presence of oxygen and carbon impurities causes an increase in the content of the UN1.466, UN1.54 and UN1.73 phases in the initial fuel by several orders of magnitude, in particular, at a relatively low temperature. At the same time, the presence of impurities abruptly reduces the content of free uranium in unburned fuel. Plutonium in the considered system is contained in form of Pu, PuC, PuC2, Pu2C3, and PuN. Plutonium carbides, as well as uranium carbides, are formed in small amounts. Most of the plutonium remains in the form of nitride PuN, whereas unbound Pu is present only in the areas with a low burnup level and high temperatures.

  5. Neutron cross section library production code system for continuous energy Monte Carlo code MVP. LICEM

    International Nuclear Information System (INIS)

    Mori, Takamasa; Nakagawa, Masayuki; Kaneko, Kunio.

    1996-05-01

    A code system has been developed to produce neutron cross section libraries for the MVP continuous energy Monte Carlo code from an evaluated nuclear data library in the ENDF format. The code system consists of 9 computer codes, and can process nuclear data in the latest ENDF-6 format. By using the present system, MVP neutron cross section libraries for important nuclides in reactor core analyses, shielding and fusion neutronics calculations have been prepared from JENDL-3.1, JENDL-3.2, JENDL-FUSION file and ENDF/B-VI data bases. This report describes the format of MVP neutron cross section library, the details of each code in the code system and how to use them. (author)

  6. Neutron cross section library production code system for continuous energy Monte Carlo code MVP. LICEM

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Takamasa; Nakagawa, Masayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kaneko, Kunio

    1996-05-01

    A code system has been developed to produce neutron cross section libraries for the MVP continuous energy Monte Carlo code from an evaluated nuclear data library in the ENDF format. The code system consists of 9 computer codes, and can process nuclear data in the latest ENDF-6 format. By using the present system, MVP neutron cross section libraries for important nuclides in reactor core analyses, shielding and fusion neutronics calculations have been prepared from JENDL-3.1, JENDL-3.2, JENDL-FUSION file and ENDF/B-VI data bases. This report describes the format of MVP neutron cross section library, the details of each code in the code system and how to use them. (author).

  7. The role of ORIGEN-S in the design of burnup credit spent fuel casks

    International Nuclear Information System (INIS)

    Brady, M.C.

    1991-01-01

    Current licensing practices for spent fuel pools, storage facilities, and transportation casks require a conservative ''fresh fuel assumption'' be used in the criticality analysis. Burnup credit refers to a new approach in criticality analyses for spent fuel handling systems in which reactivity credit is allowed for the depleted state of the fuel. Studies have shown that the increased cask capacities that can be achieved with burnup credit offer both economic and risk incentives. The US Department of Energy is currently sponsoring a program to develop analysis methodologies and establish a new generation of spent fuel casks using the principle of burnup credit. The key difference in this new approach is the necessity to accurately predict the isotopic composition of the spent fuel. ORIGEN-S was selected to satisfy this requirement because of the flexibility and user-friendly input offered via its usage in the Standardized Computer Analyses for Licensing and Evaluation (SCALE) code system. Specifically, through the Shielding Analysis Sequence 2H (SAS2H), ORIGEN-S is linked with cross-section processing codes and one-dimensional transport analyses to produce problem-specific cross-section data for the point-depletion calculation. The utility code COUPLE facilitates updating basic cross-section and fission-yield data for the calculations. This paper describes the fundamental role fulfilled by ORIGEN-S in the development of the analysis methodology, validation of the methods, definition of criticality safety margins and other licensing considerations in the design of a new generation of spent fuel casks. Particular emphasis is given to the performance of ORIGEN-S in comparisons with measurements of irradiated fuel compositions and in predicting isotopics for use in the calculation of reactor restart critical configurations that are performed as a part of the validation process

  8. Optical code division multiple access secure communications systems with rapid reconfigurable polarization shift key user code

    Science.gov (United States)

    Gao, Kaiqiang; Wu, Chongqing; Sheng, Xinzhi; Shang, Chao; Liu, Lanlan; Wang, Jian

    2015-09-01

    An optical code division multiple access (OCDMA) secure communications system scheme with rapid reconfigurable polarization shift key (Pol-SK) bipolar user code is proposed and demonstrated. Compared to fix code OCDMA, by constantly changing the user code, the performance of anti-eavesdropping is greatly improved. The Pol-SK OCDMA experiment with a 10 Gchip/s user code and a 1.25 Gb/s user data of payload has been realized, which means this scheme has better tolerance and could be easily realized.

  9. Status of reactor core design code system in COSINE code package

    International Nuclear Information System (INIS)

    Chen, Y.; Yu, H.; Liu, Z.

    2014-01-01

    For self-reliance, COre and System INtegrated Engine for design and analysis (COSINE) code package is under development in China. In this paper, recent development status of the reactor core design code system (including the lattice physics code and the core simulator) is presented. The well-established theoretical models have been implemented. The preliminary verification results are illustrated. And some special efforts, such as updated theory models and direct data access application, are also made to achieve better software product. (author)

  10. Status of reactor core design code system in COSINE code package

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.; Yu, H.; Liu, Z., E-mail: yuhui@snptc.com.cn [State Nuclear Power Software Development Center, SNPTC, National Energy Key Laboratory of Nuclear Power Software (NEKLS), Beijiing (China)

    2014-07-01

    For self-reliance, COre and System INtegrated Engine for design and analysis (COSINE) code package is under development in China. In this paper, recent development status of the reactor core design code system (including the lattice physics code and the core simulator) is presented. The well-established theoretical models have been implemented. The preliminary verification results are illustrated. And some special efforts, such as updated theory models and direct data access application, are also made to achieve better software product. (author)

  11. Burnup effects on criticality, breeding and safety of 1,000 MWe gas-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki; Ohta, Fumio

    1977-12-01

    Burnup characteristics of 1,000 MWe, PuO 2 - UO 2 fuelled helium-cooled fast breeder reactor have been studied concerning criticality, breeding and safety. A 26-energy group cross-section set produced from ENDF/B-3 was used. Criticality and breeding were studied with two-dimensional burnup code APOLLO and 4-energy group cross-section set generated by collapsing the mentioned cross-section set. Safety aspects such as Doppler reactivity effect, coolant-depressurisation and steam-ingression reactivity effect were studied with multi-dimensional diffusion theory code CITATION and perturbation theory code PERKY, as well as the 26-energy group cross-section set. The following were revealed: (1) The reactivity swing over a year's irradiation is merely 1.5% ΔK/K. This small swing may permit relatively long fuel dwelling in GCFR and , thus, the frequency of outages for refuelling can be minimised. (2) The surplus fissile plutonium over a year's irradiation is about 360 Kg, and the system doubling time is about 9 years. The GCFR studied has excellent breeding, compared with those in PuO 2 -UO 2 fuelled LMFBR and other GCFRs. (3) The coolant-depressurisation reactivity effect becomes more positive with burnup. This is not so serious as the sodium-void reactivity effect of LMFBR. (4) In the start-up core, the steam-ingression reactivity effect due to steam ingression to the core and blanket from the secondary coolant system becomes positive at certain steam density (0.02gr/cc) and this positive effect increases with steam density. With advance of burnup, however, the effect becomes negative, this increasing with steam density. After all, the steam ingression is no hazard in operation of GCFR since the reactivity effect is negative in the equilibrium state. (auth.)

  12. Burnup dependence of coolant void reactivity for ACR-1000 cell

    International Nuclear Information System (INIS)

    Le Tellier, R.; Marleau, G.; Hebert, A.; Roubstov, D.; Altiparmakov, D.; Irish, D.

    2008-01-01

    The Advanced Candu Reactor (ACR-1000) is light water cooled, fueled with enriched uranium and has a smaller lattice pitch than the Candu-6. As a result, the neutronic behavior of the ACR-1000 cell is expected to be somewhat different from that of the Candu-6 leading to a negative coolant void reactivity (CVR). Here we evaluate the CVR for the ACR-1000 cell using the lattice code DRAGON and compare our results with those obtained using the code WIMS-AECL. The differences observed between these two codes for the burnup dependence of the CVR is mainly explained in terms of the specific cell leakage model used by both codes. (authors)

  13. On Analyzing LDPC Codes over Multiantenna MC-CDMA System

    Directory of Open Access Journals (Sweden)

    S. Suresh Kumar

    2014-01-01

    Full Text Available Multiantenna multicarrier code-division multiple access (MC-CDMA technique has been attracting much attention for designing future broadband wireless systems. In addition, low-density parity-check (LDPC code, a promising near-optimal error correction code, is also being widely considered in next generation communication systems. In this paper, we propose a simple method to construct a regular quasicyclic low-density parity-check (QC-LDPC code to improve the transmission performance over the precoded MC-CDMA system with limited feedback. Simulation results show that the coding gain of the proposed QC-LDPC codes is larger than that of the Reed-Solomon codes, and the performance of the multiantenna MC-CDMA system can be greatly improved by these QC-LDPC codes when the data rate is high.

  14. Joint design of QC-LDPC codes for coded cooperation system with joint iterative decoding

    Science.gov (United States)

    Zhang, Shunwai; Yang, Fengfan; Tang, Lei; Ejaz, Saqib; Luo, Lin; Maharaj, B. T.

    2016-03-01

    In this paper, we investigate joint design of quasi-cyclic low-density-parity-check (QC-LDPC) codes for coded cooperation system with joint iterative decoding in the destination. First, QC-LDPC codes based on the base matrix and exponent matrix are introduced, and then we describe two types of girth-4 cycles in QC-LDPC codes employed by the source and relay. In the equivalent parity-check matrix corresponding to the jointly designed QC-LDPC codes employed by the source and relay, all girth-4 cycles including both type I and type II are cancelled. Theoretical analysis and numerical simulations show that the jointly designed QC-LDPC coded cooperation well combines cooperation gain and channel coding gain, and outperforms the coded non-cooperation under the same conditions. Furthermore, the bit error rate performance of the coded cooperation employing jointly designed QC-LDPC codes is better than those of random LDPC codes and separately designed QC-LDPC codes over AWGN channels.

  15. SCALE Code System 6.2.1

    Energy Technology Data Exchange (ETDEWEB)

    Rearden, Bradley T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jessee, Matthew Anderson [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministic and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.

  16. SCALE Code System 6.2.2

    Energy Technology Data Exchange (ETDEWEB)

    Rearden, Bradley T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jessee, Matthew Anderson [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    The SCALE Code System is a widely used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor physics, radiation shielding, radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including 3 deterministic and 3 Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE’s graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results. SCALE 6.2 represents one of the most comprehensive revisions in the history of SCALE, providing several new capabilities and significant improvements in many existing features.

  17. SCALE Code System 6.2.1

    International Nuclear Information System (INIS)

    Rearden, Bradley T.; Jessee, Matthew Anderson

    2016-01-01

    The SCALE Code System is a widely-used modeling and simulation suite for nuclear safety analysis and design that is developed, maintained, tested, and managed by the Reactor and Nuclear Systems Division (RNSD) of Oak Ridge National Laboratory (ORNL). SCALE provides a comprehensive, verified and validated, user-friendly tool set for criticality safety, reactor and lattice physics, radiation shielding, spent fuel and radioactive source term characterization, and sensitivity and uncertainty analysis. Since 1980, regulators, licensees, and research institutions around the world have used SCALE for safety analysis and design. SCALE provides an integrated framework with dozens of computational modules including three deterministic and three Monte Carlo radiation transport solvers that are selected based on the desired solution strategy. SCALE includes current nuclear data libraries and problem-dependent processing tools for continuous-energy (CE) and multigroup (MG) neutronics and coupled neutron-gamma calculations, as well as activation, depletion, and decay calculations. SCALE includes unique capabilities for automated variance reduction for shielding calculations, as well as sensitivity and uncertainty analysis. SCALE's graphical user interfaces assist with accurate system modeling, visualization of nuclear data, and convenient access to desired results.

  18. Propagation of cross section uncertainties in combined Monte Carlo neutronics and burnup calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kuijper, J.C.; Oppe, J.; Klein Meulekamp, R.; Koning, H. [NRG - Fuels, Actinides and Isotopes group, Petten (Netherlands)

    2005-07-01

    Some years ago a methodology was developed at NRG for the calculation of 'density-to-density' and 'one-group cross section-to-density' sensitivity matrices and covariance matrices for final nuclide densities for burnup schemes consisting of multiple sets of flux/spectrum and burnup calculations. The applicability of the methodology was then demonstrated by calculations of BR3 MOX pin irradiation experiments employing multi-group cross section uncertainty data from the EAF4 data library. A recent development is the extension of this methodology to enable its application in combination with the OCTOPUS-MCNP-FISPACT/ORIGEN Monte Carlo burnup scheme. This required some extensions to the sensitivity matrix calculation tool CASEMATE. The extended methodology was applied on the 'HTR Plutonium Cell Burnup Benchmark' to calculate the uncertainties (covariances) in the final densities, as far as these uncertainties are caused by uncertainties in cross sections. Up to 600 MWd/kg these uncertainties are larger than the differences between the code systems. However, it should be kept in mind that the calculated uncertainties are based on EAF4 uncertainty data. It is not exactly clear on beforehand what a proper set of associated (MCNP) cross sections and covariances would yield in terms of final uncertainties in calculated densities. This will be investigated, by the same formalism, once these data becomes available. It should be noted that the studies performed up till the present date are mainly concerned with the influence of uncertainties in cross sections. The influence of uncertainties in the decay constants, although included in the formalism, is not considered further. Also the influence of other uncertainties (such as -geometrical- modelling approximations) has been left out of consideration for the time being. (authors)

  19. Propagation of cross section uncertainties in combined Monte Carlo neutronics and burnup calculations

    International Nuclear Information System (INIS)

    Kuijper, J.C.; Oppe, J.; Klein Meulekamp, R.; Koning, H.

    2005-01-01

    Some years ago a methodology was developed at NRG for the calculation of 'density-to-density' and 'one-group cross section-to-density' sensitivity matrices and covariance matrices for final nuclide densities for burnup schemes consisting of multiple sets of flux/spectrum and burnup calculations. The applicability of the methodology was then demonstrated by calculations of BR3 MOX pin irradiation experiments employing multi-group cross section uncertainty data from the EAF4 data library. A recent development is the extension of this methodology to enable its application in combination with the OCTOPUS-MCNP-FISPACT/ORIGEN Monte Carlo burnup scheme. This required some extensions to the sensitivity matrix calculation tool CASEMATE. The extended methodology was applied on the 'HTR Plutonium Cell Burnup Benchmark' to calculate the uncertainties (covariances) in the final densities, as far as these uncertainties are caused by uncertainties in cross sections. Up to 600 MWd/kg these uncertainties are larger than the differences between the code systems. However, it should be kept in mind that the calculated uncertainties are based on EAF4 uncertainty data. It is not exactly clear on beforehand what a proper set of associated (MCNP) cross sections and covariances would yield in terms of final uncertainties in calculated densities. This will be investigated, by the same formalism, once these data becomes available. It should be noted that the studies performed up till the present date are mainly concerned with the influence of uncertainties in cross sections. The influence of uncertainties in the decay constants, although included in the formalism, is not considered further. Also the influence of other uncertainties (such as -geometrical- modelling approximations) has been left out of consideration for the time being. (authors)

  20. Verification of the burn-up of spent fuel assemblies by means of the Consulha containment/surveillance system

    International Nuclear Information System (INIS)

    Daniel, G.; Gourlez, P.

    1991-01-01

    CONSULHA is a containment/surveillance system which has been developed as part of the French Support Programme for the IAEA Safeguards in cooperation with EURATOM and was designed to meet the IAEA EURATOM requirements for the verification of nuclear materials. This system will make it possible to count movements and verify irradiation of spent fuel assemblies in industrial facilities such as reprocessing plants and nuclear reactors

  1. Next generation Zero-Code control system UI

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Developing ergonomic user interfaces for control systems is challenging, especially during machine upgrade and commissioning where several small changes may suddenly be required. Zero-code systems, such as *Inspector*, provide agile features for creating and maintaining control system interfaces. More so, these next generation Zero-code systems bring simplicity and uniformity and brake the boundaries between Users and Developers. In this talk we present *Inspector*, a CERN made Zero-code application development system, and we introduce the major differences and advantages of using Zero-code control systems to develop operational UI.

  2. Variable-length code construction for incoherent optical CDMA systems

    Science.gov (United States)

    Lin, Jen-Yung; Jhou, Jhih-Syue; Wen, Jyh-Horng

    2007-04-01

    The purpose of this study is to investigate the multirate transmission in fiber-optic code-division multiple-access (CDMA) networks. In this article, we propose a variable-length code construction for any existing optical orthogonal code to implement a multirate optical CDMA system (called as the multirate code system). For comparison, a multirate system where the lower-rate user sends each symbol twice is implemented and is called as the repeat code system. The repetition as an error-detection code in an ARQ scheme in the repeat code system is also investigated. Moreover, a parallel approach for the optical CDMA systems, which is proposed by Marić et al., is also compared with other systems proposed in this study. Theoretical analysis shows that the bit error probability of the proposed multirate code system is smaller than other systems, especially when the number of lower-rate users is large. Moreover, if there is at least one lower-rate user in the system, the multirate code system accommodates more users than other systems when the error probability of system is set below 10 -9.

  3. Optimization of TRU burnup in modular helium reactor

    International Nuclear Information System (INIS)

    Yonghee, Kim; Venneri, F.

    2007-01-01

    An optimization study of a single-pass TRU (transuranic) deep-burn (DB) has been performed for a block-type MHR (Modular Helium Reactor) proposed by General Atomics. Assuming a future equilibrium scenario of advanced LWRs, a high-burnup TRU vector is considered: 50 GWD/MTU and 5-year cooling. For 3-D equilibrium cores, the performance analysis is done by using a continuous energy Monte Carlo depletion code MCCARD. The core optimization is performed from the viewpoints of the core configuration, fuel management, TRISO fuel specification, and neutron spectrum. With regard to core configuration, two annular cores are investigated in terms of the neutron economy. A conventional radial shuffling scheme of fuel blocks is compared with an axial block shuffling strategy in terms of the fuel burnup and core power distributions. The impact of the kernel size of TRISO fuel is evaluated and a diluted kernel, instead of a conventional concentrated kernel, is introduced to maximize the TRU burnup by reducing the self-shielding effects of TRISO fuels. A higher graphite density is evaluated in terms of the fuel burnup. In addition, it is shown that the core power distribution can be effectively controlled by zoning of the packing fraction of TRISO fuels. We also have shown that a long-cycle DB-MHR core can be designed by using a small batch size for fuel reloading, at the expense of a marginal decrease of the TRU discharge burnup. Depending on the fuel management scheme, fuel specifications, and core parameters, the TRU burnup in an optimized DB-MHR core is over 60% in a single-pass irradiation campaign. (authors)

  4. A Robust Cross Coding Scheme for OFDM Systems

    NARCIS (Netherlands)

    Shao, X.; Slump, Cornelis H.

    2010-01-01

    In wireless OFDM-based systems, coding jointly over all the sub-carriers simultaneously performs better than coding separately per sub-carrier. However, the joint coding is not always optimal because its achievable channel capacity (i.e. the maximum data rate) is inversely proportional to the

  5. High burnup MOX fuel assembly

    International Nuclear Information System (INIS)

    Blanpain, P.; Brunel, L.

    1999-01-01

    From the outset, the MOX product was required to have the same performance as UO 2 in terms of burnup and operational flexibility. In fact during the first years the UO 2 managements could not be applied to MOX. The changeover to an AFA 2G type fuel allowed an improvement in NPP operational flexibility. The move to the AFA 3G design fuel will enable an increase in the burnup of the MOX assemblies to the level of the UO 2 ones ('MOX Parity' project). But the FRAMATOME fuel development objective does not stop at the obtaining of parity between the current MOX and UO 2 products: this parity must remain guaranteed and the MOX managements must evolve in the same way as the UO 2 managements. The goal of the MOX product development programmes underway with COGEMA and the CEA is the demonstration over the next 10 years of a fuel capable of reaching burnups of 70 GWD/T. The research programmes focus on the fission gas release aspect, with three issues explored: optimization of pellet microstructures and validation in experimental reactor ; build-up of experience feedback from fission gas release at elevated burnups in commercial reactors, both for current and experimental products; adaptation and qualification of the design models and tools, over the ranges and for the products concerned. The product arising from these development programmes should be offered on the market around 2010. While meeting safety requirements, it will cater for the needs of the utilities in terms of product reliability, personnel dosimetry and kWh output costs (increase in burnup, NPP maneuverability and availability, minimization of process waste). (authors)

  6. MELCOR Accident Consequence Code System (MACCS)

    International Nuclear Information System (INIS)

    Jow, H.N.; Sprung, J.L.; Ritchie, L.T.; Rollstin, J.A.; Chanin, D.I.

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previously used CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. Volume I, the User's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems. Volume II, the Model Description, describes the underlying models that are implemented in the code, and Volume III, the Programmer's Reference Manual, describes the code's structure and database management. 59 refs., 14 figs., 15 tabs

  7. MELCOR Accident Consequence Code System (MACCS)

    International Nuclear Information System (INIS)

    Rollstin, J.A.; Chanin, D.I.; Jow, H.N.

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previously used CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projections, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. Volume I, the User's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems. Volume II, the Model Description, describes the underlying models that are implemented in the code, and Volume III, the Programmer's Reference Manual, describes the code's structure and database management

  8. MELCOR Accident Consequence Code System (MACCS)

    Energy Technology Data Exchange (ETDEWEB)

    Jow, H.N.; Sprung, J.L.; Ritchie, L.T. (Sandia National Labs., Albuquerque, NM (USA)); Rollstin, J.A. (GRAM, Inc., Albuquerque, NM (USA)); Chanin, D.I. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (USA))

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previously used CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. Volume I, the User's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems. Volume II, the Model Description, describes the underlying models that are implemented in the code, and Volume III, the Programmer's Reference Manual, describes the code's structure and database management. 59 refs., 14 figs., 15 tabs.

  9. Variable code gamma ray imaging system

    International Nuclear Information System (INIS)

    Macovski, A.; Rosenfeld, D.

    1979-01-01

    A gamma-ray source distribution in the body is imaged onto a detector using an array of apertures. The transmission of each aperture is modulated using a code such that the individual views of the source through each aperture can be decoded and separated. The codes are chosen to maximize the signal to noise ratio for each source distribution. These codes determine the photon collection efficiency of the aperture array. Planar arrays are used for volumetric reconstructions and circular arrays for cross-sectional reconstructions. 14 claims

  10. Channel coding in the space station data system network

    Science.gov (United States)

    Healy, T.

    1982-01-01

    A detailed discussion of the use of channel coding for error correction, privacy/secrecy, channel separation, and synchronization is presented. Channel coding, in one form or another, is an established and common element in data systems. No analysis and design of a major new system would fail to consider ways in which channel coding could make the system more effective. The presence of channel coding on TDRS, Shuttle, the Advanced Communication Technology Satellite Program system, the JSC-proposed Space Operations Center, and the proposed 30/20 GHz Satellite Communication System strongly support the requirement for the utilization of coding for the communications channel. The designers of the space station data system have to consider the use of channel coding.

  11. Recent developments in the Los Alamos radiation transport code system

    International Nuclear Information System (INIS)

    Forster, R.A.; Parsons, K.

    1997-01-01

    A brief progress report on updates to the Los Alamos Radiation Transport Code System (LARTCS) for solving criticality and fixed-source problems is provided. LARTCS integrates the Diffusion Accelerated Neutral Transport (DANT) discrete ordinates codes with the Monte Carlo N-Particle (MCNP) code. The LARCTS code is being developed with a graphical user interface for problem setup and analysis. Progress in the DANT system for criticality applications include a two-dimensional module which can be linked to a mesh-generation code and a faster iteration scheme. Updates to MCNP Version 4A allow statistical checks of calculated Monte Carlo results

  12. Module type plant system dynamics analysis code (MSG-COPD). Code manual

    International Nuclear Information System (INIS)

    Sakai, Takaaki

    2002-11-01

    MSG-COPD is a module type plant system dynamics analysis code which involves a multi-dimensional thermal-hydraulics calculation module to analyze pool type of fast breeder reactors. Explanations of each module and the methods for the input data are described in this code manual. (author)

  13. Biases and statistical errors in Monte Carlo burnup calculations: an unbiased stochastic scheme to solve Boltzmann/Bateman coupled equations

    International Nuclear Information System (INIS)

    Dumonteil, E.; Diop, C.M.

    2011-01-01

    External linking scripts between Monte Carlo transport codes and burnup codes, and complete integration of burnup capability into Monte Carlo transport codes, have been or are currently being developed. Monte Carlo linked burnup methodologies may serve as an excellent benchmark for new deterministic burnup codes used for advanced systems; however, there are some instances where deterministic methodologies break down (i.e., heavily angularly biased systems containing exotic materials without proper group structure) and Monte Carlo burn up may serve as an actual design tool. Therefore, researchers are also developing these capabilities in order to examine complex, three-dimensional exotic material systems that do not contain benchmark data. Providing a reference scheme implies being able to associate statistical errors to any neutronic value of interest like k(eff), reaction rates, fluxes, etc. Usually in Monte Carlo, standard deviations are associated with a particular value by performing different independent and identical simulations (also referred to as 'cycles', 'batches', or 'replicas'), but this is only valid if the calculation itself is not biased. And, as will be shown in this paper, there is a bias in the methodology that consists of coupling transport and depletion codes because Bateman equations are not linear functions of the fluxes or of the reaction rates (those quantities being always measured with an uncertainty). Therefore, we have to quantify and correct this bias. This will be achieved by deriving an unbiased minimum variance estimator of a matrix exponential function of a normal mean. The result is then used to propose a reference scheme to solve Boltzmann/Bateman coupled equations, thanks to Monte Carlo transport codes. Numerical tests will be performed with an ad hoc Monte Carlo code on a very simple depletion case and will be compared to the theoretical results obtained with the reference scheme. Finally, the statistical error propagation

  14. SRAC-95, Cell Calculation with Burnup, Fuel Management for Thermal Reactors

    International Nuclear Information System (INIS)

    Tsuchihashi, K.; Ishiguro, Y.; Kaneko, K.; Ido, M.

    2004-01-01

    1 - Description of program or function: General neutronics calculation including cell calculation with burn-up, core calculation for any type of thermal reactor. Core burn-up calculation and fuel management by an auxiliary code. 2 - Method of solution: Collision probability method, 1D and 2D Sn for cell calculation; 1D, 2D and 3D diffusion for core calculation. 3 - Restrictions on the complexity of the problem: 20 regions for a continuous energy resonance absorption calculation and 16 steps for cell burn-up

  15. Discharge Burnup Evaluation of Natural Uranium Loaded CANFLEX-43 Fuel Bundle

    International Nuclear Information System (INIS)

    Roh, Gyu Hong; Kim, Yong Hee; Kim, Won Young; Park, Joo Hwan

    2009-11-01

    Using WIMS-AECL code, which is 2-dimensional lattice core used in CANDU physics calculation, the discharge burnup of the natural uranium loaded CANFLEX-43 fuel bundle was evaluated by comparing the discharge burnup of standard 37 element fuel bundle. When the discharge burnup of the standard 37 element fuel is 7,200 MWd/MTU, that of the CANFLEX 43 fuel bundle was evaluated as 7,077 MWd/MTU, by applying the same lattice conditions for both fuel bundles

  16. The research on burnup characteristic of doping burnable poison in PWR

    International Nuclear Information System (INIS)

    Qiang Shenglong; Qin Dong; Chai Xiaoming; Yao Dong

    2014-01-01

    In PWR core design, burnable poisons are usually used for reactive compensation and power flatten. The choice of burnable poisons and how to match burnup would be the key-points for a long-life core design. We study the burnup character of doping burnable poisons (such as natural element, manual nuclide and soluble boron) in the PWR by the core burnup code MOI based on Monte Carlo method. The results show that Hf, Er and Eu doping burnable poison would be applicable for the nuclear design research on the long-life PWR core. (authors)

  17. The application of LDPC code in MIMO-OFDM system

    Science.gov (United States)

    Liu, Ruian; Zeng, Beibei; Chen, Tingting; Liu, Nan; Yin, Ninghao

    2018-03-01

    The combination of MIMO and OFDM technology has become one of the key technologies of the fourth generation mobile communication., which can overcome the frequency selective fading of wireless channel, increase the system capacity and improve the frequency utilization. Error correcting coding introduced into the system can further improve its performance. LDPC (low density parity check) code is a kind of error correcting code which can improve system reliability and anti-interference ability, and the decoding is simple and easy to operate. This paper mainly discusses the application of LDPC code in MIMO-OFDM system.

  18. Technical development on burn-up credit for spent LWR fuels

    International Nuclear Information System (INIS)

    Nakahara, Yoshinori; Suyama, Kenya; Suzaki, Takenori

    2000-10-01

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled 'Technical Development on Criticality Safety Management for Spent LWR Fuels'. Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burn-up and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report. (author)

  19. Technical Development on Burn-up Credit for Spent LWR Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gauld, I.C.

    2001-12-26

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled ''Technical Development on Criticality Safety Management for Spent LWR Fuels.'' Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burnup and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report.

  20. Technical development on burn-up credit for spent LWR fuels

    Energy Technology Data Exchange (ETDEWEB)

    Nakahara, Yoshinori; Suyama, Kenya; Suzaki, Takenori [eds.] [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-10-01

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled 'Technical Development on Criticality Safety Management for Spent LWR Fuels'. Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burn-up and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report. (author)

  1. MARS code manual volume I: code structure, system models, and solution methods

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Kim, Kyung Doo; Bae, Sung Won; Jeong, Jae Jun; Lee, Seung Wook; Hwang, Moon Kyu; Yoon, Churl

    2010-02-01

    Korea Advanced Energy Research Institute (KAERI) conceived and started the development of MARS code with the main objective of producing a state-of-the-art realistic thermal hydraulic systems analysis code with multi-dimensional analysis capability. MARS achieves this objective by very tightly integrating the one dimensional RELAP5/MOD3 with the multi-dimensional COBRA-TF codes. The method of integration of the two codes is based on the dynamic link library techniques, and the system pressure equation matrices of both codes are implicitly integrated and solved simultaneously. In addition, the Equation-Of-State (EOS) for the light water was unified by replacing the EOS of COBRA-TF by that of the RELAP5. This theory manual provides a complete list of overall information of code structure and major function of MARS including code architecture, hydrodynamic model, heat structure, trip / control system and point reactor kinetics model. Therefore, this report would be very useful for the code users. The overall structure of the manual is modeled on the structure of the RELAP5 and as such the layout of the manual is very similar to that of the RELAP. This similitude to RELAP5 input is intentional as this input scheme will allow minimum modification between the inputs of RELAP5 and MARS3.1. MARS3.1 development team would like to express its appreciation to the RELAP5 Development Team and the USNRC for making this manual possible

  2. Basic concept of common reactor physics code systems. Final report of working party on common reactor physics code systems (CCS)

    International Nuclear Information System (INIS)

    2004-03-01

    A working party was organized for two years (2001-2002) on common reactor physics code systems under the Research Committee on Reactor Physics of JAERI. This final report is compilation of activity of the working party on common reactor physics code systems during two years. Objectives of the working party is to clarify basic concept of common reactor physics code systems to improve convenience of reactor physics code systems for reactor physics researchers in Japan on their various field of research and development activities. We have held four meetings during 2 years, investigated status of reactor physics code systems and innovative software technologies, and discussed basic concept of common reactor physics code systems. (author)

  3. Los Alamos radiation transport code system on desktop computing platforms

    International Nuclear Information System (INIS)

    Briesmeister, J.F.; Brinkley, F.W.; Clark, B.A.; West, J.T.

    1990-01-01

    The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. These codes were originally developed many years ago and have undergone continual improvement. With a large initial effort and continued vigilance, the codes are easily portable from one type of hardware to another. The performance of scientific work-stations (SWS) has evolved to the point that such platforms can be used routinely to perform sophisticated radiation transport calculations. As the personal computer (PC) performance approaches that of the SWS, the hardware options for desk-top radiation transport calculations expands considerably. The current status of the radiation transport codes within the LARTCS is described: MCNP, SABRINA, LAHET, ONEDANT, TWODANT, TWOHEX, and ONELD. Specifically, the authors discuss hardware systems on which the codes run and present code performance comparisons for various machines

  4. MELCOR Accident Consequence Code System (MACCS)

    International Nuclear Information System (INIS)

    Chanin, D.I.; Sprung, J.L.; Ritchie, L.T.; Jow, Hong-Nian

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previous CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. This document, Volume 1, the Users's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems

  5. MELCOR Accident Consequence Code System (MACCS)

    Energy Technology Data Exchange (ETDEWEB)

    Chanin, D.I. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (USA)); Sprung, J.L.; Ritchie, L.T.; Jow, Hong-Nian (Sandia National Labs., Albuquerque, NM (USA))

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previous CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. This document, Volume 1, the Users's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems.

  6. Use of burnup credit for transportation and storage

    International Nuclear Information System (INIS)

    Sanders, T.L.; Ewing, R.I.; Lake, W.H.

    1991-01-01

    Burnup credit is the application of the effects of fuel burnup to nuclear criticality design. When burnup credit is considered in the design of storage facilities and transportation casks for spent fuel, the objectives are to reduce the requirements for storage space and to increase the payload of casks with acceptable nuclear criticality safety margins. The spent-fuel carrying capacities of previous-generation transport casks have been limited primarily by requirements to remove heat and/or to provide shielding. Shielding and heat transfer requirements for casks designed to transport older spent fuel with longer decay times are reduced significantly. Thus a considerable weight margin is available to the designer for increasing the payload capacity. One method to achieve an increase in capacity is to reduce fuel assembly spacing. The amount of reduction in assembly spacing is limited by criticality and fuel support structural concerns. The optimum fuel assembly spacing provides the maximum cask loading within a basket that has adequate criticality control and sufficient structural integrity for regulatory accident scenarios. The incorporation of burnup credit in cask designs could result in considerable benefits in the transport of spent fuel. The acceptance of burnup credit for the design of transport casks depends on the resolution of system safety issues and the uncertainties that affect the determination of criticality safety margins. The remainder of this report will examine these issues and the integrated approach under way to resolve them. 20 refs., 2 figs

  7. Calculation study of the WWER-440 fuel performance for extended burnup

    International Nuclear Information System (INIS)

    Kujal, J.; Pazdera, F.; Barta, O.

    1984-01-01

    The results of preliminary calculational study of extended burnup cycling schemes impact on WWER-440 fuel performance are presented. Two high burnup schemes were proposed with three and four cycles, resp. Comparison was made with three cycle reference case. The thermal mechanical analysis was performed with PIN and RELA codes. The values of rod internal pressure, fuel centerline temperatures and fuel-cladding gap are expressed as function of power history. (author)

  8. Calculational prediction of fuel burn-up for the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Nguyen Phuoc Lan; Do Quang Binh

    2016-01-01

    In this paper, the method of expanding operators and functions in the neutron diffusion equations as chains of time variable is used for calculation of fuel burn-up of the Dalat nuclear reactors. A computer code, named BURREF, programmed in language Fortran-77 running on IBM PC-AT, has been developed based on this method to predict the fuel burn-up of the Dalat reactor. Some results will be presented here. (author)

  9. Fission-gas release in fuel performing to extended burnups in Ontario Hydro nuclear generating stations

    International Nuclear Information System (INIS)

    Floyd, M.R.; Novak, J.; Truant, P.T.

    1992-06-01

    The average discharge burnup of CANDU fuel is about 200 MWh/kgU. A significant number of 37-element bundles have achieved burnups in excess of 400 MWh/kgU. Some of these bundles have experienced failures related to their extended operation. To date, hot-cell examinations have been performed on fuel elements from nine 37-element bundles irradiated in Bruce NGS-A that have burnups in the range of 300-800 MWh/kgU. 1 Most of these have declining power histories from peak powers of up to 59 kW/m. Fission-gas releases of up to 26% have been observed and exhibit a strong dependence on fuel power. This obscures any dependence on burnup. The extent of fission-gas release at extended burnups was not predicted by low-burnup code extrapolations. This is attributed primarily to a reduction in fuel thermal conductivity which results in elevated operating temperatures. Reduced conductivity is due, at least in part, to the buildup of fission products in the fuel matrix. Some evidence of hyperstoichiometry exists, although this needs to be further investigated along with any possible relation to CANLUB graphite coating behaviour and sheath oxidation. Residual tensile sheath strains of up to 2% have been observed and can be correlated with fuel power/fission-gas release. SCC 2 -related defects have been observed in the sheath and endcaps of elements from bundles experiencing declining power histories to burnups in excess of 500 MWh/kgU. This indicates that the current recommended burnup limit of 450 MWh/kgU is justified. SCC-related defects have also been observed in ramped bundles having burnups < 450 MWh/kgU. Hence, additional guidelines are in place for power ramping extended-burnup fuel

  10. Performance enhancement of optical code-division multiple-access systems using transposed modified Walsh code

    Science.gov (United States)

    Sikder, Somali; Ghosh, Shila

    2018-02-01

    This paper presents the construction of unipolar transposed modified Walsh code (TMWC) and analysis of its performance in optical code-division multiple-access (OCDMA) systems. Specifically, the signal-to-noise ratio, bit error rate (BER), cardinality, and spectral efficiency were investigated. The theoretical analysis demonstrated that the wavelength-hopping time-spreading system using TMWC was robust against multiple-access interference and more spectrally efficient than systems using other existing OCDMA codes. In particular, the spectral efficiency was calculated to be 1.0370 when TMWC of weight 3 was employed. The BER and eye pattern for the designed TMWC were also successfully obtained using OptiSystem simulation software. The results indicate that the proposed code design is promising for enhancing network capacity.

  11. Coded diffraction system in X-ray crystallography using a boolean phase coded aperture approximation

    Science.gov (United States)

    Pinilla, Samuel; Poveda, Juan; Arguello, Henry

    2018-03-01

    Phase retrieval is a problem present in many applications such as optics, astronomical imaging, computational biology and X-ray crystallography. Recent work has shown that the phase can be better recovered when the acquisition architecture includes a coded aperture, which modulates the signal before diffraction, such that the underlying signal is recovered from coded diffraction patterns. Moreover, this type of modulation effect, before the diffraction operation, can be obtained using a phase coded aperture, just after the sample under study. However, a practical implementation of a phase coded aperture in an X-ray application is not feasible, because it is computationally modeled as a matrix with complex entries which requires changing the phase of the diffracted beams. In fact, changing the phase implies finding a material that allows to deviate the direction of an X-ray beam, which can considerably increase the implementation costs. Hence, this paper describes a low cost coded X-ray diffraction system based on block-unblock coded apertures that enables phase reconstruction. The proposed system approximates the phase coded aperture with a block-unblock coded aperture by using the detour-phase method. Moreover, the SAXS/WAXS X-ray crystallography software was used to simulate the diffraction patterns of a real crystal structure called Rhombic Dodecahedron. Additionally, several simulations were carried out to analyze the performance of block-unblock approximations in recovering the phase, using the simulated diffraction patterns. Furthermore, the quality of the reconstructions was measured in terms of the Peak Signal to Noise Ratio (PSNR). Results show that the performance of the block-unblock phase coded apertures approximation decreases at most 12.5% compared with the phase coded apertures. Moreover, the quality of the reconstructions using the boolean approximations is up to 2.5 dB of PSNR less with respect to the phase coded aperture reconstructions.

  12. Ultrasonic measurement of high burn-up fuel elastic properties

    International Nuclear Information System (INIS)

    Laux, D.; Despaux, G.; Augereau, F.; Attal, J.; Gatt, J.; Basini, V.

    2006-01-01

    The ultrasonic method developed for the evaluation of high burn-up fuel elastic properties is presented hereafter. The objective of the method is to provide data for fuel thermo-mechanical calculation codes in order to improve industrial nuclear fuel and materials or to design new reactor components. The need for data is especially crucial for high burn-up fuel modelling for which the fuel mechanical properties are essential and for which a wide range of experiments in MTR reactors and high burn-up commercial reactor fuel examinations have been included in programmes worldwide. To contribute to the acquisition of this knowledge the LAIN activity is developing in two directions. First one is development of an ultrasonic focused technique adapted to active materials study. This technique was used few years ago in the EdF laboratory in Chinon to assess the ageing of materials under irradiation. It is now used in a hot cell at ITU Karlsruhe to determine the elastic moduli of high burnup fuels from 0 to 110 GWd/tU. Some of this work is presented here. The second on going programme is related to the qualification of acoustic sensors in nuclear environments, which is of a great interest for all the methods, which work, in a hostile nuclear environment

  13. Noncoherent Spectral Optical CDMA System Using 1D Active Weight Two-Code Keying Codes

    Directory of Open Access Journals (Sweden)

    Bih-Chyun Yeh

    2016-01-01

    Full Text Available We propose a new family of one-dimensional (1D active weight two-code keying (TCK in spectral amplitude coding (SAC optical code division multiple access (OCDMA networks. We use encoding and decoding transfer functions to operate the 1D active weight TCK. The proposed structure includes an optical line terminal (OLT and optical network units (ONUs to produce the encoding and decoding codes of the proposed OLT and ONUs, respectively. The proposed ONU uses the modified cross-correlation to remove interferences from other simultaneous users, that is, the multiuser interference (MUI. When the phase-induced intensity noise (PIIN is the most important noise, the modified cross-correlation suppresses the PIIN. In the numerical results, we find that the bit error rate (BER for the proposed system using the 1D active weight TCK codes outperforms that for two other systems using the 1D M-Seq codes and 1D balanced incomplete block design (BIBD codes. The effective source power for the proposed system can achieve −10 dBm, which has less power than that for the other systems.

  14. Use of computer codes for system reliability analysis

    International Nuclear Information System (INIS)

    Sabek, M.; Gaafar, M.; Poucet, A.

    1989-01-01

    This paper gives a summary of studies performed at the JRC, ISPRA on the use of computer codes for complex systems analysis. The computer codes dealt with are: CAFTS-SALP software package, FRACTIC, FTAP, computer code package RALLY, and BOUNDS. Two reference case studies were executed by each code. The probabilistic results obtained, as well as the computation times are compared. The two cases studied are the auxiliary feedwater system of a 1300 MW PWR reactor and the emergency electrical power supply system. (author)

  15. Use of computer codes for system reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sabek, M.; Gaafar, M. (Nuclear Regulatory and Safety Centre, Atomic Energy Authority, Cairo (Egypt)); Poucet, A. (Commission of the European Communities, Ispra (Italy). Joint Research Centre)

    1989-01-01

    This paper gives a summary of studies performed at the JRC, ISPRA on the use of computer codes for complex systems analysis. The computer codes dealt with are: CAFTS-SALP software package, FRACTIC, FTAP, computer code package RALLY, and BOUNDS. Two reference case studies were executed by each code. The probabilistic results obtained, as well as the computation times are compared. The two cases studied are the auxiliary feedwater system of a 1300 MW PWR reactor and the emergency electrical power supply system. (author).

  16. Generalized optical code construction for enhanced and Modified Double Weight like codes without mapping for SAC-OCDMA systems

    Science.gov (United States)

    Kumawat, Soma; Ravi Kumar, M.

    2016-07-01

    Double Weight (DW) code family is one of the coding schemes proposed for Spectral Amplitude Coding-Optical Code Division Multiple Access (SAC-OCDMA) systems. Modified Double Weight (MDW) code for even weights and Enhanced Double Weight (EDW) code for odd weights are two algorithms extending the use of DW code for SAC-OCDMA systems. The above mentioned codes use mapping technique to provide codes for higher number of users. A new generalized algorithm to construct EDW and MDW like codes without mapping for any weight greater than 2 is proposed. A single code construction algorithm gives same length increment, Bit Error Rate (BER) calculation and other properties for all weights greater than 2. Algorithm first constructs a generalized basic matrix which is repeated in a different way to produce the codes for all users (different from mapping). The generalized code is analysed for BER using balanced detection and direct detection techniques.

  17. Burnup measurements of leader fuel elements

    International Nuclear Information System (INIS)

    Henriquez, C; Navarro, G; Pereda, C

    2000-01-01

    Some time ago the CCHEN authorities decided to produce a set of 50 low enrichment fuel elements. These elements were produced in the PEC (Fuel Elements Plant), located at CCHEN offices in Lo Aguirre. These new fuel elements have basically the same geometrical characteristics of previous ones, which were British and made with raw material from the U.S. The principal differences between our fuel elements and the British ones is the density of fissile material, U-235, which was increased to compensate the reduction in enrichment. Last year, the Fuel Elements Plant (PEC) delivered the shipment's first four (4) fuel elements, called leaders, to the RECH1. A test element was delivered too, and the complete set was introduced into the reactor's nucleus, following the normal routine, but performing a special follow-up on their behavior inside the nucleus. This experimental element has only one outside fuel plate, and the remaining (15) structural plates are aluminum. In order to study the burnup, the test element was taken out of the nucleus, in mid- November 1999, and left to decay until June 2000, when it was moved to the laboratory (High Activity Cell), to start the burnup measurements, with a gamma spectroscopy system. This work aims to show the results of these measurements and in addition to meet the following objectives: (a) Visual test of the plate's general condition; (b) Sipping test of fission products; (c) Study of burn-up distribution in the plate; (d) Check and improve the calculus algorithm; (e) Comparison of the results obtained from the spectroscopy with the ones from neutron calculus

  18. Uncertainty and sensitivity analysis using probabilistic system assessment code. 1

    International Nuclear Information System (INIS)

    Honma, Toshimitsu; Sasahara, Takashi.

    1993-10-01

    This report presents the results obtained when applying the probabilistic system assessment code under development to the PSACOIN Level 0 intercomparison exercise organized by the Probabilistic System Assessment Code User Group in the Nuclear Energy Agency (NEA) of OECD. This exercise is one of a series designed to compare and verify probabilistic codes in the performance assessment of geological radioactive waste disposal facilities. The computations were performed using the Monte Carlo sampling code PREP and post-processor code USAMO. The submodels in the waste disposal system were described and coded with the specification of the exercise. Besides the results required for the exercise, further additional uncertainty and sensitivity analyses were performed and the details of these are also included. (author)

  19. 14 CFR Sec. 1-4 - System of accounts coding.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false System of accounts coding. Sec. 1-4 Section... General Accounting Provisions Sec. 1-4 System of accounts coding. (a) A four digit control number is assigned for each balance sheet and profit and loss account. Each balance sheet account is numbered...

  20. Performance Analysis of Optical Code Division Multiplex System

    Science.gov (United States)

    Kaur, Sandeep; Bhatia, Kamaljit Singh

    2013-12-01

    This paper presents the Pseudo-Orthogonal Code generator for Optical Code Division Multiple Access (OCDMA) system which helps to reduce the need of bandwidth expansion and improve spectral efficiency. In this paper we investigate the performance of multi-user OCDMA system to achieve data rate more than 1 Tbit/s.

  1. Validation issues for depletion and criticality analysis in burnup credit

    International Nuclear Information System (INIS)

    Parks, C.V.; Broadhead, B.L.; Dehart, M.D.; Gauld, I.C.

    2001-01-01

    This paper reviews validation issues associated with implementation of burnup credit in transport, dry storage, and disposal. The issues discussed are ones that have been identified by one or more constituents of the United States technical community (national laboratories, licensees, and regulators) that have been exploring the use of burnup credit. There is not necessarily agreement on the importance of the various issues, which sometimes is what creates the issue. The broad issues relate to the paucity of available experimental data (radiochemical assays and critical experiments) covering the full range and characteristics of spent nuclear fuel in away-from-reactor systems. The paper will also introduce recent efforts initiated at Oak Ridge National Laboratory (ORNL) to provide technical information that can help better assess the value of different experiments. The focus of the paper is on experience with validation issues related to use of burnup credit for transport and dry storage applications. (author)

  2. An empirical formulation to describe the evolution of the high burnup structure

    Energy Technology Data Exchange (ETDEWEB)

    Lemes, Martín; Soba, Alejandro; Denis, Alicia

    2015-01-15

    In the present work the behavior of fuel pellets for LWR power reactors in the high burnup range (average burnup higher than about 45 MWd/kgU) is analyzed. For extended irradiation periods, a considerable Pu concentration is reached in the pellet periphery (rim zone), that contributes to local burnup. Gradually, a new microstructure develops in that ring, characterized by small grains and large pores as compared with those of the original material. In this region Xe is absent from the solid lattice (although it continues to be dissolved in the rest of the pellet). The porous microstructure in the pellet edge causes local changes in the mechanical and thermal properties, thus affecting the overall fuel behavior. It is generally accepted that the evolution of porosity in the high burnup structure (HBS) is determinant of the retention capacity of the fission gases rejected from the fuel matrix. This is the reason why, during the latest years a considerable effort has been devoted to characterizing the parameters that influence porosity. Although the mechanisms governing the microstructural transformation have not been completely elucidated yet, some empirical expressions can be given, and this is the intention of the present work, for representing the main physical parameters. Starting from several works published in the open literature, some mathematical expressions were developed to describe the behavior and progress of porosity at local burnup values ranging from 60 to 300 MWd/kgU. The analysis includes the interactions of different orders between pores, the growth of the pore radius by capturing vacancies, the evolution of porosity, pore number density and overpressure within the closed pores, the inventory of fission gas dissolved in the matrix and retained in the pores. The model is mathematically expressed by a system of non-linear differential equations. In the present work, results of this calculation scheme are compared with experimental data available in

  3. Data exchange between zero dimensional code and physics platform in the CFETR integrated system code

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Guoliang [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Shi, Nan [Institute of Plasma Physics, Chinese Academy of Sciences, No. 350 Shushanhu Road, Hefei (China); Zhou, Yifu; Mao, Shifeng [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Jian, Xiang [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronics Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, Jiale [Institute of Plasma Physics, Chinese Academy of Sciences, No. 350 Shushanhu Road, Hefei (China); Liu, Li; Chan, Vincent [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Ye, Minyou, E-mail: yemy@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China)

    2016-11-01

    Highlights: • The workflow of the zero dimensional code and the multi-dimension physics platform of CFETR integrated system codeis introduced. • The iteration process among the codes in the physics platform. • The data transfer between the zero dimensionalcode and the physical platform, including data iteration and validation, and justification for performance parameters.. - Abstract: The China Fusion Engineering Test Reactor (CFETR) integrated system code contains three parts: a zero dimensional code, a physics platform and an engineering platform. We use the zero dimensional code to identify a set of preliminary physics and engineering parameters for CFETR, which is used as input to initiate multi-dimension studies using the physics and engineering platform for design, verification and validation. Effective data exchange between the zero dimensional code and the physical platform is critical for the optimization of CFETR design. For example, in evaluating the impact of impurity radiation on core performance, an open field line code is used to calculate the impurity transport from the first-wall boundary to the pedestal. The impurity particle in the pedestal are used as boundary conditions in a transport code for calculating impurity transport in the core plasma and the impact of core radiation on core performance. Comparison of the results from the multi-dimensional study to those from the zero dimensional code is used to further refine the controlled radiation model. The data transfer between the zero dimensional code and the physical platform, including data iteration and validation, and justification for performance parameters will be presented in this paper.

  4. RELAP5/MOD3 code manual: Code structure, system models, and solution methods. Volume 1

    International Nuclear Information System (INIS)

    1995-08-01

    The RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents, and operational transients, such as anticipated transient without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling, approach is used that permits simulating a variety of thermal hydraulic systems. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater systems. RELAP5/MOD3 code documentation is divided into seven volumes: Volume I provides modeling theory and associated numerical schemes

  5. Burnup measurements with the Los Alamos fork detector

    International Nuclear Information System (INIS)

    Bosler, G.E.; Rinard, P.M.

    1991-01-01

    The fork detector system can determine the burnup of spent-fuel assemblies. It is a transportable instrument that can be mounted permanently in a spent-fuel pond near a loading area for shipping casks, or be attached to the storage pond bridge for measurements on partially raised spent-fuel assemblies. The accuracy of the predicted burnup has been demonstrated to be as good as 2% from measurements on assemblies in the United States and other countries. Instruments have also been developed at other facilities throughout the world using the same or different techniques, but with similar accuracies. 14 refs., 2 figs., 2 tabs

  6. Isotopic biases for actinide-only burnup credit

    International Nuclear Information System (INIS)

    Rahimi, M.; Lancaster, D.; Hoeffer, B.; Nichols, M.

    1997-01-01

    The primary purpose of this paper is to present the new methodology for establishing bias and uncertainty associated with isotopic prediction in spent fuel assemblies for burnup credit analysis. The analysis applies to the design of criticality control systems for spent fuel casks. A total of 54 spent fuel samples were modeled and analyzed using the Shielding Analyses Sequence (SAS2H). Multiple regression analysis and a trending test were performed to develop isotopic correction factors for 10 actinide burnup credit isotopes. 5 refs., 1 tab

  7. Evaluation of the HTTR criticality and burnup calculations with continuous-energy and multigroup cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Min-Han; Wang, Jui-Yu [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China); Sheu, Rong-Jiun, E-mail: rjsheu@mx.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China); Department of Engineering System and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China); Liu, Yen-Wan Hsueh [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China); Department of Engineering System and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China)

    2014-05-01

    The High Temperature Engineering Test Reactor (HTTR) in Japan is a helium-cooled graphite-moderated reactor designed and operated for the future development of high-temperature gas-cooled reactors. Two detailed full-core models of HTTR have been established by using SCALE6 and MCNP5/X, respectively, to study its neutronic properties. Several benchmark problems were repeated first to validate the calculation models. Careful code-to-code comparisons were made to ensure that two calculation models are both correct and equivalent. Compared with experimental data, the two models show a consistent bias of approximately 20–30 mk overestimation in effective multiplication factor for a wide range of core states. Most of the bias could be related to the ENDF/B-VII.0 cross-section library or incomplete modeling of impurities in graphite. After that, a series of systematic analyses was performed to investigate the effects of cross sections on the HTTR criticality and burnup calculations, with special interest in the comparison between continuous-energy and multigroup results. Multigroup calculations in this study were carried out in 238-group structure and adopted the SCALE double-heterogeneity treatment for resonance self-shielding. The results show that multigroup calculations tend to underestimate the system eigenvalue by a constant amount of ∼5 mk compared to their continuous-energy counterparts. Further sensitivity studies suggest the differences between multigroup and continuous-energy results appear to be temperature independent and also insensitive to burnup effects.

  8. Evaluation of the HTTR criticality and burnup calculations with continuous-energy and multigroup cross sections

    International Nuclear Information System (INIS)

    Chiang, Min-Han; Wang, Jui-Yu; Sheu, Rong-Jiun; Liu, Yen-Wan Hsueh

    2014-01-01

    The High Temperature Engineering Test Reactor (HTTR) in Japan is a helium-cooled graphite-moderated reactor designed and operated for the future development of high-temperature gas-cooled reactors. Two detailed full-core models of HTTR have been established by using SCALE6 and MCNP5/X, respectively, to study its neutronic properties. Several benchmark problems were repeated first to validate the calculation models. Careful code-to-code comparisons were made to ensure that two calculation models are both correct and equivalent. Compared with experimental data, the two models show a consistent bias of approximately 20–30 mk overestimation in effective multiplication factor for a wide range of core states. Most of the bias could be related to the ENDF/B-VII.0 cross-section library or incomplete modeling of impurities in graphite. After that, a series of systematic analyses was performed to investigate the effects of cross sections on the HTTR criticality and burnup calculations, with special interest in the comparison between continuous-energy and multigroup results. Multigroup calculations in this study were carried out in 238-group structure and adopted the SCALE double-heterogeneity treatment for resonance self-shielding. The results show that multigroup calculations tend to underestimate the system eigenvalue by a constant amount of ∼5 mk compared to their continuous-energy counterparts. Further sensitivity studies suggest the differences between multigroup and continuous-energy results appear to be temperature independent and also insensitive to burnup effects

  9. Burnup credit implementation plan and preparation work at JAERI

    International Nuclear Information System (INIS)

    Nomura, Y.; Itahara, K.

    2001-01-01

    Application of the burnup credit concept is considered to be very effective to the design of spent fuel transport and storage facilities. This technology is all the more important when considering construction of the intermediate spent fuel storage facility, which is to be commissioned by 2010 due to increasing amount of accumulated spent fuel in Japan. Until reprocessing and recycling all the spent fuel arising, they will be stored as an energy stockpile until such time as they can be reprocessed. On the other hand, the burnup credit has been partly taken into account for the spent fuel management at Rokkasho Reprocessing Plant, which is to be commissioned in 2005. They have just finished the calibration tests for their burnup monitor with initially accepted several spent fuel assemblies. Because this monitoring system is employed with highly conservative safety margin, it is considered necessary to develop the more rational and simplified method to confirm burnup of spent fuel. A research program has been instituted to improve the present method employed at the spent fuel management system for the Spent Fuel Receiving and Storage Pool of Rokkasho Reprocessing Plant. This program is jointly performed by Japan Nuclear Fuel Limited (JNFL) and JAERI.This presentation describes the current status of spent fuel accumulation discharged from PWR and BWR in Japan and the recent incentive to introduce burnup credit into design of spent fuel storage and transport facilities. This also includes the content of the joint research program initiated by JNFL and JAERI. The relevant study has been continued at JAERI. The results by these research programs will be included in the Burnup Credit Guide Original Version compiled by JAERI. (author)

  10. LOLA SYSTEM: A code block for nodal PWR simulation. Part. I - Simula-3 Code

    Energy Technology Data Exchange (ETDEWEB)

    Aragones, J M; Ahnert, C; Gomez Santamaria, J; Rodriguez Olabarria, I

    1985-07-01

    Description of the theory and users manual of the SIMULA-3 code, which is part of the core calculation system by nodal theory in one group, called LOLA SYSTEM. SIMULA-3 is the main module of the system, it uses a modified nodal theory, with interface leakages equivalent to the diffusion theory. (Author) 4 refs.

  11. LOLA SYSTEM: A code block for nodal PWR simulation. Part. I - Simula-3 Code

    International Nuclear Information System (INIS)

    Aragones, J. M.; Ahnert, C.; Gomez Santamaria, J.; Rodriguez Olabarria, I.

    1985-01-01

    Description of the theory and users manual of the SIMULA-3 code, which is part of the core calculation system by nodal theory in one group, called LOLA SYSTEM. SIMULA-3 is the main module of the system, it uses a modified nodal theory, with interface leakages equivalent to the diffusion theory. (Author) 4 refs

  12. Performance optimization of spectral amplitude coding OCDMA system using new enhanced multi diagonal code

    Science.gov (United States)

    Imtiaz, Waqas A.; Ilyas, M.; Khan, Yousaf

    2016-11-01

    This paper propose a new code to optimize the performance of spectral amplitude coding-optical code division multiple access (SAC-OCDMA) system. The unique two-matrix structure of the proposed enhanced multi diagonal (EMD) code and effective correlation properties, between intended and interfering subscribers, significantly elevates the performance of SAC-OCDMA system by negating multiple access interference (MAI) and associated phase induce intensity noise (PIIN). Performance of SAC-OCDMA system based on the proposed code is thoroughly analyzed for two detection techniques through analytic and simulation analysis by referring to bit error rate (BER), signal to noise ratio (SNR) and eye patterns at the receiving end. It is shown that EMD code while using SDD technique provides high transmission capacity, reduces the receiver complexity, and provides better performance as compared to complementary subtraction detection (CSD) technique. Furthermore, analysis shows that, for a minimum acceptable BER of 10-9 , the proposed system supports 64 subscribers at data rates of up to 2 Gbps for both up-down link transmission.

  13. Parameterized representation of macroscopic cross section in the PWR fuel element considering burn-up cycles

    International Nuclear Information System (INIS)

    Belo, Thiago F.; Fiel, Joao Claudio B.

    2015-01-01

    Nuclear reactor core analysis involves neutronic modeling and the calculations require problem dependent nuclear data generated with few neutron energy groups, as for instance the neutron cross sections. The methods used to obtain these problem-dependent cross sections, in the reactor calculations, generally uses nuclear computer codes that require a large processing time and computational memory, making the process computationally very expensive. Presently, analysis of the macroscopic cross section, as a function of nuclear parameters, has shown a very distinct behavior that cannot be represented by simply using linear interpolation. Indeed, a polynomial representation is more adequate for the data parameterization. To provide the cross sections of rapidly and without the dependence of complex systems calculations, this work developed a set of parameterized cross sections, based on the Tchebychev polynomials, by fitting the cross sections as a function of nuclear parameters, which include fuel temperature, moderator temperature and density, soluble boron concentration, uranium enrichment, and the burn-up. In this study is evaluated the problem-dependent about fission, scattering, total, nu-fission, capture, transport and absorption cross sections for a typical PWR fuel element reactor, considering burn-up cycle. The analysis was carried out with the SCALE 6.1 code package. The results of comparison with direct calculations with the SCALE code system and also the test using project parameters, such as the temperature coefficient of reactivity and fast fission factor, show excellent agreements. The differences between the cross-section parameterization methodology and the direct calculations based on the SCALE code system are less than 0.03 percent. (author)

  14. Parameterized representation of macroscopic cross section in the PWR fuel element considering burn-up cycles

    Energy Technology Data Exchange (ETDEWEB)

    Belo, Thiago F.; Fiel, Joao Claudio B., E-mail: thiagofbelo@hotmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Nuclear reactor core analysis involves neutronic modeling and the calculations require problem dependent nuclear data generated with few neutron energy groups, as for instance the neutron cross sections. The methods used to obtain these problem-dependent cross sections, in the reactor calculations, generally uses nuclear computer codes that require a large processing time and computational memory, making the process computationally very expensive. Presently, analysis of the macroscopic cross section, as a function of nuclear parameters, has shown a very distinct behavior that cannot be represented by simply using linear interpolation. Indeed, a polynomial representation is more adequate for the data parameterization. To provide the cross sections of rapidly and without the dependence of complex systems calculations, this work developed a set of parameterized cross sections, based on the Tchebychev polynomials, by fitting the cross sections as a function of nuclear parameters, which include fuel temperature, moderator temperature and density, soluble boron concentration, uranium enrichment, and the burn-up. In this study is evaluated the problem-dependent about fission, scattering, total, nu-fission, capture, transport and absorption cross sections for a typical PWR fuel element reactor, considering burn-up cycle. The analysis was carried out with the SCALE 6.1 code package. The results of comparison with direct calculations with the SCALE code system and also the test using project parameters, such as the temperature coefficient of reactivity and fast fission factor, show excellent agreements. The differences between the cross-section parameterization methodology and the direct calculations based on the SCALE code system are less than 0.03 percent. (author)

  15. Full Core Burn-up Calculation at JRR-3 with MVP-BURN

    International Nuclear Information System (INIS)

    Komeda, Masao; Yamamoto, Kazuyoshi; Kusunoki, Tsuyoshi

    2008-01-01

    Research reactors use a burnable poison to suppress an excess reactivity in the beginning of reactor lifetime. The JRR-3 (Japan Research Reactor No.3) has used cadmium wires of radius 0.02 cm as a burnable poison. This report describes burn-up calculations of plate fuel models and full core models with MVP-BURN, which is a burn-up calculation code using Monte Carlo method and has been developed in JAEA (Japan Atomic Energy Agency). As the results of calculations of plate models, between a model composed of one burn-up region along the radius direction and a model composed of a few burn-up regions along the radius direction, the effective absorption cross section of 113 Cd has had different tendency on reaching approximate 40. day (10000 MWd/t). And as results of calculations of full core model, it has been indicated that k eff is almost same till approximate 80. day (22000 MWd/t) between a model composed of one burn-up region along the vertical direction and a model composed of a few burn-up regions along the vertical direction. However difference of 113 Cd burn-up becomes pronounced and each k eff makes a difference after 80. day. (authors)

  16. Analysis on burnup step effect for evaluating reactor criticality and fuel breeding ratio

    International Nuclear Information System (INIS)

    Saputra, Geby; Purnama, Aditya Rizki; Permana, Sidik; Suzuki, Mitsutoshi

    2014-01-01

    Criticality condition of the reactors is one of the important factors for evaluating reactor operation and nuclear fuel breeding ratio is another factor to show nuclear fuel sustainability. This study analyzes the effect of burnup steps and cycle operation step for evaluating the criticality condition of the reactor as well as the performance of nuclear fuel breeding or breeding ratio (BR). Burnup step is performed based on a day step analysis which is varied from 10 days up to 800 days and for cycle operation from 1 cycle up to 8 cycles reactor operations. In addition, calculation efficiency based on the variation of computer processors to run the analysis in term of time (time efficiency in the calculation) have been also investigated. Optimization method for reactor design analysis which is used a large fast breeder reactor type as a reference case was performed by adopting an established reactor design code of JOINT-FR. The results show a criticality condition becomes higher for smaller burnup step (day) and for breeding ratio becomes less for smaller burnup step (day). Some nuclides contribute to make better criticality when smaller burnup step due to individul nuclide half-live. Calculation time for different burnup step shows a correlation with the time consuming requirement for more details step calculation, although the consuming time is not directly equivalent with the how many time the burnup time step is divided

  17. Analyzing the BWR rod drop accident in high-burnup cores

    International Nuclear Information System (INIS)

    Diamond, D.J.; Neymotin, L.; Kohut, P.

    1995-01-01

    This study was undertaken for the US Nuclear Regulatory Commission to determine the fuel enthalpy during a rod drop accident (RDA) for cores with high burnup fuel. The calculations were done with the RAMONA-4B code which models the core with 3-dimensional neutron kinetics and multiple parallel coolant channels. The calculations were done with a model for a BWR/4 with fuel bundles having burnups up to 30 GWd/t and also with a model with bundle burnups to 60 GWd/t. This paper also discusses potential sources of uncertainty in calculations with high burnup fuel. One source is the ''rim'' effect which is the extra large peaking of the power distribution at the surface of the pellet. This increases the uncertainty in reactor physics and heat conduction models that assume that the energy deposition has a less peaked spatial distribution. Two other sources of uncertainty are the result of the delayed neutron fraction decreasing with burnup and the positive moderator temperature feedback increasing with burnup. Since these effects tend to increase the severity of the event, an RDA calculation for high burnup fuel will underpredict the fuel enthalpy if the effects are not properly taken into account. Other sources of uncertainty that are important come from the initial conditions chosen for the RDA. This includes the initial control rod pattern as well as the initial thermal-hydraulic conditions

  18. Determination of enrichment of recycle uranium fuels for different burnup values

    International Nuclear Information System (INIS)

    Zabunoglu, Okan H.

    2008-01-01

    Uranium (U) recovered from spent LWR fuels by reprocessing, which contains small amounts of U-236, is to be enriched before being re-irradiated as the recycle U. During the enrichment of recovered U in U-235, the mass fraction of U-236 also increases. Since the existence of U-236 in the recycle U has a negative effect on neutron economy, a greater enrichment of U-235 in the recycle U is required for reaching the same burnup as can be reached by the fresh U fuel. Two burnup values play the most important role in determining the enrichment of recycle U: (1) discharge burnup of spent fuel from which the recycle U is obtained and (2) desired discharge burnup of the recycle U fuel. A step-by-step procedure for calculating the enrichment of the recycle U as a function of these two burnup values is introduced. The computer codes MONTEBURNS and ORIGEN-S are made use of and a three-component (U-235, U-236, U-238) enrichment scheme is applied for calculating the amount of U-236 in producing the recycle U from the recovered U. As was aimed, the resulting expression is simple enough for quick/hand calculations of the enrichment of the recycle U for any given discharge burnup of spent fuel and for any desired discharge burnup of the recycle U fuel, most accurately within the range of 33,000-50,000 MWd/tonU

  19. Simulation of High Burnup Structure in UO2 Using Potts Model

    International Nuclear Information System (INIS)

    Oh, Jae Yong; Koo, Yang Hyun; Lee, Byung Ho

    2009-01-01

    The evolution of a high burnup structure (HBS) in a light water reactor (LWR) UO 2 fuel was simulated using the Potts model. A simulation system for the Potts model was defined as a two-dimensional triangular lattice, for which the stored energy was calculated from both the irradiation damage of the UO 2 matrix and the formation of a grain boundary in the newly recrystallized small HBS grains. In the simulation, the evolution probability of the HBS is calculated by the system energy difference between before and after the Monte Carlo simulation step. The simulated local threshold burnup for the HBS formation was 62 MWd/kgU, consistent with the observed threshold burnup range of 60-80 MWd/kgU. The simulation revealed that the HBS was heterogeneously nucleated on the intergranular bubbles in the proximity of the threshold burnup and then additionally on the intragranular bubbles for a burnup above 86 MWd/kgU. In addition, the simulation carried out under a condition of no bubbles indicated that the bubbles played an important role in lowering the threshold burnup for the HBS formation, thereby enabling the HBS to be observed in the burnup range of conventional high burnup fuels

  20. Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes

    International Nuclear Information System (INIS)

    Baratta, A.J.

    1997-01-01

    To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts and engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together

  1. Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes

    Energy Technology Data Exchange (ETDEWEB)

    Baratta, A.J.

    1997-07-01

    To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts and engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together.

  2. Comparison of analysis methods for burnup credit applications

    International Nuclear Information System (INIS)

    Sanders, T.L.; Brady, M.C.; Renier, J.P.; Parks, C.V.

    1989-01-01

    The current approach used for the development and certification of spent fuel storage and transport casks requires an assumption of fresh fuel isotopics in the criticality safety analysis. However, it has been shown that there is a considerable reactivity reduction when the isotopics representative of the depleted (or burned) fuel are used in a criticality analysis. Thus, by taking credit for the burned state of the fuel (i.e., burnup credit), a cask designer could achieve a significant increase in payload. Accurate prediction of k eff for spent fuel arrays depends both on the criticality safety analysis and the prediction of the spent fuel isotopics via a depletion analysis. Spent fuel isotopics can be obtained from detailed multidimensional reactor analyses, e.g. the code PDQ, or from point reactor burnup models. These reactor calculations will help verify the adequacy of the isotopics and determine Δk eff biases for various analysis assumptions (with and without fission products, actinide absorbers, burnable poison rods, etc.). New software developed to interface PDQ multidimensional isotopics with KENO V.a reactor and cask models is described. Analyses similar to those performed for the reactor cases are carried out with a representative burnup credit cask model using the North Anna fuel. This paper presents the analysis methodology that has been developed for evaluating the physics issues associated with burnup credit. It is applicable in the validation and characterization of fuel isotopics as well as in determining the influence of various analysis assumptions in terms of δk eff . The methodology is used in the calculation of reactor restart criticals and analysis of a typical burnup credit cask

  3. Locally Minimum Storage Regenerating Codes in Distributed Cloud Storage Systems

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Wei Luo; Wei Liang; Xiangyang Liu; Xiaodai Dong

    2017-01-01

    In distributed cloud storage sys-tems, inevitably there exist multiple node fail-ures at the same time. The existing methods of regenerating codes, including minimum storage regenerating (MSR) codes and mini-mum bandwidth regenerating (MBR) codes, are mainly to repair one single or several failed nodes, unable to meet the repair need of distributed cloud storage systems. In this paper, we present locally minimum storage re-generating (LMSR) codes to recover multiple failed nodes at the same time. Specifically, the nodes in distributed cloud storage systems are divided into multiple local groups, and in each local group (4, 2) or (5, 3) MSR codes are constructed. Moreover, the grouping method of storage nodes and the repairing process of failed nodes in local groups are studied. The-oretical analysis shows that LMSR codes can achieve the same storage overhead as MSR codes. Furthermore, we verify by means of simulation that, compared with MSR codes, LMSR codes can reduce the repair bandwidth and disk I/O overhead effectively.

  4. Study of nuclear computer code maintenance and management system

    International Nuclear Information System (INIS)

    Ryu, Chang Mo; Kim, Yeon Seung; Eom, Heung Seop; Lee, Jong Bok; Kim, Ho Joon; Choi, Young Gil; Kim, Ko Ryeo

    1989-01-01

    Software maintenance is one of the most important problems since late 1970's.We wish to develop a nuclear computer code system to maintenance and manage KAERI's nuclear software. As a part of this system, we have developed three code management programs for use on CYBER and PC systems. They are used in systematic management of computer code in KAERI. The first program is embodied on the CYBER system to rapidly provide information on nuclear codes to the users. The second and the third programs were embodied on the PC system for the code manager and for the management of data in korean language, respectively. In the requirement analysis, we defined each code, magnetic tape, manual and abstract information data. In the conceptual design, we designed retrieval, update, and output functions. In the implementation design, we described the technical considerations of database programs, utilities, and directions for the use of databases. As a result of this research, we compiled the status of nuclear computer codes which belonged KAERI until September, 1988. Thus, by using these three database programs, we could provide the nuclear computer code information to the users more rapidly. (Author)

  5. Burnup credit activities in the United States

    International Nuclear Information System (INIS)

    Lake, W.H.; Thomas, D.A.; Doering, T.W.

    2001-01-01

    This report covers progress in burnup credit activities that have occurred in the United States of America (USA) since the International Atomic Energy Agency's (IAEA's) Advisory Group Meeting (AGM) on Burnup Credit was convened in October 1997. The Proceeding of the AGM were issued in April 1998 (IAEA-TECDOC-1013, April 1998). The three applications of the use of burnup credit that are discussed in this report are spent fuel storage, spent fuel transportation, and spent fuel disposal. (author)

  6. SURE: a system of computer codes for performing sensitivity/uncertainty analyses with the RELAP code

    International Nuclear Information System (INIS)

    Bjerke, M.A.

    1983-02-01

    A package of computer codes has been developed to perform a nonlinear uncertainty analysis on transient thermal-hydraulic systems which are modeled with the RELAP computer code. Using an uncertainty around the analyses of experiments in the PWR-BDHT Separate Effects Program at Oak Ridge National Laboratory. The use of FORTRAN programs running interactively on the PDP-10 computer has made the system very easy to use and provided great flexibility in the choice of processing paths. Several experiments simulating a loss-of-coolant accident in a nuclear reactor have been successfully analyzed. It has been shown that the system can be automated easily to further simplify its use and that the conversion of the entire system to a base code other than RELAP is possible

  7. Application of burnup credit concept to transport

    International Nuclear Information System (INIS)

    Futamura, Yoshiaki; Nakagome, Yoshihiro.

    1994-01-01

    For the design and safety assessment of the casks for transporting spent fuel, the fuel contained in them has been assumed to be new fuel. The reason is, it was difficult to evaluate the variation of the reactivity of fuel, and the research on the affecting factors and the method of measuring burnup were not much advanced. Recently, high burnup fuel has been adopted, and initial degree of enrichment rose. The research has been advanced for pursuing the economy of the casks for spent fuel, and burnup credit has become applicable to their design and safety assessment. As the result, the containing capacity increases by about 20%. When burnup credit is considered, it is necessary to confirm accurately the burnup of spent fuel. The burnup dependence of the concentration of fissile substances and neutron emissivity, the coolant void dependence of the concentration of fissile substances, and the relation of neutron multiplication rate with initial degree of enrichment or burnup are discussed. The conceptual design of casks considering burnup credit and its assessment, the merit, problem and the countermeasures to it when burnup credit is introduced are described. (K.I.)

  8. Phenomena and parameters important to burnup credit

    International Nuclear Information System (INIS)

    Parks, C.V.; Dehart, M.D.; Wagner, J.C.

    2001-01-01

    Since the mid-1980s, a significant number of studies have been directed at understanding the phenomena and parameters important to implementation of burnup credit in out-of-reactor applications involving pressurized-water- reactor (PWR) spent fuel. The efforts directed at burnup credit involving boiling-water-reactor (BWR) spent fuel have been more limited. This paper reviews the knowledge and experience gained from work performed in the United States and other countries in the study of burnup credit. Relevant physics and analysis phenomenon are identified, and an assessment of their importance to burnup credit implementation for transport and dry cask storage is given. (author)

  9. OPAL- the in-core fuel management code system for WWER reactors

    International Nuclear Information System (INIS)

    Krysl, V.; Mikolas, P.; Sustek, J.; Svarny, J.; Vlachovsky, K.

    2002-01-01

    Fuel management optimization is a complex problem namely for WWER reactors, which at present are utilizing burnable poisons (BP) to great extent. In this paper, first the concept and methodologies of a fuel management system for WWER 440 (NPP Dukovany) and NPP WWER 1000 (NPP Temelin) under development in Skoda JS a.s. are described and followed by some practical applications. The objective of this advanced system is to minimize fuel cost by preserving all safety constraints and margins. Future enhancements of the system will allow is it to perform fuel management optimization in the multi-cycle mode. The general objective functions of the system are the maximization of EOC reactivity, the maximization of discharge burnup, the minimization of fresh fuel inventory / or the minimization of feed enrichment, the minimization of the BP inventory. There are also safety related constraints, in which the minimization of power peaking plays a dominant role. The core part of the system requires meeting the major objective: maximizing the EOC Keff for a given fuel cycle length and consists of four coupled calculation steps. The first is the calculation of a Loading Priority Scheme (LPS). which is used to rank the core positions in terms of assembly Kinf values. In the second step the Haling power distribution is calculated and by using fuel shuffle and/or enrichment splitting algorithms and heuristic rules the core pattern is modified to meet core constraints. In this second step a directive/evolutionary algorithm with expert rules based optimization code is used. The optimal BP assignment is alternatively considered to be a separate third step of the procedure. In the fourth step the core is depleted in normal up to 3D pin wise level using the BP distribution developed in step three and meeting all constraints is checked. One of the options of this optimization system is expert friendly interactive mode (Authors)

  10. Code system to compute radiation dose in human phantoms

    International Nuclear Information System (INIS)

    Ryman, J.C.; Cristy, M.; Eckerman, K.F.; Davis, J.L.; Tang, J.S.; Kerr, G.D.

    1986-01-01

    Monte Carlo photon transport code and a code using Monte Carlo integration of a point kernel have been revised to incorporate human phantom models for an adult female, juveniles of various ages, and a pregnant female at the end of the first trimester of pregnancy, in addition to the adult male used earlier. An analysis code has been developed for deriving recommended values of specific absorbed fractions of photon energy. The computer code system and calculational method are described, emphasizing recent improvements in methods

  11. MCOR - Monte Carlo depletion code for reference LWR calculations

    Energy Technology Data Exchange (ETDEWEB)

    Puente Espel, Federico, E-mail: fup104@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States); Tippayakul, Chanatip, E-mail: cut110@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States); Ivanov, Kostadin, E-mail: kni1@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University (United States); Misu, Stefan, E-mail: Stefan.Misu@areva.com [AREVA, AREVA NP GmbH, Erlangen (Germany)

    2011-04-15

    Research highlights: > Introduction of a reference Monte Carlo based depletion code with extended capabilities. > Verification and validation results for MCOR. > Utilization of MCOR for benchmarking deterministic lattice physics (spectral) codes. - Abstract: The MCOR (MCnp-kORigen) code system is a Monte Carlo based depletion system for reference fuel assembly and core calculations. The MCOR code is designed as an interfacing code that provides depletion capability to the LANL Monte Carlo code by coupling two codes: MCNP5 with the AREVA NP depletion code, KORIGEN. The physical quality of both codes is unchanged. The MCOR code system has been maintained and continuously enhanced since it was initially developed and validated. The verification of the coupling was made by evaluating the MCOR code against similar sophisticated code systems like MONTEBURNS, OCTOPUS and TRIPOLI-PEPIN. After its validation, the MCOR code has been further improved with important features. The MCOR code presents several valuable capabilities such as: (a) a predictor-corrector depletion algorithm, (b) utilization of KORIGEN as the depletion module, (c) individual depletion calculation of each burnup zone (no burnup zone grouping is required, which is particularly important for the modeling of gadolinium rings), and (d) on-line burnup cross-section generation by the Monte Carlo calculation for 88 isotopes and usage of the KORIGEN libraries for PWR and BWR typical spectra for the remaining isotopes. Besides the just mentioned capabilities, the MCOR code newest enhancements focus on the possibility of executing the MCNP5 calculation in sequential or parallel mode, a user-friendly automatic re-start capability, a modification of the burnup step size evaluation, and a post-processor and test-matrix, just to name the most important. The article describes the capabilities of the MCOR code system; from its design and development to its latest improvements and further ameliorations. Additionally

  12. MCOR - Monte Carlo depletion code for reference LWR calculations

    International Nuclear Information System (INIS)

    Puente Espel, Federico; Tippayakul, Chanatip; Ivanov, Kostadin; Misu, Stefan

    2011-01-01

    Research highlights: → Introduction of a reference Monte Carlo based depletion code with extended capabilities. → Verification and validation results for MCOR. → Utilization of MCOR for benchmarking deterministic lattice physics (spectral) codes. - Abstract: The MCOR (MCnp-kORigen) code system is a Monte Carlo based depletion system for reference fuel assembly and core calculations. The MCOR code is designed as an interfacing code that provides depletion capability to the LANL Monte Carlo code by coupling two codes: MCNP5 with the AREVA NP depletion code, KORIGEN. The physical quality of both codes is unchanged. The MCOR code system has been maintained and continuously enhanced since it was initially developed and validated. The verification of the coupling was made by evaluating the MCOR code against similar sophisticated code systems like MONTEBURNS, OCTOPUS and TRIPOLI-PEPIN. After its validation, the MCOR code has been further improved with important features. The MCOR code presents several valuable capabilities such as: (a) a predictor-corrector depletion algorithm, (b) utilization of KORIGEN as the depletion module, (c) individual depletion calculation of each burnup zone (no burnup zone grouping is required, which is particularly important for the modeling of gadolinium rings), and (d) on-line burnup cross-section generation by the Monte Carlo calculation for 88 isotopes and usage of the KORIGEN libraries for PWR and BWR typical spectra for the remaining isotopes. Besides the just mentioned capabilities, the MCOR code newest enhancements focus on the possibility of executing the MCNP5 calculation in sequential or parallel mode, a user-friendly automatic re-start capability, a modification of the burnup step size evaluation, and a post-processor and test-matrix, just to name the most important. The article describes the capabilities of the MCOR code system; from its design and development to its latest improvements and further ameliorations

  13. Regulatory status of burnup credit for storage and transport of spent fuel in Germany

    International Nuclear Information System (INIS)

    Neuber, J.C.; Schweer, H.H.; Johann, H.G.

    2001-01-01

    This paper describes the regulatory status of burnup credit applications to pond storage and dry-cask transport and storage of spent fuel in Germany. Burnup credit for wet storage of LWR fuel at nuclear power plants has to comply with the newly developed safety standard DIN 25471. This standard establishes the safety requirements for burnup credit criticality safety analysis of LWR fuel storage ponds and gives guidance on meeting these requirements. Licensing evaluations of dry transport systems are based on the application of the IAEA Safety Standards Series No.ST-1. However, because of the fact that burnup credit for dry-cask transport becomes more and more inevitable due to increasing initial enrichment of the fuel, and because of the increasing importance of dry-cask storage in Germany, the necessity of giving regulatory guidance on applying burnup credit to dry-cask transport and storage is seen. (author)

  14. Cell verification of parallel burnup calculation program MCBMPI based on MPI

    International Nuclear Information System (INIS)

    Yang Wankui; Liu Yaoguang; Ma Jimin; Wang Guanbo; Yang Xin; She Ding

    2014-01-01

    The parallel burnup calculation program MCBMPI was developed. The program was modularized. The parallel MCNP5 program MCNP5MPI was employed as neutron transport calculation module. And a composite of three solution methods was used to solve burnup equation, i.e. matrix exponential technique, TTA analytical solution, and Gauss Seidel iteration. MPI parallel zone decomposition strategy was concluded in the program. The program system only consists of MCNP5MPI and burnup subroutine. The latter achieves three main functions, i.e. zone decomposition, nuclide transferring and decaying, and data exchanging with MCNP5MPI. Also, the program was verified with the pressurized water reactor (PWR) cell burnup benchmark. The results show that it,s capable to apply the program to burnup calculation of multiple zones, and the computation efficiency could be significantly improved with the development of computer hardware. (authors)

  15. Fuel rod behaviour at high burnup WWER fuel cycles

    International Nuclear Information System (INIS)

    Medvedev, A.; Bogatyr, S.; Kouznetsov, V.; Khvostov, G.; Lagovsky; Korystin, L.; Poudov, V.

    2003-01-01

    The modernisation of WWER fuel cycles is carried out on the base of complete modelling and experimental justification of fuel rods up to 70 MWd/kgU. The modelling justification of the reliability of fuel rod and fuel rod with gadolinium is carried out with the use of certified START-3 code. START-3 code has a continuous experimental support. The thermophysical and strength reliability of WWER-440 fuel is justified for fuel rod and pellet burnups 65 MWd/kgU and 74 MWd/U, accordingly. Results of analysis are demonstrated by the example of uranium-gadolinium fuel assemblies of second generation under 5-year cycle with a portion of 6-year assemblies and by the example of successfully completed pilot operation of 5-year cycle fuel assemblies during 6 years at unit 3 of Kolskaja NPP. The thermophysical and strength reliability of WWER-1000 fuel is justified for a fuel rod burnup 66 MWd/kgU by the example of fuel operation under 4-year cycles and 6-year test operation of fuel assemblies at unit 1 of Kalininskaya NPP. By the example of 5-year cycle at Dukovany NPP Unit 2 it was demonstrated that WWER fuel rod of a burnup 58 MWd/kgU ensure reliable operation under load following conditions. The analysis has confirmed sufficient reserves of Russian fuel to implement program of JSC 'TVEL' in order to improve technical and economical parameters of WWER fuel cycles

  16. New burnup calculation of TRIGA IPR-R1 reactor

    International Nuclear Information System (INIS)

    Meireles, Sincler P. de; Campolina, Daniel de A.M.; Santos, Andre A. Campagnole dos; Menezes, Maria A.B.C.; Mesquita, Amir Z.

    2015-01-01

    The IPR-R1 TRIGA Mark I research reactor, located at the Nuclear Technology Development Center - CDTN, Belo Horizonte, Brazil, operates since 1960.The reactor is operating for more than fifty years and has a long history of operation. Determining the current composition of the fuel is very important to calculate various parameters. The reactor burnup calculation has been performed before, however, new techniques, methods, software and increase of the processing capacity of the new computers motivates new investigations to be performed. This work presents the evolution of effective multiplication constant and the results of burnup. This new model has a more detailed geometry with the introduction of the new devices, like the control rods and the samarium discs. This increase of materials in the simulation in burnup calculation was very important for results. For these series of simulations a more recently cross section library, ENDF/B-VII, was used. To perform the calculations two Monte Carlo particle transport code were used: Serpent and MCNPX. The results obtained from two codes are presented and compared with previous studies in the literature. (author)

  17. Development of the integrated system reliability analysis code MODULE

    International Nuclear Information System (INIS)

    Han, S.H.; Yoo, K.J.; Kim, T.W.

    1987-01-01

    The major components in a system reliability analysis are the determination of cut sets, importance measure, and uncertainty analysis. Various computer codes have been used for these purposes. For example, SETS and FTAP are used to determine cut sets; Importance for importance calculations; and Sample, CONINT, and MOCUP for uncertainty analysis. There have been problems when the codes run each other and the input and output are not linked, which could result in errors when preparing input for each code. The code MODULE was developed to carry out the above calculations simultaneously without linking input and outputs to other codes. MODULE can also prepare input for SETS for the case of a large fault tree that cannot be handled by MODULE. The flow diagram of the MODULE code is shown. To verify the MODULE code, two examples are selected and the results and computation times are compared with those of SETS, FTAP, CONINT, and MOCUP on both Cyber 170-875 and IBM PC/AT. Two examples are fault trees of the auxiliary feedwater system (AFWS) of Korea Nuclear Units (KNU)-1 and -2, which have 54 gates and 115 events, 39 gates and 92 events, respectively. The MODULE code has the advantage that it can calculate the cut sets, importances, and uncertainties in a single run with little increase in computing time over other codes and that it can be used in personal computers

  18. The JAERI code system for evaluation of BWR ECCS performance

    International Nuclear Information System (INIS)

    Kohsaka, Atsuo; Akimoto, Masayuki; Asahi, Yoshiro; Abe, Kiyoharu; Muramatsu, Ken; Araya, Fumimasa; Sato, Kazuo

    1982-12-01

    Development of respective computer code system of BWR and PWR for evaluation of ECCS has been conducted since 1973 considering the differences of the reactor cooling system, core structure and ECCS. The first version of the BWR code system, of which developmental work started earlier than that of the PWR, has been completed. The BWR code system is designed to provide computational tools to analyze all phases of LOCAs and to evaluate the performance of the ECCS including an ''Evaluation Model (EM)'' feature in compliance with the requirements of the current Japanese Evaluation Guideline of ECCS. The BWR code system could be used for licensing purpose, i.e. for ECCS performance evaluation or audit calculations to cross-examine the methods and results of applicants or vendors. The BWR code system presented in this report comprises several computer codes, each of which analyzes a particular phase of a LOCA or a system blowdown depending on a range of LOCAs, i.e. large and small breaks in a variety of locations in the reactor system. The system includes ALARM-B1, HYDY-B1 and THYDE-B1 for analysis of the system blowdown for various break sizes, THYDE-B-REFLOOD for analysis of the reflood phase and SCORCH-B2 for the calculation of the fuel assembl hot plane temperature. When the multiple codes are used to analyze a broad range of LOCA as stated above, it is very important to evaluate the adequacy and consistency between the codes used to cover an entire break spectrum. The system consistency together with the system performance are discussed for a large commercial BWR. (author)

  19. Burnup simulations of an inert matrix fuel using a two region, multigroup reactor physics model

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E. [Dept. of Mechanical Engineering, Univ. of Texas at Austin, 1 Univ. Place C2200, Austin, TX 78712 (United States); Deinert, M.; Bingham Cady, K. [Dept. of Theoretical and Applied Mechanics, Cornell Univ., Ithaca, NY 14853 (United States)

    2006-07-01

    Determining the time dependent concentration of isotopes in a nuclear reactor core is of fundamental importance to analysis of nuclear fuel cycles and the impact of spent fuels on long term storage facilities. We present a fast, conceptually simple tool for performing burnup calculations applicable to obtaining isotopic balances as a function of fuel burnup. The code (VBUDS: visualization, burnup, depletion and spectra) uses a two region, multigroup collision probability model to determine the energy dependent neutron flux and tracks the buildup and burnout of 24 actinides, as well as fission products. The model has been tested against benchmarked results for LWRs burning UOX and MOX, as well as MONTEBURNS simulations of zirconium oxide based IMF, all with strong fidelity. As an illustrative example, VBUDS burnup calculation results for an IMF fuel are presented in this paper. (authors)

  20. A computerized energy systems code and information library at Soreq

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, I; Shapira, M; Caner, D; Sapier, D [Israel Atomic Energy Commission, Yavne (Israel). Soreq Nuclear Research Center

    1996-12-01

    In the framework of the contractual agreement between the Ministry of Energy and Infrastructure and the Division of Nuclear Engineering of the Israel Atomic Energy Commission, both Soreq-NRC and Ben-Gurion University have agreed to establish, in 1991, a code center. This code center contains a library of computer codes and relevant data, with particular emphasis on nuclear power plant research and development support. The code center maintains existing computer codes and adapts them to the ever changing computing environment, keeps track of new code developments in the field of nuclear engineering, and acquires the most recent revisions of computer codes of interest. An attempt is made to collect relevant codes developed in Israel and to assure that proper documentation and application instructions are available. En addition to computer programs, the code center collects sample problems and international benchmarks to verify the codes and their applications to various areas of interest to nuclear power plant engineering and safety evaluation. Recently, the reactor simulation group at Soreq acquired, using funds provided by the Ministry of Energy and Infrastructure, a PC work station operating under a Linux operating system to give users of the library an easy on-line way to access resources available at the library. These resources include the computer codes and their documentation, reports published by the reactor simulation group, and other information databases available at Soreq. Registered users set a communication line, through a modem, between their computer and the new workstation at Soreq and use it to download codes and/or information or to solve their problems, using codes from the library, on the computer at Soreq (authors).

  1. A computerized energy systems code and information library at Soreq

    International Nuclear Information System (INIS)

    Silverman, I.; Shapira, M.; Caner, D.; Sapier, D.

    1996-01-01

    In the framework of the contractual agreement between the Ministry of Energy and Infrastructure and the Division of Nuclear Engineering of the Israel Atomic Energy Commission, both Soreq-NRC and Ben-Gurion University have agreed to establish, in 1991, a code center. This code center contains a library of computer codes and relevant data, with particular emphasis on nuclear power plant research and development support. The code center maintains existing computer codes and adapts them to the ever changing computing environment, keeps track of new code developments in the field of nuclear engineering, and acquires the most recent revisions of computer codes of interest. An attempt is made to collect relevant codes developed in Israel and to assure that proper documentation and application instructions are available. En addition to computer programs, the code center collects sample problems and international benchmarks to verify the codes and their applications to various areas of interest to nuclear power plant engineering and safety evaluation. Recently, the reactor simulation group at Soreq acquired, using funds provided by the Ministry of Energy and Infrastructure, a PC work station operating under a Linux operating system to give users of the library an easy on-line way to access resources available at the library. These resources include the computer codes and their documentation, reports published by the reactor simulation group, and other information databases available at Soreq. Registered users set a communication line, through a modem, between their computer and the new workstation at Soreq and use it to download codes and/or information or to solve their problems, using codes from the library, on the computer at Soreq (authors)

  2. Concatenated coding systems employing a unit-memory convolutional code and a byte-oriented decoding algorithm

    Science.gov (United States)

    Lee, L.-N.

    1977-01-01

    Concatenated coding systems utilizing a convolutional code as the inner code and a Reed-Solomon code as the outer code are considered. In order to obtain very reliable communications over a very noisy channel with relatively modest coding complexity, it is proposed to concatenate a byte-oriented unit-memory convolutional code with an RS outer code whose symbol size is one byte. It is further proposed to utilize a real-time minimal-byte-error probability decoding algorithm, together with feedback from the outer decoder, in the decoder for the inner convolutional code. The performance of the proposed concatenated coding system is studied, and the improvement over conventional concatenated systems due to each additional feature is isolated.

  3. Burnup calculation with estimated neutron spectrum of JMTR irradiation field. Development of the burnup calculation method for fuel pre-irradiated in the JMTR

    International Nuclear Information System (INIS)

    Okonogi, Kazunari; Nakamura, Takehiko; Yoshinaga, Makio; Hosoyamada, Ryuji

    1999-03-01

    As a series of the pulse irradiation tests with the irradiated fuel, the high-enriched fuel rods pre-irradiated in the JMTR as well as the fuels irradiated in commercial reactors have been irradiated in the NSRR. In the pre-irradiation at the JMTR, the test fuels were placed at the irradiation holes in the reflector region far from the driver core to keep the linear heat generation rate of the test fuel low. Accordingly, neutron energy spectra of the irradiation holes for the test fuels are softened due to the higher moderator ratio than in those of the ordinary LWR core, which causes quite different burnup characteristics. JMTR post irradiation condition corresponds to the pre-test condition in the NSRR. Therefore, proper understanding of the condition is quite important for the precise evaluating the energy deposition and FP generation in the test. Then, neutron spectra at the JMTR irradiation field were evaluated and its effects on the burnup calculation were quantified. Basing on the configuration of the JMTR core in the operation cycle No.85, neutron diffusion calculations of 107 groups were executed in 2-D slab (X-Y) geometry of CITATION of SRAC95 code system, and neutron energy spectra of the irradiation hole for the test fuels were evaluated. Burnup calculations of Test JMN-1 fuel with the estimated neutron energy spectra were performed and the results were compared to both the measurements and calculation results with the PWR and BWR libraries in ORIGEN2 code. SWAT code was used to collapse the 107 groups spectra into 1 group libraries for the ORIGEN2 use. The calculation results for both the generation and depletion of U, Pu and Nd with the JMTR libraries obtained in the present study were in the reasonably good agreement with the measurements, while in the case of calculation with the PWR and BWR libraries in ORIGEN2, the generation of fission products having mass numbers from 105 to 130 and some actinides were overestimated by about 1.5 to 3.5 times

  4. Burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1

    Directory of Open Access Journals (Sweden)

    Muhammad Atta

    2011-01-01

    Full Text Available The burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1, reference operating core, has been carried out utilizing standard computer codes WIMS/D4, CITATION, and RELAP5/MOD3.4. Reactor codes WIMS/D4 and CITATION have been used for the calculations of neutronic parameters including peaking factors and power profiles at different burn-up considering a xenon free core and also the equilibrium xenon values. RELAP5/MOD3.4 code was utilized for the determination of peak fuel centerline, clad and coolant temperatures to ensure the safety of the reactor throughout the cycle. The calculations reveal that the reactor is safe and no nucleate boiling will commence at any part of the core throughout the cycle and that the safety margin increases with burnup as peaking factors decrease.

  5. ARC Code TI: Optimal Alarm System Design and Implementation

    Data.gov (United States)

    National Aeronautics and Space Administration — An optimal alarm system can robustly predict a level-crossing event that is specified over a fixed prediction horizon. The code contained in this packages provides...

  6. Burnup measurements at the RECH-1 research reactor

    International Nuclear Information System (INIS)

    Henriquez, C.; Navarro, G.; Pereda, C.; Torres, H.; Pena, L.; Klein, J.; Calderon, D.; Kestelman, A.J.

    2002-01-01

    The Chilean Nuclear Energy Commission has decided to produce LEU fuel elements for the RECH-1 research reactor. During December 1998, the Fuel Fabrication Plant delivered the first four fuel elements, called leaders, to the RECH-1 reactor. The set was introduced into the reactor's core, following the normal routine, but performing a special follow-up on their behavior inside and outside the core. In order to measure the burn-up of the leader fuel elements, it was decided to develop a burn-up measurements system to be installed into the RECH-1 reactor pool, and to decline the use of a similar system, which operates in a hot cell. The main reason to build this facility was to have the capability to measure the burn-up of fuel elements without waiting for long decay period. This paper gives a brief description of the facility to measure the burn-up of spent fuel elements installed into the reactor pool, showing the preliminary obtained spectra and briefly discussing them. (author)

  7. The PASC-3 code system and the UNIPASC environment

    International Nuclear Information System (INIS)

    Pijlgroms, B.J.; Oppe, J.; Oudshoorn, H.

    1991-08-01

    A brief description is given of the PASC-3 (Petten-AMPX-SCALE) Reactor Physics code system and its associated UNIPASC work environment. The PASC-3 code system is used for criticality and reactor calculations and consists of a selection from the Oak Ridge National Laboratory AMPX-SCALE-3 code collection complemented with a number of additional codes and nuclear data bases. The original codes have been adapted to run under the UNIX operating system. The recommended nuclear data base is a complete 219 group cross section library derived from JEF-1 of which some benchmark results are presented. By the addition of the UNIPASC work environment the usage of the code system is greatly simplified, Complex chains of programs can easily be coupled together to form a single job. In addition, the model parameters can be represented by variables instead of literal values which enhances the readability and may improve the integrity of the code inputs. (author). 8 refs.; 6 figs.; 1 tab

  8. Sequence Coding and Search System Backfit Quality Assurance Program Plan

    International Nuclear Information System (INIS)

    Lovell, C.J.; Stepina, P.L.

    1985-03-01

    The Sequence Coding and Search System is a computer-based encoding system for events described in Licensee Event Reports. This data system contains LERs from 1981 to present. Backfit of the data system to include LERs prior to 1981 is required. This report documents the Quality Assurance Program Plan that EG and G Idaho, Inc. will follow while encoding 1980 LERs

  9. Code-modulated interferometric imaging system using phased arrays

    Science.gov (United States)

    Chauhan, Vikas; Greene, Kevin; Floyd, Brian

    2016-05-01

    Millimeter-wave (mm-wave) imaging provides compelling capabilities for security screening, navigation, and bio- medical applications. Traditional scanned or focal-plane mm-wave imagers are bulky and costly. In contrast, phased-array hardware developed for mass-market wireless communications and automotive radar promise to be extremely low cost. In this work, we present techniques which can allow low-cost phased-array receivers to be reconfigured or re-purposed as interferometric imagers, removing the need for custom hardware and thereby reducing cost. Since traditional phased arrays power combine incoming signals prior to digitization, orthogonal code-modulation is applied to each incoming signal using phase shifters within each front-end and two-bit codes. These code-modulated signals can then be combined and processed coherently through a shared hardware path. Once digitized, visibility functions can be recovered through squaring and code-demultiplexing operations. Pro- vided that codes are selected such that the product of two orthogonal codes is a third unique and orthogonal code, it is possible to demultiplex complex visibility functions directly. As such, the proposed system modulates incoming signals but demodulates desired correlations. In this work, we present the operation of the system, a validation of its operation using behavioral models of a traditional phased array, and a benchmarking of the code-modulated interferometer against traditional interferometer and focal-plane arrays.

  10. Development of a nuclear power plant system analysis code

    International Nuclear Information System (INIS)

    Sim, Suk K.; Jeong, J. J.; Ha, K. S.; Moon, S. K.; Park, J. W.; Yang, S. K.; Song, C. H.; Chun, S. Y.; Kim, H. C.; Chung, B. D.; Lee, W. J.; Kwon, T. S.

    1997-07-01

    During the period of this study, TASS 1.0 code has been prepared for the non-LOCA licensing and reload safety analyses of the Westinghouse and the Korean Standard Nuclear Power Plants (KSNPP) type reactors operating in Korea. TASS-NPA also has been developed for a real time simulation of the Kori-3/4 transients using on-line graphical interactions. TASS 2.0 code has been further developed to timely apply the TASS 2.0 code for the design certification of the KNGR. The COBRA/RELAP5 code, a multi-dimensional best estimate system code, has been developed by integrating the realistic three-dimensional reactor vessel model with the RELAP5 /MOD3.2 code, a one-dimensional system code. Also, a 3D turbulent two-phase flow analysis code, FEMOTH-TF, has been developed using finite element technique to analyze local thermal hydraulic phenomena in support of the detailed design analysis for the development of the advanced reactors. (author). 84 refs., 27 tabs., 83 figs

  11. Dynamic detection technology of malicious code for Android system

    Directory of Open Access Journals (Sweden)

    Li Boya

    2017-02-01

    Full Text Available With the increasing popularization of mobile phones,people's dependence on them is rising,the security problems become more and more prominent.According to the calling of the APK file permission and the API function in Android system,this paper proposes a dynamic detecting method based on API interception technology to detect the malicious code.The experimental results show that this method can effectively detect the malicious code in Android system.

  12. Burnup determination of mass spectrometry for nuclear fuels

    International Nuclear Information System (INIS)

    Zhang Chunhua.

    1987-01-01

    The various methods currently being used in burnup determination of nuclear fuels are studied and reviewed. The mass spectrometry method of destructive testing is discussed emphatically. The burnup determination of mass spectrometry includes heavy isotopic abundance ratio method and isotope dilution mass spectrometry used as burnup indicator for the fission products. The former is applied to high burnup level, but the later to various burnup level. According to experiences, some problems which should be noticed in burnup determination of mass spectrometry are presented

  13. Review of Technical Studies in the United States in Support of Burnup Credit Regulatory Guidance

    International Nuclear Information System (INIS)

    Wagner, John C.; Parks, Cecil V.; Mueller, Don; Gauld, Ian C.

    2010-01-01

    Taking credit for the reduction in reactivity associated with fuel depletion can enable more cost-effective, higher-density storage, transport, disposal, and reprocessing of spent nuclear fuel (SNF) while maintaining sufficient subcritical margin to establish an adequate safety basis. Consequently, there continues to be considerable interest in the United States (U.S.), as well as internationally, in the increased use of burnup credit in SNF operations, particularly related to storage, transport, and disposal of commercial SNF. This interest has motivated numerous technical studies related to the application of burnup credit, both domestically and internationally, as well as the design of SNF storage, transport and disposal systems that rely on burnup credit for maintaining subcriticality. Responding to industry requests and needs, the U.S. Nuclear Regulatory Commission (NRC) initiated a burnup credit research program in 1999, with support from the Oak Ridge National Laboratory (ORNL), to develop regulatory guidance and the supporting technical bases for allowing and expanding the use of burnup credit in pressurized-water reactor SNF storage and transport applications. Although this NRC research program has not been continuous since its inception, considerable progress has been achieved in many key areas in terms of increased understanding of relevant phenomena and issues, availability of relevant information and data, and subsequently updated regulatory guidance for expanded use of burnup credit. This paper reviews technical studies performed by ORNL for the U.S. NRC burnup credit research program. Examples of topics include reactivity effects associated with reactor operating characteristics, fuel assembly characteristics, burnable absorbers, control rods, spatial burnup distributions, cooling time, and assembly misloading; methods and data for validation of isotopic composition predictions; methods and data for validation of criticality calculations; and

  14. Introduction of thermal-hydraulic analysis code and system analysis code for HTGR

    International Nuclear Information System (INIS)

    Tanaka, Mitsuhiro; Izaki, Makoto; Koike, Hiroyuki; Tokumitsu, Masashi

    1984-01-01

    Kawasaki Heavy Industries Ltd. has advanced the development and systematization of analysis codes, aiming at lining up the analysis codes for heat transferring flow and control characteristics, taking up HTGR plants as the main object. In order to make the model of flow when shock waves propagate to heating tubes, SALE-3D which can analyze a complex system was developed, therefore, it is reported in this paper. Concerning the analysis code for control characteristics, the method of sensitivity analysis in a topological space including an example of application is reported. The flow analysis code SALE-3D is that for analyzing the flow of compressible viscous fluid in a three-dimensional system over the velocity range from incompressibility limit to supersonic velocity. The fundamental equations and fundamental algorithm of the SALE-3D, the calculation of cell volume, the plotting of perspective drawings and the analysis of the three-dimensional behavior of shock waves propagating in heating tubes after their rupture accident are described. The method of sensitivity analysis was added to the analysis code for control characteristics in a topological space, and blow-down phenomena was analyzed by its application. (Kako, I.)

  15. Nonterminals and codings in defining variations of OL-systems

    DEFF Research Database (Denmark)

    Skyum, Sven

    1974-01-01

    The use of nonterminals versus the use of codings in variations of OL-systems is studied. It is shown that the use of nonterminals produces a comparatively low generative capacity in deterministic systems while it produces a comparatively high generative capacity in nondeterministic systems. Fina....... Finally it is proved that the family of context-free languages is contained in the family generated by codings on propagating OL-systems with a finite set of axioms, which was one of the open problems in [10]. All the results in this paper can be found in [71] and [72].......The use of nonterminals versus the use of codings in variations of OL-systems is studied. It is shown that the use of nonterminals produces a comparatively low generative capacity in deterministic systems while it produces a comparatively high generative capacity in nondeterministic systems...

  16. ATHENA code manual. Volume 1. Code structure, system models, and solution methods

    International Nuclear Information System (INIS)

    Carlson, K.E.; Roth, P.A.; Ransom, V.H.

    1986-09-01

    The ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) code has been developed to perform transient simulation of the thermal hydraulic systems which may be found in fusion reactors, space reactors, and other advanced systems. A generic modeling approach is utilized which permits as much of a particular system to be modeled as necessary. Control system and secondary system components are included to permit modeling of a complete facility. Several working fluids are available to be used in one or more interacting loops. Different loops may have different fluids with thermal connections between loops. The modeling theory and associated numerical schemes are documented in Volume I in order to acquaint the user with the modeling base and thus aid effective use of the code. The second volume contains detailed instructions for input data preparation

  17. Lossless Coding Standards for Space Data Systems

    Science.gov (United States)

    Rice, R. F.

    1996-01-01

    The International Consultative Committee for Space Data Systems (CCSDS) is preparing to issue its first recommendation for a digital data compression standard. Because the space data systems of primary interest are employed to support scientific investigations requiring accurate representation, this initial standard will be restricted to lossless compression.

  18. A code system for ADS transmutation studies

    International Nuclear Information System (INIS)

    Brolly, A.; Vertes, P.

    2001-01-01

    An accelerator driven reactor physical system can be divided into two different subsystems. One is the neutron source the other is the subcritical reactor. Similarly, the modelling of such system is also split into two parts. The first step is the determination of the spatial distribution and angle-energy spectrum of neutron source in the target region; the second one is the calculation of neutron flux which is responsible for the transmutation process in the subcritical system. Accelerators can make neutrons from high energy protons by spallation or photoneutrons from accelerated electrons by Bremsstrahlung (e-n converter). The Monte Carlo approach is the only way of modelling such processes and it might be extended to the whole subcritical system as well. However, a subcritical reactor may be large, it may contain thermal regions and the lifetime of neutrons may be long. Therefore a comprehensive Monte Carlo modelling of such system is a very time consuming computational process. It is unprofitable as well when applied to system optimization that requires a comparative study of large number of system variants. An appropriate method of deterministic transport calculation may adequately satisfy these requirements. Thus, we have built up a coupled calculational model for ADS to be used for transmutation of nuclear waste which we refer further as M-c-T system. Flow chart is shown in Figure. (author)

  19. Development of a one-group cross section data base of the ORIGEN2 computer code for research reactor applications

    International Nuclear Information System (INIS)

    Kim, Jung Do; Gil, Choong Sub; Lee, Jong Tai; Hwang, Won Guk

    1992-01-01

    A one-group cross section data base of the ORIGEN2 computer code was developed for research reactor applications. For this, ENDF/B-IV and -V data were processed using the NJOY code system into 69-group data. The burnup dependent weighting spectra for KMRR were calculated with the WIMS-KAERI computer code, and then the 69-group data were collapsed to one-group using the spectra. The ORlGEN2-predicted burnup-dependent actinide compositions of KMRR spent fuel using the newly developed data base show a good agreement with the results of detailed multigroup transport calculation. In addition, the burnup characteristics of KMRR spent fuel was analyzed with the new data base. (Author)

  20. Development of a one-group cross section data base of the ORIGEN2 computer code for research reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Do; Gil, Choong Sub; Lee, Jong Tai [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Hwang, Won Guk [Kyung Hee University, Seoul (Korea, Republic of)

    1992-03-01

    A one-group cross section data base of the ORIGEN2 computer code was developed for research reactor applications. For this, ENDF/B-IV and -V data were processed using the NJOY code system into 69-group data. The burnup dependent weighting spectra for KMRR were calculated with the WIMS-KAERI computer code, and then the 69-group data were collapsed to one-group using the spectra. The ORlGEN2-predicted burnup-dependent actinide compositions of KMRR spent fuel using the newly developed data base show a good agreement with the results of detailed multigroup transport calculation. In addition, the burnup characteristics of KMRR spent fuel was analyzed with the new data base. (Author).

  1. Development of realistic thermal hydraulic system analysis code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Chung, B. D; Kim, K. D. [and others

    2002-05-01

    The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others.

  2. Development of realistic thermal hydraulic system analysis code

    International Nuclear Information System (INIS)

    Lee, Won Jae; Chung, B. D; Kim, K. D.

    2002-05-01

    The realistic safety analysis system is essential for nuclear safety research, advanced reactor development, safety analysis in nuclear industry and 'in-house' plant design capability development. In this project, we have developed a best-estimate multi-dimensional thermal-hydraulic system code, MARS, which is based on the integrated version of the RELAP5 and COBRA-TF codes. To improve the realistic analysis capability, we have improved the models for multi-dimensional two-phase flow phenomena and for advanced two-phase flow modeling. In addition, the GUI (Graphic User Interface) feature were developed to enhance the user's convenience. To develop the coupled analysis capability, the MARS code were linked with the three-dimensional reactor kinetics code (MASTER), the core thermal analysis code (COBRA-III/CP), and the best-estimate containment analysis code (CONTEMPT), resulting in MARS/MASTER/COBRA/CONTEMPT. Currently, the MARS code system has been distributed to 18 domestic organizations, including research, industrial, regulatory organizations and universities. The MARS has been being widely used for the safety research of existing PWRs, advanced PWR, CANDU and research reactor, the pre-test analysis of TH experiments, and others

  3. Issues for effective implementation of burnup credit

    International Nuclear Information System (INIS)

    Parks, C.V.; Wagner, J.C.

    2001-01-01

    In the United States, burnup credit has been used in the criticality safety evaluation for storage pools at pressurized water reactors (PWRs) and considerable work has been performed to lay the foundation for use of burnup credit in dry storage and transport cask applications and permanent disposal applications. Many of the technical issues related to the basic physics phenomena and parameters of importance are similar in each of these applications. However, the nuclear fuel cycle in the United States has never been fully integrated and the implementation of burnup credit to each of these applications is dependent somewhat on the specific safety bases developed over the history of each operational area. This paper will briefly review the implementation status of burnup credit for each application area and explore some of the remaining issues associated with effective implementation of burnup credit. (author)

  4. Development of an extended-burnup Mark B design. Second semiannual progress report, January-June 1979

    International Nuclear Information System (INIS)

    1979-11-01

    The immediate goal of the DOE/AP and L/B and W project is to extend the burnup of light water reactor fuel assemblies beyond present limits to 50,000 MWd/mtU batch average burnup. Fuel management plans and fuel designs are being directed to attain the increased burnup limits. Lead-test assemblies of extended-burnup designs will be manufactured, irradiated in a commercial pressurized water reactor, and examined to support extended-burnup fuel cycles. This report, covering the period from January through June 1979, is the second semiannual progress report for the program. Efforts have included analyses of extended-burnup fuel cycles, developed of both annular fuel pellet and segmented rod designs, and design of a nondestructive post-irradiation examination system

  5. Sequence Coding and Search System for licensee event reports: code listings. Volume 2

    International Nuclear Information System (INIS)

    Gallaher, R.B.; Guymon, R.H.; Mays, G.T.; Poore, W.P.; Cagle, R.J.; Harrington, K.H.; Johnson, M.P.

    1985-04-01

    Operating experience data from nuclear power plants are essential for safety and reliability analyses, especially analyses of trends and patterns. The licensee event reports (LERs) that are submitted to the Nuclear Regulatory Commission (NRC) by the nuclear power plant utilities contain much of this data. The NRC's Office for Analysis and Evaluation of Operational Data (AEOD) has developed, under contract with NSIC, a system for codifying the events reported in the LERs. The primary objective of the Sequence Coding and Search System (SCSS) is to reduce the descriptive text of the LERs to coded sequences that are both computer-readable and computer-searchable. This system provides a structured format for detailed coding of component, system, and unit effects as well as personnel errors. The database contains all current LERs submitted by nuclear power plant utilities for events occurring since 1981 and is updated on a continual basis. Volume 2 contains all valid and acceptable codes used for searching and encoding the LER data. This volume contains updated material through amendment 1 to revision 1 of the working version of ORNL/NSIC-223, Vol. 2

  6. Automatic code generation for distributed robotic systems

    International Nuclear Information System (INIS)

    Jones, J.P.

    1993-01-01

    Hetero Helix is a software environment which supports relatively large robotic system development projects. The environment supports a heterogeneous set of message-passing LAN-connected common-bus multiprocessors, but the programming model seen by software developers is a simple shared memory. The conceptual simplicity of shared memory makes it an extremely attractive programming model, especially in large projects where coordinating a large number of people can itself become a significant source of complexity. We present results from three system development efforts conducted at Oak Ridge National Laboratory over the past several years. Each of these efforts used automatic software generation to create 10 to 20 percent of the system

  7. Hydrogen detection systems leak response codes

    International Nuclear Information System (INIS)

    Desmas, T.; Kong, N.; Maupre, J.P.; Schindler, P.; Blanc, D.

    1990-01-01

    A loss in tightness of a water tube inside a Steam Generator Unit of a Fast Reactor is usually monitored by hydrogen detection systems. Such systems have demonstrated in the past their ability to detect a leak in a SGU. However, the increase in size of the SGU or the choice of ferritic material entails improvement of these systems in order to avoid secondary leak or to limit damages to the tube bundle. The R and D undertaken in France on this subject is presented. (author). 11 refs, 10 figs

  8. Burnup measurement study and prototype development in HTR-PM

    International Nuclear Information System (INIS)

    Yan Weihua; Zhang Zhao; Xiao Zhigang; Zhang Liguo

    2014-01-01

    In a pebble-bed core which employs the multi-pass scheme, it is mandatory to determine the burnup of each pebble after the pebble has been extracted from the core in order to determine whether its design burnup has been reached or whether it has to be reinserted into the core again. The burnup of the fuel pebbles can be determined by measuring the activity of 137 Cs with an HPGe detector because of their good correspondence, which is independent of the irradiation history in the core. Based on experiments and Geant4 simulation, the correction factor between the fuel and calibration source was derived by using the efficiency transfer method. By optimizing spectrum analysis algorithm and parameters, the relative standard deviation of the 137 Cs activity can be still controlled below 3.0% despite of the presence of interfering peaks. On the foundation of the simulation and experiment research, a complete solution for burnup measurement system in HTR-PM is provided. (authors)

  9. Full MOX high burn-up PWR

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Tsutomu; Kugo, Teruhiko; Shimada, Shoichiro; Araya, Fumimasa; Ochiai, Masaaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-12-01

    As a part of conceptual investigation on advanced light water reactors for the future, a light water reactor with the high burn-up of 100 GWd/t, the long cycle operation of 3 years and the full MOX core is being studied, aiming at the improvement on economical aspects, the reduction of the spent fuel production, the utilization of Plutonium and so forth. The present report summarizes investigation on PWR-type reactors. The core with the increased moderation of the moderator-to-fuel volume ratio of 2.6 {approx} 3.0 has been proposed be such a core that accomplishes requirements mentioned above. Through the neutronic and the thermo-hydrodynamic evaluation, the performances of the core have been evaluated. Also, the safety designing is underway considering the reactor system with the passive safety features. (author)

  10. Simulation of the behaviour of nuclear fuel under high burnup conditions

    International Nuclear Information System (INIS)

    Soba, Alejandro; Lemes, Martin; González, Martin Emilio; Denis, Alicia; Romero, Luis

    2014-01-01

    Highlights: • Increasing the time of nuclear fuel into reactor generates high burnup structure. • We analyze model to simulate high burnup scenarios for UO 2 nuclear fuel. • We include these models in the DIONISIO 2.0 code. • Tests of our models are in very good agreement with experimental data. • We extend the range of predictability of our code up to 60 MWd/KgU average. - Abstract: In this paper we summarize all the models included in the latest version of the DIONISIO code related to the high burnup scenario. Due to the extension of nuclear fuels permanence under irradiation, physical and chemical modifications are developed in the fuel material, especially in the external corona of the pellet. The codes devoted to simulation of the rod behaviour under irradiation need to introduce modifications and new models in order to describe those phenomena and be capable to predict the behaviour in all the range of a general pressurized water reactor. A complex group of subroutines has been included in the code in order to predict the radial distribution of power density, burnup, concentration of diverse nuclides and porosity within the pellet. The behaviour of gadolinium as burnable poison also is modelled into the code. The results of some of the simulations performed with DIONISIO are presented to show the good agreement with the data selected for the FUMEX I/II/III exercises, compiled in the NEA data bank

  11. Source Code Vulnerabilities in IoT Software Systems

    Directory of Open Access Journals (Sweden)

    Saleh Mohamed Alnaeli

    2017-08-01

    Full Text Available An empirical study that examines the usage of known vulnerable statements in software systems developed in C/C++ and used for IoT is presented. The study is conducted on 18 open source systems comprised of millions of lines of code and containing thousands of files. Static analysis methods are applied to each system to determine the number of unsafe commands (e.g., strcpy, strcmp, and strlen that are well-known among research communities to cause potential risks and security concerns, thereby decreasing a system’s robustness and quality. These unsafe statements are banned by many companies (e.g., Microsoft. The use of these commands should be avoided from the start when writing code and should be removed from legacy code over time as recommended by new C/C++ language standards. Each system is analyzed and the distribution of the known unsafe commands is presented. Historical trends in the usage of the unsafe commands of 7 of the systems are presented to show how the studied systems evolved over time with respect to the vulnerable code. The results show that the most prevalent unsafe command used for most systems is memcpy, followed by strlen. These results can be used to help train software developers on secure coding practices so that they can write higher quality software systems.

  12. JEMs and incompatible occupational coding systems: Effect of manual and automatic recoding of job codes on exposure assignment

    NARCIS (Netherlands)

    Koeman, T.; Offermans, N.S.M.; Christopher-De Vries, Y.; Slottje, P.; Brandt, P.A. van den; Goldbohm, R.A.; Kromhout, H.; Vermeulen, R.

    2013-01-01

    Background: In epidemiological studies, occupational exposure estimates are often assigned through linkage of job histories to job-exposure matrices (JEMs). However, available JEMs may have a coding system incompatible with the coding system used to code the job histories, necessitating a

  13. The computer code system for reactor radiation shielding in design of nuclear power plant

    International Nuclear Information System (INIS)

    Li Chunhuai; Fu Shouxin; Liu Guilian

    1995-01-01

    The computer code system used in reactor radiation shielding design of nuclear power plant includes the source term codes, discrete ordinate transport codes, Monte Carlo and Albedo Monte Carlo codes, kernel integration codes, optimization code, temperature field code, skyshine code, coupling calculation codes and some processing codes for data libraries. This computer code system has more satisfactory variety of codes and complete sets of data library. It is widely used in reactor radiation shielding design and safety analysis of nuclear power plant and other nuclear facilities

  14. Experimental programmes related to high burnup fuel

    International Nuclear Information System (INIS)

    Vasudeva Rao, P.R.; Vidhya, R.; Ananthasivan, K.; Srinivasan, T.G.; Nagarajan, K.

    2002-01-01

    The experimental programmes undertaken at IGCAR with regard to high burn-up fuels fall under the following categories: a) studies on fuel behaviour, b) development of extractants for aqueous reprocessing and c) development of non-aqueous reprocessing techniques. An experimental programme to measure the carbon potential in U/Pu-FP-C systems by methane-hydrogen gas equilibration technique has been initiated at IGCAR in order to understand the evolution of fuel and fission product phases in carbide fuel at high burn-up. The carbon potentials in U-Mo-C system have been measured by this technique. The free energies and enthalpies of formation of LaC 2 , NdC 2 and SmC 2 have been measured by measuring the vapor pressures of CO over the region Ln 2 O 3 -LnC 2 -C during the carbothermic reduction of Ln 2 O 3 by C. The decontamination from fission products achieved in fuel reprocessing depends strongly on the actinide loading of the extractant phase. Tri-n-butyl phosphate (TBP), presently used as the extractant, does not allow high loadings due to its propensity for third phase formation in the extraction of Pu(IV). A detailed study of the allowable Pu loadings in TBP and other extractants has been undertaken in IGCAR, the results of which are presented in this paper. The paper also describes the status of our programme to develop a non-aqueous route for the reprocessing of fast reactor fuels. (author)

  15. User effects on the transient system code calculations. Final report

    International Nuclear Information System (INIS)

    Aksan, S.N.; D'Auria, F.

    1995-01-01

    Large thermal-hydraulic system codes are widely used to perform safety and licensing analyses of nuclear power plants to optimize operational procedures and the plant design itself. Evaluation of the capabilities of these codes are accomplished by comparing the code predictions with the measured experimental data obtained from various types of separate effects and integral test facilities. In recent years, some attempts have been made to establish methodologies to evaluate the accuracy and the uncertainty of the code predictions and consequently judgement on the acceptability of the codes. In none of the methodologies has the influence of the code user on the calculated results been directly addressed. In this paper, the results of the investigations on the user effects for the thermal-hydraulic transient system codes is presented and discussed on the basis of some case studies. The general findings of the investigations show that in addition to user effects, there are other reasons that affect the results of the calculations and which are hidden under user effects. Both the hidden factors and the direct user effects are discussed in detail and general recommendations and conclusions are presented to control and limit them

  16. System verification and validation report for the TMAD code

    International Nuclear Information System (INIS)

    Finfrock, S.H.

    1995-01-01

    This document serves as the Verification and Validation Report for the TMAD code system, which includes the TMAD code and the LIBMAKR Code. The TMAD code was commissioned to facilitate the interpretation of moisture probe measurements in the Hanford Site waste tanks. In principle, the code is an interpolation routine that acts over a library of benchmark data based on two independent variables, typically anomaly size and moisture content. Two additional variables, anomaly type and detector type, can also be considered independent variables, but no interpolation is done over them. The dependent variable is detector response. The intent is to provide the code with measured detector responses from two or more detectors. The code will then interrogate (and interpolate upon) the benchmark data library and find the anomaly-type/anomaly-size/moisture-content combination that provides the closest match to the measured data. The primary purpose of this document is to provide the results of the system testing and the conclusions based thereon. The results of the testing process are documented in the body of the report. Appendix A gives the test plan, including test procedures, used in conducting the tests. Appendix B lists the input data required to conduct the tests, and Appendices C and 0 list the numerical results of the tests

  17. iBEST: a program for burnup history estimation of spent fuels based on ORIGEN-S

    International Nuclear Information System (INIS)

    Kim, Do Yeon; Hong, Ser Gi; Ahn, Gil Hoon

    2015-01-01

    In this paper, we describe a computer program, iBEST (inverse Burnup ESTimator), that we developed to accurately estimate the burnup histories of spent nuclear fuels based on sample measurement data. The burnup history parameters include initial uranium enrichment, burnup, cooling time after discharge from reactor, and reactor type. The program uses algebraic equations derived using the simplified burnup chains of major actinides for initial estimations of burnup and uranium enrichment, and it uses the ORIGEN-S code to correct its initial estimations for improved accuracy. In addition, we newly developed a stable bisection method coupled with ORIGEN-S to correct burnup and enrichment values and implemented it in iBEST in order to fully take advantage of the new capabilities of ORIGEN-S for improving accuracy. The iBEST program was tested using several problems for verification and well-known realistic problems with measurement data from spent fuel samples from the Mihama-3 reactor for validation. The test results show that iBEST accurately estimates the burnup history parameters for the test problems and gives an acceptable level of accuracy for the realistic Mihama-3 problems

  18. Integrated Validation System for a Thermal-hydraulic System Code, TASS/SMR-S

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee-Kyung; Kim, Hyungjun; Kim, Soo Hyoung; Hwang, Young-Dong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Hyeon-Soo [Chungnam National University, Daejeon (Korea, Republic of)

    2015-10-15

    Development including enhancement and modification of thermal-hydraulic system computer code is indispensable to a new reactor, SMART. Usually, a thermal-hydraulic system code validation is achieved by a comparison with the results of corresponding physical effect tests. In the reactor safety field, a similar concept, referred to as separate effect tests has been used for a long time. But there are so many test data for comparison because a lot of separate effect tests and integral effect tests are required for a code validation. It is not easy to a code developer to validate a computer code whenever a code modification is occurred. IVS produces graphs which shown the comparison the code calculation results with the corresponding test results automatically. IVS was developed for a validation of TASS/SMR-S code. The code validation could be achieved by a comparison code calculation results with corresponding test results. This comparison was represented as a graph for convenience. IVS is useful before release a new code version. The code developer can validate code result easily using IVS. Even during code development, IVS could be used for validation of code modification. The code developer could gain a confidence about his code modification easily and fast and could be free from tedious and long validation work. The popular software introduced in IVS supplies better usability and portability.

  19. JPEG2000 COMPRESSION CODING USING HUMAN VISUAL SYSTEM MODEL

    Institute of Scientific and Technical Information of China (English)

    Xiao Jiang; Wu Chengke

    2005-01-01

    In order to apply the Human Visual System (HVS) model to JPEG2000 standard,several implementation alternatives are discussed and a new scheme of visual optimization isintroduced with modifying the slope of rate-distortion. The novelty is that the method of visual weighting is not lifting the coefficients in wavelet domain, but is complemented by code stream organization. It remains all the features of Embedded Block Coding with Optimized Truncation (EBCOT) such as resolution progressive, good robust for error bit spread and compatibility of lossless compression. Well performed than other methods, it keeps the shortest standard codestream and decompression time and owns the ability of VIsual Progressive (VIP) coding.

  20. Establishment of computer code system for nuclear reactor design - analysis

    International Nuclear Information System (INIS)

    Subki, I.R.; Santoso, B.; Syaukat, A.; Lee, S.M.

    1996-01-01

    Establishment of computer code system for nuclear reactor design analysis is given in this paper. This establishment is an effort to provide the capability in running various codes from nuclear data to reactor design and promote the capability for nuclear reactor design analysis particularly from neutronics and safety points. This establishment is also an effort to enhance the coordination of nuclear codes application and development existing in various research centre in Indonesia. Very prospective results have been obtained with the help of IAEA technical assistance. (author). 6 refs, 1 fig., 1 tab

  1. Grid-code of Croatian power system

    International Nuclear Information System (INIS)

    Toljan, I.; Mesic, M.; Kalea, M.; Koscak, Z.

    2003-01-01

    Grid Rules by the Croatian Electricity Utility deal with the control and usage of the Croatian power system's transmission and distribution grid. Furthermore, these rules include obligations and permissions of power grid users and owners, with the aim of a reliable electricity supply.(author)

  2. Modification in the CITATION computer code: change of microscopic cross sections by zone

    International Nuclear Information System (INIS)

    Yamaguchi, M.; Kosaka, N.

    1983-01-01

    Some modifications done in the CITATION computer code are presented, aiming to calculate the accumulated burnup for each reactor zone in each step of burnup and allow changing the microscopic cross sections for each zone in accordance to the burnup accumulated after each step of burnup. Some input data were put in the computer code. The alterations were tested and the results were compared with and without modifications. (E.G.) [pt

  3. Summary description of the scale modular code system

    International Nuclear Information System (INIS)

    Parks, C.V.

    1987-12-01

    SCALE - a modular code system for Standardized Computer Analyses for Licensing Evaluation - has been developed at Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission staff. The SCALE system utilizes well-established computer codes and methods within standard analytic sequences that allow simplified free-form input, automate the data processing and coupling between codes, and provide accurate and reliable results. System development has been directed at criticality safety, shielding, and heat transfer analysis of spent fuel transport and/or storage casks. However, only a few of the sequences (and none of the individual functional modules) are restricted to cask applications. This report will provide a background on the history of the SCALE development and review the components and their function within the system. The available data libraries are also discussed, together with the automated features that standardize the data processing and systems analysis. 83 refs., 32 figs., 11 tabs

  4. ZZ ECN-BUBEBO, ECN-Petten Burnup Benchmark Book, Inventories, Afterheat

    International Nuclear Information System (INIS)

    Kloosterman, Jan Leen

    1999-01-01

    Description of program or function: Contains experimental benchmarks which can be used for the validation of burnup code systems and accompanied data libraries. Although the benchmarks presented here are thoroughly described in literature, it is in many cases not straightforward to retrieve unambiguously the correct input data and corresponding results from the benchmark Descriptions. Furthermore, results which can easily be measured, are sometimes difficult to calculate because of conversions to be made. Therefore, emphasis has been put to clarify the input of the benchmarks and to present the benchmark results in such a way that they can easily be calculated and compared. For more thorough Descriptions of the benchmarks themselves, the literature referred to here should be consulted. This benchmark book is divided in 11 chapters/files containing the following in text and tabular form: chapter 1: Introduction; chapter 2: Burnup Credit Criticality Benchmark Phase 1-B; chapter 3: Yankee-Rowe Core V Fuel Inventory Study; chapter 4: H.B. Robinson Unit 2 Fuel Inventory Study; chapter 5: Turkey Point Unit 3 Fuel Inventory Study; chapter 6: Turkey Point Unit 3 Afterheat Power Study; chapter 7: Dickens Benchmark on Fission Product Energy Release of U-235; chapter 8: Dickens Benchmark on Fission Product Energy Release of Pu-239; chapter 9: Yarnell Benchmark on Decay Heat Measurements of U-233; chapter 10: Yarnell Benchmark on Decay Heat Measurements of U-235; chapter 11: Yarnell Benchmark on Decay Heat Measurements of Pu-239

  5. Fuel burnup analysis of the TRIGA Mark II reactor at the University of Pavia

    International Nuclear Information System (INIS)

    Chiesa, Davide; Clemenza, Massimiliano; Pozzi, Stefano; Previtali, Ezio; Sisti, Monica; Alloni, Daniele; Magrotti, Giovanni; Manera, Sergio; Prata, Michele; Salvini, Andrea; Cammi, Antonio; Zanetti, Matteo; Sartori, Alberto

    2016-01-01

    Highlights: • A fuel evolution model for a TRIGA Mark II reactor has been developed. • Reproduction of nearly 50 years of reactor operation. • The model was used to predict the best reactor reconfiguration. • Reactor life was extended without adding fresh fuel elements. - Abstract: A time evolution model was developed to study fuel burnup for the TRIGA Mark II reactor at the University of Pavia. The results were used to predict the effects of a complete core reconfiguration and the accuracy of this prediction was tested experimentally. We used the Monte Carlo code MCNP5 to reproduce system neutronics in different operating conditions and to analyze neutron fluxes in the reactor core. The software that took care of time evolution, completely designed in-house, used the neutron fluxes obtained by MCNP5 to evaluate fuel consumption. This software was developed specifically to keep into account some features that differentiate low power experimental reactors from those used for power production, such as the daily ON/OFF cycle and the long fuel lifetime. These effects can not be neglected to properly account for neutron poison accumulation. We evaluated the effect of 48 years of reactor operation and predicted a possible new configuration for the reactor core: the objective was to remove some of the fuel elements from the core and to obtain a substantial increase in the Core Excess reactivity value. The evaluation of fuel burnup and the reconfiguration results are presented in this paper.

  6. On the automated assessment of nuclear reactor systems code accuracy

    International Nuclear Information System (INIS)

    Kunz, Robert F.; Kasmala, Gerald F.; Mahaffy, John H.; Murray, Christopher J.

    2002-01-01

    An automated code assessment program (ACAP) has been developed to provide quantitative comparisons between nuclear reactor systems (NRS) code results and experimental measurements. The tool provides a suite of metrics for quality of fit to specific data sets, and the means to produce one or more figures of merit (FOM) for a code, based on weighted averages of results from the batch execution of a large number of code-experiment and code-code data comparisons. Accordingly, this tool has the potential to significantly streamline the verification and validation (V and V) processes in NRS code development environments which are characterized by rapidly evolving software, many contributing developers and a large and growing body of validation data. In this paper, a survey of data conditioning and analysis techniques is summarized which focuses on their relevance to NRS code accuracy assessment. A number of methods are considered for their applicability to the automated assessment of the accuracy of NRS code simulations. A variety of data types and computational modeling methods are considered from a spectrum of mathematical and engineering disciplines. The goal of the survey was to identify needs, issues and techniques to be considered in the development of an automated code assessment procedure, to be used in United States Nuclear Regulatory Commission (NRC) advanced thermal-hydraulic T/H code consolidation efforts. The ACAP software was designed based in large measure on the findings of this survey. An overview of this tool is summarized and several NRS data applications are provided. The paper is organized as follows: The motivation for this work is first provided by background discussion that summarizes the relevance of this subject matter to the nuclear reactor industry. Next, the spectrum of NRS data types are classified into categories, in order to provide a basis for assessing individual comparison methods. Then, a summary of the survey is provided, where each

  7. Development of a set of benchmark problems to verify numerical methods for solving burnup equations

    International Nuclear Information System (INIS)

    Lago, Daniel; Rahnema, Farzad

    2017-01-01

    Highlights: • Description transmutation chain benchmark problems. • Problems for validating numerical methods for solving burnup equations. • Analytical solutions for the burnup equations. • Numerical solutions for the burnup equations. - Abstract: A comprehensive set of transmutation chain benchmark problems for numerically validating methods for solving burnup equations was created. These benchmark problems were designed to challenge both traditional and modern numerical methods used to solve the complex set of ordinary differential equations used for tracking the change in nuclide concentrations over time due to nuclear phenomena. Given the development of most burnup solvers is done for the purpose of coupling with an established transport solution method, these problems provide a useful resource in testing and validating the burnup equation solver before coupling for use in a lattice or core depletion code. All the relevant parameters for each benchmark problem are described. Results are also provided in the form of reference solutions generated by the Mathematica tool, as well as additional numerical results from MATLAB.

  8. PIE and separate effect test of high burnup UO2 fuel

    International Nuclear Information System (INIS)

    Yang, Yong Sik; Kim, S.K.; Kim, D.H.

    2005-01-01

    To investigate the performance of a high burnup UO 2 fuel, the highest burnup fuel assembly in KOREA was transported to the PIE facility in KAERI. It was a 17·17 fuel assembly irradiated at the Ulchin Unit 2 PWR. The peak fuel rod average burnup was about 57MWd/kgU and locally 65MWd/kgU. The general PIE was performed to investigate the fuel rod irradiation performance. Fission gas release, burnup, oxide thickness, hydrogen pickup, CRUD, and density change were measured by destructive of non-destructive test. Microstructure change, bubble and pore size distributions were observed by optical microscopy, SEM and EPMA. All generated and available PIE results were used to verify high burnup fuel performance code INFRA. Several rods were cut for additional separate effect test. For the high burnup fission gas release behaviour analysis, annealing apparatus were developed and installed in hot cell and preliminary test was performed. In addition to current apparatus new induction furnace will be installed in hot cell to investigate the high temperature and transient fission gas release behaviour. Ring tensile test was performed to analyze the material property degradation which caused by the oxidation and hydride, and additional mechanical tests will be performed. (Author)

  9. Analytical considerations in the code qualification of piping systems

    International Nuclear Information System (INIS)

    Antaki, G.A.

    1995-01-01

    The paper addresses several analytical topics in the design and qualification of piping systems which have a direct bearing on the prediction of stresses in the pipe and hence on the application of the equations of NB, NC and ND-3600 of the ASME Boiler and Pressure Vessel Code. For each of the analytical topics, the paper summarizes the current code requirements, if any, and the industry practice

  10. Transient and fuel performance analysis with VTT's coupled code system

    International Nuclear Information System (INIS)

    Daavittila, A.; Hamalainen, A.; Raty, H.

    2005-01-01

    VTT (technical research center of Finland) maintains and further develops a comprehensive safety analysis code system ranging from the basic neutronic libraries to 3-dimensional transient analysis and fuel behaviour analysis codes. The code system is based on various types of couplings between the relevant physical phenomena. The main tools for analyses of reactor transients are presently the 3-dimensional reactor dynamics code HEXTRAN for cores with a hexagonal fuel assembly geometry and TRAB-3D for cores with a quadratic fuel assembly geometry. HEXTRAN has been applied to safety analyses of VVER type reactors since early 1990's. TRAB-3D is the latest addition to the code system, and has been applied to BWR and PWR analyses in recent years. In this paper it is shown that TRAB-3D has calculated accurately the power distribution during the Olkiluoto-1 load rejection test. The results from the 3-dimensional analysis can be used as boundary conditions for more detailed fuel rod analysis. For this purpose a general flow model GENFLO, developed at VTT, has been coupled with USNRC's FRAPTRAN fuel accident behaviour model. The example case for FRAPTRAN-GENFLO is for an ATWS at a BWR plant. The basis for the analysis is an oscillation incident in the Olkiluoto-1 BWR during reactor startup on February 22, 1987. It is shown that the new coupled code FRAPTRAN/GENFLO is quite a promising tool that can handle flow situations and give a detailed analysis of reactor transients

  11. Value of burnup credit beyond actinides

    International Nuclear Information System (INIS)

    Lancaster, D.; Fuentes, E.; Kang, Chi.

    1997-01-01

    DOE has submitted a topical report to the NRC justifying burnup credit based only on actinide isotopes (U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241). When this topical report is approved, it will allow a great deal of the commercial spent nuclear fuel to be transported in significantly higher capacity casks. A cost savings estimate for shipping fuel in 32 assembly (burnup credit) casks as opposed to 24 assembly (non-burnup credit) casks was previously presented. Since that time, more detailed calculations have been performed using the methodology presented in the Actinide-Only Burnup Credit Topical Report. Loading curves for derated casks have been generated using actinide-only burnup credit and are presented in this paper. The estimates of cost savings due to burnup credit for shipping fuel utilizing 32, 30, 28, and 24 assembly casks where only the 24 assembly cask does not burnup credit have been created and are discussed. 4 refs., 2 figs

  12. Challenges in the application of burn-up credit to the criticality safety of the THORP reprocessing plant

    International Nuclear Information System (INIS)

    Mayson, R.T.H.; Gunston, K.J.

    1999-01-01

    Since 1991 BNFL has made a significant investment in the development of the burn-up credit method and the application to its operations. It has recently demonstrated that using this method for the THORP dissolvers, it is possible to justify operating safety with reduced neutron poison concentrations and this has now been submitted to the regulators. The continued challenges the criticality safety community is facing are to show that we are not reducing safety levels because we are using burn-up credit. The burn-up credit method that has been developed can be summarized as follows. It consists of performing reactivity calculations for irradiated fuel using compositions generated by and inventory prediction code, generally in order to determine the limiting burn-up required for that fuel in a particular environment. In addition, it has always been envisaged that a confirmatory measurement of burn-up would be required to be made prior to certain operations such as the sharing of fuel into a dissolver. The burn-up credit method therefore relies upon three key components of inventory prediction, reactivity calculation code and the quantification and verification of burn-up. (J.P.N.)

  13. FAST: An advanced code system for fast reactor transient analysis

    International Nuclear Information System (INIS)

    Mikityuk, Konstantin; Pelloni, Sandro; Coddington, Paul; Bubelis, Evaldas; Chawla, Rakesh

    2005-01-01

    One of the main goals of the FAST project at PSI is to establish a unique analytical code capability for the core and safety analysis of advanced critical (and sub-critical) fast-spectrum systems for a wide range of different coolants. Both static and transient core physics, as well as the behaviour and safety of the power plant as a whole, are studied. The paper discusses the structure of the code system, including the organisation of the interfaces and data exchange. Examples of validation and application of the individual programs, as well as of the complete code system, are provided using studies carried out within the context of designs for experimental accelerator-driven, fast-spectrum systems

  14. Alternatives for implementing burnup credit in the design and operation of spent fuel transport casks

    International Nuclear Information System (INIS)

    Sanders, T.L.; Lake, W.H.

    1989-01-01

    It is possible to develop an optimal strategy for implementing burnup credit in spent fuel transport casks. For transport, the relative risk is rapidly reduced if additional pre-transport controls such as a cavity dryness verifications are conducted prior to transport. Some other operational and design features that could be incorporated into a burnup credit cask strategy are listed. These examples represent many of the system features and alternatives already available for use in developing a broadly based criticality safety strategy for implementing burnup credit in the design and operation of spent fuel transport casks. 4 refs., 1 tab

  15. Application bar-code system for solid radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. H.; Kim, T. K.; Kang, I. S.; Cho, H. S.; Son, J. S. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    Solid radioactive wastes are generated from the post-irradiated fuel examination facility, the irradiated material examination facility, the research reactor, and the laboratories at KAERI. A bar-code system for a solid radioactive waste management of a research organization became necessary while developing the RAWMIS(Radioactive Waste Management Integration System) which it can generate personal history management for efficient management of a waste, documents, all kinds of statistics. This paper introduces an input and output application program design to do to database with data in the results and a stream process of a treatment