International Nuclear Information System (INIS)
with high precision the neutron flux, burnup and concentration of every isotope, fissile, fissionable or fertile, gaseous or solid, all of them as functions of radius and time. But this formidable task is not suitable to be included in a fuel performance code, which must attend the great number of thermomechanical and thermochemical processes within the fuel rod. To accommodate both requirements, a simplified treatment is adopted consisting of restricting the balance equations to more relevant nuclides and reducing the energy spectrum to a single group. The purpose is to obtain empirical expressions to represent, with the higher possible approximation degree, the absorption, capture and fission cross sections of these isotopes as functions of the initial enrichment in 235U, the average burnup and the radial coordinate. The curves obtained with a so drastic simplification demand a careful testing before incorporation in the general fuel behaviour code. This testing is performed via comparison with the reliable reactor codes. The first antecedent in this type of analysis is found in the RADAR model [4] which was validated against the WIMS [5,6] code. The TUBRNP model, included in the TRANSURANUS code [7] and the RAPID model [8] are also based on the same concept. In this work curves fitted for the cross sections of 235U, 236U, 238U, 239Pu, 240Pu, 241Pu and 242Pu are obtained from the predictions of the reactor cell codes HUEMUL [9] and CONDOR [10] for an average burnup ranging from fresh fuel to 120 MWd/kgHM and for an initial enrichment ranging from natural uranium to 12%. The final purpose is to extend the application range of the DIONISIO code [11,12,13] (originally designed to predict the fuel behavior in normal operation conditions) to the high burnup domain. The predictions of DIONISIO were compared with a large number of experimental data, obtaining an excellent agreement
Burnup calculation code system COMRAD96
International Nuclear Information System (INIS)
COMRAD was one of the burnup code system developed by JAERI. COMRAD96 is a transfered version of COMRAD to Engineering Work Station. It is divided to several functional modules, 'Cross Section Treatment', 'Generation and Depletion Calculation', and 'Post Process'. It enables us to analyze a burnup problem considering a change of neutron spectrum using UNITBURN. Also it can display the γ Spectrum on a terminal. This report is the general description and user's manual of COMRAD96. (author)
Integrated burnup calculation code system SWAT
International Nuclear Information System (INIS)
SWAT is an integrated burnup code system developed for analysis of post irradiation examination, transmutation of radioactive waste, and burnup credit problem. It enables us to analyze the burnup problem using neutron spectrum depending on environment of irradiation, combining SRAC which is Japanese standard thermal reactor analysis code system and ORIGEN2 which is burnup code widely used all over the world. SWAT makes effective cross section library based on results by SRAC, and performs the burnup analysis with ORIGEN2 using that library. SRAC and ORIGEN2 can be called as external module. SWAT has original cross section library on based JENDL-3.2 and libraries of fission yield and decay data prepared from JNDC FP Library second version. Using these libraries, user can use latest data in the calculation of SWAT besides the effective cross section prepared by SRAC. Also, User can make original ORIGEN2 library using the output file of SWAT. This report presents concept and user's manual of SWAT. (author)
Systemization of burnup sensitivity analysis code. 2
International Nuclear Information System (INIS)
Towards the practical use of fast reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoint of improvements on plant efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by the development of adjusted nuclear library using the cross-section adjustment method, in which the results of criticality experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor 'JOYO'. The analysis of burnup characteristics is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, a burnup sensitivity analysis code, SAGEP-BURN, has been developed and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to users due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functions in the existing large system. It is not sufficient to unify each computational component for the following reasons; the computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore, it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion. For
Systemization of burnup sensitivity analysis code
International Nuclear Information System (INIS)
To practical use of fact reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoints of improvements on plant efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by development of adjusted nuclear library using the cross-section adjustment method, in which the results of critical experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor core 'JOYO'. The analysis of burnup characteristics is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, development of a analysis code for burnup sensitivity, SAGEP-BURN, has been done and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to user due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functionalities in the existing large system. It is not sufficient to unify each computational component for some reasons; computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion. For this
High burnup models in computer code fair
International Nuclear Information System (INIS)
An advanced fuel analysis code FAIR has been developed for analyzing the behavior of fuel rods of water cooled reactors under severe power transients and high burnups. The code is capable of analyzing fuel pins of both collapsible clad, as in PHWR and free standing clad as in LWR. The main emphasis in the development of this code is on evaluating the fuel performance at extended burnups and modelling of the fuel rods for advanced fuel cycles. For this purpose, a number of suitable models have been incorporated in FAIR. For modelling the fission gas release, three different models are implemented, namely Physically based mechanistic model, the standard ANS 5.4 model and the Halden model. Similarly the pellet thermal conductivity can be modelled by the MATPRO equation, the SIMFUEL relation or the Halden equation. The flux distribution across the pellet is modelled by using the model RADAR. For modelling pellet clad interaction (PCMI)/ stress corrosion cracking (SCC) induced failure of sheath, necessary routines are provided in FAIR. The validation of the code FAIR is based on the analysis of fuel rods of EPRI project ''Light water reactor fuel rod modelling code evaluation'' and also the analytical simulation of threshold power ramp criteria of fuel rods of pressurized heavy water reactors. In the present work, a study is carried out by analysing three CRP-FUMEX rods to show the effect of various combinations of fission gas release models and pellet conductivity models, on the fuel analysis parameters. The satisfactory performance of FAIR may be concluded through these case studies. (author). 12 refs, 5 figs
Revised SWAT. The integrated burnup calculation code system
International Nuclear Information System (INIS)
SWAT is an integrated burnup code system developed for analysis of post irradiation examination, transmutation of radioactive waste, and burnup credit problem. This report shows an outline and a user's manual of revised SWAT. This revised SWAT includes expansion of functions, increasing supported machines, and correction of several bugs reported from users of previous SWAT. (author)
Revised SWAT. The integrated burnup calculation code system
Energy Technology Data Exchange (ETDEWEB)
Suyama, Kenya; Mochizuki, Hiroki [Department of Fuel Cycle Safety Research, Nuclear Safety Research Center, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Kiyosumi, Takehide [The Japan Research Institute, Ltd., Tokyo (Japan)
2000-07-01
SWAT is an integrated burnup code system developed for analysis of post irradiation examination, transmutation of radioactive waste, and burnup credit problem. This report shows an outline and a user's manual of revised SWAT. This revised SWAT includes expansion of functions, increasing supported machines, and correction of several bugs reported from users of previous SWAT. (author)
Burnup calculation methodology in the serpent 2 Monte Carlo code
International Nuclear Information System (INIS)
This paper presents two topics related to the burnup calculation capabilities in the Serpent 2 Monte Carlo code: advanced time-integration methods and improved memory management, accomplished by the use of different optimization modes. The development of the introduced methods is an important part of re-writing the Serpent source code, carried out for the purpose of extending the burnup calculation capabilities from 2D assembly-level calculations to large 3D reactor-scale problems. The progress is demonstrated by repeating a PWR test case, originally carried out in 2009 for the validation of the newly-implemented burnup calculation routines in Serpent 1. (authors)
Validation of IRBURN calculation code system through burnup benchmark analysis
International Nuclear Information System (INIS)
Assessment of the reactor fuel composition during the irradiation time, fuel management and criticality safety analysis require the utilization of a validated burnup calculation code system. In this work a newly developed burnup calculation code system, IRBURN, is introduced for the estimation and analysis of the fuel burnup in LWR reactors. IRBURN provides the full capabilities of the Monte Carlo neutron and photon transport code MCNP4C as well as the versatile code for calculating the buildup and decay of nuclides in nuclear materials, ORIGEN2.1, along with other data processing and linking subroutines. This code has the capability of using different depletion calculation schemes. The accuracy and precision of the implemented algorithms to estimate the eigenvalue and spent fuel isotope concentrations are demonstrated by validation against reliable benchmark problem analyses. A comparison of IRBURN results with experimental data demonstrates that the code predicts the spent fuel concentrations within 10% accuracy. Furthermore, standard deviations of the average values for isotopic concentrations including IRBURN data decreases considerably in comparison with the same parameter excluding IRBURN results, except for a few sets of isotopes. The eigenvalue comparison between our results and the benchmark problems shows a good prediction of the k-inf values during the entire burnup history with the maximum difference of 1% at 100 MWd/kgU.
Systemization of burnup sensitivity analysis code (2) (Contract research)
International Nuclear Information System (INIS)
Towards the practical use of fast reactors, it is a very important subject to improve prediction accuracy for neutronic properties in LMFBR cores from the viewpoint of improvements on plant economic efficiency with rationally high performance cores and that on reliability and safety margins. A distinct improvement on accuracy in nuclear core design has been accomplished by the development of adjusted nuclear library using the cross-section adjustment method, in which the results of critical experiments of JUPITER and so on are reflected. In the design of large LMFBR cores, however, it is important to accurately estimate not only neutronic characteristics, for example, reaction rate distribution and control rod worth but also burnup characteristics, for example, burnup reactivity loss, breeding ratio and so on. For this purpose, it is desired to improve prediction accuracy of burnup characteristics using the data widely obtained in actual core such as the experimental fast reactor 'JOYO'. The analysis of burnup characteristic is needed to effectively use burnup characteristics data in the actual cores based on the cross-section adjustment method. So far, a burnup sensitivity analysis code, SAGEP-BURN, has been developed and confirmed its effectiveness. However, there is a problem that analysis sequence become inefficient because of a big burden to users due to complexity of the theory of burnup sensitivity and limitation of the system. It is also desired to rearrange the system for future revision since it is becoming difficult to implement new functions in the existing large system. It is not sufficient to unify each computational component for the following reasons: the computational sequence may be changed for each item being analyzed or for purpose such as interpretation of physical meaning. Therefore, it is needed to systemize the current code for burnup sensitivity analysis with component blocks of functionality that can be divided or constructed on occasion
Methods of RECORD, an LWR fuel assembly burnup code
International Nuclear Information System (INIS)
The RECORD computer code is a detailed rector physics code for performing efficient LWR fuel assembly calculations, taking into account most of the features found in BWR and PWR fuel designs. The code calculates neutron spectrum, reaction rates and reactivity as a function of fuel burnup, and it generates the few-group data required for use in full scale core simulation and fuel management calculations. The report describes the methods of the RECORD computer code and the basis for fundamental models selected, and gives a review of code qualifications against measured data. (Auth. /RF)
Evolution of the ELESTRES code for application to extended burnups
International Nuclear Information System (INIS)
The computer code ELESTRES is frequently used at Atomic Energy of Canada Limited to assess the integrity of CANDU fuel under normal operating conditions. The code also provides initial conditions for evaluating fuel behaviour during high-temperature transients. This paper describes recent improvements in the code in the areas of pellet expansion and of fission gas release. Both of these are very important considerations in ensuring fuel integrity at extended burnups. Firstly, in calculations of pellet expansion, the code now accounts for the effect of thermal stresses on the volume of gas bubbles at the boundaries of UO2 grains. This has a major influence on the expansion of the pellet during power-ramps. Secondly, comparisons with data showed that the previous fission gas package significantly underpredicted the fission gas release at high burnups. This package has now been improved via modifications to the following modules: distance between neighbouring bubbles on grain boundaries; diffusivity; and thermal conductivity. The predictions of the revised version of the code show reasonable agreement with measurements of ridge strains and of fission gas release. An illustrative example demonstrates that the code can be used to identify a fuel design that would: reduce the sheath stresses at circumferential ridges by a factor of 2-10; and keep the gas pressure at very high burnups to below the coolant pressure
OTTER 3 - A single channel, axial burnup code
International Nuclear Information System (INIS)
OTTER 3 is a single channel, axial burnup code, written in Fortran for the KDF 9 computer, and suitable for studying fuel management schemes of the continuous charge/discharge type. A general fuel shuffling scheme is allowed, and both unidirectional and bidirectional fuel feed can be studied. A 2-group neutron diffusion code is incorporated, the flux equations being solved by the forward elimination - backward substitution technique for the inner problem and a source iteration technique accelerated by Chebyshev extrapolation for the outer problem. (author)
Burnup calculations using serpent code in accelerator driven thorium reactors
International Nuclear Information System (INIS)
In this study, burnup calculations have been performed for a sodium cooled Accelerator Driven Thorium Reactor (ADTR) using the Serpent 1.1.16 Monte Carlo code. The ADTR has been designed for burning minor actinides, mixed 232Th and mixed 233U fuels. A solid Pb-Bi spallation target in the center of the core is used and sodium as coolant. The system is designed for a heating power of 2 000 MW and for an operation time of 600 days. For burnup calculations the Advanced Matrix Exponential Method CRAM (Chebyshev Rational Approximation Method) and different nuclear data libraries (ENDF7, JEF2.2, JEFF3.1.1) were used. The effective multiplication factor change from 0.93 to 0.97 for different nuclear data libraries during the reactor operation period. (orig.)
Burnup calculations using serpent code in accelerator driven thorium reactors
Energy Technology Data Exchange (ETDEWEB)
Korkmaz, M.E.; Agar, O. [Karamanoglu Mehmetbey Univ., Karaman (Turkey). Physics Dept.; Yigit, M. [Aksaray Univ. (Turkey). Physics Dept.
2013-07-15
In this study, burnup calculations have been performed for a sodium cooled Accelerator Driven Thorium Reactor (ADTR) using the Serpent 1.1.16 Monte Carlo code. The ADTR has been designed for burning minor actinides, mixed {sup 232}Th and mixed {sup 233}U fuels. A solid Pb-Bi spallation target in the center of the core is used and sodium as coolant. The system is designed for a heating power of 2 000 MW and for an operation time of 600 days. For burnup calculations the Advanced Matrix Exponential Method CRAM (Chebyshev Rational Approximation Method) and different nuclear data libraries (ENDF7, JEF2.2, JEFF3.1.1) were used. The effective multiplication factor change from 0.93 to 0.97 for different nuclear data libraries during the reactor operation period. (orig.)
BURNCAL: A Nuclear Reactor Burnup Code Using MCNP Tallies
International Nuclear Information System (INIS)
BURNCAL is a Fortran computer code designed to aid in analysis, prediction, and optimization of fuel burnup performance in a nuclear reactor. The code uses output parameters generated by the Monte Carlo neutronics code MCNP to determine the isotopic inventory as a function of time and power density. The code allows for multiple fueled regions to be analyzed. The companion code, RELOAD, can be used to shuffle fueled regions or reload regions with fresh fuel. BURNCAL can be used to study the reactivity effects and isotopic inventory as a function of time for a nuclear reactor system. Neutron transmutation, fission, and radioactive decay are included in the modeling of the production and removal terms for each isotope of interest. For a fueled region, neutron transmutation, fuel depletion, fission-product poisoning, actinide generation, and burnable poison loading and depletion effects are included in the calculation. Fueled and un-fueled regions, such as cladding and moderator, can be analyzed simultaneously. The nuclides analyzed are limited only by the neutron cross section availability in the MCNP cross-section library. BURNCAL is unique in comparison to other burnup codes in that it does not use the calculated neutron flux as input to other computer codes to generate the nuclide mixture for the next time step. Instead, BURNCAL directly uses the neutron absorption tally/reaction information generated by MCNP for each nuclide of interest to determine the nuclide inventory for that region. This allows for the full capabilities of MCNP to be incorporated into the calculation and a more accurate and robust analysis to be performed
Miniature neutron source reactor burnup calculations using IRBURN code system
International Nuclear Information System (INIS)
Highlights: ► Fuel consumption of Iranian MNSR during 15 years of operation has been investigated. ► Calculations have been performed by the IRBURN code. Precision and accuracy of the implemented model has been validated. ► Our study shows the consumption rate of MNSR is about 1%. - Abstract: Fuel consumption of Iranian miniature neutron source reactor (MNSR) during 15 years of operation has been investigated. Reactor core neutronic parameters such as flux and power distributions, control rod worth and effective multiplication factor at BOL and after 15 years of irradiation has been calculated. The Monte Carlo-based depletion code system IRBURN has been used for studying the reactor core neutronic parameters as well as the isotopic inventory of the fuel during burnup. The precision and accuracy of the implemented model has been verified via validation the results for neutronic parameters in the MNSR final safety analysis report. The results show that keff decreases from 1.0034 to 0.9897 and the total U-235 consumption in the core is about 13.669 g after 15 years of operational time. Finally, our studying shows the consumption rate of MNSR is about 1%.
Burnup calculations using the ORIGEN code in the CONKEMO computing system
International Nuclear Information System (INIS)
This article describes the CONKEMO computing system for kinetic multigroup calculations of nuclear reactors and their physical characteristics during burnup. The ORIGEN burnup calculation code has been added to the system. The results of an international benchmark calculation are also presented. (author)
Development and validation of Monte-Carlo burnup calculation code MCNTRANS
International Nuclear Information System (INIS)
A new nuclear fuel burnup calculation code MCNTRANS based on MCNP was introduced in this paper. The neutronics calculation parameter was extracted from the MCNP5 reaction rate tally result, while a graph theory algorithm was implemented to track the burnup chain and the analytic solution of the Bateman equation was given. At the same time, the detailed physical process was considered to improve the accuracy and serviceability of this code, and prediction-correction method was used to allow a large burnup step. The OECD/NEA and JAERI pin cell benchmark problems were used to validate the code MCNTRANS while a reference result was given by other code. It can be concluded that the calculation results of MCNTRANS are generally consistent with the experimental result and that of the other burnup codes, and part of the actinides and fission products calculation result show better accuracy. (authors)
Development of high-burnup fuel analysis code EXBURN-I
International Nuclear Information System (INIS)
A computer code EXBURN-I has been developed which analyses LWR fuel behavior in high-burnup region in normal operation and transient conditions. In the high-burnup region, fuel behavior is affected considerably by such burnup-dependent factors as FP gas release, waterside corrosion of cladding, and pellet property change. To analyze these phenomena, in the present version, the base code FEMAXI-IV has been improved and incorporated such new models as pellet thermal conductivity change, burnup-dependent FP gas release rate, and cladding waterside corrosion. The present report describes the whole structure of the code, adopted models, and material properties, followed by input manual and sample input/output. Verification and further improvement of the code performance by experimental data will be done in the next stage. (author)
Development of an MCNP-tally based burnup code and validation through PWR benchmark exercises
International Nuclear Information System (INIS)
The aim of this study is to evaluate the capabilities of a newly developed burnup code called BUCAL1. The code provides the full capabilities of the Monte Carlo code MCNP5, through the use of the MCNP tally information. BUCAL1 uses the fourth order Runge Kutta method with the predictor-corrector approach as the integration method to determine the fuel composition at a desired burnup step. Validation of BUCAL1 was done by code vs. code comparison. Results of two different kinds of codes are employed. The first one is CASMO-4, a deterministic multi-group two-dimensional transport code. The second kind is MCODE and MOCUP, a link MCNP-ORIGEN codes. These codes use different burnup algorithms to solve the depletion equations system. Eigenvalue and isotope concentrations were compared for two PWR uranium and thorium benchmark exercises at cold (300 K) and hot (900 K) conditions, respectively. The eigenvalue comparison between BUCAL1 and the aforementioned two kinds of codes shows a good prediction of the systems'k-inf values during the entire burnup history, and the maximum difference is within 2%. The differences between the BUCAL1 isotope concentrations and the predictions of CASMO-4, MCODE and MOCUP are generally better, and only for a few sets of isotopes these differences exceed 10%.
Development of 3d reactor burnup code based on Monte Carlo method and exponential Euler method
International Nuclear Information System (INIS)
Burnup analysis plays a key role in fuel breeding, transmutation and post-processing in nuclear reactor. Burnup codes based on one-dimensional and two-dimensional transport method have difficulties in meeting the accuracy requirements. A three-dimensional burnup analysis code based on Monte Carlo method and Exponential Euler method has been developed. The coupling code combines advantage of Monte Carlo method in complex geometry neutron transport calculation and FISPACT in fast and precise inventory calculation, meanwhile resonance Self-shielding effect in inventory calculation can also be considered. The IAEA benchmark text problem has been adopted for code validation. Good agreements were shown in the comparison with other participants' results. (authors)
Revised Burnup Code System SWAT: Description and Validation Using Postirradiation Examination Data
International Nuclear Information System (INIS)
The burnup code system Step-Wise Burnup Analysis Code System (SWAT) is revised for use in a burnup credit analysis. An important feature of the revised SWAT is that its functions are achieved by calling validated neutronics codes without any changes to the original codes. This feature is realized with a system function of the operating system, which allows the revised SWAT to be independent of the development status of each code.A package of the revised SWAT contains the latest libraries based on JENDL-3.2 and the second version of the JNDC FP library. These libraries allow us to analyze burnup problems, such as an analysis of postirradiation examination (PIE), using the latest evaluated data of not only cross sections but also fission yield and decay constants.Another function of the revised SWAT is a library generator for the ORIGEN2 code, which is one of the most reliable burnup codes. ORIGEN2 users can obtain almost the same results with the revised SWAT using the library prepared by this function.The validation of the revised SWAT is conducted by calculation of the Organization for Economic Cooperation and Development/Nuclear Energy Agency burnup credit criticality safety benchmark Phase I-B and analyses of PIE data for spent fuel from Takahama Unit 3. The analysis of PIE data shows that the revised SWAT can predict the isotopic composition of main uranium and plutonium with a deviation of 5% from experimental results taken from UO2 fuels of 17 x 17 fuel assemblies. Many results of fission products including samarium are within a deviation of 10%. This means that the revised SWAT has high reliability to predict the isotopic composition for pressurized water reactor spent fuel
Development and validation of a fast reactor core burnup code - FARCOB
Energy Technology Data Exchange (ETDEWEB)
Mohanakrishnan, P. [Indira Gandhi Centre for the Atomic Research, CDO, Reactor Physics Division, Kalpakkam, TN 603 102 (India)], E-mail: mohana@igcar.gov.in
2008-02-15
A large fast breeder reactor requires the accurate estimation of power produced in different parts of the reactor core and blanket during any operating condition for a safe and economic operation through out reactor life time. A fast reactor core simulation code FARCOB based on multigroup diffusion theory has been developed in IGCAR for core simulation of PFBR reactor under construction. FARCOB uses centre mesh differencing scheme with triangular meshes in the X-Y plane. Steady state solution results match exactly with those of other reputed codes DIF3D and VENTURE for SNR-300 benchmarks. For burnup simulation, core is divided into radial and axial burnup zones and burnup equations are solved at constant power. Burnable fuel and blanket number densities are found and stored for each mesh, so that the user can alter burnup zones and core geometry after a burnup step. For validation, results of FARCOB has been compared with results of other institutes in two burnup benchmarks (ANL 1000 MWe benchmark and BN-600 hybrid core benchmark). It is found that FARCOB results match well with those of the other institutes.
Siemens PWR burnup credit criticality analysis methodology: Depletion code and verification methods
International Nuclear Information System (INIS)
Application of burnup credit requires knowledge of the reactivity state of the irradiated fuel for which burnup credit is taken. The isotopic inventory of the irradiated fuel has to be calculated, therefore, by means of depletion codes. Siemens performs depletion calculations for PWR fuel burnup credit applications with the aid of the code package SAV. This code package is based on the first principles approach, i.e., avoids cycle or reactor specific fitting or adjustment parameters. This approach requires a general and comprehensive qualification of SAV by comparing experimental with calculational results. In the paper on hand the attention is focused mainly on the evaluation of chemical assay data received from different experimental programmes. (author)
International Nuclear Information System (INIS)
The purpose of this paper is to discuss the theories, techniques and computer codes that are frequently used in numerical reactor criticality and burnup calculations. It is a part of an integrated nuclear reactor calculation scheme conducted by the Reactors Department, Inshas Nuclear Research Centre. The crude part in numerical reactor criticality and burnup calculations includes the determination of neutron flux distribution which can be obtained in principle as a solution of Boltzmann transport equation. Numerical methods used for solving transport equations are discussed. Emphasis are made on numerical techniques based on multigroup diffusion theory. These numerical techniques include nodal, modal, and finite difference ones. The most commonly known computer codes utilizing these techniques are reviewed. Some of the main computer codes that have been already developed at the Reactors Department and related to numerical reactor criticality and burnup calculations have been presented
Validation of a new continuous Monte Carlo burnup code using a Mox fuel assembly
International Nuclear Information System (INIS)
The reactivity of nuclear fuel decreases with irradiation (or burnup) due to the transformation of heavy nuclides and the formation of fission products. Burnup credit studies aim at accounting for fuel irradiation in criticality studies of the nuclear fuel cycle (transport, storage, etc...). The principal objective of this study is to evaluate the potential capabilities of a newly developed burnup code called 'BUCAL1'. BUCAL1 differs in comparison with other burnup codes as it does not use the calculated neutron flux as input to other computer codes to generate the nuclide inventory for the next time step. Instead, BUCAL1 directly uses the neutron reaction tally information generated by MCNP for each nuclide of interest to determine the new nuclides inventory. This allows the full capabilities of MCNP to be incorporated into the calculation and a more accurate and robust analysis to be performed. Validation of BUCAL1 was processed by code-to-code comparisons using predictions of several codes from the NEA/OCED. Infinite multiplication factors (k∞) and important fission product and actinide concentrations were compared for a MOX core benchmark exercise. Results of calculations are analysed and discussed.
New high burnup fuel models for NRC`s licensing audit code, FRAPCON
Energy Technology Data Exchange (ETDEWEB)
Lanning, D.D.; Beyer, C.E.; Painter, C.L. [Pacific Northwest Laboratory, Richland, WA (United States)
1996-03-01
Fuel behavior models have recently been updated within the U.S. Nuclear Regulatory Commission steady-state FRAPCON code used for auditing of fuel vendor/utility-codes and analyses. These modeling updates have concentrated on providing a best estimate prediction of steady-state fuel behavior up to the maximum burnup level s of current data (60 to 65 GWd/MTU rod-average). A decade has passed since these models were last updated. Currently, some U.S. utilities and fuel vendors are requesting approval for rod-average burnups greater than 60 GWd/MTU; however, until these recent updates the NRC did not have valid fuel performance models at these higher burnup levels. Pacific Northwest Laboratory (PNL) has reviewed 15 separate effects models within the FRAPCON fuel performance code (References 1 and 2) and identified nine models that needed updating for improved prediction of fuel behavior at high burnup levels. The six separate effects models not updated were the cladding thermal properties, cladding thermal expansion, cladding creepdown, fuel specific heat, fuel thermal expansion and open gap conductance. Comparison of these models to the currently available data indicates that these models still adequately predict the data within data uncertainties. The nine models identified as needing improvement for predicting high-burnup behavior are fission gas release (FGR), fuel thermal conductivity (accounting for both high burnup effects and burnable poison additions), fuel swelling, fuel relocation, radial power distribution, fuel-cladding contact gap conductance, cladding corrosion, cladding mechanical properties and cladding axial growth. Each of the updated models will be described in the following sections and the model predictions will be compared to currently available high burnup data.
Development of burnup calculation function in reactor Monte Carlo code RMC
International Nuclear Information System (INIS)
This paper presents the burnup calculation capability of RMC, which is a new Monte Carlo (MC) neutron transport code developed by Reactor Engineering Analysis Laboratory (REAL) in Tsinghua University of China. Unlike most of existing MC depletion codes which explicitly couple the depletion module, RMC incorporates ORIGEN 2.1 in an implicit way. Different burn step strategies, including the middle-of-step approximation and the predictor-corrector method, are adopted by RMC to assure the accuracy under large burnup step size. RMC employs a spectrum-based method of tallying one-group cross section, which can considerably saves computational time with negligible accuracy loss. According to the validation results of benchmarks and examples, it is proved that the burnup function of RMC performs quite well in accuracy and efficiency. (authors)
Burnup calculation capability in the PSG2 / Serpent Monte Carlo reactor physics code
International Nuclear Information System (INIS)
The PSG continuous-energy Monte Carlo reactor physics code has been developed at VTT Technical Research Centre of Finland since 2004. The code is mainly intended for group constant generation for coupled reactor simulator calculations and other tasks traditionally handled using deterministic lattices physics codes. The name was recently changed from acronym PSG to 'Serpent', and the capabilities have been extended by implementing built-in burnup calculation routines that enable the code to be used for fuel cycle studies and the modelling of irradiated fuels. This paper presents the methodology used for burnup calculation. Serpent has two fundamentally different options for solving the Bateman depletion equations: 1) the Transmutation Trajectory Analysis method (TTA), based on the analytical solution of linearized depletion chains and 2) the Chebyshev Rational Approximation Method (CRAM), an advanced matrix exponential solution developed at VTT. The first validation results are compared to deterministic CASMO-4E calculations. It is also shown that the overall running time in Monte Carlo burnup calculation can be significantly reduced using specialized calculation techniques, and that the continuous-energy Monte Carlo method is becoming a viable alternative to deterministic assembly burnup codes. (authors)
DELIGHT-6: one dimensional lattice burn-up code for high temperature gas-cooled reactors
International Nuclear Information System (INIS)
The code, DELIGHT-6, performs multi-group neutron spectrum calculation and provides few-group constans for succeeding core calculations. The main objective of the code is to serve as the lattice burn-up code for the core of a very high temperature gas-cooled reactor. The fuel rods of the reactor contain many coated fuel particles resulting double heterogeneous arrangement. The main calculational schema of DELIGHT-6 code is as follows; (1) Energy range for fast neutrons covers from 10 MeV to 2.38 eV and is divided into 61 fine groups. The thermal neutrons covers the rest of the energy range from 2.38 eV to 0 eV. Thermal spectrum is calculated by P1 or P0 approximation with 50 fine groups. (2) To treat resonance absorption, IR method is employed. (3) Zero and one dimensional models are available for the fuel lattice geometry and used for criticality and burn-up calculations. Collision probability method is adopted for the calculation of one dimensional model. (4) Shielding factor of burnable poison is calculated by collision probability method. (5) Other functions of the code are; 1. Spatial shielding factor calculation of 240Pu, 2. Calculation of neutron streaming effect caused by a gap or a hole in the fuel lattice, 3. Calculation of neutron flux distribution in the fuel lattice by diffusion theory, 4. Calculation of Xe and Sm absorption cross sections with burn-up. (6) Cross section library in both fast and thermal energy range is compiled from ENDF/B-4 except burn-up data of Xm, Sm and pseudo FPs which are supplied by ENDF/B-3. (7) The code provides the macroscopic group constants of fuel lattice with burn-up in CITATION input format. (jin)
Accuracy assessment of a new Monte Carlo based burnup computer code
International Nuclear Information System (INIS)
Highlights: ► A new burnup code called BUCAL1 was developed. ► BUCAL1 uses the MCNP tallies directly in the calculation of the isotopic inventories. ► Validation of BUCAL1 was done by code to code comparison using VVER-1000 LEU Benchmark Assembly. ► Differences from BM value were found to be ± 600 pcm for k∞ and ±6% for the isotopic compositions. ► The effect on reactivity due to the burnup of Gd isotopes is well reproduced by BUCAL1. - Abstract: This study aims to test for the suitability and accuracy of a new home-made Monte Carlo burnup code, called BUCAL1, by investigating and predicting the neutronic behavior of a “VVER-1000 LEU Assembly Computational Benchmark”, at lattice level. BUCAL1 uses MCNP tally information directly in the computation; this approach allows performing straightforward and accurate calculation without having to use the calculated group fluxes to perform transmutation analysis in a separate code. ENDF/B-VII evaluated nuclear data library was used in these calculations. Processing of the data library is performed using recent updates of NJOY99 system. Code to code comparisons with the reported Nuclear OECD/NEA results are presented and analyzed.
Point reactivity burnup code DELIGHT-4 for high temperature, gas-cooled reactor cells
International Nuclear Information System (INIS)
The code DELIGHT-4 has been developed for analizing burnup characteristics of the graphite moderated reactor cells and producing the few-group constants. Calculation models for the code are as follows: (1) The number of neutron energy groups is 61 for fast neutrons (10 MeV -- 2.38 eV) and 50 for thermal neutrons (2.38 eV -- 0 eV). (2) The doubly space-heterogeneous effect of fuel (dispersion of coated fuel particles in fuel compacts and regular array of fuel rods in graphite blocks) is considered in the calculation of resonance absorption. (3) The double heterogenity of burnable poison (dispersion of absorber grains in rods) can be considered. (4) The chemical binding effect of graphite is introduced in the scattering of thermal neutrons. (5) The calculations of criticality and burnup are by a few-energy-group models (up to 10 groups for both fast and thermal neutrons), and nuclide chains of thorium-uranium and uranium-plutonium are used for burnup calculation. (6) Neutron streaming effect through holes and gaps in cells can be considered in criticality calculation. (7) The flux distribution in cells can be calculated. The cell-averaged few group constants can be produced in card form for 1-D transport approximation code SLALOM, 2-D S sub( n) code TWOTRAN, 1-D diffusion code BRIQUET, 2-D diffusion code ZADOC-3 and 3-D diffusion code CITATION-DEGA. (author)
Recent developments of the TRANSURANUS code with emphasis on high burnup phenomena
International Nuclear Information System (INIS)
TRANSURANUS is a computer program for the thermal and mechanical analysis of fuel rods in nuclear reactors, which is developed at the Institute for Transuranium Elements. The code is in use in several European organisations, both in research and industry. In the paper the recent developments are summarised: the burnup degradation of the fuel thermal conductivity as well as the effects of gadolinium on the radial power distribution and thermal conductivity. Fission gas release from the High Burnup Structure is discussed. Finally, a new numerical method is outlined that is able to treat the highly non-linear mechanical equations in transients (RIAs and LOCAs). (author)
International Nuclear Information System (INIS)
The burnup analysis program based on three dimensional discrete ordinates (SN) neutron/photon transport method has been developed by the FDS team, China, to aid in analysis, prediction, and optimization of fuel burnup performance in a nuclear reactor. The program uses output parameters generated by three-dimensional SN trans- port code to determine the isotopic inventory and anisotropic flux distribution as a function of time. For a fueled region, neutron transmutation, fuel depletion, fission-product poisoning, actinide generation, and burnable poison loading and depletion effects are included in the calculation. The IAEA benchmark test problem has been correctly calculated and analyzed to validate the system. (authors)
Burnup calculations of TR-2 Research Reactor with Monteburns Monte Carlo Code
International Nuclear Information System (INIS)
Full text: In this study, some neutronic calculations of first and second core cycles of 5 MW pool type TR-2 Research Reactor have been performed using Multi-Step Monte Carlo Burnup Code System MONTEBURNS and the results were compared with the values of experiments and other codes. Time dependent keff distribution and burnup ratios belong to first and second core cycles of TR-2 Research Reactor were compared and quite good consistence in the results were observed. After modeling the first and second core cycles of TR-2 with MCNP5 Monte Carlo code, MCNP5 used in MONTEBURNS code has been parallelized in 8 HP ProLiant BL680C G5 systems with 4 quad-core Intel Xeon E7330 CPU, utilizing the MPI parallel protocol and simulations were performed on the 128 cores Linux parallel computing machine system. The computation time was reduced by parallelization of MONTEBURNS which uses MCNP in many steps. (authors)
SWAT, Step-Wise Burnup Analysis Code System to Combine SRAC-95 Cell Calculation Code and ORIGEN2
International Nuclear Information System (INIS)
1 - Description of program or function: SWAT evaluates isotopic composition of spent nuclear fuel, especially for burnup credit issues by driving codes SRAC95 and ORIGEN2.1 or ORIGEN2. SWAT is an automated driver code system. At the initial development phase, it was constructed by combining source programs of SRAC and ORIGEN2. To overcome the problem associated with code updates, SWAT chose to use system function of UNIX operating system to execute SRAC95 and ORIGEN2. So that, SWAT is independent of development and modification of SRAC95 and ORIGEN2.1. In SWAT, ORIGEN2(82) or ORIGEN2.1 is used for burnup calculations using the matrix exponential method. An updated decay library is included in the distribution. SWAT uses SRAC95 for neutron spectrum and effective cross section calculation in 107 groups, using the collision probability method for given geometry and isotopic composition. One or two dimensional cell geometries are supported in SRAC95. NEA-1698/02: The main purpose of new package is to run SWAT on several machines not supported in previous package (IA64 under Linux, Windows with cygwin and Sun,...) and several commercial FORTRAN compiler (Intel, PGI, Fujitsu). 2 - Methods: In calculating the problem-dependent cross section in SWAT, the total burnup history is divided into 'burnup steps'. Power, boric acid concentration, temperature of each region, and void ratio of coolant are given as history data. For each burnup step, the neutron spectrum and effective cross section are evaluated by SRAC95 using the information given in previous burnup calculation and cell geometry information. The user can select geometry options for the collision probability method in SRAC95. 3 - Restrictions on the complexity of the problem: Resonance absorption calculation with ultra-fine group cross section can not be directly applicable for 2D geometry
Modification of the code SCTEMP and RIA transient analysis at high burnup
International Nuclear Information System (INIS)
The code SCTEMP has been modified for RIA analysis of high burnup fuel. New models were introduced for this purpose, including rim type radial power profile, thermal conductivity degradation, and heat transfer coefficient covering different regimes. Thus, the thermal response during a RIA transient at high burnup can be simulated. An analytical exercise was made with parameter variations of pulse time amplitude, radial power profile, thermal conductivity degradation, energy deposition and heat transfer boundary conditions. In order to keep this exercise within a realistic frame, the fuel used as reference is a high burnup fuel which was tested at Halden and for which the fuel thermal characteristics are known based on in-pile fuel temperature measurements. The calculation results are analysed and discussed in terms of their significance for fuel behaviour under the transient and for design of possible RIA experiments. Pulse time amplitude effects and energy deposition effects of high burnup fuel were evaluated quantitatively. The rim of high burnup fuel is assumed to play a very important role for RIA transients. (author)
Using SERPENT Monte Carlo and Burnup code to model Traveling Wave Reactors - TWR
International Nuclear Information System (INIS)
This paper is mainly devoted to the proof-of-principle implementation of the SERPENT code for the simulation of traveling wave reactors. Traveling wave reactors are both fast reactors and nuclear burning wave reactors in which the breeding and burning of nuclear fuel appear almost simultaneously. SERPENT is a neutron transport code whose last official update package is SERPENT 1.1.19 and whose SERPENT 2 version is currently in progress. The investigation of SERPENT 1.1.19 and of SERPENT 2 codes for multiprocessor tasks with long burnup steps was performed. It appears that SERPENT 2 has eliminated parallelization problems efficiently. Methods to remove the influence of the ignition zone were considered, and neutron transport simulations with various fragmentations of the burnup zone were performed. (authors)
International Nuclear Information System (INIS)
There have been two versions of SWAT depending on details of its development history: the revised SWAT that uses the deterministic calculation code SRAC as a neutron transportation solver, and the SWAT3.1 that uses the continuous energy Monte Carlo code MVP or MCNP5 for the same purpose. It takes several hours, however, to execute one calculation by the continuous energy Monte Carlo code even on the super computer of the Japan Atomic Energy Agency. Moreover, two-dimensional burnup calculation is not practical using the revised SWAT because it has problems on production of effective cross section data and applying them to arbitrary fuel geometry when a calculation model has multiple burnup zones. Therefore, SWAT4.0 has been developed by adding, to SWAT3.1, a function to utilize the deterministic code SARC2006, which has shorter calculation time, as an outer module of neutron transportation solver for burnup calculation. SWAT4.0 has been enabled to execute two-dimensional burnup calculation by providing an input data template of SRAC2006 to SWAT4.0 input data, and updating atomic number densities of burnup zones in each burnup step. This report describes outline, input data instruction, and examples of calculations of SWAT4.0. (author)
International Nuclear Information System (INIS)
In the design of the incore thermionic reactor system developed under the Advanced Thermionic Initiative (ATI), the fuel is highly enriched uranium dioxide and the moderating medium is zirconium hydride. The traditional burnup and fuel depletion analysis codes have been found to be inadequate for these calculations, largely because of the material and geometry modeled and because the neutron spectra assumed for the codes such as LEOPARD and ORIGEN do not even closely fit that for a small, thermal reactor using ZrH as moderator. More sophisticated codes such as the transport lattice type code WIMS often lack some materials, such as ZrH. Thus a new method which could accurately calculate the neutron spectrum and the appropriate reaction rates within the fuel element is needed. The method developed utilizes and interconnects the accuracy of the Monte Carlo Neutron/Photon (MCNP) method to calculate reaction rates for the important isotopes, and a time dependent depletion routine to calculate the temporal effects on isotope concentrations. This effort required the modification of MCNP itself to perform the additional task of accomplishing burnup calculations. The modified version called, MCNPBURN, evolved to be a general dual purpose code which can be used for standard calculations as well as for burn-up
Energy Technology Data Exchange (ETDEWEB)
Horhoianu, G.; Moscalu, D.R.; Popescu, I.A
1998-06-01
Extending burnup is a practical way to improve the economics of water-reactor operation, via enhanced fuel utilisation and reduced spent fuel volume. A dedicated fuel behaviour modeling computer code (entitled ROFEM-1B) has been developed in order to analyse high burnup fuel performance. The code was benchmarked on an experimental data base which include a significant number of irradiation experiments performed in TRIGA-INR Pitesti research reactor. Five fuel rod behaviour during irradiation up to 50 MWd kg{sup -1}UO{sub 2}{sup -1} burnup have been analysed by the code in the framework of the first phase of the international FUMEX code exercise co-ordinated by IAEA Vienna. The input experimental data package has been prepared by IFE-OECD Halden, Norway laboratory. In the second phase of the FUMEX exercise the participants have analysed eight simplified theoretical cases. The paper presents and discuss the results obtained with ROFEM-1B in this exercise and the comparison between code predictions and experimental data.
Development of a fuel rod thermal-mechanical analysis code for high burnup fuel
International Nuclear Information System (INIS)
The thermal-mechanical analysis code for high burnup BWR fuel rod has been developed by NFI. The irradiation data accumulated up to the assembly burnup of 55 GWd/t in commercial BWRs were adopted for the modeling. In the code, pellet thermal conductivity degradation with burnup progress was considered. Effects of the soluble FPs, irradiation defects and porosity increase due to RIM effect were taken into the model. In addition to the pellet thermal conductivity degradation, the pellet swelling due to the RIM porosity was studied. The modeling for the high burnup effects was also carried out for (U, Gd)O2 and MOX fuel. The thermal conductivities of all pellet types, UO2, (U, Gd)O2 and (U, Pu)O2 pellets, are expressed by the same form of equation with individual coefficient γ in the code. The pellet center temperature was calculated using this modeling code, and compared with measured values for the code verification. The pellet center temperature calculated using the thermal conductivity degradation model agreed well with the measured values within ±150 deg. C. The influence of rim porosity on pellet center temperature is small, and the temperature increase in only 30 deg. C at 75 GWd/t and 200 W/cm. The pellet center temperature of MOX fuel was also calculated, and it was found that the pellet center temperature of MOX fuel with 10wt% PuO2 is about 60 deg. C higher than UO2 fuel at 75 GWd/t and 200 W/cm. (author)
Progress on burnup calculation methods coupling Monte Carlo and depletion codes
Energy Technology Data Exchange (ETDEWEB)
Leszczynski, Francisco [Comision Nacional de Energia Atomica, San Carlos de Bariloche, RN (Argentina). Centro Atomico Bariloche]. E-mail: lesinki@cab.cnea.gob.ar
2005-07-01
Several methods of burnup calculations coupling Monte Carlo and depletion codes that were investigated and applied for the author last years are described. here. Some benchmark results and future possibilities are analyzed also. The methods are: depletion calculations at cell level with WIMS or other cell codes, and use of the resulting concentrations of fission products, poisons and actinides on Monte Carlo calculation for fixed burnup distributions obtained from diffusion codes; same as the first but using a method o coupling Monte Carlo (MCNP) and a depletion code (ORIGEN) at a cell level for obtaining the concentrations of nuclides, to be used on full reactor calculation with Monte Carlo code; and full calculation of the system with Monte Carlo and depletion codes, on several steps. All these methods were used for different problems for research reactors and some comparisons with experimental results of regular lattices were performed. On this work, a resume of all these works is presented and discussion of advantages and problems found are included. Also, a brief description of the methods adopted and MCQ system for coupling MCNP and ORIGEN codes is included. (author)
First steps towards a validation of the new burnup and depletion code TNT
International Nuclear Information System (INIS)
In the frame of the fusion of the core design calculation capabilities, represented by V.S.O.P., and the accident calculation capabilities, represented by MGT(-3D), the successor of the TINTE code, difficulties were observed in defining an interface between a program backbone and the ORIGEN code respectively the ORIGENJUEL code. The estimation of the effort of refactoring the ORIGEN code or to write a new burnup code from scratch, led to the decision that it would be more efficient writing a new code, which could benefit from existing programming and software engineering tools from the computer code side and which can use the latest knowledge of nuclear reactions, e.g. consider all documented reaction channels. Therefore a new code with an object-oriented approach was developed at IEK-6. Object-oriented programming is currently state of the art and provides mostly an improved extensibility and maintainability. The new code was named TNT which stands for Topological Nuclide Transformation, since the code makes use of the real topology of the nuclear reactions. Here we want to present some first validation results from code to code benchmarks with the codes ORIGEN V2.2 and FISPACT2005 and whenever possible analytical results also used for the comparison. The 2 reference codes were chosen due to their high reputation in the field of fission reactor analysis (ORIGEN) and fusion facilities (FISPACT). (orig.)
International Nuclear Information System (INIS)
An iterative method for burn-up determination in the non-destructive analysis of irradiated fuel elements using the ORIGEN computer code is presented. On the bases of data obtained from ORIGEN code the calibration coefficient for the neutron flux is determined as a function of one fission product activity while the burn-up is determined as a function of the calibration coefficient for a given irradiation history. These functions are used for determining the burn-up of nuclear fuel elements measured by gamma-scanning. The method is tested for fuel elements irradiated in a TRIGA reactor facility. (Author)
Development of a MCNP–ORIGEN burn-up calculation code system and its accuracy assessment
International Nuclear Information System (INIS)
Highlights: • MCNP and ORIGEN are coupled to perform nuclides depletion and decay calculation. • Coupled system MCORE uses “modified predictor corrector” approach. • MCORE can use different depletion schemes and simulate fuel shuffling. • MCORE is assessed by a “VVER-1000 LEU Assembly Computational Benchmark”. • MCORE is also assessed by a fast reactor benchmark problem. - Abstract: An MCNP–ORIGEN burn-up calculation code system, named MCORE (MCNP and ORIGEN burn-up Evaluation code), is developed in this work. MCORE makes use of the Monte Carlo neutron and photon transport code MCNP4C and nuclides depletion and decay calculation code ORIGEN2.1. MCNP and ORIGEN are coupled by data processing and linking subroutines. In MCORE, a so called “modified predictor corrector” approach is used. MCORE provides the capability of using different depletion calculation schemes and simulating fuel shuffling. Total nuclide density changes in active cells are considered in MCORE. The validity and applicability of the developed code are tested by investigating and predicting the neutronic and isotopic behavior of a “VVER-1000 LEU Assembly Computational Benchmark” at lattice level and a “Physics of Plutonium Recycling” fast reactor at core level (OECD-NEA). The comparison results show that the MCORE code predicts the nuclide composition within 5% accuracy and k∞ within 800 pcm at the end of the burn-up for LEU assembly (40 MWD/kg HM). For a fast reactor, the results obtained by MCORE are in the range of reported results except for 243Am. In general, MCORE results show a good agreement with the benchmark values
DELIGHT-6(revised): one dimensional lattice burnup code for high temperature gas cooled reactors
International Nuclear Information System (INIS)
The code, DELIGHT-6, performs the multi-group neutron spectrum calculation and provides the few-group constants for burnup calculations of a high temperature gas-cooled reactor core, whose fuel elements containing many coated fuel particles are arranged in double heterogeneity. The main revisions in the DELIGHT-6 (Revised) are as follows; (1)The option of a sphere fuel cell calculation is added for the core design of pebble bed type high temperature gas-cooled reactor. (2)The yield and decay constants of fission products for burnup calculation is revised. (3)The following auxiliary functions are added; (i) Automatic calculation of averaged atom number density in the fuel region, (ii) Estimation of local neutron flux distribution (disadvantage factor), (iii) Preparation of the data for the fine mesh core calculation. (author)
MODRIB - a zero dimensional code for criticality and burn-up of LWR's
International Nuclear Information System (INIS)
The computer program MODRIB is a zero-dimensional code for calculating criticality and burn-up of light water reactors (LWR's). It is a version of an Italian code RIBOT-2 with an updated cross-section data library. The nuclear constants of MODRIB-code are calculated with a two group scheme (fast and thermal), where the fast group is an average of three fast groups. The code requires as input data essential extensive reactor parameters such as fuel rod radius, clad thickness, fuel enrichment, lattice pitch, water density and temperature etc. A summary of the physical model description and the input-output procedures are given in this report. Selected results of two sample problems are also given for the purpose of checking the validity and reliability of the code. The first is BWR and the second is PWR. The calculation time for a criticality problem with burn-up is about 8 seconds for the first time step and about 3 seconds for each subsequent time step on the ICL-1906 computer facility. The requirements on the memory size is less than 32 K-word. (author)
ALEPH 1.1.2: A Monte Carlo burn-up code
International Nuclear Information System (INIS)
In the last 40 years, Monte Carlo particle transport has been applied to a multitude of problems such as shielding and medical applications, to various types of nuclear reactors, . . . The success of the Monte Carlo method is mainly based on its broad application area, on its ability to handle nuclear data not only in its most basic but also most complex form (namely continuous energy cross sections, complex interaction laws, detailed energy-angle correlations, multi-particle physics, . . . ), on its capability of modeling geometries from simple 1D to complex 3D, . . . There is also a current trend in Monte Carlo applications toward high detail 3D calculations (for instance voxel-based medical applications), something for which deterministic codes are neither suited nor performant as to computational time and precision. Apart from all these fields where Monte Carlo particle transport has been applied successfully, there is at least one area where Monte Carlo has had limited success, namely burn-up and activation calculations where the time parameter is added to the problem. The concept of Monte Carlo burn-up consists of coupling a Monte Carlo code to a burn-up module to improve the accuracy of depletion and activation calculations. For every time step the Monte Carlo code will provide reaction rates to the burn-up module which will return new material compositions to the Monte Carlo code. So if static Monte Carlo particle transport is slow, then Monte Carlo particle transport with burn-up will be even slower as calculations have to be performed for every time step in the problem. The computational issues to perform accurate Monte Carlo calculations are however continuously reduced due to improvements made in the basic Monte Carlo algorithms, due to the development of variance reduction techniques and due to developments in computer architecture (more powerful processors, the so-called brute force approach through parallel processors and networked systems
Energy Technology Data Exchange (ETDEWEB)
Zagar, T.; Ravnik, M.; Persic, A. (J.Stefan Institute, Ljubljana (Slovenia))
1999-12-15
Results of fuel element burn-up determination by measurement and calculation are given. Fuel element burn-up was calculated with two different programs TRIGLAV and TRIGAC using different models. New TRIGLAV code is based on cylindrical, two-dimensional geometry with four group diffusion approximation. TRIGAC program uses one-dimensional cylindrical geometry with twogroup diffusion approximation. Fuel element burn-up was measured with reactivity method. In this paper comparison and analysis of these three methods is presented. Results calculated with TRIGLAV show considerably better alignment with measured values than results calculated with TRIGAC. Some two-dimensional effects in fuel element burn-up can be observed, for instance smaller standard fuel element burn-up in mixed core rings and control rod influence on nearby fuel elements. (orig.)
ELESTRES 2.1 computer code for high burnup CANDU fuel performance analysis
International Nuclear Information System (INIS)
The ELESTRES (ELEment Simulation and sTRESses) computer code models the thermal, mechanical and micro structural behaviours of CANDU® fuel element under normal operating conditions. The main purpose of the code is to calculate fuel temperatures, fission gas release, internal gas pressure, fuel pellet deformation, and fuel sheath strains in fuel element design analysis and assessments. It is also used to provide initial conditions for evaluating fuel behaviour during high temperature transients. ELESTRES 2.1 was developed for high burnup fuel application, based on an industry standard tool version of the code, through the implementation or modification to code models such as fission gas release, fuel pellet densification, flux depression (radial power distribution in the fuel pellet), fuel pellet thermal conductivity, fuel sheath creep, fuel sheath yield strength, fuel sheath oxidation, two dimensional heat transfer between the fuel pellet and the fuel sheath; and an automatic finite element meshing capability to handle various fuel pellet shapes. The ELESTRES 2.1 code design and development was planned, implemented, verified, validated, and documented in accordance with the AECL software quality assurance program, which meets the requirements of the Canadian Standards Association standard for software quality assurance CSA N286.7-99. This paper presents an overview of the ELESTRES 2.1 code with descriptions of the code's theoretical background, solution methodologies, application range, input data, and interface with other analytical tools. Code verification and validation results, which are also discussed in the paper, have confirmed that ELESTRES 2.1 is capable of modelling important fuel phenomena and the code can be used in the design assessment and the verification of high burnup fuels. (author)
International Nuclear Information System (INIS)
In order to account for the reactivity-reducing effect of burn-up in the criticality safety analysis for systems with irradiated nuclear fuel (''burnup credit''), numerical methods to determine the enrichment and burnup dependent nuclide inventory (''burnup code'') and its resulting multiplication factor keff (''criticality code'') are applied. To allow for reliable conclusions, for both calculation systems the systematic deviations of the calculation results from the respective true values, the bias and its uncertainty, are being quantified by calculation and analysis of a sufficient number of suitable experiments. This quantification is specific for the application case under scope and is also called validation. GRS has developed a methodology to validate a calculation system for the application of burnup credit in the criticality safety analysis for irradiated fuel assemblies from pressurized water reactors. This methodology was demonstrated by applying the GRS home-built KENOREST burnup code and the criticality calculation sequence CSAS5 from SCALE code package. It comprises a bounding approach and alternatively a stochastic, which both have been exemplarily demonstrated by use of a generic spent fuel pool rack and a generic dry storage cask, respectively. Based on publicly available post irradiation examination and criticality experiments, currently the isotopes of uranium and plutonium elements can be regarded for.
A multi-platform linking code for fuel burnup and radiotoxicity analysis
International Nuclear Information System (INIS)
A linking code between ORIGEN2.1 and MCNP has been developed at the Departamento de Engenharia Nuclear/UFMG to calculate coupled neutronic/isotopic results for nuclear systems and to produce a large number of criticality, burnup and radiotoxicity results. In its previous version, it evaluated the isotopic composition evolution in a Heat Pipe Power System model as well as the radiotoxicity and radioactivity during lifetime cycles. In the new version, the code presents features such as multi-platform execution and automatic results analysis. Improvements made in the code allow it to perform simulations in a simpler and faster way without compromising accuracy. Initially, the code generates a new input for MCNP based on the decisions of the user. After that, MCNP is run and data, such as recoverable energy per prompt fission neutron, reaction rates and keff, are automatically extracted from the output and used to calculate neutron flux and cross sections. These data are then used to construct new ORIGEN inputs, one for each cell in the core. Each new input is run on ORIGEN and generates outputs that represent the complete isotopic composition of the core on that time step. The results show good agreement between GB (Coupled Neutronic/Isotopic code) and Monteburns (Automated, Multi-Step Monte Carlo Burnup Code System), developed by the Los Alamos National Laboratory. - Highlights: • Multi-platform execution and automatic results analysis are implemented. • Improvements allow simulations in a simpler and faster way. • The results show good agreement between GB and Monteburns codes
LOLA-SYSTEM, JEN-UPM PWR Fuel Management System Burnup Code System
International Nuclear Information System (INIS)
1 - Description of program or function: The LOLA-SYSTEM is a part of the JEN-UPM code package for PWR fuel management, scope or design calculations. It is a code package for core burnup calculations using nodal theory based on a FLARE type code. The LOLA-SYSTEM includes four modules: the first one (MELON-3) generates the constants of the K-inf and M2 correlations to be input into SIMULA-3. It needs the K-inf and M2 fuel assembly values at different conditions of moderator temperature, Boron concentration, burnup, etc., which are provided by MARIA fuel assembly calculations. The main module (SIMULA-3) is the core burnup calculation code in three dimensions and one group of energy. It normally uses a geometrical representation of one node per fuel assembly or per quarter of fuel assembly. It has included a thermal hydraulic feedback on flow and voids and criticality searches on boron concentration and control rods insertion. The CONCON code makes the calculation of the albedo, transport factors, K-inf and M2 correction factors to be input into SIMULA-3. The calculation is made in the XY transversal plane. The CONAXI code is similar to CONCON, but in the axial direction. 2 - Method of solution: MELON-3 makes a mean squares fit of K-inf and M2 values at different conditions in order to determine the constants of the feedback correlations. SIMULA-3 uses a modified one-group nodal theory, with a new transport kernel that provides the same node interface leakages as a fine mesh diffusion calculation. CONCON and CONAXI determine the transport and correction factors, as well as the albedo, to be input into SIMULA-3. They are determined by a method of leakages equivalent to the detailed diffusion calculation of CARMEN or VENTURE; these factors also include the heterogeneity effects inside the node. 3 - Restrictions on the complexity of the problem: Number of axial nodes less than or equal 34. Number of material types less than or equal 30. Number of fuel assembly types less
High burnup fuel simulation during a reactivity initiated transient using the FRAPTRAN code
International Nuclear Information System (INIS)
CIP01 test simulated a RIA (Reactivity Initiated Accident) transient at the experimental CABRI reactor under sodium cooling conditions on November 29th 2001. The father rod was fabricated by ENUSA and irradiated during five cycles in Vandellos 2 NPP and it reached a maximum burnup at EOL (End of Life) of 75 GWd/tU. The test rodlet was refabricated in Studsvik from the span 5 of the father rod. The cladding material was ZIRLO with a mean oxide layer of 75 μm. This note describes the modelling of the CIP01 test carried out in the CABRI reactor under RIA conditions by the use of the transient FRAPTRAN code (1.2 version). The CIP01 test consisted in a power pulse of 32.4 ms with a deposited energy of 98.2 cal/g at PPN (Peak Power Node). The code results will be presented and compared to the experimental data available. In addition, the FRAPTRAN and the SCANAIR code estimations will be also contrasted. This work is framed within the CSN-CIEMAT agreement on 'Thermo-Mechanical Behaviour of the Nuclear Fuel at High Burnup'. (Author)
Burnup span sensitivity analysis of different burnup coupling schemes
International Nuclear Information System (INIS)
Highlights: ► The objective of this work is the burnup span sensitivity analysis of different coupling schemes. ► Three kinds of schemes have been implemented in a new MCNP–ORIGEN linkage program. ► Two kinds of schemes are based predictor–corrector technique and the third is based on Euler explicit method. ► The analysis showed that the predictor–corrector approach better accounts for nonlinear behavior of burnup. ► It is sufficiently good to use the Euler method at small spans but for large spans use of second order scheme is mandatory. - Abstract: The analysis of core composition changes is complicated by the fact that the time and spatial variations in isotopic composition depend on the neutron flux distribution and vice versa. Fortunately, changes in core composition occur relatively slowly and hence the burnup analysis can be performed by dividing the burnup period into some burnup spans and assuming that the averaged flux and cross sections are constant during each burn up span. The burnup span sensitivity analysis attempts to find how much the burnup spans could be increased without any significant change in results. This goal has been achieved by developing a new MCNP–ORIGEN linkage program named MOBC (MCNP–ORIGEN Burnup Calculation). Three kinds of coupling scheme have been implemented in MOBC. Two of these are based on second order predictor–corrector technique and enable us to choose larger time steps, whilst the third one is based on Euler explicit first order method and is faster than the other two. The validity of the developed program has been evaluated by the code vs. code comparison technique. Two different types of codes are employed. The first one is based on deterministic two dimensional transport method, like CASMO-4 and HELIOS codes, and the second one is based on Monte Carlo method, like MCODE code. Only one coupling technique is employed in each of these state of the art codes, while the MOBC excels in its ability to
Development of a code and models for high burnup fuel performance analysis
International Nuclear Information System (INIS)
First the high burnup LWR fuel behavior is discussed and necessary models for the analysis are reviewed. These aspects of behavior are the changes of power history due to the higher enrichment, the temperature feedback due to fission gas release and resultant degradation of gap conductance, axial fission gas transport in fuel free volume, fuel conductivity degradation due to fission product solution and modification of fuel micro-structure. Models developed for these phenomena, modifications in the code, and the benchmark results mainly based on Risoe fission gas project is presented. Finally the rim effect which is observe only around the fuel periphery will be discussed focusing into the fuel conductivity degradation and swelling due to the porosity development. (author). 18 refs, 13 figs, 3 tabs
International Nuclear Information System (INIS)
The predictions of the ENIGMA code have been compared with data from high burn-up fuel experiments from the Halden and RISO reactors. The experiments modelled were IFA-504 and IFA-558 from Halden and the test II-5 from the RISO power burnup test series. The code has well modelled the fuel thermal performance and has provided a good measure of iodine release from pre-interlinked fuel. After interlinkage the iodine predictions remain a good fit for one experiment, but there is significant overprediction for a second experiment (IFA-558). Stable fission gas release is also well modelled and the predictions are within the expected uncertainly band throughout the burn-up range. This report presents code predictions for stable fission gas release to 40GWd/tU, iodine release measurements to 50GWd/tU and thermal performance (fuel centre temperature) to 55GWd/tU. Fuel ratings of up to 38kW/m were modelled at the high burn-up levels. The code is shown to accurately or conservatively predict all these parameters. (author). 1 ref., 6 figs
Mathematic preprocessor for RELAP5 code using Microsoft Excel
International Nuclear Information System (INIS)
Computational program are used for thermal hydraulic analysis of accidents and transients conditions in nuclear power plants. The RELAP5 code has been developed to simulate accidents and transients conditions, performing a best estimate analysis, in Pressurized Water Reactors (PWR) and auxiliary systems. The RELAP5 code, which has been used as a toll for licensing nuclear facilities in Brazil, is the objective of the study performed in this work. The main problem in using the RELAP5 code is the huge amount of information necessary to model the nuclear reactor and thus to simulate thermal-hydraulic accidents. Moreover, the RELAP5 code input data requires a large amount of mathematical operations to calculate the geometry of the plant components. Therefore, in order to make easier the data input for the RELAP5 code a friendly preprocessor has been developed. The preprocessor accepts basic information about the geometry of the plant components and performs all the calculations needed for the RELAP5 input. This preprocessor has been developed based on the MS-Excel software. (author)
International Nuclear Information System (INIS)
The high burnup database for CANDU fuel includes several cases from both power station and experimental reactor irradiations, with achieved burnups of up to 800 MW.h/kgU. The power history for each of these cases is different, encompassing low steady-state, declining, and power-ramps. This variety offers a good opportunity to check the models of fuel behaviour, and to identify areas for improvement. The main parameters for comparing calculated versus measured data are the fission gas release and the sheath hoop strain. Good agreement of calculated values of these two parameters with experimental data indicates that the global behaviour of the fuel element is adequately simulated by our codes. The ELESIM computer code was used as the simulation tool. The models for fission gas release, swelling and for fuel pellet expansion were thoroughly analysed. Changes were proposed for both models. The fuel pellet expansion model was modified to account for gaseous swelling, which becomes very important at high burnups. As well, the mathematics of the fission gas release model was upgraded for the diffusional release of fission gas atoms to the grain boundaries. A revised version of the ELESIM computer code was used to simulate the cases from the high burnup database. Satisfactory agreement was found for most cases. The discrepancies are discussed in view of alternative mechanisms that can operate and be enhanced at high burnup. These include stoichiometry changes with burnup that affects fission gas release, and also outer pellet rim fission gas release by a grain boundary diffusion process. The main conclusion of this study is that the revised version of the ELESIM code is able to simulate with reasonable accuracy high burnup as well as low burnup CANDU fuel. This includes irradiations of steady-state, declining, or ramped fuel power histories with a prolonged hold at high power. However, future improvements to ELESIM are needed to model fuel power histories with short dwell
A PWR PCI failure criterion to burnups of 60 GW·d/t using the ENIGMA code
International Nuclear Information System (INIS)
A fuel performance modelling code (ENIGMA) has been used to analyse the empirical PCI failure criterion in terms of a clad failure stress as a function of burnup and fast neutron dose. The Studsvik database has been analysed. Results indicate a rising and then saturating failure stress with burnup and fast neutron dose. Using the PCI failure limits, equivalent to 95/95 confidence limits, an ENIGMA stress-based methodology is used to derive PWR PCI failure limits up to 60 GW·d/t U using a conservative assumption that the failure stress does not increase at high burnup and neutron dose. In addition experimental ramp data on gadolinia-doped fuel rods do not indicate any increased susceptibility to PCI failure implying that the UO2 criterion can be used for gadolinia doped fuel. (author)
International Nuclear Information System (INIS)
By coupling a three-dimensional Discrete Ordinate (SN) code with an Exponential Euler Method inventory code, a three-dimensional code system was developed for accurate and rapid fuel burnup and material activation analyses. Resonance self-shielding effect was corrected dynamically in each step and each fuel zone. The update of compositions and nuclide densities in transport calculation was treated by setting nuclide density limitation, keeping important nuclides and using pseudo fission products (FPeff). The validation was described, which illustrates the robustness and reliability of this code system. (authors)
Energy Technology Data Exchange (ETDEWEB)
Holly R. Trellue
1998-12-01
Monteburns is a fully automated tool that links the Monte Carlo transport code MCNP with the radioactive decay and burnup code 0RIGEN2. Monteburns produces many criticality and burnup computational parameters based on material feed/removal specifications, power(s), and time intervals. This code processes input from the user indicating the system geometry, initial material compositions, feed/removal, and other code-specific parameters. Results from MCNP, 0RIGEN2, and other calculations are then output successively as the code runs. The principle function of monteburns is to first transfer one-group cross sections and fluxes from MCNP to 0RIGEN2, and then transfer the resulting material compositions (after irradiation and/or decay) from 0RIGEN2 back to MCNP in a repeated, cyclic fashion. The main requirement of the code is that the user have a working MCNP input file and other input parameters; all interaction with 0RIGEN2 and other calculations are performed by monteburns. This report presents the results obtained from the benchmarking of monteburns to measured and previously obtained data from traditional Light Water Reactor systems. The majority of the differences seen between the two were less than five percent. These were primarily a result of variances in cross sections between MCNP, cross section libraries used by other codes, and observed values. With this understanding, this code can now be used with confidence for burnup calculations in three-dimensional systems. It was designed for use in the Accelerator Transmutation of Waste project at Los Alamos National Laboratory but is also being applied to the analysis of isotopic production/destruction of transuranic actinides in a reactor system. The code has now been shown to sufficiently support these calculations.
International Nuclear Information System (INIS)
The program system KENOREST version 1998 will be presented, which is a useful tool for burnup and reactivity calculations for LWR fuel. The three-dimensional Monte Carlo code KENO-V.a is coupled with the one-dimensional GRS burnup program system OREST-98. The objective is to achieve a better modelling of plutonium and actinide build-up or burnout for advanced heterogeneous fuel assembly designs. Further objectives are directed to reliable calculations of the pin power distributions and of reactor safety parameters including axial and radial rod temperatures for fuel assemblies of modern design. The stand-alone-code KENO-V.a version is used without any changes in the program source. The OREST-98 system was developed to handle multirod problems and additional burnup dependent moderator conditions which can be applied to stretch-out simulations in the reactor. A new interface module RESPEFF between KENO and OREST transforms the 2-d or 3-d KENO flux results to the one-dimensional lattice code OREST in a fully automated manner to maintain reaction rate balance between the codes. First results for assembly multiplication factors, isotope inventories are compared with OECD results. (author)
International Nuclear Information System (INIS)
Highlights: • Development of a neural network model to predict the requiered plutonium content. • The accuracy of this model is very good (0.37% of error). • Development of a neural network model to predict evolution of average cross sections. • Predictions allow calculating fuel depletion quickly and with a very good accuracy. • This approach has been applied to the PWR MOX case in a dynamic fuel cycle code. - Abstract: Dynamic fuel cycle simulation tools calculate nuclei inventories and mass flows evolution in an entire fuel cycle, from the mine to the final disposal. Usually, the fuel depletion in reactor is handled by a fuel loading model and a mean cross section predictor. In the case of a PWR–MOX, a fuel loading model provides from a plutonium stock the plutonium fraction in the fresh fuel needed to reach a specific burnup. A mean cross section predictor aims to assess isotopic cross sections required for building Bateman equations for any fresh fuel composition with a sufficient accuracy and a reasonable computing time. This paper presents a methodology based on neural networks for building a fuel loading model and a cross section predictor for a PWR reactor loaded with MOX fuel. The mean error of the plutonium content prediction from the fuel loading model is 0.37%. Furthermore, the mean cross section predictor allows completion of the fuel depletion calculation in less than one minute with excellent accuracy. A maximum deviation of 3% on main nuclei is obtained at the end of cycle between inventories calculated from neural networks and from the reference coupled neutron transport/fuel depletion calculation
Energy Technology Data Exchange (ETDEWEB)
Behler, Matthias; Hannstein, Volker; Kilger, Robert; Moser, Franz-Eberhard; Pfeiffer, Arndt; Stuke, Maik
2014-06-15
In order to account for the reactivity-reducing effect of burn-up in the criticality safety analysis for systems with irradiated nuclear fuel (''burnup credit''), numerical methods to determine the enrichment and burnup dependent nuclide inventory (''burnup code'') and its resulting multiplication factor k{sub eff} (''criticality code'') are applied. To allow for reliable conclusions, for both calculation systems the systematic deviations of the calculation results from the respective true values, the bias and its uncertainty, are being quantified by calculation and analysis of a sufficient number of suitable experiments. This quantification is specific for the application case under scope and is also called validation. GRS has developed a methodology to validate a calculation system for the application of burnup credit in the criticality safety analysis for irradiated fuel assemblies from pressurized water reactors. This methodology was demonstrated by applying the GRS home-built KENOREST burnup code and the criticality calculation sequence CSAS5 from SCALE code package. It comprises a bounding approach and alternatively a stochastic, which both have been exemplarily demonstrated by use of a generic spent fuel pool rack and a generic dry storage cask, respectively. Based on publicly available post irradiation examination and criticality experiments, currently the isotopes of uranium and plutonium elements can be regarded for.
International Nuclear Information System (INIS)
The effect of fuel burn-up on the radioactivation behavior of cladding hull materials was investigated using the ORIGEN-S code for various materials of Zircaloy-4, Zirlo, HANA-4, and HANA-6 and for various fuel burn-ups of 30, 45, 60, and 75 GWD/MTU. The Zircaloy-4 material is the only one that does not contain Nb as an alloy constituent, and it was revealed that 125Sb, 125mTe, and 55Fe are the major sources of radioactivity. On the other hand, 93mNb was identified as the most radioactive nuclide for the other materials although minor radioactive nuclides varied owing to their different initial constituents. The radioactivity of 94Nb was of particular focus owing to its acceptance limit against a Korean intermediate-/low-level waste repository. The radioactivation calculation results revealed that only Zircaloy-4 is acceptable for the Korean repository, while the other materials required at least 4,900 of Nb decontamination factor owing to the high radioactivity of 94Nb regardless of the fuel burn-up. A discussion was also made on the feasibility of Zr recovery methods (chlorination and electrorefining) for selective recovery of Zr so that it can be disposed of in the Korean repository. (author)
International Nuclear Information System (INIS)
The double-heterogeneity characterising pebble-bed high temperature reactors (HTRs) makes Monte Carlo based calculation tools the most suitable for detailed core analyses. These codes can be successfully used to predict the isotopic evolution during irradiation of the fuel of this kind of cores. At the moment, there are many computational systems based on MCNP that are available for performing depletion calculation. All these systems use MCNP to supply problem dependent fluxes and/or microscopic cross sections to the depletion module. This latter then calculates the isotopic evolution of the fuel resolving Bateman's equations. In this paper, a comparative analysis of three different MCNP-based depletion codes is performed: Montburns2.0, MCNPX2.6.0 and BGCore. Monteburns code can be considered as the reference code for HTR calculations, since it has been already verified during HTR-N and HTR-N1 EU project. All calculations have been performed on a reference model representing an infinite lattice of thorium-plutonium fuelled pebbles. The evolution of k-inf as a function of burnup has been compared, as well as the inventory of the important actinides. The k-inf comparison among the codes shows a good agreement during the entire burnup history with the maximum difference lower than 1%. The actinide inventory prediction agrees well. However significant discrepancy in Am and Cm concentrations calculated by MCNPX as compared to those of Monteburns and BGCore has been observed. This is mainly due to different Am-241 (n,γ) branching ratio utilized by the codes. The important advantage of BGCore is its significantly lower execution time required to perform considered depletion calculations. While providing reasonably accurate results BGCore runs depletion problem about two times faster than Monteburns and two to five times faster than MCNPX.
ABRAC: A microcomputer-based Fortran code for multi-cyle burnup
International Nuclear Information System (INIS)
Pressurized-water reactors have reactor physics and fuel management characteristics which are very amenable to simplified analysis. Given models which account for the dominant features of core and fuel performance, it is possible to rapidly perform relatively accurate scoping studies of many years of reactor operation in just a few hours on a modern (386-class) microcomputer. Models are described for burnup-dependent cross-section generation, for burnup of fuel under irradiation, and for computation of radial power distributions in hexagonal geometry assuming hexagonal fuel assemblies. Comparisons with more elaborate methods are given in order to validate the models, and to quantify the accuracy of the results. 16 refs., 5 figs., 5 tabs
Burnup simulations of different fuel grades using the MCNPX Monte Carlo code
Directory of Open Access Journals (Sweden)
Asah-Opoku Fiifi
2014-01-01
Full Text Available Global energy problems range from the increasing cost of fuel to the unequal distribution of energy resources and the potential climate change resulting from the burning of fossil fuels. A sustainable nuclear energy would augment the current world energy supply and serve as a reliable future energy source. This research focuses on Monte Carlo simulations of pressurized water reactor systems. Three different fuel grades - mixed oxide fuel (MOX, uranium oxide fuel (UOX, and commercially enriched uranium or uranium metal (CEU - are used in this simulation and their impact on the effective multiplication factor (Keff and, hence, criticality and total radioactivity of the reactor core after fuel burnup analyzed. The effect of different clad materials on Keff is also studied. Burnup calculation results indicate a buildup of plutonium isotopes in UOX and CEU, as opposed to a decline in plutonium radioisotopes for MOX fuel burnup time. For MOX fuel, a decrease of 31.9% of the fissile plutonium isotope is observed, while for UOX and CEU, fissile plutonium isotopes increased by 82.3% and 83.8%, respectively. Keff results show zircaloy as a much more effective clad material in comparison to zirconium and stainless steel.
International Nuclear Information System (INIS)
PLUTON is a three-group neutronic code analyzing, as functions of time and burnup, the change of radial profiles, together with average values, of power density, burnup, concentration of trans-uranium elements, plutonium buildup, depletion of fissile elements, and fission product generation in water reactor fuel rod with standard UO2, UO2-Gd2O3, inhomogeneous MOX, and UO2-ThO2. The PLUTON code, which has been designed to be run on Windows PC, has adopted a theoretical shape function of neutron attenuation in pellet, which enables users to perform a very fast and accurate calculation easily. The present code includes the irradiation conditions of the Halden Reactor which gives verification data for the code. The total list of trans-uranium elements included in the calculations consists of 92U233-239, 93Np237-239, 94Pu238-243, 95Am241-244 (including isomers), and 96Cm242-245. Poisoning fission products are represented by 54Xe131,133,135, 48Cd113, 62Sm149,151,152, 64Gd154-160, 63Eu153,155, 36Kr83,85, 42Mo95, 43Tc99, 45Rh103, 47Ag109, 53I127,129,131, 55Cs133, 57La139, 59Pr141, 60Nd143-150, 61Pm147. Fission gases and volatiles included in the code are 36Kr83-86, 54Xe129-136, 52Te125-130, 53I127-131, 55Cs133-137, and 56Ba135-140. Verification has been performed up to 83 GWd/tU, and a satisfactory agreement has been obtained. (author)
Implementation and adaption of the Computer Code ECOSYS/EXCEL for Austria as OECOSYS/EXCEL
International Nuclear Information System (INIS)
During 1989, under contract to the Austrian Chamber of the Federal Chancellor, department VII, the radioecological forecast model OECOSYS was implemented by the Austrian Research Centre Seibersdorf on a VAX computer using VAX Fortran. OECOSYS allows the prediction of the consequences after a large scale contamination event. During 1992, under contract to the Austrian Federal Ministry of Health, Sports and Consumer Protection, department III OECOSYS - in the version of 1989 - was implemented on PC's in Seibersdorf and the Ministry using OS/2 and Microsoft -Fortran. In March 1993, the Ministry ordered an update which had become necessary and the evaluation of two exercise scenarios. Since that time the prognosis model with its auxiliary program and communication facilities is kept on stand-by and yearly exercises are performed to maintain its readiness. The current report describes the implementation and adaption to Austrian conditions of the newly available EXCEL version of the German ECOSYS prognosis model as OECOSYS. (author)
The aesthetics of code : on excellence in instrumental action
Pineiro, Erik
2003-01-01
Software systems form an essential part of Western society,serving as tools to uphold institutions, processes andservices. It is understandable, therefore, that the mostfundamental aspects of programs are their function and utility.But they are not, however, the only things programmers areconcerned with when writing them. On the contrary, programmers also discuss about many otheraspects of software, including the beauty of code. Theydistinguish between different programming styles and express...
Energy Technology Data Exchange (ETDEWEB)
Dieudonne, C.; Dumonteil, E.; Malvagi, F.; Diop, C. M. [Commissariat a l' Energie Atomique et aux Energies Alternatives CEA, Service d' Etude des Reacteurs et de Mathematiques Appliquees, DEN/DANS/DM2S/SERMA/LTSD, F91191 Gif-sur-Yvette cedex (France)
2013-07-01
For several years, Monte Carlo burnup/depletion codes have appeared, which couple a Monte Carlo code to simulate the neutron transport to a deterministic method that computes the medium depletion due to the neutron flux. Solving Boltzmann and Bateman equations in such a way allows to track fine 3 dimensional effects and to get rid of multi-group hypotheses done by deterministic solvers. The counterpart is the prohibitive calculation time due to the time-expensive Monte Carlo solver called at each time step. Therefore, great improvements in term of calculation time could be expected if one could get rid of Monte Carlo transport sequences. For example, it may seem interesting to run an initial Monte Carlo simulation only once, for the first time/burnup step, and then to use the concentration perturbation capability of the Monte Carlo code to replace the other time/burnup steps (the different burnup steps are seen like perturbations of the concentrations of the initial burnup step). This paper presents some advantages and limitations of this technique and preliminary results in terms of speed up and figure of merit. Finally, we will detail different possible calculation scheme based on that method. (authors)
International Nuclear Information System (INIS)
This paper describes results of testing of the TRANSURANUS burn-up model (TUBRNP routine) for Gd-doped WWER-1000 fuel pin based on results of HELIOS code. The testing covers the analysis of different types of nuclear fuel rods from a neutronic point of view that one can encounter in the VVER-1000 reactor core. The HELIOS computations simulate the assembly geometry, and combine 4 different 235U enrichment configurations with 4 different Gd2O3-concentrations. For each of these combinations the radial distribution of the concentrations of 155Gd and 157Gd compute in one Gd-doped rod. Based on these results the recommendations on using cross section of Gd in TRANSURANUS TUBRNP model were proposed. (author)
International Nuclear Information System (INIS)
Highlights: → The specifications required for the analyses of the destructive assay data taken from irradiated fuel in Ohi-1 and Ohi-2 PWRs were documented in this paper. → These data were analyzed using the SWAT2.1 code, and the calculation results showed good agreement with experimental results. → These destructive assay data are suitable for the benchmarking of the burnup calculation code systems. - Abstract: The isotopic composition of spent nuclear fuels is vital data for studies on the nuclear fuel cycle and reactor physics. The Japan Atomic Energy Agency (JAEA) has been active in obtaining such data for pressurized water reactor (PWR) and boiling water reactor (BWR) fuels, and some data has already been published. These data have been registered with the international Spent Fuel Isotopic Composition Database (SFCOMPO) and widely used as international benchmarks for burnup calculation codes and libraries. In this paper, Assay Data of Spent Nuclear Fuel from two fuel assemblies irradiated in the Ohi-1 and Ohi-2 PWRs in Japan are shown. The destructive assay data from Ohi-2 have already been published. However, these data were not suitable for the benchmarking of calculation codes and libraries because several important specifications and data were not included. This paper summarizes the details of destructive assay data and specifications required for analyses of isotopic composition from Ohi-1 and Ohi-2. For precise burnup analyses, the burnup values of destructive assay samples were re-evaluated in this study. These destructive assay data were analyzed using the SWAT2.1 code, and the calculation results showed good agreement with experimental results. This indicates that the quality of destructive assay data from Ohi-1 and Ohi-2 PWRs is high, and that these destructive assay data are suitable for the benchmarking of burnup calculation code systems.
Energy Technology Data Exchange (ETDEWEB)
Lemehov, Sergei E; Suzuki, Motoe [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
2001-08-01
PLUTON is a three-group neutronic code analyzing, as functions of time and burnup, the change of radial profiles, together with average values, of power density, burnup, concentration of trans-uranium elements, plutonium buildup, depletion of fissile elements, and fission product generation in water reactor fuel rod with standard UO{sub 2}, UO{sub 2}-Gd{sub 2}O{sub 3}, inhomogeneous MOX, and UO{sub 2}-ThO{sub 2}. The PLUTON code, which has been designed to be run on Windows PC, has adopted a theoretical shape function of neutron attenuation in pellet, which enables users to perform a very fast and accurate calculation easily. The present code includes the irradiation conditions of the Halden Reactor which gives verification data for the code. The total list of trans-uranium elements included in the calculations consists of {sub 92}U{sup 233-239}, {sub 93}Np{sup 237-239}, {sub 94}Pu{sup 238-243}, {sub 95}Am{sup 241-244} (including isomers), and {sub 96}Cm{sup 242-245}. Poisoning fission products are represented by {sub 54}Xe{sup 131,133,135}, {sub 48}Cd{sup 113}, {sub 62}Sm{sup 149,151,152}, {sub 64}Gd{sup 154-160}, {sub 63}Eu{sup 153,155}, {sub 36}Kr{sup 83,85}, {sub 42}Mo{sup 95}, {sub 43}Tc{sup 99}, {sub 45}Rh{sup 103}, {sub 47}Ag{sup 109}, {sub 53}I{sup 127,129,131}, {sub 55}Cs{sup 133}, {sub 57}La{sup 139}, {sub 59}Pr{sup 141}, {sub 60}Nd{sup 143-150}, {sub 61}Pm{sup 147}. Fission gases and volatiles included in the code are {sub 36}Kr{sup 83-86}, {sub 54}Xe{sup 129-136}, {sub 52}Te{sup 125-130}, {sub 53}I{sup 127-131}, {sub 55}Cs{sup 133-137}, and {sub 56}Ba{sup 135-140}. Verification has been performed up to 83 GWd/tU, and a satisfactory agreement has been obtained. (author)
International Nuclear Information System (INIS)
The reactivity effect of the asymmetry of axial burnup profile in burnup credit criticality safety is studied for a realistic PWR spent fuel transport cask proposed in the current OECD/NEA Phase II-C benchmark problem. The axial burnup profiles are simulated in 21 material zones based on in-core flux measurements varying from strong asymmetry to more or less no asymmetry. Criticality calculations in a 3-D model have been performed using the continuous energy Monte Carlo code MCNP-4B2 and the nuclear data library JENDL-3.2. Calculation conditions are determined with consideration of the axial fission source convergence. Calculations are carried out not only for cases proposed in the benchmark but also for additional cases assuming symmetric burnup profile. The actinide-only approach supposed for first domestic introduction of burnup credit into criticality evaluation is also considered in addition to the actinide plus fission product approach adopted in the benchmark. The calculated results show that keff and the end effect increase almost linearly with increasing burnup axial offset that is defined as one of typical parameters showing the intensity of axial burnup asymmetry. The end effect is more sensitive to the asymmetry of burnup profile for the higher burnup. For an axially distributed burnup, the axial fission source distribution becomes strongly asymmetric as its peak shifts toward the top end of the fuel's active zone where the local burnup is less than that of the bottom end. The peak of fission source distribution becomes higher with the increase of either the asymmetry of burnup profile or the assembly-averaged burnup. The conservatism of the assumption of uniform axial burnup based on the actinide-only approach is estimated quantitatively in comparison with the keff result calculated with experiment-based strongest asymmetric axial burnup profile with the actinide plus fission product approach. (author)
Energy Technology Data Exchange (ETDEWEB)
Borio Di Tigliole, A.; Bruni, J.; Panza, F. [Dept. of Nuclear and Theoretical Physics, Univ. of Pavia, 27100 Pavia (Italy); Italian National Inst. of Nuclear Physics INFN, Section of Pavia, Via A. Bassi, 6, 27100 Pavia (Italy); Alloni, D.; Cagnazzo, M.; Magrotti, G.; Manera, S.; Prata, M.; Salvini, A. [Italian National Inst. of Nuclear Physics INFN, Section of Pavia, Via A. Bassi, 6, 27100 Pavia (Italy); Applied Nuclear Energy Laboratory LENA, Univ. of Pavia, Via Aselli, 41, 27100 Pavia (Italy); Chiesa, D.; Clemenza, M.; Pattavina, L.; Previtali, E.; Sisti, M. [Physics Dept. G. Occhialini, Univ. of Milano Bicocca, 20126 Milano (Italy); Italian National Inst. of Nuclear Physics INFN, Section of Milano Bicocca, P.zza della Scienza, 3, 20126 Milano (Italy); Cammi, A. [Italian National Inst. of Nuclear Physics INFN, Section of Milano Bicocca, P.zza della Scienza, 3, 20126 Milano (Italy); Dept. of Energy Enrico Fermi Centre for Nuclear Studies CeSNEF, Polytechnic Univ. of Milan, Via U. Bassi, 34/3, 20100 Milano (Italy)
2012-07-01
Aim of this work was to perform a rough preliminary evaluation of the burn-up of the fuel of TRIGA Mark II research reactor of the Applied Nuclear Energy Laboratory (LENA) of the Univ. of Pavia. In order to achieve this goal a computation of the neutron flux density in each fuel element was performed by means of Monte Carlo code MCNP (Version 4C). The results of the simulations were used to calculate the effective cross sections (fission and capture) inside fuel and, at the end, to evaluate the burn-up and the uranium consumption in each fuel element. The evaluation, showed a fair agreement with the computation for fuel burn-up based on the total energy released during reactor operation. (authors)
International Nuclear Information System (INIS)
Aim of this work was to perform a rough preliminary evaluation of the burn-up of the fuel of TRIGA Mark II research reactor of the Applied Nuclear Energy Laboratory (LENA) of the Univ. of Pavia. In order to achieve this goal a computation of the neutron flux density in each fuel element was performed by means of Monte Carlo code MCNP (Version 4C). The results of the simulations were used to calculate the effective cross sections (fission and capture) inside fuel and, at the end, to evaluate the burn-up and the uranium consumption in each fuel element. The evaluation, showed a fair agreement with the computation for fuel burn-up based on the total energy released during reactor operation. (authors)
Ramamoorthy, Karthikeyan
The main aim of this research is the development and validation of computational schemes for advanced lattice codes. The advanced lattice code which forms the primary part of this research is "DRAGON Version4". The code has unique features like self shielding calculation with capabilities to represent distributed and mutual resonance shielding effects, leakage models with space-dependent isotropic or anisotropic streaming effect, availability of the method of characteristics (MOC), burnup calculation with reaction-detailed energy production etc. Qualified reactor physics codes are essential for the study of all existing and envisaged designs of nuclear reactors. Any new design would require a thorough analysis of all the safety parameters and burnup dependent behaviour. Any reactor physics calculation requires the estimation of neutron fluxes in various regions of the problem domain. The calculation goes through several levels before the desired solution is obtained. Each level of the lattice calculation has its own significance and any compromise at any step will lead to poor final result. The various levels include choice of nuclear data library and energy group boundaries into which the multigroup library is cast; self shielding of nuclear data depending on the heterogeneous geometry and composition; tracking of geometry, keeping error in volume and surface to an acceptable minimum; generation of regionwise and groupwise collision probabilities or MOC-related information and their subsequent normalization thereof, solution of transport equation using the previously generated groupwise information and obtaining the fluxes and reaction rates in various regions of the lattice; depletion of fuel and of other materials based on normalization with constant power or constant flux. Of the above mentioned levels, the present research will mainly focus on two aspects, namely self shielding and depletion. The behaviour of the system is determined by composition of resonant
Application of two-dimensional burnup computer codes to the operation of nuclear power plants
International Nuclear Information System (INIS)
The needs for three-dimensional computer calculations of the power density distribution in WWER type reactors are outlined. In most cases, however, two-dimensional calculations provide sufficiently exact results and result in a decrease in computer costs. The application, performance and computer codes of two-dimensional calculations are dealt with. (author)
International Nuclear Information System (INIS)
Allowing Monte Carlo (MC) codes to perform fuel cycle calculations requires coupling to a point depletion solver. In order to perform depletion calculations, one-group (1-g) cross sections must be provided in advance. This paper focuses on generating accurate 1-g cross section values that are necessary for evaluation of nuclide densities as a function of burnup. The proposed method is an alternative to the conventional direct reaction rate tally approach, which requires extensive computational efforts. The method presented here is based on the multi-group (MG) approach, in which pre-generated MG sets are collapsed with MC calculated flux. In our previous studies, we showed that generating accurate 1-g cross sections requires their tabulation against the background cross-section (σ0) to account for the self-shielding effect. However, in previous studies, the model that was used to calculate σ0 was simplified by fixing Bell and Dancoff factors. This work demonstrates that 1-g values calculated under the previous simplified model may not agree with the tallied values. Therefore, the original background cross section model was extended by implicitly accounting for the Dancoff and bell factors. The method developed here reconstructs the correct value of σ0 by utilizing statistical data generated within the MC transport calculation by default. The proposed method was implemented into BGCore code system. The 1-g cross section values generated by BGCore were compared with those tallied directly from the MCNP code. Very good agreement (<0.05%) in the 1-g cross values was observed. The method dose not carry any additional computational burden and it is universally applicable to the analysis of thermal as well as fast reactor systems. (author)
Inclusion of historical dependences of fuel burn-up into MOBY-DICK Code
International Nuclear Information System (INIS)
The paper briefly describes inclusion of historical dependences of cross sections into MOBY-DICK code. Changes in program and its library are specified, especially from the point of view of programs user. Preliminary testing on assembly level is described and also testing on core level for 'transient' loading pattern calculations is demonstrated on examples of 18th and 19th cycles of the Dukovany NPP Unit III. Some features are addressed in the end of the paper (Authors)
Incorporation of the variation in conductivity with burnup in the stability of code predictive LAPUR
International Nuclear Information System (INIS)
In the field of nuclear safety, the analysis of the stability of boiling water reactors is one of the biggest challenges for researchers. LAPUR code that allows to obtain the parameters of stability of the plant (Decay rate and frequency), being one of the programs used by IBERDROLA can be used for these calculations. With the collaboration of the research group TIN of the Polytechnic University of Valencia, a model of loss of conductivity of uranium has joined with the burned LAPUR. This update allows you to play the phenomenon in a more realistic way. This improvement has been validated and verified contrasting results with reference values.
International Nuclear Information System (INIS)
Highlights: • The inventory of the radioactive nuclides was calculated using the GETERA code. • The consumptions of 235U for the HEU, MEU and LEU were: 2360, 2334 and 2320 g. • The amounts of 239Pu produced were: 67.07, 157.86 g for the MEU and LEU. • The core radioactivity for the MEU and LEU were: 8.84 × 1016 and 9.31 × 1016 Bq. - Abstract: Efforts have been made recently to study the possibility of core conversion of the 10 MW MTR type research reactor from the HEU to LEU fuels due to the proliferation issue. Since the inventory of the reactor core is a required parameter to study the atmospheric dispersion calculation for a postulated accidental airborne radionuclide release from the reactor, the inventory of the radioactive nuclides accumulated in the UAlx–Al fuels: HEU (93% 235U), MEU (45% 235U) and LEU (20% 235U) after 200 days of the reactor operating time was calculated using the GETERA code. The result showed, after 200 days of the reactor operation time (35% burnup), that the total consumptions of 235U and 238U for the HEU, MEU and LEU fuels were: 2360, 2334 and 2320 g for the 235U and 13, 105 and 238 g for the 238U, respectively. The amounts of 239Pu produced in the core were: 67.07, 157.86 g for the MEU and LEU fuels, respectively, compared with 7.95 g. The total core radioactivity after 200 days for the MEU and LEU cores were: 8.84 × 1016 and 9.31 × 1016 Bq, respectively, compared with 8.63 × 1016 Bq for the HEU core
Gholamzadeh Zohreh; Hossein Feghhi Seyed Amir; Soltani Leila; Rezazadeh Marzieh; Tenreiro Claudio; Joharifard Mahdi
2014-01-01
Decrease of the economically accessible uranium resources and the inherent proliferation resistance of thorium fuel motivate its application in nuclear power systems. Estimation of the nuclear reactor’s neutronic parameters during different operational situations is of key importance for the safe operation of nuclear reactors. In the present research, thorium oxide fuel burn-up calculations for a demonstrative model of a heavy water- -cooled reactor have been performed using MCNPX 2.6 code. N...
Directory of Open Access Journals (Sweden)
Gholamzadeh Zohreh
2014-12-01
Full Text Available Decrease of the economically accessible uranium resources and the inherent proliferation resistance of thorium fuel motivate its application in nuclear power systems. Estimation of the nuclear reactor’s neutronic parameters during different operational situations is of key importance for the safe operation of nuclear reactors. In the present research, thorium oxide fuel burn-up calculations for a demonstrative model of a heavy water- -cooled reactor have been performed using MCNPX 2.6 code. Neutronic parameters for three different thorium fuel matrices loaded separately in the modelled thermal core have been investigated. 233U, 235U and 239Pu isotopes have been used as fissile element in the thorium oxide fuel, separately. Burn-up of three different fuels has been calculated at 1 MW constant power. 135X and 149Sm concentration variations have been studied in the modelled core during 165 days burn-up. Burn-up of thorium oxide enriched with 233U resulted in the least 149Sm and 135Xe productions and net fissile production of 233U after 165 days. The negative fuel, coolant and void reactivity of the used fuel assures safe operation of the modelled thermal core containing (233U-Th O2 matrix. Furthermore, utilisation of thorium breeder fuel demonstrates several advantages, such as good neutronic economy, 233U production and less production of long-lived α emitter high radiotoxic wastes in biological internal exposure point of view
Analysis of the burnup of the control rods with the COREMASTER-Presto code
International Nuclear Information System (INIS)
An evaluation of the capacity of the COREMASTER-Presto code, to evaluate generically the burnt of the control bars in the Laguna Verde reactors plant (CLV) is made. It was found that the code only reports burnt values of the control rods in MWD/TM, in spite of having with a second order polynomial model, for the conversion to remainder of the Boron-10 (B-10). It was observed that said model is adequate only for burnt smaller to 45,000 MWD/TM. To evaluate the burnt of the control rods it was reproduced the balance cycle of 18 months for the CLV, executing Cm-Presto during 13 consecutive cycles. First without rod burnt, taking this as the base case. Later on, cases with 1, 2 and up to 13 cycles with rod burnt were generated. When comparing results it was observed that the control rods pattern it loses reactivity lineally with the burnt one. By each 10 G Wd/T of burnt of the nucleus it is decreased the reactivity of the pattern rods ∼ 1 pcm in hot condition and of ∼ 20 pcm in cold condition. When burning three cycles those rods more burnt reached the 13,900 MWD/TM, equivalent to 36% of B-10 reduction, near value to 34% proposed by aging in the one lost study of B-10. It was observed that Cm-Presto it doesn't burn the superior node of the control rods when these are completely extracted. A one big lost of B-10, of the order of 50%, it represents only a decrease of 11% of the reactivity value of the rod. One can affirm that even when it is strongly decreased the content of B-10, the rod is continue considering as a black absorber, that is to say, thermal neutron that enters in the neutron rod that is absorbed. (Author)
Des macros Excel pour exporter et importer des modules de code VBA
Duclos, Jean Baptiste
2008-01-01
Cet article présente un outil Excel qui permet de gérer facilement l’exportation et l’importation de macros VBA, en sauvegardant les programmes des macros dans des fichiers textes. Les macros d’importation et d’exportation de code peuvent être facilement utilisées dans d’autres programmes.
SFR whole core burnup calculations with TRIPOLI-4 Monte Carlo code
International Nuclear Information System (INIS)
Under the Working Party on Scientific Issues of Reactor Systems (WPRS) of the OECD/NEA, an international collaboration benchmark was recently established on the neutronic analysis of four Sodium-cooled Fast Reactor (SFR) concepts of the Generation- IV nuclear energy systems. As the whole core Monte Carlo depletion calculation is one of the essential challenges of current reactor physics studies, the continuous-energy TRIPOLI-4 Monte Carlo transport code was firstly used in this study to perform whole core 3D neutronic calculations for these four SFR cores. Two medium size (1000 MWt) and two large size (3600 MWt) SFR of GEN-IV systems were analyzed. The medium size SFR concepts are from the Advanced Burner Reactors (ABR). The large size SFR concepts are from the self-breeding reactors. The TRIPOLI-4 depletion calculations were made with MOX and metallic U-Pu-Zr fuels for the ABR cores and with MOX and Carbide (U,Pu)C fuels for the self-breeding cores. The whole core reactor physics parameters calculations were performed for the BOEC and EOEC (Beginning and End of Equilibrium Cycle) conditions. This paper summarizes the TRIPOLI-4 calculation results of Keff, βeff, sodium void worth, Doppler constant, control rod worth, and core power distributions for the BOEC and EOEC conditions. The one-cycle depletion calculation results of the core inventory of U and TRU (Pu, Am, Cm, and Np) are also analyzed, after 328.5 days depletion irradiation for the ABR cores, 410 days for the large MOX core, and 500 days for the large carbide core. (author)
International Nuclear Information System (INIS)
Results of the RTOP-CA code calculations for experiments in the research MIR reactor are presented. The MIR-reactor tests were made to study the activity release from defective WWER fuel at high burnup (∼60 MWd/kgU). The RTOP-CA calculations are compared to experimental data on radial distributions of burnup as well as radial profiles of Pu and Xe concentrations in fuel pellets. The RTOP-CA predictions are also compared to the data on activity release (radionuclides of I, Cs, Xe and Kr) from the test fuel rod with an artificial defect in cladding. Additional calculations were performed for WWER-1000 fuel of an advanced design. In these calculation series the effect of design innovations on activity release from defective fuel rods was estimated. It is demonstrated that in case of a failure the new generation of WWER fuel shows lower levels of activity release into primary coolant. (authors)
International Nuclear Information System (INIS)
A fuel performance code FEMAXI-6 has been developed for the analysis of LWR fuel rod behaviors in normal operation and transient (not accident) conditions. The code uses FEM for mechanical analysis, and has incorporated thermal and mechanical models of phenomena anticipated in high burn-up fuel rods, such as fuel thermal conductivity degradation and pellet-clad bonding. In the present study, PCMI induced by swelling in a high burn-up BWR type fuel rod has been analyzed by the FEMAXI-6 code. During a power ramp for the high burn-up fuel, instantaneous pellet swelling can significantly exceed the level that is predicted by a 'steady-rate' swelling model, causing a large circumferential strain in cladding. This phenomenon has been simulated by a new swelling model to take into account the fission gas bubble growth, and we found that the new model can give satisfactory predictions on cladding diametral expansion in comparison with measurements in test rod. The bubble growth model assumes an equilibrium between bubble size and external pressure on the bubble, and simultaneous solution is obtained with both bubble size determination and diffusion equation of fission gas atoms. In addition, a pellet-clad bonding model which assumes firm mechanical coupling between pellet outer surface and cladding inner surface predicts an elevated tensile stress in the axial direction of cladding during ramp, indicating the generation of bi-axial stress state in the cladding. These analyses by the FEMAXI-6 code enable us to predict the magnitude of mechanical loading on cladding during transient and also serve for failure investigation. Clearly, prediction by code calculation depends on the creep and stress-strain properties of highly irradiated cladding. (author)
International Nuclear Information System (INIS)
FRAPCON-3 is a FORTRAN IV computer code that calculates the steady-state response of light water reactor fuel rods during long-term burnup. The code calculates the temperature, pressure, and deformation of a fuel rod as functions of time-dependent fuel rod power and coolant boundary conditions. The phenomena modeled by the code include (1) heat conduction through the fuel and cladding, (2) cladding elastic and plastic deformation, (3) fuel-cladding mechanical interaction, (4) fission gas release, (5) fuel rod internal gas pressure, (6) heat transfer between fuel and cladding, (7) cladding oxidation, and (8) heat transfer from cladding to coolant. The code contains necessary material properties, water properties, and heat-transfer correlations. The codes' integral predictions of mechanical behavior have not been assessed against a data base, e.g., cladding strain or failure data. Therefore, it is recommended that the code not be used for analyses of cladding stress or strain. FRAPCON-3 is programmed for use on both mainframe computers and UNIX-based workstations such as DEC 5000 or SUN Sparcstation 10. It is also programmed for personal computers with FORTRAN compiler software and at least 8 to 10 megabytes of random access memory (RAM). The FRAPCON-3 code is designed to generate initial conditions for transient fuel rod analysis by the FRAPTRAN computer code (formerly named FRAP-T6)
International Nuclear Information System (INIS)
This paper is focused on the description and validation of the new dynamic model aimed at the processes taking place on grain boundaries in polycrystalline Light Water Reactor fuel based on the use of UO2, which has been recently developed for the START-3 code. The analysis embraces such processes as formation of fine surface clusters and larger intergranular pores, equi-axial grain growth, direct release and percolation of fission gas to the open surfaces. This model is also closely linked to intragranular behaviour of fission gas and essentially overlaps modelling of High Burnup Structure, as well as high temperature- and power transient-assisted processes. The model embodies some of the state-of-the-art approaches to numerical description of the processes taking place on grain boundaries, incorporating considerations of diffusion theory with respect to analysis of the dynamics of grain boundary pore growth/shrinkage caused by self-diffusion of the fuel material around them. Besides, it widely uses the elements of probability theory thereby accounting for stochastic nature of the analyzed phenomena. The several examples of model validation, illustrating credibility of pertinent results as applied to a wide enough range of application, including high-temperature out-of-pile annealing, High Burnup Structure Effects and transient behaviour of Light Water Reactor fuel, are also presented. As the validation shows, the developed model can be accepted as an important element of overall dynamic modelling with a view to justification of reliability of high burnup Light Water Reactor fuel, and safety analysis, as well
Validation of lattice code 'EXCEL' with TIC experiments on uniform and regularly perturbed lattices
International Nuclear Information System (INIS)
Temporary International Collective (TIC) was established in 1972 by an agreement among seven countries, namely, Bulgaria, Czechoslovakia, Germany, Hungary, Poland, Romania and Union of Soviet Socialist Republics. The main objective of TIC was to provide the experimental data for the reactor physics analysis of water cooled and water moderated power reactors (WWER). Extensive experimental work for different core configurations was carried out by TIC countries to investigate the physics behaviour of WWER lattices and the results were published in TIC volumes. Two VVER-1000 MWe reactors are currently in an advanced stage of construction and due for commissioning in Kudankulam, Tamil Nadu, India. Indigenous development of in-core fuel management computer codes for the analysis of hexagonal lattice cores is also in an advanced stage to address various design, operation and safety issues of VVER type cores. The validation of the above TIC lattice experiments will help in the identification of deficiencies in reactor physics design computational codes and the associated nuclear data libraries. In this paper, TIC experiments on uniform and regularly perturbed lattices have been analyzed as part of the validation of indigenous computer codes, EXCEL, TRIHEX-FA and HEXPIN developed at Light Water Reactors Physics Section, B.A.R.C. Neutron-nuclear multi-group cross-section libraries in WIMS/D format in 69/172 energy groups have been released by IAEA at the conclusion of WIMS library update project (WLUP). In the present study we have used libraries based on ENDF/B-6, ENDF/B-7, JEFF3.1 and JENDL3.2 evaluated nuclear datasets. The results of the theoretical analyses bring out the performance of the code system and various cross-section libraries.
International Nuclear Information System (INIS)
The bundle-duct interaction analysis code ''BAMBOO'' has been developed for the purpose of predicting deformation of a wire-wrapped fuel pin bundle of a fast breeder reactor (FBR). The BAMBOO code calculates helical bowing and oval-distortion of all the fuel pins in a fuel subassembly. We developed deformation models in order to precisely analyze the irradiation induced deformation by the code: a model to analyze fuel pin self-bowing induced by circumferential gradient of void swelling as well as thermal expansion, and a model to analyze dispersion of the orderly arrangement of a fuel pin bundle. We made deformation analyses of high burn-up fuel subassemblies in Phenix reactor and compared the calculated results with the post irradiation examination data of these subassemblies for the verification of these models. From the comparison we confirmed that the calculated values of the oval-distortion and bowing reasonably agreed with the PIE results if these models were used in the analysis of the code. (author)
International Nuclear Information System (INIS)
The deep burn fuel cycle for the incineration of military plutonium in the GT-MHR is studied using the Monte-Carlo burnup code. The irradiation is DF is so rich in fissile isotopes that the TF cannot guarantee a negative reactive feedback, and the presence of erbium as burnable poison is absolutely necessary for the reactivity safety reasons. At beginning of life (BOL) the fuel composed of DF, consisting of fresh military plutonium, after an irradiation period of three years the fuel is reprocessed into post driver fuel (PDF). The mass flow of the GT-MHR fuelled by military plutonium at the equilibrium of the fuel composition shows that 66% of 239Pu is burned in three years and 92% in six years. (authors)
International Nuclear Information System (INIS)
The isotopic composition calculations were performed for 26 spent fuel samples from the Obrigheim PWR reactor and 55 spent fuel samples from 7 PWR reactors using the SAS2H module of the SCALE4.4 code system with 27, 44 and 238 group cross-section libraries and the SWAT code system with the 107 group cross-section library. For the analyses of samples from the Obrigheim PWR reactor, geometrical models were constructed for each of SCALE4.4/SAS2H and SWAT. For the analyses of samples from 7 PWR reactors, the geometrical model already adopted in the SCALE/SAS2H was directly converted to the model of SWAT. The four kinds of calculation results were compared with the measured data. For convenience, the ratio of the measured to calculated values was used as a parameter. When the ratio is less than unity, the calculation overestimates the measurement, and the ratio becomes closer to unity, they have a better agreement. For many important nuclides for burnup credit criticality safety evaluation, the four methods applied in this study showed good coincidence with measurements in general. More precise observations showed, however: (1) Less unity ratios were found for Pu-239 and -241 for selected 16 samples out of the 26 samples from the Obrigheim reactor (10 samples were deselected because their burnups were measured with Cs-137 non-destructive method, less reliable than Nd-148 method the rest 16 samples were measured with); (2) Larger than unity ratios were found for Am-241 and Cm-242 for both the 16 and 55 samples; (3) Larger than unity ratios were found for Sm-149 for the 55 samples; (4) SWAT was generally accompanied by larger ratios than those of SAS2H with some exceptions. Based on the measured-to-calculated ratios for 71 samples of a combined set in which 16 selected samples and 55 samples were included, the correction factors that should be multiplied to the calculated isotopic compositions were generated for a conservative estimate of the neutron multiplication factor
Reactivity effects of nonuniform axial burnup distributions on spent fuel
International Nuclear Information System (INIS)
When conducting future criticality safety analyses on spent fuel shipping casks, burnup credit may play a significant role in determining the number of fuel assemblies that can be safely loaded into each cask. An important area in burnup credit analysis is the burnup variation along the length of the fuel assembly, which is determined by the location of the assembly in the reactor core and its residence time. A study of the effects of axial burnup distributions on reactivity has been conducted, using data from existing power plant fuel. Utilizing a one-dimensional, two-group diffusion code, named REALAX, the reactivity effects of axial burnup profiles have been calculated for various PWR fuel assemblies. The reactivity effects calculated by the code are defined in terms of k for the axially dependent burnup distribution minus k for a uniform axial burnup distribution at the assembly average burnup divided by k for a uniform axial burnup distribution at the assembly average burnup. Criticality safety specialists can take advantage of the quick-running code to determine axial effects of different assembly burnup profiles. In general, the positive reactivity effects of axial burnup distributions increase as burnup increases, though they do not increase faster than the overall decrease in reactivity due to burnup
Reactivity effects of nonuniform axial burnup distributions on spent fuel
Energy Technology Data Exchange (ETDEWEB)
Leary, R.W. II; Parish, T.A. [Texas A & M Univ., College Station, TX (United States)
1995-12-01
When conducting future criticality safety analyses on spent fuel shipping casks, burnup credit may play a significant role in determining the number of fuel assemblies that can be safely loaded into each cask. An important area in burnup credit analysis is the burnup variation along the length of the fuel assembly, which is determined by the location of the assembly in the reactor core and its residence time. A study of the effects of axial burnup distributions on reactivity has been conducted, using data from existing power plant fuel. Utilizing a one-dimensional, two-group diffusion code, named REALAX, the reactivity effects of axial burnup profiles have been calculated for various PWR fuel assemblies. The reactivity effects calculated by the code are defined in terms of k for the axially dependent burnup distribution minus k for a uniform axial burnup distribution at the assembly average burnup divided by k for a uniform axial burnup distribution at the assembly average burnup. Criticality safety specialists can take advantage of the quick-running code to determine axial effects of different assembly burnup profiles. In general, the positive reactivity effects of axial burnup distributions increase as burnup increases, though they do not increase faster than the overall decrease in reactivity due to burnup.
Supercell burnup model for the physics design of BWR fuel assemblies
International Nuclear Information System (INIS)
A code called SUPERB has been developed for the BWR fuel assembly burnup analyses using supercell model. Each of the characteristic heterogeneities of a BWR fuel assembly like water gap, poisoned pins, control blade etc., is treated by invoking appropriate supercell concept. The burnup model of SUPERB is so devised as to strike a balance between accuracy and speed. This is achieved by building isotopic densities in each fuel pin separately while the depletion equations are solved only in a few groups of pins or burnup zones and the multigroup neutron spectra are differentiated in fewer group of pincell types. Multiple fuel ring burnup is considered only for Gd isotopes. A special empirical formula allows the microscopic cross section of Gd isotopes to be varied even during burnup integration. The supercell model has been tested against Monte Carlo results for the fresh cold clean Tarapur fuel assembly with two Gd fuel pins. The burnup model of SUPERB has been validated against one of the most sophisticated codes LWR-WIMS for a benchmark problem involving all the complexities of a BWR fuel assembly. The agreement of SUPERB results with both Monte Carlo and LWR-WIMS results is found to be excellent. (auth.)
Energy Technology Data Exchange (ETDEWEB)
Paladino, Patricia Andrea
2006-07-01
Computational program are used for thermal hydraulic analysis of accidents and transients conditions in nuclear power plants. The RELAP5 code has been developed to simulate accidents and transients conditions, performing a best estimate analysis, in Pressurized Water Reactors (PWR) and auxiliary systems. The RELAP5 code, which has been used as a toll for licensing nuclear facilities in Brazil, is the objective of the study performed in this work. The main problem in using the RELAP5 code is the huge amount of information necessary to model the nuclear reactor and thus to simulate thermal-hydraulic accidents. Moreover, the RELAP5 code input data requires a large amount of mathematical operations to calculate the geometry of the plant components. Therefore, in order to make easier the data input for the RELAP5 code a friendly preprocessor has been developed. The preprocessor accepts basic information about the geometry of the plant components and performs all the calculations needed for the RELAP5 input. This preprocessor has been developed based on the MS-Excel software. (author)
Burnup study of 18 months and 16/20 months cycle AP1000 cores using CASMO4E and SIMULATE-3 codes
International Nuclear Information System (INIS)
AP1000 reactor is an advanced pressurized water reactor equipped with passive safety systems. AP1000 reactor core is designed for 18 month cycle length and can also be used for 16/20 month alternate cycle lengths to meet energy requirements during high demand periods. The purpose of this study is to analyze the feasibility of AP1000 core for both 18 and 16/20 alternate cycle lengths by using CASMO4E and SIMULATE-3 code package. For this purpose, burnup analysis of both the schemes is carried out from initial core loading through optimized transition cores to equilibrium core. The study is performed by modeling three dimensional full core in SIMULATE-3 with each fuel assembly divided into 40 axial and 4 radial quadrant nodes. Once and twice burned fuel reloading from one cycle to the next and removal of burnable poison rods from the core after first cycle options are used in these codes. The results of this study indicate that both the cycle schemes can be utilized by varying the core loading pattern. Moreover, reactivity coefficients, total power peaking factors and enthalpy rise factors are calculated which indicate that the AP1000 core provide adequate safety margins in both the cycle schemes. (author)
International Nuclear Information System (INIS)
Aiming at validation of depletion codes against WWER-440 spent fuel data some calculations of isotope composition of WWER-440 spent fuel assembly have been carried out by the NESSEL-NUKO code system. The initial data and data for the comparisons were taken from the ISTS burn up credit project data, recently published in the ISTC report 'Radiochemical Assays of Irradiated WWER-440 Fuel for Use in Spent Fuel Burnup Credit Activities. The specific work scope included the destructive assay (DA) of spent fuel assembly rod segments with an - -38.5 MWd/KgU burn up from a single WWER-440 fuel assembly from the Novovorenezh reactor in Russia (Authors)
Activity ratio measurement and burnup analysis for high burnup PWR fuels
International Nuclear Information System (INIS)
Applying burnup credit to spent fuel transportation and storage system is beneficial. To take burnup credit to criticality safety design for a spent fuel transportation cask and storage rack, the burnup of target fuel assembly based on core management data must be confirmed by experimental methods. Activity ratio method, in which measured the ratio of the activity of a nuclide to that of another, is one of the ways to confirm burnup history. However, there is no public data of gamma-ray spectrum from high burnup fuels and validation of depletion calculation codes is not sufficient in the evaluation of the burnup or nuclide inventories. In this study, applicability evaluation of activity ratio method was carried out for high burnup fuel samples taken from PWR lead use assembly. In the gamma-ray measurement experiments, energy spectrum was taken in the Reactor Fuel Examination Facility (RFEF) of Japan Atomic Energy Agency (JAEA), and 134Cs/137Cs and 154Eu/137Cs activity ratio were obtained. With the MVP-BURN code, the activity ratios were calculated by depletion calculation tracing the operation history. As a result, 134Cs/137Cs and 154Eu/137Cs activity ratios for UO2 fuel samples show good agreements and the activity ratio method has good applicability to high burnup fuels. 154Eu/134Cs activity ratio for Gd2O3+UO2 fuels also shows good agreements between calculation results and experimental results as well as the activity ratio for UO2 fuels. It also becomes clear that it is necessary to pay attention to not only burnup but also axial burnup distribution history when confirming the burnup of UO2+Gd2O3 fuel with 134Cs/137Cs activity ratios. (author)
Analysis of high burnup fuel safety issues
Energy Technology Data Exchange (ETDEWEB)
Lee, Chan Bock; Kim, D. H.; Bang, J. G.; Kim, Y. M.; Yang, Y. S.; Jung, Y. H.; Jeong, Y. H.; Nam, C.; Baik, J. H.; Song, K. W.; Kim, K. S
2000-12-01
Safety issues in steady state and transient behavior of high burnup LWR fuel above 50 - 60 MWD/kgU were analyzed. Effects of burnup extension upon fuel performance parameters was reviewed, and validity of both the fuel safety criteria and the performance analysis models which were based upon the lower burnup fuel test results was analyzed. It was found that further tests would be necessary in such areas as fuel failure and dispersion for RIA, and high temperature cladding corrosion and mechanical deformation for LOCA. Since domestic fuels have been irradiated in PWR up to burnup higher than 55 MWD/kgU-rod. avg., it can be said that Korea is in the same situation as the other countries in the high burnup fuel safety issues. Therefore, necessary research areas to be performed in Korea were derived. Considering that post-irradiation examination(PIE) for the domestic fuel of burnup higher than 30 MWD/kgU has not been done so far at all, it is primarily necessary to perform PIE for high burnup fuel, and then simulation tests for RIA and LOCA could be performed by using high burnup fuel specimens. For the areas which can not be performed in Korea, international cooperation will be helpful to obtain the test results. With those data base, safety of high burnup domestic fuels will be confirmed, current fuel safety criteria will be re-evaluated, and finally transient high burnup fuel behavior analysis technology will be developed through the fuel performance analysis code development.
Analysis of high burnup fuel safety issues
International Nuclear Information System (INIS)
Safety issues in steady state and transient behavior of high burnup LWR fuel above 50 - 60 MWD/kgU were analyzed. Effects of burnup extension upon fuel performance parameters was reviewed, and validity of both the fuel safety criteria and the performance analysis models which were based upon the lower burnup fuel test results was analyzed. It was found that further tests would be necessary in such areas as fuel failure and dispersion for RIA, and high temperature cladding corrosion and mechanical deformation for LOCA. Since domestic fuels have been irradiated in PWR up to burnup higher than 55 MWD/kgU-rod. avg., it can be said that Korea is in the same situation as the other countries in the high burnup fuel safety issues. Therefore, necessary research areas to be performed in Korea were derived. Considering that post-irradiation examination(PIE) for the domestic fuel of burnup higher than 30 MWD/kgU has not been done so far at all, it is primarily necessary to perform PIE for high burnup fuel, and then simulation tests for RIA and LOCA could be performed by using high burnup fuel specimens. For the areas which can not be performed in Korea, international cooperation will be helpful to obtain the test results. With those data base, safety of high burnup domestic fuels will be confirmed, current fuel safety criteria will be re-evaluated, and finally transient high burnup fuel behavior analysis technology will be developed through the fuel performance analysis code development
Burnup performances of boron nitride and boron coated nuclear fuels
International Nuclear Information System (INIS)
The nuclear fuels of urania (UOV) and 5% and 10% gadolinia (Gd2O3) containing UO2 previously produced by sol-gel technique were coated with first boron nitride (BN) then boron (B) thin layer by chemical vapor deposition (CVD) and also by plasma enhanced chemical vapor deposition (PECVD) techniques to increase the fuel cycle length and to improve the physical properties. From the cross-sectional view of BN and B layers taken from scanning electron microscope (SEM), the excellent adherence of BN onto fuel and B onto BN layer was observed in both cases. The behavior of fuel burnup, depletion of BN and B, the effect of coating thickness and also Gd2O3 content on the burnup performances of the fuels were identified by using the code WIMS-D/4 for Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) cores. The optimum thickness ratio of B to BN was found as 4 and their thicknesses were chosen as 40 mm and 10 mm respectively in both reactor types to get extended cycle length. The assemblies consisting of fuels with 5% Gd2O3 and also coated with 10 mm BN and 40 mm B layers were determined as candidates for getting higher burnup in both types of reactors
REBUS: A burnup credit experimental programme
International Nuclear Information System (INIS)
An international programme called REBUS (REactivity tests for a direct evaluation of the Burn-Up credit on Selected irradiated LWR fuel bundles) for the investigation of the burn-up credit has been initiated by the Belgian Nuclear Research Center SCK-CEN and Belgonucleaire. At present it is sponsored by USNRC, EdF from France and VGB, representing German nuclear utilities. The programme aims to establish a neutronic benchmark for reactor physics codes. This benchmark would qualify the codes to perform calculations of the burn-up credit. The benchmark exercise will investigate the following fuel types with associated burn-up. 1. Reference absorber test bundle, 2. Fresh commercial PWR UO2 fuel, 3. Irradiated commercial PWR UO2 fuel (50 GWd/tM), 4. Fresh PWR UO2 fuel, 5. Irradiated PWR UO2 fuel (30 GWd/tM). Reactivity effects will be measured in the critical facility VENUS. The accumulated burn-up of all rods will be measured non-destructively by gamma-spectrometry. Some rods will be analyzed destructively with respect to accumulated burn-up, actinides content and TOP-18 fission products (i.e. those non-gaseous fission products that have most implications on the reactivity). The experimental implementation of the programme will start in 2000. (author)
Theory analysis and simple calculation of travelling wave burnup scheme
International Nuclear Information System (INIS)
Travelling wave burnup scheme is a new burnup scheme that breeds fuel locally just before it burns. Based on the preliminary theory analysis, the physical imagine was found. Through the calculation of a R-z cylinder travelling wave reactor core with ERANOS code system, the basic physical characteristics of this new burnup scheme were concluded. The results show that travelling wave reactor is feasible in physics, and there are some good features in the reactor physics. (authors)
International Nuclear Information System (INIS)
Highlights: • A successful validation of the burn-up simulation system EVOLCODE is presented here. • A Sensitivity/Uncertainty model was applied for uncertainty propagation/assessment. • Cross sections are for most cases the main contributors to inventory uncertainties. • The improved model helps to explain some simulation-experiment discrepancies. • Some hints for the improvement of basic data libraries are provided. - Abstract: A validation of the burn-up simulation system EVOLCODE 2.0 is presented here, involving the experimental measurement of U and Pu isotopes and some fission fragments production ratios after a burn-up of around 30 GWd/tU in a Pressurized Light Water Reactor (PWR). This work provides an in-depth analysis of the validation results, including the possible sources of the uncertainties. An uncertainty analysis based on the sensitivity methodology has been also performed, providing the uncertainties in the isotopic content propagated from the cross sections uncertainties. An improvement of the classical Sensitivity/Uncertainty (S/U) model has been developed to take into account the implicit dependence of the neutron flux normalization, that is, the effect of the constant power of the reactor. The improved S/U methodology, neglected in this kind of studies, has proven to be an important contribution to the explanation of some simulation-experiment discrepancies for which, in general, the cross section uncertainties are, for the most relevant actinides, an important contributor to the simulation uncertainties, of the same order of magnitude and sometimes even larger than the experimental uncertainties and the experiment-simulation differences. Additionally, some hints for the improvement of the JEFF3.1.1 fission yield library and for the correction of some errata in the experimental data are presented
COGEMA/TRANSNUCLEAIRE's experience with burnup credit
International Nuclear Information System (INIS)
Facing a continuous increase in the fuel enrichments, COGEMA and TRANSNUCLEAIRE have implemented step by step a burnup credit programme to improve the capacity of their equipment without major physical modification. Many authorizations have been granted by the French competent authority in wet storage, reprocessing and transport since 1981. As concerns transport, numerous authorizations have been validated by foreign competent authorities. Up to now, those authorizations are restricted to PWR Fuel type assemblies made of enriched uranium. The characterization of the irradiated fuel and the reactivity of the systems are evaluated by calculations performed with well qualified French codes developed by the CEA (French Atomic Energy Commission): CESAR as a depletion code and APPOLO-MORET as a criticality code. The authorizations are based on the assurance that the burnup considered is met on the least irradiated part of the fuel assemblies. Besides, the most reactive configuration is calculated and the burnup credit is restricted to major actinides only. This conservative approach allows not to take credit for any axial profile. On the operational side, the procedures have been reevaluated to avoid misloadings and a burnup verification is made before transport, storage and reprocessing. Depending on the level of burnup credit, it consists of a qualitative (go/no-go) verification or of a quantitative measurement. Thus the use of burnup credit is now a common practice in France and Germany and new improvements are still in progress: extended qualifications of the codes are made to enable the use of six selected fission products in the criticality evaluations. (author)
International Nuclear Information System (INIS)
The gas tag burnup changes investigated were limited to the three tags (Kr-78/Kr-80, Xe-126/Xe-129 and Kr-82/Kr-80) currently accepted as being the most desirable. Control rod tag burnup was significantly greater than fuel rod tag burnup. This occurs because control rods stay in the reactor longer and occupy positions of greater low-energy flux. Thus, minimum tag spacings were set by the control rods as 1.079 for Kr-78/Kr-80, 1.189 for Xe-126/Xe-129 and 1.134 for Kr-82/Kr-80
International Nuclear Information System (INIS)
An advanced model GRSWEL-A for fission gas behavior and micro-structural evolutions in Light Water Reactor (LWR) fuels was developed for and embedded in the START-3 fuel performance code. This paper represents the physical basis and verification of the model with emphasis on analysis of High Burn-up Structure (HBS), which is generally ascribed to a so-called rim-layer of high burn-up fuel pellets. Specifically, the issues of microscopic polygonization, loss of matrix fission gas, growth of fuel porosity and fission gas release are highlighted. The effects of HBS on total fission gas release, temperature distribution in the pellet, pellet swelling and permanent strain of the cladding are considered in the appropriate section of the paper by means of comparative and sensitivity analysis with the use of both modeling and available experimental data. In all the cases, an accounting for the present effects is found to be an important integral part of thorough analysis of LWR fuel behavior. Aside from the description of current capabilities of modeling, some priority directions of further improvement are outlined. (author)
Automated generation of burnup chain for reactor analysis applications
International Nuclear Information System (INIS)
This paper presents the development of an automated generation of a new burnup chain for reactor analysis applications. The JENDL FP Decay Data File 2011 and Fission Yields Data File 2011 were used as the data sources. The nuclides in the new chain are determined by restrictions of the half-life and cumulative yield of fission products or from a given list. Then, decay modes, branching ratios and fission yields are recalculated taking into account intermediate reactions. The new burnup chain is output according to the format for the SRAC code system. Verification was performed to evaluate the accuracy of the new burnup chain. The results show that the new burnup chain reproduces well the results of a reference one with 193 fission products used in SRAC. Further development and applications are being planned with the burnup chain code. (author)
Investigation of burnup credit implementation for BWR fuel
International Nuclear Information System (INIS)
Burnup Credit allows considering the reactivity decrease due to fuel irradiation in criticality studies for the nuclear fuel cycle. Its implementation requires to carefully analyze the validity of the assumptions made to define the axial profile of the burnup and void fraction (for BWR), to determine the composition of the irradiated fuel and to compute the criticality simulation. In the framework of Burnup Credit implementation for BWR fuel, this paper proposes to investigate part of these items. The studies presented in this paper concern: the influence of the burnup and of the void fraction on BWR spent fuel content and on the effective multiplication factor of an infinite array of BWR assemblies. A code-to-code comparison for BWR fuel depletion calculations relevant to Burnup Credit is also performed. (authors)
High Burnup Fuel Performance and Safety Research
Energy Technology Data Exchange (ETDEWEB)
Bang, Je Keun; Lee, Chan Bok; Kim, Dae Ho (and others)
2007-03-15
The worldwide trend of nuclear fuel development is to develop a high burnup and high performance nuclear fuel with high economies and safety. Because the fuel performance evaluation code, INFRA, has a patent, and the superiority for prediction of fuel performance was proven through the IAEA CRP FUMEX-II program, the INFRA code can be utilized with commercial purpose in the industry. The INFRA code was provided and utilized usefully in the universities and relevant institutes domesticallly and it has been used as a reference code in the industry for the development of the intrinsic fuel rod design code.
Fission gas release modelling at high burnup
International Nuclear Information System (INIS)
A large quantity of experimental data on fission gas release is now available in the public domain. It covers a wide variety of fuel types and burnups of up to more than 70 GWd/tU. This data, together with gas release measurements from British Energy's AGRs, has been used to build a comprehensive validation database for the fuel performance code ENIGMA. Validation of ENIGMA version 5.11 against this database has identified a requirement for model development to improve predictions at high burnup. A modified gas release model has been produced and tested. (author)
Burnup and plutonium distribution of WWER-440 fuel pin at extended burnup
International Nuclear Information System (INIS)
The formation of rim region in LWR UO2 based nuclear fuel at high burnup is a common observation. This region has very high porosity due to excessive gas release. Such a region is also characterized by a significantly high plutonium concentration and high local burnup compared to the internal fuel region. Spatial distribution of these parameters has been incorporated with fuel behavior and performance analysis codes by using mostly empirical relations. Variation of these parameters depends on the neutron flux as well as neutron energy spectrum. Detailed neutronics analysis is necessary for the accurate prediction of these parameters. This study is performed by MCNP4B Monte Carlo code for the calculation of local neutron flux, ORIGEN2 for burnup and depletion calculations, and MONTEBURNS for coupling these codes. For the analysis, a typical WWER-440 fuel pin and surrounding water moderator are considered in a hexagonal pin cell. Fuel pin is divided into a number of radial segments. A relatively small mesh size is used at the region near the surface to reveal the rim effect. The variation of plutonium and local burnup are obtained for high burnup. Results are compared with existing experimental observations for WWER-440 fuel and other theoretical predictions
Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations
International Nuclear Information System (INIS)
This report attempts to summarize and consolidate the existing knowledge on axial burnup distribution issues that are important to burnup credit criticality safety calculations. Recently released Nuclear Regulatory Commission (NRC) staff guidance permits limited burnup credit, and thus, has prompted resolution of the axial burnup distribution issue. The reactivity difference between the neutron multiplication factor (keff) calculated with explicit representation of the axial burnup distribution and keff calculated assuming a uniform axial burnup is referred to as the ''end effect.'' This end effect is shown to be dependent on many factors, including the axial-burnup profile, total accumulated burnup, cooling time, initial enrichment, assembly design, and the isotopics considered (i.e., actinide-only or actinides plus fission products). Axial modeling studies, efforts related to the development of axial-profile databases, and the determination of bounding axial profiles are also discussed. Finally, areas that could benefit from further efforts are identified
Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations
Energy Technology Data Exchange (ETDEWEB)
Wagner, J.C.; DeHart, M.D.
2000-03-01
This report attempts to summarize and consolidate the existing knowledge on axial burnup distribution issues that are important to burnup credit criticality safety calculations. Recently released Nuclear Regulatory Commission (NRC) staff guidance permits limited burnup credit, and thus, has prompted resolution of the axial burnup distribution issue. The reactivity difference between the neutron multiplication factor (keff) calculated with explicit representation of the axial burnup distribution and keff calculated assuming a uniform axial burnup is referred to as the ``end effect.'' This end effect is shown to be dependent on many factors, including the axial-burnup profile, total accumulated burnup, cooling time, initial enrichment, assembly design, and the isotopics considered (i.e., actinide-only or actinides plus fission products). Axial modeling studies, efforts related to the development of axial-profile databases, and the determination of bounding axial profiles are also discussed. Finally, areas that could benefit from further efforts are identified.
International Nuclear Information System (INIS)
The status of development of burnup credit for criticality safety analyses in Spain is described in this paper. Ongoing activities in the country in this field, both national and international, are resumed. Burnup credit is currently being applied to wet storage of PWR fuel, and credit to integral burnable absorbers is given for BWR fuel storage. It is envisaged to apply burnup credit techniques to the new generation of transport casks now in the design phase. The analysis methodologies submitted for the analyses of PWR and BWR fuel wet storage are outlined. Analytical activities in the country are described, as well as international collaborations in this field. Perspectives for future research and development of new applications are finally resumed. (author)
Detailed Burnup Calculations for Testing Nuclear Data
Leszczynski, F.
2005-05-01
A general method (MCQ) has been developed by introducing a microscopic burnup scheme that uses the Monte Carlo calculated fluxes and microscopic reaction rates of a complex system and a depletion code for burnup calculations as a basis for solving nuclide material balance equations for each spatial region in which the system is divided. Continuous energy-dependent cross-section libraries and full 3D geometry of the system can be input for the calculations. The resulting predictions for the system at successive burnup time steps are thus based on a calculation route where both geometry and cross sections are accurately represented, without geometry simplifications and with continuous energy data, providing an independent approach for benchmarking other methods and nuclear data of actinides, fission products, and other burnable absorbers. The main advantage of this method over the classical deterministic methods currently used is that the MCQ System is a direct 3D method without the limitations and errors introduced on the homogenization of geometry and condensation of energy of deterministic methods. The Monte Carlo and burnup codes adopted until now are the widely used MCNP and ORIGEN codes, but other codes can be used also. For using this method, there is need of a well-known set of nuclear data for isotopes involved in burnup chains, including burnable poisons, fission products, and actinides. For fixing the data to be included in this set, a study of the present status of nuclear data is performed, as part of the development of the MCQ method. This study begins with a review of the available cross-section data of isotopes involved in burnup chains for power and research nuclear reactors. The main data needs for burnup calculations are neutron cross sections, decay constants, branching ratios, fission energy, and yields. The present work includes results of selected experimental benchmarks and conclusions about the sensitivity of different sets of cross
Results of the isotopic concentrations of VVER calculational burnup credit benchmark No. 2(CB2)
International Nuclear Information System (INIS)
Results of the nuclide concentrations are presented of VVER Burnup Credit Benchmark No. 2(CB2) that were performed in The Nuclear Technology Center of Cuba with available codes and libraries. The CB2 benchmark specification as the second phase of the VVER burnup credit benchmark is summarized. The CB2 benchmark focused on VVER burnup credit study proposed on the 97' AER Symposium. The obtained results are isotopic concentrations of spent fuel as a function of the burnup and cooling time. The depletion point 'ORIGEN2' code and other codes were used for the calculation of the spent fuel concentration. (author)
Burn-up measurements coupling gamma spectrometry and neutron measurement
International Nuclear Information System (INIS)
The need to apply for burn-up credit arises with the increase of the initial enrichment of nuclear fuel. When burn-up credit is used in criticality safety studies, it is often necessary to confirm it by measurement. For the last 10 years, CANBERRA has manufactured the PYTHON system for such measurements. However, the method used in the PYTHON itself uses certain reactor data to arrive at burn-up estimates. Based on R and D led by CEA and COGEMA in the framework of burn-up measurement for burn-up credit and safeguards applications, CANBERRA is developing the next generation of burn-up measurement device. This new product, named SMOPY, is able to measure burn-up of any kind of irradiated fuel assembly with a combination of gamma spectrometry and passive neutron measurements. The measurement data is used as input to the CESAR depletion code, which has been developed and qualified by CEA and COGEMA for burn-up credit determinations. In this paper, we explain the complementary nature of the gamma and neutron measurements. In addition, we draw on our previous experience from PYTHON system and from COGEMA La Hague to show what types of evaluations are required to qualify the SMOPY system, to estimate its uncertainties, and to detect discrepancies in the fuel data given by the reactor plant to characterize the irradiated fuel assembly. (authors)
Tang, Guoping; Mayes, Melanie A.; Parker, Jack C.; Jardine, Philip M.
2010-09-01
We implemented the widely used CXTFIT code in Excel to provide flexibility and added sensitivity and uncertainty analysis functions to improve transport parameter estimation and to facilitate model discrimination for multi-tracer experiments on structured soils. Analytical solutions for one-dimensional equilibrium and nonequilibrium convection dispersion equations were coded as VBA functions so that they could be used as ordinary math functions in Excel for forward predictions. Macros with user-friendly interfaces were developed for optimization, sensitivity analysis, uncertainty analysis, error propagation, response surface calculation, and Monte Carlo analysis. As a result, any parameter with transformations (e.g., dimensionless, log-transformed, species-dependent reactions, etc.) could be estimated with uncertainty and sensitivity quantification for multiple tracer data at multiple locations and times. Prior information and observation errors could be incorporated into the weighted nonlinear least squares method with a penalty function. Users are able to change selected parameter values and view the results via embedded graphics, resulting in a flexible tool applicable to modeling transport processes and to teaching students about parameter estimation. The code was verified by comparing to a number of benchmarks with CXTFIT 2.0. It was applied to improve parameter estimation for four typical tracer experiment data sets in the literature using multi-model evaluation and comparison. Additional examples were included to illustrate the flexibilities and advantages of CXTFIT/Excel. The VBA macros were designed for general purpose and could be used for any parameter estimation/model calibration when the forward solution is implemented in Excel. A step-by-step tutorial, example Excel files and the code are provided as supplemental material.
Effect of Self-Shielding on Burn-Up Calculation of ETRR-2 Reactor
International Nuclear Information System (INIS)
There exist two approaches for burn-up calculation. The first on is to use cell parameters generated using cell calculation code at different degrees of burn-up. The other is to use microscopic cross sections with self-shielding in order to compensate for the variation of spectrum at different degree of burn-up. The effect of using different forms of self-shielding factors on burn-up calculation for ETRR-2 reactor has been determined. The results of the two approaches are inter-compared up to 50% burn-up
A Burnup Analysis of PBMR-400MWth Reactor Core
International Nuclear Information System (INIS)
The purpose of this study is to analyze the burnup characteristics of 400MWth PBMR using Monte Carlo method. In the world, the deterministic method is widely used to model such that system but it still has a disadvantage which is not flexible in simulating the burnup cycle. Although this method applies some techniques to increase the accuracy of calculation results but it is necessary to model this system by a suitable computer code that can verify and validate the results of the deterministic method. A method which uses a Monte Carlo technique for simulating the burnup cycle was performed. A reactor physics computer code uses in this method is MONTEBURN 2.0 which accurately and efficiently computes the neutronic and material properties of the fuel cycle. MONTEBURN is a fully automated tool that links the MCNP Monte Carlo transport code with a radioactive decay and burnup code ORIGEN. In this model, the calculations are based on a detailed core modeling using MCNP. The fuel pebble is thoroughly modeled by introducing unit cell modeling for the graphite matrix and fuel kernels in the pebble. For the burnup model, a start-up core was studied with considering the movement of pebbles. By shifting down one layer at each discrete time step and inserting fresh fuel from the top, this cyclic calculation is continued until equilibrium burnup cycle is achieved. In this study, the time dependence of multiplication factor keff, the spatial dependence of flux profile, power distribution, burnup, and inventory of isotopes in the start up process are analyzed. The results will provide the basis data of the burnup process and be also utilized as the verified data to validate a compute code for PBMR core analysis which will be developed in near future
Analysis of burnup credit on spent fuel storage
International Nuclear Information System (INIS)
Chemical analyses were carried out on high burnup UO2 (65 GWd/t) and MOX (45 GWd/t) spent fuel pins. Measured data of the composition of nuclides from 234U to 242Pu were used for evaluation of ORIGEN-2/82 code. Criticality calculations were executed for the casks which were being designed to store 52 BWR or 21 PWR spent fuel assemblies. The reactivity biases were evaluated for (1) axial and horizontal profiles of burnup, and void history (BWR), (2) operational histories such as control rod insertion history, BPR insertion history and others, and (3) calculational accuracy of ORIGEN-2/82 code on the composition of nuclides. Present evaluation shows that introduction of burnup credit has a substantial merit in criticality safety analysis of the cask, even if these reactivity biases are considered. The concept of equivalent uniform burnup was adapted for present reactivity bias evaluation and showed a possibility of simplifying the reactivity bias evaluation in burnup credit. Finally, adapting procedures of burnup credit such as the burnup meter were evaluated. (author)
Evaluation of RSG-GAS Core Management Based on Burnup Calculation
International Nuclear Information System (INIS)
Evaluation of RSG-GAS Core Management Based on Burnup Calculation. Presently, U3Si2-Al dispersion fuel is used in RSG-GAS core and had passed the 60th core. At the beginning of each cycle the 5/1 fuel reshuffling pattern is used. Since 52nd core, operators did not use the core fuel management computer code provided by vendor for this activity. They use the manually calculation using excel software as the solving. To know the accuracy of the calculation, core calculation was carried out using two kinds of 2 dimension diffusion codes Batan-2DIFF and SRAC. The beginning of cycle burn-up fraction data were calculated start from 51st to 60th using Batan-EQUIL and SRAC COREBN. The analysis results showed that there is a disparity in reactivity values of the two calculation method. The 60th core critical position resulted from Batan-2DIFF calculation provide the reduction of positive reactivity 1.84 % Δk/k, while the manually calculation results give the increase of positive reactivity 2.19 % Δk/k. The minimum shutdown margin for stuck rod condition for manual and Batan-3DIFF calculation are -3.35 % Δk/k dan -1.13 % Δk/k respectively, it means that both values met the safety criteria, i.e <-0.5 % Δk/k. Excel program can be used for burn-up calculation, but it is needed to provide core management code to reach higher accuracy. (author)
Fuel burnup characteristics for the NRU research reactor
International Nuclear Information System (INIS)
The driver fuel of the NRU research reactor at AECL, Chalk River is a low enriched uranium (LEU) fuel alloy of Al-61 wt% U3Si, consisting of particles of U3Si dispersed in a continuous aluminum matrix, with 19.8% U235 in uranium. This paper describes the burnup characteristics for this type of fuel in NRU, including the determination of fuel depletion using the neutronic simulation code TRIAD, comparisons between simulated and measured burnup values, and the regulatory licensing operational average fuel burnup limit. (author)
Fuel burnup characteristics for the NRU research reactor
Energy Technology Data Exchange (ETDEWEB)
Leung, T.C., E-mail: leungt@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)
2013-07-01
The driver fuel of the NRU research reactor at AECL, Chalk River is a low enriched uranium (LEU) fuel alloy of Al-61 wt% U{sub 3}Si, consisting of particles of U{sub 3}Si dispersed in a continuous aluminum matrix, with 19.8% U235 in uranium. This paper describes the burnup characteristics for this type of fuel in NRU, including the determination of fuel depletion using the neutronic simulation code TRIAD, comparisons between simulated and measured burnup values, and the regulatory licensing operational average fuel burnup limit. (author)
Calculation study of TNPS spent fuel pool using burnup credit
International Nuclear Information System (INIS)
Exampled by the spent fuel pool of TNPS which is consist of 2 × 5 fuel storage racks, the spent fuel high-density storage based on burnup credit (BUC) and related criticality safety issues were studied. The MONK9A code was used to analyze keff, of different enrichment fuels at different burnups. A reference loading curve was proposed in accordance with the system keff's changing with the burnup of different initially enriched nuclear fuels. The capacity of the spent fuel pool increases by 31% compared with the one that does not consider BUC. (authors)
TRIGA criticality experiment for testing burn-up calculations
Energy Technology Data Exchange (ETDEWEB)
Persic, Andreja; Ravnik, Matjaz; Zagar, Tomaz [Jozef Stefan Institute, Reactor Physics Division, Ljubljana (Slovenia)
1999-07-01
A criticality experiment with partly burned TRIGA fuel is described. 20 wt % enriched standard TRIGA fuel elements initially containing 12 wt % U are used. Their average burn-up is 1.4 MWd. Fuel element burn-up is calculated in 2-D four group diffusion approximation using TRIGLAV code. The burn-up of several fuel elements is also measured by reactivity method. The excess reactivity of several critical and subcritical core configurations is measured. Two core configurations contain the same fuel elements in the same arrangement as were used in the fresh TRIGA fuel criticality experiment performed in 1991. The results of the experiment may be applied for testing the computer codes used for fuel burn-up calculations. (author)
Program package for 2D burnup calculation
International Nuclear Information System (INIS)
The program package for 2 dimension burnup calculation was developed for TRIGA Mark III reactor. The package consists of 3 modules: PRESIX, SIXTUS-2, and BURN; 1 library, and 2 input files. PRESIX module prepared cross sections for diffusion calculation. SIXTUS-2 module, a two dimensional diffusion code in hexagonal geometry, calculates keff, neutron fluxes and power distributions. BURN module performs the burnup of fuel elements and stored the result in the ELEM.DAT file. PRESIX.LIB is two group cross section library for major reactor core components prepared using WIMS-D4 code. PRES.INP, the first input file, reads information on reactor power and core loading pattern. ELEM.DAT, the second input file, is prepared for specific TRIGA reactor and dependent on operation history. To verify the reactor model and computational methods, the calculated excess reactivities were compared to the measurement. The results are in good agreement. (author)
International Nuclear Information System (INIS)
In this report an analysis of WWER-440 fuel of the second generation supplied by Russian JSC TVEL for high burnup fuel cycle is presented. The certificated code START-3 is applied to modeling of fuel rod operation parameters. Reliability of high-burnup fuel on the base of 5-6 year operation is demonstrated. Special attention is paid to aspects for attainment of burnup 70 MWd/kgU, including experimental and fuel modeling support and fuel operation experience
Burnup effects of MOX fuel pincells in PWR - OECD/NEA burnup credit benchmark analysis -
International Nuclear Information System (INIS)
The burnup effects were analyzed for various cases of MOX fuel pincells of fresh and irradiated fuels by using the HELIOS, MCNP-4/B, CRX and CDP computer codes. The investigated parameters were burnup, cooling time and combinations of nuclides in the fuel region. The fuel compositions for each case were provided by BNFL (British Nuclear Fuel Limited) as a part of the problem specification so that the results could be focused on the calculation of the neutron multiplication factor. The results of the analysis show that the largest saving effect of the neutron multiplication factor due to burnup credit is 30 %. This is mainly due to the consideration of actinides and fission products in the criticality analysis
Burnup-dependent cross section data for research reactors
International Nuclear Information System (INIS)
Studies currently in progress consider research and test reactors which commonly have burnups of 50 atom percent in 235-U and may reach as high a 70 atom percent. At these levels of burnup changes in cross-section data with burnup become significant. Some preliminary studies of these effects lead to the development of a modified version of REBUS-2 which supports changes in cross-section data with burnup. This version of REBUS-2 allows for changes in the cross-section data only at each time sub-interval in the problem, and these cross-section changes for capture and fission are based on a least squares polynomial fit as a function of burnup. In this paper an attempt is made to evaluate the importance of burnup dependent data for the various isotopes and/or groups, and to assess the accuracy of this method by comparing the REBUS-2 results with results obtained from PDQ-7. The 10 MW IAEA benchmark problem has been selected for this study. A description of the reactor and the XY model can be found in the IAEA Guidebook. The EPRI-CELL4 code was used to generate burnup dependent cross section data for use with both REBUS-2 and PDQ-7. Cross-section data were generated at 10 time steps to a burnup of approximately 50 atom percent in 235-U. The agreement between the PDQ-7 results and the REBUS-2 results with fitted burnup dependent cross-section data are quite good. Burnup dependent cross sections are essential for accurate estimates of cycle lengths and reactivities, and low order polynomial fits of capture and fission data for selected isotopes and energy groups can provide this capability
Light a CANDLE. An innovative burnup strategy of nuclear reactors
International Nuclear Information System (INIS)
CANDLE is a new burnup strategy for nuclear reactors, which stands for Constant Axial Shape of Neutron Flux, Nuclide Densities and Power Shape During Life of Energy Production. When this candle-like burnup strategy is adopted, although the fuel is fixed in a reactor core, the burning region moves, at a speed proportionate to the power output, along the direction of the core axis without changing the spatial distribution of the number density of the nuclides, neutron flux, and power density. Excess reactivity is not necessary for burnup and the shape of the power distribution and core characteristics do not change with the progress of burnup. It is not necessary to use control rods for the control of the burnup. This booklet described the concept of the CANDLE burnup strategy with basic explanations of excess neutrons and its specific application to a high-temperature gas-cooled reactor and a fast reactor with excellent neutron economy. Supplementary issues concerning the initial core and high burnup were also referred. (T. Tanaka)
Burnup credit methodology validation against WWER experimental data
International Nuclear Information System (INIS)
A methodology for criticality safety analyses with burnup credit application has been developed for WWER spent fuel management facilities. This methodology is based on two worldwide used code systems: SCALE 4.4 for depletion and criticality calculations and NESSEL-NUKO - for depletion calculations. The methodology is in process of extensive validation for WWER applications. The depletion code systems NESSEL-NUKO and SCALE4.4 (control module SAS2H) have been validated on the basis of comparison with the calculated results obtained by other depletion codes for the CB2 Calculational Burnup Credit Benchmark. The validation of these code systems for WWER-440 and WWER-1000 spent fuel assembly depletion analysis based on comparisons with appropriate experimental data commenced last year. In this paper some results from burnup methodology validation against measured nuclide concentration given in the ISTC project 2670 for WWER-440 and from ORNL publication for WWER-1000 are presented. (authors)
Study on burn-up credit and minor actinide in post-irradiation analysis
International Nuclear Information System (INIS)
Accuracy of burnup calculation for actinide is very important as to the study of burn-up credit. For minor-actinides such as Am243 and Cm244, however, typical burnup calculation codes are not accurate enough. The accuracy for both nuclides was studied by using the SWAT code. The study showed that the C/E values of both nuclides could be improved at the same time by changing the cross section of Pu242. A study of burnup calculation related to the cross section of Pu242 should be performed to improve the accuracy for both nuclides. (author)
Effect of fuel burnup history on neutronic characteristics of WWER-1000 core
International Nuclear Information System (INIS)
The paper analyzes fuel burnup history effect on neutronic characteristics of WWER-1000 core with use of the DYN3D codes. The DYN3D code employs the local Pu-239 concentration as an indicator of burnup spectral history. The calculations have been performed for the first four fuel loadings of Khmelnitsky NPP unit 2 and stationary fuel loading with TVSA. The effect of fuel burnup history is shown both on macro-characteristics on the reactor core and on local values of burnup and power
International Nuclear Information System (INIS)
The purpose of this report is to describe an updated set of reactor models for pressurized-water reactors (PWRs) and boiling-water reactors (BWRs) operating on uranium fuel cycles and the methods used to generate the information for these models. Since new fuel cycle schemes and reactor core designs are introduced from time to time by reactor manufacturers and fuel vendors, an effort has been made to update these reactor models periodically and to expand the data bases used by the ORIGEN2 computer code. In addition, more sophisticated computational techniques than previously available were used to calculate the resulting reactor model cross-section libraries. The PWR models were based on a Westinghouse design, while the BWR models were based on a General Electric BWR/6 design. The specific reactor types considered in this report are as follows (see Glossary for the definition of these and other terms): (1) PWR-US, (2) PWR-UE, (3) BWR-US, (4) BWR-USO, and (5) BWR-UE. Each reactor model includes a unique data library that may be used to simulate the buildup and deletion of isotopes in nuclear materials using the ORIGEN2 computer code. 33 refs., 44 tabs
International Nuclear Information System (INIS)
This project was performed by KAERI in the frame of construction of the international cooperative basis on the nuclear energy. This was supported from MOST under the title of 'Establishment of Technical Collaboration basis between Korea and France for the development of severe accident assessment computer code under high burn up condition'. The current operating NPP are converting the burned fuel to the wasted fuel after burn up of 40 GWD/MTU. But in Korea, burn up of more than 60 GWD/MTU will be expected because of the high fuel efficiency but also cost saving for storing the wasted fuel safely. The domestic research for the purpose of developing the fuel and the cladding that can be used under the high burn up condition up to 100 GWD/MTU is in progress now. But the current computer code adopts the model and the data that are valid only up to the 40 GWD/MTU at most. Therefore the current model could not take into account the phenomena that may cause differences in the fission product release behavior or in the core damage process due to the high burn up operation (more than 40 GWD/MTU). To evaluate the safety of the NPP with the high burn up fuel, the improvement of current severe accident code against the high burn up condition is an important research item. Also it should start without any delay. Therefore, in this study, an expert group was constructed to establish the research basis for the severe accident under high burn up conditions. From this expert group, the research items regarding the high burn up condition were selected and identified through discussion and technical seminars. Based on these selected items, the meeting between IRSN and KAERI to find out the cooperative research items on the severe accident under the high burn up condition was held in the IRSN headquater in Paris. After the meeting, KAERI and IRSN agreed to cooperate with each other on the selected items, and to co-host the international seminar, and to develop the model and to
International Nuclear Information System (INIS)
The codes WIMSD-4 and BORGLES - part of the MTR-PC code package- have been applied to prepare the microscopic cross section library for the main elements of MNSR core for 6 neutron energy groups. The generated library was utilized from the 3D code CITATION to perform the calculation of fuel burn up and depletion including the identification of main fission products and its effects on the multiplication factor. In this regard some modifications have been introduced to the subroutine NUCY in CITATION to incorporate estimating the concentration of the related actinides and fission products. The burn up results indicated that the core life time of MNSR is being mainly estimated by Sm-149 following by Gd-157 and Cd-113. The accumulation of these actinides during 100 continuous operation days caused a reduction of ca. 2 mk for the excess reactivity. This result seems to be in good agreement with the available empirical value of 1.8 mk which relates to the whole discontinuous operation period of the reactor since its start and up to now. The calculation procedure simulates the sporadic operation with an adequate continuous operation period. This approximation is valid for the long lived actinides that mainly dictate the core life time. However, it is an overestimation for the concentration of short lived radioactive products like Xe-135. In the framework of this analysis the possibility of replacement of current MNSR fuel through low enriched fuels has been explored for two the fuel types U02-Mg and U3Si-Al. The results indicate that the first type (UO2-Mg) realize the criticality conditions with low enrichment of 20%, whereas the second type (U3Si-Al) required increasing the uranium enrichment up to 33%. For both fuel types the contribution of plutonium isotopes on the criticality has been also evaluated. Additionally, the influence of mixing burnable absorbers (Gd-113, Cd- 113) with the fresh fuels was investigated to identify their long-term control effect on the
Energy Technology Data Exchange (ETDEWEB)
Hernandez, J.L.; Alonso, G.; Perusquia, R.; Montes, J.L.; Hernandez, H. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: jlhm@nuclear.inin-mx
2003-07-01
An evaluation of the capacity of the COREMASTER-Presto code, to evaluate generically the burnt of the control bars in the Laguna Verde reactors plant (CLV) is made. It was found that the code only reports burnt values of the control rods in MWD/TM, in spite of having with a second order polynomial model, for the conversion to remainder of the Boron-10 (B-10). It was observed that said model is adequate only for burnt smaller to 45,000 MWD/TM. To evaluate the burnt of the control rods it was reproduced the balance cycle of 18 months for the CLV, executing Cm-Presto during 13 consecutive cycles. First without rod burnt, taking this as the base case. Later on, cases with 1, 2 and up to 13 cycles with rod burnt were generated. When comparing results it was observed that the control rods pattern it loses reactivity lineally with the burnt one. By each 10 G Wd/T of burnt of the nucleus it is decreased the reactivity of the pattern rods {approx} 1 pcm in hot condition and of {approx} 20 pcm in cold condition. When burning three cycles those rods more burnt reached the 13,900 MWD/TM, equivalent to 36% of B-10 reduction, near value to 34% proposed by aging in the one lost study of B-10. It was observed that Cm-Presto it doesn't burn the superior node of the control rods when these are completely extracted. A one big lost of B-10, of the order of 50%, it represents only a decrease of 11% of the reactivity value of the rod. One can affirm that even when it is strongly decreased the content of B-10, the rod is continue considering as a black absorber, that is to say, thermal neutron that enters in the neutron rod that is absorbed. (Author)
Prediction of fission gas release at high burn-up
International Nuclear Information System (INIS)
Reliable design of LWR fuel rods requires the fission gas release to be predicted as accurately as possible. Indeed that physical phenomenon governs both the fuel temperatures and the inner gas pressure. Fission gas release data have been reviewed by the NRC and it has been concluded that a fission gas release enhancement occurs at burn-up above 20 GWd/tM. To correct deficient fission gas release models which do not include burn-up dependence, the NRC developed an empirical correction method to describe burn-up enhancement effect. BELGONUCLEAIRE has developed its own fission gas release model which is utilized in licensing calculation through the COMETHE code. Fission gas release predictions at high burn-up are confronted to the experimental data as well as to the predictions of the NRC correlation. The physics of the fission gas release phenomenon is discussed
Transnucleaire's experience with burnup credit in transport operations
International Nuclear Information System (INIS)
Facing a continued increase in fuel enrichment values, Transnucleaire has progressively implemented a burnup credit programme in order to maintain or, where possible, to improve the capacity of its transport packagings without physical modification. Many package design approvals, based on a notion of burnup credit, have been granted by the French competent authority for transport since the early eighties, and many of these approvals have been validated by foreign competent authorities. Up to now, these approvals are restricted to fuel assemblies made of enriched uranium and irradiated in pressurized water reactors (PWR). The characterization of the irradiated fuel and the reactivity of the package are evaluated by calculation, performed using qualified French codes developed by the CEA (Commisariat a l'Energie Atomique/French Atomic Energy Commission): CESAR as a depletion code and APOLO-MORET as a criticality code. The approvals are based on the hypothesis that the burnup considered is that applied on the least irradiated region of the fuel assemblies, the conservative approach being not to take credit for any axial profile of burnup along the fuel assembly. The most reactive configuration is calculated and the burnup credit is also restricted to major actinides only. On the operational side and in compliance with regulatory requirements, verification is made before transport, in order to meet safety objectives as required by the transport regulations. Besides a review of documentation related to the irradiation history of each fuel assembly, it consists of either a qualitative (go/no-go) verification or of a quantitative measurement, depending on the level of burnup credit. Thus the use of burnup credit is now a common practice with Transnucleaire's packages, particularly in France and Germany. New improvements are still in progress and qualifications of the calculation code are now well advanced, which will allow in the near future the use of six selected
Burnup dependent core neutronic analysis for PBMR
International Nuclear Information System (INIS)
The strategy for core neutronics modeling is based on SCALE4.4 code KENOV.a module that uses Monte Carlo calculational methods. The calculations are based on detailed unit cell and detailed core modeling. The fuel pebble is thoroughly modeled by introducing unit cell modeling for the graphite matrix and the fuel kernels in the pebble. The core is then modeled by placing these pebbles randomly throughout the core, yet not loosing track of any one of them. For the burnup model, a cyclic manner is adopted by coupling the KENOV.a and ORIGEN-S modules. Shifting down one slice at each discrete time step, and inserting fresh fuel from the top, this cyclic calculation model continues until equilibrium burnup cycle is achieved. (author)
International Nuclear Information System (INIS)
Burn-up credit analysis of RBMK-1000 an WWER-1000 spent nuclear fuel accounting only for actinides is carried out and a method is proposed for actinide burn-up credit. Two burn-up credit approaches are analyzed, which consider a system without and with the distribution of isotopes along the height of the fuel assembly. Calculations are performed using SCALE and MCNP computer codes
Fuel burnup analysis for the Moroccan TRIGA research reactor
International Nuclear Information System (INIS)
Highlights: ► A fuel burnup analysis of the 2 MW TRIGA MARK II Moroccan research reactor was established. ► Burnup calculations were done by means of the in-house developed burnup code BUCAL1. ► BUCAL1 uses the MCNP tallies directly in the calculation of the isotopic inventories. ► The reactor life time was found to be 3360 MW h considering full power operating conditions. ► Power factors and fluxes of the in-core irradiation positions are strongly affected by burnup. -- Abstract: The fundamental advantage and main reason to use Monte Carlo methods for burnup calculations is the possibility to generate extremely accurate burnup dependent one group cross-sections and neutron fluxes for arbitrary core and fuel geometries. Yet, a set of values determined for a material at a given position and time remains accurate only in a local region, in which neutron spectrum and flux vary weakly — and only for a limited period of time, during which changes of the local isotopic composition are minor. This paper presents the approach of fuel burnup evaluation used at the Moroccan TRIGA MARK II research reactor. The approach is essentially based upon the utilization of BUCAL1, an in-house developed burnup code. BUCAL1 is a FORTRAN computer code designed to aid in analysis, prediction, and optimization of fuel burnup performance in nuclear reactors. The code was developed to incorporate the neutron absorption reaction tally information generated directly by MCNP5 code in the calculation of fissioned or neutron-transmuted isotopes for multi-fueled regions. The fuel cycle length and changes in several core parameters such as: core excess reactivity, control rods position, fluxes at the irradiation positions, axial and radial power factors and other parameters are estimated. Besides, this study gives valuable insight into the behavior of the reactor and will ensure better utilization and operation of the reactor during its life-time and it will allow the establishment of
Effect of Core Configurations on Burn-Up Calculations For MTR Type Reactors
International Nuclear Information System (INIS)
Three-dimensional burn-up calculations of MTR-type research reactor were performed using different patterns of control rods , to examine their effect on power density and neutron flux distributions throughout the entire core and on the local burn-up distribution. Calculations were performed using the computer codes' package MTRPC system, using the cell calculation transport code WIMS-D4 and the core calculation diffusion code CITVAP. A depletion study was done and the effects on the reactor fuel were studied, then an empirical formula was generated for every fuel element type, to correlate irradiation to burn-up percentage. Keywords: Neutronic Calculations, Burn-Up, MTR-Type Research Reactors, MTRPC Package, Empirical Formula For Fuel Burn-Up.
Taking burnup credit for interim storage and transportation system for BWR fuels
International Nuclear Information System (INIS)
In the back-end issues of nuclear fuel cycle, selection of reprocessing or one-through is a big issue. For both of the cases, a reasonable interim storage and transportation system is required. This study proposes an advanced practical monitoring and evaluation system. The system features the followings: (l) Storage racks and transportation casks taking credit for burnup. (2) A burnup estimation system using a compact monitor with Cd- Te detectors and fission chambers. (3) A neutron emission-rate evaluation methodology, especially important for high burnup MOX fuels. (4) A nuclear materials management system for safeguards. Current storage system and transport casks are designed on the basis of a fresh fuel assumption. The assumption is too conservative. Taking burnup credit gives a reasonable design while keeping conservatism. In order to establish a reasonable burnup credit design system, a calculation system has been developed for determining isotope compositions, burnup, and criticality. The calculation system consists of some modules such as TGBLA, ORIGEN, CITATION, MCNP and KENO. The TGBLA code is a fuel design code for LWR fuels developed in TOSHIBA Corporation. The code takes operational history such as, power density, void fraction into account. This code is applied to the back-end issues for a more accurate design of a storage and a transportation system. The ORIGEN code is well-known one-point isotope depletion code. In the calculation system, the code calculates isotope compositions using libraries generated from the TGBLA code. The CITATION code, the MCNP code, and the KENO code are three dimensional diffusion code, continuous energy Monte Carlo code, discrete energy Monte Carlo code, respectively. Those codes calculate k- effective of the storage and transportation systems using isotope compositions generated from the ORIGEN code. The CITATION code and the KENO code are usually used for practical designs. The MCNP code is used for reference
Methods used in burn-up determination of the irradiated fuel rods at TRIGA reactor
International Nuclear Information System (INIS)
A short presentation of the methods used at INR TRIGA reactor for the burn-up determination is given together with some considerations on ORIGEN 2 computer code used for calculating fission products activities and nuclide concentration. Burn-up is determined by gamma spectroscopy and thermal power monitoring. (Author)
Application of Candle burnup to small fast reactor
International Nuclear Information System (INIS)
A new reactor burnup strategy CANDLE (Constant Axial shape of Neutron flux, nuclide densities and power shape During Life of Energy producing reactor) was proposed, where shapes of neutron flux, nuclide densities and power density distributions remain constant but move to an axial direction. An equilibrium state was obtained for a large fast reactor (core radius is 2 m and reflector thickness is 0.5 m) successfully by using a newly developed direct analysis code. However, it is difficult to apply this burnup strategy to small reactors, since its neutron leakage becomes large and neutron economy becomes worse. Fuel enrichment should be increased in order to sustain the criticality. However, higher enrichment of fresh fuel makes the CANDLE burnup difficult. We try to find some small reactor designs, which can realize the CANDLE burnup. We have successfully find a design, which is not the CANDLE burnup in the strict meaning, but satisfies qualitatively its characteristics mentioned at the top of this abstract. In the final paper, the general description of CANDLE burnup and some results on the obtained small fast reactor design are presented.(author)
Development of a Burnup Program based on the Krylov Subspace Method
International Nuclear Information System (INIS)
The depletion calculation of the DeCART code has been performed by the support of the ORIGEN code. Recently, a burnup program based on the Krylov subspace method is developed and implemented to the DeCART code. Numerical solution for the burnup equation by the Krylov subspace method is well described. Therefore, this paper describes the Krylov subspace method for a burnup equation briefly in Section 2, and focuses on the DeCART solution for a pin cell problem by comparing it with the HELIOS solution
Development of a Burnup Program based on the Krylov Subspace Method
Energy Technology Data Exchange (ETDEWEB)
Cho, Jin-Young; Shim, Hyung-Jin; Kim, Kang-Seog; Song, Jae-Seung; Lee, Chung-Chan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2007-10-15
The depletion calculation of the DeCART code has been performed by the support of the ORIGEN code. Recently, a burnup program based on the Krylov subspace method is developed and implemented to the DeCART code. Numerical solution for the burnup equation by the Krylov subspace method is well described. Therefore, this paper describes the Krylov subspace method for a burnup equation briefly in Section 2, and focuses on the DeCART solution for a pin cell problem by comparing it with the HELIOS solution.
A burnup credit calculation methodology for PWR spent fuel transportation
International Nuclear Information System (INIS)
A burnup credit calculation methodology for PWR spent fuel transportation has been developed and validated in CEA/Saclay. To perform the calculation, the spent fuel composition are first determined by the PEPIN-2 depletion analysis. Secondly the most important actinides and fission product poisons are automatically selected in PEPIN-2 according to the reactivity worth and the burnup for critically consideration. Then the 3D Monte Carlo critically code TRIMARAN-2 is used to examine the subcriticality. All the resonance self-shielded cross sections used in this calculation system are prepared with the APOLLO-2 lattice cell code. The burnup credit calculation methodology and related PWR spent fuel transportation benchmark results are reported and discussed. (authors)
Burnup instabilities in the full-core HTR model simulation
International Nuclear Information System (INIS)
Highlights: • We performed full-core burnup calculation coupled with Monte Carlo code. • Depletion instabilities have been detected for HTR system at high burnup. • We assess the stability of time step models in application to core calculation. • Discussion of the modeling factors related to burnup core simulation is presented. - Abstract: The phenomenon of numerical instabilities present in the Monte Carlo burnup calculations has been shown and explained by many authors using models of LWR, often simplified. Some theoretical considerations about origins of oscillations are very general, however it may be difficult to apply it easily to other models as a prediction of stability. Physics of HTR core differs significantly from the properties of light water system and the reliable extrapolation of the current numerical results is not possible. Moreover, most of the works concerning HTR burnup calculations put no emphasis on the spatial stability of the simulation and apply very long time steps. The awareness in this field of research seems to be not sufficient. In this paper, we focus on the demonstration of depletion instabilities in the simulations of HTR core dedicated for deep burnup of plutonium and minor actinides. We apply various methodology of time step implemented in advanced Continuous Energy Monte Carlo burnup code MCB version 5. Stability analysis is very rare for the full core calculations and the awareness of the oscillation’s problem is obligatory for the reliable modeling of a fuel cycle. In the summary of this work we systematize and discuss factors related to the stability of depletion and review available solutions
Increased burnup of fuel elements
International Nuclear Information System (INIS)
The specialists' group for fuel elements of the Kerntechnische Gesellschaft e.V. held a meeting on ''Increased Burnup of Fuel Elements'' on 9th and 10th of November 1982 at the GKSS Research Center Geesthacht. Most papers dealt with the problems of burnup increase of fuel elements for light water reactors with respect to fuel manufacturing, power plant operation and reprocessing. Review papers were given on the burnup limits for high temperature gas cooled reactors and sodium fast breeder reactors. The meeting ended with a presentation of the technical equipment of the hot laboratory of the GKSS and the programs which are in progress there. (orig.)
Dependence of control rod worth on fuel burnup
Energy Technology Data Exchange (ETDEWEB)
Savva, P., E-mail: savvapan@ipta.demokritos.g [NCSR ' DEMOKRITOS' , PoB 60228, 15310 Aghia Paraskevi (Greece); Varvayanni, M., E-mail: melina@ipta.demokritos.g [NCSR ' DEMOKRITOS' , PoB 60228, 15310 Aghia Paraskevi (Greece); Catsaros, N., E-mail: nicos@ipta.demokritos.g [NCSR ' DEMOKRITOS' , PoB 60228, 15310 Aghia Paraskevi (Greece)
2011-02-15
Research highlights: Diffusion and MC calculations for rod worth dependence on burnup and Xe in reactors. One-step rod withdrawal/insertion are used for rod worth estimation. The study showed that when Xe is present the rods worth is significantly reduced. Rod worth variation with burnup depends on rod position in core. Rod worth obtained with MC code is higher than that obtained from deterministic. - Abstract: One important parameter in the design and the analysis of a nuclear reactor core is the reactivity worth of the control rods, i.e. their efficiency to absorb excess reactivity. The control rod worth is affected by parameters such as the fuel burnup in the rod vicinity, the Xe concentration in the core, the operational time of the rod and its position in the core. In the present work, two different computational approaches, a deterministic and a stochastic one, were used for the determination of the rods worth dependence on the fuel burnup level and the Xe concentration level in a conceptual, symmetric reactor core, based on the MTR fuel assemblies used in the Greek Research Reactor (GRR-1). For the deterministic approach the neutronics code system composed by the SCALE modules NITAWL and XSDRN and the diffusion code CITATION was used, while for the stochastic one the Monte Carlo code TRIPOLI was applied. The study showed that when Xe is present in the core, the rods worth is significantly reduced, while the rod worth variation with increasing burnup depends on the rods position in the core grid. The rod worth obtained with the use of the Monte Carlo code is higher than the one obtained from the deterministic code.
Analysis of burnup credit on spent fuel transport / storage casks - estimation of reactivity bias
International Nuclear Information System (INIS)
Chemical analyses of high burnup UO2 (65 GWd/t) and MOX (45 GWd/t) spent fuel pins were carried out. Measured data of nuclides' composition from U234 to P 242 were used for evaluation of ORIGEN-2/82 code and a nuclear fuel design code (NULIF). Critically calculations were executed for transport and storage casks for 52 BWR or 21 PWR spent fuel assemblies. The reactivity biases were evaluated for axial and horizontal profiles of burnup, and historical void fraction (BWR), operational histories such as control rod insertion history, BPR insertion history and others, and calculational accuracy of ORIGEN-2/82 on nuclides' composition. This study shows that introduction of burnup credit has a large merit in criticality safety analysis of casks, even if these reactivity biases are considered. The concept of equivalent uniform burnup was adapted for the present reactivity bias evaluation and showed the possibility of simplifying the reactivity bias evaluation in burnup credit. (authors)
High burnup experience in PWRs
International Nuclear Information System (INIS)
The purpose of this paper is to summarize the high burnup experience of Westinghouse PWR fuel. The emphasis is on two regions of commercial PWR fuel that attained region average burnups greater than 36,000 MWD/MTU. One region operated under load follow conditions. The other region operated at base load conditions with a high average linear heat rating. Coolant activity data and post irradiation data were obtained. The post-irradiation data consisted of visual examinations, crud sampling, rod-to-rod dimensional changes, fuel column length changes, rod and assembly growth, assembly bow, fuel rod profilometry, grid spring relaxation, and fuel assembly sipping tests. The data showed that the fuel operated reliably to this burnup. Plans for irradiation to higher burnups are also discussed
International Nuclear Information System (INIS)
One of the major problems in burnup studies is the reasonably fast and accurate calculation of the space-and-energy dependent neutron flux and reaction rates for realistic power reactor fuel geometries and compositions, and its optimal integration in the global reactor calculations. The scope of the present research was to develop improved methods trying to satisfy the above requirements. In the epithermal region, simple and efficient approximation is proposed which allows the analytical solution for the space dependence of the spherical harmonics flux moments, and hence the derivation of the recurrence relations between he flux moments at successive lethargy pivotal points. A new matrix formalism to invert the coefficient matrix of band structure resulted in a reduce computer time and memory demands. The research on epithermal region is finalized in computing programme SPLET, which calculates the space-lethargy distribution of the spherical harmonics neutron flux moments, and the related integral quantities as reaction rates and resonance integrals. For partial verification of the above methods a Monte Carlo procedure was developed. Using point-wise representation of variables, a flexible and fast convergent integral transport method SEPT i developed. Expanding the neutron source and flux in finite series of arbitrary polynomials, the space-and-energy dependent integral transport equation is transformed into a general linear algebraic form, which is solved numerically. A simple and efficient procedure for deriving multipoint equations and constructing matrix is proposed and examined, and no unwanted oscillations were noticed. The energy point method was combined with the spherical harmonics method as well. A multi zone few-group program SPECTAR for global reactor calculations was developed. For testing, the flux distribution, neutron leakage and effective multiplication factor for the PWR reactor of the power station San Onofre were calculated. In order to verify
International Nuclear Information System (INIS)
External linking scripts between Monte Carlo transport codes and burnup codes, and complete integration of burnup capability into Monte Carlo transport codes, have been or are currently being developed. Monte Carlo linked burnup methodologies may serve as an excellent benchmark for new deterministic burnup codes used for advanced systems; however, there are some instances where deterministic methodologies break down (i.e., heavily angularly biased systems containing exotic materials without proper group structure) and Monte Carlo burn up may serve as an actual design tool. Therefore, researchers are also developing these capabilities in order to examine complex, three-dimensional exotic material systems that do not contain benchmark data. Providing a reference scheme implies being able to associate statistical errors to any neutronic value of interest like k(eff), reaction rates, fluxes, etc. Usually in Monte Carlo, standard deviations are associated with a particular value by performing different independent and identical simulations (also referred to as 'cycles', 'batches', or 'replicas'), but this is only valid if the calculation itself is not biased. And, as will be shown in this paper, there is a bias in the methodology that consists of coupling transport and depletion codes because Bateman equations are not linear functions of the fluxes or of the reaction rates (those quantities being always measured with an uncertainty). Therefore, we have to quantify and correct this bias. This will be achieved by deriving an unbiased minimum variance estimator of a matrix exponential function of a normal mean. The result is then used to propose a reference scheme to solve Boltzmann/Bateman coupled equations, thanks to Monte Carlo transport codes. Numerical tests will be performed with an ad hoc Monte Carlo code on a very simple depletion case and will be compared to the theoretical results obtained with the reference scheme. Finally, the statistical error propagation
CB2 result evaluation (VVER-440 burnup credit benchmark)
International Nuclear Information System (INIS)
The second portion of the four-piece international calculational benchmark on the VVER burnup credit (CB2) prepared in the collaboration with the OECD/NEA/NSC Burnup Credit Criticality Benchmarks Working Group and proposed to the AER research community has been evaluated. The evaluated results of calculations performed by analysts from Cuba, the Czech Republic, Finland, Germany, Russia, Slovakia and the United Kingdom are presented. The goal of this study is to compare isotopic concentrations calculated by the participants using various codes and libraries for depletion of the VVER-440 fuel pin cell. No measured values were available for the comparison. (author)
Power excursion analysis for BWR`s at high burnup
Energy Technology Data Exchange (ETDEWEB)
Diamond, D.J.; Neymoith, L.; Kohut, P. [Brookhaven National Lab., Upton, NY (United States)
1996-03-01
A study has been undertaken to determine the fuel enthalpy during a rod drop accident and during two thermal-hydraulic transients. The objective was to understand the consequences to high burnup fuel and the sources of uncertainty in the calculations. The analysis was done with RAMONA-4B, a computer code that models the neutron kinetics throughout the core along with the thermal-hydraulics in the core, vessel, and steamline. The results showed that the maximum fuel enthalpy in high burnup fuel will be affected by core design, initial conditions, and modeling assumptions. The important parameters in each of these categories are discussed in the paper.
Institute of Scientific and Technical Information of China (English)
2008-01-01
Citigroup,one of the World top 500 companies,has now settled in Excel Center,Financial Street. The opening ceremony of Excel Center and the entry ceremony of Citigroup in the center were held on March 31.Government leaders of Xicheng District,the Excel CEO and the heads of Asia-Pacific Region leaders of Citibank all participated in the ceremony.
Energy Technology Data Exchange (ETDEWEB)
Belo, Thiago F.; Fiel, Joao Claudio B., E-mail: thiagofbelo@hotmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil)
2015-07-01
Nuclear reactor core analysis involves neutronic modeling and the calculations require problem dependent nuclear data generated with few neutron energy groups, as for instance the neutron cross sections. The methods used to obtain these problem-dependent cross sections, in the reactor calculations, generally uses nuclear computer codes that require a large processing time and computational memory, making the process computationally very expensive. Presently, analysis of the macroscopic cross section, as a function of nuclear parameters, has shown a very distinct behavior that cannot be represented by simply using linear interpolation. Indeed, a polynomial representation is more adequate for the data parameterization. To provide the cross sections of rapidly and without the dependence of complex systems calculations, this work developed a set of parameterized cross sections, based on the Tchebychev polynomials, by fitting the cross sections as a function of nuclear parameters, which include fuel temperature, moderator temperature and density, soluble boron concentration, uranium enrichment, and the burn-up. In this study is evaluated the problem-dependent about fission, scattering, total, nu-fission, capture, transport and absorption cross sections for a typical PWR fuel element reactor, considering burn-up cycle. The analysis was carried out with the SCALE 6.1 code package. The results of comparison with direct calculations with the SCALE code system and also the test using project parameters, such as the temperature coefficient of reactivity and fast fission factor, show excellent agreements. The differences between the cross-section parameterization methodology and the direct calculations based on the SCALE code system are less than 0.03 percent. (author)
The commercial and technological impact of high burnup
International Nuclear Information System (INIS)
Deregulation of electricity markets is driving prices downward. Consequently utilities continue to demand the minimization of electrical production costs. Fuel cycle cost savings are valued as a strong contributor, although directly representing only about one third of electricity generating costs. Burnups consistent with the current enrichment limit of 5 w/0 will be required. Significant progress has already been achieved by Siemens in meeting the demands of utilities for increased fuel burnup. The technological challenges imposed are mainly related to corrosion and hydrogen pickup of the clad, the properties of the fuel and the dimensional changes of the structure. Clad materials with increased corrosion resistance have been developed. The high burnup behaviour of the fuel has been extensively investigated and the decrease of thermal conductivity, the rim effect and the increase of fission gas release can be described, with good accuracy, in fuel rod computer codes. Advanced statistical design methods have been developed and introduced. In summary, most of the questions about the fuel operational behaviour and reliability in the high burnup range have been solved or the solutions are visible. The main licensing challenges for high burnup fuel are currently seen for accident condition analyses, especially for RIA and LOCA. (author)
IFPE/US-PWR-16 X 16 Lead Test Assembly Extended Burnup Demonstration Program
International Nuclear Information System (INIS)
power and thermal hydraulic data as well the fuel design, geometry, and composition data is contained in tables and figures within the main body of the report. The axial power shapes, fuel rod power and burnup histories, and PIE data are attached to the report as appendices. Additionally, Excel spreadsheets containing the axial power shapes and fuel rod power and burnup histories are included in the transmittal to ease use in modeling codes. Section and Description: Appendix 1 Axial power shapes; Appendix 2 Fuel rod power and burnup histories; Appendix 3 Internal void volume and fission gas release measurements; Appendix 4 Diametral strain measurements; Appendix 5 Fuel rod gamma activity measurements; Appendix 6 Fuel burnup analyses; Appendix 7 Fuel density measurements; Appendix 8 Fuel grain and pore size distributions; Appendix 9 Cladding oxide thickness measurements; Appendix 10 Hydrogen concentration and absorption measurements; Appendix 11 Cladding mechanical property testing
PWR AXIAL BURNUP PROFILE ANALYSIS
International Nuclear Information System (INIS)
The purpose of this activity is to develop a representative ''limiting'' axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the ''end-effect''. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package. The scope of this calculation covers an initial enrichment range of 3.0 through 5.0 wt% U-235 and a burnup range of 10 through 50 GWd/MTU. This activity supports the validation of the process for ensuring conservative generation of spent fuel isotopics with respect to criticality safety applications, and the use of burnup credit for commercial spent nuclear fuel. The intended use of these results will be in the development of PWR waste package loading curves, and applications involving burnup credit. Limitations of this evaluation are that the limiting profiles are only confirmed for use with the B andW 15 x 15 fuel assembly design. However, this assembly design is considered bounding of all other typical commercial PWR fuel assembly designs. This calculation is subject to the Quality Assurance Requirements and Description (QARD) because this activity supports investigations of items or barriers on the Q-list (YMP 2001)
PWR AXIAL BURNUP PROFILE ANALYSIS
Energy Technology Data Exchange (ETDEWEB)
J.M. Acaglione
2003-09-17
The purpose of this activity is to develop a representative ''limiting'' axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the ''end-effect''. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package. The scope of this calculation covers an initial enrichment range of 3.0 through 5.0 wt% U-235 and a burnup range of 10 through 50 GWd/MTU. This activity supports the validation of the process for ensuring conservative generation of spent fuel isotopics with respect to criticality safety applications, and the use of burnup credit for commercial spent nuclear fuel. The intended use of these results will be in the development of PWR waste package loading curves, and applications involving burnup credit. Limitations of this evaluation are that the limiting profiles are only confirmed for use with the B&W 15 x 15 fuel assembly design. However, this assembly design is considered bounding of all other typical commercial PWR fuel assembly designs. This calculation is subject to the Quality Assurance Requirements and Description (QARD) because this activity supports investigations of items or barriers on the Q-list (YMP 2001).
Results of the isotopic concentrations of WWER calculation Burnup Credit Benchmark NO.2 (CB2)
International Nuclear Information System (INIS)
The purpose of this document is to present the results of the nuclide concentrations of the WWER Burnup Credit Benchmark NO.2 (CB2) that were performed in The Nuclear Technology Center of Cuba with available codes and libraries. The CB2 benchmark specification as the second phase of the WWER burnup credit benchmark is summarized in [1]. The CB2 benchmark focused on WWER burnup credit study proposed on the 97' Atomic Energy Research symposium [2]. The obtained results are isotopic concentrations of spent fuel as a function of the burnup and cooling time. The depletion point 'ORIGEN2'[3] code was used for the calculation of the spent fuel concentration. This work also comprises the results obtained by other codes [4]. (Author)
The impact of burn-up credit in criticality studies
International Nuclear Information System (INIS)
Nowadays optimization goes with everything. So French engineering firms try to demonstrate that fuel transport casks and storage pools are able to receive assemblies with higher 235U initial enrichments. Fuel Burnup distribution contributes to demonstrate it. This instruction has to elaborate a way to take credit of burnup effects on criticality safety designs. The calculation codes used are CESAR 4.21-APOLLO 1-MORET III. The assembly studied (UO2) is irradiated in a French Pressurized Water Reactor like EDF nuclear power reactor: PWR 1300 MWe, 17 x 17 array. Its initial enrichment in 235U equals 4.5%. The studies exposed in this report have evaluated the effects of: i) the 15 fission products considered in Burnup Credit (95Mo, 99Tc, 101Ru, 103Rh, 109Ag, 133Cs, 143Nd, 145Nd, 147Sm, 149Sm, 150Sm, 151Sm, 152Sm, 153Eu, 155Gd), ii) the calculated abundances corrected or not by fixed factors, iii) the choice of one cross sections library used by CESAR 4.21, iu) the zone number elected in the axial burnup distribution zoning, u) the kind of cut applied on (regular/optimized). Two axial distribution profiles are studied: one with 44 GWd/t average burnup, the other with 20 GWd/t average burnup. The second one considers a shallow control rods insertion in the upper limit of the assembly. The results show a margin in reactivity about 0.045 with consideration of the 6 most absorbent fission products (103Rh, 133Cs, 143Nd, 149Sm, 152Sm, 155Gd), and about 0.06 for all Burnup Credit fission products whole. Those results have been calculated with an average burnup of 44 GWj/t. In a conservative approach, corrective factors must be apply on the abundance of some fission products. The cross sections library used by CESAR 4.21 (BBL 4) is sufficient and gives satisfactory results. The zoning of the assembly axial distribution burnup in 9 regular zones grants a satisfying calculation time/result precision compromise. (author)
Verschuuren, Gerard M
2013-01-01
Covering a variety of Excel simulations, from gambling to genetics, this introduction is for people interested in modeling future events, without the cost of an expensive textbook. The simulations covered offer a fun alternative to the usual Excel topics and include situations such as roulette, password cracking, sex determination, population growth, and traffic patterns, among many others.
Tyrrell, Sidney
2006-01-01
In this brief article, the author instructs teachers on how to produce an interactive spreadsheet from scratch in about 20 minutes and en route equip themselves and their students, with handy "Excel" skills. The aim is to introduce the basics of "Excel," plus some fun bits, speedily and with a purpose; producing something that is useful in its own…
CANDU lattice uncertainties during burnup
International Nuclear Information System (INIS)
Uncertainties associated with fundamental nuclear data accompany evaluated nuclear data libraries in the form of covariance matrices. As nuclear data are important parameters in reactor physics calculations, any associated uncertainty causes a loss of confidence in the calculation results. The quantification of output uncertainties is necessary to adequately establish safety margins of nuclear facilities. In this work, microscopic cross-section has been propagated through lattice burnup calculations applied to a generic CANDU® model. It was found that substantial uncertainty emerges during burnup even when fission yield fraction and decay rate uncertainties are neglected. (author)
Fast reactor 3D core and burnup analysis using VESTA
Energy Technology Data Exchange (ETDEWEB)
Luciano, N.; Shamblin, J.; Maldonado, I. [Nuclear Engineering Dept., Univ. of Tennessee, Knoxville, TN 37996-2300 (United States)
2012-07-01
Burnup analyses using the VESTA code have been performed on a MOX-fuelled fast reactor model as specified by an IAEA computational benchmark. VESTA is a relatively new code that has been used for burnup credit calculations and thermal reactor models, but not typically for fast reactor applications. The detailed input and results of the IAEA benchmark provides an opportunity to gauge the use of VESTA in a fast reactor application. VESTA employs an ultra-fine multi-group binning approach that accelerates Monte Carlo burnup calculations. Using VESTA to compute the end of cycle (EOC) power fractions by enrichment zone showed agreement with the published values within 5%. When comparing the ultra-fine multi-group binning approach to the tally-based approach, EOC isotopic masses also agree within 5%. Using the ultra-fine multi-group binning approach, we obtain a wall-time speedup factor of 35 when compared to the tally-based approach for computing a k{sub eff} eigenvalue with burnup problem. The authors conclude the use of VESTA's ultra-fine multi-group binning approach with Monte Carlo transport performs accurate depletion calculations for this fast reactor benchmark. (authors)
Extension of the TRANSURANUS burn-up model
International Nuclear Information System (INIS)
The validation range of the model in the TRANSURANUS fuel performance code for calculating the radial power density and burn-up in UO2 fuel has been extended from 64 MWd/kgHM up to 102 MWd/kgHM, thereby improving also its precision. In addition, the first verification of calculations with post-irradiation examination data is reported for LWR-MOX fuel with a rod average burn-up up to 45 MWd/kgHM. The extension covers the inclusion of new isotopes in order to account for the production of 238Pu. The corresponding one-group cross-sections used in the equations rely on results obtained with ALEPH, a new Monte Carlo burn-up code. The experimental verification is based on electron probe microanalysis (EPMA) and on secondary ion mass spectrometry (SIMS) as well as radiochemical data of fuel irradiated in commercial power plants. The deviations are quantified in terms of frequency distributions of the relative errors. The relative errors on the burn-up distributions in both fuel types remain below 12%, corresponding to the experimental scatter
International Nuclear Information System (INIS)
The criticality safety analysis of spent fuel systems has traditionally assumed that the fuel is fresh. This results in significant conservatism in the calculated value of the system's reactivity. Improved calculational methods allows one to take credit for the reactivity reduction associated with fuel burnup, hence reducing the analysis conservatism while maintaining an adequate criticality safety margin. Motivation for using burnup credit in criticality safety applications is generally based on economic considerations. Although economics may be a primary factor in deciding to use burnup credit, other benefits may be realized. Many of the additional benefits of burnup credit that are not strictly economic, may be considered to contribute to public health and safety, and resource conservation and environmental quality. Interest in the implementation of burnup credit has been shown by many countries. A summary of the information gathered by the IAEA about ongoing activities and regulatory status of burnup credit in different countries is included. Burnup credit implementation introduces new parameters and effects that should be addressed in the criticality analysis (e.g., axial and radial burnup shapes, fuel irradiation history, and others). Analysis of these parameters introduces new variations as well as the uncertainties, that should be considered in the safety assessment of the system. Also, the need arises to validate the isotopic composition that results from a depletion calculation, as well as to extend the current validation range of criticality codes to cover spent fuel. The use of burnup credit implies a verification of the fuel burnup before loading for transport, storage, disposal, or reprocessing each assembly, to make sure that the burnup level achieved complies with the criteria established. Methods and procedures used in different countries are described in this report
Burnup determination of water reactor fuel
International Nuclear Information System (INIS)
The present meeting was scheduled by the International Atomic Energy Agency in consultation with the Members of the International Working Group on Water Reactor Fuel Performance and Technology. The meeting was hosted by the Commission of the European Communities, at the Transuranium Research Laboratory, Joint Research Centre Karlsruhe, in the Federal Republic of Germany. This subject was dealt with for the first time by the IAEA. It was found to correspond adequately to this type of Specialist Meeting and to be suitable at a moment when the extension of burnup constitutes a major technical and economical issue in fuel technology. It was stressed that analysis of highly burnt fuels, mixed oxides and burnable absorber bearing fuels required extension of the experimental data base, to comply with the increasing demand for an improved fuel management, including better qualification of reactor physics codes. Twenty-seven participants from eleven countries plus two international organizations attended the Meeting. Twelve papers were given during three technical sessions, followed by a panel discussion which allowed to formulate the conclusions of the meeting and recommendations to the Agency. In addition, participants were invited to give an outline of their national programmes, related to Burnup Determination of Water Reactor Fuel. A separate abstract was prepared for each of these 12 papers. Refs, figs and tabs
Power excursion analysis for high burnup cores
International Nuclear Information System (INIS)
A study was undertaken of power excursions in high burnup cores. There were three objectives in this study. One was to identify boiling water reactor (BWR) and pressurized water reactor (PWR) transients in which there is significant energy deposition in the fuel. Another was to analyze the response of BWRs to the rod drop accident (RDA) and other transients in which there is a power excursion. The last objective was to investigate the sources of uncertainty in the RDA analysis. In a boiling water reactor, the events identified as having significant energy deposition in the fuel were a rod drop accident, a recirculation flow control failure, and the overpressure events; in a pressurized water reactor, they were a rod ejection accident and boron dilution events. The RDA analysis was done with RAMONA-4B, a computer code that models the space- dependent neutron kinetics throughout the core along with the thermal hydraulics in the core, vessel, and steamline. The results showed that the calculated maximum fuel enthalpy in high burnup fuel will be affected by core design, initial conditions, and modeling assumptions. The important uncertainties in each of these categories are discussed in the report
RAPID program to predict radial power and burnup distribution of UO{sub 2} fuel
Energy Technology Data Exchange (ETDEWEB)
Lee, Chan Bock; Song, Jae Sung; Bang, Je Gun; Kim, Dae Ho [Korea Atomic Energy Research Institute, Taejon (Korea)
1999-02-01
Due to the radial variation of the neutron flux and its energy spectrum inside UO{sub 2} fuel, the fission density and fissile isotope production rates are varied radially in the pellet, and it becomes necessary to know the accurate radial power and burnup variation to predict the high burnup fuel behavior such as rim effects. Therefore, to predict the radial distribution of power, burnup and fissionable nuclide densities in the pellet with the burnup and U-235 enrichment, RAPID(RAdial power and burnup Prediction by following fissile Isotope Distribution in the pellet) program was developed. It considers the specific radial variation of the neutron reaction of the nuclides while the constant radial variation of neutron reaction except neutron absorption of U-238 regardless of the nuclides, the burnup and U-235 enrichment is assumed in TUBRNP model which is recognized as the one of the most reliable models. Therefore, it is expected that RAPID may be more accurate than TUBRNP, specially at high burnup region. RAPID is based upon and validated by the detailed reactor physics code, HELIOS which is one of few codes that can calculates the radial variations of the nuclides inside the pellet. Comparison of RAPID prediction with the measured data of the irradiated fuels showed very good agreement. RAPID can be used to calculate the local variations of the fissionable nuclide concentrations as well as the local power and burnup inside that pellet as a function of the burnup up to 10 w/o U-235 enrichment and 150 MWD/kgU burnup under the LWR environment. (author). 8 refs., 50 figs., 1 tab.
Determination of axial profit performed burnup credit by SCALE 4.3-system
International Nuclear Information System (INIS)
SCALE 4.3 is a modular code system designed for realizing standard computational analysis for licensing evaluation. Since now, spent fuel storage pools criticality analysis have been done considering this fuel as fresh, with its maximum enrichment. With burnup credit we can obtain cheaper and compact configurations. The procedure for calculating a spent fuel storage consists of a burnup calculation plus a criticality calculation. We can perform a conservative approximation for the burnup calculations using 1-D results, but, besides the geometry configurations for the 3-D criticality calculation. we need an appropriate approximation to model the burnup axial variation. We assume that for a burnup profile set, the most conservative profile is between the lower and the upper range of this profile, set. We consider only combinations of the maximum and minimum burnup in each axial region, for each burnup range. This gives an estimation of the different burnup shapes effect and the general characteristics of the most conservative shape. (Author) 6 refs
DEFF Research Database (Denmark)
Adeyemi, Oluseyi
2011-01-01
Sourcing Excellence is one of the key performance indicators (KPIs) in this world of ever changing sourcing strategies. Manufacturing companies need to access and diagnose the reliability and competencies of existing suppliers in order to coordinate and develop them. This would help in managing...... excellence in manufacturing companies. In addition, an advanced approach to sourcing involves integrating and coordinating suppliers, common materials, processes, designs and technologies across worldwide buying, design and operating locations. However, since most manufacturing companies do not have well...... integrating the models of JIT sourcing and global sourcing would also add value and enhance excellent sourcing practices. These and other possibilities of sourcing would be considered in this research....
Burnup credit calculations on long-term disposal
International Nuclear Information System (INIS)
One of the considered options for handling of irradiated nuclear fuel is the final disposal in some kind of repository. This necessitates the long-term investigation of subcriticality, heat production, public dose etc. NEA WPNCS Burnup Credit Expert Group defined a new benchmark to test the codes and data used for such problems. The effect of cooling time should be investigated. This implies that the decay data and not the cross sections influence the results. Composition of 4.5 % UO2 fuel with 50 MWd/kgU is given at the assembly removal from the core. Change of composition should be evaluated for 30 values of cooling time up to 1 million years. Keff should be evaluated with these compositions for a container housing 21 fuel assemblies. Initial concentration of 115 isotopes is given. For criticality calculations the usual 'burnup credit set' is used (14 actinides and 15 fission products). Results for additional isotopes is not presented now. The investigated fuel is 17 x 17 PWR UO2 type, with 25 guide tubes. The selected cooling times covers the time intervals of the usual handling procedures around the reactors (few years storing in storage pool, transport), interim storage (hundred years), and the long time scale of disposal up to 1 million years. Results: 1) For major actinides, ORIGEN and MULTICELL based keff results are practically identical up to 1000 years, far beyond the cooling times it was intended. 2) For actinides and fission products, the agreement is excellent up to 100 years, which covers the interim storage. 3) The difference of keff results about 0.02 at 1000 years. The reason is mainly the presence of Np-237, not considered in the previous case. It is produced from Am-241 by α-decay (432 years). Compositions calculated by ORIGEN and TIBSO results the same keff values for cooling times up to 1 million years. Changes in keff with cooling time have clear physical explanation. Compositions calculated by ORIGEN and MULTICELL results the same keff
Strategies for Application of Isotopic Uncertainties in Burnup Credit
Energy Technology Data Exchange (ETDEWEB)
Gauld, I.C.
2002-12-23
Uncertainties in the predicted isotopic concentrations in spent nuclear fuel represent one of the largest sources of overall uncertainty in criticality calculations that use burnup credit. The methods used to propagate the uncertainties in the calculated nuclide concentrations to the uncertainty in the predicted neutron multiplication factor (k{sub eff}) of the system can have a significant effect on the uncertainty in the safety margin in criticality calculations and ultimately affect the potential capacity of spent fuel transport and storage casks employing burnup credit. Methods that can provide a more accurate and realistic estimate of the uncertainty may enable increased spent fuel cask capacity and fewer casks needing to be transported, thereby reducing regulatory burden on licensee while maintaining safety for transporting spent fuel. This report surveys several different best-estimate strategies for considering the effects of nuclide uncertainties in burnup-credit analyses. The potential benefits of these strategies are illustrated for a prototypical burnup-credit cask design. The subcritical margin estimated using best-estimate methods is discussed in comparison to the margin estimated using conventional bounding methods of uncertainty propagation. To quantify the comparison, each of the strategies for estimating uncertainty has been performed using a common database of spent fuel isotopic assay measurements for pressurized-light-water reactor fuels and predicted nuclide concentrations obtained using the current version of the SCALE code system. The experimental database applied in this study has been significantly expanded to include new high-enrichment and high-burnup spent fuel assay data recently published for a wide range of important burnup-credit actinides and fission products. Expanded rare earth fission-product measurements performed at the Khlopin Radium Institute in Russia that contain the only known publicly-available measurement for {sup 103
TRIGA fuel burn-up calculations and its confirmation
International Nuclear Information System (INIS)
The Cesium (Cs-137) isotopic concentration due to irradiation of TRIGA Fuel Elements FE(s) is calculated and measured at the Atominstitute (ATI) of Vienna University of Technology (VUT). The Cs-137 isotope, as proved burn-up indicator, was applied to determine the burn-up of the TRIGA Mark II research reactor FE. This article presents the calculations and measurements of the Cs-137 isotope and its relevant burn-up of six selected Spent Fuel Elements SPE(s). High-resolution gamma-ray spectroscopy based non-destructive method is employed to measure spent fuel parameters. By the employment of this method, the axial distribution of Cesium-137 for six SPE(s) is measured, resulting in the axial burn-up profiles. Knowing the exact irradiation history and material isotopic inventory of an irradiated FE, six SPE(s) are selected for on-site gamma scanning using a special shielded scanning device developed at the ATI. This unique fuel inspection unit allows to scan each millimeter of the FE. For this purpose, each selected FE was transferred to the fuel inspection unit using the standard fuel transfer cask. Each FE was scanned at a scale of 1 cm of its active length and the Cs-137 activity was determined as proved burn-up indicator. The measuring system consists of a high-purity germanium detector (HPGe) together with suitable fast electronics and on-line PC data acquisition module. The absolute activity of each centimeter of the FE was measured and compared with reactor physics calculations. The ORIGEN2, a one-group depletion and radioactive decay computer code, was applied to calculate the activity of the Cs-137 and the burn-up of selected SPE. The deviation between calculations and measurements was in range from 0.82% to 12.64%.
International Nuclear Information System (INIS)
Development of the SUHAM-U code for burnup calculations of VVER-1000 fuel assemblies with uranium and MOX fuel is described. Developed SUHAM-U code has capacity to calculate burnup in each fuel or poison zone of each cell of VVER-1000 fuel assembly. In so doing Surface Harmonics Method is used for calculation of the detail neutron spectra in fuel assembly at separated burnup values. Verification of SUHAM-U code by burnup calculations of VVER-1000 fuel assemblies with uranium and MOX fuel has been carried out. Comparisons were carried out with calculations by UNK and RECOL codes. UNK code uses the first collisions probabilities method for solution of the neutron transport equation and RECOL code uses Monte-Carlo method with point-wise continues energy presentation of cross-sections. The main conclusion of all comparisons is the SUHAM-U code calculates the fuel burnup of VVER-1000 fuel assemblies with uranium and MOX fuel with enough high accuracy. Time expenditures are adduced. (authors)
Energy Technology Data Exchange (ETDEWEB)
Boyarinov, V. F.; Davidenko, V. D.; Polismakov, A. A.; Tsibulsky, V. F. [Russian Research Center Kurchatov Inst., Nuclear Reactor Inst., 123182, Moscow (Russian Federation)
2006-07-01
Development of the SUHAM-U code for burnup calculations of VVER-1000 fuel assemblies with uranium and MOX fuel is described. Developed SUHAM-U code has capacity to calculate burnup in each fuel or poison zone of each cell of VVER-1000 fuel assembly. In so doing Surface Harmonics Method is used for calculation of the detail neutron spectra in fuel assembly at separated burnup values. Verification of SUHAM-U code by burnup calculations of VVER-1000 fuel assemblies with uranium and MOX fuel has been carried out. Comparisons were carried out with calculations by UNK and RECOL codes. UNK code uses the first collisions probabilities method for solution of the neutron transport equation and RECOL code uses Monte-Carlo method with point-wise continues energy presentation of cross-sections. The main conclusion of all comparisons is the SUHAM-U code calculates the fuel burnup of VVER-1000 fuel assemblies with uranium and MOX fuel with enough high accuracy. Time expenditures are adduced. (authors)
International Nuclear Information System (INIS)
This paper describes the experience gained in Germany in implementing burnup credit in wet storage and dry transport systems of spent PWR, BWR, and MOX fuel. It gives a survey of the levels of burnup credit presently used, the regulatory status and activities planned, the fuel depletion codes and criticality calculation codes employed, the verification methods used for validating these codes, the modeling assumptions made to ensure that the burnup credit criticality analysis is based on a fuel irradiation history which leads to bounding neutron multiplication factors, and the implementation of procedures used for fuel loading verification. (author)
The influence of pitch, burnup and absorber rods on the spent fuel pool criticality
International Nuclear Information System (INIS)
It has been shown that supercriticality might occur for some postulated accidents for the TRIGA spent fuel pool at ''Josef Stefan'' Institute in Ljubljana, Slovenia. However, in the previous studies, the effect of burnup was not accounted for. In this work the dependence of criticality on fuel burnup, the pitch among the elements and the number of uniformly mixed absorber rods for a square arrangement is presented. The Monte Carlo computer code MCNP4B with ENDF-B/VI library and detailed three dimensional geometry was used. WIMS-D code was used to model the isotopic composition of the fuel for 5, 10, 20 and 30 % burnup without cooling time. The results show, that out of the three studied effects: pitch from contact (3.75cm) up to rack design pitch (8cm), number of absorbers from 0 to 8 and burnup up to 30 %, the pitch has the greatest influence on the multiplication factor keff. In the interval in which the pitch was changed, keff decreased for up to 0.45. The number of absorber rods affects the multiplication factor much less. This effect is bigger for more compact arrangements, e.g. for contact of fuel elements with 8 absorber rods among them, keff values are smaller for almost 0.20 than for arrangement without absorber rods regardless of the burnup. The effect of burnup is the smallest since in no case keff decreases for more than 0.10, even for high burnups of 30 %. (author)
HAMCIND, Cell Burnup with Fission Products Poisoning
International Nuclear Information System (INIS)
1 - Description of program or function: HAMCIND is a cell burnup code based in a coupling between HAMMER-TECHNION and CINDER. The fission product poisoning is taken into account in an explicit fashion. 2 - Method of solution: The nonlinear coupled set of equations for the neutron transport and nuclide transmutation equations and nuclide transmutation equations in a unit cell is solved by HAMCIND in a quasi-static approach. The spectral transport equation is solved by HAMMER-TECHNION at the beginning of each time-step while the nuclide transmutation equations are solved by CINDER for every time-step. The HAMMER-TECHNION spectral calculations are performed taking into account the fission product contribution to the macroscopic cross sections (fast and thermal), in the inelastic scattering matrix and even in the thermal scattering matrices. 3 - Restrictions on the complexity of the problem: Restrictions and/or limitations for HAMCIND depend upon the local operating system
Development and verification of Monte Carlo burnup calculation system
International Nuclear Information System (INIS)
Monte Carlo burnup calculation code system has been developed to evaluate accurate various quantities required in the backend field. From the Actinide Research in a Nuclear Element (ARIANE) program, by using, the measured nuclide compositions of fuel rods in the fuel assemblies irradiated in the commercial Netherlands BWR, the analyses have been performed for the code system verification. The code system developed in this paper has been verified through analysis for MOX and UO2 fuel rods. This system enables to reduce large margin assumed in the present criticality analysis for LWR spent fuels. (J.P.N.)
Burnup credit implementation in WWER spent fuel management systems: Status and future aspects
International Nuclear Information System (INIS)
This paper describes the motivation for possible burnup credit implementation in WWER spent fuel management systems in Bulgaria. The activities being done are described, namely: the development and verification of a 3D few-group diffusion burnup model; the application of the KORIGEN code for evaluation of WWER fuel nuclear inventory during reactor core lifetime and after spent fuel discharge; using the SCALE modular system (PC Version 4.1) for criticality safety analyses of spent fuel storage facilities. Future plans involving such important tasks as validation and verification of computer systems and libraries for WWER burnup credit analysis are shown. (author)
Determination of the burn-up of TRIGA fuel elements by calculation and reactivity experiments
International Nuclear Information System (INIS)
The burnup of 17 fuel elements of the TRIGA Mark-II reactor in Vienna was measured. Different types of fuel elements had been simultaneously used for several years. The measured burnup values are compared with those calculated on the basis of core configuration and reactor operation history records since the beginning of operation. A one-dimensional, two-group diffusion computer code TRIGAP was used for the calculations. Comparison with burnup values determined by γ-scanning is also made. (orig./HP)
Taking burnup credit for interim storage and transportation system for BWR fuels
International Nuclear Information System (INIS)
In order to establish a realistic burnup credit design system, a calculation system has been developed for determining isotope compositions, burnup, and criticality. The calculation system consists of several modules such as TGBLA, ORIGEN, CITATION, MCNP, and KENO. The TGBLA code is a fuel design code for LWR fuels developed in TOSHIBA Corporation. A compact measurement system for a fuel assembly has been being developed to meet requirements for the burnup determination, the neutron emission-rate evaluation, and the nuclear materials management. For a spent MOX fuel, a neutron emission rate measurement method has been being developed. The system consists of Cd-Te detectors and / or fission chambers. Some model calculations were carried out for the latest design BWR fuels. The effect of taking burnup credit for a transportation cask is shown. (authors)
Technical Development on Burn-up Credit for Spent LWR Fuel
Energy Technology Data Exchange (ETDEWEB)
Gauld, I.C.
2001-12-26
Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled ''Technical Development on Criticality Safety Management for Spent LWR Fuels.'' Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burnup and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report.
Technical Development on Burn-up Credit for Spent LWR Fuel
International Nuclear Information System (INIS)
Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled ''Technical Development on Criticality Safety Management for Spent LWR Fuels.'' Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burnup and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report
OREST - The hammer-origen burnup program system
International Nuclear Information System (INIS)
Reliable prediction of the characteristics of irradiated light water reactor fuels (e.g., afterheat power, neutron and gamma radiation sources, final uranium and plutonium contents) is needed for many aspects of the nuclear fuel cycle. Two main problems must be solved: the simulation of all isotopic nuclear reactions and the simulation of neutron fluxes setting the reactions in motion. In state-of-the-art computer techniques, a combination of specialized codes for lattice cell and burnup calculations is preferred to solve these cross-linked problems in time or burnup step approximation. In the program system OREST, developed for official and commercial tasks in the Federal Republic of Germany nuclear fuel cycle, the well-known codes HAMMER and ORIGEN and directly coupled with a fuel rod temperature module
M. H. Altaf; N.H. Badrun
2014-01-01
Burnup dependent steady state thermal hydraulic analysis of TRIGA Mark-II research reactor has been carried out utilizing coupled point kinetics, neutronics and thermal hydraulics code EUREKA-2/RR. From the previous calculations of neutronics parameters including percentage burnup of individual fuel elements performed so far for 700 MWD burnt core of TRIGA reactor showed that the fuel rod predicted as hottest at the beginning of cycle (fresh core) was found to remain as the hottest until 200 ...
Ultrasonic measurement of high burn-up fuel elastic properties
International Nuclear Information System (INIS)
The ultrasonic method developed for the evaluation of high burn-up fuel elastic properties is presented hereafter. The objective of the method is to provide data for fuel thermo-mechanical calculation codes in order to improve industrial nuclear fuel and materials or to design new reactor components. The need for data is especially crucial for high burn-up fuel modelling for which the fuel mechanical properties are essential and for which a wide range of experiments in MTR reactors and high burn-up commercial reactor fuel examinations have been included in programmes worldwide. To contribute to the acquisition of this knowledge the LAIN activity is developing in two directions. First one is development of an ultrasonic focused technique adapted to active materials study. This technique was used few years ago in the EdF laboratory in Chinon to assess the ageing of materials under irradiation. It is now used in a hot cell at ITU Karlsruhe to determine the elastic moduli of high burnup fuels from 0 to 110 GWd/tU. Some of this work is presented here. The second on going programme is related to the qualification of acoustic sensors in nuclear environments, which is of a great interest for all the methods, which work, in a hostile nuclear environment
Prediction of fission gas pressure from high burnup oxide fuel
International Nuclear Information System (INIS)
The ELESIM fuel performance code incorporates a fundamentally based treatment of the relevant physical processes affecting fission gas release. The fission gas release model treats fission gas diffusion, formation and subsequent interlinkage of intergranular bubbles, grain boundary storage of gas, grain growth and fuel swelling. The latter case considers the contributions of thermal expansion, densification, solid fission products, and gas bubbles. The effect of porosity on fuel thermal conductivity is taken into account. Previously we showed predictions of the gas release model agreed well with measured values for oxide fuel with burnups to about 300 MW.h/kg U. The applicability of the model to high burnup fuel is examined using examples from the literature. The fission gas release range considered is about 1-100% for burnups to 1000 MW.h/kg U in thermal reactor fuel and 2400 MW.h/kg U in fast reactor fuel. Predicted and measured releases are shown to be in good agreement, suggesting that the fundamental model is correct. In some models, empirical correction factors are required at high burnup to achieve agreement between predicted and measured release values; no such factor is required in ELESIM. (auth)
Radionuclide Release from High Burnup Fuel
International Nuclear Information System (INIS)
In this paper we investigate the production, evolution and release of radioactive fission products in a light water reactor. The production of the nuclides is determined by the neutronics, their evolution in the fuel by local temperature and by the fuel microstructure and the rate of release is governed by the scenario and the properties of the microstructure where the nuclides reside. The problem combines fields of reactor physics, fuel behaviour analysis and accident analysis. Radionuclide evolution during fuel reactor life is also important for determination of instant release fraction of final repository analysis. The source term problem is investigated by literature study and simulations with reactor physics code Serpent as well as fuel performance code ENIGMA. The capabilities of severe accident management codes MELCOR and ASTEC for describing high burnup structure effects are reviewed. As the problem is multidisciplinary in nature the transfer of information between the codes is studied. While the combining of the different fields as they currently are is challenging, there are some possibilities to synergy. Using reactor physics tools capable of spatial discretization is necessary for determining the HBS inventory. Fuel performance studies can provide insight how the HBS should be modelled in severe accident codes, however the end effect is probably very small considering the energetic nature of the postulated accidents in these scenarios. Nuclide release in severe accidents is affected by fuel oxidation, which is not taken into account by ANSI/ANS-5.4 but could be important in some cases, and as such, following the example of severe accident models would benefit the development of fuel performance code models. (author)
MCWO - Linking MCNP And ORIGEN2 For Fuel Burnup Analysis
International Nuclear Information System (INIS)
The UNIX BASH (Bourne Again Shell) script MCWO has been developed at the Idaho National Engineering and Environment Laboratory (INEEL) to couple the Monte Carlo transport code MCNP with the depletion and buildup code ORIGEN2. MCWO is a fully automated tool that links the Monte Carlo transport code MCNP with the radioactive decay and burnup code ORIGEN2. MCWO can handle a large number of fuel burnup and material loading specifications, Advanced Test Reactor (ATR) powers, and irradiation time intervals. The program processes input from the user that specifies the system geometry, initial material compositions, feed/removal specifications, and other code-specific parameters. Calculated results from MCNP, ORIGEN2, and data process module calculations are then output successively as the code runs. The principal function of MCWO is to transfer one-group cross-section and flux values from MCNP to ORIGEN2, and then transfer the resulting material compositions (after irradiation and/or decay) from ORIGEN2 back to MCNP in a repeated, cyclic fashion. The basic requirement of the code is that the user have a working MCNP input file and other input parameters; all interaction with ORIGEN2 and other calculations are performed by UNIX BASH script MCWO. This paper presents the MCWO-calculated results of the RERTR-1 and -2, and the Weapons-Grade Mixed Oxide fuel (Wg-MOX) fuel experiments in ATR and compares the MCWO-calculated results with the measured data
End effect analysis with various axial burnup distributions in high density spent fuel storage racks
International Nuclear Information System (INIS)
Highlights: • Criticality tests are carried out with various axial burnup distributions of fuel assemblies for spent fuel storage racks. • KENO-Va code system was used to obtain criticalities with 10 axial segments. • ORIGEN-S code system was used to obtain burnup dependent axial compositions. • The criticality and burnup dependent reactivity difference are obtained from the results. • End effect quantifications are satisfactory confirming the previous suggestions. - Abstract: End effect of spent fuel comes from the difference between uniform and actual axial burnup distributions of fuel assemblies. It is significant to control the criticality safety in spent fuel storage and transportation. This work is focused on estimation of end effect in the spent fuel of light water reactor for the spent fuel storage rack region-II. High and low burnups of corresponding different uranium enrichments are taken into consideration to analyze the end effect with different axial burnup distributions such as uniform, MOC and EOC profiles. Two types of fuel assemblies such as CE type and Westinghouse type are considered. The whole calculations have been carried out by using the SCALE6 code including ORIGEN-S and KENO-Va
Barreto, Humberto
2015-01-01
This article is not the usual Excel pedagogy fare in that it does not provide an application or example taught via a spreadsheet. Instead, it briefly reviews the history of spreadsheets in the economics classroom and explores the current environment, with an emphasis on modern learning theory. The conclusion is not surprising: spreadsheets improve…
Measurement techniques for verifying burnup
Energy Technology Data Exchange (ETDEWEB)
Ewing, R.I. (Sandia National Lab., Albuquerque, NM (US)); Bierman, S.R. (Pacific Northwest Lab., Richland, WA (US))
1992-05-01
Measurements of the nuclear radiation from spent reactor fuel are being considered to qualify assemblies for loading into casks that will be used to transport spent fuel from utility sites to a federal storage facility. To ensure nuclear criticality safety, the casks are being designed to accept assemblies that meet restrictions as to burnup, initial enrichment and cooling time. This paper reports that measurements could be used to ensure that only fuel assemblies that meet the restrictions are selected for loading.
Measurement techniques for verifying burnup
International Nuclear Information System (INIS)
Measurements of the nuclear radiation from spent reactor fuel are being considered to qualify assemblies for loading into casks that will be used to transport spent fuel from utility sites to a federal storage facility. To ensure nuclear criticality safety, the casks are being designed to accept assemblies that meet restrictions as to burnup, initial enrichment and cooling time. This paper reports that measurements could be used to ensure that only fuel assemblies that meet the restrictions are selected for loading
Burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1
Muhammad Atta; Iqbal Masood; Mahmood Tayyab
2011-01-01
The burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1, reference operating core, has been carried out utilizing standard computer codes WIMS/D4, CITATION, and RELAP5/MOD3.4. Reactor codes WIMS/D4 and CITATION have been used for the calculations of neutronic parameters including peaking factors and power profiles at different burn-up considering a xenon free core and also the equilibrium xenon values. RELAP5/MOD3.4 code was utilized for the determin...
Ostertag, Richard
2011-01-01
Focus of this thesis is to introduce methods used within the concept of Operational Excellence, being one of possible approaches to manage business processes, and subsequent application of these methods to accounting operations of a concrete company. Using application of these methods, thesis aims to evaluate quality of the process outputs as well as the utilization rate of available labor resources within analyzed business unit. Concrete suggestions to improve quality of process outputs and ...
Analysis on burnup step effect for evaluating reactor criticality and fuel breeding ratio
International Nuclear Information System (INIS)
Criticality condition of the reactors is one of the important factors for evaluating reactor operation and nuclear fuel breeding ratio is another factor to show nuclear fuel sustainability. This study analyzes the effect of burnup steps and cycle operation step for evaluating the criticality condition of the reactor as well as the performance of nuclear fuel breeding or breeding ratio (BR). Burnup step is performed based on a day step analysis which is varied from 10 days up to 800 days and for cycle operation from 1 cycle up to 8 cycles reactor operations. In addition, calculation efficiency based on the variation of computer processors to run the analysis in term of time (time efficiency in the calculation) have been also investigated. Optimization method for reactor design analysis which is used a large fast breeder reactor type as a reference case was performed by adopting an established reactor design code of JOINT-FR. The results show a criticality condition becomes higher for smaller burnup step (day) and for breeding ratio becomes less for smaller burnup step (day). Some nuclides contribute to make better criticality when smaller burnup step due to individul nuclide half-live. Calculation time for different burnup step shows a correlation with the time consuming requirement for more details step calculation, although the consuming time is not directly equivalent with the how many time the burnup time step is divided
International Nuclear Information System (INIS)
Consideration of the depletion phenomena and isotopic uncertainties in burnup-credit criticality analysis places an increasing reliance on computational tools and significantly increases the overall complexity of the calculations. An automated analysis and data management capability is essential for practical implementation of large-scale burnup credit analyses that can be performed in a reasonable amount of time. STARBUCS is a new prototypic analysis sequence being developed for the SCALE code system to perform automated criticality calculations of spent fuel systems employing burnup credit. STARBUCS is designed to help analyze the dominant burnup credit phenomena including spatial burnup gradients and isotopic uncertainties. A search capability also allows STARBUCS to iterate to determine the spent fuel parameters (e.g., enrichment and burnup combinations) that result in a desired keff for a storage configuration. Although STARBUCS was developed to address the analysis needs for spent fuel transport and storage systems, it provides sufficient flexibility to allow virtually any configuration of spent fuel to be analyzed, such as storage pools and reprocessing operations. STARBUCS has been used extensively at Oak Ridge National Laboratory (ORNL) to study burnup credit phenomena in support of the NRC Research program
TOPICAL REPORT ON ACTINIDE-ONLY BURNUP CREDIT FOR PWR SPENT NUCLEAR FUEL PACKAGES
International Nuclear Information System (INIS)
A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay. A set of chemical assay benchmarks is presented for this purpose as well as a method for assessing the calculational bias and uncertainty, and conservative correction factors for each isotope. (2) Validate a computer code system to predict the subcritical multiplication factor, keff, of a spent nuclear fuel package. Fifty-seven UO2, UO2/Gd2O3, and UO2/PuO2 critical experiments have been selected to cover anticipated conditions of SNF. The method uses an upper safety limit on keff (which can be a function of the trending parameters) such that the biased keff, when increased for the uncertainty is less than 0.95. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. Three bounding axial profiles have been established to assure the ''end effect'' is accounted for conservatively. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). Burnup credit loading curves show the minimum burnup required for a given initial enrichment. The utility burnup record is compared to this requirement after the utility accounts for the uncertainty in its record. Separate curves may be generated for each assembly design, various minimum cooling times and burnable absorber histories. (5) Verify that SNF assemblies meet the package loading criteria and confirm proper assembly selection prior to loading
Future disposal burnup credit process and effort
International Nuclear Information System (INIS)
The United States Department of Energy's Office of Civilian Radioactive Waste Management has developed a risk-informed, performance based methodology for disposal criticality analyses. The methodology is documented in the Disposal Criticality Analysis Methodology Topical Report, YMP/TR-004Q (YMP 2000). The methodology includes taking credit for the burnup of irradiated commercial light water reactor fuel in criticality analyses, i.e., burnup credit. This paper summarizes the ongoing and planned future burnup credit activities associated with the methodology. (author)
Burnup credit activities in the United States
International Nuclear Information System (INIS)
This report covers progress in burnup credit activities that have occurred in the United States of America (USA) since the International Atomic Energy Agency's (IAEA's) Advisory Group Meeting (AGM) on Burnup Credit was convened in October 1997. The Proceeding of the AGM were issued in April 1998 (IAEA-TECDOC-1013, April 1998). The three applications of the use of burnup credit that are discussed in this report are spent fuel storage, spent fuel transportation, and spent fuel disposal. (author)
New burnup calculation of TRIGA IPR-R1 reactor
International Nuclear Information System (INIS)
The IPR-R1 TRIGA Mark I research reactor, located at the Nuclear Technology Development Center - CDTN, Belo Horizonte, Brazil, operates since 1960.The reactor is operating for more than fifty years and has a long history of operation. Determining the current composition of the fuel is very important to calculate various parameters. The reactor burnup calculation has been performed before, however, new techniques, methods, software and increase of the processing capacity of the new computers motivates new investigations to be performed. This work presents the evolution of effective multiplication constant and the results of burnup. This new model has a more detailed geometry with the introduction of the new devices, like the control rods and the samarium discs. This increase of materials in the simulation in burnup calculation was very important for results. For these series of simulations a more recently cross section library, ENDF/B-VII, was used. To perform the calculations two Monte Carlo particle transport code were used: Serpent and MCNPX. The results obtained from two codes are presented and compared with previous studies in the literature. (author)
The REBUS experimental programme for burn-up credit
International Nuclear Information System (INIS)
An international programme called REBUS for the investigation of the burn-up credit has been initiated by the Belgian Nuclear Research Centre SCK·CEN and Belgonucleaire with the support of EdF and IRSN from France and VGB, representing German nuclear utilities and NUPEC, representing the Japanese industry. Recently also ORNL from the U.S. jointed the programme. The programme aims to establish a neutronic benchmark for reactor physics codes in order to qualify the codes for calculations of the burn-up credit. The benchmark exercise investigate the following fuel types with associated burn-up: reference fresh 3.3% enriched UO2 fuel, fresh commercial PWR UO2 fuel and irradiated commercial PWR UO2 fuel (54 GWd/tM), fresh PWR MOX fuel and irradiated PWR MOX fuel (20 GWd/tM). The experiments on the three configurations with fresh fuel have been completed. The experiments show a good agreement between calculation and experiments for the different measured parameters: critical water level, reactivity effect of the water level and fission-rate and flux distributions. In 2003 the irradiated BR3 MOX fuel bundle was loaded into the VENUS reactor and the associated experimental programme was carried out. The reactivity measurements in this configuration with irradiated fuel show a good agreement between experimental and preliminary calculated values. (author)
Fuel rod behaviour at high burnup WWER fuel cycles
International Nuclear Information System (INIS)
The modernisation of WWER fuel cycles is carried out on the base of complete modelling and experimental justification of fuel rods up to 70 MWd/kgU. The modelling justification of the reliability of fuel rod and fuel rod with gadolinium is carried out with the use of certified START-3 code. START-3 code has a continuous experimental support. The thermophysical and strength reliability of WWER-440 fuel is justified for fuel rod and pellet burnups 65 MWd/kgU and 74 MWd/U, accordingly. Results of analysis are demonstrated by the example of uranium-gadolinium fuel assemblies of second generation under 5-year cycle with a portion of 6-year assemblies and by the example of successfully completed pilot operation of 5-year cycle fuel assemblies during 6 years at unit 3 of Kolskaja NPP. The thermophysical and strength reliability of WWER-1000 fuel is justified for a fuel rod burnup 66 MWd/kgU by the example of fuel operation under 4-year cycles and 6-year test operation of fuel assemblies at unit 1 of Kalininskaya NPP. By the example of 5-year cycle at Dukovany NPP Unit 2 it was demonstrated that WWER fuel rod of a burnup 58 MWd/kgU ensure reliable operation under load following conditions. The analysis has confirmed sufficient reserves of Russian fuel to implement program of JSC 'TVEL' in order to improve technical and economical parameters of WWER fuel cycles
New burnup calculation of TRIGA IPR-R1 reactor
Energy Technology Data Exchange (ETDEWEB)
Meireles, Sincler P. de; Campolina, Daniel de A.M.; Santos, Andre A. Campagnole dos; Menezes, Maria A.B.C.; Mesquita, Amir Z., E-mail: sinclercdtn@hotmail.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)
2015-07-01
The IPR-R1 TRIGA Mark I research reactor, located at the Nuclear Technology Development Center - CDTN, Belo Horizonte, Brazil, operates since 1960.The reactor is operating for more than fifty years and has a long history of operation. Determining the current composition of the fuel is very important to calculate various parameters. The reactor burnup calculation has been performed before, however, new techniques, methods, software and increase of the processing capacity of the new computers motivates new investigations to be performed. This work presents the evolution of effective multiplication constant and the results of burnup. This new model has a more detailed geometry with the introduction of the new devices, like the control rods and the samarium discs. This increase of materials in the simulation in burnup calculation was very important for results. For these series of simulations a more recently cross section library, ENDF/B-VII, was used. To perform the calculations two Monte Carlo particle transport code were used: Serpent and MCNPX. The results obtained from two codes are presented and compared with previous studies in the literature. (author)
Burnup analysis of the VVER-1000 reactor using thorium-based fuel
Energy Technology Data Exchange (ETDEWEB)
Korkmaz, Mehmet E.; Agar, Osman; Bueyueker, Eylem [Karamanoglu Mehmetbey Univ., Karaman (Turkey). Faculty of Kamil Ozdag Science
2014-12-15
This paper aims to investigate {sup 232}Th/{sup 233}U fuel cycles in a VVER-1000 reactor through calculation by computer. The 3D core geometry of VVER-1000 system was designed using the Serpent Monte Carlo 1.1.19 Code. The Serpent Code using parallel programming interface (Message Passing Interface-MPI), was run on a workstation with 12-core and 48 GB RAM. {sup 232}Th/{sup 235}U/{sup 238}U oxide mixture was considered as fuel in the core, when the mass fraction of {sup 232}Th was increased as 0.05-0.1-0.2-0.3-0.4 respectively, the mass fraction of {sup 238}U equally was decreased. In the system, the calculations were made for 3 000 MW thermal power. For the burnup analyses, the core is assumed to deplete from initial fresh core up to a burnup of 16 MWd/kgU without refuelling considerations. In the burnup calculations, a burnup interval of 360 effective full power days (EFPDs) was defined. According to burnup, the mass changes of the {sup 232}Th, {sup 233}U, {sup 238}U, {sup 237}Np, {sup 239}Pu, {sup 241}Am and {sup 244}Cm were evaluated, and also flux and criticality of the system were calculated in dependence of the burnup rate.
Burnup analysis of the VVER-1000 reactor using thorium-based fuel
International Nuclear Information System (INIS)
This paper aims to investigate 232Th/233U fuel cycles in a VVER-1000 reactor through calculation by computer. The 3D core geometry of VVER-1000 system was designed using the Serpent Monte Carlo 1.1.19 Code. The Serpent Code using parallel programming interface (Message Passing Interface-MPI), was run on a workstation with 12-core and 48 GB RAM. 232Th/235U/238U oxide mixture was considered as fuel in the core, when the mass fraction of 232Th was increased as 0.05-0.1-0.2-0.3-0.4 respectively, the mass fraction of 238U equally was decreased. In the system, the calculations were made for 3 000 MW thermal power. For the burnup analyses, the core is assumed to deplete from initial fresh core up to a burnup of 16 MWd/kgU without refuelling considerations. In the burnup calculations, a burnup interval of 360 effective full power days (EFPDs) was defined. According to burnup, the mass changes of the 232Th, 233U, 238U, 237Np, 239Pu, 241Am and 244Cm were evaluated, and also flux and criticality of the system were calculated in dependence of the burnup rate.
Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
International Nuclear Information System (INIS)
The objective of this topical report is to present to the NRC for review and acceptance a methodology for using burnup credit in the design of criticality control systems for PWR spent fuel transportation packages, while maintaining the criticality safety margins and related requirements of 10 CFR Part 71 and 72. The proposed methodology consists of five major steps as summarized below: (1) Validate a computer code system to calculate isotopic concentrations in SNF created during burnup in the reactor core and subsequent decay. (2) Validate a computer code system to predict the subcritical multiplication factor, keff, of a spent nuclear fuel package. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). and (5) Verify that SNF assemblies meet the package loading criteria and confirm proper fuel assembly selection prior to loading. (This step is required but the details are outside the scope of this topical report.) When reviewed and accepted by the NRC, this topical report will serve as a criterion document for criticality control analysts and will provide steps for the use of actinide-only burnup credit in the design of criticality control systems. The NRC-accepted burnup credit methodology will be used by commercial SNF storage and transportation package designers. Design-specific burnup credit criticality analyses will be defined, developed, and documented in the Safety Analysis Report (SAR) for each specific storage or transportation package that uses burnup credit. These SARs will then be submitted to the NRC for review and approval. This topical report is expected to be referenced in a number of storage and transportation cask applications to be submitted by commercial cask and canister designers to the NRC. Therefore, NRC acceptance of this topical report will result in increased efficiency of the
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages. Revision 2
Energy Technology Data Exchange (ETDEWEB)
None, None
1998-09-01
The objective of this topical report is to present to the NRC for review and acceptance a methodology for using burnup credit in the design of criticality control systems for PWR spent fuel transportation packages, while maintaining the criticality safety margins and related requirements of 10 CFR Part 71 and 72. The proposed methodology consists of five major steps as summarized below: (1) Validate a computer code system to calculate isotopic concentrations in SNF created during burnup in the reactor core and subsequent decay. (2) Validate a computer code system to predict the subcritical multiplication factor, keff, of a spent nuclear fuel package. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). and (5) Verify that SNF assemblies meet the package loading criteria and confirm proper fuel assembly selection prior to loading. (This step is required but the details are outside the scope of this topical report.) When reviewed and accepted by the NRC, this topical report will serve as a criterion document for criticality control analysts and will provide steps for the use of actinide-only burnup credit in the design of criticality control systems. The NRC-accepted burnup credit methodology will be used by commercial SNF storage and transportation package designers. Design-specific burnup credit criticality analyses will be defined, developed, and documented in the Safety Analysis Report (SAR) for each specific storage or transportation package that uses burnup credit. These SARs will then be submitted to the NRC for review and approval. This topical report is expected to be referenced in a number of storage and transportation cask applications to be submitted by commercial cask and canister designers to the NRC. Therefore, NRC acceptance of this topical report will result in increased efficiency of the
Phenomena and Parameters Important to Burnup Credit
International Nuclear Information System (INIS)
Since the mid-1980s, a significant number of studies have been directed at understanding the phenomena and parameters important to implementation of burnup credit in out-of-reactor applications involving pressurized-water-reactor (PWR) spent fuel. The efforts directed at burnup credit involving boiling-water-reactor (BWR) spent fuel have been more limited. This paper reviews the knowledge and experience gained from work performed in the US and other countries in the study of burnup credit. Relevant physics and analysis phenomenon are identified, and an assessment of their importance to burnup credit implementation for transport and dry cask storage is given
Phenomena and parameters important to burnup credit
International Nuclear Information System (INIS)
Since the mid-1980s, a significant number of studies have been directed at understanding the phenomena and parameters important to implementation of burnup credit in out-of-reactor applications involving pressurized-water- reactor (PWR) spent fuel. The efforts directed at burnup credit involving boiling-water-reactor (BWR) spent fuel have been more limited. This paper reviews the knowledge and experience gained from work performed in the United States and other countries in the study of burnup credit. Relevant physics and analysis phenomenon are identified, and an assessment of their importance to burnup credit implementation for transport and dry cask storage is given. (author)
COREBN: A core burn-up calculation module for SRAC2006
International Nuclear Information System (INIS)
COREBN is an auxiliary code of the SRAC system for multi-dimensional core burn-up calculation based on the diffusion theory and interpolation of macroscopic cross-sections tabulated to local parameters such as burn-up degree, moderator temperature and so on. The macroscopic cross-sections are prepared by cell burn-up calculations with the collision probability method of SRAC. SRAC and COREBN have wide applicability for various types of cell and core geometries. They have been used mainly for the purpose of core burn-up management of research reactors in Japan Atomic Energy Agency. The report is a revision of the users manual for the latest version of COREBN served with the SRAC released in 2006. (author)
OREST, LWR Burnup Simulation Using Program HAMMER and ORIGEN
International Nuclear Information System (INIS)
1 - Description of program or function: In OREST, the 1-dimensional lattice code HAMMER and the isotope generation and depletion code ORIGEN are directly coupled for burnup simulation in light-water reactor fuels (GRS recommended). Additionally heavy water and graphite moderated systems can be calculated. New version differs from the previous version in the following features: An 84-group-library LIB84 for up to 200 isotopes is used to update the 3-group -POISON-XS. LIB84 uses the same energy boundaries as THERMOS and HAMLET in . In this way, high flexibility is achieved in very different reactor models. The coupling factor between THERMOS and HAMLET is now directly transferred from HAMMER to THERES and omits the equation 4 (see page 6 of the manual). Sandwich-reactor fuel reactivity and burnup calculations can be started with NGEOM = 1. Thorium graphite reactivity and burnup calculations can be started with NLIBE = 1. High enriched U-235 heavy water moderated reactivity and burnup calculations can be started. HAMLET libraries in for U-235, U-236, U-238, Np-237, Pu-238, Pu-239, Pu-240, Pu-242, Am-241, Am-243 and Zirconium are updated using resonance parameters. NEA-1324/04: A new version of the module hamme97.f has replaced the old one. 2 - Method of solution: For the user-defined irradiation history, an input data processor generates program loops over small burnup steps for the main codes HAMMER and ORIGEN. The user defined assembly description is transformed to an equivalent HAMMER fuel cell. HAMMER solves the integral neutron transport equation in a four-region cylindrical or sandwiched model with reflecting boundaries and runs with fuel power calculated rod temperatures. ORIGEN runs with HAMMER-calculated cross sections and neutron spectra and calculates isotope concentrations during burnup by solving the buildup-, depletion- and decay-chain equations. An output data processor samples the outputs of the program modules and generates tabular works for the
Burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1
Directory of Open Access Journals (Sweden)
Muhammad Atta
2011-01-01
Full Text Available The burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1, reference operating core, has been carried out utilizing standard computer codes WIMS/D4, CITATION, and RELAP5/MOD3.4. Reactor codes WIMS/D4 and CITATION have been used for the calculations of neutronic parameters including peaking factors and power profiles at different burn-up considering a xenon free core and also the equilibrium xenon values. RELAP5/MOD3.4 code was utilized for the determination of peak fuel centerline, clad and coolant temperatures to ensure the safety of the reactor throughout the cycle. The calculations reveal that the reactor is safe and no nucleate boiling will commence at any part of the core throughout the cycle and that the safety margin increases with burnup as peaking factors decrease.
Burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1
International Nuclear Information System (INIS)
The burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1, reference operating core, has been carried out utilizing standard computer codes WIMS/D4, CITATION, and RELAP5/MOD3.4. Reactor codes WIMS/D4 and CITATION have been used for the calculations of neutronic parameters including peaking factors and power profiles at different burn-up considering a xenon free core and also the equilibrium xenon values. RELAP5/MOD3.4 code was utilized for the determination of peak fuel centerline, clad and coolant temperatures to ensure the safety of the reactor throughout the cycle. The calculations reveal that the reactor is safe and no nucleate boiling will commence at any part of the core throughout the cycle and that the safety margin increases with burnup as peaking factors decrease. (author)
International Nuclear Information System (INIS)
For adopting burnup credit in transport or storage of spent fuel (SF), development of a reliable burnup calculation code is crucial. For this purpose, data of Post Irradiation Examination (PIE) have been extensively analyzed to evaluate accuracy of burnup calculation codes for a 14*14 or 15*15 PWR fuel assembly. This study shows results of analysis of this latest PIE with SWAT and ORIGEN2.1. SWAT is an integrated burnup code system for a 17*17 PWR fuel assembly that has been developed by Tohoku University and JAERI. The results show that SWAT can more precisely predict nuclide composition of latest PWR assembly than ORIGEN2.1. (O.M.)
Roman, Steven
2008-01-01
To achieve the maximum control and flexibility from Microsoft® Excel often requires careful custom programming using the VBA (Visual Basic for Applications) language. Writing Excel Macros with VBA, 2nd Edition offers a solid introduction to writing VBA macros and programs, and will show you how to get more power at the programming level: focusing on programming languages, the Visual Basic Editor, handling code, and the Excel object model.
Simulation of the behaviour of nuclear fuel under high burnup conditions
International Nuclear Information System (INIS)
Highlights: • Increasing the time of nuclear fuel into reactor generates high burnup structure. • We analyze model to simulate high burnup scenarios for UO2 nuclear fuel. • We include these models in the DIONISIO 2.0 code. • Tests of our models are in very good agreement with experimental data. • We extend the range of predictability of our code up to 60 MWd/KgU average. - Abstract: In this paper we summarize all the models included in the latest version of the DIONISIO code related to the high burnup scenario. Due to the extension of nuclear fuels permanence under irradiation, physical and chemical modifications are developed in the fuel material, especially in the external corona of the pellet. The codes devoted to simulation of the rod behaviour under irradiation need to introduce modifications and new models in order to describe those phenomena and be capable to predict the behaviour in all the range of a general pressurized water reactor. A complex group of subroutines has been included in the code in order to predict the radial distribution of power density, burnup, concentration of diverse nuclides and porosity within the pellet. The behaviour of gadolinium as burnable poison also is modelled into the code. The results of some of the simulations performed with DIONISIO are presented to show the good agreement with the data selected for the FUMEX I/II/III exercises, compiled in the NEA data bank
International Nuclear Information System (INIS)
Syncrude Canada Ltd., operator of the oil sands mine and processing plant near Fort McMurray, Alberta, produces 11% of Canada's crude oil and is the country's largest private-sector employer of native Canadians. Syncrude has the goal of employing about 10% native Canadians, which is about the percentage of natives in the regional population. Examples are presented of successful native employment and entrepreneurship at Syncrude. Doreen Janvier, once employed at Syncrude's mine wash bays, was challenged to form her own company to contract out labor services. Her company, DJM Enterprises, now has a 2-year contract to operate three highly sophisticated wash bays used to clean mining equipment, and is looking to bid on other labor contracts. Mabel Laviolette serves as liaison between the oil containment and recovery team, who recover oil skimmed off Syncrude's tailings basin, and the area manager. The team approach and the seasonal nature of the employment fit in well with native cultural patterns. The excellence of native teamwork is also illustrated in the mine rescue team, one unit of which is entirely native Canadian. Part of Syncrude's aboriginal policy is to encourage development of aboriginal enterprises, such as native-owned Clearwater Welding and Fabricating Ltd., which has held welding and fabricating contracts with most major companies in the region and is a major supplier of skilled tradesmen to Syncrude. Syncrude also provides employment and training, encourages natives to continue their education, and promotes local community development. 4 figs
Tsoupikova, Daria
2007-02-01
This paper describes the research and development of a virtual reality visualization project "Passing excellence" about the world famous architectural ensemble "Kizhi". The Kizhi Pogost is located on an island in Lake Onega in northern Karelia in Russia. It is an authentic museum of an ancient wood building tradition which presents a unique artistic achievement. This ensemble preserves a concentration of masterpieces of the Russian heritage and is included in the List of Most Endangered Sites of the World Monuments Watch protected by World Heritage List of UNESCO. The project strives to create a unique virtual observation of the dynamics of the architectural changes of the museum area beginning from the 15th Century up to the 21st Century. The visualization is being created to restore the original architecture of Kizhi island based on the detailed photographs, architectural and geometric measurements, textural data, video surveys and resources from the Kizhi State Open-Air Museum archives. The project is being developed using Electro, an application development environment for the tiled display high-resolution graphics visualization system and can be shown on the virtual reality systems such as the GeoWall TM and the C-Wall.
Plutonium and Minor Actinides Recycling in Standard BWR using Equilibrium Burnup Model
Directory of Open Access Journals (Sweden)
Abdul Waris
2008-03-01
Full Text Available Plutonium (Pu and minor actinides (MA recycling in standard BWR with equilibrium burnup model has been studied. We considered the equilibrium burnup model as a simple time independent burnup method, which can manage all possible produced nuclides in any nuclear system. The equilibrium burnup code was bundled with a SRAC cell-calculation code to become a coupled cell-burnup calculation code system. The results show that the uranium enrichment for the criticality of the reactor, the amount of loaded fuel and the required natural uranium supply per year decrease for the Pu recycling and even much lower for the Pu & MA recycling case compared to those of the standard once-through BWR case. The neutron spectra become harder with the increasing number of recycled heavy nuclides in the reactor core. The total fissile rises from 4.77% of the total nuclides number density in the reactor core for the standard once-through BWR case to 6.64% and 6.72% for the Plutonium recycling case and the Pu & MA recycling case, respectively. The two later data may become the main basis why the required uranium enrichment declines and consequently diminishes the annual loaded fuel and the required natural uranium supply. All these facts demonstrate the advantage of plutonium and minor actinides recycling in BWR.
Results of the isotopic concentrations of VVER calculational burnup credit benchmark no. 2(cb2
International Nuclear Information System (INIS)
The characterization of the irradiated fuel materials is becoming more important with the Increasing use of nuclear energy in the world. The purpose of this document is to present the results of the nuclide concentrations calculated Using Calculation VVER Burnup Credit Benchmark No. 2(CB2). The calculations were Performed in The Nuclear Technology Center of Cuba. The CB2 benchmark specification as the second phase of the VVER burnup credit benchmark is Summarized in [1]. The CB2 benchmark focused on VVER burnup credit study proposed on the 97' AER Symposium [2]. It should provide a comparison of the ability of various code systems And data libraries to predict VVER-440 spent fuel isotopes (isotopic concentrations) using Depletion analysis. This phase of the benchmark calculations is still in progress. CB2 should be finished by summer 1999 and evaluated results could be presented on the next AER Symposium. The obtained results are isotopic concentrations of spent fuel as a function of the burnup and Cooling time. The depletion point ORIGEN2[3] code was used for the calculation of the spent Fuel concentration. The depletion analysis was performed using the VVER-440 irradiated fuel assemblies with in-core Irradiation time of 3 years, burnup of the 30000 mwd/TU, and an after discharge cooling Time of 0 and 1 year. This work also comprises the results obtained by other codes[4].
A simplified burnup calculation strategy with refueling in static molten salt reactor
International Nuclear Information System (INIS)
Molten Salt Reactors, by nature can be refuelled and reprocessed online. Thus, a simulation methodology has to be developed which can consider online refueling and reprocessing aspect of the reactor. To cater such needs a simplified burnup calculation strategy to account for refueling and removal of molten salt fuel at any desired burnup has been identified in static molten salt reactor in batch mode as a first step of way forward. The features of in-house code ITRAN has been explored for such calculations. The code also enables us to estimate the reactivity introduced in the system due to removal of any number of considered nuclides at any burnup. The effect of refueling fresh fuel and removal of burned fuel has been studied in batch mode with in-house code ITRAN. The effect of refueling and burnup on change in reactivity per day has been analyzed. The analysis of removal of 233Pa at a particular burnup has been carried out. The similar analysis has been performed for some other nuclides also. (author)
Issues for effective implementation of burnup credit
International Nuclear Information System (INIS)
In the United States, burnup credit has been used in the criticality safety evaluation for storage pools at pressurized water reactors (PWRs) and considerable work has been performed to lay the foundation for use of burnup credit in dry storage and transport cask applications and permanent disposal applications. Many of the technical issues related to the basic physics phenomena and parameters of importance are similar in each of these applications. However, the nuclear fuel cycle in the United States has never been fully integrated and the implementation of burnup credit to each of these applications is dependent somewhat on the specific safety bases developed over the history of each operational area. This paper will briefly review the implementation status of burnup credit for each application area and explore some of the remaining issues associated with effective implementation of burnup credit. (author)
MTR core loading pattern optimization using burnup dependent group constants
Directory of Open Access Journals (Sweden)
Iqbal Masood
2008-01-01
Full Text Available A diffusion theory based MTR fuel management methodology has been developed for finding superior core loading patterns at any stage for MTR systems, keeping track of burnup of individual fuel assemblies throughout their history. It is based on using burnup dependent group constants obtained by the WIMS-D/4 computer code for standard fuel elements and control fuel elements. This methodology has been implemented in a computer program named BFMTR, which carries out detailed five group diffusion theory calculations using the CITATION code as a subroutine. The core-wide spatial flux and power profiles thus obtained are used for calculating the peak-to-average power and flux-ratios along with the available excess reactivity of the system. The fuel manager can use the BFMTR code for loading pattern optimization for maximizing the excess reactivity, keeping the peak-to-average power as well as flux-ratio within constraints. The results obtained by the BFMTR code have been found to be in good agreement with the corresponding experimental values for the equilibrium core of the Pakistan Research Reactor-1.
High burnup fuel development program in Japan
International Nuclear Information System (INIS)
A step wise burnup extension program has been progressing in Japan to reduce the LWR fuel cycle cost. At present, the maximum assembly burnup limit of BWR 8 Χ 8 type fuel (B. Step II fuel) is 50GWd/t and a limited numbers of 9 Χ 9 type fuel (B. Step III fuel) with 55GWd/t maximum assembly burnup has been licensed by regulatory agencies recently. Though present maximum assembly burnup limit for PWR fuel is 48GWd/t (P. Step I fuel), the licensing work has been progressing for irradiation testing on a limited number of fuel assemblies with extended burnup of up to 55GWd/t (p. Step II fuel) Design of high burnup fuel and fabrication test are carried out by vendors, and subsequent irradiation test of fuel rods is conducted jointly by utilities and vendors to prepare for licensing. It is usual to make an irradiation test for vectarion, using lead use assemblies by government to confirm fuel integrity and reliability and win the public confidence. Nuclear Power Engineering Corporation (NUPE C) is responsible for verification test. The fuel are subjected to post irradiation examination (PIE) and no unfavorable indications of fuel behavior have found both in NUPE C verification test and joint irradiation test by utilities and vendors. Burnup extension is an urgent task for LWR fuel in Japan in order to establish the domestic fuel cycle. It is conducted in joint efforts of industries, government and institutes. However, watching a situation of burnup extension in the world, we are not going ahead of other countries in the achievement of burnup extension. It is due to a conservative policy in the nuclear safety of the country. This is the reason why the burnup extension program in Japan is progressing 'slow and steady' As for the data obtained, no unfavorable indications of fuel behavior have found both in NUPE C verification test and joint irradiation test by utilities and vendors until now
The implementation of burnup credit in VVER-440 spent fuel
International Nuclear Information System (INIS)
The countries using Russian reactors VVER-440 cooperate in reactor physics in Atomic Energy Research (AER). One of topic areas is 'Physical Problems of Spent Fuel, Radwaste and Decommissioning' (Working Group E). In this article, in the first part is an overview about our activity for numerical and experimental verification of codes which participants use for calculation of criticality, isotopic concentration, activity, neutron and gamma sources and shielding is shown. The set of numerical benchmarks (CB1, CB2, CB3 and CB4) is very similar (the same idea, the VVER-440) to the OECD/NEA/NSC Burnup Credit Criticality Benchmarks, Phases 1 and 2. In the second part, verification of the SCALE 4.4 system (only criticality and nuclide concentrations) for VVER-440 fuel is shown. In the third part, dependence of criticality on burnup (only actinides and actinides + fission products) for transport cask C30 with VVER-440 fuel by optimal moderation is shown. In the last part, current status in implementation burnup credit in Slovakia is shown. (author)
Value of 236U to actinide-only burnup credit
International Nuclear Information System (INIS)
The US Department of Energy (DOE) submitted a topical report to the US Nuclear Regulatory Commission (NRC) in May 1995 in order to gain approval of a method for criticality analysis of transport packages that takes account for the change in actinide isotopes with burnup [pressurized water reactors (PWRs) only]. Historically, the NRC has conservatively assumed that the fuel was in its initial conditions (without any burnable absorbers). In order to permit credit for the changes in actinide content, the NRC has required validation of the depletion and criticality codes for spent nuclear fuel, justification of conservative depletion modeling, and finally confirmation measurements before loading. The NRC requested additional information on March 22, 1996. The DOE responded by a revision of the topical report in May 1997. The NRC again responded with another set of requests of additional information in April 1998. In that set of questions, the NRC challenged the use of 236U in burnup credit. Uranium-236 is not found in any significant amount in any available critical experiments. The authors explore the value of 236U to actinide-only burnup credit
BISON, 1-D Burnup and Transport in Slab, Cylindrical, Spherical Geometry
International Nuclear Information System (INIS)
1 - Description of problem or function: BISON-1.5 solves the one- dimensional Boltzmann transport equation for neutron and gamma-rays and transmutation equations for fuel nuclides. 2 - Method of solution: In the transport calculation stage the one- dimensional Boltzmann transport equation is solved by the discrete ordinates method. In the burnup calculation stage, transmutation equations for fuel nuclides are solved by Bateman's method. The neutron flux obtained in the transport calculation stage is used to determine the transmutation rates in the burnup calculation stage. Both stages are repeated in tandem till the end of the burnup cycle. 3 - Restrictions on the complexity of the problem: A 42-group neutron and 21-group gamma-ray cross section library is prepared in the code package. Core storage for array variables is dynamically allocated by the code, so there are no restrictions on the size of each array
International Nuclear Information System (INIS)
The impact of radial and axial burnup profile on the criticality of WWER-440 spent fuel cask is presented in the paper. The calculations are performed based on two AER Benchmark problems for WWER-440 irradiated fuel assembly. The radial zonewise dependent spent fuel inventory has been calculated by the NESSEL - NUKO code system. The axial dependent isotope concentrations have been determined by the modular code system SCALE4.4. For criticality calculations the SCALE4.4 has been applied. Calculations have been carried out for cask with 30 WWER-440 fuel assemblies with initial enrichment 3.6% of 235U and burnup up to 40 MWd/kgU. The influence of radial and axial burnup credit on the cask criticality has been evaluated
Recommendations for Addressing Axial Burnup in the PWR Burnup Credit Analyses
Energy Technology Data Exchange (ETDEWEB)
Wagner, J.C.
2002-10-23
This report presents studies performed to support the development of a technically justifiable approach for addressing the axial-burnup distribution in pressurized-water reactor (PWR) burnup-credit criticality safety analyses. The effect of the axial-burnup distribution on reactivity and proposed approaches for addressing the axial-burnup distribution are briefly reviewed. A publicly available database of profiles is examined in detail to identify profiles that maximize the neutron multiplication factor, k{sub eff}, assess its adequacy for PWR burnup credit analyses, and investigate the existence of trends with fuel type and/or reactor operations. A statistical evaluation of the k{sub eff} values associated with the profiles in the axial-burnup-profile database was performed, and the most reactive (bounding) profiles were identified as statistical outliers. The impact of these bounding profiles on k{sub eff} is quantified for a high-density burnup credit cask. Analyses are also presented to quantify the potential reactivity consequence of loading assemblies with axial-burnup profiles that are not bounded by the database. The report concludes with a discussion on the issues for consideration and recommendations for addressing axial burnup in criticality safety analyses using burnup credit for dry cask storage and transportation.
Energy Technology Data Exchange (ETDEWEB)
Yun, Hyung Ju; Kim, Do Yeon; Park, Kwang Heon; Hong, Ser Gi [Dept. of Nuclear Engineering, Kyung Hee University, Seoul (Korea, Republic of)
2016-06-15
Nuclear criticality safety analyses (NCSAs) considering burnup credit were performed for the GBC-32 cask. The used nuclear fuel assemblies (UNFAs) discharged from Hanbit Nuclear Power Plant Unit 3 Cycle 6 were loaded into the cask. Their axial burnup distributions and average discharge burnups were evaluated using the DeCART and Multi-purpose Analyzer for Static and Transient Effects of Reactors (MASTER) codes, and NCSAs were performed using SCALE 6.1/STandardized Analysis of Reactivity for Burnup Credit using SCALE (STARBUCS) and Monte Carlo N-Particle transport code, version 6 (MCNP 6). The axial burnup distributions were determined for 20 UNFAs with various initial enrichments and burnups, which were applied to the criticality analysis for the cask system. The UNFAs for 20- and 30-year cooling times were assumed to be stored in the cask. The criticality analyses indicated that keff values for UNFAs with nonuniform axial burnup distributions were larger than those with a uniform distribution, that is, the end effects were positive but much smaller than those with the reference distribution. The axial burnup distributions for 20 UNFAs had shapes that were more symmetrical with a less steep gradient in the upper region than the reference ones of the United States Department of Energy. These differences in the axial burnup distributions resulted in a significant reduction in end effects compared with the reference.
International Nuclear Information System (INIS)
The report describes the final results of the Phase IIIB Benchmark conducted by the Expert Group on Burnup Credit Criticality Safety under the auspices of the Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD). The Benchmark was intended to compare the predictability of current computer code and data library combinations for the atomic number densities of an irradiated PWR fuel assembly model. The fuel assembly was irradiated under specific power of 25.6 MW/tHM up to 40 GWd/tHM and cooled for five years. The void fraction was assumed to be uniform throughout the channel box and constant, at 0, 40 and 70%, during burnup. In total, 16 results were submitted from 13 institutes of 7 countries. The calculated atomic number densities of 12 actinides and 20 fission product nuclides were found to be for the most part within a range of ±10% relative to the average, although some results, esp. 155Eu and gadolinium isotopes, exceeded the band, which will require further investigation. Pin-wise burnup results agreed well among the participants. The results in the infinite neutron multiplication factor k∞ also accorded well with each other for void fractions of 0 and 40%; however some results deviated from the averaged value noticeably for the void fraction of 70%. (author)
Energy Technology Data Exchange (ETDEWEB)
Okuno, Hiroshi; Naito, Yoshitaka; Suyama, Kenya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
2002-02-01
The report describes the final results of the Phase IIIB Benchmark conducted by the Expert Group on Burnup Credit Criticality Safety under the auspices of the Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD). The Benchmark was intended to compare the predictability of current computer code and data library combinations for the atomic number densities of an irradiated PWR fuel assembly model. The fuel assembly was irradiated under specific power of 25.6 MW/tHM up to 40 GWd/tHM and cooled for five years. The void fraction was assumed to be uniform throughout the channel box and constant, at 0, 40 and 70%, during burnup. In total, 16 results were submitted from 13 institutes of 7 countries. The calculated atomic number densities of 12 actinides and 20 fission product nuclides were found to be for the most part within a range of {+-}10% relative to the average, although some results, esp. {sup 155}Eu and gadolinium isotopes, exceeded the band, which will require further investigation. Pin-wise burnup results agreed well among the participants. The results in the infinite neutron multiplication factor k{sub {infinity}} also accorded well with each other for void fractions of 0 and 40%; however some results deviated from the averaged value noticeably for the void fraction of 70%. (author)
Technical Data to Justify Full Burnup Credit in Criticality Safety Licensing Analysis
Energy Technology Data Exchange (ETDEWEB)
Enercon Services, Inc.
2011-03-14
ENERCON's understanding of the difficult issues related to obtaining and analyzing additional cross section test data to support Full Burnup Credit. A PIRT (Phenomena Identification and Ranking Table) analysis was performed by ENERCON to evaluate the costs and benefits of acquiring different types of nuclear data in support of Full Burnup Credit. A PIRT exercise is a formal expert elicitation process with the final output being the ranking tables. The PIRT analysis (Table 7-4: Results of PIRT Evaluation) showed that the acquisition of additional Actinide-Only experimental data, although beneficial, was associated with high cost and is not necessarily needed. The conclusion was that the existing Radiochemical Assay (RCA) data plus the French Haut Taux de Combustion (HTC)2 and handbook Laboratory Critical Experiment (LCE) data provide adequate benchmark validation for Actinide-Only Burnup Credit. The PIRT analysis indicated that the costs and schedule to obtain sufficient additional experimental data to support the addition of 16 fission products to Actinide-Only Burnup Credit to produce Full Burnup Credit are quite substantial. ENERCON estimates the cost to be $50M to $100M with a schedule of five or more years. The PIRT analysis highlights another option for fission product burnup credit, which is the application of computer-based uncertainty analyses (S/U - Sensitivity/Uncertainty methodologies), confirmed by the limited experimental data that is already available. S/U analyses essentially transform cross section uncertainty information contained in the cross section libraries into a reactivity bias and uncertainty. Recent work by ORNL and EPRI has shown that a methodology to support Full Burnup Credit is possible using a combination of traditional RCA and LCE validation plus S/U validation for fission product isotopics and cross sections. Further, the most recent cross section data (ENDF/B-VII) can be incorporated into the burnup credit codes at a reasonable cost
Technical Data to Justify Full Burnup Credit in Criticality Safety Licensing Analysis
International Nuclear Information System (INIS)
ENERCON's understanding of the difficult issues related to obtaining and analyzing additional cross section test data to support Full Burnup Credit. A PIRT (Phenomena Identification and Ranking Table) analysis was performed by ENERCON to evaluate the costs and benefits of acquiring different types of nuclear data in support of Full Burnup Credit. A PIRT exercise is a formal expert elicitation process with the final output being the ranking tables. The PIRT analysis (Table 7-4: Results of PIRT Evaluation) showed that the acquisition of additional Actinide-Only experimental data, although beneficial, was associated with high cost and is not necessarily needed. The conclusion was that the existing Radiochemical Assay (RCA) data plus the French Haut Taux de Combustion (HTC)2 and handbook Laboratory Critical Experiment (LCE) data provide adequate benchmark validation for Actinide-Only Burnup Credit. The PIRT analysis indicated that the costs and schedule to obtain sufficient additional experimental data to support the addition of 16 fission products to Actinide-Only Burnup Credit to produce Full Burnup Credit are quite substantial. ENERCON estimates the cost to be $50M to $100M with a schedule of five or more years. The PIRT analysis highlights another option for fission product burnup credit, which is the application of computer-based uncertainty analyses (S/U - Sensitivity/Uncertainty methodologies), confirmed by the limited experimental data that is already available. S/U analyses essentially transform cross section uncertainty information contained in the cross section libraries into a reactivity bias and uncertainty. Recent work by ORNL and EPRI has shown that a methodology to support Full Burnup Credit is possible using a combination of traditional RCA and LCE validation plus S/U validation for fission product isotopics and cross sections. Further, the most recent cross section data (ENDF/B-VII) can be incorporated into the burnup credit codes at a reasonable cost
The Effect of Pitch, Burnup, and Absorbers on a TRIGA Spent-Fuel Pool Criticality Safety
International Nuclear Information System (INIS)
It has been shown that supercriticality might occur for some postulated accident conditions at the TRIGA spent-fuel pool. However, the effect of burnup was not accounted for in previous studies. In this work, the combined effect of fuel burnup, pitch among fuel elements, and number of uniformly mixed absorber rods for a square arrangement on the spent-fuel pool keff is investigated.The Monte Carlo computer code MCNP4B with the ENDF-B/VI library and detailed three dimensional geometry was used. The WIMS-D code was used to model the isotopic composition of the standard TRIGA and FLIP fuel for 5, 10, 20 and 30% burnup level and 2- and 4-yr cooling time.The results show that out of the three studied effects, pitch from contact (3.75 cm) up to rack design pitch (8 cm), number of absorbers from zero to eight, and burnup up to 30%, the pitch has the greatest influence on the multiplication factor keff. In the interval in which the pitch was changed, keff decreased for up to ∼0.4 for standard and ∼0.3 for FLIP fuel. The number of absorber rods affects the multiplication factor much less. This effect is bigger for more compact arrangements, e.g., for contact of standard fuel elements with eight absorber rods among them, keff values are smaller for ∼0.2 (∼0.1 for FLIP) than for arrangements without absorber rods almost regardless of the burnup. The effect of burnup is the smallest. For standard fuel elements, it is ∼0.1 for almost all pitches and numbers of absorbers. For FLIP fuel, it is smaller for a factor of 3, but increases with the burnup for compact arrangements. Cooling time of fuel has just a minor effect on the keff of spent-fuel pool and can be neglected in spent-fuel pool design
Non destructive assay of nuclear LEU spent fuels for burnup credit application
International Nuclear Information System (INIS)
Criticality safety analysis devoted to spent fuel storage and transportation has to be conservative in order to be sure no accident will ever happen. In the spent fuel storage field, the assumption of freshness has been used to achieve the conservative aspect of criticality safety procedures. Nevertheless, after being irradiated in a reactor core, the fuel elements have obviously lost part of their original reactivity. The concept of taking into account this reactivity loss in criticality safety analysis is known as Burnup credit. To be used, Burnup credit involves obtaining evidence of the reactivity loss with a Burnup measurement. Many non destructive assays (NDA) based on neutron as well as on gamma ray emissions are devoted to spent fuel characterization. Heavy nuclei that compose the fuels are modified during irradiation and cooling. Some of them emit neutrons spontaneously and the link to Burnup is a power link. As a result, burn-up determination with passive neutron measurement is extremely accurate. Some gamma emitters also have interesting properties in order to characterize spent fuels but the convenience of the gamma spectrometric methods is very dependent on characteristics of spent fuel. In addition, contrary to the neutron emission, the gamma signal is mostly representative of the peripheral rods of the fuels. Two devices based on neutron methods but combining different NDA methods which have been studied in the past are described in detail: 1. The PYTHON device is a combination of a passive neutron measurement, a collimated total gamma measurement, and an online depletion code. This device, which has been used in several Nuclear Power Plants in western Europe, gives the average Burnup within a 5% uncertainty and also the extremity Burnup, 2. The NAJA device is an automatic device that involves three nuclear methods and an online depletion code. It is designed to cover the whole fuel assembly panel (Active Neutron Interrogation, Passive Neutron
Summary of high burnup fuel issues and NRC`s plan of action
Energy Technology Data Exchange (ETDEWEB)
Meyer, R.O.
1997-01-01
For the past two years the Office of Nuclear Regulatory Research has concentrated mostly on the so-called reactivity-initiated accidents -- the RIAs -- in this session of the Water Reactor Safety Information Meeting, but this year there is a more varied agenda. RIAs are, of course, not the only events of interest for reactor safety that are affected by extended burnup operation. Their has now been enough time to consider a range of technical issues that arise at high burnup, and a list of such issues being addressed in their research program is given here. (1) High burnup capability of the steady-state code (FRAPCON) used for licensing audit calculations. (2) General capability (including high burnup) of the transient code (FRAPTRAN) used for special studies. (3) Adequacy at high burnup of fuel damage criteria used in regulation for reactivity accidents. (4) Adequacy at high burnup of models and fuel related criteria used in regulation for loss-of-coolant accidents (LOCAs). (5) Effect of high burnup on fuel system damage during normal operation, including control rod insertion problems. A distinction is made between technical issues, which may or may not have direct licensing impacts, and licensing issues. The RIAs became a licensing issue when the French test in CABRI showed that cladding failures could occur at fuel enthalpies much lower than a value currently used in licensing. Fuel assembly distortion became a licensing issue when control rod insertion was affected in some operating plants. In this presentation, these technical issues will be described and the NRC`s plan of action to address them will be discussed.
The Design Method for the ATR High Burnup MOX Fuel
International Nuclear Information System (INIS)
The Power Reactor and Nuclear Fuel Development Corporation (PNC) has developed the advanced thermal reactor (ATR). PNC is demonstrating MOX fuel utilization in a prototype of ATR, Fugen (165 MWe), in which 638 MOX fuel assemblies have been loaded without a failure since 1979. PNC is developing the high burn-up MOX fuel for the ATR to contribute to MOX fuels for thermal reactors. The statistical design evaluation method that included the MOX fuel rod performance evaluation code 'FEMAXI-ATR' was developed for the ATR high bum-up MOX fuel rod; it was verified that the integrity of the fuel could be maintained over the whole irradiation period
Development of a Burnup Module DECBURN Based on the Krylov Subspace Method
Energy Technology Data Exchange (ETDEWEB)
Cho, J. Y.; Kim, K. S.; Shim, H. J.; Song, J. S
2008-05-15
This report is to develop a burnup module DECBURN that is essential for the reactor analysis and the assembly homogenization codes to trace the fuel composition change during the core burnup. The developed burnup module solves the burnup equation by the matrix exponential method based on the Krylov Subspace method. The final solution of the matrix exponential is obtained by the matrix scaling and squaring method. To develop DECBURN module, this report includes the followings as: (1) Krylov Subspace Method for Burnup Equation, (2) Manufacturing of the DECBURN module, (3) Library Structure Setup and Library Manufacturing, (4) Examination of the DECBURN module, (5) Implementation to the DeCART code and Verification. DECBURN library includes the decay constants, one-group cross section and the fission yields. Examination of the DECBURN module is performed by manufacturing a driver program, and the results of the DECBURN module is compared with those of the ORIGEN program. Also, the implemented DECBURN module to the DeCART code is applied to the LWR depletion benchmark and a OPR-1000 pin cell problem, and the solutions are compared with the HELIOS code to verify the computational soundness and accuracy. In this process, the criticality calculation method and the predictor-corrector scheme are introduced to the DeCART code for a function of the homogenization code. The examination by a driver program shows that the DECBURN module produces exactly the same solution with the ORIGEN program. DeCART code that equips the DECBURN module produces a compatible solution to the other codes for the LWR depletion benchmark. Also the multiplication factors of the DeCART code for the OPR-1000 pin cell problem agree to the HELIOS code within 100 pcm over the whole burnup steps. The multiplication factors with the criticality calculation are also compatible with the HELIOS code. These results mean that the developed DECBURN module works soundly and produces an accurate solution
Development of a Burnup Module DECBURN Based on the Krylov Subspace Method
International Nuclear Information System (INIS)
This report is to develop a burnup module DECBURN that is essential for the reactor analysis and the assembly homogenization codes to trace the fuel composition change during the core burnup. The developed burnup module solves the burnup equation by the matrix exponential method based on the Krylov Subspace method. The final solution of the matrix exponential is obtained by the matrix scaling and squaring method. To develop DECBURN module, this report includes the followings as: (1) Krylov Subspace Method for Burnup Equation, (2) Manufacturing of the DECBURN module, (3) Library Structure Setup and Library Manufacturing, (4) Examination of the DECBURN module, (5) Implementation to the DeCART code and Verification. DECBURN library includes the decay constants, one-group cross section and the fission yields. Examination of the DECBURN module is performed by manufacturing a driver program, and the results of the DECBURN module is compared with those of the ORIGEN program. Also, the implemented DECBURN module to the DeCART code is applied to the LWR depletion benchmark and a OPR-1000 pin cell problem, and the solutions are compared with the HELIOS code to verify the computational soundness and accuracy. In this process, the criticality calculation method and the predictor-corrector scheme are introduced to the DeCART code for a function of the homogenization code. The examination by a driver program shows that the DECBURN module produces exactly the same solution with the ORIGEN program. DeCART code that equips the DECBURN module produces a compatible solution to the other codes for the LWR depletion benchmark. Also the multiplication factors of the DeCART code for the OPR-1000 pin cell problem agree to the HELIOS code within 100 pcm over the whole burnup steps. The multiplication factors with the criticality calculation are also compatible with the HELIOS code. These results mean that the developed DECBURN module works soundly and produces an accurate solution
Energy Technology Data Exchange (ETDEWEB)
Lanning, D.D.; Beyer, C.E.; Painter, C.L.
1997-12-01
This volume describes the fuel rod material and performance models that were updated for the FRAPCON-3 steady-state fuel rod performance code. The property and performance models were changed to account for behavior at extended burnup levels up to 65 Gwd/MTU. The property and performance models updated were the fission gas release, fuel thermal conductivity, fuel swelling, fuel relocation, radial power distribution, solid-solid contact gap conductance, cladding corrosion and hydriding, cladding mechanical properties, and cladding axial growth. Each updated property and model was compared to well characterized data up to high burnup levels. The installation of these properties and models in the FRAPCON-3 code along with input instructions are provided in Volume 2 of this report and Volume 3 provides a code assessment based on comparison to integral performance data. The updated FRAPCON-3 code is intended to replace the earlier codes FRAPCON-2 and GAPCON-THERMAL-2. 94 refs., 61 figs., 9 tabs.
International Nuclear Information System (INIS)
This volume describes the fuel rod material and performance models that were updated for the FRAPCON-3 steady-state fuel rod performance code. The property and performance models were changed to account for behavior at extended burnup levels up to 65 Gwd/MTU. The property and performance models updated were the fission gas release, fuel thermal conductivity, fuel swelling, fuel relocation, radial power distribution, solid-solid contact gap conductance, cladding corrosion and hydriding, cladding mechanical properties, and cladding axial growth. Each updated property and model was compared to well characterized data up to high burnup levels. The installation of these properties and models in the FRAPCON-3 code along with input instructions are provided in Volume 2 of this report and Volume 3 provides a code assessment based on comparison to integral performance data. The updated FRAPCON-3 code is intended to replace the earlier codes FRAPCON-2 and GAPCON-THERMAL-2. 94 refs., 61 figs., 9 tabs
Burnup credit issues in transportation and storage
International Nuclear Information System (INIS)
Reliance on the reduced reactivity of spent fuel for criticality control during transportation and storage is referred to as burnup credit. This concept has attracted international interest and is being actively pursued in the United States in the development of a new generation of transport casks. An overview of the US experience in developing a methodology to implement burnup credit in an integrated approach to transport cask design is presented in this paper. Specifically, technical issues related to the analysis, validation and implementation of burnup credit are identified and discussed
Burnup credit issues in transportation and storage
International Nuclear Information System (INIS)
Reliance on the reduced reactivity of spent fuel for criticality control during transportation and storage is referred to as burnup credit. This concept has attracted international interest and is being actively pursued in the United States in the development of a new generation of transport casks. An overview of the U.S. experience in developing a methodology to implement burnup credit in an integrated approach to transport cask design is presented in this paper. Specifically, technical issues related to the analysis, validation and implementation of burnup credit are identified and discussed. (author)
Kinetic parameter calculation as function of burn-up of candu reactor
International Nuclear Information System (INIS)
Kinetic parameter calculation as function of burn-up of candu reactor. Kinetic marameter calculation as function of burp-up of CANDU reactor with Canflex fuel type-CANDU has been done. This type of fuel is currently being develop, so kinetic parameter such as effective delay neutron fraction (.......), delay neutron decay constant ( .... ) and prompt neutron generation time ( ...... ) are very important for analysis of reactor operation safety. WIMS-CRNL code was used to generate macroscopic cross section and reaction rate based on transport theory. Fast and thermal neutron velocity and macroscopic cross section fission product of the unit cell were determined by KINETIC Code. The result of calculation showed that the value of effective delay neutron fraction was 7,785616 x 10-3 at the beginning of operation at burn-up of 0 MWD/T and after the reactor operated at burn-up of 7,2231 x 10-3 MWD/T was 4,962766 x 10-3, or reduced by 36%. The value of prompt generation time was 9,982703 x 10-4 s at the beginning of operation at burn-up of 0 MWD/T and 8,965416 x 10-4 s after the reactor operated at burn-up of 7,2231 x 103 MWD/T, or reduced by 10%. The result of calculation showed that the values of effective delay neutron fraction and prompt neutron generation time are still great enough
Benchmark calculation with MOSRA-SRAC for burnup of a BWR fuel assembly
International Nuclear Information System (INIS)
The Japan Atomic Energy Agency has developed the Modular Reactor Analysis Code System MOSRA to improve the applicability of neutronic characteristics modeling. The cell calculation module MOSRA-SRAC is based on the collision probability method and is one of the core modules of the MOSRA system. To test the module on a real-world problem, it was combined with the benchmark program 'Burnup Credit Criticality Benchmark Phase IIIC.' In this program participants are requested to submit the neutronic characteristics of burnup calculations for a BWR fuel assembly containing fuel rods poisoned with gadolinium (Gd2O3), which is similar to the fuel assembly at TEPCO's Fukushima Daiichi Nuclear Power Station. Because of certain restrictions of the MOSRA-SRAC burnup calculations part of the geometry model was homogenized. In order to verify the validity of MOSRA-SRAC, including the effects of the homogenization, the calculated burnup dependent infinite multiplication factor and the nuclide compositions were compared with those obtained with the burnup calculation code MVP-BURN which had already been validated for many benchmark problems. As a result of the comparisons, the applicability of MOSRA-SRAC module for the BWR assembly has been verified. Furthermore, it can be shown that the effects of the homogenization are smaller than the effects due to the calculation method for both multiplication factor and compositions. (author)
Fission Gas Release in LWR Fuel Rods Exhibiting Very High Burn-Up
DEFF Research Database (Denmark)
Carlsen, H.
1980-01-01
uses an empirical gas release model combined with a strongly burn-up dependent correction term, developed by the US Nuclear Regulatory Commission. The paper presents the experimental results and the code calculations. It is concluded that the model predictions are in reasonable agreement (within 15...
Development of base technology for high burnup PWR fuel improvement Volume 1 and 2
Energy Technology Data Exchange (ETDEWEB)
Kim, Yang Eun; Lee, Sang Hee; Bae, Seong Man [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Chung, Jin Gon; Chung, Sun Kyo; Kim, Sun Du [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of); Kim, Jae Won; Chung, Sun Kyo; Kim, Sun Du [Korea Nuclear Fuel Development Inst., Seoul (Korea, Republic of)
1995-12-31
Development of base technology for high burnup nuclear fuel -Development of UO{sub 2} pellet manufacturing technology -Improvement of fuel rod performance code -Improvement of plenum spring design -Study on the mechanical characteristics of fuel cladding -Organization of fuel failure mechanism Establishment of next stage R and D program (author). 226 refs., 100 figs.
Addressing the Axial Burnup Distribution in PWR Burnup Credit Criticality Safety
International Nuclear Information System (INIS)
This paper summarizes efforts related to developing a technically justifiable approach for addressing the axial burnup distribution in PWR burnup-credit criticality safety analyses. The paper reviews available data on the axial variation in burnup and the effect of axial burnup profiles on reactivity in a SNF cask. A publicly available database of profiles is examined to identify profiles that maximize the neutron multiplication factor, keff, assess its adequacy for general PWR burnup credit analyses, and investigate the existence of trends with fuel type and/or reactor operations. For this assessment, a statistical evaluation of the keff values associated with the profiles in the axial burnup profile database was performed that identifies the most reactive profiles as statistical outliers that are not representative of typical discharged SNF assemblies. The impact of these bounding profiles on the neutron multiplication factor for a high-density burnup credit cask is quantified. Finally, analyses are presented to quantify the potential reactivity consequence of assemblies with axial profiles that are not bounded by the existing database. The paper concludes with findings for addressing the axial burnup distribution in burnup credit analyses
International Nuclear Information System (INIS)
Highlights: • The burnup of irradiated AGR-1 TRISO fuel was analyzed using gamma spectrometry. • The burnup of irradiated AGR-1 TRISO fuel was also analyzed using mass spectrometry. • Agreement between experimental results and neutron physics simulations was excellent. - Abstract: AGR-1 was the first in a series of experiments designed to test US TRISO fuel under high temperature gas-cooled reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post-irradiation examination (PIE) at INL and Oak Ridge National Laboratory. One component of the AGR-1 PIE is the experimental evaluation of the burnup of the fuel by two separate techniques. Gamma spectrometry was used to non-destructively evaluate the burnup of all 72 of the TRISO fuel compacts that comprised the AGR-1 experiment. Two methods for evaluating burnup by gamma spectrometry were developed, one based on the Cs-137 activity and the other based on the ratio of Cs-134 and Cs-137 activities. Burnup values determined from both methods compared well with the values predicted from simulations. The highest measured burnup was 20.1% FIMA (fissions per initial heavy metal atom) for the direct method and 20.0% FIMA for the ratio method (compared to 19.56% FIMA from simulations). An advantage of the ratio method is that the burnup of the cylindrical fuel compacts can be determined in small (2.5 mm) axial increments and an axial burnup profile can be produced. Destructive chemical analysis by inductively coupled mass spectrometry (ICP-MS) was then performed on selected compacts that were representative of the expected range of fuel burnups in the experiment to compare with the burnup values determined by gamma spectrometry. The compacts analyzed by mass spectrometry had a burnup range of 19.3% FIMA to 10.7% FIMA. The mass spectrometry evaluation of burnup for the four compacts agreed well with the gamma
Extended burnup: fuel development and performance
International Nuclear Information System (INIS)
Fuel Performance for the B and W 15 x 15 (Mark B) and 17 x 17 (Mark C) fuel assembly designs is examined on a plant by plant basis. An extensive data base of fuel assembly and rod bow measurements and tests which demonstrate that these phenomena should not limit the high burnup capability of B and W fuel is presented. Post-irradiation measurements to date for fuel rod and assembly growth show that these phenomena are behaving as predicted and can be adequately evaluated and designed for in high burnup fuel assemblies. Clad creep and ductility data as a function of burnup for B and W fuel is presented with emphasis on their effects on our high burnup targets. Finally, fission gas release and waterside corrosion measurements results are presented
CARMEN-SYSTEM, Programs System for Thermal Neutron Diffusion and Burnup with Feedback
International Nuclear Information System (INIS)
1 - Description of problem or function: CARMEN is a system of programs developed for the neutronic calculation of PWR cycles. It includes the whole chain of analysis from cell calculations to core calculations with burnup. The core calculations are based on diffusion theory with cross sections depending on the relevant space-dependent feedback effects which are present at each moment along the cycles. The diffusion calculations are in one, two or three dimensions and in two energy groups. The feedback effects which are treated locally are: burnup, water density, power density and fission products. In order to study in detail these parameters the core should be divided into as many zones as different cross section sets are expected to be required in order to reproduce reality correctly. A relevant difference in any feedback parameter between zones produces different cross section sets for the corresponding zones. CARMEN is also capable to perform the following calculations: - Multiplication factor by burnup step with fixed boron concentration - Buckling and control rod insertion - Buckling search by burnup step - Boron search by burnup step - Control rod insertion search by burnup step. 2 - Method of solution: The cell code (LEOPARD-TRACA) generates the fuel assembly cross sections versus burnup. This is the basic library to be used in the CARMEN code proper. With a planar distribution guess for power density, water density and fluxes, the macroscopic cross sections by zone are calculated by CARMEN, and then a diffusion calculation is done in the whole geometry. With the distribution of power density, heat accumulated in the coolant and the thermal and fast fluxes determined in the diffusion calculation, CARMEN calculates the values of the most relevant parameters that influence the macroscopic cross sections by zone: burnup, water density, effective fuel temperature and fission product concentrations. If these parameters by zone are different from the reference
VVER-related burnup credit calculations
International Nuclear Information System (INIS)
The calculations related to a VVER burnup credit calculational benchmark proposed to the Eastern and Central European research community in collaboration with the OECD/NEA/NSC Burnup Credit Criticality Benchmark Working Group (working under WPNCS - Working Party on Nuclear Criticality Safety) are described. The results of a three-year effort by analysts from the Czech Republic, Finland, Germany, Hungary, Russia, Slovakia and the United Kingdom are summarized and commented on. (author)
Burnup credit implementation in spent fuel management
International Nuclear Information System (INIS)
The criticality safety analysis of spent fuel management systems has traditionally assumed that the fuel is fresh. This results in significant conservatism in the calculated value of the system's reactivity. The concept of allowing reactivity credit for spent fuel offers economic incentives. Burnup Credit (BUC) could reduce mass limitation during dissolution of highly enriched PWR assemblies at the La Hague reprocessing plant. Furthermore, accounting for burnup credit enables the operator to avoid the use of Gd soluble poison in the dissolver for MOX assemblies. Analyses performed by DOE and its contractors have indicated that using BUC to maximize spent fuel transportation cask capacities is a justifiable concept that would result in public risk benefits and cost savings while fully maintaining criticality safety margins. In order to allow for Fission Products and Actinides in Criticality-Safety analyses, an extensive BUC experimental programme has been developed in France in the framework of the CEA-COGEMA collaboration. The use of burnup credit implies a verification of the fuel burnup before loading for transport, storage, disposal, or reprocessing each assembly, to make sure that the burnup level achieved complies with the criteria established. Independent measurement systems, e.g. gamma spectrum detection systems, are needed to perform a true independent measurement of assembly burnup, without reliance on reactor records, using the gamma emission signatures fission products (mainly Cesium isotopes). (author)
Modeling of WWER-440 fuel pin behavior at extended burn-up
Energy Technology Data Exchange (ETDEWEB)
El-Koliel, Moustafa S. E-mail: moustafa_elkoliel@yahoo.com; Abou-Zaid, Attya A.; El-Kafas, A.A
2004-04-01
Currently, there is an ongoing effort to increase fuel discharge burn-up of all LWRs fuel including WWERs as much as possible in order to decrease power production cost. Therefore, burn-up is expected to be increased from 60 to 70 MWd/kg U. The change in the fuel radial power distribution as a function of fuel burn-up can affect the radial fuel temperature distribution as well as the fuel microstructure in the fuel pellet rim. Both of these features, commonly termed the 'rim effect'. High burn-up phenomena in WWER-440 UO{sub 2} fuel pin, which are important for fission gas release (FGR) were modeled. The radial burn-up as a function of the pellet radius and enrichment has to be known to determine the local thermal conductivity. In this paper, the radial burn-up and fissile products distributions of WWER-440 UO{sub 2} fuel pin were evaluated using MCNP4B and ORIGEN2 codes. The impact of the thermal conductivity on predicted FGR calculations is needed. For the analysis, a typical WWER-440 fuel pin and surrounding water moderator are considered in a hexagonal pin well. The thermal release and the athermal release from the pellet rim were modeled separately. The fraction of the rim structure and the excessive porosity in the rim structure in isothermal irradiation as a function of the fuel burn-up was predicted. A computer program; RIMSC-01, is developed to perform the required FGR calculations. Finally, the relevant phenomena and the corresponding models together with their validation are presented.
Modeling of WWER-440 fuel pin behavior at extended burn-up
International Nuclear Information System (INIS)
Currently, there is an ongoing effort to increase fuel discharge burn-up of all LWRs fuel including WWERs as much as possible in order to decrease power production cost. Therefore, burn-up is expected to be increased from 60 to 70 MWd/kg U. The change in the fuel radial power distribution as a function of fuel burn-up can affect the radial fuel temperature distribution as well as the fuel microstructure in the fuel pellet rim. Both of these features, commonly termed the 'rim effect'. High burn-up phenomena in WWER-440 UO2 fuel pin, which are important for fission gas release (FGR) were modeled. The radial burn-up as a function of the pellet radius and enrichment has to be known to determine the local thermal conductivity. In this paper, the radial burn-up and fissile products distributions of WWER-440 UO2 fuel pin were evaluated using MCNP4B and ORIGEN2 codes. The impact of the thermal conductivity on predicted FGR calculations is needed. For the analysis, a typical WWER-440 fuel pin and surrounding water moderator are considered in a hexagonal pin well. The thermal release and the athermal release from the pellet rim were modeled separately. The fraction of the rim structure and the excessive porosity in the rim structure in isothermal irradiation as a function of the fuel burn-up was predicted. A computer program; RIMSC-01, is developed to perform the required FGR calculations. Finally, the relevant phenomena and the corresponding models together with their validation are presented
Energy Technology Data Exchange (ETDEWEB)
Marshall, William BJ J [ORNL; Ade, Brian J [ORNL; Bowman, Stephen M [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL; Mertyurek, Ugur [ORNL; Radulescu, Georgeta [ORNL
2015-01-01
Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate application of burnup credit for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase (1) investigates applicability of peak reactivity methods currently used in spent fuel pools (SFPs) to storage and transportation systems and (2) evaluates validation of both reactivity (k_{eff}) calculations and burnup credit nuclide concentrations within these methods. The second phase will focus on extending burnup credit beyond peak reactivity. This paper documents the first phase, including an analysis of lattice design parameters and depletion effects, as well as both validation components. Initial efforts related to extended burnup credit are discussed in a companion paper. Peak reactivity analyses have been used in criticality analyses for licensing of BWR fuel in SFPs over the last 20 years. These analyses typically combine credit for the gadolinium burnable absorber present in the fuel with a modest amount of burnup credit. Gadolinium burnable absorbers are used in BWR assemblies to control core reactivity. The burnable absorber significantly reduces assembly reactivity at beginning of life, potentially leading to significant increases in assembly reactivity for burnups less than 15–20 GWd/MTU. The reactivity of each fuel lattice is dependent on gadolinium loading. The number of gadolinium-bearing fuel pins lowers initial lattice reactivity, but it has a small impact on the burnup and reactivity of the peak. The gadolinium concentration in each pin has a small impact on initial lattice reactivity but a significant effect on the reactivity of the peak and the burnup at which the peak occurs. The importance of the lattice parameters and depletion conditions are primarily determined by their impact on the gadolinium depletion. Criticality code validation for BWR burnup
The applications of burnup credit and the measurement techniques of burnup verification
International Nuclear Information System (INIS)
The factors of influencing criticality safety, implementing criticality control conditions, the calculation methods for predicting criticality, casks design and cask loading graph are described. The problems in the application of burnup credit and the dominant error in burnup credit operation are analysed. In order to avoid the operation error, requirements of measurement techniques and the most suitable measurement method are introduced
Actinide-only burnup credit methodology for PWR spent nuclear fuel
International Nuclear Information System (INIS)
A conservative methodology is presented that would allow taking credit for burnup in the criticality safety analysis of spent nuclear fuel (SNF) packages. The method is based on the assumption that the isotopic concentration in the SNF and cross sections of each isotope for which credit is taken must be supported by validation experiments. The method allows credit for the changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps: 1. Validate a computer code system to calculate isotopic concentrations of spent nuclear fuel created during burnup in the reactor core and subsequent decay. 2. Validate a computer code system to predict the subcritical multiplication factor, keff, of a spent nuclear fuel package by use of UO2 and UO2/Puo2 critical experiments. 3. Establish conditions for the SNF (depletion analysis) and package (criticality analysis) which bounds keff. 4. Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). 5. Verify by measurement that SNF assemblies meet the package loading criteria and confirm proper assembly selection prior to loading. (author)
Fuel burnup calculation for HEU and LEU cores of Ghana MNSR
International Nuclear Information System (INIS)
Fuel burnup calculations have been performed using a computer program developed as part of this research work for both Highly Enriched Uranium (90.2 % U-235) and Low Enriched Uranium (12.6 % U-235) cores for Ghana Research Reactor-1 (GHARR-1). Fuel depletion analyses of the GHARR-1 core was also performed which provided an inventory of the actinides formed as a result of burnup. The effect of the production of plutonium isotopes with burnup on reactor operation was also estimated. A FORTRAN 95 code was written based on the three group model approach namely fast, resonance and slow (thermal) neutron reactions. The time rate of change of each fuel isotope density is given by a first order differential equation. A general solution for each fuel isotope rate equation was used as input for the computer code. These results are particularized to the case of constant power during a short time interval, during which the slow (thermal) neutron flux is considered constant. The results obtained for the HEU were in good agreement with those found in literature. Therefore, this code can be used to estimate the burnup of LEU fuel for core conversion from HEU to LEU. (au)
Effect of burnup history by moderator density on neutron-physical characteristics of WWER-1000 core
International Nuclear Information System (INIS)
Results of assessment of burnup history effect by moderator density on neutron physical characteristics of WWER-1000 core are presented on example of stationary fuel loading with Russian design fuel assembly TWSA and AER benchmark for Khmelnitsky NPP that was proposed by TUV and SSTC NRC at nineteenth symposium. Assessment was performed by DYN3D code and cross section library sets generated by HELIOS code. Burnup history was taken into account by preparing of numerous cross section sets with different isotopic composition each of which was obtained by burning under different moderator density. For analysis of history effect 20 cross section sets were prepared for each fuel assembly corresponded to each of 20 axial layers of reactor core model for DYN3D code. Four fuel cycles were modeled both for stationary fuel loading with TWSA and AER benchmark for Khmelnitsky NPP to obtain steady value of error due to neglect of burnup history effect. Main attention of study was paid to effect of burnup history by moderator density to axial power distribution. Results of study for AER benchmark were compared with experimental values of axial power distribution for fuel assemblies of first, second, third and fourth year operation. (Authors)
Reconstruction of pin burnup characteristics from nodal calculations in hexagonal geometry
International Nuclear Information System (INIS)
A reconstruction method has been developed for recovering pin burnup characteristics from fuel cycle calculations performed in hexagonal-z geometry using the nodal diffusion option of the DIF3D/REBUS-3 code system. Intra-modal distributions of group fluxes, nuclide densities, power density, burnup, and fluence are efficiently computed using polynomial shapes constrained to satisfy nodal information. The accuracy of the method has been tested by performing several numerical benchmark calculations and by comparing predicted local burnups to values measured for experimental assemblies in EBR-11. The results indicate that the reconstruction methods are quite accurate, yielding maximum errors in power and nuclide densities that are less than 2% for driver assemblies and typically less than 5% for blanket assemblies. 14 refs., 2 figs., 5 tabs
International Nuclear Information System (INIS)
Burn-up was determined experimentally using thermal ionization mass spectrometry for two samples from ThO2 bundles irradiated in KAPS-2. This involved quantitative dissolution of the irradiated fuel samples followed by separation and determination of Th, U and a stable fission product burn-up monitor in the dissolved fuel solution. Stable fission product 148Nd was used as a burn-up monitor for determining the number of fissions. Isotope Dilution-Thermal Ionisation Mass Spectrometry (ID-TIMS) using natural U, 229Th and enriched 142Nd as spikes was employed for the determination of U, Th and Nd, respectively. Atom % fission values of 1.25 ± 0.03 were obtained for both the samples. 232U content in 233U determined by alpha spectrometry was about 500 ppm and this was higher by a factor of 5 compared to the theoretically predicted value by ORIGEN-2 code. (author)
Modification in the CITATION computer code: change of microscopic cross section by zone
International Nuclear Information System (INIS)
The modifications done in the Citation computer code in order to compute the accumulated burnup after each burnup step for each reactor zone and to allow the use of update microscopic cross sections for each zone according to the accumulated burnup are presented. Some input data was introduced in the code. The modifications reported here were checked and some comparisons were made with results obtained by running the code with and without these modifications. (Author)
ISOTOPIC MODEL FOR COMMERCIAL SNF BURNUP CREDIT
International Nuclear Information System (INIS)
The purpose of this report is to demonstrate a process for selecting bounding depletion parameters, show that they are conservative for pressurized water reactor (PWR) and boiling water reactor (BWR) spent nuclear fuel (SNF), and establish the range of burnup for which the parameters are conservative. The general range of applicability is for commercial light water reactor (LWR) SNF with initial enrichments between 2.0 and 5.0 weight percent 235U and burnups between 10 and 50 gigawatt-day per metric ton of uranium (GWd/MTU)
ISOTOPIC MODEL FOR COMMERCIAL SNF BURNUP CREDIT
Energy Technology Data Exchange (ETDEWEB)
A.H. Wells
2004-11-17
The purpose of this report is to demonstrate a process for selecting bounding depletion parameters, show that they are conservative for pressurized water reactor (PWR) and boiling water reactor (BWR) spent nuclear fuel (SNF), and establish the range of burnup for which the parameters are conservative. The general range of applicability is for commercial light water reactor (LWR) SNF with initial enrichments between 2.0 and 5.0 weight percent {sup 235}U and burnups between 10 and 50 gigawatt-day per metric ton of uranium (GWd/MTU).
Burnup analysis of the power reactor, 3
International Nuclear Information System (INIS)
The atomic number densities of uranium and transuranium were measured for JPDR-1. For the purpose of the study, the program has been prepared. It solves the burnup equation by the exponential matrix method. The void fraction and exposure distribution of the required data were calculated by three-dimensional nuclear-thermal-hydro-dynamic program FLORA under the operating conditions. The distribution of each atomic number density was obtained. The results agree with the measured values. The programs calculating nuclear constants in the cell were evaluated by obtaining the effective cross sections from the atomic number densities and the burnup. (auth.)
International Nuclear Information System (INIS)
In the period 1981-1985, for the needs of Utility Organization, Beograd, and with the support of the Scientific Council of SR Srbija, work has been performed on the study entitled 'Nuclear Fuel Burn-up Economy'. The forst [phase, completed during the year 1983 comprised: comparative analysis of commercial NPP from the standpoint of nuclear fuel requirements; development of methods for fuel burn-up analysis; specification of elements concerning the nuclear fuel for the tender documentation. The present paper gives the short description of the purpose, content and results achieved in the up-to-now work on the study. (author)
Spent fuel pool storage calculations using the ISOCRIT burnup credit tool
International Nuclear Information System (INIS)
Highlights: ► Depletion isotopics are needed for burnup credit in spent fuel pool analyses. ► We developed ISOCRIT to generate the isotopics using conservative depletion assumptions. ► ISOCRIT works in an automated fashion passing data between lattice physics and 3D Monte Carlo codes. ► Analyses to assess the impact of different depletion parameters on the reactivity of the spent fuel in pool conditions. - Abstract: In order to conservatively apply burnup credit in spent fuel pool criticality safety analyses, Westinghouse has developed a software tool, ISOCRIT, for generating depletion isotopics. This tool is used to create isotopics data based on specific reactor input parameters, such as design basis assembly type; bounding power/burnup profiles; reactor specific moderator temperature profiles; pellet percent theoretical density; burnable absorbers, axial blanket regions, and bounding ppm boron concentration. ISOCRIT generates burnup dependent isotopics using PARAGON; Westinghouse’s state-of-the-art and licensed lattice physics code. Generation of isotopics and passing the data to the subsequent 3D KENO calculations are performed in an automated fashion, thus reducing the chance for human error. Furthermore, ISOCRIT provides the means for responding to any customer request regarding re-analysis due to changed parameters (e.g., power uprate, exit temperature changes, etc.) with a quick turnaround.
Study on the criticality safety evaluation method for burnup credit in JAERI
International Nuclear Information System (INIS)
In relation to burnup credit, three tasks have been carried out at the Japan Atomic Energy Research Institute (JAERI) for establishing the evaluation method of criticality safety for a spent-fuel system, such as storage age ponds and transport casks. The first task is to prepare a benchmark database of criticality experiments and nuclide compositions of spent fuels. The database of nuclide composition is formed by data treasured at JAERI and data collected from the literature. For the database of criticality experiments, the effective multiplication factor of a spent-fuel assembly has been measured at JAERI and data collected from the literature. For the database of criticality experiments, the effective multiplication factor of a spent-fuel assembly has been measured at JAERI. The next task is to develop computer codes. The burnup and criticality codes have been developed and validated by analyzing a large number of benchmarks stored in the aforementioned database. The last task needed to establish the methodology in order to confirm the subcriticality of a spent-fuel system applying burnup credit is described. A reference fuel assembly is introduced so that the criticality of a system can be evaluated by using it, instead of modeling all fuel assemblies explicitly. To determine the nuclide composition of a spent fuel, a simple method is studied utilizing a large number of nuclide composition data stored in the database. Further, the effects of the axial burnup profile and calculation errors are discussed, and the remaining tasks are identified
Study of the acceleration of nuclide burnup calculation using GPU with CUDA
International Nuclear Information System (INIS)
The computation costs of neutronics calculation code become higher as physics models and methods are complicated. The degree of them in neutronics calculation tends to be limited due to available computing power. In order to open a door to the new world, use of GPU for general purpose computing, called GPGPU, has been studied [1]. GPU has multi-threads computing mechanism enabled with multi-processors which realize mush higher performance than CPUs. NVIDIA recently released the CUDA language for general purpose computation which is a C-like programming language. It is relatively easy to learn compared to the conventional ones used for GPGPU, such as OpenGL or CG. Therefore application of GPU to the numerical calculation became much easier. In this paper, we tried to accelerate nuclide burnup calculation, which is important to predict nuclides time dependence in the core, using GPU with CUDA. We chose the 4.-order Runge-Kutta method to solve the nuclide burnup equation. The nuclide burnup calculation and the 4.-order Runge-Kutta method were suitable to the first step of introduction CUDA into numerical calculation because these consist of simple operations of matrices and vectors of single precision where actual codes were written in the C++ language. Our experimental results showed that nuclide burnup calculations with GPU have possibility of speedup by factor of 100 compared to that with CPU. (authors)
Computational simulation of fuel burnup estimation for research reactors plate type
Energy Technology Data Exchange (ETDEWEB)
Santos, Nadia Rodrigues dos, E-mail: nadiasam@gmail.com [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio de Janeiro (IFRJ), Paracambi, RJ (Brazil); Lima, Zelmo Rodrigues de; Moreira, Maria de Lourdes, E-mail: zrlima@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)
2015-07-01
The aim of this study is to estimate the spatial fuel burnup, through computational simulation, in two research reactors plate type, loaded with dispersion fuel: the benchmark Material Test Research - International Atomic Energy Agency (MTR-IAEA) and a typical multipurpose reactor (MR). The first composed of plates with uranium oxide dispersed in aluminum (UAlx-Al) and a second composed with uranium silicide (U{sub 3}Si{sub 2}) dispersed in aluminum. To develop this work we used the deterministic code, WIMSD-5B, which performs the cell calculation solving the neutron transport equation, and the DF3DQ code, written in FORTRAN, which solves the three-dimensional neutron diffusion equation using the finite difference method. The methodology used was adequate to estimate the spatial fuel burnup , as the results was in accordance with chosen benchmark, given satisfactorily to the proposal presented in this work, even showing the possibility to be applied to other research reactors. For future work are suggested simulations with other WIMS libraries, other settings core and fuel types. Comparisons the WIMSD-5B results with programs often employed in fuel burnup calculations and also others commercial programs, are suggested too. Another proposal is to estimate the fuel burnup, taking into account the thermohydraulics parameters and the Xenon production. (author)
NFCSim: A Dynamic Fuel Burnup and Fuel Cycle Simulation Tool
International Nuclear Information System (INIS)
NFCSim is an event-driven, time-dependent simulation code modeling the flow of materials through the nuclear fuel cycle. NFCSim tracks mass flow at the level of discrete reactor fuel charges/discharges and logs the history of nuclear material as it progresses through a detailed series of processes and facilities, generating life-cycle material balances for any number of reactors. NFCSim is an ideal tool for analysis - of the economics, sustainability, or proliferation resistance - of nonequilibrium, interacting, or evolving reactor fleets. The software couples with a criticality and burnup engine, LACE (Los Alamos Criticality Engine). LACE implements a piecewise-linear, reactor-specific reactivity model for its criticality calculations. This model constructs fluence-dependent reactivity traces for any facility; it is designed to address nuclear economies in which either a steady state is never obtained or is a poor approximation. LACE operates in transient and equilibrium fuel management regimes at the refueling batch level, derives reactor- and cycle-dependent initial fuel compositions, and invokes ORIGEN2.x to carry out burnup calculations
Modelling of fission gas behaviour in high burnup nuclear fuel
International Nuclear Information System (INIS)
The safe and economic operation of nuclear power plants (NPPs) requires that the behaviour and performance of the fuel can be calculated reliably over its expected lifetime. This requires highly developed codes that treat the nuclear fuel in a general manner and which take into account the large number of influences on fuel behaviour, in particular the trend of NPP operators to increase the fuel burnup. With higher burnup, more fission events impact the material characteristics of the fuel and significant restructuring can be observed. At local burnups in excess of 60-75 MWd/kgU, the microstructure of nuclear fuel pellets differs markedly from the as-fabricated structure. This high burnup structure (HBS) is characterised by three principal features: 1) low matrix xenon concentration, 2) sub-micron grains and 3) a high volume fraction of micrometer-sized pores. The peculiar features of the HBS affect the fuel performance and safety; the large retention of fission gas within the HBS could lead to significant gas release at high burnups, either through the degradation of thermal conductivity or through direct release. The present work has focussed on the development and evaluation of HBS fission gas transport models, especially on two features: the equilibrium xenon concentration in the matrix of the HBS in UO2 fuel pellets, and the growth of the HBS porosity and its effect on fission gas release. A steady-state fission gas model has been developed to examine the importance of grain boundary diffusion for the gas dynamics in the HBS. It was possible to simulate the ∼0.2 wt% experimentally observed xenon concentration. The value of the grain boundary diffusion coefficient is not important for diffusion coefficient ratios in excess of ∼10”4. The model exhibits a high sensitivity to principally three parameters: the grain diffusion coefficient, the bubble number density and the re-solution rate coefficient. The model can reproduce the observed HBS xenon depletion
Studies on future application of burnup credit in Hungary
International Nuclear Information System (INIS)
This paper describes the present status of the fuel storage and the possible future applications of burnup credit in wet and dry storage systems in Hungary. It gives a survey of the activities planned in AERI concerning the burnup credit. Some part of these investigations dealing with the influence of the axial changing of the assembly burnup are given in more details. (author)
Energy Technology Data Exchange (ETDEWEB)
DeHart, M.D.
1996-05-01
Spent fuel transportation and storage cask designs based on a burnup credit approach must consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For example, the spent fuel composition must be adequately characterized and the criticality analysis model can be complicated by the need to consider axial burnup variations. Parametric analyses are needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel composition and reactivity. Numerical models must be evaluated to determine the sensitivity of criticality safety calculations to modeling assumptions. The purpose of this report is to describe analyses and evaluations performed in order to demonstrate the effect physical parameters and modeling assumptions have on the criticality analysis of spent fuel. The analyses in this report include determination and ranking of the most important actinides and fission products; study of the effect of various depletion scenarios on subsequent criticality calculations; establishment of trends in neutron multiplication as a function of fuel enrichment, burnup, cooling time- and a parametric and modeling evaluation of three-dimensional effects (e.g., axially varying burnup and temperature/density effects) in a conceptual cask design. The sensitivity and parametric evaluations were performed with the consideration of two different burnup credit approaches: (1) only actinides in the fuel are considered in the criticality analysis, and (2) both actinides and fission products are considered. Calculations described in this report were performed using the criticality and depletion sequences available in the SCALE code system and the SCALE 27-group burnup library. Although the results described herein do not constitute a validation of SCALE for use in spent fuel analysis, independent validation efforts have been completed and are described in other reports.
Key issues in nuclear fuel cycle concerning high burn-up strategy
International Nuclear Information System (INIS)
In the present high burn-up strategy in Japan, the economic efficiency and reduction of the spent nuclear fuel have been in progress. On the other hand, in the further progress of the strategy, several issues may appear. The amount and activity of nuclides, heat generation, and radiation for a fuel pin in the typical 17x17 PWR assembly were calculated as functions of burn-up and cooling time, using the SWAT code system. Waste loading in glass waste forms from spent UO2 fuel and MOX fuel were discussed, assuming the number of glass canisters of 150 liter per THM is 1.25 at 45 GWd/THM. The number of glass canisters per GWd is almost constant in the range of burn-up up to 70 GWd/THM. The amount of molybdate from Pu-239 fissions linearly increases as a function of burn-up similarly like increase from U-235 fissions. The current vitrification technology may not face serious situation to be required substantial reduction in waste loading relating to molybdate up to 70 GWd/THM. The initial cooling period prior to vitrification, the waste loading and the interim storage period prior to final disposal are major factors which determine the way of storage and final disposal. The higher burn-up above 45 GWd/THM may require pretreatment of HLLW or substantial reduction in waste loading to retain the integrity of the ceramic melter for e.g. five years. Further promotion of high burn-up strategy should be consistent with nuclear fuel cycle including waste management. A potential approach, a conceptual new reprocessing system for thermal reactors is described. (author)
International Nuclear Information System (INIS)
Spent fuel transportation and storage cask designs based on a burnup credit approach must consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For example, the spent fuel composition must be adequately characterized and the criticality analysis model can be complicated by the need to consider axial burnup variations. Parametric analyses are needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel composition and reactivity. Numerical models must be evaluated to determine the sensitivity of criticality safety calculations to modeling assumptions. The purpose of this report is to describe analyses and evaluations performed in order to demonstrate the effect physical parameters and modeling assumptions have on the criticality analysis of spent fuel. The analyses in this report include determination and ranking of the most important actinides and fission products; study of the effect of various depletion scenarios on subsequent criticality calculations; establishment of trends in neutron multiplication as a function of fuel enrichment, burnup, cooling time- and a parametric and modeling evaluation of three-dimensional effects (e.g., axially varying burnup and temperature/density effects) in a conceptual cask design. The sensitivity and parametric evaluations were performed with the consideration of two different burnup credit approaches: (1) only actinides in the fuel are considered in the criticality analysis, and (2) both actinides and fission products are considered. Calculations described in this report were performed using the criticality and depletion sequences available in the SCALE code system and the SCALE 27-group burnup library. Although the results described herein do not constitute a validation of SCALE for use in spent fuel analysis, independent validation efforts have been completed and are described in other reports
Determination of fissile fraction in MOX (mixed U + Pu oxides) fuels for different burnup values
Energy Technology Data Exchange (ETDEWEB)
Ozdemir, Levent, E-mail: levent.ozdemir@taek.gov.tr [Department of Nuclear Engineering, Hacettepe University, 06800 Beytepe, Ankara (Turkey); Acar, Banu Bulut; Zabunoglu, Okan H. [Department of Nuclear Engineering, Hacettepe University, 06800 Beytepe, Ankara (Turkey)
2011-02-15
When spent Light Water Reactor fuels are processed by the standard Purex method of reprocessing, plutonium (Pu) and uranium (U) in spent fuel are obtained as pure and separate streams. The recovered Pu has a fissile content (consisting of {sup 239}Pu and {sup 241}Pu) greater than 60% typically (although it mainly depends on discharge burnup of spent fuel). The recovered Pu can be recycled as mixed-oxide (MOX) fuel after being blended with a fertile U makeup in a MOX fabrication plant. The burnup that can be obtained from MOX fuel depends on: (1) isotopic composition of Pu, which is closely related to the discharge burnup of spent fuel from which Pu is recovered; (2) the type of fertile U makeup material used (depleted U, natural U, or recovered U); and (3) fraction of makeup material in the mix (blending ratio), which in turn determines the total fissile fraction of MOX. Using the Non-linear Reactivity Model and the code MONTEBURNS, a step-by-step procedure for computing the total fissile content of MOX is introduced. As was intended, the resulting expression is simple enough for quick/hand calculations of total fissile content of MOX required to reach a desired burnup for a given discharge burnup of spent fuel and for a specified fertile U makeup. In any case, due to non-fissile (parasitic) content of recovered Pu, a greater fissile fraction in MOX than that in fresh U is required to obtain the same burnup as can be obtained by the fresh U fuel.
International Nuclear Information System (INIS)
The high density spent fuel storage rack Boraflex was known to experience changes of its physical property and to dissolve under exposure to radiation in an aqueous environment for long period of time. In this study, the criticality evaluation for spent fuel storage rack of Ulchin Unit 2 under normal condition was performed assuming complete loss of 10B from the Boraflex and applying burnup credit. Criticality evaluation code KENO-V.a. from SCALE4.4 system was benchmarked against critical experiments to obtain the calculation bias and bias uncertainties. The manufacturing tolerances of nuclear fuel and storage rack and their reactivity uncertainties were derived, as well. Considering those bias and uncertainties of calculation, the criticality of spent fuel storage under normal condition was conservatively evaluated. The criticality evaluation result using burnup credit can be presented as a spent fuel loading curve that indicates the acceptable burnup domain in spent fuel storage pool. The spent fuels with various initial enrichments and discharge fuel burnup can be safely accommodated in the storage without taking any boron credit from Boraflex, provided the combination falls within the acceptable domain in the loading curve. The spent fuel with initial enrichment of 5.0w/o was evaluated to meet the subcritical safety if its burnup is over 43.0GWD/MTU. The criticality evaluation result also showed that spent fuels with the initial enrichment less than 1.6w/o were able to be stored in the storage pool regardless of their burnup. Conclusively, in the Region 2 of the spent fuel storage pool, the maximum keff , considering all uncertainties, was calculated as 0.94818
Transient behaviour of high burnup fuel
International Nuclear Information System (INIS)
The main subjects of the meeting were the discussion of regulatory background, integral tests and analysis, plant calculations, separate-effect test and analysis, concerning high burnup phenomena during RIA accidents in reactors, especially LWR, BWR and PWR type reactors. 32 papers were abstracted and indexed individually for the INIS database. (R.P.)
Optimum burnup of BAEC TRIGA research reactor
International Nuclear Information System (INIS)
Highlights: ► Optimum loading scheme for BAEC TRIGA core is out-to-in loading with 10 fuels/cycle starting with 5 for the first reload. ► The discharge burnup ranges from 17% to 24% of U235 per fuel element for full power (3 MW) operation. ► Optimum extension of operating core life is 100 MWD per reload cycle. - Abstract: The TRIGA Mark II research reactor of BAEC (Bangladesh Atomic Energy Commission) has been operating since 1986 without any reshuffling or reloading yet. Optimum fuel burnup strategy has been investigated for the present BAEC TRIGA core, where three out-to-in loading schemes have been inspected in terms of core life extension, burnup economy and safety. In considering different schemes of fuel loading, optimization has been searched by only varying the number of fuels discharged and loaded. A cost function has been defined and evaluated based on the calculated core life and fuel load and discharge. The optimum loading scheme has been identified for the TRIGA core, the outside-to-inside fuel loading with ten fuels for each cycle starting with five fuels for the first reload. The discharge burnup has been found ranging from 17% to 24% of U235 per fuel element and optimum extension of core operating life is 100 MWD for each loading cycle. This study will contribute to the in-core fuel management of TRIGA reactor
Assessing the Effect of Fuel Burnup on Control Rod Worth for HEU and LEU Cores of Gharr-1
Directory of Open Access Journals (Sweden)
E.K. Boafo
2013-02-01
Full Text Available An important parameter in the design and analysis of a nuclear reactor is the reactivity worth of the control rod which is a measure of the efficiency of the control rod to absorb excess reactivity. During reactor operation, the control rod worth is affected by factors such as the fuel burnup, Xenon concentration, Samarium concentration and the position of the control rod in the core. This study investigates the effect of fuel burnup on the control rod worth by comparing results of a fresh and an irradiated core of Ghana's Miniature Neutron Source Reactor for both HEU and LEU cores. In this study, two codes have been utilized namely BURNPRO for fuel burnup calculation and MCNP5 which uses densities of actinides of the irradiated fuel obtained from BURNPRO. Results showed a decrease of the control rod worth with burnup for the LEU while rod worth increased with burnup for the HEU core. The average thermal flux in both inner and outer irradiation sites also decreased significantly with burnup for both cores.
Computation of classical triton burnup with high plasma temperature and current
International Nuclear Information System (INIS)
For comparison with experiment, the expected production of 14-MeV neutrons from the burnup of tritons produced in the d(d,t)p reaction must be computed. An effort was undertaken to compare in detail the computer codes used for this purpose at TFTR and JET. The calculation of the confined fraction of tritons by the different codes agrees to within a few percent. The high electron temperature in the experiments has raised the critical energy of the tritons that are slowing down to near or above the peak of the D-T reactivity, making the ion drag terms more important. When the different codes use the same slowing down formulas, the calculated burnup was within 6% for a case where orbit effects are expected to be small. Then results from codes with and without the effects of finite radial orbit excursions were compared for two test cases. For medium to high current discharges the finite radius effects are only of order 10%. A new version of the TFTR burnup code using an implicit Fokker-Planck solution was written to include the effects of energy diffusion and charge exchange. These effects change the time-integrated yields by only a few percent, but can significantly affect the instantaneous rates in time. Significant populations of hot ions can affect the fusion reactivity, and this effect was also studied. In particular, the d(d,p)t rate can be 10%--15% less than the d(d,3He)n rate which is usually used as a direct monitor of the triton source. Finally, a finite particle confinement time for the thermalized tritons can increase the apparent ''burn-up'' either if there is a high thermal deuteron temperature or if there exists a significant beam deuteron density
A combined 1D/3D fuel burnup analysis of generation IV light water reactor IRIS
International Nuclear Information System (INIS)
A combined 1D/3D methodology for the fuel burnup analysis of generation IV light water reactors with thin boron coating that covers the fuel rods is described in this paper. This methodology is founded on three approximations. The first approximation assumes that the problem of fuel depletion in the entire 3D core can be resolved into two independent problems. One is a 3D Monte Carlo evolution of power distribution in large volumes (nodes) with the KENO-V.a code, and the other is a transport method evolution of burnup dependent fuel composition in 1D Wigner-Seitz cell for each node independently. With the second approximation, the time-dependent fuel composition in the node (e.g., in the fuel assembly) is calculated by using a 1D fuel depletion analysis with the SAS2H control module from the SCALE-4.4a code system. The third approximation involves smearing the boron coating with the clad (by volume homogenization). The proposed SAS2H/KENO-V.a methodology is verified for the case of 2D x-y model of IRIS 15x15 fuel assembly (with a reflective boundary condition) by using two well benchmarked code systems. The first one is MOCUP, a coupled MCNP-4C and ORIGEN2.1 utility code, and the second is KENO-V.a/ORIGEN2.1 code system recently developed by authors of this paper. It has been found that the proposed SAS2H/KENO-V.a methodology gives a satisfactory accuracy for keff and nuclide composition. Finally, this methodology was applied for 3D burnup analysis of IRIS-1000 benchmark≠44 core. Detailed keff and power density evolution with burnup are reported. (author)
International Nuclear Information System (INIS)
Graphical abstract: - Highlights: • Continuous Energy Monte-Carlo burnup code. • Instabilities of depletion calculation in loosely coupled system. • Advanced step model for burnup calculations. • Xenon profile oscillation in thermal reactor. • Parametrical study of instabilities. - Abstract: In this paper we use the Continuous Energy Monte-Carlo tool to expose the problem of burnup instabilities occurring in 1D and 2D systems based on PWR geometry. The intensity of power profile oscillations is studied as a function of geometry properties and time step length. We compare two step models for depletion procedure: classic staircase step model and stochastic implicit Euler method, that belongs to the family of predictor–corrector schemes. What is more, we consider the usage of better neutron source intensity value than beginning-of-step approximation. Required methodology was implemented into MCB5 simulation code. The practical conclusions about depletion calculations were formulated and the efficiency of advanced step model was confirmed
International Nuclear Information System (INIS)
The theory of multipoint coupled reactors developed by multi-group transport is verified by using the probabilistic transport code MCNP5 and the continuous-energy Monte Carlo reactor physics burnup calculation Serpent code. The verification was performed by calculating the multiplication factors (or criticality factors) and coupling coefficients for a two-region test reactor known as the Deuterium Critical Assembly, DCA. The multiplication factors keff calculated numerically and independently from simulations of the DCA by MCNP5 and Serpent codes are compared with the multiplication factors keff calculated based on the coupled reactor theory. Excellent agreement was obtained between the multiplication factors keff calculated with the Serpent code, with MCNP5, and from the coupled reactor theory. This analysis demonstrates that the Serpent code is valid for the multipoint coupled reactor calculations. (author)
Harvey, Greg
2010-01-01
The bestselling Excel book on the market, updated for Excel 2010 As the world's leading spreadsheet application, Excel has a huge user base. The release of Office 2010 brings major changes to Excel, so Excel For Dummies comes to the rescue once more! In the friendly and non-threatening For Dummies style, this popular guide shows beginners how to get up and running with Excel and helps more experienced users get comfortable with new features.Excel is the number one spreadsheet application worldwide, and Excel For Dummies is the number one guide to using i
Simulation of triton burn-up in JET plasmas
Energy Technology Data Exchange (ETDEWEB)
Loughlin, M.J.; Balet, B.; Jarvis, O.N.; Stubberfield, P.M. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking
1994-07-01
This paper presents the first triton burn-up calculations for JET plasmas using the transport code TRANSP. Four hot ion H-mode deuterium plasmas are studied. For these discharges, the 2.5 MeV emission rises rapidly and then collapses abruptly. This phenomenon is not fully understood but in each case the collapse phase is associated with a large impurity influx known as the ``carbon bloom``. The peak 14 MeV emission occurs at this time, somewhat later than that of the 2.5 MeV neutron peak. The present results give a clear indication that there are no significant departures from classical slowing down and spatial diffusion for tritons in JET plasmas. (authors). 7 refs., 3 figs., 1 tab.
Energy Technology Data Exchange (ETDEWEB)
Garcia-Herranz, N.; Cabellos, O. [Madrid Polytechnic Univ., Dept. of Nuclear Engineering (Spain); Cabellos, O.; Sanz, J. [Madrid Polytechnic Univ., 2 Instituto de Fusion Nuclear (Spain); Sanz, J. [Univ. Nacional Educacion a Distancia, Dept. of Power Engineering, Madrid (Spain)
2005-07-01
We present a new code system which combines the Monte Carlo neutron transport code MCNP-4C and the inventory code ACAB as a suitable tool for high burnup calculations. Our main goal is to show that the system, by means of ACAB capabilities, enables us to assess the impact of neutron cross section uncertainties on the inventory and other inventory-related responses in high burnup applications. The potential impact of nuclear data uncertainties on some response parameters may be large, but only very few codes exist which can treat this effect. In fact, some of the most reported effective code systems in dealing with high burnup problems, such as CASMO-4, MCODE and MONTEBURNS, lack this capability. As first step, the potential of our system, ruling out the uncertainty capability, has been compared with that of those code systems, using a well referenced high burnup pin-cell benchmark exercise. It is proved that the inclusion of ACAB in the system allows to obtain results at least as reliable as those obtained using other inventory codes, such as ORIGEN2. Later on, the uncertainty analysis methodology implemented in ACAB, including both the sensitivity-uncertainty method and the uncertainty analysis by the Monte Carlo technique, is applied to this benchmark problem. We estimate the errors due to activation cross section uncertainties in the prediction of the isotopic content up to the high-burnup spent fuel regime. The most relevant uncertainties are remarked, and some of the most contributing cross sections to those uncertainties are identified. For instance, the most critical reaction for Am{sup 242m} is Am{sup 241}(n,{gamma}-m). At 100 MWd/kg, the cross-section uncertainty of this reaction induces an error of 6.63% on the Am{sup 242m} concentration.The uncertainties in the inventory of fission products reach up to 30%.
International Nuclear Information System (INIS)
We present a new code system which combines the Monte Carlo neutron transport code MCNP-4C and the inventory code ACAB as a suitable tool for high burnup calculations. Our main goal is to show that the system, by means of ACAB capabilities, enables us to assess the impact of neutron cross section uncertainties on the inventory and other inventory-related responses in high burnup applications. The potential impact of nuclear data uncertainties on some response parameters may be large, but only very few codes exist which can treat this effect. In fact, some of the most reported effective code systems in dealing with high burnup problems, such as CASMO-4, MCODE and MONTEBURNS, lack this capability. As first step, the potential of our system, ruling out the uncertainty capability, has been compared with that of those code systems, using a well referenced high burnup pin-cell benchmark exercise. It is proved that the inclusion of ACAB in the system allows to obtain results at least as reliable as those obtained using other inventory codes, such as ORIGEN2. Later on, the uncertainty analysis methodology implemented in ACAB, including both the sensitivity-uncertainty method and the uncertainty analysis by the Monte Carlo technique, is applied to this benchmark problem. We estimate the errors due to activation cross section uncertainties in the prediction of the isotopic content up to the high-burnup spent fuel regime. The most relevant uncertainties are remarked, and some of the most contributing cross sections to those uncertainties are identified. For instance, the most critical reaction for Am242m is Am241(n,γ-m). At 100 MWd/kg, the cross-section uncertainty of this reaction induces an error of 6.63% on the Am242m concentration.The uncertainties in the inventory of fission products reach up to 30%
Excellent Teachers' Perspectives on Excellent Teaching
Keeley, Jared W.; Ismail, Emad; Buskist, William
2016-01-01
Studies of master teaching have investigated a set of qualities that define excellent teaching. However, few studies have investigated master teachers' perspectives on excellent teaching and how it may differ from other faculty or students. The current study investigated award-winning teachers' (N = 50) ratings of the 28 qualities on the teacher…
Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations
Energy Technology Data Exchange (ETDEWEB)
Garcia-Herranz, Nuria [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, UPM (Spain)], E-mail: nuria@din.upm.es; Cabellos, Oscar [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, UPM (Spain); Sanz, Javier [Departamento de Ingenieria Energetica, Universidad Nacional de Educacion a Distancia, UNED (Spain); Juan, Jesus [Laboratorio de Estadistica, Universidad Politecnica de Madrid, UPM (Spain); Kuijper, Jim C. [NRG - Fuels, Actinides and Isotopes Group, Petten (Netherlands)
2008-04-15
Two methodologies to propagate the uncertainties on the nuclide inventory in combined Monte Carlo-spectrum and burn-up calculations are presented, based on sensitivity/uncertainty and random sampling techniques (uncertainty Monte Carlo method). Both enable the assessment of the impact of uncertainties in the nuclear data as well as uncertainties due to the statistical nature of the Monte Carlo neutron transport calculation. The methodologies are implemented in our MCNP-ACAB system, which combines the neutron transport code MCNP-4C and the inventory code ACAB. A high burn-up benchmark problem is used to test the MCNP-ACAB performance in inventory predictions, with no uncertainties. A good agreement is found with the results of other participants. This benchmark problem is also used to assess the impact of nuclear data uncertainties and statistical flux errors in high burn-up applications. A detailed calculation is performed to evaluate the effect of cross-section uncertainties in the inventory prediction, taking into account the temporal evolution of the neutron flux level and spectrum. Very large uncertainties are found at the unusually high burn-up of this exercise (800 MWd/kgHM). To compare the impact of the statistical errors in the calculated flux with respect to the cross uncertainties, a simplified problem is considered, taking a constant neutron flux level and spectrum. It is shown that, provided that the flux statistical deviations in the Monte Carlo transport calculation do not exceed a given value, the effect of the flux errors in the calculated isotopic inventory are negligible (even at very high burn-up) compared to the effect of the large cross-section uncertainties available at present in the data files.
OECD/NEA Burnup Credit Calculational Criticality Benchmark Phase I-B Results
International Nuclear Information System (INIS)
Burnup credit is an ongoing technical concern for many countries that operate commercial nuclear power reactors. In a multinational cooperative effort to resolve burnup credit issues, a Burnup Credit Working Group has been formed under the auspices of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development. This working group has established a set of well-defined calculational benchmarks designed to study significant aspects of burnup credit computational methods. These benchmarks are intended to provide a means for the intercomparison of computer codes, methods, and data applied in spent fuel analysis. The benchmarks have been divided into multiple phases, each phase focusing on a particular feature of burnup credit analysis. This report summarizes the results and findings of the Phase I-B benchmark, which was proposed to provide a comparison of the ability of different code systems and data libraries to perform depletion analysis for the prediction of spent fuel isotopic concentrations. Results included here represent 21 different sets of calculations submitted by 16 different organizations worldwide, and are based on a limited set of nuclides determined to have the most important effect on the neutron multiplication factor of light-water-reactor spent fuel. A comparison of all sets of results demonstrates that most methods are in agreement to within 10% in the ability to estimate the spent fuel concentrations of most actinides. All methods are within 11% agreement about the average for all fission products studied. Furthermore, most deviations are less than 10%, and many are less than 5%. The exceptions are 149Sm, 151Sm, and 155Gd
OECD/NEA burnup credit calculational criticality benchmark Phase I-B results
International Nuclear Information System (INIS)
In most countries, criticality analysis of LWR fuel stored in racks and casks has assumed that the fuel is fresh with the maximum allowable initial enrichment. This assumption has led to the design of widely spaced and/or highly poisoned storage and transport arrays. If credit is assumed for fuel burnup, initial enrichment limitations can be raised in existing systems, and more compact and economical arrays can be designed. Such reliance on the reduced reactivity of spent fuel for criticality control is referred to as burnup credit. The Burnup Credit Working Group, formed under the auspices of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development, has established a set of well-defined calculational benchmarks designed to study significant aspects of burnup credit computational methods. These benchmarks are intended to provide a means for the intercomparison of computer codes, methods, and data applied in spent fuel analysis. The benchmarks have been divided into multiple phases, each phase focusing on a particular feature of burnup credit analysis. This report summarizes the results and findings of the Phase I-B benchmark, which was proposed to provide a comparison of the ability of different code systems and data libraries to perform depletion analysis for the prediction of spent fuel isotopic concentrations. Results included here represent 21 different sets of calculations submitted by 16 different organizations worldwide and are based on a limited set of nuclides determined to have the most important effect on the neutron multiplication factor of light-water-reactor spent fuel. A comparison of all sets of results demonstrates that most methods agree to within 10% in the ability to estimate the spent fuel concentrations of most actinides. All methods agree within 11% about the average for all fission products studied. Most deviations are less than 10%, and many are less than 5%. The exceptions are Sm 149, Sm 151, and Gd 155
Burnup determination and age dating of spent nuclear fuel using noble gas isotopic analysis
International Nuclear Information System (INIS)
During the chopping and dissolving phases of reprocessing, gases (such as tritium, krypton, xenon, iodine, carbon dioxide, nitrogen oxide, and steam) are released. These gases are traditionally transferred to a gas-treatment system for treatment, release, and/or recycle. Because of their chemically inert nature, the xenon and krypton noble gases are generally released directly into the loser atmosphere through the facility's stack. These gases (being fission products) contain information about the fuel being reprocessed and may prove a valuable monitor of reprocessing activities. Two properties of the fuel that may prove valuable from a safeguards standpoint are the fuel burnup and the fuel age (or time since discharge from the reactor). Both can be used to aid in confirming declared activities, and the burnup is generally indicative of the usability of the fuel for fabricating nuclear explosives. A study has been ongoing at Los Alamos National Laboratory to develop a methodology to determine spent-fuel parameters from measured xenon and/or krypton isotopic ratios on-stack at reprocessing facilities. This study has resulted in the generation of the NOVA data analysis code, which links to a comprehensive database of reactor physics parameters (calculated using the Monteburns 3.01 code system). NOVA has been satisfactorily tested for burnup determination of weapons-grade fuel from a US production reactor. Less effort has been spent quantifying NOVA's ability to predict burnup and fuel age for power reactor fuel. The authors describe the results predicted by NOVA for xenon and krypton isotopic ratios measured after the dissolution of spent-fuel samples from the Borssele reactor. The Borssele reactor is a 450-MW(electric) pressurized water reactor (PWR) consisting of 15 x 15 KWU assemblies. The spent-fuel samples analyzed were single fuel rods removed from one assembly and dissolved at the La Hague reprocessing facility. The assembly average burnup was estimated at 32
Development and validation of burnup function in reactor Monte Carlo RMC
International Nuclear Information System (INIS)
This paper presents the burnup calculation capability of RMC, which is a new Monte Carlo (MC) neutron transport code developed by Reactor Engineering Analysis Laboratory (REAL) in Tsinghua University of China. Unlike most of existing MC depletion codes which explicitly couple the depletion module, RMC incorporates ORIGEN 2.1 in an implicit way. Different burn step strategies, including middle-of-step approximation and predictor-corrector method, are adopted by RMC to assure accuracy under large step size. RMC employs a spectrum-based method of tallying one-group cross section, which can considerably save computational time with negligible accuracy loss. According to validation results of benchmarks and examples, it is proved that the burnup function of RMC performs quite well in accuracy and efficiency. (author)
Comparisons of the predicted and measured isotopic composition for high burnup PWR spent fuels
International Nuclear Information System (INIS)
Comparisons between the calculated and measured isotopic composition for high burnup Korean PWR spent fuel samples were carried out. Spent fuel samples used in this study were obtained from commercial Korean PWRs, Ulchin unit 2 and Yonggwang unit 1. A radiochemical analysis of the spent fuel samples was performed to determine the isotopic compositions of U, Pu, and Nd. The depletion calculations which were carried out using the SAS2H control module in Version 5.1 of the SCALE code system were compared with the results of the radiochemical analyses. The results derived from the measured and calculated concentrations for each isotope of the corresponding samples were generally consistent with the earlier studies and the results were different within a few percent. The validity of the SAS2H control module in Version 5.1 of the SCALE code system could be confirmed in a high burnup spent fuel above 45 GWd/MTU
Effect of burnup dependence of fuel cladding gap properties on WWER core characteristics
International Nuclear Information System (INIS)
Dependence of gas gap properties on burnup has been obtained with use of TRANSURANUS code. Implemented dependency on burnup is based on TRANSURANUS calculations of different fuel pins upon different linear power Ql. Obtained dependence was implemented into DYN3D code and results of new dependence effect on characteristics of WWER fuel loadings are presented. The work was performed in framework of orders BMU SR 2511 and BMU R0801504 (SR2611). The report describes the opinion and view of the contractor-State Scientific and Technical Centre on Nuclear and Radiation Safety-and does not necessarily represent the opinion of the ordering party-BMU-BfS/GRS and TUEV SUED. (Authors)
Parametric Study of the Effect of Burnable Poison Rods for PWR Burnup Credit
International Nuclear Information System (INIS)
The Interim Staff Guidance on burnup credit (ISG-8) issued by the United States (U.S.) Nuclear Regulatory Commission's (NRC) Spent Fuel Project Office recommends restricting the use of burnup credit to assemblies that have not used burnable absorbers. This recommended restriction eliminates a large portion of the currently discharged spent fuel assemblies from cask loading, and thus severely limits the practical usefulness of burnup credit. In the absence of readily available information on burnable poison rod (BPR) design specifications and usage in U.S. pressurized water reactors (PWRs), and the subsequent reactivity effect of BPR exposure on discharged spent nuclear fuel (SNF), NRC staff has indicated a need for additional information in these areas. In response, this report presents a parametric study of the effect of BPR exposure on the reactivity of SNF for various BPR designs, fuel enrichments, and exposure conditions, and documents BPR design specifications. Trends in the reactivity effects of BPRs are established with infinite pin-cell and assembly array calculations with the SCALE and HELIOS code packages, respectively. Subsequently, the reactivity effects of BPRs for typical initial enrichment and burnup combinations are quantified based on three-dimensional (3-D) KENO V.a Monte Carlo calculations with a realistic rail-type cask designed for burnup credit. The calculations demonstrate that the positive reactivity effect due to BPR exposure increases nearly linearly with burnup and is dependent on the number, poison loading, and design of the BPRs and the initial fuel enrichment. Expected typical reactivity increases, based on one-cycle BPR exposure, were found to be less than 1% Δk. Based on the presented analysis, guidance is offered on an appropriate approach for calculating bounding SNF isotopic data for assemblies exposed to BPRs. Although the analyses do not address the issue of validation of depletion methods for assembly designs with BPRs, they
Parametric Study of the Effect of Burnable Poison Rods for PWR Burnup Credit
Energy Technology Data Exchange (ETDEWEB)
Wagner, J.C.
2001-09-28
The Interim Staff Guidance on burnup credit (ISG-8) issued by the United States Nuclear Regulatory Commission's (U.S. NRC) Spent Fuel Project Office recommends restricting the use of burnup credit to assemblies that have not used burnable absorbers. This recommended restriction eliminates a large portion of the currently discharged spent fuel assemblies from cask loading, and thus severely limits the practical usefulness of burnup credit. In the absence of readily available information on burnable poison rod (BPR) design specifications and usage in U.S. pressurized-water-reactors (PWRs), and the subsequent reactivity effect of BPR exposure on discharged spent nuclear fuel (SNF), NRC staff has indicated a need for additional information in these areas. In response, this report presents a parametric study of the effect of BPR exposure on the reactivity of SNF for various BPR designs, fuel enrichments, and exposure conditions, and documents BPR design specifications. Trends in the reactivity effects of BPRs are established with infinite pin-cell and assembly array calculations with the SCALE and HELIOS code packages, respectively. Subsequently, the reactivity effects of BPRs for typical initial enrichment and burnup combinations are quantified based on three-dimensional (3-D) KENO V.a Monte Carlo calculations with a realistic rail-type cask designed for burnup credit. The calculations demonstrate that the positive reactivity effect due to BPR exposure increases nearly linearly with burnup and is dependent on the number, poison loading, and design of the BPRs and the initial fuel enrichment. Expected typical reactivity increases, based on one-cycle BPR exposure, were found to be less than 1% {Delta}k. Based on the presented analysis, guidance is offered on an appropriate approach for calculating bounding SNF isotopic data for assemblies exposed to BPRs. Although the analyses do not address the issue of validation of depletion methods for assembly designs with BPRs
The impact of time dependant spectra on fusion blanket burn-up
International Nuclear Information System (INIS)
the EAF2005 database using the FISPACT code. The results show that the difference in nuclide number densities are less then 11% for all nuclides within the database and less than 4% for all fusion relevant nuclides. Using the same methodology as the first model, EUROFER parent and daughter nuclide number densities produced by each neutron spectra are compared. This study found that the change in burn-up for parent nuclides is statistically insignificant. However, the difference in daughter nuclide production is significant, especially for Rh, Ru, Re, Os, Pt and Ir where the differences range from 20% to 504%. Thus, in order to model the metallurgical properties of steels within fusion blankets over time, a multiple transport-burnup depletion code (such as used by FATI, VESTA or MONTEBURNS) must be implemented. The final part of this work studied the effect of time-step interval (used to update neutron spectra) on the tritium self-sufficiency time of a blanket. The FATI depletion code modelled the same geometry as in part 1 of the study, however time-steps ranging from 1 day to approximately 800 days were used to predict when the blanket would cease to be able to breed enough tritium to sustain the fusion reactor. The single time-step model (i.e. where a constant neutron spectrum is used for the entire simulation) underestimated the tritium self-sufficiency time of the blanket by approximately 70%. Only time-steps less than 1 month produce a self-sufficiency time which is within 5% accuracy. Hence, this work suggests that spectra time-stepping is important in the modelling of tritium production with solid breeders
Recognition of Teaching Excellence*
Hammer, Dana; Piascik, Peggy; Medina, Melissa; Pittenger, Amy; Rose, Renee; Creekmore, Freddy; Soltis, Robert; Bouldin, Alicia; Schwarz, Lindsay; Scott, Steven
2010-01-01
The 2008-2009 Task Force for the Recognition of Teaching Excellence was charged by the AACP Council of Faculties Leadership to examine teaching excellence by collecting best practices from colleges and schools of pharmacy, evaluating the literature to identify evidence-based criteria for excellent teaching, and recommending appropriate means to acknowledge and reward teaching excellence. This report defines teaching excellence and discusses a variety of ways to assess it, including student, a...
Depletion of gadolinium burnable poison in a PWR assembly with high burnup fuel
International Nuclear Information System (INIS)
A tendency to increase the discharge burnup of nuclear fuel for Advanced Pressurized Water Reactors (PWR) has been a characteristic of its operation for many years. It will be able to burn at very high burnup of about 70 GWd/t with UO2 fuels. The U-235 enrichment must be higher than 5 %, which leads to the necessity of using an extremely efficient burnable poison like Gadolinium oxide. Using gadolinium isotope is significant due to its particular depletion behavior (''Onion-Skin'' effect). In this paper, the MCNPX2.7 code is used to calculate the important neutronic parameters of the next generation fuels of PWR. K-infinity, local peaking factor and fission rate distributions are calculated for a PWR assembly which burn at very high burnup reaching 70 GWd/t. The calculations are performed using the recently released evaluated Gadolinium cross section data. The results obtained are close to those of a LWR next generation fuel benchmark problem. This demonstrates that the calculation scheme used is able to accurately model a PWR assembly that operates at high burnup values.
Depletion of gadolinium burnable poison in a PWR assembly with high burnup fuel
Energy Technology Data Exchange (ETDEWEB)
Refeat, Riham Mahmoud [Nuclear and Radiological Regulatory Authority (NRRA), Cairo (Egypt). Safety Engineering Dept.
2015-12-15
A tendency to increase the discharge burnup of nuclear fuel for Advanced Pressurized Water Reactors (PWR) has been a characteristic of its operation for many years. It will be able to burn at very high burnup of about 70 GWd/t with UO{sub 2} fuels. The U-235 enrichment must be higher than 5 %, which leads to the necessity of using an extremely efficient burnable poison like Gadolinium oxide. Using gadolinium isotope is significant due to its particular depletion behavior (''Onion-Skin'' effect). In this paper, the MCNPX2.7 code is used to calculate the important neutronic parameters of the next generation fuels of PWR. K-infinity, local peaking factor and fission rate distributions are calculated for a PWR assembly which burn at very high burnup reaching 70 GWd/t. The calculations are performed using the recently released evaluated Gadolinium cross section data. The results obtained are close to those of a LWR next generation fuel benchmark problem. This demonstrates that the calculation scheme used is able to accurately model a PWR assembly that operates at high burnup values.
Specific application of burnup credit for MOX PWR fuels in the rotary dissolver
International Nuclear Information System (INIS)
In prospect of a Mixed OXide spent fuels processing in the rotary dissolver in COGEMA/La Hague plant, it is interesting to quantify the criticality-safety margins from the burnup credit. Using the current production computer codes and considering a minimal fuel irradiation of 3 200 megawatt-day per ton, this paper shows the impact of burnup credit on industrial parameters such as the permissible concentration in the dissolution solution or the permissible oxide mass in the rotary dissolver. Moreover, the burnup credit is broken down into five sequences in order to quantify the contribution of fissile nuclides decrease and of minor actinides and fission products formation. The implementation of the burnup credit in the criticality-safety analysis of the rotary dissolver may lead to workable industrial conditions for the particular MOX fuel studied. It can eventually be noticed that minor actinides contribution is negligible and that considering only the six major fission products is sufficient, owing to the weak fuel irradiation contemplated. (author)
Overview of the burnup credit activities at OECD/NEA/NSC
International Nuclear Information System (INIS)
This article summarizes activities of the OECD/NEA Burnup Credit Expert Panel, a subordinate group to the Working Party on Nuclear Criticality Safety (WPNCS). The WPNCS of the OECD/NEA coordinates and carries out work in the domain of criticality safety at the international level. Particular attention is devoted to establishing sound databases required in this area and to addressing issues of high relevance such as burnup credit. The activities of the expert panel are aimed toward improving safety and identifying economic solutions to issues concerning the back-end of the fuel cycle. The main objective of the activities of the OECD/NEA Burnup Credit Expert Panel is to demonstrate that the available criticality safety calculational tools are appropriate for application to burned fuel systems and that a reasonable safety margin can be established. The method established by the expert panel for investigating the physics and predictability of burnup credit is based on the specification and comparison of calculational benchmark problems. A wide range of fuel types, including PWR, BWR, MOX, and VVER fuels, has been or are being addressed by the expert panel. The objective and status of each of these benchmark problems is reviewed in this article. It is important to note that the focus of the expert panel is the comparison of the results submitted by each participant to assess the capability of commonly used code systems, not to quantify the physical phenomena investigated in the comparisons or to make recommendations for licensing action. (author)
Energy Technology Data Exchange (ETDEWEB)
Ilas, Germina [ORNL; Gauld, Ian C [ORNL
2011-01-01
This report is one of the several recent NUREG/CR reports documenting benchmark-quality radiochemical assay data and the use of the data to validate computer code predictions of isotopic composition for spent nuclear fuel, to establish the uncertainty and bias associated with code predictions. The experimental data analyzed in the current report were acquired from a high-burnup fuel program coordinated by Spanish organizations. The measurements included extensive actinide and fission product data of importance to spent fuel safety applications, including burnup credit, decay heat, and radiation source terms. Six unique spent fuel samples from three uranium oxide fuel rods were analyzed. The fuel rods had a 4.5 wt % {sup 235}U initial enrichment and were irradiated in the Vandellos II pressurized water reactor operated in Spain. The burnups of the fuel samples range from 42 to 78 GWd/MTU. The measurements were used to validate the two-dimensional depletion sequence TRITON in the SCALE computer code system.
Analytical and numerical study of radiation effect up to high burnup in power reactor fuels
International Nuclear Information System (INIS)
In the present work the behavior of fuel pellets for power reactors in the high burnup range (average burnup higher than 50 MWd/kgHM) is analyzed. For extended irradiation periods, a considerable Pu concentration is reached in the pellet periphery (rim zone), that contributes to local burnup, as long as a new microstructure develops, characterized by small grains and large pores as compared with those of the original material. In this region Xe is absent from the solid lattice (although it continues to be dissolved in the rest of the pellet). The porous microstructure in the pellet edge causes local changes in the mechanical and thermal properties, thus affecting the overall fuel behaviour. The evolution of porosity in the high burnup structure (HBS) is assumed to be determinant of the retention capacity of the fission gases released by the matrix. This is the reason why, during the latest years a considerable effort has been devoted to characterizing the parameters that influence porosity. Starting from several works published in the open literature, a model was developed to describe the behaviour and evolution of porosity at local burnup values ranging from 60 to 300 MWd/KgHM. The model is mathematically expressed by a system of non-linear differential equations that take into account the open and closed porosity, the interactions between pores and the free surface and phenomena like pore's coalescence and migration and gas venting. Interactions of different orders between open and closed pores, growth of pores radius by vacancies trapping, the evolution of the pores number density, the internal pressure and over pressure within the pores, the fission gas retained in the matrix and released to the free volume are analyzed. The results of the simulations performed in the present work are in excellent agreement with experimental data available in the open literature and with results calculated by other authors (author)
Investigation and basic evaluation for ultra-high burnup fuel cladding material
International Nuclear Information System (INIS)
In ultra-high burnup of the power reactor, it is an essential problem to develop the cladding with excellent durability. First, development history and approach of the safety assessment of Zircaloy for the high burnup fuel were summarized in the report. Second, the basic evaluation and investigation were carried out on the material with high practicability in order to select the candidate materials for the ultra-high burnup fuel. In addition, the basic research on modification technology of the cladding surface was carried out from the viewpoint of the addition of safety margin as a cladding. From the development history of the zirconium alloy including the Zircaloy, it is hard to estimate the results of in-pile test from those of the conventional corrosion test (out-pile test). Therefore, the development of the new testing technology that can simulate the actual environment and the elucidation of the corrosion-controlling factor of the cladding are desired. In cases of RIA (Reactivity Initiated Accident) and LOCA (Loss of Coolant Accident), it seems that the loss of ductility in zirconium alloys under heavy irradiation and boiling of high temperature water restricts the extension of fuel burnup. From preliminary evaluation on the high corrosion-resistance materials (austenitic stainless steel, iron or nickel base superalloys, titanium alloy, niobium alloy, vanadium alloy and ferritic stainless steel), stabilized austenitic stainless steels with a capability of future improvement and high-purity niobium alloys with a expectation of the good corrosion resistance were selected as candidate materials of ultra-high burnup cladding. (author)
Fission product margin in burnup credit analyses
International Nuclear Information System (INIS)
The US Department of Energy (DOE) is currently working toward the licensing of a methodology for using actinide-only burnup credit for the transportation of spent nuclear fuel (SNF). Important margins are built into this methodology. By using comparisons with a representative experimental database to determine bias factors, the methodology ensures that actinide concentrations and worths are estimated conservatively; furthermore, the negative net reactivity of certain actinides and all fission products (FPs) is not taken into account, thus providing additional margin. A future step of DOE's effort might aim at establishing an actinide and FP burnup credit methodology. The objective of this work is to establish the uncertainty to be applied to the total FP worth in SNF. This will serve two ends. First, it will support the current actinide-only methodology by demonstrating the margin available from FPs. Second, it will identify the major contributions to the uncertainty and help set priorities for future work
International Nuclear Information System (INIS)
The authors approach theoretical treatment of isotopic composition changement for nuclear fuel in nuclear reactors. They show the difficulty of exhaustive treatment of burn-up problems and introduce the principal simplifying principles. Due to these principles they write and solve analytically the evolution equations of the concentration for the principal nuclides both in the case of fast and thermal reactors. Finally, they expose and comment the results obtained in the case of a power fast reactor. (author)
Compressive creep of simulated burnup fuel
International Nuclear Information System (INIS)
In order to study the nitride fuel mechanical properties, we measured the compressive steady state creep rates of uranium mononitride (UN) and UN containing neodymium which was simulated burnup fuel. The stress exponent n'' and the apparent activation energy ''Q'' of the creep rate were determined in the range of 27.5 ≤ σ ≤ 200.0 MPa and 950 ≤ T ≤ 1500 degC. (author)
Application of a burnup verification meter to actinide-only burnup credit for spent PWR fuel
International Nuclear Information System (INIS)
A measurement system to verify reactor records for burnup of spent fuel at pressurized water reactors (PWR) has been developed by Sandia National Laboratories and tested at US nuclear utility sites. The system makes use of the Fork detector designed at Los Alamos National Laboratory for the safeguards program of the International Atomic Energy Agency. A single-point measurement of the neutrons and gamma- rays emitted from a PWR assembly is made at the center plane of the assembly while it is partially raised from its rack in the spent fuel pool. The objective of the measurements is to determine the variation in burnup assignments among a group of assemblies, and to identify anomalous assemblies that might adversely affect nuclear criticality safety. The measurements also provide an internal consistency check for reactor records of cooling time and initial enrichment. The burnup verification system has been proposed for qualifying spent fuel assemblies for loading into containers designed using burnup credit techniques. The system is incorporated in the US Department of Energy's.''Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages'' [DOE/RW 19951
OECD/NEA Burnup Credit Criticality Benchmark
International Nuclear Information System (INIS)
The report describes the final result of the phase-1A of the Burnup Credit Criticality Benchmark conducted by OECD/NEA. The phase-1A benchmark problem is an infinite array of a simple PWR spent fuel rod. The analysis has been performed for the PWR spent fuels of 30 and 40 GWd/t after 1 and 5 years of cooling time. In total, 25 results from 19 institutes of 11 countries have been submitted. For the nuclides in spent fuel, 7 major actinides and 15 major fission products (FP) are selected for the benchmark calculation. In the case of 30 GWd/t burnup, it is found that the major actinides and the major FPs contribute more than 50% and 30% of the total reactivity loss due to burnup, respectively. Therefore, more than 80% of the reactivity loss can be covered by 22 nuclides. However, the larger deviation among the reactivity losses by participants has been found for cases including EPs than the cases with only actinides, indicating the existence of relatively large uncertainties in FP cross sections. The large deviation seen also in the case of the fresh fuel has been found to reduce sufficiently by replacing the cross section library from ENDF-B/IV with that from ENDF-B/V and taking the known bias of MONK6 into account. (author)
High burnup effects in WWER fuel rods
Energy Technology Data Exchange (ETDEWEB)
Smirnov, V.; Smirnov, A. [RRC Research Institute of Atomic Reactors, Dimitrovqrad (Russian Federation)
1996-03-01
Since 1987 at the Research Institute of Atomic Reactors, the examinations of the WWER spent fuel assemblies has been carried out. These investigations are aimed to gain information on WWER spent fuel conditions in order to validate the fuel assemblies use during the 3 and 4 year fuel cycle in the WWER-440 and WWER-1000 units. At present time, the aim is to reach an average fuel burnup of 55 MWd/kgU. According to this aim, a new investigation program on the WWER spent fuel elements is started. The main objectives of this program are to study the high burnup effects and their influence on the WWER fuel properties. This paper presented the main statistical values of the WWER-440 and WWER-1000 reactors` fuel assemblies and their fragment parameters. Average burnup of fuel in the investigated fuel assemblies was in the range of 13 to 49.7 MWd/kgU. In this case, the numer of fuel cycles was from 1 to 4 during operation of the fuel assemblies.
International Nuclear Information System (INIS)
The Carmen code (theory and user's manual) is described. This code for assembly and core calculations uses diffusion theory (Citation), with feedback in the cross sections by zone due to the effects of burnup, water density, fuel temperature, Xenon and Samarium. The burnup calculation of a full cycle is solved in only an execution of Carmen, and in a reduced computer time. (auth.)
International Nuclear Information System (INIS)
The on-site wet-type spent fuel storage facility ISF-1 is currently used for interim storage of spent nuclear fuel removed from Chernobyl NPP power units. The results of ISF-1 preliminary criticality analyses demonstrated the need for using the burnup credit principle in nuclear safety analysis. This paper provides results from the selection and testing of computer codes for determining the isotopic composition of RBMK spent fuel. Assessment is carried out and conclusions are made on conservative approaches to fuel burnup credit in subsequent ISF-1 safety assessment. (author)
Accelerator-driven transmutation reactor analysis code system (ATRAS)
Energy Technology Data Exchange (ETDEWEB)
Sasa, Toshinobu; Tsujimoto, Kazufumi; Takizuka, Takakazu; Takano, Hideki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1999-03-01
JAERI is proceeding a design study of the hybrid type minor actinide transmutation system which mainly consist of an intense proton accelerator and a fast subcritical core. Neutronics and burnup characteristics of the accelerator-driven system is important from a view point of the maintenance of subcriticality and energy balance during the system operation. To determine those characteristics accurately, it is necessary to involve reactions at high-energy region, which are not treated on ordinary reactor analysis codes. The authors developed a code system named ATRAS to analyze the neutronics and burnup characteristics of accelerator-driven subcritical reactor systems. ATRAS has a function of burnup analysis taking account of the effect of spallation neutron source. ATRAS consists of a spallation analysis code, a neutron transport codes and a burnup analysis code. Utility programs for fuel exchange, pre-processing and post-processing are also incorporated. (author)
Accelerator-driven transmutation reactor analysis code system (ATRAS)
International Nuclear Information System (INIS)
JAERI is proceeding a design study of the hybrid type minor actinide transmutation system which mainly consist of an intense proton accelerator and a fast subcritical core. Neutronics and burnup characteristics of the accelerator-driven system is important from a view point of the maintenance of subcriticality and energy balance during the system operation. To determine those characteristics accurately, it is necessary to involve reactions at high-energy region, which are not treated on ordinary reactor analysis codes. The authors developed a code system named ATRAS to analyze the neutronics and burnup characteristics of accelerator-driven subcritical reactor systems. ATRAS has a function of burnup analysis taking account of the effect of spallation neutron source. ATRAS consists of a spallation analysis code, a neutron transport codes and a burnup analysis code. Utility programs for fuel exchange, pre-processing and post-processing are also incorporated. (author)
Status of burnup credit for transport of SNF in the United States
International Nuclear Information System (INIS)
Allowing credit for the reduction in reactivity associated with fuel depletion can enable more cost-effective, higher-density storage, transportation, and disposal of spent nuclear fuel (SNF) while maintaining a subcritical margin sufficient to establish an adequate safety basis. This paper reviews the current status of burnup credit applied to the design and transport of SNF casks in the United States. The existing U.S. regulatory guidance on burnup credit is limited to pressurized-water-reactor (PWR) fuel and to allowing credit only for actinides in the SNF. By comparing loading curves against actual SNF discharge data for U.S. reactors, the potential benefits that can be realized using the current regulatory guidance with actinide-only burnup credit are illustrated in terms of the inventory allowed in high-capacity casks and the concurrent reduction in SNF shipments. The additional benefits that might be realized by extending burnup credit to credit for select fission products are also illustrated. The curves show that, although fission products in SNF provide a small decrease in reactivity compared with actinides, the additional negative reactivity causes the SNF inventory acceptable for transportation to increase from roughly 30% to approximately 90% when fission products are considered. A savings of approximately $150M in transport costs can potentially be realized for the planned inventory of the repository. Given appropriate experimental data to support code validation, a realistic best-estimate analysis of burnup credit that includes validated credit for fission products is the enhancement that will yield the most significant impact on future transportation plans
Benefits of the delta K of depletion benchmarks for burnup credit validation
International Nuclear Information System (INIS)
Pressurized Water Reactor (PWR) burnup credit validation is demonstrated using the benchmarks for quantifying fuel reactivity decrements, published as 'Benchmarks for Quantifying Fuel Reactivity Depletion Uncertainty,' EPRI Report 1022909 (August 2011). This demonstration uses the depletion module TRITON available in the SCALE 6.1 code system followed by criticality calculations using KENO-Va. The difference between the predicted depletion reactivity and the benchmark's depletion reactivity is a bias for the criticality calculations. The uncertainty in the benchmarks is the depletion reactivity uncertainty. This depletion bias and uncertainty is used with the bias and uncertainty from fresh UO2 critical experiments to determine the criticality safety limits on the neutron multiplication factor, keff. The analysis shows that SCALE 6.1 with the ENDF/B-VII 238-group cross section library supports the use of a depletion bias of only 0.0015 in delta k if cooling is ignored and 0.0025 if cooling is credited. The uncertainty in the depletion bias is 0.0064. Reliance on the ENDF/B V cross section library produces much larger disagreement with the benchmarks. The analysis covers numerous combinations of depletion and criticality options. In all cases, the historical uncertainty of 5% of the delta k of depletion ('Kopp memo') was shown to be conservative for fuel with more than 30 GWD/MTU burnup. Since this historically assumed burnup uncertainty is not a function of burnup, the Kopp memo's recommended bias and uncertainty may be exceeded at low burnups, but its absolute magnitude is small. (authors)
Energy Technology Data Exchange (ETDEWEB)
Gauld, I. C.; Parks, C. V.
2000-12-11
This report has been prepared to review the technical issues important to the prediction of isotopic compositions and source terms for high-burnup, light-water-reactor (LWR) fuel as utilized in the licensing of spent fuel transport and storage systems. The current trend towards higher initial ^{235}U enrichments, more complex assembly designs, and more efficient fuel management schemes has resulted in higher spent fuel burnups than seen in the past. This trend has led to a situation where high-burnup assemblies from operating LWRs now extend beyond the area where available experimental data can be used to validate the computational methods employed to calculate spent fuel inventories and source terms. This report provides a brief review of currently available validation data, including isotopic assays, decay heat measurements, and shielded dose-rate measurements. Potential new sources of experimental data available in the near term are identified. A review of the background issues important to isotopic predictions and some of the perceived technical challenges that high-burnup fuel presents to the current computational methods are discussed. Based on the review, the phenomena that need to be investigated further and the technical issues that require resolution are presented. The methods and data development that may be required to address the possible shortcomings of physics and depletion methods in the high-burnup and high-enrichment regime are also discussed. Finally, a sensitivity analysis methodology is presented. This methodology is currently being investigated at the Oak Ridge National Laboratory as a computational tool to better understand the changing relative significance of the underlying nuclear data in the different enrichment and burnup regimes and to identify the processes that are dominant in the high-burnup regime. The potential application of the sensitivity analysis methodology to help establish a range of applicability for experimental
The dependence of the global neutronic parameters on the fuel burnup for CANDU SEU43 core
Energy Technology Data Exchange (ETDEWEB)
Balaceanu, V. [Institute for Nuclear Research, Pitesti (Romania); Pavelescu, M. [Academy of Romanian Scientists, Bucharest (Romania)
2010-05-15
In order to reduce the total fuel costs for the CANDU reactors, mainly by extending the fuel burnup limits, some fuel bundle concepts have been developed in different CANDU owner countries. Therefore, in our Institute the SEU43 (Slightly Enriched Uranium with 43 fuel elements) project was started in early '90s. The neutronic behavior analysis of the CANDU core with SEU43 fuel was an important step in our project design. The objective of this paper is to highline an analysis of the neutronic behavior of the CANDU SEU43 core with the fuel burnup. More exactly, the study refers to the dependence of some global neutronic parameters, mainly the reactivity, on the fuel burnup. Two types of CANDU core were taken into consideration: reference core (without any reactivity devices) and perturbed core (with a strong reactivity system inserted). The considered reactivity system is the Mechanical Control Absorber (MCA) one. The performed parameters are: k{sub eff.} values, the MCA reactivity worth and flux distributions. The fuel bundles in the core are SEU43, with the fuel enrichment in U{sup 235} of 0.96% and at nominal power. For the fuel burnup the values are: 0.00 GWd/tU (fresh fuel); 8.00 GWd/tU and 25.00 GWd/tU. For reaching this objective, a global neutronic calculation system named WIMSPIJXYZ LEGENTR is used. Starting from a 69-groups ENDF/B-V based library, this system uses three transport codes: (1) the standard lattice-cell code WIMS, for generating macroscopic cross sections in supercell option and also for burnup calculations; (2) the PIJXYZ code for 3D simulation of the MCA reactivity devices and the 3D correction of the macroscopic cross sections; (3) the LEGENTR 3D transport code for estimating global neutronic parameters (CANDU core). The analysis of the neutronic parameters consists of comparing the obtained results with the similar results calculated with the DRAGON and DIREN codes. This comparison shows a good agreement between these results. (orig.)
Bringing Excellence to Automotive
Večeřa, Pavel; Paulová, Iveta
2012-12-01
Market situation and development in recent years shows, that organization's ability to meet customer requirements is not enough. Successful organizations are able to exceed the expectations of all stakeholders. They are building their excellence systematically. Our contribution basically how the excellence in automotive is created using EFQM Excellence Model in Total Quality Management.
Implementation of burnup credit in spent fuel management systems
International Nuclear Information System (INIS)
Improved calculational methods allow one to take credit for the reactivity reduction associated with fuel burnup. This means reducing the analysis conservatism while maintaining an adequate safety margin. The motivation for using burnup credit in criticality safety applications is based on economic considerations and additional benefits contributing to public health and safety and resource conservation. Interest in the implementation of burnup credit has been shown by many countries. In 1997, the International Atomic Energy Agency (IAEA) started a task to monitor the implementation of burnup credit in spent fuel management systems, to provide a forum to exchange information, to discuss the matter and to gather and disseminate information on the status of national practices of burnup credit implementation in the Member States. The task addresses current and future aspects of burnup credit. This task was continued during the following years. (author)
Use of burnup credit in criticality safety design analysis of spent fuel storage systems
International Nuclear Information System (INIS)
temperature and density, presence of soluble boron in the core (PWR), use of fixed neutron absorbers (control rods, burnable poison rods, axial power shaping rods), use of integral burnable absorbers (gadolinium or erbium bearing fuel rods, IFBA rods). It will be shown how a bounding approach can be obtained for the impact of these parameters on the reactivity of the storage system. The criticality calculation procedure consists in the following main steps: Isotopic selection and validation; Validation of the criticality calculation code applied; Sensitivity studies on the reactivity effects of axial and horizontal burnup profiles of fuel assemblies; Determination of the criticality acceptance criterion (maximum allowable neutron multiplication factor including the impacts of all the mechanical and calculational uncertainties) and determination of the loading curve. The fundamentals of isotopic selection will be defined, and a survey of the benchmark experiments available for isotopic validation and validation of the criticality calculation code applied will be given. Since the parameters and conditions characterizing the benchmark experiments are usually different from the parameters and conditions describing the spent fuel storage system of interest, a method of checking the applicability of such experiments to the storage system will be briefly described. This method bases the applicability on the similarity of sensitivity coefficients which are defined for the underlying nuclear data characterizing the isotopic compositions and their effect on the spent fuel reactivity. The fact that the axial burnup distribution in a fuel assembly is non-uniform must be considered in the analysis of the storage system. The difference between the system's neutron multiplication factor obtained by using an axially varying burnup profile and the system's neutron multiplication factor obtained by assuming a uniform distribution of the averaged burnup of this profile is known as the 'end
International Nuclear Information System (INIS)
The fuel burn-up is an important parameter needed to be monitored and determined during a reactor operation and fuel management. The fuel burn-up can be calculated using computer codes and experimentally measured. This work presents the theory and experimental method applied to determine the burn-up of the irradiated and 36% enriched VVR-M2 fuel type assemblies of Dalat reactor. The method is based on measurement of Cs-137 absolute specific activity using gamma spectrometer. Designed measuring system consists of a collimator tube, high purity Germanium detector (HPGe) and associated electronics modules and online computer data acquisition system. The obtained results of measurement are comparable with theoretically calculated results. (author)
Calculation of the CB1 burnup credit benchmark reaction rates with MCNP4B
International Nuclear Information System (INIS)
The first calculational VVER-440 burnup credit benchmark CB1 in 1996. VTT Energy participated in the calculation of the CB1 benchmark with three different codes: CASMO-4, KENO-VI and MCNP4B. However, the reaction rates and the fission ν were calculated only with CASMO-4. Now, the neutron absorption and production reaction rates and the fission ν values have been calculated at VTT Energy with the MCNP4B Monte Carlo code using the ENDF60 neutron data library. (author)
The US department of energy's transportation burnup credit program
International Nuclear Information System (INIS)
Aspects of the U. S. Department of Energy's (DOE's) transportation burnup credit program, the Department's motivation for conducting the program, and the status of burnup credit activities are presented. The benefits, technical, and regulatory considerations associated with using burnup credit for transport of irradiated nuclear fuel are discussed. The methods used in the DOE's actinide-only topical report are described in terms of the technical and regulatory issues. (authors)
Marmel, Elaine
2010-01-01
The complete visual reference on Excel basics. Aimed at visual learners who are seeking an all-in-one reference that provides in-depth coveage of Excel from a visual viewpoint, this resource delves into all the newest features of Excel 2010. You'll explore Excel with helpful step-by-step instructions that show you, rather than tell you, how to navigate Excel, work with PivotTables and PivotCharts, use macros to streamline work, and collaborate with other users in one document.: This two-color guide features screen shots with specific, numbered instructions so you can learn the actions you need
Walkenbach, John
2013-01-01
Maximize the power of Excel 2013 formulas with this must-have Excel reference John Walkenbach, known as ""Mr. Spreadsheet,"" is a master at deciphering complex technical topics and Excel formulas are no exception. This fully updated book delivers more than 800 pages of Excel 2013 tips, tricks, and techniques for creating formulas that calculate, developing custom worksheet functions with VBA, debugging formulas, and much more. Demonstrates how to use all the latest features in Excel 2013 Shows how to create financial formulas and tap into the power of array formulas
Katz, Abbott
2011-01-01
Get the most out of Excel 2010 with Excel 2010 Made Simple - learn the key features, understand what's new, and utilize dozens of time-saving tips and tricks to get your job done. Over 500 screen visuals and clear-cut instructions guide you through the features of Excel 2010, from formulas and charts to navigating around a worksheet and understanding Visual Basic for Applications (VBA) and macros. Excel 2010 Made Simple takes a practical and highly effective approach to using Excel 2010, showing you the best way to complete your most common spreadsheet tasks. You'll learn how to input, format,
Alexander, Michael
2010-01-01
The go to resource for how to use Excel dashboards and reports to better conceptualize data. Many Excel books do an adequate job of discussing the individual functions and tools that can be used to create an "Excel Report." What they don't offer is the most effective ways to present and report data. Offering a comprehensive review of a wide array of technical and analytical concepts, Excel Reports and Dashboards helps Excel users go from reporting data with simple tables full of dull numbers, to presenting key information through the use of high-impact, meaningful reports and dashboards that w
International Nuclear Information System (INIS)
For the purpose of enhancing the efficiency of the burnup calculation of LWR lattice, two coarse time-step integration methods have been developed, both of which are to be used in combination with the ordinary Runge-Kutta-Gill method. It has been ensured through the numerical results of model problems simulating the depletion of 157Gd in a gadolinium-poisoned rod that the maximum time-step size allowed by the proposed methods is roughly 4 or 5 times larger than that achieved by the Predictor-Corrector method known as an effective coarse time-step method, and consequently that the proposed methods would reduce the computation time to a half or less when applied to an LWR lattice burnup calculation. The factor of reduction of computation time is still more significant if compared with other conventional methods such as the Runge-Kutta-Gill method etc. In addition, it has been demonstrated through their application to the LWR lattice physics code TGBLA that no appreciable error is observed over the range of time-step size up to 1GWd/t in the burnup calculation for a typical BWR lattice containing gadolinium-poisoned rods. Although the method development and verification presented here place emphasis on the cases of LWR lattice burnup, it is expected that the proposed methods would be applicable equally well to general problems dealing with the nuclide transmutation due to burnup. (author)
Core burnup characteristics of high conversion light water reactor, (1)
International Nuclear Information System (INIS)
In order to evaluate core burnup characteristics of a high conversion light water reactor (HCLWR) with tight pitched lattice, core burnup calculation was made using two dimensional diffusion method. The volume ratio of moderator to fuel is about 0.8 in the reactor (HCLWR-J1) under study. The burnup calculations were carried out under the assumption of three batch and out-in fuel loading from the first cycle to the equilibrium cycle. A detailed evaluation was made for discharge burnup, conversion ratio, power distribution, and reactivity coefficients and so on. (author)
International Nuclear Information System (INIS)
The non-destructive gamma-spectrometric method (HRGS) and the passive neutron technique (PNT) were applied to the determination of WWER 440 reactor spent fuel assemblies burn-up for safeguard purposes. Rapid codes FISPR-2 and BUNECO were compiled on HP-85 and OLIVETTI M24 computers for the IAEA inspectors. An improved equipment was constructed and tested for the fixation of the ''fork detector''. Measurements were carried-out at 1st unit of NPP Bohunice. The correlation between burn-up and fission product ratio 134Cs/137Cs or neutron count rate were analysed. Correlations between concentrations 235U, Pu and burn-up were analysed as well. A simplified procedure for assemblies burn-up check by PNT was proposed for the inspectors. Refs, figs and tabs
Microstructural Modeling of Thermal Conductivity of High Burn-up Mixed Oxide Fuel
International Nuclear Information System (INIS)
Predicting the thermal conductivity of oxide fuels as a function of burn-up and temperature is fundamental to the efficient and safe operation of nuclear reactors. However, modeling the thermal conductivity of fuel is greatly complicated by the radially inhomogeneous nature of irradiated fuel in both composition and microstructure. In this work, radially and temperature-dependent models for effective thermal conductivity were developed utilizing optical micrographs of high burn-up mixed oxide fuel. The micrographs were employed to create finite element meshes with the OOF2 software. The meshes were then used to calculate the effective thermal conductivity of the microstructures using the BISON fuel performance code. The new thermal conductivity models were used to calculate thermal profiles at end of life for the fuel pellets. These results were compared to thermal conductivity models from the literature, and comparison between the new finite element-based thermal conductivity model and the Duriez-Lucuta model was favorable
Extended Burnup Impact on the TN24 Spent Fuel Storage Cask Main Parameters
International Nuclear Information System (INIS)
In order to establish the capability of the TN24 cask for storage of spent fuel assemblies which are beyond the limits given by the manufacturer, a calculations of the dose and heat decay have been made for several cases of burnup higher than 35 GWd/MTU, using the SCALE 4.2 code package. The results were compared with the data obtained from the manufacturer. According to the results of the ORIGEN and SAS4 calculations and taking into the account limitations of the used model, it is possible to estimate that for 50 GWd/MTU burnup at least 15 years cooling time period is necessary to allow the use of TN24 cask. (author)
Radiochemical analysis of nuclear fuel burn-up and spent fuel key nuclides
International Nuclear Information System (INIS)
Destructive radiochemical analysis of spent nuclear fuels is an important tool to determine burn-up with high accuracy and to better understand the process of depletion and formation of actinides and fission products during irradiation as a result of fission and successive neutron capture. The resulting isotope inventories and nuclear databases that are created, are of high importance to evaluate the performance of nuclear fuels in a reactor, to evaluate computer codes applied for a safe transport, storage and disposal/reprocessing of spent fuels and to safeguard fissile material. The objective is to provide chemical and radiochemical analyses procedures for an accurate determination of isotopic compositions and concentrations of actinides and fission products in different types of industrial (UO2, MOX) and experimental nuclear fuels (UAlx, U3Si2, UMo, ...). For a burn-up determination program typically 21 actinides and fission products are analyzed. For an extended characterization program this can increase to up to approximately 50 isotopes
A comparative study of MONTEBURNS and MCNPX 2.6.0 codes in ADS simulations
International Nuclear Information System (INIS)
The possible use of the MONTEBURNS and MCNPX 2.6.0 codes in Accelerator-driven systems (ADSs) simulations for fuel evolution description is discussed. ADSs are investigated for fuel breeding and long-lived fission product transmutation so simulations of fuel evolution have a great relevance. The burnup/depletion capability is present in both studied codes. MONTEBURNS code links Monte Carlo N-Particle Transport Code (MCNP) to the radioactive decay burnup code ORIGEN2, whereas MCNPX depletion/ burnup capability is a linked process involving steady-state flux calculations by MCNPX and nuclide depletion calculations by CINDER90. A lead-cooled accelerator-driven system fueled with thorium was simulated and the results obtained using MONTEBURNS code and the results from MCNPX 2.6.0 code were compared. The system criticality and the variation of the actinide inventory during the burnup were evaluated and the results indicate a similar behavior between the results of each code. (author)
Burnup measurements of leader fuel elements
International Nuclear Information System (INIS)
Some time ago the CCHEN authorities decided to produce a set of 50 low enrichment fuel elements. These elements were produced in the PEC (Fuel Elements Plant), located at CCHEN offices in Lo Aguirre. These new fuel elements have basically the same geometrical characteristics of previous ones, which were British and made with raw material from the U.S. The principal differences between our fuel elements and the British ones is the density of fissile material, U-235, which was increased to compensate the reduction in enrichment. Last year, the Fuel Elements Plant (PEC) delivered the shipment's first four (4) fuel elements, called leaders, to the RECH1. A test element was delivered too, and the complete set was introduced into the reactor's nucleus, following the normal routine, but performing a special follow-up on their behavior inside the nucleus. This experimental element has only one outside fuel plate, and the remaining (15) structural plates are aluminum. In order to study the burnup, the test element was taken out of the nucleus, in mid- November 1999, and left to decay until June 2000, when it was moved to the laboratory (High Activity Cell), to start the burnup measurements, with a gamma spectroscopy system. This work aims to show the results of these measurements and in addition to meet the following objectives: (a) Visual test of the plate's general condition; (b) Sipping test of fission products; (c) Study of burn-up distribution in the plate; (d) Check and improve the calculus algorithm; (e) Comparison of the results obtained from the spectroscopy with the ones from neutron calculus
FUMEX-III: A New IAEA Coordinated Research Project on Fuel Modelling at Extended Burnup
International Nuclear Information System (INIS)
The International Atomic Energy Agency has initiated a new a Coordinated Research Project on Fuel Modelling at Extended Burnup (FUMEX-III). Currently, thirty one fuel modelling groups are participating with the intention of improving their capabilities to understand and predict the behaviour of water reactor fuel at high burnups. The exercise is carried in coordination with the OECD/NEA. The participants will model test cases provided by from sources such as the Halden Reactor Project and commercial irradiations and tests from the participants themselves. It is also intended to utilise idealised cases to test model behaviour under high burnup conditions. All cases are maintained in the OECD International Fuel Performance Experimental (IFPE) Database. The participants are particularly interested in modelling transient behaviour and mechanical interactions between pellet and cladding, including severe transient behaviour (RIA/LOCA) as well as temperature and fission gas release. However the participants include newcomer teams as well as state-of-the-art code users and have differing needs depending on the reactor system that they are modelling (PHWR, PWR, BWR, WWER) and the level of code development and experience that they have, so a matrix of test cases has been developed to allow each team to test their codes and methods appropriately. Some codes (eg TRANSURANUS and FEMAXI) are being used by several teams, both developing models and code user expertise. This paper summarises the objectives of the participants, the matrix of test cases that has been made available to the participants and some additional cases that are being prepared for inclusion in the later stages of the Project. (authors)
Methodology for the Weapons-Grade MOX Fuel Burnup Analysis in the Advanced Test Reactor
International Nuclear Information System (INIS)
A UNIX BASH (Bourne Again SHell) script CMO has been written and validated at the Idaho National Laboratory (INL) to couple the Monte Carlo transport code MCNP with the depletion and buildup code ORIGEN-2 (CMO). The new Monte Carlo burnup analysis methodology in this paper consists of MCNP coupling through CMO with ORIGEN-2, and is therefore called the MCWO. MCWO is a fully automated tool that links the Monte Carlo transport code MCNP with the radioactive decay and burnup code ORIGEN-2. MCWO is capable of handling a large number of fuel burnup and material loading specifications, Advanced Test Reactor (ATR) lobe powers, and irradiation time intervals. MCWO processes user input that specifies the system geometry, initial material compositions, feed/removal specifications, and other code-specific parameters. Calculated results from MCNP, ORIGEN-2, and data process module calculations are output in succession as MCWO executes. The principal function of MCWO is to transfer one-group cross-section and flux values from MCNP to ORIGEN-2, and then transfer the resulting material compositions (after irradiation and/or decay) from ORIGEN-2 back to MCNP in a repeated, cyclic fashion. The basic requirements of MCWO are a working MCNP input file and some additional input parameters; all interaction with ORIGEN-2 as well as other calculations are performed by CMO. This paper presents the MCWO-calculated results for the Reduced Enrichment Research and Test Reactor (RERTR) experiments RERTR-1 and RERTR-2 as well as the Weapons-Grade Mixed Oxide (WG-MOX) fuel testing in ATR. Calculations performed for the WG-MOX test irradiation, which is managed by the Oak Ridge National Laboratory (ORNL), supports the DOE Fissile Materials Disposition Program (FMDP). The MCWO-calculated results are compared with measured data
Numerical study of fuel–clad mechanical interaction during long-term burnup of WWER1000
International Nuclear Information System (INIS)
Highlights: • The fuel–clad mechanical interaction during long-term burnup in PWRs is studied. • Thermo-mechanical responses regarding creep, swelling, etc. are considered. • The FEM is implied to the algorithm that is based on principle of virtual work. • The results for AP1000 and WWER1000 are compromised against experimental data. • The 1200 days (50.8 MWd/kgU) is estimated for mechanical FCI in the BNPP. - Abstract: Thermo-mechanical behavior of fuel rod is of great importance for safety assessment of nuclear reactors. This paper deals essentially with the mechanical description of pressurized water reactor (PWR) fuel rods under long-term burnups. The main goal of the work is generation of a numerical code for study of pellet–cladding interaction (PCI) as long-term phenomena in Bushehr nuclear power plant (BNPP). In this way, a basic modeling hypothesis with particular attention being paid to the numerical treatment of stress relaxation and interaction of fuel swelling and clad creep down have been implemented. In this model, the mechanical equilibrium equations are integrated on principle of virtual work with generalized plane strain assumption and the numerical algorithm is based on finite element method. Afterward, the generated code, IR-FRA (Iranian Fuel Rod Analysis), is developed for long-term behavior study of fuel rods. For validating the IR-FRA code, the pellet–cladding interaction results in some test cases are compared with the FROBA, BISON codes and experimental data. These comparisons demonstrated the accuracy and capability of the presented code for prediction of fuel rods thermo-mechanical behavior. Eventually, the fuel and cladding mechanical interaction during long-term burnup of WWER1000 for the BNPP is simulated and results show good agreement with experimental and published data
Fuel burnup monitor for nuclear reactors
International Nuclear Information System (INIS)
An in-service detector is designed using the principle of comparing temperatures in the fuel element and in the detector material. The detector consists of 3 metallic heat conductors insulated with ceramic insulators, two of them with uranium fuel spheres at the end. One sphere is coated with zirconium, the other with zirconium and gold. The precision of measurement of the degree of fuel burnup depends on the precision of the measurement of temperature and is determined from the difference in temperature gradients of the two uranium fuel spheres in the detector. (M.D.)
Burn-up credit in criticality safety of PWR spent fuel
International Nuclear Information System (INIS)
Highlights: • Designing spent fuel wet storage using WIMS-5D and MCNP-5 code. • Studying fresh and burned fuel with/out absorber like “B4C and Ag–In–Cd” in racks. • Sub-criticality was confirmed for fresh and burned fuel under specific cases. • Studies for BU credit recommend increasing fuel burn-up to 60.0 GWD/MTU. • Those studies require new core structure materials, fuel composition and cladding. - Abstract: The criticality safety calculations were performed for a proposed design of a wet spent fuel storage pool. This pool will be used for the storage of spent fuel discharged from a typical pressurized water reactor (PWR). The mathematical model based on the international validated codes, WIMS-5 and MCNP-5 were used for calculating the effective multiplication factor, keff, for the spent fuel stored in the pool. The data library for the multi-group neutron microscopic cross-sections was used for the cell calculations. The keff was calculated for several changes in water density, water level, assembly pitch and burn-up with different initial fuel enrichment and new types and amounts of fixed absorbers. Also, keff was calculated for the conservative fresh fuel case. The results of the calculations confirmed that the effective multiplication factor for the spent fuel storage is sub-critical for all normal and abnormal states. The future strategy for the burn-up credit recommends increasing the fuel burn-up to a value >60.0 GWD/MTU, which requires new fuel composition and new fuel cladding material with the assessment of the effects of negative reactivity build up
Walkenbach, John
2010-01-01
A comprehensive reference to the newest version of the world's most popular spreadsheet application: Excel 2010 John Walkenbach's name is synonymous with excellence in computer books that decipher complex technical topics. Known as ""Mr. Spreadsheet,"" Walkenbach shows you how to maximize the power of all the new features of Excel 2010. An authoritative reference, this perennial bestseller proves itself indispensable no matter your level of skill, from Excel beginners and intermediate users to power users and potential power users everywhere. Fully updated for the new release, this
Determination of research reactor fuel burnup
International Nuclear Information System (INIS)
This report was prepared by a Consultants Group which met during 12-15 June 1989 at the Jozef Stefan Institute, Yugoslavia, and during 11-13 July 1990 at the IAEA Headquarters in Vienna, Austria, with subsequent contributions from the Consultants. The report is intended to provide information to research reactor operators and managers on the different, most commonly used methods of determining research reactor fuel burnup: 1) reactor physics calculations, 2) measurement of reactivity effects, and 3) gamma ray spectrometry. The advantages and disadvantages of each method are discussed. References are provided to assist the reactor operator planning to establish a programme for burnup determination of fuel. Destructive techniques are not included since such techniques are expensive, time consuming, and not normally performed by the reactor operators. In this report, TRIGA fuel elements are used in most examples to describe the methods. The same techniques however can be used for research reactors which use different types of fuel elements. 22 refs, 13 figs, 2 tabs
Establishing a PWR burn-up library
International Nuclear Information System (INIS)
Starting out from data file ENDF/B IV /1/, a cross-section library has been established for the calculation of operating conditions in pressurized water reactors of the type used in BIBLIS B. The library includes macroscopic, homogenized 2-group cross-sections for all types of fuel elements used in this reactor, including those equipped with boron glass rods. For their calculation the previous irradiation of the fuel has been taken into consideration by approximation. Information on fuel consumption from cell burn-up calculations has been stored in a separate data file. It was designed as a base for the determination of cross sections to be used in the calculation of the incident ''main-steam pipe fracture''. For this library the description of cross sections as a function of the moderator status chose the water densities at 3000C/155 bar, 1900C/140 bar and 1000C/100 bar as fixed values. The burn-up library has been tested by a three-dimensional calculation for the 1sup(st) cycle of the BIBLIS B-reactor using program QUABOX /2/. This showed variances with the anticipated course concerning critically, which can be explained almost quantitatively by known deficiencies of the ENDF/b-IV library. (orig.)
Theory of the space-dependent fuel management computer code ''UAFCC''
International Nuclear Information System (INIS)
This report displays the theory of the spatial burnup computer code ''UAFCC'' which has been constructed as a part of an integrated reactor calculation scheme proposed at the Reactors Department of the ARE Atomic Energy Authority. The ''UAFCC'' is a single energy-one-dimensional diffusion burnup FORTRAN computer code for well moderated, multiregion, cylindrical thermal reactors. The effect of reactivity variation with burnup is introduced in the steady state diffusion equation by a fictitious neutron source. The infinite multiplication factor, the total migration area, and the power density per unit thermal flux are calculated from the point model burnup code ''UABUC'' fitted to polynomials of suitable degree in the flux-time, and then used as an input data to the ''UAFCC'' code. The proposed burnup spatial model has been used to study the different stratogemes of the incore fuel management schemes. The conclusions of this study will be presented in a future publication. (author)
Effects of high burnup on spent-fuel casks
International Nuclear Information System (INIS)
Utility fuel managers have become very interested in higher burnup fuels as a means to reduce the impact of refueling outages. High-burnup fuels have significant effects on spent-fuel storage or transportation casks because additional heat rejection and shielding capabilities are required. Some existing transportation casks have useful margins that allow shipment of high-burnup fuel, especially the NLI-1/2 truck cask, which has been relicensed to carry pressurized water reactor (PWR) fuel with 56,000 MWd/ton U burnup at 450 days of cooling time. New cask designs should consider the effects of high burnup for future use, even though it is not commercially desirable to include currently unneeded capability. In conclusion, the increased heat and gamma radiation of high-burnup fuels can be accommodated by additional cooling time, but the increased neutron radiation source cannot be accommodated unless the balance of neutron and gamma contributions to the overall dose rate is properly chosen in the initial cask design. Criticality control of high-burnup fuels is possible with heavily poisoned baskets, but burnup credit in licensing is a much more direct means of demonstrating criticality safety
Implementation of burnup credit in PWR spent fuel storage pools
International Nuclear Information System (INIS)
Implementation of burnup credit in spent fuel storage of LWR fuel at nuclear power plants is approved in Germany since the beginning of 2000. The burnup credit methods applied have to comply with the newly developed German criticality safety standard DIN 25471 passed in November 1999 and published in September 2000, cp. (orig.)
Method of compensating distribution of reactor burnup degree
International Nuclear Information System (INIS)
An object of the present invention is to attain an appropriate power distribution and a burnup degree distribution during an operation cycle, thereby improving the succeeding operation cycle in a BWR type reactor. That is, a deviation between a distribution of an actual axial burnup degree and that of an aimed axial burnup degree in a reactor core is measured upon completion of the operation cycle by using a burnup degree distribution measuring device. Then, the content of burnable poisons in fresh fuels to be charged to the reactor core is controlled in accordance with the deviation, to compensate the distribution of the axial burnup degree in the reactor core in the next operation cycle. Accordingly, the distribution of the axial burnup degree in the reactor core can be made closer to the aimed distribution of the burnup degree in the next operation cycle. Further, appropriate power distribution and a burnup degree distribution can be obtained by improving the axial power distribution in the reactor core with the characteristics of the fresh fuels themselves to be loaded, without depending only on changes of a control rod pattern. Accordingly, fuel economy and operation performance can be improved. (I.S.)
International Nuclear Information System (INIS)
As there has arisen a concern that failure of the high burnup fuel under the reactivity-insertion accident (RIA) may occur at the energy lower than the expected, duel behavior under the rod ejection accident in a typical Westinghouse-designed 950 MWe PWR was analyzed by using the three dimensional nodal transient neutronics code, PANBOX2 and the transient fuel rod performance analysis code, FRAP-T6. Fuel failure criteria versus the burnup was conservatively derived taking into account available test data and the possible fuel failure mechanisms. The high burnup and longer cycle length fuel loading scheme of a peak rod burnup of 68 MWD/kgU was selected for the analysis. Except three dimensional core neutronics calculation, the analysis used the same core conditions and assumptions as the conventional zero dimensional analysis. Results of three dimensional analysis showed that the peak fuel enthalpy during the rod ejection accident is less than one third of that calculated by the core is less than 4 percent. Therefore, it can be said that the current design limit of less than 10 percent fuel failure and maintaining the core coolable geometry would be adequately satisfied under the rod ejection accident, even though the conservative fuel failure criteria derived from the test data are applied. (author)
"Excellence" in STEM Education
Clark, Aaron C.
2012-01-01
So what does it take to achieve excellence in STEM education? That is the title of the author's presentation delivered at International Technology and Engineering Educators Association's (ITEEA's) FTEE "Spirit of Excellence" Breakfast on March 16, 2012, in Long Beach, California. In preparation for this presentation, the author went back and read…
Finnish contribution to the CB4 burnup credit benchmark
International Nuclear Information System (INIS)
The CB4 phase of the WWER burnup credit benchmark series studies the effect of flat and realistic axial burnup profiles on the multiplication factor of a conceptual WWER cask loaded with spent fuel. The benchmark was calculated at VTT Energy with MCNP4C, using mainly ENDF/B-V1 cross sections. According to the calculation results the effect of the axial homogenization on the keff estimate is complex. At low burnups the use of a axial profile overestimates keff but at high burnups the reverse is the case. Ignoring fission products leads to conservative keff and the effect of axial homogenization on the multiplication factor is similar to a reduction of the burnup (Authors)
Probabilistic assessment of dry transport with burnup credit
International Nuclear Information System (INIS)
The general concept of probabilistic analysis and its application to the use of burnup credit in spent fuel transport is explored. Discussion of the probabilistic analysis method is presented. The concepts of risk and its perception are introduced, and models are suggested for performing probability and risk estimates. The general probabilistic models are used for evaluating the application of burnup credit for dry spent nuclear fuel transport. Two basic cases are considered. The first addresses the question of the relative likelihood of exceeding an established criticality safety limit with and without burnup credit. The second examines the effect of using burnup credit on the overall risk for dry spent fuel transport. Using reasoned arguments and related failure probability and consequence data analysis is performed to estimate the risks of using burnup credit for dry transport of spent nuclear fuel. (author)
Thermonuclear burn-up in deuterated methane $CD_4$
Frolov, Alexei M
2010-01-01
The thermonuclear burn-up of highly compressed deuterated methane CD$_4$ is considered in the spherical geometry. The minimal required values of the burn-up parameter $x = \\rho_0 \\cdot r_f$ are determined for various temperatures $T$ and densities $\\rho_0$. It is shown that thermonuclear burn-up in $CD_4$ becomes possible in practice if its initial density $\\rho_0$ exceeds $\\approx 5 \\cdot 10^3$ $g \\cdot cm^{-3}$. Burn-up in CD$_2$T$_2$ methane requires significantly ($\\approx$ 100 times) lower compressions. The developed approach can be used in order to compute the critical burn-up parameters in an arbitrary deuterium containing fuel.
Burnup calculations and chemical analysis of irradiated fuel samples studied in LWR-PROTEUS phase II
International Nuclear Information System (INIS)
The isotopic compositions of 5 UO2 samples irradiated in a Swiss PWR power plant, which were investigated in the LWR-PROTEUS Phase II programme, were calculated using the CASMO-4 and BOXER assembly codes. The burnups of the samples range from 50 to 90 MWd/kg. The results for a large number of actinide and fission product nuclides were compared to those of chemical analyses performed using a combination of chromatographic separation and mass spectrometry. A good agreement of calculated and measured concentrations is found for many of the nuclides investigated with both codes. The concentrations of the Pu isotopes are mostly predicted within ±10%, the two codes giving quite different results, except for 242Pu. Relatively significant deviations are found for some isotopes of Cs and Sm, and large discrepancies are observed for Eu and Gd. The overall quality of the predictions by the two codes is comparable, and the deviations from the experimental data do not generally increase with burnup. (authors)
Proposal of a benchmark for core burnup calculations for a VVER-1000 reactor core
International Nuclear Information System (INIS)
In the framework of a project supported by the German BMU the code DYN3D should be further validated and verified. During the work a lack of a benchmark on core burnup calculations for VVER-1000 reactors was noticed. Such a benchmark is useful for validating and verifying the whole package of codes and data libraries for reactor physics calculations including fuel assembly modelling, fuel assembly data preparation, few group data parametrisation and reactor core modelling. The benchmark proposed specifies the core loading patterns of burnup cycles for a VVER-1000 reactor core as well as a set of operational data such as load follow, boron concentration in the coolant, cycle length, measured reactivity coefficients and power density distributions. The reactor core characteristics chosen for comparison and the first results obtained during the work with the reactor physics code DYN3D are presented. This work presents the continuation of efforts of the projects mentioned to estimate the accuracy of calculated characteristics of VVER-1000 reactor cores. In addition, the codes used for reactor physics calculations of safety related reactor core characteristics should be validated and verified for the cases in which they are to be used. This is significant for safety related evaluations and assessments carried out in the framework of licensing and supervision procedures in the field of reactor physics. (authors)
Verification of a Multi-group Cross Section Library for Burnup Calculation
Energy Technology Data Exchange (ETDEWEB)
Daing, Aung Tharn; Kim, Myung Hyun [Kyung Hee Univ., Yongin (Korea, Republic of); Joo, Hang Yu [Seoul National Univ., Seoul (Korea, Republic of)
2013-05-15
Despite satisfying the estimation of the neutronic parameters without depletion to some extent, it still requires detailed investigation of the behavior of a fuel with strong neutron absorber over its operating life time by nTRACER, the direct whole core calculation code with the conventional semi Predictor-Corrector method. This study is mainly focused on the verification of the newly generated multi-group library for burnup calculation by nTRACER through the analysis of its performance of depletion calculation of UO{sub 2} fuel with strong neutron absorbers such as Gadolinium. Firstly, the depletion calculation results of nTRACER are presented by comparing the evolution of k-inf and the inventories of commonly found important isotopes as a function of burnup in the cases of gadolinia(GAD)-bearing fuel pin and fuel assembly (FA) with those of MCNPX-version.2.6.0. The newly generated multi-group library for burnup calculation by nTRACER was verified through GAD-bearing fuel after the new approach of resonance treatment had been employed. Though very good agreement in the overall effect reflected on the multiplication factor of FA at BOC, the evolution of k-inf along fuel irradiation history was systematically well underestimated by nTRACER when compared to Monte Carlo results.
International Nuclear Information System (INIS)
Burnup dependent steady state thermal hydraulic analysis of TRIGA Mark-II research reactor has been carried out utilizing coupled point kinetics, neutronics and thermal hydraulics code EUREKA-2/RR. From the previous calculations of neutronics parameters including percentage burnup of individual fuel elements performed so far for 700 MWD burnt core of TRIGA reactor showed that the fuel rod predicted as hottest at the beginning of cycle (fresh core) was found to remain as the hottest until 200 MWD of burn, but, with the progress of core burn, the hottest rod was found to be shifted and another rod in the core became the hottest. The present study intends to evaluate the thermal hydraulic parameters of these hottest fuel rods at different cycles of burnup, from beginning to 700 MWD core burnt considering reactor operates under steady state condition. Peak fuel centerline temperature, maximum cladding and coolant temperatures of the hottest channels were calculated. It revealed that maximum temperature reported for fuel clad and fuel centerline found to lie below their melting points which indicate that there is no chance of burnout on the fuel cladding surface and no blister in the fuel meat throughout the considered cycles of core burnt. (author)
Directory of Open Access Journals (Sweden)
M.H. Altaf
2014-12-01
Full Text Available Burnup dependent steady state thermal hydraulic analysis of TRIGA Mark-II research reactor has been carried out utilizing coupled point kinetics, neutronics and thermal hydraulics code EUREKA-2/RR. From the previous calculations of neutronics parameters including percentage burnup of individual fuel elements performed so far for 700 MWD burnt core of TRIGA reactor showed that the fuel rod predicted as hottest at the beginning of cycle (fresh core was found to remain as the hottest until 200 MWD of burn, but, with the progress of core burn, the hottest rod was found to be shifted and another rod in the core became the hottest. The present study intends to evaluate the thermal hydraulic parameters of these hottest fuel rods at different cycles of burnup, from beginning to 700 MWD core burnt considering reactor operates under steady state condition. Peak fuel centerline temperature, maximum cladding and coolant temperatures of the hottest channels were calculated. It revealed that maximum temperature reported for fuel clad and fuel centerline found to lie below their melting points which indicate that there is no chance of burnout on the fuel cladding surface and no blister in the fuel meat throughout the considered cycles of core burnt.
Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit
Energy Technology Data Exchange (ETDEWEB)
Ade, Brian J [ORNL; Marshall, William BJ J [ORNL; Martinez-Gonzalez, Jesus S [ORNL
2015-05-01
Oak Ridge National Laboratory (ORNL) and the US Nuclear Regulatory Commission (NRC) have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation systems (often referred to as casks) and spent fuel pools (SFPs). This work is divided into two main phases. The first phase investigated the applicability of peak reactivity methods currently used in SFPs to transportation and storage casks and the validation of reactivity calculations and spent fuel compositions within these methods. The second phase focuses on extending BUC beyond peak reactivity. This paper documents the analysis of the effects of control blade insertion history, and moderator density and burnup axial profiles for extended BWR BUC.
Walkenbach, John
2011-01-01
Everything you need to know about* Mastering operators, error values, naming techniques, and absolute versus relative references* Debugging formulas and using the auditing tools* Importing and exporting XML files and mapping the data to specific cells* Using Excel 2003's rights management feature* Working magic with array formulas* Developing custom formulas to produce the results you needHere's the formula for Excel excellenceFormulas are the lifeblood of spreadsheets, and no one can bring a spreadsheet to life like John Walkenbach. In this detailed reference guide, he delves deeply into unde
Harvey, Greg
2013-01-01
Every time you turn around, you run into Excel. It's on yourPC at work. It's on your PC at home. You get Excel files fromyour boss. Wouldn't you like to understand this powerfulMicrosoft Office spreadsheet program, once and for all? Now, youcan crunch financial data, add sparkle to presentations, convertstatic lists of numbers into impressive charts, and discover whatall the shouting's about regarding databases, formulas, andcells. You may even decide that getting organized with a goodspreadsheet is downright useful and fun! Flip open Excel 2003 For Dummies, and you'llquickly start getting th
Directory of Open Access Journals (Sweden)
ANDREEA IONICĂ
2010-01-01
Full Text Available Our paper discuss the „hot” topic of Business Excellence (BE aiming to highlight and clarify the connections with Total Quality Management (TQM. Thus, we describe the quality movement from inspection to statistical quality control and the „Japanese Age” of quality followed then by Total Quality Control (TQC and TQM developments that drived to the models of BE. After that, we present some perspectives of defining the excellence at national and international level and an overview of BE models with focus on the referential ones. Finally, we attempt to sketch the coordinates of the "journey" through TQM towards excellence in Romania.
Alexander, Michael
2013-01-01
Learn to use Excel dashboards and reports to better conceptualize data Updated for all the?latest features and capabilities of Excel 2013, this go-to resource provides you with in-depth coverage of the individual functions and tools that can be used to create?compelling Excel reports. Veteran author Michael Alexander walks you through the most effective ways to present and report data. Featuring a comprehensive review of a wide array of technical and analytical concepts, this essential guide helps you go from reporting data with simple tables full of dull numbers to presenting
Butts, Glenn C.
2007-01-01
Excel is a powerful tool with a plethora of largely unused capabilities that can make the life of an engineer cognizant of them a great deal easier. This paper offers tips, tricks and techniques for better worksheets. Including the use of data validation, conditional formatting, subtotals, text formulas, custom functions and much more. It is assumed that the reader will have a cursory understanding of Excel so the basics will not be covered, if you get hung up try Excel's built in help menus, or a good book.
International Nuclear Information System (INIS)
At the nineteenth AER symposium a benchmark on core burnup calculations for WWER-1000 reactors was proposed for further validation and verification of the reactor physics code systems. The work was continued in the framework of a project supported by the German BMU3). During the preparation of the calculations results corrections, refinement and additions the benchmark specification were done. The benchmark includes two stages: the first step comprises the data library preparation for all fuel assembly types used in the core loadings. The second step consists of the 3D core burnup calculation together with calculations of critical states for hot zero power conditions. The benchmark specification contains the description of the fuel assemblies (FA) for the few group data preparation, the core loading patterns and the load follow as well as a set of reference data such as boron acid concentration in the coolant, cycle length, measured reactivity coefficients and power density distributions for successive cycles of a WWER-1000 reactor core. Different reactor physics codes were used to produce solutions. FA burnup codes such as NESSEL, CASMO or HELIOS were used for data preparation. The core calculations were performed using codes such as DYN3D, TRAPEZ as well as several data libraries. The results of the calculations made by different organisations (IBBS, FZD, SSTC) are presented and discussed. The data needed to produce solutions as well as most of the calculated data are attached in the appendices of the paper presented. (Authors)
The commercial impact of burnup increase
International Nuclear Information System (INIS)
Deregulation has a dramatic effect on competition in the electricity markets. This will lead to a continued pressure on the prices in virtually all areas of the nuclear fuel cycle and will encourage further optimization, technical and technological progress and innovations with respect to further cost reductions of power production. The permission of direct disposal, in Germany legally granted in 1994 as an alternative to the reprocessing path, made possible cost savings and has consequently resulted in a decline of reprocessing prices. In addition, suppliers as well as operators are making considerable efforts to reduce the disposal costs fraction by optimizing disposal technologies and concepts. The increase of discharge has essentially contributed to the reduction the disposal cost fraction. Compared to former scenarios, the economic potential of burn-up increase is decreasing
Experimental programmes related to high burnup fuel
International Nuclear Information System (INIS)
The experimental programmes undertaken at IGCAR with regard to high burn-up fuels fall under the following categories: a) studies on fuel behaviour, b) development of extractants for aqueous reprocessing and c) development of non-aqueous reprocessing techniques. An experimental programme to measure the carbon potential in U/Pu-FP-C systems by methane-hydrogen gas equilibration technique has been initiated at IGCAR in order to understand the evolution of fuel and fission product phases in carbide fuel at high burn-up. The carbon potentials in U-Mo-C system have been measured by this technique. The free energies and enthalpies of formation of LaC2, NdC2 and SmC2 have been measured by measuring the vapor pressures of CO over the region Ln2O3-LnC2-C during the carbothermic reduction of Ln2O3 by C. The decontamination from fission products achieved in fuel reprocessing depends strongly on the actinide loading of the extractant phase. Tri-n-butyl phosphate (TBP), presently used as the extractant, does not allow high loadings due to its propensity for third phase formation in the extraction of Pu(IV). A detailed study of the allowable Pu loadings in TBP and other extractants has been undertaken in IGCAR, the results of which are presented in this paper. The paper also describes the status of our programme to develop a non-aqueous route for the reprocessing of fast reactor fuels. (author)
Analysis of the effect of UO2 high burnup microstructure on fission gas release
International Nuclear Information System (INIS)
This report deals with high-burnup phenomena with relevance to fission gas release from UO2 nuclear fuel. In particular, we study how the fission gas release is affected by local buildup of fissile plutonium isotopes and fission products at the fuel pellet periphery, with subsequent formation of a characteristic high-burnup rim zone micro-structure. An important aspect of these high-burnup effects is the degradation of fuel thermal conductivity, for which prevalent models are analysed and compared with respect to their theoretical bases and supporting experimental data. Moreover, the Halden IFA-429/519.9 high-burnup experiment is analysed by use of the FRAPCON3 computer code, into which modified and extended models for fission gas release are introduced. These models account for the change in Xe/Kr-ratio of produced and released fission gas with respect to time and space. In addition, several alternative correlations for fuel thermal conductivity are implemented, and their impact on calculated fission gas release is studied. The calculated fission gas release fraction in IFA-429/519.9 strongly depends on what correlation is used for the fuel thermal conductivity, since thermal release dominates over athermal release in this particular experiment. The conducted calculations show that athermal release processes account for less than 10% of the total gas release. However, athermal release from the fuel pellet rim zone is presumably underestimated by our models. This conclusion is corroborated by comparisons between measured and calculated Xe/Kr-ratios of the released fission gas
Analysis of the effect of UO{sub 2} high burnup microstructure on fission gas release
Energy Technology Data Exchange (ETDEWEB)
Jernkvist, Lars Olof; Massih, Ali [Quantum Technologies AB, Uppsala Science Park (Sweden)
2002-10-01
This report deals with high-burnup phenomena with relevance to fission gas release from UO{sub 2} nuclear fuel. In particular, we study how the fission gas release is affected by local buildup of fissile plutonium isotopes and fission products at the fuel pellet periphery, with subsequent formation of a characteristic high-burnup rim zone micro-structure. An important aspect of these high-burnup effects is the degradation of fuel thermal conductivity, for which prevalent models are analysed and compared with respect to their theoretical bases and supporting experimental data. Moreover, the Halden IFA-429/519.9 high-burnup experiment is analysed by use of the FRAPCON3 computer code, into which modified and extended models for fission gas release are introduced. These models account for the change in Xe/Kr-ratio of produced and released fission gas with respect to time and space. In addition, several alternative correlations for fuel thermal conductivity are implemented, and their impact on calculated fission gas release is studied. The calculated fission gas release fraction in IFA-429/519.9 strongly depends on what correlation is used for the fuel thermal conductivity, since thermal release dominates over athermal release in this particular experiment. The conducted calculations show that athermal release processes account for less than 10% of the total gas release. However, athermal release from the fuel pellet rim zone is presumably underestimated by our models. This conclusion is corroborated by comparisons between measured and calculated Xe/Kr-ratios of the released fission gas.
Burnup performance of OTTO cycle pebble bed reactors with ROX fuel
International Nuclear Information System (INIS)
Highlights: • A 300 MWt Small Pebble Bed Reactor with Rock-like oxide fuel is proposed. • Using ROX fuel can achieve high discharged burnup of spent fuel. • High geological stability can be expected in direct disposal of the spent ROX fuel. • The Pebble Bed Reactor with ROX fuel can be critical at steady state operation. • All the reactor designs have a negative temperature coefficient. - Abstract: A pebble bed high-temperature gas-cooled reactor (PBR) with rock-like oxide (ROX) fuel was designed to achieve high discharged burnup and improve the integrity of the spent fuel in geological disposal. The MCPBR code with a JENDL-4.0 library, which developed the analysis of the Once-Through-Then-Out (OTTO) cycle in PBR, was used to perform the criticality and burnup analysis. Burnup calculations for eight cases were carried out for both ROX fuel and a UO2 fuel reactor with different heavy-metal loading conditions. The effective multiplication factor of all cases approximately equalled unity in the equilibrium condition. The ROX fuel reactor showed lower FIFA than the UO2 fuel reactor at the same heavy-metal loading, about 5–15%. However, the power peaking factor and maximum power per fuel ball in the ROX fuel core were lower than that of UO2 fuel core. This effect makes it possible to compensate for the lower-FIFA disadvantage in a ROX fuel core. All reactor designs had a negative temperature coefficient that is needed for the passive safety features of a pebble bed reactor
Sustainable Enterprise Excellence
DEFF Research Database (Denmark)
Edgeman, Rick; Williams, Joseph; Eskildsen, Jacob Kjær
Sustainable Enterprise Excellence balances complementary and competing interests of key stakeholder segments, including society and the natural environment and increases the likelihood of superior and sustainable competitive positioning and hence long-term enterprise success that is defined by......, supply chain, customer-related, human capital, financial, marketplace, societal, and environmental performance. Sustainable Enterprise Excellence integrates ethical, efficient and effective (E3) enterprise governance with 3E (equity, ecology, economy) Triple Top Line strategy throughout enterprise...... culture and activities to produce Triple Bottom Line 3P (people, planet, profit) performance that are simultaneously pragmatic, innovative and supportive of R3 (Edgeman, 2013). Sustainable Enterprise Excellence (Edgeman & Eskildsen, 2013) or SEE is analogous to Business & Performance Excellence. The role...
ANDREEA IONICĂ; VIRGINIA BĂLEANU; EDUARD EDELHAUSER; SABINA IRIMIE
2010-01-01
Our paper discuss the „hot” topic of Business Excellence (BE) aiming to highlight and clarify the connections with Total Quality Management (TQM). Thus, we describe the quality movement from inspection to statistical quality control and the „Japanese Age” of quality followed then by Total Quality Control (TQC) and TQM developments that drived to the models of BE. After that, we present some perspectives of defining the excellence at national and international level and an overview of BE model...
SOURCE OF BURNUP VALUES FOR COMMERCIAL SPENT NUCLEAR FUEL ASSEMBLIES
International Nuclear Information System (INIS)
Waste packages are loaded with commercial spent nuclear fuel (SNF) that satisfies the minimum burnup requirements of a criticality loading curve. The burnup value assigned by the originating nuclear utility to each SNF assembly (assigned burnup) is used to load waste packages in compliance with a criticality loading curve. The burnup provided by a nuclear utility has uncertainties, so conservative calculation methods are used to characterize those uncertainties for incorporation into the criticality loading curves. Procedural safety controls ensure that the correct assembly is loaded into each waste package to prevent a misload that could create a condition affecting the safety margins. Probabilistic analyses show that procedural safety controls can minimize the chance of a misload but can not completely eliminate the possibility. Physical measurements of burnup with instrumentation in the surface facility are not necessary due to the conservative calculation methods used to produce the criticality loading curves. The reactor records assigned burnup of a commercial SNF assembly contains about two percent uncertainty, which is increased to five-percent to ensure conservatism. This five-percent uncertainty is accommodated by adjusting the criticality loading curve. Also, the record keeping methods of nuclear utilities are not uniform and the level of detail required by the NRC has varied over the last several decades. Thus, some SNF assemblies may have assigned burnups that are averages for a batch of assemblies with similar characteristics. Utilities typically have access to more detailed core-follow records that allow the batch average burnup to be changed to an assembly specific burnup. Alternatively, an additional safety margin is incorporated into the criticality loading curve to accommodate SNF assemblies with batch average burnups or greater uncertainties due to the methodology used by the nuclear utility. The utility records provide the assembly identifier
Current Status of Burnup Evaluation for Test Fuel at HANARO
Energy Technology Data Exchange (ETDEWEB)
Yang, Seong Woo; Park, Seung Jae; Shin, Yoon Taeg; Choo, Kee Nam; Cho, Man Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-05-15
For the research reactor, 8 mini plate fuels were irradiation-tested during 4 irradiation cycles. 2 more irradiation capsules were fabricated for additional test of plate type fuel. Also fission Mo target for the performance verification and the demonstration of Mo-99 extraction process will be irradiated at HANARO. It is important to evaluate the burnup history of test fuel. The burnup of test fuel has been calculated using HANARO Fuel Management System (HANAFMS). Although it is proper to evaluate the burnup of HANARO fuel, it is difficult to accurately calculate the burnup of test fuel due to the limitation of HANAFMS model. Therefore, the improvement of burnup evaluation for the recent irradiated test fuel is conducted and reported in this paper. To evaluate the burnup of test fuel, HANAFMS has been used; however, HANAFMS model is not proper to apply plate type fuel. Therefore, MCNP burned core model was developed for HAMP-1 burnup calculation. Throughout the comparison of fuel assembly power, MCNP burned core model showed the good agreement with HANAFMS.
Application of SCALE4.4 system for burnup credit criticality analysis of PWR spent fuel
International Nuclear Information System (INIS)
An investigation on the application of burnup credit for a PWR spent fuel storage pool has been carried out with the use of the SCALE 4.4 computer code system consisting of SAS2H and CSAS6 modules in association with 44-group SCALE cross-section library. Prior to the application of the computer code system, a series of bench markings have been performed in comparison with available data. A benchmarking of the SAS2h module has been done for experimental concentration data of 54 PWR spent fuel and then correction factors with a 95% probability at a 95% confidence level have been determined on the basis of the calculated and measured concentrations of 38 nuclides. After that, the bias which might have resulted from the use of the CSAS6 module has been calculated for 46 criticality experimental data of UO2 fuel and MOX fuel assemblies. The calculation bias with one-sided tolerance limit factor (2.086) corresponding to a 95% probability at a 95% confidence level has consequently been obtained to be 0.00834. Burnup credit criticality analysis has been done for the PWR spent fuel storage pool by means of the benchmarked or validated code system. It is revealed that the minimum burnup for safe storage is 7560 MWd/tU in 5 wt% enriched fuel if both actinides and fission products in spent fuel are taken into account. However, the minimum value required seems to be 9,565 MWd/tU in the same enriched fuel provided that only the actinides are taken into consideration. (author)
International Nuclear Information System (INIS)
The burn-up code OREST has a spectrum code assigned to it, which determines the neutron spectrum in the actual fuel element mixture at the start and during burn-up and carries out the resonance treatment for the most important uranium and transuranic element isotopes. The reliability of the OREST system is shown for UO2 burn-up in PWR's. Post-irradiation analyses of five UO2 fuel elements of KWO with an initial enrichment of 3.13% by weight of U235 and a mean burn-up of 28.4 GWd/tV are used for comparison. The reliability of OREST information for UO2 fuel in PWR's is proved by the good agreement between experiment and calculation, also compared with KfK's results. (orig./HP)
International Nuclear Information System (INIS)
In this work a spatial burnup scheme and feedback effects has been implemented into the FERM ( 'Finite Element Response Matrix' )program. The spatially dependent neutronic parameters have been considered in three levels: zonewise calculation, assembly wise calculation and pointwise calculation. Flux and power distributions and the multiplication factor were calculated and compared with the results obtained by CITATIOn program. These comparisons showed that processing time in the Ferm code has been hundred of times shorter and no significant difference has been observed in the assembly average power distribution. (Author)
Burnup credit application in criticality analysis of storage casks with spent RBMK-1500 nuclear fuel
International Nuclear Information System (INIS)
Nuclear criticality safety analysis of two types of the casks CASTOR RBMK-1500 and CONSTOR RBMK-1500 was performed using the SCALE 4.3 computer code system. These casks are planned for an interim dry storage of spent nuclear fuel at Ignalina nuclear power plant. Effective neutron multiplication factor keff was calculated for different density of the water inside the casks for unfavorable operational cases and for assumed hypothetical accident conditions when fuel in the system is fresh and fuel is depleted (i.e. burnup credit taken into account). Results show that for all cases effective neutron multiplication factor keff is less then allowable value 0.95. (author)
Fuel burnup analysis of the TRIGA Mark II Reactor at the University of Pavia
Chiesa, Davide; Clemenza, Massimiliano; Pozzi, Stefano; Previtali, Ezio; Sisti, Monica; Alloni, Daniele; Magrotti, Giovanni; Manera, Sergio; Prata, Michele; Salvini, Andrea; Cammi, Antonio; Zanetti, Matteo; Sartori, Alberto
2015-01-01
A time evolution model was developed to study fuel burnup for the TRIGA Mark II reactor at the University of Pavia. The results were used to predict the effects of a complete core reconfiguration and the accuracy of this prediction was tested experimentally. We used the Monte Carlo code MCNP5 to reproduce system neutronics in different operating conditions and to analyse neutron fluxes in the reactor core. The software that took care of time evolution, completely designed in-house, used the n...
BNFL assessment of methods of attaining high burnup MOX fuel
International Nuclear Information System (INIS)
It is clear that in order to maintain competitiveness with UO2 fuel, the burnups achievable in MOX fuel must be enhanced beyond the levels attainable today. There are two aspects which require attention when studying methods of increased burnups - cladding integrity and fuel performance. Current irradiation experience indicates that one of the main performance issues for MOX fuel is fission gas retention. MOX, with its lower thermal conductivity, runs at higher temperatures than UO2 fuel; this can result in enhanced fission gas release. This paper explores methods of effectively reducing gas release and thereby improving MOX burnup potential. (author)
Burnup credit demands for spent fuel management in Ukraine
International Nuclear Information System (INIS)
In fact, till now, burnup credit has not be applied in Ukrainian nuclear power for spent fuel management systems (storage and transport). However, application of advanced fuel at VVER reactors, arising spent fuel amounts, represent burnup credit as an important resource to decrease spent fuel management costs. The paper describes spent fuel management status in Ukraine from viewpoint of subcriticality assurance under spent fuel storage and transport. It also considers: 1. Regulation basis concerning subcriticality assurance, 2. Basic spent fuel and transport casks characteristics, 3. Possibilities and demands for burnup credit application at spent fuel management systems in Ukraine. (author)
International Nuclear Information System (INIS)
The amount of Pu in the spent fuel was evaluated from Xe isotopic ratio in off-gas in reprocessing facility, is related to burnup. Six batches of dissolver off-gas (DOG) at spent fuel dissolution process were sampled from the main stack in Tokai Reprocessing Plant (TRP) during BWR fuel (approx. 30GWD/MTU) reprocessing campaign. Xenon isotopic ratio was determined with Gas Chromatography/Mass Spectrometry. Burnup and generated amount of Pu were evaluated with Noble Gas Environmental Monitoring Application code (NOVA), developed by Los Alamos National Laboratory. Inferred burnup evaluated by Xe isotopic measurements and NOVA were in good agreement with those of the declared burnup in the range from -3.8% to 7.1%. Also, the inferred amount of Pu in spent fuel was in good agreed with those of the declared amount of Pu calculated by ORIGEN code in the range from -0.9% to 4.7%. The evaluation technique is applicable for both burnup credit to achieve efficient criticality safety control and a new measurement method for safeguards inspection. (author)
Experimental verification of the depletion code (ORIGEN-S) by chemical assay method
International Nuclear Information System (INIS)
Burnup of the fuel rod taken from spent fuel assemblies C15, G23 and J14 discharged from Kori-1 was examined by destructive chemical assay and determined by Nd-148 mass spectrometry method. And then they were compared with the calculated burnup of ORIGEN-S for the code verification by using activity ratio Eu-154/ Cs-137. As a result of the comparison, burnup of Nd-148 chemical method has a good agreement with the calculated burnup within 1% error in C-15 and G23 rod, and within 8% in the J-14 rod
International Nuclear Information System (INIS)
In the direct disposal of used nuclear fuel (UNF), criticality safety evaluation is one of the important issues since UNF contains some amount of fissile material. In the conventional criticality safety evaluation of UNF where the fresh fuel composition is conservatively assumed, neutron multiplication factor is becoming overestimated as the fuel enrichment increases. The recent development of higher-enrichment fuel has therefore enhanced the benefit of the application of burnup credit. When applying the burnup credit to the criticality safety analysis of the disposed fuel system, the safe-side estimation of the reactivity is required taking into account the factors which affect the neutron multiplication factor of the burnt fuel system such as the nuclide composition uncertainties. In this report, the effects of the several parameters on the reactivity of disposal canister model were evaluated for used PWR fuel. The parameters are relevant to the uncertainties of depletion calculation code, irradiation history, and axial and horizontal burnup distribution, which are known to be important effect in the criticality safety evaluation adopting burnup credit. The latest data or methodology was adopted in this evaluation, based on the various latest studies. The appropriate margin of neutron multiplication factor in the criticality safety evaluation for UNF can be determined by adopting the methodology described in the present study. (author)
International Nuclear Information System (INIS)
A higher initial 235U enrichment is currently required in the nuclear fuel fabrication specification to realize higher fuel burnup. Traditionally, in the criticality safety design of spent fuel (SF) storage and transportation (S/T) casks or facilities, the fuel is usually assumed to be at its full initial enrichment (so called fresh fuel assumption) to provide a large safety allowance, which is sometimes excessively given, for example requiring unnecessarily large space between fuel assemblies. The burnup credit taken for criticality safety design is firstly implemented to the SF Storage Rack of Rokkasho Reprocessing Facility, which is completed and expected for operation soon. Except for that, no burnup credit has been taken in criticality safety design for SF S/T casks or intermediate storage facilities in Japan. Since in the near future it is considered inevitable to handle spent fuel massively, it is desired to implement the rational S/T design saving safety and economy by taking into account the fuel burnup in the criticality safety control. Computer codes and data which are vital to assess criticality safety in the design stage of nuclear fuel cycle facility have been developed and prepared to constitute a Japanese criticality safety handbook at JAERI
International Nuclear Information System (INIS)
Full text: IAEA uses today FORK Detector in attended and unattended mode for the verification of spent fuels. This system uses a neutron fission chamber and an ionisation chamber to combine total neutron counting and total gamma counting. CANBERRA now proposes the new SMOPY system, which enhances performance as it combines a fission chamber and a CZT gamma spectrometer. This new measurement capability associated with a depletion code embedded in the interpretation software of the system allows a complete identification of the burn-up of any type of fuel (also MOX for example). A first prototype of the SMOPY system was developed in collaboration between AREVA NC CEA and CANBERRA for safeguards but also burn-up credit applications. This prototype has been already used by the IAEA. CANBERRA has now completed the industrialization of this system adding new functionalities. The system allows also axial scanning of the fuel assembly instead of a single point measurement. Two types of interpretation of the measurement have been developed. The first one requires the irradiation history to determine very precisely the burn-up of the fuel assembly, thus allow to verify the operator's declaration. The second method is less precise but doesn't require any data of the fuel to determine the cooling time, burn-up, and the fuel type (MOX or LEU). The new CANBERRA industrialized SMOPY system will allow new possibilities of IAEA verifications and will also permit to address new scenarios of IAEA safeguards activities. (author)
Elements of Engineering Excellence
Blair, J. C.; Ryan, R. S.; Schutzenhofer
2012-01-01
The inspiration for this Contract Report (CR) originated in discussions with the director of Marshall Space Flight Center (MSFC) Engineering who asked that we investigate the question: "How do you achieve excellence in aerospace engineering?" Engineering a space system is a complex activity. Avoiding its inherent potential pitfalls and achieving a successful product is a challenge. This CR presents one approach to answering the question of how to achieve Engineering Excellence. We first investigated the root causes of NASA major failures as a basis for developing a proposed answer to the question of Excellence. The following discussions integrate a triad of Technical Understanding and Execution, Partnership with the Project, and Individual and Organizational Culture. The thesis is that you must focus on the whole process and its underlying culture, not just on the technical aspects. In addition to the engineering process, emphasis is given to the need and characteristics of a Learning Organization as a mechanism for changing the culture.
Rocheta, Margarida; Dionísio, F Miguel; Fonseca, Luís; Pires, Ana M
2007-12-01
Paternity analysis using microsatellite information is a well-studied subject. These markers are ideal for parentage studies and fingerprinting, due to their high-discrimination power. This type of data is used to assign paternity, to compute the average selfing and outcrossing rates and to estimate the biparental inbreeding. There are several public domain programs that compute all this information from data. Most of the time, it is necessary to export data to some sort of format, feed it to the program and import the output to an Excel book for further processing. In this article we briefly describe a program referred from now on as Paternity Analysis in Excel (PAE), developed at IST and IBET (see the acknowledgments) that computes paternity candidates from data, and other information, from within Excel. In practice this means that the end user provides the data in an Excel sheet and, by pressing an appropriate button, obtains the results in another Excel sheet. For convenience PAE is divided into two modules. The first one is a filtering module that selects data from the sequencer and reorganizes it in a format appropriate to process paternity analysis, assuming certain conventions for the names of parents and offspring from the sequencer. The second module carries out the paternity analysis assuming that one parent is known. Both modules are written in Excel-VBA and can be obtained at the address (www.math.ist.utl.pt/~fmd/pa/pa.zip). They are free for non-commercial purposes and have been tested with different data and against different software (Cervus, FaMoz, and MLTR). PMID:17928093
International Nuclear Information System (INIS)
Detailed core management arrangements are developed requiring four operating cycles for the transition from present three-batch loading to an extended burnup four-batch plan for Zion-1. The ARMP code EPRI-NODE-P was used for core modeling. Although this work is preliminary, uranium and economic savings during the transition cycles appear of the order of 6 percent
Assessment of neutron transport codes for application to CANDU fuel lattices analysis
Energy Technology Data Exchange (ETDEWEB)
Roh, Gyu Hong; Choi, Hang Bok
1999-08-01
In order to assess the applicability of WIMS-AECL and HELIOS code to the CANDU fuel lattice analysis, the physics calculations has been carried out for the standard CANDU fuel and DUPIC fuel lattices, and the results were compared with those of Monte Carlo code MCNP-4B. In this study, in order to consider the full isotopic composition and the temperature effect, new MCNP libraries have been generated from ENDF/B-VI release 3 and validated for typical benchmark problems. The TRX-1,2,BAPL-1,2,3 pin -cell lattices and KENO criticality safety benchmark calculations have been performed for the new MCNP libraries, and the results have shown that the new MCNP library has sufficient accuracy to be used for physics calculation. Then, the lattice codes have been benchmarked by the MCNP code for the major physics parameters such as the burnup reactivity, void reactivity, relative pin power and Doppler coefficient, etc. for the standard CANDU fuel and DUPIC fuel lattices. For the standard CANDU fuel lattice, it was found that the results of WIMS-AECL calculations are consistent with those of MCNP. For the DUPIC fuel lattice, however, the results of WIMS-AECL calculations with ENDF/B-V library have shown that the discrepancy from the results of MCNP calculations increases when the fuel burnup is relatively high. The burnup reactivities of WIMS-ACEL calculations with ENDF/B-VI library have shown excellent agreements with those of MCNP calculation for both the standard CANDU and DUPIC fuel lattices. However, the Doppler coefficient have relatively large discrepancies compared with MCNP calculations, and the difference increases as the fuel burns. On the other hand, the results of HELIOS calculation are consistent with those of MCNP even though the discrepancy is slightly larger compared with the case of the standard CANDU fuel lattice. this study has shown that the WIMS-AECL products reliable results for the natural uranium fuel. However, it is recommended that the WIMS
Yager, Robert E.
Visits to six school districts which were identified by the National Science Teachers Association's Search for Excellence program were made during 1983 by teams of 17 researchers. The reports were analyzed in search for common characteristics that can explain the requirements necessary for excellent science programs. The results indicate that creative ideas, administrative and community involvement, local ownership and pride, and well-developed in-service programs and implementation strategies are vital. Exceptional teachers with boundless energies also seem to exist where exemplary science programs are found.
Gardener, Mark
2015-01-01
Microsoft Excel is a powerful tool that can transform the way you use data. This book explains in comprehensive and user-friendly detail how to manage, make sense of, explore and share data, giving scientists at all levels the skills they need to maximize the usefulness of their data. Readers will learn how to use Excel to: * Build a dataset - how to handle variables and notes, rearrangements and edits to data. * Check datasets - dealing with typographic errors, data validation and numerical errors. * Make sense of data - including datasets for regression and correlation; summarizing data
Parametric neutronic analyses related to burnup credit cask design
International Nuclear Information System (INIS)
The consideration of spent fuel histories (burnup credit) in the design of spent fuel shipping casks will result in cost savings and public risk benefits in the overall fuel transportation system. The purpose of this paper is to describe the depletion and criticality analyses performed in conjunction with and supplemental to the referenced analysis. Specifically, the objectives are to indicate trends in spent fuel isotopic composition with burnup and decay time; provide spent fuel pin lattice values as a function of burnup, decay time, and initial enrichment; demonstrate the variation of keff for infinite arrays of spent fuel assemblies separated by generic cask basket designs (borated and unborated) of varying thicknesses; and verify the potential cask reactivity margin available with burnup credit via analysis with generic cask models
Final evaluation of the CB3+burnup credit benchmark addition
International Nuclear Information System (INIS)
In 1966 a series of benchmarks focused on the application of burnup credit in WWER spent fuel management system was launched by L.Markova (1). The four phases of the proposed benchmark series corresponded to the phases of the Burnup Credit Criticality Benchmark organised by the OECD/NEA.These phases referred as CB1, CB2, CB3 and CB4 benchmarks were designed to investigate the main features of burnup credit in WWER spent fuel management systems. In the CB1 step, the multiplication factor of an infinite array of spent fuel rods was calculated taking the burnup, cooling time and different group of nuclides as parameters. The fuel compositions was given in the benchmark specification (Authors)
2005 status and future of burnup credit in the USA
International Nuclear Information System (INIS)
At the beginning of 2005 in the USA burnup credit is licensed for PWR and BWR spent fuel pools, is under license review for a transport cask, is under discussion for disposal criticality. Two basic approaches exist for burnup credit. The first approach, which is licensed for spent fuel pools, utilizes criticality experience with spent fuel that has not been chemically assayed. The second approach to burnup credit comes from utilizing chemical assay data to validate the depletion calculations and then clean critical experiments to validate the criticality calculation. A burnup credit standard (ANS/ANSI-8.27) is under development where the two approaches are actively discussed. Issues related to the two approaches are presented as well as possible ways of resolving the issues. (author)
Impact of extended burnup on the nuclear fuel cycle
International Nuclear Information System (INIS)
The Advisory Group Meeting was held in Vienna from 2 to 5 December 1991, to review, analyse, and discuss the effects of burnup extension in both light and heavy water reactors on all aspects of the fuel cycle. Twenty experts from thirteen countries participated in this meeting. There was consensus that both economic and environmental benefits are driving forces toward the achievement of higher burnups and that the present trend of burnup extension may be expected to continue. The extended burnup has been considered for the three main stages of the fuel cycle: the front end, in-reactor issues and the back end. Thirteen papers were presented. A separate abstract was prepared for each of these papers. Refs, figs and tabs
Features of fuel performance at high fuel burnups
International Nuclear Information System (INIS)
Some features of fuel behavior at high fuel burnups, in particular, initiation and development of rim-layer, increase in the rate of fission gas release from the fuel and increase in the inner gas pressure in the fuel rod are briefly described. Basing on the analysis of the data of post-irradiation examinations of fuel rods of WWER-440 working FA and CR fuel followers, that have been operated for five fuel cycles and got the average fuel burnup or varies as 50MW-day/kgU, a conclusion is made that the WWER-440 fuel burnup can be increased at least to average burnups of 55-58 MW-day/kgU per fuel assembly (Authors)
Textbooks for Responsible Data Analysis in Excel
Garrett, Nathan
2015-01-01
With 27 million users, Excel (Microsoft Corporation, Seattle, WA) is the most common business data analysis software. However, audits show that almost all complex spreadsheets have errors. The author examined textbooks to understand why responsible data analysis is taught. A purposeful sample of 10 textbooks was coded, and then compared against…
EPRI R and D perspective on burnup credit
International Nuclear Information System (INIS)
'Burnup credit' refers to taking credit for the burnup of nuclear fuel in the performance of criticality safety analyses. Historically, criticality safety analyses for transport of spent nuclear fuel have assumed the fuel to be unirradiated (i.e. 'fresh' fuel). In 1999, the U.S. Nuclear Regulatory Commission (NRC) Spent Fuel Project Office issued Interim Staff Guidance - 8 (ISG-8) with recommendations for the use of burnup credit in storage and transportation of pressurized water reactor (PWR) spent fuel. The use of burnup credit offers an opportunity to reduce the number of spent nuclear fuel shipments by ∼30%. A simple analysis shows that the increased risk of a criticality event associated with properly using burnup credit is negligible. Comparing this negligible risk component with the reduction in common transport risks due to the reduced number of spent fuel shipments (higher capacity casks for transporting PWR spent fuel) leads to the conclusion that using 'burnup credit' is preferable to using the 'fresh fuel' assumption. A specific objective of the EPRI program is to support the Goals of the U.S. Industry. These goals are consistent with the original U.S. Department of Energy (DOE) goal defined in 1988: a burnup credit methodology that takes credit for the negative reactivity that is practical (all fissile actinides, most neutron absorbing actinides, and a subset of the fission products that account for the majority of the available credit from all fission products). The determination of the optimum number of fission products to consider in a practical burnup credit methodology validates the approach advocated by researchers from France to first focus on a handful of isotopes that include Sm-149; Rh-103; Nd-143; Gd-155; and Sm-152. (author)
A guide introducing burnup credit, preliminary version. Contract research
Energy Technology Data Exchange (ETDEWEB)
NONE
2001-07-01
It is examined to take burnup credit into account for criticality safety control of facility treating spent fuel. This work is a collection of current technical status of predicting isotopic composition and criticality of spent fuel, points to be specially considered for safety evaluation, and current status of legal affairs for the purpose of applying burnup credit to the criticality safety evaluation of the facility treating spent fuel in Japan. (author)
A burn-up module coupling to an AMPX system
International Nuclear Information System (INIS)
The Reactors and Neutrons Division of the Bariloche Atomic Center uses the AMPX system for the study of high conversion reactors (HCR). Such system allows to make neutronic calculations from the nuclear data library (ENDF/B-IV). The Nuclear Engineering career of the Balseiro Institute developed and implemented a burn-up module at a μ-cell level (BUM: Burn-up Module) which agrees with the requirement to be coupled to the AMPX system. (Author)
Advanced Burnup Method using Inductively Coupled Plasma Mass Spectrometry
Energy Technology Data Exchange (ETDEWEB)
Hilton, Bruce A. [Idaho Natonal Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Glagolenko, Irina; Giglio, Jeffrey J.; Cummings, Daniel G
2009-06-15
Nuclear fuel burnup is a key parameter used to assess irradiated fuel performance, to characterize the dependence of property changes due to irradiation, and to perform nuclear materials accountability. For advanced transmutation fuels and high burnup LWR fuels that have multiple fission sources, the existing Nd-148 ASTM burnup determination practice requires input of calculated fission fractions (identifying the specific fission source isotope and neutron energy that yielded fission, e.g., U-235 from thermal neutron, U-238 from fast neutron) from computational neutronics analysis in addition to the measured concentration of a single fission product isotope. We report a novel methodology of nuclear fuel burnup determination, which is completely independent of model predictions and reactor types. The proposed method leverages the capability of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to quantify multiple fission products and actinides and uses these data to develop a system of burnup equations whose solution is the fission fractions. The fission fractions are substituted back in the equations to determine burnup. This technique requires high fidelity fission yield data, which is not uniformly available for all fission products. We discuss different means that can potentially assist in indirect determination, verification and improvement (refinement) of the ambiguously known fission yields. A variety of irradiated fuel samples are characterized by ICP-MS and the results used to test the advanced burnup method. The samples include metallic alloy fuel irradiated in fast spectrum reactor (EBRII) and metallic alloy in a tailored spectrum and dispersion fuel in the thermal spectrum of the Advanced Test Reactor (ATR). The derived fission fractions and measured burnups are compared with calculated values predicted by neutronics models. (authors)
Advanced Burnup Method using Inductively Coupled Plasma Mass Spectrometry
International Nuclear Information System (INIS)
Nuclear fuel burnup is a key parameter used to assess irradiated fuel performance, to characterize the dependence of property changes due to irradiation, and to perform nuclear materials accountability. For advanced transmutation fuels and high burnup LWR fuels that have multiple fission sources, the existing Nd-148 ASTM burnup determination practice requires input of calculated fission fractions (identifying the specific fission source isotope and neutron energy that yielded fission, e.g., U-235 from thermal neutron, U-238 from fast neutron) from computational neutronics analysis in addition to the measured concentration of a single fission product isotope. We report a novel methodology of nuclear fuel burnup determination, which is completely independent of model predictions and reactor types. The proposed method leverages the capability of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to quantify multiple fission products and actinides and uses these data to develop a system of burnup equations whose solution is the fission fractions. The fission fractions are substituted back in the equations to determine burnup. This technique requires high fidelity fission yield data, which is not uniformly available for all fission products. We discuss different means that can potentially assist in indirect determination, verification and improvement (refinement) of the ambiguously known fission yields. A variety of irradiated fuel samples are characterized by ICP-MS and the results used to test the advanced burnup method. The samples include metallic alloy fuel irradiated in fast spectrum reactor (EBRII) and metallic alloy in a tailored spectrum and dispersion fuel in the thermal spectrum of the Advanced Test Reactor (ATR). The derived fission fractions and measured burnups are compared with calculated values predicted by neutronics models. (authors)
Sophistication of burnup analysis system for fast reactor
International Nuclear Information System (INIS)
Improvement on prediction accuracy for neutronics property of fast reactor cores is one of the most important study domains in terms of both achievement of high economical plant efficiency based on reasonably advanced designs and increased reliability and safety margins. In former study, considerable improvement on prediction accuracy in neutronics design has been achieved in the development of the unified constants library as a fruit of a series of critical experiments such as JUPITER in application of the reactor constant adjustments. For design of fast reactor cores, however, improvement of not only static properties but also burnup properties is very important. For such purpose, it is necessary to improve the prediction accuracy on burnup properties using actual burnup data of 'JOYO' and 'MONJU', experimental and prototype fast reactors. Recently, study on effective burnup method for minor actinides becomes important theme. However, there is a problem that analysis work tends to become inefficient for lack of functionality suitable for analysis of composition change due to burnup since the conventional analysis system is targeted to critical assembly systems. Therefore development of burnup analysis system for fast reactors with modularity and flexibility is being done that would contribute to actual core design work and improvement of prediction accuracy. In the previous research, we have developed a prototype system which has functions of performing core and burnup calculations using given constant files (PDS files) and information based on simple and easy user input data. It has also functions of fuel shuffling which is indispensable for production systems. In the present study, we implemented functions for cell calculations and burnup calculations. With this, whole steps in analysis can be carried out with only this system. In addition, we modified the specification of user input to improve the convenience of this system. Since implementations being done so
A guide introducing burnup credit, preliminary version. Contract research
International Nuclear Information System (INIS)
It is examined to take burnup credit into account for criticality safety control of facility treating spent fuel. This work is a collection of current technical status of predicting isotopic composition and criticality of spent fuel, points to be specially considered for safety evaluation, and current status of legal affairs for the purpose of applying burnup credit to the criticality safety evaluation of the facility treating spent fuel in Japan. (author)
Parramore, Keith
2009-01-01
In Volume 26, Number 2, we reported on a group case study run for level 3 mathematics students at the University of Brighton. At the core of the study was a quadratic assignment problem, and we reported on attempts by students to use Excel to solve the problem, and on the attendant difficulties. We provided an elegant solution. In this article, we…
Burnup studies of the subcritical fusion-driven in-zinerator
International Nuclear Information System (INIS)
A fusion-driven subcritical core, 'In-Zinerator', has been proposed for nuclear waste transmutation [1]. In this concept, a powerful Z-pinch neutron source will produce pulses of 14 MeV neutrons that multiply in a surrounding subcritical core consisting of spent fuel from the LWR fuel cycle or from deep burn high temperature reactors. The proposed design has pulse frequency 0.1 Hz and a thermal power of 3 GWth. The Z-pinch fusion experiment is located at Sandia Laboratories, USA, and can today fire once a day. However, investigations have been made how to increase the frequency to several fires per minute. Each fire yields 300 MJ corresponding to 1020 neutrons per pulse. The source chamber will in the In-Zinerator concept be surrounded by spent fuel to reach an effective multiplication factor, keff, of 0.97. The core will be cooled by liquid lead. In this paper, the burnup of different fuel compositions in the In-Zinerator will be studied as function of initial keff. The Monte Carlo based continuous energy burnup code MCB [2][3]will be used. References: [1] B.B. Cipiti, Fusion Transmutation of Waste and the Role of the In-Zinerator in the Nuclear Fuel Cycle, Sandia Report SAND2006-3522, Sandia National Laboratories, USA, 2006. [2] J. Cetnar, J Wallenius and W Gudowski, MCB: A continuous energy Monte-Carlo burnup simulation code, Actinide and fission product partitioning and transmutation, Proc. of the Fifth Int. Information Exchange Meeting, Mol, Belgium, 25-27 November 1998, 523, OECD/NEA, 1998. [3] http://www.nea.fr/abs/html/nea-1643.html
Instrumentation for measuring the burnup of spent nuclear fuel
International Nuclear Information System (INIS)
Many different methods or procedures have been developed to measure reactivity of fissil materials. Few of these, however, have been designed specifically for light water reactor fuel or have actually been used to measure the reactivity of spent fuel. The methods that have been used to make measurements of related systems are the 252Cf source-driven noise analysis method, a noise analysis method using natural neutron sources, subcritical assembly measurements, and pulsed neutron techniques. Several different approaches to directly measuring burnup have been developed by various organizations. The experimental work on actual spent nuclear fuel utilizing reactivity measurement techniques is insufficient to provide conclusive evidence of the applicability of these techniques for verifying fuel burnup. The work with burnup meters indicates, however, that good correlations can be obtained with any of the systems. A burnup meter's primary function would be a secondary assurance that the administrative records are not grossly in error. Reactivity measurements provide information relating to the reactivity of the fuel only under the conditions measured. Criticality prevention design requirements will necessitate that casks accommodate a minimum burnup level for a given initial enrichment (i.e., a maximum reactivity). Direct measurement of the burnup will enable an easy determination of whether a particular fuel assembly can be shipped in a specific cask with a minimum number of additional correlations
Burnup credit considerations in dry spent-fuel storage licensing
International Nuclear Information System (INIS)
Burnup credit has been allowed in reactor basin spent-fuel storage at pressurized water reactors for a number of years. However, such storage occurs under strict administrative, procedural, and design controls. In recent years, dry spent-fuel storage cask vendors have expressed interest in designing cask fuel baskets with allowance for burnup credit. At last year's American Nuclear Society Winter Meeting, an ad hoc session was organized and authorized on burnup credit for dry storage and transportation casks. It has become clear that some utilities are interested in burnup credit for dry storage designs. Given this, the US Nuclear Regulatory Commission (NRC) staff is examining the technical issues involved in allowing burnup credit. Analytical work focused on the development of branch technical positions for determination of burnup credit for dry spent-fuel storage technology designs has begun. Procedural and administrative issues will be examined, based on licensing experience, and will also be the subject of branch technical positions. At an appropriate time, preparation of regulatory guides will be considered
Research on irradiation behavior of superhigh burnup fuel
International Nuclear Information System (INIS)
In Japan Atomic Energy Research Institute, the special team for LWR future technology development project was organized in Tokai Research Establishment from October, 1991 to the end of fiscal year 1993. Due to the delay of the introduction of fast reactors, LWRs are expected to be used for considerably long period also in 21st century, therefore, it aimed at the further advancement of LWRs, and as one of its embodiments, the concept of superhigh burnup fuel was investigated. The superhigh burnup fuel aims at the attainment of 100 GWd/t burnup, and it succeeded the achievement of the conceptual design study on 'superlong life LWRs'. It is generally recognized that the development of the new material that substitutes for zircaloy is indispensable for superhigh burnup fuel. The concept of superhigh burnup core and the specification of fuel, the research and development of superhigh burnup fuel, the research on the irradiation behavior and irradiation damage of fuel and the damage by ion irradiation, and the method and the results of the irradiation experiment using a tandem accelerator are reported. (K.I.)
Research on irradiation behavior of superhigh burnup fuel
Energy Technology Data Exchange (ETDEWEB)
Hayashi, Kimio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1995-03-01
In Japan Atomic Energy Research Institute, the special team for LWR future technology development project was organized in Tokai Research Establishment from October, 1991 to the end of fiscal year 1993. Due to the delay of the introduction of fast reactors, LWRs are expected to be used for considerably long period also in 21st century, therefore, it aimed at the further advancement of LWRs, and as one of its embodiments, the concept of superhigh burnup fuel was investigated. The superhigh burnup fuel aims at the attainment of 100 GWd/t burnup, and it succeeded the achievement of the conceptual design study on `superlong life LWRs`. It is generally recognized that the development of the new material that substitutes for zircaloy is indispensable for superhigh burnup fuel. The concept of superhigh burnup core and the specification of fuel, the research and development of superhigh burnup fuel, the research on the irradiation behavior and irradiation damage of fuel and the damage by ion irradiation, and the method and the results of the irradiation experiment using a tandem accelerator are reported. (K.I.).
International Nuclear Information System (INIS)
The behavior of 1 MeV tritons produced in the d(d,p)t reaction is important to predict the properties of D-T produced 3.5 MeV alphas because 1 MeV tritons and 3.5 MeV alphas have similar kinematic properties, such as Larmor radius and precession frequency. The confinement and slowing down of the fast tritons were investigated by measuring the 14 MeV and the 2.5 MeV neutron production rates. Here the time resolved triton burnup measurements have been performed using a new type 14 MeV neutron detector based on scintillating fibers, as part of a US-Japan tokamak collaboration. Loss of alpha particles due to toroidal ripple is one of the most important issues to be solved for a fusion reactor such as ITER. The authors investigated the toroidal ripple effect on the fast triton by analyzing the time history of the 14 MeV emission after NB turn-off
An empirical formulation to describe the evolution of the high burnup structure
International Nuclear Information System (INIS)
In the present work the behavior of fuel pellets for LWR power reactors in the high burnup range (average burnup higher than about 45 MWd/kgU) is analyzed. For extended irradiation periods, a considerable Pu concentration is reached in the pellet periphery (rim zone), that contributes to local burnup. Gradually, a new microstructure develops in that ring, characterized by small grains and large pores as compared with those of the original material. In this region Xe is absent from the solid lattice (although it continues to be dissolved in the rest of the pellet). The porous microstructure in the pellet edge causes local changes in the mechanical and thermal properties, thus affecting the overall fuel behavior. It is generally accepted that the evolution of porosity in the high burnup structure (HBS) is determinant of the retention capacity of the fission gases rejected from the fuel matrix. This is the reason why, during the latest years a considerable effort has been devoted to characterizing the parameters that influence porosity. Although the mechanisms governing the microstructural transformation have not been completely elucidated yet, some empirical expressions can be given, and this is the intention of the present work, for representing the main physical parameters. Starting from several works published in the open literature, some mathematical expressions were developed to describe the behavior and progress of porosity at local burnup values ranging from 60 to 300 MWd/kgU. The analysis includes the interactions of different orders between pores, the growth of the pore radius by capturing vacancies, the evolution of porosity, pore number density and overpressure within the closed pores, the inventory of fission gas dissolved in the matrix and retained in the pores. The model is mathematically expressed by a system of non-linear differential equations. In the present work, results of this calculation scheme are compared with experimental data available in
An empirical formulation to describe the evolution of the high burnup structure
Energy Technology Data Exchange (ETDEWEB)
Lemes, Martín; Soba, Alejandro; Denis, Alicia
2015-01-15
In the present work the behavior of fuel pellets for LWR power reactors in the high burnup range (average burnup higher than about 45 MWd/kgU) is analyzed. For extended irradiation periods, a considerable Pu concentration is reached in the pellet periphery (rim zone), that contributes to local burnup. Gradually, a new microstructure develops in that ring, characterized by small grains and large pores as compared with those of the original material. In this region Xe is absent from the solid lattice (although it continues to be dissolved in the rest of the pellet). The porous microstructure in the pellet edge causes local changes in the mechanical and thermal properties, thus affecting the overall fuel behavior. It is generally accepted that the evolution of porosity in the high burnup structure (HBS) is determinant of the retention capacity of the fission gases rejected from the fuel matrix. This is the reason why, during the latest years a considerable effort has been devoted to characterizing the parameters that influence porosity. Although the mechanisms governing the microstructural transformation have not been completely elucidated yet, some empirical expressions can be given, and this is the intention of the present work, for representing the main physical parameters. Starting from several works published in the open literature, some mathematical expressions were developed to describe the behavior and progress of porosity at local burnup values ranging from 60 to 300 MWd/kgU. The analysis includes the interactions of different orders between pores, the growth of the pore radius by capturing vacancies, the evolution of porosity, pore number density and overpressure within the closed pores, the inventory of fission gas dissolved in the matrix and retained in the pores. The model is mathematically expressed by a system of non-linear differential equations. In the present work, results of this calculation scheme are compared with experimental data available in
Thermal performance modelling with the ENIGMA code
International Nuclear Information System (INIS)
The ENIGMA fuel performance code has been used within BNFL to license UO2, gadolinia and MOX fuels. The validation of ENIGMA has been extensive with over 500 rod irradiations covering thermal performance, fission product release, dimensional changes and clad corrosion to burn-ups of over 80 MWd/kgHM. The high burn-up thermal performance of the code is illustrated using a selection of validation data covering UO2, gadolinia and MOX fuels. A brief description of the model changes made to address the thermal performance in these fuel types is presented with particular attention given to the modelling of the thermal conductivity degradation and 'rim effect' in high burn-up fuel. (author)
International Nuclear Information System (INIS)
The resonances for some kinds of nuclides such as U-238 and Pu-239 are not easy to be accurately processed. In addition, the Pu-239 productions from burnup are also significant in CANDU, where the natural uranium is used as a fuel. In this study, the FTCs were analyzed from the viewpoints of the resonance self-shielding methodology and Pu-239 build-up. The lattice burnup calculations were performed using the TRITON module in the SCALE6 code system, and the BONAMI module was executed to obtain self-shielded cross sections using the Bondarenko approach. Two libraries, ENDF/B-VI.8 and ENDF/B-VII.0, were used to compare the Pu-239 effect on FTC, since the ENDF/B-VII has updated the Pu-239 cross section data. The FTCs of the CANDU reactor were newly analyzed using the TRITON module in the SCALE6 code system, and the BONAMI module was executed to apply the Bondarenko approach for self-shielded cross sections. When compared with some reactor physics codes resulting in slightly positive FTC in the specific region, the FTCs evaluated in this study showed a clear negativity over the entire fuel temperature range on fresh/equilibrium fuel. In addition, the FTCs at 960.15 K were slightly negative during the entire burnup. The effects on FTCs from the library difference between ENDF/B-VI.8 and ENDF/B-VII.0 are recognized to not be large; however, they appear more positive when more Pu-239 productions with burnup are considered. This feasibility study needs an additional benchmark evaluation for FTC calculations, but it can be used as a reference for a new FTC analysis in CANDU reactors
Performance of code 'FAIR' in IAEA CRP on FUMEX
International Nuclear Information System (INIS)
A modern fuel performance analysis code FAIR has been developed for analysing high burnup fuel pins of water/heavy water cooled reactors. The code employs finite element method for modelling thermo mechanical behaviour of fuel pins and mechanistic models for modelling various physical and chemical phenomena affecting the behaviour of nuclear reactor fuel pins. High burnup affects such as pellet thermal conductivity degradation, enhanced fission gas release and radial flux redistribution are incorporated in the code FAIR. The code FAIR is capable of performing statistical analysis of fuel pins using Monte Carlo technique. The code is implemented on BARC parallel processing system ANUPAM. The code has recently participated in an International Atomic Energy Agency (IAEA) coordinated research program (CRP) on fuel modelling at extended burnups (FUMEX). Nineteen agencies from different countries participated in this exercise. In this CRP, spread over a period of three years, a number of high burnup fuel pins irradiated at Halden reactor are analysed. The first phase of the CRP is a blind code comparison exercise, where the computed results are compared with experimental results. The second phase consists of modifications to the code based on the experimental results of first phase and statistical analysis of fuel pins. The performance of the code FAIR in this CRP has been very good. The present report highlights the main features of code FAIR and its performance in the IAEA CRP on FUMEX. 14 refs., 5 tabs., ills
Modeling fission gas release in high burnup ThO2-UO2 fuel
International Nuclear Information System (INIS)
A preliminary fission gas release model to predict the performance of thoria fuel using the FRAPCON-3 computer code package has been formulated. The following modeling changes have been made in the code: - Radial power/burnup distribution; - Thermal conductivity and thermal expansion; - Rim porosity and fuel density; - Diffusion coefficient of fission gas in ThO2-UO2 fuel and low temperature fission gas release model. Due to its lower epithermal resonance absorption, thoria fuel experiences a much flatter distribution of radial fissile products and radial power distribution during operation as compared to uranian fuel. The rim effect and its consequences in thoria fuel, therefore, are expected to occur only at relatively high burnup levels. The enhanced conductivity is evident for ThO2, but for a mixture the thermal conductivity enhancement is small. The lower thermal fuel expansion tends to negate these small advantages. With the modifications above, the new version of FRAPCON-3 matched the measured fission gas release data reasonably well using the ANS 5.4 fission gas release model. (authors)
Simplified models for pebble-bed HTR core burn-up calculations with Monteburns2.0©
International Nuclear Information System (INIS)
Highlights: ► PBMR-400 annular core is very difficult to simulate in a reliable way. ► Nuclide evolutions given by different lattice models can differ significantly. ► To split fixed lattice models into two axial zones does not affect results significantly. ► We can choose a (simplified) core model on the basis of the analysis aim. ► Monteburns gives by survey burn-up calculations reasonable nuclide evolution trends. - Abstract: This paper aims at comparing some simplified models to simulate irradiation cycles of Pu fuelled pebble-bed reactors with Monteburns2.0© code. As a reference core, the PBMR-400 (proposed in the framework of the EU PUMA project, where this kind of core fuelled by a Pu and Pu–Np fuel has been studied) was taken into account. Pebble-bed High Temperature Reactor (HTR) cores consist of hundreds of thousands pebbles arranged stochastically in a cylindrical or annular space and each pebble is a single fuel element, and it is able to reach ultra-high burn-ups, i.e. up to 750 GWd/tHM (for Pu-based fuels). Additionally, pebble-bed cores are characterised by a continuous recirculation of pebbles from the top to the bottom of the core. Modelling accurately with current computer codes such an arrangement, in order to predict the behaviour of the core itself, is a very difficult task and any depletion code specifically devoted to pebble-bed burn-up calculation is not available at the moment. Because of limitations of the most common current MCNP-based depletion codes as well as huge calculation times, simplified models have to be implemented. After an analysis of the literature available on pebble-bed models for criticality and burn-up calculations, a preliminary assessment of the impact of different kind of simplified models for a Pu-Np fuelled Pebble-Bed Modular Reactor (PBMR), proposed in the framework of the EU PUMA project, is shown, particularly as far as burn-up prediction with Monteburns2.0© code is concerned.
Hypothyroidism with scholastic excellence
Directory of Open Access Journals (Sweden)
S Salini
2015-01-01
Full Text Available A 9-year-old boy had presented with not gaining adequate height with complaints of constipation from 5 years, lethargy and loss of appetite from past 6 months. He was diagnosed to have hypothyroidism with high thyroid antibody levels. Though he was stunted his neurocognition and scholastic performance was excellent as evidenced by his school rank cards. His physical symptoms had improved after thyroxin supplement
Sustainable Enterprise Excellence
DEFF Research Database (Denmark)
Edgeman, Rick
2013-01-01
, the UN Global Compact 10 Principles, and criteria of the European Quality Award and America’s Baldrige National Quality Award. From these a model and key criteria are distilled, maturity scales developed, and a simple means of assessment presented. Findings: A compact model and supporting maturity......, together with a means of maturity assessment. Keywords: Governance, Innovation for Sustainability, Maturity Assessment, Performance Dashboard, Resilience, Sustainable Enterprise Excellence, Sustainable Innovation, SWOT Plot Narrative, Triple Bottom Line Performance, Triple Top Line Strategy. Article...
Validation of BGCore System for Burnup Calculations
International Nuclear Information System (INIS)
BGCore is a software package for comprehensive computer simulation of nuclear reactor systems and their fuel cycles. BGCore interfaces the Monte Carlo particles transport code MCNP4C with a SARAF module - an independently developed code for calculating fuel composition during irradiation and spent fuel emissions following discharge. In BGCore system, depletion coupling methodology is based on the multi-group approach that significantly reduces computation time and allows tracking of large number of nuclides during calculations. The objective of this study is validation of the BGCore system against well established and verified, state of the art computer codes for thermal and fast spectrum lattices
A SAS2H/KENO-V.a methodology for a combined 1D/3D full core fuel burnup analysis
International Nuclear Information System (INIS)
An efficient methodology for 3D fuel burnup analysis of LWR reactors is described in this paper. This methodology is founded on coupling Monte Carlo method for 3D calculation of node power distribution, and transport method for depletion calculation in ID Wigner-Seitz equivalent cell for each node independently. The proposed fuel burnup modeling, based on application of SCALE-4.4a control modules SAS2H and KENO-V.a is verified for the case of 2D x-y model of IRIS 15 x 15 fuel assembly (with reflective boundary condition) by using two well benchmarked code systems. The one is MOCUP, a coupled MCNP-4C and ORIGEN2.1 utility code, and the second is KENO-V.a/ORIGEN2.1 code system recently developed by authors of this paper. The proposed SAS2H/KENO-V.a methodology was applied for 3D burnup analysis of IRIS-1000 benchmark no.44 core. Detailed keff and power density evolution with burnup are reported. (author)
Chemical analyses and calculation of isotopic compositions of high-burnup UO2 fuels and MOX fuels
International Nuclear Information System (INIS)
Chemical analysis activities of isotopic compositions of high-burnup UO2 fuels and MOX fuels in CRIEPI and calculation evaluation are reviewed briefly. C/E values of ORIGEN2, in which original libraries and JENDL-3.2 libraries are used, and other codes with chemical analysis data are reviewed and evaluated. Isotopic compositions of main U and Pu in fuels can be evaluated within 10% relative errors by suitable libraries and codes. Void ratio is effective parameter for C/E values in BWR fuels. JENDL-3.2 library shows remarkable improvement compared with original libraries in isotopic composition evaluations of FP nuclides. (author)
Excellence in the Pluralistic University
Wharton, Clifton R., Jr.
1973-01-01
The pluralistic university must explore the relationship between educational equity and individual excellence, and between egalitarianism and the excellence of societal and educational institutions. (Author)
Energy Technology Data Exchange (ETDEWEB)
Gauld, I. C.; Ryman, J. C.
2000-12-11
This report investigates trends in the radiological decay properties and changes in relative nuclide importance associated with increasing enrichments and burnup for spent LWR fuel as they affect the areas of criticality safety, thermal analysis (decay heat), and shielding analysis of spent fuel transport and storage casks. To facilitate identifying the changes in the spent fuel compositions that most directly impact these application areas, the dominant nuclides in each area have been identified and ranked by importance. The importance is investigated as a function of increasing burnup to assist in identifying the key changes in spent fuel characteristics between conventional- and extended-burnup regimes. Studies involving both pressurized water-reactor (PWR) fuel assemblies and boiling-water-reactor (BWR) assemblies are included. This study is seen to be a necessary first step in identifying the high-burnup spent fuel characteristics that may adversely affect the accuracy of current computational methods and data, assess the potential impact on previous guidance on isotopic source terms and decay-heat values, and thus help identify areas for methods and data improvement. Finally, several recommendations on the direction of possible future code validation efforts for high-burnup spent fuel predictions are presented.
The calculational VVER burnup Credit Benchmark No.3 results with the ENDF/B-VI rev.5 (1999)
Energy Technology Data Exchange (ETDEWEB)
Rodriguez Gual, Maritza [Centro de Tecnologia Nuclear, La Habana (Cuba). E-mail: mrgual@ctn.isctn.edu.cu
2000-07-01
The purpose of this papers to present the results of CB3 phase of the VVER calculational benchmark with the recent evaluated nuclear data library ENDF/B-VI Rev.5 (1999). This results are compared with the obtained from the other participants in the calculations (Czech Republic, Finland, Hungary, Slovaquia, Spain and the United Kingdom). The phase (CB3) of the VVER calculation benchmark is similar to the Phase II-A of the OECD/NEA/INSC BUC Working Group benchmark for PWR. The cases without burnup profile (BP) were performed with the WIMS/D-4 code. The rest of the cases have been carried with DOTIII discrete ordinates code. The neutron library used was the ENDF/B-VI rev. 5 (1999). The WIMS/D-4 (69 groups) is used to collapse cross sections from the ENDF/B-VI Rev. 5 (1999) to 36 groups working library for 2-D calculations. This work also comprises the results of CB1 (obtained with ENDF/B-VI rev. 5 (1999), too) and CB3 for cases with Burnup of 30 MWd/TU and cooling time of 1 and 5 years and for case with Burnup of 40 MWd/TU and cooling time of 1 year. (author)
A burnup corrected 3-D nodal depletion method for vector and parallel computer architectures
International Nuclear Information System (INIS)
The 2- and 3-D nodal depletion code NOMAD-BC was parallelized and vectorized (3-D only). A 3-D, 2-cycle depletion problem was devised and successfully solved with the NOMAD-BC code in less than 35 seconds on two CPUs of a Cray X-MP/48. This shows a combined vectorization and parallelization speedup of 8.6. The same problem was solved on a 2-CPU 16 MHz SGI workstation in less than one hour, exhibiting a 1.78 speedup over the single processor solution on the same machine. It is shown in this work that complex and detailed burnup computations can be successfully optimized. In addition, the performance achieved demonstrates the possibility of obtaining results within very reasonable times, even on inexpensive workstations. Finally, the small CPU time requirements should make possible the routine evaluation of fuel cycles at great savings of the engineer's time. (author)
ZZ CANDULIB-AECL, Burnup-Dependent ORIGEN-S Cross-Section Libraries for Candu Reactor Fuels
International Nuclear Information System (INIS)
and fission cross sections were obtained from collapsed 89-group ENDF/B-V and -VI data from the WIMS-AECL lattice code. Other reaction cross sections were obtained from the SCALE 27-group ENDF/B-IV data. In all, cross sections for more than 200 important actinides and fission products were updated with burnup-dependent data. The source of the nuclear decay data and cross sections not updated were the base ORIGEN-S libraries distributed with the SCALE 4.2 code package. The burnup-dependent cross sections were generated using eight burnup intervals that extend up to a burnup of approximately 12000 MWd/MgU. The cross sections for each interval are stored in positions on the ORIGEN-S library and are accessed by referencing the position number. The burnup values associated with each position are listed below. They are the same for both the 37-element and 28-element libraries. Library Position → Burnup (MWd/MgU): 1 → 240; 2 → 720; 3 → 1440; 4 → 2880; 5 → 4800; 6 → 6720; 7 → 8640; 8 → 10560
International Nuclear Information System (INIS)
The expanded use of burnup credit in the United States (U.S.) for storage and transport casks, particularly in the acceptance of credit for fission products, has been constrained by the availability of experimental fission product data to support code validation. The U.S. Nuclear Regulatory Commission (NRC) staff has noted that the rationale for restricting the Interim Staff Guidance on burnup credit for storage and transportation casks (ISG-8) to actinide-only is based largely on the lack of clear, definitive experiments that can be used to estimate the bias and uncertainty for computational analyses associated with using burnup credit. To address the issues of burnup credit criticality validation, the NRC initiated a project with the Oak Ridge National Laboratory to (1) develop and establish a technically sound validation approach for commercial spent nuclear fuel (SNF) criticality safety evaluations based on best-available data and methods and (2) apply the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The purpose of this paper is to describe the isotopic composition (depletion) validation approach and resulting observations and recommendations. Validation of the criticality calculations is addressed in a companion paper at this conference. For isotopic composition validation, the approach is to determine burnup-dependent bias and uncertainty in the effective neutron multiplication factor (keff) due to bias and uncertainty in isotopic predictions, via comparisons of isotopic composition predictions (calculated) and measured isotopic compositions from destructive radiochemical assay utilizing as much assay data as is available, and a best-estimate Monte Carlo based method. This paper (1) provides a detailed description of the burnup credit isotopic validation approach and its technical bases, (2) describes the application of the approach for
SCALE and SERPENT solutions of the OECD VVER-1000 LEU and MOX burnup computational benchmark
International Nuclear Information System (INIS)
Highlights: • New solutions for the VVER-1000 LEU and MOX burnup computational benchmark have been obtained using ENDF/B-VII and JEFF3.1 nuclear data libraries. • The SERPENT and SCALE codes have been used for the first time to solve the benchmark exercises. • The comparison of our results with the ones available in literature shows generally a good agreement over all the reactor states considered in terms of reactivity values, pin-by-pin fission rates distributions and nuclide concentrations. • The SERPENT models for the LEU and MOX assemblies have also been tested with JEF2.2 making of this work also a new Monte Carlo reference solution for the benchmark exercise with modern nuclear data libraries. - Abstract: The loading of hybrid cores with Mixed Uranium Plutonium Oxide (MOX) and Low Enriched Uranium (LEU) fuels in commercial nuclear reactors requires well validated computational methods and codes capable of providing reliable predictions of the neutronics characteristics of such fuels in terms of reactivity conditions (kinf), nuclide inventory and pin power generation over the entire fuel cycle length. Within the framework of Joint United States/Russian Fissile Materials Disposition Program an important task is to verify and validate neutronics codes for the use of MOX fuel in VVER-1000 reactors. Benchmark analyses are being performed for both computational benchmarks and experimental benchmarks. In this paper new solutions for the (UO2 + Gd) and (UO2 + PuO2 + Gd) fuel assemblies proposed within the “OECD VVER-1000 Burnup Computational Benchmark” are presented, these being representative of the designs which are expected to be used in the plutonium disposition mission. The objective is to test the SERPENT and SCALE codes against previously obtained solutions and to provide new reference solutions to the benchmark with modern nuclear data libraries
Castillo, Dalia Imelda; Estrada, Ana Luisa; Hernández, Brenda Amalia
2009-01-01
En este documento se presenta el desarrollo de algunas actividades que se trabajaron con estudiantes de primer semestre de la Universidad Autónoma de Nayarit; utilizando la hoja de cálculo Excel en el tema de visualización de funciones, para la materia de lenguaje y pensamiento matemático. Ya que la tecnología ha adquirido un papel muy importante en el proceso enseñanza-aprendizaje, nos ofrece un medio para que el estudiante explore, analice, verifique y desarrolle habilidades que se serán út...
Walkenbach, John
2008-01-01
Excel, the top number-crunching tool, now offers a vastly improved charting function to help you give those numbers dimension and relativity. John Walkenbach, a.k.a. Mr. Spreadsheet, clearly explains all these charting features and shows you how to choose the right chart for your needs. You'll learn to modify data within the chart, deal with missing data, format your chart, use trend lines, construct "impossible" charts, create charts from pivot tables, dress them up with graphics, and more. Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.
International Nuclear Information System (INIS)
The Technical Committee Meeting (TCM) included separate sessions on the specific topics of fuel thermal performance and fission product retention. On thermal performance, it is apparent that the capability exists to measure conductivity in high burnup fuel either by out-of-pile measurement or by instrumentation of test reactor rods. State-of-the-art modelling codes contain models for the conductivity degradation process, and hence adequate predictions of fuel temperature are achievable. Concerning fission product release, it is clear that many groups around the world are actively investigating the subject, with experimental and modelling programmes being pursued. However, a general consensus on the exact mechanisms of gas release and related gas bubble swelling has yet to emerge, even at medium burnup levels. Fission gas phenomena, not only the release to open volumes, but the whole sequence of processes taking place prior to this, need to be modelled in any modern fuel performance code. The presence of gaseous fission products may generate rapid fuel swelling during power transients, and this can cause PCI and rod failure. At high burnups, the quantity of released gases could give rise to pressures exceeding the safe limits. Modelling of pellet-cladding interaction (PCI) effects during transient operation is also an active area of study for many groups. In some situations a purely empirical approach to failure modelling can be justified, while for other applications a more detailed mechanistic approach is required. Another aspect of cladding modelling which was featured at the TCM concerned corrosion and hydriding. Although this issue can be the main life-limiting factor on fuel duty, it is apparent that modelling methods, and the experimental measurement techniques that underpin them, are adequate. A session was included on MOX fuel modelling. Substantial programmes of work, especially by the MOX vendors, appear to be underway to bring the level of understanding
Application of burnup credit with partial boron credit to PWR spent fuel storage pools
International Nuclear Information System (INIS)
The outcome of performing a burnup credit criticality safety analysis of a PWR spent fuel storage pool is the determination of burnup credit loading curves BLC=BLC(e) for the spent fuel storage racks designed for burnup credit, cp. Reference. A burnup credit loading curve BLC=BLC(e) specifies the loading criterion by indicating the minimum burnup BLC(e) necessary for the fuel assembly with a specific initial enrichment e to be placed in storage racks designed for burnup credit. (orig.)
Applications of ''candle'' burn-up strategy to several reactors
International Nuclear Information System (INIS)
The new burn-up strategy CANDLE is proposed, and the calculation procedure for its equilibrium state is presented. Using this strategy, the power shape does not change as time passes, and the excess reactivity and reactivity coefficient are constant during burn-up. No control mechanism for the burn-up reactivity is required, and power control is very easy. The reactor lifetime can be prolonged by elongating the core height. This burn-up strategy can be applied to several kinds of reactors whose maximum neutron multiplication factor changes from less than unity to more than unity, and then to less than unity. In the present paper it is applied to some fast reactors, thus requiring some fissile material such as plutonium for the nuclear ignition region of the core, but only natural uranium is required for the other region of the initial reactor and for succeeding reactors. The drift speed of the burning region for this reactor is about 4 cm/year, which is a preferable value for designing a long-life reactor. The average burn-up of the spent fuel is about 40%; that is, equivalent to 40% utilisation of the natural uranium without the reprocessing and enrichment. (author)
Triton burnup measurements by neutron activation at JT-60U
International Nuclear Information System (INIS)
This paper describes measurements on triton burnup in a deuterium plasma by the detection of the 2.5 MeV neutrons (from DD fusion) and the 14 MeV neutrons (from DT fusion). The 2.5 MeV neutrons have been measured by fission chambers and activation of indium foils while the 14 MeV neutrons have been detected by activation of silicon, aluminum, and copper foils. The measured yields of the 2.5 MeV neutrons utilizing In foils are similar 20-40% higher than the yields obtained from fission chambers depending on what calibration factors are used. The deviation decreases with the plasma major radius (or increasing plasma volume). When the triton burnup is measured by utilizing neutron threshold reactions (En>2.5 MeV) and In foils, then systematic errors in the calibration factors cancel and the maximum deviation between the measured triton burnup for different calibration factors is reduced to similar 5%. The measurements indicate that triton burnup increases with the 14 MeV neutron yield, indicating that the relative yield of 14 MeV neutrons increases depending on the time duration of the deuterium neutral beam injection (NBI). Furthermore, the triton burnup decreases with an increased plasma major radius, indicating increased triton ripple losses, and increases with plasma current, indicating reduced banana orbit losses. (orig.)
Disposal criticality analysis methodology's principal isotope burnup credit
International Nuclear Information System (INIS)
This paper presents the burnup credit aspects of the United States Department of Energy Yucca Mountain Project's methodology for performing criticality analyses for commercial light-water-reactor fuel. The disposal burnup credit methodology uses a 'principal isotope' model, which takes credit for the reduced reactivity associated with the build-up of the primary principal actinides and fission products in irradiated fuel. Burnup credit is important to the disposal criticality analysis methodology and to the design of commercial fuel waste packages. The burnup credit methodology developed for disposal of irradiated commercial nuclear fuel can also be applied to storage and transportation of irradiated commercial nuclear fuel. For all applications a series of loading curves are developed using a best estimate methodology and depending on the application, an additional administrative safety margin may be applied. The burnup credit methodology better represents the 'true' reactivity of the irradiated fuel configuration, and hence the real safety margin, than do evaluations using the 'fresh fuel' assumption. (author)
Burnup credit in nuclear waste transport: An economic analysis
International Nuclear Information System (INIS)
The US DOE is responsible for transporting nuclear spent fuel from commercial reactors to monitored retrievable storage (MRS) facilities and/or to repositories. Current plans call for approximately 110,000 metric tons uranium (MTU) to be transported over approximately 40 years beginning in 1998. Because of the large volume of spent fuel to be transported, new generations of spent fuel transportation casks are being planned. These casks will embody the latest technology and will be designated to accommodate the spent fuel in a way that maximizes the overall efficiency of the cask. In planning for the new generation of transport casks, the DOE is investigating the possibility of tailoring the cask design for the extent to which spent fuel has been used in the reactors, or, for spent fuel burnup. Granting design credit for burnup would allow one to fabricate casks with relatively larger capacities than would be possible otherwise. The remainder of the paper discusses the economic implications of using burnup credit in cask design, discusses the approach used in analyzing the economics of burnup credit, describes the results of the analysis, and offers some conclusions about the economic value of the burnup credit option
Burnup monitoring of VVER-440 spent fuel assemblies
International Nuclear Information System (INIS)
This paper reports on the results of the experiments performed on spent VVER-440 fuel assemblies at the Paks Nuclear Power Plant (NPP), Hungary. The fuel assemblies submerged in the service pit were examined by high-resolution gamma spectrometry (HRGS). The assemblies were moved to the front of a collimator tube built in the concrete wall of the pit in the reactor block at the NPP, and lifted down and up under water for scanning by the refueling machine. The HPGe detector was placed behind the collimator in an outside staircase. The measurements involved scanning of the assemblies along their length of all the 6 sides, at 5-12 measurement positions side by side. Axial and azimuthal burnup profiles were taken in this way. Assembly groups for measurements were selected according to their burnup (10–50 GWd/tU) and special positions (e. g. control assembly, neighbour of control assembly). Burnup differences were well observable between assembly sides looking towards the center of the core and opposite directions. Also, burnup profiles were different for control assemblies and normal (working) fuel assemblies. The ratio of the measured activities of Cs-134 and Cs-137 was evaluated by relative efficiency (intrinsic) calibration. Measurement uncertainty is around 3 %. Taking into account irradiation history and cooling time (i. e.the time elapsed since the discharge of the assembly out of the core), the activity ratio Cs-134/Cs-137 shows good correlation with the declared burnup.
Fuel cycle economical improvement by reaching high fuel burnup
International Nuclear Information System (INIS)
Improvements of fuel utilization in the light water reactors, burnup increase have led to a necessity to revise strategic approaches of the fuel cycle development. Different trends of the fuel cycle development are necessary to consider in accordance with the type of reactors used, the uranium market and other features that correspond to the nuclear and economic aspects of the fuel cycle. The fuel burnup step-by-step extension Program that successfully are being realized by the leading, firms - fuel manufacturers and the research centres allow to say that there are no serious technical obstacles for licensing in the near future of water cooling reactors fuel rod burnup (average) limit to 65-70 MWd/kgU and fuel assembly (average) limit to (60-65) MWd/kgU. The operating experience of Ukrainian NPPs with WWER-1000 is 130 reactor * years. At the beginning of 1999, a total quantity of the fuel FA discharged during all time of operation of 11 reactors was 5819 (110 fuel cycles). Economical improvement is reached by increase of fuel burn-up by using of some FA of 3 fuel cycles design in 4th fuel loading cycle. Fuel reliability is satisfactory. The further improvement of FA is necessary, that will allow to reduce the front-end fuel cycle cost (specific natural uranium expenditure), to reduce spent fuel amount and, respectively, the fuel cycle back end costs, and to increase burn-up of the fuel. (author)
Achieving High Burnup Targets With Mox Fuels: Techno Economic Implications
International Nuclear Information System (INIS)
For a typical MOX fuelled SFR of power reactor size, Implications due to higher burnup have been quantified. Advantages: – Improvement in the economy is seen upto 200 GWd/ t; Disadvantages: – Design changes > 150 GWd/ t bu; – Need for 8/ 16 more fuel SA at 150/ 200 GWd/ t bu; – Higher enrichment of B4C in CSR/ DSR at higher bu; – Reduction in LHR may be required at higher bu; – Structural material changes beyond 150 GWd/ t bu; – Reprocessing point of view-Sp Activity & Decay heat increase. Need for R & D is a must before increasing burnup. bu- refers burnup. Efforts to increase MOX fuel burnup beyond 200 GWd/ t may not be highly lucrative; • MOX fuelled FBR would be restricted to two or four further reactors; • Imported MOX fuelled FBRs may be considered; • India looks towards launching metal fuel FBRs in the future. – Due to high Breeding Ratio; – High burnup capability
Use of burnup credit in criticality evaluation for spent fuel storage pool
International Nuclear Information System (INIS)
Boraflex is a polymer based material which is used as matrix to contain a neutron absorber material, boron carbide. In a typical spent fuel pool the irradiated Boraflex has been known as a significant source of silica. Since 1996, it was reported that elevated silica levels were measured in the Ulchin Unit 2 spent fuel pool water. Therefore, the Ulchin Unit 2 spent fuel storage racks were needed to be reanalyzed to allow storage of fuel assemblies with normal enrichments up to 5.0w/o U-235 in all storage cell locations using credit for burnup. The analysis does not take any credit for the presence of the spent fuel rack Boraflex neutron absorber panels. In region 2, the calculations were performed by assuming in an infinite radial array of storage cells. No credit is taken for axial or radial neutron leakage. The water in the spent fuel storage pool was assumed to be pure. In the evaluation of the Ulchin Unit 2 spent fuel storage pool, criticality analyses were performed with the CASMO-3 code. A reactivity uncertainty in the fuel depletion calculations was combined with other calculational uncertainty. The manufacturing tolerances were considered, as well. From the calculation, the acceptable burnup domain in region 2 of the spent fuel storage pool. where the curve identifies conditions of equal reactivity for various initial enrichments between 1.6w/o and 5.0w/o, was evaluated. In region 2, the maximum keff including all uncertainties, is 0.94648 for the enrichment-burnup combination from loading curve. (author)
Excel 2010 Workbook for Dummies
Harvey, Greg
2010-01-01
Reinforce your understanding of Excel with these Workbook exercises. Boost your knowledge of important Excel tasks by putting your skills to work in real-world situations. The For Dummies Workbook format provides more than 100 exercises that help you create actual results with Excel so you can gain proficiency. Perfect for students, people learning Excel on their own, and financial professionals who must plan and execute complex projects in Excel, Excel 2010 Workbook For Dummies helps you discover all the ways this program can work for you.: Excel is the world's most popular number-crunching p
Fuel cycle cost considerations of increased discharge burnups
International Nuclear Information System (INIS)
Evaluations are presented that indicate the attainment of increased discharge burnups in light water reactors will depend on economic factors particular to individual operators. In addition to pure resource conserving effects and assuming continued reliable fuel performance, a substantial economic incentive must exist to justify the longer operating times necessary to achieve higher burnups. Whether such incentive will exist or not will depend on relative price levels of all fuel cycle cost components, utility operating practices, and resolution of uncertainties associated with the back-end of the fuel cycle. It is concluded that implementation of increased burnups will continue at a graduated pace similar to past experience, rather than finding universal acceptance of particular increased levels at any particular time
Mechanical Property Evaluation of High Burnup PHWR Fuel Clads
International Nuclear Information System (INIS)
Assurance of clad integrity is of vital importance for the safe and reliable extension of fuel burnup. In order to study the effect of extended burnup of 15,000 MW∙d/tU on the performance of Pressurised Heavy Water Reactor (PHWR) fuel bundles of 19-element design, a couple of bundles were irradiated in Indian PHWR. The tensile property of irradiated cladding from one such bundle was evaluated using the ring tension test method. Using a similar method, claddings of mixed oxide (MOX) fuel elements irradiated in the pressurized water loop (PWL) of CIRUS to a burnup of 10,000 MW∙d/THM were tested. The tests were carried out both at ambient temperature and at 300°C. The paper will describe the test procedure, results generated and discuss the findings. (author)
Study on the conservative factors for burnup credit criticality calculation
International Nuclear Information System (INIS)
When applies the burnup credit technology to perform criticality safety analysis for spent fuel storage or transportation problems, it is important for one to confirm that all the conditions adopted are adequate to cover the severest conditions that may encounter in the engineering applications. Taking the OECD/NEA burnup credit criticality benchmarks as sample problems, we study the effect of some important factors that may affect the conservatism of' the results for spent fuel system criticality safety analysis. Effects caused by different nuclides credit strategy, different cooling time and axial burnup profile are studied by use of the STARBUCS module of SCALE5. 1 software package, and related conclusions about the conservatism of these factors are drawn. (authors)
High-burnup fuel and the impact on fuel management
International Nuclear Information System (INIS)
Competition in the electric utility industry has forced utilities to reduce cost. For a nuclear utility, this means a reduction of both the nuclear fuel cost and the operating and maintenance cost. To this extent, utilities are pursuing longer cycles. To reduce the nuclear fuel cost, utilities are trying to reduce batch size while increasing cycle length. Yankee Atomic Electric Company has performed a number of fuel cycle studies to optimize both batch size and cycle length; however, certain burnup-related constraints are encountered. As a result of these circumstances, longer fuel cycles make it increasingly difficult to simultaneously meet the burnup-related fuel design constraints and the technical specification limits. Longer cycles require fuel assemblies to operate for longer times at relatively high power. If utilities continue to pursue longer cycles to help reduce nuclear fuel cost, changes may need to be made to existing fuel burnup limits
Validation issues for depletion and criticality analysis in burnup credit
International Nuclear Information System (INIS)
This paper reviews validation issues associated with implementation of burnup credit in transport, dry storage, and disposal. The issues discussed are ones that have been identified by one or more constituents of the United States technical community (national laboratories, licensees, and regulators) that have been exploring the use of burnup credit. There is not necessarily agreement on the importance of the various issues, which sometimes is what creates the issue. The broad issues relate to the paucity of available experimental data (radiochemical assays and critical experiments) covering the full range and characteristics of spent nuclear fuel in away-from-reactor systems. The paper will also introduce recent efforts initiated at Oak Ridge National Laboratory (ORNL) to provide technical information that can help better assess the value of different experiments. The focus of the paper is on experience with validation issues related to use of burnup credit for transport and dry storage applications. (author)
Energy Technology Data Exchange (ETDEWEB)
Reverdy, L
1999-07-01
Nowadays optimization goes with everything. So French engineering firms try to demonstrate that fuel transport casks and storage pools are able to receive assemblies with higher {sup 235}U initial enrichments. Fuel Burnup distribution contributes to demonstrate it. This instruction has to elaborate a way to take credit of burnup effects on criticality safety designs. The calculation codes used are CESAR 4.21-APOLLO 1-MORET III. The assembly studied (UO{sub 2}) is irradiated in a French Pressurized Water Reactor like EDF nuclear power reactor: PWR 1300 MWe, 17 x 17 array. Its initial enrichment in {sup 235}U equals 4.5%. The studies exposed in this report have evaluated the effects of: (i) the 15 fission products considered in Burnup Credit ({sup 95}Mo, {sup 99}Tc, {sup 101}Ru, {sup 103}Rh, {sup 109}Ag, {sup 133}Cs, {sup 143}Nd, {sup 145}Nd, {sup 147}Sm, {sup 149}Sm, {sup 150}Sm, {sup 151}Sm, {sup 152}Sm, {sup 153}Eu, {sup 155}Gd), (ii) the calculated abundances corrected or not by fixed factors, (iii) the choice of one cross sections library used by CESAR 4.21, (iv) the zone number elected in the axial burnup distribution zoning, (v) the kind of cut applied on (regular/optimized). Two axial distribution profiles are studied: one with 44 GWd/t average burnup, the other with 20 GWd/t average burnup. The second one considers a shallow control rods insertion in the upper limit of the assembly. The results show a margin in reactivity about 0.045 with consideration of the 6 most absorbent fission products ({sup 103}Rh, {sup 133}Cs, {sup 143}Nd, {sup 149}Sm, {sup 152}Sm, {sup 155}Gd), and about 0.06 for all Burnup Credit fission products whole. Those results have been calculated with an average burnup of 44 GWj/t. In a conservative approach, corrective factors must be apply on the abundance of some fission products. The cross sections library used by CESAR 4.21 (BBL 4) is sufficient and gives satisfactory results. The zoning of the assembly axial distribution burnup in 9
Economics of VVER Fuel Cycles Leading to High Discharge Burnup
International Nuclear Information System (INIS)
Economic characteristics of equilibrium VVER fuel cycles leading to high discharge burnup are investigated by supposing two scenarios named optimistic and pessimistic. The optimistic and pessimistic terms are used in the sense whether the high burnup fuel cycles are economically advantageous or the increasing enrichment cost can increase the specific fuel cycle cost above a certain discharge burnup value. Therefore in case of the optimistic scenario, maximum fabrication and back end costs and minimum enrichment and raw uranium costs were applied, while in case of the pessimistic scenario vice-versa. The applied costs are detailed in Table 1. Table1 Cost data of the two different scenarios. Concerning the transport and storage during the front end fuel cycle, it was assumed that application of burnable poison solves the criticality problems caused by the increased enrichment. By using the advantage of the burnup credit, the subcriticality of the spent fuel storage and transport devices can also be proved. Large reserve in the biological shielding is supposed. According to the above argumentation, fixed cost of the front and back end fuel cycle was used in the calculations, except the enrichment, but a 700 $/pin extra fabrication cost of the burnable poison was taken into account. Instead of fixed batch fraction, fixed cycle length was assumed which is advantageous for maximizing the discharge burnup and for minimizing the burnable poison extra cost but disadvantageous concerning the availability factor, which is constant in the given calculations. Beside the economic characteristics, the feasibility of the cycles are investigated from the point of view of the most important safety related parameters like reactivity coefficients and shut down margin. The figure below shows the burnup dependent fuel cycle cost for the above two scenarios. (author)
Burnup credit implementation plan and preparation work at JAERI
International Nuclear Information System (INIS)
Application of the burnup credit concept is considered to be very effective to the design of spent fuel transport and storage facilities. This technology is all the more important when considering construction of the intermediate spent fuel storage facility, which is to be commissioned by 2010 due to increasing amount of accumulated spent fuel in Japan. Until reprocessing and recycling all the spent fuel arising, they will be stored as an energy stockpile until such time as they can be reprocessed. On the other hand, the burnup credit has been partly taken into account for the spent fuel management at Rokkasho Reprocessing Plant, which is to be commissioned in 2005. They have just finished the calibration tests for their burnup monitor with initially accepted several spent fuel assemblies. Because this monitoring system is employed with highly conservative safety margin, it is considered necessary to develop the more rational and simplified method to confirm burnup of spent fuel. A research program has been instituted to improve the present method employed at the spent fuel management system for the Spent Fuel Receiving and Storage Pool of Rokkasho Reprocessing Plant. This program is jointly performed by Japan Nuclear Fuel Limited (JNFL) and JAERI.This presentation describes the current status of spent fuel accumulation discharged from PWR and BWR in Japan and the recent incentive to introduce burnup credit into design of spent fuel storage and transport facilities. This also includes the content of the joint research program initiated by JNFL and JAERI. The relevant study has been continued at JAERI. The results by these research programs will be included in the Burnup Credit Guide Original Version compiled by JAERI. (author)
Real depletion in nodal diffusion codes
International Nuclear Information System (INIS)
The fuel depletion is described by more than one hundred fuel isotopes in the advanced lattice codes like HELIOS, but only a few fuel isotopes are accounted for even in the advanced steady-state diffusion codes. The general assumption that the number densities of the majority of the fuel isotopes depend only on the fuel burnup is seriously in error if high burnup is considered. The real depletion conditions in the reactor core differ from the asymptotic ones at the stage of lattice depletion calculations. This study reveals which fuel isotopes should be explicitly accounted for in the diffusion codes in order to predict adequately the real depletion effects in the core. A somewhat strange conclusion is that if the real number densities of the main fissionable isotopes are not explicitly accounted for in the diffusion code, then Sm-149 should not be accounted for either, because the net error in k-inf is smaller (Authors)
Development of high burnup fuel data-base
International Nuclear Information System (INIS)
Development of high burnup fuel data base (HBDB) was studied, which stores various performance data of high burnup fuels using a personal computer. Data items of the data base and storing and display methods of time-depending data such as power history were studied. It was shown that compound systems of a personal computer and an engineering work station have capacity for constructing the data base with much efficiency and small cost. And comparison of data items between the data base and the EPRI fuel base FPDB was discussed. (author)
WWER fuel behaviour and characteristics at high burnup
International Nuclear Information System (INIS)
The increase of fuel burnup in fuel rods is a task that provides a considerable cost reduction of WWER fuel cycle in case of its solution. Investigations on fuel and cladding behaviour and change in fuel characteristics under irradiation are carried out in the Russian Federation for standard and as well as for experimental fuel rods to validate the reliable and safe operation of the fuel rods at high burnups. The paper presents the results of examinations on cracking, dimensional, structural and density changes of fuel pellets as well as the results of examination on corrosion and mechanical properties of WWER-440 and WWER-1000 fuel rod claddings. (author)
Burnup measurements with the Los Alamos fork detector
International Nuclear Information System (INIS)
The fork detector system can determine the burnup of spent-fuel assemblies. It is a transportable instrument that can be mounted permanently in a spent-fuel pond near a loading area for shipping casks, or be attached to the storage pond bridge for measurements on partially raised spent-fuel assemblies. The accuracy of the predicted burnup has been demonstrated to be as good as 2% from measurements on assemblies in the United States and other countries. Instruments have also been developed at other facilities throughout the world using the same or different techniques, but with similar accuracies. 14 refs., 2 figs., 2 tabs
Consequences of the increase of burnup on the fuel
International Nuclear Information System (INIS)
The examinations carried out on the FRAGEMA fuel of EDF reactors show its good behavior in service. The results of research and development programs developed by EDF, FGA and the CEA show that this fuel can be irradiated up to a high burnup, and allow to point out the axies of research to improve still the performance of the product in a more and more soliciting environment (increase of power and burnup coupled with load following). Among the solutions considered, there are the design and fabrication adjustments (geometry, initial pressurization), more fundamental changes concerning fuel cans and fuel pellets, which need still research and development programs
Perturbation and sensitivity theory for reactor burnup analysis
International Nuclear Information System (INIS)
Perturbation theory is developed for the nonlinear burnup equations describing the time-dependent behavior of the neutron and nuclide fields in a reactor core. General aspects of adjoint equations for nonlinear systems are first discussed and then various approximations to the burnup equations are rigorously derived and their areas for application presented. In particular, the concept of coupled neutron/nuclide fields (in which perturbations in either the neutron or nuclide field are allowed to influence the behavior of the other field) is contrasted to the uncoupled approximation
Performance of fast reactor irradiated fueled emitters at goal burnup
International Nuclear Information System (INIS)
UO2-fueled W emitters were examined that had been irradiated to goal burnups of approximately 4 at.% at emitter surface temperatures to 1820 K in a fast reactor to establish their performance for use in thermionic reactors with power levels from tens of kilowatts to multimegawatts. The examinations provided first-time data on structural integrity, dimensional stability, component compatibility, and fuel and fission product behavior. The data are consistent with similar measurements at approximately 2 at.% burnup with the exception of one emitter which breached the W during irradiation
International Nuclear Information System (INIS)
The report sets out to investigate our current understanding on the occurrence, properties and effect of restructured fuel material as observed in the pellet rim of high burn-up fuel. It appears that restructuring occurs solely as a function of burn-up and temperature. In this case, the driving force is likely to be the accumulation of irradiation damage and fission products. There are differing theories for which of these dominate the transformation, although the conditions for HBS formation are well established. The major part of the report addressed the influence this HBS has on fuel performance and to this end a simple model for the restructuring thickness and local swelling was inserted into a code to calculate fuel temperatures and Fission Gas Release. By running this code for three Halden experiments it was shown that inclusion of a rim had a measurable effect on both centreline temperatures and FGR. The calculations have shown that the effect of the HBS increases FGR by around 30% or 10% depending on the assumption made as to the HBS matrix thermal conductivity. From an appraisal of several experiments, it is proposed that fuel immediately prior to restructuring has the most influence on PCMI and fuel dispersal in high burn-up RIA. It is suggested that in the forthcoming IFA-655 test, the transient behaviours of fuel at less than the maximum burn-up of 100 MWd/kg is investigated. (Author)
Vectorization of nuclear codes 88-1
International Nuclear Information System (INIS)
In this report, we describe the vectorization of thermal reactor standard neutronics code system SRAC, three dimensional neutron diffusion code CITATION, two dimensional discrete ordinates transport code TWOTRAN-II, multi-dimensional core burn-up calculation code COREBN, two and three dimensional neutron diffusion code CITATION-FBR. CITATION code, TWOTRAN code, collision probability method code PIJ in SRAC system are also vectorized. The performance ratio of the vectorized version to the original one is from 1.8 to 8.6 for SRC, from 2.3 to 10.1 for CITATION, 4.2 for TWOTRAN-II, from 2.9 to 10.4 for COREBN, from 3.9 to 13.3 for CITATION-FBR. In this report, we describe sample input data, summary of the codes, vectorization techniques and performance evaluation of the vectorized codes. (author)
Size Design of CdZnTe Detector Shield for Measuring Burnup of Spent Fuel
Institute of Scientific and Technical Information of China (English)
2008-01-01
<正>It is important to measure the burnup of spent fuel for nuclear safeguards, burnup credit and critical safety in spent-fuel reprocessing process. The purpose of this work is designing a portable device to
International Nuclear Information System (INIS)
For all the physical components that comprise a nuclear system there is an uncertainty. Assessing the impact of uncertainties in the simulation of fissionable material systems is essential for a best estimate calculation that has been replacing the conservative model calculations as the computational power increases. The propagation of uncertainty in a simulation using a Monte Carlo code by sampling the input parameters is recent because of the huge computational effort required. In this work a sample space of MCNPX calculations was used to propagate the uncertainty. The sample size was optimized using the Wilks formula for a 95. percentile and a two-sided statistical tolerance interval of 95%. Uncertainties in input parameters of the reactor considered included geometry dimensions and densities. It was showed the capacity of the sampling-based method for burnup when the calculations sample size is optimized and many parameter uncertainties are investigated together, in the same input. Particularly it was shown that during the burnup, the variances when considering all the parameters uncertainties is equivalent to the sum of variances if the parameter uncertainties are sampled separately
Analysis of the burnup credit benchmark with an updated WIMS-D Library
International Nuclear Information System (INIS)
The OECD/NEA Burnup Credit Benchmark was analyzed with the WIMSD5B code using a fully updated library based on ENDF/B-VI Revision 5 data. Parts-1A and 1B were considered. The criticality prediction tested in Part-1A was in very good agreement with the reference result. A slight trend to overestimate the absorption rate by the fission products was noted, which can be explained by spectral effects resulting from the coarseness of the WIMS-D 69-group energy grid. The isotopic composition prediction tested in Part-1B was within the uncertainty interval of the reference results, except for 109 Ag at lower burnup and 155 Gd in all the cases. For 109 Ag the cause of the discrepancy was the use of old fission yield data in generating the reference solution. Similarly for 155 Gd the difference was due to old 155 Eu capture cross sections. Compared to the measurements, a serious underprediction of Sm isotopes is observed. This could be due to problems in the measured values or in the nuclear data of Sm precursors. We conclude that our processing methods do not introduce significant errors to the basic nuclear data. Care should be taken in the interpretation of the reference average benchmark solution due to a possible bias towards the ENDF/B-V evaluated nuclear data files
Studies at INR-Pitesti for developing fuels of high burnup suitable to CANDU 6 reactor
International Nuclear Information System (INIS)
Increasing burnup allows the utility to get the same kWh output with a diminished tonnage of fissile material and provides a saving in the cost of fuel manufacturing as well as of spent fuel disposal. The RU, SEU, MOX, DUPIC fuel cycles and CANFLEX fuel bundles concept compatible with CANDU 6 reactor are presented. INR projects for developing SEU 43 fuel bundles supported by IAEA-Vienna are also presented. Particularly, one gives an overlook of standard CANDU and advanced SEU 43 nuclear fuel cycles. The paper presents also the current and future directions of studies implied by the research program in the nuclear fuel field of RAAN (The Autonomous Authority for Nuclear Activities). Among these, mentioned are: working out of the manual of physics of CANDU core with slightly enriched uranium; technological studies aiming at reducing the effects of limiting factors of the fuel lifetime and at burnup extension; obtaining new fuels as vectors of advanced cycles; off reactor tests of SEU 43 clusters; in-reactor tests of SEU 43 experimental fuel elements; developing computer codes for analysis of SEU, MOX and DUPIC fuel behavior; in-reactor tests of experimental MOX and DUPIC elements
ZZ ECN-BUBEBO, ECN-Petten Burnup Benchmark Book, Inventories, Afterheat
International Nuclear Information System (INIS)
Description of program or function: Contains experimental benchmarks which can be used for the validation of burnup code systems and accompanied data libraries. Although the benchmarks presented here are thoroughly described in literature, it is in many cases not straightforward to retrieve unambiguously the correct input data and corresponding results from the benchmark Descriptions. Furthermore, results which can easily be measured, are sometimes difficult to calculate because of conversions to be made. Therefore, emphasis has been put to clarify the input of the benchmarks and to present the benchmark results in such a way that they can easily be calculated and compared. For more thorough Descriptions of the benchmarks themselves, the literature referred to here should be consulted. This benchmark book is divided in 11 chapters/files containing the following in text and tabular form: chapter 1: Introduction; chapter 2: Burnup Credit Criticality Benchmark Phase 1-B; chapter 3: Yankee-Rowe Core V Fuel Inventory Study; chapter 4: H.B. Robinson Unit 2 Fuel Inventory Study; chapter 5: Turkey Point Unit 3 Fuel Inventory Study; chapter 6: Turkey Point Unit 3 Afterheat Power Study; chapter 7: Dickens Benchmark on Fission Product Energy Release of U-235; chapter 8: Dickens Benchmark on Fission Product Energy Release of Pu-239; chapter 9: Yarnell Benchmark on Decay Heat Measurements of U-233; chapter 10: Yarnell Benchmark on Decay Heat Measurements of U-235; chapter 11: Yarnell Benchmark on Decay Heat Measurements of Pu-239
International Nuclear Information System (INIS)
One of the traditional methods for determining the burnup of irradiated Light Water Reactor (LWR) fuel is the 148Nd method according to ASTM E-321. Probably one of the largest sources for systematic errors in this method is the assumed fission yield, requiring knowledge of the fraction of fissions occurring in different fissile nuclides. Another traditional method for burnup determination is based on the uranium and plutonium isotopic composition; however, this method is rarely used for LWR fuel due to its rather simplified and rough assumptions regarding the neutron spectrum and fission fractions. However, modern physics codes like CASMO and HELIOS are instead able to calculate the amount of fission products and actinides formed or consumed during reactor operation in a much more sophisticated way. Isotopic Dilution Analysis with chemical separation of elements of interest, followed by isotopic analysis with a Thermal Ionization Mass Spectrometer (TIMS) is a well established method for determining the content of selected isotopes in samples of dissolved irradiated fuel. This method normally provides very accurate and precise results. High Performance Liquid Chromatography (HPLC) for elemental separations, combined with Inductively Coupled Plasma Mass Spectrometry (ICP-MS) has become a much faster alternative. In general, this method is somewhat less precise. This disadvantage is at least partly compensated by the possibility of analyzing a larger number of nuclides and samples. The local pellet burnup of a well characterised fuel sample irradiated in the Swedish Boiling Water Reactor Forsmark 3 to about 60 MWd/kgU was determined. Weight ratios of neodymium isotopes relative to 238U, analysed by Isotope Dilution Analysis applying HPLC-ICP-MS as well as 235U and 239Pu abundance values were compared to corresponding values calculated by a single-assembly CASMO-4 simulation. Input data were generated by CASMO-4/POLCA7 core tracking calculations. The overall result
Model of excellent kindergarten learning for excellent pupils
Dijkstra, Elma; Mooij, Ton; Kirschner, Paul A.
2012-01-01
Dijkstra, E. M., Mooij, T., & Kirschner, P. A. (2012, 9 November). Model of excellent kindergarten learning for excellent pupils. Poster presentation at the International ICO Fall School, Girona, Spain.
Model of Excellent Kindergarten Learning for Excellent Pupils
Dijkstra, Elma; Mooij, Ton; Kirschner, Paul A.
2012-01-01
Dijkstra, E. M., Mooij, T., & Kirschner, P. A. (2012, 11 October). Model of excellent kindergarten learning for excellent pupils. Poster presentation at the Teacher Expertise Symposium, University of Utrecht, Utrecht, The Netherlands.
Fuel Modelling at Extended Burnup (Fumex-II). Report of a Coordinated Research Project 2002-2007
International Nuclear Information System (INIS)
to fuel licensing. This report describes the results of the coordinated research project on fuel modelling at extended burnup (FUMEX-II). This programme was initiated in 2000 and completed in 2006. It followed previous programmes on fuel modelling, D-COM which was conducted between 1982 and 1984, and the FUMEX programme which was conducted between 1993 and 1996. The participants used a mixture of data, derived from actual irradiation histories, in particular those with PIE measurements from high burnup commercial and experimental fuels, combined with idealized power histories intended to represent possible future extended dwell, commercial irradiations, to test code capabilities at high burnup. All participants have carried out calculations on the six priority cases selected from the 27 cases identified to them at the first research coordination meeting (RCM). At the second RCM, three further priority cases were identified and have been modelled. These priority cases have been chosen as the best available to help determine which of the many high burnup models used in the codes best reflect reality. The participants are using the remaining cases for verification and validation purposes as well as inter-code comparisons. The codes participating in the exercise have been developed for a wide variety of purposes, including predictions for fuel operation in PWR, BWR, WWER, the pressurized HWR type, CANDU and other reactor types. They are used as development tools as well as for routine licensing calculations, where code configuration is strictly controlled.
Excelsior: Bringing the Benefits of Modularisation to Excel
Paine, Jocelyn
2008-01-01
Excel lacks features for modular design. Had it such features, as do most programming languages, they would save time, avoid unneeded programming, make mistakes less likely, make code-control easier, help organisations adopt a uniform house style, and open business opportunities in buying and selling spreadsheet modules. I present Excelsior, a system for bringing these benefits to Excel.
International Nuclear Information System (INIS)
This paper describes the first two years of the Clemson University College of Engineering's Math Excellence Workshop, a program administered by Westinghouse Electric Corporation, Savannah River Site, and funded by the Department of Energy. The objective of the program is to prepare minority students for technical/scientific study, with the goal of increasing minority retention in the College of Engineering, Twenty-three African American students, all of whom had been accepted into the College of Engineering Fall 1990 freshman class, took part in the first year of the program. The contract paid for room, board, tuition, fees, books, and supplies for the students to live on campus and take a precalculus math course. In addition, the students attended a special honors workshop designed to prepare them to study technical material effectively. Twenty of the 23 students earned As or Bs in the precalculus class. All participants indicated that they felt confident of their ability to succeed academically at Clemson. At the end of the session, twenty of the students were still planning to major in engineering. The program was repeated the following summer with 24 students from the 1991 freshman class. Twelve of the students earned A's or B's in the precalculus class. (author)
Effects of axial burnup distributions on the reactivity of spent fuel
International Nuclear Information System (INIS)
Criticality safety analyses for spent fuel shipping casks will eventually need to take credit for the decreased reactivity of spent fuel assemblies resulting from burnup. In order to do so, it will be necessary to assess the reactivity effects of the multitude of burnup shapes that can characterize spent fuel. A computer program, CASAX, has been written that allows the analyst to quickly evaluate the reactivity effects of actual and simplified axial burnup distributions on a group of PWR fuel assemblies. CASAX employs one dimensional, two group diffusion calculations to determine the k-effective of a cluster of assemblies. Assembly average, burnup dependent, two group cross sections for CASAX were obtained from CASMO3 using physical properties representative of Westinghouse 17 x 17 assemblies. Reactivity results are presented in terms of (k for the axially dependent burnup distribution minus k for a uniform axial burnup distribution at the assembly average burnup)/(k for a uniform axial burnup distribution at the assembly average burnup). Axial burnup distributions can have both positive and negative effects on the calculated k-effective. Positive reactivity effects generally result at high assembly average burnups and for axial distributions with low burnups in the assembly's tips