WorldWideScience

Sample records for burning minor actinides

  1. The EBR-II X501 Minor Actinide Burning Experiment

    Energy Technology Data Exchange (ETDEWEB)

    W. J. Carmack; M. K. Meyer; S. L. Hayes; H. Tsai

    2008-01-01

    The X501 experiment was conducted in EBR II as part of the Integral Fast Reactor program to demonstrate minor actinide burning through the use of a homogeneous recycle scheme. The X501 subassembly contained two metallic fuel elements loaded with relatively small quantities of americium and neptunium. Interest in the behavior of minor actinides (MA) during fuel irradiation has prompted further examination of existing X501 data and generation of new data where needed in support of the U.S. waste transmutation effort. The X501 experiment is one of the few MA bearing fuel irradiation tests conducted worldwide, and knowledge can be gained by understanding the changes in fuel behavior due to addition of MAs. Of primary interest are the effect of the MAs on fuel cladding chemical interaction and the redistribution behavior of americium. The quantity of helium gas release from the fuel and any effects of helium on fuel performance are also of interest. It must be stressed that information presented at this time is based on the limited PIE conducted in 1995–1996 and, currently, represents a set of observations rather than a complete understanding of fuel behavior. This report provides a summary of the X501 fabrication, characterization, irradiation, and post irradiation examination.

  2. Burning minor actinides in a HTR energy spectrum and effects on the final radiotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, Christoph, E-mail: christoph.pohl@de.tuv.com [Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Allelein, Hans-Josef [Forschungszentrum Juelich GmbH, 52425 Juelich (Germany)

    2012-10-15

    The production of nuclear energy with existing nuclear reactors is equivalent to the use of low enriched uranium. But the neutron capture of the large corresponding U-238 fuel fraction also generates a build-up of plutonium isotopes and minor actinides as Neptunium, Americium and Curium. These actinides are dominant for the long time assessment of final disposal therefore a minimization of the long living isotopes is aspired. Burning the actinides in a high temperature helium cooled graphite moderated reactor (HTR) is one of these options. Using plutonium isotopes to sustain the criticality of the system is intended to avoid highly enriched uranium because of international regulations and low enriched uranium because of the build up of new actinides from neutron capture in U-238. Also fractions of plutonium isotopes are build up to minor actinides but for this absorption the overall number of actinides keeps constant. Nevertheless for the final assessment the activity and toxicity of all important actinides have to be taken into account. This paper comprises calculations for plutonium/minor actinides/thorium fuel compositions, their correlated final burn-up and the long term activity and toxicity for a generic pebble bed HTR based on the reference design of the 400 MW PBMR. In particular the behaviour of the different minor actinide isotopes in the higher thermal energy spectrum of a HTR will be discussed. Thorium based fuel - as a promising alternative to uranium based fuel - offers several advantages as a minimized build up of new Pu and MA, a higher thermal conductivity and melting point. Combining the thorium fuel with a significant fraction of minor actinides and an isotope fraction consistent with burned LWR fuel the total amount of the minor actinides stays nearly unchanged while the isotope composition significantly changes. This behaviour with respect to the initial heavy metal load and the influence on the long term activity and toxicity will be discussed.

  3. The uncertainty analysis of a liquid metal reactor for burning minor actinides from light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    The neutronics analysis of a liquid metal reactor for burning minor actinides has shown that uncertainties in the nuclear data of several key minor actinide isotopes can introduce large uncertainties in the predicted performance of the core. A comprehensive sensitivity and uncertainty analysis was performed on a 1200 MWth actinide burner designed for a low burnup reactivity swing, negative doppler coefficient, and low sodium void worth. Sensitivities were generated using depletion perturbation methods for the equilibrium cycle of the reactor and covariance data was taken ENDF-B/V and other published sources. The relative uncertainties in the burnup swing, doppler coefficient, and void worth were conservatively estimated to be 180%, 97%, and 46%, respectively. 5 refs., 1 fig., 3 tabs. (Author)

  4. Monte Carlo Modeling of Minor Actinide Burning in Fissile Spallation Targets

    Science.gov (United States)

    Malyshkin, Yury; Pshenichnov, Igor; Mishustin, Igor; Greiner, Walter

    2014-06-01

    Minor actinides (MA) present a harmful part of spent nuclear fuel due to their long half-lives and high radio-toxicity. Neutrons produced in spallation targets of Accelerator Driven Systems (ADS) can be used to transmute and burn MA. Non-fissile targets are commonly considered in ADS design. However, additional neutrons from fission reactions can be used in targets made of fissile materials. We developed a Geant4-based code MCADS (Monte Carlo model for Accelerator Driven Systems) for simulating neutron production and transport in different spallation targets. MCADS is suitable for calculating spatial distributions of neutron flux and energy deposition, neutron multiplication factors and other characteristics of produced neutrons and residual nuclei. Several modifications of the Geant4 source code described in this work were made in order to simulate targets containing MA. Results of MCADS simulations are reported for several cylindrical targets made of U+Am, Am or Am2O3 including more complicated design options with a neutron booster and a reflector. Estimations of Am burning rates are given for the considered cases.

  5. The ALMR actinide burning system

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, J.E. (General Electric Co., San Jose, CA (United States))

    1993-01-01

    The advanced liquid-metal reactor (ALMR) actinide burning system is being developed under the sponsorship of the US Department of Energy to bring its unique capabilities to fruition for deployment in the early 21st century. The system consists of four major parts: the reactor plant, the metal fuel and its recycle, the processing of light water reactor (LWR) spent fuel to extract the actinides, and the development of a residual waste package. This paper addresses the status and outlook for each of these four major elements. The ALMR is being developed by an industrial group under the leadership of General Electric (GE) in a cost-sharing arrangement with the US Department of Energy. This effort is nearing completion of the advanced conceptual design phase and will enter the preliminary design phase in 1994. The innovative modular reactor design stresses simplicity, economics, reliability, and availability. The design has evolved from GE's PRISM design initiative and has progressed to the final stages of a prelicensing review by the US Nuclear Regulatory Commission (NRC); a safety evaluation report is expected by the end of 1993. All the major issues identified during this review process have been technically resolved. The next design phases will focus on implementation of the basic safety philosophy of passive shutdown to a safe, stable condition, even without scram, and passive decay heat removal. Economic projections to date show that it will be competitive with non- nuclear and advanced LWR nuclear alternatives.

  6. BWR Assembly Optimization for Minor Actinide Recycling

    Energy Technology Data Exchange (ETDEWEB)

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  7. Calculation and Analysis of B/T (Burning and/or Transmutation Rate of Minor Actinides and Plutonium Performed by Fast B/T Reactor

    Directory of Open Access Journals (Sweden)

    Marsodi

    2006-01-01

    Full Text Available Calculation and analysis of B/T (Burning and/or Transmutation rate of MA (minor actinides and Pu (Plutonium has been performed in fast B/T reactor. The study was based on the assumption that the spectrum shift of neutron flux to higher side of neutron energy had a potential significance for designing the fast B/T reactor and a remarkable effect for increasing the B/T rate of MA and/or Pu. The spectrum shifts of neutron have been performed by change MOX to metallic fuel. Blending fraction of MA and or Pu in B/T fuel and the volume ratio of fuel to coolant in the reactor core were also considered. Here, the performance of fast B/T reactor was evaluated theoretically based on the calculation results of the neutronics and burn-up analysis. In this study, the B/T rate of MA and/or Pu increased by increasing the blending fraction of MA and or Pu and by changing the F/C ratio. According to the results, the total B/T rate, i.e. [B/T rate]MA + [B/T rate]Pu, could be kept nearly constant under the critical condition, if the sum of the MA and Pu inventory in the core is nearly constant. The effect of loading structure was examined for inner or outer loading of concentric geometry and for homogeneous loading. Homogeneous loading of B/T fuel was the good structure for obtaining the higher B/T rate, rather than inner or outer loading

  8. Transmuting minor actinides with thermal reactor neutrons

    Directory of Open Access Journals (Sweden)

    Yu. A Kazansky

    2015-11-01

    The final conclusion about the practicability of Americium and Curium transmutation must be drawn by taking into account in the considered scenarios the difference in probability of the environmental release, the difference of biological effect and the transmutation efficiency of minor actinides continuously fed to spent fuel storages by the operating nuclear energy industry.

  9. Nuclear data uncertainty analysis on a minor actinide burner for transmuting spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hangbok

    1998-08-01

    A comprehensive sensitivity and uncertainty analysis was performed on a 1200 MWt minor actinides burner designed for a low burnup reactivity swing, negative doppler coefficient, and low sodium void worth. Sensitivities of the performance parameters were generated using depletion perturbation methods for the constrained close fuel cycle of the reactor. The uncertainty analysis was performed using the sensitivity and covariance data taken from ENDF-B/V and other published sources. The uncertainty analysis of a liquid metal reactor for burning minor actinide has shown that uncertainties in the nuclear data of several key minor actinide isotopes can introduce large uncertainties in the predicted performance of the core. The relative uncertainties in the burnup swing, doppler coefficient, and void worth were conservatively estimated to be 180 %, 97 %, and 46 %, respectively. An analysis was performed to prioritize the minor actinide reactions for reducing the uncertainties. (author). 41 refs., 17 tabs., 1 fig.

  10. Fission cross section measurements for minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Fursov, B. [IPPE, Obninsk (Russian Federation)

    1997-03-01

    The main task of this work is the measurement of fast neutron induced fission cross section for minor actinides of {sup 238}Pu, {sup 242m}Am, {sup 243,244,245,246,247,248}Cm. The task of the work is to increase the accuracy of data in MeV energy region. Basic experimental method, fissile samples, fission detectors and electronics, track detectors, alpha counting, neutron generation, fission rate measurement, corrections to the data and error analysis are presented in this paper. (author)

  11. Fission cross section measurements for minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Fursov, B. [IPPE, Obninsk (Russian Federation)

    1997-03-01

    The main task of this work is the measurement of fast neutron induced fission cross section for minor actinides of {sup 238}Pu, {sup 242m}Am, {sup 243,244,245,246,247,248}Cm. The task of the work is to increase the accuracy of data in MeV energy region. Basic experimental method, fissile samples, fission detectors and electronics, track detectors, alpha counting, neutron generation, fission rate measurement, corrections to the data and error analysis are presented in this paper. (author)

  12. Separating the Minor Actinides Through Advances in Selective Coordination Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Braley, Jenifer C.; Sinkov, Sergey I.; Carter, Jennifer C.

    2012-08-22

    This report describes work conducted at the Pacific Northwest National Laboratory (PNNL) in Fiscal Year (FY) 2012 under the auspices of the Sigma Team for Minor Actinide Separation, funded by the U.S. Department of Energy Office of Nuclear Energy. Researchers at PNNL and Argonne National Laboratory (ANL) are investigating a simplified solvent extraction system for providing a single-step process to separate the minor actinide elements from acidic high-level liquid waste (HLW), including separating the minor actinides from the lanthanide fission products.

  13. Minor burns - aftercare

    Science.gov (United States)

    ... the burn: Use cool water, not ice. The extreme cold from ice can injure the tissue even more. If possible, especially if the burn is caused by chemicals, hold the burned skin under cool running water for 10 to 15 minutes until it ...

  14. Accuracy Improvement of Neutron Nuclear Data on Minor Actinides

    Directory of Open Access Journals (Sweden)

    Harada Hideo

    2015-01-01

    Full Text Available Improvement of accuracy of neutron nuclear data for minor actinides (MAs and long-lived fission products (LLFPs is required for developing innovative nuclear system transmuting these nuclei. In order to meet the requirement, the project entitled as “Research and development for Accuracy Improvement of neutron nuclear data on Minor ACtinides (AIMAC” has been started as one of the “Innovative Nuclear Research and Development Program” in Japan at October 2013. The AIMAC project team is composed of researchers in four different fields: differential nuclear data measurement, integral nuclear data measurement, nuclear chemistry, and nuclear data evaluation. By integrating all of the forefront knowledge and techniques in these fields, the team aims at improving the accuracy of the data. The background and research plan of the AIMAC project are presented.

  15. Status of measurements of fission neutron spectra of Minor Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Drapchinsky, L.; Shiryaev, B. [V.G. Khlopin Radium Inst., Saint Petersburg (Russian Federation)

    1997-03-01

    The report considers experimental and theoretical works on studying the energy spectra of prompt neutrons emitted in spontaneous fission and neutron induced fission of Minor Actinides. It is noted that neutron spectra investigations were done for only a small number of such nuclei, most measurements, except those of Cf-252, having been carried out long ago by obsolete methods and imperfectapparatus. The works have no detailed description of experiments, analysis of errors, detailed numerical information about results of experiments. A conclusion is made that the available data do not come up to modern requirements. It is necessary to make new measurements of fission prompt neutron spectra of transuranium nuclides important for the objectives of working out a conception of minor actinides transmutation by means of special reactors. (author)

  16. Status of measurements of fission neutron spectra of Minor Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Drapchinsky, L.; Shiryaev, B. [V.G. Khlopin Radium Inst., Saint Petersburg (Russian Federation)

    1997-03-01

    The report considers experimental and theoretical works on studying the energy spectra of prompt neutrons emitted in spontaneous fission and neutron induced fission of Minor Actinides. It is noted that neutron spectra investigations were done for only a small number of such nuclei, most measurements, except those of Cf-252, having been carried out long ago by obsolete methods and imperfectapparatus. The works have no detailed description of experiments, analysis of errors, detailed numerical information about results of experiments. A conclusion is made that the available data do not come up to modern requirements. It is necessary to make new measurements of fission prompt neutron spectra of transuranium nuclides important for the objectives of working out a conception of minor actinides transmutation by means of special reactors. (author)

  17. Recovery of minor actinides from irradiated superfact fuels

    Energy Technology Data Exchange (ETDEWEB)

    Apoltolidis, C.; Glatz, J.P.; Molinet, R.; Nicholl, A.; Pagliosa, G.; Romer, K.; Bokelund, H.; Koch, L. [European Commission, JRC, Institute fuer Transuranium Elements, Karlsruhe (Germany)

    1995-12-31

    It could be demonstrated that the reprocessing of fast reactor oxide fuels containing up to 45 % MA (Np and Am), irradiated in the PHENIX reactor in the frame of a transmutation study, is possible. The fuels were dissolved under PUREX type conditions in order to determine their behaviour in the head-end step of the reprocessing process. For one of the fuels containing 20 % Am and 20 % Np before irradiation, an almost complete partitioning of actinides from the dissolver solution could be achieved. Chromatographic extraction was used for the separation of the main bulk elements U, Pu and Np, whereas centrifugal extractors were used to separate the minor actinides from the remaining high level liquid wastes (HLLW). For the relevant radio-toxic isotopes a high recovery rate from the irradiation targets was reached. Those elements are thus available for new fuel fabrication. (authors) 12 refs.

  18. Validation of minor actinides fission neutron cross-sections

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2015-01-01

    Full Text Available Verification of neutron fission cross-sections of minor actinides from some recently available evaluated nuclear data libraries was carried out by comparison of the reaction rates calculated by the MCNP6.1 computer code to the experimental values. The experimental samples, containing thin layers of 235U, 237Np, 238,239,240,241Pu, 242mAm, 243Cm, 245Cm, and 247Cm, deposited on metal support and foils of 235U (pseudo-alloy 27Al + 235U, 238U, natIn, 64Zn, 27Al, and multi-component sample alloy 27Al + 55Mn + natCu + natLu + 197Au, were irradiated in the channels of the tank containing fluorine salts 0.52NaF + 0.48ZrF4, labelled as the Micromodel Salt Blanket, inserted in the lattice centre of the MAKET heavy water critical assembly at the Institute for Theoretical and Experimental Physics, Moscow. This paper is a continuation of earlier initiated scientific-research activities carried out for validation of the evaluated fission cross-sections of actinides that were supposed to be used for the quality examination of the fuel design of the accelerator driven systems or fast reactors, and consequently, determination of transmutation rates of actinides, and therefore, determination of operation parameters of these reactor facilities. These scientific-research activities were carried out within a frame of scientific projects supported by the International Science and Technology Center and the International Atomic Energy Agency co-ordinated research activities, from 1999 to 2010. Obtained results confirm that further research is needed in evaluations in order to establish better neutron cross-section data for the minor actinides and selected nuclides which could be used in the accelerator driven systems or fast reactors.

  19. Utilization of Minor Actinides (Np, Am, Cm) in Nuclear Power Reactor

    Science.gov (United States)

    Gerasimov, A.; Bergelson, B.; Tikhomirov, G.

    2014-06-01

    Calculation research of the utilization process of minor actinides (transmutation with use of power released) is performed for specialized power reactor of the VVER type operating on the level of electric power of 1000 MW. Five subsequent cycles are considered for the reactor with fuel elements containing minor actinides along with enriched uranium. It was shown that one specialized reactor for the one cycle (900 days) can utilize minor actinides from several VVER-1000 reactors without any technological and structural modifications. Power released because of minor actinide fission is about 4% with respect to the total power

  20. Fabrication of nitride fuels for transmutation of minor actinides

    Science.gov (United States)

    Minato, Kazuo; Akabori, Mitsuo; Takano, Masahide; Arai, Yasuo; Nakajima, Kunihisa; Itoh, Akinori; Ogawa, Toru

    2003-07-01

    At the Japan Atomic Energy Research Institute, the concept of the transmutation of minor actinides (MA: Np, Am and Cm) with accelerator-driven systems is being studied. The MA nitride fuel has been chosen as a candidate because of the possible mutual solubility among the actinide mononitrides and excellent thermal properties besides supporting hard neutron spectrum. MA nitrides of NpN, (Np, Pu)N, (Np, U)N, AmN, (Am, Y)N, (Am, Zr)N and (Cm, Pu)N were prepared from the oxides by the carbothermic reduction method. The prepared MA nitrides were examined by X-ray diffraction and the contents of impurities of oxygen and carbon were measured. The fabrication conditions for MA nitrides were improved so as to reduce the impurity contents. For an irradiation test of U-free nitride fuels, pellets of (Pu, Zr)N and PuN + TiN were prepared and a He-bonded fuel pin was fabricated. The irradiation test started in May 2002 and will go on for two years in the Japan Materials Testing Reactor.

  1. Aqueous waste management for minor actinides and lanthanides separation process

    Energy Technology Data Exchange (ETDEWEB)

    Pochon, P.; Boyer, S.; Sans, D

    2004-07-01

    The French strategy of high level radioactive aqueous waste management is an incorporation in glassy fission products containers. Therefore, nitric acid soluble organic reagents needed for minor actinides and lanthanides selective separation from fission product solutions have to be sufficiently removed to reach carbon concentrations compatible with calcinator working. Thus, the ability of reagents to be oxidized under concentration conditions with or without denitration becomes a criteria of selection and have been studied. Further, if not working, other operations like hot hydrogen peroxide oxidation, catalyzed or not, are investigated. Reagents involved in this work are mainly complexing products (N-(2-Hydroxyethyl) Ethylene-diamine-tri-acetic Acid), pH keeping reagents (carboxylic acids like citric, glycolic, tartaric and lactic acid) and alkaline species (Tetramethylammonium hydroxide). Behaviour of acetic acid, which is often the main degradation product, has also been observed. In all cases, reaction products are characterized. (authors)

  2. ENHANCING ADVANCED CANDU PROLIFERATION RESISTANCE FUEL WITH MINOR ACTINIDES

    Energy Technology Data Exchange (ETDEWEB)

    Gray S. Chang

    2010-05-01

    The advanced nuclear system will significantly advance the science and technology of nuclear energy systems and to enhance the spent fuel proliferation resistance. Minor actinides (MA) are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. MAs can play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. In this work, an Advanced CANDU Reactor (ACR) fuel unit lattice cell model with 43 UO2 fuel rods will be used to investigate the effectiveness of a Minor Actinide Reduction Approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance. The main MARA objective is to increase the 238Pu / Pu isotope ratio by using the transuranic nuclides (237Np and 241Am) in the high burnup fuel and thereby increase the proliferation resistance even for a very low fuel burnup. As a result, MARA is a very effective approach to enhance the proliferation resistance for the on power refueling ACR system nuclear fuel. The MA transmutation characteristics at different MA loadings were compared and their impact on neutronics criticality assessed. The concept of MARA, significantly increases the 238Pu/Pu ratio for proliferation resistance, as well as serves as a burnable absorber to hold-down the initial excess reactivity. It is believed that MARA can play an important role in atoms for peace and the intermediate term of nuclear energy reconnaissance.

  3. Pu-doped zirconolite for minor actinide containment

    Energy Technology Data Exchange (ETDEWEB)

    Deschanels, X.; Broudic, V.; Jegou, C.; Peuget, S.; Roudil, D.; Jorion, F.; Advocat, T

    2004-07-01

    Zirconolite is a potential matrix for the immobilization of the minor actinides stream produced by the reprocessing of the spent fuel. In order to check the incorporation of actinide into the structure, zirconolite ceramic pellets doped with 10 wt% in {sup 239}PuO{sub 2} were sintered. Characterization by SEM, XRD and XANES spectroscopy have been done on this material. The microstructural homogeneity of the pellets is good, and their relative density is higher than 90% of the theoretical density. XANES spectroscopy shows that Pu is at the oxidation state IV in this material. To investigate the effects of radiation damage on zirconolite structure, pellets doped with 10 wt% of {sup 238}PuO{sub 2} were fabricated. The {sup 238}Pu accelerates the radiation damage relative to the {sup 239}Pu because of its much higher specific activity (63.2 x 10{sup 10} Bq/g for {sup 238}Pu vs. 2.2 x 10{sup 9} Bq/g for {sup 238}Pu). Some pellets are storing at ambient, 250 deg. C and 500 deg C. Up 10{sup 19} {alpha}/cm{sup 3}, the macroscopic swelling of the samples stored at ambient is about 0.5% by 10{sup 18} {alpha}/cm{sup 3}, and the microscopic one near 0.35% by 10{sup 18} {alpha}/cm{sup 3}. Some microcracks are observed on these pellets. The samples started to become amorphous at 10{sup 19} {alpha}/cm{sup 3}. The swelling strongly decreases with the storage temperature of the samples. The leaching rate of {sup 239}Pu doped ceramics measured by Soxhlet tests at 100 deg. C in deionized water appears to be the same as inactive material. (authors)

  4. AECL/U.S. INERI - Development of Inert Matrix Fuels for Plutonium and Minor Actinide Management in Power Reactors Fuel Requirements and Down-Select Report

    Energy Technology Data Exchange (ETDEWEB)

    William Carmack; Randy Fielding; Pavel Medvedev; Mitch Meyer

    2005-08-01

    This report documents the first milestone of the International Nuclear Energy Research Initiative (INERI) U.S./Euratom Joint Proposal 1.8 entitled “Development of Inert Matrix Fuels for Plutonium and Minor Actinide Management in Light-Water Reactors.” The milestone represents the assessment and preliminary study of a variety of fuels that hold promise as transmutation and minor actinide burning fuel compositions for light-water reactors. The most promising fuels of interest to the participants on this INERI program have been selected for further study. These fuel compositions are discussed in this report.

  5. Optimisation of composite metallic fuel for minor actinide transmutation in an accelerator-driven system

    Science.gov (United States)

    Uyttenhove, W.; Sobolev, V.; Maschek, W.

    2011-09-01

    A potential option for neutralization of minor actinides (MA) accumulated in spent nuclear fuel of light water reactors (LWRs) is their transmutation in dedicated accelerator-driven systems (ADS). A promising fuel candidate dedicated to MA transmutation is a CERMET composite with Mo metal matrix and (Pu, Np, Am, Cm)O 2-x fuel particles. Results of optimisation studies of the CERMET fuel targeting to increasing the MA transmutation efficiency of the EFIT (European Facility for Industrial Transmutation) core are presented. In the adopted strategy of MA burning the plutonium (Pu) balance of the core is minimized, allowing a reduction in the reactivity swing and the peak power form-factor deviation and an extension of the cycle duration. The MA/Pu ratio is used as a variable for the fuel optimisation studies. The efficiency of MA transmutation is close to the foreseen theoretical value of 42 kg TW -1 h -1 when level of Pu in the actinide mixture is about 40 wt.%. The obtained results are compared with the reference case of the EFIT core loaded with the composite CERCER fuel, where fuel particles are incorporated in a ceramic magnesia matrix. The results of this study offer additional information for the EFIT fuel selection.

  6. Preliminary Study for Inventories of Minor Actinides in Thorium Molten Salt Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choong Wie; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    It has different characteristic with the conventional reactors which use a solid fuel. It can continually supply the fuel by online refueling and reprocessing of minor actinides so that those can be separated and eliminated from the reactor. The MSR maintains steady state except initial stage and the reactor becomes stable. In this research, considering online refueling, bubbling and reprocessing, the basic concept for evaluation of the inventory of minor actinide in the molten salt reactor is driven using the Bateman equation. The simulation results, where REM and MCNP code from CNRS (Centre National de la Recherche Scientifique) applied to the concept equation are analyzed. The analysis of the basic concept was carried out for evaluation of the inventory of the minor actinides in MSR. It was thought that the inventories of the minor actinides should be evaluated by solving the modified Bateman equation due to the MSR characteristic of online refueling, chemical reprocessing and bubbling.

  7. Reduction of minor actinides for recycling in a light water reactor; Reduccion de actinidos menores por reciclado en un reactor de agua ligera

    Energy Technology Data Exchange (ETDEWEB)

    Martinez C, E.; Ramirez S, J. R.; Alonso V, G., E-mail: eduardo.martinez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    The aim of actinide transmutation from spent nuclear fuel is the reduction in mass of high-level waste which must be stored in geological repositories and the lifetime of high-level waste; these two achievements will reduce the number of repositories needed, as well as the duration of storage. The present work is directed towards the evaluation of an advanced nuclear fuel cycle in which the minor actinides (Np, Am and Cm) could be recycled to remove most of the radioactive material; a reference of actinides production in standard nuclear fuel of uranium at the end of its burning in a BWR is first established, after a design of fuel rod containing 6% of minor actinides in a matrix of uranium from the enrichment lines is proposed, then 4 fuel rods of standard uranium are replaced by 4 actinides bars to evaluate the production and transmutation of them and finally the minor actinides reduction in the fuel is evaluated. In the development of this work the calculation tool are the codes: Intrepin-3, Casmo-4 and Simulate-3. (Author)

  8. Sensitivity analysis of minor actinides transmutation to physical and technological parameters

    Directory of Open Access Journals (Sweden)

    Kooyman Timothée

    2015-01-01

    Full Text Available Minor actinides transmutation is one of the three main axis defined by the 2006 French law for management of nuclear waste, along with long-term storage and use of a deep geological repository. Transmutation options for critical systems can be divided in two different approaches: (a homogeneous transmutation, in which minor actinides are mixed with the fuel. This exhibits the drawback of “polluting” the entire fuel cycle with minor actinides and also has an important impact on core reactivity coefficients such as Doppler Effect or sodium void worth for fast reactors when the minor actinides fraction increases above 3 to 5% depending on the core; (b heterogeneous transmutation, in which minor actinides are inserted into transmutation targets which can be located in the center or in the periphery of the core. This presents the advantage of decoupling the management of the minor actinides from the conventional fuel and not impacting the core reactivity coefficients. In both cases, the design and analyses of potential transmutation systems have been carried out in the frame of Gen IV fast reactor using a “perturbation” approach in which nominal power reactor parameters are modified to accommodate the loading of minor actinides. However, when designing such a transmutation strategy, parameters from all steps of the fuel cycle must be taken into account, such as spent fuel heat load, gamma or neutron sources or fabrication feasibility. Considering a multi-recycling strategy of minor actinides, an analysis of relevant estimators necessary to fully analyze a transmutation strategy has been performed in this work and a sensitivity analysis of these estimators to a broad choice of reactors and fuel cycle parameters has been carried out. No threshold or percolation effects were observed. Saturation of transmutation rate with regards to several parameters has been observed, namely the minor actinides volume fraction and the irradiation time

  9. Transmutation of minor actinides discharged from LMFBR spent fuel in a high power density fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Uebeyli, Mustafa E-mail: mubeyli@gazi.edu.tr

    2004-12-01

    Significant amounts of nuclear wastes consisting of plutonium, minor actinides and long lived fission products are produced during the operation of commercial nuclear power plants. Therefore, the destruction of these wastes is very important with respect to public health, environment and also the future of nuclear energy. In this study, transmutation of minor actinides (MAs) discharged from LMFBR spent fuel in a high power density fusion reactor has been investigated under a neutron wall load of 10 MW/m{sup 2} for an operation period of 10 years. Also, the effect of MA percentage on the transmutation has been examined. The fuel zone, containing MAs as spheres cladded with W-5Re, has been located behind the first wall to utilize the high neutron flux for transmutation effectively. Helium at 40 atm has been used as an energy carrier. At the end of the operation period, the total burning and transmutation are greater than the total buildups in all investigated cases, and very high burnups (420-470 GWd/tHM) are reached, depending on the MA content. The total transmutation rate values are 906 and 979 kg/GW{sub th} year at startup and decrease to 140 and 178 kg/GW{sub th} year at the end of the operation for fuel with 10% and 20% MA, respectively. Over an operation period of 10 years, the effective half lives decrease from 2.38, 2.21 and 3.08 years to 1.95, 1.80 and 2.59 years for {sup 237}Np, {sup 241}Am and {sup 243}Am, respectively. Total atomic densities decrease exponentially during the operation period. The reductions in the total atomic densities with respect to the initial ones are 79%, 81%, 82%, 83%, 85% and 86% for 10%, 12%, 14%, 16%, 18% and 20% MAs, respectively.

  10. Minor Actinides Loading Optimization for Proliferation Resistant Fuel Design - BWR

    Energy Technology Data Exchange (ETDEWEB)

    G. S. Chang; Hongbin Zhang

    2009-09-01

    One approach to address the United States Nuclear Power (NP) 2010 program for the advanced light water reactor (LWR) (Gen-III+) intermediate-term spent fuel disposal need is to reduce spent fuel storage volume while enhancing proliferation resistance. One proposed solution includes increasing burnup of the discharged spent fuel and mixing minor actinide (MA) transuranic nuclides (237Np and 241Am) in the high burnup fuel. Thus, we can reduce the spent fuel volume while increasing the proliferation resistance by increasing the isotopic ratio of 238Pu/Pu. For future advanced nuclear systems, MAs are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. MAs play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. A typical boiling water reactor (BWR) fuel unit lattice cell model with UO2 fuel pins will be used to investigate the effectiveness of adding MAs (237Np and/or 241Am) to enhance proliferation resistance and improve fuel cycle performance for the intermediate-term goal of future nuclear energy systems. However, adding MAs will increase plutonium production in the discharged spent fuel. In this work, the Monte-Carlo coupling with ORIGEN-2.2 (MCWO) method was used to optimize the MA loading in the UO2 fuel such that the discharged spent fuel demonstrates enhanced proliferation resistance, while minimizing plutonium production. The axial averaged MA transmutation characteristics at different burnup were compared and their impact on neutronics criticality and the ratio of 238Pu/Pu discussed.

  11. Conceptual design of minor actinides burner with an accelerator-driven subcritical system.

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Y.; Gohar, Y. (Nuclear Engineering Division)

    2011-11-04

    In the environmental impact study of the Yucca Mountain nuclear waste repository, the limit of spent nuclear fuel (SNF) for disposal is assessed at 70,000 metric tons of heavy metal (MTHM), among which 63,000 MTHM are the projected SNF discharge from U.S. commercial nuclear power plants though 2011. Within the 70,000 MTHM of SNF in storage, approximately 115 tons would be minor actinides (MAs) and 585 tons would be plutonium. This study describes the conceptual design of an accelerator-driven subcritical (ADS) system intended to utilize (burn) the 115 tons of MAs. The ADS system consists of a subcritical fission blanket where the MAs fuel will be burned, a spallation neutron source to drive the fission blanket, and a radiation shield to reduce the radiation dose to an acceptable level. The spallation neutrons are generated from the interaction of a 1 GeV proton beam with a lead-bismuth eutectic (LBE) or liquid lead target. In this concept, the fission blanket consists of a liquid mobile fuel and the fuel carrier can be LBE, liquid lead, or molten salt. The actinide fuel materials are dissolved, mixed, or suspended in the liquid fuel carrier. Therefore, fresh fuel can be fed into the fission blanket to adjust its reactivity and to control system power during operation. Monte Carlo analyses were performed to determine the overall parameters of an ADS system utilizing LBE as an example. Steady-state Monte Carlo simulations were studied for three fission blanket configurations that are similar except that the loaded amount of actinide fuel in the LBE is either 5, 7, or 10% of the total volume of the blanket, respectively. The neutron multiplication factor values of the three configurations are all approximately 0.98 and the MA initial inventories are each approximately 10 tons. Monte Carlo burnup simulations using the MCB5 code were performed to analyze the performance of the three conceptual ADS systems. Preliminary burnup analysis shows that all three conceptual ADS

  12. Functionalized pyrazines as ligands for minor actinide extraction and catalysis

    NARCIS (Netherlands)

    Nikishkin, N.

    2013-01-01

    The research presented in this thesis concerns the design of ligands for a wide range of applications, from nuclear waste treatment to catalysis. The strategies employed to design actinide-selective extractants, for instance, comprise the fine tuning of the ligand electronic properties as well as

  13. Functionalized pyrazines as ligands for minor actinide extraction and catalysis

    NARCIS (Netherlands)

    Nikishkin, N.

    2013-01-01

    The research presented in this thesis concerns the design of ligands for a wide range of applications, from nuclear waste treatment to catalysis. The strategies employed to design actinide-selective extractants, for instance, comprise the fine tuning of the ligand electronic properties as well as us

  14. Optimization of SFR Reactor design with recycling or minor actinides; Optimizacion del diseno de reactor SFR con reciclado de actinidos minoritarios

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Fuertes, F.; Vazquez, M.; Alvarez, F.

    2012-07-01

    In this paper we show results of the design features and ESFR optimized in three configurations: the reference, load the minority actinides homogeneous throughout the reactor and the high content of AM on a radial mantle. Was calculated reactivity evolution in five cycles burned (2050 days) to recharge One approach. To do this, we have employed EVOLCODE2 a development tool of CIEMAT own coupling MCNPX and ORIGEN.

  15. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

    2002-01-01

    The use of supercritical temperature and pressure light water as the coolant in a direct-cycle nuclear reactor offers potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to 46%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type recirculation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If a tight fuel rod lattice is adopted, it is possible to significantly reduce the neutron moderation and attain fast neutron energy spectrum conditions. In this project a supercritical water reactor concept with a simple, blanket-free, pancake-shaped core will be developed. This type of core can make use of either fertile or fertile-free fuel and retain the hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity.

  16. The role of actinide burning and the Integral Fast Reactor in the future of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Hollaway, W.R.; Lidsky, L.M.; Miller, M.M.

    1990-12-01

    A preliminary assessment is made of the potential role of actinide burning and the Integral Fast Reactor (IFR) in the future of nuclear power. The development of a usable actinide burning strategy could be an important factor in the acceptance and implementation of a next generation of nuclear power. First, the need for nuclear generating capacity is established through the analysis of energy and electricity demand forecasting models which cover the spectrum of bias from anti-nuclear to pro-nuclear. The analyses take into account the issues of global warming and the potential for technological advances in energy efficiency. We conclude, as do many others, that there will almost certainly be a need for substantial nuclear power capacity in the 2000--2030 time frame. We point out also that any reprocessing scheme will open up proliferation-related questions which can only be assessed in very specific contexts. The focus of this report is on the fuel cycle impacts of actinide burning. Scenarios are developed for the deployment of future nuclear generating capacity which exploit the advantages of actinide partitioning and actinide burning. Three alternative reactor designs are utilized in these future scenarios: The Light Water Reactor (LWR); the Modular Gas-Cooled Reactor (MGR); and the Integral Fast Reactor (FR). Each of these alternative reactor designs is described in some detail, with specific emphasis on their spent fuel streams and the back-end of the nuclear fuel cycle. Four separation and partitioning processes are utilized in building the future nuclear power scenarios: Thermal reactor spent fuel preprocessing to reduce the ceramic oxide spent fuel to metallic form, the conventional PUREX process, the TRUEX process, and pyrometallurgical reprocessing.

  17. MINOR ACTINIDE SEPARATIONS USING ION EXCHANGERS OR IONIC LIQUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.; Visser, A.; Bridges, N.

    2011-09-20

    This project seeks to determine if (1) inorganic-based ion exchange materials or (2) electrochemical methods in ionic liquids can be exploited to provide effective Am and Cm separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of inorganic-based ion-exchange materials for actinide and lanthanide ions. Furthermore, we seek to determine whether ionic liquids can serve as the electrolyte that would enable formation of higher oxidation states of Am and other actinides. Experiments indicated that pH, presence of complexants and Am oxidation state exhibit significant influence on the uptake of actinides and lanthanides by layered sodium titanate and hybrid zirconium and tin phosphonate ion exchangers. The affinity of the ion exchangers increased with increasing pH. Greater selectivity among Ln(III) ions with sodium titanate materials occurs at a pH close to the isoelectric potential of the ion exchanger. The addition of DTPA decreased uptake of Am and Ln, whereas the addition of TPEN generally increases uptake of Am and Ln ions by sodium titanate. Testing confirmed two different methods for producing Am(IV) by oxidation of Am(III) in ionic liquids (ILs). Experimental results suggest that the unique coordination environment of ionic liquids inhibits the direct electrochemical oxidation of Am(III). The non-coordinating environment increases the oxidation potential to a higher value, while making it difficult to remove the inner coordination of water. Both confirmed cases of Am(IV) were from the in-situ formation of strong chemical oxidizers.

  18. Analysis and optimization of minor actinides transmutation blankets with regards to neutron and gamma sources

    Directory of Open Access Journals (Sweden)

    Kooyman Timothée

    2017-01-01

    Full Text Available Heterogeneous loading of minor actinides in radial blankets is a potential solution to implement minor actinides transmutation in fast reactors. However, to compensate for the lower flux level experienced by the blankets, the fraction of minor actinides to be loaded in the blankets must be increased to maintain acceptable performances. This severely increases the decay heat and neutron source of the blanket assemblies, both before and after irradiation, by more than an order of magnitude in the case of neutron source for instance. We propose here to implement an optimization methodology of the blankets design with regards to various parameters such as the local spectrum or the mass to be loaded, with the objective of minimizing the final neutron source of the spent assembly while maximizing the transmutation performances of the blankets. In a first stage, an analysis of the various contributors to long- and short-term neutron and gamma source is carried out whereas in a second stage, relevant estimators are designed for use in the effective optimization process, which is done in the last step. A comparison with core calculations is finally done for completeness and validation purposes. It is found that the use of a moderated spectrum in the blankets can be beneficial in terms of final neutron and gamma source without impacting minor actinides transmutation performances compared to more energetic spectrum that could be achieved using metallic fuel for instance. It is also confirmed that, if possible, the use of hydrides as moderating material in the blankets is a promising option to limit the total minor actinides inventory in the fuel cycle. If not, it appears that focus should be put upon an increased residence time for the blankets rather than an increase in the acceptable neutron source for handling and reprocessing.

  19. Design of an Actinide Burning, Lead-Bismuth Cooled Reactor That Produces Low Cost Electricity

    Energy Technology Data Exchange (ETDEWEB)

    C. Davis; S. Herring; P. MacDonald; K. McCarthy; V. Shah; K. Weaver (INEEL); J. Buongiorno; R. Ballinger; K. Doyoung; M. Driscoll; P. Hejzler; M. Kazimi; N. Todreas (MIT)

    1999-07-01

    The purpose of this project is to investigate the suitability of lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. The choice of lead-bismuth for the reactor coolant is an actinide burning fast reactor offers enhanced safety and reliability. The advantages of lead-bismuth over sodium as a coolant are related to the following material characteristics: chemical inertness with air and water; higher atomic number; lower vapor pressure at operating temperatures; and higher boiling temperature. Given the status of the field, it was agreed that the focus of this investigation in the first two years will be on the assessment of approaches to optimize core and plant arrangements in order to provide maximum safety and economic potential in this type of reactor.

  20. Assessment of SFR fuel pin performance codes under advanced fuel for minor actinide transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Bouineau, V.; Lainet, M.; Chauvin, N.; Pelletier, M. [French Alternative Energies and Atomic Energy Commission - CEA, CEA Cadarache, DEN/DEC/SESC, 13108 Saint Paul lez Durance (France); Di Marcello, V.; Van Uffelen, P.; Walker, C. [European Commission, Joint Research Centre, Institute for Transuranium Elements, Hermann-von-Helmholtz-Platz 1, D- 76344 Eggenstein-Leopoldshafen (Germany)

    2013-07-01

    Americium is a strong contributor to the long term radiotoxicity of high activity nuclear waste. Transmutation by irradiation in nuclear reactors of long-lived nuclides like {sup 241}Am is, therefore, an option for the reduction of radiotoxicity and residual power packages as well as the repository area. In the SUPERFACT Experiment four different oxide fuels containing high and low concentrations of {sup 237}Np and {sup 241}Am, representing the homogeneous and heterogeneous in-pile recycling concepts, were irradiated in the PHENIX reactor. The behavior of advanced fuel materials with minor actinide needs to be fully characterized, understood and modeled in order to optimize the design of this kind of fuel elements and to evaluate its performances. This paper assesses the current predictability of fuel performance codes TRANSURANUS and GERMINAL V2 on the basis of post irradiation examinations of the SUPERFACT experiment for pins with low minor actinide content. Their predictions have been compared to measured data in terms of geometrical changes of fuel and cladding, fission gases behavior and actinide and fission product distributions. The results are in good agreement with the experimental results, although improvements are also pointed out for further studies, especially if larger content of minor actinide will be taken into account in the codes. (authors)

  1. Minor actinide fission induced by multi-nucleon transfer reaction in inverse kinematics

    Directory of Open Access Journals (Sweden)

    Taieb J.

    2010-03-01

    Full Text Available In the framework of nuclear waste incineration and design of new generation nuclear reactors, experimental data on fission probabilities and on fission fragment yields of minor actinides are crucial to design prototypes. Transfer-induced fission has proven to be an efficient method to study fission probabilities of actinides which cannot be investigated with standard techniques due to their high radioactivity. We report on the preliminary results of an experiment performed at GANIL that investigates fission probabilities with multi-nucleon transfer reactions in inverse kinematics between a 238U beam on a 12C target. Actinides from U to Cm were produced with an excitation energy range from 0 to 30 MeV. In addition, inverse kinematics allowed to characterize the fission fragments in mass and charge. A key point of the analysis resides in the identification of the actinides produced in the different transfer channels. The new annular telescope SPIDER was used to tag the target-like recoil nucleus of the transfer reaction and to determine the excitation energy of the actinide. The fission probability for each transfer channel is accessible and the preliminary results for 238U are promising.

  2. Detailed studies of Minor Actinide transmutation-incineration in high-intensity neutron fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Bringer, O. [CEA/Saclay/DSM/DAPNIA, Gif-sur-Yvette (France); Al Mahamid, I. [Lawrence Berkeley National Laboratory, E.H. and S. Div., CA (United States); Blandin, C. [CEA/Cadarache/DEN/DER/SPEX, Saint-Paul-lez-Durances (France); Chabod, S. [CEA/Saclay/DSM/DAPNIA, Gif-sur-Yvette (France); Chartier, F. [CEA/Cadarache/DEN/DPC/SECR, Gif-sur-Yvette (France); Dupont, E.; Fioni, G. [CEA/Saclay/DSM/DAPNIA, Gif-sur-Yvette (France); Isnard, H. [CEA/Cadarache/DEN/DPC/SECR, Gif-sur-Yvette (France); Letourneau, A.; Marie, F. [CEA/Saclay/DSM/DAPNIA, Gif-sur-Yvette (France); Mutti, P. [Institut Laue-Langevin, Grenoble (France); Oriol, L. [CEA/Cadarache/DEN/DER/SPEX, Saint-Paul-lez-Durances (France); Panebianco, S.; Veyssiere, C. [CEA/Saclay/DSM/DAPNIA, Gif-sur-Yvette (France)

    2006-07-01

    The Mini-INCA project is dedicated to the measurement of incineration-transmutation chains and potentials of minor actinides in high-intensity thermal neutron fluxes. In this context, new types of detectors and methods of analysis have been developed. The {sup 241}Am and {sup 232}Th transmutation-incineration chains have been studied and several capture and fission cross sections measured very precisely, showing some discrepancies with existing data or evaluated data. An impact study was made on different based-like GEN-IV reactors. It underlines the necessity to proceed to precise measurements for a large number of minor-actinides that contribute to these future incineration scenarios. (authors)

  3. Optimization of moderated targets loading in LMFBR for minor actinides incineration

    Energy Technology Data Exchange (ETDEWEB)

    Wu Hongchun; Takeda, Toshikazu [Osaka Univ., Suita (Japan). Dept. of Nuclear Engineering

    1999-04-01

    Optimization of moderated targets loading in LMFBR for minor actinides (MAs) incineration has been performed in this paper. Results of many different composition ratios of moderated target mixture were compared. An optimum case was proposed which can offer good core performance and transmute MAs by about 73 percent (386 kg) and incinerate MAs by about 34 percent (181 kg) through 3 years of reactor operation. (author)

  4. Neutron capture measuremetns on minor actinides at the n_TOF facility at CERN: past, present and future

    OpenAIRE

    Cano Ott, Daniel; Colonna, Nicola; Tagliente, G.; Belloni, Fabio; Calviño Tavares, Francisco; Cortés Rossell, Guillem Pere; Poch Parés, Agustí; Pretel Sánchez, Carme

    2011-01-01

    The successful development of advanced nuclear systems for sustainable energy production and nuclear waste management depends on high quality nuclear data libraries. Recent sensitivity stud- ies and reports [1-3] have identi ed the need for substantially improving the accuracy of neutron cross-section data for minor actinides. The n TOF collaboration has initiated an ambitious exper- imental program for the measurement of neutron capture cross sections of minor actinides. Two e...

  5. Benchmark Evaluation of Dounreay Prototype Fast Reactor Minor Actinide Depletion Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hess, J. D.; Gauld, I. C.; Gulliford, J.; Hill, I.; Okajima, S.

    2017-01-01

    Historic measurements of actinide samples in the Dounreay Prototype Fast Reactor (PFR) are of interest for modern nuclear data and simulation validation. Samples of various higher-actinide isotopes were irradiated for 492 effective full-power days and radiochemically assayed at Oak Ridge National Laboratory (ORNL) and Japan Atomic Energy Research Institute (JAERI). Limited data were available regarding the PFR irradiation; a six-group neutron spectra was available with some power history data to support a burnup depletion analysis validation study. Under the guidance of the Organisation for Economic Co-Operation and Development Nuclear Energy Agency (OECD NEA), the International Reactor Physics Experiment Evaluation Project (IRPhEP) and Spent Fuel Isotopic Composition (SFCOMPO) Project are collaborating to recover all measurement data pertaining to these measurements, including collaboration with the United Kingdom to obtain pertinent reactor physics design and operational history data. These activities will produce internationally peer-reviewed benchmark data to support validation of minor actinide cross section data and modern neutronic simulation of fast reactors with accompanying fuel cycle activities such as transportation, recycling, storage, and criticality safety.

  6. Study on separation of minor actinides from HLLW with new extractant of TODGA-DHOA/Kerosene

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Guo-an; Zhu, Wen-bin; Li, Feng-feng; Lin, Ru-shan; Li, Hui-rong [China Institute of Atomic Energy, P.O.Box 275-26, Beijing 102413 (China)

    2013-07-01

    The extraction behavior of U, Np, Pu, Am, rare earth elements and Sr from nitric acid solutions by TODGA/dodecan, DHOA/dodecane and TODGA-DHOA/dodecane were investigated, respectively. Based on experimental results, a separation process was proposed for minor actinide isolation from high level liquid waste (HLLW): the TODGA-DHOA/kerosene system. The multi-stage counter-current cascade experiments were carried out for the purpose by 0.1 mol/l TODGA-1.0 mol/l DHOA/kerosene with miniature mixer- settler contactor rigs (8 stages for extraction, 6 stages for scrubbing, 8 stages for first stripping, 8 stages for second stripping). The results show that the recovery efficiencies of the actinides and lanthanides are more than 99.9%, whereas less than 1% Sr was extracted by 0.1 mol/l TODGA - 1.0 mol/l DHOA/kerosene. The stripping efficiencies of U, Np and Pu are more than 95% in the first stripping step by 0.5 mol/l HNO{sub 3} + 0.5 mol/l AHA(aceto-hydroxamic acid), all of the remained actinides and lanthanides can be stripped by 0.01 mol/l HNO{sub 3} in the second stripping step. 99% Sr was extracted by 0.1 mol/l TODGA/kerosene, so Sr can be recovered efficiently directly from the raffinate by 0.1 mol/l TODGA/kerosene. (authors)

  7. Sigma Team for Minor Actinide Separation: PNNL FY 2011 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Braley, Jenifer C.; Sinkov, Sergey I.; Levitskaia, Tatiana G.; Carter, Jennifer C.; Warner, Marvin G.; Pittman, Jonathan W.

    2011-08-13

    This report summarizes work conducted in FY 2011 at PNNL to investigate new methods of separating the minor actinide elements (Am and Cm) from the trivalent lanthanide elements, and separation of Am from Cm. For the former, work focused on a solvent extraction system combining an acidic extractant (HDEHP) with a neutral extractant (CMPO) to form a hybrid solvent extraction system referred to as TRUSPEAK (combining the TRUEX and TALSPEAK processes). For the latter, ligands that strongly bing uranyl ion were investigated for stabilizing corresponding americyl ion.

  8. Moderating Material to Compensate the Drawback of High Minor Actinide Containing Transmutation Fuel on the Feedback Effects in SFR Cores

    Directory of Open Access Journals (Sweden)

    Bruno Merk

    2013-01-01

    Full Text Available The use of fine distributed moderating material to enhance the feedback effects and to reduce the sodium void effecting SFRs is described. The drawback on the feedback effects due to the introduction of minor actinides into SFR fuel is analyzed. The possibility of compensation of the effect of the minor actinides on the feedback effects by the use of fine distributed moderating material is demonstrated. The consequences of the introduction of fine distributed moderating material into fuel assemblies with fuel configurations foreseen for minor actinide transmutation are analyzed, and the positive effects on the transmutation efficiency are shown. Finally, the possible increase of the Americium content to improve the transmutation efficiency is discussed, the limit value of Americium is determined, and the possibilities given by an increase of the hydrogen content are analyzed.

  9. Plutonium and Minor Actinides Recycling in Standard BWR using Equilibrium Burnup Model

    Directory of Open Access Journals (Sweden)

    Abdul Waris

    2008-03-01

    Full Text Available Plutonium (Pu and minor actinides (MA recycling in standard BWR with equilibrium burnup model has been studied. We considered the equilibrium burnup model as a simple time independent burnup method, which can manage all possible produced nuclides in any nuclear system. The equilibrium burnup code was bundled with a SRAC cell-calculation code to become a coupled cell-burnup calculation code system. The results show that the uranium enrichment for the criticality of the reactor, the amount of loaded fuel and the required natural uranium supply per year decrease for the Pu recycling and even much lower for the Pu & MA recycling case compared to those of the standard once-through BWR case. The neutron spectra become harder with the increasing number of recycled heavy nuclides in the reactor core. The total fissile rises from 4.77% of the total nuclides number density in the reactor core for the standard once-through BWR case to 6.64% and 6.72% for the Plutonium recycling case and the Pu & MA recycling case, respectively. The two later data may become the main basis why the required uranium enrichment declines and consequently diminishes the annual loaded fuel and the required natural uranium supply. All these facts demonstrate the advantage of plutonium and minor actinides recycling in BWR.

  10. Studies into new solvent extraction reagents for the separation of trivalent minor actinides from trivalent lanthanides

    CERN Document Server

    Russell, M L

    2000-01-01

    Ligands, suitable for the separation of minor actinide(lll) cations from lanthanide(lll) cations from acidic aqueous media, have been synthesised. Two oligopyridine ligands, 4', 4''-(bis (4-tolyl))-2, 2': 6', 2'': 6'', 2'''-quaterpyridine and 4',4'''-(bis(4-heptyloxyphenyl))-2,2':6',2'':6'',2''':6''',2'''' -quinquepyridi= ne, have been synthesised and tested by solvent extraction experiments. The ability of the ligands to separate minor actinide from lanthanide has been attributed to the number of pyridyl rings present. A series of terpyridine analogues based on sym-triazine have been prepared, via the cyclisation of aromatic carbonitriles with guanidine. New lipophilic derivatives of 2-amino-bis(4,6(2-pyridyl))-1,3,5-triazine, 2-amino-bis(4,6(2-pyrazinyl)-1,3,5-triazine, 2-amino-bis(4,6(2-isoquinolinyl)-1,3,5-triazine, 2-amino-bis(4,6(2-(4-methyl)pyridyl)-1,3,5-triazine, 2-amino-bis(4,6(4-pyridyl)-1,3,5-triazine, 2-amino-bis(4,6(2-thiophenyl)-1,3,5-triazine and 2-amino-bis(4,6(2-quinolinyl)-1,3,5-triazine ha...

  11. Assessment of sensitivity of neutron-physical parameters of fast neutron reactor to purification of reprocessed fuel from minor actinides

    Science.gov (United States)

    Cherny, V. A.; Kochetkov, L. A.; Nevinitsa, A. I.

    2013-12-01

    The work is devoted to computational investigation of the dependence of basic physical parameters of fast neutron reactors on the degree of purification of plutonium from minor actinides obtained as a result of pyroelectrochemical reprocessing of spent nuclear fuel and used for manufacturing MOX fuel to be reloaded into the reactors mentioned. The investigations have shown that, in order to preserve such important parameters of a BN-800 type reactor as the criticality, the sodium void reactivity effect, the Doppler effect, and the efficiency of safety rods, it is possible to use the reprocessed fuel without separation of minor actinides for refueling (recharging) the core.

  12. Utilization of Minor Actinides as a Fuel Component for Ultra-Long Life Bhr Configurations: Designs, Advantages and Limitations

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Pavel V. Tsvetkov

    2009-05-20

    This project assessed the advantages and limitations of using minor actinides as a fuel component to achieve ultra-long life Very High Temperature Reactor (VHTR) configurations. Researchers considered and compared the capabilities of pebble-bed and prismatic core designs with advanced actinide fuels to achieve ultra-long operation without refueling. Since both core designs permit flexibility in component configuration, fuel utilization, and fuel management, it is possible to improve fissile properties of minor actinides by neutron spectrum shifting through configuration adjustments. The project studied advanced actinide fuels, which could reduce the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository and enable recovery of the energy contained in spent fuel. The ultra-long core life autonomous approach may reduce the technical need for additional repositories and is capable to improve marketability of the Generation IV VHTR by allowing worldwide deployment, including remote regions and regions with limited industrial resources. Utilization of minor actinides in nuclear reactors facilitates developments of new fuel cycles towards sustainable nuclear energy scenarios.

  13. Target fuels for plutonium and minor actinide transmutation in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Washington, J., E-mail: jwashing@gmail.com [Nuclear Science and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); King, J., E-mail: kingjc@mines.edu [Nuclear Science and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Shayer, Z., E-mail: zshayer@mines.edu [Department of Physics, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States)

    2017-03-15

    Highlights: • We evaluate transmutation fuels for plutonium and minor actinide destruction in LWRs. • We model a modified AP1000 fuel assembly in SCALE6.1. • We evaluate spectral shift absorber coatings to improve transmutation performance. - Abstract: The average nuclear power plant produces twenty metric tons of used nuclear fuel per year, containing approximately 95 wt% uranium, 1 wt% plutonium, and 4 wt% fission products and transuranic elements. Fast reactors are a preferred option for the transmutation of plutonium and minor actinides; however, an optimistic deployment time of at least 20 years indicates a need for a nearer-term solution. This study considers a method for plutonium and minor actinide transmutation in existing light water reactors and evaluates a variety of transmutation fuels to provide a common basis for comparison and to determine if any single target fuel provides superior transmutation properties. A model developed using the NEWT module in the SCALE 6.1 code package provided performance data for the burnup of the target fuel rods in the present study. The target fuels (MOX, PuO{sub 2}, Pu{sub 3}Si{sub 2}, PuN, PuUZrH, PuZrH, PuZrHTh, and PuZrO{sub 2}) are evaluated over a 1400 Effective Full Power Days (EFPD) interval to ensure each assembly remained critical over the entire burnup period. The MOX (5 wt% PuO{sub 2}), Pu{sub 0.31}ZrH{sub 1.6}Th{sub 1.08}, and PuZrO{sub 2}MgO (8 wt% Pu) fuels result in the highest rate of plutonium transmutation with the lowest rate of curium-244 production. This study selected eleven different burnable absorbers (B{sub 4}C, CdO, Dy{sub 2}O{sub 3}, Er{sub 2}O{sub 3}, Eu{sub 2}O{sub 3}, Gd{sub 2}O{sub 3}, HfO{sub 2}, In{sub 2}O{sub 3}, Lu{sub 2}O{sub 3}, Sm{sub 2}O{sub 3}, and TaC) for evaluation as spectral shift absorber coatings on the outside of the fuel pellets to determine if an absorber coating can improve the transmutation properties of the target fuels. The PuZrO{sub 2}MgO (8 wt% Pu) target

  14. Managing Zirconium Chemistry and Phase Compatibility in Combined Process Separations for Minor Actinide Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Nathalie [Washington State Univ., Pullman, WA (United States); Nash, Ken [Washington State Univ., Pullman, WA (United States); Martin, Leigh [Washington State Univ., Pullman, WA (United States)

    2017-03-17

    In response to the NEUP Program Supporting Fuel Cycle R&D Separations and Waste Forms call DEFOA- 0000799, this report describes the results of an R&D project focusing on streamlining separation processes for advanced fuel cycles. An example of such a process relevant to the U.S. DOE FCR&D program would be one combining the functions of the TRUEX process for partitioning of lanthanides and minor actinides from PUREX(UREX) raffinates with that of the TALSPEAK process for separating transplutonium actinides from fission product lanthanides. A fully-developed PUREX(UREX)/TRUEX/TALSPEAK suite would generate actinides as product(s) for reuse (or transmutation) and fission products as waste. As standalone, consecutive unit-operations, TRUEX and TALSPEAK employ different extractant solutions (solvating (CMPO, octyl(phenyl)-N,Ndiisobutylcarbamoylmethylphosphine oxide) vs. cation exchanging (HDEHP, di-2(ethyl)hexylphosphoric acid) extractants), and distinct aqueous phases (2-4 M HNO3 vs. concentrated pH 3.5 carboxylic acid buffers containing actinide selective chelating agents). The separate processes may also operate with different phase transfer kinetic constraints. Experience teaches (and it has been demonstrated at the lab scale) that, with proper control, multiple process separation systems can operate successfully. However, it is also recognized that considerable economies of scale could be achieved if multiple operations could be merged into a single process based on a combined extractant solvent. The task of accountability of nuclear materials through the process(es) also becomes more robust with fewer steps, providing that the processes can be accurately modeled. Work is underway in the U.S. and Europe on developing several new options for combined processes (TRUSPEAK, ALSEP, SANEX, GANEX, ExAm are examples). There are unique challenges associated with the operation of such processes, some relating to organic phase chemistry, others arising from the

  15. A practical fabrication method for the advanced heterogeneous fuel with magnesia containing minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Miwa, Shuhei [Oarai Research and Development Center, Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashi-ibaraki-gun, Ibaraki 311-1393 (Japan)], E-mail: miwa.shuhei@jaea.go.jp; Osaka, Masahiko [Oarai Research and Development Center, Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashi-ibaraki-gun, Ibaraki 311-1393 (Japan)

    2009-03-15

    Fabrication tests on advanced heterogeneous fuel with MgO were carried out for the purpose of establishing a practical fabrication method. Advanced heterogeneous fuel consists of spheres (diameter greater than 100 {mu}m) of a minor actinide oxide and MgO inert matrix (macro-dispersed type fuel). Macro-dispersed type fuel pellets with a high density above 90% T.D. were successfully fabricated. In addition, the fabricated pellets showed a homogeneous dispersion of near spherical host phase granules. These were attained by optimization of the fabrication process and conditions; i.e. a preliminary heat treatment of raw powders of host phase, an adjustment of pressure at the granulation process, deployment of a spray-dry process for MgO sphere preparation and sintering in a He atmosphere. From these results, a practical fabrication method for MgO-based macro-dispersed type fuel based on a simple powder metallurgical technique was established.

  16. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-03-10

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

  17. Minor actinides impact on basic safety parameters of medium-sized sodium-cooled fast reactor

    Directory of Open Access Journals (Sweden)

    Darnowski Piotr

    2015-03-01

    Full Text Available An analysis of the influence of addition of minor actinides (MA to the fast reactor fuel on the most important safety characteristics was performed. A special emphasis was given to the total control rods worth in order to describe qualitatively and quantitatively its change with MA content. All computations were performed with a homogeneous assembly model of modified BN-600 sodium-cooled fast reactor core with 0, 3 and 6% of MA. A model was prepared for the Monte Carlo neutron transport code MCNP5 for fresh fuel in the beginning-of-life (BOL state. Additionally, some other parameters, such as Doppler constant, sodium void reactivity, delayed neutron fraction, neutron fluxes and neutron spectra distribution, were computed and their change with MA content was investigated. Study indicates that the total control rods worth (CRW decreases with increasing MA inventory in the fuel and confirms that the addition of MA has a negative effect on the delayed neutron fraction.

  18. Preliminary studies of a new accelerator-driven minor actinide burner in industrial scale

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xunzhao; Zhou, Shengcheng [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Wang, Kunpeng [Nuclear and Radiation Safety Center, PO Box 8088, No. 54, Beijing 100082 (China); Wu, Hongchun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China)

    2015-10-15

    Highlights: • A new accelerator-driven minor actinide (MA) burner was proposed. • Comprehensive design of spallation target, fuel assembly and subcritical core was performed. • Preliminary safety analyses indicate the inherent safety of the core in the reactivity insertion (500 pcm) and beam overpower (50% increase) transients. - Abstract: Pursuing high transmutation rate of minor actinide (MA), a preliminary conceptual design of a lead-bismuth (LBE) cooled accelerator-driven system (ADS) is proposed in this study. Parametric studies are performed to optimize the neutronics and thermal–hydraulics performances. The proton energy and axial position of the proton beam impact is investigated to obtain high neutron source efficiency and spallation neutron yield. The influences of MA/Pu mixing ratio and the ratio of pin pitch to diameter (P/D) are also optimized to control the burnup reactivity swing and the minimum coolant velocity for adequate cooling. To reduce the power peak, three kinds of power flattening techniques are adopted and compared. The results show that the inert matrix ratio zone loading method seems more versatile. Based on the analyses, an optimized three zone loading pattern is proposed for the 800 MWth subcritical core. The total transmutation rate of MA is 328.8 kg per effective full power year. Preliminary safety analyses based on the balance of power method (BOP) are performed and the results show that in the reactivity insertion and beam overpower transients, the core shows inherent safety, but the scram is necessary by cutting off the beam current to protect the core from possible damages caused by the loss of flow.

  19. AECL/US INERI - Development of Inert Matrix Fuels for Plutonium and Minor Actinide Management in Power Reactors -- Fuel Requirements and Down-Select Report

    Energy Technology Data Exchange (ETDEWEB)

    William Carmack; Randy D. Lee; Pavel Medvedev; Mitch Meyer; Michael Todosow; Holly B. Hamilton; Juan Nino; Simon Philpot; James Tulenko

    2005-06-01

    The U.S. Advanced Fuel Cycle Program and the Atomic Energy Canada Ltd (AECL) seek to develop and demonstrate the technologies needed to minimize the overall Pu and minor actinides present in the light water reactor (LWR) nuclear fuel cycles. It is proposed to reuse the Pu from LWR spent fuel both for the energy it contains and to decrease the hazard and proliferation impact resulting from storage of the Pu and minor actinides. The use of fuel compositions with a combination of U and Pu oxide (MOX) has been proposed as a way to recycle Pu and/or minor actinides in LWRs. It has also been proposed to replace the fertile U{sup 238} matrix of MOX with a fertile-free matrix (IMF) to reduce the production of Pu{sup 239} in the fuel system. It is important to demonstrate the performance of these fuels with the appropriate mixture of isotopes and determine what impact there might be from trace elements or contaminants. Previous work has already been done to look at weapons-grade (WG) Pu in the MOX configuration [1][2] and the reactor-grade (RG) Pu in a MOX configuration including small (4000 ppm additions of Neptunium). This program will add to the existing database by developing a wide variety of MOX fuel compositions along with new fuel compositions called inert-matrix fuel (IMF). The goal of this program is to determine the general fabrication and irradiation behavior of the proposed IMF fuel compositions. Successful performance of these compositions will lead to further selection and development of IMF for use in LWRs. This experiment will also test various inert matrix material compositions with and without quantities of the minor actinides Americium and Neptunium to determine feasibility of incorporation into the fuel matrices for destruction. There is interest in the U.S. and world-wide in the investigation of IMF (inert matrix fuels) for scenarios involving stabilization or burn down of plutonium in the fleet of existing commercial power reactors. IMF offer the

  20. Criticality investigations for the fixed bed nuclear reactor using thorium fuel mixed with plutonium or minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Suemer [Beykoz Lojistik Meslek Yueksekokulu, Beykoz, Istanbul (Turkey)], E-mail: sumer@gazi.edu.tr; Sahin, Haci Mehmet; Acir, Adem [Beykoz Lojistik Meslek Yueksekokulu, Istanbul (Turkey); Al-Kusayer, Tawfik Ahmed [King Saud University, College of Engineering, P.O. Box 800, Riyadh 11421 (Saudi Arabia)

    2009-08-15

    Prospective fuels for a new reactor type, the so called fixed bed nuclear reactor (FBNR) are investigated with respect to reactor criticality. These are (1) low enriched uranium (LEU); (2) weapon grade plutonium + ThO{sub 2}; (3) reactor grade plutonium + ThO{sub 2}; and (4) minor actinides in the spent fuel of light water reactors (LWRs) + ThO{sub 2}. Reactor grade plutonium and minor actinides are considered as highly radio-active and radio-toxic nuclear waste products so that one can expect that they will have negative fuel costs. The criticality calculations are conducted with SCALE5.1 using S{sub 8}-P{sub 3} approximation in 238 neutron energy groups with 90 groups in thermal energy region. The study has shown that the reactor criticality has lower values with uranium fuel and increases passing to minor actinides, reactor grade plutonium and weapon grade plutonium. Using LEU, an enrichment grade of 9% has resulted with k{sub eff} = 1.2744. Mixed fuel with weapon grade plutonium made of 20% PuO{sub 2} + 80% ThO{sub 2} yields k{sub eff} = 1.2864. Whereas a mixed fuel with reactor grade plutonium made of 35% PuO{sub 2} + 65% ThO{sub 2} brings it to k{sub eff} = 1.267. Even the very hazardous nuclear waste of LWRs, namely minor actinides turn out to be high quality nuclear fuel due to the excellent neutron economy of FBNR. A relatively high reactor criticality of k{sub eff} = 1.2673 is achieved by 50% MAO{sub 2} + 50% ThO{sub 2}. The hazardous actinide nuclear waste products can be transmuted and utilized as fuel in situ. A further output of the study is the possibility of using thorium as breeding material in combination with these new alternative fuels.

  1. The optimization of an AP1000 fuel assembly for the transmutation of plutonium and minor actinides

    Science.gov (United States)

    Washington, Jeremy A.

    The average nuclear power plant produces twenty metric tons of used nuclear fuel per year, containing approximately 95 wt% uranium, 1 wt% plutonium, and 4 wt% fission products and transuranic elements. Fast reactors are a preferred option for the transmutation of plutonium and minor actinides; however, an optimistic deployment time of at least 20 years indicates a need for a near-term solution. The goal of this thesis is to examine the potential of light water reactors for plutonium and minor actinides transmutation as a near-term solution. This thesis screens the available nuclear isotope database to identify potential absorbers as coatings on a transmutation fuel in a light water reactor. A spectral shift absorber coating tunes the neutron energy spectrum experienced by the underlying target fuel. Eleven different spectral shift absorbers (B4C, CdO, Dy2O3, Er 2O3, Eu2O3, Gd2O3, HfO2, In2O3, Lu2O3, Sm2O3, and TaC) have been selected for further evaluation. A model developed using the NEWT module of SCALE 6.1 code provided performance data for the burnup of the target fuel rods. Irradiation of the target fuels occurs in a Westinghouse 17x17 XL Robust Fuel Assembly over a 1400 Effective Full Power Days (EFPD) interval. The fuels evaluated in this thesis include PuO2, Pu3Si2, PuN, MOX, PuZrH, PuZrHTh, PuZrO 2, and PuUZrH. MOX (5 wt% PuO2), Pu0.31ZrH 1.6Th1.08, and PuZrO2MgO (8 wt%) are selected for detailed analysis in a multi-pin transmutation assembly. A coupled model optimized the resulting transmutation fuel elements. The optimization considered three stages of fuel assemblies containing target fuel pins. The first stage optimized four target fuel pins adjacent to the central instrumentation channel. The second stage evaluated a variety of assemblies with multiple target fuel pins and the third stage re-optimized target fuel pins in the second-stage assembly. A PuZrO2MgO (8 wt%) target fuel with a coating of Lu 2O3 resulted in the greatest reduction in curium-244

  2. Neutron Capture Measuremetns on Minor Actinides at the n_TOF Facility at CERN: Past, Present and Future

    CERN Document Server

    Cano-Ott, D; Eleftheriadis, C; Leeb, H; Calvino, F; Herrera-Martinez, A; Savvidis, I; Vlachoudis, V; Haas, B; Abbondanno, U; Vannini, G; Oshima, M; Gramegna, F; Wiescher, M; Pigni, M T; Wiendler, H; Mengoni, A; Quesada, J; Becvar, F; Rosetti, M; Cennini, P; Mosconi, M; Duran, I; Rauscher, T; Ketlerov, V; Couture, A; Capote, R; Sarchiapone, L; Vlastou, R; Domingo-Pardo, C; Pavlopoulos, P; Karamanis, D; Krticka, M; Griesmayer, E; Jericha, E; Ferrari, A; Martinez, T; Oberhummer, H; Karadimos, D; Plompen, A; Mendoza, E; Terlizzi, R; Cortes, G; Cox, J; Voss, F; Pretel, C; Colonna, N; Berthoumieux, E; Dolfini, R; Vaz, P; Heil, M; Lopes, I; Lampoudis, C; Walter, S; Calviani, M; Gonzalez-Romero, E; Stephan, C; Tain, J L; Belloni, F; Igashira, M; Papachristodoulou, C; Aerts, G; Tavora, L; Milazzo, P M; Rudolf, G; Andrzejewski, J; Villamarin, D; Ferreira-Marques, R; Meaze, M H; O'Brien, S; Gunsing, F; Reifarth, R; Perrot, L; Lindote, A; Neves, F; Poch, A; Konovalov, V; Kerveno, M; Marques, L; Rubbia, C; Koehler, P; Dahlfors, M; Wisshak, K; Fujii, K; De Albornoz, A C; Salgado, J; Dridi, W; Ventura, A; Andriamonje, S; Dillman, I; Assimakopoulos, P; Ferrant, L; Lozano, M; Patronis, N; Chiaveri, E; Guerrero, C; Kadi, Y; Vicente, M C; Praena, J; Baumann, P; Moreau, C; Kappeler, F; Rullhusen, P; Furman, W; David, S; Marrone, S; Paradela, C; Audouin, L; Tassan-Got, L; Alvarez-Velarde, F; Massimi, C; Mastinu, P; Isaev, S; Pancin, J; Papadopoulos, C; Tagliente, G; Alvarez, H; Haight, R; Goverdovski, A; Chepel, V; Plag, R; Kossionides, E; Badurek, G; Marganiec, J; Lukic, S; Frais-Koelbl, H; Pavlik, A; Goncalves, I

    2011-01-01

    The successful development of advanced nuclear systems for sustainable energy production and nuclear waste management depends on high quality nuclear data libraries. Recent sensitivity studies and reports {[}1-3] have identified the need for substantially improving the accuracy of neutron cross-section data for minor actinides. The n\\_TOF collaboration has initiated an ambitious experimental program for the measurement of neutron capture cross sections of minor actinides. Two experimental setups have been constructed for this purpose: a Total Absorption Calorimeter (TAC) {[}4] for measuring neutron capture cross-sections of low-mass and/or radioactive samples and a set of two low neutron sensitivity C(6)D(6) detectors for the less radioactive materials.

  3. Detailed investigation of neutron emitters in the transmutation of Minor Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Letourneau, A.; Bringer, O.; Dupont, E.; Panebianco, S.; Veyssiere, Ch. [CEA/Saclay/DSM/IRFU - Gif-sur-Yvette (France); Al Mahamid, I. [Wadsworth Center, New York State Department of Health, Albany, NY 12201 (United States); Chartier, F. [CEA/Saclay/DEN/DPC/SECR - Gif-sur-Yvette (France); Mutti, P. [Institut Laue-Langevin, Grenoble (France); Oriol, L. [CEA/Cadarache/DEN/DER/SPEX - Saint-Paul-lez-Durances (France)

    2008-07-01

    The production of neutron emitters during the incineration process of minor actinides could be very penalizing for the reprocessing of the targets when transmuted in heterogeneous mode, either in dedicated systems (ADS) or in generation IV reactors. Therefore their production has to be carefully evaluated. The reliability of such evaluation really depends on nuclear data (capture and fission cross sections) and their accuracy. In this paper we present a work we have done to investigate the production of neutron emitters in the incineration of {sup 237}Np and {sup 241}Am targets in fast and thermal nuclear reactor concepts. The impact of nuclear data uncertainties on the production of those neutron-emitters was evaluated by sensitivity calculations. The reduction for some of these uncertainties in the thermal energy region was done by measuring more precisely the {sup 244}Cm(n,gamma){sup 245}Cm, {sup 245}Cm(n,f) and {sup 249}Cf(n,gamma){sup 250}Cf capture cross sections at the Laue-Langevin Institute (ILL). It amounts to (15.6+-2.4) b for the first one, (1923+-49) b for the second and (389+-10) b for the third one. (authors)

  4. Plutonium and minor actinides recycling in PWRs with new APA concepts

    Energy Technology Data Exchange (ETDEWEB)

    Golfier, H.; Rohart, M.; Aniel, S.; Bergeron, J.; Deffain, J.P. [CEA Saclay, Dept. Modelisation des Systemes et Structures, DM2S, 91 - Gif-sur-Yvette (France)

    2001-07-01

    In the frame of the studies required by the French law of 1991, CEA have launched a wide range of assessments on waste management for different reactors (PWR, FBR). Considerable R and D work has already been performed in order to improve the use of Plutonium (Pu) in PWRs. In this context, the Advanced Plutonium Assembly (APA) aims to improve the use of Plutonium (Pu) in PWRs while minimizing Minor Actinides (MA) production, with only slight modifications of the core design. From a neutronic point of view, the overall studied cases lead to the stabilization of the Pu inventory with approximately 30% of the park refueled with APA assemblies in full APA cores. Multi-recycling could satisfy the stabilization of Pu+ (Am+Cm) inventory by the implementation of approximately 40% APA reactors in a conventional PWRs park. After 7 or 8 recycles, the equilibrium is reached. The Pu inventory in the fuel cycle ranges from 210 tons to 270 tons for Pu multi-recycling, and from 240 tons to 290 tons for Pu+(Am+Cm) multi-recycling. The saving in Natural Uranium and Separative Work Units (SWU) due to the use of APA reactors would be between 30% and 15% in comparison with the UO{sub 2} open cycle. This paper presents a selection of the main preliminary Pu recycling results of the joint study program COGEMA-CEA. (author)

  5. Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors. Publishable Final Activity Report

    Energy Technology Data Exchange (ETDEWEB)

    Kuijper, J.C., E-mail: kuijper@nrg.eu [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Somers, J.; Van Den Durpel, L.; Chauvet, V.; Cerullo, N.; Cetnar, J.; Abram, T.; Bakker, K.; Bomboni, E.; Bernnat, W.; Domanska, J.G.; Girardi, E.; De Haas, J.B.M.; Hesketh, K.; Hiernaut, J.P.; Hossain, K.; Jonnet, J.; Kim, Y.; Kloosterman, J.L.; Kopec, M.; Murgatroyd, J.; Millington, D.; Lecarpentier, D.; Lomonaco, G.; McEachern, D.; Meier, A.; Mignanelli, M.; Nabielek, H.; Oppe, J.; Petrov, B.Y.; Pohl, C.; Ruetten, H.J.; Schihab, S.; Toury, G.; Trakas, C.; Venneri, F.; Verfondern, K.; Werner, H.; Wiss, T.; Zakova, J.

    2010-11-15

    The PUMA project -the acronym stands for 'Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors'- was a Specific Targeted Research Project (STREP) within the EURATOM 6th Framework Program (EU FP6). The PUMA project ran from September 1, 2006, until August 31, 2009, and was executed by a consortium of 14 European partner organisations and one from the USA. This report serves 2 purposes. It is both the 'Publishable Final Activity Report' and the 'Final (Summary) Report', describing, per Work Package, the specific objectives, research activities, main conclusions, recommendations and supporting documents. PUMA's main objective was to investigate the possibilities for the utilisation and transmutation of plutonium and especially minor actinides in contemporary and future (high temperature) gas-cooled reactor designs, which are promising tools for improving the sustainability of the nuclear fuel cycle. This contributes to the reduction of Pu and MA stockpiles, and also to the development of safe and sustainable reactors for CO{sub 2}-free energy generation. The PUMA project has assessed the impact of the introduction of Pu/MA-burning HTRs at three levels: fuel and fuel performance (modelling), reactor (transmutation performance and safety) and reactor/fuel cycle facility park. Earlier projects already indicated favourable characteristics of HTRs with respect to Pu burning. So, core physics of Pu/MA fuel cycles for HTRs has been investigated to study the CP fuel and reactor characteristics and to assure nuclear stability of a Pu/MA HTR core, under both normal and abnormal operating conditions. The starting point of this investigation comprised the two main contemporary HTR designs, viz. the pebble-bed type HTR, represented by the South-African PBMR, and hexagonal block type HTR, represented by the GT-MHR. The results (once again) demonstrate the flexibility of the contemporary (and near future) HTR

  6. Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors. Publishable Final Activity Report

    Energy Technology Data Exchange (ETDEWEB)

    Kuijper, J.C., E-mail: kuijper@nrg.eu [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Somers, J.; Van Den Durpel, L.; Chauvet, V.; Cerullo, N.; Cetnar, J.; Abram, T.; Bakker, K.; Bomboni, E.; Bernnat, W.; Domanska, J.G.; Girardi, E.; De Haas, J.B.M.; Hesketh, K.; Hiernaut, J.P.; Hossain, K.; Jonnet, J.; Kim, Y.; Kloosterman, J.L.; Kopec, M.; Murgatroyd, J.; Millington, D.; Lecarpentier, D.; Lomonaco, G.; McEachern, D.; Meier, A.; Mignanelli, M.; Nabielek, H.; Oppe, J.; Petrov, B.Y.; Pohl, C.; Ruetten, H.J.; Schihab, S.; Toury, G.; Trakas, C.; Venneri, F.; Verfondern, K.; Werner, H.; Wiss, T.; Zakova, J.

    2010-11-15

    The PUMA project -the acronym stands for 'Plutonium and Minor Actinide Management in Thermal High-Temperature Gas-Cooled Reactors'- was a Specific Targeted Research Project (STREP) within the EURATOM 6th Framework Program (EU FP6). The PUMA project ran from September 1, 2006, until August 31, 2009, and was executed by a consortium of 14 European partner organisations and one from the USA. This report serves 2 purposes. It is both the 'Publishable Final Activity Report' and the 'Final (Summary) Report', describing, per Work Package, the specific objectives, research activities, main conclusions, recommendations and supporting documents. PUMA's main objective was to investigate the possibilities for the utilisation and transmutation of plutonium and especially minor actinides in contemporary and future (high temperature) gas-cooled reactor designs, which are promising tools for improving the sustainability of the nuclear fuel cycle. This contributes to the reduction of Pu and MA stockpiles, and also to the development of safe and sustainable reactors for CO{sub 2}-free energy generation. The PUMA project has assessed the impact of the introduction of Pu/MA-burning HTRs at three levels: fuel and fuel performance (modelling), reactor (transmutation performance and safety) and reactor/fuel cycle facility park. Earlier projects already indicated favourable characteristics of HTRs with respect to Pu burning. So, core physics of Pu/MA fuel cycles for HTRs has been investigated to study the CP fuel and reactor characteristics and to assure nuclear stability of a Pu/MA HTR core, under both normal and abnormal operating conditions. The starting point of this investigation comprised the two main contemporary HTR designs, viz. the pebble-bed type HTR, represented by the South-African PBMR, and hexagonal block type HTR, represented by the GT-MHR. The results (once again) demonstrate the flexibility of the contemporary (and near future) HTR

  7. Partnew - New solvent extraction processes for minor actinides - final report; Partnew - Nouveaux procedes d'extraction par solvant pour les actinides mineurs - rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Madic, C.; Testard, F.; Hudson, M.J.; Liljenzin, J.O.; Christiansen, B.; Ferrando, M.; Facchini, A.; Geist, A.; Modolo, G.; Gonzalez-Espartero, A.; Mendoza, J. de

    2004-07-01

    The objectives of the European project PARTNEW were to define solvent extraction processes for the partitioning of the minor actinides, Am and Cm, from the aqueous high active raffinate or high active concentrate issuing the reprocessing of nuclear spent fuels by the PUREX process. Eleven laboratories participated to the research: 1/ CEA-DEN (Marcoule), 2/ CEA-DSM (Saclay), 3/ UREAD (U.K.), 4/ CTU (Sweden), 5/ ITU (Germany), 6/ ENEA (Italy), 7/ PoliMi (Italy), 8/ FZK-INE (Germany), 9/ FZJ-ISR (Germany), 10/ CIEMAT (Spain) and 11/ UAM (Spain). The research was organised into eight work packages (WP): Basic and applied DIAMEX studies, using diamide extractants for the co-extraction of actinides(III) (An(III)) and lanthanides(III) (Ln(III)) nitrates (WP1 and WP2), Basic and applied SANEX studies based on the use of polydentate N-ligands for the An(III)/Ln(III) separation (WP3 and WP4), Basic and applied SANEX studies based on the use of synergistic mixtures made of bis-(chloro-phenyl)-di-thio-phosphinic acid + neutral O-bearing ligand, (WP5 and WP6), Basic SANEX studies for the An(III)/Ln(III) separation, based on the use of new S-bearing ligands, Basic and applied studies for the Am(III)/Cm(III) separation. The work done in the fundamental and applied domains was very fruitful. Several processes have been successfully tested with genuine high active raffinates and concentrate. (authors)

  8. Actinide-only and full burn-up credit in criticality assessment of RBMK-1500 spent nuclear fuel storage cask using axial burn-up profile

    Energy Technology Data Exchange (ETDEWEB)

    Barkauskas, V., E-mail: vytenis.barkauskas@ftmc.lt; Plukiene, R., E-mail: rita.plukiene@ftmc.lt; Plukis, A., E-mail: arturas.plukis@ftmc.lt

    2016-10-15

    Highlights: • RBMK-1500 fuel burn-up impact on k{sub eff} in the SNF cask was calculated using SCALE 6.1. • Positive end effect was noticed at certain burn-up for the RBMK-1500 spent nuclear fuel. • The non-uniform uranium depletion is responsible for the end effect in RBMK-1500 SNF. • k{sub eff} in the SNF cask does not exceed a value of 0.95 which is set in the safety requirements. - Abstract: Safe long-term storage of spent nuclear fuel (SNF) is one of the main issues in the field of nuclear safety. Burn-up credit application in criticality analysis of SNF reduces conservatism of usually used fresh fuel assumption and implies a positive economic impact for the SNF storage. Criticality calculations of spent nuclear fuel in the CONSTOR® RBMK-1500/M2 cask were performed using pre-generated ORIGEN-ARP spent nuclear fuel composition libraries, and the results of the RBMK-1500 burn-up credit impact on the effective neutron multiplication factor (k{sub eff}) have been obtained and are presented in the paper. SCALE 6.1 code package with the STARBUCKS burn-up credit evaluation tool was used for modeling. Pre-generated ARP (Automatic Rapid Processing) crosssection libraries based on ENDF/B-VII cross section library were used for fast burn-up inventory modeling. Different conditions in the SNF cask were modeled: 2.0% and 2.8% initial enrichment fuel of various burn-up and water density inside cavities of the SNF cask. The fuel composition for the criticality analysis was chosen taking into account main actinides and most important fission products used in burn-up calculations. A significant positive end effect is noticed from 15 GWd/tU burn-up for 2.8% enrichment fuel and from 9 GWd/tU for 2.0% enrichment fuel applying the actinide-only approach. The obtained results may be applied in further evaluations of the RBMK type reactor SNF storage as well as help to optimize the SNF storage volume inside the CONSTOR® RBMK-1500/M2 cask without compromising criticality

  9. Evaluation of Homogeneous Options: Effects of Minor Actinide Exclusion from Single and Double Tier Recycle in Sodium Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    R. M. Ferrer; S. Bays; M. Pope

    2008-03-01

    The Systems Analysis Campaign under the Global Nuclear Energy Partnership (GNEP) has requested the fuel cycle analysis group at the Idaho National Laboratory (INL) to analyze and provide isotopic data for four scenarios in which different strategies for Minor Actinides (MA) management are investigated. A 1000 MWth commercial-scale Sodium Fast Reactor (SFR) design was selected as the baseline in this scenario study. Two transuranic (TRU) conversion ratios, defined as the ratio of the amount of TRU produced over the TRU destroyed in the reactor core, along with different fuel-types were investigated.

  10. Recovery of minor actinides from spent fuel using TPEN-immobilized gels

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, S.; Suto, M.; Ohbayashi, H. [Oarai Research and Development Center, Japan Atomic Energy Agency, Oarai (Japan); Oaki, H. [Solutions Research Organization, Tokyo Institute of Technology, Tokyo (Japan); Takeshita, K. [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo (Japan)

    2013-07-01

    A series of separation experiments was performed in order to study the recovery process for minor actinides (MAs), such as americium (Am) and curium (Cm), from the actual spent fuel by using an extraction chromatographic technique. N,N,N',N'-tetrakis-(4-propenyloxy-2-pyridylmethyl) ethylenediamine (TPPEN) is an N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) analogue consisting of an incorporated pyridine ring that acts as not only a ligand but also as a site for polymerization and crosslinking of the gel. The TPPEN and N-isopropylacrylamide (NIPA) were dissolved into dimethylformamide (DMF, Wako Co., Ltd.) and a silica beads polymer, and then TTPEN was immobilized chemically in a polymer gel (so called TPEN-gel). Mixed oxide (MOX) fuel, which was highly irradiated up to 119 GWD/MTM in the experimental fast reactor Joyo, was used as a reference spent fuel. First, uranium (U) and plutonium (Pu) were separated from the irradiated fuel using an ion-exchange method, and then, the platinum group elements were removed by CMPO to leave a mixed solution of MAs and lanthanides. The 3 mol% TPPEN-gel was packed with as an extraction column (CV: 1 ml) and then rinsed by 0.1 M NaNO{sub 3}(pH 4.0) for pH adjustment. After washing the column by 0.01 M NaNO{sub 3} (pH 4.0), Eu was detected and the recovery rate reached 93%. The MAs were then recovered by changing the eluent to 0.01 M NaNO{sub 3} (pH 2.0), and the recovery rate of Am was 48 %. The 10 mol% TPPEN-gel was used to improve adsorption coefficient of Am and a condition of eluent temperature was changed in order to confirm the temperature swing effect on TPEN-gel for MA. More than 90% Eu was detected in the eluent after washing with 0.01 M NaNO{sub 3} (pH 3.5) at 5 Celsius degrees. Americium was backwardly detected and eluted continuously during the same condition. After removal of Eu, the eluent temperature was changed to 32 Celsius degrees, then Am was detected (pH 3.0). Finally remained

  11. Monazite-type ceramics for conditioning of minor actinides. Structural characterization and properties

    Energy Technology Data Exchange (ETDEWEB)

    Babelot, Carole

    2013-07-01

    The minor actinides (MA) neptunium, americium, and curium are mainly responsible for the long-term radiotoxicity of the High Active Waste (HAW) generated during the nuclear power operation. If these long-lived radionuclides are removed from the HAW by partitioning and converted by neutron fission (transmutation) into shorter-lived or stable elements, the remaining waste loses most of its long-term radiotoxicity. Thus, partitioning and transmutation (P and T) are considered as attractive options for reducing the burden on geological disposals. As an alternative, these separated MA can also be conditioned (P and C strategy) in specifically adapted ceramics to ensure their safe final disposal over long periods. At the moment, spent fuel elements are foreseen either for direct disposal in deep geological repositories or for reprocessing. The highly active liquid waste that is produced during reprocessing is conditioned industrially using a vitrification process before final disposal. Although the widely used borosilicate glasses meet most of the specifications needed, ceramic host matrices appear to be even more suitable in terms of resistance to corrosion. The development of new materials based on tailor-made highly specific ceramics with extremely stable behavior would make it possible to improve the final storage of long-lived high-level radiotoxic waste. In the framework of this PhD research project, monazite-type ceramics were chosen as promising host matrices for the conditioning of trivalent actinides. The focus on the monazite-type ceramics is justified by their properties such as high chemical durability. REPO{sub 4} ceramics are named monazite for RE = La - Gd (monoclinic symmetry) and xenotime for RE = Tb - Lu and Y (tetragonal symmetry). The objective of this study is to contribute to the understanding of the alteration behavior of such ceramics under the repository conditions. REPO{sub 4} (with RE = La, Eu) is prepared by hydrothermal synthesis at 200 C

  12. Monazite-type ceramics for conditioning of minor actinides. Structural characterization and properties

    Energy Technology Data Exchange (ETDEWEB)

    Babelot, Carole

    2013-07-01

    The minor actinides (MA) neptunium, americium, and curium are mainly responsible for the long-term radiotoxicity of the High Active Waste (HAW) generated during the nuclear power operation. If these long-lived radionuclides are removed from the HAW by partitioning and converted by neutron fission (transmutation) into shorter-lived or stable elements, the remaining waste loses most of its long-term radiotoxicity. Thus, partitioning and transmutation (P and T) are considered as attractive options for reducing the burden on geological disposals. As an alternative, these separated MA can also be conditioned (P and C strategy) in specifically adapted ceramics to ensure their safe final disposal over long periods. At the moment, spent fuel elements are foreseen either for direct disposal in deep geological repositories or for reprocessing. The highly active liquid waste that is produced during reprocessing is conditioned industrially using a vitrification process before final disposal. Although the widely used borosilicate glasses meet most of the specifications needed, ceramic host matrices appear to be even more suitable in terms of resistance to corrosion. The development of new materials based on tailor-made highly specific ceramics with extremely stable behavior would make it possible to improve the final storage of long-lived high-level radiotoxic waste. In the framework of this PhD research project, monazite-type ceramics were chosen as promising host matrices for the conditioning of trivalent actinides. The focus on the monazite-type ceramics is justified by their properties such as high chemical durability. REPO{sub 4} ceramics are named monazite for RE = La - Gd (monoclinic symmetry) and xenotime for RE = Tb - Lu and Y (tetragonal symmetry). The objective of this study is to contribute to the understanding of the alteration behavior of such ceramics under the repository conditions. REPO{sub 4} (with RE = La, Eu) is prepared by hydrothermal synthesis at 200 C

  13. Optimization of plutonium and minor actinide transmutation in an AP1000 fuel assembly via a genetic search algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Washington, J., E-mail: jwashing@gmail.com; King, J., E-mail: kingjc@mines.edu

    2017-01-15

    Highlights: • We model a modified AP1000 fuel assembly in SCALE6.1. • We couple the NEWT module of SCALE to the MOGA module of DAKOTA. • Transmutation is optimized based on choice of coating and fuel. • Greatest transmutation achieved with PuZrO{sub 2}MgO fuel pins coated with Lu{sub 2}O{sub 3}. - Abstract: The average nuclear power plant produces twenty metric tons of used nuclear fuel per year, which contains approximately 95 wt% uranium, 1 wt% plutonium, and 4 wt% fission products and transuranic elements. Fast reactors are the preferred option for the transmutation of plutonium and minor actinides; however, an optimistic deployment time of at least 20 years indicates a need for a near-term solution. Previous simulation work demonstrated the potential to transmute transuranic elements in a modified light water reactor fuel pin. This study optimizes a quarter-assembly containing target fuels coated with spectral shift absorbers for the transmutation of plutonium and minor actinides in light water reactors. The spectral shift absorber coating on the target fuel pin tunes the neutron energy spectrum experienced by the target fuel. A coupled model developed using the NEWT module from SCALE 6.1 and a genetic algorithm module from the DAKOTA optimization toolbox provided performance data for the burnup of the target fuel pins in the present study. The optimization with the coupled NEWT/DAKOTA model proceeded in three stages. The first stage optimized a single-target fuel pin per quarter-assembly adjacent to the central instrumentation channel. The second stage evaluated a variety of quarter-assemblies with multiple target fuel pins from the first stage and the third stage re-optimized the pins in the optimal second stage quarter-assembly. An 8 wt% PuZrO{sub 2}MgO inert matrix fuel pin with a 1.44 mm radius and a 0.06 mm Lu{sub 2}O{sub 3} coating in a five target fuel pin per quarter-assembly configuration represents the optimal combination for the

  14. Transmutation of minor actinides in high and representative neutron fluxes: the mini-INCA and MEGAPIE projects

    Energy Technology Data Exchange (ETDEWEB)

    Letourneau, A.; Chabod, S.; Marie, F.; Ridikas, D.; Toussaint, J.C.; Veyssiere, C. [CEA/DSM/DAPNIA Saclay, Gif-sur-Yvette (France); Blandin, C. [CEA/DEN/DER/SPEX Cadarache - Saint-Paul-lez-Durances (France); Mutti, P. [Inst. Laue-Langevin, Grenoble (France)

    2003-07-01

    In the framework of nuclear waste transmutation studies, the Mini-INCA project has been initiated at CEA/DSM with objectives to determine optimal conditions for transmutation and incineration of minor actinides (MA) in high intensity neutron fluxes. Our experimental tools based on alpha- and gamma-spectroscopy of the samples and the development of micro fission chambers could gather either microscopic information on nuclear reactions (total or partial cross sections for neutron capture and/or fission reactions) or macroscopic information on transmutation and incineration potentials. Neutron capture cross sections of selected actinides ({sup 241}Am, {sup 242}Am, {sup 242}Pu, {sup 237}Np) have already been measured at ILL, showing some discrepancies when compared to evaluated data libraries but in overall good agreement with recent data. The studies and possibilities offer by the MEGAPIE project to assess neutronic performances of a 1 MW spallation target and the incineration of MA in a representative neutron flux of a spallation source are also discussed. (orig.)

  15. Effect of spectral characterization of gaseous fuel reactors on transmutation and burning of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Fung, C.; Anghaie, S. [Florida Univ., Wilmington, NC (United States)

    2007-07-01

    Gaseous Core Reactors (GCR) are fueled with stable uranium compounds in a reflected cavity. The spectral characteristics of neutrons in GCR systems could shift from one end of the spectrum to the other end by changing design parameters such as reflector material and thickness, uranium enrichment, and the average operational temperature and pressure. The rate of actinide generation, transmutation, and burnup is highly influenced by the average neutron energy in reactor core. In particular, the production rate and isotopic mix of plutonium are highly dependent on the neutron spectrum in the reactor. Other actinides of primary interest to this work are neptunium-237 and americium-241 due to their pivotal impact on high-level nuclear waste disposal. In all cavity reactors including GCR's, the reflector material and thickness are the most important design parameters in determining the core spectrum. The increase in the gaseous fuel pressure and enrichment results in relative shift of neutron population toward energies greater than 2 eV. Reflector materials considered in this study are beryllium oxide, lithium hydride, lithium deuteride, zirconium carbide, graphite, lead, and tungsten. Results of the study suggest that the beryllium oxide and tungsten reflected GCR systems set the lower (softest) and upper (hardest) limits of neutron spectra, respectively. The inventory of actinides with half-lives greater than 1000 years can be minimized by increasing neutron flux level in the reactor core. The higher the neutron flux, the lower the inventory of these actinides. The majority of the GCR designs maintained a flux level on the order of 10{sup 15} cm{sup -2}*s{sup -1} while the PWR flux is one order of magnitude lower. The inventory of the feeder isotopes to Np{sup 237} including U{sup 237}, Pu{sup 241}, and Am{sup 241} decreases with relative shift of neutron spectrum toward higher energies. This is due to increased resonance absorption in these isotopes due to higher

  16. Demonstration of a TODGA based Extraction Process for the Partitioning of Minor Actinides from a PUREX Raffinate

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, D.; Christiansen, B.; Glatz, J.P.; Malmbeck, R.; Serrano-Purroy, D. [Commiss European Communities, Joint Res Ctr, Inst Transuranium Elements, D-76125 Karlsruhe, (Germany); Modolo, G. [Forschungszentrum Julich, Inst Energy Res Safety Res and Reactor Technol, D-52425 Julich, (Germany); Sorel, Ch. [Commissariat Energie Atom Valrho CEA, DRCP SCPS, F-30207 Bagnols Sur Ceze, (France); Magnusson, D. [Chalmers, Dept Chem and Biol Engn, S-41296 Gothenburg, (Sweden)

    2009-07-01

    Efficient recovery of minor actinides (MA) from genuine PUREX raffinate has been successfully demonstrated by the TODGA + TBP extractant mixture dissolved in an industrial aliphatic solvent TPH. The process was carried out in centrifugal contactors using an optimized flow-sheet involving a total of 32 stages, divided into 4 stages for extraction, 12 stages for scrubbing and 16 stages for back-extraction. Very high feed decontamination factors were obtained (Am, Cm 40 000) and the recovery of these elements was higher than 99.99%. Of the non-lanthanide fission products only Y and a small part of Ru were co-separated into the product fraction together with the lanthanides and the MA. (authors)

  17. Measurements of thermal fission and capture cross sections of minor actinides within the Mini-INCA project

    Energy Technology Data Exchange (ETDEWEB)

    Bringer, O.; Chabod, S.; Dupont, E.; Letourneau, A.; Panebianco, S.; Veyssiere, Ch. [CEA Saclay, Dept. d' Astrophysique de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, 91- Gif sur Yvette (France); Oriol, L. [CEA Cadarache, Dept. d' Etudes des Reacteurs, 13 - Saint Paul lez Durance (France); Chartier, F. [CEA Saclay, Dept. de Physico-Chimie, 91 - Gif sur Yvette (France); Mutti, P. [Institut Laue Langevin, 38 - Grenoble, (France); AlMahamid, I. [Wadsworth Center, New York State Dept. of Health, Albany, NY (United States)

    2008-07-01

    In the framework of nuclear waste transmutation studies, the Mini-INCA project has been initiated at Cea/DSM to determine optimal conditions for transmutation and incineration of Minor Actinides in high intensity neutron fluxes in the thermal region. Our experimental tool is based on alpha- and gamma-spectroscopy of irradiated samples and microscopic fission-chambers. It can provide both microscopic information on nuclear reactions (total and partial cross sections for neutron capture and/or fission reactions) and macroscopic information on transmutation and incineration potentials. The {sup 232}Th, {sup 237}Np, {sup 241}Am, and {sup 244}Cm transmutation chains have been explored in details, showing some discrepancies in comparison with evaluated data libraries but in overall good agreement with recent experimental data. (authors)

  18. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, Progress Report for Work Through September 2002, 4th Quarterly Report

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth

    2002-09-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If no additional moderator is added to the fuel rod lattice, it is possible to attain fast neutron energy spectrum conditions in a supercritical water-cooled reactor (SCWR). This type of core can make use of either fertile or fertile-free fuel and retain a hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity. One can also add moderation and design a thermal spectrum SCWR. The Generation IV Roadmap effort has identified the thermal spectrum SCWR (followed by the fast spectrum SCWR) as one of the advanced concepts that should be developed for future use. Therefore, the work in this NERI project is addressing both types of SCWRs.

  19. GCFR Coupled Neutronic and Thermal-Fluid-Dynamics Analyses for a Core Containing Minor Actinides

    Directory of Open Access Journals (Sweden)

    Diego Castelliti

    2009-01-01

    Full Text Available Problems about future energy availability, climate changes, and air quality seem to play an important role in energy production. While current reactor generations provide a guaranteed and economical energy production, new nuclear power plant generation would increase the ways and purposes in which nuclear energy can be used. To explore these new technological applications, several governments, industries, and research communities decided to contribute to the next reactor generation, called “Generation IV.” Among the six Gen-IV reactor designs, the Gas Cooled Fast Reactor (GCFR uses a direct-cycle helium turbine for electricity generation and for a CO2-free thermochemical production of hydrogen. Additionally, the use of a fast spectrum allows actinides transmutation, minimizing the production of long-lived radioactive waste in an integrated fuel cycle. This paper presents an analysis of GCFR fuel cycle optimization and of a thermal-hydraulic of a GCFR-prototype under steady-state and transient conditions. The fuel cycle optimization was performed to assess the capability of the GCFR to transmute MAs, while the thermal-hydraulic analysis was performed to investigate the reactor and the safety systems behavior during a LOFA. Preliminary results show that limited quantities of MA are not affecting significantly the thermal-fluid-dynamics behavior of a GCFR core.

  20. The first determination of the actinide Th abundance for a red giant of the Ursa Minor dwarf galaxy

    CERN Document Server

    Aoki, Wako; Sadakane, Kozo; Arimoto, Nobuo

    2007-01-01

    The Thorium abundance for the red giant COS82 in the Ursa Minor dwarf spheroidal galaxy is determined based on a high resolution spectrum. This is the first detection of actinides in an extra Galactic object. A detailed abundance pattern is determined for 12 other neutron-capture elements from the atomic number 39 to 68. These elements are significantly over-abundant with respect to other metals like Fe (> 1 dex) and their abundance pattern agrees well with those of the r-process-enhanced, very metal-poor stars known in the Galactic halo, while the metallicity of this object ([Fe/H] ~ -1.5) is much higher than these field stars ([Fe/H] ~ -3.0). The results indicate that the mechanism and the astrophysical site that are responsible for neutron-capture elements in COS82 is similar to that for field r-process-enhanced stars, while the condition of low mass star formation is quite different. An estimate of the age of this object based on the Th abundance ratio is discussed.

  1. Experimental Findings On Minor Actinide And Lanthanide Separations Using Ion Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D. T.; Shehee, T. C.; Clearfield, A.

    2013-09-17

    This project seeks to determine if inorganic or hybrid inorganic ion-exchange materials can be exploited to provide effective americium and curium separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of the tested ion-exchange materials for actinide and lanthanide ions. During FY13, experimental work focused in the following areas: (1) investigating methods to oxidize americium in dilute nitric acid with subsequent ion-exchange performance measurements of ion exchangers with the oxidized americium and (2) synthesis, characterization and testing of ion-exchange materials. Ion-exchange materials tested included alkali titanates, alkali titanosilicates, carbon nanotubes and group(IV) metal phosphonates. Americium oxidation testing sought to determine the influence that other redox active components may have on the oxidation of Am(III). Experimental findings indicated that Pu(IV) is oxidized to Pu(VI) by peroxydisulfate, but there are no indications that the presence of plutonium affects the rate or extent of americium oxidation at the concentrations of peroxydisulfate being used. Tests also explored the influence of nitrite on the oxidation of Am(III). Given the formation of Am(V) and Am(VI) in the presence of nitrite, it appears that nitrite is not a strong deterrent to the oxidation of Am(III), but may be limiting Am(VI) by quickly reducing Am(VI) to Am(V). Interestingly, additional absorbance peaks were observed in the UV-Vis spectra at 524 and 544 nm in both nitric acid and perchloric acid solutions when the peroxydisulfate was added as a solution. These peaks have not been previously observed and do not correspond to the expected peak locations for oxidized americium in solution. Additional studies are in progress to identify these unknown peaks. Three titanosilicate ion exchangers were synthesized using a microwave-accelerated reaction system (MARS) and determined to have high affinities

  2. Development of a CMPO based extraction process for partitioning of minor actinides and demonstration with genuine fast reactor fuel solution (155 GWd/Te)

    Energy Technology Data Exchange (ETDEWEB)

    Antony, M.P.; Kumaresan, R.; Suneesh, A.S. [Indira Gandhi Centre for Atomic Research, Kalpakkam (IN). Fuel Chemistry Div.] (and others)

    2011-07-01

    A method has been developed for partitioning of minor actinides from fast reactor (FR) fuel solution by a TRUEX solvent composed of 0.2 M n-octyl(phenyl)-N,N-diisobutylcarbamoyl-methylphosphine oxide (CMPO)-1.2 M tri-n-butylphosphate (TBP) in n-dodecane (n-DD), and subsequently demonstrated with genuine fast reactor dissolver solution (155 GWd/Te) using a novel 16-stage ejector mixer settler in hot cells. Cesium, plutonium and uranium present in the dissolver solution were removed, prior to minor actinide partitioning, by using ammonium molybdophosphate impregnated XAD-7 (AMP-XAD), methylated poly(4-vinylpyridine) (PVP-Me), and macroporous bifunctional phosphinic acid (MPBPA) resins respectively. Extraction of europium(III) and cerium(III) from simulated and real dissolver solution, and their stripping behavior from loaded organic phase was studied in batch method using various citric acid-nitric acid formulations. Based on these results, partitioning of minor actinides from fast reactor dissolver solution was demonstrated in hot cells. The extraction and stripping profiles of {sup 154}Eu, {sup 144}Ce, {sup 106}Ru and {sup 137}Cs, and mass balance of {sup 241}Am(III) achieved in the demonstration run have been reported in this paper. (orig.)

  3. Design of an Actinide-Burning, Lead or Lead-Bismuth Cooled Reactor that Produces Low-Cost Electricity

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Weaver, Kevan Dean; Davis, Cliff Bybee; MIT folks

    2000-07-01

    The purpose of this Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) University Research Consortium (URC) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, material compatibility, plant engineering, and coolant activation. In the area of core neutronic design, the reactivity vs. burnup and discharge isotopics of both non-fertile and fertile fuels were evaluated. An innovative core for pure actinide burning that uses streaming, fertile-free fuel assemblies was studied in depth. This particular core exhibits excellent reactivity performance upon coolant voiding, even for voids that occur in the core center, and has a transuranic (TRU) destruction rate that is comparable to the proposed accelerator transmutation of waste (ATW) facility. These studies suggest that a core can be designed to achieve a long life while maintaining safety and minimizing waste. In the area of material compatibility studies, an experimental apparatus for the investigation of the flow-assisted dissolution and precipitation (corrosion) of potential fuel cladding and structural materials has been designed and built at the INEEL. The INEEL forced-convection corrosion cell consists of a small heated vessel with a shroud and gas flow system. The corrosion cell is being used to test steel that is commercially available in the United States to temperatures above 650°C. Progress in plant engineering was made for two reactor concepts, one utilizing an indirect cycle with heat exchangers and the other utilizing a direct-contact steam cycle. The evaluation of the

  4. First results of the irradiation program of inert matrices, targets and fuels for minor actinides transmutation in fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bonnerot, Jean-Marc; Ferroud-Plattet, Marie-Pierre; Lamontagne, Jerome [CEA Cadarache, Nuclear Energy Direction, Saint-Paul les Durance Cedex, 13108 (France); Warin, Dominique [CEA Valrho, Nuclear Energy Direction, DRCP, Bagnols-sur-Ceze Cedex, 30207 (France); Gosmain, Lionel [CEA Saclay, Nuclear Energy Direction, DMN, Gif sur Yvette, 91190 (France)

    2008-07-01

    A comprehensive irradiation program was started in France in 1992 to demonstrate the technical feasibility of the transmutation of minor actinides in current and future nuclear reactors, by means of inert support targets or dedicated fuels. The first step of the program (MATINA program) consisted in the irradiation of various inert materials intended as support matrix for transmutation targets, in the fast reactor Phenix, to select the best candidates. These inert materials included as well oxide and nitride ceramics - MgO, MgAl{sub 2}O{sub 4}, Al{sub 2}O{sub 3}, Y{sub 3}Al{sub 5}O{sub 12} and TiN - as refractory metals - W, Nb, Cr and V- and were irradiated under fast neutron flux at temperatures ranged between 650 and 1040 deg. C. The results show that in comparison to MgO, MgAl{sub 2}O{sub 4} and Al{sub 2}O{sub 3} inert matrices irradiated alone, the composite pellets containing UO{sub 2} particles, showed very different behaviors under irradiation. The swelling of MgO pellets is enhanced in the presence of fissile material whereas it is lowered for the Al{sub 2}O{sub 3}-UO{sub 2} pellets. MgAl{sub 2}O{sub 4}-UO{sub 2} pellets remained stable. The second step of the program aimed at testing the behavior of inert support targets containing americium. A new experiment ECRIX H involving composite pellets with an MgO matrix and AmO{sub 2-x} particles was performed in Phenix and completed in 2006. A rather low elongation of the pellet stack was observed and no significant diameter deformation of cladding was detected after irradiation. The analysis of the filling gas of the pin after puncturing, revealed that respectively 28% and 5% of the He and Xe+Kr created under irradiation were released in the expanding volume of the pin. ECRIX H, which is the first experiment on Am base target in Phenix, will undoubtedly represent a very important step in the general design approach about inert matrix support targets once the complete results should be available by the end of

  5. Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor That Produces Low Cost Electricty - FY-02 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo

    2002-10-01

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A. This is the third in a series of Annual Reports for this project, the others are also listed in Appendix A as FY-00 and FY-01 Annual Reports.

  6. Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor that Produces Low Cost Electricity FY-01 Annual Report, October 2001

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Herring, James Stephen; Loewen, Eric Paul; Smolik, Galen Richard; Weaver, Kevan Dean; Todreas, N.

    2001-10-01

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A.

  7. Nuclear fuel activity with minor actinides after their useful life in a BWR; Actividad del combustible nuclear con actinidos menores despues de su vida util en un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Martinez C, E.; Ramirez S, J. R.; Alonso V, G., E-mail: eduardo.martinez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    Nuclear fuel used in nuclear power reactors has a life cycle, in which it provides energy, at the end of this cycle is withdrawn from the reactor core. This used fuel is known as spent nuclear fuel, a strong problem with this fuel is that when the fuel was irradiated in a nuclear reactor it leaves with an activity of approximately 1.229 x 10{sup 15} Bq. The aim of the transmutation of actinides from spent nuclear fuel is to reduce the activity of high level waste that must be stored in geological repositories and the lifetime of high level waste; these two achievements would reduce the number of necessary repositories, as well as the duration of storage. The present work is aimed at evaluating the activity of a nuclear fuel in which radioactive actinides could be recycled to remove most of the radioactive material, first establishing a reference of actinides production in the standard nuclear fuel of uranium at end of its burning in a BWR, and a fuel rod design containing 6% of actinides in an uranium matrix from the enrichment tails is proposed, then 4 standard uranium fuel rods are replaced by 4 actinide bars to evaluate the production and transmutation of the same, finally the reduction of actinide activity in the fuel is evaluated. (Author)

  8. Partitioning of Minor Actinides from High Active Raffinates using Bis-Diglycol-amides (BisDGA) as new efficient Extractants

    Energy Technology Data Exchange (ETDEWEB)

    Modolo, G.; Vijgen, H. [Forschungszentrum Juelich GmbH, Institute for Energy Research, Safety Research and Reactor Technology, 52425 Juelich (Germany); Espartero, A.G. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, 28040-Madrid (Spain); Prados, P. [Departamento de Quimica Organica, Facultad de Ciencias, Universidad Autonoma de Madrid - UAM, carretera de Colmenar Viejo km 15.3, 28049-Madrid (Spain); Mendoza, J. de [Departamento de Quimica Organica, Facultad de Ciencias, Universidad Autonoma de Madrid - UAM, carretera de Colmenar Viejo km 15.3, 28049-Madrid (Spain); Institut Catala d' Investigacio Quimica (ICIQ) Av. Paisos Catalans 16, 43007-Tarragona (Spain)

    2008-07-01

    Two new polyamide extractants has been selected, namely UAM-069 and UAM-081, both synthesized at the University of Madrid (UAM), to develop a new separation process. These two ligands are bis-diglycol-amides, consisting of two diglycol-amides moieties grafted on an aromatic platform (UAM-069) or on an aliphatic linker (UAM-081), respectively. The extraction of actinides and fission products was studied from synthetic PUREX raffinate. Actinides(III) and lanthanides(III) are highly extracted from acidities > 1 mol/L HNO{sub 3}. The extraction of Zr, Mo and Pd could be suppressed with complexing agents such as oxalic acid and HEDTA. In the present paper the results of the batch extraction results are presented which serve for the development of a new continuous counter current process to be tested in centrifugal contactors. (authors)

  9. Bias estimates used in lieu of validation of fission products and minor actinides in MCNP Keff calculations for PWR burnup credit casks

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Don [ORNL; Marshall, William BJ J [ORNL; Wagner, John C [ORNL; Bowen, Douglas G [ORNL

    2015-09-01

    The U.S. Nuclear Regulatory Commission (NRC) Division of Spent Fuel Storage and Transportation recently issued Interim Staff Guidance (ISG) 8, Revision 3. This ISG provides guidance for burnup credit (BUC) analyses supporting transport and storage of PWR pressurized water reactor (PWR) fuel in casks. Revision 3 includes guidance for addressing validation of criticality (keff) calculations crediting the presence of a limited set of fission products and minor actinides (FP&MA). Based on previous work documented in NUREG/CR-7109, recommendation 4 of ISG-8, Rev. 3, includes a recommendation to use 1.5 or 3% of the FP&MA worth to conservatively cover the bias due to the specified FP&MAs. This bias is supplementary to the bias and bias uncertainty resulting from validation of keff calculations for the major actinides in SNF and does not address extension to actinides and fission products beyond those identified herein. The work described in this report involves comparison of FP&MA worths calculated using SCALE and MCNP with ENDF/B-V, -VI, and -VII based nuclear data and supports use of the 1.5% FP&MA worth bias when either SCALE or MCNP codes are used for criticality calculations, provided the other conditions of the recommendation 4 are met. The method used in this report may also be applied to demonstrate the applicability of the 1.5% FP&MA worth bias to other codes using ENDF/B V, VI or VII based nuclear data. The method involves use of the applicant s computational method to generate FP&MA worths for a reference SNF cask model using specified spent fuel compositions. The applicant s FP&MA worths are then compared to reference values provided in this report. The applicants FP&MA worths should not exceed the reference results by more than 1.5% of the reference FP&MA worths.

  10. Gadolinium speciation with Tetradentate, N-donor extractants for minor actinide/lanthanide separation: an XRD, mass spectrometry and EPR study

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, D.M. [School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Sharrad, C.A. [School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Research Centre for Radwaste and Decommissioning, Dalton Nuclear Institute, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Sproules, S. [Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2013-07-01

    The hydrophobic organic molecules CyMe{sub 4}-BTPhen (1) and CyMe{sub 4}-BTBP (2) have been developed and tuned over many years to be able to separate the trivalent actinides from the trivalent lanthanides (Ln) selectively in bi-phasic solvent extraction processes for the separation of the long-lived radio-toxic minor actinides from spent nuclear fuel. The ability of these N-donor ligands to perform this separation is poorly understood, as is their speciation with the metal ions when extracted into the organic phase. Our previous work has shown Ln{sup 3+} speciation to be largely 1:2 Ln:L in nature with another small molecule, either water or nitrate, occupying a cavity between the tetradentate bound N-donor ligands. The identity of the small molecule changes across the lanthanide series, and here we continue investigations into this speciation. Complexes of these N-donor ligands with Gd{sup 3+} have been synthesised and characterised by X-ray crystallography, mass spectrometry and EPR spectroscopy. We show that the N-donor ligands have no effect on the electronic configuration of Gd{sup 3+} and that the lanthanide contraction with the steric rigidity of the N-donor ligand appears to determine the size of the cavity between the coordinated ligands. This in turn appears to control the identity of the small molecule on the ninth site in the 1:2 Gd:L species. (authors)

  11. Atomistic Calculations of the Effect of Minor Actinides on Thermodynamic and Kinetic Properties of UO{sub 2{+-}x}

    Energy Technology Data Exchange (ETDEWEB)

    Deo, Chaitanya; Adnersson, Davis; Battaile, Corbett; uberuaga, Blas

    2012-10-30

    The team will examine how the incorporation of actinide species important for mixed oxide (MOX) and other advanced fuel designs impacts thermodynamic quantities of the host UO{sub 2} nuclear fuel and how Pu, Np, Cm and Am influence oxygen mobility. In many cases, the experimental data is either insufficient or missing. For example, in the case of pure NpO2, there is essentially no experimental data on the hyperstoichiometric form it is not even known if hyperstoichiometry NpO{sub 2{+-}x} is stable. The team will employ atomistic modeling tools to calculate these quantities

  12. Monazite-type ceramics for the immobilization of minor actinides plutonium; Keramiken des Monazit-Typs zur Immobilisierung von minoren Actinoiden und Plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Heuser, Julia Maria

    2015-07-01

    The safe disposal of radioactive waste in deep geological formations is a challenging task of present and future generations. Innovative strategies as the conditioning of radionuclides in ceramic matrices can make a contribution here. This work points out monazite-type ceramics as potential waste forms for minor actinides and Pu. Several aspects concerning nuclear disposal as well as fundamental structural information were investigated. Lanthanide phosphate endmembers (LnPO{sub 4}) within the stability field of monazite (Ln = La-Gd) were synthesised within the scope of this work. To extend the knowledge of monazite phases, monoclinic TbPO{sub 4}- and DyPO{sub 4}-phases were prepared and characterised. Tb- and Dy-phosphates are situated in the xenotime stability field close to that of monazite. They can exist as metastable monazite phases. Structural characterisations of long- and short-range order were performed by X-ray diffraction, infrared (IR) and Raman spectroscopy. Structural data could be complemented, enhanced and gaps of knowledge could be filled by the first systematic consideration of the complete Ln-monazite-series (Ln = La-Dy). Furthermore, this work focuses on Sm-monazite phases. Samarium with an atomic number of 62 is located in the middle part of the lanthanides showing the monazite structure. Accordingly, it has a mean cationic radius within the Ln-monazite-series and hence shows a relative high flexibility regarding the incorporation of radionuclides with different radii. Sintering densities of SmPO{sub 4} ceramics were optimised by varying process parameters like pressure and number of pressing steps. An irregular texture as well as densities of 94% of the theoretical value could be achieved. The resistance of Sm-monazite against ionising radiation were examined. Radiation damages caused by the α-decay of radionuclides incorporated in a ceramic matrix were simulated by computer calculations and experimentally by heavy ion bombardment of Sm

  13. Extending FEAST-METAL for analysis of low content minor actinide bearing and zirconium rich metallic fuels for sodium fast reactors

    Science.gov (United States)

    Karahan, Aydın

    2011-07-01

    Computational models in FEAST-METAL fuel behaviour code have been upgraded to simulate minor actinide bearing zirconium rich metallic fuels for use in sodium fast reactors. Increasing the zirconium content to 20-40 wt.% causes significant changes in fuel slug microstructure affecting thermal, mechanical, chemical, and fission gas behaviour. Inclusion of zirconium rich phase reduces the fission gas swelling rate significantly in early irradiation. Above the threshold fission gas swelling, formation of micro-cracks, and open pores increase material compliancy enhance diffusivity, leading to rapid fuel gas swelling, interconnected porosity development and release of the fission gases and helium. Production and release of helium was modelled empirically as a function of americium content and fission gas production, consistent with previous Idaho National Laboratory studies. Predicted fuel constituent redistribution is much smaller compared to typical U-Pu-10Zr fuel operated at EBR-II. Material properties such as fuel thermal conductivity, modulus of elasticity, and thermal expansion coefficient have been approximated using the available database. Creep rate and fission gas diffusivity of high zirconium fuel is lowered by an order of magnitude with respect to the reference low zirconium fuel based on limited database and in order to match experimental observations. The new code is benchmarked against the AFC-1F fuel assembly post irradiation examination results. Satisfactory match was obtained for fission gas release and swelling behaviour. Finally, the study considers a comparison of fuel behaviour between high zirconium content minor actinide bearing fuel and typical U-15Pu-6Zr fuel pins with 75% smear density. The new fuel has much higher fissile content, allowing for operating at lower neutron flux level compared to fuel with lower fissile density. This feature allows the designer to reach a much higher burnup before reaching the cladding dose limit. On the other

  14. Actinides-1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-09-01

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry.

  15. Uptake Mechanisms of Eu(III) on Hydroxyapatite: A Potential Permeable Reactive Barrier Backfill Material for Trapping Trivalent Minor Actinides.

    Science.gov (United States)

    Xu, Lin; Zheng, Tao; Yang, Shitong; Zhang, Linjuan; Wang, Jianqiang; Liu, Wei; Chen, Lanhua; Diwu, Juan; Chai, Zhifang; Wang, Shuao

    2016-04-05

    The permeable reactive barrier (PRB) technique has attracted an increasing level of attention for the in situ remediation of contaminated groundwater. In this study, the macroscopic uptake behaviors and microscopic speciation of Eu(III) on hydroxyapatite (HAP) were investigated by a combination of theoretical modeling, batch experiments, powder X-ray diffraction (PXRD) fitting, and X-ray absorption spectroscopy (XAS). The underlying removal mechanisms were identified to further assess the application potential of HAP as an effective PRB backfill material. The macroscopic analysis revealed that nearly all dissolved Eu(III) in solution was removed at pH 6.5 within an extremely short reaction time of 5 min. In addition, the thermodynamic calculations, desorption experiments, and PXRD and XAS analyses definitely confirmed the formation of the EuPO4·H2O(s) phase during the process of uptake of dissolved Eu(III) by HAP via the dissolution-precipitation mechanism. A detailed comparison of the present experimental findings and related HAP-metal systems suggests that the relative contribution of precipitation to the total Eu(III) removal increases as the P:Eu ratio decreases. The dosage of HAP-based PRB for the remediation of groundwater polluted by Eu(III) and analogous trivalent actinides [e.g., Am(III) and Cm(III)] should be strictly controlled depending on the dissolved Eu(III) concentration to obtain an optimal P:M (M represents Eu, Am, or Cm) ratio and treatment efficiency.

  16. Measurements of the neutron capture cross sections and incineration potentials of minor-actinides in high thermal neutron fluxes: Impact on the transmutation of nuclear wastes; Mesures des sections efficaces de capture et potentiels d'incineration des actinides mineurs dans les hauts flux de neutrons: Impact sur la transmutation des dechets

    Energy Technology Data Exchange (ETDEWEB)

    Bringer, O

    2007-10-15

    This thesis comes within the framework of minor-actinide nuclear transmutation studies. First of all, we have evaluated the impact of minor actinide nuclear data uncertainties within the cases of {sup 241}Am and {sup 237}Np incineration in three different reactor spectra: EFR (fast), GT-MHR (epithermal) and HI-HWR (thermal). The nuclear parameters which give the highest uncertainties were thus highlighted. As a result of fact, we have tried to reduce data uncertainties, in the thermal energy region, for one part of them through experimental campaigns in the moderated high intensity neutron fluxes of ILL reactor (Grenoble). These measurements were focused onto the incineration and transmutation of the americium-241, the curium-244 and the californium-249 isotopes. Finally, the values of 12 different cross sections and the {sup 241}Am isomeric branching ratio were precisely measured at thermal energy point. (author)

  17. Set up of an innovative methodology to measure on-line the incineration potential of minor actinides under very high neutron sources in the frame of the future prospects of the nuclear waste transmutation; Mise au point d'une methodologie innovante pour la mesure du potentiel d'incineration d'actinides mineurs sous des sources tres intenses de neutrons, dans la perspective de transmutation des dechets nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Fadil, M

    2003-03-01

    This work deals generally with the problem of nuclear waste management and especially with the transmutation of it to reduce considerably its radiotoxicity potential. The principal objective of this thesis is to show the feasibility to measure on-line the incineration potential of minor actinides irradiated under very high neutron flux. To realize this goal, we have developed fission micro-chambers able to operate, for the first time in the world, in saturation regime under a severe neutron flux. These new chambers use {sup 235}U as an active deposit. They were irradiated in the high flux reactor at Laue-Langevin Institute in Grenoble. The measurement of the saturation current delivered by these chambers during their irradiation for 26 days allowed to evaluate the burn-up of {sup 235}U. We have determined the neutron flux intensity of 1,6 10{sup 15} n.cm{sup -2}.s{sup -1} in the bottom of the irradiation tube called 'V4'. The relative uncertainty of this value is less than 4 %. This is for the first time that such high neutron flux is measured with a fission chamber. To confirm this result, we have also performed independent measurements using gamma spectroscopy of irradiated Nb and Co samples. Both results are in agreement within error bars. Simple Deposit Fission Chambers (SDFC) as above were the reference of the new generation of fission chambers that we have developed in the framework of this thesis: Double Deposit Fission Chambers (DDFC). The reference active deposit was {sup 235}U. The other deposit was the actinide that we wanted to study (e.g. {sup 237}Np and {sup 241}Am). At the end of the thesis, we present some suggestions to ameliorate the operation of the DDFC to be exploited in other transmutation applications in the future. (author)

  18. Heavy ion induced damage in MgAl sub 2 O sub 4 , an inert matrix candidate for the transmutation of minor actinides

    CERN Document Server

    Wiss, T

    1999-01-01

    Magnesium aluminum spinel (MgAl sub 2 O sub 4) is a material selected as a possible matrix for transmutation of minor actinides by neutron capture or fission in nuclear reactors. To study the radiation stability of this inert matrix, especially against fission product impact, irradiations with heavy energetic ions or clusters have been performed. The high electronic energy losses of the heavy ions in this material led to the formation of visible tracks as evidenced by transmission electron microscopy for 30 MeV C sub 6 sub 0 -Buckminster fullerenes and for ions of energy close to or higher than fission energy ( sup 2 sup 0 sup 9 Bi with 120 MeV and 2.38 GeV energy). The irradiations at high energies showed a pronounced degradation of the spinel. Additionally, MgAl sub 2 O sub 4 exhibited a large swelling for irradiation at high fluences with fission products of fission energy (here I-ions of 72 MeV) and at temperatures <= 500 deg. C. These observations are discussed from the technological point of view in ...

  19. Synthesis, phase structure and microstructure of monazite-type Ce1-xPrxPO4 solid solutions for immobilization of minor actinide neptunium

    Science.gov (United States)

    Zeng, Pan; Teng, Yuancheng; Huang, Yi; Wu, Lang; Wang, Xiaohuan

    2014-09-01

    Praseodymium was used as the surrogate for trivalent minor actinide neptunium, and a complete series of pure monazite-type Ce1-xPrxPO4 (x = 0-1) solid solutions were successfully prepared by the solid state reaction. The effects of calcining temperature, holding time and Pr content on the structure of Ce1-xPrxPO4 solid solutions were investigated. The results show that although Pr6O11 (Pr23+Pr44+O11) exists two stabilized oxidation states, there has been no tetravalent praseodymium phosphate during the synthesis process. The optimized temperature for the synthesis of Ce0.8Pr0.2PO4 solid solution is more than 1100 °C, and a hypothetical reaction mechanism is also proposed. Besides, the crystalline grains coarsen as the increasing of holding time. The linear variation of unit cell parameters and a gradual hypsochromic shift in the Raman spectra are observed with the increase of Pr content, indicating that cerium is progressively replaced by praseodymium and Ce1-xPrxPO4 solid solutions were prepared.

  20. Solid state synthesis and sintering of monazite-type ceramics: application to minor actinides conditioning; Synthese par voie solide et frittage de ceramiques a structure monazite. Application au conditionnement des actinides mineurs

    Energy Technology Data Exchange (ETDEWEB)

    Bregiroux, D

    2005-11-15

    In the framework of the French law of 1991 concerning the nuclear waste management, several studies are undertaken to develop specific crystalline conditioning matrices. Monazite, a rare earth (TR{sup 3+}) orthophosphate with a general formula TR{sup 3+}PO{sub 4}, is a natural mineral containing significant amount of thorium and uranium. Monazite has been proposed as a host matrix for the minor actinides (Np, Am and Cm) specific conditioning, thanks to its high resistance to self irradiation and its low solubility. Its is now of prime importance to check the conservation of these properties on synthesized materials, which implies to master all the stages of the elaboration process, from the powder synthesis to the sintering of controlled microstructure pellets. This work can be divided into two main parts: The first part deals with the synthesis by high temperature solid state route of TR{sup 3+}PO{sub 4} powders (with TR{sup 3+} = La{sup 3+} to Gd{sup 3+}, Pu{sup 3+} and Am{sup 3+}). The chemical reactions occurring during the firing of starting reagents are described in the case of monazite with only one or several cations. From these results, a protocol of synthesis is described. The incorporation of tetravalent cations (Ce{sup 4+}, U{sup 4+}, Pu{sup 4+}) in the monazite structure was also studied. The second part of the present work deals with the elaboration of controlled density and microstructure monazite pellets and their related mechanical and thermal properties. The study of crushing and sintering is presented. For the first time, experimental results are confronted with theoretical models in order to deduce the densification and grain growth mechanisms. By the comprehension of the various physicochemical phenomena occurring during the various stages of the monazite pellets elaboration process (powder synthesis, crushing, sintering...), this work allowed the development of a protocol of elaboration of controlled microstructure monazite TR{sup 3+}PO{sub 4

  1. Burns

    Science.gov (United States)

    A burn is damage to your body's tissues caused by heat, chemicals, electricity, sunlight, or radiation. Scalds from hot ... and gases are the most common causes of burns. Another kind is an inhalation injury, caused by ...

  2. Modeling minor actinide multiple recycling in a lead-cooled fast reactor to demonstrate a fuel cycle without long-lived nuclear waste

    Directory of Open Access Journals (Sweden)

    Stanisz Przemysław

    2015-09-01

    Full Text Available The concept of closed nuclear fuel cycle seems to be the most promising options for the efficient usage of the nuclear energy resources. However, it can be implemented only in fast breeder reactors of the IVth generation, which are characterized by the fast neutron spectrum. The lead-cooled fast reactor (LFR was defined and studied on the level of technical design in order to demonstrate its performance and reliability within the European collaboration on ELSY (European Lead-cooled System and LEADER (Lead-cooled European Advanced Demonstration Reactor projects. It has been demonstrated that LFR meets the requirements of the closed nuclear fuel cycle, where plutonium and minor actinides (MA are recycled for reuse, thereby producing no MA waste. In this study, the most promising option was realized when entire Pu + MA material is fully recycled to produce a new batch of fuel without partitioning. This is the concept of a fuel cycle which asymptotically tends to the adiabatic equilibrium, where the concentrations of plutonium and MA at the beginning of the cycle are restored in the subsequent cycle in the combined process of fuel transmutation and cooling, removal of fission products (FPs, and admixture of depleted uranium. In this way, generation of nuclear waste containing radioactive plutonium and MA can be eliminated. The paper shows methodology applied to the LFR equilibrium fuel cycle assessment, which was developed for the Monte Carlo continuous energy burnup (MCB code, equipped with enhanced modules for material processing and fuel handling. The numerical analysis of the reactor core concerns multiple recycling and recovery of long-lived nuclides and their influence on safety parameters. The paper also presents a general concept of the novel IVth generation breeder reactor with equilibrium fuel and its future role in the management of MA.

  3. Safe management of actinides in the nuclear fuel cycle: Role of mineralogy; La gestion des actinides dans le cycle du combustible nucleaire: le role de la mineralogie

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, R.C. [Department of Nuclear Engineering and Radiological Sciences, Department of Geological Sciences, Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-1005 (United States)

    2011-02-15

    During the past 60 years, more than 1800 metric tonnes of Pu, and substantial quantities of the 'minor' actinides, such as Np, Am and Cm, have been generated in nuclear reactors. Some of these transuranium elements can be a source of energy in fission reactions (e.g., {sup 239}Pu), a source of fissile material for nuclear weapons (e.g., {sup 239}Pu and {sup 237}Np), and of environmental concern because of their long-half lives and radiotoxicity (e.g., {sup 239}Pu and {sup 237}Np). There are two basic strategies for the disposition of these heavy elements: (1) to 'burn' or transmute the actinides using nuclear reactors or accelerators; (2) to 'sequester' the actinides in chemically durable, radiation-resistant materials that are suitable for geologic disposal. There has been substantial interest in the use of actinide-bearing minerals, especially isometric pyrochlore, A{sub 2}B{sub 2}O{sub 7} (A rare earths; B = Ti, Zr, Sn, Hf), for the immobilization of actinides, particularly plutonium, both as inert matrix fuels and nuclear waste forms. Systematic studies of rare-earth pyrochlores have led to the discovery that certain compositions (B = Zr, Hf) are stable to very high doses of alpha-decay event damage. Recent developments in our understanding of the properties of heavy element solids have opened up new possibilities for the design of advanced nuclear fuels and waste forms. (author)

  4. Safe management of actinides in the nuclear fuel cycle: Role of mineralogy

    Science.gov (United States)

    Ewing, Rodney C.

    2011-02-01

    During the past 60 years, more than 1800 metric tonnes of Pu, and substantial quantities of the "minor" actinides, such as Np, Am and Cm, have been generated in nuclear reactors. Some of these transuranium elements can be a source of energy in fission reactions (e.g., 239Pu), a source of fissile material for nuclear weapons (e.g., 239Pu and 237Np), and of environmental concern because of their long-half lives and radiotoxicity (e.g., 239Pu and 237Np). There are two basic strategies for the disposition of these heavy elements: (1) to "burn" or transmute the actinides using nuclear reactors or accelerators; (2) to "sequester" the actinides in chemically durable, radiation-resistant materials that are suitable for geologic disposal. There has been substantial interest in the use of actinide-bearing minerals, especially isometric pyrochlore, A 2B 2O 7 (A = rare earths; B = Ti, Zr, Sn, Hf), for the immobilization of actinides, particularly plutonium, both as inert matrix fuels and nuclear waste forms. Systematic studies of rare-earth pyrochlores have led to the discovery that certain compositions (B = Zr, Hf) are stable to very high doses of alpha-decay event damage. Recent developments in our understanding of the properties of heavy element solids have opened up new possibilities for the design of advanced nuclear fuels and waste forms.

  5. Fabrication and Pre-irradiation Characterization of a Minor Actinide and Rare Earth Containing Fast Reactor Fuel Experiment for Irradiation in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Timothy A. Hyde

    2012-06-01

    The United States Department of Energy, seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter lived fission products, thereby decreasing the volume of material requiring disposal and reducing the long-term radiotoxicity and heat load of high-level waste sent to a geologic repository. This transmutation of the long lived actinides plutonium, neptunium, americium and curium can be accomplished by first separating them from spent Light Water Reactor fuel using a pyro-metalurgical process, then reprocessing them into new fuel with fresh uranium additions, and then transmuted to short lived nuclides in a liquid metal cooled fast reactor. An important component of the technology is developing actinide-bearing fuel forms containing plutonium, neptunium, americium and curium isotopes that meet the stringent requirements of reactor fuels and materials.

  6. Burns

    Science.gov (United States)

    To help prevent burns: Install smoke alarms in your home. Check and change batteries regularly. Teach children about fire safety and the danger of matches and fireworks. Keep children from climbing on top of a stove ...

  7. Transmutation of actinides in power reactors.

    Science.gov (United States)

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides.

  8. Actinides transmutation - a comparison of results for PWR benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Claro, Luiz H. [Instituto de Estudos Avancados (IEAv/CTA), Sao Jose dos Campos, SP (Brazil)], e-mail: luizhenu@ieav.cta.br

    2009-07-01

    The physical aspects involved in the Partitioning and Transmutation (P and T) of minor actinides (MA) and fission products (FP) generated by reactors PWR are of great interest in the nuclear industry. Besides these the reduction in the storage of radioactive wastes are related with the acceptability of the nuclear electric power. From the several concepts for partitioning and transmutation suggested in literature, one of them involves PWR reactors to burn the fuel containing plutonium and minor actinides reprocessed of UO{sub 2} used in previous stages. In this work are presented the results of the calculations of a benchmark in P and T carried with WIMSD5B program using its new cross sections library generated from the ENDF-B-VII and the comparison with the results published in literature by other calculations. For comparison, was used the benchmark transmutation concept based in a typical PWR cell and the analyzed results were the k{infinity} and the atomic density of the isotopes Np-239, Pu-241, Pu-242 and Am-242m, as function of burnup considering discharge of 50 GWd/tHM. (author)

  9. Synthesis and crystalline phase of monazite-type Ce{sub 1−x}Gd{sub x}PO{sub 4} solid solutions for immobilization of minor actinide curium

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hang; Teng, Yuancheng, E-mail: tyc239@163.com; Ren, Xuetan; Wu, Lang; Liu, Haichang; Wang, Shanlin; Xu, Liuyang

    2014-01-15

    Gadolinium (Gd{sup 3+}) was used to simulate trivalent minor actinide curium (Cm{sup 3+}), and monazite-type solid solutions with composition of Ce{sub 1−x}Gd{sub x}PO{sub 4} (x = 0–1) were prepared by the solid state reaction method using Ce{sub 2}(C{sub 2}O{sub 4}){sub 3}·10H{sub 2}O, NH{sub 4}H{sub 2}PO{sub 4}, and Gd{sub 2}O{sub 3} as starting materials. The effects of Gd content on the crystalline phase and microstructure of Ce{sub 1−x}Gd{sub x}PO{sub 4} solid solutions were investigated, and the calcining parameters of Ce{sub 0.9}Gd{sub 0.1}PO{sub 4} solid solution were optimized by means of XRD, TG-DSC and SEM. The results show that pure monazite-type crystalline phase was obtained for the Ce{sub 1−x}Gd{sub x}PO{sub 4} with x = 0–1, and the incorporation of minor actinide curium simulated by gadolinium in monazite was confirmed. The change of Gd content had no significant effect on the microstructure of Ce{sub 1−x}Gd{sub x}PO{sub 4} solid solutions, and the grain size was approximately 0.1–1 μm. Besides, the optimal calcining temperature and holding time of Ce{sub 0.9}Gd{sub 0.1}PO{sub 4} solid solution were 1000 °C and 2 h, respectively.

  10. Current applications of actinide-only burn-up credit within the Cogema group and R and D programme to take fission products into account

    Energy Technology Data Exchange (ETDEWEB)

    Toubon, H. [Cogema, 78 - Saint Quentin en Yvelines (France); Guillou, E. [Cogema Etablissement de la Hague, D/SQ/SMT, 50 - Beaumont Hague (France); Cousinou, P. [CEA Fontenay aux Roses, Inst. de Protection et de Surete Nucleaire, 92 (France); Barbry, F. [CEA Valduc, Inst. de Protection et de Surete Nucleaire, 21 - Is sur Tille (France); Grouiller, J.P.; Bignan, G. [CEA Cadarache, 13 - Saint Paul lez Durance (France)

    2001-07-01

    Burn-up credit can be defined as making allowance for absorbent radioactive isotopes in criticality studies, in order to optimise safety margins and avoid over-engineering of nuclear facilities. As far as the COGEMA Group is concerned, the three fields in which burn-up credit proves to be an advantage are the transport of spent fuel assemblies, their interim storage in spent fuel pools and reprocessing. In the case of transport, burn-up credit means that cask size do not need to be altered, despite an increase in the initial enrichment of the fuel assemblies. Burn-up credit also makes it possible to offer new cask designs with higher capacity. Burn-up credit means that fuel assemblies with a higher initial enrichment can be put into interim storage in existing facilities and opens the way to the possibility of more compact ones. As far as reprocessing is concerned, burn-up credit makes it possible to keep up current production rates, despite an increase in the initial enrichment of the fuel assemblies being reprocessed. In collaboration with the French Atomic Energy Commission and the Institute for Nuclear Safety and Protection, the COGEMA Group is participating in an extensive experimental programme and working to qualify criticality and fuel depletion computer codes. The research programme currently underway should mean that by 2003, allowance will be made for fission products in criticality safety analysis.

  11. 次锕系元素在加速器驱动的次临界快堆中嬗变的研究%Study of Transmutation of Minor Actinides in Accelerator-Driven Sub-critical Fast Reactor

    Institute of Scientific and Technical Information of China (English)

    杨永伟; 古玉祥

    2001-01-01

    选取加速器驱动次临界快堆(ADSFR),进行嬗变来自于PWR(U)乏燃料 中次锕系元素 的研究。在堆芯内,燃料为NpAmCm的氧化物,选取液态钠为冷却剂。利用下列程序对所选方 案进行物理计算和分析:LAHET -模拟质子与靶核的相互作用;MCNP4A-模拟次临界包层内 20MeV以下的中子与材料核的相互作用;ORIGEN2-利用MCNP4A的输出提供的一群等效截面对 堆芯进行燃耗计算。计算分析的结果表明:考虑临界安全、功率密度和燃耗等因素,利用所 选方案进行次锕系元素嬗变是可行的。%Accelerator-Driven Sub-critical Fast Reactor (ADSFR)is chosenfor transmu ta tion of minor actinides from the spent fuel of PWR(U). In the core, the fuel type is (PuNpAmCm)Ox. Liquid sodium is chosen as coolant The neutronics calcul ation and analysis of the selected scheme have been done by using the following codes: LAHET, for the simulation of the interaction between the protons and the nuclei of the target; MCNP4A, for the simulation of interaction between neutron s with energy below 20MeV and the nuclei of materials in the sub-critical blank e t; ORIGEN2, for the multi-region burnup calculation of the blanket by using the one-group effective cross-section provided in the output of MCNP4A. The neutro ni cs calculation and analysis show that the proposed scheme is feasible for trans mutation of minor actinides, considering the factors such as the criticality s afety, power density, burnup, etc.

  12. Synthesis, phase structure and microstructure of monazite-type Ce{sub 1−x}Pr{sub x}PO{sub 4} solid solutions for immobilization of minor actinide neptunium

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Pan; Teng, Yuancheng, E-mail: tyc239@163.com; Huang, Yi; Wu, Lang; Wang, Xiaohuan

    2014-09-15

    Praseodymium was used as the surrogate for trivalent minor actinide neptunium, and a complete series of pure monazite-type Ce{sub 1−x}Pr{sub x}PO{sub 4} (x = 0–1) solid solutions were successfully prepared by the solid state reaction. The effects of calcining temperature, holding time and Pr content on the structure of Ce{sub 1−x}Pr{sub x}PO{sub 4} solid solutions were investigated. The results show that although Pr{sub 6}O{sub 11} (Pr{sub 2}{sup 3+}Pr{sub 4}{sup 4+}O{sub 11}) exists two stabilized oxidation states, there has been no tetravalent praseodymium phosphate during the synthesis process. The optimized temperature for the synthesis of Ce{sub 0.8}Pr{sub 0.2}PO{sub 4} solid solution is more than 1100 °C, and a hypothetical reaction mechanism is also proposed. Besides, the crystalline grains coarsen as the increasing of holding time. The linear variation of unit cell parameters and a gradual hypsochromic shift in the Raman spectra are observed with the increase of Pr content, indicating that cerium is progressively replaced by praseodymium and Ce{sub 1−x}Pr{sub x}PO{sub 4} solid solutions were prepared.

  13. MSFR TRU-burning potential and comparison with an SFR

    Energy Technology Data Exchange (ETDEWEB)

    Fiorina, C.; Cammi, A. [Politecnico di Milano: Via La Masa 34, 20136 Milan (Italy); Franceschini, F. [Westinghouse Electric Company LL: 1000 Westinghouse Dr., Cranberry Township, PA 16066 (United States); Krepel, J. [Paul Scherrer Institut - PSI WEST, 5234 Villigen (Switzerland)

    2013-07-01

    The objective of this work is to evaluate the Molten Salt Fast Reactor (MSFR) potential benefits in terms of transuranics (TRU) burning through a comparative analysis with a sodium-cooled FR. The comparison is based on TRU- and MA-burning rates, as well as on the in-core evolution of radiotoxicity and decay heat. Solubility issues limit the TRU-burning rate to 1/3 that achievable in traditional low-CR FRs (low-Conversion-Ratio Fast Reactors). The softer spectrum also determines notable radiotoxicity and decay heat of the equilibrium actinide inventory. On the other hand, the liquid fuel suggests the possibility of using a Pu-free feed composed only of Th and MA (Minor Actinides), thus maximizing the MA burning rate. This is generally not possible in traditional low-CR FRs due to safety deterioration and decay heat of reprocessed fuel. In addition, the high specific power and the lack of out-of-core cooling times foster a quick transition toward equilibrium, which improves the MSFR capability to burn an initial fissile loading, and makes the MSFR a promising system for a quick (i.e., in a reactor lifetime) transition from the current U-based fuel cycle to a novel closed Th cycle. (authors)

  14. Research in actinide chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Choppin, G.R.

    1993-01-01

    This research studies the behavior of the actinide elements in aqueous solution. The high radioactivity of the transuranium actinides limits the concentrations which can be studied and, consequently, limits the experimental techniques. However, oxidation state analogs (trivalent lanthanides, tetravalent thorium, and hexavalent uranium) do not suffer from these limitations. Behavior of actinides in the environment are a major USDOE concern, whether in connection with long-term releases from a repository, releases from stored defense wastes or accidental releases in reprocessing, etc. Principal goal of our research was expand the thermodynamic data base on complexation of actinides by natural ligands (e.g., OH[sup [minus

  15. Modeling Deep Burn TRISO particle nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M., E-mail: besmanntm@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Stoller, R.E., E-mail: stollerre@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Samolyuk, G., E-mail: samolyukgd@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Schuck, P.C., E-mail: schuckpc@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Golubov, S.I., E-mail: golubovsi@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Rudin, S.P., E-mail: srudin@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Wills, J.M., E-mail: jxw@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Coe, J.D., E-mail: jcoe@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Wirth, B.D., E-mail: bdwirth@utk.edu [University of Tennessee, Knoxville, TN 37996-0750 (United States); Kim, S., E-mail: sungtae@cae.wisc.edu [University of Wisconsin, 1509 University Ave., Madison, WI 53706 (United States); Morgan, D.D., E-mail: ddmorgan@engr.wisc.edu [University of Wisconsin, 1509 University Ave., Madison, WI 53706 (United States); Szlufarska, I., E-mail: izabela@engr.wisc.edu [University of Wisconsin, 1509 University Ave., Madison, WI 53706 (United States)

    2012-11-15

    Under the DOE Deep Burn program TRISO fuel is being investigated as a fuel form for consuming plutonium and minor actinides, and for greater efficiency in uranium utilization. The result will thus be to drive TRISO particulate fuel to very high burn-ups. In the current effort the various phenomena in the TRISO particle are being modeled using a variety of techniques. The chemical behavior is being treated utilizing thermochemical analysis to identify phase formation/transformation and chemical activities in the particle, including kernel migration. Density functional theory is being used to understand fission product diffusion within the plutonia oxide kernel, the fission product's attack on the SiC coating layer, as well as fission product diffusion through an alternative coating layer, ZrC. Finally, a multiscale approach is being used to understand thermal transport, including the effect of radiation damage induced defects, in a model SiC material.

  16. Yunnan Minority Slash-and-burn Survival Evolution%云南少数民族刀耕火种的生存演变

    Institute of Scientific and Technical Information of China (English)

    李震宇; 程芳; 秦莹

    2016-01-01

    Through introducing the overview,distribution and land use types of minority slash-and-burn cultivation,as well as two new types of land source ecological use,that is natural forest protection project and conversion cropland to forest and grassland project,this article explores the survival evolu-tion of minority slash-and-burn cultivation. Minority slash-and-burn cultivation in Yunnan areas changed qualitatively after influenced by the new type of land source ecological use,and generated a new type of ecological use.This change contains wisdom of land source ecological use,and it is a new type of land source ecological use deriving from slash-and-burn cultivation.%通过对少数民族刀耕火种的概述、分布、类型以及天然林保护工程与退耕还林工程两种土地资源生态利用新型方式的介绍,发掘了少数民族刀耕火种的生存演变。云南地区的刀耕火种受到这种影响后也发生了质的改变,产生了一种新的生态利用的方式。这种转变蕴含着丰富的、新的土地生态利用智慧,是一种刀耕火种中新的生存演变方式。

  17. Synthesis and microstructure of fluorapatite-type Ca10-2xSmxNax(PO4)6F2 solid solutions for immobilization of trivalent minor actinide

    Science.gov (United States)

    Huang, Yi; Zhang, Haibin; Zhou, Xiaosong; Peng, Shuming

    2017-03-01

    Ca10-2xSmxNax(PO4)6F2 (x = 0.8-1.2) solid solutions were successfully synthesized by the solid state reaction method using samarium (Sm) as the surrogate for trivalent minor actinide neptunium (Np). The influences of calcining temperature, holding time and Sm doping content on the phase composition and microstructure of Ca10-2xSmxNax(PO4)6F2 were investigated. The results indicated that the optimized calcining temperature and holding time for preparing Ca10-2xSmxNax(PO4)6F2 were 1000 °C and 2 h. Ca10-2xSmxNax(PO4)6F2 were confirmed to be the discontinuous solid solutions and solid solubility limit of Sm in the Ca10-2xSmxNax(PO4)6F2 was 1.2 formula units. The rod-like grains of Ca10-2xSmxNax(PO4)6F2 had typical hexagonal characteristics with a diameter of 3-5 μm and a length of 10-20 μm. No significant changes on the microstructures of Ca10-2xSmxNax(PO4)6F2 were observed with the increase of Sm doping content. The Ca, Sm, Na, P, O and F elements were nearly distributed uniformly in the Ca8Sm1Na1(PO4)6F2 solid solution.

  18. Physics studies of higher actinide consumption in an LMR

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.N.; Wade, D.C.; Fujita, E.K.; Khalil, H.S.

    1990-01-01

    The core physics aspects of the transuranic burning potential of the Integral Fast Reactor (IFR) are assessed. The actinide behavior in fissile self-sufficient IFR closed cycles of 1200 MWt size is characterized, and the transuranic isotopics and risk potential of the working inventory are compared to those from a once-through LWR. The core neutronic performance effects of rare-earth impurities present in the recycled fuel are addressed. Fuel cycle strategies for burning transuranics from an external source are discussed, and specialized actinide burner designs are described. 4 refs., 4 figs., 3 tabs.

  19. Physics studies of higher actinide consumption in an LMR

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.N.; Wade, D.C.; Fujita, E.K.; Khalil, H.S.

    1990-01-01

    The core physics aspects of the transuranic burning potential of the Integral Fast Reactor (IFR) are assessed. The actinide behavior in fissile self-sufficient IFR closed cycles of 1200 MWt size is characterized, and the transuranic isotopics and risk potential of the working inventory are compared to those from a once-through LWR. The core neutronic performance effects of rare-earth impurities present in the recycled fuel are addressed. Fuel cycle strategies for burning transuranics from an external source are discussed, and specialized actinide burner designs are described. 4 refs., 4 figs., 3 tabs.

  20. Separation of actinides from spent nuclear fuel: A review.

    Science.gov (United States)

    Veliscek-Carolan, Jessica

    2016-11-15

    This review summarises the methods currently available to extract radioactive actinide elements from solutions of spent nuclear fuel. This separation of actinides reduces the hazards associated with spent nuclear fuel, such as its radiotoxicity, volume and the amount of time required for its' radioactivity to return to naturally occurring levels. Separation of actinides from environmental water systems is also briefly discussed. The actinide elements typically found in spent nuclear fuel include uranium, plutonium and the minor actinides (americium, neptunium and curium). Separation methods for uranium and plutonium are reasonably well established. On the other hand separation of the minor actinides from lanthanide fission products also present in spent nuclear fuel is an ongoing challenge and an area of active research. Several separation methods for selective removal of these actinides from spent nuclear fuel will be described. These separation methods include solvent extraction, which is the most commonly used method for radiochemical separations, as well as the less developed but promising use of adsorption and ion-exchange materials.

  1. PREFACE: Actinides 2009

    Science.gov (United States)

    Rao, Linfeng; Tobin, James G.; Shuh, David K.

    2010-07-01

    This volume of IOP Conference Series: Materials Science and Engineering consists of 98 papers that were presented at Actinides 2009, the 8th International Conference on Actinide Science held on 12-17 July 2009 in San Francisco, California, USA. This conference was jointly organized by Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory. The Actinides conference series started in Baden-Baden, Germany (1975) and this first conference was followed by meetings at Asilomar, CA, USA (1981), Aix-en-Provence, France (1985), Tashkent, USSR (1989), Santa Fe, NM, USA (1993), Baden-Baden, Germany (1997), Hayama, Japan (2001), and Manchester, UK (2005). The Actinides conference series provides a regular venue for the most recent research results on the chemistry, physics, and technology of the actinides and heaviest elements. Actinides 2009 provided a forum spanning a diverse range of scientific topics, including fundamental materials science, chemistry, physics, environmental science, and nuclear fuels. Of particular importance was a focus on the key roles that basic actinide chemistry and physics research play in advancing the worldwide renaissance of nuclear energy. Editors Linfeng Rao Lawrence Berkeley National Laboratory (lrao@lbl.gov) James G Tobin Lawrence Livermore National Laboratory (tobin1@llnl.gov) David K Shuh Lawrence Berkeley National Laboratory (dkshuh@lbl.gov)

  2. Chemistry of actinides; Chimie des actinides

    Energy Technology Data Exchange (ETDEWEB)

    Vitorge, P. [CEA/Saclay, Dept. d' Entreposage et de Stockage des Dechets (DESD), 91 - Gif-sur-Yvette (France)

    1999-07-01

    This article gives the basic data of the actinides chemistry, describes then qualitatively the main parts of the fuel cycle and concludes with quantitative data. The theoretical recalls give qualitative notions to explain the chemical reactivity of actinides and to understand thus the values of the thermodynamic data which allow quantitative anticipations at equilibrium. The Thermodynamic Data Base (TDB) of the NEA-OECD and the CEA in France have recently estimated some of them in using and developing methodologies whose some are presented here. Some current problems of actinides chemistry are described: analysis of the possibilities to (1)improve the reprocessing of long-lived actinides (2)anticipate their behaviour in the environment in order to compare the impact of the different options of the wastes management. The Pourbaix diagrams summarize the chemistry in solution; the author has added information on the solubility, the influence of the ionic strength and of the complexes formation in bicarbonate/carbonate (HCO{sub 3}{sup -}/CO{sub 3}{sup 2-}) media. The discussion on the choice of the equilibrium constants allows to point out the particular points, the dubiousness and the data which have to be proved. (O.M.)

  3. Numerical analysis on reduction of radioactive actinides by recycling of nuclear fuel; Analisis numerico sobre reduccion de actinidos radiactivos por reciclado de combustible nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Balboa L, H. E.

    2014-07-01

    Worldwide, human growth has reached unparalleled levels historically, this implies a need for more energy, and just in 2007 was consumed in the USA 4157 x 10{sup 9} kWh of electricity and there were 6 x 10{sup 9} metric tons of carbon dioxide, which causes a devastating effect on our environment. To this problem, a solution to the demand for non-fossil energy is nuclear energy, which is one of the least polluting and the cheapest among non-fossil energy; however, a problem remains unresolved the waste generation of nuclear fuels. In this work the option of a possible transmutation of actinides in a nuclear reactor of BWR was analyzed, an example of this are the nuclear reactors at the Laguna Verde nuclear power plant, which have generated spent fuel stored in pools awaiting a decision for final disposal or any other existing alternative. Assuming that the spent fuel was reprocessed to separate useful materials and actinides such as plutonium and uranium remaining, could take these actinides and to recycle them inside the same reactor that produced them, so il will be reduced the radiotoxicity of spent fuel. The main idea of this paper is to evaluate by means of numeric simulation (using the Core Management System (CMS)) the reduction of minor actinides in the case of being recycled in fresh fuel of the type BWR. The actinides were introduced hypothetically in the fuel pellets to 6% by weight, and then use a burned in the range of 0-65 G Wd/Tm, in order to have a better panorama of their behavior and thus know which it is the best choice for maximum reduction of actinides. Several cases were studied, that is to say were used as fuels; the UO{sub 2} and MOX. Six different cases were also studied to see the behavior of actinides in different situations. The CMS platform calculation was used for the analysis of the cases presented. Favorable results were obtained, having decreased from a range of 35% to 65% of minor actinides initially introduced in the fuel rods

  4. Subsurface Biogeochemistry of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, Annie B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Univ. Relations and Science Education; Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Glenn T. Seaborg Inst.

    2016-06-29

    A major scientific challenge in environmental sciences is to identify the dominant processes controlling actinide transport in the environment. It is estimated that currently, over 2200 metric tons of plutonium (Pu) have been deposited in the subsurface worldwide, a number that increases yearly with additional spent nuclear fuel (Ewing et al., 2010). Plutonium has been shown to migrate on the scale of kilometers, giving way to a critical concern that the fundamental biogeochemical processes that control its behavior in the subsurface are not well understood (Kersting et al., 1999; Novikov et al., 2006; Santschi et al., 2002). Neptunium (Np) is less prevalent in the environment; however, it is predicted to be a significant long-term dose contributor in high-level nuclear waste. Our focus on Np chemistry in this Science Plan is intended to help formulate a better understanding of Pu redox transformations in the environment and clarify the differences between the two long-lived actinides. The research approach of our Science Plan combines (1) Fundamental Mechanistic Studies that identify and quantify biogeochemical processes that control actinide behavior in solution and on solids, (2) Field Integration Studies that investigate the transport characteristics of Pu and test our conceptual understanding of actinide transport, and (3) Actinide Research Capabilities that allow us to achieve the objectives of this Scientific Focus Area (SFA and provide new opportunities for advancing actinide environmental chemistry. These three Research Thrusts form the basis of our SFA Science Program (Figure 1).

  5. Studies on the properties of hard-spectrum, actinide fissioning reactors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, J.B.; Prichard, A.W.; Schofield, P.E.; Robinson, A.H.; Spinrad, B.I.

    1980-01-01

    It is technically feasible to construct an operable (e.g., safe and stable) reactor to burn waste actinides rapidly. The heart of the concept is a driver core of EBR-II type, with a central radial target zone in which fuel elements, made entirely of waste actinides are exposed. This target fuel undergoes fission, as a result of which actinides are rapidly destroyed. Although the same result could be achieved in more conventionally designed LWR or LMFBR systems, the fast spectrum reactor does a much more efficient job, by virtue of the fact that in both LWR and LMFBR reactors, actinide fission is preceded by several captures before a fissile nuclide is formed. In the fast spectrum reactor that is called ABR (actinide burning reactor), these neutron captures are short-circuited.

  6. Design and optimization of a fuel reload of BWR with plutonium and minor actinides; Diseno y optimizacion de una recarga de combustible de BWR con plutonio y actinidos menores

    Energy Technology Data Exchange (ETDEWEB)

    Guzman A, J. R.; Francois L, J. L.; Martin del Campo M, C.; Palomera P, M. A. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, Jiutepec, Morelos 62550 (Mexico)]. e-mail: maestro_juan_rafael@hotmail.com

    2008-07-01

    In this work is designed and optimized a pattern of fuel reload of a boiling water reactor (BWR), whose fuel is compound of uranium coming from the enrichment lines, plutonium and minor actinides (neptunium, americium, curium); obtained of the spent fuel recycling of reactors type BWR. This work is divided in two stages: in the first stage a reload pattern designs with and equilibrium cycle is reached, where the reload lot is invariant cycle to cycle. This reload pattern is gotten adjusting the plutonium content of the assembly for to reach the length of the wished cycle. Furthermore, it is necessary to increase the concentration of boron-10 in the control rods and to introduce gadolinium in some fuel rods of the assembly, in order to satisfy the margin approach of out. Some reactor parameters are presented: the axial profile of power average of the reactor core, and the axial and radial distribution of the fraction of holes, for the one reload pattern in balance. For the design of reload pattern codes HELIOS and CM-PRESTO are used. In the second stage an optimization technique based on genetic algorithms is used, along with certain obtained heuristic rules of the engineer experience, with the intention of optimizing the reload pattern obtained in the first stage. The objective function looks for to maximize the length of the reactor cycle, at the same time as that they are satisfied their limits related to the power and the reactor reactivity. Certain heuristic rules are applied in order to satisfy the recommendations of the fuel management: the strategy of the control cells core, the strategy of reload pattern of low leakage, and the symmetry of a quarter of nucleus. For the evaluation of the parameters that take part in the objective function it simulates the reactor using code CM-PRESTO. Using the technique of optimization of the genetic algorithms an energy of the cycle of 10834.5 MW d/tHM is obtained, which represents 5.5% of extra energy with respect to the

  7. Actinide transmutation in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bultman, J.H.

    1995-01-17

    An optimization method is developed to maximize the burning capability of the ALMR while complying with all constraints imposed on the design for reliability and safety. This method leads to a maximal transuranics enrichment, which is being limited by constraints on reactivity. The enrichment can be raised by using the neutrons less efficiently by increasing leakage from the fuel. With the developed optimization method, a metallic and an oxide fueled ALMR were optimized. Both reactors perform equally well considering the burning of transuranics. However, metallic fuel has a much higher heat conductivity coefficient, which in general leads to better safety characteristics. In search of a more effective waste transmuter, a modified Molten Salt Reactor was designed. A MSR operates on a liquid fuel salt which makes continuous refueling possible, eliminating the issue of the burnup reactivity loss. Also, a prompt negative reactivity feedback is possible for an overmoderated reactor design, even when the Doppler coefficient is positive, due to the fuel expansion with fuel temperature increase. Furthermore, the molten salt fuel can be reprocessed based on a reduction process which is not sensitive to the short-lived spontaneously fissioning actinides. (orig./HP).

  8. Actinide and lanthanide separation process (ALSEP)

    Science.gov (United States)

    Guelis, Artem V.

    2013-01-15

    The process of the invention is the separation of minor actinides from lanthanides in a fluid mixture comprising, fission products, lanthanides, minor actinides, rare earth elements, nitric acid and water by addition of an organic chelating aid to the fluid; extracting the fluid with a solvent comprising a first extractant, a second extractant and an organic diluent to form an organic extractant stream and an aqueous raffinate. Scrubbing the organic stream with a dicarboxylic acid and a chelating agent to form a scrubber discharge. The scrubber discharge is stripped with a simple buffering agent and a second chelating agent in the pH range of 2.5 to 6.1 to produce actinide and lanthanide streams and spent organic diluents. The first extractant is selected from bis(2-ethylhexyl)hydrogen phosphate (HDEHP) and mono(2-ethylhexyl)2-ethylhexyl phosphonate (HEH(EHP)) and the second extractant is selected from N,N,N,N-tetra-2-ethylhexyl diglycol amide (TEHDGA) and N,N,N',N'-tetraoctyl-3-oxapentanediamide (TODGA).

  9. Microbial Transformations of Actinides and Other Radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Francis,A.J.; Dodge, C. J.

    2009-01-07

    Microorganisms can affect the stability and mobility of the actinides and other radionuclides released from nuclear fuel cycle and from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution in the environment and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been extensively investigated, we have only limited information on the effects of microbial processes and biochemical mechanisms which affect the stability and mobility of radionuclides. The mechanisms of microbial transformations of the major and minor actinides U, Pu, Cm, Am, Np, the fission products and other radionuclides such as Ra, Tc, I, Cs, Sr, under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.

  10. High-frequency percussive ventilation and initial biomarker levels of lung injury in patients with minor burns after smoke inhalation injury.

    Science.gov (United States)

    Reper, P; Heijmans, W

    2015-02-01

    Several biological markers of lung injury are predictors of morbidity and mortality in patients with acute respiratory distress syndrome (ARDS). Some lung-protective ventilation strategies, such as low tidal volume, are associated with a significant decrease in plasma biomarker levels compared to the high tidal volume ventilation strategy. The primary objective of this study was to test whether the institution of high-frequency percussive ventilation (HFPV) to patients with respiratory distress after smoke inhalation injury influenced initial biomarker levels of lung injury (just before and after using percussive ventilation). A prospective observational cohort study was conducted in the intensive care unit of the Brussels Burn Center. Fifteen intubated, mechanically ventilated patients with minor burns and ARDS following smoke inhalation were enrolled in our study. Physiologic data and serum samples were collected before intubation and at four different time points within the first 48h after intubation to measure the concentration of interleukin (IL)-6, IL-8, and tumor necrosis factor-α (TNF alpha). The differences in biomarker levels before and after starting HFPV were analyzed using repeated measure analysis of variance and a paired t test with correction for multiple comparisons. Before starting HFPV under endotracheal intubation, all biological markers (IL-6, IL-8, and TNF alpha) were elevated in the spontaneously breathing patients with acute lung injury (ALI). After intubation and institution of a positive pressure ventilation with HFPV (tidal volume 5.6-6.6ml/kg per ideal body weight), none of the biological markers were increased significantly at either an early (3±2h) or a later point in time. However, the levels of IL-8 had decreased significantly after intubation at a later point in time. During the post-intubation period, the PaO2/FiO2 (partial pressure of arterial oxygen/fraction of the inspired oxygen) ratio increased significantly and the plateau

  11. Device for Detecting Actinides, Method for Detecting Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Fred J.; Wilkins-Stevens, Priscilla

    1998-10-29

    A heavy metal detector is provided comprising a first molecule and a second molecule, whereby the first and second molecules interact in a predetermined manner; a first region on the first molecule adapted to interact with an actinide; and a second region on the second molecule adapted to interact with the actinide, whereby the interactions of the actinide with the regions effect the predetermined manner of interaction between the molecules.

  12. Actinides reduction by recycling in a thermal reactor; Reduccion de actinidos por reciclado en un reactor termico

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Martinez C, E.; Balboa L, H., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    This work is directed towards the evaluation of an advanced nuclear fuel cycle in which radioactive actinides could be recycled to remove most of the radioactive material; firstly a production reference of actinides in standard nuclear fuel of uranium at the end of its burning in a BWR reactor is established, after a fuel containing plutonium is modeled to also calculate the actinides production in MOX fuel type. Also it proposes a design of fuel rod containing 6% of actinides in a matrix of uranium from the tails of enrichment, then four standard uranium fuel rods are replaced by actinides rods to evaluate the production and transmutation thereof, the same procedure was performed in the fuel type MOX and the end actinide reduction in the fuel was evaluated. (Author)

  13. Actinide management with commercial fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ohki, Shigeo [Japan Atomic Energy Agency, 4002, Narita-cho, O-arai-machi, Higashi-Ibaraki-gun, Ibaraki 311-1393 (Japan)

    2015-12-31

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GW{sub e}y if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel.

  14. Actinide management with commercial fast reactors

    Science.gov (United States)

    Ohki, Shigeo

    2015-12-01

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GWey if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel.

  15. New molecules for the separation of actinides (III): the picolinamides

    Energy Technology Data Exchange (ETDEWEB)

    Cordier, P.Y.; Condamines, N.; Berthon, L.; Madic, C.

    1994-12-31

    Minor actinide partitioning from high level liquid wastes produced during the reprocessing of nuclear fuels by the Purex process, requires the design of new extracting molecules. These new extractants must be able to separate, for example, actinides from lanthanides. This separation is very difficult, due to the similar chemical properties of these metallic species, but it can possibly be reached by using extractants with soft donor atoms (N or S). Some new molecules : the picolinamides are investigated in this way. The general chemical formula and the behaviour of these compounds in acidic media are given. (O.L.). 3 refs.

  16. Burns Caused by Medical Therapy

    Science.gov (United States)

    2016-06-07

    fear of litigation, patients with such injuries, even if the injuries are minor, arc often referred to a burn center for care. Burn injury...the potential burn hazards found elsewhere in the hospital. Even fewer studies have addressed the burn risks posed by medical therapy administered...35. Mills GH, Ralph S). Bums due to pulse oximetry [ letter ]. Anaesthesia 1992j47:276·7. 36. Shdlock: FG, Kana! E. Burns associated with the use of

  17. Modeling Deep Burn TRISO Particle Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, Theodore M [ORNL; Stoller, Roger E [ORNL; Samolyuk, German D [ORNL; Schuck, Paul C [ORNL; Rudin, Sven [Los Alamos National Laboratory (LANL); Wills, John [Los Alamos National Laboratory (LANL); Wirth, Brian D. [University of California, Berkeley; Kim, Sungtae [University of Wisconsin, Madison; Morgan, Dane [University of Wisconsin, Madison; Szlufarska, Izabela [University of Wisconsin, Madison

    2012-01-01

    Under the DOE Deep Burn program TRISO fuel is being investigated as a fuel form for consuming plutonium and minor actinides, and for greater efficiency in uranium utilization. The result will thus be to drive TRISO particulate fuel to very high burn-ups. In the current effort the various phenomena in the TRISO particle are being modeled using a variety of techniques. The chemical behavior is being treated utilizing thermochemical analysis to identify phase formation/transformation and chemical activities in the particle, including kernel migration. First principles calculations are being used to investigate the critical issue of fission product palladium attack on the SiC coating layer. Density functional theory is being used to understand fission product diffusion within the plutonia oxide kernel. Kinetic Monte Carlo techniques are shedding light on transport of fission products, most notably silver, through the carbon and SiC coating layers. The diffusion of fission products through an alternative coating layer, ZrC, is being assessed via DFT methods. Finally, a multiscale approach is being used to understand thermal transport, including the effect of radiation damage induced defects, in a model SiC material.

  18. SACSESS – the EURATOM FP7 project on actinide separation from spent nuclear fuels

    Directory of Open Access Journals (Sweden)

    Bourg Stéphane

    2015-12-01

    Full Text Available Recycling of actinides by their separation from spent nuclear fuel, followed by transmutation in fast neutron reactors of Generation IV, is considered the most promising strategy for nuclear waste management. Closing the fuel cycle and burning long-lived actinides allows optimizing the use of natural resources and minimizing the long-term hazard of high-level nuclear waste. Moreover, improving the safety and sustainability of nuclear power worldwide. This paper presents the activities striving to meet these challenges, carried out under the Euratom FP7 collaborative project SACSESS (Safety of Actinide Separation Processes. Emphasis is put on the safety issues of fuel reprocessing and waste storage. Two types of actinide separation processes, hydrometallurgical and pyrometallurgical, are considered, as well as related aspects of material studies, process modeling and the radiolytic stability of solvent extraction systems. Education and training of young researchers in nuclear chemistry is of particular importance for further development of this field.

  19. Innovative SANEX process for trivalent actinides separation from PUREX raffinate

    Energy Technology Data Exchange (ETDEWEB)

    Sypula, Michal

    2013-07-01

    Recycling of nuclear spent fuel and reduction of its radiotoxicity by separation of long-lived radionuclides would definitely help to close the nuclear fuel cycle ensuring sustainability of the nuclear energy. Partitioning of the main radiotoxicity contributors followed by their conversion into short-lived radioisotopes is known as partitioning and transmutation strategy. To ensure efficient transmutation of the separated elements (minor actinides) the content of lanthanides in the irradiation targets has to be minimised. This objective can be attained by solvent extraction using highly selective ligands that are able to separate these two groups of elements from each other. The objective of this study was to develop a novel process allowing co-separation of minor actinides and lanthanides from a high active acidic feed solution with subsequent actinide recovery using just one cycle, so-called innovative SANEX process. The conditions of each step of the process were optimised to ensure high actinide separation efficiency. Additionally, screening tests of several novel lipophilic and hydrophilic ligands provided by University of Twente were performed. These tests were aiming in better understanding the influence of the extractant structural modifications onto An(III)/Ln(III) selectivity and complexation properties. Optimal conditions for minor actinides separation were found and a flow-sheet of a new innovative SANEX process was proposed. Tests using a single centrifugal contactor confirmed high Eu(III)/Am(III) separation factor of 15 while the lowest SF{sub Ln/Am} obtained was 6,5 (for neodymium). In addition, a new masking agent for zirconium was found as a substitution for oxalic acid. This new masking agent (CDTA) was also able to mask palladium without any negative influence on An(III)/Ln(III). Additional tests showed no influence of CDTA on plutonium present in the feed solution unlike oxalic acid which causes Pu precipitation. Therefore, CDTA was proposed as

  20. Core Optimization of a Deep-Burn Pebble Bed Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Brian Boer; Abderrafi M. Ougouag

    2010-06-01

    Achieving a high fuel burnup in the Deep-Burn (DB) pebble bed reactor design, while remaining within the limits for fuel temperature, power peaking and temperature reactivity feedback, is challenging. The high content of Pu and Minor Actinides in the Deep-Burn fuel significantly impacts the thermal neutron energy spectrum as compared to a ’standard’ UO2 fueled core. This can result in power and temperature peaking in the pebble bed core in locally thermalized regions near the graphite reflectors. Furthermore, the interplay of the Pu resonances of the neutron absorption cross sections at low-lying energies can lead to a positive temperature reactivity coefficient for the graphite moderator at certain operating conditions. The DB concept focuses on the destruction of spent fuel transuranics in TRISO coated particle fueled gas-cooled reactors with the aim of a fractional fuel burnup of 60-70% in fissions per initial metal atom (FIMA), using a single-pass, multi in-core fuel (re)cycling scheme. In principle, the DB pebble bed concept employs the same reactor designs as the present low enriched uranium core designs, i.e. the 400 MWth Pebble Bed Modular Reactor (PBMR-400). A Pu and Minor Actinide fueled PBMR-400 design serves as the starting point for a core optimization study. The fuel temperature, power peak, temperature reactivity coefficients, and burnup capabilities of the modified designs are analyzed with the PEBBED code. A code-to-code coupling with the PASTA code allows for the analysis of the TRISO fuel performance for both normal and Loss Of Forced Cooling conditions. An improved core design is sought, maximizing the fuel discharge burnup, while retaining negative temperature reactivity feedback coefficients for the entire temperature range and avoiding high fuel temperatures (fuel failure probabilities).

  1. Moessbauer spectroscopy with actinide elements

    Energy Technology Data Exchange (ETDEWEB)

    Potzel, W.; Moser, J.; Asch, L.; Kalvius, G.M. (Technische Univ. Muenchen, Garching (Germany, F.R.)

    1983-01-01

    Although formally equivalent to the lanthanide (4f) elements, the light actinides show a much more varied behaviour due to the larger spatial extent and ionizability of the 5f electrons. The application of Moessbauer spectroscopy for the determination of electronic properties of the actinides is outlined. Emphasis is put on high pressure Moessbauer experiments using the 60 keV transition in /sup 237/Np to study questions of delocalization of 5f electrons.

  2. Management of Outpatient Burns

    OpenAIRE

    Waslen, G. D.

    1986-01-01

    The severity of burns depends on the depth and extent of body surface involved. The total body surface area (TBSA) involved can be estimated by the ‘rule of nines’; body locations are 9% of body surface or multiples of nine. Depth and TBSA can be used to classify burns as minor, moderate, or critical. Diagnosis depends on history and physical examination. Most burns can be treated in an outpatient setting. Treatment should include debriding necrotic tissue, preventing infection and encouragin...

  3. Chemical durability and resistance to irradiation of LnYSiAlO (Ln=La or Ce) glasses, potential immobilization matrix of minor actinides; Durabilite chimique et comportement a l'irradiation des verres quaternaires LnYSiAlO (Ln = La ou Ce), matrice potentielle d'immobilisation d'actinides mineurs trivalents

    Energy Technology Data Exchange (ETDEWEB)

    Gavarini, St

    2002-11-01

    Rare earth aluminosilicate glasses are known for their interesting mechanical and optical properties. Recent studies have shown that their chemical durability was very good too, such they have the potential to be used in the nuclear industry for the specific immobilization of trivalent actinides. Initial dissolution rates of LaYSiAlO and CeYSiAlO were determined using a Soxhlet device (dynamic leaching). The differences linked to the nature of the rare earth element were studied by synthesizing analogous glasses that only differed in their rare earth element composition (%at.): Y-5%, La-5 %, Si-15%, Al-10% O-65%. The influence of pH on the dissolution mechanisms and kinetics was also studied by static leaching tests performed in dilute solutions of NaOH or HNO{sub 3}. Electronic defects and collision cascades, induced by a-disintegration of radioelements confined in storage matrix, can cause important modifications in the glass structure and, thus, influence its chemical durability. To simulate these effects, glass samples were irradiated with {beta} particles and heavy ions accelerated to 2,5 MeV and 200 keV, respectively. Monoliths were then leached in static bi-distilled water (pH{>=}{>=} 5.5) for one month in an autoclave heated to 90 degrees C. Initially, the structural changes caused by irradiation were determined using Raman, NMR and EPR spectroscopies. Ion {mu}-beams, SEM-EDS and XPS analysis were also performed to evaluate the potential modifications of the superficial composition. Finally, the leaching behavior was studied, for both irradiated and unirradiated samples, through solution and solid elementary characterization. (author)

  4. CORE ANALYSIS, DESIGN AND OPTIMIZATION OF A DEEP-BURN PEBBLE BED REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    B. Boer; A. M. Ougouag

    2010-05-01

    Achieving a high burnup in the Deep-Burn pebble bed reactor design, while remaining within the limits for fuel temperature, power peaking and temperature reactivity feedback, is challenging. The high content of Pu and Minor Actinides in the Deep-Burn fuel significantly impacts the thermal neutron energy spectrum. This can result in power and temperature peaking in the pebble bed core in locally thermalized regions near the graphite reflectors. Furthermore, the interplay of the Pu resonances of the neutron absorption cross sections at low-lying energies can lead to a positive temperature reactivity coefficient for the graphite moderator at certain operating conditions. To investigate the aforementioned effects a code system using existing codes has been developed for neutronic, thermal-hydraulic and fuel depletion analysis of Deep-Burn pebble bed reactors. A core analysis of a Deep-Burn Pebble Bed Modular Reactor (400 MWth) design has been performed for two Deep-Burn fuel types and possible improvements of the design with regard to power peaking and temperature reactivity feedback are identified.

  5. 33rd Actinide Separations Conference

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, L M; Wilk, P A

    2009-05-04

    Welcome to the 33rd Actinide Separations Conference hosted this year by the Lawrence Livermore National Laboratory. This annual conference is centered on the idea of networking and communication with scientists from throughout the United States, Britain, France and Japan who have expertise in nuclear material processing. This conference forum provides an excellent opportunity for bringing together experts in the fields of chemistry, nuclear and chemical engineering, and actinide processing to present and discuss experiences, research results, testing and application of actinide separation processes. The exchange of information that will take place between you, and other subject matter experts from around the nation and across the international boundaries, is a critical tool to assist in solving both national and international problems associated with the processing of nuclear materials used for both defense and energy purposes, as well as for the safe disposition of excess nuclear material. Granlibakken is a dedicated conference facility and training campus that is set up to provide the venue that supports communication between scientists and engineers attending the 33rd Actinide Separations Conference. We believe that you will find that Granlibakken and the Lake Tahoe views provide an atmosphere that is stimulating for fruitful discussions between participants from both government and private industry. We thank the Lawrence Livermore National Laboratory and the United States Department of Energy for their support of this conference. We especially thank you, the participants and subject matter experts, for your involvement in the 33rd Actinide Separations Conference.

  6. Calculation of cohesive energy of actinide metals

    Institute of Scientific and Technical Information of China (English)

    钱存富; 陈秀芳; 余瑞璜; 耿平; 段占强

    1997-01-01

    According to empirical electron theory of solids and molecules (EET), an equation for calculating the cohesive energy of actinide metals is given, the cohesive energy of 9 actinide metals with known crystal structure is calculated, which is identical with the experimental values on the whole, and the cohesive energy of 6 actinide metals with unknown crystal structure is forecast.

  7. Actinides and Life's Origins.

    Science.gov (United States)

    Adam, Zachary

    2007-12-01

    There are growing indications that life began in a radioactive beach environment. A geologic framework for the origin or support of life in a Hadean heavy mineral placer beach has been developed, based on the unique chemical properties of the lower-electronic actinides, which act as nuclear fissile and fertile fuels, radiolytic energy sources, oligomer catalysts, and coordinating ions (along with mineralogically associated lanthanides) for prototypical prebiotic homonuclear and dinuclear metalloenzymes. A four-factor nuclear reactor model was constructed to estimate how much uranium would have been required to initiate a sustainable fission reaction within a placer beach sand 4.3 billion years ago. It was calculated that about 1-8 weight percent of the sand would have to have been uraninite, depending on the weight percent, uranium enrichment, and quantity of neutron poisons present within the remaining placer minerals. Radiolysis experiments were conducted with various solvents with the use of uraniumand thorium-rich minerals (metatorbernite and monazite, respectively) as proxies for radioactive beach sand in contact with different carbon, hydrogen, oxygen, and nitrogen reactants. Radiation bombardment ranged in duration of exposure from 3 weeks to 6 months. Low levels of acetonitrile (estimated to be on the order of parts per billion in concentration) were conclusively identified in 2 setups and tentatively indicated in a 3(rd) by gas chromatography/mass spectrometry. These low levels have been interpreted within the context of a Hadean placer beach prebiotic framework to demonstrate the promise of investigating natural nuclear reactors as power production sites that might have assisted the origins of life on young rocky planets with a sufficiently differentiated crust/mantle structure. Future investigations are recommended to better quantify the complex relationships between energy release, radioactive grain size, fissionability, reactant phase, phosphorus

  8. Actinides and Life's Origins

    Science.gov (United States)

    Adam, Zachary

    2007-12-01

    There are growing indications that life began in a radioactive beach environment. A geologic framework for the origin or support of life in a Hadean heavy mineral placer beach has been developed, based on the unique chemical properties of the lower-electronic actinides, which act as nuclear fissile and fertile fuels, radiolytic energy sources, oligomer catalysts, and coordinating ions (along with mineralogically associated lanthanides) for prototypical prebiotic homonuclear and dinuclear metalloenzymes. A four-factor nuclear reactor model was constructed to estimate how much uranium would have been required to initiate a sustainable fission reaction within a placer beach sand 4.3 billion years ago. It was calculated that about 1-8 weight percent of the sand would have to have been uraninite, depending on the weight percent, uranium enrichment, and quantity of neutron poisons present within the remaining placer minerals. Radiolysis experiments were conducted with various solvents with the use of uranium- and thorium-rich minerals (metatorbernite and monazite, respectively) as proxies for radioactive beach sand in contact with different carbon, hydrogen, oxygen, and nitrogen reactants. Radiation bombardment ranged in duration of exposure from 3 weeks to 6 months. Low levels of acetonitrile (estimated to be on the order of parts per billion in concentration) were conclusively identified in 2 setups and tentatively indicated in a 3rd by gas chromatography/mass spectrometry. These low levels have been interpreted within the context of a Hadean placer beach prebiotic framework to demonstrate the promise of investigating natural nuclear reactors as power production sites that might have assisted the origins of life on young rocky planets with a sufficiently differentiated crust/mantle structure. Future investigations are recommended to better quantify the complex relationships between energy release, radioactive grain size, fissionability, reactant phase, phosphorus

  9. Development of Metallic Fuels for Actinide Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Steven Lowe [Idaho National Laboratory; Fielding, Randall Sidney [Idaho National Laboratory; Benson, Michael Timothy [Idaho National Laboratory; Chichester, Heather Jean MacLean [Idaho National Laboratory; Carmack, William Jonathan [Idaho National Laboratory

    2015-09-01

    Research and development activities on metallic fuels are focused on their potential use for actinide transmutation in future sodium fast reactors. As part of this application, there is also a need for a near zero-loss fabrication process and a desire to demonstrate a multifold increase in burnup potential. The incorporation of Am and Np into the traditional U-20Pu-10Zr metallic fuel alloy was demonstrated in the US during the Integral Fast Reactor Program of the 1980’s and early 1990’s. However, the conventional counter gravity injection casting method performed under vacuum, previously used to fabricate these metallic fuel alloys, was not optimized for mitigating loss of the volatile Am constituent in the casting charge; as a result, approximately 40% of the Am casting charge failed to be incorporated into the as-cast fuel alloys. Fabrication development efforts of the past few years have pursued an optimized bottom-pour casting method to increase utilization of the melted charge to near 100%, and a differential pressure casting approach, performed under an argon overpressure, has been demonstrated to result in essentially no loss of Am due to volatilization during fabrication. In short, a path toward zero-loss fabrication of metallic fuels including minor actinides has been shown to be feasible. Irradiation testing of advanced metallic fuel alloys in the Advanced Test Reactor (ATR) has been underway since 2003. Testing in the ATR is performed inside of cadmium-shrouded positions to remove >99% of the thermal flux incident on the test fuels, resulting in an epi-thermal driven fuel test that is free from gross flux depression and producing an essentially prototypic radial temperature profile inside the fuel rodlets. To date, three irradiation test series (AFC-1,2,3) have been completed. Over 20 different metallic fuel alloys have been tested to burnups as high as 30% with constituent compositions of Pu up to 30%, Am up to 12%, Np up to 10%, and Zr between 10

  10. Preliminary considerations concerning actinide solubilities

    Energy Technology Data Exchange (ETDEWEB)

    Newton, T.W.; Bayhurst, B.P.; Daniels, W.R.; Erdal, B.R.; Ogard, A.E.

    1980-01-01

    Work at the Los Alamos Scientific Laboratory on the fundamental solution chemistry of the actinides has thus far been confined to preliminary considerations of the problems involved in developing an understanding of the precipitation and dissolution behavior of actinide compounds under environmental conditions. Attempts have been made to calculate solubility as a function of Eh and pH using the appropriate thermodynamic data; results have been presented in terms of contour maps showing lines of constant solubility as a function of Eh and pH. Possible methods of control of the redox potential of rock-groundwater systems by the use of Eh buffers (redox couples) is presented.

  11. Behavior of actinides in the Integral Fast Reactor fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, J.C. [Louisiana State Univ., Baton Rouge, LA (United States). Nuclear Science Center; Lineberry, M.J. [Argonne National Lab., Idaho Falls, ID (United States). Technology Development Div.

    1994-06-01

    The Integral Fast Reactor (IFR) under development by Argonne National Laboratory uses metallic fuels instead of ceramics. This allows electrorefining of spent fuels and presents opportunities for recycling minor actinide elements. Four minor actinides ({sup 237}Np, {sup 240}Pu, {sup 241}Am, and {sup 243}Am) determine the waste storage requirements of spent fuel from all types of fission reactors. These nuclides behave the same as uranium and other plutonium isotopes in electrorefining, so they can be recycled back to the reactor without elaborate chemical processing. An experiment has been designed to demonstrate the effectiveness of the high-energy neutron spectra of the IFR in consuming these four nuclides and plutonium. Eighteen sets of seven actinide and five light metal targets have been selected for ten day exposure in the Experimental Breeder Reactor-2 which serves as a prototype of the IFR. Post-irradiation analyses of the exposed targets by gamma, alpha, and mass spectroscopy are used to determine nuclear reaction-rates and neutron spectra. These experimental data increase the authors` confidence in their ability to predict reaction rates in candidate IFR designs using a variety of neutron transport and diffusion programs.

  12. Behavior of actinides in the Integral Fast Reactor fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, J.C. [Louisiana State Univ., Baton Rouge, LA (United States). Nuclear Science Center; Lineberry, M.J. [Argonne National Lab., Idaho Falls, ID (United States). Technology Development Div.

    1994-06-01

    The Integral Fast Reactor (IFR) under development by Argonne National Laboratory uses metallic fuels instead of ceramics. This allows electrorefining of spent fuels and presents opportunities for recycling minor actinide elements. Four minor actinides ({sup 237}Np, {sup 240}Pu, {sup 241}Am, and {sup 243}Am) determine the waste storage requirements of spent fuel from all types of fission reactors. These nuclides behave the same as uranium and other plutonium isotopes in electrorefining, so they can be recycled back to the reactor without elaborate chemical processing. An experiment has been designed to demonstrate the effectiveness of the high-energy neutron spectra of the IFR in consuming these four nuclides and plutonium. Eighteen sets of seven actinide and five light metal targets have been selected for ten day exposure in the Experimental Breeder Reactor-2 which serves as a prototype of the IFR. Post-irradiation analyses of the exposed targets by gamma, alpha, and mass spectroscopy are used to determine nuclear reaction-rates and neutron spectra. These experimental data increase the authors` confidence in their ability to predict reaction rates in candidate IFR designs using a variety of neutron transport and diffusion programs.

  13. Minimization of actinide waste by multi-recycling of thoriated fuels in the EPR reactor

    Science.gov (United States)

    Rose, S. J.; Wilson, J. N.; Capellan, N.; David, S.; Guillemin, P.; Ivanov, E.; Méplan, O.; Nuttin, A.; Siem, S.

    2012-02-01

    The multi-recycling of innovative uranium/thorium oxide fuels for use in the European Pressurized water Reactor (EPR) has been investigated. If increasing quantities of 238U, the fertile isotope in standard UO2 fuel, are replaced by 232Th, then a greater yield of new fissile material (233U) is produced during the cycle than would otherwise be the case. This leads to economies of natural uranium of around 45% if the uranium in the spent fuel is multi-recycled. In addition we show that minor actinide and plutonium waste inventories are reduced and hence waste radio-toxicities and decay heats are up to a factor of 20 lower after 103 years. Two innovative fuel types named S90 and S20, ThO2 mixed with 90% and 20% enriched UO2 respectively, are compared as an alternative to standard uranium oxide (UOX) and uranium/plutonium mixed oxide (MOX) fuels at the longest EPR fuel discharge burn-ups of 65 GWd/t. Fissile and waste inventories are examined, waste radio-toxicities and decay heats are extracted and safety feedback coefficients are calculated.

  14. Minimization of actinide waste by multi-recycling of thoriated fuels in the EPR reactor

    Directory of Open Access Journals (Sweden)

    Nuttin A.

    2012-02-01

    Full Text Available The multi-recycling of innovative uranium/thorium oxide fuels for use in the European Pressurized water Reactor (EPR has been investigated. If increasing quantities of 238U, the fertile isotope in standard UO2 fuel, are replaced by 232Th, then a greater yield of new fissile material (233U is produced during the cycle than would otherwise be the case. This leads to economies of natural uranium of around 45% if the uranium in the spent fuel is multi-recycled. In addition we show that minor actinide and plutonium waste inventories are reduced and hence waste radio-toxicities and decay heats are up to a factor of 20 lower after 103 years. Two innovative fuel types named S90 and S20, ThO2 mixed with 90% and 20% enriched UO2 respectively, are compared as an alternative to standard uranium oxide (UOX and uranium/plutonium mixed oxide (MOX fuels at the longest EPR fuel discharge burn-ups of 65 GWd/t. Fissile and waste inventories are examined, waste radio-toxicities and decay heats are extracted and safety feedback coefficients are calculated.

  15. Advances in fuel materials for the transmutation of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Prunier, C.

    1994-12-31

    The physical feasibility of actinides, spent fuels and fission products burning in fission reactors is well understood. In fast reactors, this operation is more favourable. The homogeneous recycling mode has had a preliminary validation in Phenix (the Super fact experiment). For the heterogenous recycling mode, past experience for {sup 238} Pu production in thermal spectrum was obtained with Np O{sub 2}-Mg O targets. An irradiation experiment in Phenix blanket is foreseen with the same type of target. The {sup 237} Np problem seems to be most conveniently treated, even in the short term, by homogeneous recycling with Pu in fast reactors. (author). 15 figs., 4 tabs.

  16. Burn Pits

    Science.gov (United States)

    ... Enter ZIP code here Enter ZIP code here Burn Pits Burn Pits Registry Studies Photo: U.S. Department ... the health of deployed Veterans. Health effects from burn pit smoke Toxins in burn pit smoke may ...

  17. Burn Institute

    Science.gov (United States)

    ... Now Help keep local seniors safe from fire! Burn Survivor Support If you are reading this, chances ... year – a burn injury. Learn more Fire and Burn Prevention Each year, the Burn Institute provides fire ...

  18. Environmental research on actinide elements

    Energy Technology Data Exchange (ETDEWEB)

    Pinder, J.E. III; Alberts, J.J.; McLeod, K.W.; Schreckhise, R.G. (eds.)

    1987-08-01

    The papers synthesize the results of research sponsored by DOE's Office of Health and Environmental Research on the behavior of transuranic and actinide elements in the environment. Separate abstracts have been prepared for the 21 individual papers. (ACR)

  19. Pyrometallurgical processes for recovery of actinide elements

    Energy Technology Data Exchange (ETDEWEB)

    Battles, J.E.; Laidler, J.J.; McPheeters, C.C.; Miller, W.E.

    1994-01-01

    A metallic fuel alloy, nominally U-20-Pu-lOZr, is the key element of the Integral Fast Reactor (IFR) fuel cycle. Metallic fuel permits the use of an innovative, simple pyrometallurgical process, known as pyroprocessing, (the subject of this report), which features fused salt electrorefining of the spent fuel. Electrorefining separates the actinide elements from fission products, without producing a separate stream of plutonium. The plutonium-bearing product is contaminated with higher actinides and with a minor amount of rare earth fission products, making it diversion resistant while still suitable as a fuel material in the fast spectrum of the IFR core. The engineering-scale demonstration of this process will be conducted in the refurbished EBR-II Fuel Cycle Facility, which has entered the start-up phase. An additional pyrometallurgical process is under development for extracting transuranic (TRU) elements from Light Water Reactor (LWR) spent fuel in a form suitable for use as a feed to the IFR fuel cycle. Four candidate extraction processes have been investigated and shown to be chemically feasible. The main steps in each process are oxide reduction with calcium or lithium, regeneration of the reductant and recycle of the salt, and separation of the TRU product from the bulk uranium. Two processes, referred to as the lithium and salt transport (calcium reductant) processes, have been selected for engineering-scale demonstration, which is expected to start in late 1993. An integral part of pyroprocessing development is the treatment and packaging of high-level waste materials arising from the operations, along with the qualification of these waste forms for disposal in a geologic repository.

  20. Minor changes in soil organic carbon and charcoal concentrations detected in a temperate deciduous forest a year after an experimental slash-and-burn

    Science.gov (United States)

    Eckmeier, E.; Gerlach, R.; Skjemstad, J. O.; Ehrmann, O.; Schmidt, M. W. I.

    2007-06-01

    Anthropogenic fires affected the temperate deciduous forests of Central Europe over millennia. Biomass burning releases carbon to the atmosphere and produces charcoal, which potentially contributes to the stable soil carbon pools and is an important archive of environmental history. The fate of charcoal in soils of temperate deciduous forests, i.e. the processes of charcoal incorporation and transportation and the effects on soil organic matter are still not clear. We investigated the effects of slash-and-burn at a long-term experimental burning site and determined soil organic carbon and charcoal carbon concentrations as well as the soil lightness of colour (L*) in the topmost soil material (0-1, 1-2.5 and 2.5-5 cm depths) before, immediately after the fire and one year later. The main results are that (i) only a few of the charcoal particles from the forest floor were incorporated into the soil matrix, presumably by soil mixing animals. In the 0-1 cm layer, during one year, the charcoal C concentration increased only by 0.4 g kg-1 and the proportion of charcoal C to SOC concentration increased from 2.8 to 3.4%; (ii) the SOC concentrations did not show any significant differences; (iii) soil lightness decreased significantly in the topmost soil layer and correlated well with the concentrations of charcoal C (r=-0.87**) and SOC (r=-0.94**) in the samples from the 0-5 cm layer. We concluded that Holocene biomass burning could have influenced soil charcoal concentrations and soil colour.

  1. Study of the behavior of actinides continuously recycled in a hard spectrum reactor

    Energy Technology Data Exchange (ETDEWEB)

    Schofield, P.E.

    1980-12-01

    The behavior of actinides continuously recycled through the central region of an EBR-II type reactor was studied. Such a reactor would convert long-lived nuclear wastes to short-lived isotopes, and simultaneously produce useful power. This process is proposed as an alternative to the geological isolation of long-lived actinide wastes. A driver region of 50% U-235 enriched fuel provided a nearly-constant spectrum and flux that was extremely hard compared to standard LMFBRs. This resulted in a high fission-to-capture ratio for most isotopes. The original actinide fuel was the discharge from a LWR, cooled for two years, with 99.9% of the uranium and plutonium removed by chemical processing. Comparison was made between removal of both Pu and U and removal of only U in subsequent cycles. The latter case resulted in substantial quantities of trans-plutonics burned per cycle.

  2. Actinide cation-cation complexes

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, Nancy Jane [Univ. of California, Berkeley, CA (United States)

    1994-12-01

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO2+) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO2+; therefore, cation-cation complexes indicate something unique about AnO2+ cations compared to actinide cations in general. The first cation-cation complex, NpO2+•UO22+, was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO2+ species, the cation-cation complexes of NpO2+ have been studied most extensively while the other actinides have not. The only PuO2+ cation-cation complexes that have been studied are with Fe3+ and Cr3+ and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO2+•UO22+, NpO2+•Th4+, PuO2+•UO22+, and PuO2+•Th4+ at an ionic strength of 6 M using LIPAS are 2.4 ± 0.2, 1.8 ± 0.9, 2.2 ± 1.5, and ~0.8 M-1.

  3. Burn Injury Arise From Flying Balloon Toys

    OpenAIRE

    Yalcin Kulahci; Fatih Zor; Mehmet Bozkurt; Serdar Ozturk; Mustafa Sengezer

    2007-01-01

    Many of peoples are faced minor or major burn injuries in their life. Even the most widespread burn cause is flame injuries, too different burn cause pointed out in literature like Acetylen burns. The cases which imply in literature, mostly causes from explosion of high pressure acetylene tube, metal oxygene patch flame or carbide lamp using from cave explorers. An interesting acetylene burn cause in Turkey was publised by the authors. This cases was to come into being from flying toy balloon...

  4. One-electron physics of the actinides

    Science.gov (United States)

    Toropova, A.; Marianetti, C. A.; Haule, K.; Kotliar, G.

    2007-10-01

    We present a detailed analysis of the one-electron physics of the actinides. Various linear muffin-tin orbital basis sets are analyzed in order to determine a robust bare Hamiltonian for the actinides. The hybridization between f and spd states is compared with the f-f hopping in order to understand the Anderson-like and Hubbard-like contributions to itineracy in the actinides. We show that both contributions decrease strongly as one moves from the light actinides to the heavy actinides, while the Anderson-like contribution dominates in all cases. A real-space analysis of the band structure shows that nearest-neighbor hopping dominates the physics in these materials. Finally, we discuss the implications of our results to the delocalization transition as a function of atomic number across the actinide series.

  5. NMR studies of actinide dioxides

    Energy Technology Data Exchange (ETDEWEB)

    Tokunaga, Y. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)], E-mail: tokunaga.yo@jaea.go.jp; Sakai, H.; Fujimoto, T.; Kambe, S.; Walstedt, R.E.; Ikushima, K.; Yasuoka, H. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Aoki, D.; Homma, Y. [Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Haga, Y.; Matsuda, T.D.; Ikeda, S.; Yamamoto, E.; Nakamura, A. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Shiokawa, Y. [Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Nakajima, K.; Arai, Y. [Department of Nuclear Energy System, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Onuki, Y. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan)

    2007-10-11

    {sup 17}O NMR measurements have been performed on a series of the actinide dioxides, UO{sub 2}, NpO{sub 2} and PuO{sub 2}. Although the {sup 17}O NMR spectra in these materials are similar at higher temperatures, the low-temperature spectra present are significantly different. In UO{sub 2} we have observed a wide spectrum, forming a rectangular shape below T{sub N}=30 K. In NpO{sub 2}, on the other hand, the spectra broaden rather gradually and exhibit a two-peak structure below T{sub 0}=26 K. In PuO{sub 2}, neither spectrum broadening nor splitting has been observed. We show that these NMR spectra clearly indicate the different nature of the low-temperature magnetic ground states in these actinide compounds.

  6. Moessbauer spectroscopy of actinide intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Kalvius, G.M.; Potzel, W.; Moser, J.; Litterst, F.J.; Asch, L.; Zaenkert, J.; Potzel, U.; Kratzer, A.; Wunsch, M. (Technische Univ. Muenchen, Garching (Germany, F.R.). Fakultaet fuer Physik); Gal, J.

    1985-04-01

    Due to their wider radical extent the 5f electrons may form bands of different width and hybridization in metallic compounds of the light actinides. This leads to a broad spectrum of magnetic properties ranging from the localized magnetism of the lanthanides to the itinerant electron magnetism often found in transition metal compounds. Also, the influence of the crystalline electric field tends to be more pronounced than in rare earth compounds, but is usually not as dominant as in the 3d series. Magnetic structures and the question of 5f electron delocalization will be reviewed with respect to actinide Moessbauer data and new results will be presented. In particular the influence of applying external pressure will be discussed.

  7. Mossbauer spectroscopy of actinide intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Kalvius, G.M.; Potzel, W.; Moser, J.; Litterst, F.J.; Asch, L.; Zankert, J.; Potzel, U.; Kratzer, A.; Wunsch, M.; Gal, J.

    1984-09-01

    Due to their wider radial extend the 5f electrons may form bands of different width and hybridization in metallic compounds of the light actinides. This leads to a broad spectrum of magnetic properties ranging from the localized magnetism of the lanthanides to the itinerant electron magnetism often found in transition metal compounds. Also, the influence of the crystalline electric field tends to be more pronounced than in rare earth compounds, but is usually not as dominant as in the 3d series. Magnetic structures and the question of 5f electron delocalization are reviewed with respet to actinide Moessbauer data and new results are presented. In particular the influence of applying external pressure is discussed. 60 references, 24 figures.

  8. Future nuclear fuel cycles: Prospect and challenges for actinide recycling

    Science.gov (United States)

    Warin, Dominique

    2010-03-01

    The global energy context pleads in favour of a sustainable development of nuclear energy since the demand for energy will likely increase, whereas resources will tend to get scarcer and the prospect of global warming will drive down the consumption of fossil fuel. In this context, nuclear power has the worldwide potential to curtail the dependence on fossil fuels and thereby to reduce the amount of greenhouse gas emissions while promoting energy independence. How we deal with nuclear radioactive waste is crucial in this context. In France, the public's concern regarding the long-term waste management made the French Governments to prepare and pass the 1991 and 2006 Acts, requesting in particular the study of applicable solutions for still minimizing the quantity and the hazardousness of final waste. This necessitates High Active Long Life element (such as the Minor Actinides MA) recycling, since the results of fuel cycle R&D could significantly change the challenges for the storage of nuclear waste. HALL recycling can reduce the heat load and the half-life of most of the waste to be buried to a couple of hundred years, overcoming the concerns of the public related to the long-life of the waste and thus aiding the "burying approach" in securing a "broadly agreed political consensus" of waste disposal in a geological repository. This paper presents an overview of the recent R and D results obtained at the CEA Atalante facility on innovative actinide partitioning hydrometallurgical processes. For americium and curium partitioning, these results concern improvements and possible simplifications of the Diamex-Sanex process, whose technical feasibility was already demonstrated in 2005. Results on the first tests of the Ganex process (grouped actinide separation for homogeneous recycling) are also discussed. In the coming years, next steps will involve both better in-depth understanding of the basis of these actinide partitioning processes and, for the new promising

  9. Optimisation of deep burn incineration of reactor waste plutonium in a PBMR DPP-400 core

    Energy Technology Data Exchange (ETDEWEB)

    Serfontein, Dawid E., E-mail: Dawid.Serfontein@nwu.ac.za [School for Mechanical and Nuclear Engineering, North West University, PUK-Campus, Private Bag X6001, Internal Post Box 360, Potchefstroom 2520 (South Africa); Mulder, Eben J. [School for Mechanical and Nuclear Engineering, North West University (South Africa); Reitsma, Frederik [Calvera Consultants (South Africa)

    2014-05-01

    In this article an original set of coupled neutronics and thermo-hydraulic simulation results for the VSOP 99/05 diffusion code are presented for advanced fuel cycles for the incineration of weapons-grade plutonium, reactor-grade plutonium and reactor-grade plutonium with its associated Minor Actinides in the 400 MW{sub th} Pebble Bed Modular Reactor Demonstration Power Plant. These results are also compared to those of the standard 9.6 wt% enriched 9 g/fuel sphere U/Pu fuel cycle. The weapons-grade and reactor-grade plutonium fuel cycles produced good burn-ups. However, the addition of the Minor Actinides to the reactor-grade plutonium caused a large decrease in the burn-up and thus an unacceptable increase in the heavy metal (HM) content in the spent fuel, which was intended for direct disposal in a deep geological repository, without chemical reprocessing. All the plutonium fuel cycles failed the adopted safety limits used in the PBMR400 in that either the maximum fuel temperature of 1130 °C during normal operation, or the maximum power density of 4.5 kW/sphere was exceeded. All the plutonium fuel cycles also produced positive uniform temperature reactivity coefficients, i.e. the reactivity coefficient where the temperatures of the fuel and the graphite moderator in the fuel spheres were varied together. These unacceptable positive coefficients were experienced at low temperatures, typically below 700 °C. This was due to the influence of the thermal fission cross-section resonances of {sup 239}Pu and {sup 241}Pu. Weapons-grade plutonium produced the worst safety performance. The safety performance of the reactor-grade plutonium also deteriorated when the HM loading was reduced from 3 g/sphere to 2 g or 1 g.

  10. Increasing the utility of the Functional Assessment for Burns Score: Not just for major burns.

    Science.gov (United States)

    Smailes, Sarah T; Engelsman, Kayleen; Rodgers, Louise; Upson, Clara

    2016-02-01

    The Functional Assessment for Burns (FAB) score is established as an objective measure of physical function that predicts discharge outcome in adult patients with major burn. However, its validity in patients with minor and moderate burn is unknown. This is a multi-centre evaluation of the predictive validity of the FAB score for discharge outcome in adult inpatients with minor and moderate burns. FAB assessments were undertaken within 48 h of admission to (FAB 1), and within 48 h of discharge (FAB 2) from burn wards in 115 patients. Median age was 45 years and median burn size 4%. There were significant improvements in the patients' FAB scores (pburns.

  11. Prompt fission neutron spectrum of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Capote, R. [International Atomic Energy Agency, Vienna (Austria); Chen, Y. -J. [China Institute of Atomic Energy, Beijing (China); Hambsch, F. J. [European Commission, Joint Research Centre - IRRM, Geel (Belgium); Jurado, B. [CENBG, CNRS/IN2P3, Gradignan (France); Kornilov, N. [Ohio Univ., Athens, OH (United States); Lestone, J. P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Litaize, O. [CEA, DEN, DER, SPRC, Saint-Paul-Lez-Durance (France); Morillon, B. [CEA, DAM, DIF, Arpajon (France); Neudecker, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Oberstedt, S. [European Commission, Joint Research Centre - IRRM, Geel (Belgium); Ohsawa, T. [Kinki Univ., Osaka-fu (Japan); Otuka, N. [International Atomic Energy Agency, Vienna (Austria); Pronyaev, V. G. [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Saxena, A. [Bhabha Atomic Research Centre, Mumbai (India); Schmidt, K. H. [CENBG, CNRS/IN2P3, Gradignan (France); Serot, O. [CEA, DEN, DER, SPRC, Saint-Paul-Lez-Durance (France); Shcherbakov, O. A. [Petersburg Nuclear Physics Institute of NRC " Kurchatov Institute" , Gatchina (Russian Federation); Shu, N. -C. [China Institute of Atomic Energy, Beijing (China); Smith, D. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Talou, P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trkov, A. [International Atomic Energy Agency, Vienna (Austria); Tudora, A. C. [Univ. of Bucharest, Magurele (Romania); Vogt, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Davis, CA (United States); Vorobyev, A. S. [Petersburg Nuclear Physics Institute of NRC " Kurchatov Institute" , Gatchina (Russian Federation)

    2016-01-06

    Here, the energy spectrum of prompt neutron emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) "Evaluation of Prompt Fission Neutron Spectra of Actinides" was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei.

  12. Calculated Atomic Volumes of the Actinide Metals

    DEFF Research Database (Denmark)

    Skriver, H.; Andersen, O. K.; Johansson, B.

    1979-01-01

    The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium.......The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium....

  13. Thermal conductivities of minor actinide oxides for advanced fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tsuyoshi Nishi; Akinori Itoh; Masahide Takano; Mitsuo Akabori; Yasuo Arai; Kazuo Minato [Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, Tokai-mura, Ibaraki 319-1195 (Japan)

    2008-07-01

    The thermal diffusivities of americium oxide and neptunium dioxide were determined by a laser flash method. It was found that the thermal diffusivities of AmO{sub 2-x} and NpO{sub 2} decreased with increasing temperature. It was also found that the decrease in O/Am ratio during the thermal diffusivity measurements under vacuum resulted in a slight decrease in thermal diffusivity of AmO{sub 2-x}. The thermal conductivities of AmO{sub 2-x} and NpO{sub 2} were evaluated from the measured thermal diffusivities, heat capacities and bulk densities. The thermal conductivity of AmO{sub 2-x} was smaller than those of the literature values of UO{sub 2} and PuO{sub 2}. On the other hand, the thermal conductivity of NpO{sub 2} from 873 to 1473 K lay between those of UO{sub 2} and PuO{sub 2}. The thermal conductivities of AmO{sub 2-x} and NpO{sub 2} decreased with increasing temperature in the temperature range investigated. This temperature dependence of thermal conductivities showed a similar tendency as those of UO{sub 2}, PuO{sub 2} and (U{sub 0.8}Pu{sub 0.2})O{sub 2-x}. (authors)

  14. Catalytic Organic Transformations Mediated by Actinide Complexes

    Directory of Open Access Journals (Sweden)

    Isabell S. R. Karmel

    2015-10-01

    Full Text Available This review article presents the development of organoactinides and actinide coordination complexes as catalysts for homogeneous organic transformations. This chapter introduces the basic principles of actinide catalysis and deals with the historic development of actinide complexes in catalytic processes. The application of organoactinides in homogeneous catalysis is exemplified in the hydroelementation reactions, such as the hydroamination, hydrosilylation, hydroalkoxylation and hydrothiolation of alkynes. Additionally, the use of actinide coordination complexes for the catalytic polymerization of α-olefins and the ring opening polymerization of cyclic esters is presented. The last part of this review article highlights novel catalytic transformations mediated by actinide compounds and gives an outlook to the further potential of this field.

  15. Actinide ion sensor for pyroprocess monitoring

    Science.gov (United States)

    Jue, Jan-fong; Li, Shelly X.

    2014-06-03

    An apparatus for real-time, in-situ monitoring of actinide ion concentrations which comprises a working electrode, a reference electrode, a container, a working electrolyte, a separator, a reference electrolyte, and a voltmeter. The container holds the working electrolyte. The voltmeter is electrically connected to the working electrode and the reference electrode and measures the voltage between those electrodes. The working electrode contacts the working electrolyte. The working electrolyte comprises an actinide ion of interest. The reference electrode contacts the reference electrolyte. The reference electrolyte is separated from the working electrolyte by the separator. The separator contacts both the working electrolyte and the reference electrolyte. The separator is ionically conductive to the actinide ion of interest. The reference electrolyte comprises a known concentration of the actinide ion of interest. The separator comprises a beta double prime alumina exchanged with the actinide ion of interest.

  16. Energy-Dependent Fission Q Values Generalized for All Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, R

    2008-09-25

    We generalize Madland's parameterization of the energy release in fission to obtain the dependence of the fission Q values on incident neutron energy, E{sub n}, for all major and minor actinides. These Q(E{sub n}) parameterizations are included in the ENDL2008 release. This paper describes calculations of energy-dependent fission Q values based on parameterizations of the prompt energy release in fission [1], developed by Madland [1] to describe the prompt energy release in neutron-induced fission of {sup 235}U, {sup 238}U, and {sup 239}Pu. The energy release is then related to the energy deposited during fission so that experimentally measurable quantities can be used to obtain the Q values. A discussion of these specific parameterizations and their implementation in the processing code for Monte Carlo neutron transport, MCFGEN, [2] is described in Ref. [3]. We extend this model to describe Q(E) for all actinides, major and minor, in the Evaluated Nuclear Data Library (ENDL) 2008 release, ENDL2008.

  17. Ionic Interactions in Actinide Tetrahalides

    Science.gov (United States)

    Akdeniz, Z.; Karaman, A.; Tosi, M. P.

    2001-05-01

    We determine a model of the ionic interactions in AX 4 compounds (where A is an atom in the actinide series from Th to Am and X = F, Cl, Br or I) by an analysis of data on the static and dynamic structure of their molecular monomers. The potential energy function that we adopt is taken from earlier work on rare-earth trihalides [Z. Akdeniz, Z. Q q e k and M. P. Tosi, Z. Naturforsch. 55a, 861 (2000)] and in particular allows for the electronic polarizability of the actinide ion. This polarizability quantitatively determines the antisymmetric-bending vibrational mode, but its magnitude remains compatible with a symmetric tetrahedral shape of the molecule at equilibrium. The fluorides have an especially high degree of ionic character, and the interionic-force parameters for each halide of the U, Np, Pu and Am series show regular trends, suggesting that extrapolations to the other transuranic-element halides may usefully be made. The Th compounds show some deviations from these trends, and the interionic-force model that we determine for ThCl4 differs somewhat from that obtained in a previous study. We therefore return on the evaluation of the relative stability of charged oligomers of ThCl4 and ZrCl4 and find confirmation of our earlier results on this problem.

  18. Burning high-level TRU waste in fusion fission reactors

    Science.gov (United States)

    Shen, Yaosong

    2016-09-01

    Recently, the concept of actinide burning instead of a once-through fuel cycle for disposing spent nuclear fuel seems to get much more attention. A new method of burning high-level transuranic (TRU) waste combined with Thorium-Uranium (Th-U) fuel in the subcritical reactors driven by external fusion neutron sources is proposed in this paper. The thorium-based TRU fuel burns all of the long-lived actinides via a hard neutron spectrum while outputting power. A one-dimensional model of the reactor concept was built by means of the ONESN_BURN code with new data libraries. The numerical results included actinide radioactivity, biological hazard potential, and much higher burnup rate of high-level transuranic waste. The comparison of the fusion-fission reactor with the thermal reactor shows that the harder neutron spectrum is more efficient than the soft. The Th-U cycle produces less TRU, less radiotoxicity and fewer long-lived actinides. The Th-U cycle provides breeding of 233U with a long operation time (>20 years), hence significantly reducing the reactivity swing while improving safety and burnup.

  19. Spin and orbital moments in actinide compounds

    DEFF Research Database (Denmark)

    Lebech, B.; Wulff, M.; Lander, G.H.

    1991-01-01

    experiments designed to determine the magnetic moments at the actinide and transition-metal sublattice sites in compounds such as UFe2, NpCo2, and PuFe2 and to separate the spin and orbital components at the actinide sites. The results show, indeed, that the ratio of the orbital to spin moment is reduced......The extended spatial distribution of both the transition-metal 3d electrons and the actinide 5f electrons results in a strong interaction between these electron states when the relevant elements are alloyed. A particular interesting feature of this hybridization, which is predicted by single...

  20. Experimental studies of actinides in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

  1. Recovery of actinides from actinide-aluminium alloys by chlorination: Part I

    OpenAIRE

    Cassayre, Laurent; Soucek, Pavel; Mendes, Eric; Malmbeck, Rikard; Nourry, Christophe; Eloirdi, Rachel; Glatz, Jean-Paul

    2011-01-01

    Pyrochemical processes in molten LiCl–KCl are being developed in ITU for recovery of actinides from spent nuclear fuel. The fuel is anodically dissolved to the molten salt electrolyte and actinides are electrochemically reduced on solid aluminium cathodes forming solid actinide–aluminium alloys. A chlorination route is being investigated for recovery of actinides from the alloys. This route consists in three steps: Vacuum distillation for removal of the salt adhered on the electrode, chlorina...

  2. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures.

    Energy Technology Data Exchange (ETDEWEB)

    Banaszak, J.E.; Reed, D.T.; Rittmann, B.E.

    1999-02-12

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs.

  3. Advanced Aqueous Separation Systems for Actinide Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Kenneth L.; Clark, Sue; Meier, G Patrick; Alexandratos, Spiro; Paine, Robert; Hancock, Robert; Ensor, Dale

    2012-03-21

    One of the most challenging aspects of advanced processing of spent nuclear fuel is the need to isolate transuranium elements from fission product lanthanides. This project expanded the scope of earlier investigations of americium (Am) partitioning from the lanthanides with the synthesis of new separations materials and a centralized focus on radiochemical characterization of the separation systems that could be developed based on these new materials. The primary objective of this program was to explore alternative materials for actinide separations and to link the design of new reagents for actinide separations to characterizations based on actinide chemistry. In the predominant trivalent oxidation state, the chemistry of lanthanides overlaps substantially with that of the trivalent actinides and their mutual separation is quite challenging.

  4. Overview of actinide chemistry in the WIPP

    Energy Technology Data Exchange (ETDEWEB)

    Borkowski, Marian [Los Alamos National Laboratory; Lucchini, Jean - Francois [Los Alamos National Laboratory; Richmann, Michael K [Los Alamos National Laboratory; Reed, Donald T [Los Alamos National Laboratory; Khaing, Hnin [Los Alamos National Laboratory; Swanson, Juliet [Los Alamos National Laboratory

    2009-01-01

    The year 2009 celebrates 10 years of safe operations at the Waste Isolation Pilot Plant (WIPP), the only nuclear waste repository designated to dispose defense-related transuranic (TRU) waste in the United States. Many elements contributed to the success of this one-of-the-kind facility. One of the most important of these is the chemistry of the actinides under WIPP repository conditions. A reliable understanding of the potential release of actinides from the site to the accessible environment is important to the WIPP performance assessment (PA). The environmental chemistry of the major actinides disposed at the WIPP continues to be investigated as part of the ongoing recertification efforts of the WIPP project. This presentation provides an overview of the actinide chemistry for the WIPP repository conditions. The WIPP is a salt-based repository; therefore, the inflow of brine into the repository is minimized, due to the natural tendency of excavated salt to re-seal. Reducing anoxic conditions are expected in WIPP because of microbial activity and metal corrosion processes that consume the oxygen initially present. Should brine be introduced through an intrusion scenario, these same processes will re-establish reducing conditions. In the case of an intrusion scenario involving brine, the solubilization of actinides in brine is considered as a potential source of release to the accessible environment. The following key factors establish the concentrations of dissolved actinides under subsurface conditions: (1) Redox chemistry - The solubility of reduced actinides (III and IV oxidation states) is known to be significantly lower than the oxidized forms (V and/or VI oxidation states). In this context, the reducing conditions in the WIPP and the strong coupling of the chemistry for reduced metals and microbiological processes with actinides are important. (2) Complexation - For the anoxic, reducing and mildly basic brine systems in the WIPP, the most important

  5. Scald Burns

    Science.gov (United States)

    Safety Tips & Info Scald Burns Thousands of scald burns occur annually, and ALL are preventable! The two high-risk populations are children under the age ... the single most important factor in preventing scald burns. Increased awareness is the key to scald prevention! ...

  6. The Actinide Transition Revisited by Gutzwiller Approximation

    Science.gov (United States)

    Xu, Wenhu; Lanata, Nicola; Yao, Yongxin; Kotliar, Gabriel

    2015-03-01

    We revisit the problem of the actinide transition using the Gutzwiller approximation (GA) in combination with the local density approximation (LDA). In particular, we compute the equilibrium volumes of the actinide series and reproduce the abrupt change of density found experimentally near plutonium as a function of the atomic number. We discuss how this behavior relates with the electron correlations in the 5 f states, the lattice structure, and the spin-orbit interaction. Our results are in good agreement with the experiments.

  7. Predictive Modeling in Actinide Chemistry and Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-16

    These are slides from a presentation on predictive modeling in actinide chemistry and catalysis. The following topics are covered in these slides: Structures, bonding, and reactivity (bonding can be quantified by optical probes and theory, and electronic structures and reaction mechanisms of actinide complexes); Magnetic resonance properties (transition metal catalysts with multi-nuclear centers, and NMR/EPR parameters); Moving to more complex systems (surface chemistry of nanomaterials, and interactions of ligands with nanoparticles); Path forward and conclusions.

  8. Lattice effects in the light actinides

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, A.C.; Cort, B.; Roberts, J.A.; Bennett, B.I.; Brun, T.O.; Dreele, R.B. von [Los Alamos National Lab., NM (United States); Richardson, J.W. Jr. [Argonne National Lab., IL (United States)

    1998-12-31

    The light actinides show a variety of lattice effects that do not normally appear in other regions of the periodic table. The article will cover the crystal structures of the light actinides, their atomic volumes, their thermal expansion behavior, and their elastic behavior as reflected in recent thermal vibration measurements made by neutron diffraction. A discussion of the melting points will be given in terms of the thermal vibration measurements. Pressure effects will be only briefly indicated.

  9. Advances in computational actinide chemistry in China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongqi; Wu, Jingyi; Chai, Zhifang [Chinese Academy of Sciences, Beijing (China). Multidisciplinary Initiative Center; Su, Jing [Chinese Academy of Sciences, Shanghai (China). Div. of Nuclear Materials Science and Engineering; Li, Jun [Tsinghua Univ., Beijing (China). Dept. of Chemistry and Laboratory of Organic Optoelectronics and Molecular Engineering

    2014-04-01

    The advances in computational actinide chemistry made in China are reviewed. Several areas relevant to chemistry of actinides in gas, liquid, and solid phases have been explored. However, we limit the scope to selected contributions in the chemistry of molecular actinide systems in gas and liquid phases. These studies may be classified into two categories: treatment of relativistic effects, which cover the development of two- and four-component Hamiltonians and the optimization of relativistic pseudopotentials, and the applications of theoretical methods in actinide chemistry. The applications include (1) the electronic structures of actinocene, noble gas complexes, An-C multiple bonding compounds, uranyl and its isoelectronic species, fluorides and oxides, molecular systems with metal-metal bonding in their isolated forms (U{sub 2}, Pu{sub 2}) and in fullerene (U{sub 2} rate at C{sub 60}), and the excited states of actinide complexes; (2) chemical reactions, including oxidation, hydrolysis of UF{sub 6}, ligand exchange, reactivities of thorium oxo and sulfido metallocenes, CO{sub 2}/CS{sub 2} functionalization promoted by trivalent uranium complex; and (3) migration of actinides in the environment. A future outlook is discussed. (orig.)

  10. Burn Rehabilitation

    Directory of Open Access Journals (Sweden)

    Koray Aydemir

    2011-07-01

    Full Text Available Burn injuries are important in terms of causing serious disability and threatening life. With the establishment of modern burn treatment units and advances in acute care management contributed to a reduced mortality rate over the last decades. As a result of improved outcome, more attention has to be given to a comprehensive burn rehabilitation program. Burn rehabilitation is a process that starts from day of admission and continues for months or sometimes years after the initial event. The term ‘burn rehabilitation’ incorporates the physical, physiological and social aspects of care. Burns can leave a patient with severely debilitating and deforming contractures, which can lead to significant disability when left untreated. Burn rehabilitation aims to prevent the possible complications, minimalize joint contractures and deformities, increase range of motion, control hypertrophic scarring, achieve the best possible functional capacity and to regain the patients vocational and recreational activities. (Journal of the Turkish Society Intensive Care 2011; 9 Suppl: 70-7

  11. Actinide fission and capture cross section measurements at ILL: the Mini-INCA project

    Energy Technology Data Exchange (ETDEWEB)

    Letourneau, A.; Bringer, O.; Chabod, S.; Fioni, G.; Foucher, Y.; Marie, F.; Veyssiere, Ch. [CEA/Saclay/DSM/DAPNIA - Gif-sur-Yvette (France); Mahamid, I. Al. [Lawrence Berkeley National Laboratory, E.H. and S division, Berkeley CA (United States); Blandin, Ch. [CEA/Cadarache/DEN/DER/SPEX - Saint-Paul-lez-Durances (France); Chartier, F. [CEA/Saclay/DEN/DPC/SECR - Gif-sur-Yvette (France); Faust, H.; Mutti, P. [Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9 (France)

    2005-07-01

    Fission cross section of short-lived minor actinides is of prime importance for the incineration of minor actinides in high and thermal neutron fluxes. But due to the shortness of their half-lives, measurements are difficult to handle on these isotopes and the existing data present some large discrepancies. An original method has been developed, in the framework of the Mini-INCA project at ILL, to measure the fission and capture cross sections of minor actinides with low error bars associated even for short-lived isotopes. This method lies on a quasi on-line alpha- and gamma-spectroscopy of irradiated samples and on the use of fission micro-chambers. Coupled to a very powerful Monte-Carlo simulation, both microscopic information on nuclear reactions (total and partial cross sections for neutron capture and/or fission reactions) and macroscopic information on transmutation and incineration potentials could be gathered. In this paper, the method is explained in its originality and some recent results are given and compared with existing measurements and evaluated data libraries. (authors)

  12. Build-up of actinides in irradiated fuel rods of the ET-RR-1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Naguib, K.; Morcos, H.N

    2001-09-01

    The content concentrations of actinides are calculated as a function of operating reactor regime and cooling time at different percentage of fuel burn-up. The build-up transmutation equations of actinides content in an irradiated fuel are solved numerically .A computer code BAC was written to operate on a PC computer to provide the required calculations. The fuel element of 10% {sup 235}U enrichment of ET-RR-1 reactor was taken as an example for calculations using the BAC code. The results are compared with other calculations for the ET-RR-1 fuel rod. An estimation of fissile build-up content of a proposed new fuel of 20% {sup 235}U enrichment for ET-RR-1 reactor is given. The sensitivity coefficients of build-up plutonium concentrations as a function of cross-section data uncertainties are also calculated.

  13. Sorption Speciation of Lanthanides/Actinides on Minerals by TRLFS, EXAFS and DFT Studies: A Review

    Directory of Open Access Journals (Sweden)

    Xiaoli Tan

    2010-11-01

    Full Text Available Lanthanides/actinides sorption speciation on minerals and oxides by means of time resolved laser fluorescence spectroscopy (TRLFS, extended X-ray absorption fine structure spectroscopy (EXAFS and density functional theory (DFT is reviewed in the field of nuclear disposal safety research. The theoretical aspects of the methods are concisely presented. Examples of recent research results of lanthanide/actinide speciation and local atomic structures using TRLFS, EXAFS and DFT are discussed. The interaction of lanthanides/actinides with oxides and minerals as well as their uptake are also of common interest in radionuclide chemistry. Especially the sorption and inclusion of radionuclides into several minerals lead to an improvement in knowledge of minor components in solids. In the solid-liquid interface, the speciation and local atomic structures of Eu(III, Cm(III, U(VI, and Np(IV/VI in several natural and synthetic minerals and oxides are also reviewed and discussed. The review is important to understand the physicochemical behavior of lanthanides/actinides at a molecular level in the natural environment.

  14. PF-4 actinide disposition strategy

    Energy Technology Data Exchange (ETDEWEB)

    Margevicius, Robert W [Los Alamos National Laboratory

    2010-05-28

    The dwindling amount of Security Category I processing and storage space across the DOE Complex has driven the need for more effective storage of nuclear materials at LANL's Plutonium Facility's (PF-4's) vault. An effort was begun in 2009 to create a strategy, a roadmap, to identify all accountable nuclear material and determine their disposition paths, the PF-4 Actinide Disposition Strategy (PADS). Approximately seventy bins of nuclear materials with similar characteristics - in terms of isotope, chemical form, impurities, disposition location, etc. - were established in a database. The ultimate disposition paths include the material to remain at LANL, disposition to other DOE sites, and disposition to waste. If all the actions described in the document were taken, over half of the containers currently in the PF-4 vault would been eliminated. The actual amount of projected vault space will depend on budget and competing mission requirements, however, clearly a significant portion of the current LANL inventory can be either dispositioned or consolidated.

  15. Stress Analysis of Coated Particle Fuel in the Deep-Burn Pebble Bed Reactor Design

    Energy Technology Data Exchange (ETDEWEB)

    B. Boer; A. M. Ougouag

    2010-05-01

    High fuel temperatures and resulting fuel particle coating stresses can be expected in a Pu and minor actinide fueled Pebble Bed Modular Reactor (400 MWth) design as compared to the ’standard’ UO2 fueled core. The high discharge burnup aimed for in this Deep-Burn design results in increased power and temperature peaking in the pebble bed near the inner and outer reflector. Furthermore, the pebble power in a multi-pass in-core pebble recycling scheme is relatively high for pebbles that make their first core pass. This might result in an increase of the mechanical failure of the coatings, which serve as the containment of radioactive fission products in the PBMR design. To investigate the integrity of the particle fuel coatings as a function of the irradiation time (i.e. burnup), core position and during a Loss Of Forced Cooling (LOFC) incident the PArticle STress Analysis code (PASTA) has been coupled to the PEBBED code for neutronics, thermal-hydraulics and depletion analysis of the core. Two deep burn fuel types (Pu with or without initial MA fuel content) have been investigated with the new code system for normal and transient conditions including the effect of the statistical variation of thickness of the coating layers.

  16. Study of the radiotoxicity of actinides recycling in boiling water reactors fuel

    Energy Technology Data Exchange (ETDEWEB)

    Francois, J.L. [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532, Jiutepec, Mor., 62550 (Mexico)], E-mail: juan.luis.francois@gmail.com; Guzman, J.R. [Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186 Col. Vicentina, Mexico, D.F., 09340 (Mexico)], E-mail: maestro_juan_rafael@hotmail.com; Martin-del-Campo, C. [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532, Jiutepec, Mor., 62550 (Mexico)], E-mail: cecilia.martin.del.campo@gmail.com

    2009-10-15

    In this paper the production and destruction, as well as the radiotoxicity of plutonium and minor actinides (MA) obtained from the multi-recycling of boiling water reactors (BWR) fuel are analyzed. A BWR MOX fuel assembly, with uranium (from enrichment tails), plutonium and minor actinides is designed and studied using the HELIOS code. The actinides mass and the radiotoxicity of the spent fuel are compared with those of the once-through or direct cycle. Other type of fuel assembly is also analyzed: an assembly with enriched uranium and minor actinides; without plutonium. For this study, the fuel remains in the reactor for four cycles, where each cycle is 18 months length, with a discharge burnup of 48 MWd/kg. After this time, the fuel is placed in the spent fuel pool to be cooled during 5 years. Afterwards, the fuel is recycled for the next fuel cycle; 2 years are considered for recycle and fuel fabrication. Two recycles are taken into account in this study. Regarding radiotoxicity, results show that in the period from the spent fuel discharge until 1000 years, the highest reduction in the radiotoxicity related to the direct cycle is obtained with a fuel composed of MA and enriched uranium. However, in the period after few thousands of years, the lowest radiotoxicity is obtained using the fuel with plutonium and MA. The reduction in the radiotoxicity of the spent fuel after one or two recycling in a BWR is however very small for the studied MOX assemblies, reaching a maximum reduction factor of 2.

  17. TUCS/phosphate mineralization of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Nash, K.L. [Argonne National Lab., IL (United States)

    1997-10-01

    This program has as its objective the development of a new technology that combines cation exchange and mineralization to reduce the concentration of heavy metals (in particular actinides) in groundwaters. The treatment regimen must be compatible with the groundwater and soil, potentially using groundwater/soil components to aid in the immobilization process. The delivery system (probably a water-soluble chelating agent) should first concentrate the radionuclides then release the precipitating anion, which forms thermodynamically stable mineral phases, either with the target metal ions alone or in combination with matrix cations. This approach should generate thermodynamically stable mineral phases resistant to weathering. The chelating agent should decompose spontaneously with time, release the mineralizing agent, and leave a residue that does not interfere with mineral formation. For the actinides, the ideal compound probably will release phosphate, as actinide phosphate mineral phases are among the least soluble species for these metals. The most promising means of delivering the precipitant would be to use a water-soluble, hydrolytically unstable complexant that functions in the initial stages as a cation exchanger to concentrate the metal ions. As it decomposes, the chelating agent releases phosphate to foster formation of crystalline mineral phases. Because it involves only the application of inexpensive reagents, the method of phosphate mineralization promises to be an economical alternative for in situ immobilization of radionuclides (actinides in particular). The method relies on the inherent (thermodynamic) stability of actinide mineral phases.

  18. A review of hydrofluoric acid burn management.

    Science.gov (United States)

    McKee, Daniel; Thoma, Achilleas; Bailey, Kristy; Fish, Joel

    2014-01-01

    Hydrofluoric acid (HF) causes a unique chemical burn. Much of the current treatment knowledge of HF burns is derived from case reports, small case series, animal studies and anecdotal evidence. The management can be challenging because clinical presentation and severity of these burns vary widely. Plastic surgeons managing burn patients must have a basic understanding of the pathophysiology, the range of severity in presentation and the current treatment options available for HF burns. The present article reviews the current understanding of the pathophysiology and systemic effects associated with severe HF burns. Furthermore, it distinguishes between minor and life-threatening HF burns and describes several of the basic techniques that are available to treat patients with HF burns.

  19. Electronic Structure of the Actinide Metals

    DEFF Research Database (Denmark)

    Johansson, B.; Skriver, Hans Lomholt

    1982-01-01

    Some recent experimental photoelectron spectroscopic results for the actinide metals are reviewed and compared with the theoretical picture of the basic electronic structure that has been developed for the actinides during the last decade. In particular the experimental data confirm the change from...... itinerant to localized 5f electron behaviour calculated to take place between plutonium and americium. From experimental data it is shown that the screening of deep core-holes is due to 5f electrons for the lighter actinide elements and 6d electrons for the heavier elements. A simplified model for the full...... LMTO electronic structure calculations is introduced. In this model the spd and 5f electronic contributions are treated as separable entities. It is shown that the model reproduces quite well the results from the full treatment. The equilibrium volume, cohesive energy and bulk modulus are calculated...

  20. Monazite as a suitable actinide waste form

    Energy Technology Data Exchange (ETDEWEB)

    Schlenz, Hartmut; Heuser, Julia; Schmitz, Stephan; Bosbach, Dirk [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Energie und Klimaforschung (IEK), Nukleare Entsorgung und Reaktorsicherheit (IEK-6); Neumann, Andreas [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Energie und Klimaforschung (IEK), Nukleare Entsorgung und Reaktorsicherheit (IEK-6); RWTH Aachen Univ. (Germany). Inst. for Crystallography

    2013-03-01

    The conditioning of radioactive waste from nuclear power plants and in some countries even of weapons plutonium is an important issue for science and society. Therefore the research on appropriate matrices for the immobilization of fission products and actinides is of great interest. Beyond the widely used borosilicate glasses, ceramics are promising materials for the conditioning of actinides like U, Np, Pu, Am, and Cm. Monazite-type ceramics with general composition LnPO{sub 4} (Ln = La to Gd) and solid solutions of monazite with cheralite or huttonite represent important materials in this field. Monazite appears to be a promising candidate material, especially because of its outstanding properties regarding radiation resistance and chemical durability. This article summarizes the most recent results concerning the characterization of monazite and respective solid solutions and the study of their chemical, thermal, physical and structural properties. The aim is to demonstrate the suitability of monazite as a secure and reliable waste form for actinides. (orig.)

  1. Sigma Team for Advanced Actinide Recycle FY2015 Accomplishments and Directions

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-30

    The Sigma Team for Minor Actinide Recycle (STAAR) has made notable progress in FY 2015 toward the overarching goal to develop more efficient separation methods for actinides in support of the United States Department of Energy (USDOE) objective of sustainable fuel cycles. Research in STAAR has been emphasizing the separation of americium and other minor actinides (MAs) to enable closed nuclear fuel recycle options, mainly within the paradigm of aqueous reprocessing of used oxide nuclear fuel dissolved in nitric acid. Its major scientific challenge concerns achieving selectivity for trivalent actinides vs lanthanides. Not only is this challenge yielding to research advances, but technology concepts such as ALSEP (Actinide Lanthanide Separation) are maturing toward demonstration readiness. Efforts are organized in five task areas: 1) combining bifunctional neutral extractants with an acidic extractant to form a single process solvent, developing a process flowsheet, and demonstrating it at bench scale; 2) oxidation of Am(III) to Am(VI) and subsequent separation with other multivalent actinides; 3) developing an effective soft-donor solvent system for An(III) selective extraction using mixed N,O-donor or all-N donor extractants such as triazinyl pyridine compounds; 4) testing of inorganic and hybrid-type ion exchange materials for MA separations; and 5) computer-aided molecular design to identify altogether new extractants and complexants and theory-based experimental data interpretation. Within these tasks, two strategies are employed, one involving oxidation of americium to its pentavalent or hexavalent state and one that seeks to selectively complex trivalent americium either in the aqueous phase or the solvent phase. Solvent extraction represents the primary separation method employed, though ion exchange and crystallization play an important role. Highlights of accomplishments include: Confirmation of the first-ever electrolytic oxidation of Am(III) in a

  2. Spin–orbit coupling in actinide cations

    DEFF Research Database (Denmark)

    Bagus, Paul S.; Ilton, Eugene S.; Martin, Richard L.

    2012-01-01

    The limiting case of Russell–Saunders coupling, which leads to a maximum spin alignment for the open shell electrons, usually explains the properties of high spin ionic crystals with transition metals. For actinide compounds, the spin–orbit splitting is large enough to cause a significantly reduced...... spin alignment. Novel concepts are used to explain the dependence of the spin alignment on the 5f shell occupation. We present evidence that the XPS of ionic actinide materials may provide direct information about the angular momentum coupling within the 5f shell....

  3. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  4. Actinide ion extraction using room temperature ionic liquids: opportunities and challenges for nuclear fuel cycle applications.

    Science.gov (United States)

    Mohapatra, Prasanta Kumar

    2017-02-14

    Studies on the extraction of actinide ions from radioactive feeds have great relevance in nuclear fuel cycle activities, mainly in the back end processes focused on reprocessing and waste management. Room temperature ionic liquid (RTIL) based diluents are becoming increasingly popular due to factors such as more efficient extraction vis-à-vis molecular diluents, higher metal loading, higher radiation resistance, etc. The fascinating chemistry of the actinide ions in RTIL based solvent systems due to complex extraction mechanisms makes it a challenging area of research. By the suitable tuning of the cationic and anionic parts of the ionic liquids, their physical properties such as density, dielectric constant and viscosity can be changed which are considered key parameters in metal ion extraction. Aqueous solubility of the RTILs, which can lead to significant loss in the solvent inventory, can be avoided by appending the extractant moieties onto the ionic liquid. While the low vapour pressure and non-flammability of the ionic liquids make them appear as 'green' diluents, their aqueous solubility raises concerns of environmental hazards. The present article gives a summary of studies carried out on actinide ion extraction and presents perspectives of its applications in the nuclear fuel cycle. The article discusses various extractants used for actinide ion extraction and at many places, comparison is made vis-à-vis molecular diluents which includes the nature of the extracted species and the mechanism of extraction. Results of studies on rare earth elements are also included in view of their similarities with the trivalent minor actinides.

  5. Treating burns caused by hydrofluoric acid.

    Science.gov (United States)

    Summers, Anthony

    2011-06-01

    Hydrofluoric acid is an ingredient of many common household and industrial solutions. Even seemingly minor burns caused by this acid can have catastrophic effects if they are treated inappropriately or late. This article describes the signs and symptoms, the pathophysiology and the emergency management of hydrofluoric acid burns.

  6. Actinide valences in xenotime and monazite

    Energy Technology Data Exchange (ETDEWEB)

    Vance, E.R. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001 Kirrawee DC, NSW 2232 (Australia); Zhang, Y., E-mail: yzx@ansto.gov.au [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001 Kirrawee DC, NSW 2232 (Australia); McLeod, T.; Davis, J. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001 Kirrawee DC, NSW 2232 (Australia)

    2011-02-28

    Tetravalent U, Np and Pu can be substituted by ceramic methods into the rare earth site of xenotime and monazite in air atmospheres using Ca ions as charge compensators, while no evidence of penta- or hexavalent actinide ions was found. Some Pu{sup 3+} and Np{sup 3+} can be incorporated in xenotime samples fired in a reducing atmosphere.

  7. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  8. Scalar Static Polarizabilities of Lanthanides and Actinides

    CERN Document Server

    Dzuba, V A; Flambaum, V V

    2014-01-01

    We calculate scalar static polarizabilities for lanthanides and actinides, the atoms with open $4f$ or $5f$ subshell. We show that polarizabilities of the low states are approximately the same for all states of given configuration and present a way of calculating them reducing valence space to just two or three valence electrons occupying $6s$ and $5d$ states for lanthanides or $7s$ and $6d$ states for actinides while $4f$ and $5f$ states are considered to be in the core. Configuration interaction technique is used to calculate polarizabilities of lanthanides and actinides for all states of the $4f^n6s^2$ and $4f^{n-1}6s^25d$ configurations of lanthanides and all states of the $5f^{n}7s^2$ and $5f^{n-1}7s^26d$ configurations of actinides. Polarizability of the electron core (including f-orbitals) has been calculated in the RPA approximation.

  9. Actinide measurements by AMS using fluoride matrices

    Energy Technology Data Exchange (ETDEWEB)

    Cornett, R.J., E-mail: Jack.Cornett@uottawa.ca [André E. Lalonde AMS Laboratory, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Department of Earth Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Kazi, Z.H. [André E. Lalonde AMS Laboratory, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Department of Earth Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Zhao, X.-L. [André E. Lalonde AMS Laboratory, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Chartrand, M.G. [André E. Lalonde AMS Laboratory, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Department of Earth Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Charles, R.J.; Kieser, W.E. [André E. Lalonde AMS Laboratory, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5 (Canada)

    2015-10-15

    Actinides can be measured by alpha spectroscopy (AS), mass spectroscopy or accelerator mass spectrometry (AMS). We tested a simple method to separate Pu and Am isotopes from the sample matrix using a single extraction chromatography column. The actinides in the column eluent were then measured by AS or AMS using a fluoride target matrix. Pu and Am were coprecipitated with NdF{sub 3}. The strongest AMS beams of Pu and Am were produced when there was a large excess of fluoride donor atoms in the target and the NdF{sub 3} precipitates were diluted about 6–8 fold with PbF{sub 2}. The measured concentrations of {sup 239,240}Pu and {sup 241}Am agreed with the concentrations in standards of known activity and with two IAEA certified reference materials. Measurements of {sup 239,240}Pu and {sup 241}Am made at A.E. Lalonde AMS Laboratory agree, within their statistical uncertainty, with independent measurements made using the IsoTrace AMS system. This work demonstrated that fluoride targets can produce reliable beams of actinide anions and that the measurement of actinides using fluorides agree with published values in certified reference materials.

  10. Adventures in Actinide Chemistry: A Year of Exploring Uranium and Thorium in Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Pagano, Justin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-08

    The first part of this collection of slides is concerned with considerations when working with actinides. The topics discussed in the document as a whole are the following: Actinide chemistry vs. transition metal chemistry--tools we can use; New synthetic methods to obtain actinide hydrides; Actinide metallacycles: synthesis, structure, and properties; and Reactivity of actinide metallacycles.

  11. Treatment of acute burn blisters in unscheduled care settings.

    Science.gov (United States)

    Payne, Sarah; Cole, Elaine

    2012-09-01

    Many patients with minor burns present at emergency departments and urgent care centres, where their management is often undertaken by experienced nurses rather than experts in treating burns. This article describes a small study of the clinical decision making that underpins nurses' management of minor burns in these non-specialist settings. The results suggest that, due to a lack of relevant research, nurses base their decisions on previous experience or expert colleagues' opinions and advice rather than on the evidence.

  12. Synthesis of actinide nitrides, phosphides, sulfides and oxides

    Science.gov (United States)

    Van Der Sluys, William G.; Burns, Carol J.; Smith, David C.

    1992-01-01

    A process of preparing an actinide compound of the formula An.sub.x Z.sub.y wherein An is an actinide metal atom selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, x is selected from the group consisting of one, two or three, Z is a main group element atom selected from the group consisting of nitrogen, phosphorus, oxygen and sulfur and y is selected from the group consisting of one, two, three or four, by admixing an actinide organometallic precursor wherein said actinide is selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, a suitable solvent and a protic Lewis base selected from the group consisting of ammonia, phosphine, hydrogen sulfide and water, at temperatures and for time sufficient to form an intermediate actinide complex, heating said intermediate actinide complex at temperatures and for time sufficient to form the actinide compound, and a process of depositing a thin film of such an actinide compound, e.g., uranium mononitride, by subliming an actinide organometallic precursor, e.g., a uranium amide precursor, in the presence of an effectgive amount of a protic Lewis base, e.g., ammonia, within a reactor at temperatures and for time sufficient to form a thin film of the actinide compound, are disclosed.

  13. Electrorecovery of actinides at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Stoll, Michael E [Los Alamos National Laboratory; Oldham, Warren J [Los Alamos National Laboratory; Costa, David A [Los Alamos National Laboratory

    2008-01-01

    There are a large number of purification and processing operations involving actinide species that rely on high-temperature molten salts as the solvent medium. One such application is the electrorefining of impure actinide metals to provide high purity material for subsequent applications. There are some drawbacks to the electrodeposition of actinides in molten salts including relatively low yields, lack of accurate potential control, maintaining efficiency in a highly corrosive environment, and failed runs. With these issues in mind we have been investigating the electrodeposition of actinide metals, mainly uranium, from room temperature ionic liquids (RTILs) and relatively high-boiling organic solvents. The RTILs we have focused on are comprised of 1,3-dialkylimidazolium or quaternary ammonium cations and mainly the {sup -}N(SO{sub 2}CF{sub 3}){sub 2} anion [bis(trif1uoromethylsulfonyl)imide {equivalent_to} {sup -}NTf{sub 2}]. These materials represent a class of solvents that possess great potential for use in applications employing electrochemical procedures. In order to ascertain the feasibility of using RTILs for bulk electrodeposition of actinide metals our research team has been exploring the electron transfer behavior of simple coordination complexes of uranium dissolved in the RTIL solutions. More recently we have begun some fundamental electrochemical studies on the behavior of uranium and plutonium complexes in the organic solvents N-methylpyrrolidone (NMP) and dimethylsulfoxide (DMSO). Our most recent results concerning electrodeposition will be presented in this account. The electrochemical behavior of U(IV) and U(III) species in RTILs and the relatively low vapor pressure solvents NMP and DMSO is described. These studies have been ongoing in our laboratory to uncover conditions that will lead to the successful bulk electrodeposition of actinide metals at a working electrode surface at room temperature or slightly elevated temperatures. The RTILs we

  14. Recovery of actinides from actinide-aluminium alloys by chlorination: Part I

    Science.gov (United States)

    Cassayre, L.; Souček, P.; Mendes, E.; Malmbeck, R.; Nourry, C.; Eloirdi, R.; Glatz, J.-P.

    2011-07-01

    Pyrochemical processes in molten LiCl-KCl are being developed in ITU for recovery of actinides from spent nuclear fuel. The fuel is anodically dissolved to the molten salt electrolyte and actinides are electrochemically reduced on solid aluminium cathodes forming solid actinide-aluminium alloys. A chlorination route is being investigated for recovery of actinides from the alloys. This route consists in three steps: Vacuum distillation for removal of the salt adhered on the electrode, chlorination of the actinide-aluminium alloys by chlorine gas and sublimation of the formed AlCl 3. A thermochemical study showed thermodynamic feasibility of all three steps. On the basis of the conditions identified by the calculations, experiments using pure UAl 3 alloy were carried out to evaluate and optimise the chlorination step. The work was focused on determination of the optimal temperature and Cl 2/UAl 3 molar ratio, providing complete chlorination of the alloy without formation of volatile UCl 5 and UCl 6. The results showed high efficient chlorination at a temperature of 150 °C.

  15. Actinide Isotopes for the Synthesis of Superheavy Nuclei

    Science.gov (United States)

    Roberto, J. B.; Alexander, C. W.; Boll, R. A.; Dean, D. J.; Ezold, J. G.; Felker, L. K.; Rykaczewski, K. P.

    2014-09-01

    Recent research resulting in the synthesis of isotopes of new elements 113-118 has demonstrated the importance of actinide targets in superheavy element research. Oak Ridge National Laboratory (ORNL) has unique facilities for the production and processing of actinide target materials, including the High Flux Isotope Reactor (HFIR) and the Radiochemical Engineering Development Center (REDC). These facilities have provided actinide target materials that have been used for the synthesis of all superheavy (SHE) elements above Copernicium (element 112). In this paper, the use of actinide targets for SHE research and discovery is described, including recent results for element 117 using 249Bk target material from ORNL. ORNL actinide capabilities are reviewed, including production and separation/purification, availabilities of actinide materials, and future opportunities including novel target materials such as 251Cf.

  16. Seventeen-coordinate actinide helium complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kaltsoyannis, Nikolas [School of Chemistry, The University of Manchester (United Kingdom)

    2017-06-12

    The geometries and electronic structures of molecular ions featuring He atoms complexed to actinide cations are explored computationally using density functional and coupled cluster theories. A new record coordination number is established, as AcHe{sub 17}{sup 3+}, ThHe{sub 17}{sup 4+}, and PaHe{sub 17}{sup 4+} are all found to be true geometric minima, with the He atoms clearly located in the first shell around the actinide. Analysis of AcHe{sub n}{sup 3+} (n=1-17) using the quantum theory of atoms in molecules (QTAIM) confirms these systems as having closed shell, charge-induced dipole bonding. Excellent correlations (R{sup 2}>0.95) are found between QTAIM metrics (bond critical point electron densities and delocalization indices) and the average Ac-He distances, and also with the incremental He binding energies. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-07-01

    The first international information exchange meeting on actinide and fission product separation and transmutation, took place in Mito in Japan, on 6-8 November 1990. It starts with a number of general overview papers to give us some broad perspectives. Following that it takes a look at some basic facts about physics and about the quantities of materials it is talking about. Then it proceeds to some specific aspects of partitioning, starting with evolution from today commercially applied processes and going on to other possibilities. At the end of the third session it takes a look at the significance of partitioning and transmutation of actinides before it embarks on two sessions on transmutation, first in reactors and second in accelerators. The last session is designed to throw back into the discussion the main points which need to be looked at when considering future work in this area. (A.L.B.)

  18. Conjugates of magnetic nanoparticle-actinide specific chelator for radioactive waste separation.

    Science.gov (United States)

    Kaur, Maninder; Zhang, Huijin; Martin, Leigh; Todd, Terry; Qiang, You

    2013-01-01

    A novel nanotechnology for the separation of radioactive waste that uses magnetic nanoparticles (MNPs) conjugated with actinide specific chelators (MNP-Che) is reviewed with a focus on design and process development. The MNP-Che separation process is an effective way of separating heat generating minor actinides (Np, Am, Cm) from spent nuclear fuel solution to reduce the radiological hazard. It utilizes coated MNPs to selectively adsorb the contaminants onto their surfaces, after which the loaded particles are collected using a magnetic field. The MNP-Che conjugates can be recycled by stripping contaminates into a separate, smaller volume of solution, and then become the final waste form for disposal after reusing number of times. Due to the highly selective chelators, this remediation method could be both simple and versatile while allowing the valuable actinides to be recovered and recycled. Key issues standing in the way of large-scale application are stability of the conjugates and their dispersion in solution to maintain their unique properties, especially large surface area, of MNPs. With substantial research progress made on MNPs and their surface functionalization, as well as development of environmentally benign chelators, this method could become very flexible and cost-effective for recycling used fuel. Finally, the development of this nanotechnology is summarized and its future direction is discussed.

  19. Conjugates of Magnetic Nanoparticle -- Actinide Specific Chelator for Radioactive Waste Separation

    Energy Technology Data Exchange (ETDEWEB)

    Maninder Kaur; Huijin Zhang; Leigh Martin; Terry Todd; You Qiang

    2013-11-01

    A novel nanotechnology for the separation of radioactive waste that uses magnetic nanoparticles (MNPs) conjugated with actinide specific chelators (MNP-Che) is reviewed with a focus on design and process development. The MNP-Che separation process is an effective way of separating heat generating minor actinides (Np, Am, Cm) from spent nuclear fuel solution to reduce the radiological hazard. It utilizes coated MNPs to selectively adsorb the contaminants onto their surfaces, after which the loaded particles are collected using a magnetic field. The MNP-Che conjugates can be recycled by stripping contaminates into a separate, smaller volume of solution, and then become the final waste form for disposal after reusing number of times. Due to the highly selective chelators, this remediation method could be both simple and versatile while allowing the valuable actinides to be recovered and recycled. Key issues standing in the way of large-scale application are stability of the conjugates and their dispersion in solution to maintain their unique properties, especially large surface area, of MNPs. With substantial research progress made on MNPs and their surface functionalization, as well as development of environmentally benign chelators, this method could become very flexible and cost-effective for recycling used fuel. Finally, the development of this nanotechnology is summarized and its future direction is discussed.

  20. Preparation, properties, and some recent studies of the actinide metals

    Energy Technology Data Exchange (ETDEWEB)

    Haire, R.G.

    1985-01-01

    The actinide elements form a unique series of metals. The variation in their physial properties combined with the varying availability of the different elements offers a challenge to the preparative scientist. This article provides a brief review of selected methods used for preparing ..mu..g to kg amounts of the actinide metals and the properties of these metals. In addition, some recent studies on selected actinide metals are discussed. 62 refs.

  1. SPECIFIC SEQUESTERING AGENTS FOR THE ACTINIDES

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Kenneth N.; Smith, William L.; Weitl, Frederick L.; Durbin, Patricia W.; Jones, E.Sarah; Abu-Dari, Kamal; Sofen, Stephen R.; Cooper, Stephen R.

    1979-09-01

    This paper summarizes the current status of a continuing project directed toward the synthesis and characterization of chelating agents which are specific for actinide ions - especially Pu(IV) - using a biomimetic approach that relies on the observation that Pu(IV) and Fe(III) has marked similarities that include their biological transport and distribution in mammals. Since the naturally-occurring Fe(III) sequestering agents produced by microbes commonly contain hydroxamate and catecholate functional groups, these groups should complex the actinides very strongly and macrocyclic ligands incorporating these moieties are being prepared. We have reported the isolation and structure analysis of an isostructural series of tetrakis(catecholato) complexes with the general stoichiometry Na{sub 4}[M(C{sub 6}H{sub 4}O{sub 2}){sub 4}] • 21 H{sub 2}O (M = Th, U, Ce, Hf). These complexes are structural archetypes for the cavity that must be formed if an actinide-specific sequestering agent is to conform ideally to the coordination requirements of the central metal ion. The [M(cat){sub 4}]{sup 4-} complexes have the D{sub 2d} symmetry of the trigonal-faced dodecahedron.. The complexes Th [R'C(0)N(O)R]{sub 4} have been prepared where R = isopropyl and R' = t-butyl or neopentyl. The neopentyl derivative is also relatively close to an idealized D{sub 2d} dodecahedron, while the sterically more hindered t-butyl compound is distorted toward a cubic geometry. The synthesis of a series of 2, 3-dihydroxy-benzoyl amide derivatives of linear and cyclic tetraaza- and diazaalkanes is reported. Sulfonation of these compounds improves the metal complexation and in vivo removal of plutonium from test animals. These results substantially exceed the capabilities of compounds presently used for the therapeutic treatment of actinide contamination.

  2. Positron Spectroscopy of Hydrothermally Grown Actinide Oxides

    Science.gov (United States)

    2014-03-27

    In this method, the powdered material is placed in a solution which contains extremely powerful mineralizers , such as cesium fluoride for actinide...environmentally triggered background counts and it subtends a very small solid angle with respect to the detector. Thus, the benefit of the lead sheet outweighs...low electron density. This is mainly a property of their atomic makeup , though the microstructure of the paper is porous as well. In addition, a

  3. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  4. Recovery of actinides from actinide-aluminium alloys by chlorination: Part II

    Science.gov (United States)

    Souček, P.; Cassayre, L.; Eloirdi, R.; Malmbeck, R.; Meier, R.; Nourry, C.; Claux, B.; Glatz, J.-P.

    2014-04-01

    A chlorination route is being investigated for recovery of actinides from actinide-aluminium alloys, which originate from pyrochemical recovery of actinides from spent metallic nuclear fuel by electrochemical methods in molten LiCl-KCl. In the present work, the most important steps of this route were experimentally tested using U-Pu-Al alloy prepared by electrodeposition of U and Pu on solid aluminium plate electrodes. The investigated processes were vacuum distillation for removal of the salt adhered on the electrode, chlorination of the alloy by chlorine gas and sublimation of the AlCl3 formed. The processes parameters were set on the base of a previous thermochemical study and an experimental work using pure UAl3 alloy. The present experimental results indicated high efficiency of salt distillation and chlorination steps, while the sublimation step should be further optimised.

  5. Hydrothermal decomposition of actinide(IV oxalates: a new aqueous route towards reactive actinide oxide nanocrystals

    Directory of Open Access Journals (Sweden)

    Walter Olaf

    2016-01-01

    Full Text Available The hydrothermal decomposition of actinide(IV oxalates (An= Th, U, Pu at temperatures between 95 and 250 °C is shown to lead to the production of highly crystalline, reactive actinide oxide nanocrystals (NCs. This aqueous process proved to be quantitative, reproducible and fast (depending on temperature. The NCs obtained were characterised by X-ray diffraction and TEM showing their size to be smaller than 15 nm. Attempts to extend this general approach towards transition metal or lanthanide oxalates failed in the 95–250 °C temperature range. The hydrothermal decomposition of actinide oxalates is therefore a clean, flexible and powerful approach towards NCs of AnO2 with possible scale-up potential.

  6. Self-inflicted burns in soldiers.

    Science.gov (United States)

    Gronovich, Yoav; Binenboym, Rami; Tuchman, Izhak; Eizenman, Nirit; Golan, Jacob

    2013-10-01

    Self-inflicted burns are a multidisciplinary medical challenge. In contrast to the more common motive of attempted suicide in self-infliction of a burn, usually of a serious degree, a second motive is malingering. Motivation of this nature has been exhibited among Israeli soldiers who inflict on themselves low- to moderate-degree burns to obtain dismissal from mandatory military service. The purpose of our study is to investigate and define this phenomenon. A retrospective analysis was performed on a population of 75 soldiers admitted to our Medical Center during the year 2010 with the diagnosis of any sort of burn. We set up a database including all relevant information about the burns including date and time of occurrence, cause, body location, depth of burn injury, area and shape of burn, etiology, and prescribed treatment. The summer was found to be the season with the highest incidence of burns. As far as the day of the week was influential, we found that the greater percentage of burns occurred at the beginning of the week. Most of the burns involved a minor surface area on the dorsal aspect of the foot. Scalding with hot water was the most common cause of burn. Eighty-one percent of the burns were atypical, being well demarcated.Most of the burn cases happened at home with no witnesses to the event. Sixty-one percent of the patients were not admitted to the hospital and were conservatively treated. Israeli soldiers tend to inflict burns on themselves for ulterior motives. Such burns are almost always minor with a small trauma area and sharp demarcations, and hence can be differentiated from other self-inflicted burns described in the literature. We found that most of the burns occur when the soldiers are on vacation at home. This is probably because the privacy allows them to carry out their act undisturbed. It is important to raise the awareness of attending physicians to the characteristics of these burns. Such patients should be evaluated by medical teams

  7. Burns (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Burns KidsHealth > For Parents > Burns A A A What's ... outlets, etc.) overexposure to the sun Types of Burns Burns are often categorized as first-, second-, or ...

  8. Advanced Aqueous Separation Systems for Actinide Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Ken [Washington State Univ., Pullman, WA (United States); Martin, Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lumetta, Gregg [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-04-02

    One of the most challenging aspects of advanced processing of used nuclear fuel is the separation of transplutonium actinides from fission product lanthanides. This separation is essential if actinide transmutation options are to be pursued in advanced fuel cycles, as lanthanides compete with actinides for neutrons in both thermal and fast reactors, thus limiting efficiency. The separation is difficult because the chemistry of Am3+ and Cm3+ is nearly identical to that of the trivalent lanthanides (Ln3+). The prior literature teaches that two approaches offer the greatest probability of devising a successful group separation process based on aqueous processes: 1) the application of complexing agents containing ligand donor atoms that are softer than oxygen (N, S, Cl-) or 2) changing the oxidation state of Am to the IV, V, or VI state to increase the essential differences between Am and lanthanide chemistry (an approach utilized in the PUREX process to selectively remove Pu4+ and UO22+ from fission products). The latter approach offers the additional benefit of enabling a separation of Am from Cm, as Cm(III) is resistant to oxidation and so can easily be made to follow the lanthanides. The fundamental limitations of these approaches are that 1) the soft(er) donor atoms that interact more strongly with actinide cations than lanthanides form substantially weaker bonds than oxygen atoms, thus necessitating modification of extraction conditions for adequate phase transfer efficiency, 2) soft donor reagents have been seen to suffer slow phase transfer kinetics and hydro-/radiolytic stability limitations and 3) the upper oxidation states of Am are all moderately strong oxidants, hence of only transient stability in media representative of conventional aqueous separations systems. There are examples in the literature of both approaches having been described. However, it is not clear at present that any extant process is sufficiently robust for application at the scale

  9. On the valence fluctuation in the early actinide metals

    Energy Technology Data Exchange (ETDEWEB)

    Söderlind, P., E-mail: soderlind@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Landa, A.; Tobin, J.G.; Allen, P. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Medling, S.; Booth, C.H. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Bauer, E.D.; Cooley, J.C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Sokaras, D.; Weng, T.-C.; Nordlund, D. [Stanford Synchrotron Radiation Lightsource, SLAC National Laboratory, Menlo Park, CA 94025 (United States)

    2016-02-15

    Highlights: • We make a connection between experimentally observed valence fluctuations and density functional theory. • We present a new model for valence fluctuations. • We present new experimental data for uranium and valence fluctuations. - Abstract: Recent X-ray measurements suggest a degree of valence fluctuation in plutonium and uranium intermetallics. We are applying a novel scheme, in conjunction with density functional theory, to predict 5f configuration fractions of states with valence fluctuations for the early actinide metals. For this purpose we perform constrained integer f-occupation calculations for the α phases of uranium, neptunium, and plutonium metals. For plutonium we also investigate the δ phase. The model predicts uranium and neptunium to be dominated by the f{sup 3} and f{sup 4} configurations, respectively, with only minor contributions from other configurations. For plutonium (both α and δ phase) the scenario is dramatically different. Here, the calculations predict a relatively even distribution between three valence configurations. The δ phase has a greater configuration fraction of f{sup 6} compared to that of the α phase. The theory is consistent with the interpretations of modern X-ray experiments and we present resonant X-ray emission spectroscopy results for α-uranium.

  10. Propagation of Nuclear Data Uncertainties for ELECTRA Burn-up Calculations

    Science.gov (United States)

    Sjöstrand, H.; Alhassan, E.; Duan, J.; Gustavsson, C.; Koning, A. J.; Pomp, S.; Rochman, D.; Österlund, M.

    2014-04-01

    The European Lead-Cooled Training Reactor (ELECTRA) has been proposed as a training reactor for fast systems within the Swedish nuclear program. It is a low-power fast reactor cooled by pure liquid lead. In this work, we propagate the uncertainties in 239Pu transport data to uncertainties in the fuel inventory of ELECTRA during the reactor lifetime using the Total Monte Carlo approach (TMC). Within the TENDL project, nuclear models input parameters were randomized within their uncertainties and 740 239Pu nuclear data libraries were generated. These libraries are used as inputs to reactor codes, in our case SERPENT, to perform uncertainty analysis of nuclear reactor inventory during burn-up. The uncertainty in the inventory determines uncertainties in: the long-term radio-toxicity, the decay heat, the evolution of reactivity parameters, gas pressure and volatile fission product content. In this work, a methodology called fast TMC is utilized, which reduces the overall calculation time. The uncertainty of some minor actinides were observed to be rather large and therefore their impact on multiple recycling should be investigated further. It was also found that, criticality benchmarks can be used to reduce inventory uncertainties due to nuclear data. Further studies are needed to include fission yield uncertainties, more isotopes, and a larger set of benchmarks.

  11. Burning vasculitis.

    Science.gov (United States)

    Chadha, Priyanka; Hobday, Dorian; O'Connor, Edmund Fitzgerald; D'Cruz, David

    2016-04-26

    We present the case of a 69-year-old man who was found collapsed close to a heat source and admitted to hospital for severe sepsis. He was also found to have widespread blistering and ulceration of his right leg; however, a history was unobtainable due to reduced consciousness levels. The leg lesions had the initial appearance of mixed depth burns and a management plan was made to transfer the patient to a burns unit for debridement. It was subsequently noted that the patient had a previous diagnosis of seropositive erosive rheumatoid arthritis. A biopsy of the leg lesion was performed and a diagnosis of rheumatoid vasculitis confirmed. Treatment with systemic steroids, intravenous antibiotics and intravenous immunoglobulin therapy for severe hypogammaglobulinaemia was started, and the patient was not transferred for surgical debridement. Rheumatoid vasculitis is a rare and extremely serious complication of rheumatoid arthritis that can manifest in a number of ways, occasionally mimicking other conditions. This case is essential to raise awareness of rare, severe rheumatoid vasculitis and of the potential for its misdiagnosis as a mixed depth burn.

  12. Research in actinide chemistry. Progress report, 1990--1993

    Energy Technology Data Exchange (ETDEWEB)

    Choppin, G.R.

    1993-04-01

    This research studies the behavior of the actinide elements in aqueous solution. The high radioactivity of the transuranium actinides limits the concentrations which can be studied and, consequently, limits the experimental techniques. However, oxidation state analogs (trivalent lanthanides, tetravalent thorium, and hexavalent uranium) do not suffer from these limitations. Behavior of actinides in the environment are a major USDOE concern, whether in connection with long-term releases from a repository, releases from stored defense wastes or accidental releases in reprocessing, etc. Principal goal of our research was expand the thermodynamic data base on complexation of actinides by natural ligands (e.g., OH{sup {minus}}, CO{sub 3}{sup 2{minus}}, PO{sub 4}{sup 3{minus}}, humates). The research undertakes fundamental studies of actinide complexes which can increase understanding of the environmental behavior of these elements.

  13. Chemistry of lower valent actinide halides

    Energy Technology Data Exchange (ETDEWEB)

    Lau, K.H.; Hildenbrand, D.L.

    1992-01-01

    This research effort was concerned almost entirely with the first two members of the actinide series, thorium and uranium, although the work was later extended to some aspects of the neptunium-fluorine system in a collaborative program with Los Alamos National Laboratory. Detailed information about the lighter actinides will be helpful in modeling the properties of the heavier actinide compounds, which will be much more difficult to study experimentally. In this program, thermochemical information was obtained from high temperature equilibrium measurements made by effusion-beam mass spectrometry and by effusion-pressure techniques. Data were derived primarily from second-law analysis so as to avoid potential errors in third-law calculations resulting from uncertainties in spectroscopic and molecular constants. This approach has the additional advantage of yielding reaction entropies that can be checked for consistency with various molecular constant assignments for the species involved. In the U-F, U-Cl, and U-Br systems, all of the gaseous species UX, UX{sub 2}, UX{sub 3}, UX{sub 4}, and UX{sub 5}, where X represents the halogen, were identified and characterized; the corresponding species ThX, ThX{sub 2}, ThX{sub 3}, and ThX{sub 4} were studied in the Th-F, Th-Cl, and Th-Br systems. A number of oxyhalide species in the systems U-0-F, U-0-Cl, Th-0-F, and Th-O-Cl were studied thermochemically. Additionally, the sublimation thermodynamics of NpF{sub 4}(s) and NpO{sub 2}F{sub 2}(s) were studied by mass spectrometry.

  14. Calculated Bulk Properties of the Actinide Metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Andersen, O. K.; Johansson, B.

    1978-01-01

    Self-consistent relativistic calculations of the electronic properties for seven actinides (Ac-Am) have been performed using the linear muffin-tin orbitals method within the atomic-sphere approximation. Exchange and correlation were included in the local spin-density scheme. The theory explains...... the variation of the atomic volume and the bulk modulus through the 5f series in terms of an increasing 5f binding up to plutonium followed by a sudden localisation (through complete spin polarisation) in americium...

  15. Electronic structure and magnetism in actinide compounds

    Energy Technology Data Exchange (ETDEWEB)

    Durakiewicz, T. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)]. E-mail: tomasz@lanl.gov; Joyce, J.J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lander, G.H. [JRC, Institute of Transuranium Elements, Postfach 2340, 76125 Karlsruhe (Germany); Olson, C.G. [Ames Laboratory, Iowa State University, Ames, Iowa 5011 (United States); Butterfield, M.T. [Lawrence Livermoore National Laboratory, Livermoore, CA 94550 (United States); Guziewicz, E. [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland); Batista, C.D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Arko, A.J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Morales, L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mattenberger, K. [Laboratorium fur Festkorperphysik, ETH, CH-8093, Zurich (Switzerland); Vogt, O. [Laboratorium fur Festkorperphysik, ETH, CH-8093, Zurich (Switzerland)

    2006-05-01

    A close relationship between electronic structure and magnetic properties is observed in actinide compounds. The exact nature of this relationship is under investigation. We present examples of a direct link between electronic structure and ordered magnetic moment and/or magnetization. Specifically, results obtained for cubic U, Np and Pu compounds and quasi-2D U compounds are be presented. In the case of cubic compounds, a direct relationship between binding energy of valence band features and magnetic moment will be discussed. A Stoner-like mechanism and simple mean-field explanation is proposed for ferromagnetic UTe.

  16. Calculated Bulk Properties of the Actinide Metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Andersen, O. K.; Johansson, B.

    1978-01-01

    Self-consistent relativistic calculations of the electronic properties for seven actinides (Ac-Am) have been performed using the linear muffin-tin orbitals method within the atomic-sphere approximation. Exchange and correlation were included in the local spin-density scheme. The theory explains t...... the variation of the atomic volume and the bulk modulus through the 5f series in terms of an increasing 5f binding up to plutonium followed by a sudden localisation (through complete spin polarisation) in americium...

  17. Status of nuclear data for actinides

    Energy Technology Data Exchange (ETDEWEB)

    Guzhovskii, B.Y.; Gorelov, V.P.; Grebennikov, A.N. [Russia Federal Nuclear Centre, Arzamas (Russian Federation)] [and others

    1995-10-01

    Nuclear data required for transmutation problem include many actinide nuclei. In present paper the analysis of neutron fission, capture, (n,2n) and (n,3n) reaction cross sections at energy region from thermal point to 14 MeV was carried out for Th, Pa, U, Np, Pu, Am and Cm isotops using modern evaluated nuclear data libraries and handbooks of recommended nuclear data. Comparison of these data indicates on substantial discrepancies in different versions of files, that connect with quality and completeness of original experimental data.

  18. Crusted Scabies in the Burned Patient

    DEFF Research Database (Denmark)

    Berg, Jais Oliver; Alsbjørn, Bjarne

    2011-01-01

    The objectives of this study were 1) to describe a case of crusted scabies (CS) in a burned patient, which was primarily undiagnosed and led to a nosocomial outbreak in the burn unit; 2) to analyze and discuss the difficulties in diagnosing and treating this subset of patients with burn injury......; and 3) to design a treatment strategy for future patients. Case analysis and literature review were performed. The index patient had undiagnosed crusted scabies (sive Scabies norvegica) with the ensuing mite hyperinfestation when admitted to the department with minor acute dermal burns. Conservative...... healing and autograft healing were impaired because of the condition. Successful treatment of the burns was only accomplished secondarily to scabicide treatment. An outbreak of scabies among staff members indirectly led to diagnosis. CS is ubiquitous, and diagnosis may be difficult. This is the first...

  19. Actinide Solubility and Speciation in the WIPP

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Donald T. [Los Alamos National Laboratory

    2015-11-02

    The presentation begins with the role and need for nuclear repositories (overall concept, international updates (Sweden, Finland, France, China), US approach and current status), then moves on to the WIPP TRU repository concept (design, current status--safety incidents of February 5 and 14, 2014, path forward), and finally considers the WIPP safety case: dissolved actinide concentrations (overall approach, oxidation state distribution and redox control, solubility of actinides, colloidal contribution and microbial effects). The following conclusions are set forth: (1) International programs are moving forward, but at a very slow and somewhat sporadic pace. (2) In the United States, the Salt repository concept, from the perspective of the long-term safety case, remains a viable option for nuclear waste management despite the current operational issues/concerns. (3) Current model/PA prediction (WIPP example) are built on redundant conservatisms. These conservatisms are being addressed in the ongoing and future research to fill existing data gaps--redox control of plutonium by Fe(0, II), thorium (analog) solubility studies in simulated brine, contribution of intrinsic and biocolloids to the mobile concentration, and clarification of microbial ecology and effects.

  20. Evaluation of actinide biosorption by microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Happel, A.M.

    1996-06-01

    Conventional methods for removing metals from aqueous solutions include chemical precipitation, chemical oxidation or reduction, ion exchange, reverse osmosis, electrochemical treatment and evaporation. The removal of radionuclides from aqueous waste streams has largely relied on ion exchange methods which can be prohibitively costly given increasingly stringent regulatory effluent limits. The use of microbial cells as biosorbants for heavy metals offers a potential alternative to existing methods for decontamination or recovery of heavy metals from a variety of industrial waste streams and contaminated ground waters. The toxicity and the extreme and variable conditions present in many radionuclide containing waste streams may preclude the use of living microorganisms and favor the use of non-living biomass for the removal of actinides from these waste streams. In the work presented here, we have examined the biosorption of uranium by non-living, non-metabolizing microbial biomass thus avoiding the problems associated with living systems. We are investigating biosorption with the long term goal of developing microbial technologies for the remediation of actinides.

  1. Updated Neutron Nuclear Data Evaluation for 238Np

    Institute of Scientific and Technical Information of China (English)

    CHEN; Guo-chang; YU; Bao-sheng

    2012-01-01

    <正>The nuclear data with high accuracy for minor actinides are playing an important role in nuclear technology applications, including reactor design and operation, fuel cycle concepts, estimation of the amount of minor actinides in high burn-up reactors and the minor actinides transmutation. Base on a new

  2. First Aid: Burns

    Science.gov (United States)

    ... Your 1- to 2-Year-Old First Aid: Burns KidsHealth > For Parents > First Aid: Burns A A A Scald burns from hot water and other liquids are the most common burns in early childhood. Because burns range from mild ...

  3. First Aid: Burns

    Science.gov (United States)

    ... Old Feeding Your 8- to 12-Month-Old Feeding Your 1- to 2-Year-Old First Aid: Burns KidsHealth > For Parents > First Aid: Burns Print A A A Scald burns from hot water and other liquids are the most common burns in early childhood. Because burns range from mild to life threatening, ...

  4. End point control of an actinide precipitation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Muske, K.R. [Villanova Univ., PA (United States). Dept. of Chemical Engineering; Palmer, M.J. [Los Alamos National Lab., NM (United States)

    1997-10-01

    The actinide precipitation reactors in the nuclear materials processing facility at Los Alamos National Laboratory are used to remove actinides and other heavy metals from the effluent streams generated during the purification of plutonium. These effluent streams consist of hydrochloric acid solutions, ranging from one to five molar in concentration, in which actinides and other metals are dissolved. The actinides present are plutonium and americium. Typical actinide loadings range from one to five grams per liter. The most prevalent heavy metals are iron, chromium, and nickel that are due to stainless steel. Removal of these metals from solution is accomplished by hydroxide precipitation during the neutralization of the effluent. An end point control algorithm for the semi-batch actinide precipitation reactors at Los Alamos National Laboratory is described. The algorithm is based on an equilibrium solubility model of the chemical species in solution. This model is used to predict the amount of base hydroxide necessary to reach the end point of the actinide precipitation reaction. The model parameters are updated by on-line pH measurements.

  5. Thin extractive membrane for monitoring actinides in aqueous streams.

    Science.gov (United States)

    Chavan, Vivek; Paul, Sumana; Pandey, Ashok K; Kalsi, P C; Goswami, A

    2013-09-15

    Alpha spectrometry and solid state nuclear track detectors (SSNTDs) are used for monitoring ultra-trace amount of alpha emitting actinides in different aqueous streams. However, these techniques have limitations i.e. alpha spectrometry requires a preconcentration step and SSNTDs are not chemically selective. Therefore, a thin polymer inclusion membrane (PIM) supported on silanized glass was developed for preconcentraion and determination of ultra-trace concentration of actinides by α-spectrometry and SSNTDs. PIMs were formed by spin coating on hydrophobic glass slide or solvent casting to form thin and self-supported membranes, respectively. Sorption experiments indicated that uptakes of actinides in the PIM were highly dependent on acidity of solution i.e. Am(III) sorbed up to 0.1 molL(-1) HNO₃, U(VI) up to 0.5 molL(-1) HNO₃ and Pu(IV) from HNO₃ concentration as high as 4 molL(-1). A scheme was developed for selective sorption of target actinide in the PIM by adjusting acidity and oxidation state of actinide. The actinides sorbed in PIMs were quantified by alpha spectrometry and SSNTDs. For SSNTDs, neutron induced fission-fragment tracks and α-particle tracks were registered in Garware polyester and CR-39 for quantifications of natural uranium and α-emitting actinides ((241)Am/(239)Pu/(233)U), respectively. Finally, the membranes were tested to quantify Pu in 4 molL(-1) HNO3 solutions and synthetic urine samples.

  6. Scenarios for the transmutation of actinides in CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hyland, Bronwyn, E-mail: hylandb@aecl.ca [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada); Gihm, Brian, E-mail: gihmb@aecl.ca [Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga, Ontario, L5K 1B2 (Canada)

    2011-12-15

    With world stockpiles of used nuclear fuel increasing, the need to address the long-term utilization of this resource is being studied. Many of the transuranic (TRU) actinides in nuclear spent fuel produce decay heat for long durations, resulting in significant nuclear waste management challenges. These actinides can be transmuted to shorter-lived isotopes to reduce the decay heat period or consumed as fuel in a CANDU(R) reactor. Many of the design features of the CANDU reactor make it uniquely adaptable to actinide transmutation. The small, simple fuel bundle simplifies the fabrication and handling of active fuels. Online refuelling allows precise management of core reactivity and separate insertion of the actinides and fuel bundles into the core. The high neutron economy of the CANDU reactor results in high TRU destruction to fissile-loading ratio. This paper provides a summary of actinide transmutation schemes that have been studied in CANDU reactors at AECL, including the works performed in the past. The schemes studied include homogeneous scenarios in which actinides are uniformly distributed in all fuel bundles in the reactor, as well as heterogeneous scenarios in which dedicated channels in the reactor are loaded with actinide targets and the rest of the reactor is loaded with fuel. The transmutation schemes that are presented reflect several different partitioning schemes. Separation of americium, often with curium, from the other actinides enables targeted destruction of americium, which is a main contributor to the decay heat 100-1000 years after discharge from the reactor. Another scheme is group-extracted transuranic elements, in which all of the transuranic elements, plutonium (Pu), neptunium (Np), americium (Am), and curium (Cm) are extracted together and then transmuted. This paper also addresses ways of utilizing the recycled uranium, another stream from the separation of spent nuclear fuel, in order to drive the transmutation of other actinides.

  7. Crystal growth methods dedicated to low solubility actinide oxalates

    Energy Technology Data Exchange (ETDEWEB)

    Tamain, C., E-mail: christelle.tamain@cea.fr [CEA, Nuclear Energy Division, Marcoule, RadioChemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Arab-Chapelet, B. [CEA, Nuclear Energy Division, Marcoule, RadioChemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Rivenet, M. [University Lille Nord de France, Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, ENSCL-USTL, B.P. 90108, F-59652 Villeneuve d’Ascq Cedex (France); Grandjean, S. [CEA, Nuclear Energy Division, Marcoule, RadioChemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Abraham, F. [University Lille Nord de France, Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, ENSCL-USTL, B.P. 90108, F-59652 Villeneuve d’Ascq Cedex (France)

    2016-04-15

    Two novel crystal growth syntheses dedicated to low solubility actinide-oxalate systems and adapted to glove box handling are described. These methods based on the use of precursors of either actinide metal or oxalic acid have been optimized on lanthanide systems (analogue of actinides(III)) and then assessed on real actinide systems. They allow the synthesis of several actinide oxalate single crystals, Am{sub 2}(C{sub 2}O{sub 4}){sub 3}(H{sub 2}O){sub 3}·xH{sub 2}O, Th(C{sub 2}O{sub 4}){sub 2}·6H{sub 2}O, M{sub 2+x}[Pu{sup IV}{sub 2−x}Pu{sup III}{sub x}(C{sub 2}O{sub 4}){sub 5}]·nH{sub 2}O and M{sub 1−x}[Pu{sup III}{sub 1−x}Pu{sup IV}{sub x}(C{sub 2}O{sub 4}){sub 2}·H{sub 2}O]·nH{sub 2}O. It is the first time that these well-known compounds are formed by crystal growth methods, thus enabling direct structural studies on transuranic element systems and acquisition of basic data beyond deductions from isomorphic (or not) lanthanide compounds. Characterizations by X-ray diffraction, UV–visible solid spectroscopy, demonstrate the potentialities of these two crystal growth methods to obtain oxalate compounds. - Graphical abstract: Two new single crystal growth methods dedicated to actinide oxalate compounds. - Highlights: • Use of diester as oxalate precursor for crystal growth of actinide oxalates. • Use of actinide oxide as precursor for crystal growth of actinide oxalates. • Crystal growth of Pu(III) and Am(III) oxalates. • Crystal growth of mixed Pu(III)/Pu(IV) oxalates.

  8. Review of actinide nitride properties with focus on safety aspects

    Energy Technology Data Exchange (ETDEWEB)

    Albiol, Thierry [CEA Cadarache, St Paul Lez Durance Cedex (France); Arai, Yasuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    This report provides a review of the potential advantages of using actinide nitrides as fuels and/or targets for nuclear waste transmutation. Then a summary of available properties of actinide nitrides is given. Results from irradiation experiments are reviewed and safety relevant aspects of nitride fuels are discussed, including design basis accidents (transients) and severe (core disruptive) accidents. Anyway, as rather few safety studies are currently available and as many basic physical data are still missing for some actinide nitrides, complementary studies are proposed. (author)

  9. Distribution of actinides in SFR1; Aktinidfoerdelning i SFR1

    Energy Technology Data Exchange (ETDEWEB)

    Ingemansson, Tor [ALARA Engineering, Skultuna (Sweden)

    2000-02-01

    The amount of actinides in the Swedish repository for intermediate level radioactive wastes has been estimated. The sources for the actinides are mainly the purification filters of the reactors and the used fuel pools. Defect fuel elements are the originating source of the actinides. It is estimated that the 12 Swedish reactors, in total, have had 2.2 kg of fuel dissolved in their systems since start-up. About 880 g of this amount has been brought to the intermediate-level repository.

  10. Self-interaction corrected local spin density calculations of actinides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z

    2010-01-01

    We use the self-interaction corrected local spin-density approximation in order to describe localization-delocalization phenomena in the strongly correlated actinide materials. Based on total energy considerations, the methodology enables us to predict the ground-state valency configuration...... of the actinide ions in these compounds from first principles. Here we review a number of applications, ranging from electronic structure calculations of actinide metals, nitrides and carbides to the behaviour under pressure of intermetallics, and O vacancies in PuO2....

  11. Electronic structure and ionicity of actinide oxides from first principles

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z.

    2010-01-01

    The ground-state electronic structures of the actinide oxides AO, A2O3, and AO2 (A=U, Np, Pu, Am, Cm, Bk, and Cf) are determined from first-principles calculations, using the self-interaction corrected local spin-density approximation. Emphasis is put on the degree of f-electron localization, which...... in the actinide dioxides is discussed, and it is found that the dioxide is the most stable oxide for the actinides from Np onward. Our study reveals a strong link between preferred oxidation number and degree of localization which is confirmed by comparing to the ground-state configurations of the corresponding...

  12. An emergency bioassay method for actinides in urine.

    Science.gov (United States)

    Dai, Xiongxin; Kramer-Tremblay, Sheila

    2011-08-01

    A rapid bioassay method has been developed for the sequential measurements of actinides in human urine samples. The method involves actinide separation from a urine matrix by co-precipitation with hydrous titanium oxide (HTiO), followed by anion exchange and extraction chromatography column purification, and final counting by alpha spectrometry after cerium fluoride micro-precipitation. The minimal detectable activities for the method were determined to be 20 mBq L(-1) or less for plutonium, uranium, americium and curium isotopes, with an 8-h sample turn-around time. Spike tests showed that this method would meet the requirements for actinide bioassay following a radiation emergency.

  13. Burns (For Parents)

    Science.gov (United States)

    ... Child What Kids Say About: Handling Stress Anxiety, Fears, and Phobias Community Service: A Family's Guide to Getting ... What's in this article? Common Causes Types of Burns First-Degree Burns Second-Degree Burns ...

  14. Factors affecting the placental transfer of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Sikov, M.R.; Kelman, B.J. (Pacific Northwest Laboratory, Richland, WA (USA))

    1989-01-01

    The primary goal of this paper is to consider factors that affect the availability and transport of actinides from maternal blood, through the placenta, to the conceptus. These factors, of particular importance in scaling results from animals to man, include the route and temporal pattern of administration, the mass and physicochemical state of material administered, metabolism of the pregnant animal and fetal organs or tissue, and species-specific changes in placental structure relative to stage of gestation at exposure. Preliminary concepts for descriptive and kinetic models are proposed to integrate these results, to identify additional information required for developing more comprehensive models, and to provide a basis for scaling to human pregnancies for purposes of radiation dosimetry.

  15. Solidification of simulated actinides by natural zircon

    Institute of Scientific and Technical Information of China (English)

    YANG Jian-Wen; LUO Shang-Geng

    2004-01-01

    Natural zircon was used as precursor material to produce a zircon waste form bearing 20wt% simulated actinides (Nd2O3 and UO2) through a solid state reaction by a typical synroc fabrication process. The fabricated zircon waste form has relatively good physical properties (density 5.09g/cm3, open porosity 4.0%, Vickers hardness 715kg/mm2). The XRD, SEM/EDS and TEM/EDS analyses indicate that there are zircon phases containing waste elements formed through the reaction. The chemical durability and radiation stability are determined by the MCC-1method and heavy ion irradiation; the results show that the zircon waste form is highly leach resistance and relatively stable under irradiation (amorphous dose 0.7dpa). From this study, the method of using a natural mineral to solidify radioactive waste has proven to be feasible.

  16. Gamma spectroscopy of neutron rich actinide nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Birkenbach, Benedikt; Geibel, Kerstin; Vogt, Andreas; Hess, Herbert; Reiter, Peter; Steinbach, Tim; Schneiders, David [Koeln Univ. (Germany). IKP; Collaboration: AGATA-Collaboration

    2013-07-01

    Excited states in neutron-rich actinide Th and U nuclei were investigated after multi nucleon transfer reactions employing the AGATA demonstrator and PRISMA setup at LNL (INFN, Italy). A primary {sup 136}Xe beam of 1 GeV hitting a {sup 238}U target was used to produce the nuclei of interest. Beam-like reaction products of Xe- and Ba isotopes after neutron transfer were selected by the PRISMA spectrometer. The recoil like particles were registered by a MCP detector inside the scattering chamber. Coincident γ-rays from excited states in beam and target like particles were measured with the position sensitive AGATA HPGe detectors. Improved Doppler correction and quality of the γ-spectra is based on the novel γ-ray tracking technique which was successfully exploited. First results on the collective properties of various Th and U isotopes are discussed.

  17. Burn Injury Arise From Flying Balloon Toys

    Directory of Open Access Journals (Sweden)

    Yalcin Kulahci

    2007-08-01

    Full Text Available Many of peoples are faced minor or major burn injuries in their life. Even the most widespread burn cause is flame injuries, too different burn cause pointed out in literature like Acetylen burns. The cases which imply in literature, mostly causes from explosion of high pressure acetylene tube, metal oxygene patch flame or carbide lamp using from cave explorers. An interesting acetylene burn cause in Turkey was publised by the authors. This cases was to come into being from flying toy balloons flame. 80 person was injured from flying toy ballons flame in a meeting in 2002. Although this potential risks of acetylene, helium have not any of some risk. But helium was provided from other countries and have more price. The injuries which caused from acetylene burns like 1st -2nd degree burns. Consequently that was known helium is more avaliable for using in toy sector, and never cause burn injuries like this. [TAF Prev Med Bull 2007; 6(4.000: 291-296

  18. Burn Injury Arise From Flying Balloon Toys

    Directory of Open Access Journals (Sweden)

    Yalcin Kulahci

    2007-08-01

    Full Text Available Many of peoples are faced minor or major burn injuries in their life. Even the most widespread burn cause is flame injuries, too different burn cause pointed out in literature like Acetylen burns. The cases which imply in literature, mostly causes from explosion of high pressure acetylene tube, metal oxygene patch flame or carbide lamp using from cave explorers. An interesting acetylene burn cause in Turkey was publised by the authors. This cases was to come into being from flying toy balloons flame. 80 person was injured from flying toy ballons flame in a meeting in 2002. Although this potential risks of acetylene, helium have not any of some risk. But helium was provided from other countries and have more price. The injuries which caused from acetylene burns like 1st -2nd degree burns. Consequently that was known helium is more avaliable for using in toy sector, and never cause burn injuries like this. [TAF Prev Med Bull. 2007; 6(4: 291-296

  19. Radiochemical studies of neutron deficient actinide isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K.E.

    1978-04-01

    The production of neutron deficient actinide isotopes in heavy ion reactions was studied using alpha, gamma, x-ray, and spontaneous fission detection systems. A new isotope of berkelium, /sup 242/Bk, was produced with a cross-section of approximately 10 ..mu..b in reactions of boron on uranium and nitrogen on thorium. It decays by electron capture with a half-life of 7.0 +- 1.3 minutes. The alpha-branching ratio for this isotope is less than 1% and the spontaneous fission ratio is less than 0.03%. Studies of (Heavy Ion, pxn) and (Heavy Ion, ..cap alpha..xn) transfer reactions in comparison with (Heavy ion, xn) compound nucleus reactions revealed transfer reaction cross-sections equal to or greater than the compound nucleus yields. The data show that in some cases the yield of an isotope produced via a (H.I.,pxn) or (H.I.,..cap alpha..xn) reaction may be higher than its production via an xn compound nucleus reaction. These results have dire consequences for proponents of the ''Z/sub 1/ + Z/sub 2/ = Z/sub 1+2/'' philosophy. It is no longer acceptable to assume that (H.I.,pxn) and (H.I.,..cap alpha..xn) product yields are of no consequence when studying compound nucleus reactions. No evidence for spontaneous fission decay of /sup 228/Pu, /sup 230/Pu, /sup 232/Cm, or /sup 238/Cf was observed indicating that strictly empirical extrapolations of spontaneous fission half-life data is inadequate for predictions of half-lives for unknown neutron deficient actinide isotopes.

  20. Studies of actinides in a superanoxic fjord

    Energy Technology Data Exchange (ETDEWEB)

    Roos, P.

    1997-04-01

    Water column and sediment profiles of Pu, Am, Th and U have been obtained in the superanoxic Framvaren fjord, southern Norway. The concentration of bomb test fallout Pu, Am as well as `dissolved` Th in the bottom water are the highest recorded in the marine environment. The behaviour of the actinides in the anoxic water mass is to a large extent governed by the behaviour of the colloidal material. Ultrafiltration reveals that 40-60% of the actinides are associated to the large colloids, surprisingly this is valid also for U. The sediment acts as a source for Pu, Am, and Th to the water column but primarily as a sink for U. The remobilization of Pu, Am and Th is evident from the water column profiles which have similar diffusion shape profiles as other constituents originating from the sediments. The vertical eddy diffusion coefficient calculated from the Pu profile is in the same order of magnitude as reported from the H{sub 2}S profile. Decreased bottom water concentrations (but a constant water column inventory) between 1989 and 1995 as well as pore water Pu concentrations nearly identical to the overlaying bottom water indicates that the present Pu flux from the sediments are low. Contrary to Pu and Am, the water column Th inventory ({sup 232}Th and {sup 230}Th) continues to increase. The flux of {sup 232}Th from the sediments was determined from changes in water column inventory between 1989 and 1995 and from a pore water profile to be in the order of 2-8 Bq/m{sup 2}/y. 208 refs.

  1. Element Partitioning in Glass-Ceramic Designed for Actinides Immobilization

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Glass-ceramics were designed for immobilization of actinides. In order to immobilizing more wastes in the matrix and to develop the optimum formulation for the glass-ceramic, it is necessary to study the

  2. Advanced techniques for actinide spectroscopy (ATAS 2012). Abstract book

    Energy Technology Data Exchange (ETDEWEB)

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin (eds.)

    2012-07-01

    The abstract book of the International workshop on advanced techniques for actinide spectroscopy (ATAS 2012) include contributions concerning the following issues: environmental applications, NMR spectroscopy, vibrational spectroscopy, X-ray spectroscopy and theory, technical application: separation processes, emission spectroscopy.

  3. Pyrochlore as nuclear waste form. Actinide uptake and chemical stability

    Energy Technology Data Exchange (ETDEWEB)

    Finkeldei, Sarah Charlotte

    2015-07-01

    Radioactive waste is generated by many different technical and scientific applications. For the past decades, different waste disposal strategies have been considered. Several questions on the waste disposal strategy remain unanswered, particularly regarding the long-term radiotoxicity of minor actinides (Am, Cm, Np), plutonium and uranium. These radionuclides mainly arise from high level nuclear waste (HLW), specific waste streams or dismantled nuclear weapons. Although many countries have opted for the direct disposal of spent fuel, from a scientific and technical point of view it is imperative to pursue alternative waste management strategies. Apart from the vitrification, especially for trivalent actinides and Pu, crystalline ceramic waste forms are considered. In contrast to glasses, crystalline waste forms, which are chemically and physically highly stable, allow the retention of radionuclides on well-defined lattice positions within the crystal structure. Besides polyphase ceramics such as SYNROC, single phase ceramics are considered as tailor made host phases to embed a specific radionuclide or a specific group. Among oxidic single phase ceramics pyrochlores are known to have a high potential for this application. This work examines ZrO{sub 2} based pyrochlores as potential nuclear waste forms, which are known to show a high aqueous stability and a high tolerance towards radiation damage. This work contributes to (1) understand the phase stability field of pyrochlore and consequences of non-stoichiometry which leads to pyrochlores with mixed cationic sites. Mixed cationic occupancies are likely to occur in actinide-bearing pyrochlores. (2) The structural uptake of radionuclides themselves was studied. (3) The chemical stability and the effect of phase transition from pyrochlore to defect fluorite were probed. This phase transition is important, as it is the result of radiation damage in ZrO{sub 2} based pyrochlores. ZrO{sub 2} - Nd{sub 2}O{sub 3} pellets

  4. Analysis of the Gas Core Actinide Transmutation Reactor (GCATR)

    Science.gov (United States)

    Clement, J. D.; Rust, J. H.

    1977-01-01

    Design power plant studies were carried out for two applications of the plasma core reactor: (1) As a breeder reactor, (2) As a reactor able to transmute actinides effectively. In addition to the above applications the reactor produced electrical power with a high efficiency. A reactor subsystem was designed for each of the two applications. For the breeder reactor, neutronics calculations were carried out for a U-233 plasma core with a molten salt breeding blanket. A reactor was designed with a low critical mass (less than a few hundred kilograms U-233) and a breeding ratio of 1.01. The plasma core actinide transmutation reactor was designed to transmute the nuclear waste from conventional LWR's. The spent fuel is reprocessed during which 100% of Np, Am, Cm, and higher actinides are separated from the other components. These actinides are then manufactured as oxides into zirconium clad fuel rods and charged as fuel assemblies in the reflector region of the plasma core actinide transmutation reactor. In the equilibrium cycle, about 7% of the actinides are directly fissioned away, while about 31% are removed by reprocessing.

  5. Ab Initio Enhanced calphad Modeling of Actinide-Rich Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Yang, Yong Austin [Univ. of Wisconsin, Madison, WI (United States)

    2013-10-28

    The process of fuel recycling is central to the Advanced Fuel Cycle Initiative (AFCI), where plutonium and the minor actinides (MA) Am, Np, and Cm are extracted from spent fuel and fabricated into new fuel for a fast reactor. Metallic alloys of U-Pu-Zr-MA are leading candidates for fast reactor fuels and are the current basis for fast spectrum metal fuels in a fully recycled closed fuel cycle. Safe and optimal use of these fuels will require knowledge of their multicomponent phase stability and thermodynamics (Gibbs free energies). In additional to their use as nuclear fuels, U-Pu-Zr-MA contain elements and alloy phases that pose fundamental questions about electronic structure and energetics at the forefront of modern many-body electron theory. This project will validate state-of-the-art electronic structure approaches for these alloys and use the resulting energetics to model U-Pu-Zr-MA phase stability. In order to keep the work scope practical, researchers will focus on only U-Pu-Zr-{Np,Am}, leaving Cm for later study. The overall objectives of this project are to: Provide a thermodynamic model for U-Pu-Zr-MA for improving and controlling reactor fuels; and, Develop and validate an ab initio approach for predicting actinide alloy energetics for thermodynamic modeling.

  6. Thermodynamic analysis for high burn-up fuel internal chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Fuji, Kensho; Kyoh, Bunkei [Kinki Univ., Higashi-Osaka, Osaka (Japan). Faculty of Science and Technology

    1997-09-01

    Chemical states of fission products and actinide elements in high burn-up LWR fuel pellets have been analyzed thermodynamically using the computer program SOLGASMIX-PV. Calculations with this computer code have been performed for a complex multi-component system, which comprises 54 chemical species. The analysis shows that neither alkali nor alkaline-earth uranates are formed, but alkali and alkaline-earth molybdates exist in irradiated LWR fuel pellets in contrast with their post irradiation examinations. These molybdates tend to increase with increasing oxygen potential in the fuel under operating conditions, whereas the zirconates decrease. (author)

  7. Actinides in irradiated graphite of RBMK-1500 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Plukienė, R., E-mail: rita@ar.fi.lt; Plukis, A.; Barkauskas, V.; Gudelis, A.; Gvozdaitė, R.; Duškesas, G.; Remeikis, V.

    2014-10-01

    Highlights: • Activation of actinides in the graphite of the RBMK-1500 reactor was analyzed. • Numerical modeling using SCALE 6.1 and MCNPX was used for actinide calculation. • Measurements of the irradiated graphite sample were used for model validation. • Results are important for further decommissioning process of the RBMK type reactors. - Abstract: The activation of graphite in the nuclear power plants is the problem of high importance related with later graphite reprocessing or disposal. The activation of actinide impurities in graphite due to their toxicity determines a particular long term risk to waste management. In this work the activation of actinides in the graphite constructions of the RBMK-1500 reactor is determined by nuclear spectrometry measurements of the irradiated graphite sample from the Ignalina NPP Unit I and by means of numerical modeling using two independent codes SCALE 6.1 (using TRITON-VI sequence) and MCNPX (v2.7 with CINDER). Both models take into account the 3D RBMK-1500 reactor core fragment with explicit graphite construction including a stack and a sleeve but with a different simplification level concerning surrounding graphite and construction of control roads. The verification of the model has been performed by comparing calculated and measured isotope ratios of actinides. Also good prediction capabilities of the actinide activation in the irradiated graphite have been found for both calculation approaches. The initial U impurity concentration in the graphite model has been adjusted taking into account the experimental results. The specific activities of actinides in the irradiated RBMK-1500 graphite constructions have been obtained and differences between numerical simulation results, different structural parts (sleeve and stack) as well as comparison with previous results (Ancius et al., 2005) have been discussed. The obtained results are important for further decommissioning process of the Ignalina NPP and other RBMK

  8. Burn Injuries: Burn Depth, Physiopathology and Type of Burns

    Directory of Open Access Journals (Sweden)

    Kemalettin Koltka

    2011-07-01

    Full Text Available A significant burn injury is a serious and mortal event. The most important threat to life is hypovolemic shock with complex pathophysiologic mechanisms. Burn depth is classified as first, second, or third degree. Local inflammatory response results a vasodilatation and an increase in vascular permeability. A burn injury is a three dimensional ischemic wound. Zone of coagulation is the zone with maximum damage. Zone of stasis consists of damaged but viable tissues, the tissue is salvageable. In zone of hyperemia tissue perfusion is increased. At the beginning, cardiac output falls and systemic vascular resistance increases; cardiac performance improves as hypovolemia is corrected with fluid resuscitation. While cardiac output increases systemic vascular resistance falls below normal values and a hypermetabolic state develops. Pulmonary vascular resistance increases immediately after thermal injury and this is more prolonged. To avoid secondary pulmonary complications, the smallest resuscitation volume of fluids that maintains adequate tissue perfusion should be given. Changes parallel to the cardiovascular response develop in other organ systems. The reasons of burn injury can be thermal, electrical, chemical or radiation. It is important to know the exact mechanism of burn injury because of different therapies for a specific cause. In this review information about burn depth, local and systemic responses to burn injury and major causes of burn injury are presented. (Journal of the Turkish Society Intensive Care 2011; 9 Suppl:1-6

  9. Emergency in Burn; Burn in Emergency

    Directory of Open Access Journals (Sweden)

    Yalcin Bayram

    2012-06-01

    Full Text Available Physicians who first meet with burned patients are often emergency service employees. When the patient was admitted to emergency service, especially in patients with major burn injury, is a matter should be dealt with strongly. Before sending the patients to a burn center, some interventions could became life saving which should be done as a first line treatment. Herein, review of the literature related to emergency burn treatment was performed and presented to all physicians as a summary guide. In addition, some questions such as how should be physician, who first meet with the burned patient, evaluated the patient, what should be physician paid attention, which principles should be employed for fluid replacement, how should be approached to burn wound are tried to be addressed. [TAF Prev Med Bull 2012; 11(3.000: 365-368

  10. Electrochemical decontamination system for actinide processing gloveboxes

    Energy Technology Data Exchange (ETDEWEB)

    Wedman, D.E.; Lugo, J.L.; Ford, D.K.; Nelson, T.O.; Trujillo, V.L.; Martinez, H.E.

    1998-03-01

    An electrolytic decontamination technology has been developed and successfully demonstrated at Los Alamos National Laboratory (LANL) for the decontamination of actinide processing gloveboxes. The technique decontaminates the interior surfaces of stainless steel gloveboxes utilizing a process similar to electropolishing. The decontamination device is compact and transportable allowing it to be placed entirely within the glovebox line. In this way, decontamination does not require the operator to wear any additional personal protective equipment and there is no need for additional air handling or containment systems. Decontamination prior to glovebox decommissioning reduces the potential for worker exposure and environmental releases during the decommissioning, transport, and size reduction procedures which follow. The goal of this effort is to reduce contamination levels of alpha emitting nuclides for a resultant reduction in waste level category from High Level Transuranic (TRU) to low Specific Activity (LSA, less than or equal 100 nCi/g). This reduction in category results in a 95% reduction in disposal and disposition costs for the decontaminated gloveboxes. The resulting contamination levels following decontamination by this method are generally five orders of magnitude below the LSA specification. Additionally, the sodium sulfate based electrolyte utilized in the process is fully recyclable which results in the minimum of secondary waste. The process bas been implemented on seven gloveboxes within LANL`s Plutonium Facility at Technical Area 55. Of these gloveboxes, two have been discarded as low level waste items and the remaining five have been reused.

  11. Minority Games

    Energy Technology Data Exchange (ETDEWEB)

    Metzler, R [Institut fuer Theoretische Physik, Universitaet Wuerzburg, Am Hubland, D-97074 Wuerzburg (Germany)

    2005-02-25

    New branches of scientific disciplines often have a few paradigmatic models that serve as a testing ground for theories and a starting point for new inquiries. In the late 1990s, one of these models found fertile ground in the growing field of econophysics: the Minority Game (MG), a model for speculative markets that combined conceptual simplicity with interesting emergent behaviour and challenging mathematics. The two basic ingredients were the minority mechanism (a large number of players have to choose one of two alternatives in each round, and the minority wins) and limited rationality (each player has a small set of decision rules, and chooses the more successful ones). Combining these, one observes a phase transition between a crowded and an inefficient market phase, fat-tailed price distributions at the transition, and many other nontrivial effects. Now, seven years after the first paper, three of the key players-Damien Challet, Matteo Marsili and Yi-Cheng Zhang-have published a monograph that summarizes the current state of the science. The book consists of two parts: a 100-page overview of the various aspects of the MG, and reprints of many essential papers. The first chapters of Part I give a well-written description of the motivation and the history behind the MG, and then go into the phenomenology and the mathematical treatment of the model. The authors emphasize the 'physics' underlying the behaviour and give coherent, intuitive explanations that are difficult to extract from the original papers. The mathematics is outlined, but calculations are not carried out in great detail (maybe they could have been included in an appendix). Chapter 4 then discusses how and why the MG is a model for speculative markets, how it can be modified to give a closer fit to observed market statistics (in particular, reproducing the 'stylized facts' of fat-tailed distributions and volatility clustering), and what conclusions one can draw from the

  12. Studies on Neutron, Photon (Bremsstrahlung and Proton Induced Fission of Actinides and Pre-Actinides

    Directory of Open Access Journals (Sweden)

    H. Naik

    2015-08-01

    Full Text Available We present the yields of various fission products determined in the reactor neutron, 3.7-18.1 MeV quasi-mono energetic neutron, 8-80 MeV bremsstrahlung and 20-45 MeV proton induced fission of 232Th and 238U using radiochemical and off-line beta or gamma ray counting. The yields of the fission products in the bremsstrahlung induced fission natPb and 209Bi with 50- 70 MeV and 2.5 GeV based on off-line gamma ray spectrometric technique were also presented. From the yields of fission products, the mass chains yields were obtained using charge distribution correction. From the mass yield distribution, the peak-to-valley (P/V ratio was obtained. The role of excitation energy on the peak-to-valley ratio and fine structure such as effect of shell closure proximity and even-odd effect of mass yield distribution were examined. The higher yields of the fission products around A=133-134, 138-140 and 143-144 and their complementary products explained from the nuclear structure effect and role of standard I and II mode of asymmetric fission. In the neutron, photon (bremsstrahlung and proton induced fission, the asymmetric mass distribution for actinides (Th, U and symmetric distribution for pre-actinides (Pb, Bi were explained from different type of potential fission barrier

  13. Photofission of actinide and pre-actinide nuclei in the quasideuteron and delta energy regions

    CERN Document Server

    Berman, B L; Cole, P L; Dodge, W R; Feldman, G; Sanabria, J C; Kolb, N; Pywell, R E; Vogt, J; Nedorezov, V; Sudov, A; Kezerashvili, G Ya

    1999-01-01

    The photofission cross sections for the actinide nuclei sup 2 sup 3 sup 2 Th, sup 2 sup 3 sup 3 sup , sup 2 sup 3 sup 5 sup , sup 2 sup 3 sup 8 U, and sup 2 sup 3 sup 7 Np have been measured from 68 to 264 MeV and those for the pre-actinide nuclei sup 1 sup 9 sup 7 Au and sup N sup A sup T Pb from 122 to 222 MeV at the Saskatchewan Accelerator Laboratory, using monoenergetic tagged photons and novel parallel-plate avalanche detectors for the fission fragments. The aim of the experiment was to obtain a comprehensive and self-consistent data set and to investigate previous anomalous results in this energy region. The fission probability for transuranic nuclei is expected to be close to unity here. However, important discrepancies have been confirmed for sup 2 sup 3 sup 7 Np and sup 2 sup 3 sup 2 Th, compared with sup 2 sup 3 sup 8 U, which have serious implications for the inferred total photoabsorption strengths, and hence call into question the 'Universal Curve' for photon absorption at these energies. High-s...

  14. Neutron-induced capture cross sections of short-lived actinides with the surrogate reaction method

    Directory of Open Access Journals (Sweden)

    Gunsing F.

    2010-03-01

    Full Text Available Determination of neutron-capture cross sections of short-lived nuclei is opening the way to understand and clarify the properties of many nuclei of interest for nuclear structure physics, nuclear astrophysics and particularly for transmutation of nuclear wastes. The surrogate approach is well-recognized as a potentially very useful method to extract neutron cross sections for low-energy compound-nuclear reactions and to overcome the difficulties related to the target radioactivity. In this work we will assess where we stand on these neutron-capture cross section measurements and how we can achieve the short-lived Minor Actinides nuclei involved in the nuclear fuel cycle. The CENBG collaboration applied the surrogate method to determine the neutron-capture cross section of 233Pa (T1/2 = 27 d. The 233Pa (n,γ cross section is then deduced from the measured gamma decay probability of 234Pa compound nucleus formed via the surrogate 232Th(3He,p reaction channel. The obtained cross section data, covering the neutron energy range 0.1 to 1 MeV, have been compared with the predictions of the Hauser-Feshbach statistical model. The importance of establishing benchmarks is stressed for the minor actinides region. However, the lack of desired targets led us to propose recently the 174Yb (3He,pγ reaction as a surrogate reaction for the (n,γ predetermined benchmark cross section of 175Lu. An overview of the experimental setup combining gamma ray detectors such as Ge and C6D6 in coincidence with light charged particles ΔE-E Telescopes will be presented and preliminary results will be discussed.

  15. Potential radiation dose from eating fish exposed to actinide contamination

    Energy Technology Data Exchange (ETDEWEB)

    Emery, R.M.; Klopfer, D.C.; Baker, D.A.; Soldat, J.K.

    1980-01-01

    The purpose of this work is to establish a maximum potential for transporting actinides to man via fish consumption. The study took place in U-Pond, a nuclear waste pond on the Hanford Site. It has concentrations of /sup 238/U, /sup 238/Pu, /sup 239,240/Pu and /sup 241/Am that are approximately three orders of magnitude greater than background levels. Fish living in the pond contain higher actinide concentrations than those observed in fish from any other location. Experiments were performed in U-pond to determine maximum quantities of actinides that could accumulate in fillets and whole bodies of two centrarchid fish species. Doses to hypothetical consumers were then estimated by assuming that actinide behavior in their bodies was similar to that defined for Standard Man by the International Commission on Radiological Protection. Results indicate that highest concentrations occurring in bluegill or bass muscle after more than a year's exposure to the pond would not be sufficient to produce a significant radiation dose to a human consumer, even if he ate 0.5 kg (approx.1 lb) of these fillets every day for 70 years. Natural predators (heron or coyote), having lifetime diets of whole fish from U-Pond, would receive less radiation dose from the ingested actinides than from natural background sources. 34 refs., 5 figs., 4 tabs.

  16. A Summary of Actinide Enrichment Technologies and Capability Gaps

    Energy Technology Data Exchange (ETDEWEB)

    Patton, Bradley D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robinson, Sharon M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    The evaluation performed in this study indicates that a new program is needed to efficiently provide a national actinide radioisotope enrichment capability to produce milligram-to-gram quantities of unique materials for user communities as summarized in Table 1. This program xiv should leverage past actinide enrichment, the recent advances in stable isotope enrichment, and assessments of the future requirements to cost effectively develop this capability while establishing an experience base for a new generation of researchers in this vital area. Preliminary evaluations indicate that an EMIS device would have the capability to meet the future needs of the user community for enriched actinides. The EMIS technology could be potentially coupled with other enrichment technologies, such as irradiation, as pre-enrichment and/or post-enrichment systems to increase the throughput, reduce losses of material, and/or reduce operational costs of the base EMIS system. Past actinide enrichment experience and advances in the EMIS technology applied in stable isotope separations should be leveraged with this new evaluation information to assist in the establishment of a domestic actinide radioisotope enrichment capability.

  17. Development of the Chalmers Grouped Actinide Extraction Process

    Directory of Open Access Journals (Sweden)

    Halleröd Jenny

    2015-12-01

    Full Text Available Several solvents for Grouped ActiNide EXtraction (GANEX processes have been investigated at Chalmers University of Technology in recent years. Four different GANEX solvents; cyclo-GANEX (CyMe4- -BTBP, 30 vol.% tri-butyl phosphate (TBP and cyclohexanone, DEHBA-GANEX (CyMe4-BTBP, 20 vol.% N,N-di-2(ethylhexyl butyramide (DEHBA and cyclohexanone, hexanol-GANEX (CyMe4-BTBP, 30 vol.% TBP and hexanol and FS-13-GANEX (CyMe4-BTBP, 30 vol.% TBP and phenyl trifluoromethyl sulfone (FS-13 have been studied and the results are discussed and compared in this work. The cyclohexanone based solvents show fast and high extraction of the actinides but a somewhat poor diluent stability in contact with the acidic aqueous phase. FS-13-GANEX display high separation factors between the actinides and lanthanides and a good radiolytic and hydrolytic stability. However, the distribution ratios of the actinides are lower, compared to the cyclohexanone based solvents. The hexanol-GANEX is a cheap solvent system using a rather stable diluent but the actinide extraction is, however, comparatively low.

  18. The actinides-a beautiful ending of the Periodic Table

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Boerje [Condensed Matter Theory Group, Department of Physics, Uppsala University, Box 530, S-751 21 Uppsala (Sweden); Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Brinellvaegen 23, SE-100 44 Stockholm (Sweden)], E-mail: borje.johansson@fysik.uu.se; Li, Sa [Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Brinellvaegen 23, SE-100 44 Stockholm (Sweden); Department of Physics, Virginia Commonwealth University, Richmond, VA 23284 (United States)

    2007-10-11

    The 5f elements, actinides, show many properties which have direct correspondence to the 4f transition metals, the lanthanides. The remarkable similarity between the solid state properties of compressed Ce and the actinide metals is pointed out in the present paper. The {alpha}-{gamma} transition in Ce is considered as a Mott transition, namely, from delocalized to localized 4f states. An analogous behavior is also found for the actinide series, where the sudden volume increase from Pu to Am can be viewed upon as a Mott transition within the 5f shell as a function of the atomic number Z. On the itinerant side of the Mott transition, the earlier actinides (Pa-Pu) show low symmetry structures at ambient conditions; while across the border, the heavier elements (Am-Cf) present the dhcp structure, an atomic arrangement typical for the trivalent lanthanide elements with localized 4f magnetic moments. The reason for an isostructural Mott transition of the f electron in Ce, as opposed to the much more complicated cases in the actinides, is identified. The strange appearance of the {delta}-phase (fcc) in the phase diagram of Pu is another consequence of the border line behavior of the 5f electrons. The path leading from {delta}-Pu to {alpha}-Pu is identified.

  19. Recovery and chemical purification of actinides at JRC, Karlsruhe

    Science.gov (United States)

    Bokelund, H.; Apostolidis, C.; Glatz, J.-P.

    1989-07-01

    The application of actinide elements in research and in technology is many times subject to rather stringent purity requirements; often a nuclear grade quality is specified. The additional possible demand for a high isotopic purity is a special feature in the handling of these elements. The amount of actinide elements contained in or adhering to materials declared as waste should be low for safety reasons and out of economic considerations. The release of transuranium elements to the environment must be kept negligible. For these and for other reasons a keen interest in the separation of actinides from various materials exists, either for a re-use through recycling, or for their safe confinement in waste packages. This paper gives a short review of the separation methods used for recovery and purification of actinide elements over the past years in the European Institute for Transuranium Elements. The methods described here involve procedures based on precipitation, ion exchange or solvent extraction; often used in a combination. The extraction methods were preferably applied in a Chromatographie column mode. The actinide elements purified and/or separated from each other by the above methods include uranium, neptunium, plutonium, americium, curium, and californium. For the various elements the work was undertaken with different aims, ranging from reprocessing and fabrication of nuclear fuels on a kilogramme scale, over the procurement of alpha-free waste, to the preparation of neutron sources of milligramme size.

  20. Hydrophilic actinide complexation studied by solvent extraction radiotracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Rydberg, J. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry and Radiochemistry Consultant Group, Vaestra Froelunda (Sweden)

    1996-10-01

    Actinide migration in the ground water is enhanced by the formation of water soluble complexes. It is essential to the risk analysis of a wet repository to know the concentration of central atoms and the ligands in the ground water, and the stability of complexes formed between them. Because the chemical behavior at trace concentrations often differ from that at macro concentrations, it is important to know the chemical behavior of actinides at trace concentrations in ground water. One method used for such investigations is the solvent extraction radiotracer (SXRT) technique. This report describes the SXRT technique in some detail. A particular reason for this analysis is the claim that complex formation constants obtained by SXRT are less reliable than results obtained by other techniques. It is true that several difficulties are encountered in the application of SXRT technique to actinide solution, such as redox instability, hydrophilic complexation by side reactions and sorption, but it is also shown that a careful application of the SXRT technique yields results as reliable as by any other technique. The report contains a literature survey on solvent extraction studies of actinide complexes formed in aqueous solutions, particularly by using the organic reagent thenoyltrifluoroacetone (TTA) dissolved in benzene or chloroform. Hydrolysis constants obtained by solvent extraction are listed as well as all actinide complexes studied by SX with inorganic and organic ligands. 116 refs, 11 tabs.

  1. Ventilation system of actinides handling facility in Oarai-branch of Tohoku University

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoshimitsu; Watanabe, Makoto; Hara, Mituo; Shikama, Tatsuo; Kayano, Hideo; Mitsugashira, Toshiaki [Oarai Branch, Institute for Materials Research, Tohoku Univ., Oarai, Ibaraki (Japan)

    1999-09-01

    We have reported the development of the facility for handling actinides in Tohoku University at the second KAERI-JAERI joint seminar on PIE technology. Actinide isotopes have most hazurdous {alpha}-radioactivity. Therefore, a specially designed facility is necessary to carry out experimental study for actinide physics and chemistry. In this paper, we will describe the ventilation system and monitoring system for actinide handling facility. (author)

  2. Fluoride-conversion synthesis of homogeneous actinide oxide solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Silva, G W Chinthaka M [ORNL; Hunn, John D [ORNL; Yeamans, Charles B. [University of California, Berkeley; Cerefice, Gary S. [University of Nevada, Las Vegas; Czerwinski, Ken R. [University of Nevada, Las Vegas

    2011-01-01

    Here, a novel route to synthesize (U, Th)O2 solid solutions at a relatively low temperature of 1100 C is demonstrated. First, the separate actinide oxides reacted with ammonium bifluoride to form ammonium actinide fluorides at room temperature. Subsequently, this mixture was converted to the actinide oxide solid solution using a two-phased heat treatment, first at 610 C in static air, then at 1100 C in flowing argon. Solid solutions obeying Vegard s Law were synthesized for ThO2 content from 10 to 90 wt%. Microscopy showed that the (U, Th)O2 solid solutions synthesized with this method to have considerably high crystallinity and homogeneity, suggesting the suitability of material thus synthesized for sintering into nuclear fuel pellets at low temperatures.

  3. Actinide (III) solubility in WIPP Brine: data summary and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Borkowski, Marian; Lucchini, Jean-Francois; Richmann, Michael K.; Reed, Donald T.

    2009-09-01

    The solubility of actinides in the +3 oxidation state is an important input into the Waste Isolation Pilot Plant (WIPP) performance assessment (PA) models that calculate potential actinide release from the WIPP repository. In this context, the solubility of neodymium(III) was determined as a function of pH, carbonate concentration, and WIPP brine composition. Additionally, we conducted a literature review on the solubility of +3 actinides under WIPP-related conditions. Neodymium(III) was used as a redox-invariant analog for the +3 oxidation state of americium and plutonium, which is the oxidation state that accounts for over 90% of the potential release from the WIPP through the dissolved brine release (DBR) mechanism, based on current WIPP performance assessment assumptions. These solubility data extend past studies to brine compositions that are more WIPP-relevant and cover a broader range of experimental conditions than past studies.

  4. X-ray and electron microscopy of actinide materials.

    Science.gov (United States)

    Moore, Kevin T

    2010-06-01

    Actinide materials demonstrate a wide variety of interesting physical properties in both bulk and nanoscale form. To better understand these materials, a broad array of microscopy techniques have been employed, including transmission electron microscopy (TEM), electron energy-loss spectroscopy (EELS), energy dispersive X-ray spectroscopy (EDXS), high-angle annular dark-field imaging (HAADF), scanning electron microscopy (SEM), wavelength dispersive X-ray spectroscopy (WDXS), electron back scattered diffraction (EBSD), scanning tunneling microscopy (STM), atomic force microscopy (AFM), and scanning transmission X-ray microscopy (STXM). Here these techniques will be reviewed, highlighting advances made in the physics, materials science, chemistry, and biology of actinide materials through microscopy. Construction of a spin-polarized TEM will be discussed, considering its potential for examining the nanoscale magnetic structure of actinides as well as broader materials and devices, such as those for computational magnetic memory. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. Electronic, structural, and thermodynamic properties of actinide dioxides

    Science.gov (United States)

    Ma, Li; Atta-Fynn, Raymond; Ray, Asok K.

    2010-03-01

    As a continuation of our studies of pure actinide metals using hybrid density functional theory,footnotetextR. Atta-Fynn and A. K. Ray, Europhysics Letters, 85, 27008-p1- p6 (2009); Chemical Physics Letters, 482, 223-227 (2009). we present here a systematic study of the electronic and geometric structure properties of the actinide dioxides, UO2, PuO2 and AmO2, using both density functional and hybrid density functional theories. For the hybrid density functionals, the fractions of exact Hartree-Fock exchange used were 25% and 40%. Each compound has been studied at the nonmagnetic, ferromagnetic and antiferromagnetic configurations, with and without spin-orbit coupling (SOC). The influence of SOC on the properties of the actinide dioxides will be discussed. Thermodynamic properties such as phonon dispersion curves, heat capacity, entropy, internal energy and free energy have been calculated by a coupling of first-principles calculations and lattice dynamics.

  6. Prompt Fission Neutron Spectra of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Capote, R; Chen, Y J; Hambsch, F J; Kornilov, N V; Lestone, J P; Litaize, O; Morillon, B; Neudecker, D; Oberstedt, S; Ohsawa, T; Smith, D. L.

    2016-01-01

    The energy spectrum of prompt neutrons emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) “Evaluation of Prompt Fission Neutron Spectra of Actinides”was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei. The following technical areas were addressed: (i) experiments and uncertainty quantification (UQ): New data for neutron-induced fission of 233U, 235U, 238U, and 239Pu have been measured, and older data have been compiled and reassessed. There is evidence from the experimental work of this CRP that a very small percentage of neutrons emitted in fission are actually scission neutrons; (ii) modeling: The Los Alamos model (LAM) continues to be the workhorse for PFNS evaluations. Monte Carlo models have been developed that describe the fission phenomena microscopically, but further development is needed to produce PFNS evaluations meeting the uncertainty targets; (iii) evaluation methodologies: PFNS evaluations rely on the use of the least-squares techniques for merging experimental and model data. Considerable insight was achieved on how to deal with the problem of too small uncertainties in PFNS evaluations. The importance of considering that all experimental PFNS data are “shape” data was stressed; (iv) PFNS evaluations: New evaluations, including covariance data, were generated for major actinides including 1) non-model GMA evaluations of the 235U(nth,f), 239Pu(nth,f), and 233U(nth,f) PFNS based exclusively on experimental data (0.02 ≤ E ≤ 10 MeV), which resulted in PFNS average energies E of 2.00±0.01, 2.073±0.010, and 2.030±0.013 MeV, respectively; 2) LAM evaluations of neutron-induced fission spectra on uranium and plutonium targets with improved UQ for incident energies from thermal up to 30 MeV; and 3) Point-by-Point calculations for 232Th, 234U and 237Np targets; and (v) data

  7. Modeling actinide chemistry with ASPEN PLUS

    Energy Technology Data Exchange (ETDEWEB)

    Grigsby, C.O.

    1995-12-31

    When chemical engineers think of chemical processing, they often do not include the US government or the national laboratories as significant participants. Compared to the scale of chemical processing in the chemical process, petrochemical and pharmaceutical industries, the government contribution to chemical processing is not large. However, for the past fifty years, the US government has been, heavily involved in chemical processing of some very specialized materials, in particular, uranium and plutonium for nuclear weapons. Individuals and corporations have paid taxes that, in part have been used to construct and to maintain a series of very expensive laboratories and production facilities throughout the country. Even ignoring the ongoing R & D costs, the price per pound of enriched uranium or of plutonium exceeds that of platinum by a wide margin. Now, with the end of the cold war, the government is decommissioning large numbers of nuclear weapons and cleaning up the legacy of radioactive wastes generated over the last fifty years. It is likely that the costs associated with the build-down and clean-up of the nuclear weapons complex will exceed the investment of the past fifty years of production. Los Alamos National Laboratory occupies a special place in the history of nuclear weapons. The first weapons were designed and assembled at Los Alamos using uranium produced in Oak Ridge, Tennessee or plutonium produced in Richland, Washington. Many of the thermophysical and metallurgical properties of actinide elements have been investigated at Los Alamos. The only plutonium processing facility currently operating in the US is in Los Alamos, and the Laboratory is striving to capture and maintain the uranium processing technology applicable to the post-cold war era. Laboratory researchers are actively involved in developing methods for cleaning up the wastes associated with production of nuclear weapons throughout the US.

  8. In pursuit of homoleptic actinide alkyl complexes.

    Science.gov (United States)

    Seaman, Lani A; Walensky, Justin R; Wu, Guang; Hayton, Trevor W

    2013-04-01

    This Forum Article describes the pursuit of isolable homoleptic actinide alkyl complexes, starting with the pioneering work of Gilman during the Manhattan project. The initial reports in this area suggested that homoleptic uranium alkyls were too unstable to be isolated, but Wilkinson demonstrated that tractable uranium alkyls could be generated by purposeful "ate" complex formation, which serves to saturate the uranium coordination sphere and provide the complexes with greater kinetic stability. More recently, we reported the solid-state molecular structures of several homoleptic uranium alkyl complexes, including [Li(THF)4][U(CH2(t)Bu)5], [Li(TMEDA)]2[UMe6], [K(THF)]3[K(THF)2][U(CH2Ph)6]2, and [Li(THF)4][U(CH2SiMe3)6], by employing Wilkinson's strategy. Herein, we describe our attempts to extend this chemistry to thorium. The treatment of ThCl4(DME)2 with 5 equiv of LiCH2(t)Bu or LiCH2SiMe3 at -25 °C in THF affords [Th(CH2(t)Bu)5] (1) and [Li(DME)2][Th(CH2SiMe3)5 (2), respectively, in moderate yields. Similarly, the treatment of ThCl4(DME)2 with 6 equiv of K(CH2Ph) produces [K(THF)]2[Th(CH2Ph)6] (3), in good yield. Complexes 1-3 have been fully characterized, while the structures of 1 and 3 were confirmed by X-ray crystallography. Additionally, the electronic properties of 1 and 3 were explored by density functional theory.

  9. Actinide consumption: Nuclear resource conservation without breeding

    Energy Technology Data Exchange (ETDEWEB)

    Hannum, W.H.; Battles, J.E.; Johnson, T.R.; McPheeters, C.C.

    1991-01-01

    A new approach to the nuclear power issue based on a metallic fast reactor fuel and pyrometallurgical processing of spent fuel is showing great potential and is approaching a critical demonstration phase. If successful, this approach will complement and validate the LWR reactor systems and the attendant infrastructure (including repository development) and will alleviate the dominant concerns over the acceptability of nuclear power. The Integral Fast Reactor (IFR) concept is a metal-fueled, sodium-cooled pool-type fast reactor supported by a pyrometallurgical reprocessing system. The concept of a sodium cooled fast reactor is broadly demonstrated by the EBR-II and FFTF in the US; DFR and PFR in the UK; Phenix and SuperPhenix in France; BOR-60, BN-350, BN-600 in the USSR; and JOYO in Japan. The metallic fuel is an evolution from early EBR-II fuels. This fuel, a ternary U-Pu-Zr alloy, has been demonstrated to be highly reliable and fault tolerant even at very high burnup (160-180,000 MWd/MT). The fuel, coupled with the pool type reactor configuration, has been shown to have outstanding safety characteristics: even with all active safety systems disabled, such a reactor can survive a loss of coolant flow, a loss of heat sink, or other major accidents. Design studies based on a small modular approach show not only its impressive safety characteristics, but are projected to be economically competitive. The program to explore the feasibility of actinide recovery from spent LWR fuel is in its initial phase, but it is expected that technical feasibility could be demonstrated by about 1995; DOE has not yet committed funds to achieve this objective. 27 refs.

  10. Crude oil burning mechanisms

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Malmquist, L.M.V.; Jomaas, Grunde

    2015-01-01

    In order to improve predictions for the burning efficiency and the residue composition of in-situ burning of crude oil, the burning mechanism of crude oil was studied in relation to the composition of its hydrocarbon mixture, before, during and after the burning. The surface temperature, flame...... to the predictions of four conceptual models that describe the burning mechanism of multicomponent fuels. Based on the comparisons, hydrocarbon liquids were found to be best described by the Equilibrium Flash Vaporization model, showing a constant gas composition and gasification rate. The multicomponent fuels...... followed the diffusion-limited gasification model, showing a change in the hydrocarbon composition of the fuel and its evaporating gases, as well as a decreasing gasification rate, as the burning progressed. This burning mechanism implies that the residue composition and burning efficiency mainly depend...

  11. Measurement of Actinides in Molybdenum-99 Solution Analytical Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Soderquist, Chuck Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weaver, Jamie L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    This document is a companion report to a previous report, PNNL 24519, Measurement of Actinides in Molybdenum-99 Solution, A Brief Review of the Literature, August 2015. In this companion report, we report a fast, accurate, newly developed analytical method for measurement of trace alpha-emitting actinide elements in commercial high-activity molybdenum-99 solution. Molybdenum-99 is widely used to produce 99mTc for medical imaging. Because it is used as a radiopharmaceutical, its purity must be proven to be extremely high, particularly for the alpha emitting actinides. The sample of 99Mo solution is measured into a vessel (such as a polyethylene centrifuge tube) and acidified with dilute nitric acid. A gadolinium carrier is added (50 µg). Tracers and spikes are added as necessary. Then the solution is made strongly basic with ammonium hydroxide, which causes the gadolinium carrier to precipitate as hydrous Gd(OH)3. The precipitate of Gd(OH)3 carries all of the actinide elements. The suspension of gadolinium hydroxide is then passed through a membrane filter to make a counting mount suitable for direct alpha spectrometry. The high-activity 99Mo and 99mTc pass through the membrane filter and are separated from the alpha emitters. The gadolinium hydroxide, carrying any trace actinide elements that might be present in the sample, forms a thin, uniform cake on the surface of the membrane filter. The filter cake is first washed with dilute ammonium hydroxide to push the last traces of molybdate through, then with water. The filter is then mounted on a stainless steel counting disk. Finally, the alpha emitting actinide elements are measured by alpha spectrometry.

  12. Selection of actinide chemical analogues for WIPP tests

    Energy Technology Data Exchange (ETDEWEB)

    Villarreal, R.; Spall, D.

    1995-07-05

    The Department of Energy must demonstrate the effectiveness of the Waste Isolation Pilot Plant (WIPP) as a permanent repository for the disposal of transuranic (TRU) waste. Performance assessments of the WIPP require that estimates of the transportability and outcome of the radionuclides (actinides) be determined from disposal rooms that may become either partially or completely filled with brine. Federal regulations limit the amount of radioactivity that may be unintentionally released to the accessible environment by any mechanism during the post closure phase up to 10,000 years. Thermodynamic models have been developed to predict the concentrations of actinides in the WIPP disposal rooms under various situations and chemical conditions. These models are based on empirical and theoretical projections of the chemistry that might be present in and around the disposal room zone for both near and long-term periods. The actinides that are known to be present in the TRU wastes (and are included in the model) are Th, U, Np, Pu, and Am. Knowledge of the chemistry that might occur in the disposal rooms when the waste comes in contact with brine is important in understanding the range of oxidation states that might be present under different conditions. There is a need to establish the mechanisms and resultant rate of transport, migration, or effective retardation of actinides beyond the disposal rooms to the boundary of the accessible environment. The influence of the bulk salt rock, clay sediments and other geologic matrices on the transport behavior of actinides must be determined to establish the overall performance and capability of the WIPP in isolating waste from the environment. Tests to determine the capabilities of the WIPP geologic formations in retarding actinide species in several projected oxidation states would provide a means to demonstrate the effectiveness of the WIPP in retaining TRU wastes.

  13. Thermally unstable complexants/phosphate mineralization of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Nash, K. [Argonne National Lab., IL (United States)

    1996-10-01

    In situ immobilization is an approach to isolation of radionuclides from the hydrosphere that is receiving increasing attention. Rather than removing the actinides from contaminated soils, this approach transforms the actinides into intrinsically insoluble mineral phases resistant to leaching by groundwater. The principal advangates of this concept are the low cost and low risk of operator exposure and/or dispersion of the radionuclides to the wider environment. The challenge of this approach is toe accomplish the immobilization without causing collateral damage to the environment (the cure shouldn`t be worse than the disease) and verification of system performance.

  14. New cubic structure compounds as actinide host phases

    Energy Technology Data Exchange (ETDEWEB)

    Stefanovsky, S V [SIA Radon, 7th Rostovskii lane 2/14, Moscow 119121 (Russian Federation); Yudintsev, S V; Livshits, T S, E-mail: profstef@mtu-net.ru [Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS, Staromonetny lane 35, Moscow 119017 (Russian Federation)

    2010-03-15

    Various compounds with fluorite (cubic zirconia) and fluorite-derived (pyrochlore, zirconolite) structures are considered as promising actinide host phases at immobilization of actinide-bearing nuclear wastes. Recently some new cubic compounds - stannate and stannate-zirconate pyrochlores, murataite and related phases, and actinide-bearing garnet structure compounds were proposed as perspective matrices for complex actinide wastes. Zirconate pyrochlore (ideally Gd{sub 2}Zr{sub 2}O{sub 7}) has excellent radiation resistance and high chemical durability but requires high temperatures (at least 1500 deg. C) to be produced by hot-pressing from sol-gel derived precursor. Partial Sn{sup 4+} substitution for Zr{sup 4+} reduces production temperature and the compounds REE{sub 2}ZrSnO{sub 7} may be hot-pressed or cold pressed and sintered at {approx}1400 deg. C. Pyrochlore, A{sub 2}B{sub 2}O{sub 7-x} (two-fold elementary fluorite unit cell), and murataite, A{sub 3}B{sub 6}C{sub 2}O{sub 20-y} (three-fold fluorite unit cell), are end-members of the polysomatic series consisting of the phases whose structures are built from alternating pyrochlore and murataite blocks (nano-sized modules) with seven- (2C/3C/2C), five- (2C/3C), eight- (3C/2C/3C) and three-fold (3C - murataite) fluorite unit cells. Actinide content in this series reduces in the row: 2C (pyrochlore) > 7C > 5C > 8C > 3C (murataite). Due to congruent melting murataite-based ceramics may be produced by melting and the firstly segregated phase at melt crystallization is that with the highest fraction of the pyrochlore modules in its structure. The melts containing up to 10 wt. % AnO{sub 2} (An = Th, U, Np, Pu) or REE/An fraction of HLW form at crystallization zoned grains composed sequentially of the 5C {yields} 8C {yields} 3C phases with the highest actinide concentration in the core and the lowest - in the rim of the grains. Radiation resistance of the 'murataite' is comparable to titanate pyrochlores. One

  15. Production of heavy actinides in incomplete fusion reactions

    Science.gov (United States)

    Antonenko, N. V.; Cherepanov, E. A.; Iljinov, A. S.; Mebel, M. V.

    1994-10-01

    We present preliminary results of calculations by the phenomenological model of the estimated yield of some heavy actinide isotopes. It is assumed that these isotopes are produced as a result of multinucleon transfers followed by neutrons and charged particle emission A.S. Iljinov and E.A. Cherepanov (1980). The yield P(sub Z, N)(E*) of primary excited actinides is found using the model of N.V. Antonenko and R.V. Jolos (1991). Absolute cross-sections for different binary reaction channels are obtained by summing the cross-sections for all subchannels with an appreciable yield according to J. Wilczynski et al. (1980).

  16. SOLVENT EXTRACTION PROCESS FOR SEPARATING ACTINIDE AND LANTHANIDE METAL VALUES

    Science.gov (United States)

    Hildebrandt, R.A.; Hyman, H.H.; Vogler, S.

    1962-08-14

    A process of countercurrently extracting an aqueous mineral acid feed solution for the separation of actinides from lanthanides dissolved therern is described. The feed solution is made acid-defrcient with alkali metal hydroxide prior to.contact with acid extractant; during extraction, however, acid is transferred from organic to aqueous solution and the aqueous solution gradually becomes acid. The acid-deficient phase ' of the process promotes the extraction of the actinides, while the latter acid phase'' of the process improves retention of the lanthanides in the aqueous solution. This provides for an improved separation. (AEC)

  17. Learn Not To Burn.

    Science.gov (United States)

    English, Nancy; Hendricks, Charlotte M.

    1997-01-01

    Describes the "Learn Not to Burn Preschool Program," a low-cost fire safety awareness and burn prevention curriculum for young children. The program promotes eight burn prevention methods--including practicing an escape plan--using developmentally appropriate learning objectives to increase children's fire safety knowledge, skill, and…

  18. Economics of pediatric burns.

    Science.gov (United States)

    Bass, Michael J; Phillips, Linda G

    2008-07-01

    Sustaining a burn injury sets in motion a cycle of pain, disfigurement, and a search for survival. In pediatric burns, the injury extends to the parents where fear, ignorance, and helplessness forever change their lives. Pediatric burn injuries are caused by fire, hot liquids, clothing irons, hair curlers, caustic substances like drain cleaner, the grounding of an electrical source, and exposure to radiation. Efficiency in the delivery of pediatric burn care is critical. Maximizing resource utilization means continual self-evaluation and economic analysis of therapeutic modalities. Griffiths et al found that most childhood burns are due to scalds, which can be treated for $1061 per percent burn. Paddock et al reduced the cost of treating superficial pediatric burns and reduced the length of stay in hospital using silver-impregnated gauze over traditional methods. Barrett et al found improved cosmesis of skin grafts using cultured epithelial autografts but at a substantially increased cost. Corpron et al showed that pediatric burn units that treat burns >10% total body surface area and operative treatment of pediatric burns regardless of size generate positive revenue. There is a paucity of evidentiary pediatric burn economic data. More research is needed to address areas of pediatric burn care inefficiency. Improving knowledge of cost in all health care endeavors will create competition and drive down expenditures.

  19. Optimization of burn referrals

    DEFF Research Database (Denmark)

    Reiband, Hanna K; Lundin, Kira; Alsbjørn, Bjarne

    2014-01-01

    INTRODUCTION: Correct estimation of the severity of burns is important to obtain the right treatment of the patient and to avoid over- and undertriage. In this study we aimed to assess how often the guidelines for referral of burn injured patients are met at the national burn centre (NBC), Denmar...

  20. Epidemiology of burns

    NARCIS (Netherlands)

    Dokter, Jan

    2016-01-01

    The aim of this thesis is to understand the epidemiology, treatment and outcomes of specialized burn care in The Netherlands. This thesis is mainly based on historical data of the burn centre in Rotterdam from 1986, combined with historical data from the burn centres in Groningen and Beverwijk from

  1. Epidemiology and outcome of burns: early experience at the country's first national burns centre.

    Science.gov (United States)

    Iqbal, Tariq; Saaiq, Muhammad; Ali, Zahid

    2013-03-01

    This study aims to document the epidemiologic pattern and outcome of burn injuries in the country's first national burn centre. This case series study was conducted over a 2-year period at Burns Care Centre (BCC), Pakistan Institute of Medical Sciences (PIMS), Islamabad. The study included all burn injury patients who primarily presented to and were managed at the centre. Those patients who presented more than 24 h after injury or those who were initially managed at some other hospital were excluded from the study. Initial assessment and diagnosis was made by thorough history, physical examination and necessary investigations. Patients with major burns, high voltage electric burns and those needing any surgical interventions were admitted for indoor management. Patients with minor burns were discharged home after necessary emergency management, home medication and follow-up advice. The sociodemographic profile of the patients, site of sustaining burn injury, type and extent (total body surface area (TBSA), skin thickness involved and associated inhalational injury) of burn and outcome in terms of survival or mortality, etc., were all recorded on a proforma. The data were subjected to statistical analysis. Out of a total of 13,295 patients, there were 7503 (56.43%) males and 5792 (43.56%) females. The mean age for adults was 33.63±10.76 years and for children it was 6.71±3.47 years. The household environment constituted the commonest site of burns (68%). Among all age groups and both genders, scalds were the commonest burns (42.48%), followed by flame burns (39%) and electrical burns (9.96%). The affected mean TBSA was 10.64±11.45% overall, while for the hospitalised subset of patients the mean TBSA was 38.04±15.18%. Most of the burns were partial thickness (67%). Inhalation injury was found among 149 (1.12%) patients. Most of the burns were non-intentional and only 96 (0.72%) were intentional. A total of 1405 patients (10.58%) were admitted while the remainder

  2. Non-compound nucleus fission in actinide and pre-actinide regions

    Indian Academy of Sciences (India)

    R Tripathi; S Sodaye; K Sudarshan

    2015-08-01

    In this article, some of our recent results on fission fragment/product angular distributions are discussed in the context of non-compound nucleus fission. Measurement of fission fragment angular distribution in 28Si+176Yb reaction did not show a large contribution from the non-compound nucleus fission. Data on the evaporation residue cross-sections, in addition to those on mass and angular distributions, are necessary for better understanding of the contribution from non-compound nucleus fission in the pre-actinide region. Measurement of mass-resolved angular distribution of fission products in 20Ne+232Th reaction showed an increase in angular anisotropy with decreasing asymmetry of mass division. This observation can be explained based on the contribution from pre-equilibrium fission. Results of these studies showed that the mass dependence of anisotropy may possibly be used to distinguish pre-equilibrium fission and quasifission.

  3. Minority Language Rights.

    Science.gov (United States)

    O Riagain, Padraig; Shuibhne, Niamh Nic

    1997-01-01

    A survey of literature since 1990 on minority languages and language rights focuses on five issues: definition of minorities; individual vs. collective rights; legal bases for minority linguistic rights; applications and interpretations of minority language rights; and assessments of the impact of minority rights legislation. A nine-item annotated…

  4. Molecular and electronic structure of actinide hexa-cyanoferrates; Structure moleculaire et electronique des hexacyanoferrates d'actinides

    Energy Technology Data Exchange (ETDEWEB)

    Bonhoure, I

    2001-07-01

    The goal of this work is to improve our knowledge on the actinide-ligand bond properties. To this end, the hexacyanoferrate entities have been used as pre-organized ligand. We have synthesized, using mild chemistry, the following series of complexes: An{sup IV}[Fe{sup II}(CN){sub 6}].xH{sub 2}O (An = Th, U, Np, Pu); Am{sup III}[Fe{sup III}(CN){sub 6}].xH{sub 2}O; Pu {sup III}[Co{sup III}(CN){sub 6}].xH{sub 2}O and K(H?)An{sup III}[Fe{sup II}(CN){sub 6}].xH{sub 2}O (An = Pu, Am). The metal oxidation states have been obtained thanks to the {nu}{sub CN}, stretching vibration and to the actinide L{sub III} absorption edge studies. As Prussian Blue, the An{sup IV}[Fe{sup II}(CN){sub 6}].xH{sub 2}O (An = Np, Pu) are class II of Robin and Day compounds. X-ray Diffraction has shown besides that these complexes crystallize in the P6{sub 3}/m space group, as the isomorphic LaKFe(CN){sub 6}.4H{sub 2}O complex used as structural model. The EXAFS oscillations at the iron K edge and at the An L{sub III} edge allowed to determine the An-N, An-O, Fe-C and Fe-N distances. The display of the multiple scattering paths for both edges explains the actinide contribution absence at the iron edge, whereas the iron signature is present at the actinide edge. We have shown that the actinide coordination sphere in actinides hexa-cyanoferrates is comparable to the one of lanthanides. However, the actinides typical behavior towards the lanthanides is brought to the fore by the An{sup IV} versus Ln{sup III} ions presence in this family of complexes. Contrarily to the 4f electrons, the 5f electrons influence the electronic properties of the compounds of this family. However, the gap between the An-N and Ln-N distances towards the corresponding metals ionic radii do not show any covalence bond evolution between the actinide and lanthanide series. (author)

  5. Partial Burn Laws in Propellant Erosive Burning

    Directory of Open Access Journals (Sweden)

    S.V. Finjakov

    1999-04-01

    Full Text Available Experimental and computer methods were developed for investigating the combustion phenomena in the propellants which burn in streams of hot gas flowing along the burn surfaces of the propellants. The experimental investigations allowed establishment of different dependencies for erosive burning. Computer solutions of the problem for double-base (DB propellants showed a good agreement with the experimental results. The suggested variant of modified theory considers the change of heat release in solids, the real burn surface roughness, the nonisothermality of boundary layer and the effect of gas mass blow from the propellant burn surface into the gas stream. This modified theory was used for studying burn laws at 30-1000 atm and up to gas stream sound velocities for different DB propellants. It was found that gas stream leads to splitting of the propellant burn laws, m = bp/sup v/. Pressure power (v, in this case depends on gas stream velocity (W, diameter of the propellant tube canal (d and gas stream temperature (T/sub w/. It is because of this that these burn laws were named partial burn laws. They have the form (m = bp/sup w(omega/ w,d,T/sub w/ -const. The dependencies w(omega = f(w,d,T/sub w/ were obtained by the modified theory. It was found that omega values mainly decrease when pressure increases beginning from ~200 to 400 atm and they can decrease up to w(omega = 0,1- 0,3. Similar results can be obtained for composite propellants.

  6. MHD control in burning plasmas MHD control in burning plasmas

    Science.gov (United States)

    Donné, Tony; Liang, Yunfeng

    2012-07-01

    Fusion physics focuses on the complex behaviour of hot plasmas confined by magnetic fields with the ultimate aim to develop a fusion power plant. In the future generation of tokamaks like ITER, the power generated by the fusion reactions substantially exceeds the external input power (Pfusion}/Pin >= 10). When this occurs one speaks of a burning plasma. Twenty per cent of the generated fusion power in a burning plasma is carried by the charged alpha particles, which transfer their energy to the ambient plasma in collisions, a process called thermalization. A new phenomenon in burning plasmas is that the alpha particles, which form a minority but carry a large fraction of the plasma kinetic energy, can collectively drive certain types of magneto-hydrodynamic (MHD) modes, while they can suppress other MHD modes. Both types of MHD modes can have desirable effects on the plasma, as well as be detrimental to the plasma. For example, the so-called sawtooth instability, on the one hand, is largely responsible for the transport of the thermalized alpha particles out of the core, but, on the other hand, may result in the loss of the energetic alphas before they have fully thermalized. A further undesirable effect of the sawtooth instability is that it may trigger other MHD modes such as neoclassical tearing modes (NTMs). These NTMs, in turn, are detrimental to the plasma confinement and in some cases may even lead to disruptive termination of the plasma. At the edge of the plasma, finally, so-called edge localized modes or ELMs occur, which result in extremely high transient heat and particle loads on the plasma-facing components of a reactor. In order to balance the desired and detrimental effects of these modes, active feedback control is required. An additional complication occurs in a burning plasma as the external heating power, which is nowadays generally used for plasma control, is small compared to the heating power of the alpha particles. The scientific challenge

  7. Electron probe microanalysis of a METAPHIX UPuZr metallic alloy fuel irradiated to 7.0 at.% burn-up

    Science.gov (United States)

    Brémier, S.; Inagaki, K.; Capriotti, L.; Poeml, P.; Ogata, T.; Ohta, H.; Rondinella, V. V.

    2016-11-01

    The METAPHIX project is a collaboration between CRIEPI and JRC-ITU investigating safety and performance of a closed fuel cycle option based on fast reactor metal alloy fuels containing Minor Actinides (MA). The aim of the project is to investigate the behaviour of this type of fuel and demonstrate the transmutation of MA under irradiation. A UPuZr metallic fuel sample irradiated to a burn-up of 7 at.% was examined by electron probe microanalysis. The fuel sample was extensively characterised qualitatively and quantitatively using elemental X-ray imaging and point analysis techniques. The analyses reveal a significant redistribution of the fuel components along the fuel radius highlighting a nearly complete depletion of Zr in the central part of the fuel. Numerous rare earth and fission products secondary phases are present in various compositions. Fuel cladding chemical interaction was observed with creation of a number of intermediary layers affecting a cladding depth of 15-20 μm and migration of cladding elements to the fuel.

  8. Surface energy and work function of the light actinides

    DEFF Research Database (Denmark)

    Kollár, J.; Vitos, Levente; Skriver, Hans Lomholt

    1994-01-01

    We have calculated the surface energy and work function of the light actinides Fr, Ra, Ac, Th, Pa, U, Np, and Pu by means of a Green's-function technique based on the linear-muffin-tin-orbitals method within the tight-binding representation. In these calculations we apply an energy functional which...

  9. Experimental Evaluation of Actinide Transport in a Fractured Granodiorite

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, Timothy M. [Los Alamos National Laboratory; Reimus, Paul W. [Los Alamos National Laboratory

    2015-03-16

    The objective of this study was to demonstrate and evaluate new experimental methods for quantifying the potential for actinide transport in deep fractured crystalline rock formations. We selected a fractured granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model system because field experiments have already been conducted with uranium and additional field experiments using other actinides are planned at the site. Thus, working on this system provides a unique opportunity to compare lab experiment results with fieldscale observations. Rock cores drilled from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and microscopy, and used in batch sorption and column breakthrough experiments. Solutions with pH 6.8 and 8.8 were tested. Solutions were switched to radionuclide-free synthetic Grimsel groundwater after near-steady actinide/colloid breakthrough occurred in column experiments. We are currently evaluating actinide adsorption/desorption rates as a function of water chemistry (initial focus on pH), with future testing planned to evaluate the influence of carbonate concentrations, flow rates, and mineralogy in solutions and suspensions with bentonite colloids. (auth)

  10. Potential radiation dose from eating fish exposed to actinide contamination

    Energy Technology Data Exchange (ETDEWEB)

    Emery, R.M.; Klopfer, D.C.; Baker, D.A.; Soldat, J.K. (Battelle Pacific Northwest Labs., Richland, WA (USA))

    1981-04-01

    The purpose of this work is to establish a maximum potential for transporting actinides to man via fish consumption. The study took place in U-pond, a nuclear waste pond on the Hanford Site. It has concentrations of /sup 238/U, /sup 238/Pu, sup(239,240)Pu and /sup 241/Am that are approx. 3 orders of magnitude greater than background levels. Fish living in the pond contain higher actinide concentrations than those observed in fish from any other location. Experiments were performed in U-Pond to determine maximum quantities of actinides that could accumulate in fillets and whole bodies of two centrarchid fish species. Doses to hypothetical consumers were then estimated. Results indicate that highest concentrations occurring in bluegill or bass muscle after more than a year's exposure to the pond would not be sufficient to produce a significant radiation dose to a human consumer, even if he ate 0.5 kg (of the order of 1 lb) of these fillets every day for 70 yr. Natural predators (heron or coyote), having lifetime diets of whole fish from U-Pond, would receive less radiation dose from the ingested actinides than from natural background sources.

  11. Nuclear fuel cycle-oriented actinides separation in China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing; He, Xihong; Wang, Jianchen [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology

    2014-04-01

    In the last decades, the separation of actinides was widely and continuously studied in China. A few kinds of salt-free reductants to adjust Pu and Np valences have been investigated. N,N-dimethylhydroxylamine is a good reductant with high reduction rate constants for the co-reduction of Pu(IV) and Np(VI), and monomethylhydrazine is a simple compound for the individual reduction of Np(VI). Advanced PUREX based on Organic Reductants (APOR) was proposed. Trialkylphosphine oxide (TRPO) with a single functional group was found to possess strong affinity to tri-, tetra- and hexa-valent actinides. TRPO process has been first explored in China for actinides partitioning from high level waste and the good partitioning performance was demonstrated by the hot test. High extraction selectivity for trivalent actinides over lanthanides by dialkyldithiophosphinic acids was originally found in China. A separation process based on purified Cyanex 301 for the separation of Am from lanthanides was presented and successfully tested in a battery of miniature centrifugal contactors. (orig.)

  12. RAPID SEPARATION OF ACTINIDES AND RADIOSTRONTIUM IN VEGETATION SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, S.

    2010-06-01

    A new rapid method for the determination of actinides and radiostrontium in vegetation samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations or for routine analysis. The actinides in vegetation method utilizes a rapid sodium hydroxide fusion method, a lanthanum fluoride matrix removal step, and a streamlined column separation process with stacked TEVA, TRU and DGA Resin cartridges. Lanthanum was separated rapidly and effectively from Am and Cm on DGA Resin. Alpha emitters are prepared using rare earth microprecipitation for counting by alpha spectrometry. The purified {sup 90}Sr fractions are mounted directly on planchets and counted by gas flow proportional counting. The method showed high chemical recoveries and effective removal of interferences. The actinide and {sup 90}Sr in vegetation sample analysis can be performed in less than 8 h with excellent quality for emergency samples. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory actinide particles or vegetation residue after furnace heating is effectively digested.

  13. Preparation of actinide targets and sources using nonaqueous electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, M.M.; Gursky, J.C.; Wilhelmy, J.B. (Los Alamos National Lab., NM (USA))

    1991-05-15

    Application of the method of 'molecular plating' to prepare actinide targets suitable for accelerator bombardment is presented. Two example applications involving {sup 229}Th and {sup 254}Es are discussed along with the merits and liabilities of the method. (orig.).

  14. Actinide biocolloid formation in brine by halophilic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Gillow, J.B.; Francis, A.J.; Dodge, C.J. [Brookhaven National Lab., Upton, NY (United States); Harris, R.; Beveridge, T.J. [Univ. of Guelph, Ontario (Canada); Brady, P.V.; Papenguth, H.W. [Sandia National Labs., Albuquerque, NM (United States)

    1998-12-31

    The authors examined the ability of a halophilic bacterium (WIPP 1A) isolated from the Waste Isolation Pilot Plant (WIPP) site to accumulate uranium in order to determine the potential for biocolloid facilitated actinide transport. The bacterial cell surface functional groups involved in the complexation of the actinide were determined by titration. Uranium, added as uranyl nitrate, was removed from solution at pH 5 by cells but at pH 7 and 9 very little uranium was removed due to its limited solubility. Although present as soluble species, uranyl citrate at pH 5, 7, and 9, and uranyl carbonate at pH 9 were not removed by the bacterium because they were not bioavailable due to their neutral or negative charge. Addition of uranyl EDTA to brine at pH 5, 7, and 9 resulted in the immediate precipitation of U. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analysis revealed that uranium was not only associated with the cell surface but also accumulated intracellularly as uranium-enriched granules. Extended X-ray absorption fine structure (EXAFS) analysis of the bacterial cells indicated the bulk sample contained more than one uranium phase. Nevertheless these results show the potential for the formation of actinide bearing bacterial biocolloids that are strictly regulated by the speciation and bioavailability of the actinide.

  15. ACTINIDE BIOCOLLOID FORMATION IN BRINE BY HALOPHILIC BACTERIA

    Energy Technology Data Exchange (ETDEWEB)

    GILLOW,J.B.; FRANCIS,A.J.; DODGE,C.J.; HARRIS,R.; BEVERIDGE,T.J.; BRADY,P.B.; PAPENGUTH,H.W.

    1998-11-09

    The authors examined the ability of a halophilic bacterium (WIPP 1A) isolated from the Waste Isolation Pilot Plant (WIPP) site to accumulate uranium in order to determine the potential for biocolloid facilitated actinide transport. The bacterial cell surface functional groups involved in the complexation of the actinide were determined by titration. Uranium, added as uranyl nitrate, was removed from solution at pH 5 by cells but at pH 7 and 9 very little uranium was removed due to its limited solubility. Although present as soluble species, uranyl citrate at pH 5, 7, and 9, and uranyl carbonate at pH 9 were not removed by the bacterium because they were not bioavailable due to their neutral or negative charge. Addition of uranyl EDTA to brine at pH 5, 7, and 9 resulted in the immediate precipitation of U. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analysis revealed that uranium was not only associated with the cell surface but also accumulated intracellularly as uranium-enriched granules. Extended X-ray absorption fine structure (EXAFS) analysis of the bacterial cells indicated the bulk sample contained more than one uranium phase. Nevertheless these results show the potential for the formation of actinide bearing bacterial biocolloids that are strictly regulated by the speciation and bioavailability of the actinide.

  16. Actinide Biocolloid Formation in Brine by Halophilic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Gillow, J.B.; Francis, A.J.; Dodge, C.J.; Harris, R.; Beveridge, T.J.; Brady, P.V.; Papenguth, H.W.

    1999-07-28

    We examined the ability of a halophilic bacterium (WFP 1A) isolated from the Waste Isolation Pilot Plant (WIPP) site to accumulate uranium in order to determine the potential for biocolloid facilitated actinide transport. The bacterial cell Surface functional groups involved in the complexation of the actinide were determined by titration. Uranium, added as uranyl nitrate, was removed from solution at pH 5 by cells but at pH 7 and 9 very little uranium was removed due to its limited volubility. Although present as soluble species, uranyl citrate at pH 5, 7, and 9, and uranyl carbonate at pH 9 were not removed by the bacterium because they were not bioavailable due to their neutral or negative charge. Addition of uranyl EDTA to brine at pH 5, 7, and 9 resulted in the immediate precipitation of U. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analysis revealed that uranium was not only associated with the cell surface but also accumulated intracellulary as uranium-enriched granules. Extended X-ray absorption fine structure (EXAFS) analysis, of the bacterial cells indicated the bulk sample contained more than one uranium phase. Nevertheless these results show the potential for the formation of actinide bearing bacterial biocolloids that are strictly regulated by the speciation and bioavailability of the actinide.

  17. Electron-phonon coupling of the actinide metals

    DEFF Research Database (Denmark)

    Skriver, H. L.; Mertig, I.

    1985-01-01

    -phonon parameter λ is found to attain its maximum value in Ac, and they predict a transition temperature of 9K for this metal. In the light actinides Th through Pu, λ is found to be of order 0.4 and within a factor of 2 of experiments which is also the accuracy found in studies of the transition metals...

  18. Actinides How well do we know their stellar production?

    CERN Document Server

    Goriely, S

    2001-01-01

    The reliable evaluation of the r-process production of the actinides and careful estimates of the uncertainties affecting these predictions are key ingredients especially in nucleo-cosmochronology studies based on the analysis of very metal-poor stars or on the composition of meteorites. This type of information is also required in order to make the best possible use of future high precision data on the actinide composition of galactic cosmic rays, of the local interstellar medium, or of meteoritic grains of presumed circumstellar origin. This paper provides the practitioners in these various fields with the most detailed and careful analysis of the r-process actinide production available to-date. In total, thirty-two different multi-event canonical calculations using different nuclear ingredients or astrophysics conditions are presented, and are considered to give a fair picture of the level of reliability of the predictions of the actinide production, at least in the framework of a simple r-process model. T...

  19. Analysis of the evaluated data discrepancies for minor actinides and development of improved evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ignatyuk, A. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1997-03-01

    The work is directed on a compilation of experimental and evaluated data available for neutron induced reaction cross sections on {sup 237}Np, {sup 241}Am, {sup 242m}Am and {sup 243}Am isotopes, on the analysis of the old data and renormalizations connected with changes of standards and on the comparison of experimental data with theoretical calculation. Main results of the analysis performed by now are presented in this report. (J.P.N.)

  20. Minor actinide separation: simplification of the DIAMEX-SANEX strategy by means of novel SANEX processes

    Energy Technology Data Exchange (ETDEWEB)

    Geist, A. [Karlsruher Institut fuer Technologie - KIT, INE, P. O. Box 3640, 76021 Karlsruhe (Germany); Modolo, G.; Wilden, A.; Kaufholz, P. [Forschungszentrum Juelich GmbH, IEK-6, Juelich (Germany)

    2013-07-01

    The separation of An(III) from PUREX raffinate has previously been demonstrated by applying a DIAMEX process (i.e., co-extraction of An(III) and Ln(III) from HAR) followed by a SANEX process (i.e., selective extraction of An(III) from the DIAMEX product containing An(III) + Ln(III)). In line with process intensification issues, more compact processes have been developed: Recently, a 1c-SANEX process test was successfully performed, directly extracting An(III) from PUREX HAR. More recently, a new i-SANEX process was successfully tested. This process is based on the co-extraction of An(III) + Ln(III) into a TODGA solvent, followed by a selective back-extraction of An(III) by a water soluble complexing agent, in this case SO{sub 3}-Ph-BTP. In both cases, good recoveries were achieved, and very pure product solutions were obtained. However, both 1c-SANEX and i-SANEX used non-CHON chemicals. Nevertheless, these processes are a simplification to the DIAMEX + SANEX process as only one solvent is used. Finally, the new i-SANEX process is the most compact process. (authors)

  1. Closed Fuel Cycle and Minor Actinide Multirecycling in a Gas-Cooled Fast Reactor

    NARCIS (Netherlands)

    Van Rooijen, W.F.G.; Kloosterman, J.L.

    2009-01-01

    The Generation IV International Forum has identified the Gas-Cooled Fast Reactor (GCFR) as one of the reactor concepts for future deployment. The GCFR targets sustainability, which is achieved by the use of a closed nuclear fuel cycle where only fission products are discharged to a repository; all H

  2. Multi-layered parallel plate ionization chamber for cross-section measurements of minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, K., E-mail: hirose@lns.tohoku.ac.j [Research Center for Electron Photon Science, Tohoku University, Sendai 982-0826 (Japan); Ohtsuki, T.; Shibasaki, Y. [Research Center for Electron Photon Science, Tohoku University, Sendai 982-0826 (Japan); Iwasa, N. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Hori, J.; Takamiya, K.; Yashima, H. [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennangun, Osaka 590-0494 (Japan); Nishio, K. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Kiyanagi, Y. [Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628 (Japan)

    2010-09-21

    A multi-layered parallel plate ionization chamber (MLPPIC) has been developed for the measurement of neutron-induced fission cross-sections using the lead slowing-down neutron spectrometer at the Research Reactor Institute, Kyoto University. The MLPPIC consists of two sets of multi-layered electrodes to detect fission fragments from two samples located back-to-back between them. The performance of the MLPPIC was tested with a spontaneous fission of {sup 248}Cm. The cross-section for the neutron-induced fission of {sup 241}Am was successfully obtained using that of {sup 235}U as a reference.

  3. Closed Fuel Cycle and Minor Actinide Multirecycling in a Gas-Cooled Fast Reactor

    NARCIS (Netherlands)

    Van Rooijen, W.F.G.; Kloosterman, J.L.

    2009-01-01

    The Generation IV International Forum has identified the Gas-Cooled Fast Reactor (GCFR) as one of the reactor concepts for future deployment. The GCFR targets sustainability, which is achieved by the use of a closed nuclear fuel cycle where only fission products are discharged to a repository; all

  4. Transmutation of Minor Actinides in a Spherical Torus Tokamak Fusion Reactor

    Institute of Scientific and Technical Information of China (English)

    FENGKaiming; ZHANGGuoshu

    2002-01-01

    Fusion energy will be a long-term energy source. Great efforts have been devoted to fusion research in the past 50 years, and there is still a long way to go. Transmutation of high-level waste (HLW) utilizing D-T fusion neutrons is a good choice for an early application of fusion.

  5. Analysis of the evaluated data discrepancies for minor actinides and development of improved evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ignatyuk, A. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1997-03-01

    The work is directed on a compilation of experimental and evaluated data available for neutron induced reaction cross sections on {sup 237}Np, {sup 241}Am, {sup 242m}Am and {sup 243}Am isotopes, on the analysis of the old data and renormalizations connected with changes of standards and on the comparison of experimental data with theoretical calculation. Main results of the analysis performed by now are presented in this report. (J.P.N.)

  6. Closed Fuel Cycle and Minor Actinide Multirecycling in a Gas-Cooled Fast Reactor

    NARCIS (Netherlands)

    Van Rooijen, W.F.G.; Kloosterman, J.L.

    2009-01-01

    The Generation IV International Forum has identified the Gas-Cooled Fast Reactor (GCFR) as one of the reactor concepts for future deployment. The GCFR targets sustainability, which is achieved by the use of a closed nuclear fuel cycle where only fission products are discharged to a repository; all H

  7. Understanding Minor Rectal Bleeding

    Science.gov (United States)

    ... Home / For Patients / Patient Information Understanding Minor Rectal Bleeding What are the possible causes of minor rectal bleeding? Hemorrhoids Anal fissures Proctitis (inflammation of the rectum) ...

  8. Sequestering agents for the removal of actinides from waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, K.N.; White, D.J.; Xu, Jide; Mohs, T.R. [Univ. of California, Berkeley, CA (United States)

    1997-10-01

    The goal of this project is to take a biomimetic approach toward developing new separation technologies for the removal of radioactive elements from contaminated DOE sites. To achieve this objective, the authors are investigating the fundamental chemistry of naturally occurring, highly specific metal ion sequestering agents and developing them into liquid/liquid and solid supported actinide extraction agents. Nature produces sideophores (e.g., Enterobactin and Desferrioxamine B) to selectivity sequester Lewis acidic metal ions, in particular Fe(III), from its surroundings. These chelating agents typically use multiple catechols or hydroxamic acids to form polydentate ligands that chelate the metal ion forming very stable complexes. The authors are investigating and developing analogous molecules into selective chelators targeting actinide(IV) ions, which display similar properties to Fe(III). By taking advantage of differences in charge, preferred coordination number, and pH stability range, the transition from nature to actinide sequestering agents has been applied to the development of new and highly selective actinide extraction technologies. Additionally, the authors have shown that these chelating ligands are versatile ligands for chelating U(VI). In particular, they have been studying their coordination chemistry and fundamental interactions with the uranyl ion [UO{sub 2}]{sup 2+}, the dominant form of uranium found in aqueous media. With an understanding of this chemistry, and results obtained from in vivo uranium sequestration studies, it should be possible to apply these actinide(IV) extraction technologies to the development of new extraction agents for the removal of uranium from waste streams.

  9. Actinide partitioning-transmutation program final report. I. Overall assessment

    Energy Technology Data Exchange (ETDEWEB)

    Croff, A.G.; Blomeke, J.O.; Finney, B.C.

    1980-06-01

    This report is concerned with an overall assessment of the feasibility of and incentives for partitioning (recovering) long-lived nuclides from fuel reprocessing and fuel refabrication plant radioactive wastes and transmuting them to shorter-lived or stable nuclides by neutron irradiation. The principal class of nuclides considered is the actinides, although a brief analysis is given of the partitioning and transmutation (P-T) of /sup 99/Tc and /sup 129/I. The results obtained in this program permit us to make a comparison of the impacts of waste management with and without actinide recovery and transmutation. Three major conclusions concerning technical feasibility can be drawn from the assessment: (1) actinide P-T is feasible, subject to the acceptability of fuels containing recycle actinides; (2) technetium P-T is feasible if satisfactory partitioning processes can be developed and satisfactory fuels identified (no studies have been made in this area); and (3) iodine P-T is marginally feasible at best because of the low transmutation rates, the high volatility, and the corrosiveness of iodine and iodine compounds. It was concluded on the basis of a very conservative repository risk analysis that there are no safety or cost incentives for actinide P-T. In fact, if nonradiological risks are included, the short-term risks of P-T exceed the long-term benefits integrated over a period of 1 million years. Incentives for technetium and iodine P-T exist only if extremely conservative long-term risk analyses are used. Further RD and D in support of P-T is not warranted.

  10. Hardening neutron spectrum for advanced actinide transmutation experiments in the ATR.

    Science.gov (United States)

    Chang, G S; Ambrosek, R G

    2005-01-01

    The most effective method for transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products is in a fast neutron spectrum reactor. In the absence of a fast test reactor in the United States, initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. Such a test facility, with a spectrum similar but somewhat softer than that of the liquid-metal fast breeder reactor (LMFBR), has been constructed in the INEEL's Advanced Test Reactor (ATR). The radial fission power distribution of the actinide fuel pin, which is an important parameter in fission gas release modelling, needs to be accurately predicted and the hardened neutron spectrum in the ATR and the LMFBR fast neutron spectrum is compared. The comparison analyses in this study are performed using MCWO, a well-developed tool that couples the Monte Carlo transport code MCNP with the isotope depletion and build-up code ORIGEN-2. MCWO analysis yields time-dependent and neutron-spectrum-dependent minor actinide and Pu concentrations and detailed radial fission power profile calculations for a typical fast reactor (LMFBR) neutron spectrum and the hardened neutron spectrum test region in the ATR. The MCWO-calculated results indicate that the cadmium basket used in the advanced fuel test assembly in the ATR can effectively depress the linear heat generation rate in the experimental fuels and harden the neutron spectrum in the test region.

  11. [The pain from burns].

    Science.gov (United States)

    Latarjet, J

    2002-03-01

    The painful events associated with the treatment of a severe burn can, because of their long-lasting and repetitive characteristics, be one of the most excruciating experiences in clinical practice. Moreover, burn pain has been shown to be detrimental to burn patients. Although nociception and peripheral hyperalgesia are considered the major causes of burn pain, the study of more hypothetical mechanisms like central hyperalgesia and neuropathic pain may lead to a better understanding of burn pain symptoms and to new therapeutic approaches. Continuous pain and intermittent pain due to therapeutic procedures are two distinct components of burn pain. They have to be evaluated and managed separately. Although continuous pain is by far less severe than intermittent pain, the treatment is, in both cases, essentially pharmacological relying basically on opioids. Because of wide intra- and inter-individual variations, protocols will have to leave large possibilities of adaptation for each case, systematic pain evaluation being mandatory to achieve the best risk/benefit ratio. Surprisingly, the dose of medication decreases only slowly with time, a burn often remaining painful for long periods after healing. Non pharmacological treatments are often useful and sometimes indispensable adjuncts; but their rationale and their feasibility depends entirely on previous optimal pharmacological control of burn pain. Several recent studies show that burn pain management is inadequate in most burn centres.

  12. Internal contamination by actinides after wounding: a robust rodent model for assessment of local and distant actinide retention.

    Science.gov (United States)

    Griffiths, N M; Wilk, J C; Abram, M C; Renault, D; Chau, Q; Helfer, N; Guichet, C; Van der Meeren, A

    2012-08-01

    Internal contamination by actinides following wounding may occur in nuclear fuel industry workers or subsequent to terrorist activities, causing dissemination of radioactive elements. Contamination by alpha particle emitting actinides can result in pathological effects, either local or distant from the site of entry. The objective of the present study was to develop a robust experimental approach in the rat for short- and long- term actinide contamination following wounding by incision of the skin and muscles of the hind limb. Anesthetized rats were contaminated with Mixed OXide (MOX, uranium, plutonium oxides containing 7.1% plutonium) or plutonium nitrate (Pu nitrate) following wounding by deep incision of the hind leg. Actinide excretion and tissue levels were measured as well as histological changes from 2 h to 3 mo. Humid swabs were used for rapid evaluation of contamination levels and proved to be an initial guide for contamination levels. Although the activity transferred from wound to blood is higher after contamination with a moderately soluble form of plutonium (nitrate), at 7 d most of the MOX (98%) or Pu nitrate (87%) was retained at the wound site. Rapid actinide retention in liver and bone was observed within 24 h, which increased up to 3 mo. After MOX contamination, a more rapid initial urinary excretion of americium was observed compared with plutonium. At 3 mo, around 95% of activity remained at the wound site, and excretion of Pu and Am was extremely low. This experimental approach could be applied to other situations involving contamination following wounding including rupture of the dermal, vascular, and muscle barriers.

  13. Burns and epilepsy.

    Science.gov (United States)

    Berrocal, M

    1997-01-01

    This is a report of the first descriptive analytic study of a group of 183 burn patients, treated in the Burn Unit at the University Hospital of Cartagena, Colombia during the period since January 1985 until December 1990. There is presented experience with the selected group of 24 patients in whom the diagnosis of burn was associated with epilepsy. There is also analysed and described the gravity of the scars sequels, neurological disorders, the complication of the burn and an impact of this problem on the patient, his (her) family and the community. It is very important to report that there was found Neurocisticercosis in 66.6% of the group of burn patients with epilepsy, and it is probably the first risk factor of burn in this group.

  14. Actinides: How well do we know their stellar production?

    Science.gov (United States)

    Goriely, S.; Arnould, M.

    2001-12-01

    The reliable evaluation of the r-process production of the actinides and careful estimates of the uncertainties affecting these predictions are key ingredients especially in nucleo-cosmochronology studies based on the analysis of very metal-poor stars or on the composition of meteorites. This type of information is also required in order to make the best possible use of future high precision data on the actinide composition of galactic cosmic rays, of the local interstellar medium, or of meteoritic grains of presumed circumstellar origin. This paper provides the practitioners in these various fields with the most detailed and careful analysis of the r-process actinide production available to-date. This study is based on a version of the multi-event canonical model of the r-process which discards the largely used waiting point approximation. It considers also different combinations of models for the calculation of nuclear masses, beta -decay and fission rates. Two variants of the model used to predict nuclear reaction rates are adopted. In addition, the influence of the level of Pb and Bi production by the r-process on the estimated actinide production is evaluated by relying on the solar abundances of these two elements. In total, thirty-two different cases are presented, and are considered to give a fair picture of the level of reliability of the predictions of the actinide production, at least in the framework of a simple r-process model. This simplicity is imposed by our inability to identify the proper astrophysical sites for the r-process. As a guide to the practitioners, constraints on the actinide yield predictions and associated uncertainties are suggested on grounds of the measured abundances of r-nuclides, including Th and U, in the star CS 31082-001, and under the critical and questionable assumption of the ``universality'' of the r-process. We also define alternative constraints based on the nucleo-cosmochronological results derived from the present

  15. The Burning Saints

    DEFF Research Database (Denmark)

    Xygalatas, Dimitris

    . Carrying the sacred icons of the saints, participants dance over hot coals as the saint moves them. The Burning Saints presents an analysis of these rituals and the psychology behind them. Based on long-term fieldwork, The Burning Saints traces the historical development and sociocultural context......, The Burning Saints presents a highly original analysis of how mental processes can shape social and religious behaviour....

  16. Management of Hand Burns

    Directory of Open Access Journals (Sweden)

    Fatih Irmak

    2017-09-01

    Full Text Available Objective: The hand is one of the most frequently affected body parts by burn injuries with a rate of 80% among all burn wounds. Early and effective treatment ensures the best chance of survival as well as a good functional prognosis. The aim of this study was to determine the epidemiology, variation, relationship between etiology and hospital stay, clinical features, and management of hand burns. Material and Methods: This retrospective study was conducted the University of Health Sciences; Şişli Hamidiye Etfal Application and Research Center, Departmant of Plastic, Reconstructive and Aesthetic Surgery and the Intensive Burn Care Unit between April 2009 and April 2014. Burns were assessed based on etiology, anatomical location, percentage of total body surface area affected, and depth of injury. Treatment was categorized as conservative, elective operative, or urgent operative. Results: In the study period, 788 patients were admitted to our Burn Unit. Of these, 240 were females (30.5% and 548 were males (69.5%. The most common type of burn injury in this study was thermal injury (695 cases; 88.2%, followed by electrical injury (67 cases; 8.5%, and chemical, frictional or unknown injuries (26 cases; 3.3%. Majority (more than 85% of the patients had second-degree burns, and some had third-degree burns. Conclusions: Burns commonly affect the hands, and many functional problems may develop if appropriate basic treatments are neglected. The best treatment for burns is prevention. Appropriate indoor arrangement and simple but effective measures that can be taken at home can significantly reduce burn trauma exposure.

  17. Solubility of actinides and surrogates in nuclear glasses; Solubilite des actinides et de leurs simulants dans les verres nucleaires. Limites d'incorporation et comprehension des mecanismes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Ch

    2003-07-01

    The nuclear wastes are currently incorporated in borosilicate glass matrices. The resulting glass must be perfectly homogeneous. The work discussed here is a study of actinide (thorium and plutonium) solubility in borosilicate glass, undertaken to assess the extent of actinide solubility in the glass and to understand the mechanisms controlling actinide solubilization. Glass specimens containing; actinide surrogates were used to prepare and optimize the fabrication of radioactive glass samples. These preliminary studies revealed that actinide Surrogates solubility in the glass was enhanced by controlling the processing temperature, the dissolution kinetic of the surrogate precursors, the glass composition and the oxidizing versus reducing conditions. The actinide solubility was investigated in the borosilicate glass. The evolution of thorium solubility in borosilicate glass was determined for temperatures ranging from 1200 deg C to 1400 deg C.Borosilicate glass specimens containing plutonium were fabricated. The experimental result showed that the plutonium solubility limit ranged from 1 to 2.5 wt% PuO{sub 2} at 1200 deg C. A structural approach based on the determination of the local structure around actinides and their surrogates by EXAFS spectroscopy was used to determine their structural role in the glass and the nature of their bonding with the vitreous network. This approach revealed a correlation between the length of these bonds and the solubility of the actinides and their surrogates. (author)

  18. Burns in pregnancy.

    Science.gov (United States)

    Maghsoudi, Hemmat; Samnia, Roya; Garadaghi, Abasad; Kianvar, Hadi

    2006-03-01

    A 9-year prospective study of burns in pregnant women hospitalized at the Sina hospital burn center was conducted to determine the etiology and outcome of pregnant patients. Fifty-one patients (27.45% self-inflicted, 72.55% unintentional) were identified and stratified by age, burn size, presence or absence of inhalation injury, trimester of pregnancy, maternal and fetal mortality, and cause of burn. The mean patient age was 24.2 years. There were 20 maternal deaths and 23 fetal deaths. The majority of which (maternal: 13 and fetal: 13) were among self-inflicted burned pregnant women. The mean burn size was 37.7%, and was significantly larger for nonsurvivors of mother than survivors (68.8% versus 17.6%; pburned body surface area exceeds 40%, both maternal and fetal mortality reaches 100%. Inhalation injuries were strongly associated with large burns, and were presents in all suicide patients. Kerosene ignition (68.6% of all patients, 100% of self-inflicted patients) was the most common type of burn. Large burn size was the strongest predictor of mortality of mother and fetus followed by the presence of inhalation injury.

  19. The TMSR as actinide burner and thorium breeder

    Energy Technology Data Exchange (ETDEWEB)

    Merle-Lucotte, E.; Heuer, D.; Le Brun, C.; Allibert, M.; Ghetta, V. [LPSC/IN2P3/CNRS - INPG/ENSPG - UJF, 53, avenue des Martyrs, F-38026 Grenoble Cedex (France)

    2007-07-01

    Molten Salt Reactors (MSRs) are one of the six systems retained by Generation IV as a candidate for the next generation of nuclear reactors. Molten Salt Reactor is a very attractive concept especially for the Thorium fuel cycle which allows nuclear energy production with a very low production of radio-toxic minor actinides. Studies have thus been done on the Molten Salt Breeder Reactor (MSBR) of Oak-Ridge to re-evaluate this concept. They have shown that the MSBR suffers from major drawbacks concerning for example safety and reprocessing, drawbacks incompatible with any industrial development. On the other hand, the advantages of the Thorium fuel cycle were too attractive not to look further into it. With these considerations, we have reassessed the whole concept to propose an innovative reactor called Thorium Molten Salt Reactor (TMSR). Many parametric studies of the TMSR have been carried out, correlating the core arrangement and composition, the reprocessing performances, and the salt composition. In particular, by changing the moderation ratio of the core the neutron spectrum can be modified and placed anywhere between a very thermalized neutron spectrum and a relatively fast spectrum. Even if the epithermal TMSR configurations have not been completely excluded by our calculations, our studies have shown that the reactor design where there is no graphite moderator inside the core appears to be the most promising in terms of safety coefficients, reprocessing requirements, and breeding and deployment capabilities. Larger fissile matter inventories are necessary in such a reactor configuration compared to the thermalized TMSR configurations, but the resulting deployment limitation could be solved by using transuranic elements as initial fissile load. This work is based on the coupling of a neutron transport code called MCNP with the materials evolution code REM. The former calculates the neutron flux and the reaction rates in all the cells while the latter solves

  20. Theory of the crystal structures of the actinide metals; Theorie des structures cristallines des metaux actinides

    Energy Technology Data Exchange (ETDEWEB)

    Penicaud, M. [CEA Bruyeres-le-Chatel, 91 (France)

    2005-07-01

    We describe, by bands calculation methods, the delocalized-localized transition of 5f electrons in the series of actinide metals, at ambient conditions, which happens between {alpha}-Pu and Am, and which is characterized by the change from the open and complex monoclinic crystal structure to the double hexagonal close-packed structure, and by the density collapse from 19.86 g.cm{sup -3} to 13.67 g.cm{sup -3}. The case of the alloy stabilized Pu in the high temperature {delta} phase (face centered cubic) is treated. Its ambient experimental density (15.92 g.cm{sup -3}) is obtained with a localization of the only 5f5/2 electrons. We find a 5f5/2 density of states peak pinned at the Fermi level, in agreement with photoelectron spectroscopy, and the high value of the electronic specific heat coefficient. The crystalline stability under pressure of U, Np, Pu and Am is examined. We find theoretically, at high pressure in Am, the stability of the recently discovered experimentally Am IV structure which is primitive-orthorhombic with four atoms in the unit cell. We calculate this structure also stable for Pu, for which it is proposed that the sequence is: {alpha}-Pu {yields} Am IV {yields} body-centered cubic. (author)

  1. Improved Actinide Neutron Capture Cross Sections Using Accelerator Mass Spectrometry

    Science.gov (United States)

    Bauder, W.; Pardo, R. C.; Kondev, F. G.; Kondrashev, S.; Nair, C.; Nusair, O.; Palchan, T.; Scott, R.; Seweryniak, D.; Vondrasek, R.; Collon, P.; Paul, M.; Youinou, G.; Salvatores, M.; Palmotti, G.; Berg, J.; Maddock, T.; Imel, G.

    2014-09-01

    The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are developing a technique to inject solid material into the ECR with laser ablation. With laser ablation, we can better control material injection and potentially increase efficiency in the ECR, thus creating less contamination in the source and reducing cross talk. I will present work on the laser ablation system and preliminary results from our AMS measurements. The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are

  2. Burns and military clothing.

    Science.gov (United States)

    McLean, A D

    2001-02-01

    Burn injury is a ubiquitous threat in the military environment. The risks during combat are well recognised, but the handling of fuel, oil, munitions and other hot or flammable materials during peacetime deployment and training also imposes an inherent risk of accidental burn injury. Over the last hundred years, the burn threat in combat has ranged from nuclear weapons to small shoulder-launched missiles. Materials such as napalm and white phosphorus plainly present a risk of burn, but the threat extends to encompass personnel in vehicles attacked by anti-armour weapons, large missiles, fuel-air explosives and detonations/conflagrations on weapons platforms such as ships. Large numbers of burn casualties were caused at Pearl Harbor, in Hiroshima and Nagasaki, Vietnam, during the Arab/Israeli Wars and in the Falkland Islands conflict. The threat from burns is unlikely to diminish, indeed new developments in weapons seek to exploit the vulnerability of the serviceman and servicewoman to burns. Clothing can be a barrier to some types of burn--both inherently in the properties of the material, but also by trapping air between clothing layers. Conversely, ignition of the clothing may exacerbate a burn. There is hearsay that burnt clothing products within a wound may complicate the clinical management, or that materials that melt (thermoplastic materials) should not be worn if there is a burn threat. This paper explores the incidence of burn injury, the mechanisms of heat transfer to bare skin and skin covered by materials, and the published evidence for the complication of wound management by materials. Even light-weight combat clothing can offer significant protection to skin from short duration flash burns; the most vulnerable areas are the parts of the body not covered--face and hands. Multilayered combat clothing can offer significant protection for short periods from engulfment by flames; lightweight tropical wear with few layers offers little protection. Under

  3. Critical issues in burn care.

    Science.gov (United States)

    Holmes, James H

    2008-01-01

    Burn care, especially for serious burn injuries, represents a considerable challenge for the healthcare system. The American Burn Association has established a number of strategies for the management of burn patients and dedicates its efforts and resources to promoting and supporting burn-related research, education, care, rehabilitation, and prevention, often in collaboration with other organizations. The American Burn Association has recommended that patients with serious burns be referred to a designated burn center, ie, a hospital outfitted with specialized personnel and equipment dedicated to burn care. Burn centers have been operational for over 50 years, but the complexity and costs of providing specialized burn care have given rise to a number of critical administrative and political issues. These include logistical limitations imposed by the uneven national distribution of burn centers and a potential shortage of burn beds, both during everyday conditions and in the event of a mass disaster. Burn surgeon shortages have also been identified, stemming, in part, from a lack of specialized burn care training opportunities. There is currently a lack of quality outcome data to support evidence-based recommendations for burn care, and burn care centers are compromised by problems obtaining reimbursement for the care of uninsured and publicly insured out-of-state burn patients. Initiatives are underway to maintain efficient burn care facilities that are fully funded, easily accessible, and most importantly, provide optimal, evidence-based care on a daily basis, and are well-equipped to handle a surge of patients during a disaster situation.

  4. Fabrication of uranium-based ceramics using internal gelation for the conversion of trivalent actinides; Herstellung uranbasierter Keramiken mittel interner Gelierung zur Konversion trivalenter Actinoiden

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Henrik

    2012-07-01

    Alternative to today's direct final waste disposal strategy of long-lived radionuclides, for example the minor actinides neptunium, americium, curium and californium, is their selective separation from the radioactive wastestream with subsequent transmutation by neutron irradiation. Hereby it is possible to obtain nuclides with a lower risk-potential concerning their radiotoxicity. 1 neutron irradiation can be carried out either with neutron sources or in the next generation of nuclear reactors. Before the treatment, the minor actinides need to be converted in a suitable chemical and physical form. Internal gelation offers a route through which amorphous gel-spheres can be obtained directly from a metal-salt solution. Due to the presence of different types of metal ions as well as changing pH-values in a stock solution, a complex hydrolysis behaviour of these elements before and during gelation occurs. Therefore, investigations with uranium and neodymium as a minor actinide surrogate were carried out. As a result of suitable gelation-parameters, uraniumneodymium gel-spheres were successfully synthesised. The spheres also stayed intact during the subsequent thermal treatment. Based upon these findings, uranium-plutonium and uranium-americium gels were successfully created. For theses systems, the determined parameters for the uraniumneodymium gelation could also be applied. Additionally, investigations to reduce the acidity of uranium-based stock solutions for internal gelation were carried out. The necessary amount of urea and hexamethylenetetramine to induce gelation could hereby be decreased. This lead to a general increase of the gel quality and made it possible to carry out uranium-americium gelation in the first place. To investigate the stability of urea and hexamethylenetetramine, solutions of these chemicals were irradiated with different radiation doses. These chemicals showed a high stability against radiolysis in aqueous solutions.

  5. Thermodynamic study on the complexation of Trivalent actinide and lanthanide cation by N-donor ligands in homogeneous conditions; Etude thermodynamique de la complexation des ions actinide (III) et lanthanide (III) par des ligands polyazotes en milieu homogene

    Energy Technology Data Exchange (ETDEWEB)

    Miguirditchian, M

    2004-07-01

    Polydentate N-donor ligands, alone or combined with a synergic acid, may selectively extract minor actinides(III) from lanthanide(III) ions, allowing to develop separation processes of long-live radioelements. The aim of the researches carried out during this thesis was to better understand the chemical mechanisms of the complexation of f-elements by Adptz, a tridentate N-donor ligand, in homogeneous conditions. A thermodynamic approach was retained in order to estimate, from an energetic point of view, the influence of the different contributions to the reaction, and to acquire a complete set of thermodynamic data on this reaction. First, the influence of the nature of the cation on the thermodynamics was considered. The stability constants of the 1/1 complexes were systematically determined by UV-visible spectrophotometry for every lanthanide ion (except promethium) and for yttrium in a mixed solvent methanol/water in volume proportions 75/25%. The thermodynamic parameters ({delta}H{sup 0} {delta}{sup S}) of complexation were estimated by the van't Hoff method and by micro-calorimetry. The trends of the variations across the lanthanide series are compared with similar studies. The same methods were applied to the study of three actinide(III) cations: plutonium, americium and curium. The comparison of these values with those obtained for the lanthanides highlights the increase of stability of these complexes by a factor of 20 in favor of the actinide cations. This gap is explained by a more exothermic reaction and is associated, in the data interpretation, to a higher covalency of the actinide(III)-nitrogen bond. Then, the influence of the change of solvent composition on the thermodynamic of complexation was studied. The thermodynamic parameters of the complexation of europium(III) by Adptz were determined for several fractions of methanol. The stability of the complex formed increases with the percentage of methanol in the mixed solvent, owing to an

  6. Superabsorbing gel for actinide, lanthanide, and fission product decontamination

    Science.gov (United States)

    Kaminski, Michael D.; Mertz, Carol J.

    2016-06-07

    The present invention provides an aqueous gel composition for removing actinide ions, lanthanide ions, fission product ions, or a combination thereof from a porous surface contaminated therewith. The composition comprises a polymer mixture comprising a gel forming cross-linked polymer and a linear polymer. The linear polymer is present at a concentration that is less than the concentration of the cross-linked polymer. The polymer mixture is at least about 95% hydrated with an aqueous solution comprising about 0.1 to about 3 percent by weight (wt %) of a multi-dentate organic acid chelating agent, and about 0.02 to about 0.6 molar (M) carbonate salt, to form a gel. When applied to a porous surface contaminated with actinide ions, lanthanide ions, and/or other fission product ions, the aqueous gel absorbs contaminating ions from the surface.

  7. Radioanalytical determination of actinides and fission products in Belarus soils.

    Science.gov (United States)

    Michel, H; Gasparro, J; Barci-Funel, G; Dalmasso, J; Ardisson, G; Sharovarov, G

    1999-04-01

    Alpha emitting actinides such as plutonium, americium or curium were measured by alpha-spectrometry after radiochemical separation. The short range of alpha-particles within matter requires, after a pre-concentration process, a succession of isolation and purification steps based on the valence states modification of the researched elements. For counting, actinides were electrodeposited in view to obtain the mass-less source necessary to avoid self-absorption of the emitted radiations. Activity concentrations of gamma-emitting fission products were calculated after measurement with high purity germanium detectors (HPGe). These different methods were used to analyse soils sampled in the Republic of Belarus, not far from the Chernobyl nuclear plant.

  8. Development of a remote bushing for actinide vitrification

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, R.F.; Ramsey, W.G.; Johnson, F.M. [and others

    1996-12-31

    The Savannah River Site (SRS) and the Savannah River Technology Center (SRTC) are combining their existing experience in handling highly radioactive, special nuclear materials with commercial glass fiberization technology in order to assemble a small vitrification system for radioactive actinide solutions. The vitrification system or {open_quotes}brushing{close_quotes}, is fabricated from platinum-rhodium alloy and is based on early marble remelt fiberization technology. Advantages of this unique system include its relatively small size, reliable operation, geometrical safety (nuclear criticality), and high temperature capability. The bushing design should be capable of vitrifying a number of the actinide nuclear materials, including solutions of americium/curium, neptunium, and possibly plutonium. State of the art, mathematical and oil model studies are being combined with basic engineering evaluations to verify and improve the thermal and mechanical design concepts.

  9. Actinide-specific sequestering agents and decontamination applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, William L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials and Molecular Research Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Raymond, Kenneth N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials and Molecular Research Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1981-04-07

    With the commercial development of nuclear reactors, the actinides have become very important industrial elements. A major concern of the nuclear industry is the biological hazard associated with nuclear fuels and their wastes. The acute chemical toxicity of tetravalent actinides, as exemplified by Th(IV), is similar to Cr(III) or Al(III). However, the acute toxicity of 239Pu(IV) is similar to strychnine, which is much more toxic than any of the non-radioactive metals such as mercury. Although the more radioactive isotopes of the transuranium elements are more acutely toxic by weight than plutonium, the acute toxicities of 239Pu, 241Am, and 244Cm are nearly identical in radiation dose, ~100 μCi/kg in rodents. Finally and thus, the extreme acute toxicity of 239Pu is attributed to its high specific activity of alpha emission.

  10. Experimental findings on actinide recovery utilizing oxidation by peroxydisulfate followed by ion exchange: Fuel cycle research & development

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D. T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shehee, T. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-31

    Our research seeks to determine if inorganic ion-exchange materials can be exploited to provide effective minor actinide (Am, Cm) separation from lanthanides. Previous work has established that a number of inorganic and UMOF ion-exchange materials exhibit varying affinities for actinides and lanthanides, which may be exploited for effective separations. During FY15, experimental work focused on investigating methods to oxidize americium in dilute nitric and perchloric acid with subsequent ion-exchange performance measurements of ion exchangers with the oxidized americium in dilute nitric acid. Ion-exchange materials tested included a variety of alkali titanates. Americium oxidation testing sought to determine the influence that other redox active components may have on the oxidation of AmIII. Experimental findings indicated that CeIII, NpV, and RuII are oxidized by peroxydisulfate, but there are no indications that the presence of CeIII, NpV, and RuII affected the rate or extent of americium oxidation at the concentrations of peroxydisulfate being used.

  11. Experimental findings on actinide recovery utilizing oxidation by peroxydisulfate followed by ion exchange: Fuel cycle research & development

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D. T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shehee, T. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-31

    Our research seeks to determine if inorganic ion-exchange materials can be exploited to provide effective minor actinide (Am, Cm) separation from lanthanides. Previous work has established that a number of inorganic and UMOF ion-exchange materials exhibit varying affinities for actinides and lanthanides, which may be exploited for effective separations. During FY15, experimental work focused on investigating methods to oxidize americium in dilute nitric and perchloric acid with subsequent ion-exchange performance measurements of ion exchangers with the oxidized americium in dilute nitric acid. Ion-exchange materials tested included a variety of alkali titanates. Americium oxidation testing sought to determine the influence that other redox active components may have on the oxidation of AmIII. Experimental findings indicated that CeIII, NpV, and RuII are oxidized by peroxydisulfate, but there are no indications that the presence of CeIII, NpV, and RuII affected the rate or extent of americium oxidation at the concentrations of peroxydisulfate being used.

  12. Pain in burn patients.

    Science.gov (United States)

    Latarjet, J; Choinère, M

    1995-08-01

    While severe pain is a constant component of the burn injury, inadequate pain management has been shown to be detrimental to burn patients. Pain-generating mechanisms in burns include nociception, primary and secondary hyperalgesia and neuropathy. The clinical studies of burn pain characteristics reveal very clear-cut differences between continuous pain and pain due to therapeutic procedures which have to be treated separately. Some of the main features of burn pain are: (1) its long-lasting course, often exceeding healing time, (2) the repetition of highly nociceptive procedures which can lead to severe psychological disturbances if pain control is inappropriate. Pharmaco-therapy with opioids is the mainstay for analgesia in burned patients, but non-pharmacological techniques may be useful adjuncts. Routine pain evaluation is mandatory for efficient and safe analgesia. Special attention must be given to pain in burned children which remains too often underestimated and undertreated. More educational efforts from physicians and nursing staff are necessary to improve pain management in burned patients.

  13. Nutrition of burned patients.

    Science.gov (United States)

    Gudaviciene, Daiva; Rimdeika, Rytis; Adamonis, Kestutis

    2004-01-01

    Burns form 5-12% of all traumas. About 2,200 of patients are annually hospitalized in Lithuania. In most cases people of the employable age get burned. The treatment is often long-lasting, and afterwards recovered patients often have invalidity from burn sequels. The mortality of hospitalized burned patients is about 10%. The most common causes of death are pulmonary edema, pneumonia, sepsis and multiorgan failure. All these complications are related with insufficient nutrition. These complications are extremely frequent and dangerous for patients with more than 20% of body burned. The nutritional support of burned patient gives a possibility to increase the survival probability, to decrease complication rate and hospitalization time. Currently in Lithuania there are no standards for burned patient nutrition. More attention is given to strategy of surgical strategy and techniques, as well as antibiotic therapy. This article is the review of the different aspects of artificial nutrition of burned patient: indications, modes of nutrition, mixtures and terms of nutritional support.

  14. Design of unique pins for irradiation of higher actinides in a fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Basmajian, J.A.; Birney, K.R.; Weber, E.T.; Adair, H.L.; Quinby, T.C.; Raman, S.; Butler, J.K.; Bateman, B.C.; Swanson, K.M.

    1982-03-01

    The actinides produced by transmutation reactions in nuclear reactor fuels are a significant factor in nuclear fuel burnup, transportation and reprocessing. Irradiation testing is a primary source of data of this type. A segmented pin design was developed which provides for incorporation of multiple specimens of actinide oxides for irradiation in the UK's Prototype Fast Reactor (PFR) at Dounreay Scotland. Results from irradiation of these pins will extend the basic neutronic and material irradiation behavior data for key actinide isotopes.

  15. Comparative Study of f-Element Electronic Structure across a Series of Multimetallic Actinide, Lanthanide-Actinide and Lanthanum-Actinide Complexes Possessing Redox-Active Bridging Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Schelter, Eric J.; Wu, Ruilian; Veauthier, Jacqueline M.; Bauer, Eric D.; Booth, Corwin H.; Thomson, Robert K.; Graves, Christopher R.; John, Kevin D.; Scott, Brian L.; Thompson, Joe D.; Morris, David E.; Kiplinger, Jaqueline L.

    2010-02-24

    A comparative examination of the electronic interactions across a series of trimetallic actinide and mixed lanthanide-actinide and lanthanum-actinide complexes is presented. Using reduced, radical terpyridyl ligands as conduits in a bridging framework to promote intramolecular metal-metal communication, studies containing structural, electrochemical, and X-ray absorption spectroscopy are presented for (C{sub 5}Me{sub 5}){sub 2}An[-N=C(Bn)(tpy-M{l_brace}C{sub 5}Me4R{r_brace}{sub 2})]{sub 2} (where An = Th{sup IV}, U{sup IV}; Bn = CH{sub 2}C{sub 6}H{sub 5}; M = La{sup III}, Sm{sup III}, Yb{sup III}, U{sup III}; R = H, Me, Et) to reveal effects dependent on the identities of the metal ions and R-groups. The electrochemical results show differences in redox energetics at the peripheral 'M' site between complexes and significant wave splitting of the metal- and ligand-based processes indicating substantial electronic interactions between multiple redox sites across the actinide-containing bridge. Most striking is the appearance of strong electronic coupling for the trimetallic Yb{sup III}-U{sup IV}-Yb{sup III}, Sm{sup III}-U{sup IV}-Sm{sup III}, and La{sup III}-U{sup IV}-La{sup III} complexes, [8]{sup -}, [9b]{sup -} and [10b]{sup -}, respectively, whose calculated comproportionation constant K{sub c} is slightly larger than that reported for the benchmark Creutz-Taube ion. X-ray absorption studies for monometallic metallocene complexes of U{sup III}, U{sup IV}, and U{sup V} reveal small but detectable energy differences in the 'white-line' feature of the uranium L{sub III}-edges consistent with these variations in nominal oxidation state. The sum of this data provides evidence of 5f/6d-orbital participation in bonding and electronic delocalization in these multimetallic f-element complexes. An improved, high-yielding synthesis of 4{prime}-cyano-2,2{prime}:6{prime},2{double_prime}-terpyridine is also reported.

  16. Chemical and Ceramic Methods Toward Safe Storage of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    P.E.D. Morgan; R.M. Housley; J.B. Davis; M.L. DeHaan

    2005-08-19

    A very import, extremely-long-term, use for monazite as a radwaste encapsulant has been proposed. THe use of ceramic La-monazite for sequestering actinides (isolating them from the environment), especially plutonium and some other radioactive elements )e.g., fission-product rare earths), had been especially championed by Lynn Boatner of ORNL. Monazite may be used alone or, copying its compatibility with many other minerals in nature, may be used in diverse composite combinations.

  17. EXAFS studies of actinide ions in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Karim, D P; Georgopoulos, P; Knapp, G S

    1979-01-01

    The applicability of the EXAFS technique in the study of actinide systems is discussed. Uranium L/sub III/-edge spectra obtained on an in-lab rotating anode EXAFS facility are presented and analyzed for crystalline UO/sub 2/F/sub 2/ and aqueous solutions containing hexavalent uranium ions. Methods for the extension of the technique to more dilute systems are discussed.

  18. Chemical properties of the heavier actinides and transactinides

    Energy Technology Data Exchange (ETDEWEB)

    Hulet, E.K.

    1981-01-01

    The chemical properties of each of the elements 99 (Es) through 105 are reviewed and their properties correlated with the electronic structure expected for 5f and 6d elements. A major feature of the heavier actinides, which differentiates them from the comparable lanthanides, is the increasing stability of the divalent oxidation state with increasing atomic number. The divalent oxidation state first becomes observable in the anhydrous halides of californium and increases in stability through the series to nobelium, where this valency becomes predominant in aqueous solution. In comparison with the analogous 4f electrons, the 5f electrons in the latter part of the series are more tightly bound. Thus, there is a lowering of the 5f energy levels with respect to the Fermi level as the atomic number increases. The metallic state of the heavier actinides has not been investigated except from the viewpoint of the relative volatility among members of the series. In aqueous solutions, ions of these elements behave as a normal trivalent actinides and lanthanides (except for nobelium). Their ionic radii decrease with increasing nuclear charge which is moderated because of increased screening of the outer 6p electrons by the 5f electrons. The actinide series of elements is completed with the element lawrencium (Lr) in which the electronic configuration is 5f/sup 14/7s/sup 2/7p. From Mendeleev's periodicity and Dirac-Fock calculations, the next group of elements is expected to be a d-transition series corresponding to the elements Hf through Hg. The chemical properties of elements 104 and 105 only have been studied and they indeed appear to show the properties expected of eka-Hf and eka-Ta. However, their nuclear lifetimes are so short and so few atoms can be produced that a rich variety of chemical information is probably unobtainable.

  19. Burning mouth syndrome

    Directory of Open Access Journals (Sweden)

    K A Kamala

    2016-01-01

    Full Text Available Burning mouth syndrome (BMS is multifactorial in origin which is typically characterized by burning and painful sensation in an oral cavity demonstrating clinically normal mucosa. Although the cause of BMS is not known, a complex association of biological and psychological factors has been identified, suggesting the existence of a multifactorial etiology. As the symptom of oral burning is seen in various pathological conditions, it is essential for a clinician to be aware of how to differentiate between symptom of oral burning and BMS. An interdisciplinary and systematic approach is required for better patient management. The purpose of this study was to provide the practitioner with an understanding of the local, systemic, and psychosocial factors which may be responsible for oral burning associated with BMS, and review of treatment modalities, therefore providing a foundation for diagnosis and treatment of BMS.

  20. Hand chemical burns.

    Science.gov (United States)

    Robinson, Elliot P; Chhabra, A Bobby

    2015-03-01

    There is a vast and ever-expanding variety of potentially harmful chemicals in the military, industrial, and domestic landscape. Chemical burns make up a small proportion of all skin burns, yet they can cause substantial morbidity and mortality. Additionally, the hand and upper extremity are the most frequently involved parts of the body in chemical burns, and therefore these injuries may lead to severe temporary or permanent loss of function. Despite this fact, discussion of the care of these injuries is sparse in the hand surgery literature. Although most chemical burns require only first response and wound care, some require the attention of a specialist for surgical debridement and, occasionally, skin coverage and reconstruction. Exposure to certain chemicals carries the risk of substantial systemic toxicity and even mortality. Understanding the difference between thermal and chemical burns, as well as special considerations for specific compounds, will improve patient treatment outcomes.

  1. [Chickenpox, burns and grafts].

    Science.gov (United States)

    Rojas Zegers, J; Fidel Avendaño, L

    1979-01-01

    An outbreak of chickenpox that occurred at the Burns Repair Surgery Unit, Department of Children's Surgery, Hospital R. del Río, between June and November, 1975, is reported. 27 cases of burned children were studied, including analysis of correlations of the stages and outcome of the disease (varicela), the trauma (burns) and the graft (repair surgery). As a result, the authors emphasize the following findings: 1. Burns and their repair are not aggravating factors for varicella. In a small number of cases the exanthema looked more confluent in the graft surgical areas and in the first degree burns healing spontaneously. 2. Usually there was an uneventful outcome of graft repair surgery on a varicella patient, either during the incubation period, the acme or the convalescence. 3. The fact that the outmost intensity of secondary viremia of varicella occurs before the onset of exanthemia, that is, during the late incubation period, is confirmed.

  2. Crude oil burning mechanisms

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Malmquist, Linus Mattias Valdemar; Jomaas, Grunde

    2015-01-01

    In order to improve predictions for the burning efficiency and the residue composition of in-situ burning of crude oil, the burning mechanism of crude oil was studied in relation to the composition of its hydrocarbon mixture, before, during and after the burning. The surface temperature, flame...... height, mass loss rate and residues of three hydrocarbon liquids (n-octane, dodecane and hexadecane), two crude oils (DUC and REBCO) and one hydrocarbon liquid mixture of the aforementioned hydrocarbon liquids were studied using the Crude Oil Flammability Apparatus. The experimental results were compared...... to the predictions of four conceptual models that describe the burning mechanism of multicomponent fuels. Based on the comparisons, hydrocarbon liquids were found to be best described by the Equilibrium Flash Vaporization model, showing a constant gas composition and gasification rate. The multicomponent fuels...

  3. Ground-state electronic structure of actinide monocarbides and mononitrides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z.

    2009-01-01

    The self-interaction corrected local spin-density approximation is used to investigate the ground-state valency configuration of the actinide ions in the actinide monocarbides, AC (A=U,Np,Pu,Am,Cm), and the actinide mononitrides, AN. The electronic structure is characterized by a gradually...... increasing degree of f electron localization from U to Cm, with the tendency toward localization being slightly stronger in the (more ionic) nitrides compared to the (more covalent) carbides. The itinerant band picture is found to be adequate for UC and acceptable for UN, while a more complex manifold...... of competing localized and delocalized f-electron configurations underlies the ground states of NpC, PuC, AmC, NpN, and PuN. The fully localized 5f-electron configuration is realized in CmC (f7), CmN (f7), and AmN (f6). The observed sudden increase in lattice parameter from PuN to AmN is found to be related...

  4. A literature review of actinide-carbonate mineral interactions

    Energy Technology Data Exchange (ETDEWEB)

    Stout, D.L. [Missouri Univ., Columbia, MO (United States). Dept. of Geological Sciences; Carroll, S.A. [Lawrence Livermore National Lab., CA (United States)

    1993-10-01

    Chemical retardation of actinides in groundwater systems is a potentially important mechanism for assessing the performance of the Waste Isolation Pilot Plant (WIPP), a facility intended to demonstrate safe disposal of transuranic waste. Rigorous estimation of chemical retardation during transport through the Culebra Dolomite, a water-bearing unit overlying the WIPP, requires a mechanistic understanding of chemical reactions between dissolved elements and mineral surfaces. This report represents a first step toward this goal by examining the literature for pertinent experimental studies of actinide-carbonate interactions. A summary of existing models is given, along with the types of experiments on which these models are based. Articles pertaining to research into actinide interactions with carbonate minerals are summarized. Select articles involving trace element-carbonate mineral interactions are also reviewed and may serve as templates for future research. A bibliography of related articles is included. Americium(III), and its nonradioactive analog neodymium(III), partition strongly from aqueous solutions into carbonate minerals. Recent thermodynamic, kinetic, and surface studies show that Nd is preferentially removed from solution, forming a Nd-Ca carbonate solid solution. Neptunium(V) is rapidly removed from solution by carbonates. Plutonium incorporation into carbonates is complicated by multiple oxidation states. Little research has been done on the radium(H) and thorium(IV) carbonate systems. Removal of uranyl ion from solution by calcite is limited to monolayer surface coverage.

  5. Rapid separation method for actinides in emergency air filter samples.

    Science.gov (United States)

    Maxwell, Sherrod L; Culligan, Brian K; Noyes, Gary W

    2010-12-01

    A new rapid method for the determination of actinides and strontium in air filter samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations. The actinides and strontium in air filter method utilizes a rapid acid digestion method and a streamlined column separation process with stacked TEVA, TRU and Sr Resin cartridges. Vacuum box technology and rapid flow rates are used to reduce analytical time. Alpha emitters are prepared using cerium fluoride microprecipitation for counting by alpha spectrometry. The purified (90)Sr fractions are mounted directly on planchets and counted by gas flow proportional counting. The method showed high chemical recoveries and effective removal of interferences. This new procedure was applied to emergency air filter samples received in the NRIP Emergency Response exercise administered by the National Institute for Standards and Technology (NIST) in April, 2009. The actinide and (90)Sr in air filter results were reported in less than 4 h with excellent quality. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Crystalline matrices for the immobilization of plutonium and actinides

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, E.B.; Burakov, E.E.; Galkin, Ya.B.; Starchenko, V.A.; Vasiliev, V.G. [V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation)

    1996-05-01

    The management of weapon plutonium, disengaged as a result of conversion, is considered together with the problem of the actinide fraction of long-lived high level radioactive wastes. It is proposed to use polymineral ceramics based on crystalline host-phases: zircon ZrSiO{sub 4} and zirconium dioxide ZrO{sub 2}, for various variants of the management of plutonium and actinides (including the purposes of long-term safe storage or final disposal from the human activity sphere). It is shown that plutonium and actinides are able to form with these phases on ZrSiO{sub 4} and ZrO{sub 2} was done on laboratory level by the hot pressing method, using the plasmochemical calcination technology. To incorporate simulators of plutonium into the structure of ZrSiO{sub 4} and ZrO{sub 2} in the course of synthesis, an original method developed by the authors as a result of studying the high-uranium zircon (Zr,U) SiO{sub 4} form Chernobyl {open_quotes}lavas{close_quotes} was used.

  7. Actinides and lanthanides under pressure: the pseudopotential approach; Actinides et terres rares sous pression: approche pseudopotentiel

    Energy Technology Data Exchange (ETDEWEB)

    Richard, N

    2002-07-01

    In the Density Functional Theory Framework, the pseudopotential formalism offers a broader scope of study than other theoretical methods such as global relaxation of the parameters of the cell or ab initio molecular dynamics simulations. This method has been widely used to study light elements or transition metals but never to study f elements. We have generated two non local norm conserving Trouillier-Martins pseudopotentials (one in LDA and one in GGA) for the cerium. To check the validity of the pseudopotentials, we have calculated the equilibrium volume and the incompressibility modulus and compared our results to previous all-electron calculations. If the GGA and non linear core corrections are used, the equation of state is in a good agreement with the experimental equation of state. A static study of the previously proposed high pressure phases give a transitions fcc-a''(I)-bct. Using the pseudopotentials we have generated, an ab initio molecular dynamics simulation at constant pressure, in the region between 5 and 12 GPa where the stable phase of cerium is not well defined, lead us to predict that a centred monoclinic structure, as the a''(I) phase previously observed in some experiments, is the most stable phase. We have also generated pseudopotentials for the light actinides (Th, Pa, U and Np). We have study their phase transitions under pressure at zero temperature. We compared our results with all electron results. The structure parameters have always been relaxed in this study. And for the first time in pseudopotential calculation, the spin-orbit coupling has been taken into account. The curves describing the variation of the volume or the incompressibility modulus depending on the elements and the phase transitions are always in agreement with the one found in the all electron calculations. (author)

  8. Fission fragment angular distributions in pre-actinide nuclei

    Science.gov (United States)

    Banerjee, Tathagata; Nath, S.; Jhingan, A.; Kaur, Gurpreet; Dubey, R.; Yadav, Abhishek; Laveen, P. V.; Shamlath, A.; Shareef, M.; Gehlot, J.; Saneesh, N.; Prasad, E.; Sugathan, P.; Pal, Santanu

    2016-10-01

    Background: Complete fusion of two nuclei leading to formation of a heavy compound nucleus (CN) is known to be hindered by various fission-like processes, in which the composite system reseparates after capture of the target and the projectile inside the potential barrier. As a consequence of these non-CN fission (NCNF) processes, fusion probability (PCN) starts deviating from unity. Despite substantial progress in understanding, the onset and the experimental signatures of NCNF and the degree of its influence on fusion have not yet been unambiguously identified. Purpose: This work aims to investigate the presence of NCNF, if any, in pre-actinide nuclei by systematic study of fission angular anisotropies and fission cross sections (σfis) in a number of nuclear reactions carried out at and above the Coulomb barrier (VB) . Method: Fission fragment angular distributions were measured for six 28Si-induced reactions involving isotopically enriched targets of 169Tm,176Yb,175Lu,180Hf,181Ta, and 182W leading to probable formation of CN in the pre-actinide region, at a laboratory energy (Elab) range of 129-146 MeV. Measurements were performed with large angular coverage (θlab=41∘ -170∘) in which fission fragments (FFs) were detected by nine hybrid telescope (E -Δ E ) detectors. Extracted fission angular anisotropies and σfis were compared with statistical model (SM) predictions. Results: Barring two reactions involving targets with large non-zero ground state spin (J ) , viz., 175Lu(7/2+) and 181Ta(7/2+) , experimental fission angular anisotropies were found to be higher in comparison with predictions of the statistical saddle point model (SSPM), at Ec .m . near VB. Comparison of present results with those from neighboring systems revealed that experimental anisotropies increasingly deviated from SSPM predictions as one moved from pre-actinide to actinide nuclei. For reactions involving targets with large nonzero J , this deviation was subdued. Comparison between

  9. Office of Minority Health

    Science.gov (United States)

    Skip Navigation Office of Minority Health A A A En Español Newsroom Contact Us Search: About OMH What We Do Resource ... History Leadership Regional Staff State Minority Health Contacts Offices of Minority Health at HHS Advisory Committee Committees ...

  10. Alcohol and Minority Youth.

    Science.gov (United States)

    Wright, Roosevelt, Jr.; Watts, Thomas D.

    1991-01-01

    Maintains that minority youth who use (or abuse) alcohol in American society deal with using alcohol, being minority, and being young, three dimensions viewed by society with mixed, sometimes hostile and/or fearful reactions. Suggests that examining alcoholism among minority youth involves coming to grips with poverty, education, income, and life…

  11. Prescribed burning plan : Stillwater NWR : de Braga Burn Unit 67

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This 1991 Annual Prescribed Burning Plan for Stillwater NWR calls for all 67 acres of the de Braga burn unit to be burned. The objective of this burn is to remove...

  12. PBXN-110 Burn Rate Estimate

    Energy Technology Data Exchange (ETDEWEB)

    Glascoe, E

    2008-08-11

    It is estimated that PBXN-110 will burn laminarly with a burn function of B = (0.6-1.3)*P{sup 1.0} (B is the burn rate in mm/s and P is pressure in MPa). This paper provides a brief discussion of how this burn behavior was estimated.

  13. Management of burn wounds.

    Science.gov (United States)

    Schiestl, Clemens; Meuli, Martin; Trop, Marija; Neuhaus, Kathrin

    2013-10-01

    Small and moderate scalds in toddlers are still the most frequent thermal injuries the pediatric surgeons have to face today. Over the last years, surgical treatment of these patients has changed in many aspects. Due to new dressing materials and new surgical treatment strategies that are particularly suitable for children, today, far better functional and aesthetic long-term results are possible. While small and moderate thermal injuries can be treated in most European pediatric surgical departments, the severely burned child must be transferred to a specialized, ideally pediatric, burn center, where a well-trained multidisciplinary team under the leadership of a (ideally pediatric) burn surgeon cares for these highly demanding patients. In future, tissue engineered full thickness skin analogues will most likely play an important role, in pediatric burn as well as postburn reconstructive surgery.

  14. Burn Wise Awareness Kit

    Science.gov (United States)

    Health and safety outreach materials in the form of an awareness kit. Designed specifically for state, local, and tribal air agencies working to reduce wood smoke pollution, it includes best burn tips, social media m

  15. Molten Metal Burns

    OpenAIRE

    Kahn, Arthur M.; McCrady-Kahn, Virginia L.

    1981-01-01

    Molten metal burns are a frequent industrial injury among workers in foundries. The injury is typically small but very deep. Usually the depth and seriousness of these injuries is not recognized immediately by emergency department or industrial clinic physicians.

  16. New Fashioned Book Burning.

    Science.gov (United States)

    Gardner, Robert

    1997-01-01

    Reports on results of a teacher's experiment in book burning as a lesson accompanying the teaching of Ray Bradbury's "Fahrenheit 451." Discusses student reactions and the purpose of or justification for the experimental lesson. (TB)

  17. Measurement of fission cross-section of actinides at n_TOF for advanced nuclear reactors

    CERN Document Server

    Calviani, Marco; Montagnoli, G; Mastinu, P

    2009-01-01

    The subject of this thesis is the determination of high accuracy neutron-induced fission cross-sections of various isotopes - all of which radioactive - of interest for emerging nuclear technologies. The measurements had been performed at the CERN neutron time-of-flight facility n TOF. In particular, in this work, fission cross-sections on 233U, the main fissile isotope of the Th/U fuel cycle, and on the minor actinides 241Am, 243Am and 245Cm have been analyzed. Data on these isotopes are requested for the feasibility study of innovative nuclear systems (ADS and Generation IV reactors) currently being considered for energy production and radioactive waste transmutation. The measurements have been performed with a high performance Fast Ionization Chamber (FIC), in conjunction with an innovative data acquisition system based on Flash-ADCs. The first step in the analysis has been the reconstruction of the digitized signals, in order to extract the information required for the discrimination between fission fragm...

  18. Treatment and recycling of spent nuclear fuel. Actinide partitioning - Application to waste management

    Energy Technology Data Exchange (ETDEWEB)

    Abonneau, E.; Baron, P.; Berthon, C.; Berthon, L.; Beziat, A.; Bisel, I.; Bonin, L.; Bosse, E.; Boullis, B.; Broudic, J.C.; Charbonnel, M.C.; Chauvin, N.; Den Auwer, C.; Dinh, B.; Duhamet, J.; Escleine, J.M.; Grandjean, S.; Guilbaud, P.; Guillaneux, D.; Guillaumont, D.; Hill, C.; Lacquement, J.; Masson, M.; Miguirditchian, M.; Moisy, P.; Pelletier, M.; Ravenet, A.; Rostaing, C.; Royet, V.; Ruas, A.; Simoni, E.; Sorel, C.; Vaudano, A.; Venault, L.; Warin, D.; Zaetta, A.; Pradel, P.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Forestier, A.; Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Latge, C.; Limoge, Y.; Madic, C.; Santarini, G.; Seiler, J.M.; Sollogoob, P.; Vernaz, E.; Bazile, F.; Parisot, J.P.; Finot, P.; Roberts, J.F

    2008-07-01

    subsequent to its in-reactor dwell time, spent fuel still contains large amounts of materials that are recoverable, for value-added energy purposes (uranium, plutonium), together with fission products, and minor actinides, making up the residues from nuclear reactions. The treatment and recycling of spent nuclear fuel, as implemented in France, entail that such materials be chemically partitioned. The development of the process involved, and its deployment on an industrial scale stand as a high achievement of French science, and technology. Treatment and recycling allow both a satisfactory management of nuclear waste to be implemented, and substantial savings, in terms of fissile material. Bolstered of late as it has been, due to spectacularly skyrocketing uranium prices, this strategy is bound to become indispensable, with the advent of the next generation of fast reactors. This Monograph surveys the chemical process used for spent fuel treatment, and its variants, both current, and future. It outlines currently ongoing investigations, setting out the challenges involved, and recent results obtained by CEA. (authors)

  19. Accidental burns during surgery.

    Science.gov (United States)

    Demir, Erhan; O'Dey, Dan Mon; Pallua, Norbert

    2006-01-01

    The purpose of this report is to increase awareness of intraoperative burns during standard procedures, to discuss their possible causes and warning signs and to provide recommendations for prevention and procedures to follow after their occurrence. A total of 19 patients associated with intraoperative burn accidents were treated surgically and analyzed after a mean follow-up of 5 +/- 3.5 months. Review included retrospective patient chart analysis, clinical examination, and technical device and equipment testing. A total of 15 patients recently underwent cardiac surgery, and 4 pediatric patients recovered after standard surgical procedures. A total of 15 patients had superficial and 4 presented with deep dermal or full-thickness burns. The average injured TBSA was 2.1 +/- 1% (range, 0.5-4%). Delay between primary surgery and consultation of plastic surgeons was 4.5 +/- 3.4 days. A total of 44% required surgery, including débridment, skin grafting or musculocutaneous gluteus maximus flaps, and the remaining patients were treated conservatively. Successful durable soft-tissue coverage of the burn region was achieved in 18 patients, and 1 patient died after a course of pneumonia. Technical analysis demonstrated one malfunctioning electrosurgical device, one incorrect positioned neutral electrode, three incidents occurred after moisture under the negative electrode, eight burns occurred during surgery while fluid or blood created alternate current pathways, five accidents were chemical burns after skin preparation with Betadine solution, and in one case, the cause was not clear. The surgical team should pay more attention to the probability of burns during surgery. Early patient examination and immediate involvement of plastic and burn surgeons may prevent further complications or ease handling after the occurrence.

  20. Smartphone applications in burns.

    Science.gov (United States)

    Wurzer, Paul; Parvizi, Daryousch; Lumenta, David B; Giretzlehner, Michael; Branski, Ludwik K; Finnerty, Celeste C; Herndon, David N; Tuca, Alexandru; Rappl, Thomas; Smolle, Christian; Kamolz, Lars P

    2015-08-01

    Since the introduction of applications (apps) for smartphones, the popularity of medical apps has been rising. The aim of this review was to demonstrate the current availability of apps related to burns on Google's Android and Apple's iOS store as well as to include a review of their developers, features, and costs. A systematic online review of Google Play Store and Apple's App Store was performed by using the following search terms: "burn," "burns," "thermal," and the German word "Verbrennung." All apps that were programmed for use as medical apps for burns were included. The review was performed from 25 February until 1 March 2014. A closer look at the free and paid calculation apps including a standardized patient was performed. Four types of apps were identified: calculators, information apps, book/journal apps, and games. In Google Play Store, 31 apps were related to burns, of which 20 were calculation apps (eight for estimating the total body surface area (TBSA) and nine for total fluid requirement (TFR)). In Apple's App Store, under the category of medicine, 39 apps were related to burns, of which 21 were calculation apps (19 for estimating the TBSA and 17 for calculating the TFR). In 19 out of 32 available calculation apps, our study showed a correlation of the calculated TFR compared to our standardized patient. The review demonstrated that many apps for medical burns are available in both common app stores. Even free available calculation apps may provide a more objective and reproducible procedure compared to manual/subjective estimations, although there is still a lack of data security especially in personal data entered in calculation apps. Further clinical studies including smartphone apps for burns should be performed. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  1. Burn mouse models

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus

    2014-01-01

    Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third-degree b......Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third......-degree burn injury was induced with a hot-air blower. The third-degree burn was confirmed histologically. At 48 h, a decline in the concentration of peripheral blood leucocytes was observed in the group of mice with burn wound. The reduction was ascribed to the decline in concentration of polymorphonuclear...... neutrophil leucocytes and monocytes. When infecting the skin with Pseudomonas aeruginosa, a dissemination of bacteria was observed only in the burn wound group. Histological characterization of the skin showed an increased polymorphonuclear neutrophil granulocytes dominated inflammation in the group of mice...

  2. Helium and fission gas behaviour in magnesium aluminate spinel and zirconia for actinide transmutation

    NARCIS (Netherlands)

    Damen, P.M.G.

    2003-01-01

    In order to reduce the long-term radiotoxicity of spent nuclear fuel, many studies are performed on partitioning and transmutation of actinides. In such a scenario, the long-lived radio-isotopes (mostly actinides) are partitioned from the nuclear waste, and subsequently transmuted or fissioned in a

  3. Systematic Characteristics of Fast Neutron Fission Cross Sections for Actinide Nuclei

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The neutron fission cross sections of actinide nuclei are important data for the design of nuclear reactor and nuclear engineering, and so on. So far, there has been a certain amount of experimental data for the fission cross sections of actinide nuclei. However,

  4. Helium and fission gas behaviour in magnesium aluminate spinel and zirconia for actinide transmutation

    NARCIS (Netherlands)

    Damen, P.M.G.

    2003-01-01

    In order to reduce the long-term radiotoxicity of spent nuclear fuel, many studies are performed on partitioning and transmutation of actinides. In such a scenario, the long-lived radio-isotopes (mostly actinides) are partitioned from the nuclear waste, and subsequently transmuted or fissioned in a

  5. Actinide Partitioning and Transmutation Program. Progress report, April 1--June 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Tedder, D. W.; Blomeke, J. O. [comps.

    1977-10-01

    Experimental work on the 16 tasks comprising the Actinide Partitioning and Transmutation Program was continued. Summaries of work are given on Purex Process modifications, actinide recovery, Am-Cm recovery, radiation effects on ion exchangers, LMFBR transmutation studies, thermal reactor transmutation studies, fuel cycle studies, and partitioning-transmutation evaluation. (JRD)

  6. Invisible structures in the X-ray absorption spectra of actinides

    NARCIS (Netherlands)

    Kvashnina, Kristina O.; De Groot, Frank M F

    2014-01-01

    The X-ray absorption spectra of actinides are discussed with an emphasis on the fundamental effects that influence their spectral shape, including atomic multiplet theory, charge transfer theory and crystal field theory. Many actinide spectra consist of a single peak and it is shown that the use of

  7. Impurities that cause difficulty in stripping actinides from commercial tetraalkylcarbamoylmethylphosphonates

    Energy Technology Data Exchange (ETDEWEB)

    Bahner, C. T.; Shoun, R. R.; McDowell, W. J.

    1977-09-01

    Dihexyl((diethylcarbamoyl)methyl)phosphonate (DHDECMP) in diethylbenzene extracts actinides well from 6 M nitric acid solution, but commercially available DHDECMP contains impurities which interfere with stripping the actinides from the organic extract. DHDECMP purified by molecular distillation does not contain these impurities, but the pot residue contains increased concentrations of them. Heating the purified DHDECMP causes the formation of products which interfere with stripping in the same way, suggesting that high temperatures employed in the manufacture of DHDECMP may produce the offending impurities. These impurities can be separated from the heat-decomposed material or the pot residues by dilution with a large volume of hexanes (causing part of the impurities to separate as a second liquid phase) followed by equilibration of the hexane solution with dilute alkali. After the treatment with hexane and dilute alkali, the DHDECMP is readily recovered and functions well in the actinide extraction process. Dibutyl((dibutylcarbamoyl)methyl)-phosphonate (DBDBCMP) and di(2-ethylhexyl)((diethylcarbamoyl)-methyl)phosphonate (DEHDECMP) are purified less effectively by these methods. Similar separation methods using diethylbenzene or CCl/sub 4/ as solvent do not remove impurities as completely as the hexane process. Impurities can also be removed from a benzene solution of the DHDECMP pot residue by passing it through a column packed with silica gel or diethylaminoethyl cellulose. These impurities have been separated into fractions for analytical examination by use of various solvents and by column chromatography. Hexyl hydrogen ((diethylcarbamoyl)methyl)-phosphonate has been identified tentatively as a principal objectionable impurity. Dihexyl phosphoric acid and possibly dihexylphosphonate have been identified in other fractions.

  8. Final Report on Actinide Glass Scintillators for Fast Neutron Detection

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, Mary; Stave, Jean A.

    2012-10-01

    This is the final report of an experimental investigation of actinide glass scintillators for fast-neutron detection. It covers work performed during FY2012. This supplements a previous report, PNNL-20854 “Initial Characterization of Thorium-loaded Glasses for Fast Neutron Detection” (October 2011). The work in FY2012 was done with funding remaining from FY2011. As noted in PNNL-20854, the glasses tested prior to July 2011 were erroneously identified as scintillators. The decision was then made to start from “scratch” with a literature survey and some test melts with a non-radioactive glass composition that could later be fabricated with select actinides, most likely thorium. The normal stand-in for thorium in radioactive waste glasses is cerium in the same oxidation state. Since cerium in the 3+ state is used as the light emitter in many scintillating glasses, the next most common substitute was used: hafnium. Three hafnium glasses were melted. Two melts were colored amber and a third was clear. It barely scintillated when exposed to alpha particles. The uses and applications for a scintillating fast neutron detector are important enough that the search for such a material should not be totally abandoned. This current effort focused on actinides that have very high neutron capture energy releases but low neutron capture cross sections. This results in very long counting times and poor signal to noise when working with sealed sources. These materials are best for high flux applications and access to neutron generators or reactors would enable better test scenarios. The total energy of the neutron capture reaction is not the only factor to focus on in isotope selection. Many neutron capture reactions result in energetic gamma rays that require large volumes or high densities to detect. If the scintillator is to separate neutrons from gamma rays, the capture reactions should produce heavy particles and few gamma rays. This would improve the detection of a

  9. Fission of actinides using a table-top laser

    CERN Document Server

    Schwoerer, H; Sauerbrey, R; Galy, J; Magill, J; Rondinella, V; Schenkel, R; Butz, T

    2003-01-01

    Powerful table-top lasers are now available in the laboratory and can be used to induce nuclear reactions. We report the first demonstration of nuclear fission using a high repetition rate table-top laser with intensities of 10 sup 2 sup 0 W/cm sup 2. Actinide photo-fission has been achieved in both sup 2 sup 3 sup 8 U and sup 2 sup 3 sup 2 Th from the high-energy Bremsstrahlung radiation produced by laser acceleration of electrons. The fission products were identified by time-resolved gamma-spectroscopy. (authors)

  10. Detection of Actinides via Nuclear Isomer De-Excitation

    Energy Technology Data Exchange (ETDEWEB)

    Francy, Christopher J. [Oregon State Univ., Corvallis, OR (United States)

    2009-07-01

    This dissertation discusses a data collection experiment within the Actinide Isomer Identification project (AID). The AID project is the investigation of an active interrogation technique that utilizes nuclear isomer production, with the goal of assisting in the interdiction of illicit nuclear materials. In an attempt to find and characterize isomers belonging to 235U and its fission fragments, a 232Th target was bombarded with a monoenergetic 6Li ion beam, operating at 45 MeV.

  11. Optimization of the burning efficiency and of the deployment capacities for the Non-Moderated Thorium Molten Salt Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Merle-Lucotte, E.; Heuer, D.; Allibert, M.; Doligez, X.; Ghetta, V. [LPSC-IN2P3-CNRS/UJF/Grenoble INP, LPSC, 53 avenue des Martyrs, 38026 Grenoble Cedex (France)

    2009-06-15

    Starting from the Molten Salt Breeder Reactor project of Oak-Ridge, we have performed parametric studies in terms of safety coefficients, reprocessing requirements and breeding capabilities. In the frame of this major re-evaluation of the molten salt reactor (MSR), we have developed a new concept called Thorium Molten Salt Reactor (TMSR), particularly well suited to fulfill the criteria of a generation 4 system. Amongst all TMSR configurations, our recent studies have highlighted the configurations with no moderator in the core as simple and very promising. Such a reactor presents many intrinsic advantages, avoiding the deterioration of the moderator while ensuring excellent safety characteristics. This concept, called non-moderated Thorium Molten Salt Reactor or TMSR-NM, has been selected for further studies by the MSR steering committee of the Generation IV International Forum. The standard TMSR-NM is a 2500 MWth reactor with a total fuel salt volume of 20 m{sup 3}, corresponding to a specific power of 125 W/m{sup 3} and operated between 700 and 800 deg. C. The core of the TMSR-NM looks like a single cylinder (in the standard version: 2.6 m high and 1.25 m radius) where the nuclear reactions occur within the flowing fuel salt. This salt considered in the simulations is a binary salt, LiF-(Heavy Nuclei)F{sub 4}, whose (HN)F{sub 4} proportion is set at 22.5 mole %, corresponding to a fast neutron spectrum. Our studies rely on numerical simulations making use of the MCNP neutron transport code coupled with the in-house code REM for materials evolution. Since {sup 233}U does not exist on earth and is not being directly produced today, we investigated the abilities of this TMSR concept to use the transuranic elements currently produced in the world as initial fissile load. We thus aim at designing the most efficient, robust and simple MSR being not only an excellent Thorium-based breeder reactor, but also able to burn the Plutonium and the Minor Actinides (MA

  12. Actinide Solubility and Speciation in the WIPP [PowerPoint

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Donald T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-02

    The presentation begins with the role and need for nuclear repositories (overall concept, international updates (Sweden, Finland, France, China), US approach and current status), then moves on to the WIPP TRU repository concept (design, current status--safety incidents of February 5 and 14, 2014, path forward), and finally considers the WIPP safety case: dissolved actinide concentrations (overall approach, oxidation state distribution and redox control, solubility of actinides, colloidal contribution and microbial effects). The following conclusions are set forth: (1) International programs are moving forward, but at a very slow and somewhat sporadic pace. (2) In the United States, the Salt repository concept, from the perspective of the long-term safety case, remains a viable option for nuclear waste management despite the current operational issues/concerns. (3) Current model/PA prediction (WIPP example) are built on redundant conservatisms. These conservatisms are being addressed in the ongoing and future research to fill existing data gaps--redox control of plutonium by Fe(0, II), thorium (analog) solubility studies in simulated brine, contribution of intrinsic and biocolloids to the mobile concentration, and clarification of microbial ecology and effects.

  13. Stabilization of actinides and lanthanides in unusually high oxidation states

    Energy Technology Data Exchange (ETDEWEB)

    Eller, P.G.; Penneman, R.A.

    1986-01-01

    Chemical environments can be chosen which stabilize actinides and lanthanides in unusually high or low oxidation states and in unusual coordination. In many cases, one can rationalize the observed species as resulting from strong charge/size influences provided by specific sites in host lattices (e.g., Tb(IV) in BaTbO/sub 3/ or Am(IV) in polytungstate anions). In other cases, the unusual species can be considered from an acid-base viewpoint (e.g., U(III) in AsF/sub 5//HF solution or Pu(VII) in Li/sub 5/PuO/sub 6/). In still other cases, an interplay of steric and redox effects can lead to interesting comparisons (e.g., instability of double fluoride salts of Pu(V) and Pu(VI) relative to U, Np, and Am analogues). Generalized ways to rationalize compounds containing actinides and lanthanides in unusual valences (particularly high valences), including the above and numerous other examples, will form the focus of this paper. Recently developed methods for synthesizing high valent f-element fluorides using superoxidizers and superacids at low temperatures will also be described. 65 refs., 8 figs., 9 tabs.

  14. APPLICATION OF ABSORPTION SPECTROSCOPY TO ACTINIDE PROCESS ANALYSIS AND MONITORING

    Energy Technology Data Exchange (ETDEWEB)

    Lascola, R.; Sharma, V.

    2010-06-03

    The characteristic strong colors of aqueous actinide solutions form the basis of analytical techniques for actinides based on absorption spectroscopy. Colorimetric measurements of samples from processing activities have been used for at least half a century. This seemingly mature technology has been recently revitalized by developments in chemometric data analysis. Where reliable measurements could formerly only be obtained under well-defined conditions, modern methods are robust with respect to variations in acidity, concentration of complexants and spectral interferents, and temperature. This paper describes two examples of the use of process absorption spectroscopy for Pu analysis at the Savannah River Site, in Aiken, SC. In one example, custom optical filters allow accurate colorimetric measurements of Pu in a stream with rapid nitric acid variation. The second example demonstrates simultaneous measurement of Pu and U by chemometric treatment of absorption spectra. The paper concludes with a description of the use of these analyzers to supplement existing technologies in nuclear materials monitoring in processing, reprocessing, and storage facilities.

  15. Octupole correlations in excited 0{sup +} states of the actinides

    Energy Technology Data Exchange (ETDEWEB)

    Spieker, Mark; Endres, Janis; Zilges, Andreas [Institute for Nuclear Physics, University of Cologne (Germany); Bucurescu, Dorel; Pascu, Sorin; Zamfir, Nicolae-Victor [Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Faestermann, Thomas [Physik Department, Technische Universitaet Muenchen, Munich (Germany); Hertenberger, Ralf; Wirth, Hans-Friedrich [Fakultaet fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, Munich (Germany)

    2014-07-01

    New experimental data has once again shown the importance of the octupole degree of freedom in the actinides. To further study possible admixtures of double-octupole structures to the wave function of positive-parity states, a high-resolution (p,t) experiment on {sup 242}Pu has been recently performed at the Q3D magnetic spectrograph in Munich. Excited 0{sup +} states were populated in {sup 240}Pu up to an excitation energy of 3 MeV. The new data allowed for a stringent test of the predictions of the spdf interacting boson model. In order to find possible double-octupole 0{sup +} candidates in the actinides, the signature of close-lying first and second excited 0{sup +} states has been proposed. It is found that the observation of this signature coincides with an E1 γ-decay of the first excited 0{sup +} state, while this state is strongly populated in the (p,t) reaction.

  16. Heat capacities of lanthanide and actinide monazite-type ceramics

    Science.gov (United States)

    Kowalski, Piotr M.; Beridze, George; Vinograd, Victor L.; Bosbach, Dirk

    2015-09-01

    (Ln, An)xPO4 monazite-type ceramics are considered as potential matrices for the disposal of nuclear waste. In this study we computed the heat capacities and the standard entropies of these compounds using density functional perturbation theory. The calculations of lanthanide monazites agree well with the existing experimental data and provide information on the variation of the standard heat capacities and entropies along the lanthanide series. The results for AnPO4 monazites are similar to those obtained for the isoelectronic lanthanide compounds. This suggests that the missing thermodynamic data on actinide monazites could be similarly computed or assessed based on the properties of their lanthanide analogs. However, the computed heat capacity of PuPO4 appear to be significantly lower than the measured data. We argue that this discrepancy might indicate potential problems with the existing experimental data or with their interpretation. This shows a need for further experimental studies of the heat capacities of actinide-bearing, monazite-type ceramics.

  17. Actinide production from xenon bombardments of curium-248

    Energy Technology Data Exchange (ETDEWEB)

    Welch, R.B.

    1985-01-01

    Production cross sections for many actinide nuclides formed in the reaction of /sup 129/Xe and /sup 132/Xe with /sup 248/Cm at bombarding energies slightly above the coulomb barrier were determined using radiochemical techniques to isolate these products. These results are compared with cross sections from a /sup 136/Xe + /sup 248/Cm reaction at a similar energy. When compared to the reaction with /sup 136/Xe, the maxima in the production cross section distributions from the more neutron deficient projectiles are shifted to smaller mass numbers, and the total cross section increases for the production of elements with atomic numbers greater than that of the target, and decreases for lighter elements. These results can be explained by use of a potential energy surface (PES) which illustrates the effect of the available energy on the transfer of nucleons and describes the evolution of the di-nuclear complex, an essential feature of deep-inelastic reactions (DIR), during the interaction. The other principal reaction mechanism is the quasi-elastic transfer (QE). Analysis of data from a similar set of reactions, /sup 129/Xe, /sup 132/Xe, and /sup 136/Xe with /sup 197/Au, aids in explaining the features of the Xe + Cm product distributions, which are additionally affected by the depletion of actinide product yields due to deexcitation by fission. The PES is shown to be a useful tool to predict the general features of product distributions from heavy ion reactions.

  18. Multi-nucleon transfer experiments in the actinide region

    Energy Technology Data Exchange (ETDEWEB)

    Geibel, Kerstin; Reiter, Peter; Birkenbach, Benedikt [Institut fuer Kernphysik, Universitaet zu Koeln (Germany); Valiente-Dobon, Jose Javier; Recchia, Francesco [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (Italy); Gadea, Andres [IFIC, CSIC-Universidad de Valencia (Spain); Lenzi, Silvia [Dipartimento di Fisica, University of Padova (Italy)

    2012-07-01

    Two experiments at the PRISMA-CLARA-Setup at the LNL in Legnaro were analysed focussing on the target-like reaction products in the actinide region after multi-nucleon transfer reactions. Both experiments use {sup 238}U as target; a {sup 70}Zn-beam with 460 MeV and a {sup 136}Xe-beam with 926 MeV were employed. Kinematic correlations between the reaction partners are used to obtain information about the unobserved target-like reaction products by the analysis of the beam-like particles identified with the PRISMA-spectrometer. Clean {gamma}-spectra from neutron-rich actinide nuclei are obtained with the CLARA-array. An extension of the ground state rotational band in {sup 240}U and insights in neutron-rich Th-isotopes were achieved. Based on relative cross section distributions for various reaction channels the perspectives and limitations for in-beam {gamma}-spectroscopy with this experimental method in this mass region are discussed.

  19. Advanced techniques in actinide spectroscopy (ATAS 2014). Abstract book

    Energy Technology Data Exchange (ETDEWEB)

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin (eds.)

    2014-07-01

    In 2012, The Institute of Resource Ecology at the Helmholtz-Zentrum Dresden Rossendorf organized the first international workshop of Advanced Techniques in Actinide Spectroscopy (ATAS). A very positive feedback and the wish for a continuation of the workshop were communicated from several participants to the scientific committee during the workshop and beyond. Today, the ATAS workshop has been obviously established as an international forum for the exchange of progress and new experiences on advanced spectroscopic techniques for international actinide and lanthanide research. In comparison to already established workshops and conferences on the field of radioecology, one main focus of ATAS is to generate synergistic effects and to improve the scientific discussion between spectroscopic experimentalists and theoreticians. The exchange of ideas in particular between experimental and theoretical applications in spectroscopy and the presentation of new analytical techniques are of special interest for many research institutions working on the improvement of transport models of toxic elements in the environment and the food chain as well as on reprocessing technologies of nuclear and non-nuclear waste. Spectroscopic studies in combination with theoretical modelling comprise the exploration of molecular mechanisms of complexation processes in aqueous or organic phases and of sorption reactions of the contaminants on mineral surfaces to obtain better process understanding on a molecular level. As a consequence, predictions of contaminant's migration behaviour will become more reliable and precise. This can improve the monitoring and removal of hazardous elements from the environment and hence, will assist strategies for remediation technologies and risk assessment. Particular emphasis is placed on the results of the first inter-laboratory Round-Robin test on actinide spectroscopy (RRT). The main goal of RRT is the comprehensive molecular analysis of the actinide

  20. Psychiatric aspects of burn

    Directory of Open Access Journals (Sweden)

    Dalal P

    2010-10-01

    Full Text Available Burn injuries and their subsequent treatment cause one of the most excruciating forms of pain imaginable. The psychological aspects of burn injury have been researched in different parts of the world, producing different outcomes. Studies have shown that greater levels of acute pain are associated with negative long-term psychological effects such as acute stress disorder, depression, suicidal ideation, and post-traumatic stress disorder for as long as 2 years after the initial burn injury. The concept of allostatic load is presented as a potential explanation for the relationship between acute pain and subsequent psychological outcomes. A biopsychosocial model is also presented as a means of obtaining better inpatient pain management and helping to mediate this relationship.

  1. Bacteriological profile of burn patients at Yekatit 12 Hospital Burn ...

    African Journals Online (AJOL)

    admin

    injuries, creating a formidable public health problem. (3). Despite major ... change with time. Thus, to have an in-depth knowledge .... Table 4: Antibiotic resistance pattern of bacterial isolates from burn wound at Yekatit 12 hospital burn center.

  2. AMS of the Minor Plutonium Isotopes.

    Science.gov (United States)

    Steier, P; Hrnecek, E; Priller, A; Quinto, F; Srncik, M; Wallner, A; Wallner, G; Winkler, S

    2013-01-01

    VERA, the Vienna Environmental Research Accelerator, is especially equipped for the measurement of actinides, and performs a growing number of measurements on environmental samples. While AMS is not the optimum method for each particular plutonium isotope, the possibility to measure (239)Pu, (240)Pu, (241)Pu, (242)Pu and (244)Pu on the same AMS sputter target is a great simplification. We have obtained a first result on the global fallout value of (244)Pu/(239)Pu = (5.7 ± 1.0) × 10(-5) based on soil samples from Salzburg prefecture, Austria. Furthermore, we suggest using the (242)Pu/(240)Pu ratio as an estimate of the initial (241)Pu/(239)Pu ratio, which allows dating of the time of irradiation based solely on Pu isotopes. We have checked the validity of this estimate using literature data, simulations, and environmental samples from soil from the Salzburg prefecture (Austria), from the shut down Garigliano Nuclear Power Plant (Sessa Aurunca, Italy) and from the Irish Sea near the Sellafield nuclear facility. The maximum deviation of the estimated dates from the expected ages is 6 years, while relative dating of material from the same source seems to be possible with a precision of less than 2 years. Additional information carried by the minor plutonium isotopes may allow further improvements of the precision of the method.

  3. FIESTA; Minority Television Programming.

    Science.gov (United States)

    Marshall, Wes; And Others

    The suggestions for planning, running, and evaluating minority television programing presented in this handbook are based on the experience and example of the FIESTA project (Tucson, Arizona). After initiating the reader into the topic of minority programing, the document disucsses the following topics: broadcast research, origins of the FIESTA…

  4. Phytosiderophore Effects on Subsurface Actinide Contaminants: Potential for Phytostabilization and Phytoextraction

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, Christy

    2005-06-01

    This project seeks to understand the influence of phytosiderophore-producing plants (grasses, including crops such as wheat and barley) on the biogeochemistry of actinide and other metal contaminants in the subsurface environment, and to determine the potential of phytosiderophore-producing plants for phytostabilization and phytoextraction of actinides and some metal soil contaminants. Phytosiderophores are secreted by graminaceous plants such as barley and wheat for the solubilization, mobilization and uptake of Fe and other essential nutrients from soils. The ability for these phytosiderophores to chelate and absorb actinides using the same uptake system as for Fe is being investigated though characterization of actinide-phytosiderophore complexes (independently of plants), and characterization of plant uptake of such complexes. We may also show possible harm caused by these plants through increased chelation of actinides that increase in actinide mobilization & migration in the subsurface environment. This information can then be directly applied by either removal of harmful plants, or can be used to develop plant-based soil stabilization/remediation technologies. Such technologies could be the low-cost, low risk solution to many DOE actinide contamination problems.

  5. Interaction of actinides with amino acids: from peptides to proteins; Interaction des actinides avec les acides amines: du peptide a la proteine

    Energy Technology Data Exchange (ETDEWEB)

    Jeanson, A

    2008-09-15

    Structural information on complexes of actinides with molecules of biological interest is required to better understand the mechanisms of actinides transport in living organisms, and can contribute to develop new decorporation treatments. Our study is about Th(IV), Np(IV), Pu(IV) and uranyl(VI) cations, which have a high affinity for some protein domains, and Fe(III), which is the natural cation of these biological systems. In this work, chelation of actinides has been brought to light with UV-visible-Near Infra Red spectroscopy, NMR, EPR, and ultrafiltration. Determination of the structure of the complexation site has been undertaken with Exafs measurements, and of the tertiary structure of the protein with SANS measurements. The first approach was to describe the interaction modes between actinides and essential chemical functions of proteins. Thus, the Ac-AspAspProAspAsp-NH{sub 2} peptide was studied as a possible chelate of actinides. Polynuclear species with {mu}-oxo or {mu}-hydroxo bridges were identified. The iron complex is binuclear, and the actinide ones have a higher nuclearity. The second approach was to study a real case of complexation of actinide with a protein: transferrin. Results show that around physiological ph a mononuclear complex is formed with Np(IV) and Pu(IV), while transferrin does not complex Th(IV) in the same conditions. Characteristic distances of M-transferrin complexes (M = Fe, Np, Pu) were determined. Moreover, the protein seems to be in its close conformation with Pu(IV), and in its open form with Np(IV) and UO{sub 2}{sup 2+}. (author)

  6. An assessment of burn care professionals' attitudes to major burn.

    LENUS (Irish Health Repository)

    Murphy, A D

    2008-06-01

    The resuscitation of severe burn remains a controversial area within the burn care profession. There is ongoing debate as to what percentage burn is associated with a sufficient quality of life to support initial resuscitation efforts. We conducted a survey of delegates at the 39th Annual Meeting of the British Burns Association (2005), regarding attitudes towards resuscitation following major burns. Respondents were asked the maximum percentage total body surface area (TBSA) burn beyond which they would not wish to be resuscitated. They were also asked what maximum TBSA they perceived to be commensurate with an acceptable quality of life (QOL). One hundred and forty three of 300 delegates responded to the questionnaire. Thirty three percent of respondents would not wish to be resuscitated with 50-75% TBSA burns or greater. A further 35% would not wish to have life-sustaining intervention with 75-95% TBSA burns or greater. The remaining 32% indicated that they would not want resuscitation with TBSA burns>95%. Regardless of TBSA affected, 16% would not wish resuscitation if they had full thickness facial burns, a further 10% did not want resuscitation if both their hands and faces were affected. Our survey demonstrates the diversity of personal preference amongst burn care professionals. This would suggest that a unifying philosophy regarding the resuscitation of extensive burns will remain elusive.

  7. Advanced Extraction Methods for Actinide/Lanthanide Separations

    Energy Technology Data Exchange (ETDEWEB)

    Scott, M.J.

    2005-12-01

    The separation of An(III) ions from chemically similar Ln(III) ions is perhaps one of the most difficult problems encountered during the processing of nuclear waste. In the 3+ oxidation states, the metal ions have an identical charge and roughly the same ionic radius. They differ strictly in the relative energies of their f- and d-orbitals, and to separate these metal ions, ligands will need to be developed that take advantage of this small but important distinction. The extraction of uranium and plutonium from nitric acid solution can be performed quantitatively by the extraction with the TBP (tributyl phosphate). Commercially, this process has found wide use in the PUREX (plutonium uranium extraction) reprocessing method. The TRUEX (transuranium extraction) process is further used to coextract the trivalent lanthanides and actinides ions from HLLW generated during PUREX extraction. This method uses CMPO [(N, N-diisobutylcarbamoylmethyl) octylphenylphosphineoxide] intermixed with TBP as a synergistic agent. However, the final separation of trivalent actinides from trivalent lanthanides still remains a challenging task. In TRUEX nitric acid solution, the Am(III) ion is coordinated by three CMPO molecules and three nitrate anions. Taking inspiration from this data and previous work with calix[4]arene systems, researchers on this project have developed a C3-symmetric tris-CMPO ligand system using a triphenoxymethane platform as a base. The triphenoxymethane ligand systems have many advantages for the preparation of complex ligand systems. The compounds are very easy to prepare. The steric and solubility properties can be tuned through an extreme range by the inclusion of different alkoxy and alkyl groups such as methyoxy, ethoxy, t-butoxy, methyl, octyl, t-pentyl, or even t-pentyl at the ortho- and para-positions of the aryl rings. The triphenoxymethane ligand system shows promise as an improved extractant for both tetravalent and trivalent actinide recoveries form

  8. Back Bay Wilderness burning support

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document is a memorandum concerning prescribed burns between members of the Bureau of Sport Fisheries and Wildlife. It states that burning should be supported...

  9. Phoenix Society for Burn Survivors

    Science.gov (United States)

    ... Medical Professionals Phoenix Society is the leader in connecting the burn recovery community and creating resources for survivors. Since 1977, we have partnered with survivors, families, health care professionals, burn centers, and the fire ...

  10. Hair bleaching and skin burning

    National Research Council Canada - National Science Library

    Forster, K; Lingitz, R; Prattes, G; Schneider, G; Sutter, S; Schintler, M; Trop, M

    2012-01-01

    .... We report a unique case of a 16-yr-old girl who suffered full-thickness chemical and thermal burns to the nape of her neck and superficial burns to the occiput after her hair had been dyed blond...

  11. Thermodynamics of actinide complexation in solution at elevated temperatures: application of variable-temperature titration calorimetry.

    Science.gov (United States)

    Rao, Linfeng

    2007-06-01

    Studies of actinide complexation in solution at elevated temperatures provide insight into the effect of solvation and the energetics of complexation, and help to predict the chemical behavior of actinides in nuclear waste processing and disposal where temperatures are high. This tutorial review summarizes the data on the complexation of actinides at elevated temperatures and describes the methodology for thermodynamic measurements, with the emphasis on variable-temperature titration calorimetry, a highly valuable technique to determine the enthalpy and, under appropriate conditions, the equilibrium constants of complexation as well.

  12. Restructuring and redistribution of actinides in Am-MOX fuel during the first 24 h of irradiation

    Science.gov (United States)

    Tanaka, Kosuke; Miwa, Shuhei; Sekine, Shin-ichi; Yoshimochi, Hiroshi; Obayashi, Hiroshi; Koyama, Shin-ichi

    2013-09-01

    In order to confirm the effect of minor actinide additions on the irradiation behavior of MOX fuel pellets, 3 wt.% and 5 wt.% americium-containing MOX (Am-MOX) fuels were irradiated for 10 min at 43 kW/m and for 24 h at 45 kW/m in the experimental fast reactor Joyo. Two nominal values of the fuel pellet oxygen-to-metal ratio (O/M), 1.95 and 1.98, were used as a test parameter. Emphasis was placed on the behavior of restructuring and redistribution of actinides which directly affect the fuel performance and the fuel design for fast reactors. Microstructural evolutions in the fuels were observed by optical microscopy and the redistribution of constituent elements was determined by EPMA using false color X-ray mapping and quantitative point analyses. The ceramography results showed that structural changes occurred quickly in the initial stage of irradiation. Restructuring of the fuel from middle to upper axial positions developed and was almost completed after the 24-h irradiation. No sign of fuel melting was found in any of the specimens. The EPMA results revealed that Am as well as Pu migrated radially up the temperature gradient to the center of the fuel pellet. The increase in Am concentration on approaching the edge of the central void and its maximum value were higher than those of Pu after the 10-min irradiation and the difference was more pronounced after the 24-h irradiation. The increment of the Am and Pu concentrations due to redistribution increased with increasing central void size. In all of the specimens examined, the extent of redistribution of Am and Pu was higher in the fuel of O/M ratio of 1.98 than in that of 1.95.

  13. Single-cycle method for partitioning of trivalent actinides using completely incinerable reagents from nitric acid medium

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, Jammu; Venkatesan, K.A.; Antony, M.P.; Srinivasan, T.G.; Rao, P.R. Vasudeva [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Fuel Chemistry Div.

    2014-10-01

    A new approach, namely 'Single-cycle method for partitioning of Minor Actinides using completely incinerable ReagenTs' (SMART), has been explored for the separation of Am(III) from Eu(III) present in nitric acid medium. The extraction behavior of Am(III) and Eu(III) in a solution of an unsymmetrical diglycolamide, N,N,-didodecyl-N',N'-dioctyl-3-oxapentane-1,5-diamide (D{sup 3}DODGA), and an acidic extractant, N,N-di-2-ethylhexyl diglycolamic acid (HDEHDGA), in n-dodecane was studied. The distribution ratio of both these metal ions in D{sup 3}DODGA-HDEHDGA/n-dodecane initially decreased with increase in the concentration of nitric acid reached a minimum at 0.1 M nitric acid followed by increase. Synergic extraction of Am(III) and Eu(III) was observed at nitric acid concentrations above 0.1 M and antagonism at lower acidities. Contrasting behavior observed at different acidities was probed by the slope analysis of the extraction data. The study revealed the involvement of both D{sup 3}DODGA and HDEHDGA during synergism and increased participation of HDEHDGA during antagonism. The stripping behavior of Am(III) and Eu(III) from the loaded organic phase was studied as a function of nitric acid, DTPA, and citric acid concentrations. The conditions needed for the mutual separation of Am(III) and Eu(III) from the loaded organic phase were optimized. Our studies revealed the possibility of separating trivalent actinides from HLLW using these completely incinerable reagents. (orig.)

  14. The year in burns 2008.

    Science.gov (United States)

    Wolf, Steven E

    2009-12-01

    For 2008, approximately 1200 original burn research articles were published in scientific journals using the English language. This article reviews those with the most impact on burn treatment according to the Editor of one of the major journals (Burns). As in the previous year's review, articles were divided into the following topic areas: epidemiology, wound characterisation, critical care physiology, inhalation injury, infection, metabolism and nutrition, psychological considerations, pain management, rehabilitation, and burn reconstruction. Each selected article is mentioned briefly with editorial comment.

  15. TIRES, OPEN BURNING

    Science.gov (United States)

    The chapter describes available information on the health effects from open burning of rubber tires. It concentrates on the three known sources of detailed measurements: (1) a small-scale emissions characterization study performed by the U.S. EPA in a facility designed to simulat...

  16. Chemical burn or reaction

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000059.htm Chemical burn or reaction To use the sharing features on this page, please enable JavaScript. Chemicals that touch skin can lead to a reaction on the skin, throughout the body, or both. ...

  17. PLASTIC SURGERY AND BURNS

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    Objective Endotoxin as the inciting agentof cytokines and other mediators, whose highlevel expression correlates with the septicshock and MOF, has been the one of leadingcauses of death in ICU. Methods For treatingsepsis and MOF caused by endotoxin, the anti-lipid A of LPS antibody was used. 19 burned

  18. FY2011 Annual Report for the Actinide Isomer Detection Project

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Glen A.; Francy, Christopher J.; Ressler, Jennifer J.; Erikson, Luke E.; Tatishvili, Gocha; Hatarik, R.

    2011-10-01

    This project seeks to identify a new signature for actinide element detection in active interrogation. This technique works by exciting and identifying long-lived nuclear excited states (isomers) in the actinide isotopes and/or primary fission products. Observation of isomers in the fission products will provide a signature for fissile material. For the actinide isomers, the decay time and energy of the isomeric state is unique to a particular isotope, providing an unambiguous signature for SNM. This project entails isomer identification and characterization and neutron population studies. This document summarizes activities from its third year - completion of the isomer identification characterization experiments and initialization of the neutron population experiments. The population and decay of the isomeric state in 235U remain elusive, although a number of candidate gamma rays have been identified. In the course of the experiments, a number of fission fragment isomers were populated and measured [Ressler 2010]. The decays from these isomers may also provide a suitable signature for the presence of fissile material. Several measurements were conducted throughout this project. This report focuses on the results of an experiment conducted collaboratively by PNNL, LLNL and LBNL in December 2010 at LBNL. The measurement involved measuring the gamma-rays emitted from an HEU target when bombarded with 11 MeV neutrons. This report discussed the analysis and resulting conclusions from those measurements. There was one strong candidate, at 1204 keV, of an isomeric signature of 235U. The half-life of the state is estimated to be 9.3 {mu}s. The measured time dependence fits the decay time structure very well. Other possible explanations for the 1204-keV state were investigated, but they could not explain the gamma ray. Unfortunately, the relatively limited statistics of the measurement limit, and the lack of understanding of some of the systematic of the experiment, limit

  19. Modern management of paediatric burns

    African Journals Online (AJOL)

    2010-03-01

    Mar 1, 2010 ... Jackson's. 3-dimensional burn wound model describes 3 zones: • a central zone ... the burn.7 Care must be taken not to induce hypothermia in larger burns – especially in .... Fluid therapy thereafter consists of 2 components ...

  20. Development of a burn prevention teaching tool for Amish children.

    Science.gov (United States)

    Rieman, Mary T; Kagan, Richard J

    2012-01-01

    Although there are inherent risks for burn injury associated with the Amish lifestyle, burn prevention is not taught in Amish schools. The purpose of this study was to develop a burn prevention teaching tool for Amish children. An anonymous parental survey was designed to explore the content and acceptability of a teaching tool within an Old Order Amish community. After institutional review board approval, the Amish teacher distributed surveys to 16 families of the 30 children attending the one-room school. Fourteen (88%) of the families responded to identify these burn risks in and around their homes, barns, and shops: lighters, wood and coal stoves, kerosene heaters, gasoline-powered engines, and hot liquids used for canning, butchering, mopping, washing clothes, and making lye soap. All respondents were in favor of teaching familiar safety precautions, fire escape plans, burn first aid, and emergency care to the children. There was some minor objection to more modern devices such as bath tub thermometers (25%), fire extinguishers (19%), and smoke detectors (6%). The teacher was interested in a magnetic teaching board depicting Amish children and typical objects in their home environment. Movable pieces could afford the opportunity to identify hazards and to rearrange them for a safer situation. This survey served to introduce burn prevention to one Amish community and to develop an appropriate teaching tool for the school. It is anticipated that community participation would support its acceptance and eventual utilization within this tenaciously traditional culture.

  1. Burn epidemiology and cost of medication in paediatric burn patients.

    Science.gov (United States)

    Koç, Zeliha; Sağlam, Zeynep

    2012-09-01

    Burns are common injuries that cause problems to societies throughout the world. In order to reduce the cost of burn treatment in children, it is extremely important to determine the burn epidemiology and the cost of medicines used in burn treatment. The present study used a retrospective design, with data collected from medical records of 140 paediatric patients admitted to a burn centre between 1 January 2009 and 31 December 2009. Medical records were examined to determine burn epidemiology, medication administered, dosage, and duration of use. Descriptive statistical analysis was completed for all variables; chi-square was used to examine the relationship between certain variables. It was found that 62.7% of paediatric burns occur in the kitchen, with 70.7% involving boiling water; 55.7% of cases resulted in third-degree burns, 19.3% required grafting, and mean duration of hospital stay was 27.5 ± 1.2 days. Medication costs varied between $1.38 US dollars (USD) and $14,159.09, total drug cost was $46,148.03 and average cost per patient was $329.63. In this study, the medication cost for burn patients was found to be relatively high, with antibiotics comprising the vast majority of medication expenditure. Most paediatric burns are preventable, so it is vital to educate families about potential household hazards that can be addressed to reduce the risk of a burn. Programmes are also recommended to reduce costs and the inappropriate prescribing of medication.

  2. Characteristics of 985 pediatric burn patients in the south of Liaoning province of China

    Directory of Open Access Journals (Sweden)

    Hongjun Zhai

    2014-07-01

    Full Text Available Accidental injury due to burns is a serious and common, but preventable, occurrence in children. To analyze the characteristics of pediatric burns in the south of Liaoning province of China, a retrospective review was conducted of information, including general characteristics, demographics, etiology of burns, anatomical areas burned, and severity of injuries, obtained from medical records of pediatric burn patients admitted to the Burn Center of Anshan Hospital of the First Hospital of China Medical University from 2002 to 2011. Differences between age-groups and cause and severity of injuries were examined using Cochran-Mantel-Haenzsel ­(C-M-H statistic or chi-square (χ2 analyses where appropriate. A total of 985 pediatric burn cases were included, with only one death. The maximal burn area recorded was 80% and the maximal third-degree burn area was 45%. The majority of burns (637/985, 64.67% were moderate second-degree wounds, encompassing 5-14% of the total body surface area. The infant age-group (<3 years old had the largest representation (622/985, 63.15%, with more males than females affected. Most of the injuries occurred at home in children living in the local region. Scalding accounted for 89.85% (885/985 of all injuries, with a decreasing incidence with age, whereas injuries due to flames and from electrical sources markedly increased with age. Only a minority of guardians (244/985, 24.77% had burn prevention knowledge, and none of them knew how to provide first-aid treatment for burn injuries. These results indicate that the majority of pediatric burns occur in children less than 3 years of age from scalds received while at home. As a large proportion of these cases occurred in rural areas, programs emphasizing burn prevention and treatment knowledge should therefore be made more available to these families.

  3. First ionization potential of the heaviest actinide lawrencium, element 103

    Science.gov (United States)

    Sato, Tetsuya K.; Asai, Masato; Borschevsky, Anastasia; Stora, Thierry; Sato, Nozomi; Kaneya, Yusuke; Tsukada, Kazuaki; Düllmann, Christoph E.; Eberhardt, Klaus; Eliav, Ephraim; Ichikawa, Shinichi; Kaldor, Uzi; Kratz, Jens V.; Miyashita, Sunao; Nagame, Yuichiro; Ooe, Kazuhiro; Osa, Akihiko; Renisch, Dennis; Runke, Jörg; Schädel, Matthias; Thörle-Pospiech, Petra; Toyoshima, Atsushi; Trautmann, Norbert

    2016-12-01

    The first ionization potential (IP1) of element 103, lawrencium (Lr), has been successfully determined for the first time by using a newly developed method based on a surface ionization process. The measured IP1 value is 4.963 eV. This value is the smallest among those of actinide elements and is in excellent agreement with the value of 4.963(15) eV predicted by state-of-the-art relativistic calculations also performed in this work. Our results strongly support that the Lr atom has an electronic configuration of [Rn]7s25f147p, which is influenced by strong relativistic effects. The present work provides a reliable benchmark for theoretical calculations and also opens the way for studies on atomic properties of heavy elements with atomic number Z > 100. Moreover, the present achievement has triggered a controversy on the position of lutetium (Lu) and Lr in the Periodic Table of Elements.

  4. Facilities for preparing actinide or fission product-based targets

    CERN Document Server

    Sors, M

    1999-01-01

    Research and development work is currently in progress in France on the feasibility of transmutation of very long-lived radionuclides such as americium, blended with an inert medium such as magnesium oxide and pelletized for irradiation in a fast neutron reactor. The process is primarily designed to produce ceramics for nuclear reactors, but could also be used to produce targets for accelerators. The Actinide Development Laboratory is part of the ATALANTE complex at Marcoule, where the CEA investigates reprocessing, liquid and solid waste treatment and vitrification processes. The laboratory produces radioactive sources; after use, their constituents are recycled, notably through R and D programs requiring such materials. Recovered americium is purified, characterized and transformed for an experiment known as ECRIX, designed to demonstrate the feasibility of fabricating americium-based ceramics and to determine the reactor transmutation coefficients.

  5. Chemistry of tetravalent actinides phosphates. The thorium phosphate-diphosphate as immobilisation matrix of actinides; Chimie des phosphates d'actinides tetravalents. Le phosphate-diphosphate de thorium en tant que matrice d'imobilisation des actinides

    Energy Technology Data Exchange (ETDEWEB)

    Dacheux, N

    2002-07-01

    The author presents in this document its scientific works from 1992 to 2001, in order to obtain the enabling to manage scientific and chemical researches at the university Paris Sud Orsay. The first part gives an abstract of the thesis on the characterizations, lixiviation and synthesis of uranium and thorium based phosphate matrix in the framework of the search for a ceramic material usable in the radioactive waste storage. The second part presents briefly the researches realized at the CEA, devoted to a reliable, independent and accurate measure of some isotopes activity. The last part presents the abstracts of researches activities from 1996 to 2001 on the tetravalent actinides phosphates chemistry, the sintering of PDT and solid solutions of PDTU and the kinetic and thermodynamical studies of the PDT dissolution. Many references and some publication in full text are provided. (A.L.B.)

  6. Influence of FIMA burnup on actinides concentrations in PWR reactors

    Directory of Open Access Journals (Sweden)

    Oettingen Mikołaj

    2016-01-01

    Full Text Available In the paper we present the study on the dependence of actinides concentrations in the spent nuclear fuel on FIMA burnup. The concentrations of uranium, plutonium, americium and curium isotopes obtained in numerical simulation are compared with the result of the post irradiation assay of two spent fuel samples. The samples were cut from the fuel rod irradiated during two reactor cycles in the Japanese Ohi-2 Pressurized Water Reactor. The performed comparative analysis assesses the reliability of the developed numerical set-up, especially in terms of the system normalization to the measured FIMA burnup. The numerical simulations were preformed using the burnup and radiation transport mode of the Monte Carlo Continuous Energy Burnup Code – MCB, developed at the Department of Nuclear Energy, Faculty of Energy and Fuels of AGH University of Science and Technology.

  7. Pillared metal(IV) phosphate-phosphonate extraction of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Burns, J.D.; Clearfield, A. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemistry; Borkowski, M.; Reed, D.T. [Los Alamos National Laboratory, Carlsbad, NM (United States). Earth and Environmental Sciences Div.

    2012-07-01

    Four pillared metal(IV) phosphate-phosphonate ion exchange materials were synthesized and characterized. Studies were conducted to determine their affinity for the lanthanides (Ln's) and actinides (An's). It was determined that by simply manipulating the metal source (Zr or Sn) and the phosphate source (H{sub 3}PO{sub 4} or Na{sub 3}PO{sub 4}) large differences were seen in the extraction of the Ln and An species. K{sub d} values higher than 4 x 10{sup 5} were observed for the AnO{sub 2}{sup 2+} species in nitric acid at pH 2. These basic uptake experiments are important, as the data they provide may indicate the possibility of a separation of Ln's from An's or even more notably americium from curium and Ln's. (orig.)

  8. Flammability Analysis For Actinide Oxides Packaged In 9975 Shipping Containers

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, James E.; Askew, Neal M.; Hensel, Steve J.

    2013-03-21

    Packaging options are evaluated for compliance with safety requirements for shipment of mixed actinide oxides packaged in a 9975 Primary Containment Vessel (PCV). Radiolytic gas generation rates, PCV internal gas pressures, and shipping windows (times to reach unacceptable gas compositions or pressures after closure of the PCV) are calculated for shipment of a 9975 PCV containing a plastic bottle filled with plutonium and uranium oxides with a selected isotopic composition. G-values for radiolytic hydrogen generation from adsorbed moisture are estimated from the results of gas generation tests for plutonium oxide and uranium oxide doped with curium-244. The radiolytic generation of hydrogen from the plastic bottle is calculated using a geometric model for alpha particle deposition in the bottle wall. The temperature of the PCV during shipment is estimated from the results of finite element heat transfer analyses.

  9. Angular distributions in the neutron-induced fission of actinides

    CERN Multimedia

    In 2003 the n_TOF Collaboration performed the fission cross section measurement of several actinides ($^{232}$Th, $^{233}$U, $^{234}$U, $^{237}$Np) at the n_TOF facility using an experImental setup made of Parallel Plate Avalanche Counters (PPAC). The method based on the detection of the 2 fragments in coincidence allowed to clearly disentangle the fission reactions among other types of reactions occurring in the spallation domain. We have been therefore able to cover the very broad neutron energy range 1eV-1GeV, taking full benefit of the unique characteristics of the n_TOF facility. Figure 1 shows an example obtained in the case of $^{237}$Np where the n_ TOF measurement showed that the cross section was underestimated by a large factor in the resonance region.

  10. Extension and validation of the TRANSURANUS burn-up model for helium production in high burn-up LWR fuels

    Science.gov (United States)

    Botazzoli, Pietro; Luzzi, Lelio; Brémier, Stephane; Schubert, Arndt; Van Uffelen, Paul; Walker, Clive T.; Haeck, Wim; Goll, Wolfgang

    2011-12-01

    The TRANSURANUS burn-up model (TUBRNP) calculates the local concentration of the actinides, the main fission products, and 4He as a function of the radial position across a fuel rod. In this paper, the improvements in the helium production model as well as the extensions in the simulation of 238-242Pu, 241Am, 243Am and 242-245Cm isotopes are described. Experimental data used for the extended validation include new EPMA measurements of the local concentrations of Nd and Pu and recent SIMS measurements of the radial distributions of Pu, Am and Cm isotopes, both in a 3.5% enriched commercial PWR UO 2 fuel with a burn-up of 80 and 65 MWd/kgHM, respectively. Good agreement has been found between TUBRNP and the experimental data. The analysis has been complemented by detailed neutron transport calculations (VESTA code), and also revealed the need to update the branching ratio for the 241Am(n,γ) 242mAm reaction in typical PWR conditions.

  11. Aqueous chemistry of Ce(iv): estimations using actinide analogues.

    Science.gov (United States)

    Marsac, Rémi; Réal, Florent; Banik, Nidhu Lal; Pédrot, Mathieu; Pourret, Olivier; Vallet, Valérie

    2017-10-10

    The prediction of cerium (Ce) aqueous speciation is relevant in many research fields. Indeed, Ce compounds are used for many industrial applications, which may require the control of Ce aqueous chemistry for their synthesis. The aquatic geochemistry of Ce is also of interest. Due to its growing industrial use and its release into the environment, Ce is now considered as an emerging contaminant. Cerium is also used as a proxy of (paleo)redox conditions due to the Ce(iv)/Ce(iii) redox transition. Finally, Ce(iv) is often presented as a relevant analogue of tetravalent actinides (An(iv)). In the present study, quantum chemical calculations were conducted to highlight the similarities between the structures of Ce(iv) and tetravalent actinide (An(iv); An = Th, Pa, U, Np, Pu) aqua-ions, especially Pu(iv). The current knowledge of An(iv) hydrolysis, solubility and colloid formation in water was briefly reviewed but important discrepancies were observed in the available data for Ce(iv). Therefore, new estimations of the hydrolysis constants of Ce(iv) and the solubility of Ce(iv)-(hydr)oxides are proposed, by analogy with Pu(iv). By plotting pH-Eh (Pourbaix) diagrams, we showed that the pH values corresponding to the onset of Ce(iv) species formation (i.e. Ce(iv)-(hydr)oxide or dissolved Ce(iv)) agreed with various experimental results. Although further experimental studies are required to obtain a more accurate thermodynamic database, the present work might yet help to predict more accurately the Ce chemical behavior in aqueous solution.

  12. BCDC Minor Permits

    Data.gov (United States)

    California Department of Resources — An administrative permit can be issued for an activity that qualifies as a minor repair or improvement in a relatively short period of time and without a public...

  13. Minority Veteran Report

    Data.gov (United States)

    Department of Veterans Affairs — This report is the first comprehensive report that chronicles the history of racial and ethnic minorities in the military and as Veterans, profiles characteristics...

  14. Minority Veteran Report 2014

    Data.gov (United States)

    Department of Veterans Affairs — This report is the first comprehensive report that chronicles the history of racial and ethnic minorities in the military and as Veterans, profiles characteristics...

  15. Minorities in Iran

    DEFF Research Database (Denmark)

    Elling, Rasmus Christian

    Contrary to the popular understanding of Iran as a Persian nation, half of the country's population consists of minorities, among whom there has been significant ethnic mobilization at crucial stages in Iranian history. One such stage is now: suppressed minority demands, identity claims, and deba......Contrary to the popular understanding of Iran as a Persian nation, half of the country's population consists of minorities, among whom there has been significant ethnic mobilization at crucial stages in Iranian history. One such stage is now: suppressed minority demands, identity claims......, and debates on diversity have entered public discourse and politics. In 2005–2007, Iran was rocked by the most widespread ethnic unrest experienced in that country since the revolution. The same period was also marked by the re-emergence of nationalism. This interdisciplinary book takes a long-overdue step...

  16. The year in burns 2011.

    Science.gov (United States)

    Wolf, Steven E; Arnoldo, Brett D

    2012-12-01

    For 2011, approximately 1746 original research articles in burns were published in English in scientific journals. This article reviews those with the most potential impact on for burn therapeutics and outcomes according to the Editor of one of the major journals (Burns) and his colleague. As done previously, articles were found and divided into these topic areas: epidemiology of injury and burn prevention, wound and scar characterisation, acute care and critical care, inhalation injury, infection, psychological considerations, pain and itching management, rehabilitation and long-term outcomes, and burn reconstruction. Each selected article is mentioned briefly with editorial comment.

  17. Actinide coordination sphere in various U, Np and Pu nitrato coordination complexes

    Energy Technology Data Exchange (ETDEWEB)

    Auwer, C. Den; Revel, R.; Charbonnel, M.C.; Presson, M.T. [CEA, DCC/DRRV/SEMP, Lab. de Chimie Theorique et Structurale, Bagnols sur Ceze (France); Conradson, S.D. [Los Alamos National Lab., Materials Science and Technology Div., Los Alamos, NM (United States); Simoni, E.; Du, J.F. Le [Centre Univ. Paris Sud, IPN, Orsay CEDEX (France); Madic, C. [CEA, DCC Saclay, Gif sur Yvete (France)

    1999-10-01

    Waste management of nuclear fuel represents one of the major environmental concerns of the decade. To recycle fissile valuable materials, intimate knowledge of complexation mechanisms involved in the solvent extraction processes is indispensable. Evolution of the actinide coordination sphere of AnO{sub 2}(NO{sub 3}){sub 2}TBP-type complexes (an = U, Np, Pu; TBP = tributylphosphate) with the actinide valence state have been probed by XAS at the metal L{sub III} edge. Dramatic changes in the actinide coordination sphere appeared when the An(VI) metal is reduced to An(IV). However, no significant evolution in the actinide environment has been noticed across the series UO{sub 2}{sup 2+}, NpO{sub 2}{sup 2+} and PuO{sub 2}{sup 2+}. (au)

  18. Review and needs in actinide chemistry in relation with biological purposes

    Energy Technology Data Exchange (ETDEWEB)

    Ansoborlo, E.; Moulin, V.; Bion, L.; Doizi, D.; Moulin, C.; Cote, G.; Madic, C.; Van der Lee, J

    2004-07-01

    In case of accidental release of radionuclides in the environment, actinides could occur and may present an healthy risk for human beings. In order to study their behavior in human organism (metabolism, retention, excretion), it is of prime importance to know solution actinide chemistry, and more particularly thermodynamic constants, which will allow to determine their speciation: speciation governs biological availability and toxicity of elements and is also of great interest for decorporation purposes. In this framework, a CEA working group on speciation has been created in order to share data both on thermodynamic constants and on speciation analytical methods, interesting chemists, environmentalists and biologists. It has been focused, in a first time, on actinides. The purpose of this paper is to present the state of the art on actinide speciation within biological media and to focus on the lack of information in order to orientate future research. (authors)

  19. Organophosphorus reagents in actinide separations: Unique tools for production, cleanup and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Nash, K. L.

    2000-01-12

    Interactions of actinide ions with phosphate and organophosphorus reagents have figured prominently in nuclear science and technology, particularly in the hydrometallurgical processing of irradiated nuclear fuel. Actinide interactions with phosphorus-containing species impact all aspects from the stability of naturally occurring actinides in phosphate mineral phases through the application of the bismuth phosphate and PUREX processes for large-scale production of transuranic elements to the development of analytical separation and environment restoration processes based on new organophosphorus reagents. In this report, an overview of the unique role of organophosphorus compounds in actinide production, disposal, and environment restoration is presented. The broad utility of these reagents and their unique chemical properties is emphasized.

  20. Neptune: Minor Satellites

    Science.gov (United States)

    Murdin, P.

    2003-04-01

    All but one of Neptune's minor satellites orbit within or just outside its ringsystem; the exception is the distant object Nereid. Some of them are betterdescribed as `mid-sized' rather than `minor', but are included under thisheading as little is known of them. The inner four, with approximatediameters, are Naiad (60 km), Thalassa (80 km), Despina (150 km) and Galatea(160 km). The first three lie...

  1. Radiochemical separation of actinides for their determination in environmental samples and waste products

    Energy Technology Data Exchange (ETDEWEB)

    Gleisberg, B. [Nuclear Engineering and Analytics Rossendorf, Inc. (VKTA), Dresden (Germany)

    1997-03-01

    The determination of low level activities of actinides in environmental samples and waste products makes high demands on radiochemical separation methods. Artificial and natural actinides were analyzed in samples form the surrounding areas of NPP and of uranium mines, incorporation samples, solutions containing radioactive fuel, solutions and solids resutling from the process, and in wastes. The activities are measured by {alpha}-spectrometry and {gamma}-spectrometry. (DG)

  2. An instrument for the investigation of actinides with spin resolved photoelectron spectroscopy and bremsstrahlung isochromat spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.-W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tobin, J. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chung, B. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-01-01

    A new system for spin resolved photoelectron spectroscopy and bremsstrahlung isochromat spectroscopy has been built and commissioned at Lawrence Livermore National Laboratory for the investigation of the electronic structure of the actinides.Actinide materials are very toxic and radioactive and therefore cannot be brought to most general user facilities for spectroscopic studies. The technical details of the new system and preliminary data obtained therein will be presented and discussed.

  3. From carbon to actinides: A new universal 1MV accelerator mass spectrometer at ANSTO

    Science.gov (United States)

    Wilcken, K. M.; Hotchkis, M.; Levchenko, V.; Fink, D.; Hauser, T.; Kitchen, R.

    2015-10-01

    A new 1 MV NEC pelletron AMS system at ANSTO is presented. The spectrometer comprises large radius magnets for actinide measurements. A novel feature of the system is fast switching between isotopes both at low and high energy sections allowing measurements of up to 8 isotopes within a single sequence. Technical details and layout of the spectrometer is presented. Performance data for 14C, 10Be, 26Al and actinides demonstrate the system is ready for routine AMS measurements.

  4. From carbon to actinides: A new universal 1MV accelerator mass spectrometer at ANSTO

    Energy Technology Data Exchange (ETDEWEB)

    Wilcken, K.M., E-mail: klaus.wilcken@ansto.gov.au [Australian Nuclear Science & Technology Organisation, Sydney, New South Wales (Australia); Hotchkis, M.; Levchenko, V.; Fink, D. [Australian Nuclear Science & Technology Organisation, Sydney, New South Wales (Australia); Hauser, T.; Kitchen, R. [National Electrostatics Corporation, 7540 Graber Road, Middleton, WI 53562-0310 (United States)

    2015-10-15

    A new 1 MV NEC pelletron AMS system at ANSTO is presented. The spectrometer comprises large radius magnets for actinide measurements. A novel feature of the system is fast switching between isotopes both at low and high energy sections allowing measurements of up to 8 isotopes within a single sequence. Technical details and layout of the spectrometer is presented. Performance data for {sup 14}C, {sup 10}Be, {sup 26}Al and actinides demonstrate the system is ready for routine AMS measurements.

  5. Actinides in molecules: exotic properties probed by X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Den Auwer, C.; Moisy, P.; Guilbaud, P.; Guillaumont, D.; Simoni, E.; Conradson, S.D

    2004-07-01

    Dealing with actinide elements in molecular chemistry may result in particularly attractive and exotic physico-chemical properties. In solution, one of the spectroscopic tools able to selectively probe the structural or electronic properties of these molecules is the X-ray absorption process. Different aspects of absorption edge or EXAFS analysis related to actinide studies are presented, including phenomenological and semi-quantitative approaches. (authors)

  6. Assessing burn depth in tattooed burn lesions with LASCA Imaging.

    Science.gov (United States)

    Krezdorn, N; Limbourg, A; Paprottka, F J; Könneker; Ipaktchi, R; Vogt, P M

    2016-09-30

    Tattoos are on the rise, and so are patients with tattooed burn lesions. A proper assessment with regard to burn depth is often impeded by the tattoo dye. Laser speckle contrast analysis (LASCA) is a technique that evaluates burn lesions via relative perfusion analysis. We assessed the effect of tattoo skin pigmentation on LASCA perfusion imaging in a multicolour tattooed patient. Depth of burn lesions in multi-coloured tattooed and untattooed skin was assessed using LASCA. Relative perfusion was measured in perfusion units (PU) and compared to various pigment colours, then correlated with the clinical evaluation of the lesion. Superficial partial thickness burn (SPTB) lesions showed significantly elevated perfusion units (PU) compared to normal skin; deep partial thickness burns showed decreased PU levels. PU of various tattoo pigments to normal skin showed either significantly lower values (blue, red, pink) or significantly increased values (black) whereas orange and yellow pigment showed values comparable to normal skin. In SPTB, black and blue pigment showed reduced perfusion; yellow pigment was similar to normal SPTB burn. Deep partial thickness burn (DPTB) lesions in tattoos did not show significant differences to normal DPTB lesions for black, green and red. Tattoo pigments alter the results of perfusion patterns assessed with LASCA both in normal and burned skin. Yellow pigments do not seem to interfere with LASCA assessment. However proper determination of burn depth both in SPTB and DPTB by LASCA is limited by the heterogenic alterations of the various pigment colours.

  7. [Hydrofluoric acid burns].

    Science.gov (United States)

    Holla, Robin; Gorter, Ramon R; Tenhagen, Mark; Vloemans, A F P M Jos; Breederveld, Roelf S

    2016-01-01

    Hydrofluoric acid is increasingly used as a rust remover and detergent. Dermal contact with hydrofluoric acid results in a chemical burn characterized by severe pain and deep tissue necrosis. It may cause electrolyte imbalances with lethal consequences. It is important to identify high-risk patients. 'High risk' is defined as a total affected body area > 3% or exposure to hydrofluoric acid in a concentration > 50%. We present the cases of three male patients (26, 31, and 39 years old) with hydrofluoric acid burns of varying severity and describe the subsequent treatments. The application of calcium gluconate 2.5% gel to the skin is the cornerstone of the treatment, reducing pain as well as improving wound healing. Nails should be thoroughly inspected and possibly removed if the nail is involved, to ensure proper healing. In high-risk patients, plasma calcium levels should be evaluated and cardiac monitoring is indicated.

  8. [Burning mouth syndrome (glossalgia)].

    Science.gov (United States)

    2014-01-01

    Burning mouth syndrome (glossalgia) is manifested by oral pin and tingling sensations, numbness and even burning and severe pains, more frequently in the tongue. Unpleasant sensations may involve the anterior two thirds of the tongue or be extended to the front part of the hard palate and the mucous membrane of the lower lip. This condition is characterized by "mirror" and "food dominant" symptoms, disordered salivation, dysgeusia, or psychological disorders. The disease shows a chronic course. Its etiology may be multifactorial. There are no universally accepted diagnostic criteria; the diagnosis of glossalgia is made to rule out all other causes. A thorough examination should be conducted to establish a differential diagnosis. Glossalgia occurs primarily in middle-aged and elderly people. Women get sick much more frequently than men of the same age. Glossalgia remains difficult to treat. Continuous symptomatic treatment and follow-up help relieve its symptoms.

  9. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Kenneth L.

    2008-11-20

    In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinides under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.

  10. LLNL SFA OBER SBR FY17 Program Management and Performance Report: Subsurface Biogeochemistry of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, Annie B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-06-23

    A major scientific challenge in environmental sciences is to identify the dominant processes controlling actinide transport in the environment. It is estimated that currently, over 2200 metric tons of anthropogenic plutonium (Pu) has accumulated worldwide, a number that increases yearly with additional spent nuclear fuel (Ewing et al., 2010). Plutonium has been shown to migrate on the scale of kilometers, giving way to a critical concern that the fundamental biogeochemical processes that control its behavior in the subsurface are not well understood (Kersting et al. 1999; Novikov et al. 2006; Santschi et al. 2002). Neptunium (Np) is less prevalent in the environment; however, it is predicted to be a significant long-term dose contributor in high-level nuclear waste. Our focus on Np chemistry in this Science Plan is intended to help formulate a better understanding of Pu redox transformations in the environment and clarify the differences between the two long-lived actinides. The research approach of our Science Plan combines (1) Fundamental Mechanistic Studies that identify and quantify biogeochemical processes that control actinide behavior in solution and on solids, (2) Field Integration Studies that investigate the transport characteristics of Pu and test our conceptual understanding of actinide transport, and (3) Actinide Research Capabilities that allow us to achieve the objectives of this Scientific Focus Area (SFA) and provide new opportunities for advancing actinide environmental chemistry. These three Research Thrusts form the basis of our SFA Science Program.

  11. Enhancing the actinide sciences in Europe through hot laboratories networking and pooling: from ACTINET to TALISMAN

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, S.; Poinssot, C. [French Nuclear and Alternative Energies Commission, CEA, Nuclear Energy Division, F RadioChemistry and Processes Department, CEA Marcoule, 30207 Bagnols sur Ceze (France)

    2013-07-01

    Since 2004, Europe supports the strengthening of the European actinides sciences scientific community through the funding of dedicated networks: (i) from 2004 to 2008, the ACTINET6 network of excellence (6. Framework Programme) gathered major laboratories involved in nuclear research and a wide range of academic research organisations and universities with the specific aims of funding and implementing joint research projects to be performed within the network of pooled facilities; (ii) from 2009 to 2013, the ACTINET-I3 integrated infrastructure initiative (I3) supports the cost of access of any academics in the pooled EU hot laboratories. In this continuation, TALISMAN (Trans-national Access to Large Infrastructures for a Safe Management of Actinides) gathers now the main European hot laboratories in actinides sciences in order to promote their opening to academics and universities and strengthen the EU-skills in actinides sciences. Furthermore, a specific focus is set on the development of advanced cutting-edge experimental and spectroscopic capabilities, the combination of state-of-the art experimental with theoretical first-principle methods on a quantum mechanical level and to benefit from the synergy between the different scientific and technical communities. ACTINET-I3 and TALISMAN attach a great importance and promote the Education and Training of the young generation of actinides scientists in the Trans-national access but also by organizing Schools (general Summer Schools or Theoretical User Lab Schools) or by granting students to attend International Conference on actinide sciences. (authors)

  12. Static, Mixed-Array Total Evaporation for Improved Quantitation of Plutonium Minor Isotopes in Small Samples

    Science.gov (United States)

    Stanley, F. E.; Byerly, Benjamin L.; Thomas, Mariam R.; Spencer, Khalil J.

    2016-06-01

    Actinide isotope measurements are a critical signature capability in the modern nuclear forensics "toolbox", especially when interrogating anthropogenic constituents in real-world scenarios. Unfortunately, established methodologies, such as traditional total evaporation via thermal ionization mass spectrometry, struggle to confidently measure low abundance isotope ratios (plutonium minor isotope measurements, which have been resistant to enhancement in recent years because of elevated radiologic concerns. Results are presented for small sample (~20 ng) applications involving a well-known plutonium isotope reference material, CRM-126a, and compared with traditional total evaporation methods.

  13. The hair color-highlighting burn: a unique burn injury.

    Science.gov (United States)

    Peters, W

    2000-01-01

    A unique, preventable, 2.8 x 3.7-cm, full-thickness scalp burn resulted after a woman underwent a professional color-highlighting procedure at a hair salon. The burn appeared to result from scalp contact with aluminum foil that had been overheated by a hair dryer during the procedure. The wound required debridement and skin grafting and 3 subsequent serial excisions to eliminate the resulting area of burn scar alopecia. The preventive aspects of this injury are discussed.

  14. Assessment of burn depth and burn wound healing potential.

    Science.gov (United States)

    Monstrey, Stan; Hoeksema, Henk; Verbelen, Jos; Pirayesh, Ali; Blondeel, Phillip

    2008-09-01

    The depth of a burn wound and/or its healing potential are the most important determinants of the therapeutic management and of the residual morbidity or scarring. Traditionally, burn surgeons divide burns into superficial which heal by rapid re-epithelialization with minimal scarring and deep burns requiring surgical therapy. Clinical assessment remains the most frequent technique to measure the depth of a burn wound although this has been shown to be accurate in only 60-75% of the cases, even when carried out by an experienced burn surgeon. In this article we review all current modalities useful to provide an objective assessment of the burn wound depth, from simple clinical evaluation to biopsy and histology and to various perfusion measurement techniques such as thermography, vital dyes, video angiography, video microscopy, and laser Doppler techniques. The different needs according to the different diagnostic situations are considered. It is concluded that for the initial emergency assessment, the use of telemetry and simple burn photographs are the best option, that for research purposes a wide range of different techniques can be used but that, most importantly, for the actual treatment decisions, laser Doppler imaging is the only technique that has been shown to accurately predict wound outcome with a large weight of evidence. Moreover this technique has been approved for burn depth assessment by regulatory bodies including the FDA.

  15. SEBACEOUS CYSTS MINOR SURGERY

    Directory of Open Access Journals (Sweden)

    I Gusti Ayu Agung Laksemi

    2013-12-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Minor surgery is small surgery or localized example cut ulcers and boils, cyst excision, and suturing. Somethings that need to be considered in the preparation of the surgery is minor tools, operating rooms and operating tables, lighting, maintenance of tools and equipment, sterilization and desinfection equipment, preparation of patients and anesthesia. In general cysts is walled chamber that consist of fluid, cells and the remaining cells. Cysts are formed not due to inflammation although then be inflamed. Lining of the cysts wall is composed of fibrous tissue and usually coated epithelial cells or endothelial. Cysts formed by dilated glands and closed channels, glands, blood vessels, lymph channels or layers of the epidermis. Contents of the cysts wall consists of the results is serum, lymph, sweat sebum, epithelial cells, the stratum corneum, and hair. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  16. Sex Trafficking of Minors.

    Science.gov (United States)

    Moore, Jessica L; Kaplan, Dana M; Barron, Christine E

    2017-04-01

    Sex trafficking is an increasingly recognized global health crisis affecting every country and region in the world. Domestic minor sex trafficking is a subset of commercial sexual exploitation of children, defined as engagement of minors (<18 years of age) in sexual acts for items of value (eg, food, shelter, drugs, money) involving children victimized within US borders. These involved youth are at risk for serious immediate and long-term physical and mental health consequences. Continued efforts are needed to improve preventive efforts, identification, screening, appropriate interventions, and subsequent resource provision for victimized and high-risk youth.

  17. Autonomy and minority rights

    DEFF Research Database (Denmark)

    Barten, Ulrike

    2008-01-01

    to a specific group. The question never posed is, if there is a point and in that case at what point the group can actually talk about being autonomous. Is there a minimum in the number of special rights and procedures that has to be reached in order for the package of rights to qualify as ‘granting autonomy...... in the cultural, educational, religious and social sectors which have of course are exercised in a limited territory; however, do not threaten the state's sovereignty in the same way as independent political decisions could do. How far minority rights have the same dimensions, will be another issue. Minorities...

  18. [The organization of burn care].

    Science.gov (United States)

    Latarjet, Jacques

    2002-12-15

    In 2002, the organisation of burn care is confronted to a great deficiency in burn epidemiological datas. The main mechanisms of hospitalized burns are somehow wellknown in industrialized countries: about 60% scalds and 30% flame burns; as well as the place of occurrence (60% at home, and 20% at work), and the risk groups (3 times more important for the age group 0-4 years old). The incidence of burns needing medical care (all levels) (250/100,000 inh/yr) or hospitalization (15-20/100,000 inh/yr) is much more uncertain. The statistics of Diagnosis Related Groups (DRG), for hospitalized patients will allow in France very shortly to know more about the most rational ways of dispatching and treating them. They already show that only 30% of hospitalized burned patients are treated in specialized facilities.

  19. Quantum Mechanical Studies of the Early Actinide Compounds

    Science.gov (United States)

    Obodo, Kingsley Onyebuchi

    This study involves the investigation of the early actinide systems using ab initio techniques based on density functional theory (DFT). It was motivated by: (i) the incomplete description of these systems using conventional DFT because they are strongly correlated, (ii) the usefulness of these systems in nuclear energy generation, (iii) the complexity that arises in experimentally studying these systems due to their inherent radioactive nature and (iv) their limited availability. The results obtained from this study are divided into two broad sections. The first comprises chapters 3 and 4 while the second comprises chapters 5 and 6. Thorium based compounds are studied in chapters 3 and 4. In the first section, the Hubbard U parameter is not necessary to accurately describe the electronic, elastic and mechanical properties of these systems. In the second, the inclusion of the Hubbard U parameter is shown to be paramount for the accurate description of most compounds considered. Chapter 3 presents the electronic, structural and bonding character of thorium based nitrides. We obtained the result that Th2N2 NH, which is crystallographically equivalent to metallic Th2N 3, is insulating. Chapter 4 demonstrates that the formation of a meta-stable thorium-titanium based alloy is plausible and also further information on bonding, electronic and elastic properties of the determined meta-stable alloy is provided. This has provided important new knowledge about these bulk systems. In Chapter 5 the DFT + U based study on Pa and its oxides is presented. The electronic, structural and bonding character of these systems was studied. We found that PaO2 is a Mott-Hubbard insulator with an indirect band gap of 3.48 eV within the generalized gradient approximation GGA + U. Chapter 6 discusses various actinide nitrides. We explored the electronic properties, elastic properties, lattice dynamics and the energetics of the various compounds using GGA + U. Also, we investigated the effect

  20. [Epidemiology of burns in France].

    Science.gov (United States)

    Latarjet, Jacques; Ravat, François

    2012-01-01

    As with most traumas, the epidemiology of the "burn" health-event has long been neglected by public health doctors and rarely considered by burns specialists. There were therefore few verified data and many approximations and preconceived ideas. The gathering of information recently undertaken in France enables the reliability of the data to be improved and the diagnostic and demographic elements relating to hospitalised patients with burns to be established.

  1. Genital burns and vaginal delivery.

    Science.gov (United States)

    Pant, R; Manandhar, V; Wittgenstein, F; Fortney, J A; Fukushima, C

    1995-07-01

    Obstetric complications may result from burn scarring in the genital area. Women in developing countries typically squat around cooking fires, and burns are common. This recent case in Nepal describes obstructed labor in a young woman whose genital area had extensive scarring from a cooking fire injury. Proper antenatal assessment by health care providers can reduce the risk to mothers and infants of the consequences of a birth canal damaged or obstructed by burn scarring.

  2. Curbing Inflammation in Burn Patients

    Directory of Open Access Journals (Sweden)

    Jayme A. Farina

    2013-01-01

    Full Text Available Patients who suffer from severe burns develop metabolic imbalances and systemic inflammatory response syndrome (SIRS which can result in multiple organ failure and death. Research aimed at reducing the inflammatory process has yielded new insight into burn injury therapies. In this review, we discuss strategies used to curb inflammation in burn injuries and note that further studies with high quality evidence are necessary.

  3. Paving the way for the synthesis of a series of divalent actinide complexes: a theoretical perspective.

    Science.gov (United States)

    Wu, Q-Y; Lan, J-H; Wang, C-Z; Cheng, Z-P; Chai, Z-F; Gibson, J K; Shi, W-Q

    2016-02-21

    Recently, the +2 formal oxidation state in soluble molecular complexes for lanthanides (La-Nd, Sm-Lu) and actinides (Th and U) has been discovered [W. J. Evans, et al., J. Am. Chem. Soc., 2011, 133, 15914; J. Am. Chem. Soc., 2012, 134, 8420; J. Am. Chem. Soc., 2013, 135, 13310; Chem. Sci., 2015, 6, 517]. To explore the nature of the bonding and stabilities of the low-valent actinide complexes, a series of divalent actinide species, [AnCp'3](-) (An[double bond, length as m-dash]Th-Am, Cp' = [η(5)-C5H4(SiMe3)](-)) have been investigated in THF solution using scalar relativistic density functional theory. The electronic structures and electron affinity properties were systematically studied to identify the interactions between the +2 actinide ions and Cp' ligands. The ground state electron configurations for the [AnCp'3](-) species are [ThCp'3](-) 6d(2), [PaCp'3](-) 5f(2)6d(1), [UCp'3](-) 5f(3)6d(1), [NpCp'3](-) 5f(5), [PuCp'3](-) 5f(6), and [AmCp'3](-) 5f(7), respectively, according to the MO analysis. The total bonding energy decreases from the Th- to the Am-complex and the electrostatic interactions mainly dominate the bonding between the actinide atom and ligands. The electron affinity analysis suggests that the reduction reaction of AnCp'3→ [AnCp'3](-) should become increasingly facile across the actinide series from Th to Am, in accord with the known An(iii/ii) reduction potentials. This work expands the knowledge on the low oxidation state chemistry of actinides, and further motivates and guides the synthesis of related low oxidation state compounds of 5f elements.

  4. Actinide production in /sup 136/Xe bombardments of /sup 249/Cf

    Energy Technology Data Exchange (ETDEWEB)

    Gregorich, K.E.

    1985-08-01

    The production cross sections for the actinide products from /sup 136/Xe bombardments of /sup 249/Cf at energies 1.02, 1.09, and 1.16 times the Coulomb barrier were determined. Fractions of the individual actinide elements were chemically separated from recoil catcher foils. The production cross sections of the actinide products were determined by measuring the radiations emitted from the nuclides within the chemical fractions. The chemical separation techniques used in this work are described in detail, and a description of the data analysis procedure is included. The actinide production cross section distributions from these /sup 136/Xe + /sup 249/Cf bombardments are compared with the production cross section distributions from other heavy ion bombardments of actinide targets, with emphasis on the comparison with the /sup 136/Xe + /sup 248/Cm reaction. A technique for modeling the final actinide cross section distributions has been developed and is presented. In this model, the initial (before deexcitation) cross section distribution with respect to the separation energy of a dinuclear complex and with respect to the Z of the target-like fragment is given by an empirical procedure. It is then assumed that the N/Z equilibration in the dinuclear complex occurs by the transfer of neutrons between the two participants in the dinuclear complex. The neutrons and the excitation energy are statistically distributed between the two fragments using a simple Fermi gas level density formalism. The resulting target-like fragment initial cross section distribution with respect to Z, N, and excitation energy is then allowed to deexcite by emission of neutrons in competition with fission. The result is a final cross section distribution with respect to Z and N for the actinide products. 68 refs., 33 figs., 6 tabs.

  5. Reversible optical sensor for the analysis of actinides in solution; Capteur optique reversible pour l'analyse des actinides en solution

    Energy Technology Data Exchange (ETDEWEB)

    Lesage, B.; Picard, S. [CEA Marcoule, Dept. de Radiochimie et Procedes, Service de Chimie des Procedes de Separation, Lab. de Chimie des Actinides, 30 (France); Serein-Spirau, F.; Lereporte, J.P. [Ecole Nationale Superieure de Chimie de Montpellier (ENSCM), CNRS UMR 5076, Lab. Heterochimie Moleculaire et Macromoleculaire, 34 - Montpellier (France)

    2007-07-01

    In this work is presented a concept of reversible optical sensor for actinides. It is composed of a p doped conducing polymer support and of an anion complexing the actinides. The chosen conducing polymer is the thiophene-2,5-di-alkoxy-benzene whose solubility and conductivity are perfectly known. The actinides selective ligand is a lacunar poly-oxo-metallate such as P{sub 2}W{sub 17}O{sub 61}{sup 10-} or SiW{sub 11}O{sub 39}{sup 8-} which are strong anionic complexing agents of actinides at the oxidation state (IV) even in a very acid medium. The sensor is prepared by spin coating of the composite mixture 'polymer + ligand' on a conducing glass electrode and then tested towards its optical and electrochemical answer in presence of uranium (IV). The absorption change due to the formation of cations complexes by poly-oxo-metallate reveals the presence of uranium (IV). After the measurement, the sensor is regenerated by anodic polarization of the support and oxidation of the uranium (IV) into uranium (VI) which weakly interacts with the poly-oxo-metallate and is then released in solution. (O.M.)

  6. Nutrition Support in Burn Patients

    Directory of Open Access Journals (Sweden)

    Cem Aydoğan

    2012-08-01

    Full Text Available Severe burn trauma causes serious metabolic derangements. Increased metabolic rate which is apart of a pathophysiologic characteristic of burn trauma results in protein-energy malnutrition. This situation causes impaired wound healing, muscle and fat tissue’s breakdown, growth retardation in children and infections. Nutrition support is vital in the treatment strategies of burn victims to prevent high mortal and disabling complications in this devastating trauma. Our aim in this study is to review management of nutrition in burn victims. (Journal of the Turkish Society Intensive Care 2012; 10: 74-83

  7. A primer on burn resuscitation

    Directory of Open Access Journals (Sweden)

    Bacomo Ferdinand

    2011-01-01

    Full Text Available Since the early 1900s, the scope of burn resuscitation has evolved dramatically. Due to various advances in pre-hospital care and training, under-resuscitation of patients with severe burns is now relatively uncommon. Over-resuscitation, otherwise known as "fluid creep", has emerged as one of the most important problems during the initial phases of burn care over the past decade. To avoid the complications of over-resuscitation, careful hourly titration of fluid rates based on compilation of various clinical end points by a bedside provider is vital. The aim of this review is to provide a practical approach to the resuscitation of severely burned patients.

  8. Ice & Fire: the Burning Question

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Jomaas, Grunde

    2017-01-01

    With the Arctic opening up to new shipping routes and increased oil exploration and production due to climate change, the risk of an Arctic oil spill is increasing. Of the classic oil spill response methods (mechanical recovery, dispersants and in-situ burning), in-situ burning is considered...... to be particularly a suitable response method in the Arctic. In-situ burning aims to remove the oil from the marine environment by burning it from the water surface. A recent Ph.D. thesis from the Technical University of Denmark has provided some new insights with respect to the fire science behind this response...

  9. Marginally Stable Nuclear Burning

    Science.gov (United States)

    Strohmayer, Tod E.; Altamirano, D.

    2012-01-01

    Thermonuclear X-ray bursts result from unstable nuclear burning of the material accreted on neutron stars in some low mass X-ray binaries (LMXBs). Theory predicts that close to the boundary of stability oscillatory burning can occur. This marginally stable regime has so far been identified in only a small number of sources. We present Rossi X-ray Timing Explorer (RXTE) observations of the bursting, high-inclination LMXB 4U 1323-619 that reveal for the first time in this source the signature of marginally stable burning. The source was observed during two successive RXTE orbits for approximately 5 ksec beginning at 10:14:01 UTC on March 28, 2011. Significant mHz quasi-periodic oscillations (QPO) at a frequency of 8.1 mHz are detected for approximately 1600 s from the beginning of the observation until the occurrence of a thermonuclear X-ray burst at 10:42:22 UTC. The mHz oscillations are not detected following the X-ray burst. The average fractional rms amplitude of the mHz QPOs is 6.4% (3 - 20 keV), and the amplitude increases to about 8% below 10 keV.This phenomenology is strikingly similar to that seen in the LMXB 4U 1636-53. Indeed, the frequency of the mHz QPOs in 4U 1323-619 prior to the X-ray burst is very similar to the transition frequency between mHz QPO and bursts found in 4U 1636-53 by Altamirano et al. (2008). These results strongly suggest that the observed QPOs in 4U 1323-619 are, like those in 4U 1636-53, due to marginally stable nuclear burning. We also explore the dependence of the energy spectrum on the oscillation phase, and we place the present observations within the context of the spectral evolution of the accretion-powered flux from the source.

  10. Exercise following burn injury.

    Science.gov (United States)

    de Lateur, Barbara J; Shore, Wendy S

    2011-05-01

    Fatigue is a major barrier to recovery for burned individuals. Studies indicate that a slow return to normal or near-normal muscle strength is the natural course of recovery. With no special interventions, other than the "usual care" tailored to the needs of the individual, postburn patients will make gradual improvement in strength and aerobic capacity. Using the principle of initial condition (the worse the initial condition, the greater the response to exercise intervention) the authors outline an augmented exercise program that should result in a robust improvement in aerobic capacity.

  11. RELEASE OF MINORS

    Directory of Open Access Journals (Sweden)

    Edgar Laurenţiu DUMBRAVĂ

    2015-07-01

    Full Text Available The sanctioning of minors provided in a whole new Criminal Code is kinder to those applying to one category of criminal penalties, namely educational measures. This change occurred after finding the need to recover and straightening of juvenile offenders with their age-specific means and without coming into contact with major people that could adversely affect behavior.

  12. PATTERNS OF MINORITY RELATIONS.

    Science.gov (United States)

    DUSTER, TROY S.; MACK, RAYMOND W.

    ACCORDING TO SOCIAL SCIENTISTS AND BIOLOGISTS, ALL RACES ARE EQUAL IN ABILITY, NEVERTHELESS, RACIAL DISCRIMINATION EXISTS WHEN THE CULTURE OF A SOCIETY ALLOWS PEOPLE TO EXPRESS THEIR AGRESSIONS IN A SOCIALLY ACCEPTABLE WAY. ONE WAY TO DEFINE GROUP BOUNDARIES IS TO SINGLE OUT A CHARACTERISTIC OF A MINORITY GROUP AND TO INSTITUTIONALIZE THIS…

  13. Minority Language Teaching

    NARCIS (Netherlands)

    Monique Turkenburg

    2001-01-01

    Original title: Onderwijs in alochtone levende talen. At the request of the Dutch Ministry of Education, Culture and Science, an exploratory study was carried out of minority Language teaching for primary school pupils. This exploratory study in seven municipalities not only shows the way in which

  14. Oral Rehydration Therapy in Burn Patients

    Science.gov (United States)

    2014-04-24

    Burn Any Degree Involving 20-29 Percent of Body Surface; Burn Any Degree Involving 30-39 Percent of Body Surface; Burn Any Degree Involving 40-49 Percent of Body Surface; Burn Any Degree Involving 50-59 Percent of Body Surface; Burn Any Degree Involving 60-65 Percent of Body Surface

  15. How to manage burns in primary care.

    OpenAIRE

    Waitzman, A. A.; Neligan, P C

    1993-01-01

    Burns are common injuries; more than 200,000 occur in Canada annually. Nearly all burn injuries can be managed on on outpatient basis. Appropriate treatment depends on burn depth, extent, and location. Special types of burns, such as chemical, tar, and electrical injuries, need specific management strategies. Prevention through education is important to reduce the incidence of burns.

  16. First ionization potential of the heaviest actinide lawrencium, element 103

    Directory of Open Access Journals (Sweden)

    Sato Tetsuya K.

    2016-01-01

    Full Text Available The first ionization potential (IP1 of element 103, lawrencium (Lr, has been successfully determined for the first time by using a newly developed method based on a surface ionization process. The measured IP1 value is 4.9630.080.07 eV. This value is the smallest among those of actinide elements and is in excellent agreement with the value of 4.963(15 eV predicted by state-of-the-art relativistic calculations also performed in this work. Our results strongly support that the Lr atom has an electronic configuration of [Rn]7s25f147p11/2, which is influenced by strong relativistic effects. The present work provides a reliable benchmark for theoretical calculations and also opens the way for studies on atomic properties of heavy elements with atomic number Z > 100. Moreover, the present achievement has triggered a controversy on the position of lutetium (Lu and Lr in the Periodic Table of Elements.

  17. Actinide-specific complexing agents: their structural and solution chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, K.N.; Freeman, G.E.; Kappel, M.J.

    1983-07-01

    The synthesis of a series of tetracatecholate ligands designed to be specific for Pu(IV) and other actinide(IV) ions has been achieved. Although these compounds are very effective as in vivo plutonium removal agents, potentiometric and voltammetric data indicate that at neutral pH full complexation of the Pu(IV) ion by all four catecholate groups does not occur. Spectroscopic results indicate that the tetracatecholates, 3,4,3-LICAMS and 3,4,3-LICAMC, complex Am(III). The Am(IV)/(III)-catecholate couple (where catecholate = 3,4,3-LICAMS or 3,4,3-LICAMC) is not observed, but may not be observable due to the large currents associated with ligand oxidation. However, within the potential range where ligand oxidation does not occur, these experiments indicate that the reduction potential of free Am(IV)/(III) is probably greater than or equal to + 2.6 V vs NHE or higher. Proof of the complexation of americium in the trivalent oxidation state by 3,4,3-LICAMS and 3,4,3-LICAMC elimates the possibility of tetracatholates stabilizing Am(IV) in vivo.

  18. Iron (III) Matrix Effects on Mineralization and Immobilization of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Cynthia-May S. Gong; Tyler A. Sullens; Kenneth R. Czerwinski

    2006-01-01

    Abstract - A number of models for the Yucca Mountain Project nuclear waste repository use studies of actinide sorption onto well-defined iron hydroxide materials. In the case of a waste containment leak, however, a complex interaction between dissolved waste forms and failed containment vessel components can lead to immediate precipitation of migratory iron and uranyl in the silicate rich near-field environment. Use of the Fe(III) and UO22+ complexing agent acetohydroxamic acid (AHA) as a colorimetric agent for visible spectrophotometry is well-known. Using the second derivative of these spectra a distinct shift in iron complexation in the presence of silicate is seen that is not seen with uranyl or alone. Silica also decreases the ability of uranyl and ferric solutions to absorb hydroxide, hastening precipitation. These ferric silicate precipitates are highly amorphous and soluble. Precipitates formed in the presence of uranyl below ~1 mol% exhibit lower solubility than precipitates from up to 50 mol % and of uranyl silicates alone.

  19. Functionalization of mesoporous materials for lanthanide and actinide extraction.

    Science.gov (United States)

    Florek, Justyna; Giret, Simon; Juère, Estelle; Larivière, Dominic; Kleitz, Freddy

    2016-10-14

    Among the energy sources currently available that could address our insatiable appetite for energy and minimize our CO2 emission, solar, wind, and nuclear energy currently occupy an increasing portion of our energy portfolio. The energy associated with these sources can however only be harnessed after mineral resources containing valuable constituents such as actinides (Ac) and rare earth elements (REEs) are extracted, purified and transformed into components necessary for the conversion of energy into electricity. Unfortunately, the environmental impacts resulting from their manufacture including the generation of undesirable and, sometimes, radioactive wastes and the non-renewable nature of the mineral resources, to name a few, have emerged as challenges that should be addressed by the scientific community. In this perspective, the recent development of functionalized solid materials dedicated to selective elemental separation/pre-concentration could provide answers to several of the above-mentioned challenges. This review focuses on recent advances in the field of mesoporous solid-phase (SP) sorbents designed for REEs and Ac liquid-solid extraction. Particular attention will be devoted to silica and carbon sorbents functionalized with commonly known ligands, such as phosphorus or amide-containing functionalities. The extraction performances of these new systems are discussed in terms of sorption capacity and selectivity. In order to support potential industrial applications of the silica and carbon-based sorbents, their main drawbacks and advantages are highlighted and discussed.

  20. Sexual minorities seeking services.

    Science.gov (United States)

    Rogers, Tracey L; Emanuel, Kristen; Bradford, Judith

    2003-01-01

    SUMMARY Understanding the mental health needs of lesbian and bisexual (sexual minority) women is an integral part of designing and providing appropriate mental health services and treatment for them. In an effort to understand the mental health needs of sexual minority women who seek community treatment, a chart review was conducted of the 223 lesbian and bisexual women who presented for services between July 1, 1997 and December 31, 2000 at Fenway Community Health in Boston, MA. Data are based on clients' self-reports and clinician assessments of clients' presenting problem, relevant developmental history, prior mental health and substance abuse treatment, current reports of emotional/psychological symptoms, and areas of impaired functioning. Although substance abuse and suicidal ideation were commonly reported problems, other concerns were more frequently reported. High percentages of lesbians and bisexual women reported relationship concerns and lack of adequate social networks; rates of depression and anxiety based on clinicians' assessments were also high. Overall, lesbians and bisexual women did not differ in the issues they brought to treatment or level or types of impairment. Compared with previous community survey samples, however, study participants appeared to be healthier than general, non-clinical samples of self-identified lesbians, possibly reflecting the special characteristics of sexual minority women who seek treatment in specialized community sites such as the Fenway. Although patients who come to these sites may not represent the more general population of sexual minority women, community health centers known to serve lesbian, gay, bisexual and transgender (LGBT) individuals may be fruitful access points for studying the mental health status and treatment needs of sexual minority women.

  1. Isotopic analyses and calculation by use of JENDL-3.2 for high burn-up UO{sub 2} and MOX spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Sasahara, Akihiro; Matsumura, Tetsuo [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.; Nicolaou, G.; Betti, M.; Walker, C.T.

    1997-03-01

    The post irradiation examinations (PIE) were carried out for high burn-up UO{sub 2} spent fuel (3.8%U235, average burn-up:60GWd/t) and mixed oxide (MOX) spent fuel (5.07%Pu, average burn-up:45GWd/t). The PIE includes, (a) isotopic analysis, (b) electron probe microanalysis (EPMA) in pellet cross section and so on. The results of isotopic analyses and EPMA were compared with ORIGEN2/82 and VIM-BURN calculation results. In VIM-BURN calculation, the nuclear data of actinides were proceeded from new data file, JENDL-3.2. The sensitivities of power history and moderator density to nuclides composition were investigated by VIM-BURN calculation and consequently power history mainly effected on Am241 and Am242m and moderator density effected on fissile nuclides. From EPMA results of U and Pu distribution in pellet, VIM-BURN calculation showed reasonable distribution in pellet cross section. (author)

  2. Structural organization and spectroscopy of peptide-actinide(IV) complexes; Organisation structurale et spectroscopie de peptides susceptibles de complexer les actinides(IV)

    Energy Technology Data Exchange (ETDEWEB)

    Dahou, S.

    2010-11-05

    The contamination of living organisms by actinide elements is at the origin of both radiological and chemical toxicity that may lead to severe dysfunction. Most of the data available on the actinide interaction with biological systems are macroscopic physiological measurements and are lacking a molecular description of the systems. Because of the intricacy of these systems, classical biochemical methods are difficult to implement. Our strategy consisted in designing simplified biomimetic peptides, and describing the corresponding intramolecular interactions with actinides. A carboxylic pentapeptide of the form DDPDD has been at the starting point of this work in order to further assess the influence of the peptide sequence on the topology of the complexes.To do so, various linear (Asp/Ala permutations, peptoids) and cyclic analogues have been synthesized. Furthermore, in order to include the hydroxamic function (with a high affinity for Fe(III)) in the peptide, both desferrioxamine and acetohydroxamic acid have been investigated. However because of difficulties in synthesis, we have not been able to test these peptides. Three actinide cations have been considered at oxidation state +IV (Th, Np, Pu) and compared to Fe(III), often considered as a biological surrogate of Pu(IV). The spatial arrangement of the peptide around the cation has been probed by spectrophotometry and X-ray Absorption Spectroscopy. The spectroscopic data and EXAFS data adjustment lead us to rationalize the topology of the complexes as a function of the peptide sequence: mix hydroxy polynuclear species for linear and cyclic peptides, mononuclear for the desferrioxamine complexes. Furthermore, significant differences have appeared between Fe(III) and actinide(IV), related to differences of reactivity in aqueous medium. (author)

  3. Synthesis and Evaluation of new Polyfunctional Molecules for Group Actinide Extraction; Synthese et evaluation de Nouvelles Molecules Polyfonctionnelles pour la Separation Groupee des Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Marie, C.

    2009-10-15

    The aim of this project is to design new extracting molecules for spent nuclear fuel reprocessing. In order to minimize the long-term residual radiotoxicity of the waste, the GANEX process is an option based on homogeneous recycling of actinides. All actinides (U, Np, Pu, Am, Cm), present in a highly acidic aqueous solution, would be extracted together and separated from fission products (especially from lanthanides) using liquid-liquid extraction. In this context, twenty new bi-topic ligands constituted of a nitrogen poly-aromatic unit functionalized by amide groups were synthesized. Liquid-liquid extraction tests with these ligands dissolved alone in the organic phase show that N, N, N', N'-tetra-alkyl-6, 6''(2, 2':6', 2''-terpyridine)-diamides are able to selectively extract actinides at different oxidation states (Np(V et VI), U(VI), Pu(IV), Am(III), Cm(III)) from an aqueous solution 3M HNO{sub 3}. Nevertheless, actinides(III) are poorly extracted. According to crystallographic structures of complexes with Nd(III) and U(VI) determined by X-rays diffraction, these ligands are penta-dentate. In solution (methanol), complexes stoichiometries (1:1) of Nd(III), U(VI) and Pu(IV) were determined by electro-spray ionization mass spectrometry. Stability constants, evaluated by UV-visible spectrophotometry in MeOH/H{sub 2}O solutions, confirm the selectivity of ligands toward actinides(III) with respect to lanthanides(III). Associate to nuclear magnetic resonance experiments and DFT calculations (Density Functional Theory), a better knowledge of their coordination mode was achieved. (author)

  4. MOLECULAR SPECTROSCPY AND REACTIONS OF ACTINIDES IN THE GAS PHASE AND CRYOGENIC MATRICES

    Energy Technology Data Exchange (ETDEWEB)

    Heaven, Michael C.; Gibson, John K.; Marcalo, Joaquim

    2009-02-01

    In this chapter we review the spectroscopic data for actinide molecules and the reaction dynamics for atomic and molecular actinides that have been examined in the gas phase or in inert cryogenic matrices. The motivation for this type of investigation is that physical properties and reactions can be studied in the absence of external perturbations (gas phase) or under minimally perturbing conditions (cryogenic matrices). This information can be compared directly with the results from high-level theoretical models. The interplay between experiment and theory is critically important for advancing our understanding of actinide chemistry. For example, elucidation of the role of the 5f electrons in bonding and reactivity can only be achieved through the application of experimentally verified theoretical models. Theoretical calculations for the actinides are challenging due the large numbers of electrons that must be treated explicitly and the presence of strong relativistic effects. This topic has been reviewed in depth in Chapter 17 of this series. One of the goals of the experimental work described in this chapter has been to provide benchmark data that can be used to evaluate both empirical and ab initio theoretical models. While gas-phase data are the most suitable for comparison with theoretical calculations, there are technical difficulties entailed in generating workable densities of gas-phase actinide molecules that have limited the range of species that have been characterized. Many of the compounds of interest are refractory, and problems associated with the use of high temperature vapors have complicated measurements of spectra, ionization energies, and reactions. One approach that has proved to be especially valuable in overcoming this difficulty has been the use of pulsed laser ablation to generate plumes of vapor from refractory actinide-containing materials. The vapor is entrained in an inert gas, which can be used to cool the actinide species to room

  5. Bad advice; bad burn: a new problem in burn prevention.

    Science.gov (United States)

    Deans, L; Slater, H; Goldfarb, I W

    1990-01-01

    Deep partial-thickness burns had been inflicted on the perineal area of an infant who was recently treated in our Burn Center. The burns were a result of advice to the patient's mother by a pediatrician. The doctor told her to use a hair dryer to prevent diaper rash. We surveyed pediatricians, well-baby clinics, and pediatric nurse practitioners in our area and found that approximately half of them advised the use of hair dryers to treat or prevent diaper rash. We tested four widely available hand-held hair dryers to determine potential for inflicting burn injury. All of the dryers are capable of delivering air heated to at least 53 degrees C after 2 minutes of use. We believe that warnings against the use of hair dryers for perineal hygiene should be included in burn prevention programs.

  6. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, 3rd Quarterly Report

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth

    2002-06-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed.

  7. Application of chemical structure and bonding of actinide oxide materials for forensic science

    Energy Technology Data Exchange (ETDEWEB)

    Wilkerson, Marianne Perry [Los Alamos National Laboratory

    2010-01-01

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO{sub 2} (An: U, Pu) to form non-stoichiometric species described as AnO{sub 2+x}. Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxide materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, or process history of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science to characterize actinide oxide molecular structures for forensic science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  8. Technical requirements for the actinide source-term waste test program

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Molecke, M.A.

    1993-10-01

    This document defines the technical requirements for a test program designed to measure time-dependent concentrations of actinide elements from contact-handled transuranic (CH TRU) waste immersed in brines similar to those found in the underground workings of the Waste Isolation Pilot Plant (WIPP). This test program wig determine the influences of TRU waste constituents on the concentrations of dissolved and suspended actinides relevant to the performance of the WIPP. These influences (which include pH, Eh, complexing agents, sorbent phases, and colloidal particles) can affect solubilities and colloidal mobilization of actinides. The test concept involves fully inundating several TRU waste types with simulated WIPP brines in sealed containers and monitoring the concentrations of actinide species in the leachate as a function of time. The results from this program will be used to test numeric models of actinide concentrations derived from laboratory studies. The model is required for WIPP performance assessment with respect to the Environmental Protection Agency`s 40 CFR Part 191B.

  9. Characterization of Actinides in Simulated Alkaline Tank Waste Sludges and Leachates

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Kenneth L.; Jensen, Mark P.; Rao, Linfeng

    2003-06-01

    Treatment of underground tanks at Hanford with concentrated alkali to improve removal of waste-limiting components of sludges has proven less efficacious for Al and Cr removal than had been hoped. Hence, more aggressive treatments of sludges, including contact with oxidants targeting Cr(III), have been tested in a limited number of samples and found to enhance Cr removal. Unfortunately, treatments of sludge samples with oxidative alkaline leachates produce conditions under which normally insoluble actinide ions (e.g., Am3+, Pu4+, Np4+) can no longer be reliably assumed to remain in the sludge phase. Few experimental or meaningful theoretical studies of actinide chemistry in strongly alkaline, strongly oxidizing solutions have been completed. Extrapolation of acid phase thermodynamic data to these radically different conditions provides little reliable guidance for predicting actinide speciation in highly salted alkaline solutions. In this project, we are investigating the fundamental chemistry of actinides in sludge simulants and supernatants under representative oxidative leaching conditions. We are also examining the potential impact of acidic leaching with concurrent secondary separations to enhance Al removal. Our objective is to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop. We expect to identify those components of sludges that are likely to be problematic in the application of oxidative leaching protocols.

  10. System and safety studies of accelerator driven systems and generation IV reactors for transmutation of minor actinides. Annual report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Bergloef, Calle; Fokau, Andrei; Jolkkonen, Mikael; Tesinsky, Milan; Wallenius, Janne; Youpeng Zhang (Div. of Reactor Physics, Royal Institute of Technology, Stockholm (Sweden))

    2010-03-15

    During 2009, the reactor physics division has made a design study of a source efficient ADS with nitride fuel and 15/15Ti cladding, based on the EFIT design made within the EUROTRANS project. It was shown that the source efficiency may be doubled as compared to the reference design with oxide fuel and T91 cladding. Transient analysis of a medium sized sodium cooled reactor with MOX fuel allowed to define criteria in terms of power penalty for americium introduction. It was shown that for each percent of americium added to the fuel, the linear rating must be reduced by 6% in order for the fuel to survive postulated unprotected transients. The Sjoestrand area ratio method for reactivity determination has been evaluated experimentally in the strongly heterogeneous subcritical facility YALINA-Booster. Surprisingly, it has been found that the area ratio reactivity estimates may differ by a factor of two depending on detector position. It is shown that this strong spatial dependence can be explained based on a two-region point kinetics model and rectified by means of correction factors obtained through Monte Carlo simulations. For the purpose of measuring high energy neutron cross sections at the SCANDAL facility in Uppsala, Monte Carlo simulations of neutron to proton conversion efficiencies in CsI detectors have been performed. A uranium fuel fabrication laboratory has been taken into operation at KTH in 2009. Uranium and zirconium nitride powders have been fabricated by hydridation/nitridation of metallic source materials. Sample pellets have been pressed and ZrN discs have been sintered to 93% density by means of spark plasma sintering methods

  11. Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes

    Directory of Open Access Journals (Sweden)

    K. A. Pratt

    2011-06-01

    Full Text Available Biomass burning represents a major global source of aerosols impacting direct radiative forcing and cloud properties. Thus, the goal of a number of current studies involves developing a better understanding of how the chemical composition and mixing state of biomass burning aerosols evolve during atmospheric aging processes. During the Ice in Cloud Experiment – Layer Clouds (ICE-L in fall of 2007, smoke plumes from two small Wyoming Bureau of Land Management prescribed burns were measured by on-line aerosol instrumentation aboard a C-130 aircraft, providing a detailed chemical characterization of the particles. After ~2–4 min of aging, submicron smoke particles, produced primarily from sagebrush combustion, consisted predominantly of organics by mass, but were comprised primarily of internal mixtures of organic carbon, elemental carbon, potassium chloride, and potassium sulfate. Significantly, 100 % of the fresh biomass burning particles contained minor mass fractions of nitrate and sulfate, suggesting that hygroscopic material is incorporated very near or at the point of emission. The mass fractions of ammonium, sulfate, and nitrate increased with aging up to ~81–88 min and resulted in acidic particles, with both nitric acid and sulfuric acid present. Decreasing black carbon mass concentrations occurred due to dilution of the plume. Increases in the fraction of oxygenated organic carbon and the presence of dicarboxylic acids, in particular, were observed with aging. Cloud condensation nuclei measurements suggested all particles >100 nm were active at 0.5 % water supersaturation in the smoke plumes, confirming the relatively high hygroscopicity of the freshly emitted particles. For immersion/condensation freezing, ice nuclei measurements at −32 °C suggested activation of ~0.03–0.07 % of the particles with diameters greater than 500 nm.

  12. Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes

    Directory of Open Access Journals (Sweden)

    K. A. Pratt

    2011-12-01

    Full Text Available Biomass burning represents a major global source of aerosols impacting direct radiative forcing and cloud properties. Thus, the goal of a number of current studies involves developing a better understanding of how the chemical composition and mixing state of biomass burning aerosols evolve during atmospheric aging processes. During the Ice in Clouds Experiment-Layer Clouds (ICE-L in the fall of 2007, smoke plumes from two small Wyoming Bureau of Land Management prescribed burns were measured by on-line aerosol instrumentation aboard a C-130 aircraft, providing a detailed chemical characterization of the particles. After ~2–4 min of aging, submicron smoke particles, produced primarily from sagebrush combustion, consisted predominantly of organics by mass, but were comprised primarily of internal mixtures of organic carbon, elemental carbon, potassium chloride, and potassium sulfate. Significantly, the fresh biomass burning particles contained minor mass fractions of nitrate and sulfate, suggesting that hygroscopic material is incorporated very near or at the point of emission. The mass fractions of ammonium, sulfate, and nitrate increased with aging up to ~81–88 min and resulted in acidic particles. Decreasing black carbon mass concentrations occurred due to dilution of the plume. Increases in the fraction of oxygenated organic carbon and the presence of dicarboxylic acids, in particular, were observed with aging. Cloud condensation nuclei measurements suggested all particles >100 nm were active at 0.5% water supersaturation in the smoke plumes, confirming the relatively high hygroscopicity of the freshly emitted particles. For immersion/condensation freezing, ice nuclei measurements at −32 °C suggested activation of ~0.03–0.07% of the particles with diameters greater than 500 nm.

  13. Thermally unstable complexants: Stability of lanthanide/actinide complexes, thermal instability of the ligands, and applications in actinide separations

    Energy Technology Data Exchange (ETDEWEB)

    Nash, K.L.; Rickert, P.G.

    1991-01-01

    Water soluble complexing agents are commonly used in separations to enhance the selectivity of both ion exchange and solvent extraction processes. Applications of this type in the treatment of nuclear wastes using conventional complexing agents have found mixed success due to the nature of the complexants. In addition, the residual solutions containing these species have led to potentially serious complications in waste storage. To overcome some of the limitations of carboxylic acid and aminopolycarboxylate ligands, we have initiated a program to investigate the complexing ability, thermal/oxidative instability, and separation potential of a group of water soluble organophosphorus compounds which we call Thermally Unstable Complexants, or simply TUCS. Complexants of this type appear to be superior to conventional analogues in a number of respects. In this report, we will summarize our research to date on the actinide/lanthanide complexes with a series of substituted methanediphosphonic acids, the kinetics of their oxidative decomposition, and a few applications which have been developed for their use. 17 refs., 5 figs., 3 tab.

  14. Burn, thermal - close-up (image)

    Science.gov (United States)

    ... first degree burns cause only reddening of the epidermis (outer layer of the skin), as seen in this photograph. Second degree burns cause blistering and extend into the dermis (lower layer of skin). Third degree burns cause ...

  15. Nutritional management of the burn patient

    African Journals Online (AJOL)

    role include: evaporative water loss from the burn wound, bacterial contamination of the burn ... leucocytes and fibroblasts in the burned area.2 Providing exogenous glucose ... immune function, poor wound healing and exacerbation of protein.

  16. Fires and Burns Involving Home Medical Oxygen

    Science.gov (United States)

    ... nfpa.org Fires and Burns Involving Home Medical Oxygen The air is normally 21% oxygen. Oxygen is not flammable, but fire needs it to burn. ¾ When more oxygen is present, any fire that starts will burn ...

  17. Corneal Protection for Burn Patients

    Science.gov (United States)

    2013-10-01

    Houston, TX Purpose:Patients with severe facial burns often suffer indirect damage to their eyes. Burn wound contracture of the periocular skin...periocular muscles , are injured and the protective blink reflex is lost. With loss of the blink reflex the patient quickly develops exposure keratitis

  18. Wanted: Clean Coal Burning Technology

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    China is intent on developing clean coal burning technology, an objective it can achieve through installing desulfurization facilities at coal-burning power plants that will control SO2 emissions and environmental pollution. According to kuo Yi, deputy director general of the Department of Science and Technology of the State Environmental Protection Agency, China is a major coal-buming country:

  19. Microbial effects on sorption and transport of actinides in tuff samples from the Nevada Test Site and soils from McGuire AFB, NJ

    Science.gov (United States)

    Fisher, J. C.; Gostic, R.; Gostic, J.; Czerwinski, K.; Moser, D. P.

    2009-12-01

    The sorption and behavior of various actinides were examined for two sets of environmental samples. The Nevada Test Site (NTS) harbors a variety of radionuclides resulting from atomic weapons testing from the 1950s-1990s. Modeling the transport of radionuclides at the NTS is difficult because each detonation cavity is a unique environment with distinct hydrologic characteristics, chemical composition, and microbial community structure. McGuire AFB was the site of an explosion that resulted in the burning of a BOMARC nuclear missile and deposition of particles containing high-fired oxides of Am, Pu, and U in soils on the base. Analysis of the NTS samples focused on sorption/desorption of 233-U and 241-Am in the presence/absence of bacteria, and work on the BOMARC cores addressed the potential role of microorganisms in mediating particle degradation and movement. Batch experiments with various NTS tuff samples and strains of bacteria showed that sorption of actinides may be enhanced by >25% under certain conditions by bacteria. Sorption of 233-U was highly dependent on carbonate concentrations in the liquid matrix, while 241-Am was unaffected. Different bacterial species also affected sorption differently. Sorption kinetics for both actinides were rapid, with maximum sorption usually occurring within 4 hours. Actinides bound tightly to tuff and little desorption occurred in carbonate-free batch experiments. Column experiments showed that bacterial cultures in minimal salts buffer desorbed significantly more 233-U from tuff than low carbonate NTS water, but less than 30 mM bicarbonate buffer. Hot particles in the BOMARC cores were located using CT mapping and were extracted from the soil prior to analysis of core sections by gamma spectroscopy. Subcores for DNA extraction and culturing were collected from soil in direct contact with hot particles. The extracted particles consisted of a mixture of weapons-grade Pu, 241-Am and 235-U and ranged in activity from 5-66 k

  20. Teaching minority children hygiene

    DEFF Research Database (Denmark)

    Rheinländer, Thilde; Samuelsen, Helle; Dalsgaard, Anders

    2015-01-01

    infrastructures were important barriers for the implementation of safe home child hygiene. Furthermore, the everyday life of highland villages, with parents working away from the households resulted in little daily adult supervision of safe child hygiene practices. While kindergartens were identified...... as potentially important institutions for improving child hygiene education, essential and well-functioning hygiene infrastructures were lacking. Also, hygiene teaching relied on theoretical and non-practice-based learning styles, which did not facilitate hygiene behaviour change in small children. Minority...... a strong practice-based teaching approach in daily work and in teacher's education. To support highland minority children in particular, teaching styles must take local living conditions and caregiver structures into account and teach in local languages. Creating stronger links between home...