WorldWideScience

Sample records for burning lignite coal

  1. Radioactive implications from coal burning

    International Nuclear Information System (INIS)

    Papastefanou, C.; Manolopoulou, M.; Charalambous, S.

    1989-01-01

    Lignites burning in the Greek Coal Power Plants (CPP) contain naturally occurring radionuclides mainly arising from the uranium series. Radium-226 concentrations in lignites burning in the three Coal Power Plants of the 3.02 GW energy centre, the greatest in Greece (Valley of Ptolemais, North Greece), varied from about 30 to 132 Bq kg -1 (average 65.5 Bq kg -1 . About 1.3 % of 226 Ra is discharged to the environment in particulate form - fly ash - by the stacks of thermal power stations, burning coal at a rate 14.3 Mt (GH y) -1 . The collective effective dose equivalent (EDE) commitment to the population 44400 living in the region of these plants, due to inhalation was estimated to be 0.13 man Sv y -1 , that is an order of magnitude higher than that recommended for such a population. Doses from inhaled radon and radon progeny might cause an excess of 3-7 cancer deaths this year. (author)

  2. Bioprocessing of lignite coals using reductive microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  3. JV TASK 45-MERCURY CONTROL TECHNOLOGIES FOR ELECTRIC UTILITIES BURNING LIGNITE COAL, PHASE I BENCH-AND PILOT-SCALE TESTING

    Energy Technology Data Exchange (ETDEWEB)

    John H. Pavlish; Michael J. Holmes; Steven A. Benson; Charlene R. Crocker; Edwin S. Olson; Kevin C. Galbreath; Ye Zhuang; Brandon M. Pavlish

    2003-10-01

    The Energy & Environmental Research Center has completed the first phase of a 3-year, two-phase consortium project to develop and demonstrate mercury control technologies for utilities that burn lignite coal. The overall project goal is to maintain the viability of lignite-based energy production by providing utilities with low-cost options for meeting future mercury regulations. Phase I objectives are to develop a better understanding of mercury interactions with flue gas constituents, test a range of sorbent-based technologies targeted at removing elemental mercury (Hg{sup o}) from flue gases, and demonstrate the effectiveness of the most promising technologies at the pilot scale. The Phase II objectives are to demonstrate and quantify sorbent technology effectiveness, performance, and cost at a sponsor-owned and operated power plant. Phase I results are presented in this report along with a brief overview of the Phase II plans. Bench-scale testing provided information on mercury interactions with flue gas constituents and relative performances of the various sorbents. Activated carbons were prepared from relatively high-sodium lignites by carbonization at 400 C (752 F), followed by steam activation at 750 C (1382 F) and 800 C (1472 F). Luscar char was also steam-activated at these conditions. These lignite-based activated carbons, along with commercially available DARCO FGD and an oxidized calcium silicate, were tested in a thin-film, fixed-bed, bench-scale reactor using a simulated lignitic flue gas consisting of 10 {micro}g/Nm{sup 3} Hg{sup 0}, 6% O{sub 2}, 12% CO{sub 2}, 15% H{sub 2}O, 580 ppm SO{sub 2}, 120 ppm NO, 6 ppm NO{sub 2}, and 1 ppm HCl in N{sub 2}. All of the lignite-based activated (750 C, 1382 F) carbons required a 30-45-minute conditioning period in the simulated lignite flue gas before they exhibited good mercury sorption capacities. The unactivated Luscar char and oxidized calcium silicate were ineffective in capturing mercury. Lignite

  4. Lignite Fuel Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Charles Bullinger; Nenad Sarunac

    2010-03-31

    performed in March/April 2010 after commercial coal drying system was commissioned. Preliminary tests with dried coal were performed in March/April 2010. During the test Unit 2 was in outage and, therefore, test unit (Unit 1) was carrying entire station load and, also, supplying all auxiliary steam extractions. This resulted in higher station service, lower gross power output, and higher turbine cycle heat rate. Although, some of these effects could be corrected out, this would introduce uncertainty in calculated unit performance and effect of dried lignite on unit performance. Baseline tests with dried coal are planned for second half of 2010 when both units at Coal Creek will be in service to establish baseline performance with dried coal and determine effect of coal drying on unit performance. Application of GRE's coal drying technology will significantly enhance the value of lignite as a fuel in electrical power generation power plants. Although existing lignite power plants are designed to burn wet lignite, the reduction in moisture content will increase efficiency, reduce pollution and CO{sub 2} emissions, and improve plant economics. Furthermore, the efficiency of ultra supercritical units burning high-moisture coals will be improved significantly by using dried coal as a fuel. To date, Great River Energy has had 63 confidentiality agreements signed by vendors and suppliers of equipment and 15 utilities. GRE has had agreements signed from companies in Canada, Australia, China, India, Indonesia, and Europe.

  5. Chemical mass balance source apportionment of TSP in a lignite-burning area of Western Macedonia, Greece

    Science.gov (United States)

    Samara, Constantini

    Total suspended particle mass concentrations (TSP) were determined in the Kozani-Ptolemais-Florina basin (western Macedonia, Greece), an area with intensive lignite burning for power generation. The study was conducted over a 1-year period (November 2000-November 2001) at 10 receptor sites located at variable distances from the power plants. Ambient TSP samples were analyzed for 27 major, minor and trace elements. Particulate emissions were also collected from a variety of sources including fly ash, lignite dust, automobile traffic, domestic heating, and open-air burning of agricultural biomass and refuse, and analyzed for the same chemical components. Ambient and source chemical profiles were used for source identification and apportionment of TSP by employing a chemical mass balance (CMB) receptor model. Diesel burning in vehicular traffic and in the power plants for generator start up was found to be the major contributor to ambient TSP levels at all 10 sites. Other sources with significant contributions were domestic coal burning, vegetative burning (wood combustion and agricultural burns) and refuse open-air burning. Fly ash escaping the electrostatic precipitators of the power plants was a minor contributor to ambient TSP.

  6. THE COMBUSTION CHARACTERISTICS OF LIGNITE BLENDS

    Institute of Scientific and Technical Information of China (English)

    Cheng Jun; Zhou Junhu; Cao Xinyu; Cen Kefa

    2000-01-01

    The combustion characteristics of lignite blends were studied with a thermogravimetric analyzer (t.g.a.), at constant heating rate.The characteristic temperatures were determined from the burning profiles.It was found that the characteristic times of combustion reaction moved forward, the ignition temperature dropped and the burnout efficiency slightly changed when blending lignites.The characteristic parameters of blends could not be predicted as a linear function of the average values of the individual lignites.when blending with less reactive coal, the ignition and burnout characteristics of lignite turned worse.

  7. Light absorption by primary particle emissions from a lignite burning plant

    International Nuclear Information System (INIS)

    Bond, T.C.; Bussemer, M.; Wehner, B.; Keller, S.; Charlson, R.J.; Heintzenberg, J.

    1999-01-01

    Anthropogenic aerosols from the burning of fossil fuels contribute to climate forcing by both scattering and absorbing solar radiation, and estimates of climate forcing by light-absorbing primary particles have recently been published. While the mass and optical properties of emissions are needed for these studies, the available measurements do not characterize the low-technology burning that is thought to contribute a large fraction of light-absorbing material to the global budget. The authors have measured characteristics of particulate matter (PM) emitted from a small, low-technology lignite-burning plant. The PM emission factor is comparable to those used to calculate emission inventories of light-absorbing particles. However, the fine fraction, the absorbing fraction, and the absorption efficiency of the emissions are substantially below assumptions that have been made in inventories of black carbon emissions and calculations of climate forcing. The measurements suggest that nonblack, light-absorbing particles are emitted from low-technology coal burning. As the burning rate increases, the emitted absorption cross-section decreases, and the wavelength dependence of absorption becomes closer to that of black particles

  8. Power generation from lignite coal in Bulgaria - problems and solutions

    International Nuclear Information System (INIS)

    Batov, S.; Gadjanov, P.; Panchev, T.

    1997-01-01

    The bulk of lignite coal produced in Bulgaria is used as fuel for the thermal power plants (TPP) built in Maritsa East coal field. A small part of it goes to production of briquettes and to fuel the auxiliary power plants of industrial enterprises. The total installed capacity of the power plants in the region of Maritsa East is 2490 MW, and the electric power generated by them is about 30% of the total power generated in the country. It should be noted that these power plants were subjected to a number of rehabilitations aiming to improve their technical and economic parameters. Irrespective of that, however, solution has still to be sought to a number of problems related to utilisation of the low-grade lignite coal for power generation. On the whole, they can be divided in the following groups: Those related to lignite coal mining can be referred to the first group. Lignite coal is mined in comparatively complicated mining and geological conditions characterized mainly by earth creep and deformation. The second group of problems is related to coal quality control. It is a fact of major significance that the quality indices of coal keep changing all the time in uneven steps without any definite laws to govern it. That creates hard problems in the process of coal transportation, crushing and combustion. The next group of problems concerns operation and upgrading of the power generation equipment. That applies especially to the existing boilers which bum low-grade fuel in order to improve their operation in terms of higher thermal efficiency, controllability, reliability, improved environmental indices, etc. An increasingly high importance is attached to environmental impact problems incident to lignite coal utilisation. Abatement of sulphur oxide emissions and dust pollution is a problem solution of which cannot wait. The possibilities for partial solution of the environmental problems through increasing the thermal efficiency of facilities at the thermal Power

  9. An overview of underground coal gasification and its applicability for Turkish lignite

    Energy Technology Data Exchange (ETDEWEB)

    Pekpak, E.; Yoncaci, S.; Kilic, M.G. [Middle East Technical Univ., Ankara (Turkey). Dept. of Mining Engineering

    2010-07-01

    Coal is expected to maintain its significance as an energy source for a longer time period than oil and natural gas. Environmental concerns have led to the development of clean coal technologies, such as coal gasification. Coal gasification can be used at either at surface or in underground coal gasification (UCG). UCG has several advantages over surface gasification and conventional mining such as rank low calorific value coals. Coal gasification also has the potential to contribute to the energy supply of a country. Most Turkish coals are lignite and UCG may enable diversification of energy sources of Turkey and may help decrease external dependency on energy. This paper presented a study that matched a UCG technique to the most appropriate (Afsin Elbistan) lignite reserve in Turkey. Two UCG techniques were presented, including the linked vertical well method, and the directional drilling-controlled retractable injection point (CRIP) method. The properties of coal seams and coal properties were also outlined. It was concluded that Cobanbey is the most preferable sector in the Elbistan Lignite Reserve for a pilot study, and that the linked vertical well method could be considered as a candidate method. 17 refs., 6 tabs., 1 fig.

  10. Natural desulfurization in coal-fired units using Greek lignite.

    Science.gov (United States)

    Konidaris, Dimitrios N

    2010-10-01

    This paper analyzes the natural desulfurization process taking place in coal-fired units using Greek lignite. The dry scrubbing capability of Greek lignite appears to be extremely high under special conditions, which can make it possible for the units to operate within the legislative limits of sulfur dioxide (SO2) emissions. According to this study on several lignite-fired power stations in northern Greece, it was found that sulfur oxide emissions depend on coal rank, sulfur content, and calorific value. On the other hand, SO2 emission is inversely proportional to the parameter gammaCO2(max), which is equal to the maximum carbon dioxide (CO2) content by volume of dry flue gas under stoichiometric combustion. The desulfurization efficiency is positively correlated to the molar ratio of decomposed calcium carbonate to sulfur and negatively correlated to the free calcium oxide content of fly ash.

  11. Steam gasification of Bulmer coal in the presence of lignite ash

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, A.; Furimsky, E.

    1986-01-01

    Steam gasification of blends prepared from Balmer coal and the ash from combustion of Onakawana lignite was performed in a fixed bed reactor. The blends were prepared by co-slurrying followed by drying. In the presence of 20 wt% ash the gasification rate doubled at 830 and 930 C. Direct blending of coal and lignite resulted in an overall increase in carbon conversion at 830 C but had no effect at 930 C. 5 refs.

  12. Bioprocessing of lignite coals using reductive microorganisms. Final technical report, September 30, 1988--March 29, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  13. The clean coal technologies for lignitic coal power generation in Pakistan

    International Nuclear Information System (INIS)

    Mir, S.; Raza, Z.; Aziz-ur-Rehman, A.

    1995-01-01

    Pakistan contains huge reserves of lignitic coals. These are high sulphur, high ash coals. In spite of this unfortunate situation, the heavy demand for energy production, requires the development utilization of these indigenous coal reserves to enhance energy production. The central of the environmental pollution caused by the combustion of these coals has been a major hindrance in their utilization. Recently a substantial reduction in coal combustion emissions have been achieved through the development of clean coal technologies. Pakistan through the transfer and adaptation of the advanced clean coal technologies can utilize incurring the high sulphur coals for energy production without incurring the environmental effects that the developed countries have experienced in the past. The author discusses the recently developed clean coal utilization technologies, their applications economies and feasibility of utilization with specific reference to Pakistan''s coal. (author)

  14. COFIRING BIOMASS WITH LIGNITE COAL

    Energy Technology Data Exchange (ETDEWEB)

    Darren D. Schmidt

    2002-01-01

    The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

  15. Aspects of combustion behaviour of coals from some New Zealand lignite-coal regions determined by thermogravimetry

    Energy Technology Data Exchange (ETDEWEB)

    Benfell, K.E.; Beamish, B.B.; Rodgers, K.A. [University of Newcastle, Callaghan, NSW (Australia). Dept. of Geology

    1997-08-25

    The papers describes how thermogravimetric analysis of five Late Cretaceous and Cenozoic New Zealand lignites demonstrate that their combustion behaviour is distinct from that of subbituminous coals and may be characterised by peak temperature of 377-416{degree}C, maximum rate of combustion of 25-31 wt% min{sup -1}, and temperature of char burnout 421-497{degree}C. These parameters reflect variation in thermal behaviour associated with both the organic and inorganic constituents of the coal. The information obtained is additional to that provided by proximate analysis; the latter is insufficient to predict the combustion behaviour of the coals relative to one another. A post-combustion thermal event is seen among the lignites as in other low-rank coals combusting below 600{degree}C, which appears to be related to the organic sulphur content of the coal.

  16. Selective coal mining of intercalated lignite deposits

    Energy Technology Data Exchange (ETDEWEB)

    Zunic, R [Kolubara-Projekt, Lazarevac (Yugoslavia)

    1991-01-01

    Describes selective coal mining in the Tamnava-Istocno Polje coal surface coal mine (Yugoslavia), designed for an annual coal production of 11.4 Mt. Until 1991, this mine exploited one thick lignite seam, without spoil intercalations, using a bucket wheel excavator-conveyor-spreader system both for coal mining and removal of overburden. In the future, several spoil intercalations of up to 1.0 m and thicker will appear with a total volume of 22 million m{sup 3}. These intercalations have to be selectively excavated in order to guarantee the calorific value of coal for the Nikola Tesla power plant. Computer calculations were carried out to determine the decrease in excavator coal production due to selective mining of spoil strata. Calculations found that the annual surface mine capacity will be lower by at most 9%, depending on thickness of spoil intercalations. The useful operation time of excavators will be reduced by 98 hours per year. The planned annual coal production will nevertheless be fulfilled. 3 refs.

  17. New method for reduction of burning sulfur of coal

    International Nuclear Information System (INIS)

    Lyutskanov, L.; Dushanov, D.

    1998-01-01

    The coal pyrolysis is key phase in the the pyrolysis-combustion cycle as it provides char for combustor. The behaviour of sulfur compounds during coal pyrolysis depends on factors as rank of coal, quantity of sulfur and sulfur forms distribution in the coal, quantity and kind of mineral matter and the process conditions. The mineral content of coal may inhibit or catalyze the formation of volatile sulfur compounds. The pyrolysis itself is a mean of removing inorganic and organic sulfur but anyway a portion of it remains in the char while the other moves into the tar and gas. The aim of this study was to determine an optimal reduction of burning sulfur at the coal pyrolysis by varying parametric conditions. The pyrolysis of different kinds of coal has been studied. The samples with size particles o C at atmospheric pressure and with a heating rate of 6-50 o C min -1 . They were treated with exhaust gas and nitrogen at an addition of steam and air. The char obtained remains up to 10 min at the final temperature. The char samples cool without a contact with air. Two methods of desulfurization-pyrolysis were studied - using 9-vertical tubular reactor and 9-horizontal turning reactor. The results obtained show that at all samples there is a decrease of burning sulfur with maximal removal efficiency 83%. For example at a pyrolysis of Maritsa Iztok lignite coal the burning sulfur is only 16% in comparison with the control sample. The remained is 90% sulfate, 10% organic and pyrite traces when a mixture 'exhaust gas-water stream-air' was used. The method of desulfurization by pyrolysis could be applied at different kinds of coal and different conditions. Char obtained as a clean product can be used for generating electric power. This innovation is in a stage of patenting

  18. COFIRING BIOMASS WITH LIGNITE COAL; FINAL

    International Nuclear Information System (INIS)

    Darren D. Schmidt

    2002-01-01

    The University of North Dakota Energy and Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO(sub x) emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a$1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community

  19. The Evaluation Of Waste Plastic Burned With Lignite And Biomass

    OpenAIRE

    DURANAY, Neslihan; YILGIN, Melek

    2016-01-01

    In this work, the combustion behavior of pellets prepared from binary and triple blends of waste plastic, biomass and lignite was investigated in an experimental fixed bed combustion system. Market bags as plastic waste and the furniture factory waste powder as a source of biomass and Bingöl Karlıova coal as a lignite were used. The effect of process temperature and the plastic mixing ratio on the combustion behavior of pellets was studied. Combustion data obtained from varied bed temperature...

  20. REMOVAL OF TRICHLOROACETIC ACID FROM THE AQUEOUS SOLUTIONS USING NATURAL AND ACTIVATED LIGNITE COALS

    Directory of Open Access Journals (Sweden)

    Hüseyin GÜLENSOY

    1998-02-01

    Full Text Available In these studies, a typical lignite coal found near Istanbul (Yeniköy and its activated products were used to adsorb TCA from aqueous solutions. Particle sizes of coal samples and the concentrations of TCA solutions were chosen as parameters against the fixed amount of adsorbent. The maximum efficiency has been obtained for the coal having (-120 + 150 mesh size fraction activated by heating. As a result, it was shown that these kinds of lignite coals could be used as a good adsorbent. In addition, it was also proved that both the removal and recovery of TCA from some waste waters would easily be possible.

  1. Acid leaching of coal: to produce clean fuels from Turkish lignite

    Energy Technology Data Exchange (ETDEWEB)

    Seferinoglu, Meryem [Mineral Research and Exploration Directorate (Turkey)], email: meryem_seferinoglu66@yahoo.com; Duzenli, Derya [Ankara Central Laboratory (Turkey)

    2011-07-01

    With the increasing concerns about the environment, energy producers and governments are looking at developing clean energy sources. However, Turkey has limited clean energy resources and is using low grade coal which has high sulphur content as an alternative energy source. The aim of this paper is to study the possibility of generating clean fuel from Edirne Lignite and to get a better understanding of chemical mechanisms involved in coal leaching with hydrofluoric acid (HF) solutions. Leaching was conducted on Edirne Lignite with HF solution at ambient temperature and the effects of parameters such as reaction time and concentration of acid solutions on the process were evaluated. The optimum conditions were found and it was shown that ash levels can be reduced from 28.9% to 10.5% and the calorific value increased by 500kcal/kg with the HF leaching method. This study demonstrated that the production of clean fuel from high sulphur lignite is possible.

  2. Research on the thermal decomposition of Mongolian Baganuur lignite and Naryn sukhait bituminous coal

    Directory of Open Access Journals (Sweden)

    A. Ariunaa

    2016-03-01

    Full Text Available The technical characteristics, elemental composition of the organic and mineral matters, ash melting behaviors and carbonization and gasification reactivities of coals from Baganuur and Naryn sukhait deposits were investigated. The results of proximate and ultimate analysis confirmed that the coal from Baganuur deposit can be graded as a low rank lignite B2 mark coal and Naryn sukhait coal is a bituminous G mark one. The carbonization and gasification experiments were performed using TGA apparatus and fixed bed quartz reactor. The data obtained with two experimental reactors showed that Baganuur lignite had lower thermal stability and much higher CO2 gasification reactivity at 950°C as compared to those for Naryn sukhait bituminous coal.Mongolian Journal of Chemistry 16 (42, 2015, 22-29

  3. Environmental Assessment for Lignite Fuel Enhancement Project, Coal Creek Station, Great River Energy, Underwood, North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2004-01-16

    The US Department of Energy (DOE) has prepared this EA to assess the environmental impacts of the commercial application of lignite fuel enhancement. The proposed demonstration project would be implemented at Great River Energy's Coal Creek Station near Underwood, North Dakota. The proposed project would demonstrate a technology to increase the heating value of lignite and other high-moisture coals by reducing the moisture in the fuels. Waste heat that would normally be sent to the cooling towers would be used to drive off a percentage of the moisture contained within the lignite. Application of this technology would be expected to boost power-generating efficiencies, provide economic cost savings for lignite and sub-bituminous power plants, and reduce air emissions. The proposed project would be constructed on a previously disturbed site within the Coal Creek Station and no negative impacts would occur in any environmental resource area.

  4. Determination of ash-forming elements in lignite coal

    International Nuclear Information System (INIS)

    Wischnewski, C.; Werner, G.; Vogt, J.; Just, G.

    1990-01-01

    The most important methods are discussed suitable for the determination of ash-forming elements in coal. In this connection questions of the concentrations of elements in lignites, of the sample preparation, and of the selection of methods for the determination of ash-forming elements are addressed. Advantages and disadvantages of different analysis techniques are shown using concrete examples. (author)

  5. REMOVAL OF Cr(VI FROM AQUEOUS SOLUTION BY ACTIVATED COAL FROM LIGNITE COAL

    Directory of Open Access Journals (Sweden)

    Mehmet MAHRAMANLIOĞLU

    2001-03-01

    Full Text Available Activated coal produced from Ağaçlı Lignite coal was used to remove Cr(VI from aqueous solutions. The adsorption of Cr(VI was studied as a function of initial concentration, time, pH, adsorbent concentration and temperature. The adsorption data were found to fit to Langmuir and Freundlich isotherms. Lagergren equation was used to calculate the adsorption rate. The amount of Cr(VI adsorbed was increased with decreasing pH and decreased with increasing temperature.

  6. The hydrogasification of lignite and sub-bituminous coals

    Science.gov (United States)

    Bhatt, B.; Fallon, P. T.; Steinberg, M.

    1981-02-01

    A North Dakota lignite and a New Mexico sub-bituminous coal have been hydrogenated at up to 900°C and 2500 psi hydrogen pressure. Yields of gaseous hydrocarbons and aromatic liquids have been studied as a function of temperature, pressure, residence time, feed rates and H2/coal ratio. Coal feed rates in excess of 10 lb/hr have been achieved in the 1 in. I. D.×8 ft reactor and methane concentration as high as 55% have been observed. A four-step reaction model was developed for the production and decomposition of the hydrocarbon products. A single object function formulated from the weighted errors for the four dependent process, variables, CH4, C2H6, BTX, and oil yields, was minimized using a program containing three independent iterative techniques. The results of the nonlinear regression analysis for lignite show that a first-order chemical reaction model with respect to C conversion satisfactorily describes the dilute phase hydrogenation. The activation energy for the initial products formation was estimated to be 42,700 cal/gmole and the power of hydrogen partial pressure was found to be +0.14. The overall correlation coefficient was 0.83. The mechanism, the rate expressions, and the design curves developed can be used for scale-up and reactor design.

  7. Distribution of vesicular-arbuscular mycorrhizal fungi in coal, lignite and calcite mine spoils of India

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, V.; Ragupathy, S.; Parthipan, B.; Rani, D.B.R.; Mahadevan, A.

    1991-12-31

    Vesicular-arbuscular mycorhizzal (VAM) status was assessed for coal, lignite and calcite mine spoils. The three study sites were: The Kothagudem coal field in the south central region where waste materials are piled 1 to 2 m high on the soil surface. Samples were collected from plants growing on the waste. Neyveli, on the southeastern coast, is a lignite coal mine where the spoil is piled 70 to 100 m high on the soil surface. Samples were collected from recently revegetated mine spoil and from 25 year old revegetated sites. The calcite mine at Thazhaiyuthu in the south where the spoil is piled up 2 to 3 m on the soil surface. Samples were collected from 4 to 7 year old reclaimed sites. The wastes generally supported different plant species. The level of VAM infection of plants was markedly different in each mine spoil, with the maximum infection in the coal and calcite spoils, and the least in the lignite spoil. There was more infection in the 25 year old lignite spoil than in the newly revegetated spoil. There were different VAM species in each spoil, and no one species was present in all of the samples. The authors conclude that one of the factors leading to the differences between spoils is the amount of topsoil contained in the spoil (least in the lignite spoils which are very deep). The other is age of the spoils. Unfortunately the authors concluded that the best approach is to enrich the spoils with VAM rather than salvaging and replacing topsoil

  8. The North Dakota lignite partnership

    International Nuclear Information System (INIS)

    Porter, C.R.

    1998-01-01

    The State of North Dakota and the Lignite Energy Council have formed a government/industry partnership to promote the use of North Dakota lignite. The partnership provides funding and management for the Lignite Research, Development and Marketing Program. The program funds activities which preserve and enhance jobs and lignite production; ensure economic growth, stability and opportunity; and maintain a stable and competitive tax base. Funding is provided for activities in three areas: marketing feasibility studies, small research projects, and demonstration projects. Funding is derived from the state coal severance tax. Approximately $3,000,000 annually is appropriated from coal severance revenues for program activities. North Dakota is the ninth largest coal producing state, with lignite as the only rank of coal found in the state. Energy is the second largest economic sector in North Dakota, and it currently comprises over 12% of the state's total economic base. This paper reviews the North Dakota lignite industry and describes studies and projects which have received funding from the program

  9. Biowaste utilization in the process of co-gasification with bituminous coal and lignite

    International Nuclear Information System (INIS)

    Howaniec, Natalia; Smoliński, Adam

    2017-01-01

    Biowaste utilization in co-gasification with bituminous coal and lignite gives the benefits of stable supplies of a primary energy source – coal and utilization of a zero-emission, waste material (i.e. agriculture waste, sewage sludge, etc.) with higher process efficiency and lower negative environmental impact than biomass or coal gasification, respectively. The main focus of the study presented is co-gasification of bituminous coal or lignite with biowaste to hydrogen-rich gas. The experiments were performed in the laboratory scale fixed-bed reactor installation at 700 and 900 °C. The Hierarchical Clustering Analysis complemented with a color map of studied data were applied in the selection of the optimal operating parameters for biowaste utilization in the co-gasification process based on the experimental data of gasification/co-gasification process as well as physical and chemical properties of fuels tested. The experimental results showed that the carbon conversion rate in co-gasification increased with increasing biomass content in a fuel. The total gas volume and hydrogen volume in co-gasification were higher than the values expected based on the results of the gasification process of the fuels analyzed. - Highlights: • Biowaste co-gasification with bituminous coal/lignite to hydrogen-rich gas. • Steam co-gasification in laboratory scale fixed-bed reactor at 700 and 900 °C. • Hierarchical Clustering Analysis complemented with color map of experimental data. • Carbon conversion increase with increasing biomass content. • The highest total gas and hydrogen volume in co-gasification of C-B20 blend at 900C.

  10. Lignite and hard coal: Energy suppliers for world needs until the year 2100 - An outlook

    International Nuclear Information System (INIS)

    Thielemann, Thomas; Schmidt, Sandro; Peter Gerling, J.

    2007-01-01

    For three years, international hard coal prices have been at rather expensive levels. Some argue that these higher prices might indicate the threat of a physical scarcity of fossil fuels - similar to the situation with oil and gas. This is not true. The supply situations with lignite and hard coal appear to be largely not critical. Adjusted to the rise in global coal consumption, which is expected until 2100, nature by and large can meet the world's coal demand. This is shown for lignite in this article and it is illustrated for hard coal here, differentiated in space and time for a world divided into eight regions and viewed for the years 2005, 2020, 2030, 2050, and 2100. The only area of potential concern is Asia (especially China). But today's and coming eager efforts in China to convert coal resources into reserves will most likely deliver the coal needed for the Chinese market. Up to the year 2100, and from a geoscientific point of view, there will be no bottleneck in coal supplies on this planet. (author)

  11. COFIRING BIOMASS WITH LIGNITE COAL; F

    International Nuclear Information System (INIS)

    Darren D. Schmidt

    2001-01-01

    As of September 28, 2001, all the major project tasks have been completed. A presentation was given to the North Dakota State Penitentiary (NDSP) and the North Dakota Division of Community Services (DCS). In general, the feasibility study has resulted in the following conclusions: (1) Municipal wood resources are sufficient to support cofiring at the NDSP. (2) Steps have been taken to address all potential fuel-handling issues with the feed system design, and the design is cost-effective. (3) Fireside issues of cofiring municipal wood with coal are not of significant concern. In general, the addition of wood will improve the baseline performance of lignite coal. (4) The energy production strategy must include cogeneration using steam turbines. (5) Environmental permitting issues are small and do not affect economics. (6) The base-case economic scenario provides for a 15-year payback of a 20-year municipal bond and does not include the broader community benefits that can be realized

  12. Enhancing Carbon Reactivity in Mercury Control in Lignite-Fired Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chad Wocken; Michael Holmes; John Pavlish; Jeffrey Thompson; Katie Brandt; Brandon Pavlish; Dennis Laudal; Kevin Galbreath; Michelle Olderbak

    2008-06-30

    This project was awarded through the U.S. Department of Energy (DOE) National Energy Technology Laboratory Program Solicitation DE-PS26-03NT41718-01. The Energy & Environmental Research Center (EERC) led a consortium-based effort to resolve mercury (Hg) control issues facing the lignite industry. The EERC team-the Electric Power Research Institute (EPRI); the URS Corporation; the Babcock & Wilcox Company; ADA-ES; Apogee; Basin Electric Power Cooperative; Otter Tail Power Company; Great River Energy; Texas Utilities; Montana-Dakota Utilities Co.; Minnkota Power Cooperative, Inc.; BNI Coal Ltd.; Dakota Westmoreland Corporation; the North American Coal Corporation; SaskPower; and the North Dakota Industrial Commission-demonstrated technologies that substantially enhanced the effectiveness of carbon sorbents to remove Hg from western fuel combustion gases and achieve a high level ({ge} 55% Hg removal) of cost-effective control. The results of this effort are applicable to virtually all utilities burning lignite and subbituminous coals in the United States and Canada. The enhancement processes were previously proven in pilot-scale and limited full-scale tests. Additional optimization testing continues on these enhancements. These four units included three lignite-fired units: Leland Olds Station Unit 1 (LOS1) and Stanton Station Unit 10 (SS10) near Stanton and Antelope Valley Station Unit 1 (AVS1) near Beulah and a subbituminous Powder River Basin (PRB)-fired unit: Stanton Station Unit 1 (SS1). This project was one of three conducted by the consortium under the DOE mercury program to systematically test Hg control technologies available for utilities burning lignite. The overall objective of the three projects was to field-test and verify options that may be applied cost-effectively by the lignite industry to reduce Hg emissions. The EERC, URS, and other team members tested sorbent injection technologies for plants equipped with electrostatic precipitators (ESPs) and

  13. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  14. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  15. Fractal morphology in lignite coal: a small angle x-ray scattering investigation

    International Nuclear Information System (INIS)

    Chitra, R.; Sen, D.; Mazumder, S.; Chandrasekaran, K.S.

    1999-01-01

    Small angle x-ray scattering technique has been used to study the pore morphology in lignite coal from Neyveli lignite mine (Tamilnadu, India). The sample were collected from three different locations of the same mine. SAXS profiles from all the three samples show almost identical functionality, irrespective of the locations from where the samples were collected. SAXS experiment using two different wavelengths also exhibit same functionality indicating the absence of multiple scattering. The analysis indicates the surface fractal nature of the pore morphology. The surface fractal dimension is calculated to be 2.58. (author)

  16. Comparison of health and environmental effects of nuclear power plants and lignite-burning power plants

    International Nuclear Information System (INIS)

    Horacek, P.; Chytil, I.; Razga, J.

    1988-01-01

    The individual factors are discussed which characterize the impact of nuclear power plants and lignite-burning power plants on human health and on the environment. The study proceeds from the IAEA categorization of these impacts. In this light, attention is centred on the impact of the normal operation of power plants and on accidents. The former category is further divided into regional impacts such as the emission of chemical substances, the emission of radioactive substances, heat emissions and the sum of regional factors, and on global impacts such as emissions of carbon dioxide, emissions of long-lived radionuclides and the sum of global impacts. It is stated that research should pay more attention to the dangers of the effects of such a state of affairs when the infrastructure contaminated after a large-scale accident would be put out of operation, and the dangers of such a situation especially in small countries with great population densities. Such accidents represent the biggest danger of the use of nuclear power. The greatest danger of coal-burning power plants is their global impact on the atmosphere caused by the increasing concentration of carbon dioxide from burning fossil fuels. (Z.M.). 4 figs., 13 refs

  17. Comparative Study of Coal and Biomass Co-Combustion With Coal Burning Separately Through Emissions Analysis

    OpenAIRE

    Mohammad Siddique; Suhail Ahmed Soomro; Aziza Aftab; Zahid Naeem Qaisrani; Abdul Sattar Jatoi; Asadullah; Ghulamullah Khan; Ehsanullah Kakar

    2016-01-01

    Appropriate eco-friendly methods to mitigate the problem of emissions from combustion of fossil fuel are highly demanded. The current study was focused on the effect of using coal & coal-biomass co-combustion on the gaseous emissions. Different biomass' were used along with coal. The coal used was lignite coal and the biomass' were tree waste, cow dung and banana tree leaves. Various ratios of coal and biomass were used to investigate the combustion behavior of coal-biomass blends and their ...

  18. Comparative Study of Coal and Biomass Co-Combustion With Coal Burning Separately Through Emissions Analysis

    Directory of Open Access Journals (Sweden)

    Mohammad Siddique

    2016-06-01

    Full Text Available Appropriate eco-friendly methods to mitigate the problem of emissions from combustion of fossil fuel are highly demanded. The current study was focused on the effect of using coal & coal-biomass co-combustion on the gaseous emissions. Different biomass' were used along with coal. The coal used was lignite coal and the biomass' were tree waste, cow dung and banana tree leaves. Various ratios of coal and biomass were used to investigate the combustion behavior of coal-biomass blends and their emissions. The study revealed that the ratio of 80:20 of coal (lignite-cow dung and 100% banana tree leaves emits less emissions of CO, CO2, NOx and SO2 as compared to 100% coal. Maximum amount of CO emissions were 1510.5 ppm for banana tree waste and minimum amount obtained for lakhra coal and cow dung manure (70:30 of 684.667 ppm. Maximum percentage of SO2 (345.33 ppm was released from blend of lakhra coal and tree leaves (90:10 and minimum amount of SO2 present in samples is in lakhra coal-banana tree waste (80:20. The maximum amount of NO obtained for banana tree waste were 68 ppm whereas maximum amount of NOx was liberated from lakhra coal-tree leaves (60:40 and minimum amount from cow dung manure (30.83 ppm. The study concludes that utilization of biomass with coal could make remedial action against environment pollution.

  19. Investigation on the transient enthalpy of coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Pei-fang; Wang, Na; Yu, Bo; Zhang, Bin; Liu, Yang; Zhou, Huai-chun [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    The transient enthalpy ({Delta}h) of coal/char combustion of the three different coals (including anthracite, bituminous, and lignite) during the process of combustion is determined as a function of burn-off degree by using thermo-gravimetric-differential scanning calorimeter (TG-DSC) simultaneous thermal analyzer, and The error of determining calorific values of coals/chars is less 5% compared the results of TG-DSC with that of an automatic isoperibol calorimeter. It is found that In the initial stage, all the {Delta}h of coals are greater than that of the char pyrolysized from parent coal for many of volatiles contained more a great deal of heat per unit mass oxidized at low temperature, it also imply that coal is more easily ignited than char corresponded; And in the middle stage, all the {Delta}h of coals is lower than that of the char pyrolysized, so the pyrolysized char oxidation can supply much more of thermo-energy per unit mass. {Delta}h are almost a constant when the burn-off degree is equal to between 0.35/0.15 and 0.95/0.85 for ZCY bituminous coal/char and JWY anthracite/char, between 0.35/0.35 and 0.75/0.9 for SLH lignite/char; In the later stage, the {Delta}h of the coal/char decreased with the burn-off degree, it imply that the activity of the coal/char decreases. Therefore, coal pyrolysis changes not only the structure of char, but also the property of release heat; the transient enthalpy of coal/char combustion has been in change with the burn-out degree.

  20. Low temperature coal depolymerization-liquefaction: conversion of a North Dakota lignite to a light hydrocarbon oil

    Energy Technology Data Exchange (ETDEWEB)

    Shabtai, J.; Yuan Zhang (University of Utah, Salt Lake City, UT (USA). Dept. of Fuels Engineering)

    1989-10-01

    A new low temperature method of coal liquefaction is described which includes intercalation of the coal with FeCl{sub 3}, depolymerization under supercritical conditions, and hydroprocessing of the depolymerized product. Results indicate a high yield conversion of lignites to light hydrocarbon oils. 6 refs., 4 figs., 1 tab.

  1. Distribution and correlation of the natural radionuclides in a coal mine of the West Macedonia Lignite Center (Greece).

    Science.gov (United States)

    Tsikritzis, L I; Fotakis, M; Tzimkas, N; Kolovos, N; Tsikritzi, R

    2008-02-01

    The distribution and correlation of six natural nuclides in the West Macedonia Lignite Center, Northern Greece were studied. Fifty-five samples of lignite, aged from 1.8 to 5 million years, and corresponding steriles, beds of marls, clays and sands alternating with the lignite, were collected perpendicular to the mine benches and measured spectroscopically. The mean concentrations of (238)U and (226)Ra in lignites were found to be higher than that in steriles since these nuclides are associated with the organic material of lignite, whereas (238)U/(226)Ra equilibrium was not observed in either lignites or steriles. Finally, the ratio (226)Ra/(228)Ra in lignites was approximately double of that in steriles, confirming the affinity of the (238)U series with the coal matrix in contrast to the (232)Th series. No correlation was found between radionuclide concentrations and the depth of the sample, nor with the ash content of lignite.

  2. Preparation and combustion of Yugoslavian lignite-water fuel, Task 7.35. Topical report, July 1991--December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, C.M.; DeWall, R.A.; Ljubicic, B.R.; Musich, M.A.; Richter, J.J.

    1994-03-01

    Yugoslavia`s interest in lignite-water fuel (LWF) stems from its involvement in an unusual power project at Kovin in northern Serbia. In the early 1980s, Electric Power of Serbia (EPS) proposed constructing a 600-MW power plant that would be fueled by lignite found in deposits along and under the Danube River. Trial underwater mining at Kovin proved that the dredging operation is feasible. The dredging method produces a coal slurry containing 85% to 90% water. Plans included draining the water from the coal, drying it, and then burning it in the pulverized coal plant. In looking for alternative ways to utilize the ``wet coal`` in a more efficient and economical way, a consortium of Yugoslavian companies agreed to assess the conversion of dredged lignite into a LWF using hot-water-drying (HWD) technology. HWD is a high-temperature, nonevaporative drying technique carried out under high pressure in water that permanently alters the structure of low-rank coals. Changes effected by the drying process include irreversible removal of moisture, micropore sealing by tar, and enhancement of heating value by removal of oxygen, thus, enhancement of the slurry ability of the coal with water. Physical cleaning results indicated a 51 wt % reduction in ash content with a 76 wt % yield for the lignite. In addition, physical cleaning produced a cleaned slurry that had a higher attainable solids loading than a raw uncleaned coal slurry. Combustion studies were then performed on the raw and physically cleaned samples with the resulting indicating that both samples were very reactive, making them excellent candidates for HWD. Bench-scale results showed that HWD increased energy densities of the two raw lignite samples by approximately 63% and 81%. An order-of-magnitude cost estimate was conducted to evaluate the HWD and pipeline transport of Kovin LWF to domestic and export European markets. Results are described.

  3. Process for treating bituminous coal, lignite, peat, and shale, and products obtained

    Energy Technology Data Exchange (ETDEWEB)

    Schabelitz, E J

    1951-06-27

    A process is described comprising leaching bituminous coal, lignite, peat, or shale by immersing said material in ethylene dichloride for a period of time sufficient to remove the ethylene dichloride-soluble constituents, separating the treated material from the ethylene dichloride solution and recovering from the solution the soluble constituents of the material dissolved in the solution. Soluble constituents include oils and waxes.

  4. Combustion of producer gas from gasification of south Sumatera lignite coal using CFD simulation

    Directory of Open Access Journals (Sweden)

    Vidian Fajri

    2017-01-01

    Full Text Available The production of gasses from lignite coal gasification is one of alternative fuel for the boiler or gas turbine. The prediction of temperature distribution inside the burner is important for the application and optimization of the producer gas. This research aims to provide the information about the influence of excess air on the temperature distribution and combustion product in the non-premixed burner. The process was carried out using producer gas from lignite coal gasification of BA 59 was produced by the updraft gasifier which is located on Energy Conversion Laboratory Mechanical Engineering Department Universitas Sriwijaya. The excess air used in the combustion process were respectively 10%, 30% and 50%. CFD Simulations was performed in this work using two-dimensional model of the burner. The result of the simulation showed an increase of excess air, a reduction in the gas burner temperature and the composition of gas (carbon dioxide, nitric oxide and water vapor.

  5. Treatment of products from petroleum, shale, coal, lignite, etc

    Energy Technology Data Exchange (ETDEWEB)

    Jevanoff, V

    1952-06-20

    An improved process is described for treating with sodium plumbite all the products derived from crude petroleum, bituminous shale, coal, lignite, peat, etc., such as gasoline, solvents, lamp oil, gas oil, fuels, etc; the process being essentially characterized by the fact that it consists first in washing the product to be refined with a soda wash; submitting it to a treatment with sodium plumbite, without addition of sulfur, then to eliminate the sulfur plumbite compounds resulting in the treated product, using either redistillation to eliminate products remaining in the residue or filtration over an absorbing material such as active carbon, decolorizing earths.

  6. Advanced control - technologies for suppressing harmful emission in lignitic coal-fired power generation

    International Nuclear Information System (INIS)

    Mir, S.; Hai, S.M.A.

    2000-01-01

    The production of sufficient amount of indigenous energy is a prerequisite for the prosperity of a nation. Pakistan's energy demand far exceeds its indigenous supplies. A cursory look at the energy situation in Pakistan reveals that there is an urgent need for the development of its energy resources. In this regard, coal can play a key role if its problems of high-sulfur and high ash can be rectified through the adoption adaptation of advanced technologies, like (I) clean coal technologies, and (II) control technologies. A review on clean coal technologies for utilization of lignitic coals has already been published and the present article describes the effect of harmful emissions from the combustion of high sulfur coals, like the ones found in Pakistan and their control through advanced control technologies, to make a significant contribution in the total energy economics of Pakistan. (author)

  7. EFFECT OF MICROWAVE DRYING ON THE GRINDABILITY OF LIGNITE COAL

    OpenAIRE

    Güngören, Can; Özkan, Şafak Gökhan; Hacıfazlıoğlu, Hasan

    2016-01-01

    In this study, the representative lignite coal samples supplied from Kastamonu-Tosya region were dried in a conventional drying oven and a microwave oven, and then they were ground by a laboratory rod mill. The particle size analyses of the ground samples at various grinding times (10, 20, 30, and 60 minutes) were carried out, and the results were compared. As a result, the d80 particle sizes of the samples, dried in the conventional drying oven, were determined as 350, 183, 180, and 100 µm a...

  8. Lignite in North Dakota

    International Nuclear Information System (INIS)

    Porter, C.R.

    1995-01-01

    The State of North Dakota and the lignite industry are working together in a partnership called the Lignite Research, Development and Marketing Program. The program provides funds and supports activities which: preserve and enhance jobs and lignite production; ensure economic growth, stability and opportunity; and maintain a stable and competitive tax base. Since 1987, 70 grants totaling $24 million have been awarded. Each program dollar has resulted in nearly five of matching dollars. These program investments have yielded returns for the state and industry, including an additional $20 million annually from by-products at the Great Plains Synfuels Plant; about $1 million annually from improved reclamation practices; and combustion options, which preserve 2,000 megawatts of existing generation capacity. Research activities have identified future opportunities, including: the SynCoal demonstration plant, requiring 800,000 tons per year of new production; new chemical feedstock by-products from Great Plains worth an additional $26 million annually; revised reclamation practices that could substantially reduce cost; and potential new markets for upgraded lignite of about 12 million tons annually. This program helps ensure a healthy future for the North Dakota lignite industry, which currently represents 10% of the state's total economic base. Such a program is important because it will encourage the development of new and better uses of North Dakota's most abundant resource--lignite coal

  9. Solubilization of Australian lignites by fungi and other microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Catcheside, D.E.A.; Mallett, K.J. (Flinders University, Bedford Park, SA (Australia). School of Biological Sciences)

    Lignites (brown coals) from the Latrobe Valley in Victoria are solubilized by {ital Coriolus versicolor}, {ital Phanerochaete chrysosporium}, and five other species known to be active on Leonardite and various acid-treated North America lignites. Run-of-mine coal from Morwell and Loy Yang is refractory but is soluble after pretreatment with acid. A weathered deposit at Loy Yang, like Leonardite, is susceptible to biosolubilization without pretreatment. The white rot fungi {ital Ganoderma applanatum}, {ital Perenniporia tephropora} ({ital Fomes lividus}), {ital Pleurotus ostreatus}, {ital Pycnoporus cinnabarinus}, {ital Rigidoporus ulmarius}, and {ital Xylaria hypoxylon} were found to be capable of solubilizing lignite. In contrast, brown rot fungi were weakly active or inactive under the same test conditions. Lignite-degrading fungi, actinomycetes, and other bacteria, including some active on untreated run-of-mine coal, were isolated from natural lignite exposures and mining sites. 15 refs., 5 tabs.

  10. Structural insights from boron tribromide ether cleavage into lignites and low maturity coals from the New Zealand Coal Band

    DEFF Research Database (Denmark)

    Glombitza, Clemens; Mangelsdorf, Kai; Horsfield, Brian

    2011-01-01

    structure, boron tribromide (BBr3) ether cleavage was applied to a series of lignite and coal samples of different maturity (R0 0.27–0.80%) obtained from coal mines and natural outcrops from the North and South Island of New Zealand. Terminal ether-bound alcohols rapidly decrease during diagenesis and occur...... over geological time scales. Polyether compounds were detected with chain length up to five carbon atoms. After a small decrease during the diagenetic phase these compounds occur in relatively high concentrations, even in the main catagenetic stage. This suggests that these linkage structures represent...

  11. Recovery of uranium from lignites

    International Nuclear Information System (INIS)

    Hurst, F.J.

    1980-01-01

    Uranium in raw lignite is associated with the organic matter and is readily soluble in acid (and carbonate) solutions. However, beneficiation techniques were not successful for concentrating the uranium or removing part of the reagent-consuming materials. Once the lignite was heated, the uranium became much less soluble in both acid and carbonate solutions, and complete removal of carbon was required to convert it back to a soluble form. Proper burning improves acid-leaching efficiency; that is, it reduces the reagent consumption and concentrates the uranium, thereby reducing plant size for comparable uranium throughput, and it eliminates organic fouling of leach liquors. Restrictions are necessary during burning to prevent the uranium from becoming refractory. The most encouraging results were obtained by flash-burning lignite at 1200 to 1300 0 C and utilizing the released SO 2 to supplement the acid requirement. The major acid consumers were aluminum and iron

  12. Nuclear magnetic resonance studies of ancient buried wood-II. Observations on the origin of coal from lignite to bituminous coal

    Science.gov (United States)

    Hatcher, P.G.; Breger, I.A.; Szeverenyi, N.; Maciel, G.E.

    1982-01-01

    Coalified logs ranging in age from Late Pennsylvania to Miocene and in rank from lignite B to bituminous coal were analyzed by 13C nuclear magnetic resonance (NMR) utilizing the cross-polarization, magic-angle spinning technique, as well as by infrared spectroscopy. The results of this study indicate that at least three major stages of coalification can be observed as wood gradually undergoes transformation to bituminous coal. The first stage involves hydrolysis and loss of cellulose from wood with retention and differential concentration of the resistant lignin. The second stage involves conversion of the lignin residues directly to coalified wood of lignitic rank, during which the oxygen content of intermediate diagenetic products remains constant as the hydrogen content and the carbon content increases. These changes are thought to involve loss of methoxyl groups, water, and C3 side chains from the lignin. In the third major stage of coalification, the coalified wood increases in rank to subbituminous and bituminous coal; during this stage the oxygen content decreases, hydrogen remains constant, and the carbon content increases. These changes are thought to result from loss of soluble humic acids that are rich in oxygen and that are mobilized during compaction and dewatering. Relatively resistant resinous substances are differentially concentrated in the coal during this stage. The hypothesis that humic acids are formed as mobile by-products of the coalification of lignin and function only as vehicles for removal of oxygen represents a dramatic departure from commonly accepted views that they are relatively low-molecular-weight intermediates formed during the degradation of lignin that then condense to form high-molecular-weight coal structures. ?? 1982.

  13. Radiation exposure potential from coal-fired power plants in Romania

    International Nuclear Information System (INIS)

    Botezatu, E.; Grecea, C.; Botezatu, G.; Capitanu, O.; Peic, T.; Sandor, G.

    1996-01-01

    In the investigated power plants they burn brown coal, lignite and/or mixture of different kinds of coal: brown coal, lignite, pit coal, pitch coal, bituminous coal. The activity concentrations measured in the coal samples varied over two orders of magnitude. The natural radionuclide concentrations in fly ash are significantly higher than the corresponding Concentrations in the coal. The normalized discharged activities for the investigated power plants are much higher than those estimated in the UNSCEAR 1988 Report for typical old and modern plants. Firstly, accounting for this is the low ash retention efficiency of the particulate control devices of power stations, especially for the older ones, and secondly, the high ash content of the coal: 26-60%. The low quality of coal leads to the higher coal consumption; thus the combustion of up to 20.109 Kg of coal is required to produce 1 Gwa of electrical energy. As a result, the activities of radon-222 and of radon-220 released per Gwa have been assessed at 25 to 770 GBq. (author)

  14. Bugs and coal: processing fuels with biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, M

    1987-06-01

    Bioprocessing of coal is developing along several fronts, each of potential significance to utilities. Researchers have found a fungus, polyporous versicolor, which can liquefy certain kinds of coal and scientists have genetically engineered bacteria that remove sulfur and ash-forming metal impurities from coal. Research programs are being undertaken to find organisms that will convert lignite into gaseous methane to produce gaseous fuel more economically than the current coal gasification methods. Researchers looking for ways to remove sulfur from coal before it is burned are evaluating the use of a bacterium called thiobacillus ferroxidans to enhance the physical removal of pyrite. 2 refs.

  15. State and performance of on-stream ash content determination in lignite and black coal using 2-energy transmission technique

    International Nuclear Information System (INIS)

    Thuemmel, H.W.; Koerner, G.; Leonhardt, J.

    1986-01-01

    The total r.m.s. ash error of the 2-energy transmission on-stream ash gauges KRAS-2 (CIIRR, GDR) and SIROASH (Australia) are 4 weight percentage for raw lignite and 0.5 weight percentage for black coal, respectively. A detailed error analysis shows that this difference is due to the high water content and to strong variations in the ash composition of raw lignite. Both gauges show essentially the same radiometric performance. (author)

  16. Stoichiometric calculations of combustion of Lakhra lignite

    International Nuclear Information System (INIS)

    Ali, I.; Ali, M.M.

    2002-01-01

    Lakhra coal field is largest productive coal field of Pakistan. About 1.5 millions tonne of this coal is, annually, mined and transported daily to various parts of the country in 500 trucks each of 10 tonnes of coal. The major consumers of this coal are brick kilns located in Sindh and Punjab. It is available at Rs. 500/- per tonne at mine head. A number of attempts were made for the production of power (electricity) by foreign companies. Feasibility studies were undertaken but no one set up power plant. It may be due to inferior quality of coal as it is lignitic in nature with high ash and sulfur contents. This coal is also, very sensitive to spontaneous combustion. Spontaneous combustion is the auto-ignition of coal at ambient conditions. Hence there are storage problems. In spite of these drawbacks, a 3(50) Mega Watt (3 units of each 50 mega watt power generation capacity) power plant, based on atmospheric fluidized bed combustion of coal technology (AFBC), was setup in early nineties. The performance of this plant remained poor. The main reasons might be poor quality of coal and limestone. Limestone is used with high sulfur Lakhra lignite, in fluidized bed combustor, to arrest sulfur of the coal, fixing sulfur as calcium sulfate to minimize hazardous emissions of sulfur dioxide (SO/sub 2/). Spontaneous combustion of Lakhra lignite is responsible for each fire of coal and conveyor belt etc. (author)

  17. Choice of antipyrogenetic substances and their inhibition influence to self burning processes in coal

    International Nuclear Information System (INIS)

    Davkova, Katica

    1997-01-01

    Coal inclination towards spontaneous ignition and the frequent endogenous fires represent very actual problem which imposes the need for their complete study, following-up and finding out of corresponding solutions. The paper presents the functional dependence of separate parameters having direct influence on oxidation process, which unavoidably, lead towards spontaneous ignition of the lignite. Moreover, the natural index of spontaneous ignition after the Olpinsky method has been determined on the representative lignite tests, which has been based on velocity measurement of the uncombined heat in the moment of adiabatic oxidation. The results obtained range from 83 to 115 o C/min, which points out that in the investigated coal district there are coal layers being proned towards spontaneous ignition. Anti pyrogenic measure has been chosen from a group of inhibitors which action is based by contact interruption between the coal and the oxygen in the air. Lignite inhibition has been made by a chosen inhibitor in concentration from 0-20%. From the experimental investigation, it is evident the great influence of the applied inhibitor on the natural index of spontaneous ignition. Thus, determined values of the natural index of spontaneous ignition of the already inhibited tests, show an inhibitory action ranging from 28.69 to 83.47%. (Author)

  18. Atmospheric Fluidized Bed Combustion testing of North Dakota lignite

    Energy Technology Data Exchange (ETDEWEB)

    Goblirsch, G; Vander Molen, R H; Wilson, K; Hajicek, D

    1980-05-01

    The sulfur retention by the inherent alkali, and added limestone sorbent, perform about the same and are reasonably predictable within a range of about +-10% retention by application of alkali to sulfur ratio. Temperature has a substantial effect on the retention of sulfur by the inherent alkali or limestone. The temperature effect is not yet fully understood but it appears to be different for different coals and operational conditions. The emission of SO/sub 2/ from the fluid bed burning the Beulah lignite sample used for these tests can be controlled to meet or better the current emission standards. The injection of limestone to an alkali-to-sulfur molar ratio of 1.5 to 1, should lower the SO/sub 2/ emissions below the current requirement of 0.6 lb SO/sub 2//10/sup 6/ Btu to 0.4 lb SO/sub 2//10/sup 6/ Btu, a safe 33% below the standard. Agglomeration of bed material, and consequent loss of fluidization quality can be a problem when burning high sodium lignite in a silica bed. There appears, however, to be several ways of controlling the problem including the injection of calcium compounds, and careful control of operating conditions. The heat transfer coefficients measured in the CPC and GFETC tests are comparable to data obtained by other researchers, and agree reasonably well with empirical conditions. The NO/sub x/ emissions measured in all of the tests on Beulah lignite are below the current New Source Performance Standard of 0.5 lb NO/sub 2//10/sup 6/ Btu input. Combustion efficiencies for the Beulah lignite are generally quite high when ash recycle is being used. Efficiencies in the range of 98% to 99%+ have been measured in all tests using this fuel.

  19. A case study of PFBC for low rank coals

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, S.A. [ABB Carbon AB, Finspong (Sweden)

    1995-12-01

    Pressurized Fluidized Combined-Cycle (PFBC) technology allows the efficient and environmentally friendly utilization of solid fuels for power and combined heat and power generation. With current PFBC technology, thermal efficiencies near 46%, on an LHV basis and with low condenser pressures, can be reached in condensing power plants. Further efficiency improvements to 50% or more are possible. PFBC plants are characterized by high thermal efficiency, compactness, and extremely good environmental performance. The PFBC plants which are now in operation in Sweden, the U.S. and Japan burn medium-ash, bituminous coal with sulfur contents ranging from 0.7 to 4%. A sub- bituminous {open_quotes}black lignite{close_quotes} with high levels of sulfur, ash and humidity, is used as fuel in a demonstration PFBC plant in Spain. Project discussions are underway, among others in Central and Eastern Europe, for the construction of PFBC plants which will burn lignite, oil-shale and also mixtures of coal and biomass with high efficiency and extremely low emissions. This paper will provide information about the performance data for PFBC plants when operating on a range of low grade coals and other solid fuels, and will summarize other advantages of this leading new clean coal technology.

  20. Characterisation of lignite as an industrial adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Ying Qi; Andrew F.A. Hoadley; Alan L. Chaffee; Gil Garnier [Monash University, Clayton, Vic. (Australia). Department of Chemical Engineering

    2011-04-15

    An alternative use of the abundant and inexpensive lignite (also known as brown coal) as an industrial adsorbent has been characterised. The adsorptive properties of two Victorian lignite without any pre-treatment were investigated using the cationic methylene blue dye as a model compound in aqueous solutions. Two commercial activated carbon products were also studied for comparison. The adsorption equilibrium of the four adsorbents was better described by the Langmuir isotherm model than the Freundlich model. The adsorption capacities of the two untreated lignite adsorbents, Loy Yang and Yallourn, calculated using Langmuir isotherms were 286 and 370 mg/g, respectively, higher than a coconut shell-based activated carbon (167 mg/g), but lower than a coal-based activated carbon (435 mg/g). Surface area results suggested that larger micropores and mesopores were important for achieving good methylene blue adsorption by the activated carbons. However, FTIR and cation exchange capacity analyses revealed that, for the lignite, chemical interactions between lignite surface functional groups and methylene blue molecules occurred, thereby augmenting its adsorption capacity. 63 refs., 3 figs., 7 tabs.

  1. Increase in extraction yields of coals by water treatment: Beulah-Zap lignite

    Energy Technology Data Exchange (ETDEWEB)

    Masashi Iino; Toshimasa Takanohashi; Takahiro Shishido; Ikuo Saito; Haruo Kumagai [National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)

    2007-01-15

    In a previous paper, we have reported that water pretreatments of Argonne premium coals, Pocahontas No. 3 (PO), Upper Freeport (UF), and Illinois No. 6 (IL) at 600 K increased greatly the room-temperature extraction yields with a 1:1 carbon disulfide/N-methyl-2-pyrrolidinone (CS{sub 2}/NMP) mixed solvent. In this paper, the water treatment of Beulah-Zap (BZ) lignite has been carried out and the results obtained were compared with those for the three bituminous coals above. The extraction yields of BZ with CS{sub 2}/NMP increased from 5.5% for the raw coal to 21.7% by the water treatment at 600 K. Similar to the other three coals, the water treatments at 500 K gave little increase in the yields. The larger decrease in oxygen content and hydrogen-bonded OH and the increase in the methanol swelling ratio by the water treatment suggest that the yield enhancements for BZ are attributed to the removal of oxygen functional groups and the breaking of hydrogen bonds to a greater extent than that for IL. From the characterizations of the treated coals and the extraction temperature dependency of their extraction yields, it is suggested that, for high-coal-rank coals, PO and UF, the breaking of noncovalent bonds such as {pi}-{pi} interactions between aromatic layers and hydrogen bonds is responsible for the extraction yield enhancements. 14 refs., 3 figs., 2 tabs.

  2. Comparative study of coal and biomass co-combustion with coal burning separately through emissions analysis

    International Nuclear Information System (INIS)

    Siddique, M.; Asadullah, A.; Khan, G.; Soomro, S.A.

    2016-01-01

    Appropriate eco-friendly methos to mitigate the problem of emissions from combustion of fossil fuel are highly demanded. The current study was focused on the effect of using coal and coal biomass co-combustion on the gaseous emissions. Different biomass were used along with coal. The coal used was lignite coal and the biomass' were tree waste, cow dung and banana tree leaves Various ratios of coal and biomass were used to investigate the combustion behavior of coal cow dung and 100% banana tree leaves emits less emission of CO, CO/sub 2/, NOx and SO/sub 2/ as compared to 100% coal, Maximum amount of CO emission were 1510.5 ppm for bannana tree waste and minimum amount obtained for lakhra coal and cow dung manure (70:30) of 684.667 leaves (90:10) and minimum amount of SO/sub 2/ present in samples is in lakhra coal-banana tree waste (80:20). The maximum amount of NO obtained for banana tree waste were 68 ppm whereas amount from cow dung manure (30.83 ppm). The study concludes that utilization of biomass with coal could make remedial action against environment pollution. (author)

  3. Radioactivity of Yatagan lignites and their ash

    International Nuclear Information System (INIS)

    Cicek, F.; Mustafaev, I.; Aliyev, C.

    2004-01-01

    Full text: One of harmful factor of Environmental impact of coal combustion is radiation pollution of Environment. The natural radioisotopes - uranium, thorium and potassium and products of their radioactive destruction contains of radionuclides. These radionuclides in composition of fly ash are thrown to atmosphere from coal combustion furnaces. The concentration of radioisotopes in composition of coals changes in the wide ranges: from 3 up to 520 Becquerel per kilogram (Bq/kg) for Uranium-238 and from 3 up to 320 Bq/kg for thorium-232. The radioactive pollution degree of environment depends on radioisotopes content of initial fuels. In this connection at the estimation of outlook and exploitation of coal mines it is necessary to determine of radioisotopes concentration in coals. That is why investigation of radioisotopes concentration of Turkish lignites has great importance. In this work the radionuclide content of Yatagan lignites and their ash, taken from Gekova thermal Electro station have been studied. The total radiation background generated by these samples was investigated by using of dosimeters 8P-5, CRP-88H, PYB-OIP. Radionuclides content of samples was determined in the Institute of Geology Azerbaijan national Academy of Sciences by using of highly sensitivity gamma-spectrometer CAPU-2, designed by Special Constructor Buro G eophysika . The plant allows to determine the radioisotopes content of solid and liquid samples with highly reliability. It has been established that in sample of lignite uranium content (on the radium equivalent) is 68 Bq/kg, potassium-149 Bq/kg and thorium is absent. The total radioactivity of lignite sample is 79,7 Bq/kg. In the ash sample uranium content is 266 Bq/kg, potassium-188 Bq/kg, and total activity reach to 300 Bq/kg. The possibility of application of purification erection for radionuclides from smoke gases of coal combustion is discussed

  4. Solubilization of low-rank coal by Trichoderma atroviride: Evidence for the involvement of hydrolytic and oxidative enzymes by using C-14-labelled lignite

    Energy Technology Data Exchange (ETDEWEB)

    Holker, U.; Schmiers, H.; Grosse, S.; Winkelhofer, M.; Polsakiewicz, M.; Ludwig, S.; Dohse, J.; Hofer, M. [University of Bonn, Bonn (Germany). Inst. of Botany

    2002-04-01

    The deuteromycete Trichoderma atroviride is able to solubilize lignite in dependence on a given carbon source for growth. When cultivated on media containing glutamate, this mold excreted a set of different enzymes with hydrolytic activity. Addition of lignite to the growth media induced the synthesis of extracellular lignite-specific esterase activity but no evidence has been provided for its direct involvement in the process of lignite solubilization. Hence, the basic capability of T. atroviride enzymes to degrade a variety of ester and ether bonds at the surface or within the bulky lignite structure was tested using coal following its direct labelling with C-14-alkyl iodide. The participation of hydrolytic and oxidative enzymes in lignite degradation was assessed by measuring the release of C-14 radioactivity from selectively alkylated carboxylic and phenolic OH groups. T. atroviride cleaved both carboxylic esters using esterases and the phenolic ether bonds by using oxidative enzymes, most likely laccases.

  5. JV Task 98 - Controlling Mercury Emissions for Utilities Firing Lignites from North America

    Energy Technology Data Exchange (ETDEWEB)

    Steven Benson

    2007-06-15

    This project compiled and summarized the findings and conclusions of research, development, and demonstration projects on controlling mercury from lignite coals. A significant amount of work has been conducted since 1994 on mercury in lignite, mercury measurement in flue gases, sorbent, sorbent enhancement additives, oxidation agent development, and full-scale demonstration of mercury control technologies. This report is focused on providing the lignite industry with an understanding of mercury issues associated with the combustion of lignite, as well as providing vital information on the methods to control mercury emissions in coal-fired power plants.

  6. JV Task 106 - Feasibility of CO2 Capture Technologies for Existing North Dakota Lignite-Fired Pulverized Coal Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Jones; Brandon M. Pavlish; Melanie D. Jensen

    2007-05-01

    The goal of this project is to provide a technical review and evaluation of various carbon dioxide (CO{sub 2}) capture technologies, with a focus on the applicability to lignite-fired facilities within North Dakota. The motivation for the project came from the Lignite Energy Council's (LEC's) need to identify the feasibility of CO{sub 2} capture technologies for existing North Dakota lignite-fired, pulverized coal (pc) power plants. A literature review was completed to determine the commercially available technologies as well as to identify emerging CO{sub 2} capture technologies that are currently in the research or demonstration phase. The literature review revealed few commercially available technologies for a coal-fired power plant. CO{sub 2} separation and capture using amine scrubbing have been performed for several years in industry and could be applied to an existing pc-fired power plant. Other promising technologies do exist, but many are still in the research and demonstration phases. Oxyfuel combustion, a technology that has been used in industry for several years to increase boiler efficiency, is in the process of being tailored for CO{sub 2} separation and capture. These two technologies were chosen for evaluation for CO{sub 2} separation and capture from coal-fired power plants. Although oxyfuel combustion is still in the pilot-scale demonstration phase, it was chosen to be evaluated at LEC's request because it is one of the most promising emerging technologies. As part of the evaluation of the two chosen technologies, a conceptual design, a mass and energy balance, and an economic evaluation were completed.

  7. Lignite As Contributory Factor to Regional Development of Greece

    OpenAIRE

    Ilias Kordas

    2006-01-01

    Lignite (brown coal) is Greece's most important energy mineral raw material. Lignite exploitation has made a highly significant contribution to the development of energy sector of Greece on past 50 years, and will, according to estimations, continue to supply energy for another 40 years. Greece is very rich in Lignite resources. The two main basins - from where Lignite is extracted by opencast mining - are a) in Western Macedonia (northen Greece) where is generated the 70% of the whole electr...

  8. Potential health impacts of burning coal beds and waste banks

    Science.gov (United States)

    Finkelman, R.B.

    2004-01-01

    Uncontrolled release of pollutants from burning coal beds and waste banks presents potential environmental and human health hazards. On a global scale, the emissions of large volumes of greenhouse gases from burning coal beds may contribute to climate change that alters ecosystems and patterns of disease occurrence. On regional and local scales, the emissions from burning coal beds and waste banks of acidic gases, particulates, organic compounds, and trace elements can contribute to a range of respiratory and other human health problems. Although there are few published reports of health problems caused by these emissions, the potential for problems can be significant. In India, large numbers of people have been displaced from their homes because of health problems caused by emissions from burning coal beds. Volatile elements such as arsenic, fluorine, mercury, and selenium are commonly enriched in coal deposits. Burning coal beds can volatilize these elements, which then can be inhaled, or adsorbed on crops and foods, taken up by livestock or bioaccumulated in birds and fish. Some of these elements can condense on dust particles that can be inhaled or ingested. In addition, selenium, arsenic, lead, tin, bismuth, fluorine, and other elements condense where the hot gaseous emissions come in contact with ambient air, forming mats of concentrated efflorescent minerals on the surface of the ground. These mats can be leached by rainwater and washed into local water bodies providing other potential routes of exposure. Although there are little data linking burning coal beds and waste banks to known health problems, a possibly analogous situation exists in rural China where mineralized coal burned in a residential environment has caused widespread and severe health problems such as fluorosis and arseniasis. ?? 2004 Elsevier B.V. All rights reserved.

  9. Characterization of North American lignite fly ashes. II. XRD Mineralogy

    International Nuclear Information System (INIS)

    McCarthy, G.J.; Johansen, D.M.; Thedchanamoorthy, A.; Steinwand, S.J.; Swanson, K.D.

    1988-01-01

    X-ray powder diffraction has been used to determine the crystalline phase mineralogy in samples of fly ash from each of the lignite mining areas of North America. The characteristic phases of North Dakota lignite fly ashes were periclase, lime, merwinite and the sulfate phases anhydrite, thenardite and a sodalite-structure phase. Mullite was absent in these low-Al/sub 2/O/sub 3/ ashes. Montana lignite ash mineralogy had characteristics of ND lignite and MT subbituminous coal fly ashes; mullite and C/sub 3/A were present and the alkali sulfates were absent. Texas and Louisiana lignite fly ashes had the characteristic mineralogy of bituminous coal fly ash: quartz, mullite, ferrite-spinel (magnetite) and minor hematite. Even though their analytical CaO contents were 7-14%, all but one lacked crystalline CaO-containing phases. Lignite fly ashes from Saskatchewan were generally the least crystalline of those studied and had a mineralogy consisting of quartz, mullite, ferrite spinel and periclase. Quantitative XRD data were obtained. The position of the diffuse scattering maximum in the x-ray diffractograms was indicative of the glass composition of the lignite fly ash

  10. Volatiles and char combustion rates of demineralised lignite and wood blends

    International Nuclear Information System (INIS)

    Yilgin, Melek; Pehlivan, Dursun

    2009-01-01

    Today, much interest is given to the utilisation of materials of plant origin as substitutions of fossil fuels in meeting energy needs to reduce the level of atmospheric pollutant emissions and global warming threat, and emphasis has been placed on the co-combustion of coal and biomass. In this study, volatiles and char combustion behaviour of the fuel pellets composed from demineralised lignite and poplar wood sawdust, were investigated in a cylindrical wire mesh basket placed in a preheated tube furnace. The results have shown that ignition times of the pellets decreased with the burning temperature and shortened further due to demineralisation of lignite. Volatiles combustion rates of the samples did not correlate well with combustion times. However, they can be correlated with their respective proximate volatile matter contents. Char burnout times decreased with increasing combustion rates and correlated well with the respective proximate fixed carbon contents of the samples. Deviations were more considerable in the case of rate data. (author)

  11. Organic petrographical, mineralogical and geochemical features of the Achlada and Mavropigi lignite deposits, NW Macedonia, Greece

    Energy Technology Data Exchange (ETDEWEB)

    Koukouzas, Nikolaos [Centre for Research and Technology Hellas, Institute for Solid Fuels Technology and Applications, Mesogeion Ave. 357-359, GR-15231 Halandri, Athens (Greece); Kalaitzidis, Stavros P. [Geological Services, BHP Billiton Mitsubishi Alliance, Central Queensland Office, Peak Downs Mine, Moranbah, QLD 4744 (Australia); Ward, Colin R. [School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052 (Australia)

    2010-09-01

    The Achlada and Mavropigi lignite deposits in northern Greece provide the main coal source for the next generation of Greek power plants. A comparative characterization of these two lignite deposits is presented, covering the coal rank and the features of the maceral components, based on detailed coal petrography, and the mineralogical and geochemical features of the coals and their ashes, based on XRF and XRD analyses. The data are used to interpret the palaeoenvironments of the lignite beds, as well as factors that may affect their burnout behavior. Both deposits have a lignite C rank. The Mavropigi lignite is mainly a matrix lignite lithotype, whereas the Achlada deposit consists both of matrix and xylite-rich lithotypes. The Achlada lignite was formed in a fluviatile environment, mainly in the abandoned channels of a meandering river system during flooding periods; hence it is enriched in inorganic matter, with ash values > 30 wt.%. The Mavropigi lignite formed in a reed-marsh environment under limno-telmatic conditions, and displays ash values < 30 wt.%. The inorganic matter of the two deposits is different in composition due to the contrasting environments, and these differences should be taken into account in optimizing their utilization for power production. A preliminary assessment indicates that the Achlada lignite may have more favorable slagging and fouling properties than the Mavropigi lignite, although experimental studies are required for more solid conclusions to be reached. (author)

  12. Characterization of coal and char reactivity as a function of burn-off

    Energy Technology Data Exchange (ETDEWEB)

    Biede, O.; Swane Lund, J. [DTU, Dept. of Energy Engineering (Denmark); Holst Soerensen, L. [Risoe National Lab. (Denmark); Peck, R.E. [Arizona State University (United States)

    1996-12-01

    Four coal types have been tested under varying burning conditions in three high-temperature experimental facilities: A 1.3 MW test furnace, an entrained flow reactor and a down-fired tube furnace with a flat flame burner have been used to produce char samples. More than one hundred partly burned samples with burn-off from 30% to 99% have been collected from the experimental facilities, and analyzed in a thermogravimetric analyser (TGA) giving, besides the proximate data, a char burning profile of each individual sample, using a linear TGA-temperature ramp of 3 deg. C/minute. The burning profile derived by this procedure agrees well with reactivity profiles derived at a constant temperature. It is shown that small particle burn faster than large particles, and that small particles in general are more reactive than large particles. Particles burn faster when the oxygen partial pressure is increased, and apparently the oxygen partial pressure influences the combustion rate differently for different coal types. Except for one coal type, that apparently behaves differently in different burning environments, the ranking with respect to reactivity among the coals remains consistent at both high and at low temperatures. It is further shown how samples from one coal type varies more in behavior than samples from the other coal types, indicating a larger inhomogeneity of this coal. In general the reactivity of collected samples decrease with high-temperature burn-off. (au) 20 refs.

  13. Burnout synergic or inhibiting effects in combustion assays of coal/sawdust blends

    Energy Technology Data Exchange (ETDEWEB)

    Ximena Garcia; Ximena Matus; Claudia Ulloa; Alfredo L. Gordon [University of Concepcion, Concepcion (Chile). Dept. of Chemical Engineering

    2007-07-01

    Characterization of chars and charcoal and combustion assays of coal/ pine sawdust blends were carried on to evaluate the burnout, under conditions similar to those found in pulverized coal combustion. A drop tube furnace (DTF) was used to generate chars from three coals of different rank (Bitsch, a lignite; Lemington, a bituminous HV coal; and LD, a semianthracite) and charcoal from sawdust (S). Burning profiles, as well as morphological and optical characterization of these chars were obtained and discussed. Pulverized samples of pure constituents and sawdust/coal blends (5, 10 and 20%wt of S) were burned in the DTF reactor. Samples of combustion residues were collected for characterization. Depending on blend composition and the rank of the coal being blended, positive and negative deviations with respect to the expected weighted average value of the burnout were measured. This behavior is related both, to the duration of the step by which simultaneous burning of char and charcoal take place, and to the sawdust content in the blend. The optical analysis of combustion residues supports this conclusion. 7 refs., 6 figs., 3 tabs.

  14. Fast and safe gas detection from underground coal fire by drone fly over

    International Nuclear Information System (INIS)

    Dunnington, Lucila; Nakagawa, Masami

    2017-01-01

    Underground coal fires start naturally or as a result of human activities. Besides burning away the important non-renewable energy resource and causing financial losses, burning coal seams emit carbon dioxide, carbon monoxide, sulfur oxide and methane, and is a leading cause of smog, acid rain, global warming, and air toxins. In the U.S. alone, the combined cost of coal-fire remediation projects that have been completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Remediation and Enforcement (OSM), exceeds $1 billion. It is estimated that these fires generate as much as 3% of the world's annual carbon dioxide emissions and consume as much as 5% of its minable coal. Considering the magnitude of environmental impact and economic loss caused by burning underground coal seams, we have developed a new, safe, reliable surface measurement of coal fire gases to assess the nature of underground coal fires. We use a drone mounted with gas sensors. Drone collected gas concentration data provides a safe alternative for evaluating the rank of a burning coal seam. In this study, a new method of determining coal rank by gas ratios is developed. Coal rank is valuable for defining parameters of a coal seam such as burn temperature, burn rate, and volume of burning seam. - Graphical abstract: Concluding Figure for Gas Ratios: Plotted points and ranges of adjusted literature data. Stars represent bituminous and subbituminous coal types; Ovals represent lignite. - Highlights: • Recognize underground coal fire as a potential source of energy. • Developed a creative, safe, reliable and fast gas detection method. • Developed a concept of gas ratio measurement method that can provide more accurate description of underground burning coal resource.

  15. Degradation/solubilization of Chinese lignite by Penicillium sp. P6

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, H.L.; Yang, J.S.; Wang, F.Q.; Chen, W.X. [China Agricultural University, Beijing (China). Key Laboratory of Agro-Microbial Resource and Application, Ministry of Agrio, College of Biological Science

    2006-01-15

    Penicillium sp. P6, isolated from coal mine soil at the Qiantong colliery Liaoning Province, Northeast China, can degrade Chinese lignite in 36 h on a plate colony and in 48 h using a 4-day cultured cell-free filtrate. Results of elemental analysis and IR spectrometry indicated that solubilized products exhibited some alterations in comparison to the original lignite. The amount of fulvic acid extracted from the biodegraded lignite was high, and the molecular distribution of the humic acids from biodegraded lignite changed distinctively in comparison to which extracted from the control lignite, possibly due to the depolymerization associated with fungal biodegradation.

  16. Advanced power assessment for Czech lignite. Task 3.6, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Sondreal, E.A.; Mann, M.D.; Weber, G.W.; Young, B.C.

    1995-12-01

    The US has invested heavily in research, development, and demonstration of efficient and environmentally acceptable technologies for the use of coal. The US has the opportunity to use its leadership position to market a range of advanced coal-based technologies internationally. For example, coal mining output in the Czech Republic has been decreasing. This decrease in demand can be attributed mainly to the changing structure of the Czech economy and to environmental constraints. The continued production of energy from indigenous brown coals is a major concern for the Czech Republic. The strong desire to continue to use this resource is a challenge. The Energy and Environmental Research Center undertook two major efforts recently. One effort involved an assessment of opportunities for commercialization of US coal technologies in the Czech Republic. This report is the result of that effort. The technology assessment focused on the utilization of Czech brown coals. These coals are high in ash and sulfur, and the information presented in this report focuses on the utilization of these brown coals in an economically and environmentally friendly manner. Sections 3--5 present options for utilizing the as-mined coal, while Sections 6 and 7 present options for upgrading and generating alternative uses for the lignite. Contents include Czech Republic national energy perspectives; powering; emissions control; advanced power generation systems; assessment of lignite-upgrading technologies; and alternative markets for lignite.

  17. Eocene Yegua Formation (Claiborne group) and Jackson group lignite deposits of Texas

    Science.gov (United States)

    Hook, Robert W.; Warwick, Peter D.; Swanson, Sharon M.; Hackley, Paul C.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Valentine, Brett J.

    2011-01-01

    The lignite deposits within the upper Eocene Yegua Formation (Claiborne Group) and the overlying Jackson Group are among the coal resources that were not quantitatively assessed as part of the U.S. Geological Survey's (USGS) National Coal Resource Assessment (NCRA) program in the Gulf Coastal Plain coal province. In the past, these lignite-bearing stratigraphic units often have been evaluated together because of their geographic and stratigraphic proximity (Fisher, 1963; Kaiser, 1974; Kaiser et al., 1980; Jackson and Garner, 1982; Kaiser, 1996) (Figures 1, 2). The term “Yegua-Jackson trend“ is used informally herein for the lignite-bearing outcrops of these Late Eocene deposits in Texas. Lignite beds in the Yegua-Jackson trend generally are higher both in ash yield and sulfur content than those of the underlying Wilcox Group (Figure 2). Recent studies (Senkayi et al., 1987; Ruppert et al., 1994; Warwick et al., 1996, 1997) have shown that some lignite beds within the Yegua-Jackson trend contain partings of volcanic ash and host elevated levels of trace elements that have been identified as potentially hazardous air pollutants (HAPs) in the United States Clean Air Amendments of 1990. Lignite beds within the Yegua Formation are thin (less than or equal to 6 ft) and laterally discontinuous in comparison with most Wilcox Group deposits (Ayers, 1989a); in contrast, the Jackson Group lignite beds range up to 12 ft in total thickness and are relatively continuous laterally, extending nearly 32 mi along strike.

  18. Volatile organic compounds in emissions from brown-coal-fired residential stoves

    International Nuclear Information System (INIS)

    Engewald, W.; Knobloch, T.; Efer, J.

    1993-01-01

    Volatile organic compounds were determined in stack-gas emissions from the residential burning of brown-coal briquets using adsorptive enrichment on hydrophobic adsorbents, thermal desorption and capillary-gas chromatographic analysis. 152 compounds were identified and quantified. Quantitative emission factors of the identified individual compounds were determined in relation to the amount of the fuel used. These factors permit assessment of the pollution of the city of Leipzig with volatile organic compounds resulting from the burning of indigenous lignite. (orig.) [de

  19. Biotransformation of Spanish coals by microorganisms; Biotransformacion de Carbones Espanoles por Microorganismos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    some newly isolated microorganisms could solubilized different kinds of Spanish coals (hard coal, subbituminous coal and lignite). Certain fungi and bacteria could solubilized lignite when growing in a mineral medium. However, to solubilized higher rank coals (hard coal and subbituminous coal) microorganisms require a complete medium. Microorganisms, which showed higher capacity to solubilized coal, were incubated in the presence of coal (hard coal, subbituminous coal and lignite) at the optimal conditions to get coal liquefaction/solubilization. The resultant products were analysed by IR and UV/visible spectrometry. No major differences among the original coal, solubilized/liquefied coal and residual coal were detected. However, an increase in metallic carboxylate and a decrease in OH'- carboxylic groups were observed in the liquefied lignite. Humic acids derived from original lignite residual lignite and liquefied/solubilized lignite by microorganisms were analysed. Several differences were observed in the humic acids extracted from the liquefied lignite, such as an increase in the total acidity and in the proportion of the phenolic groups. Differences on the humic acid molecular weight were observed too. Several fungal and bacterial strains were able to grow using humic acids as sole carbon source. Microorganisms growing in humic acid were observed by Scanning Electron Microscopy. Besides, the coal solubilization capacity of several fungal strains (M2, m$ and AGI) growing in different culture media was assayed. In order to get some insight into the mechanisms of the liquefaction/solubilization of Spanish coals (hard coal, subbituminous coal and lignite) by these microorganisms, some features in the culture supernatants were studied: pH values; extracellular specific proteins; enzyme activities possibly related with coal solubilization and the presence of oxalate. M2 and M4 fungal strains grown in the presence of coal produced some specific extracellular proteins

  20. Biotransformation of Spanish coals by microorganisms; Biotransformacion de Carbones Espanoles por Microorganismos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    some newly isolated microorganisms could solubilized different kinds of Spanish coals (hard coal, subbituminous coal and lignite). Certain fungi and bacteria could solubilized lignite when growing in a mineral medium. However, to solubilized higher rank coals (hard coal and subbituminous coal) microorganisms require a complete medium. Microorganisms, which showed higher capacity to solubilized coal, were incubated in the presence of coal (hard coal, subbituminous coal and lignite) at the optimal conditions to get coal liquefaction/solubilization. The resultant products were analysed by IR and UV/visible spectrometry. No major differences among the original coal, solubilized/liquefied coal and residual coal were detected. However, an increase in metallic carboxylate and a decrease in OH'- carboxylic groups were observed in the liquefied lignite. Humic acids derived from original lignite residual lignite and liquefied/solubilized lignite by microorganisms were analysed. Several differences were observed in the humic acids extracted from the liquefied lignite, such as an increase in the total acidity and in the proportion of the phenolic groups. Differences on the humic acid molecular weight were observed too. Several fungal and bacterial strains were able to grow using humic acids as sole carbon source. Microorganisms growing in humic acid were observed by Scanning Electron Microscopy. Besides, the coal solubilization capacity of several fungal strains (M2, m$ and AGI) growing in different culture media was assayed. In order to get some insight into the mechanisms of the liquefaction/solubilization of Spanish coals (hard coal, subbituminous coal and lignite) by these microorganisms, some features in the culture supernatants were studied: pH values; extracellular specific proteins; enzyme activities possibly related with coal solubilization and the presence of oxalate. M2 and M4 fungal strains grown in the presence of coal produced some specific extracellular

  1. Examination of flame length for burning pulverized coal in laminar flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Dong; Kim, Gyu Bo; Chang, Young June; Song, Ju Hun; Jeon, Chung Hwan [Pusan National University, Busan (Korea, Republic of)

    2010-12-15

    Because there has been a recent increase in the use of low calorific coal compared to standard coal, it is crucial to control the char flame length governing the burning life-time of coal in a coal-fired utility boiler. The main objective of this study is to develop a simplified model that can theoretically predict the flame length for burning coal in a laboratory-scale entrained laminar flow reactor (LFR) system. The char burning behavior was experimentally observed when sub-bituminous pulverized coal was fed into the LFR under burning conditions similar to those in a real boiler: a heating rate of 1000 K/s, an oxygen molar fraction of 7.7 %, and reacting flue gas temperatures ranging from 1500 to 2000 K. By using the theoretical model developed in this study, the effect of particle size on the coal flame length was exclusively addressed. In this model, the effect of particle mass was eliminated to compare with the experimental result performed under a constant mass feeding of coal. Overall, the computed results for the coal flame length were in good agreement with the experimental data, particularly when the external oxygen diffusion effect was considered in the model

  2. Examination of flame length for burning pulverized coal in laminar flow reactor

    International Nuclear Information System (INIS)

    Kim, Jae Dong; Kim, Gyu Bo; Chang, Young June; Song, Ju Hun; Jeon, Chung Hwan

    2010-01-01

    Because there has been a recent increase in the use of low calorific coal compared to standard coal, it is crucial to control the char flame length governing the burning life-time of coal in a coal-fired utility boiler. The main objective of this study is to develop a simplified model that can theoretically predict the flame length for burning coal in a laboratory-scale entrained laminar flow reactor (LFR) system. The char burning behavior was experimentally observed when sub-bituminous pulverized coal was fed into the LFR under burning conditions similar to those in a real boiler: a heating rate of 1000 K/s, an oxygen molar fraction of 7.7 %, and reacting flue gas temperatures ranging from 1500 to 2000 K. By using the theoretical model developed in this study, the effect of particle size on the coal flame length was exclusively addressed. In this model, the effect of particle mass was eliminated to compare with the experimental result performed under a constant mass feeding of coal. Overall, the computed results for the coal flame length were in good agreement with the experimental data, particularly when the external oxygen diffusion effect was considered in the model

  3. Controlling the excess heat from oxy-combustion of coal by blending with biomass

    Energy Technology Data Exchange (ETDEWEB)

    Haykiri-Acma, H.; Turan, A.Z.; Yaman, S.; Kucukbayrak, S. [Istanbul Technical University, Chemical and Metallurgical Engineering Faculty, Chemical Engineering Department, 34469, Maslak, Istanbul (Turkey)

    2010-11-15

    Two different biomass species such as sunflower seed shell and hazelnut shell were blended with Soma-Denis lignite to determine the effects of co-combustion on the thermal reactivity and the burnout of the lignite sample. For this purpose, Thermogravimetric Analysis and Differential Scanning Calorimetry techniques were applied from ambient to 900 C with a heating rate of 40 C/min under dry air and pure oxygen conditions. It was found that the thermal reactivities of the biomass materials and the lignite are highly different from each other under each oxidizing medium. On the other hand, the presence of biomass in the burning medium led to important influences not only on the burnout levels but also on the heat flows. The heat flow from the burning of lignite increased fivefold when the oxidizing medium was altered from dry air to pure oxygen. But, in case of co-combustion under oxygen, the excess heat arising from combustion of lignite could be reduced and this may be helpful to control the temperature of the combustion chamber. Based on this, co-combustion of coal/biomass blends under oxygen may be suggested as an alternative method to the ''Carbon Dioxide Recycle Method'' encountered in the oxyfuel combustion systems. (author)

  4. French pollution and German lignite

    International Nuclear Information System (INIS)

    Foos, Jacques

    2015-01-01

    After having recalled that the German energy transition is based on a complete shutting down of nuclear power stations to replace them by renewable energy sources on the one hand, and by coal (lignite, i.e. the dirtiest coal) and gas on the other hand to compensate the intermittency of the former ones, this article notices that pollution peaks occurred in France when an eastern of north-eastern wind was blowing, and not in case of western wind. The author then wanders whether this pollution comes from Germany, and more particularly from the releases of lignite-fuelled power stations. Then, the author comments the high level of pollution associated with coal extraction and exploitation in Germany, causing thousands of deaths and resulting in lung diseases or cancers, myocardial infractions. The author then makes a parallel between, on the one hand, the ignorance of this German pollution and, on the other hand, evacuation measures around Fukushima for a radioactivity which the author considers as less dangerous in terms of life expectancy

  5. Petrographic Composition of Lignite from the Lake Somerville Spillway (East-central Texas)

    Science.gov (United States)

    Pawelec, Sandra; Bielowicz, Barbara

    2017-12-01

    In the presented paper, the macroscopic and microscopic composition of lignite from Lake Somerville Spillway has been examined. The study area is the upper part of the Manning Formation, located north-west of Somerville in the central-eastern part of Texas. There are three exposures: NE, SW and MC (Main Central) with visible parts of late-Eocene lignite seams belonging to the Jackson Group. The Manning section is divided into four marine dominated parasequences (P1 through P4). Lignite samples outlining the P1 parasequence from the MC and NE outcrops and the argillate sample from the lower part of the P2 parasequence, NE outcrop. Macroscopic characterization was carried out based on lithological classifications of humic coal. On this basis, it has been shown that the main lithotype occurring in the deposit is detritic (matrix) coal with a high share of mineral matter. The maceral composition of coal was determined according to the ICCP guidelines. The macerals from liptinite group were determined under fluorescent light. The maceral group content analysis was performed with use of 500-600 equally spaced points on the surface of the polished sections. It has been found that the examined coal is dominated by macerals from the huminite group, with a share ranging from 20.8 to 65.3% volume, including atrinite (9.8-22.8% volume, 17.5% volume on average). In the examined coal, macerals from the inertinite group (10.1 to 44.8%), especially semifusinite (max. 13.9%), fusinite (max. 9.3%) and funginite (max. 6.3 %) are of particularly large share. In the liptinite group, particular attention was paid to the content of alginite (max. 4.5%) and bituminite (max. 1.3 %), which indicate the paralic sedimentation environment of the examined coal. Additionally, the variability of macerals and maceral groups within the exposures and levels of the P1 parasequence was examined. The last step was to compare lignite from Lake Somerville Spillway with other lignites belonging to the

  6. Low NOx firing systems for bituminous coal and lignite

    International Nuclear Information System (INIS)

    Knyrim, W.; Scheffknecht, G.

    1997-01-01

    In the case of lignite fluidized boilers the denitrification down to less than 200 mg/m 3 was possible with primary measures on the firing side only. On account of the excellent results achieved with the reconstructed plants the firing systems for the new generation of brown coal fire steam generators with a capacity of 800 MW and more is designed in a similar way. For bituminous coal fire steam generators the primary measures on the firing side are nor sufficient to keep the German NO x emission limit. Therefore these units had to be retrofitted with a SCR-DENOX plant. The experience with the new firing system made in a 110 MW steam generator in Austria with a wide range of fuels is introduced. One of the largest bituminous coal fired once-trough steam generator built by EVT is the boiler for the power station Bexbach I (750 MW). The firing system is designed as a tangential firing system with 32 jet burners. These are arranged in pairs in the corners and divided into 4 burner levels with 4 burner pairs each. One mill is allocated to each burner level. An important characteristic feature is that the four bowl mills are arranged on one side of the steam generator. The plant is constructed with upper air nozzles which are arranged above the top burner level for the reduced of nitrogen oxides. During tests at steam generator with similar design, the nO x formation could be reduced from 750 to 500 mg/m 3 s.t.p. (dry, 6% O 2 ) with an addition of upper air of 20% at 100% unit capacity and constant total flow. As a main approach for the further reduction of the primary NO x emission at bituminous coal fired steam generators with tangential firing systems, the experience gained from the firing of brown coal has also been taken into account. A fundamental aspect in this respect was the vertical air staging in the direction of the furnace height. The results of many tests in a test reactor have shown that the differences of the achievable NO x values of brown and

  7. Nonisothermal Thermogravimetric Analysis of Thai Lignite with High CaO Content

    Science.gov (United States)

    Pintana, Pakamon

    2013-01-01

    Thermal behaviors and combustion kinetics of Thai lignite with different SO3-free CaO contents were investigated. Nonisothermal thermogravimetric method was carried out under oxygen environment at heating rates of 10, 30, and 50°C min−1 from ambient up to 1300°C. Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) methods were adopted to estimate the apparent activation energy (E) for the thermal decomposition of these coals. Different thermal degradation behaviors were observed in lignites with low (14%) and high (42%) CaO content. Activation energy of the lignite combustion was found to vary with the conversion fraction. In comparison with the KAS method, higher E values were obtained by the FWO method for all conversions considered. High CaO lignite was observed to have higher activation energy than the low CaO coal. PMID:24250259

  8. The effect of lignite quality variation on the efficiency of on-line ash analyzers

    Energy Technology Data Exchange (ETDEWEB)

    Galetakis, Michael J. [Technical University of Crete, Dept. of Mineral Resources Engineering, University Campus, 73 100 Hania (Greece); Pavloudakis, Francis F. [Public Power Corporation SA, General Division of Mines, Kifisou and Dyrrahiou 89, 104 43 Athens (Greece)

    2009-12-01

    A sustainable coal industry needs to achieve a number of objectives including improvements in utilization of deposits, energy efficiency, and environmental performance during combustion. The ''Clean Coal Concept'' promises to combine the secure and low cost electricity supply offered by hard coal and lignite with adequate environmental precautions. In this context, modern quality control systems, which are greatly based on the on-line analyzers, play an important role in achieving sustainability targets. This paper examines the possibility of using commercial on-line analysis systems for monitoring the mineral matter content of low quality lignite mined from the lignite basin of Megalopolis, Peloponnese, Greece. The effect of the accuracy of the on-line analyzers to process control, when used for the characterization of low rank coals with complex and variable composition, is investigated by carrying out numerous bench- and pilot-scale trials. Pilot-scale trials were based on a dual energy gamma-ray transmission analyzer, which was installed on the conveyor belt that transports lignite from the mine pit to the homogenization stockyard. All measurement data were compared to data gathered during the realisation of similar trials in the lignite mines of Ptolemais Basin, Northern Greece. Results indicated that the accuracy of the on-line measurements was not satisfactory and did not allow lignite quality monitoring in real time. The achieved inferior accuracy of the on-line measurement's accuracy, compared to previous applications at other mining sites, was related to the intense variation of the mineral matter content of lignite and lignite composition, which distorted the calibration of the analyzer. The latter is based on certain assumptions regarding the average mass absorption coefficient of the organic and mineral matter contained in the lignite. Further experimental work is needed to investigate solutions for successful implementation of

  9. Differential-thermal analysis of irradiated lignite

    International Nuclear Information System (INIS)

    Chichek, F.; Eyubova, N.

    2006-01-01

    Full text: In this theme our purpose is to explain thermo-differential analysis of lignites irradiated. During experiment Caraman Ermenek (washed), Caraman Ermenek (crude), Nevshehir (crude), Slopi (crude), Trakya Harman (washed) lignite coals were used. Five of five kinds of coal samples with 3mm and 1gr of each sample were obtained. Then they were filled into the Tubes after having dried total 25 samples with 1 gr at 1000 degrees temperature for one hour. Air in the tubes was pumped out and closed. Coal samples in vacuum medium were irradiated by gamma rays of Co60 at 5.5 kGy, 19.2 kGy, 65.7 kGy, 169.6 kGy, 411.2 kGy doses to the normal conditions. Then differential thermal analysis was carried out both in original and the samples irradiated. Argon gas was used to make inert medium in the camera. T=200-8500 degrees temperature was selected. At the experiment done from 1000-1300 degrees temperatures too great endothermic reaction pick was begun to form by being observed thermal changings. At 3000-4200 degrees temperature exothermic reaction picks and at 7000 degrees parallel exothermic reaction picks were observed. Initial endothermic and exothermic reaction picks in five lignite samples were observed like a sharp curve. At the end coal irradiated samples were compared with original coal samples. At the result of experiment it was revealed that in comparison with original coal samples coal samples irradiated form exothermic and endothermic curves at very reaction pick and temperature intervals of these pick were large. Besides loss of weight was observed to begin at low temperatures in samples irradiated and especially momentary weight loss at some heats in the rang of known temperatures was observed in the coal Slopi contain in bitumen. Because of heat the weigh loss in the non irradiated samples forms parabolic curve and because of heat the weight loss in the samples irradiated forms stepped curves. It has shown that the coal irradiated can be easily departed by

  10. Biotechnological lignite conversion - a large-scale concept

    Energy Technology Data Exchange (ETDEWEB)

    Reich-Walber, M.; Meyrahn, H.; Felgener, G.W. [Rheinbraun AG, Koeln (Germany). Fuel Technology and Lab. Dept.

    1997-12-31

    Concerning the research on biotechnological lignite upgrading, Rheinbraun`s overall objective is the large-scale production of liquid and gaseous products for the energy and chemical/refinery sectors. The presentation outlines Rheinbraun`s technical concept for electricity production on the basis of biotechnologically solubilized lignite. A first rough cost estimate based on the assumptions described in the paper in detail and compared with the latest power plant generation shows the general cost efficiency of this technology despite the additional costs in respect of coal solubilization. The main reasons are low-cost process techniques for coal conversion on the one hand and cost reductions mainly in power plant technology (more efficient combustion processes and simplified gas clean-up) but also in coal transport (easy fuel handling) on the other hand. Moreover, it is hoped that an extended range of products will make it possible to widen the fields of lignite application. The presentation also points out that there is still a huge gap between this scenario and reality by limited microbiological knowledge. To close this gap Rheinbraun started a research project supported by the North-Rhine Westphalian government in 1995. Several leading biotechnological companies and institutes in Germany and the United States are involved in the project. The latest results of the current project will be presented in the paper. This includes fundamental research activities in the field of microbial coal conversion as well as investigations into bioreactor design and product treatment (dewatering, deashing and desulphurization). (orig.)

  11. Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal.

    Science.gov (United States)

    Cao, Yan; Gao, Zhengyang; Zhu, Jiashun; Wang, Quanhai; Huang, Yaji; Chiu, Chengchung; Parker, Bruce; Chu, Paul; Pant, Wei-Ping

    2008-01-01

    This paper presents a comparison of impacts of halogen species on the elemental mercury (Hg(0)) oxidation in a real coal-derived flue gas atmosphere. It is reported there is a higher percentage of Hg(0) in the flue gas when burning sub-bituminous coal (herein Powder River Basin (PRB) coal) and lignite, even with the use of selective catalytic reduction (SCR). The higher Hg(0)concentration in the flue gas makes it difficult to use the wet-FGD process for the mercury emission control in coal-fired utility boilers. Investigation of enhanced Hg(0) oxidation by addition of hydrogen halogens (HF, HCl, HBr, and HI) was conducted in a slipstream reactor with and without SCR catalysts when burning PRB coal. Two commercial SCR catalysts were evaluated. SCR catalyst no. 1 showed higher efficiencies of both NO reduction and Hg(0) oxidation than those of SCR catalyst no. 2. NH3 addition seemed to inhibit the Hg(0) oxidation, which indicated competitive processes between NH3 reduction and Hg(0) oxidation on the surface of SCR catalysts. The hydrogen halogens, in the order of impact on Hg(0) oxidation, were HBr, HI, and HCl or HF. Addition of HBr at approximately 3 ppm could achieve 80% Hg(0) oxidation. Addition of HI at approximately 5 ppm could achieve 40% Hg(0) oxidation. In comparison to the empty reactor, 40% Hg(0) oxidation could be achieved when HCl addition was up to 300 ppm. The enhanced Hg(0) oxidation by addition of HBr and HI seemed not to be correlated to the catalytic effects by both evaluated SCR catalysts. The effectiveness of conversion of hydrogen halogens to halogen molecules or interhalogens seemed to be attributed to their impacts on Hg(0) oxidation.

  12. Externalities from lignite mining-related dust emissions

    International Nuclear Information System (INIS)

    Papagiannis, A.; Roussos, D.; Menegaki, M.; Damigos, D.

    2014-01-01

    During the last three decades, several studies have been conducted in order to assess the external costs of electricity production from fossil fuels, especially coal and lignite. Nevertheless, these studies usually ignore the impacts generated by the upstream mining works. This paper contributes to existing literature and attempts to fill this gap by exploring the externalities of lignite mining owing to the emission of suspended particulate matter. To this end, a ‘bottom-up’ approach is implemented, using as case study the largest operational lignite surface mine at the Lignite Center of Western Macedonia (Greece). The results indicate that annual air pollution externalities of lignite mining are of the order of 3€/ton of lignite, which corresponds to around 5.0 €/MW h. The estimated costs are significantly lower, i.e. up to 80%, when dust deposition is considered in air dispersion models. In any case, these findings should be seen as a starting point for discussion owing to the lack of specific emission rates for Greek lignite mines. - Highlights: • Externalities from lignite mining-related dust emissions are 3 €/t of lignite. • Externalities of mining correspond to around 5.0 €/MW h. • Externalities are significantly lower, up to 80%, if dust deposition is considered. • There is lack of specific dust emission rates for lignite mining. • There are high discrepancies in existing dust emission rates for lignite mining

  13. Study on the coal mixing ratio optimization for a power plant

    Science.gov (United States)

    Jin, Y. A.; Cheng, J. W.; Bai, Q.; Li, W. B.

    2017-12-01

    For coal-fired power plants, the application of blended coal combustion has been a great issue due to the shortage and rising prices of high-rank coal. This paper describes the optimization of blending methods between Xing'an lignite coal, Shaltala lignite coal, Ura lignite coal, and Inner Mongolia bituminous coal. The multi-objective decision-making method based on fuzzy mathematics was used to determine the optimal blending ratio to improve the power plant coal-fired economy.

  14. Differential-thermal analysis of irradiated lignite

    International Nuclear Information System (INIS)

    Chichek, F; Eyubova, N.

    2006-01-01

    Full text: In this theme our purpose is to explain thermo-differential analysis of lignite's irradiated. During experiment Caraman Ermenek (washed), Caraman Ermenek (crude), Nevshehir (crude), Slopi (crude), Trakya Harman (washed) lignite coals were used. Five of five kinds of coal samples with 3mm and 1 gr of each sample were obtained. Then they were filled into the Tubes after having dried total 25 samples with 1 gr at 1000C temperature for one hour. Air in the tubes was pumped out and closed. Coal samples in vacuum medium were irradiated by gamma rays of Co-60 at 5.5 kGy, 19.2 kGy, 65.7 kGy, 169.6 kGy, 411.2 kGy, doses to the normal conditions. At the end coal irradiated samples were compared with original coal samples. At the result of experiment it was revealed that in comparison with original coal samples coal samples irradiated from exothermic and endothermic curves at very reaction pick and temperature intervals of these pick were large. Besides loss of weight was observed to begin at low temperatures in samples irradiated and especially momentary weight loss at some heats in the rang of known temperatures was observed in the coal Slopi contain in bitumen. Because of heat the weight loss in the non irradiated samples forms parabolic curve and because of heat the weight loss in the samples irradiated forms stepped curves. It was shown that the coal irradiated can be easily departed by heat because of the chemical structure in comparison the original one.

  15. Future of lignite resources: a life cycle analysis.

    Science.gov (United States)

    Wang, Qingsong; Liu, Wei; Yuan, Xueliang; Zheng, Xiaoning; Zuo, Jian

    2016-12-01

    Lignite is a low-quality energy source which accounts for 13 % of China's coal reserves. It is imperative to improve the quality of lignite for large-scale utilization. To further explore and analyze the influence of various key processes on the environment and economic costs, a lignite drying and compression technology is evaluated using an integrated approach of life cycle assessment and life cycle costs. Results showed that lignite mining, direct air emissions, and electricity consumption have most significant impacts on the environment. An integrated evaluation of life cycle assessment and life cycle costs showed that the most significant contributor to the environmental impacts and economic costs was the lignite mining process. The impact of transportation and wastewater treatment process on the environment and economic costs was small enough to be ignored. Critical factors were identified for reducing the environmental and economic impacts of lignite drying and compression technology. These findings provide useful inputs for both industrial practice and policy making for exploitation, processing, and utilization of lignite resources.

  16. Investigation of pre-drying lignite in an existing Greek power plant

    Directory of Open Access Journals (Sweden)

    Agraniotis Michalis

    2012-01-01

    Full Text Available The application of lignite pre-drying technologies in next generation of lignite power plants by utilizing low pressure steam as a drying medium instead of hot recirculated flue gas - combined with thermal utilization of the vaporized coal moisture - is expected to bring efficiency increase of 2-4 percentage points in future lignite power plants compared with today’s state of the art. The pre-drying concept is of particular importance in Greek boilers firing lignite with a high water and ash content. The combustion of Greek predried lignite has been investigated experimentally and via numerical simulations in our previous research. This study focuses on the potential integration of a lignite pre-drying system in an existing Greek power plant with dry lignite co-firing thermal share of up to 30%. The radiative and convective heat fluxes to the boiler and the overall boiler heat balance is calculated for reference and dry lignite co-firing conditions by an in-house calculation code. The overall plant’s thermal cycle is then simulated using commercial thermal cycle calculation software. The net plant efficiency is in this way determined for reference and dry coal co-firing conditions. According to the simulation results the integration of a pre-drying system and the implementation of dry lignite co-firing may bring an efficiency increase of about 1.5 percentage points in existing Greek boilers. It is therefore considered as an important measure towards improving plant efficiency and reducing specific CO2 emissions in existing plants.

  17. Mineralogy and microstructure of sintered lignite coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Marina Ilic; Christopher Cheeseman; Christopher Sollars; Jonathan Knight [Faculty of Technology and Metallurgy, Belgrade (Yugoslavia)

    2003-02-01

    Lignite coal fly ash from the 'Nikola Tesla' power plant in Yugoslavia has been characterised, milled, compacted and sintered to form monolithic ceramic materials. The effect of firing at temperatures between 1130 and 1190{sup o}C on the density, water accessible porosity, mineralogy and microstructure of sintered samples is reported. This class C fly ash has an initial average particle size of 82 {mu}m and contains siliceous glass together with the crystalline phases quartz, anorthite, gehlenite, hematite and mullite. Milling the ash to an average particle size of 5.6 m, compacting and firing at 1170{sup o}C for 1 h produces materials with densities similar to clay-based ceramics that exhibit low water absorption. Sintering reduces the amount of glass, quartz, gehlenite and anhydrite, but increases formation of anorthite, mullite, hematite and cristobalite. SEM confirms the formation of a dense ceramic at 1170{sup o}C and indicates that pyroplastic effects cause pore formation and bloating at 1190{sup o}C. 23 refs., 6 figs., 2 tabs.

  18. Petrological, geochemical and isotopic characteristics of lignite and calcified lignite from mining area Pesje, Velenje Basin, Slovenia

    Science.gov (United States)

    Vrabec, Mirijam; Markič, Miloš; Vrabec, Marko; Jaćimović, Radojko; Kanduč, Tjaša

    2014-05-01

    Lignite (organic rich) and calcified lignite (inorganic rich) samples from excavation field -50c mining area Pesje, Velenje Basin, Slovenia were investigated. During geological and structural mapping lignite and calcified lignite samples were systematically taken for determination of their petrological, geochemical and isotopic characteristics. Lignite is composed of fine detritical gelified matrix. At least five different types of calcified lignite were recognized forming laminations, calcifications after wood, petrified wood and complete replacements of lignite with carbonate. All measured parameters so far indicate geochemical processes during sedimentation of the Velenej Basin. After macroscopic description samples were split to organic and inorganic component (Ward, 1984) and powdered in an agate mortar for geochemical and isotopic analyses. Major and trace elements (As, B, Ba, Cd, Co, Cr, Cu, Hg, Mn, Mo, Sb, Se, Th, U, Zn) in these samples were determined by instrumental neutron activation analysis (INAA) using k-0 standardization method (Jaćimović et al, 2002). The isotopic composition of carbon and nitrogen was determined using a Europa 20-20 continuous flow IRMS ANCA-SL preparation module. A 1 mg amount of a sample was weighed in a tin capsule for carbon and 10 mg for nitrogen analysis. Samples for carbon analyses were pretreated with 1 M HCl to remove carbonates. Carbonate samples from carbonate-rich strata and calcified xylite were first roasted at 450 deg C (Krantz et al., 1987). Three miligrams of carbonate sample was transformed into CO2 by reaction with anhydrous H3PO4 at 55 deg C under vacuum (McCrea, 1950) and measured with GV 2003 isotope ratio mass spectrometer. Measured isotopic composition of oxygen as VPDB values was recalculated to the VSMOW reference standard to enable the comparison with data from other coal basins. SEM/EDXS of carbonate rich sediments was performed with JEOL JSM 5800 electron microanalyzer scanning electron microscope

  19. Coal consumption minimizing by increasing thermal energy efficiency at ROMAG-PROD Heavy Water Plant

    International Nuclear Information System (INIS)

    Preda, Marius Cristian

    2006-01-01

    ROMAG-PROD Heavy Water Plant is a large thermal energy consumer using almost all the steam output from ROMAG-TERMO Power Plant - the steam cost weight in the total heavy water price is about 40%. The steam consumption minimizing by modernization of isotopic exchange facilities and engineering development in ROMAG-PROD Heavy Water Plant results in an corresponding decrease of coal amount burned at ROMAG-TERMO boilers. This decrease could be achieved mainly by the followings ways: - Facility wrappings integrity; - High performance heat exchangers; - Refurbished heat insulations; - Modified condenser-collecting pipeline routes; - High performance steam traps; - Heat electric wire. When coal is burned in Power Plant burners to obtain thermal energy, toxic emissions results in flue gases, such as: - CO 2 and NO x with impact on climate warming; - SO 2 which results in ozone layer thinning effect and in acid rain falls. From the value of steam output per burned coal: 1 GCal steam = 1.41 tone steam = 0.86 thermal MW = 1.1911 tones burned coal (lignite), it is obvious that by decreasing the thermal energy consumption provided for ROMAG PROD, a coal amount decrease is estimated at about 45 t/h, or about 394,200 t/year coal, which means about 10% of the current coal consumption at ROMAG-TERMO PP. At the same time, by reducing the burned coal amount, an yearly decrease in emissions into air to about 400,000 tones CO 2 is expected

  20. Lignite industry in Greece within a world context: Mining, energy supply and environment

    International Nuclear Information System (INIS)

    Kavouridis, Konstantinos

    2008-01-01

    Today coal covers 38% of global production and roughly 30% of the EU-25 power output. In 2005 domestic lignite with a share of 60.5% in power generation and accounting about 30% of primary energy consumption is currently the most important indigenous fuel of Greece. Greece, mining 70 Mt annually, is the second lignite producer in the EU and fourth in the world. Approximately 97% of the lignite used to supply the existing lignite-fired power plants of Greece is mined by Public Power Corporation S.A. (PPC). Lignite as the base load fuel gives a competitive strength in PPC's and Greece's fuel mix. Due to lignite consumer prices in Greece are significantly below those in other comparable markets in EU-15. Extraction of lignite has a very long tradition. Significant achievements and large experience which has been gained during many years of mining operations place Greek lignite-mining industry in the leading position in Europe. The paper presents current state of Greek lignite industry, including operating mines, volume of production and other important production indicators as well as improvements in labor productivity and good results in industrial safety. The future of coal and specifically of Greek lignite will be crucially determined by environmentally compatible, i.e. low-CO 2 generation of electricity. Investment in modernization and renewal of the power plant fleet are the key to securing electricity supply and progress in preventing climate change

  1. Reactivity of coal chars prepared in a fluidised bed reactor at different burn-off degrees

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, A.H.; Arenillas, A.; Rubiera, F.; Fuente, E.; Pis, J.J. [Inst. Nacional del Carbon, Oviedo (Spain)

    1997-12-31

    The main goal of this work has been to study the effect of the textural properties of coal chars, obtained from partially burned coal, on their reactivity to oxygen. A low volatile bituminous coal was used to prepare chars, with different levels of burn-off, in a bench-scale fluidised bed reactor. Textural characterisation of the samples was accomplished by measuring true (helium) and apparent (mercury) densities, and mercury porosimetry. An increase in the burn-off degree gave rise to a densification of the chars. Porosity development greatly changed during progressive burning of the samples. DTG burning profiles and isothermal gasification were utilised to estimate the reactivities of the precursor coal and its partially burned chars. Reactivity reached a maximum value at an intermediate burn-off and strongly decreased at higher burn-off degrees. (orig.)

  2. Impact on indoor air quality during burning of Pakistani coal briquettes

    International Nuclear Information System (INIS)

    Gammage, R.B.; Wachter, E.A.; Wade, J.; Wilson, D.L.; Ahmad, N.; Sibtain, F.; Raza, M.Z.

    1993-01-01

    A comparison was made of airborne emissions from combustion of new types of Pakistani coal briquettes and traditional fuels. A mud-lined Angethi stove was operated under the standard nominal conditions of burning 200 g charges of fuel inside a 12 m 3 shed with a forced rate of air exchange of 14/hr. Coal was cold briquetted with lime, clay, and oxidant. Traditional fuels were wood, charcoal, and animal dung. Compared to raw coal, the amended coal gave fourfold reduced emission of respirable-size particles (RSP) while dramatically reducing overall SO 2 release. Initial burning was restricted to the outer layers of the briquettes during which time reaction of SO 2 with lime was incomplete and early emissions of SO 2 were substantial. The measurements overall indicated that, with respect to CO, SO 2 , NO x , and RSP, substitution of amended coal briquettes for traditional fuels will not worsen indoor air quality during domestic cooking. The traditional fuels and coal briquettes emit elevated peak amounts of CO (100-250μL/L), SO 2 (2-5 μL/L), and NO x (1-5 μL/L) in the early phase of volatiles burning with much reduced emissions in the later char-burning phase. Stove operators can substantially lower exposures by lighting the fuel outside and later moving the stove inside

  3. Influence of chemical structure on carbon isotope composition of lignite

    Science.gov (United States)

    Erdenetsogt, Bat-Orshikh; Lee, Insung; Ko, Yoon-Joo; Mungunchimeg, Batsaikhan

    2017-04-01

    During the last two decades, a number of studies on carbon isotopes in terrestrial organic matter (OM) have been carried out and used to determine changes in paleoatmospheric δ13C value as well as assisting in paleoclimate analysis. Coal is abundant terrestrial OM. However, application of its δ13C value is very limited, because the understanding of changes in isotopic composition during coalification is relatively insufficient. The purpose of this study was to examine the influence of the chemical structure on the carbon isotope composition of lignite. Generally, lignite has more complex chemical structures than other higher rank coal because of the existence of various types of oxygen-containing functional groups that are eliminated at higher rank level. A total of sixteen Lower Cretaceous lignite samples from Baganuur mine (Mongolia) were studied by ultimate, stable carbon isotope and solid-state 13C CP/MAS NMR analyses. The carbon contents of the samples increase with increase in depth, whereas oxygen content decreases continuously. This is undoubtedly due to normal coalification process and also consistent with solid state NMR results. The δ13C values of the samples range from -23.54‰ to -21.34‰ and are enriched in 13C towards the lowermost samples. Based on the deconvolution of the NMR spectra, the ratios between carbons bonded to oxygen (60-90 ppm and 135-220 ppm) over carbons bonded to carbon and hydrogen (0-50 ppm and 90-135 ppm) were calculated for the samples. These correlate well with δ13C values (R2 0.88). The results indicate that the δ13C values of lignite are controlled by two mechanisms: (i) depletion in 13C as a result of loss of isotopically heavy oxygen-bounded carbons and (ii) enrichment in 13C caused by a loss of isotopically light methane from aliphatic and aromatic carbons. At the rank of lignite, coal is enriched in 13C because the amount of isotopically heavy CO2 and CO, released from coal as a result of changes in the chemical

  4. Co-combustion of low rank coal/waste biomass blends using dry air or oxygen

    International Nuclear Information System (INIS)

    Haykiri-Acma, H.; Yaman, S.; Kucukbayrak, S.

    2013-01-01

    Biomass species such as the rice husk and the olive milling residue, and a low quality Turkish coal, Soma Denis lignite, were burned in a thermal analyzer under pure oxygen and dry air up to 900 °C, and differential thermal analysis (DTA) and derivative thermogravimetric (DTG) analysis profiles were obtained. Co-combustion experiments of lignite/biomass blends containing 5–20 wt% of biomass were also performed. The effects of the oxidizer type and the blending ratio of biomass were evaluated considering some thermal reactivity indicators such as the maximum burning rate and its temperature, the maximum heat flow temperature, and the burnout levels. FTIR (Fourier transform infrared) spectroscopy and SEM (scanning electron microscopy) were used to characterize the samples, and the variations in the combustion characteristics of the samples were interpreted based on the differences in the intrinsic properties of the samples. - Highlights: ► Co-combustion of lignite/biomass blends. ► The effects of the oxidizer type and the blending ratio. ► Effects of intrinsic properties on combustion characteristics.

  5. An emissions audit of a chain grate stoker burning coal

    International Nuclear Information System (INIS)

    Jackson, P.M.; King, P.G.

    1993-01-01

    This report describes the Emissions Audit carried out on a chain-grate stoker boiler burning coal. The boiler rated at 4.6MW(th) was installed at the Senior Foster Wheeler test facility in Wakefield where it had been modified so that it could burn both coal and dRDF. This report is based on test work undertaken as part of a programme to assess the environmental impact of the combustion of a variety of wastes as fuels. Emissions monitoring tests were carried out using coal as the fuel for comparison with the other wastes. Combustion of coal in boilers of this size are regulated by the Clean Air Acts whilst combustion of wastes is regulated by the more recent Environmental Protection Act. (author)

  6. Catalytic cracking of lignites

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, M.; Nowak, S.; Naegler, T.; Zimmermann, J. [Hochschule Merseburg (Germany); Welscher, J.; Schwieger, W. [Erlangen-Nuernberg Univ. (Germany); Hahn, T. [Halle-Wittenberg Univ., Halle (Germany)

    2013-11-01

    A most important factor for the chemical industry is the availability of cheap raw materials. As the oil price of crude oil is rising alternative feedstocks like coal are coming into focus. This work, the catalytic cracking of lignite is part of the alliance ibi (innovative Braunkohlenintegration) to use lignite as a raw material to produce chemicals. With this new one step process without an input of external hydrogen, mostly propylene, butenes and aromatics and char are formed. The product yield depends on manifold process parameters. The use of acid catalysts (zeolites like MFI) shows the highest amount of the desired products. Hydrogen rich lignites with a molar H/C ratio of > 1 are to be favoured. Due to primary cracking and secondary reactions the ratio between catalyst and lignite, temperature and residence time are the most important parameter to control the product distribution. Experiments at 500 C in a discontinuous rotary kiln reactor show yields up to 32 wt-% of hydrocarbons per lignite (maf - moisture and ash free) and 43 wt-% char, which can be gasified. Particularly, the yields of propylene and butenes as main products can be enhanced four times to about 8 wt-% by the use of catalysts while the tar yield decreases. In order to develop this innovative process catalyst systems fixed on beads were developed for an easy separation and regeneration of the used catalyst from the formed char. (orig.)

  7. Coal geology of the Paleocene-Eocene Calvert Bluff Formation (Wilcox Group) and the Eocene Manning Formation (Jackson Group) in east-central Texas; field trip guidebook for the Society for Organic Petrology, Twelfth Annual Meeting, The Woodlands, Texas, August 30, 1995

    Science.gov (United States)

    Warwick, Peter D.; Crowley, Sharon S.

    1995-01-01

    The Jackson and Wilcox Groups of eastern Texas (fig. 1) are the major lignite producing intervals in the Gulf Region. Within these groups, the major lignite-producing formations are the Paleocene-Eocene Calvert Bluff Formation (Wilcox) and the Eocene Manning Formation (Jackson). According to the Keystone Coal Industry Manual (Maclean Hunter Publishing Company, 1994), the Gulf Coast basin produces about 57 million short tons of lignite annually. The state of Texas ranks number 6 in coal production in the United States. Most of the lignite is used for electric power generation in mine-mouth power plant facilities. In recent years, particular interest has been given to lignite quality and the distribution and concentration of about a dozen trace elements that have been identified as potential hazardous air pollutants (HAPs) by the 1990 Clean Air Act Amendments. As pointed out by Oman and Finkelman (1994), Gulf Coast lignite deposits have elevated concentrations of many of the HAPs elements (Be, Cd, Co, Cr, Hg, Mn, Se, U) on a as-received gm/mmBtu basis when compared to other United States coal deposits used for fuel in thermo-electric power plants. Although regulations have not yet been established for acceptable emissions of the HAPs elements during coal burning, considerable research effort has been given to the characterization of these elements in coal feed stocks. The general purpose of the present field trip and of the accompanying collection of papers is to investigate how various aspects of east Texas lignite geology might collectively influence the quality of the lignite fuel. We hope that this collection of papers will help future researchers understand the complex, multifaceted interrelations of coal geology, petrology, palynology and coal quality, and that this introduction to the geology of the lignite deposits of east Texas might serve as a stimulus for new ideas to be applied to other coal basins in the U.S. and abroad.

  8. Low-temperature carbonization plant for lignite

    Energy Technology Data Exchange (ETDEWEB)

    Shiotsuki, Y

    1949-01-01

    The design and operational data of a low-temperature carbonization plant for Japanese lignite are described. The retort had a vertical cylinder with a capacity of about 10 tons per day. By continuous operation, in which a part of the gas produced was circulated and burned in the lignite zone, about 40 percent semicoke and 3 to 4 percent tar were obtained. From the tar the following products were separated: Low-temperature carbonization cresol, 18.3; motor fuel, 1.00; solvent, 9.97; cresol for medical uses, 11.85; and creosote oil, 32 percent.

  9. Microstructure and properties of lignite tar and pitch. Part II

    Energy Technology Data Exchange (ETDEWEB)

    Walther, H

    1954-01-01

    Photomicrographs reveal the presence of crystalline wax which affects the working properties in lignite tars and pitch. The crystals are large needles after slow cooling and small after rapid cooling. The crystals are paraffinic in character. All samples were nonhomogeneous. Thus the properties of lignite tar and pitch are varied by the source of the lignite and history of the specimen, neither softening point nor dropping point seems to satisfactorily characterize these tars. The samples exhibit thixotropic behavior characteristic of a structural viscosity and show hysteresis loops on varying the working rate. The variations have hindered use of lignite tars and pitches except where solubility in a solvent such as coal tar oil can be used to advantage.

  10. Measurement of gas species, temperatures, coal burnout, and wall heat fluxes in a 200 MWe lignite-fired boiler with different overfire air damper openings

    Energy Technology Data Exchange (ETDEWEB)

    Jianping Jing; Zhengqi Li; Guangkui Liu; Zhichao Chen; Chunlong Liu [Harbin Institute of Technology, Harbin (China). School of Energy Science and Engineering

    2009-07-15

    Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase, and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.

  11. Process of transforming into light oils heavy oils from carbonization of lignites, coals, etc

    Energy Technology Data Exchange (ETDEWEB)

    Mony, H

    1926-12-20

    A process is described for transforming into light oils the heavy oils coming from the carbonization of lignites, peats, coals, and shales, and heavy oils from original minerals and vegetables, consisting of heating the heavy oils or tars in the presence of one or more solid or liquid substances conveniently chosen, with a veiw to effect distillation of the oils under atmospheric pressure at an appropriate temperature, the solids or liquid substances favoring the formation of light products under the influence of heat, being preferably added to the oil before admitting it to the retort and heating, so that the light oils are obtained from the heavy oils in a single operation.

  12. The structure and pyrolysis product distribution of lignite from different sedimentary environment

    International Nuclear Information System (INIS)

    Liu, Peng; Zhang, Dexiang; Wang, Lanlan; Zhou, Yang; Pan, Tieying; Lu, Xilan

    2016-01-01

    Highlights: • Carbon structure of three lignites was measured by solid "1"3C NMR. • Effect of carbon structure on pyrolysis product distribution was studied. • Tar yield is influenced by aliphatic carbon and oxygen functional group. • C1–C4 content of pyrolysis gas is related to CH_2/CH_3 ratio. - Abstract: Low-temperature pyrolysis is an economically efficient method for lignite to obtain coal tar and improve its combustion calorific value. The research on the distribution of pyrolysis product (especially coal tar yield) plays an important role in energy application and economic development in the now and future. Pyrolysis test was carried out in a tube reactor at 873 K for 15 min. The structure of the lignite was measured by solid "1"3C nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR). The thermal analysis was analyzed by thermo-gravimetric (TG) analyzer. The results show that the pyrolysis product distribution is related to the breakage of branch structures of aromatic ring in lignites from different sedimentary environment. The gas yield and composition are related to the decomposition of carbonyl group and the breakage of aliphatic carbon. The tar yield derived from lignite pyrolysis follows the order: Xianfeng lignite (XF, 13.67 wt.%) > Xiaolongtan lignite (XLT, 7.97 wt.%) > Inner Mongolia lignite (IM, 6.30 wt.%), which is mainly influenced by the aliphatic carbon contents, the CH_2/CH_3 ratio and the oxygen functional groups in lignite. The pyrolysis water yield depends on the decomposition of oxygen functional groups. IM has the highest content of oxygen-linked carbon so that the pyrolysis water yield derived from IM is the highest (9.20 wt.%), and is far more than that from the other two lignites.

  13. Synthetic fuel production using Texas lignite and a very high temperature reactor for process heat

    International Nuclear Information System (INIS)

    Ross, M.A.; Klein, D.E.

    1982-01-01

    Two approaches for synthetic fuel production from coal are studied using Texas lignite as the feedstock. First, the gasification and liquefaction of coal are accomplished using Lurgi gasifiers and Fischer-Tropsch synthesis. A 50 000 barrel/day facility, consuming 13.7 million tonne/yr (15.1 million ton/yr) of lignite, is considered. Second, a nuclear-assisted coal conversion approach is studied using a very high temperature gas-cooled reactor with a modified Lurgi gasifier and Fischer-Tropsch synthesis. The nuclear-assisted approach resulted in a 35% reduction in coal consumption. In addition, process steam consumption was reduced by one-half and the oxygen plants were eliminated in the nuclear assisted process. Both approaches resulted in a synthetic oil price higher than the March 1980 imported price of $29.65 per barrel: $36.15 for the lignite-only process and $35.16 for the nuclear-assisted process. No tax advantage was assumed for either process and the utility financing method was used for both economic calculations

  14. Child Skeletal Fluorosis from Indoor Burning of Coal in Southwestern China

    International Nuclear Information System (INIS)

    Qin, X.; Wang, S.; Yu, M.; Li, X.; Zuo, Z.; Zhang, X.; Wang, L.; Zhang, L.

    2010-01-01

    Objectives. We assess the prevalence and pathogenic stage of skeletal fluorosis among children and adolescents residing in a severe coal-burning endemic fluorosis area of southwest China. Methods. We used a cross-sectional design. A total of 1,616 students aged between 7 and 16 years in Zhijin County, Guizhou, China in late 2004 were selected via a cluster sampling of all 9-year compulsory education schools to complete the study questionnaire. Any student lived in a household that burned coal, used an open-burning stove, or baked foodstuffs over a coal stove was deemed high-risk for skeletal fluorosis. About 23% (370) of students (188 boys, 182 girls) were identified as high-risk and further examined by X-ray. Results. One-third of the 370 high-risk participants were diagnosed with skeletal fluorosis. Overall prevalence of child skeletal fluorosis due to indoor burning of coal was 7.5%. Children aged 12 16 years were significantly more likely to be diagnosed with skeletal fluorosis than children aged 7 11 years (OR = 1.84, 95% CI: 1.17 2.90; P = .0082). Four types of skeletal fluorosis were identified: constrictive (60.7%), raritas (15.6%), mixed (16.4%), and soft (7.4%). Most diagnosed cases (91%) were mild or moderate in severity. In addition, about 97% of 370 high-risk children were identified with dental fluorosis. Dental fluorosis was highly correlated with skeletal fluorosis in this study. Conclusions. Skeletal fluorosis among children may contribute to poor health and reduced productivity when they reach adulthood. Further efforts to reduce fluoride exposure among children in southwestern of China where coal is burned indoors are desperately needed.

  15. Coal statistics 1977

    Energy Technology Data Exchange (ETDEWEB)

    Statistical Office of the European Communities

    1978-01-01

    Presents tables of data relating to the coal market in the European Community in 1977. The tables cover hard coal production, supply and trade; briquettes; cokes; lignite, brown coal briquettes and peat; and mines and coke ovens.

  16. Use of abandoned coal/lignite open pits for waste disposal in selected European countries

    International Nuclear Information System (INIS)

    Libicki, J.S.

    1989-01-01

    The use of abandoned coal/lignite pits as disposal sites for solid waste appears to be a reasonable approach to a difficult problem, especially if they are located close to the waste source. However, a potential for groundwater and soil pollution exists. This issue was discussed by a Group of Experts on Opencast Mining of the UN Economic Commission for Europe because most of the sites are operated by mining companies. This paper contains the major topics of discussion including the significance of the problem, legal aspects, characteristics of the open pits, waste intended for disposal, investigations required to obtain a disposal permit, disposal techniques, protection measures, monitoring environmental impacts, and research trends. A few countries are used as examples

  17. Sustainable development of lignite production on open cast mines in Serbia

    Energy Technology Data Exchange (ETDEWEB)

    Darko Danicic; Slobodan Mitrovic; Vladimir Pavlovic; Sava Kovacev [Kolubara Metal, Vreoci (Serbia)

    2009-09-15

    Currently operated coalmines in Serbia (Kolubara and Kostolac) have production around 36 million tons of lignite, and over 108 million m{sup 3} of overburden. Consequently, sustainability of lignite production requires cost reduction and environmental protection, as well as capacity increase. In order to rationalise, and increase efficiency of Serbian lignite mines, it is necessary to focus the activities on major issues shown within the triangle of energy policy objectives (security of supply, competitive prices and environmental protection). Production process optimisation singled out several special programs. Equipment revitalization and modernization is necessary taking into account that majority of the currently operated machinery has a life up to 25 years. Production process automation would enable high level of technical operation in the field of open cast mines management. Lack of coal quality uniformity is the permanent problem resulting by great amounts of coal reserves to be used uneconomically. Planning and training at all levels and finally cooperative software for business procedures and work order management. The measures suggested are a key precondition for maintaining competitive position of lignite production on international level. 7 refs., 5 figs., 1 tab.

  18. Health impacts of coal: facts and fallacies

    Energy Technology Data Exchange (ETDEWEB)

    Finkelman, R.B. [University of Texas, Dallas, TX (United States)

    2007-02-15

    Coal has contributed enormously to the advance of civilization by providing an abundant, inexpensive, and convenient source of energy. Concurrent with its contributions, coal has extracted a high cost in terms of environmental damage and human health impacts. Unfortunately, the links between coal use and human health are distorted by a great deal of ignorance and misinformation. This paper discusses the facts and fallacies of the direct health impacts caused by coal. These include health problems caused by arsenic, fluorine, mercury and selenium released in coal use in the residential sector. The trace element iodine however may help prevent iodine deficiency disorder. Lignite in the ground in some Balkan areas has been associated with a urinary tract cancer known as Balkan endemic nephropathy (BEN). Uncontrolled burning coal seams and coal waste piles contribute to global warming and to respiratory problems. The 10-fold enrichment of trace elements in fly ash and the fine particles released from power plants could present a health threat but where good pollution control technology and disposal practices are applied the health threat is probably minimal. Radioactivity levels in coal are thought to be too low to cause concern. 27 refs., 2 figs.

  19. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    Energy Technology Data Exchange (ETDEWEB)

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest

  20. The future path of lignite production in the Balkan countries

    International Nuclear Information System (INIS)

    Boussios, E.; Koikouzas, N.K.

    1997-01-01

    The future development of the European Union and Balkan lignite industry is examined in this paper. Lignite in some countries represents for the last decade by far the most important fuel for electricity generation. The economically recoverable lignite reserves of the Balkans (21.36 x 10 9 t) and Greece (4.0 x 10 9 t) are sufficient to meet their energy demand for the next decades (50-100 years). The Balkan countries intended to increase their lignite production, in the near future, as result of the increase of their primary energy demand and their efforts to meet their energy requirements by using domestic resources. Greece also plans to increase lignite production. On the contrary, the remaining of the European Union countries intend to decrease their lignite production. Nevertheless, the countries of Balkan region which are presently in a transition period to the market economy, have to deal with a decrease of people employed in the lignite mining industry. However, Balkan region seems to be the most promising area for the future development of the lignite industry in the enlarged EU, after making the following alterations in the lignite sector: Rehabilitation of the lignite open-pit mines, closure of the most underground mines, privatization of the most prosperous mines, modification of the existing technology, introduction of the 'clean' coal technology, etc. New opportunities for the development and modernization of the lignite industry in Balkan countries arise, after their possible entrance into the European Union, considering also that lignite is one of their most important indigenous energy source. For the necessary modernization of the lignite industry, development of collaborations for the capital and know-how transferring is required. (Author)

  1. Germany's lignite industry in 2011; Die deutsche Braunkohlenindustrie im Jahr 2011

    Energy Technology Data Exchange (ETDEWEB)

    Maassen, Uwe [Bundesverband Braunkohle, Koeln (Germany); Statistik der Kohlenwirtschaft e.V., Koeln (Germany); Schiffer, Hans-Wilhelm [RWE Aktiengesellschaft, Essen (Germany)

    2012-05-15

    From 2010 to 2011, Germany's domestic lignite output edged up 4.2% from 169.4 mill. t to 176.5 mill. t. This output is equivalent to a net calorific value of 54.4 mill. tce; of the total output, 157.4 mill. t, or some 90% was used in utility power plants for public supply. That was 3.6% more than in the previous year; 15.5 mill. t was input in the factories of the lignite-mining industry to make solid products, while 2.6 mill. t was used to generate electricity in mine-mouth power plants. Other sales of raw lignite and changes in stocks accounted for 1.0 mill. t. Lignite made a 24.9% contribution toward Germany's total power generation in 2011. In 2011, lignite had an 11.7% share in primary-energy consumption, giving it slot four in Germany's energy-consumption balance after mineral oil (34.0%), natural gas (20.4%) and hard coal (12.6%). Renewable resources cover 10.9, while nuclear energy accounts for 8.8% and other energy sources for 1.6%. With output of 54.4 mill. tce, lignite held a share of 38,5% in Germany's primary-energy production of some 141.3 mill. tce. The contributions made by the other energy carriers to primary-energy production in 2011 were as follows: 12.3 mill. tce hard coal, 13.1 mill. tce gas, 3.9 mill tce mineral oil, 49.5 mill. tce renewables, and 8.1 mill. tce other energy sources. Of the total electricity that Germany produced in 2011, 24,9% was accounted for by lignite. This means that lignite led the ranking of the most important input energies for electricity generation in 2011, followed by renewables with 19.9% hard coal with 18.6%, nuclear energy with 17.6% and gas with 13.7%. Other energy sources made a 5.3% contribution to total gross power generation. The most important ratios for the contributions made by the various lignite-mining areas to Germany's energy supply was shown. CO{sub 2} emissions from lignite rose 3.7% from 168.7 mill. t in 2010 to 175 mill. t in 2011. In the entire period from 1990 to 2011, a

  2. Germany's lignite industry in 2012; Die deutsche Braunkohlenindustrie im Jahr 2012

    Energy Technology Data Exchange (ETDEWEB)

    Maassen, Uwe [Bundesverband Braunkohle, Statistik der Kohlenwirtschaft e.V., Koeln (Germany); Schiffer, Hans-Wilhelm [RWE Aktiengesellschaft, Essen (Germany). CEA-W Allgemeine Wirtschaftspolitik/Wissenschaft

    2013-05-15

    From 2011 to 2012, Germany's domestic lignite output edged up to 5.1% from 176.5 mill. t to 185.4 mill. t. This figure is equivalent to a net calorific value of 57.2 mill. tce. Of the total output, 166.3 mill. t, or some 90%, was used in utility power plants for the public supply, i.e. 5.7% more than in the previous year. In addition, 15.1 mill. t was input in the factories of the lignite-mining industry to make solid products, while 3.0 mill. t was used to generate electricity in mine-mouth power plants. Other sales of raw lignite and changes in stocks accounted for 1.0 mill. t. Lignite made a 25.7% contribution toward Germany's total power generation in 2012. In 2012, lignite had a 12.1% share in primary-energy consumption balance after mineral oil (33.1%), natural gas (21.6%) and hard coal (12.2%). Renewable resources cover 11.6%, while nuclear energy accounts for 8.0% and other energy sources for 1.4%. With output of 57.2 mill. tce, lignite held a share of 38.4% in Germany's primary-energy production of some 149 mill. tce in 2012. The contributions made by other energy carriers to primary-energy production in 2012 were as follows: 11.1 mill. tce hard coal, 13.3 mill. tce gas, 3.8 mill. tce mineral oil, 54.0 mill. tce renewables, and 9.5 mill. tce other energy sources. Of the total electricity amount that Germany produced in 2012, 25.7% was accounted for by lignite. This means that lignite led the ranking of the most important input energies for electricity generation in 2012, followed by renewables with 22.1%, hard coal with 19.1%, nuclear energy with 16.1% and gas with 11.3%. Other energy sources made a 5.7% contribution to total gross power generation. The most important ratios for the contributions made by the various lignite-mining areas to Germany's energy supply are shown. CO{sub 2} emissions from lignite rose 5.1% from 173.9 mill. t in 2011 to 182.8 mill. t in 2012. In the total period from 1990 to 2012, a decline of 159.4 mill. t, or

  3. The Charfuel coal refining process

    International Nuclear Information System (INIS)

    Meyer, L.G.

    1991-01-01

    The patented Charfuel coal refining process employs fluidized hydrocracking to produce char and liquid products from virtually all types of volatile-containing coals, including low rank coal and lignite. It is not gasification or liquefaction which require the addition of expensive oxygen or hydrogen or the use of extreme heat or pressure. It is not the German pyrolysis process that merely 'cooks' the coal, producing coke and tar-like liquids. Rather, the Charfuel coal refining process involves thermal hydrocracking which results in the rearrangement of hydrogen within the coal molecule to produce a slate of co-products. In the Charfuel process, pulverized coal is rapidly heated in a reducing atmosphere in the presence of internally generated process hydrogen. This hydrogen rearrangement allows refinement of various ranks of coals to produce a pipeline transportable, slurry-type, environmentally clean boiler fuel and a slate of value-added traditional fuel and chemical feedstock co-products. Using coal and oxygen as the only feedstocks, the Charfuel hydrocracking technology economically removes much of the fuel nitrogen, sulfur, and potential air toxics (such as chlorine, mercury, beryllium, etc.) from the coal, resulting in a high heating value, clean burning fuel which can increase power plant efficiency while reducing operating costs. The paper describes the process, its thermal efficiency, its use in power plants, its pipeline transport, co-products, environmental and energy benefits, and economics

  4. Synfuels from low-rank coals at the Great Plains Gasification Plant

    International Nuclear Information System (INIS)

    Pollock, D.

    1992-01-01

    This presentation focuses on the use of low rank coals to form synfuels. A worldwide abundance of low rank coals exists. Large deposits in the United States are located in Texas and North Dakota. Low rank coal deposits are also found in Europe, India and Australia. Because of the high moisture content of lignite ranging from 30% to 60% or higher, it is usually utilized in mine mouth applications. Lignite is generally very reactive and contains varying amounts of ash and sulfur. Typical uses for lignite are listed. A commercial application using lignite as feedstock to a synfuels plant, Dakota Gasification Company's Great Plains Gasification Plant, is discussed

  5. Simulation of thermal effectiveness under coal dust burning

    International Nuclear Information System (INIS)

    Korabejnikova, V.K.

    2001-01-01

    The simulation equation of polydisperse fuel (coal dust) torch combustion in the definite zones of burning cameras of stream generator and taking into account reactions in kinetic and diffusion areas at distinguishing temperatures of particles and gas are considered. (author)

  6. Structural degradation of Thar lignite using MW1 fungal isolate: optimization studies

    Science.gov (United States)

    Haider, Rizwan; Ghauri, Muhammad A.; Jones, Elizabeth J.; Orem, William H.; SanFilipo, John R.

    2015-01-01

    Biological degradation of low-rank coals, particularly degradation mediated by fungi, can play an important role in helping us to utilize neglected lignite resources for both fuel and non-fuel applications. Fungal degradation of low-rank coals has already been investigated for the extraction of soil-conditioning agents and the substrates, which could be subjected to subsequent processing for the generation of alternative fuel options, like methane. However, to achieve an efficient degradation process, the fungal isolates must originate from an appropriate coal environment and the degradation process must be optimized. With this in mind, a representative sample from the Thar coalfield (the largest lignite resource of Pakistan) was treated with a fungal strain, MW1, which was previously isolated from a drilled core coal sample. The treatment caused the liberation of organic fractions from the structural matrix of coal. Fungal degradation was optimized, and it showed significant release of organics, with 0.1% glucose concentration and 1% coal loading ratio after an incubation time of 7 days. Analytical investigations revealed the release of complex organic moieties, pertaining to polyaromatic hydrocarbons, and it also helped in predicting structural units present within structure of coal. Such isolates, with enhanced degradation capabilities, can definitely help in exploiting the chemical-feedstock-status of coal.

  7. Biosolubilization of raw and gamma irradiated lignite by trichoderma asperellum

    International Nuclear Information System (INIS)

    Sugoro, I.; Astuti, D.I.; Aditiawati, P.; Sasongko, D.

    2012-01-01

    Biosolubilization is a promising technology for converting solid coal to liquid oil by addition of microorganism. Aim of this research is to compare between gamma irradiated lignite (10 kGy) with raw lignite in biosolubilization by selected fungi Trichoderma asperellum. Treatments were A (MSS + gamma irradiated lignite 5% + T. asperellum) and B (MSS + raw lignite 5% + T. asperellum) with sub-merged culture. There were two parameters observed i.e. biosolubilization product based on absorbance value at λ 250nm and λ 450nm and metal analysis by neutron activation analysis (NAA). The highest biosolubilization will be analyzed by FTIR and GCMS. The results showed that biosolubilization of raw lignite (B) was higher than sterilized lignite (A) based on absorbance value at λ 250nm and λ 450nm . The metal of lignite was decreased after incubation. FTIR analysis showed that both of treatment had similar spectra on biosolubilization products. GCMS analysis showed that both of treatment had different number of hydrocarbon, i.e. C 6 - C 35 (A) and C 10 - C 35 (B) and dominated by aromatic acids, aliphatic and phenylethers. Both of treatment product had the potency as oil substituted but its recommended to deoxygenate for higher quality. (author)

  8. Perspectives of the non-energetic use of lignite in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Keller, D.; Sailer, B. [RWE Power AG, Essen (Germany)

    2013-11-01

    RWE Power AG as integral part of RWE Generation SE has been active in the development and commercialization of coal gasification routes for many years. RWE Generation SE is one of Europe's leading electricity producers and combines the expertise of the power plant specialists Essent (NL), RWE npower (UK) and RWE Power (D). A globally increasing freight traffic and accompanying fuel demand is anticipated in the future. This higher demand will probably result in an increase in crude oil price in the course of the next years. There will also be a disproportionately high increase in fuel prices additionally to the increase in the crude oil price due to an increasing treatment effort within refineries. Therefore the substitution of crude oil becomes more and more attractive in view of economical perspectives and security of supply. Crude oil is not only to be substituted as feedstock for fuels but also for the chemical industry. Coal has been and will be the most important feedstock for this. Especially its gasification enables various routes. In Germany there is also an interesting perspective for Coal-to-Liquids and Coal-to-Gas or CtL/CtG as the non-energetic use of coal is abbreviated. Lignite is available regardless of any market impacts and currently faces a change in its use for power generation due to the increasing use of renewable energies. Hence lignite is an attractive feedstock for CtL/CtG in Germany. The construction of a commercial size CtL/CtG plant means a billion Euro investment. So a reliable economic evaluation is inevitable. Today all CtL/CtG routes miss commercial competitiveness to the conventional production by some ten percents. In case the current upward price trend of crude oil continues CtL/CtG might become viable in the near future. The production of synthetic fuels appears most attractive in view of a substantial market potential. The further commercialization of gasification routes in Germany requires R and D activities especially

  9. Discovery and ramifications of incidental Magnéli phase generation and release from industrial coal-burning.

    Science.gov (United States)

    Yang, Yi; Chen, Bo; Hower, James; Schindler, Michael; Winkler, Christopher; Brandt, Jessica; Di Giulio, Richard; Ge, Jianping; Liu, Min; Fu, Yuhao; Zhang, Lijun; Chen, Yuru; Priya, Shashank; Hochella, Michael F

    2017-08-08

    Coal, as one of the most economic and abundant energy sources, remains the leading fuel for producing electricity worldwide. Yet, burning coal produces more global warming CO 2 relative to all other fossil fuels, and it is a major contributor to atmospheric particulate matter known to have a deleterious respiratory and cardiovascular impact in humans, especially in China and India. Here we have discovered that burning coal also produces large quantities of otherwise rare Magnéli phases (Ti x O 2x-1 with 4 ≤ x ≤ 9) from TiO 2 minerals naturally present in coal. This provides a new tracer for tracking solid-state emissions worldwide from industrial coal-burning. In its first toxicity testing, we have also shown that nanoscale Magnéli phases have potential toxicity pathways that are not photoactive like TiO 2 phases, but instead seem to be biologically active without photostimulation. In the future, these phases should be thoroughly tested for their toxicity in the human lung.Solid-state emissions from coal burning remain an environmental concern. Here, the authors have found that TiO2 minerals present in coal are converted into titanium suboxides during burning, and initial biotoxicity screening suggests that further testing is needed to look into human lung consequences.

  10. Characteristic parameters of the coal briquetting process

    International Nuclear Information System (INIS)

    Davkova, Katica

    1998-01-01

    The complete knowledge about the energetic sources in our country - Republic of Macedonia, point to the fact that coals are the most attractive and highly productive, still keeping the leadership position. However, the process of lignite exploitation causes their degradation and formation of large amount of fine fractions. The industrial valorization of these fractions is the most actual problem that could be solved only through production of made-up enriched fuels of wide spectrum of application. Thus, briquetting formation, with or without use of binds, is a process of mechanical or combined modification of coal fine fractions. At the same time, this is a possible procedure of solid fuels enrichment. Lignite from the Macedonian coal deposits 'Suvodol', 'Priskupshtina' and 'Brik-Berovo' is analyzed, in order to examine the possibilities of its briquetting. The results show that the 'Suvodol' lignite satisfy the quality requirements given with the MKS B H1.031 standard as well as the 'Brik-Berovo' lignite

  11. Sequential simulation approach to modeling of multi-seam coal deposits with an application to the assessment of a Louisiana lignite

    Science.gov (United States)

    Olea, Ricardo A.; Luppens, James A.

    2012-01-01

    There are multiple ways to characterize uncertainty in the assessment of coal resources, but not all of them are equally satisfactory. Increasingly, the tendency is toward borrowing from the statistical tools developed in the last 50 years for the quantitative assessment of other mineral commodities. Here, we briefly review the most recent of such methods and formulate a procedure for the systematic assessment of multi-seam coal deposits taking into account several geological factors, such as fluctuations in thickness, erosion, oxidation, and bed boundaries. A lignite deposit explored in three stages is used for validating models based on comparing a first set of drill holes against data from infill and development drilling. Results were fully consistent with reality, providing a variety of maps, histograms, and scatterplots characterizing the deposit and associated uncertainty in the assessments. The geostatistical approach was particularly informative in providing a probability distribution modeling deposit wide uncertainty about total resources and a cumulative distribution of coal tonnage as a function of local uncertainty.

  12. NOx and SO2 emission factors for Serbian lignite Kolubara

    Directory of Open Access Journals (Sweden)

    Jovanović Vladimir V.

    2012-01-01

    Full Text Available Emission factors are widely accepted tool for estimation of various pollutants emissions in USA and EU. Validity of emission factors is strongly related to experimental data on which they are based. This paper is a result of an effort to establish reliable NOx and SO2 emission factors for Serbian coals. The results of NOx and SO2 emissions estimations based on USA and EU emission factors from thermal power plants Nikola Tesla Obrenovac A and B utilizing the Serbian lignite Kolubara are compared with experimental data obtained during almost one decade (2000-2008 of emissions measurements. Experimental data are provided from regular annual emissions measurement along with operational parameters of the boiler and coal (lignite Kolubara ultimate and proximate analysis. Significant deviations of estimated from experimental data were observed for NOx, while the results for SO2 were satisfactory. Afterwards, the estimated and experimental data were plotted and linear regression between them established. Single parameter optimization was performed targeting the ideal slope of the regression line. Results of this optimization provided original NOx and SO2 emission factors for Kolubara lignite.

  13. Combustion behavior of different kinds of torrefied biomass and their blends with lignite.

    Science.gov (United States)

    Toptas, Asli; Yildirim, Yeliz; Duman, Gozde; Yanik, Jale

    2015-02-01

    In this study, the combustion behavior of different kinds of torrefied biomass (lignocellulosic and animal wastes) and their blends with lignite was investigated via non-isothermal thermogravimetric method under air atmosphere. For comparison, combustion characteristics of raw biomasses were also determined. Torrefaction process improved the reactivity of char combustion step of biomasses. Characteristic combustion parameters for blends showed non-additivity behavior. It was found that the mixture of torrefied biomasses and lignite at a ratio of 1:1 had a lower ignition and burnout temperature than the coal-only sample. Although no interactions were observed between the lignite and torrefied biomass at initial step of combustion, a certain degree of interaction between the components occurred at char combustion step. Kinetic parameters of combustion were calculated by using the Coats Redfern model. Overall, this study showed that poultry litters can be used as a substitute fuel in coal/biomass co-firing systems by blending with lignocellulosic biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Preparation and combustion of coal-water fuel from the Sin Pun coal deposit, southern Thailand

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    In response to an inquiry by the Department of Mineral Resources in Thailand, the Energy & Environmental Research Center (EERC) prepared a program to assess the responsiveness of Sin Pun lignite to the temperature and pressure conditions of hot-water drying. The results indicate that drying made several improvements in the coal, notably increases in heating value and carbon content and reductions in equilibrium moisture and oxygen content. The equilibrium moisture content decreased from 27 wt% for the raw coal to about 15 wt% for the hot-water-dried (HWD) coals. The energy density for a pumpable coal-water fuel (CWF) indicates an increase from 4500 to 6100 Btu/lb by hot-water drying. Approximately 650 lb of HWD Sin Pun CWF were fired in the EERC`s combustion test facility. The fuel burned extremely well, with no feed problems noted during the course of the test. Fouling and slagging deposits each indicated a very low rate of ash deposition, with only a dusty layer formed on the cooled metal surfaces. The combustor was operated at between 20% and 25% excess air, resulting in a flue gas SO{sub 2} concentration averaging approximately 6500 parts per million.

  15. Analysis of Geodynamical Conditions of Region of Burning Coal Dumps Location

    Science.gov (United States)

    Batugin, Andrian; Musina, Valeria; Golovko, Irina

    2017-12-01

    Spontaneous combustion of coal dumps and their impact on the environment of mining regions remain important environmental problem, in spite of the measures that are being taken. The paper presents the hypothesis, which states that the location of coal dumps at the boundaries of geodynamically active crust blocks promotes the appearance of conditions for their combustion. At present geodynamically active crust faults that affect the operating conditions of engineering facilities are observed not only in the areas of tectonic activity, but also on platforms. According to the concept of geodynamical zoning, geodynamically dangerous zones for engineering structures can be not only large, well-developed crust faults, but also just formed fractures that appear as boundaries of geodynamically impacting and hierarchically ordered crust blocks. The purpose of the study is to estimate the linkage of burning dumps to boundaries of geodynamically active crust blocks (geodynamically dangerous zones) for subsequent development of recommendations for reducing environmental hazard. The analysis of 27 coal dumps location was made for one of the Eastern Donbass regions (Russia). Nine of sixteen burning dumps are located in geodynamically dangerous zones, which, taking into account relatively small area occupied by all geodynamically dangerous zones, results that there is a concentration (pcs/km2) of burning dumps, which is 14 times higher than the baseline value. While the probability of accidental obtaining of such a result is extremely low, this can be considered as the evidence of the linkage of burning dumps to geodynamically dangerous zones. Taking into account the stressed state of the rock massif in this region, all geodynamically dangerous zones can be divided into compression and tension zones. The statistic is limited, but nevertheless in tension zones the concentration of burning dumps is 2 times higher than in compression zones. Available results of thermal monitoring of

  16. Study on coal char ignition by radiant heat flux.

    Science.gov (United States)

    Korotkikh, A. G.; Slyusarskiy, K. V.

    2017-11-01

    The study on coal char ignition by CO2-continuous laser was carried out. The coal char samples of T-grade bituminous coal and 2B-grade lignite were studied via CO2-laser ignition setup. Ignition delay times were determined at ambient condition in heat flux density range 90-200 W/cm2. The average ignition delay time value for lignite samples were 2 times lower while this difference is larger in high heat flux region and lower in low heat flux region. The kinetic constants for overall oxidation reaction were determined using analytic solution of simplified one-dimensional heat transfer equation with radiant heat transfer boundary condition. The activation energy for lignite char was found to be less than it is for bituminous coal char by approximately 20 %.

  17. Clean utilization of low-rank coals for low-cost power generation

    International Nuclear Information System (INIS)

    Sondreal, E.A.

    1992-01-01

    Despite the unique utilization problems of low-rank coals, the ten US steam electric plants having the lowest operating cost in 1990 were all fueled on either lignite or subbituminous coal. Ash deposition problems, which have been a major barrier to sustaining high load on US boilers burning high-sodium low-rank coals, have been substantially reduced by improvements in coal selection, boiler design, on-line cleaning, operating conditions, and additives. Advantages of low-rank coals in advanced systems are their noncaking behavior when heated, their high reactivity allowing more complete reaction at lower temperatures, and the low sulfur content of selected deposits. The principal barrier issues are the high-temperature behavior of ash and volatile alkali derived from the coal-bound sodium found in some low-rank coals. Successful upgrading of low-rank coals requires that the product be both stable and suitable for end use in conventional and advanced systems. Coal-water fuel produced by hydrothermal processing of high-moisture low-rank coal meets these criteria, whereas most dry products from drying or carbonizing in hot gas tend to create dust and spontaneous ignition problems unless coated, agglomerated, briquetted, or afforded special handling

  18. JV Task - 129 Advanced Conversion Test - Bulgarian Lignite

    Energy Technology Data Exchange (ETDEWEB)

    Michael Swanson; Everett Sondreal; Daniel Laudal; Douglas Hajicek; Ann Henderson; Brandon Pavlish

    2009-03-27

    The objectives of this Energy & Environmental Research Center (EERC) project were to evaluate Bulgarian lignite performance under both fluid-bed combustion and gasification conditions and provide a recommendation as to which technology would be the most technically feasible for the particular feedstock and also identify any potential operating issues (such as bed agglomeration, etc.) that may limit the applicability of a potential coal conversion technology. Gasification tests were run at the EERC in the 100-400-kg/hr transport reactor development unit (TRDU) on a 50-tonne sample of lignite supplied by the Bulgarian Lignite Power Project. The quality of the test sample was inferior to any coal previously tested in this unit, containing 50% ash at 26.7% moisture and having a higher heating value of 5043 kJ/kg after partial drying in preparation for testing. The tentative conclusion reached on the basis of tests in the TRDU is that oxygen-blown gasification of this high-ash Bulgarian lignite sample using the Kellogg, Brown, and Root (KBR) transport gasifier technology would not provide a syngas suitable for directly firing a gas turbine. After correcting for test conditions specific to the pilot-scale TRDU, including an unavoidably high heat loss and nitrogen dilution by transport air, the best-case heating value for oxygen-blown operation was estimated to be 3316 kJ/m{sup 3} for a commercial KRB transport gasifier. This heating value is about 80% of the minimum required for firing a gas turbine. Removing 50% of the carbon dioxide from the syngas would increase the heating value to 4583 kJ/m{sup 3}, i.e., to about 110% of the minimum requirement, and 95% removal would provide a heating value of 7080 kJ/m{sup 3}. Supplemental firing of natural gas would also allow the integrated gasification combined cycle (IGCC) technology to be utilized without having to remove CO{sub 2}. If removal of all nitrogen from the input gas streams such as the coal transport air were

  19. Activity of coals of different rank to ozone

    Directory of Open Access Journals (Sweden)

    Vladimir Kaminskii

    2017-12-01

    Full Text Available Coals of different rank were studied in order to characterize their activity to ozone decomposition and changes of their properties at interaction with ozone. Effects of coal rank on their reactivity to ozone were described by means of kinetic modeling. To this end, a model was proposed for evaluation of kinetic parameters describing coals activity to ozone. This model considers a case when coals surface properties change during interaction with ozone (deactivation processes. Two types of active sites (zones at the surface that are able to decompose ozone were introduced in the model differing by their deactivation rates. Activity of sites that are being deactivated at relatively higher rate increases with rank from 2400 1/min for lignite to 4000 1/min for anthracite. Such dependence is related to increase of micropores share in coals structure that grows from lignites to anthracites. Parameter characterizing initial total activity of coals to ozone decomposition also depends on rank by linear trend and vary between 2.40 for lignites up to 4.98 for anthracite. The proposed model could further be used in studies of coals oxidation processes and tendency to destruction under the weathering and oxidation conditions.

  20. Analysis of the effects of biomass on the co-pyrolysis of coal using TGA method

    International Nuclear Information System (INIS)

    Yaman, S.; Haykiri-Acma, H.

    2009-01-01

    Turkey is a developing country with a population of 7.15 million and its economy is the 16th biggest in the world and 7th biggest in Europe (after Germany, United Kingdom, France, Italy, Spain, and Russia) with a Gross Domestic Product (GDP) of about 700 billion dollar. Low quality lignitic coals are the most significant primary energy resources of Turkey. Consequently, production of lignite in 2007 is 72 million tons, representing about 7.5% of lignite consumption of the world. However, undesirable characteristics of these lignites such as low calorific value, high ash, and high sulfur are some of serious drawbacks in the usage of them in conventional burning systems, regarding problematic deposit formations and polluting emissions. Therefore, alternative processes for these lignites such as pyrolysis and gasification to produce fuel gases and chemical are preferable. In this study, co-pyrolysis characteristics of Afsin-Elbistan lignite with biomass species such as hazelnut shells, sunflower seed shells, and hybrid poplar were investigated by Non-isothermal Thermogravimetry (TGA) technique. Structural differences in the physical and chemical properties of the samples were studied applying some methods such as X-Ray Diffractometry and Scanning Electron Microscopy. This study showed that addition of such biomass materials into lignite and then co-pyrolysis of these mixtures led to conversion levels that are seriously higher than the conversion level of the lignite alone under the same pyrolytic conditions. It is concluded that there are evident differences between the thermal reactivities of the lignite and the biomass materials, and the increase in the thermal reactivity when biomass was introduced may be explained by synergistic interactions between the constituents of lignite and biomass. (author)

  1. Hazard of radioactive releases resulted from coal burning

    International Nuclear Information System (INIS)

    Gabbard, V.

    1995-01-01

    Consideration is given to the data, pointing to the fact, that coal-burning power plants release of radioactive substances, contained in gaseous wastes, is not less, than the same one of nuclear power plants. The necessity of regulating emission of these substance in atmosphere by analogy with nuclear power industry is shown. 1 fig

  2. Health impacts of coal and coal use: Possible solutions

    Science.gov (United States)

    Finkelman, R.B.; Orem, W.; Castranova, V.; Tatu, C.A.; Belkin, H.E.; Zheng, B.; Lerch, H.E.; Maharaj, S.V.; Bates, A.L.

    2002-01-01

    Coal will be a dominant energy source in both developed and developing countries for at least the first half of the 21st century. Environmental problems associated with coal, before mining, during mining, in storage, during combustion, and postcombustion waste products are well known and are being addressed by ongoing research. The connection between potential environmental problems with human health is a fairly new field and requires the cooperation of both the geoscience and medical disciplines. Three research programs that illustrate this collaboration are described and used to present a range of human health problems that are potentially caused by coal. Domestic combustion of coal in China has, in some cases, severely affected human health. Both on a local and regional scale, human health has been adversely affected by coals containing arsenic, fluorine, selenium, and possibly, mercury. Balkan endemic nephropathy (BEN), an irreversible kidney disease of unknown origin, has been related to the proximity of Pliocene lignite deposits. The working hypothesis is that groundwater is leaching toxic organic compounds as it passes through the lignites and that these organics are then ingested by the local population contributing to this health problem. Human disease associated with coal mining mainly results from inhalation of particulate matter during the mining process. The disease is Coal Worker's Pneumoconiosis characterized by coal dust-induced lesions in the gas exchange regions of the lung; the coal worker's "black lung disease". ?? 2002 Elsevier Science B.V. All rights reserved.

  3. Lignite and tin ores exploration in southern part of Thailand by using nuclear track-etch detectors

    International Nuclear Information System (INIS)

    Chittrakarn, T.; Boonnummar, R.; Pongsuwan, T.; Nuannin, P.; Kaew-On, C.

    1993-01-01

    Both lignite and tin mines in Southern of Thailand are associated with uranium ore. In lignite exploration, Bangpudum Lignite Mine at Krabi Province was chosen for this studied because we know the exact location and deposition of coal seam by using other geophysical technique and also confirm by borehole. The size 1x2 cm 2 of cellulose nitrate CN-85 films were used, each film was stuck at the inner bottom of a softdrink cup. Each cup was put up side down at the bottom of a borehole about 75 cm depth from the earth surface and laid about 10 m apart. All the cups were put in the hole along the line in order to cover about 280 metre in the cross sectional direction long of the known coal seam. After one month, all the film detectors were collected and etched with 6.25N NaOH at 60 o C about 25 minutes long in order to enlarge the latent alpha registration tracks. These alpha particles were emitted from radon gas (Rn-222) which was generated from uranium associated with lignite ore. The registration track density per area of each CN-85 film was studied by optical microscope at 400x magnifications. We found that the track densities of the films have high correlation with the depth of the known coal seam while high and low track densities will correspond to the shallow and deep coal seam respectively. Also, track density was significantly higher than background. A similar manner of experiment was designed for tin ore exploration at Ronpibul district, Nakorn Si Thammarat province. The result is in progress and will present at the conference. (Author)

  4. The reduction of sulfate ions in Musashino woody lignite and in acetone-furfural resin

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, T.

    1986-01-01

    By adding a barium chloride solution to sulfur-containing woody lignite kept in water for two years, it has been confirmed that large quantities of sulfate ions are adsorbed by the lignite. Furthermore, spectroscopic measurements have confirmed the reduction of sulfate ions in an acetone-furfural resin prepared with residual sulfuric acid. These experimental results suggest the possibility of reducing sulfate ions in coal in the absence of sulfate bacteria. 2 refs.

  5. The role of coal consumption in the economic growth of the Polish economy in transition

    International Nuclear Information System (INIS)

    Gurgul, Henryk; Lach, Lukasz

    2011-01-01

    The main goal of this paper is an analysis of the causal links between quarterly coal consumption in the Polish economy and GDP. For the sake of accurate computation an additional variable - employment - was also taken into account. Computations conducted for the period Q1 2000 to Q4 2009 by means of recent causality techniques confirmed the neutrality of hard coal usage with respect to economic growth. On the other hand, calculations for the pairs lignite-GDP and total coal consumption-GDP showed the existence of a significant nonlinear causality from coal usage to economic growth. This is clear evidence for claiming that lignite plays an important role in the economic growth of the Polish economy. Furthermore, each coal-related variable was found to have a nonlinear causal impact on employment. Because of the relatively short length of available time series we additionally applied bootstrap critical values. The empirical results computed by both methods did not exhibit significant differences. These results have important policy implications. In general, our findings support the hypothesis that closing hard coal mines in Poland should have no significant repercussions on economic growth. However, this does not seem to be true for lignite mines. - Research highlights: → The reduction of hard coal consumption should not hamper economic growth in Poland. → Lignite consumption is an important factor determining economic growth in Poland. → The usage of lignite and hard coal has a causal impact on employment in Poland.

  6. Solubilization of lignite and behavior of oxygen containing functional groups in coal with superacid; Chokyosan wo mochiita kattan no kayoka oyobi sanso kannoki no kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, K.; Saito, I. [National Institute for Resources and Environment, Tsukuba (Japan); Sasaki, S.; Suganuma, A. [Science University of Tokyo, Tokyo (Japan). Faculty of Science and Technology

    1996-10-28

    Solubilization of lignite including a large amount of oxygen containing functional groups was attempted using HF/BF3, and the behavior of oxygen containing functional group, one of the important factors for coal liquefaction, was studied. In experiment, the cooled slurry of Yallourn coal specimen and solvent (toluene, isopentane) was filled into a vacuum autoclave together with HF/BF3. Reaction was performed under spontaneous pressure at 50, 100 or 150{degree}C for 3 hours. The distribution of oxygen containing functional groups in each coal specimen was determined by quantification of carboxyl group, hydroxyl group and carbonyl group. As the experimental result, the superacid mixture of HF and BF3 considerably improved the solubility of coal specimens into solvent as compared with individual HF and BF3. The solubility was 68wt% into benzene, 96% into THF and 99% (nearly 100%) into pyridine. It was suggested that production of Broensted acid with strong acidity causes strong catalysis. 6 refs., 2 figs., 1 tab.

  7. Experiments and stochastic simulations of lignite coal during pyrolysis and gasification

    International Nuclear Information System (INIS)

    Ahmed, I.I.; Gupta, A.K.

    2013-01-01

    Highlights: ► Lignite pyrolysis and gasification has been conducted in a semi batch reactor. ► The objective is to understand mechanism of syngas evolution during pyrolysis. ► Stochastic simulations of lignite pyrolysis were conducted using Gillespie algorithm. ► First order, single step mechanism failed to fit cumulative yield of hydrogen. ► Evolution of hydrogen via pyrolysis of gaseous hydrocarbon following bridges scission. -- Abstract: Lignite pyrolysis and gasification has been conducted in a semi batch reactor at reactor temperatures of 800–950 °C in 50 °C intervals. CO 2 has been used as the gasifying agent for gasification experiments. The objective of this investigation is to understand the mechanism of syngas evolution during pyrolysis and to unravel the effect of CO 2 on pyrolysis mechanism. Stochastic simulations of lignite pyrolysis have been conducted using Gillespie algorithm. Two reaction mechanisms have been used in the simulations; first order, single step mechanism and the FLASHCHAIN mechanism. The first order single step mechanism was successful in fitting cumulative yield of CO 2 , CO, CH 4 and other hydrocarbons (C n H m ). The first order, single step failed to fit the cumulative yield of hydrogen, which suggests a more complex mechanism for hydrogen evolution. Evolution of CO 2 , CO, CH 4 , C n H m and H 2 flow rates has been monitored. The only effect of CO 2 on pyrolysis mechanism is promotion of reverse water gas shift reaction for the experiments described here. Methane evolution extended for slightly longer time than other hydrocarbons and hydrogen evolution extended for a slightly longer time than methane. This indicated the evolution of hydrogen via further pyrolysis of aliphatic hydrocarbon. It is also suggested that this step occurs in series after aliphatic hydrocarbons evolution by bridges scission.

  8. Lignite chemical conversion in an indirect heat rotary kiln gasifier

    Directory of Open Access Journals (Sweden)

    Hatzilyberis Kostas S.

    2006-01-01

    Full Text Available The results on the gasification of Greek lignite using two indirect heat (allothermal pilot rotary kiln gasifiers are reported in the present work. The development of this new reactor-gasifier concept intended for solid fuels chemical conversion exploits data and experience gained from the following two pilot plants. The first unit A (about 100 kg/h raw lignite demonstrated the production of a medium heating value gas (12-13 MJ/Nm3 with quite high DAF (dry ash free coal conversions, in an indirect heat rotary gasifier under mild temperature and pressure conditions. The second unit B is a small pilot size unit (about 10 kg/h raw lignite comprises an electrically heated rotary kiln, is an operation flexible and exhibits effective phase mixing and enhanced heat transfer characteristics. Greek lignite pyrolysis and gasification data were produced from experiments performed with pilot plant B and the results are compared with those of a theoretical model. The model assumes a scheme of three consecutive-partly parallel processes (i. e. drying, pyrolysis, and gasification and predicts DAF lignite conversion and gas composition in relatively good agreement with the pertinent experimental data typical of the rotary kiln gasifier performance. Pilot plant B is currently being employed in lime-enhanced gasification studies aiming at the production of hydrogen enriched synthesis gas. Presented herein are two typical gas compositions obtain from lignite gasification runs in the presence or not of lime. .

  9. Natural radioactivity releases from lignite power plants in Southwestern Anatolia

    International Nuclear Information System (INIS)

    Yaprak, G.; Guer, F.; Cam, F.; Candan, O.

    2006-01-01

    The Mugla basin is one of the most productive lignite basins in Southwestern Anatolia, Turkey. Mining activities started in 1979 and total reserves were estimated during exploration at 767.5 million tonnes. Total mean annual lignite production of the Mugla basin is estimated at about 10 million tonnes per year. Most of the lignite production supplies three thermal power plants (Yatagan 630 MW, Yenikoey 420 MW, Kemerkoey 630 MW) with a total capacity of 1680 MW. It is well known that the lignite contains naturally occurring primordial radionuclides arising from the uranium and thorium series as well as from 4 0K. Lignite burning is, therefore, one of the sources of technologically enhanced exposure to humans from natural radionuclides. The investigation reported here deals with the determination of the 2 26Ra, 2 32Th and 4 0K concentrations in the lignite feeding 3 thermal power plants in Mugla region and in the product ash. Samples of lignite feeding the power plants and fly and bottom ashes produced in the same power plants were collected over a period of 1 year and therefore systematic sampling allowed for the determination of mean representative values for the natural radioactivity content of above materials and also estimation of the radioactivity releases to the environment. Furthermore, grid soil sampling within 10-15 km around the power plants allowed for the mapping of the surface soil activity of natural radionuclides. Dosimetric calculations from terrestrial gamma radiation for the population living around the power plants were performed based on the guidance of UNSCEAR 2000 report

  10. Growth response of microorganisms to different molecular fractions of lignite

    Energy Technology Data Exchange (ETDEWEB)

    Polman, J.K.; Breckenridge, C.R.; Dugan, P.R.; Quigley, D.R.

    1990-01-01

    Our research is primarily concerned with isolating and characterizing microbes which are able to dissimilate coal and convert it to other useful chemicals. This quarter, general growth responses of microorganisms cultivated in the presence of different molecular weight fractions of lignite coal were examined. Aerobic and anaerobic environmental samples from a variety of ecological niches were used as inocula. Growth of the microorganisms in these samples on the following types of media was tested: COAL medium, containing alkali-solubilized whole coal; THFI medium, containing the alkali-solubilized, tetrahydrofuran-insoluble, macromolecular portion of whole coal; THFS medium, containing the THF-soluble, low molecular weight portion of whole coal; and CON medium, void of any coal constituent. Overall results indicated that the presence of the THF-soluble, low molecular weight coal fraction enhanced the growth yield and the variety of aerobic microorganisms compared to the other coal fractions or the control medium. Conversely, anaerobic microbes grew best on media which contained the macromolecular fraction. 12 refs., 5 tabs.

  11. Changes of chemical properties of humic acids from crude and fungal transformed lignite

    Energy Technology Data Exchange (ETDEWEB)

    LianHua Dong; Quan Yuan; HongLi Yuan [China Agricultural University, Beijing (China). College of Biological Science

    2006-12-15

    The development of biological processes for fossil energy utilization has received increasing attention in recent years. There are abundance of lignite resources in China and the lignite, a low-grade coal, can be transformed by a Penicillium sp. After fungal transformation, the contents of humic acid and water-soluble humic material increased from 38.6% to 55.1%, and from less than 4.0% to 28.2%, respectively. The differences in chemical properties of crude lignite humic acid (aHA), fungal transformed lignite humic acid (bHA) and water-soluble humic material from fungal transformed lignite (WS) were studied. Elemental analysis and size exclusion chromatography showed that the N content of bHA increased by 47.36% compared with aHA, and the molecular mass of bHA was smaller than aHA. And the WS with the smallest molecular mass contained most content of N. The {sup 13}C NMR and FT-IR spectra of aHA and bHA showed that aHA contained more aromatic structure than bHA. 44 refs., 3 figs., 2 tabs.

  12. Role of radon in comparisons of effects of radioactivity releases from nuclear power, coal burning and phosphate mining

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, B L [Argonne National Lab., IL (USA); Pittsburgh Univ., PA (USA))

    1981-01-01

    It is shown that radon emissions are the predominant source of radiation exposure from nuclear power, coal burning or phosphate mining. For very long time spans, erosion of the continents must be considered, and in this perspective bringing uranium to the earth's surface has no effect since it would eventually reach the surface anyhow, so coal burning and phosphate mining have no net effect; however, nuclear power saves lives by removing the radon source, the net effect ultimately being a saving of 350 lives/GWe-yr. If only effects over 500 yr are considered, lives saved by removal of uranium in mining exceed lives lost due to radon emissions from the nuclear industry under regulations now being instituted, and the net fatalities per GWe-yr caused by all radioactivity releases are 0.017 for nuclear vs 0.045 for coal burning; the effects of radioactivity releases by 1-yr of present annual operations are 10 times larger for phosphate mining than for coal burning.

  13. Contribution of coal to the transformation of the German electricity supply; Beitrag der Kohle zur Transformation der deutschen Stromversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Milojcic, George [Bundesverband Braunkohle (DEBRIV), Koeln (Germany)

    2016-11-01

    The use of coal, hard coal and lignite, is compatible with the targets of the German ''Energiewende''. This fact is often ignored. Due to the uncertain geopolitical situation, the domestic lignite is an important element for a reliable energy supply of Germany. In addition to the known factors secure availability, competitiveness and local economic importance, flexibility has become a characteristics of lignite. The change of the German energy supply is only possible with domestic lignite. This article points out the importance of lignite for this process.

  14. PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995

    International Nuclear Information System (INIS)

    Watson, J.G.; Chow, J.C.; Houck, J.E.

    2001-01-01

    PM 2.5 (particles with aerodynamic diameters less than 2.5 μm) chemical source profiles applicable to speciated emissions inventories and receptor model source apportionment are reported for geological material, motor vehicle exhaust, residential coal (RCC) and wood combustion (RWC), forest fires, geothermal hot springs; and coal-fired power generation units from northwestern Colorado during 1995. Fuels and combustion conditions are similar to those of other communities of the inland western US. Coal-fired power station profiles differed substantially between different units using similar coals, with the major difference being lack of selenium in emissions from the only unit that was equipped with a dry limestone sulfur dioxide (SO 2 ) scrubber. SO 2 abundances relative to fine particle mass emissions in power plant emissions were seven to nine times higher than hydrogen sulfide (H 2 S) abundances from geothermal springs, and one to two orders of magnitude higher than SO 2 abundances in RCC emissions, implying that the SO 2 abundance is an important marker for primary particle contributions of non-aged coal-fired power station contributions. The sum of organic and elemental carbon ranged from 1% to 10% of fine particle mass in coal-fired power plant emissions, from 5% to 10% in geological material, >50% in forest fire emissions, >60% in RWC emissions, and >95% in RCC and vehicle exhaust emissions. Water-soluble potassium (K + ) was most abundant in vegetative burning profiles. K + /K ratios ranged from 0.1 in geological material profiles to 0.9 in vegetative burning emissions, confirming previous observations that soluble potassium is a good marker for vegetative burning. (Author)

  15. Coal and cremation at the Tschudi burn, Chan Chan, Northern Peru

    Science.gov (United States)

    Brooks, W.E.; Galvez, Mora C.; Jackson, J.C.; McGeehin, J.P.; Hood, D.G.

    2008-01-01

    Analyses of a 20-30 cm thick, completely combusted ash at the 25 ?? 70 m Tschudi burn at Chan Chan, northern Peru??, contain 52-55 wt% SiO2, 180-210 ppm zirconium and are consistent with coal ash. Soil geochemistry across the burn showed elevated calcium and phosphorus content, possible evidence for reported human cremation. A calcined, 5 g, 4.5 cm skull fragment recovered from the burn was confirmed as human by protein radioimmunoassay (pRIA). X-ray diffraction showed that the bone had been heated to 520??C. The burn took place c. ad 1312-1438 based on interpretation of a 14C date on carbonized plant tinder. ?? 2008 University of Oxford.

  16. Investigation on the ignition, thermal acceleration and characteristic temperatures of coal char combustion

    International Nuclear Information System (INIS)

    Zhang, Bin; Fu, Peifang; Liu, Yang; Yue, Fang; Chen, Jing; Zhou, Huaichun; Zheng, Chuguang

    2017-01-01

    Highlights: • A new thermal model and measuring method for the ignition temperature are proposed. • Ignition occurs in a region but not a point with ambient conditions changing. • Ignition region is measured from the minimum to maximum ignition temperature. • T_i_g_,_m_a_x of coal char in TG-DSC is in line with the ignition temperature of EFR. - Abstract: Through using a new thermal analysis model and a method of coal/char combustion, the minimum ignition temperature and minimum ignition heat of three different ranks of pulverized coal char were measured by simultaneous Thermogravimetry and Differential Scanning Calorimetry (TG-DSC) experiments. The results show that the ignition of coal char occurs in the range between the minimum ignition temperature and the inflection-point temperature. The thermal acceleration and its gradient G_T increase with increasing heating rate and decrease with increasing coal char rank. The higher the G_T of the coal char, the more easily the ignition occurs and more rapidly the burning and burnout occur. The data show that the G_T of coal char of SLH lignite is 1.6 times more than that of coal char of ZCY bituminous and JWY anthracite in ignition zone, and 3.4 times in burning zone. The characteristic temperatures increase with increasing temperature of prepared char, heating rate and char rank. Moreover, the T_i_g_,_m_a_x calculated in DSC experiment is approximately in line with the ignition temperature obtained in the entrained flow reactor, which demonstrates the feasibility of the proposed theory.

  17. Adsorption of an anionic dispersant on lignite

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, R.; Kucukbayrak, S. [Istanbul Technical University, Istanbul (Turkey). Dept. of Chemical Engineering, Chemical & Metallurgical Engineering Faculty

    2001-12-01

    Since coal is not a homogeneous substance but a mixture of carbonaceous materials and mineral matter, it has a variety of surface properties. Therefore, it is not easy to control the properties of coal suspensions by simply adjusting variables, such as pH and/or electrolyte. A chemical agent needs to be added to control the properties of the coal suspensions. The adsorption behavior of an anionic dispersant in the presence of a wetting agent using some Turkish lignite samples was investigated. The effects of dispersant concentration, temperature and pH on the dispersant adsorption were studied systematically, and the experimental results are presented. Pellupur B69 as a dispersant, commercial mixture of formaldehyde condensate sodium salt of naphthalene sulphonic acid, and Texapon N{sub 2}5 as a wetting agent, a sodium lauryl ether sulfate, have been used.

  18. Mapping of coal quality using stochastic simulation and isometric logratio transformation with an application to a Texas lignite

    Science.gov (United States)

    Olea, Ricardo A.; Luppens, James A.

    2015-01-01

    Coal is a chemically complex commodity that often contains most of the natural elements in the periodic table. Coal constituents are conventionally grouped into four components (proximate analysis): fixed carbon, ash, inherent moisture, and volatile matter. These four parts, customarily measured as weight losses and expressed as percentages, share all properties and statistical challenges of compositional data. Consequently, adequate modeling should be done in terms of a logratio transformation, a requirement that is commonly overlooked by modelers. The transformation of choice is the isometric logratio transformation because of its geometrical and statistical advantages. The modeling is done through a series of realizations prepared by applying sequential simulation for the purpose of displaying the parts in maps incorporating uncertainty. The approach makes realistic assumptions and the results honor the data and basic considerations, such as percentages between 0 and 100, all four parts adding to 100% at any location in the study area, and a style of spatial fluctuation in the realizations equal to that of the data. The realizations are used to prepare different results, including probability distributions across a deposit, E-type maps displaying average properties, and probability maps summarizing joint fluctuations of several parts. Application of these maps to a lignite bed clearly delineates the deposit boundary, reveals a channel cutting across, and shows that the most favorable coal quality is to the north and deteriorates toward the southeast.

  19. Coal

    International Nuclear Information System (INIS)

    Teissie, J.; Bourgogne, D. de; Bautin, F.

    2001-12-01

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  20. Numerical analysis of single and multiple particles of Belchatow lignite dried in superheated steam

    Science.gov (United States)

    Zakrzewski, Marcin; Sciazko, Anna; Komatsu, Yosuke; Akiyama, Taro; Hashimoto, Akira; Kaneko, Shozo; Kimijima, Shinji; Szmyd, Janusz S.; Kobayashi, Yoshinori

    2018-03-01

    Low production costs have contributed to the important role of lignite in the energy mixes of numerous countries worldwide. High moisture content, though, diminishes the applicability of lignite in power generation. Superheated steam drying is a prospective method of raising the calorific value of this fuel. This study describes the numerical model of superheated steam drying of lignite from the Belchatow mine in Poland in two aspects: single and multi-particle. The experimental investigation preceded the numerical analysis and provided the necessary data for the preparation and verification of the model. Spheres of 2.5 to 30 mm in diameter were exposed to the drying medium at the temperature range of 110 to 170 °C. The drying kinetics were described in the form of moisture content, drying rate and temperature profile curves against time. Basic coal properties, such as density or specific heat, as well as the mechanisms of heat and mass transfer in the particular stages of the process laid the foundations for the model construction. The model illustrated the drying behavior of a single particle in the entire range of steam temperature as well as the sample diameter. Furthermore, the numerical analyses of coal batches containing particles of various sizes were conducted to reflect the operating conditions of the dryer. They were followed by deliberation on the calorific value improvement achieved by drying, in terms of coal ingredients, power plant efficiency and dryer input composition. The initial period of drying was found crucial for upgrading the quality of coal. The accuracy of the model is capable of further improvement regarding the process parameters.

  1. Coal mining in Spain: first half year 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    Statistical data from the first half of 1986 on coal mining in Spain. These figures cover anthracite, bituminous coal and lignite both nationally and for the coal-producing regions of Leon, Asturias, Palencia, Teruel and La Coruna. Special attention is paid to absenteeism and its causes.

  2. Radioactivity of combustion residues from coal-fired power stations

    International Nuclear Information System (INIS)

    Vom Berg, W.; Puch, K.H.

    1996-01-01

    Each year in Germany, about 18 mill. t of combustion residues are produced from the combustion of bituminous coal and lignite. They are utilized to a great extent in the construction industry and in mining. During the combustion of coal, the radio-nuclides remain predominantly in the ash. The radionuclide concentration in lignite ash is within the range of that in natural soil. The combustion residues of bituminous coal contain radio-nuclides of a similar order of magnitude as also can occur in natural rock. The utilization of combustion residues in construction materials makes a negligible contribution to radiation exposure through retention in buildings. (orig.) [de

  3. Reducing the emissions of nitrogen oxides when burning Kuznetsk bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.

    1983-02-01

    Bituminous coals from the Kuzbass have a high nitrogen content. As a result, emissions of NO/SUB/x from power stations burning these coals frequently exceed the existing Standard. In order to reduce NO/SUB/x emissions tests were carried out using stage-wise combustion, supplying to the burners only part of the air required for complete combustion. The remaining air is supplied via tertiary nozzles situated about 14 m above the burners. As a result of the tests, this method of combustion is recommended for low-sulphur Kuznetsk coals for all sub-critical boilers having dry-bottom furnaces. Extension to boilers with wet-bottom furnaces and to supercritical boilers requires further investigation.

  4. Urinary arsenic speciation and its correlation with 8-OHdG in Chinese residents exposed to arsenic through coal burning

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Pi, J.B.; Li, B.; Xu, Y.Y.; Jin, Y.P.; Sun, G.F. [China Medical University, Shenyang (China). Dept. for Occupational & Environmental Health

    2008-10-15

    In contrast to arsenicosis caused by consumption of water contaminated by naturally occurring inorganic arsenic, human exposure to this metalloid through coal burning has been rarely reported. In this study, arsenic speciation and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in urine were determined in the Chinese residents exposed to arsenic through coal burning in Guizhou, China, an epidemic area of chronic arsenic poisoning caused by coal burning. The urinary concentrations of inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and total arsenic (tAs) of high-arsenic exposed subjects were significantly higher than those of low-arsenic exposed residents. A biomarker of oxidative DNA damage, urinary 8-OHdG level was significantly higher in high-arsenic exposed subjects than that of low exposed. Significant positive correlations were found between 8-OHdG levels and concentrations of iAs, MMA, DMA and tAs, respectively. In addition, a significant negative correlation was observed between 8-OHdG levels and the secondary methylation ratio (DMA/(MMA + DMA)). The results suggest that chronic arsenic exposure through burning coal rich in arsenic is associated with oxidative DNA damages, and that secondary methylation capacity is potentially related to the susceptibility of individuals to oxidative DNA damage induced by arsenic exposure through coal burning in domestic living.

  5. Cheap carbon sorbents produced from lignite by catalytic pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, B.N.; Schchipko, M.L. [Inst. of Chemistry of Natural Organic Materials, Akademgorodok, Krasnoyarsk (Russian Federation)

    1995-12-01

    Some data are presented describing the new technology of carbon sorbent production from powdered lignite in the installation with fluidized bed of catalyst. It was shown the different types of char products with extended pore structure and high sorption ability can be produced from cheap and accessible lignite of Kansk-Achinsk coal pit in pilot installation with fluidized bed of Al-Cu-Cr oxide catalyst or catalytically active slag materials. In comparison with the conventional technologies of pyrolysis the catalytic pyrolysis allows to increase by 3-5 times the process productivity and to decrease significantly the formation of harmful compounds. The latter is accomplished by complete oxidation of gaseous pyrolysis products in the presence of catalysts and by avoiding the formation of pyrolysis tars - the source of cancerogenic compounds. The technology of cheap powdered sorbent production from lignites makes possible to obtain from lignite during the time of pyrolysis only a few seconds char products with porosity up to 0.6 cm{sup 3} /g, and specific surface area more than 400 m{sup 3} /g. Some methods of powdered chars molding into carbon materials with the different shape were proved for producing of firmness sorbents. Cheap carbon sorbents obtained by thermocatalytic pyrolysis can be successfully used in purification of different industrial pollutants as one-time sorbent or as adsorbents of long-term application with periodic regeneration.

  6. Comparison of physico-chemical properties of various lignites treated by mechanical thermal expression

    Energy Technology Data Exchange (ETDEWEB)

    Janine Hulston; Alan L. Chaffee; Christian Bergins; Karl Strauss [Monash University, Vic. (Australia). School of Chemistry and CRC for Clean Power from Lignite

    2005-12-01

    This study investigates how the Mechanical Thermal Expression (MTE) process affects the physico-chemical properties of low rank lignites sourced from Australia, Greece, and Germany. The MTE process was effective in reducing the moisture content of all three coals and resulted in significant Na reductions in both the Australian and German coals. However, the organic composition of the coals investigated remained relatively unaffected. Upon oven drying, all wet MTE products underwent significant shrinkage, the degree of which was dependent upon the temperature and pressure used during the MTE process. Upon rehydration, the oven-dried MTE products underwent significant swelling, which is most likely related to the chemical composition of the coals.

  7. Baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    This baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota, evaluates the potential impacts to public health or the environment from contaminated ground water at this site. This contamination is a result of the uraniferous lignite ashing process, when coal containing uranium was burned to produce uranium. Potential risk is quantified only for constituents introduced by the processing activities and not for the constituents naturally occurring in background ground water in the site vicinity. Background ground water, separate from any site-related contamination, imposes a percentage of the overall risk from ground water ingestion in the Bowman site vicinity. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is developing plans to address soil and ground water contamination at the site. The UMTRA Surface Project involves the determination of the extent of soil contamination and design of an engineered disposal cell for long-term storage of contaminated materials. The UMTRA Ground Water Project evaluates ground water contamination. Based on results from future site monitoring activities as defined in the site observational work plan and results from this risk assessment, the DOE will propose an approach for managing contaminated ground water at the Bowman site.

  8. Baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota

    International Nuclear Information System (INIS)

    1994-11-01

    This baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota, evaluates the potential impacts to public health or the environment from contaminated ground water at this site. This contamination is a result of the uraniferous lignite ashing process, when coal containing uranium was burned to produce uranium. Potential risk is quantified only for constituents introduced by the processing activities and not for the constituents naturally occurring in background ground water in the site vicinity. Background ground water, separate from any site-related contamination, imposes a percentage of the overall risk from ground water ingestion in the Bowman site vicinity. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is developing plans to address soil and ground water contamination at the site. The UMTRA Surface Project involves the determination of the extent of soil contamination and design of an engineered disposal cell for long-term storage of contaminated materials. The UMTRA Ground Water Project evaluates ground water contamination. Based on results from future site monitoring activities as defined in the site observational work plan and results from this risk assessment, the DOE will propose an approach for managing contaminated ground water at the Bowman site

  9. Solid substrate fermentation of lignite by the coal-solubilizing mould, Trichoderma atroviride, in a new type of bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Holker, U.; Hofer, M. [University of Bonn, Bonn (Germany)

    2002-07-01

    Trichoderma atroviride CBS 349 is able to solubilize lignite. The mould was cultured under non-sterile conditions in a new type of bioreactor for solid substrate fermentation. German lignite (lithotype A, Bergheim) was used as complex solid substrate. Over 40 days 140 g of 1.5 kg lignite held in a 25 1-bioreactor was solubilized by the fungus.

  10. Naturally occurring radioactive materials (NORMs) generated from lignite-fired power plants in Kosovo.

    Science.gov (United States)

    Hasani, F; Shala, F; Xhixha, G; Xhixha, M K; Hodolli, G; Kadiri, S; Bylyku, E; Cfarku, F

    2014-12-01

    The energy production in Kosovo depends primarily on lignite-fired power plants. During coal combustion, huge amounts of fly ash and bottom ash are generated, which may result in enriched natural radionuclides; therefore, these radionuclides need to be investigated to identify the possible processes that may lead to the radiological exposure of workers and the local population. Lignite samples and NORMs of fly ash and bottom ash generated in lignite-fired power plants in Kosovo are analyzed using a gamma-ray spectrometry method for the activity concentration of natural radionuclides. The average activity concentrations of (40)K, (226)Ra and (232)Th in lignite are found to be 36 ± 8 Bq kg(-1), 9 ± 1 Bq kg(-1) and 9 ± 3 Bq kg(-1), respectively. Indications on the occurrence and geochemical behavior of uranium in the lignite matrix are suggested. The activity concentrations of natural radionuclides in fly ash and bottom ash samples are found to be concentrated from 3 to 5 times that of the feeding lignite. The external gamma-ray absorbed dose rate and the activity concentration index are calculated to assess the radiological hazard arising from ash disposal and recycling in the cement industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Comparative emissions from Pakistani coals and traditional coals

    Energy Technology Data Exchange (ETDEWEB)

    Du, Y X [Guangzhou Medical College (China). Dept. of Hygiene; Huang, L F [Guangzhou Health and Anti-epidemic Station (China)

    1994-12-31

    Briquette coal has been widely used for domestic cooking and heating in many Chinese cites over the last two decades. To determine whether burning briquette coal contributes significantly to indoor air pollution, a study was performed in cities-of Southern China in which the measured levels of SO{sub 2}, NO{sub x}, TSP, SD, B(a)P in the kitchens of coal burning families were compared with levels obtained in families using gas. Significantly higher contentions of these pollutants, whose peaks correlated with daily cooking episodes, were detected in coal burning families. The levels of TSP and B(a)P were further found to be dependent on cooking methods, with deep frying and stir-frying of meat generating the most indoor TSP and B(a)P. Briquette coal burning was found to be the source of B(a)P contamination in food. A higher incidence of chronic pharyngitis as well as a suppressed salivary bacteriolytic enzyme activity were found in children of coal burning families. Epidemiologic and laboratory studies also show a close association between coal burning and the incidence of lung cancer in females. (author)

  12. Briquetability of coal fines from the Lavci deposit near Resen. Briketabilnost sitnih frakcija uglja sa lezista Lavci kod Resena

    Energy Technology Data Exchange (ETDEWEB)

    Jankuloska, V.; Cadikovska, V. (Rudnici i Zelezarnica, Skopje (Yugoslavia))

    1990-01-01

    Describes laboratory briquetting of lignite from the Lavci coal deposit in Macedonia, Yugoslavia. The deposit has 21.4 Mt of lignite reserves. Coal samples from cores of exploratory boreholes were evaluated. Chemical composition and properties of the coal are presented. The coal has a 60.8% moisture, 7.8% ash and 0.82% sulfur content. The calorific value of coal is between 5,881 and 7,828 kJ/kg. Coal samples were comminuted and briquetted without binders, due to the favorable petrographic composition of the lignite. Resulting laboratory briquets weighing 45 g were tested for compression strength, water resistance and abrasion (Micum test). Briquet combustion properties were also determined. Briquet quality was of Yugoslav class B[sub 1] and B[sub 2] with the lowest calorific value being 16,427 kJ/kg, which is 2.79 times higher than that of the raw coal. 3 refs.

  13. Trace elements in atmospheric particulate matter over a coal burning power production area of western Macedonia, Greece.

    Science.gov (United States)

    Petaloti, Christina; Triantafyllou, Athanasios; Kouimtzis, Themistoklis; Samara, Constantini

    2006-12-01

    Total suspended particle (TSP) concentrations were determined in the Eordea basin (western Macedonia, Greece), an area with intensive lignite burning for power generation. The study was conducted over a one-year period (November 2000-November 2001) at 10 sites located at variable distances from the power plants. Ambient TSP samples were analyzed for 27 major, minor and trace elements. Annual means of TSP concentrations ranged between 47+/-33 microg m(-3) and 110+/-50 microg m(-3) at 9 out of the 10 sites. Only the site closest to the power stations and the lignite conveyor belts exhibited annual TSP levels (210+/-97 microg m(-3)) exceeding the European standard (150 microg m(-3), 80/779/EEC). Concentrations of TSP and almost all elemental components exhibited significant spatial variations; however, the elemental profiles of TSP were quite similar among all sites suggesting that they are affected by similar source types. At all sites, statistical analysis indicated insignificant (Pmining activities.

  14. Distilling coal, shale, etc

    Energy Technology Data Exchange (ETDEWEB)

    Bussey, C C

    1916-07-17

    In the extraction of vovolatile ingredients from coal, shale, lignite, and other hydrocarbonaceous materials by passing through the material a heating-agent produced by burning at the base of the charge a portion of the material from which the volatile ingredients have been extracted, the temperature of the heating agent is maintained constant by continuously removing the residue from the bottom of the apparatus. The temperature employed is 800/sup 0/F or slightly less, so as to avoid any breaking-down action. As shown the retort is flared downwardly, and is provided at the base with a fireplace, which is in communication with the interior of the retort through flues fitted with screens and dampers. Beneath the bottom of the retort is mounted a movable grate carried on endless sprocket chains, which are preferably set so that the grate inclines downwardly towards the coke, etc.

  15. Mineralogical investigations into ash deposits of selected brown coals; Mineralogische Untersuchungen an Ascheansaetzen ausgewaehlter Braunkohlen

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, J.; Ullrich, B. [Technische Univ. Dresden, Inst. fuer Geotechnik (Germany)

    2003-07-01

    Within the framework of the research project financed by the Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AIF) ''Experimental investigations into the formation of ash deposits from stack gases during the combustion of pulverised lignite'' and supervised by the chair of power station technology (Institute of Energy Technology) of the Dresden Technical University, the mineral composition of ash deposits of six different coals were investigated: two coal blends (different countries worldwide), two lignites from east from the River Elbe (types WM and JAe), one from west of the River Elbe and one Rhenish lignite. (orig.)

  16. Lignite microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Bulankina, M.A.; Lysak, L.V.; Zvyagintsev, D.G. [Moscow MV Lomonosov State University, Moscow (Russian Federation). Faculty of Soil Science

    2007-03-15

    The first demonstration that samples of lignite at a depth of 10 m are considerably enriched in bacteria is reported. According to direct microscopy, the abundance of bacteria was about 10{sup 7} cells/g. About 70% of cells had intact cell membranes and small size, which points to their anabiotic state. The fungal mycelium length was no more than 1 m. Lignite inoculation onto solid glucose-yeast-peptone medium allowed us to isolate bacteria of the genera Bacillus, Rhodococcus, Arthrobacter, Micrococcus, Spirillum, and Cytophaga. Representatives of the genera Penicillium and Trichoderma were identified on Czapek medium. Moistening of lignite powder increased the microbial respiration rate and microbial and fungal abundance but did not increase their generic diversity. This finding suggests that the studied microorganisms are autochthonous to lignite.

  17. Overview of Turkey's coal necessity, reserves and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Ahmet Mahmut; Kilic, Ozen

    2006-10-15

    This article deals with overview of Turkey's coal necessity, reserves and utilization. Turkey is rapidly growing in terms of both its economy and its population. In parallel, its demand for energy, particularly for electricity, is increasing. Turkey possesses fossil fuel resources of hard coal (HC) and lignite (LG) have the greatest importance in energy production and for the national economy. The hard coal and lignite reserves of Turkey are 1.126 and 8.375 millions tons(Mt), respectively. Coal, the major fuel source for Turkey utilized mainly for electric power, steel manufacturing and cement production, amounts to 31% of total energy consumption in Turkey. To sum up, providing the total consumption is taken into account in the Middle East, the coal consumption rate of Turkey is approximately 90% of the consumption in this region.

  18. Reclamation of a uraniferous lignite mine, North Dakota: summary paper

    International Nuclear Information System (INIS)

    Houghton, R.L.; Hall, R.L.; Unseth, J.D.; Wald, J.D.; Burgess, J.L.; Patrick, D.P.; Anderson, G.S.; Hill, S.R.

    1987-01-01

    Uraniferous lignite deposits were mined from 1955 to 1967 by surface mining techniques. Overburden was stripped, and the lignite was burned to concentrate the uranium in its ash. Uranium salts in the overburden gave exposure levels of as much as 500 microroentgens/hour; water in mine pits had U concentrations from 12 to 19,000 micrograms/liter. Reclamation involved replacing the spoils into the source pit, the most contaminated spoils being placed above the water table, capping the pit with clay then topsoil containing lesser concentrations of radioactive elements, and finally planting with prairie grass. Resulting concentrations of radionuclides are given. The land is expected to remain as prairie for wildlife use, but it is safe enough for domestic animals as well. 3 figures

  19. Validation of a FBC model for co-firing of hazelnut shell with lignite against experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Kulah, Gorkem [Middle East Technical University, Department of Chemical Engineering, 06531 Ankara (Turkey)

    2010-07-15

    Performance of a comprehensive system model extended for modelling of co-firing of lignite and biomass was assessed by applying it to METU 0.3 MW{sub t} Atmospheric Bubbling Fluidized Bed Combustor co-firing lignite with hazelnut shell and validating its predictions against on-line temperature and concentration measurements of O{sub 2}, CO{sub 2}, CO, SO{sub 2} and NO along the same test rig fired with lignite only, lignite with limestone addition and lignite with biomass and limestone addition. The system model accounts for hydrodynamics; volatiles release and combustion, char combustion, particle size distribution for lignite and biomass; entrainment; elutriation; sulfur retention and NO formation and reduction, and is based on conservation equations for energy and chemical species. Special attention was paid to different devolatilization characteristics of lignite and biomass. A volatiles release model based on a particle movement model and a devolatilization kinetic model were incorporated into the system model separately for both fuels. Kinetic parameters for devolatilization were determined via thermogravimetric analysis. Predicted and measured temperatures and concentrations of gaseous species along the combustor were found to be in good agreement. Introduction of biomass to lignite was found to decrease SO{sub 2} emissions but did not affect NO emissions significantly. The system model proposed in this study proves to be a useful tool in qualitatively and quantitatively simulating the processes taking place in a bubbling fluidized bed combustor burning lignite with biomass. (author)

  20. Characterization of Aluminum(III) Complexes in Coal Organic Matter

    Czech Academy of Sciences Publication Activity Database

    Straka, Pavel

    2016-01-01

    Roč. 7, č. 4 (2016), s. 378-394 ISSN 2156-8251 Institutional support: RVO:67985891 Keywords : aluminium * complex * 27Al MAS NMR * coal * lignite * altered coal Subject RIV: DD - Geochemistry http://www.scirp.org/journal/AJAC/

  1. Black coal and lignite from biomass as fuel or alternative to carbon dioxide capture and storage; Stein- und Braunkohle aus Biomasse als Brennstoff oder als Alternative zur CO{sub 2}-Abscheidung und -Speicherung

    Energy Technology Data Exchange (ETDEWEB)

    Stengl, S.; Koch, C.; Scheer, J.; Stadlbauer, E.A.; Richarts, F.; Altensen, R.; Richter, H. [Technische Hochschule Mittelhessen (THM), Giessen (Germany); Weber, B. [Universidad Autonoma del Estado de Mexico (UAEM), Toluca (Mexico). Facultad de Ingenieria; Bayer, M.P.; Albert, K. [Tuebingen Univ. (Germany). Inst. fuer Organische Chemie

    2012-05-15

    This article refers to coalification of biomass in light of embedding this technique in the regional material flow management. From a process engineering point of view the focus is set on Hydrothermal Carbonization (HTC) and Low Temperature Conversion (LTC). Based on monosaccharides as building blocks of polysaccharides and ligneous biomass, the thermal behavior of glucose, fructose and xylose depending on reaction time and temperature is tracked. Consequently mainly hemicellulosic structures are affected under HTC conditions. However LTC converts both hemicelluloses as well as cellulose. The classification of HTC and LTC products from spent grains in terms of H/C and C/O ratio according to Meunier's coalification diagram ranges HTC coal in the area of lignite and the LTC coal in the area of black coal. This grading in terms of elementary analysis is confirmed by solid state{sup 13}C-NMR spectroscopy. The spectrum of LTC coal from spent grains fashioned at 400 C for duration of 3 h is undistinguishable from the spectrum of black coal. From the chemical point of view these two coals has to be described as identical. However the spectrum of the HTC product made of spent grains fashioned at 250 C for 3 h in a pressurized environment shows similarity to the spectrum of lignite. As engineering usage HTC products are a tool to convert cellulose-based residues in a uniform, high-energy matter for incineration processes. For this in-house waste management of e.g. breweries or sugar refineries could be enhanced. LTC coals are due to their stability eligible to extract CO{sub 2} from the atmosphere via photosynthesis and transfer carbon to the long-term stable geological cycle of matter. Consequential LTC offers an alternative to CCS. As a side effect LTC coals contribute to the elevation of carbon content in soils, which facilitates their water-holding and nutrient-holding capacity. (orig.)

  2. LARGE-SCALE MECURY CONTROL TECHNOLOGY TESTING FOR LIGNITE-FIRED UTILITIES-OXIDATION SYSTEMS FOR WET FGD

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Holmes; Steven A. Benson; Jeffrey S. Thompson

    2004-03-01

    The Energy & Environmental Research Center (EERC) is conducting a consortium-based effort directed toward resolving the mercury (Hg) control issues facing the lignite industry. Specifically, the EERC team--the EERC, EPRI, URS, ADA-ES, Babcock & Wilcox, the North Dakota Industrial Commission, SaskPower, and the Mercury Task Force, which includes Basin Electric Power Cooperative, Otter Tail Power Company, Great River Energy, Texas Utilities (TXU), Montana-Dakota Utilities Co., Minnkota Power Cooperative, BNI Coal Ltd., Dakota Westmoreland Corporation, and the North American Coal Company--has undertaken a project to significantly and cost-effectively oxidize elemental mercury in lignite combustion gases, followed by capture in a wet scrubber. This approach will be applicable to virtually every lignite utility in the United States and Canada and potentially impact subbituminous utilities. The oxidation process is proven at the pilot-scale and in short-term full-scale tests. Additional optimization is continuing on oxidation technologies, and this project focuses on longer-term full-scale testing. The lignite industry has been proactive in advancing the understanding of and identifying control options for Hg in lignite combustion flue gases. Approximately 1 year ago, the EERC and EPRI began a series of Hg-related discussions with the Mercury Task Force as well as utilities firing Texas and Saskatchewan lignites. This project is one of three being undertaken by the consortium to perform large-scale Hg control technology testing to address the specific needs and challenges to be met in controlling Hg from lignite-fired power plants. This project involves Hg oxidation upstream of a system equipped with an electrostatic precipitator (ESP) followed by wet flue gas desulfurization (FGD). The team involved in conducting the technical aspects of the project includes the EERC, Babcock & Wilcox, URS, and ADA-ES. The host sites include Minnkota Power Cooperative Milton R. Young

  3. Indoor air pollution by different heating systems: coal burning, open fireplace and central heating.

    Science.gov (United States)

    Moriske, H J; Drews, M; Ebert, G; Menk, G; Scheller, C; Schöndube, M; Konieczny, L

    1996-11-01

    Investigations of indoor air pollution by different heating systems in private homes are described. Sixteen homes, 7 with coal burning, 1 with open fireplace (wood burning) and 8 with central heating have been investigated. We measured the concentrations of carbon monoxide, carbon dioxide and sedimented dust in indoor air, of total suspended particulates, heavy metals and of polycyclic aromatic hydrocarbons in indoor and outdoor air. Measurements were taken during winter (heating period) and during summer (non-heating period). Generally, we found higher indoor air pollution in homes with coal burning and open fireplace than in homes with central heating. Especially, the concentrations of carbon monoxide, sedimented dust and of some heavy metals were higher. In one case, we found also high indoor air pollution in a home with central heating. This apartment is on the ground floor of a block of flats, and the central heating system in the basement showed a malfunctioning of the exhaust system.

  4. Effect of mineral oxides on slag formation tendency of Mae Moh lignites

    Directory of Open Access Journals (Sweden)

    Anuwat Luxsanayotin

    2010-08-01

    Full Text Available Slagging is one of major ash deposition problems experienced in the boilers of coal–fired power plants especially theplants that use lignite, like Mae Moh lignites. The occurrence of slag is a complex phenomenon depending on several factorssuch as ash properties, furnace operating conditions, and coal properties. The main objective of this work is to study theeffect of mineral components in Mae Moh lignite on ash fusion temperatures (AFTs, which is commonly used as a keyindicator for slag formation tendency under pulverized combustion conditions. Two Mae Moh lignites from the coal seamsplanned to be used in the future were selected for the study to represent low CaO and high CaO lignite. The two lignites,namely K1 and K3, have 3.6 and 40.4 wt% CaO in ash, respectively. The AFT characterization shows that their initial deformationtemperatures (ITs were almost identical and considered as low for the typical flue gas temperature in the radiationsection of Mae Moh boilers, i.e. 1050-1100°C. These observed similar ITs were rather unexpected, especially for K1 consideringits sufficiently low base to acid (B/A ratios. The X-ray diffraction analyses evidently show the presence of illite, pyriteand anhydrite in K1, which explains the observed lower IT of the sample. Anhydrite, which is known to lower the ITs, is alsothe most abundant mineral in K3. Washing the lignite samples with HCl can significantly reduce CaO, MgO, and SO3 contentin the ash but not Fe2O3 as it is present in the form of pyrite. The addition of Al2O3, SiO2 and Fe2O3 can help increase AFTs ofthe studied samples. The Al2O3 addition gives the strongest effect on increasing AFTs, especially for the sample with lowAl2O3 content. When the CaO is added to the low CaO samples, the fluxing effect will initially occur. However, when the CaOcontent is higher than a critical value (i.e. CaO > 38%, the effect of its high melting point will dominate hence the AFTsincreased. Ternary phase diagrams

  5. Health effects of fluoride pollution caused by coal burning

    Energy Technology Data Exchange (ETDEWEB)

    Ando, M.; Tadano, M.; Yamamoto, S.; Tamura, K.; Chen, X. [Regional Environment Division, National Institute for Environmental Studies, Tsukuba, 305-0083 Ibaraki (Japan); Asanuma, S. [Japan Institute of Rural Medicine, Usuda, Nagano (Japan); Watanabe, T. [Saku Central Hospital, Usuda, Nagano (Japan); Kondo, T. [Matsumoto Dental College, Shiojiri, Nagano (Japan); Sakurai, S. [Otsuma Women' s University, Tama, Tokyo (Japan); Ji, R.; Liang, C.; Cao, S. [Institute of Environmental Health and Engineering, Beijing (China); Hong, Z. [Shanxi Maternity and Children' s Hospital, Taiyuan (China)

    2001-04-23

    Recently a huge amount of fluoride in coal has been released into indoor environments by the combustion of coal and fluoride pollution seems to be increasing in some rural areas in China. Combustion of coal and coal bricks is the primary source of gaseous and aerosol fluoride and these forms of fluoride can easily enter exposed food products and the human respiratory tract. Major human fluoride exposure was caused by consumption of fluoride contaminated food, such as corn, chilies and potatoes. For each diagnostic syndrome of dental fluorosis, a log-normal distribution was observed on the logarithm of urinary fluoride concentration in students in China. Urinary fluoride content was found to be a primary health indicator of the prevalence of dental fluorosis in the community. In the fluorosis areas, osteosclerosis in skeletal fluorosis patients was observed with a high prevalence. A biochemical marker of bone resorption, urinary deoxypyridinoline content was much higher in residents in China than in residents in Japan. It was suggested that bone resorption was stimulated to a greater extent in residents in China and fluoride may stimulate both bone resorption and bone formation. Renal function especially glomerular filtration rate was very sensitive to fluoride exposure. Inorganic phosphate concentrations in urine were significantly lower in the residents in fluorosis areas in China than in non-fluorosis area in China and Japan. Since airborne fluoride from the combustion of coal pollutes extensively both the living environment and food, it is necessary to reduce fluoride pollution caused by coal burning.

  6. Coal chemistry and technology. Komur Kimyasi ve Teknolojisi

    Energy Technology Data Exchange (ETDEWEB)

    Kural, O [ed.

    1988-01-01

    The 18 chapters cover the following topics: mining in Turkey; formation, petrography and classification of coal; chemical and physical properties of coal; mechanical properties of coal; spontaneous combustion of coal and the methods of prevention; sampling of coal; coal preparation and plants; desulfurization of coal; bituminous coal and its consumption; lignite and its consumption; world coal trade and transportation; other important carbon fuels; briquetting of coal; carbonization and coking formed coke; liquefaction of coal; gasification of coal; underground gasification of coal; and combustion models, fluidized-bed combustion, furnaces. An English-Turkish coal dictionary is included. 641 refs., 244 figs., 108 tabs.

  7. Effect of chemical modification on reduction and sorptive properties of chars from hydropyrolysis of coal

    Energy Technology Data Exchange (ETDEWEB)

    Stanczyk, K.; Miga, K.; Fabis, G.; Jastrzab, K. [Polskiej Akademii Nauk, Gliwice (Poland)

    1998-01-01

    Hydropyrolysis of bituminous coal and lignite as way of synthesis of adsorbents has been applied. Chemical modification of chars based on simultaneous carbonization of coal and plastics containing sulfur and nitrogen has been carried out. It was stated that modified chars exhibit better reduction and sorptive properties than non-modified and that modified adsorbents made of lignite exceed commercial ones. 7 refs., 4 figs., 3 tabs.

  8. Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Zheng, B.S.; Aposhian, H.V.; Zhou, Y.S.; Chen, M.L.; Zhang, A.H.; Waalkes, M.P. [NIEHS, Research Triangle Park, NC (USA)

    2002-07-01

    Arsenic is an environmental hazard and the reduction of drinking water arsenic levels is under consideration. People are exposed to arsenic not only through drinking water but also through arsenic-contaminated air and food. Here the health effects of arsenic exposure from burning high arsenic-containing coal in Guizhou, China was investigated. Coal is burned inside the home in open pits for daily cooking and crop drying, producing a high concentration of arsenic in indoor air. Arsenic in the air coats and permeates food being dried producing high concentrations in food; however, arsenic concentrations in the drinking water are in the normal range. The estimated sources of total arsenic exposure in this area are from arsenic-contaminated food (50-80%), air (10-20%), water (1-5%), and direct contact in coal-mining workers (1%). At least 3,000 patients with arsenic poisoning were found in the Southwest Prefecture of Guizhou, and approximately 200,000 people are at risk for such over exposures. Skin lesions are common, including keratosis of the hands and feet, pigmentation on the trunk, skin ulceration, and skin cancers. Toxicities to internal organs, including lung dysfunction, neuropathy, and nephrotoxicity, are clinically evident. The prevalence of hepatomegaly was 20%, and cirrhosis, ascites, and liver cancer are the most serious outcomes of arsenic poisoning. The Chinese government and international organizations are attempting to improve the house conditions and the coal source, and thereby protect human health in this area.

  9. Naturally occurring radioactive materials (NORMs) generated from lignite-fired power plants in Kosovo

    International Nuclear Information System (INIS)

    Hasani, F.; Shala, F.; Xhixha, G.; Xhixha, M.K.; Hodolli, G.; Kadiri, S.; Bylyku, E.; Cfarku, F.

    2014-01-01

    The energy production in Kosovo depends primarily on lignite-fired power plants. During coal combustion, huge amounts of fly ash and bottom ash are generated, which may result in enriched natural radionuclides; therefore, these radionuclides need to be investigated to identify the possible processes that may lead to the radiological exposure of workers and the local population. Lignite samples and NORMs of fly ash and bottom ash generated in lignite-fired power plants in Kosovo are analyzed using a gamma-ray spectrometry method for the activity concentration of natural radionuclides. The average activity concentrations of 40 K, 226 Ra and 232 Th in lignite are found to be 36 ± 8 Bq kg −1 , 9 ± 1 Bq kg −1 and 9 ± 3 Bq kg −1 , respectively. Indications on the occurrence and geochemical behavior of uranium in the lignite matrix are suggested. The activity concentrations of natural radionuclides in fly ash and bottom ash samples are found to be concentrated from 3 to 5 times that of the feeding lignite. The external gamma-ray absorbed dose rate and the activity concentration index are calculated to assess the radiological hazard arising from ash disposal and recycling in the cement industry. - Highlights: • NORMs in lignite combustion residues from CFPPs are studied. • Th/U indicates either low U uptake from host rocks and/or high leaching from peat. • The concentration factor of NORMs in fly and bottom ash samples are 3–5 times. • No 226 Ra enrichment is observed in fly ash while a depletion in bottom ash. • The reuse of fly ash in cement industry poses no significant radiological issue

  10. Radioactive contamination and health risk assessment due to burning of coal in thermal energy generation

    International Nuclear Information System (INIS)

    Kant, K.

    2008-01-01

    Full text: Radon being a ubiquitous air pollutant has global impact and its monitoring in the environment at work places is essential from health and hygiene point of view. In thermal power plants, a lot of coal is burnt which contains radionuclides which are released into the environment and are hazardous. Radon is the main culprit in the local radioactive contamination of the environment due to burning of coal in thermal energy generation. It has been reported by several researchers (Nikl and Vegvari 1992, Bodizs et al. 1992) that the concentrations of the isotopes U 238 and Ra 226 become 3-5 times more than those in the coal itself in the coal slag and fly ash obtained by burning the coal in coal fired power plants. Several researchers have reported radon levels in thermal power plants (Bodizs et al. 1992, Rawat et al. 1991, Nikl and Vevgari 1992, Papastefanou and Charalanbous 1979, Kant et al. 2001). Keeping in view the environmental pollution caused due to the burning of coal in thermal power stations, there is an upsurge in the establishment of nuclear and gas turbine power stations in recent times. An increased share of gas and nuclear in power generation could lead to lower emissions. Also, considerable emphasis is being laid on developing non-polluting and renewable energy sources like water, air, solar energy and others. In this study, measurement of radon and its progeny levels was carried out over long integrated times in thermal power plant in Haryana by using LR-115, Type- II (Kodak Pathe, France), plastic track detectors commonly known as solid state nuclear track detectors (SS NTDs). Alpha particles emitted from radon cause radiation damage tracks, which were subsequently revealed by chemical etching in NaOH. These alpha tracks registered were counted by optical microscope at suitable magnification and converted into radon concentration. The findings indicate that it is very important to carry out these studies and the results of the full study will

  11. Influence of geological variations on lignite drying kinetics in superheated steam atmosphere for Belchatow deposit located in the central Poland

    Directory of Open Access Journals (Sweden)

    Sciazko Anna

    2016-01-01

    Full Text Available Lignite-fired coal power plants suffer from a significant heat loss due to the high moisture content in this energy carrier. Water removal from fuel is an indispensable treatment for improving the combustion process, which will foster the efficient utilization of lignite. Superheated steam fluidized bed drying is expected for this purpose in a power generation sector. Understanding drying kinetics of lignite will greatly reinforce design process of a dryer. Physical features as well as the drying behaviour may be divergent among the lignite originated from different depths and positions in a certain mine. To reveal and clarify the influence of the geological features, the drying characteristics of several grades of lignite from the Belchatow mine in Poland were investigated. The attempts to clarify the influence of the divergent properties of the investigated samples on the drying kinetics in superheated steam were presented in this paper.

  12. Natural radioisotopes in lignite of the Ptolemais region (Greece) and in their ashes

    International Nuclear Information System (INIS)

    Simopoulos, S.E.; Angelopoulos, M.G.

    1987-01-01

    Samples of lignite, fly ash and bottom ash of a power plant, located in the Ptolemais region, were examined by gamma spectroscopy and their concentrations in Ra-226, Ra-228 and K-40 have been determined. These samples were prepared from samples taken daily for a period of one month. The brown coal samples are taken from the front of the brown coal field supplying one of the units. They show a flutuation of the concentrations of the same radionuclides in the brown coal seams and in the intermediate layers. Further samples taken from 3 small private mines of the Ptolemais region were also examined. (author)

  13. Green synthesis of carbon quantum dots from lignite coal and the application in Fe3+ detection

    Science.gov (United States)

    Liu, Xuexia; Hao, Juanyuan; Liu, Jianhui; Tao, Hongcai

    2018-02-01

    Carbon quantum dots (CQDs) had attracted much attention due to their unique structures and excellent properties. Their green preparation was one of the research frontiers. However, most of the CQDs were prepared by strong acid oxidation, the way of which was not friendly to the environment. In this study, CQDs were prepared by green ozone oxidation of lignite coal, which is abundant and inexpensive. The CQDs were well dispersed, the size distribution of the obtained CQDs centralized from 2 to 4 nm with the average diameter of about 2.8 nm. In addition, the as-prepared CQDs containing rich oxygen functional groups exhibited good water-solubility and optical properties with yield reached 35%. The CQDs showed a highly sensitive and selective quenching effect to Fe3+ with desirable anti-interference performance. Moreover, the fluorescence intensity of CQDs had a good linear response to the Fe3+ concentration ranging from 10 to 150 µmol/L with the detection limit of 0.26 µmol/L. This green and facile synthesis method had the prospect of large-scale preparation of CQDs.

  14. Techno-economic analysis of lignite fuelled IGCC with CO{sub 2} capture. Comparing fluidized bed and entrained flow gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guangjian; Wu, Zhen; Zhang, Haiying [North China Electric Power Univ., Beijing (China). School of Energy and Power Engineering

    2013-07-01

    Integrated coal gasification combined cycle (IGCC) plants with pre-combustion capture of CO{sub 2} represent one of the most promising options for generating low-cost decarbonized power using bituminous coals. This work systematically quantify the effect of coal rank on the efficiency and economics of IGCC systems with CO2 capture and storage (CCS), with a special focus on comparison of systems using fluidized-bed gasifier (U-GAS) and entrained flow gasifier (Shell). It was found that the Shell IGCCs are little affect by low rank coal after pre-drying in terms of thermal efficiency and the levelized cost of electricity (LCOE) is only increase by 2-6% for lignite cases with and without CCS compared with bituminous coal cases. The specific CO{sub 2} emissions of U-GAS gasifier based lignite fuelled IGCC with CCS is 198 g/kWhe, almost two times of shell gasifier cases, mainly due to lower carbon conversion in the gasifier and the higher methane in the raw gas of gasifier. However, the total capital cost and COE of U-Gas IGCCs are 15-20% less than that of Shell IGCCs because of lower capital cost of gasifier, coal drying units and air separate units per kWe.

  15. Belgium's burning coal tips. Coupling thermographic ASTER imagery with topography to map debris slide susceptibility

    Energy Technology Data Exchange (ETDEWEB)

    Nyssen, Jan; Diependaele, Stijn; Goossens, Rudi [Ghent Univ. (Belgium). Dept. of Geography

    2012-03-15

    Burning coal tips and the debris slides induced by this combustion are a potential danger for local residents and visitors, and a method is required to identify areas of susceptibility. The relatively easy circulation of air, enhanced by the poor compaction of the spoil heaps, and the exothermic reaction of pyrite with oxygen may ignite coal tips. Rainwater infiltration and subsequent evaporation inside burning coal tips may create steam pressure, which, combined with humidity and slope steepness can then trigger landsliding. Based on mapping of debris slides and susceptibility factors such as burning (represented by positive surface temperature anomalies on thermographic imagery) and slope gradient, this study aims to define thresholds for debris slide susceptibility on coal tips and to map potential debris slide source areas on spoil heaps. The Belgian coal tips were used as study area. A DTM as well as ASTER Kinetic Surface Temperature products were used to measure slope gradients and temperature anomaly. Locations with typical characteristics of combustion (heat, red soil colour, steam and gases), and debris slides were recorded in the field, and were used to identify thresholds beyond which debris sliding is generally observed: a temperature anomaly of > 0.5 K, when comparing the debris slide areas to the average temperature of the coal tip, and a slope gradient {>=} 28 . The susceptibility zones for debris slide detachment were mapped by considering the imagery pixels that exceeded the thresholds for temperature and slope gradient; the results fitted well when compared with the observed debris slides. The method can be improved by using more coal tips for calibration, and by taking into account rain depth and slope aspect. (orig.)

  16. Co-liquefaction of Elbistan Lignite with Manure Biomass; Part 2 - Effect of Biomass Type, Waste to Lignite Ratio and Solid to Liquid Ratio

    Science.gov (United States)

    Karaca, Hüseyin; Koyunoglu, Cemil

    2017-12-01

    Most coal hydrogenation processes require a large quantity of hydrogen. In general, a coal derived liquid such as anthracene oil was used as a hydrogen donor solvent. Tetralin, partially hydrogenated pyrene, phenantrene and coal-derived solvents, which contain hydroaromatic compounds, are efficient solvents to donate hydrogen. In an attempt to reduce the high cost of hydrogen, part of the hydrogen was replaced by a low cost hydrogen donor solvent. This must be hydrogenated during or before the process and recycled. To reduce the cost of hydrogen donor vehicles instead of liquids recycled from the liquefaction process or several biomass types, industrial by products, liquid fractions derived from oil sands bitumen were successfully used to solubilize a coal from the past. In an attempt to reduce the high cost of hydrogen, part of the hydrogen was replaced by a low cost hydrogen donor solvent. However, when hydrogen is supplied from the hydroaromatic structures present in the solvent, the activity of coal minerals is too low to rehydrogenate the solvent in-situ. Nevertheless, a decrease of using oxygen, in addition to enhanced usage of the hydrogen supply by using various waste materials might lead to a decrease of the cost of the liquefaction procedure. So instead of using tetralin another feeding material such as biomass is becoming another solution improving hydrogen donor substances. Most of the liquefaction process were carried out in a batch reactor, in which the residence time of the liquefaction products is long enough to favour the retrogressive reactions, early studies which are related to liquefaction of coal with biomass generally focus on the synergetic effects of coal while biomass added. Early studies which are related to liquefaction of coal with biomass generally focus on the synergetic effects of coal while biomass added. Alternatively, to understand the hydrogen transfer from biomass to coal, in this study, Elbistan Lignite (EL) with manure, tea

  17. The catalytic cracking mechanism of lignite pyrolysis char on tar

    International Nuclear Information System (INIS)

    Lei, Z.; Huibin, H.; Xiangling, S.; Zhenhua, M.; Lei, Z.

    2017-01-01

    The influence of different pyrolysis conditions for tar catalytic cracking will be analyzed according to the lignite pyrolysis char as catalyst on pyrolytic tar in this paper. The pyrolysis char what is the by-product of the cracking of coal has an abundant of pore structure and it has good catalytic activity. On this basis, making the modified catalyst when the pyrolysis char is activation and loads Fe by impregnation method. The cracking mechanism of lignite pyrolytic tar is explored by applying gas chromatograph to analyze splitting products of tar. The experimental results showed that: (1) The effect of tar cracking as the pyrolysis temperature, the heating rate, the volatilization of pyrolysis char and particle size increasing is better and better. The effect of the catalytic and cracking of lignite pyrolysis char in tar is best when the heating rate, the pyrolysis temperature, the volatiles of pyrolysis char, particle size is in specific conditions.(2) The activation of pyrolysis char can improve the catalytic effect of pyrolysis char on the tar cracking. But it reduces the effect of the tar cracking when the pyrolysis char is activation loading Fe. (author)

  18. Annotated bibliography of coal in the Caribbean region. [Lignite

    Energy Technology Data Exchange (ETDEWEB)

    Orndorff, R.C.

    1985-01-01

    The purpose of preparing this annotated bibliography was to compile information on coal localities for the Caribbean region used for preparation of a coal map of the region. Also, it serves as a brief reference list of publications for future coal studies in the Caribbean region. It is in no way an exhaustive study or complete listing of coal literature for the Caribbean. All the material was gathered from published literature with the exception of information from Cuba which was supplied from a study by Gordon Wood of the US Geological Survey, Branch of Coal Resources. Following the classification system of the US Geological Survey (Wood and others, 1983), the term coal resources has been used in this report for reference to general estimates of coal quantities even though authors of the material being annotated may have used the term coal reserves in a similar denotation. The literature ranges from 1857 to 1981. The countries listed include Colombia, Mexico, Venezuela, Cuba, the Dominican Republic, Haiti, Jamaica, Puerto Rico, and the countries of Central America.

  19. Petrographic characteristics and depositional environment of Miocene Can coals, Canakkale-Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Guerdal, Guelbin; Bozcu, Mustafa [Canakkale Onsekiz Mart University, Engineering and Architecture Faculty (Turkey)

    2011-01-01

    In this study, petrographic examinations along with proximate, calorific value, ultimate, sulphur form and XRD analyses were performed in order to determine the coal characteristics and the depositional environment of the Miocene Can coals. Seventy coal samples were taken from cores and open pit mines. The investigated Can coals are humic coals and classified as lignite to sub-bituminous coal based on the random huminite reflectance (0.38-0.54% R{sub r}), volatile matter (45.50-62.25 wt.%, daf) and calorific value (3419-6479 kcal/kg, maf). The sulphur content of the Can coals changes from 0.30 up to 12.23 wt.%, and a broad range of ash contents was observed varying between 2.46 wt.% and 41.19 wt.%. Huminite is the most abundant maceral group (74-95 vol.% mmf) consisting of mostly humocollinite (gelinite) which is followed by relatively low liptinite (2-18 vol.% mmf) and inertinite content (2-13 vol.% mmf). In general, major mineral contents of coal samples are clay minerals, quartz, mica, pyrite and feldspar. The Can-Etili lignite basin consists of mainly volcano-clastics, fluviatile and lacustrine clastic sediments and contains only one lignite seam with 17 m average thickness. In order to assess the development of paleo-mires, coal facies diagrams were obtained from maceral composition. According to the Vegetation Index (VI) and Ground Water Index (GWI), the Can coal accumulated in inundated marsh, limnic and swamp environments under a rheotrophic hydrological regime. In general, the facies interpretations are in accordance with the observed sedimentalogical data. (author)

  20. Coal; Le charbon

    Energy Technology Data Exchange (ETDEWEB)

    Teissie, J.; Bourgogne, D. de; Bautin, F. [TotalFinaElf, La Defense, 92 - Courbevoie (France)

    2001-12-15

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  1. Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite.

    Science.gov (United States)

    Gao, Yuan; Tahmasebi, Arash; Dou, Jinxiao; Yu, Jianglong

    2016-05-01

    Oxy-fuel combustion of solid fuels is seen as one of the key technologies for carbon capture to reduce greenhouse gas emissions. The combustion characteristics of lignite coal, Chlorella vulgaris microalgae, and their blends under O2/N2 and O2/CO2 conditions were studied using a Thermogravimetric Analyzer-Mass Spectroscopy (TG-MS). During co-combustion of blends, three distinct peaks were observed and were attributed to C. vulgaris volatiles combustion, combustion of lignite, and combustion of microalgae char. Activation energy during combustion was calculated using iso-conventional method. Increasing the microalgae content in the blend resulted in an increase in activation energy for the blends combustion. The emissions of S- and N-species during blend fuel combustion were also investigated. The addition of microalgae to lignite during air combustion resulted in lower CO2, CO, and NO2 yields but enhanced NO, COS, and SO2 formation. During oxy-fuel co-combustion, the addition of microalgae to lignite enhanced the formation of gaseous species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Transfer characterization of sulfur from coal-burning emission to plant leaves by PIXE and XANES

    Energy Technology Data Exchange (ETDEWEB)

    Bao, L.M.; Zhang, G.L.; Zhang, Y.X.; Li, Y.; Lin, J.; Liu, W.; Cao, Q.C.; Zhao, Y.D.; Ma, C.Y.; Han, Y. [Chinese Academy of Sciences, Shanghai (China). Shanghai Institute of Applied Physics

    2009-11-15

    The impact of coal-burning emission on sulfur in camphor leaves was investigated using Proton Induced X-ray Emission (PIXE) and synchrotron radiation technique X-ray Absorption Near-Edge Structure (XANES) spectroscopy. The PIXE results show that the sulfur concentrations in the leaves collected at the polluted site are significantly higher than those in controls. The sulfur XANES spectra show the presence of organic (disulfides, thiols, thioethers, sulfonates and sulfoxides) and inorganic sulfur (sulfates) in the leaves. The inorganic sulfur in the leaves of camphor tree polluted by coal combustion is 15% more than that of the control site. The results suggest that the long-term coal-burning pollution resulted in an enhanced content of the total sulfur and sulfate in the leaves, and the uptake of sulfur by leaves had exceeded the metabolic requirement of plants and the excess of sulfur was stored as SO{sub 4}2{sup -}. It can monitor the sulfur pollution in atmosphere.

  3. Comparison of coal reactivity during conversion into different oxidizing medium

    International Nuclear Information System (INIS)

    Korotkikh, A G; Slyusarskiy, K V; Larionov, K B; Osipov, V I

    2016-01-01

    Acoal conversion process of different coal samples into three different types of oxidizing medium (argon, air and steam) were studied by means of thermogravimetry. Two coal types with different metamorphism degree (lignite and bituminous coal) were used. The experimental procedure was carried out in non-isothermal conditions in temperature range from 373 K to 1273 K with 20 K/min heating rate. Purge gas consisted of argon and oxidizer with volumetric ratio 1:24 and had 250 ml/min flow rate.The ignition and burnout indexes were calculated to evaluate sample reactivity at different oxidizing mediums. The highest reactivity coefficient values in same atmosphere were obtained for lignite. It was caused by higher particle special surface area and volatile matter content. (paper)

  4. γ-ray activity in bituminous, subbituminous and lignite coals

    International Nuclear Information System (INIS)

    Barber, D.E.; Giorgio, H.R.

    1977-01-01

    Specimens of three different types of coal from four different geographical locations (Montana, North Dakota, Illinois and Pennsylvania) were examined by γ-ray spectrometry. Some samples were ashed in a muffle furnace. Other samples included pulverized coal, slag and fly ash from an electric power generating station. Activity from the 232 Th and 238 U series was present in all samples. Activity varied widely depending upon the source of the coal. The results indicate a need for additional examination of activity in coal to: (1) establish more precisely the relative environmental impact of coal-fired power stations compared with nuclear ones, (2) indicate the degree of sophistication required in environmental surveillance programs involving areas where both nuclear and coal-fired power stations are operational, and (3) determine the occupational exposure risks in mining operations. (author)

  5. Effect of co-combustion on the burnout of lignite/biomass blends: a Turkish case study.

    Science.gov (United States)

    Haykiri-Acma, H; Yaman, S

    2008-11-01

    Co-combustion of Turkish Elbistan lignite and woody shells of hazelnut was performed in a TGA up to 1173 K with a heating rate of 20 K/min. SEM images of each fuel revealed the differences in their physical appearances. Hazelnut shell was blended with lignite in the range of 2-20 wt% to observe the co-combustion properties. Maximum burning rates (Rmax), temperatures of the maximum burning rates (T(R-max)), and the final burnout values of the parent samples and the blends were compared. The results were interpreted considering lignite properties and the major biomass ingredients such as cellulosics, hemicellulosics, and lignin. Deviations between the theoretical and experimental burnout values were evaluated at various temperatures. Burnout characteristics of the blends up to 10 wt% were concluded to have a synergistic effect so the addition of hazelnut shell up to 8 wt% provided higher burnouts than the expected theoretical ones, whereas addition of as much as 10 wt% led to a decrease in the burnout. However, the additive effects were more favorable for the blend having a biomass content of 20 wt%. Apparent activation energy, Rmax, and T(R-max), were found to follow the additive behavior for the blend samples.

  6. Effect of co-combustion on the burnout of lignite/biomass blends: A Turkish case study

    Energy Technology Data Exchange (ETDEWEB)

    Haykirl-Acma, H.; Yaman, S. [Istanbul Technical University, Istanbul (Turkey)

    2008-11-15

    Co-combustion of Turkish Elbistan lignite and woody shells of hazelnut was performed in a TGA tip to 1173 K with a heating rate of 20 K/min. SEM images of each fuel revealed the differences in their physical appearances. Hazelnut shell was blended with lignite in the range of 2-20 wt% to observe the co-combustion properties. Maximum burning rates (R{sub max}), temperatures of the maximum burning rates (TR{sub max}), and the final burnout values of the parent samples and the blends were compared. The results were interpreted considering lignite properties and the major biomass ingredients such as cellulosics, hemicellulosics, and lignin. Deviations between the theoretical and experimental burnout values were evaluated at various temperatures. Burnout characteristics of the blends up to 10 wt% were concluded to have a synergistic effect so the addition of hazelnut shell up to 8 wt% provided higher burnouts than the expected theoretical ones, whereas addition of as much as 10 wt% led to a decrease in the burnout. However, the additive effects were more favorable for the blend having a biomass content of 20 wt%. Apparent activation energy, R{sub max} and TR{sub max}, were found to follow the additive behavior for the blend samples.

  7. Mass spectra features of biomass burning boiler and coal burning boiler emitted particles by single particle aerosol mass spectrometer.

    Science.gov (United States)

    Xu, Jiao; Li, Mei; Shi, Guoliang; Wang, Haiting; Ma, Xian; Wu, Jianhui; Shi, Xurong; Feng, Yinchang

    2017-11-15

    In this study, single particle mass spectra signatures of both coal burning boiler and biomass burning boiler emitted particles were studied. Particle samples were suspended in clean Resuspension Chamber, and analyzed by ELPI and SPAMS simultaneously. The size distribution of BBB (biomass burning boiler sample) and CBB (coal burning boiler sample) are different, as BBB peaks at smaller size, and CBB peaks at larger size. Mass spectra signatures of two samples were studied by analyzing the average mass spectrum of each particle cluster extracted by ART-2a in different size ranges. In conclusion, BBB sample mostly consists of OC and EC containing particles, and a small fraction of K-rich particles in the size range of 0.2-0.5μm. In 0.5-1.0μm, BBB sample consists of EC, OC, K-rich and Al_Silicate containing particles; CBB sample consists of EC, ECOC containing particles, while Al_Silicate (including Al_Ca_Ti_Silicate, Al_Ti_Silicate, Al_Silicate) containing particles got higher fractions as size increase. The similarity of single particle mass spectrum signatures between two samples were studied by analyzing the dot product, results indicated that part of the single particle mass spectra of two samples in the same size range are similar, which bring challenge to the future source apportionment activity by using single particle aerosol mass spectrometer. Results of this study will provide physicochemical information of important sources which contribute to particle pollution, and will support source apportionment activities. Copyright © 2017. Published by Elsevier B.V.

  8. Low-rank coal study : national needs for resource development. Volume 2. Resource characterization

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    Comprehensive data are presented on the quantity, quality, and distribution of low-rank coal (subbituminous and lignite) deposits in the United States. The major lignite-bearing areas are the Fort Union Region and the Gulf Lignite Region, with the predominant strippable reserves being in the states of North Dakota, Montana, and Texas. The largest subbituminous coal deposits are in the Powder River Region of Montana and Wyoming, The San Juan Basin of New Mexico, and in Northern Alaska. For each of the low-rank coal-bearing regions, descriptions are provided of the geology; strippable reserves; active and planned mines; classification of identified resources by depth, seam thickness, sulfur content, and ash content; overburden characteristics; aquifers; and coal properties and characteristics. Low-rank coals are distinguished from bituminous coals by unique chemical and physical properties that affect their behavior in extraction, utilization, or conversion processes. The most characteristic properties of the organic fraction of low-rank coals are the high inherent moisture and oxygen contents, and the correspondingly low heating value. Mineral matter (ash) contents and compositions of all coals are highly variable; however, low-rank coals tend to have a higher proportion of the alkali components CaO, MgO, and Na/sub 2/O. About 90% of the reserve base of US low-rank coal has less than one percent sulfur. Water resources in the major low-rank coal-bearing regions tend to have highly seasonal availabilities. Some areas appear to have ample water resources to support major new coal projects; in other areas such as Texas, water supplies may be constraining factor on development.

  9. Sulfurisation of lipids in a marine-influenced lignite

    Energy Technology Data Exchange (ETDEWEB)

    Sandison, C.M.; Alexander, R.; Kagi, R.I.; Boreham, C.J. [Curtin University of Technology, Perth, WA (Australia)

    2002-07-01

    Compelling evidence is presented for the process of lipid sulfurisation in humic coal-forming environments. The production of reduced inorganic sulfides by sulfate-reducing bacteria during a marine transgression, which occurred during early diagenesis, enabled the selective sequestration of functionalised lipids in the polar and asphaltene fractions from the Eocene, marine-influenced Heartbreak Ridge lignite deposit in southeast Western Australia. Nickel boride desulfurisation experiments conducted on these fractions released small but significant quantities of sulfur-bound hydrocarbons. These comprised mostly higher plant triterpanes, C-29 steranes and extended 17beta(H),21beta(H)-hopanes, linked by one sulfur atom at, or close to, functionalised sites in the original natural product precursors. These sulfurised lipids come from the same carbon sources as the free hydrocarbon lipids, except for the sulfurised extended hopanoids, which may be partially derived from a different bacterial source. These results indicate that the selectivity and nature of steroid and hopanoid vulcanisation in coal-forming mires is similar to that observed in other sedimentary environments. However, the diversity of higher plant triterpanes that can be sulfurised in marine transgressed coals is greater than that reported in immature terrestrial coals. This preservation mechanism explains the formation of the structurally related biomarkers in more mature sulfur-rich humic coals.

  10. Epoxy-borax-coal tar composition for a radiation protective, burn resistant drum liner and centrifugal casting method

    International Nuclear Information System (INIS)

    Boyer, N.W.; Taylor, R.S.

    1980-01-01

    A boron containing burn resistant, low level radiation protection material useful, for example, as a liner for radioactive waste disposal and storage, a component for neutron absorber, and a shield for a neutron source. The material is basically composed of borax in the range of 25-50%, coal tar in the range of 25-37.5%, with the remainder being an epoxy resin mix. A preferred composition is 50% borax, 25% coal tar and 25% epoxy resin. The material is not susceptible to burning and is about 1/5 the cost of existing radiation protection material utilized in similar applications

  11. Adsorption of lignite-derived humic acids on coal-based mesoporous activated carbons.

    Science.gov (United States)

    Lorenc-Grabowska, Ewa; Gryglewicz, Grazyna

    2005-04-15

    The adsorption by a coal-based mesoporous activated carbon of humic acids (HAs) isolated from two Polish lignites was studied. For comparison, a commercial Aldrich humic acid was also included into this study. The differences in chemical structure and functional groups of HAs were determined by elemental analysis and infrared spectroscopy DRIFT. Two activated carbons used differed in terms of mesopore volume, mesopore size distribution, and chemical properties of the surface. The kinetics of adsorption of HAs have been discussed using three kinetic models, i.e., the first-order Lagergren model, the pseudo-second-order model, and the intraparticle diffusion model. It was found that the adsorption of HAs from alkaline solution on mesoporous activated carbon proceeds according to the pseudo-second-order model. The correlation coefficients were close to 1. The intraparticle diffusion of HA molecules within the carbon particle was identified to be the rate-limiting step. Comparing the two activated carbons, the carbon with a higher volume of pores with widths of 10-50 nm showed a greater removal efficiency of HA. An increase in the Freundlich adsorption capacity with decreasing carbon content of HA was observed. Among the HAs studied, S-HA shows characteristics indicating the highest contribution of small-size fraction. The S-HA was removed by both activated carbons to the highest extent. The effect of pH solution on the adsorption of HA was examined over the range pH 5.4-12.2. It was found that the extent of adsorption decreased with decreasing pH of the solution.

  12. Numerical research of reburning-process of burning of coal-dust torch

    Science.gov (United States)

    Trinchenko, Alexey; Paramonov, Aleksandr; Kadyrov, Marsel; Koryabkin, Aleksey

    2017-10-01

    This work is dedicated to numerical research of ecological indicators of technological method of decrease in emissions of nitrogen oxides at combustion of solid fuel in coal-dust torch to improve the energy efficiency of steam boilers. The technology of step burning with additional input in zone of the maximum concentration of pollutant of strongly crushed fuel for formation of molecular nitrogen on surface of the burning carbon particles is considered. Results of modeling and numerical researches of technology, their analysis and comparison with the experimental data of the reconstructed boiler are given. Results of work show that input of secondary fuel allows to reduce emissions of nitrogen oxides by boiler installation without prejudice to its economic indicators.

  13. Use of lignite in the production of sponge iron and processing of waste oxides in rotary kilns

    Energy Technology Data Exchange (ETDEWEB)

    Eichberger, H; Schnabel, W; Serbent, H

    1978-11-01

    Based on a study of the situation of fossil energy reserves, processes are described in which non-coking coals, in particular lignite, are used for reduction in the rotary kiln, i.e. for sponge iron production and for zinc volatilization from waste oxides).

  14. Investigation of the feasibility of underground coal gasification in North Dakota, United States

    International Nuclear Information System (INIS)

    Pei, Peng; Nasah, Junior; Solc, Jaroslav; Korom, Scott F.; Laudal, Daniel; Barse, Kirtipal

    2016-01-01

    Highlights: • A four-year feasibility study of underground coal gasification is presented. • A test site was selected for feasibility investigation. • Gasification test, a hydrogeological study and geomechanical study were performed. • Results suggest favorable conditions for UCG development at the selected site. - Abstract: Underground coal gasification (UCG) is a promising technology that has the potential to recover currently-unmineable coal resources. The technical feasibility and economic success of a UCG project is highly site specific. Any risks associated with UCG, such as subsidence, groundwater contamination, and syngas quality, should be sufficiently evaluated through a feasibility study. This paper presents a four-year UCG feasibility study utilizing lignite seams in North Dakota, United States. Four wells were drilled through the lignite seams at a selected site, and lignite and strata cores were recovered. A geological model of the formation was built, coal and rock properties were analyzed, and field hydrogeological tests and laboratory gasification tests were performed. This work provided valuable insights in rock mechanics, hydrogeology, and coal properties. The study results show that the selected site is suitable for development of a UCG plant because there are minimal induced subsidence risks, there is hydrological isolation from major aquifers and the coal produces desirable syngas quality for liquid fuel production. Methodologies developed in this study will benefit the design, optimization and management of the UCG process.

  15. Mercury capture by selected Bulgarian fly ashes: Influence of coal rank and fly ash carbon pore structure on capture efficiency

    Science.gov (United States)

    Kostova, I.J.; Hower, J.C.; Mastalerz, Maria; Vassilev, S.V.

    2011-01-01

    Mercury capture by fly ash C was investigated at five lignite- and subbituminous-coal-burning Bulgarian power plants (Republika, Bobov Dol, Maritza East 2, Maritza East 3, and Sliven). Although the C content of the ashes is low, never exceeding 1.6%, the Hg capture on a unit C basis demonstrates that the low-rank-coal-derived fly ash carbons are more efficient in capturing Hg than fly ash carbons from bituminous-fired power plants. While some low-C and low-Hg fly ashes do not reveal any trends of Hg versus C, the 2nd and, in particular, the 3rd electrostatic precipitator (ESP) rows at the Republika power plant do have sufficient fly ash C range and experience flue gas sufficiently cool to capture measurable amounts of Hg. The Republika 3rd ESP row exhibits an increase in Hg with increasing C, as observed in other power plants, for example, in Kentucky power plants burning Appalachian-sourced bituminous coals. Mercury/C decreases with an increase in fly ash C, suggesting that some of the C is isolated from the flue gas stream and does not contribute to Hg capture. Mercury capture increases with an increase in Brunauer-Emmett-Teller (BET) surface area and micropore surface area. The differences in Hg capture between the Bulgarian plants burning low-rank coal and high volatile bituminous-fed Kentucky power plants suggests that the variations in C forms resulting from the combustion of the different ranks also influence the efficiency of Hg capture. ?? 2010 Elsevier Ltd.

  16. Mercury capture by selected Bulgarian fly ashes: Influence of coal rank and fly ash carbon pore structure on capture efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Kostova, I.J.; Hower, J.C.; Mastalerz, M.; Vassilev, S.V. [University of Kentucky, Lexington, KY (United States). Center of Applied Energy Research

    2011-01-15

    Mercury capture by fly ash C was investigated at five lignite- and subbituminous-coal-burning Bulgarian power plants (Republika, Bobov Dol, Maritza East 2, Maritza East 3, and Sliven). Although the C content of the ashes is low, never exceeding 1.6%, the Hg capture on a unit C basis demonstrates that the low-rank-coal-derived fly ash carbons are more efficient in capturing Hg than fly ash carbons from bituminous-fired power plants. While some low-C and low-Hg fly ashes do not reveal any trends of Hg versus C, the 2nd and, in particular, the 3rd electrostatic precipitator (ESP) rows at the Republika power plant do have sufficient fly ash C range and experience flue gas sufficiently cool to capture measurable amounts of Hg. The Republika 3rd ESP row exhibits an increase in Hg with increasing C, as observed in other power plants, for example, in Kentucky power plants burning Appalachian-sourced bituminous coals. Mercury/C decreases with an increase in fly ash C, suggesting that some of the C is isolated from the flue gas stream and does not contribute to Hg capture. Mercury capture increases with an increase in Brunauer-Emmett-Teller (BET) surface area and micropore surface area. The differences in Hg capture between the Bulgarian plants burning low-rank coal and high volatile bituminous-fed Kentucky power plants suggests that the variations in C forms resulting from the combustion of the different ranks also influence the efficiency of Hg capture.

  17. Depositional conditions of the coal-bearing Hirka Formation beneath ...

    Indian Academy of Sciences (India)

    This work focuses on the relationship between the coal deposition and explosive volcanism of the Miocene basin, NW central Anatolia, Turkey. The coal-bearing Hirka Formation was deposited over the Galatian Andesitic Complex and/or massive lagoonal environments during the Miocene. The investigated lignite is a high ...

  18. Radiation doses of inhaled ash from the lignite power plants

    International Nuclear Information System (INIS)

    Boshevski, Tome; Pop-Jordanov, Jordan; Chaushevski, Anton

    1997-01-01

    The coal-fired thermal power plants in Macedonia use lignite obtained by surface mining. The lignite contains traces of thorium-232, uranium-238 and uranium-235, which are long-lived natural radioactive isotopes. After lignite combustion, the concentration of these isotopes in the ash is increased. Due to the long life of fossil materials, the decay products are basically grouped in three radioactive chains that are in a semi-steady state, resulting in equal activity of all isotopes from the chain. Among the members of each chain there are α and β emitters followed by γ quanta emitters. The energies of the α and β particles are important for determining the effective dose. The γ quanta provide information about the chain activity and isotope types. Gamma-spectroscopy studies of the ash samples from the power plants in the City of Bitola in Macedonia have confirmed the presence of several radioactive decay products from the uranium and thorium radioactive chains. Using measurements of the radioactivity of the ash in the Bitola region, the total dose from ash inhalation for the population in the Bitola region was calculated and presented in this paper. Also, analysis of the procedure for determining the maximum allowable dose from radioactive contamination of the environment, is described in this paper. (Original)

  19. Present state in coal preparation. Stanje u pripremi uglja

    Energy Technology Data Exchange (ETDEWEB)

    Jevremovic, C. (Rudarsko-Geoloski Fakultet, Tuzla (Yugoslavia))

    1990-01-01

    Describes the low technological state of Yugoslav coal enterprises,in particular of those that exploit low grade lignite and brown coal with high ash and sulfur content. Unadjusted coal prices (almost the same price level for low and high energy coal) and absence of stringent laws on environmental pollution are regarded as main reasons for the low technological level of coal preparation and beneficiation plants. Modern preparation equipment for coal classification, coal washing, coal drying and briquetting is pointed out. Advanced coal carbonization and gasification should have a wider application in Yugoslavia for reducing environmental pollution and producing clean fuel.

  20. Concentrations and source apportionment of PM10 and associated elemental and ionic species in a lignite-burning power generation area of southern Greece.

    Science.gov (United States)

    Argyropoulos, G; Grigoratos, Th; Voutsinas, M; Samara, C

    2013-10-01

    Ambient concentrations of PM10 and associated elemental and ionic species were measured over the cold and the warm months of 2010 at an urban and two rural sites located in the lignite-fired power generation area of Megalopolis in Peloponnese, southern Greece. The PM10 concentrations at the urban site (44.2 ± 33.6 μg m(-3)) were significantly higher than those at the rural sites (23.7 ± 20.4 and 22.7 ± 26.9 μg m(-3)). Source apportionment of PM10 and associated components was accomplished by an advanced computational procedure, the robotic chemical mass balance model (RCMB), using chemical profiles for a variety of local fugitive dust sources (power plant fly ash, flue gas desulfurization wet ash, feeding lignite, infertile material from the opencast mines, paved and unpaved road dusts, soil), which were resuspended and sampled through a PM10 inlet onto filters and then chemically analyzed, as well as of other common sources such as vehicular traffic, residential oil combustion, biomass burning, uncontrolled waste burning, marine aerosol, and secondary aerosol formation. Geological dusts (road/soil dust) were found to be major PM10 contributors in both the cold and warm periods of the year, with average annual contribution of 32.6 % at the urban site vs. 22.0 and 29.0 % at the rural sites. Secondary aerosol also appeared to be a significant source, contributing 22.1 % at the urban site in comparison to 30.6 and 28.7 % at the rural sites. At all sites, the contribution of biomass burning was most significant in winter (28.2 % at the urban site vs. 14.6 and 24.6 % at the rural sites), whereas vehicular exhaust contribution appeared to be important mostly in the summer (21.9 % at the urban site vs. 11.5 and 10.5 % at the rural sites). The highest contribution of fly ash (33.2 %) was found at the rural site located to the north of the power plants during wintertime, when winds are favorable. In the warm period, the highest contribution of fly ash was found at the

  1. Methodology for quantifying uncertainty in coal assessments with an application to a Texas lignite deposit

    Energy Technology Data Exchange (ETDEWEB)

    Olea, Ricardo A.; Luppens, James A.; Tewalt, Susan J. [U.S. Geological Survey, Reston, VA (United States)

    2011-01-01

    A common practice for characterizing uncertainty in coal resource assessments has been the itemization of tonnage at the mining unit level and the classification of such units according to distance to drilling holes. Distance criteria, such as those used in U.S. Geological Survey Circular 891, are still widely used for public disclosure. A major deficiency of distance methods is that they do not provide a quantitative measure of uncertainty. Additionally, relying on distance between data points alone does not take into consideration other factors known to have an influence on uncertainty, such as spatial correlation, type of probability distribution followed by the data, geological discontinuities, and boundary of the deposit. Several geostatistical methods have been combined to formulate a quantitative characterization for appraising uncertainty. Drill hole datasets ranging from widespread exploration drilling to detailed development drilling from a lignite deposit in Texas were used to illustrate the modeling. The results show that distance to the nearest drill hole is almost completely unrelated to uncertainty, which confirms the inadequacy of characterizing uncertainty based solely on a simple classification of resources by distance classes. The more complex statistical methods used in this study quantify uncertainty and show good agreement between confidence intervals in the uncertainty predictions and data from additional drilling. (author)

  2. Methodology for quantifying uncertainty in coal assessments with an application to a Texas lignite deposit

    Science.gov (United States)

    Olea, R.A.; Luppens, J.A.; Tewalt, S.J.

    2011-01-01

    A common practice for characterizing uncertainty in coal resource assessments has been the itemization of tonnage at the mining unit level and the classification of such units according to distance to drilling holes. Distance criteria, such as those used in U.S. Geological Survey Circular 891, are still widely used for public disclosure. A major deficiency of distance methods is that they do not provide a quantitative measure of uncertainty. Additionally, relying on distance between data points alone does not take into consideration other factors known to have an influence on uncertainty, such as spatial correlation, type of probability distribution followed by the data, geological discontinuities, and boundary of the deposit. Several geostatistical methods have been combined to formulate a quantitative characterization for appraising uncertainty. Drill hole datasets ranging from widespread exploration drilling to detailed development drilling from a lignite deposit in Texas were used to illustrate the modeling. The results show that distance to the nearest drill hole is almost completely unrelated to uncertainty, which confirms the inadequacy of characterizing uncertainty based solely on a simple classification of resources by distance classes. The more complex statistical methods used in this study quantify uncertainty and show good agreement between confidence intervals in the uncertainty predictions and data from additional drilling. ?? 2010.

  3. Mercury concentration in coal - Unraveling the puzzle

    Science.gov (United States)

    Toole-O'Neil, B.; Tewalt, S.J.; Finkelman, R.B.; Akers, D.J.

    1999-01-01

    Based on data from the US Geological Survey's COALQUAL database, the mean concentration of mercury in coal is approximately 0.2 ??gg-1. Assuming the database reflects in-ground US coal resources, values for conterminous US coal areas range from 0.08 ??gg-1 for coal in the San Juan and Uinta regions to 0.22 ??gg-1 for the Gulf Coast lignites. Recalculating the COALQUAL data to an equal energy basis unadjusted for moisture differences, the Gulf Coast lignites have the highest values (36.4 lb of Hg/1012 Btu) and the Hams Fork region coal has the lowest value (4.8 lb of Hg/1012Btu). Strong indirect geochemical evidence indicates that a substantial proportion of the mercury in coal is associated with pyrite occurrence. This association of mercury and pyrite probably accounts for the removal of mercury with the pyrite by physical coal cleaning procedures. Data from the literature indicate that conventional coal cleaning removes approximately 37% of the mercury on an equal energy basis, with a range of 0% to 78%. When the average mercury reduction value is applied to in-ground mercury values from the COALQUAL database, the resulting 'cleaned' mercury values are very close to mercury in 'as-shipped' coal from the same coal bed in the same county. Applying the reduction fact or for coal cleaning to eastern US bituminous coal, reduces the mercury input load compared to lower-rank non-deaned western US coal. In the absence of analytical data on as-shipped coal, the mercury data in the COALQUAL database, adjusted for deanability where appropriate, may be used as an estimator of mercury contents of as-shipped coal. ?? 1998 Published by Elsevier Science Ltd. All rights reserved.

  4. Model Research of Gas Emissions From Lignite and Biomass Co-Combustion in a Large Scale CFB Boiler

    Directory of Open Access Journals (Sweden)

    Krzywański Jarosław

    2014-06-01

    Full Text Available The paper is focused on the idea of a combustion modelling of a large-scale circulating fluidised bed boiler (CFB during coal and biomass co-combustion. Numerical computation results for three solid biomass fuels co-combustion with lignite are presented in the paper. The results of the calculation showed that in previously established kinetics equations for coal combustion, some reactions had to be modified as the combustion conditions changed with the fuel blend composition. Obtained CO2, CO, SO2 and NOx emissions are located in borders of ± 20% in the relationship to the experimental data. Experimental data was obtained for forest biomass, sunflower husk, willow and lignite cocombustion tests carried out on the atmospheric 261 MWe COMPACT CFB boiler operated in PGE Turow Power Station in Poland. The energy fraction of biomass in fuel blend was: 7%wt, 10%wt and 15%wt. The measured emissions of CO, SO2 and NOx (i.e. NO + NO2 were also shown in the paper. For all types of biomass added to the fuel blends the emission of the gaseous pollutants was lower than that for coal combustion.

  5. Microbial transformation of coal and coal relevant structures - presentation of a BMBF joint research project

    Energy Technology Data Exchange (ETDEWEB)

    Sinder, C.; Schacht, S.; Pfeifer, F.; Klein, J. [DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany)

    1997-12-31

    Investigations in the joint research project `Microbial transformation of coal and coal relevant structures` supported by the Ministry of Education, Science, Research and Technology (BMBF) of the Federal Republic of Germany and coordinated by the DMT-Gesellschaft fuer Forschung und Pruefung mbH (DMT) are focussed on research and development of biotechnological coal conversion processes. Up to now investigations carried out in the project lead to a number of important results. During work on the project a great number of different microorganisms was found able to degrade or solubilize coal or lignite. Enzymatic as well as regulation mechanisms of the microbial depolymerization processes have been characterized successfully. (orig.)

  6. Thermogravimetric determination of the carbon dioxide reactivity of char from some New Zealand coals and its association with the inorganic geochemistry of the parent coal

    Energy Technology Data Exchange (ETDEWEB)

    Beamish, B.B.; Shaw, K.J.; Rodgers, K.A.; Newman, J. [University of Auckland, Auckland (New Zealand). Dept. of Geology

    1998-02-01

    Thermogravimetrically-determined carbon dioxide reactivities of char formed from New Zealand coals, ranging in rank from lignite to high volatile bituminous, vary from 0.12 to 10.63 mg/h/mg on a dry, ash-free basis. The lowest rank subbituminous coal chars have similar reactivities to the lignite coal chars. Calcium content of the char shows the strongest correlation with reactivity, which increases as the calcium content increases. High calcium per se does not directly imply a high char reactivity. Organically-bound calcium catalyses the conversion of carbon to carbon monoxide in the presence of carbon dioxide, whereas calcium present as discrete minerals in the coal matrix e.g., calcite, fails to significantly affect reactivity. Catalytic effects of magnesium, iron, sodium and phosphorous are not as obvious, but can be recognised for individual chars. The thermogravimetric technique provides a fast, reliable analysis that is able to distinguish char reactivity differences between coals, which may be due to any of the above effects. 27 refs., 6 figs., 4 tabs.

  7. Technology and use of lignite. Proceedings of the tenth biennial lignite symposium

    Energy Technology Data Exchange (ETDEWEB)

    Kube, W. R.; Gronhovd, G. H. [comps.

    1979-01-01

    The symposium on the technology and use of lignite was sponsored by the US Department of Energy and the University of North Dakota, and held at Grand Forks, North Dakota, May 30-31, 1979. Twenty-one papers from the proceedings of this tenth biennial lignite symposium have been entered into EDB and ERA and three also into EAPA. The papers discuss lignite deposits in the USA, mining plans, gasification and in-situ gasification, and combustion in fossil-fuel power plants. (LTN)

  8. Comparative analysis of large biomass & coal co-utilization units

    NARCIS (Netherlands)

    Liszka, M.; Nowak, G.; Ptasinski, K.J.; Favrat, D.; Marechal, F.

    2010-01-01

    The co-utilization of coal and biomass in large power units is considered in many countries (e.g. Poland) as fast and effective way of increasing renewable energy share in the fuel mix. Such a method of biomass use is especially suitable for power systems where solid fuels (hard coal, lignite) are

  9. The role of IGCC technology in power generation using low-rank coal

    Energy Technology Data Exchange (ETDEWEB)

    Juangjandee, Pipat

    2010-09-15

    Based on basic test results on the gasification rate of Mae Moh lignite coal. It was found that an IDGCC power plant is the most suitable for Mae Moh lignite. In conclusion, the future of an IDGCC power plant using low-rank coal in Mae Moh mine would hinge on the strictness of future air pollution control regulations including green-house gas emission and the constraint of Thailand's foreign currency reserves needed to import fuels, in addition to economic consideration. If and when it is necessary to overcome these obstacles, IGCC is one variable alternative power generation must consider.

  10. Partitioning of selected trace elements in coal combustion products from two coal-burning power plants in the United States

    Science.gov (United States)

    Swanson, Sharon M.; Engle, Mark A.; Ruppert, Leslie F.; Affolter, Ronald H.; Jones, Kevin B.

    2013-01-01

    Samples of feed coal (FC), bottom ash (BA), economizer fly ash (EFA), and fly ash (FA) were collected from power plants in the Central Appalachian basin and Colorado Plateau to determine the partitioning of As, Cr, Hg, Pb, and Se in coal combustion products (CCPs). The Appalachian plant burns a high-sulfur (about 3.9 wt.%) bituminous coal from the Upper Pennsylvanian Pittsburgh coal bed and operates with electrostatic precipitators (ESPs), with flue gas temperatures of about 163 °C in the ESPs. At this plant, As, Pb, Hg, and Se have the greatest median concentrations in FA samples, compared to BA and EFA. A mass balance (not including the FGD process) suggests that the following percentages of trace elements are captured in FA: As (48%), Cr (58%), Pb (54%), Se (20%), and Hg (2%). The relatively high temperatures of the flue gas in the ESPs and low amounts of unburned C in FA (0.5% loss-on-ignition for FA) may have led to the low amount of Hg captured in FA. The Colorado Plateau plant burns a blend of three low-S (about 0.74 wt.%) bituminous coals from the Upper Cretaceous Fruitland Formation and operates with fabric filters (FFs). Flue gas temperatures in the baghouses are about 104 °C. The elements As, Cr, Pb, Hg, and Se have the greatest median concentrations in the fine-grained fly ash product (FAP) produced by cyclone separators, compared to the other CCPs at this plant. The median concentration of Hg in FA (0.0983 ppm) at the Colorado Plateau plant is significantly higher than that for the Appalachian plant (0.0315 ppm); this higher concentration is related to the efficiency of FFs in Hg capture, the relatively low temperatures of flue gas in the baghouses (particularly in downstream compartments), and the amount of unburned C in FA (0.29% loss-on-ignition for FA).

  11. NO formation during oxy-fuel combustion of coal and biomass chars

    DEFF Research Database (Denmark)

    Zhao, Ke; Jensen, Anker Degn; Glarborg, Peter

    2014-01-01

    The yields of NO from combustion of bituminous coal, lignite, and biomass chars were investigated in O2/N2 and O2/CO 2 atmospheres. The experiments were performed in a laboratory-scale fixed-bed reactor in the temperature range of 850-1150 °C. To minimize thermal deactivation during char preparat......The yields of NO from combustion of bituminous coal, lignite, and biomass chars were investigated in O2/N2 and O2/CO 2 atmospheres. The experiments were performed in a laboratory-scale fixed-bed reactor in the temperature range of 850-1150 °C. To minimize thermal deactivation during char...

  12. Enteric virus removal inactivation by coal-based media

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.; Chaudhuri, M. [Indian Institute of Technology, Kanpur (India). Dept. of Civil Engineering

    1995-02-01

    Four coal-based media, viz. alum-pretreated or ferric hydroxide-impregnated Giridih bituminous coal and lignite (alum-GBC, Fe-GBC; alum-lignite and Fe-Lignite) were laboratory tested to assess their potential in removing/inactivating enteric viruses in water. Batch-sorption screening tests, employing a poliovirus-spiked canal water, indicated high poliovirus sorption by Fe-GBC and alum-GBC in a short contact time of 5 min. Based on the results of further batch-sorption tests, using silver incorporated media (alum/Ag-GBC, alum-GBC-Ag and Fe-GBC-Ag), as well as aesthetic water quality consideration and previous findings on removal of coliforms and turbidity, alum/Ag-GBC, alum-GBC and alum-GBC-AG were included in downflow column studies employing poliovirus-spiked canal water. All three media showed potential in removing/inactivating enteric viruses. In a separate column study employing a joint challenge of poliovirus and rotavirus, alum/Ag-GBC removed 59.3-86.5% of the viruses along with more than 99% reduction in indigenous heterotrophic bacteria. Alum/silver-pretreated bituminous coal medium appears promising for use in household water filters in rural areas of the developing world. However, improved medium preparation to further enhance its efficiency is needed; also, its efficacy in removing/inactivating indigenous enteric bacteria, viruses and protozoa has to be ensured and practicalities or economics of application need to be considered.

  13. Identification of nanominerals and nanoparticles in burning coal waste piles from Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Joana [Centro de Geologia, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Flores, Deolinda [Centro de Geologia, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Departamento de Geociencias, Ambiente e Ordenamento do Territorio, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Ward, Colin R. [School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052 (Australia); Silva, Luis F.O., E-mail: felipeqma@yahoo.com.br [Catarinense Institute of Environmental Research and Human Development, IPADHC, Capivari de Baixo, Santa Catarina (Brazil)

    2010-11-01

    A range of carbon nanoparticles, agglomerates and mineral phases have been identified in burning coal waste pile materials from the Douro Coalfield of Portugal, as a basis for identifying their potential environmental and human health impacts. The fragile nature and fine particle size of these materials required novel characterization methods, including energy-dispersive X-ray spectrometry (EDS), field-emission scanning electron microscope (FE-SEM), and high-resolution transmission electron microscopy (HR-TEM) techniques. The chemical composition and possible correlations with morphology of the nanominerals and associated ultra-fine particles have been evaluated in the context of human health exposure, as well as in relation to management of such components in coal-fire environments.

  14. Coal development potential in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Khan, M N; Pelofsky, A H [eds.

    1986-01-01

    A total of 48 papers were presented, and covered the following topics: the current situation in Pakistan with respect to development and utilization of coal resources; the policies that have been responsible for the development and utilization of coal resources in Pakistan; coal development and utilization in other developing nations e.g. Indonesia, Greece, Philippines, China, Thailand and Haiti; and technological developments in coal exploration; extraction, handling, transport and utilization which could accelerate future development of Pakistan's coal resources. Specific subjects covered include the use of coal in the cement industry of Pakistan; the production of briquettes for domestic use, development and training of personnel for the coal industry; and sources of finance for coal development projects. Particular emphasis is given throughout the conference to the Lakhra coal mine/power plant project which aims to develop and effectively utilize the lignite reserves of Sind Province. 47 papers have been abstracted separately.

  15. Coal mining situation in the Federal Republic of Germany. The 1st quarter 2017

    International Nuclear Information System (INIS)

    2017-01-01

    The paper reports on the coal mining in the Federal Republic of Germany in the 1st quarter of 2017. Statistical data are presented for mining, exports and imports of hard coal and lignite and for employees.

  16. Coal mining situation in the Federal Republic of Germany. The 1st quarter 2015

    International Nuclear Information System (INIS)

    2015-01-01

    The paper reports on the coal mining in the Federal Republic of Germany in the 1st quarter of 2015. Statistical data are presented for mining, exports and imports of hard coal and lignite and for employees.

  17. The development of the Ptolemais lignite deposit, present situation and future perspective of the electrical energy market (Greece)

    International Nuclear Information System (INIS)

    Kavourides, Kostas

    1997-01-01

    PPC is by far the major producer of solid fuels in Greece. Currently the known exploitable reserves of solid fuels, are 4,0 billions tones of lignite and 4 billion cubic meters of peat. Mining of Lignite in Greece started in 1951 at the Aliveri underground mine and was continued at the open cast mines at Ptolemais (1955) and Megalopolis (1919). For more than 45 years. PPC has successfully exploited the Greece Lignite deposit for the production of electricity in order to satisfy the demand in Greece. Today PPC produces 60 million tons of lignite and handles approximately 275 million cubic meters of masses (overburden, lignite and interculated) per year. Lignite is the main energy resource in Greece and its combustion provides 75-80% of the electrical energy consumed in Greece.The Lignite Center of Ptolemais - Amyndeon (LCP-A) operated by the Greece PPC is located in northern Greece, about 110 km west of the city of Thessaloniki. The lignite deposits under exploitation cover an area. of 120 km 2 including 4000 Mt of proven geological reserves and 2700 Mt of exploitable lignite under current economic and technological criteria. Today LCP-A manages six active mines which in 1997 have a rate of handling 245 mil cubic meter of material and producing approx. 48 mil for of lignite. The continuous mining method which employs BWES, conveyors and strackers is the principal mining method used in all the lignite mines at the Ptolemais-Amyndeon Lignite Center. The implementation of selective mining procedures as well as discontinuous and /or combined mining methods differentiates the mining technology at the LCP-A from the respective technology applied in Germany lignite mines. The quality properties suggest that the lignite deposits in Greece are among the world's worst quality deposits exploited for energy production, where approximately 2 kg of lignite are consumed per I kWh of generated power. The main advantages of PPC'S coal orientated development program are the following

  18. Research of lignite oxidation kinetic parameters modified by CuSO4 and NaNO3 initiation additives

    Directory of Open Access Journals (Sweden)

    Larionov Kirill

    2017-01-01

    Full Text Available An experimental study and subsequent analytical assessment of activation energy change in lignite oxidation process with addition of NaNO3 and CuSO4 mineral salts were conducted. The results showed that injection of catalytic additives leads to reduction of coal activation energy and reaction initial temperature.

  19. Co-pyrolysis of lignite and sugar beet pulp

    International Nuclear Information System (INIS)

    Yilgin, M.; Deveci Duranay, N.; Pehlivan, D.

    2010-01-01

    Today, worldwide studies have been undertaken on the biomass usage and co-conversion of biomass and coal to seek out alternative fuels for supplying energy in an environmental friendly way. The objective of this work is to study co-pyrolysis of lignite and sugar beet pulp in 50/50 (wt./wt.) ratio of blend pellets, to elucidate their thermal behaviour under pyrolysis conditions and to assess major decomposition products in terms of their yields. A special chamber, which has enabled very fast heating rates, was used in the pyrolysis experiments carried at 600 deg. C. The results were interpreted in the light of liquid, solid and gaseous yields, resulting from thermal decomposition, and kinetics of thermogravimetric analysis. Proximate volatile matter and ash contents of the blends were different compared to those found by using individual values. Sugar beet pulp decomposed faster within a relatively narrow temperature range than lignite and underwent a significant shrinkage during pyrolysis. It was found that the chars left behind after the flash pyrolysis of these pellets at 600 deg. C have substantial amounts of volatile matter that would evolve upon further heating.

  20. Developmental effects of aerosols and coal burning particles in zebrafish embryos

    International Nuclear Information System (INIS)

    Olivares, Alba; Drooge, Barend L. van; Casado, Marta; Prats, Eva; Serra, Montserrat; Ven, Leo T. van der; Kamstra, Jorke H.; Hamers, Timo; Hermsen, Sanne; Grimalt, Joan O.; Piña, Benjamin

    2013-01-01

    Embryo toxicity of particles generated by combustion processes is of special concern for human health. A significant part of these toxic effects is linked to the binding of some pollutants (like polycyclic aromatic hydrocarbons or PAHs) to the Aryl hydrocarbon Receptor (AhR) and the activation of target genes, like the cytochrome P4501A. This activity was analyzed for ambient air and coal-combustion particle extracts in zebrafish embryos (the cyp1aDarT assay) and in two single-cell bioassays: the yeast-based YCM-RYA and the DR-luc (rat cells) assay. Observed AhR ligand activity of samples generally correlated to the predicted toxic effect according to their PAH composition, except for one of the coal combustion samples with an anomalously high activity in the cyp1aDarT assay. This sample induced deformities in zebrafish embryos. We concluded that the combination of morphological and molecular assays may detect embryonic toxic effects that cannot be predicted from chemical analyses or single-cell bioassays. -- Highlights: ► Samples from air particulated matter and coal waste gob showed embryo toxicity in zebrafish. ► PAHs composition of samples does not adequately predict the toxic effects in zebrafish. ► Active coal waste gob samples show maximal AhR-ligand activity and induce deformations in zebrafish embryos. -- Aerosols and coal burning particles showed a strong developmental toxicity in zebrafish, in a degree that cannot be directly predicted from chemical analyses or single-cell bioassays

  1. Coal fly ash based carbons for SO2 removal from flue gases.

    Science.gov (United States)

    Rubio, B; Izquierdo, M T

    2010-07-01

    Two different coal fly ashes coming from the burning of two coals of different rank have been used as a precursor for the preparation of steam activated carbons. The performance of these activated carbons in the SO(2) removal was evaluated at flue gas conditions (100 degrees C, 1000 ppmv SO(2), 5% O(2), 6% H(2)O). Different techniques were used to determine the physical and chemical characteristics of the samples in order to explain the differences found in their behaviour. A superior SO(2) removal capacity was shown by the activated carbon obtained using the fly ash coming from a sub-bituminous-lignite blend. Experimental results indicated that the presence of higher amount of certain metallic oxides (Ca, Fe) in the carbon-rich fraction of this fly ash probably has promoted a deeper gasification in the activation with steam. A more suitable surface chemistry and textural properties have been obtained in this case which explains the higher efficiency shown by this sample in the SO(2) removal. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. Infrared absorption characteristics of hydroxyl groups in coal tars

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, S A; Chu, C J; Hange, R H; Margrave, J L

    1987-01-01

    Tar evolution was observed over a temperature range of 150-600 C for four coals. Pittsburgh bituminous, Illinois No.6, Rawhide subbituminous, and Texas lignite. Isolation of the evolved tars in a nitrogen matrix at 15 degrees K produced better resolved infrared spectra than those in a coal matrix, thus enhancing structural characterization of the tar molecules. Two distinct hydroxyl functional groups in the tar molecules free of hydrogen bonding were identified for the first time without interference from H/sub 2/O absorptions. These absorptions at 3626.5 cm/sup -1/ have been assigned to phenolic hydroxyls. It is suggested that carboxylic and aliphatic hydroxyl groups do not survive the vaporization process. Tars from Illinois No.6 were found to contain the largest amount of phenolic hydroxyl; Pittsburgh No. 8 tar contains approximately half of that for Illinois No.6 while Rawhide and Texas lignite contain much less phenolic than either of the other coals. 10 references, 6 figures, 1 table.

  3. Source apportionment by PMF on elemental concentrations obtained by PIXE analysis of PM10 samples collected at the vicinity of lignite power plants and mines in Megalopolis, Greece

    International Nuclear Information System (INIS)

    Manousakas, M.; Diapouli, E.; Papaefthymiou, H.; Migliori, A.; Karydas, A.G.; Padilla-Alvarez, R.; Bogovac, M.; Kaiser, R.B.; Jaksic, M.; Bogdanovic-Radovic, I.; Eleftheriadis, K.

    2015-01-01

    Particulate matter (PM) is an important constituent of atmospheric pollution especially in areas under the influence of industrial emissions. Megalopolis is a small city of 10,000 inhabitants located in central Peloponnese in close proximity to three coal opencast mines and two lignite fired power plants. 50 PM 10 samples were collected in Megalopolis during the years 2009–11 for elemental and multivariate analysis. For the elemental analysis PIXE was used as one of the most effective techniques in APM analytical characterization. Altogether, the concentrations of 22 elements (Z = 11–33), whereas Black Carbon was also determined for each sample using a reflectometer. Factorization software was used (EPA PMF 3.0) for source apportionment analysis. The analysis revealed that major emission sources were soil dust 33% (7.94 ± 0.27 μg/m 3 ), biomass burning 19% (4.43 ± 0.27 μg/m 3 ), road dust 15% (3.63 ± 0.37 μg/m 3 ), power plant emissions 13% (3.01 ± 0.44 μg/m 3 ), traffic 12% (2.82 ± 0.37 μg/m 3 ), and sea spray 8% (1.99 ± 0.41 μg/m 3 ). Wind trajectories have suggested that metals associated with emission from the power plants came mainly from west and were connected with the locations of the lignite mines located in this area. Soil resuspension, road dust and power plant emissions increased during the warm season of the year, while traffic/secondary, sea spray and biomass burning become dominant during the cold season

  4. Source apportionment by PMF on elemental concentrations obtained by PIXE analysis of PM10 samples collected at the vicinity of lignite power plants and mines in Megalopolis, Greece

    Science.gov (United States)

    Manousakas, M.; Diapouli, E.; Papaefthymiou, H.; Migliori, A.; Karydas, A. G.; Padilla-Alvarez, R.; Bogovac, M.; Kaiser, R. B.; Jaksic, M.; Bogdanovic-Radovic, I.; Eleftheriadis, K.

    2015-04-01

    Particulate matter (PM) is an important constituent of atmospheric pollution especially in areas under the influence of industrial emissions. Megalopolis is a small city of 10,000 inhabitants located in central Peloponnese in close proximity to three coal opencast mines and two lignite fired power plants. 50 PM10 samples were collected in Megalopolis during the years 2009-11 for elemental and multivariate analysis. For the elemental analysis PIXE was used as one of the most effective techniques in APM analytical characterization. Altogether, the concentrations of 22 elements (Z = 11-33), whereas Black Carbon was also determined for each sample using a reflectometer. Factorization software was used (EPA PMF 3.0) for source apportionment analysis. The analysis revealed that major emission sources were soil dust 33% (7.94 ± 0.27 μg/m3), biomass burning 19% (4.43 ± 0.27 μg/m3), road dust 15% (3.63 ± 0.37 μg/m3), power plant emissions 13% (3.01 ± 0.44 μg/m3), traffic 12% (2.82 ± 0.37 μg/m3), and sea spray 8% (1.99 ± 0.41 μg/m3). Wind trajectories have suggested that metals associated with emission from the power plants came mainly from west and were connected with the locations of the lignite mines located in this area. Soil resuspension, road dust and power plant emissions increased during the warm season of the year, while traffic/secondary, sea spray and biomass burning become dominant during the cold season.

  5. JV Task 126 - Mercury Control Technologies for Electric Utilities Burning Bituminous Coal

    Energy Technology Data Exchange (ETDEWEB)

    Jason Laumb; John Kay; Michael Jones; Brandon Pavlish; Nicholas Lentz; Donald McCollor; Kevin Galbreath

    2009-03-29

    The EERC developed an applied research consortium project to test cost-effective mercury (Hg) control technologies for utilities burning bituminous coals. The project goal was to test innovative Hg control technologies that have the potential to reduce Hg emissions from bituminous coal-fired power plants by {ge}90% at costs of one-half to three-quarters of current estimates for activated carbon injection (ACI). Hg control technology evaluations were performed using the EERC's combustion test facility (CTF). The CTF was fired on pulverized bituminous coals at 550,000 Btu/hr (580 MJ/hr). The CTF was configured with the following air pollution control devices (APCDs): selective catalytic reduction (SCR) unit, electrostatic precipitator (ESP), and wet flue gas desulfurization system (WFDS). The Hg control technologies investigated as part of this project included ACI (three Norit Americas, Inc., and eleven Envergex sorbents), elemental mercury (Hg{sup 0}) oxidation catalysts (i.e., the noble metals in Hitachi Zosen, Cormetech, and Hitachi SCR catalysts), sorbent enhancement additives (SEAs) (a proprietary EERC additive, trona, and limestone), and blending with a Powder River Basin (PRB) subbituminous coal. These Hg control technologies were evaluated separately, and many were also tested in combination.

  6. Lignite; Braunkohle

    Energy Technology Data Exchange (ETDEWEB)

    Kaltenbach, Erwin; Maassen, Uwe [Debriv e.V., Berlin und Koeln (Germany)

    2015-07-01

    The domestic lignite is the most important and in the foreseeable future, the only domestic energy resource that is available in large quantities and economically. It makes an essential contribution to secure and competitive energy supply and has a high regional as macroeconomic importance. The required guarantied capacity for the development of renewable energy, the lignite provides under competition conditions. The flexibility of the lignite power plants is in addition to security of supply and competitiveness, a strategic added value for a reliable power supply. [German] Die heimische Braunkohle ist die wichtigste und in ueberschaubarer Zukunft auch die einzige heimische Energieressource, die in grossen Mengen und wirtschaftlich zur Verfuegung steht. Sie leistet einen unverzichtbaren Beitrag zur sicheren und wettbewerbsfaehigen Energieversorgung und hat eine hohe regional- wie gesamtwirtschaftliche Bedeutung. Die fuer den Ausbau der erneuerbaren Energien notwendige gesicherte Leistung stellt die Braunkohle unter Wettbewerbsbedingungen zur Verfuegung. Die Flexibilitaet des Braunkohlenkraftwerksparks ist neben Versorgungssicherheit und Wettbewerbsfaehigkeit ein strategischer Zusatznutzen fuer eine sichere Stromversorgung.

  7. Activated-Lignite-Based Super Large Granular Slow-Release Fertilizers Improve Apple Tree Growth: Synthesis, Characterizations, and Laboratory and Field Evaluations.

    Science.gov (United States)

    Tang, Yafu; Wang, Xinying; Yang, Yuechao; Gao, Bin; Wan, Yongshan; Li, Yuncong C; Cheng, Dongdong

    2017-07-26

    In this work, lignite, a low-grade coal, was modified using the solid-phase activation method with the aid of a Pd/CeO 2 nanoparticle catalyst to improve its pore structure and nutrient absorption. Results indicate that the adsorption ability of the activated lignite to NO 3 - , NH 4 + , H 2 PO 4 - , and K + was significantly higher than that of raw lignite. The activated lignite was successfully combined with the polymeric slow-release fertilizer, which exhibits typical slow-release behavior, to prepare the super large granular activated lignite slow-release fertilizer (SAF). In addition to the slow-release ability, the SAF showed excellent water-retention capabilities. Soil column leaching experiments further confirmed the slow-release characteristics of the SAF with fertilizer nutrient loss greatly reduced in comparison to traditional and slow-release fertilizers. Furthermore, field tests of the SAF in an orchard showed that the novel SAF was better than other tested fertilizers in improve the growth of young apple trees. Findings from this study suggest that the newly developed SAF has great potential to be used in apple cultivation and production systems in the future.

  8. THE ISSUE OF BROWN COAL QUALITY ON THE BASIS OF PHYSICOCHEMICAL PARAMETERS

    OpenAIRE

    Škvarekova, Erika; Kozakova, L'ubica

    2011-01-01

    Coal is expected to remain the dominant fuel for electricity generation in the Slovak republic for a considerable time in the future. Mining of lignite and brown coal is necessary for security and stabilizes the electricity systems of this republic through the heat power Nováky (ENO). Coal combustion processes represent a significant potential for contamination of environmental components. The elemental composition of coal from the mine Cígeľ showed that coal contains variable amount of arsen...

  9. Investigation of sulfur-polycyclic aromatic hydrocarbon in coal derived tars of pyrolysis and hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Li, B.; Zhang, B. [Chinese Academy of Sciences, Taiyuan (China). State Key Laboratory of Coal Conversion

    1999-07-01

    A study was undertaken to characterize sulphur forms in coal derived tars from pyrolysis and hydropyrolysis of bituminous coal and lignite. The pyrolysis tars were analyzed for content of polycyclic aromatic sulfur hydrocarbons (PASH). 5 refs., 3 figs., 3 tabs.

  10. Neyveli lignite - a status overview

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, G L

    1984-11-14

    The lignite mines of the Neyveli Lignite Corporation in Tamil Nadu in India are described: characteristics of the deposit; choice of mining method (surface mining); groundwater control; storm water control; overburden removal; mining equipment (bucket wheel excavators, belt conveyors and spreaders); generation of electric power; production of fertilizer; production of lignite briquettes and tar products. A second mine and thermal power plant are planned.

  11. Evaluation of Rare Earth Element Extraction from North Dakota Coal-Related Feed Stocks

    Science.gov (United States)

    Laudal, Daniel A.

    The rare earth elements consist of the lanthanide series of elements with atomic numbers from 57-71 and also include yttrium and scandium. Due to their unique properties, rare earth elements are crucial materials in an incredible array of consumer goods, energy system components and military defense applications. However, the global production and entire value chain for rare earth elements is dominated by China, with the U.S. currently 100% import reliant for these critical materials. Traditional mineral ores including previously mined deposits in the U.S., however, have several challenges. Chief among these is that the content of the most critical and valuable of the rare earths are deficient, making mining uneconomical. Further, the supply of these most critical rare earths is nearly 100% produced in China from a single resource that is only projected to last another 10 to 20 years. The U.S. currently considers the rare earths market an issue of national security. It is imperative that alternative domestic sources of rare earths be identified and methods developed to produce them. Recently, coal and coal byproducts have been identified as one of these promising alternative resources. This dissertation details a study on evaluation of the technical and economic feasibility of rare earth element recovery from North Dakota lignite coal and lignite-related feedstocks. There were four major goals of this study: i) identify lignite or lignite-related feedstocks with total rare earth element content above 300 parts per million, a threshold dictated by the agency who funded this research as the minimum for economic viability, ii) determine the geochemistry of the feedstocks and understand the forms and modes of occurrence of the rare earth elements, information necessary to inform the development of extraction and concentration methods, iii) identify processing methods to concentrate the rare earth elements from the feedstocks to a target of two weight percent, a value

  12. Analysis of Porous Structure Parameters of Biomass Chars Versus Bituminous Coal and Lignite Carbonized at High Pressure and Temperature—A Chemometric Study

    Directory of Open Access Journals (Sweden)

    Adam Smoliński

    2017-09-01

    Full Text Available The characteristics of the porous structure of carbonized materials affect their physical properties, such as density or strength, their sorption capacity, and their reactivity in thermochemical processing, determining both their applicability as fuels or sorbents and their efficiency in various processes. The porous structure of chars is shaped by the combined effects of physical and chemical properties of a carbonaceous material and the operating parameters applied in the carbonization process. In the study presented, the experimental dataset covering parameters of various fuels, ranging from biomass through lignite to bituminous coal, and chars produced at 1273 K and under the pressure of 1, 2, 3, and 4 MPa was analyzed with the application of the advanced method of data exploration. The principal component analysis showed that the sample of the highest coal rank was characterized by lower values of parameters reflecting the development of the porous structure of chars. A negative correlation was also observed between the carbon content in a fuel and the evolution of the porous structure of chars at high pressure. The highest total pore volume of chars produced under 1 and 3 MPa and the highest micropore surface area under 3 MPa were reported for a carbonized fuel sample of the highest moisture content.

  13. Co-Liquefaction of Elbistan Lignite with Manure Biomass; Part 3 - Effect of Reaction Time and Temperature

    Science.gov (United States)

    Koyunoglu, Cemil; Karaca, Hüseyin

    2017-12-01

    Most of the liquefaction process were carried out in a batch reactor, in which the residence time of the liquefaction products is long enough to favour the retrogressive reactions. To minimize retrogressive reactions, the liquefaction of coal was carried out in a flowing solvent reactor in which a fixed bed of coal is continuously permeated by hot solvent. Solvent flowing through the coal bed carries the liquefaction products out of the reactor. Unlike experiments carried out under similar conditions in a batch reactor no increase in solid residue is observed during long time high temperature runs in the flowing solvent reactor. There is a greater appreciation of the importance of retrograde, or polymerization, reactions. If the free radicals formed when coal breaks down are not quickly capped with hydrogen, they react with each other to form large molecules that are much harder to break down than the original coal. Reaction time impacts both the co-liquefaction cost and the product yield. So as to study this idea, the experiments of Elbistan Lignite (EL) with manure co-liquefaction carried out by changing the reaction time from 30 to 120 minutes. As a result, the greatest oil products yields obtained at 60 minutes. Therefore, by thinking about the oil products yield values acquired, the optimal reaction time was obtained to be 60 minutes for Elbistan lignite (EL) with manure liquefied with the temperature of 350°C and 400°C. Above 425°C did not examine because solvent (tetraline) loses its function after 425 °C. The obtained optimum temperature found 400°C due to higher total conversion of liquefaction products and also oil+gas yields.

  14. Changes of learning and memory ability and brain nicotinic receptors of rat offspring with coal burning fluorosis

    Energy Technology Data Exchange (ETDEWEB)

    Gui, C.Z.; Ran, L.Y.; Li, J.P.; Guan, Z.Z. [Guiyang Medical College, Guiyang (China). Dept. of Pathology

    2010-09-15

    The purpose of the investigation is to reveal the mechanism of the decreased ability of learning and memory induced by coal burning fluorosis. Ten offspring SD rats aged 30 days, who were born from the mothers with chronic coal burning fluorosis, and ten offspring with same age from the normal mothers as controls were selected. Spatial learning and memory of the rats were evaluated by Morris Water Maze test. Cholinesterase activity was detected by photometric method. The expressions of nicotinic acetylcholine receptors (nAChRs) at protein and mRNA levels were detected by Western blotting and Real-time PCR, respectively. The results showed that in the rat offspring exposed to higher fluoride as compared to controls, the learning and memory ability declined; the cholinesterase activities in the brains were inhibited; the protein levels of alpha 3, alpha 4 and alpha 7 nAChR subunits were decreased which showed certain significant correlations with the declined learning and memory ability; and the mRNA levels of alpha 3 and alpha 4 nAChRs were decreased, whereas the alpha 7 mRNA increased. The data indicated that coal burning fluorosis can induce the decreased ability of learning and memory of rat offspring, in which the mechanism might be connected to the changed nAChRs and cholinesterase.

  15. Geothermal, Geochemical and Geomagnetic Mapping Of the Burning Coal Seam in Fire- Zone 18 of the Coal Mining Area Wuda, Inner Mongolia, PR China.

    Science.gov (United States)

    Kessels, W.; Han, J.; Halisch, M.; Lindner, H.; Rueter, H.; Wuttke, M. W.

    2008-12-01

    Spontaneous combustion of coal has become a world wide problem caused by and affecting technical operations in coal mining areas. The localization of the burning centre is a prerequisite for any planning of fire fighting operations. In the German - Chinese coal fire project sponsored by the German Ministry of Science and Technologies (Grant No. 0330490K) the so called fire zone 18 of the coal mining area of Wuda (InnerMongolia, PR China) serves as a test area for geophysical measurements. For the geothermal and geochemical mapping 25 up to 1m deep boreholes with a diameter of approx. 30 mm are distributed over the particular fire-zone with an extension of 320 × 180 m2. To avoid the highly dynamic gas flow processes in fire induced fractures caused by weather conditions, all boreholes were situated in the undisturbed rock compartments. In these boreholes, plastic tubes of 12 mm diameter provide access to the borehole ground filled with highly permeable gravel. The boreholes are otherwise sealed to the atmosphere by clay. The geothermal observations consist of measurements of temperature profiles in the boreholes and thermal conductivity measurement on rock samples in the lab. For depths greater then 0.2 m diurnal variations in the temperature gradient were neglected. The derived heat flow with maximum values of 80 W/m2 is more then three orders of magnitude higher than the natural undisturbed heat flow. The high heat flow suggests that the dominant heat transport is gas convection through the system of porous rock and fractures. Any temperature anomaly caused by the burning coal in a depth of more than 18 m would need years to reach the surface by a heat transport restricted to conduction. The geochemical soil gas probing is performed by gas extraction from the boreholes. Measured are the concentrations of O2, CO, CO2, H2S and CH4. The O2 deficit in the soil air and the concentrations of the other combustion products compared to the concentrations in the free

  16. Trends in coal use - global, EU and Poland

    Science.gov (United States)

    Suwała, Wojciech; Wyrwa, Artur; Olkuski, Tadeusz

    2017-11-01

    That aim of this paper is to compare trends in global, European use of coal with tendencies in Poland, one of heavy coal dependent countries. Polish power generation is unique among OECD countries, the share of both hard coal and lignite in power generation reaches 81% [1]. Climate policy of European Union is to phase out intensive greenhouse gases sectors, thus to transform Polish power generation into less carbon intensive. Although such policy is generally accepted in Poland, the paste and practically proposed regulation that excludes coal generation from capacity mechanisms, is considered as threat to energy security. Coal is the base for generation for one simple reason, abundant in European scale hard coal reserves and significant capacities in lignite. Natural gas reserves allow to supply about 1/3 of consumption, but prices and supplies dependent hitherto on contracts with GAZPROM did not allow to develop significant generation capacities. Renewable resources are limited, there is not much possibilities for hydro, wind and solar. Poland is also one of the countries of poor air quality, traditional coal based space heating systems plus obsolete car fleet generate vast emissions, especially during the winter. Only recently this became top priority of environmental authorities. This situation is subject to transformation, government, managers are aware that the role of coal needs to be decreased, but there are two main questions, the paste of transformation and the future energy mix. The paper attempts to answer the question whether the expected changes in Polish energy mix are comparable or differ from the global and European tendencies.

  17. Demonstration of the Viability and Evaluation of Production Costs for Biomass-Infused Coal Briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Kamshad, Kourosh [Coaltek Incorporated, Tucker, GA (United States)

    2014-04-01

    This project was split into four main areas, first to identify the best combination of coal and biomass, second, create and test lab quantity of preferred combinations, Third, create a sizeable quantity for larger scale handling and consuming analysis and fourth, to provide analysis for a commercial scale production capacity. Samples of coal and biomass were collected. Five coals, representing the three major coal ranks, were collected including one bituminous, two sub-bituminous, and two lignite samples. In addition, three square bales (~50 lbs/bale) each of corn Stover and switch grass were collected with one bale of each sample processed through a hammer mill to approximately -5 mesh. A third sample of sawdust was collected once experimentation began at the University of Kentucky. Multiple combinations of coal and biomass; coal, biomass, with biomass binder, were tested until a formulation was identified that could meet the requirement criteria. Based on the results of the binderless briquetting evaluations, the CS/Sub-bit combinations was selected for extended evaluation at a 10% biomass addition rate while the WS/Bitum combination was selected for extended evaluation at a 30% biomass-addition rate. With the final results of the selection process complete, the CoalTek continuous production pilot plant in Tucker GA was outfitted with the specialized blending equipment and two 1/4 ton production runs of biomass and binder subbituminous coal briquettes were completed. These briquettes were later used for a calorific test burn at the University of North Dakota. The first formulation included subbituminous coal, corn stover and a corn starch binder the second formulation included subbituminous coal, wheat stover and corn starch binder.

  18. Development of biological coal gasification (MicGAS process). Final report, May 1, 1990--May 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    ARCTECH has developed a novel process (MicGAS) for direct, anaerobic biomethanation of coals. Biomethanation potential of coals of different ranks (Anthracite, bitumious, sub-bitumious, and lignites of different types), by various microbial consortia, was investigated. Studies on biogasification of Texas Lignite (TxL) were conducted with a proprietary microbial consortium, Mic-1, isolated from hind guts of soil eating termites (Zootermopsis and Nasutitermes sp.) and further improved at ARCTECH. Various microbial populations of the Mic-1 consortium carry out the multi-step MicGAS Process. First, the primary coal degraders, or hydrolytic microbes, degrade the coal to high molecular weight (MW) compounds. Then acedogens ferment the high MW compounds to low MW volatile fatty acids. The volatile fatty acids are converted to acetate by acetogens, and the methanogens complete the biomethanation by converting acetate and CO{sub 2} to methane.

  19. Report on evaluation/selection surveys on coal species, processes and others. Appendix; Tanshu process nado hyoka sentei chosa hokokusho. Furoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    This report, consisting of 7 chapters, summarizes literature related to liquefaction of coal. Chapter 1 describes the results of the (Project Lignite), i.e., development of the concept of two-stage liquefaction of lignite. Chapter 2 describes the COSTEAM process, which uses synthesis gas (CO-H{sub 2}) as the reducing agent and coal moisture as the hydrogen source for liquefaction of coal of low degree of carbonization, e.g., brown coal. Chapter 3 describes solubilization of coal with alcohol, where coal is reacted with ethanol and NaOH at 300 to 420 degrees C. Chapter 4 describes liquefaction of coal and production of lighter products with tetrahydroquinoline as the hydrogen donor. Chapter 5 describes low-temperature carbonization as the process for liquefying coal, in particular brown coal. Chapter 6 describes possibility of development of new liquefaction techniques for brown coal, including solvolysis for liquefaction, role, recovery and reuse of catalysts, short contact time processes, and coal pretreatment. Chapter 7 describes economic viability of the secondary hydrogenation. (NEDO)

  20. The shell coal gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Koenders, L.O.M.; Zuideveld, P.O. [Shell Internationale Petroleum Maatschappij B.V., The Hague (Netherlands)

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  1. Catalytic effect of lignite ash on steam gasification of oil sand coke

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Palmer, A.

    1986-06-16

    Steam gasification of Suncor and Syncrude cokes was carried out in the presence of ash obtained after burning Onakawana lignite. Catalytic effects of the ash were evident at 930 C whereas at 830 C little effect was observed. These observations were attributed to the combined actions of Ca- and Fe-containing species in the ash, in which the former neutralized the sulfur in the cokes to prevent poisoning of Fe oxides. 5 tabs., 5 figs., 15 refs.

  2. CO2 Emission Factors for Coals

    Directory of Open Access Journals (Sweden)

    P. Orlović-Leko

    2015-03-01

    Full Text Available Emission factors are used in greenhouse gas inventories to estimate emissions from coal combustion. In the absence of direct measures, emissions factors are frequently used as a quick, low cost way to estimate emissions values. Coal combustion has been a major contributor to the CO2 flux into the atmosphere. Nearly all of the fuel carbon (99 % in coal is converted to CO2 during the combustion process. The carbon content is the most important coal parameter which is the measure of the degree of coalification (coal rank. Coalification is the alteration of vegetation to form peat, succeeded by the transformation of peat through lignite, sub-bituminous, bituminous to anthracite coal. During the geochemical or metamorphic stage, the progressive changes that occur within the coal are an increase in the carbon content and a decrease in the hydrogen and oxygen content resulting in a loss of volatiles. Heterogeneous composition of coal causes variation in CO2 emission from different coals. The IPCC (Intergovernmental Panel on Climate Change has produced guidelines on how to produce emission inventories which includes emission factors. Although 2006 IPCC Guidelines provided the default values specified according to the rank of the coal, the application of country-specific emission factors was recommended when estimating the national greenhouse gas emissions. This paper discusses the differences between country-specific emission factors and default IPCC CO2 emission factors, EF(CO2, for coals. Also, this study estimated EF(CO2 for two different types of coals and peat from B&H, on the basis fuel analyses. Carbon emission factors for coal mainly depend on the carbon content of the fuel and vary with both rank and geographic origin, which supports the idea of provincial variation of carbon emission factors. Also, various other factors, such as content of sulphur, minerals and macerals play an important role and influence EF(CO2 from coal. Carbonate minerals

  3. Synthetic-fuel production using Texas lignite and a very-high-temperature gas-cooled reactor for process heat and electrical power generation

    International Nuclear Information System (INIS)

    Ross, M.A.; Klein, D.E.

    1981-05-01

    This report presents two alternatives to increased reliance on foreign energy sources; each method utilizes the abundant domestic resources of coal, uranium, and thorium. Two approaches are studied in this report. First, the gasification and liquefaction of coal are accomplished with Lurgi gasifiers and Fischer-Tropsch synthesis. A 50,000 barrel per day facility, consuming 15 million tons of lignite coal per year, is used. Second, a nuclear-assisted coal conversion approach is studied using a very high temperature gas-cooled reactor with a modified Lurgi gasifier and Fischer-Tropsch synthesis. This is a preliminary report presenting background data and a means of comparison for the two approaches considered

  4. Isotopic and chemical characterization of coal in Pakistan

    International Nuclear Information System (INIS)

    Qureshi, R.M.; Hasany, S.M.; Javed, T.; Sajjad, M.I.; Shah, Z.; Rehman, H.

    1993-11-01

    Stable carbon isotope ratios (delta/sup 13/C PDB) and toxic/trace element concentration levels are determined for Tertiary coal samples collected from seven coal fields in Pakistan. No systematic isotope effects are found in the process of coal liquefaction from peat to Tertiary lignites and sub bituminous coal. Similarly, no age effects are observed during the Tertiary regime. The observed variations in the carbon isotopic composition of coal obtained from 'Sharigh coal field' and the 'Sor-Range/Degari coal field' in Baluchistan are attributed to the depositional environments. More sampling of stable carbon isotope analysis are required to validate these observations. Significant concentrations of toxic elements such as S, Cr, Cd and Pb in Makarwal coal may pose environmental and engineering/operational problems for thermal power plants. (author)

  5. Coal combustion technology in China

    International Nuclear Information System (INIS)

    Huang, Z.X.

    1994-01-01

    Coal is the most important energy source in China, the environmental pollution problem derived from coal burning is rather serious in China. The present author discusses coal burning technologies both in boilers and industrial furnaces and their relations with environmental protection problems in China. The technological situations of Circulating Fluidized Bed Coal Combustor, Pulverized Coal Combustor with Aerodynamic Flame Holder and Coal Water Slurry Combustion have been discussed here as some of the interesting problems in China only. (author). 3 refs

  6. Coal: an economic source of energy

    International Nuclear Information System (INIS)

    Ali, I.; Ali, M.M.

    2001-01-01

    Coal, in spite its abundance availability in Pakistan, is a neglected source of energy. Its role as fuel is not more than five percent for the last four decades. Some of the coal, mined, in used as space heating in cold areas of Pakistan but more than 90% is being used in brick kilns. There are 185 billion tonnes of coal reserves in the country and hardly 3 million tonnes of coal is, annually, mined. Lakhra coal field is, presently, major source of coal and is considered the largest productive/operative coal field of Pakistan. It is cheaper coal compared to other coals available in Pakistan. As an average analysis of colas of the country, it shows that most of the coals are lignitic in nature with high ash and sulfur content. The energy potential is roughly the same but the cost/ton of coal is quite different. It may be due to methods of mining. There should be some criteria for fixing the cost of the coal. It should be based on energy potential of unit mass of coal. (author)

  7. Optimization of a lignite-fired open pulverizing system boiler process based on variations in the drying agent composition

    International Nuclear Information System (INIS)

    Ma, Youfu; Zhang, Hua; Yuan, Yichao; Wang, Zhiyun

    2015-01-01

    This paper evaluates three lignite-fired OPSB (open pulverizing system boiler) processes, named OPSB-A, OPSB-B and OPSB-C, corresponding to three options of drying agents used for the pulverizing systems. OPSB-B is similar to our previous work [18] on drying agent composition. Performances of the three OPSBs were calculated and compared with a 600 MW lignite-fired boiler as the reference. The results showed that the coal savings of OPSB-A and OPSB-C were 5.41% and 4.06% in comparison with the reference boiler, whereas for OPSB-B, the savings was 2.57%. Accordingly, emissions of each OPSB could be reduced in proportion to the coal savings. Among the three OPSBs, OPSB-C showed the best performance of water recovery from mill-exhausts because it had the highest mill-exhaust water dew point of 73.2 °C, whereas the exhaust dew points of OPSB-A and OPSB-B were 63.9 °C and 70.9 °C, respectively. Both OPSB-C and OPSB-B are beneficial for achieving a high mill-exhaust humidity ratio, which facilitates water recovery from the mill-exhaust, and a low oxygen content in mill-exhaust, which improves the operating safety of the pulverizing systems, whereas OPSB-A is relatively inferior in these respects. The OPSB-C process is recommended for engineering applications because of its favorable overall performances. - Highlights: • Three lignite-fired OPSB processes are analyzed based on a conventional 600 MW boiler. • OPSB-A, OPSB-B and OPSB-C show coal savings of 5.41%, 2.57 and 4.06%, respectively. • All OPSBs have a great advantage of water recovery from the flue gas, especially OPSB-C. • OPSB-C process is recommended in view of its favorable overall performances

  8. Petrology, palynology and organic geochemistry of Eocene lignite of Matanomadh, Kutch Basin, western India: Implications to depositional environment and hydrocarbon source potential

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Suryendu; Mathews, Runcie P.; Saraswati, Pratul K.; Banerjee, Santanu [Department of Earth Sciences, Indian Institute of Technology Bombay (India); Singh, Bhagwan D.; Tripathi, Suryakant M.; Singh, Alpana [Birbal Sahni Institute of Palaeobotany, Lucknow (India); Mann, Ulrich [Forschungszentrum Juelich (Germany). Institut fuer chemie und Dynamik der Geosphaere

    2011-01-01

    Petrological, palynological and organic-geochemical investigations were undertaken to determine the source vegetation, depositional conditions and hydrocarbon source potential of Eocene Matanomadh lignites from Kutch Basin, western India. The maceral study reveals that studied lignites are rich in huminite (av. 63%) with sub-ordinate amount of liptinite (av. 19%) and low inertinite (av. 3%), along with low to moderately high associated mineral matters (av. 15%). The overall petrographic composition points to a lagoonal condition for the formation of these lignites. The mean huminite reflectance values (R{sub r}: 0.28-0.34%, av. 0.31%) as well as low Rock-Eval T{sub max} (av. 417 C) values for the seams, suggest brown coal or lignitic stage/rank for the studied lignites. The palynological assemblages, dominated by tropical angiospermic pollen, suggest prevalence of warm humid tropical climate during the deposition of these lignites. The total organic carbon (TOC) content of lignites ranges between 26 and 58 wt.%, whereas the TOC content of the associated carbonaceous shales is around 4 wt.%. The Hydrogen Index (HI) ranging from 23 to 452 mg HC/g TOC indicates that the lignite sequence has the potential to produce mixed oil and gaseous hydrocarbons on maturation. The major pyrolysis products of lignites, derived from Curie point pyrolysis-GC-MS, are straight chain aliphatics, phenols and cadalene-based C{sub 15} bicyclic sesquiterpenoids. The exclusive occurrence of C{sub 15} bicyclic sesquiterpenoids suggests that these compounds are derived from dammar resin of angiosperm plants, belonging to family Dipterocarpaceae. (author)

  9. SO2 emission reducing by Ca(OH)2 using at combustion of coal from East-Maritsa basin

    International Nuclear Information System (INIS)

    Batov, S.; Gadzhanov, P.; Popov, D.; Panchev, T.; Mikhajlov, Ya.; Shushulov, D.; Grozev, A.

    1997-01-01

    The 'Maritsa-Iztok' coal field contains about 65% of the lignite and 57% of the Bulgarian coal resources.The 'Maritsa-Iztok' lignite coal have a low combustion temperature and high concentration of ashes, moisture and sulfur. The concentration of sulphur oxides emitted is about 800 000 t per year, which is among the highest concentrations for Europe. In order to reduce the sulphur concentration, theoretical and experimental studies have been performed. A determination of the efficiency of some new methods for SO 2 reduction has been done. In this paper the results from experiments using Ca(OH) 2 as reagent, are presented. The experimental facility is a non-cooled combustion chamber which provides the same conditions as in the lignite coal boilers. In the experiments ground and dried lignite coal have been used. The controlled values are O 2 , CO, NO x , SO 2 , as well as the temperature of the hot and cold air and the combustion products after the cooler and absorber. Four different technologies have been performed. The first is adding of Ca(OH) 2 which give about 30% maximal SO 2 reducing for grain size 45μm and Ca/S=1.6. The obtaining of this small size is now difficult. The second technology is introduction of Ca(OH) 2 in the combustion chamber at a temperature 900-1050 o C. The cleaning efficiency is about 48.5% for the optimal concentration of the additive. As a washing of the combustion product with water in the absorber after the desulfurization. The second phase give 20% additional cleaning. Thus the total cleaning effect is 65-70%. The third method used lime washing of the combustion products. For the Bulgarian coal with a great S content it is the most suitable method. It gives a SO 2 cleaning up to 95%. Lime wash with pH=12.3 has been used with various amounts of the reagent. Experiments with different amounts of lime wash and different quality of the coal are performed and the specific reagent consumption has been determined

  10. Alkaloid-derived molecules in low rank Argonne premium coals.

    Energy Technology Data Exchange (ETDEWEB)

    Winans, R. E.; Tomczyk, N. A.; Hunt, J. E.

    2000-11-30

    Molecules that are probably derived from alkaloids have been found in the extracts of the subbituminous and lignite Argonne Premium Coals. High resolution mass spectrometry (HRMS) and liquid chromatography mass spectrometry (LCMS) have been used to characterize pyridine and supercritical extracts. The supercritical extraction used an approach that has been successful for extracting alkaloids from natural products. The first indication that there might be these natural products in coals was the large number of molecules found containing multiple nitrogen and oxygen heteroatoms. These molecules are much less abundant in bituminous coals and absent in the higher rank coals.

  11. Coal in the Mediterranean

    International Nuclear Information System (INIS)

    Sore, J.C.; Coiffard, J.

    1992-01-01

    Mediterranean countries are not traditionally coal producers. In France, the main mines were located in the North and East, and belonged to the great coal fields of northern Europe. Spain is a modest producer (ten million tonnes), as is Turkey with its three million tonnes. The only way most of these mines can stand up to international competition is by an array of protectionistic measures and subsidies. This state of affairs has marked events of quite another nature, as it relates to energy economics. That is, coal has taken on increasing importance in the energy supplies of all the countries of the Mediterranean zone over the past twenty years. In this article, we set out by describing coke supply for the Mediterranean ensemble, and then go on to analyze the development aspects of coal for electrical production, the future of Mediterranean lignite, and the supply of imported coal. 4 refs., 11 figs., 3 tabs

  12. Fiscal 1996 survey report on the environmentally friendly type coal utilization system feasibility study. Feasibility study of the environmentally friendly type coal utilization system in Thailand; Kankyo chowagata sekitan riyo system kanosei chosa. Tai ni okeru kankyo chowagata sekitan riyo system kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The paper investigated and studied the present situation and future trend of coal utilization and distribution in Thailand, and the present situation of environmental effects and the measures taken for environmental protection. Around 2010, coal will probably be produced only at EGAT`s Mae Moh (MM) coal mine. Demand for overseas coal is expected to be 40-50 million tons in 2011, and preparation of the coal center becomes a subject. For general industry use coal, pretreatment such as coal preparation, coal blending and briquetting is needed, considering coal quality, usage, transport distance and environmental effects. Brown coal of MM coal mine is a lignite with high sulfur, high ash content and low heating value. Wide spread of its use can be expected if upgrading is possible such as desulfurization, deashing, increasing heating value. In the electric power generation field, the absorber was installed at the existing boiler of the mine-mouth generating plant to conduct a verification test on high grade desulfurization of ultra-high sulfur lignite. In the industry field, the circulating fluidized bed boiler was adopted. In the residential/commercial field, introduction of briquette was proposed. 80 refs., 84 tabs.

  13. Adsorption isotherms and kinetics of activated carbons produced from coals of different ranks.

    Science.gov (United States)

    Purevsuren, B; Lin, Chin-Jung; Davaajav, Y; Ariunaa, A; Batbileg, S; Avid, B; Jargalmaa, S; Huang, Yu; Liou, Sofia Ya-Hsuan

    2015-01-01

    Activated carbons (ACs) from six coals, ranging from low-rank lignite brown coal to high-rank stone coal, were utilized as adsorbents to remove basic methylene blue (MB) from an aqueous solution. The surface properties of the obtained ACs were characterized via thermal analysis, N2 isothermal sorption, scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and Boehm titration. As coal rank decreased, an increase in the heterogeneity of the pore structures and abundance of oxygen-containing functional groups increased MB coverage on its surface. The equilibrium data fitted well with the Langmuir model, and adsorption capacity of MB ranged from 51.8 to 344.8 mg g⁻¹. Good correlation coefficients were obtained using the intra-particle diffusion model, indicating that the adsorption of MB onto ACs is diffusion controlled. The values of the effective diffusion coefficient ranged from 0.61 × 10⁻¹⁰ to 7.1 × 10⁻¹⁰ m² s⁻¹, indicating that ACs from lower-rank coals have higher effective diffusivities. Among all the ACs obtained from selected coals, the AC from low-rank lignite brown coal was the most effective in removing MB from an aqueous solution.

  14. Lignite boost for North. [Northern Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Clerkin, H.

    1986-01-01

    Reserves of lignite, estimated at around 500 million tonnes, have been discovered on the shores of Lough Neagh, Northern Ireland. The Government has granted a mining licence and planning permission to Burnett and Hallamshire Holdings to start work on the deposit. It is proposed to mine the lignite using opencast methods. Much of this deposit will be consumed in a purpose-built mine mouth power station with further reserves being dried in the approved processing plant to produce a range of industrial and domestic fuels. Carbonising the lignite may eliminate pollution. However, large scale investment will be required before Ireland's economy can switch to lignite.

  15. Oxidative desulfurization of Cayirhan lignites by permanganate solution

    Energy Technology Data Exchange (ETDEWEB)

    Guru, M.; Tuzun, F.N.; Murathan, A.S.; Asan, A.; Kiyak, T. [Gazi University, Ankara (Turkey). Dept. for Chemical Engineering

    2008-07-01

    Unless important developments record new and renewable energy sources, the role of fossil fuels as an energy resource goes on. It is possible to detect sulfur, heavy metals, and tracer elements such as arsenic and selenium by decreasing calorific value of coals. Sulfur oxides, which are the main pollutants in atmosphere, are irritative to humans and plants, and erosion occurs on buildings. Although there are high lignite reservoirs, high sulfur content limits the efficient use of them. In this research, it is aimed to convert combustible sulfur in coal to non-combustible sulfur form in the ash by oxidizing it with permanganate solution. During this research, the effect of two different parameters of potassium permanganate concentration, processing time, and mean particle size were investigated at constant room temperature and shaking rate. The conversion of combustible sulfur to non-combustible sulfur form was achieved optimally with 0.14 M potassium permanganate solution, 0.1 mm mean particle size at 16 h of treatment time, and the combustible sulfur amount was decreased by 46.37% compared to undoped conditions.

  16. Hazard of radioactive releases resulted from coal burning; Opasnost` vysvobozhdeniya radioaktivnykh produktov pri szhiganii uglya

    Energy Technology Data Exchange (ETDEWEB)

    Gabbard, V

    1995-09-01

    Consideration is given to the data, pointing to the fact, that coal-burning power plants release of radioactive substances, contained in gaseous wastes, is not less, than the same one of nuclear power plants. The necessity of regulating emission of these substance in atmosphere by analogy with nuclear power industry is shown. 1 fig.

  17. Investigation to develop methods for removal of oxygen from coals. [None

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, N.E.; Khandhadia, P.S.; Furimsky, E.

    1985-02-01

    Several inorganic reducing agents of various chemical characteristics have been tested to see if they reduce the oxygen contained in coal. It was found that oxygen content of coals decreased when they were heated in only water (blank runs). The treatment with the reducing agents containing sulphur did not increase the oxygen removal over that achieved in the blank runs. However, it appears that the ferrous salt catalytically deoxygenated both the lignite and bituminous coals. 5 references.

  18. Isotopic evidence of boron in precipitation originating from coal burning in Asian continent

    International Nuclear Information System (INIS)

    Sakata, Masahiro; Natsumi, Masahiro; Tani, Yukinori

    2010-01-01

    The boron concentration and isotopic composition (δ 11 B) of precipitation collected from December 2002 to March 2006 at three sites on the Japan Sea coast were measured. Those sites have been considerably affected by the long-range transport of air pollutants from the Asian continent during winter and spring when the airflows from the Asian continent are predominant. The boron concentration in the precipitation increased primarily during winter whereas the δ 11 B decreased during winter or spring. It is assumed that this decrease in δ 11 B is not associated with a Rayleigh distillation process, because the previous δD values of the precipitation collected at a site on the Japan Sea coast did not decrease in the same manner. A weak correlation (r 2 =0.13-0.24, P 11 B and the nonsea-salt sulfate (nss-SO 4 2- )/B ratio at each site, suggesting that boron in the precipitation originate primarily from two sources. The first source, which is characterized by high δ 11 B and nss-SO 4 2- /B=0, is seawater. At the northern site, the enrichment factor for boron in the precipitation relative to seawater approached unity during winter. This implies that much of the boron in the precipitation is derived from unfractionated sea salts rather than gaseous boron evaporated from seawater. The second source is characterized by low δ 11 B and high nss-SO 4 2- /B ratio. Most of the nss-SO 4 2- in the precipitation originates from anthropogenic combustion activities in the Asian continent based on the previous model calculations. Coal accounts for a major portion of the total primary energy supply in China. Moreover, coal enriches boron and represents generally negative δ 11 B values. Hence, we propose that the emission of boron from coal burning is the most likely second source. Thus, boron isotopes may be useful as tracers of coal-burning plumes from the Asian continent. (author)

  19. Lignite mining in India - technology highlights

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, G L

    1984-01-01

    Figures for lignite production and its role in the Indian energy scene are presented. Lignite mining at Neyveli is described in detail, including: advance preparation of the overburden strata; modifications to bucket wheel excavators; tackling the sticky surface clays; ground water management; storm water control; tackling higher overburden-to-lignite ratios; materials handling; communications within the mine; the development of indigenous mining equipment; and ecology and environmental control.

  20. Development of upgraded brown coal process

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, N.; Sugita, S.; Deguchi, T.; Shigehisa, T.; Makino, E. [Kobe Steel Ltd., Hyogo (Japan). Coal and Energy Project Department

    2004-07-01

    Half of the world's coal resources are so-called low rank coal (LRC) such as lignite, subbituminous coal. Utilization of such coal is limited due to low heat value and high propensity of spontaneous combustion. Since some of LRCs have advantages as clean coal, i.e. low ash and low sulfur content, LRC can be the excellent feedstock for power generation and metallurgy depending on the upgrading technology. The UBC (upgraded brown coal) process introduced here converts LRC to solid fuel with high heat value and less propensity of self-heating. Various world coals, such as Australian, Indonesian and USA LRC, were tested using the Autoclave and Bench Scale Unit, and the process application to LRC of wide range is proven. The R & D activities of the UBC process are introduced including a demonstration project with a 5 ton/day test plant in progress in Indonesia, expecting near future commercialisation in order to utilize abundant LRC of clean properties. 8 refs., 12 figs., 3 tabs.

  1. Method of burning highly reactive strongly slagging coal dust in a chamber furnace

    Energy Technology Data Exchange (ETDEWEB)

    Protsaylo, M.Ya.; Kotler, V.R.; Lobov, G.V.; Mechev, V.P.; Proshkin, A.V.; Zhuravlev, Yu.A.

    1982-01-01

    In the chamber furnace in order to reduce slagging, it is proprosed that, above the coal dust burners, nozzles be installed with inclination downwards through which air is fed in a mixture with flue gases. Under the influence of this flue gas-air mixture, the coal dust flame is deviated downwards. In this case there is an increase in the length of the flame and degree of filling of the volume of the furnace with the flame. This increases the effectiveness of dust burning. The input into the furnace of fuel jointly with the air and flue gases (optimally 10-15% of the total quantity of gases formed during fuel combustion) makes it possible to reduce the temperature in the furnace and the probability of slagging of the furnace walls.

  2. Quantitative spectrographic determination of traces of germanium in lignite

    International Nuclear Information System (INIS)

    Martin, M.; Roca, M.

    1972-01-01

    A burning technique in a d.c. arc at 10 amp has been employed. The standards have been prepared from a natural lignite with a low germanium content. In order to enhance sensitivity, AgCl, K 2 SO 4 , CuF 2 , Sb 2 S 3 and Bi 2 S 3 have been tested as sweeping materials. Using 2% CuF 2 a detection limit of 1 ppm germanium is attainable. Bi, Cu, Sb and Sn have been studied as internal standards: the former leads to the, highest precision (1 6%. Results show good agreement with those obtained by the addition method. (Author) 6 refs

  3. Lignite utilisation for binding of radionuclides and uranium determination by adsorptive stripping chronopotentiometry

    International Nuclear Information System (INIS)

    Zavodska, L.

    2010-01-01

    This work in its first part deals with non-energetic use of young brown coal - lignite. The goal of the work was to perform a complex physical and chemical characterisation of the Slovak lignite (deposit Cary) which could contribute to rts use in binding of radionuclides in the environment. The characteristics of Slovak lignite were compared to leonardite (Gascoyne, USA) and Czech lignite (the area of Mikulcice). In the samples the residual humidity was determined. as well. as the content of ashes. representation of selected inorganic (As, Ba, Cd, Co, Cr, Cu, Ni, Pb and Zn) as well as organo-elements (C, H, N, 0, S) and crystalline forms of inorganic phase in lignite. The specific surface (BET isotherm) of lignite was determined, representation of total and free humic acids and their cation exchange capacity. The samples underwent al.so gamma-spectrometric analysis ( 40 K, 226 Ra, 228 Ac, 137 Cs and 60 Co). Using the radio-indicator method ( 85 Sr and 137 Cs) the kinetics of sorption of Cs + and Sr + ions in Slovak lignite was studied. The efficiency of sorption for both cations on lignite was evaluated on the basis of constructed sorption isotherms. The sorption of Cs + ions on Slovak lignite is more suitable for the Freundlich type of isotherm, in case of Sr + ions the sorption is better described by Langmuir isotherm. The results of sorption experiments on lignite in comparison with clinoptilolite and montmorillonite K-10 showed a more efficient sorption for Sr Ions. despite the more coarse-grained fraction of this matrix. This finding supports the possibility of lignite application for binding of a quite mobile radiostrontium, which may be applied for construction of radioactive waste repositories or for remediation of contaminated soils. The second part of the work deals with the development and validation of new fast and reliable electrochemical method of uranium determination in natural waters. It is based on physical adsorption of created complex of uranium

  4. Nuclear assay of coal. Volume 1. Coal composition by prompt neutron activation analysis: basic experiments. Final report

    International Nuclear Information System (INIS)

    Reynolds, G.; Bozorganesh, H.; Elias, E.; Gozani, T.; Maung, T.; Orphan, V.

    1979-01-01

    Using californium-252 as a source of exciting neutrons, prompt gamma photons emitted by elemental nuclei in the coal have been measured using several detectors, including sodium--iodide and germanium--lithium. Several coal types, including bituminous, subbituminous lignite and anthracite were crushed to various top sizes and analyzed carefully be traditional ASTM wet chemistry techniques at two or three different laboratories. The elements (sulfur, hydrogen, carbon, aluminum, silicon, iron, calcium, sodium, nitrogen, and chlorine) were determined by prompt neutron activations and the quantities compared with those of the wet chemical analyses

  5. Device for determining element contents of lignite mass flows by activation analysis

    International Nuclear Information System (INIS)

    Goeldner, R.; Maul, E.; Rose, W.; Wagner, D.

    1987-01-01

    A simple device is presented, apt for continuous operation, to determine the element contents of bulk goods of flowable materials with a suitable granularity, in particular of lignite mass flows to assess the coal quality. Several kilograms of samples can be reproducibly dosed and homogeneously activated by a device consisting of a shielding container with activation chamber and radiation source, a measuring unit with detectors, and a source container, and characterized by a blade wheel in the activation chamber which causes the dosing and homogeneous activation of the sample

  6. Preparation and Evaluation of Adsorbents from Coal and Irvingia gabonensis Seed Shell

    Science.gov (United States)

    Ezeokonkwo, Mercy A.; Ofor, Okechukwu F.; Ani, Julius U.

    2017-12-01

    The adsorption of Cd(II) and Pb(II) ions on adsorbents prepared from sub-bituminous coal, lignite and a blend of coal and Irvingia gabonensis seed shells was investigated. Fourier transform infrared, scanning electron microscope and X-ray fluorescence analyses implicated hydroxyl, carbonyl, Al2O3 and SiO2 as being responsible for binding the metal ions on the porous adsorbents. The optimum adsorption of carbonized lignite for the removal of Cd(II) and Pb(II) ions from aqueous media were 80.93% and 87.85%, respectively. Batch adsorption was done by effect of adsorbent dosage, pH, contact time, temperature, particle size, and initial concentration. Equilibrium for the removal of Pb(II) and Cd(II) was established within 100 and 120 min respectively. Blending the lignite-derived adsorbent with Irvingia gabonensis seed shell improved the performance significantly. More improvement was observed on modification of the blend using NaOH and H3PO4. Pb(II) was preferentially adsorbed than Cd(II) in all cases. Adsorption of Cd(II) and Pb(II) ions followed Langmuir isotherm. The kinetics of adsorption was best described by pseudo-second order model. The potential for using a blend of coal and agricultural byproduct (Irvingia gabonensis seed shell) was found to be a viable alternative for removal of toxic heavy metals from aqueous solutions.

  7. Treatment of peat, brown coal, etc

    Energy Technology Data Exchange (ETDEWEB)

    Francke, F C

    1917-11-02

    Treatment of peat, brown coal, lignite, sapropel, oil shale, wood and the like, characterized by the fact, that the material is dried in a drum having side gas-entrance and gas-exit pipes, and is provided in the known way with ledges under slow turning and then is distilled at a temperature below 550/sup 0/ C.

  8. Assessment of the content of arsenic in solid by-products from coal combustion

    Directory of Open Access Journals (Sweden)

    Wierońska Faustyna

    2017-01-01

    Full Text Available The coal combustion processes constitute one of the major sources of heavy metals emission into the atmosphere. From the point of view of the reduction of the emission of heavy metals and the selection of the correct exhaust gas treatment system, it is important to monitor the amount of trace elements in the solid fuels and in the solid by-products from coal combustion. One of these highly toxic elements is arsenic. The average content of arsenic in Polish hard coals and lignites is 0 ÷ 40 mg/kg [1] and 5 ÷ 15 mg/kg [2], respectively. The world average content of arsenic in hard coals and lignites, is equal to 9.0 ± 0.8 and 7.4 ± 1.4 mg/kg [3], respectively. During coal combustion processes, a significant amount of arsenic enters the atmosphere through gases and fly ashes. The proportions in which those two forms of arsenic occur in exhaust gases depend on the conditions of combustion processes [4]. The aim of the research was to determine the content of arsenic in coal blends and by-products of their combustion (slag, fly ash, gypsum, filter cakes. The determination of the arsenic quantity was performed using the Atomic Absorption Spectrometry with the electrothermal atomization.

  9. Depositional environment of the San Miguel lignite deposit in Atascosa and McMullen Counties, Texas

    Energy Technology Data Exchange (ETDEWEB)

    Gowan, S.W.

    1985-01-01

    An analysis of the environment of deposition of the San Miguel lignite deposit was carried out in order to understand newly discovered characteristics of the deposit. The environment of deposition of the overburden and underburden was evaluated through an interpretation of three continuous cores. Four coal cores and a highwall section were carefully described to determine the depositional environmental of the coal seams and partings. These studies were supplemented by the construction of seam and parting isopachs, and the analysis of the distribution of sulfur isotopes, sulfur, forms, and total sulfur within the coal. The sedimentary package is composed of a basal prograding barrier that beach, dune, and back-barrier sands. This unit correlates with a downdip sand that was also interpreted as a prograding barrier by other authors. The barrier is overlain by a series of slit and clay deposits of lagoonal, tidal flat, and tidal channel origin. These deposits are capped by restricted lagoon sediments composed of green, calcareous clays that occasionally contain shell layers. The restricted lagoon deposits formed when the barrier closed the lagoon off from the sea. Peat forming freshwater swamps eventually became established behind the barrier and on top of the restricted lagoon sediments. The parting isopachs reveal a reticulate morphology similar to the mangrove swamps located lateral to the modern Niger River Delta. The partings represent vegetated tidal flat deposits that formed during periodic invasions by the sea that killed the swamp and inundated the peat with sulfate rich water. The lignite interval is capped by open lagoon and tidal flat sediments.

  10. Ligninolytic enzymes in the coal solubilizing deuteromycetes Trichoderma atroviride and Fusarium oxysporum

    Energy Technology Data Exchange (ETDEWEB)

    Moenkemann, H.; Scheel, T.; Hoelker, U.; Ludwig, S.; Hoefer, M. [Bonn Univ. (Germany). Botanisches Inst.

    1997-12-31

    Evidence is presented for the lignite induced expression of lignin peroxidases, manganese-dependent peroxidases, laccases and glyoxal oxidases in the coal solubilizing fungi Trichoderma atroviride and Fusarium oxysporum under different growth conditions. (orig.)

  11. Macedonian lignite - upgrading and evaluation

    International Nuclear Information System (INIS)

    Musich, Mark A.; Young, Brian C.

    1997-01-01

    Macedonian lignites have a high moisture content, low heating value, and are friable, generating fines and dust. Macedonia has an urgent need to use indigenous solid fuel resources for domestic and industrial heating as well as metallurgical applications. The goal of this project was to evaluate the potential for beneficiating Macedonian lignite and producing high-quality briquettes for metallurgical use as well as domestic/industrial heating. Laboratory studies have shown that treating the Macedonian lignite fines by two physical processes-cleaning and carbonization-followed by pelletizing. can generate acceptable lump fuels for heating applications. Carbonizing the float-sink-cleaned lignite to reduce the volatile matter content and pelletizing the resultant char with starch produced strong pellets, which could be used as a home-heating fuel, the char having a heat content of 13,400 Btu/lb (31.2 MJ/Kg). However, additional work is required at the pilot scale to determine optimum briquetting conditions and production costs. (Author)

  12. On changes in bed-material particles from a 550 MWth CFB boiler burning coal, bark and peat

    Energy Technology Data Exchange (ETDEWEB)

    Vesna Barisic; Mikko Hupa [Aabo Akademi Process Chemistry Centre, Turku (Finland). Combustion and Materials Chemistry

    2007-02-15

    This paper presents our observations on coating build up, morphology and the elemental composition of bed-material particles collected from a 550 MWth CFB boiler burning coal, bark and peat fuel/fuel mixture. The special focus was on the changes of the elemental composition of coating layer on bed-material particles when different fuels were burned. The results were obtained using a scanning electron microscope coupled with an energy depressive X-ray analyser (SEM/EDX). The results clearly show that properties of bed-material particles are a result of complex interaction between the fuels burned previously, and the fuels used at the time of sampling. Short communication. 8 refs., 1 fig., 2 tabs.

  13. Coal, energy of the future

    International Nuclear Information System (INIS)

    Lepetit, V.; Guezel, J.Ch.

    2006-01-01

    Coal is no longer considered as a 'has been' energy source. The production and demand of coal is growing up everywhere in the world because it has some strategic and technological advantages with respect to other energy sources: cheap, abundant, available everywhere over the world, in particular in countries with no geopolitical problems, and it is independent of supplying infrastructures (pipelines, terminals). Its main drawback is its polluting impact (dusts, nitrogen and sulfur oxides, mercury and CO 2 ). The challenge is to develop clean and high efficiency coal technologies like supercritical steam power plants or combined cycle coal gasification plants with a 50% efficiency, and CO 2 capture and sequestration techniques (post-combustion, oxy-combustion, chemical loop, integrated gasification gas combined cycle (pre-combustion)). Germany, who will abandon nuclear energy by 2021, is massively investing in the construction of high efficiency coal- and lignite-fired power plants with pollution control systems (denitrification and desulfurization processes, dust precipitators). (J.S.)

  14. Power stations in Poland running on brown coal-development up to now and anticipated

    International Nuclear Information System (INIS)

    Twardy, L.; Zawadzki, M.

    1994-01-01

    Polish power plants fueled by lignite are shortly described. They generate almost 40% of electric power which is 32% cheaper than the power from plants fueled by black coal (taking into account generation unit cost). The program of modernization and reconstruction of brown coal sector is presented and its development is discussed. 1 tab

  15. Formation and retention of methane in coal

    Energy Technology Data Exchange (ETDEWEB)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  16. Emissions characterization from a variety of coals on a pilot-scale facility_v1

    Data.gov (United States)

    U.S. Environmental Protection Agency — The current study not only characterizes emissions from three coals (bituminous, sub-bituminous, and lignite), but also investigates the use of instrumentation for...

  17. Novel approaches to a study of the fundamental organic chemistry of coal. Final report, September 1, 1977-September 1, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Giam, C.S.; Goodwin, T.E.; Tabor, R.L.; Neff, G.; Smith, S.; Ionescu, F.; Trujillo, D.

    1979-01-01

    The studies are preliminary in nature, and the following conclusions are tentative. (1) The results with mixed carboxylic-sulfonic anhydrides seem to indicate an increase in polymerization of the coal molecular structure, when based on the results of pyrolysis/gas chromatographic analyses. The mixed anhydrides are such powerful acylating reagents that they should be capable of causing profound and dramatic structural modifications of coal and the results suggest sub-optimal reaction conditions. The results may also be due to the presence of only a small number of ether linkages connecting large molecular units together. Possibly, at elevated pressures and larger concentrations of mixed anhydride, a greater extent of depolymerization would occur, coupled perhaps with acylation. (2) The Nimz lignin degradation reaction has now been fully implemented and good conditions have been found for lignite reaction. The products from this degradation were basically hydrocarbon in nature. Thus, in the absence of monolignols, we postulate that such phenolic linkages of the type found in lignin are not found to a large degree in Texas lignites. (3) Our recently developed technique of analyzing methylene to methyl ratios by IR spectroscopy represents a useful method for characterization of both soluble and insoluble coal-derived products. The technique is less expensive than mass spectroscopy and not limited by solubility as in the case of NMR spectroscopy. (4) From the measurements of the acidic hydrogen content of the lignites studies, we have formed a postulate as to the involvement of heteroatoms (especially oxygen) in the lignite structure. We feel that heteroatoms in Texas lignites are involved mainly in carbonyl, low molecular weight alkoxy and/or heterocyclic units. (5) Conditions for depolymerizing and solubilizing lignites by use of t-butyllithium have been developed and utilized successfully.

  18. Nuclear assay of coal. Volume 8. Continuous nuclear assay of coal (CONAC). Final report

    International Nuclear Information System (INIS)

    Lagarias, J.; Irminger, P.; Dodson, W.

    1979-01-01

    Using californium-252 as a source of exciting neutrons, prompt gamma photons emitted by elemental nuclei in the coal have been measured using several detectors, including sodium-iodide and germanium-lithium. Several coal types, including bituminous, subbituminous lignite and anthracite were crushed to various top sizes and analyzed carefully by traditional ASTM wet chemistry techniques at two or three different laboratories. The elements (sulfur, hydrogen, carbon, aluminum, silicon, iron, calcium, sodium, nitrogen, and chlorine) were determined by prompt neutron activations and the quantities compared with those of the wet chemical analyses. Since satisfactory correlation has been obtained at bench-scale level using 100 to 200 kG samples, an apparatus has been designed to analyze a coal stream of up to 50 ton/hour, at an electric power generating station

  19. Abundances of polycyclic aromatic hydrocarbons (PAHs) in 14 chinese and american coals and their relation to coal rank and weathering

    Science.gov (United States)

    Wang, R.; Liu, Gaisheng; Zhang, Jiahua; Chou, C.-L.; Liu, J.

    2010-01-01

    The abundances of 16 polycyclic aromatic hydrocarbons (PAHs) on the priority list of the United States Environmental Protection Agency (U.S. EPA) have been determined in 14 Chinese and American coals. The ranks of the samples range from lignite, bituminous coal, anthracite, to natural coke. Soxhlet extraction was conducted on each coal for 48 h. The extract was analyzed on a gas chromatograph-mass spectrometer (GC-MS). The results show that the total PAH content ranged from 0.31 to 57.6 ??g/g of coal (on a dry basis). It varied with coal rank and is highest in the maturity range of bituminous coal rank. High-molecular-weight (HMW) PAHs are predominant in low-rank coals, but low-molecular-weight (LMW) PAHs are predominant in high-rank coals. The low-sulfur coals have a higher PAH content than high-sulfur coals. It may be explained by an increasing connection between disulfide bonds and PAHs in high-sulfur coal. In addition, it leads us to conclude that the PAH content of coals may be related to the depositional environment. ?? 2010 American Chemical Society.

  20. Benefits of reducing prenatal exposure to coal-burning pollutants to children's neurodevelopment in China

    Energy Technology Data Exchange (ETDEWEB)

    Perera, F.; Li, T.Y.; Zhou, Z.J.; Yuan, T.; Chen, Y.H.; Qu, L.R.; Rauh, V.A.; Zhang, Y.G.; Tang, D.L. [Columbia University, New York, NY (United States). Dept. of Environmental Health Science

    2008-10-15

    Coal burning provides 70% of the energy for China's industry and power, but releases large quantities of polycyclic aromatic hydrocarbons (PAHs) and other pollutants. PAHs are reproductive and developmental toxicants, mutagens, and carcinogens. We evaluated the benefit to neurobehavioral development from the closure of a coal-fired power plant that was the major local source of ambient PAHs. The research was conducted in Tongliang, Chongqing, China, where a coal-fired power plant operated seasonally before it was shut down in May 2004. Two identical prospective cohort studies enrolled nonsmoking women and their newborns in 2002 (before shutdown) and 2005 (after shutdown). Prenatal PAH exposure was measured by PAH-DNA adducts (benzo(a)pyrene-DNA) in umbilical cord blood. Child development was assessed by the Gesell Developmental Schedules at 2 years of age. Prenatal exposure to other neurotoxicants and potential confounders (including lead, mercury, and environmental tobacco smoke) was measured. We compared the cohorts regarding the association between PAH-DNA adduct levels and neurodevelopmental outcomes. Significant associations previously seen in 2002 between elevated adducts and decreased motor area developmental quotient (DQ) (p = 0.043) and average DQ (p = 0.047) were not observed in the 2005 cohort (p = 0.546 and p = 0.146). However, the direction of the relationship did not change. The findings indicate that neurobehavioral development in Tongliang children benefitedby elimination of PAH exposure from the coal-burning plant, consistent with the significant reduction in PAH-DNA adducts in cord blood of children in the 2005 cohort. The results have implications for children's environmental health in China and elsewhere.

  1. Biochemically enhanced methane production from coal

    Science.gov (United States)

    Opara, Aleksandra

    For many years, biogas was connected mostly with the organic matter decomposition in shallow sediments (e.g., wetlands, landfill gas, etc.). Recently, it has been realized that biogenic methane production is ongoing in many hydrocarbon reservoirs. This research examined microbial methane and carbon dioxide generation from coal. As original contributions methane production from various coal materials was examined in classical and electro-biochemical bench-scale reactors using unique, developed facultative microbial consortia that generate methane under anaerobic conditions. Facultative methanogenic populations are important as all known methanogens are strict anaerobes and their application outside laboratory would be problematic. Additional testing examined the influence of environmental conditions, such as pH, salinity, and nutrient amendments on methane and carbon dioxide generation. In 44-day ex-situ bench-scale batch bioreactor tests, up to 300,000 and 250,000 ppm methane was generated from bituminous coal and bituminous coal waste respectively, a significant improvement over 20-40 ppm methane generated from control samples. Chemical degradation of complex hydrocarbons using environmentally benign reagents, prior to microbial biodegradation and methanogenesis, resulted in dissolution of up to 5% bituminous coal and bituminous coal waste and up to 25% lignite in samples tested. Research results confirm that coal waste may be a significant underutilized resource that could be converted to useful fuel. Rapid acidification of lignite samples resulted in low pH (below 4.0), regardless of chemical pretreatment applied, and did not generate significant methane amounts. These results confirmed the importance of monitoring and adjusting in situ and ex situ environmental conditions during methane production. A patented Electro-Biochemical Reactor technology was used to supply electrons and electron acceptor environments, but appeared to influence methane generation in a

  2. Multi-component EPR spectra of coals with different carbon content

    Energy Technology Data Exchange (ETDEWEB)

    Pilawa, B.; Wieckowski, A.B.; Pietrzak, R.; Wachowska, H. [Polish Academy of Science, Gliwice (Poland). Inst. for Coal Chemistry

    2005-08-01

    EPR spectra of lignite 'Mequinenza' (Spain) (62.3 wt% C) and Polish orthocoking coal (87.8 wt% C) were compared. The spectra were superpositions of broad Gaussian, broad Lorentzian 1, and narrow Lorentzian 3 lines. Concentration of paramagnetic centers - mainly delocalized pi electrons responsible for narrow Lorentzian 3 lines increases with increase in carbon content in coal. Coal units with slow and fast spin-lattice relaxation processes exist in the two studied samples. Slow spin-lattice interactions occur in simple aromatic coal units with broad Gaussian and Lorentzian 1 lines. Fast spin-lattice relaxation processes are characteristic of large aromatic units with narrow Lorentzian 3 lines.

  3. Consultancy in the development of coal deposits all over the world

    Energy Technology Data Exchange (ETDEWEB)

    Gold, R.; Schiebel, W.

    1977-04-01

    Dr. Otto Gold, Consulting Engineers, Cologne, are working as consultants in the area of prospecting, exploration and development of lignite deposits. Some projects successfully carried out are reported on, being an example for other consulting projects on the coal sector.

  4. Estimation of Moisture Content in Coal in Coal Mills

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, B.

    the moisture content of the coal is proposed based on a simple dynamic energy model of a coal mill, which pulverizes and dries the coal before it is burned in the boiler. An optimal unknown input observer is designed to estimate the moisture content based on an energy balance model. The designed moisture...

  5. Estimation of Moisture Content in Coal in Coal Mills

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, Babak

    2006-01-01

    the moisture content of the coal is proposed based on a simple dynamic energy model of a coal mill, which pulverizes and dries the coal before it is burned in the boiler. An optimal unknown input observer is designed to estimate the moisture content based on an energy balance model. The designed moisture...

  6. A brief petrographic review on Nigerian coal resources

    International Nuclear Information System (INIS)

    Obaje, N. G.; Abaa, S. I.; Najime, T.; Suh, C. E.

    2000-01-01

    The coal resources of Nigeria are located mainly within the Benue Trough. In the lower Benue, subbituminous coals occur within the Maastrichtian Mamu Formation. High - volatile bituminous coals are found within the Turonian - Santonian Awgu Formation in the middle Benue while the upper Benue contains lignites and sub-bituminous coals in the Maastrichtian Gombe Sandstone Formation. Maceral analyses show that himinite dominates in the petrographic composition of the lower and upper Benue Trough coals with vitrinite reflectance values ranging from 0.30 to 0.63% Rm. In coals from the middle Benue, vitrinite macerals predominate and Rm values range from 0.74 to 1.25%. The present review suggests that the sub-bituminous coals in the lower and upper Benue are optimum for combustion and sub-optimum for liquefaction; while the high-volatile bituminous coals in the middle Benue, apart form being optimum for liquefaction, are the most suitable as raw material for coke making (carbonization) in steel manufacture

  7. Long-term security in energy supplies - the contribution of coal; Dlugofalowe bezpieczenstwo w dostawach energii - udzial wegla

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, W. [RWE Power AG, Essen (Germany)

    2004-07-01

    The paper presents the case for coal as an important pillar in a wide and balanced mix of energy sources. Both domestic lignite and hard coal can be made available at relatively low cost. With coal powering power plants it is possible to achieve all energy policy goals of economic efficiency, security of supply and environmental compatibility. The paper includes much information on the global coal trade, particularly seaborne trade. 4 refs., 26 figs.

  8. Geology and coal potential of Somaliland

    Energy Technology Data Exchange (ETDEWEB)

    M.Y. Ali [Petroleum Institute, Abu Dhabi (United Arab Emirates)

    2009-07-01

    Geological field mapping along with available geological and drilling data suggest that Somaliland (Northwestern Somalia) has favourable stratigraphy and structure for coal deposits. Lignitic to sub-bituminous coal deposits with ages from Jurassic to Oligocene-Miocene occur in various locations across the country including Hed-Hed valley south of Onkhor, Guveneh hills north of Las Dureh and Daban Basin southeast of Berbera. However, the coal occurrence at Hed-Hed has both the greatest thickness and highest quality. These deposits have the potential to provide an important alternative fuel resource which could alleviate the growing shortage of traditional fuels and assist in reducing the country's dependence on imported energy. However, further investigation, including drilling and laboratory analyses, still needs to be carried out, particularly on the Upper Cretaceous coal seams to evaluate the quality and resource potential of the deposits.

  9. Transport fuels from two-stage coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Benito, A.; Cebolla, V.; Fernandez, I.; Martinez, M.T.; Miranda, J.L.; Oelert, H.; Prado, J.G. (Instituto de Carboquimica CSIC, Zaragoza (Spain))

    1994-03-01

    Four Spanish lignites and their vitrinite concentrates were evaluated for coal liquefaction. Correlationships between the content of vitrinite and conversion in direct liquefaction were observed for the lignites but not for the vitrinite concentrates. The most reactive of the four coals was processed in two-stage liquefaction at a higher scale. First-stage coal liquefaction was carried out in a continuous unit at Clausthal University at a temperature of 400[degree]C at 20 MPa hydrogen pressure and with anthracene oil as a solvent. The coal conversion obtained was 75.41% being 3.79% gases, 2.58% primary condensate and 69.04% heavy liquids. A hydroprocessing unit was built at the Instituto de Carboquimica for the second-stage coal liquefaction. Whole and deasphalted liquids from the first-stage liquefaction were processed at 450[degree]C and 10 MPa hydrogen pressure, with two commercial catalysts: Harshaw HT-400E (Co-Mo/Al[sub 2]O[sub 3]) and HT-500E (Ni-Mo/Al[sub 2]O[sub 3]). The effects of liquid hourly space velocity (LHSV), temperature, gas/liquid ratio and catalyst on the heteroatom liquids, and levels of 5 ppm of nitrogen and 52 ppm of sulphur were reached at 450[degree]C, 10 MPa hydrogen pressure, 0.08 kg H[sub 2]/kg feedstock and with Harshaw HT-500E catalyst. The liquids obtained were hydroprocessed again at 420[degree]C, 10 MPa hydrogen pressure and 0.06 kg H[sub 2]/kg feedstock to hydrogenate the aromatic structures. In these conditions, the aromaticity was reduced considerably, and 39% of naphthas and 35% of kerosene fractions were obtained. 18 refs., 4 figs., 4 tabs.

  10. A manuscript of De Saussure, Horace, Benedict on the origin of coal - Oratio de Lithantrace (1770) - science, business and environmental politics

    Energy Technology Data Exchange (ETDEWEB)

    Carozzi, A.V.; Newman, J.K. (Illinois University, Urbana, IL (USA). Dept. of Geology)

    1993-05-01

    18th century ideas about the origin of coal are presented. They ranged from thinking that coal and lignite were accumulations of resinous wood transported from forests to the sea, to coal being a shale impregnated by bituminous fluids, through to the idea, in 1778, that all types of coal are the products of peat having undergone different degrees of coalification.

  11. Fluidized bed combustion with the use of Greek solid fuels

    Directory of Open Access Journals (Sweden)

    Kakaras Emmanuel

    2003-01-01

    Full Text Available The paper is an overview of the results obtained up to date from the combustion and co-combustion activities with Greek brown coal in different installations, both in semi-industrial and laboratory scale. Combustion tests with Greek lignite were realized in three different Circulating Fluidized Bed Combustion (CFBC facilities. Low rank lignite was burned in a pilot scale facility of approx. 100kW thermal capacity, located in Athens (NTUA and a semi-industrial scale of 1.2 MW thermal capacity, located at RWE's power station Niederaussem in Germany. Co-combustion tests with Greek xylitic lignite and waste wood were carried out in the 1 MWth CFBC installation of AE&E, in Austria. Lab-scale co-combustion tests of Greek pre-dried lignite with biomass were accomplished in a bubbling fluidized bed in order to investigate ash melting problems. The obtained results of all aforementioned activities showed that fluidized bed is the appropriate combustion technology to efficiently exploit the low quality Greek brown coal either alone or in conjunction with biomass species.

  12. Perspectives on the German lignite industry in 2012. Stability through diversity; Perspektiven der deutschen Braunkohlenindustrie 2012. Stabilitaet durch Vielfalt

    Energy Technology Data Exchange (ETDEWEB)

    Lambertz, Johannes F. [RWE Power AG, Koeln (Germany); Milojcic, George [Bundesverband Braunkohle (DEBRIV), Koeln (Germany)

    2012-07-15

    The formula - stability through diversity - stands for a promising approach to energy policy. Germany will be phasing out nuclear energy by 2022 and giving a big push to renewables as a substitute. That changes the electricity mix. In this setting, lignite becomes more valuable as base load energy. Any look at the history of technology shows that, in the competition to find good solutions, experience proves that diversity is generated, and that means stability. In the energy sector, no one solution will determine the future, but many different technologies will co-exist in a pattern that is increasingly networked and integrated. The background here is a combination of nature circumstances, the wishes of consumers and, of course, the technical potential and availability of raw materials. There is no sign that coal, which is so abundantly available and competitive worldwide, will be excluded from the energy mix any time soon. The figures prove the contrary. The dynamism of world coal consumption speaks an unequivocal language. Germany, with its lignite, has a valuable natural resource which will be available for a long time to come. Germany's energy-policy aim should be to make use of the strengths of domestic lignite, strengths like security of supply and affordability, while working on minimising CO{sub 2} emissions, in particular through increases in efficiency and, in the long run, through CCS. Indispensable for this are the underlying production conditions. At the start, I had a word of thanks for our many partners for their good cooperation. We go on relying on your support. Specifically, we hope that the lignite industry, like other sectors will go on being appreciated for the benefits that it brings, and that no additional burdens are envisaged that might impair its competitiveness. It is our task in the lignite industry to further develop the potential of lignite with our wealth of ideas and fact-driven work. The good of today thus make a better

  13. Brayton Point coal conversion project (NEPCO)

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, W.F. Jr.

    1982-05-01

    The New England Power Company (NEPCO) recently converted Brayton Point Power Station Units 1, 2, and 3 from oil to coal. The coal conversion project is the largest coal conversion project in the nation to date. Stone and Webster Engineering Corporation (SWEC) was hired as the engineer/constructor for the project. Units 1 and 2 are 250-MW Combustion Engineering boilers, and Unit 3 is a 650-MW Babcock and Wilcox boiler. All three units were originally designed to burn pulverized coal but were converted to oil during the years of low oil prices. Studies performed by NEPCO and SWEC indicated that the areas discussed in the following paragraphs required upgrading before the units could efficiently burn coal and meet Federal and State environmental requirements. All units have been converted and are operating. This paper discusses design modifications required to burn coal, startup, and initial operating problems, and solutions.

  14. Coal-water fuels - a clean coal solution for Eastern Europe

    International Nuclear Information System (INIS)

    Ljubicic, B.; Willson, W.; Bukurov, Z.; Cvijanovic, P.; Stajner, K.; Popovic, R.

    1993-01-01

    Eastern Europe currently faces great economic and environmental problems. Among these problems is energy provision. Coal reserves are large but cause pollution while oil and gas need to be used for export. Formal 'clean coal technologies' are simply too expensive to be implemented on a large scale in the current economic crisis. The promised western investment and technological help has simply not taken place, western Europe must help eastern Europe with coal technology. The cheapest such technology is coal-water fuel slurry. It can substitute for oil, but research has not been carried out because of low oil prices. Coal-water fuel is one of the best methods of exploiting low rank coal. Many eastern European low rank coals have a low sulfur content, and thus make a good basis for a clean fuel. Italy and Russia are involved in such a venture, the slurry being transported in a pipeline. This technology would enable Russia to exploit Arctic coal reserves, thus freeing oil and gas for export. In Serbia the exploitation of sub-Danube lignite deposits with dredging mining produced a slurry. This led to the use and development of hot water drying, which enabled the removal of many of the salts which cause problems in pulverized fuel combustion. The system is economic, the fuel safer to transport then oil, either by rail or in pipelines. Many eastern European oil facilities could switch. 24 refs

  15. Sustainable Mining Land Use for Lignite Based Energy Projects

    Science.gov (United States)

    Dudek, Michal; Krysa, Zbigniew

    2017-12-01

    This research aims to discuss complex lignite based energy projects economic viability and its impact on sustainable land use with respect to project risk and uncertainty, economics, optimisation (e.g. Lerchs and Grossmann) and importance of lignite as fuel that may be expressed in situ as deposit of energy. Sensitivity analysis and simulation consist of estimated variable land acquisition costs, geostatistics, 3D deposit block modelling, electricity price considered as project product price, power station efficiency and power station lignite processing unit cost, CO2 allowance costs, mining unit cost and also lignite availability treated as lignite reserves kriging estimation error. Investigated parameters have nonlinear influence on results so that economically viable amount of lignite in optimal pit varies having also nonlinear impact on land area required for mining operation.

  16. Environmental policy instruments towards lignite-fired power plants in Turkey

    International Nuclear Information System (INIS)

    2006-01-01

    A proposition is made that Turkey considers a pilot emission trading system for SO 2 , Nox and/or PM emissions from its coal and lignite fired power plant in the efforts to comply with the EU Integrated Pollution Prevention Control (IPPC), the Large Combustion Plant (LCP) and the National Emissions Ceiling (NEC) Directives. Model calculations indicate that this could yield substantial cost savings compared to a traditional command and control approach. However, requirements in the IPPC Directive would be a major obstacle against emissions trading. The Turkish emission permitting system needs a major overhaul, including improving monitoring and enforcement practices to comply with the directives and to be able to implement and operate an emission trading system

  17. Environmental policy instruments towards lignite-fired power plants in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    A proposition is made that Turkey considers a pilot emission trading system for SO{sub 2}, Nox and/or PM emissions from its coal and lignite fired power plant in the efforts to comply with the EU Integrated Pollution Prevention Control (IPPC), the Large Combustion Plant (LCP) and the National Emissions Ceiling (NEC) Directives. Model calculations indicate that this could yield substantial cost savings compared to a traditional command and control approach. However, requirements in the IPPC Directive would be a major obstacle against emissions trading. The Turkish emission permitting system needs a major overhaul, including improving monitoring and enforcement practices to comply with the directives and to be able to implement and operate an emission trading system.

  18. Use of structural parameters of Canadian coals to follow coalification process

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Charland, J.-P.; Dureau, R.; Kalkreuth, W.; Wieschenkaemper, I. (CANMET, Ottawa, ON (Canada). Energy Research Laboratories)

    1991-06-01

    A series of Canadian coals was used to evaluate the structural parameters determined by the FTIR spectroscopy and the apparent aromaticity determined by solid state {sup 13}C NMR spectroscopy as coalification indicators. The results support the existence of two main coalification regions, i.e. the first involving lignite-subbituminous-high volatile bituminous stages and the second which begins with high volatile bituminous coals and ends with anthracite. The deoxygenation is the main reaction in the first region whereas the steady increase in apparent aromaticity is the most evident process in the second. The hydroxylic oxygen is a good indicator to distinguish between different coalification stages in the first region. The amount of three and more hydrogens attached to aromatic units exhibited a linear trend with both apparent aromaticity and mean reflectance for the coalification range from lignite to anthracite. 15 refs., 10 figs.

  19. Material balance in coal. 2. Oxygen determination and stoichiometry of 33 coals

    International Nuclear Information System (INIS)

    Volborth, A.; Miller, G.E.; Garner, C.K.; Jerabek, P.A.

    1977-01-01

    The chemical analysis of coal can be supplemented by the determination of oxygen in high and low temperature ash, in coal as received and in coal dried at 105 0 C. The rapid method utilizes fast-neutron activation. The reaction 16 O(n,p) 16 N and counting of the 6.1 and 7.1 MeV gammas of 7.3 second half-life are used. A specially designed dual transfer and simultaneous counting system gives very accurate results. Oxygen in 33 coals ranging from lignite to low volatile bituminous coal is determined and compared with ''oxygen by difference.'' Considerable discrepancies are observed. Better stoichiometric results are obtained if oxygen in coal ash, in wet coal and in the dried coal is determined. This permits the estimation of the true material balances using data of the ultimate and the proximate coal analysis. The oxygen determination provides the coal chemist with an accurate basis and can be used to rank coal. The summation of the percent of carbon, nitrogen, hydrogen, sulfur, and oxygen becomes more meaningful and some errors can be detected and the state of completeness of coal analysis thus evaluated. Total sulfur can be estimated and oxidation effects during drying can be detected. These affect the moisture determination. It appears that after more data are collected, the interpretation of solid fuel analyses may be facilitated and will be stoichiometrically more meaningful. It is shown that it may be possible to simplify the present time-consuming methods of coal analysis

  20. Technology assessment of various coal-fuel options

    International Nuclear Information System (INIS)

    Coenen, R.; Findling, B.; Klein-Vielhauer, S.; Nieke, E.; Paschen, H.; Tangen, H.; Wintzer, D.

    1991-01-01

    The technology assessment (TA) study of coal-based fuels presented in this report was performed for the Federal Ministry for Research and Technology. Its goal was to support decision-making of the Federal Ministry for Research and Technology in the field of coal conversion. Various technical options of coal liquefaction have been analyzed on the basis of hard coal as well as lignite -- direct liquefaction of coal (hydrogenation) and different possibilities of indirect liquefaction, that is the production of fuels (methanol, gasoline) by processing products of coal gasification. The TA study takes into consideration the entire technology chain from coal mining via coal conversion to the utilization of coal-based fuels in road transport. The analysis focuses on costs of the various options, overall economic effects, which include effects on employment and public budgets, and on environmental consequences compared to the use of liquid fuels derived from oil. Furthermore, requirements of infrastructure and other problems of the introduction of coal-based fuels as well as prospects for the export of technologies of direct and indirect coal liquefaction have been analyzed in the study. 14 figs., 10 tabs

  1. Characterization of substances in products, effluents, and wastes from coal conversion processes

    International Nuclear Information System (INIS)

    Petersen, M.R.

    1978-01-01

    Researchers at Pacific Northwest Laboratory (PNL) are investigating materials from synthetic fossil fuel processes. During the past year, samples have been collected from the Solvent Refining Coal Pilot Plant (SRC-I mode), Lignite Gasification Pilot Plant, Eyring Research Institute Gasifier, and Hanna III In Situ Coal Gasification Experiment. Inorganic and organic analyses have been performed, and comparisons of the data show some important differences in the potential emissions

  2. Combustion reactivity of chars from copyrolysis of coal with coke-oven gas

    Energy Technology Data Exchange (ETDEWEB)

    Liao Hongqiang; Sun Chenggong; Li Baoqing [Chinese Academy of Sciences, Taiyuan (China). State Key Lab. of Coal Conversion

    1997-12-31

    The combustion reactivity of char from pyrolysis of Xianfeng lignite with coke-oven gas (COG) is related to the pyrolysis pressure and heating rate. Decreasing pressure and increasing heating rate enhance the char yields and combustion reactivity. The combustion reactivities of char from coal pyrolysis with COG nearly reach to that of char from hydropyrolysis, but lower than those of char from coal pyrolysis under N{sub 2}. (orig.)

  3. Characterization of coals from the Ravenscrag Formation, southern Saskatchewan, Canada

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, W.J. (University of Regina, Regina, SK (Canada). Faculty of Science)

    1989-10-30

    Samples of economically important lignite reserves in the Ravenscrag Formation (Paleocene) of southern Saskatchewan are characterized by lithotype, maceral, microlithotype, and chemical analysis. The samples are from two cores and five reverse circulation drill boreholes from the Hart seam, Willow Bunch coalfield. Samples from four reverse circulation boreholes from the Souris seam, Estevan coalfield are characterized by maceral and chemical analysis. Coals from the Hart and Souris seams differ in rank, because of different thermal histories. A microlithotype classification developed for low rank coals is presented for Hart seam coals. 74 refs., 35 figs., 12 tabs.

  4. Pilot plant for hydrogasification of coal with nuclear heat

    International Nuclear Information System (INIS)

    Falkenhain, G.; Velling, G.

    1976-01-01

    In the framework of a research and development programme sponsored by the Ministry of Research and Technology of the Federal Republic of Germany, two process variants for hydrogasification of coal by means of nuclear heat have been developed by the Rheinische Braunkohlenwerke AG, Cologne. For testing these process variants a semi-technical pilot plant for gasification of coal under pressure in a fluidized bed was constructed. The pilot plant, in which the gasification of lignite and hard coal is planned, is designed for a throughput of 100kg carbon per hour corresponding to 400kg raw lignite per hour or 150kg hard coal per hour. The plant should provide data on the influence of the most essential process parameters (pressure, temperature, residence time of gas and coal, type and pre-treatment of feed coal) on the performance of gasification and raw gas composition. Different plant components will also be tested. Since the pilot plant will permit testing of both process variants of hydrogasification, it was designed in such a way that it is possible to vary a great number of process parameters. Thus, for instance, the pressure can be chosen in a range up to 100 bar and pure hydrogen or mixtures of hydrogen, carbon monoxide and steam can be applied as gasification agents. The gasifier is an internally insulated fluidized bed reactor with an inner diameter of 200mm and a height of about 8m, to which an internally insulated cyclone for separation of the entrained fines is attached. The raw gas is then cooled down by direct water scrubbing. (author)

  5. Ore controlling oxidized zonation epigenetic uranium-coal deposits and regularities in lignite transformations

    International Nuclear Information System (INIS)

    Uspenskij, V.A.; Kulakova, Ya.M.

    1982-01-01

    Complex of analytical methods was used to study epigenetic transformations in uranium-coal ore manifestation. To clarify the principle scheme of oxidized zonation in coals the materials, related to three similar objects were used. When comparing obtained epigenetic column with columns of similar ore objects the principle scheme of oxidized epigenetic zonation for ancient infiltration uranium-coal deposits was specified; general regularities of eignite transformations and characteristics of profile distribution of uranium and accessory metal zonations were revealed. Infiltration processes, proceeded in coal measureses, formed the steady epigenetic oxidized zonation: O - zone of barren unoxidized coals, 1 - zone of ore-bearing unoxidized coals, 2 - zone of weakly ore-bearing oxidized coals, 3 - zone of oxidized terrigenous rocks with zonules of development of yellow and red iron hydroxides. Capacities of some zones and zonules reflect the intensity and duration of ore-forming processes. Distribution of U and accessory elements obeys completely epigenetic zonation. It is assumed, that ancient infiltration uranium-coal deposits formed due to weakly uranium-bearing oxygen-containing waters

  6. Oxy-fuel combustion of millimeter-sized coal char: Particle temperatures and NO formation

    DEFF Research Database (Denmark)

    Brix, Jacob; Navascués, Leyre Gómez; Nielsen, Joachim Bachmann

    2013-01-01

    In this work, differences in particle temperature and NO yield during char oxidation in O2/N2 and O2/CO2 atmospheres, respectively, have been examined. A laboratory scale fixed bed reactor, operated isothermally at 1073 K, was used for combustion of millimeter-sized lignite and bituminous coal char...... increased with mass loading, by as much as 700 K above the furnace set point. The formation of NO from lignite char was not influenced by the change from N2 to CO2 whereas the NO yield from bituminous coal char was considerably lower in O2/CO2 compared O2/N2. For both chars the conversion to NO decreased...... as the O2 concentration or the particle size increased. However, for the bituminous coal char, a peak in NO yield was observed at an intermediate particle size of 0.1–0.2 g. The differences in the effect of gas atmosphere, O2 concentration, and particle mass on the NO yield from oxidation of bituminous...

  7. Maturation-related changes in the distribution of ester-bound fatty acids and alcohols in a coal series from the New Zealand Coal Band covering diagenetic to catagenetic coalification levels

    DEFF Research Database (Denmark)

    Glombitza, Clemens; Mangelsdorf, Kai; Horsfield, Brian

    2009-01-01

    A rank series of lignites and coals of low to moderate maturation levels (vitrinite reflectance (R0): 0.27–0.8%) from the New Zealand Coal Band were investigated using alkaline ester cleavage experiments to reveal compositional changes of ester bound components (fatty acids and alcohols) during...... increase during early catagenesis before decreasing again during main catagenesis. This intermittent increase was related to the short chain fatty acids. To obtain a maturity related signal and to eliminate facies related scattering in the amounts of fatty acids in the coal samples, the carbon preference...

  8. Large-Scale Mercury Control Technology Testing for Lignite-Fired Utilities - Oxidation Systems for Wet FGD

    Energy Technology Data Exchange (ETDEWEB)

    Steven A. Benson; Michael J. Holmes; Donald P. McCollor; Jill M. Mackenzie; Charlene R. Crocker; Lingbu Kong; Kevin C. Galbreath

    2007-03-31

    Mercury (Hg) control technologies were evaluated at Minnkota Power Cooperative's Milton R. Young (MRY) Station Unit 2, a 450-MW lignite-fired cyclone unit near Center, North Dakota, and TXU Energy's Monticello Steam Electric Station (MoSES) Unit 3, a 793-MW lignite--Powder River Basin (PRB) subbituminous coal-fired unit near Mt. Pleasant, Texas. A cold-side electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber are used at MRY and MoSES for controlling particulate and sulfur dioxide (SO{sub 2}) emissions, respectively. Several approaches for significantly and cost-effectively oxidizing elemental mercury (Hg{sup 0}) in lignite combustion flue gases, followed by capture in an ESP and/or FGD scrubber were evaluated. The project team involved in performing the technical aspects of the project included Babcock & Wilcox, the Energy & Environmental Research Center (EERC), the Electric Power Research Institute, and URS Corporation. Calcium bromide (CaBr{sub 2}), calcium chloride (CaCl{sub 2}), magnesium chloride (MgCl{sub 2}), and a proprietary sorbent enhancement additive (SEA), hereafter referred to as SEA2, were added to the lignite feeds to enhance Hg capture in the ESP and/or wet FGD. In addition, powdered activated carbon (PAC) was injected upstream of the ESP at MRY Unit 2. The work involved establishing Hg concentrations and removal rates across existing ESP and FGD units, determining costs associated with a given Hg removal efficiency, quantifying the balance-of-plant impacts of the control technologies, and facilitating technology commercialization. The primary project goal was to achieve ESP-FGD Hg removal efficiencies of {ge}55% at MRY and MoSES for about a month.

  9. Petrography and geochemistry of selected lignite beds in the Gibbons Creek mine (Manning Formation, Jackson Group, Paleocene) of east-central Texas

    Science.gov (United States)

    Warwick, Peter D.; Crowley, Sharon S.; Ruppert, Leslie F.; Pontolillo, James

    1997-01-01

    This study examined the petrographic and geochemical characteristics of two lignite beds (3500 and 4500 beds, Manning Formation, Jackson Group, Eocene) that are mined at the Gibbons Creek mine in east-central Texas. The purpose of the study was to identify the relations among sample ash yield, coal petrography, and trace-element concentrations in lignite and adjoining rock layers of the Gibbons Creek mine. Particular interest was given to the distribution of 12 environmentally sensitive trace elements (As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb, Sb, Se, and U) that have been identified as potentially hazardous air pollutants (HAPs) in the United States Clean Air Act Amendments of 1990. Eleven lignite, floor, and rock parting samples were collected from incremental channel samples of the 3500 and 4500 beds that were exposed in a highwall of pit A3 at the Gibbons Creek mine. Short proximate and ultimate and forms of sulfur analyses were performed on all lignite samples, and lignite and rock samples were analyzed for 60 major, minor and trace elements. Representative splits of all lignite samples were ground and cast into pellets, and polished for petrographic analyses in blue-light fluorescence and reflected white light to determine liptinite, inertinite, and huminite maceral group percentages. The following observations summarize our results and conclusions about the geochemistry, petrography, and sedimentology of the 3500 and 4500 beds of the Gibbons Creek lignite deposit: (1) Weighted average dry (db) ash yield for the two beds is 29.7%, average total sulfur content is 2.6%, and average calorific value is 7832 Btu (18.22 MJ/kg). Ash yields are greatest in the lower bench (59.33% db) of the 3500 bed and in the upper bench of the 4500 bed (74.61% db). (2) For lignite samples (on a whole-coal basis), the distributions of two of the HAPs (Pb and Sb) are positively related to ash yield, probably indicating an inorganic affinity for these elements. By using cluster analysis we

  10. Formation and retention of methane in coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  11. Regional Studies Program. Extraction of North Dakota lignite: environmental and reclamation issues

    Energy Technology Data Exchange (ETDEWEB)

    LaFevers, J.R.; Johnson, D.O.; Dvorak, A.J.

    1976-12-01

    This study, sponsored by the U.S. Energy Research and Development Administration, addresses the environmental implications of extraction of coal in North Dakota. These implications are supported by details of the geologic and historical background of the area of focus, the lignite resources in the Fort Union coalfield portion. The particular concentration is on the four-county area of Mercer, Dunn, McLean, and Oliver where substantial coal reserves exist and a potential gasification plant site has been identified. The purposes of this extensive study are to identify the land use and environmental problems and issues associated with extraction; to provide a base of information for assessing the impacts of various levels of extraction; to examine the economics and feasibility of reclamation; and to identify research that needs to be undertaken to evaluate and to improve reclamation practices. The study also includes a description of the physical and chemical soil characteristics and hydrological and climatic factors entailed in extraction, revegetation, and reclamation procedures.

  12. Coal mining situation in the Federal Republic of Germany. The 1st quarter 2016; Zur Lage des Kohlenbergbaus in der Bundesrepublik Deutschland. 1. Vierteljahr 2016

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-06

    The paper reports on the coal mining in the Federal Republic of Germany in the 1st quarter of 2016. Statistical data are presented for mining, exports and imports of hard coal and lignite and for employees.

  13. Coal mining situation in the Federal Republic of Germany. The 1st quarter 2017; Zur Lage des Kohlenbergbaus in der Bundesrepublik Deutschland. 1. Vierteljahr 2017

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-06-14

    The paper reports on the coal mining in the Federal Republic of Germany in the 1st quarter of 2017. Statistical data are presented for mining, exports and imports of hard coal and lignite and for employees.

  14. Coal mining situation in the Federal Republic of Germany. The 1st quarter 2015; Zur Lage des Kohlenbergbaus in der Bundesrepublik Deutschland. 1. Vierteljahr 2015

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-07

    The paper reports on the coal mining in the Federal Republic of Germany in the 1st quarter of 2015. Statistical data are presented for mining, exports and imports of hard coal and lignite and for employees.

  15. Thermo-optical properties of residential coals and combustion aerosols

    Science.gov (United States)

    Pintér, Máté; Ajtai, Tibor; Kiss-Albert, Gergely; Kiss, Diána; Utry, Noémi; Janovszky, Patrik; Palásti, Dávid; Smausz, Tomi; Kohut, Attila; Hopp, Béla; Galbács, Gábor; Kukovecz, Ákos; Kónya, Zoltán; Szabó, Gábor; Bozóki, Zoltán

    2018-04-01

    In this study, we present the inherent optical properties of carbonaceous aerosols generated from various coals (hard through bituminous to lignite) and their correlation with the thermochemical and energetic properties of the bulk coal samples. The nanoablation method provided a unique opportunity for the comprehensive investigation of the generated particles under well controlled laboratory circumstances. First, the wavelength dependent radiative features (optical absorption and scattering) and the size distribution (SD) of the generated particulate matter were measured in-situ in aerosol phase using in-house developed and customised state-of-the-art instrumentation. We also investigated the morphology and microstructure of the generated particles using Transmission Electron Microscopy (TEM) and Electron Diffraction (ED). The absorption spectra of the measured samples (quantified by Absorption Angström Exponent (AAE)) were observed to be distinctive. The correlation between the thermochemical features of bulk coal samples (fixed carbon (FC) to volatile matter (VM) ratio and calorific value (CV)) and the AAE of aerosol assembly were found to be (r2 = 0.97 and r2 = 0.97) respectively. Lignite was off the fitted curves in both cases most probably due to its high optically inactive volatile material content. Although more samples are necessary to be investigated to draw statistically relevant conclusion, the revealed correlation between CV and Single Scattering Albedo (SSA) implies that climatic impact of coal combusted aerosol could depend on the thermal and energetic properties of the bulk material.

  16. Fast and safe gas detection from underground coal fire by drone fly over.

    Science.gov (United States)

    Dunnington, Lucila; Nakagawa, Masami

    2017-10-01

    Underground coal fires start naturally or as a result of human activities. Besides burning away the important non-renewable energy resource and causing financial losses, burning coal seams emit carbon dioxide, carbon monoxide, sulfur oxide and methane, and is a leading cause of smog, acid rain, global warming, and air toxins. In the U.S. alone, the combined cost of coal-fire remediation projects that have been completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Remediation and Enforcement (OSM), exceeds $1 billion. It is estimated that these fires generate as much as 3% of the world's annual carbon dioxide emissions and consume as much as 5% of its minable coal. Considering the magnitude of environmental impact and economic loss caused by burning underground coal seams, we have developed a new, safe, reliable surface measurement of coal fire gases to assess the nature of underground coal fires. We use a drone mounted with gas sensors. Drone collected gas concentration data provides a safe alternative for evaluating the rank of a burning coal seam. In this study, a new method of determining coal rank by gas ratios is developed. Coal rank is valuable for defining parameters of a coal seam such as burn temperature, burn rate, and volume of burning seam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. NO Reduction over Biomass and Coal Char during Simultaneous Combustion

    DEFF Research Database (Denmark)

    Zhao, Ke; Glarborg, Peter; Jensen, Anker Degn

    2013-01-01

    This paper reports an experimental study of NO reduction over chars of straw, bark, bituminous coal, and lignite. The experiments were performed in a fixed bed reactor in the temperature range 850–1150 °C. The chars were generated by in situ pyrolysis at the reaction temperature to minimize further...

  18. Indirect coal liquefaction - the first commercial CTL project in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, K.; Battensby, D.; Marsico, C.; Hooper, M.; Mather, C. [Uhde GmbH (Germany)

    2006-07-01

    The polygeneration of fuels, chemical and power offers an innovative and economically advantageous way to utilise disadvantaged fuels, such as lignite, waste coal and petroleum coke, in a coal-to-liquids (CTL) plant by means of integration of three main process blocks: gasification island to convert coal into clean synthesis gas; Fischer-Tropsch synthesis to convert synthesis gas into clean liquid fuels and chemicals; and combustion of synthesis gas to produce electric power and steam. This paper describes the process and technology side of this indirect coal liquefaction project with key plant data that has been elaborated for a commercial scale CTL project, which is expected to be the first CTL plant in the USA. The plant will use the Shell Coal Gasification process. 6 figs.

  19. Evaluation of ash deposits during experimental investigation of co-firing of Bosnian coal with wooden biomass

    Energy Technology Data Exchange (ETDEWEB)

    Smajevic, Izet; Kazagic, Anes [JP Elektroprivreda BiH d.d., Sarajevo (Bosnia and Herzegovina); Sarajevo Univ. (Bosnia and Herzegovina). Faculty of Mechanical Engineering

    2008-07-01

    The paper is addressed to the development and use different criteria for evaluation of ash deposits collected during experimental co-firing of Bosnian coals with wooden biomass. Spruce saw dust was used for the co-firing tests with the Kakanj brown coal and with a lignite blend consisted of the Dubrave lignite and the Sikulje lignite. The coal/biomass mixtures at 93:7 %w and at 80:20 %w were tested. Experimental lab-scale facility PF entrained flow reactor is used for the co-firing tests. The reactor allows examination of fouling/slagging behaviors and emissions at various and infinitely variable process temperature which can be set at will in the range from ambient to 1560 C. Ash deposits are collected on two non-cooled ceramic probes and one water-cooled metal surface. Six different criteria are developed and used to evaluate behavior of the ash deposits on the probes: ash deposit shape, state and structure, which are analyzed visually - photographically and optically by a microscope, rate of adhesion and ash deposit strength, analyzed by physic acting to the ash deposits, and finally deposition rate, determined as a mass of the deposit divided by the collecting area and the time of collecting. Furthermore, chemical composition analysis and AFT of the ash deposits were also done to provide additional information on the deposits. (orig.)

  20. The Burning Saints

    DEFF Research Database (Denmark)

    Xygalatas, Dimitris

    . Carrying the sacred icons of the saints, participants dance over hot coals as the saint moves them. The Burning Saints presents an analysis of these rituals and the psychology behind them. Based on long-term fieldwork, The Burning Saints traces the historical development and sociocultural context......, The Burning Saints presents a highly original analysis of how mental processes can shape social and religious behaviour....

  1. Effect of some pre-treatments on the adsorption of methylene blue by Balkaya lignite

    International Nuclear Information System (INIS)

    Karaca, S.; Guerses, A.; Bayrak, R.

    2004-01-01

    In this study, the effects of some pre-treatments, such as HCl treatment, demineralization and pyrolysis, under a CO 2 atmosphere at different temperatures on the adsorption of methylene blue by Balkaya lignite were investigated. The adsorption capacities of the samples were determined before and after these pre-treatments. In addition, the removals of pyritic and organic sulfur and ash contents for the same coal samples were also defined. It was found that the adsorption capacities of the samples decreased after these pre-treatments. The decrease in adsorption capacity with pyrolysis can be attributed to the changes in surface morphology and/or pore size distribution of the coal samples. On the other hand, the observed decrease in adsorption capacity with removal of carbonates and silicates shows that these minerals have an important effect on methylene blue adsorption, and the adsorption considerably occurs through electrostatic interactions. In addition, the obtained results showed that the organic sulfur presence in the coal matrix have a positive effect on the methylene blue adsorption

  2. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW's Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  3. Co-pyrolysis of low rank coals and biomass: Product distributions

    Energy Technology Data Exchange (ETDEWEB)

    Soncini, Ryan M.; Means, Nicholas C.; Weiland, Nathan T.

    2013-10-01

    Pyrolysis and gasification of combined low rank coal and biomass feeds are the subject of much study in an effort to mitigate the production of green house gases from integrated gasification combined cycle (IGCC) systems. While co-feeding has the potential to reduce the net carbon footprint of commercial gasification operations, the effects of co-feeding on kinetics and product distributions requires study to ensure the success of this strategy. Southern yellow pine was pyrolyzed in a semi-batch type drop tube reactor with either Powder River Basin sub-bituminous coal or Mississippi lignite at several temperatures and feed ratios. Product gas composition of expected primary constituents (CO, CO{sub 2}, CH{sub 4}, H{sub 2}, H{sub 2}O, and C{sub 2}H{sub 4}) was determined by in-situ mass spectrometry while minor gaseous constituents were determined using a GC-MS. Product distributions are fit to linear functions of temperature, and quadratic functions of biomass fraction, for use in computational co-pyrolysis simulations. The results are shown to yield significant nonlinearities, particularly at higher temperatures and for lower ranked coals. The co-pyrolysis product distributions evolve more tar, and less char, CH{sub 4}, and C{sub 2}H{sub 4}, than an additive pyrolysis process would suggest. For lignite co-pyrolysis, CO and H{sub 2} production are also reduced. The data suggests that evolution of hydrogen from rapid pyrolysis of biomass prevents the crosslinking of fragmented aromatic structures during coal pyrolysis to produce tar, rather than secondary char and light gases. Finally, it is shown that, for the two coal types tested, co-pyrolysis synergies are more significant as coal rank decreases, likely because the initial structure in these coals contains larger pores and smaller clusters of aromatic structures which are more readily retained as tar in rapid co-pyrolysis.

  4. Drying grain using a hydrothermally treated liquid lignite fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bukurov, Z.; Cvijanovic, P.; Bukurov, M. [Univ. of Novi Sad (Yugoslavia); Ljubicic, B.R. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    A shortage of domestic oil and natural gas resources in Yugoslavia, particularly for agricultural and industrial purposes, has motivated the authors to explore the possibility of using liquid lignite as an alternate fuel for drying grain. This paper presents a technical and economic assessment of the possibility of retrofitting grain-drying plants currently fueled by oil or natural gas to liquid lignite fuel. All estimates are based on lignite taken from the Kovin deposit. Proposed technology includes underwater mining techniques, aqueous ash removal, hydrothermal processing, solids concentration, pipeline transport up to 120 km, and liquid lignite direct combustion. For the characterization of Kovin lignite, standard ASTM procedures were used: proximate, ultimate, ash, heating value, and Theological analyses were performed. Results from an extensive economic analysis indicate a delivered cost of US$20/ton for the liquid lignite. For the 70 of the grain-drying plants in the province of Vojvodina, this would mean a total yearly saving of about US $2,500,000. The advantages of this concept are obvious: easy to transport and store, nonflammable, nonexplosive, nontoxic, 30%-40% cheaper than imported oil and gas, domestic fuel is at hand. The authors believe that liquid lignite, rather than an alternative, is becoming more and more an imperative.

  5. Nitrogen conversion during rapid pyrolysis of coal and petroleum coke in a high-frequency furnace

    International Nuclear Information System (INIS)

    Yuan, Shuai; Zhou, Zhi-jie; Li, Jun; Wang, Fu-chen

    2012-01-01

    Highlights: ► Use a high-frequency furnace to study N-conversion during rapid pyrolysis of coal. ► Scarcely reported N-conversion during rapid pyrolysis of petroleum coke was studied. ► Both of NH 3 and HCN can be formed directly from coal during rapid pyrolysis. ► NH 3 –N yields are higher than HCN–N yields in most conditions. ► NH 3 –N yields of petroleum coke increase with temperature and no HCN detected. -- Abstract: Rapid pyrolysis of three typical Chinese coals, lignite from Inner Mongolia, bituminous from Shenfu coalfield, and anthracite from Guizhou, as well as a petroleum coke were carried out in a drop-style high-frequency furnace. The reactor was induction coil heated and had a very small high-temperature zone, which could restrain secondary conversions of nitrogen products. The effects of temperature and coal rank on conversions of fuel-N to primary nitrogen products (char-N, HCN–N, NH 3 –N and (tar + N 2 )–N) have been investigated. The results showed that, the increasing temperature reduced the yields of char-N and promoted the conversion of fuel-N to N 2 . Char-N yields increased, while volatile-N yields decreased as the coal rank increased. In most of the conditions, NH 3 –N yields were higher than HCN–N yields during rapid pyrolysis of coal. In the case of petroleum coke, NH 3 –N yields increased gradually with the increasing temperature, but no HCN was detected. We argue that NH 3 –N can be formed directly through the primary pyrolysis without secondary reactions. Although volatile-N yields of lignite were higher than those of bituminous, yields of (HCN + NH 3 )–N in volatile-N of lignite were lower than those of bituminous. While the (HCN + NH 3 )–N yields of anthracite were the lowest of the three coals. Both of the (HCN + NH 3 )–N yields and (HCN + NH 3 )–N proportions in volatile-N of petroleum coke were lower than the three coals.

  6. Coal in Asia-Pacific. Vo1 7, No. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    In China, there are bottle-necks of the coal transportation capacity in the major inter-regional routes. The Chinese Government`s eighth and ninth five-year plans intend to increase the capacity. In the 9% growth case, the planned railway transport capacity will be critical. Measures are considered, as to promotion of coal dressing, transport as electric power, construction of nuclear power plants and hydraulic power plants, and construction of coal water slurry pipe lines. Japan`s coal policy includes the structural adjustment of coal mining industry, and a new policy for coal in the total energy policy. To secure the stable overseas coal supply, NEDO has a leading part in overseas coal resources development. Coal demand and supply, mining technology, mine safety, coal preparation and processing technology, and comprehensive coal utilization technology including clean coal technology in Japan are described. At present, Thailand is progressing with the seventh plan, and the development of domestic energy emphasize lignite, natural gas, and oil. Thai import demand for high-quality coal is to be increasing. Japan`s cooperation is considered to be effective for the environmental problems. 12 figs., 40 tabs.

  7. Rare earth elements in fly ashes created during the coal burning process in certain coal-fired power plants operating in Poland - Upper Silesian Industrial Region

    International Nuclear Information System (INIS)

    Smolka-Danielowska, Danuta

    2010-01-01

    The subject of the study covered volatile ashes created during hard coal burning process in ash furnaces, in power plants operating in the Upper Silesian Industrial Region, Southern Poland. Coal-fired power plants are furnished with dust extracting devices, electro precipitators, with 99-99.6% combustion gas extracting efficiency. Activity concentrations ofTh-232, Ra-226, K-40, Ac-228, U-235 and U-238 were measured with gamma-ray spectrometer. Concentrations of selected rare soil elements (La, Ce, Nd, Sm, Y, Gd, Th, U) were analysed by means of instrumental neutron activation analysis (INAA). Mineral phases of individual ash particles were identified with the use of scanning electron microscope equipped with EDS attachment. Laser granulometric analyses were executed with the use of Analyssette analyser. The activity of the investigated fly-ash samples is several times higher than that of the bituminous coal samples; in the coal, the activities are: 226Ra - 85.4 Bq kg -1 , 40 K-689 Bq kg -1 , 232Th - 100.8 Bq kg -1 , 235U-13.5 Bq kg -1 , 238U-50 Bq kg -1 and 228Ac - 82.4 Bq kg -1 .

  8. Rare earth elements in fly ashes created during the coal burning process in certain coal-fired power plants operating in Poland - Upper Silesian Industrial Region.

    Science.gov (United States)

    Smolka-Danielowska, Danuta

    2010-11-01

    The subject of the study covered volatile ashes created during hard coal burning process in ash furnaces, in power plants operating in the Upper Silesian Industrial Region, Southern Poland. Coal-fired power plants are furnished with dust extracting devices, electro precipitators, with 99-99.6% combustion gas extracting efficiency. Activity concentrations ofTh-232, Ra-226, K-40, Ac-228, U-235 and U-238 were measured with gamma-ray spectrometer. Concentrations of selected rare soil elements (La, Ce, Nd, Sm, Y, Gd, Th, U) were analysed by means of instrumental neutron activation analysis (INAA). Mineral phases of individual ash particles were identified with the use of scanning electron microscope equipped with EDS attachment. Laser granulometric analyses were executed with the use of Analyssette analyser. The activity of the investigated fly-ash samples is several times higher than that of the bituminous coal samples; in the coal, the activities are: 226Ra - 85.4 Bq kg(-1), 40 K-689 Bq kg(-1), 232Th - 100.8 Bq kg(-1), 235U-13.5 Bq kg(-1), 238U-50 Bq kg(-1) and 228Ac - 82.4 Bq kg(-1).

  9. Organic geochemical studies of the transformation of gymnospermous xylem during peatification and coalification to subbituminous coal

    Science.gov (United States)

    Hatcher, P.G.; Lerch, H. E.; Verheyen, T.V.

    1990-01-01

    It is generally recognized that xylem from trees that are buried in peat swamps is transformed first to huminite macerals in brown coal and then to vitrinite macerals in bituminous coal by processes collectively known as coalification. In order to understand the chemical nature of coalification of xylem and the chemical structures that eventually evolve in coal, we examined a series of gymnospermous xylem samples coalified to varying degrees. The samples included modern fresh xylem, modern degraded xylem in peat, and xylem coalified to ranks of brown coal (lignite B), lignite A, and subbituminous coal. The organic geochemical methods used in this study included solid-state 13C nuclear magnetic resonance (NMR) and pyrolysis/gas chromatography/mass spectrometry. The NMR method provided average compositional information, and the pyrolysis provided detailed molecular information. Although the samples examined include different plants of different geologic ages, they all share a common feature in that they are gymnospermous and presumably have or had a similar kind of lignin. The data obtained in this study provide enough details to allow delineation of specific coalification pathway for the xylem is microbial degradation in peat (peatification), leading to selective removal of cellulosic components. These components constitute a large fraction of the total mass of xylem, usually greater than 50%. Although cellulosic components can survive degradation under certain conditions, their loss during microbial degradation is the rule rather than exception during peatification. As these components of xylem are degraded and lost, lignin, another major component of xylem, is selectively enriched because it is more resistant to microbial degradation than the cellulosic components. Thus, lignin survives peatification in a practically unaltered state and becomes the major precursor of coalified xylem. During its transformation to brown coal and lignite A, lignin in xylem is altered

  10. Biodegradation of photo-oxidized lignite and characterization of the products

    Science.gov (United States)

    Li, Jiantao; Liu, Xiangrong; Yue, Zilin; Zhang, Yaowen

    2018-01-01

    Biodegradation of photo-oxidized Inner Mongolia lignite by pseudomonas aeruginosa was studied and the degradation percentage reached 56.27%, while the corresponding degradation percentage of the strain degrading raw Inner Mongolia lignite is only 23.16%. The degradation products were characterized. Proximate and ultimate analyses show that the higher oxygen content increased by photo-oxidation pretreatment maybe promoted the degradation process. Ultraviolet spectroscopy (UV) analysis of the liquid product reveals that it contains unsaturated structures and aromatic rings are the main structure units. Gas chromatography-mass spectrometry (GC-MS) analysis indicates that the main components of the ethyl acetate extracts are low molecular weight organic compounds, such as ketones, acids, hydrocarbons, esters and alcohols. Infrared spectroscopy (IR) analysis of raw lignite, photo-oxidized lignite and residual lignite demonstrates that the absorption peaks of functional groups in residual lignite disappeared or weakened obviously. Scanning electron microscopy (SEM) analysis manifests that small holes appear in photo-oxidized lignite surface, which may be promote the degradation process and this is only from the physical morphology aspects, so it can be inferred from the tests and analyses results that the more important reason of the high degradation percentage is mostly that the photo-oxidation pretreatment changes the chemical structures of lignite.

  11. Experimental on fly ash recirculation with bottom feeding to improve the performance of a circulating fluidized bed boiler co-burning coal sludge

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Lunbo; Xu, Guiling; Liu, Daoyin; Chen, Xiaoping; Zhao, Changsui [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    With the aim of reducing carbon content in fly ash, fly ash recirculation with bottom feeding (FARBF) technology was applied to a 75 t/h Circulating Fluidized Bed (CFB) boiler burning mixture of coal and coal sludge. And industrial experiments were carried out to investigate the influence of FARBF technology on the combustion performance and pollutant emission characteristics of the CFB boiler. Results show that as the recirculation rate of fly ash increases, the CFB dense bed temperature decreases while the furnace outlet temperature increases, and the temperature distribution in the furnace becomes uniform. Compared with the conditions without fly ash recirculation, the combustion efficiency increases from 92 to 95% when the recirculation rate increases to 8 t/h, and the desulfurization efficiency also increases significantly. As the recirculation rate increases, the emissions of NO and CO decrease, but the particulate emission increases. The present study indicates that FARBF technology can improve the combustion performance and desulfurization efficiency for the CFB boilers burning coal sludge, and this can bring large economical and environmental benefits in China.

  12. Simulation of one-dimensional heat transfer system based on the blended coal combustion

    Science.gov (United States)

    Jin, Y. G.; Li, W. B.; Cheng, Z. S.; Cheng, J. W.; liu, Y.

    2017-12-01

    In this paper, the supercritical boiler thermodynamic calculation model is studied. Three types of heat exchangers are proposed, namely furnace (total radiation type), semi-radiation and convection, and discussed. Two cases were simulated - mixing of two bituminous coals and mixing of a bituminous coal and lignite- order to analyze the performance on the flue gas side. The study shows that the influence of flue air leakage and gas distribution coefficient on the system.

  13. Effect of biomass on burnouts of Turkish lignites during co-firing

    Energy Technology Data Exchange (ETDEWEB)

    Haykiri-Acma, H.; Yaman, S. [Istanbul Technical Univ., Chemical and Metallurgical Engineering Faculty, Chemical Engineering Dept., 34469 Maslak, Istanbul (Turkey)

    2009-09-15

    Co-firing of some low quality Turkish lignites with woody shells of sunflower seed was investigated via non-isothermal thermogravimetric analysis method. For this purpose, Yozgat-Sorgun, Erzurum-Askale, Tuncbilek, Gediz, and Afsin-Elbistan lignites were selected, and burnouts of these lignites were compared with those of their blends. Biomass was blended as much as 10 and 20 wt.% of the lignites, and heating was performed up to 900 C at a heating rate of 40 C/min under dry air flow of 40 mL/min. This study revealed that the same biomass species may have different influences on the burnout yields of the lignites. Burnouts of Erzurum-Askale lignite increased at any temperature with the increasing ratio of biomass in the blend, whereas burnout yields of other lignites decreased to some extent. Nevertheless, the blends of Turkish lignites with sunflower seed shell did not behave in very different way, and it can be concluded that they are compatible in terms of burnouts for co-combustion in a combustion system. Although the presence of biomass in the lignite blends caused to some decreases in the final burnouts, the carbon dioxide neutral nature of biomass should be taken into account, and co-combustion is preferable for waste-to-energy-management. (author)

  14. Effect of biomass on burnouts of Turkish lignites during co-firing

    International Nuclear Information System (INIS)

    Haykiri-Acma, H.; Yaman, S.

    2009-01-01

    Co-firing of some low quality Turkish lignites with woody shells of sunflower seed was investigated via non-isothermal thermogravimetric analysis method. For this purpose, Yozgat-Sorgun, Erzurum-Askale, Tuncbilek, Gediz, and Afsin-Elbistan lignites were selected, and burnouts of these lignites were compared with those of their blends. Biomass was blended as much as 10 and 20 wt.% of the lignites, and heating was performed up to 900 deg. C at a heating rate of 40 deg. C/min under dry air flow of 40 mL/min. This study revealed that the same biomass species may have different influences on the burnout yields of the lignites. Burnouts of Erzurum-Askale lignite increased at any temperature with the increasing ratio of biomass in the blend, whereas burnout yields of other lignites decreased to some extent. Nevertheless, the blends of Turkish lignites with sunflower seed shell did not behave in very different way, and it can be concluded that they are compatible in terms of burnouts for co-combustion in a combustion system. Although the presence of biomass in the lignite blends caused to some decreases in the final burnouts, the carbon dioxide neutral nature of biomass should be taken into account, and co-combustion is preferable for waste-to-energy-management.

  15. Utilisation of chemically treated coal

    International Nuclear Information System (INIS)

    Bezovska, M.

    2002-01-01

    The numerous application of coal with high content of humic substances are known. They are used in many branches of industry. The complex study of the composition of coal from upper Nitra mines has directed research to its application in the field of ecology and agriculture. The effective sorption layers of this coal and their humic acids can trap a broad spectrum of toxic harmful substances present in industrial wastes, particularly heavy metals. A major source of humic acids is coal - the most abundant and predominant product of plant residue coalification. All ranks of coal contain humic acids but lignite from Novaky deposit represents the most easily available and concentrated from of humic acids. The possibilities of utilisation of humic acids to remove heavy metals from waste waters was studied. The residual concentrations of the investigated metals in the aqueous phase were determined by AAs. From the results follows that the samples of coals humic acids can be used for the heavy metal removal from metal solutions and the real acid mine water. Oxidised coal with high content of humic acids and nitrogen is used in agriculture as fertilizer. Humic acids are active component in coal and can help to utilize almost quantitatively nitrogen in soil. The humic substances block and stabilize toxic metal residues already present in soil. (author)

  16. Bio-solubilization of Chinese lignite II: extra-cellular protein analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Xiu-xiang; Pan, Lan-ying; Shi, Kai-yi; Chen-hui; Yin, Su-dong; Luo, Zhen-fu [China University of Mining & Technology, Xuzhou (China). School of Chemical Engineering and Technology

    2009-05-15

    A white rot fungus strain, Trichoderma sp. AH, was isolated from rotten wood in Fushun and used to study the mechanism of lignite bio-solubilization. The results showed that nitric acid pretreated Fushun lignite was solubilized by T. sp. AH and that extracellular proteins from T. sp. AH were correlated with the lignite bio-solubilization results. In the presence of Fushun lignite the extracellular protein concentration from T. sp. AH was 4.5 g/L while the concentration was 3 g/L in the absence of Fushun lignite. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of the extracelular proteins detected at least four new protein bands after the T. sp. AH had solubilized the lignite. Enzyme color reactions showed that extracelular proteins from T. sp. AH mainly consisted of phenol-oxidases, but that lignin decomposition enzymes such as laccase, peroxidase and manganese peroxidases were not present. 9 refs., 8 figs.

  17. Characterization of Canadian coals by nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Ripmeester, J.

    1983-06-01

    Apparent aromaticities of a series of Canadian coals of different rank were estimated by solid state nuclear magnetic resonance spectroscopy. The aromaticities varied from 0.57 for a lignite up to 0.86 for a semi-anthracite coal. The aromaticities correlated well with fixed carbon and oxygen content of the coals as well as with the mean reflectance of the coals. Correlations were also established between aromaticities and the H/C and H/SUB/a/SUB/r/SUB/u/C/SUB/a/SUB/r ratios of the coals. Uncertainties in calculation of the hypothetical H/SUB/a/SUB/r/SUB/u/C/SUB/a/SUB/r ratios, from experimental data were pointed out. Structural parameters of the chars derived from the coals by pyrolysis at 535 C were, also, estimated. The H/C and H/SUB/a/SUB/r/SUB/u/C/SUB/a/SUB/r ratios of the chars were markedly lower than those of coals. This was complemented by higher apparent aromaticities of the chars compared with the coals. (21 refs.)

  18. Effect of CuO receptor on the liquid yield and composition of oils derived from liquefaction of coals by microwave energy

    International Nuclear Information System (INIS)

    Yagmur, Emine; Simsek, Emir H.; Aktas, Zeki; Togrul, Taner

    2008-01-01

    The effects of microwave receptor to coal (receptor/coal) ratio and the period of heating by microwave energy on the solubilization of Turkish coals in tetralin have been investigated. CuO was used as microwave receptor. The amount of receptor and the type of coal significantly affected the yield of liquid product. The addition of the CuO receptor caused to increase in the lignite conversions to oil fractions. The yield of THF soluble fraction increased in the presence of CuO receptor, however, due to catalytic effect of CuO, the yields of preasphaltene (PAS) and asphaltene (AS) decreased. The oil fractions were obtained from the experiments treated by microwave energy in the presence of 3/5 CuO/coal ratio and in the absence of receptor for 20 min liquefaction periods. The compositions of the oil fractions were determined by GC/MS. The composition of the oil fractions of the coals strongly depends on the type of coal. It was observed that the oil fractions contain oxygenated aromatic compounds in addition to condensed aromatic structures. Considerable amounts of 3,4-dihydro-1(2H)-naphthalenone (alpha-tetralone) were found in the oil fractions of lignites treated by microwave energy

  19. Coal pyrolysis under synthesis gas, hydrogen and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ariunaa, A.; Li Bao-Qing; Li Wen; Purevsuren, B. (and others) [Chinese Academy of Sciences, Taiyuan (China)

    2007-02-15

    Chinese Xundian, Mongolian Shiveeovoo lignites and Khoot oil shale are pyrolyzed under synthesis gas (SG) at temperature range from 400 to 800{sup o}C for lignite and from 300 to 600{sup o}C for oil shale with heating rate of 10{sup o}C/min in a fixed bed reactor. The results were compared with those obtained by pyrolysis under hydrogen and nitrogen. The results showed that unlike pyrolysis at high pressure, there are only slight different in the yields of char and tar among pyrolyses under various gases at room pressure for lignite, while higher liquid yield with lower yields of char and gas was obtained in pyrolysis of oil shale under SG and H{sub 2} than under N{sub 2}. It is found that the pyrite S can be easily removed to partially convert to organic S under various gaseous atmosphere and the total sulfur removal for oil shale is much less than lignite, which might be related to its high ash content. The higher total sulfur removal and less organic S content in the presence of SG in comparison with those under N{sub 2} and even under H{sub 2} in pyrolysis of Xundian lignite might result from the action of CO in SG. However, CO does not show its function in pyrolysis of Khoot oil shale, which might also be related to the high ash content. The results reported show the possibility of using synthesis gas instead of pure hydrogen as the reactive gas for coal hydropyrolysis. 11 refs., 4 figs., 6 tabs.

  20. Prospects for coal: technical developments

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, W G; Peirce, T J

    1983-07-01

    This article summarises the reasons for predicting an increase in the use of coal as an industrial energy source in the United Kingdom. The development of efficient and reliable coal-burning techniques is therefore of great importance. Various techniques are then discussed, including conventional combustion systems, fluidised bed combustion systems, fluidised bed boilers and furnaces, coal and ash handling, coal-liquid mixtures, coal gasification and coal liquefaction. (4 refs.)

  1. Tests and studies of USSR materials at the US coal burning MHD facility UTSI-2

    Energy Technology Data Exchange (ETDEWEB)

    Telegin, G P; Romanov, A I; Rekov, A I; Spiridonov, E G; Barodina, T I; Vysotsky, D A

    1978-10-01

    In accordance with the overall program of the US--USSR cooperation in the field of MHD power generation tests of Soviet electrode materials were conducted at the coal burning MHD facility UTSI-2 of the University of Tennessee Space Institute. The main purposes of the tests are evaluation of electrode materials behavior in the channel of the MHD generator operating with combustion products of coal containing ionizing alkali seed, study of thermal and physical stability of materials in the presence of corrosive slag, study of electrophysical characteristics of electrode materials when they are subjected to the passage of current through the plasma-slag-electrode system. Tests were conducted on electrodes made of silicon carbide doped with titanium and LaCrO/sub 3/--Cr cermet. Results are reported on the phase and chemical composition and structure of these two materials, their thermophysical and electrophysical properties, and the electrode fabrication methods. The MHD facility UTSI-2, where the tests were conducted is one of few utilizing actual coal as the fuel. A description of this facility is given, and its main operating parameters and the methods used to conduct electrode tests with and without an applied current are described.

  2. Distilling coal, etc

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, W P

    1906-01-11

    Substances containing hydrocarbons, such as cannel coal, lignite, and shale, are destructively distilled by dividing the charge into small bodies confined in an air-tight chamber through which the products of combustion from a contiguous furnace are passed, the furnace serving also to heat the chamber. The temperature is kept below red heat so that the initial products, such as vapors of heavy oils, paraffin, waxes, naphthas, phenols, and cresols, are not decomposed and there is no formation of gaseous products such as naphthalene and benzol. The operation is of short duration, and large amounts of good coke are produced.

  3. Fiscal 1995 survey report on the feasibility study of the environmentally friendly type coal utilization system. Feasibility study of the environmentally friendly type coal utilization system in Thailand; Kankyo chowagata sekitan riyo system kanosei chosa. Tai ni okeru kankyo chowagata sekitan riyo system kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The paper surveyed the present situation and future trend of economy, energy supply/demand, coal production/distribution/utilization and the environmental effects in Thailand. The survey on the coal utilization and its environmental effects was partially requested of the environmental research institute in Thailand. The amount of coal utilization in Thailand rapidly increased to nearly four times as large as that ten years ago mainly in terms of domestic lignite under the government`s policy on expansion of the domestic energy use. However, most of this domestic lignite is low-grade coal with low calories and high sulfur content, and the use of it was rapidly increased mostly in power generation sector without no adequate environmental measures taken. This caused an environmental problem on air pollution due to sulfur oxides at Mae Moh power plant in the north several years ago, and the damages to the regional residents, etc. were given much publicity by journalism and developed the social problem. Accordingly, Thai people are now critical of the coal resource exploration and the coal use expansion. Under the circumstances, the Ministry of Industry and the energy related ministries/offices are obliged to review their development/promotion plans. 84 figs., 99 tabs.

  4. An evaluation of Substitute natural gas production from different coal gasification processes based on modeling

    International Nuclear Information System (INIS)

    Karellas, S.; Panopoulos, K.D.; Panousis, G.; Rigas, A.; Karl, J.; Kakaras, E.

    2012-01-01

    Coal and lignite will play a significant role in the future energy production. However, the technical options for the reduction of CO 2 emissions will define the extent of their share in the future energy mix. The production of synthetic or substitute natural gas (SNG) from solid fossil fuels seems to be a very attractive process: coal and lignite can be upgraded into a methane rich gas which can be transported and further used in high efficient power systems coupled with CO 2 sequestration technologies. The aim of this paper is to present a modeling analysis comparison between substitute natural gas production from coal by means of allothermal steam gasification and autothermal oxygen gasification. In order to produce SNG from syngas several unit operations are required such as syngas cooling, cleaning, potential compression and, of course, methanation reactors. Finally the gas which is produced has to be conditioned i.e. removal of unwanted species, such as CO 2 etc. The heat recovered from the overall process is utilized by a steam cycle, producing power. These processes were modeled with the computer software IPSEpro™. An energetic and exergetic analysis of the coal to SNG processes have been realized and compared. -- Highlights: ► The production of SNG from coal is examined. ► The components of the process were simulated for integrated autothermal or allothermal coal gasification to SNG. ► The energetic and exergetic evaluation of the two processes is presented.

  5. Drying kinetics characteristic of Indonesia lignite coal (IBC) using lab scale fixed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kang, TaeJin; Jeon, DoMan; Namkung, Hueon; Jang, DongHa; Jeon, Youngshin; Kim, Hyungtaek [Ajou Univ., Suwon (Korea, Republic of). Div. of Energy Systems Research

    2013-07-01

    Recent instability of energy market arouse a lot of interest about coal which has a tremendous amount of proven coal reserves worldwide. South Korea hold the second rank by importing 80 million tons of coal in 2007 following by Japan. Among various coals, there is disused coal. It's called Low Rank Coal (LRC). Drying process has to be preceded before being utilized as power plant. In this study, drying kinetics of LRC is induced by using a fixed bed reactor. The drying kinetics was deduced from particle size, the inlet gas temperature, the drying time, the gas velocity, and the L/D ratio. The consideration on Reynold's number was taken for correction of gas velocity, particle size, and the L/D ratio was taken for correction packing height of coal. It can be found that active drying of free water and phase boundary reaction is suitable mechanism through the fixed bed reactor experiments.

  6. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW`s Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  7. Analysis of lithofacies cyclicity in the Miocene Coal Complex of the Bełchatów lignite deposit, south-central Poland

    Directory of Open Access Journals (Sweden)

    Mastej Wojciech

    2015-12-01

    Full Text Available Markov chain analysis was applied to studies of cyclic sedimentation in the Coal Complex of the Bełchatów mining field (part of the Bełchatów lignite deposit. The majority of ambiguous results of statistical testing that were caused by weak, statistically undetectable advantage of either cyclicity over environmental barriers or vice versa, could be explained if only the above-mentioned advantages appeared in the neighbourhood. Therefore, in order to enhance the credibility of statistical tests, a new approach is proposed here in that matrices of observed transition numbers from different boreholes should be added to increase statistical reliability if they originated in a homogeneous area. A second new approach, which consists of revealing statistically undetectable cyclicity of lithofacies alternations, is proposed as well. All data were derived from the mining data base in which differentiation between lithology and sedimentary environments was rather weak. For this reason, the methodological proposals are much more important than details of the sedimentation model in the present paper. Nevertheless, they did reveal some interesting phenomena which may prove important in the reconstruction of peat/lignite environmental conditions. First of all, the presence of cyclicity in the sedimentation model, i.e., cyclic alternation of channel and overbank deposits, represents a fluvial environment. It was also confirmed that the lacustrine subenvironment was cut off from a supply of clastic material by various types of mire barriers. Additionally, our analysis revealed new facts: (i these barriers also existed between lakes in which either carbonate or clay sedimentation predominated; (ii there was no barrier between rivers and lakes in which clay sedimentation predominated; (iii barriers were less efficient in alluvial fan areas but were perfectly tight in regions of phytogenic or carbonate sedimentation; (iv groundwater, rather than surface flow

  8. Forest-biological erosion control on coal-mine spoil banks in Bulgaria

    International Nuclear Information System (INIS)

    Haigh, M.J.; Gentcheva-Kostadinova, S.; Zheleva, E.

    1995-01-01

    The forest fallowing of coal-mine spoils helps re-establish the processes of natural, self-sustaining, soil formation. Environmental monitoring in Bulgaria demonstrates that forestation can moderate soil pH (from ph> 3.0 to pH 1.3 g/cm 3 in the 0-5 cm layer) in the case of coal briquette spoils at Pernik, near Sofia. Ground losses from forested, 16-17 degree slope, coal briquette-spoils at Pernik are a quarter of those from an entirely unvegetated section of the same embankment (48.5 vs 12. 1 mm in the period 1988-1994) despite the absence of ground cover beneath the trees. On lignite spoil banks, at Maritsa-Iztok, central Bulgaria, forestation increases the organic content of the soil to greater depths than revegetation with grass, and to a greater degree than conventional agricultural cultivation. On Pinus nigra forested crest sites at Pernik, and in Robinia pseudacacia forested groves on the lignite minespoil banks at Maritsa-Iztok, slopes showed ground advance rather than ground retreat. Slopes protected by mechanical means alone did not allow soil growth and, where the structure broke down, they suffered as much erosion as untreated sites. In sum, the forest fallowing of surface coal-mine disturbed land accelerates organic matter accumulation in the soil, helps improve soil structure, reduces erosion, and may transform soil loss into soil gain, even on steeply sloping sites. 17 refs., 3 figs., 1 tab

  9. Adsorption of SO2 on bituminous coal char and activated carbon fiber prepared from phenol formaldehyde

    Science.gov (United States)

    DeBarr, Joseph A.; Lizzio, Anthony A.; Daley, Michael A.

    1996-01-01

    Carbon-based materials are used commercially to remove SO2 from coal combustion flue gases. Historically, these materials have consisted of granular activated carbons prepared from lignite or bituminous coal. Recent studies have reported that activated carbon fibers (ACFs) may have potential in this application due to their relatively high SO2 adsorption capacity. In this paper, a comparison of SO2 adsorption for both coal-based carbons and ACFs is presented, as well as ideas on carbon properties that may influence SO2 adsorption

  10. An assessment of chemical properties and hardgrove grindability index of punjab coal

    International Nuclear Information System (INIS)

    Shahzad, M.; Iqbal, M.M.; Hassan, S.A.

    2014-01-01

    This paper deals with the delamination of chemical properties and hardgrove grindability index (HGI) of coal samples collected from three different coal fields of Punjab; Eastern Salt Range, Central Salt Range and Makerwal coal fields. The chemical properties of Punjab coal reveal that most of the Punjab coal belongs to sub-bituminous category except coal of Tunnel C section of Makerwal Collieries and Iqbal Mineral coal mine of Dalwal, which are high volatile bituminous and lignite, respectively. The results of the research show that the HGI values of Punjab coal vary from 57 to 92. The eastern salt range coals are found to be the softest coals among that of three coal fields. It was further observed that the HGI values of the Punjab coal decrease with increasing moisture content, fixed carbon and sulphur contents, while it has a positive relation with volatile matter, ash content and gross calorific value. It was concluded that moisture content at its lower range has negligible effect on HGI of the Punjab coal. (author)

  11. Environmental radioactivity and radiation exposure by radioactive emissions of coal-fired power plants

    International Nuclear Information System (INIS)

    Jacobi, W.

    1981-03-01

    On the basis of measurements of the radioactive emissions of a 300 MW coal-fired power plant and of a 600 MW lignite-fired power plant the expected activity increase in air and soil in the environment of both plants is estimated and compared with the normal, natural activity level. Due to these emissions it results for the point of maximum immission a committed effective dose equivalent per GW x a of about 0.2 mrem = 0.002 mSv for the coal-fired plant and of about 0.04 mrem = 0.0004 mSv for the lignite-fired plant. This dose is caused to nearly equal parts by inhalation, ingestion and external γ-radiation. The normalized effective dose equivalent in the environment of the modern coal-fired power plant is in the same order of magnitude like that of a modern pressurized water reactor. The total, collective effective dose equivalent commitment by the annual radioactive emissions of coal-fired power plants in the F.R.Germany is estimated to 2000-6000 Man x rem = 20-60 Man x Sv. This corresponds to a mean per caput-dose in the population of the F.R.Germany of about 0.03-0.1 mrem = 0.0003-0.001 mSv; this is about 0.02-0.06% of the mean normal natural radiation exposure of the population. (orig.) [de

  12. Fossil fuel and biomass burning effect on climate - Heating or cooling?

    Science.gov (United States)

    Kaufman, Yoram J.; Fraser, Robert S.; Mahoney, Robert L.

    1991-01-01

    The basic theory of the effect of pollution on cloud microphysics and its global implications is applied to compare the relative effect of a small increase in the consumption rate of oil, coal, or biomass burning on cooling and heating of the atmosphere. The characteristics of and evidence for the SO2 induced cooling effect are reviewed. This perturbation analysis approach permits linearization, therefore simplifying the analysis and reducing the number of uncertain parameters. For biomass burning the analysis is restricted to burning associated with deforestation. Predictions of the effect of an increase in oil or coal burning show that within the present conditions the cooling effect from oil and coal burning may range from 0.4 to 8 times the heating effect.

  13. Fossil fuel energy resources of Ethiopia: Coal deposits

    Energy Technology Data Exchange (ETDEWEB)

    Wolela, Ahmed [Department of Petroleum Operations, Ministry of Mines and Energy, Kotebe Branch Office, P. O. Box-486, Addis Ababa (Ethiopia)

    2007-11-22

    The gravity of Ethiopian energy problem has initiated studies to explore various energy resources in Ethiopia, one among this is the exploration for coal resources. Studies confirmed the presence of coal deposits in the country. The coal-bearing sediments are distributed in the Inter-Trappean and Pre-Trap volcanic geological settings, and deposited in fluvio-lacustrine and paludal environments in grabens and half-grabens formed by a NNE-SSW and NNW-SSE fault systems. Most significant coal deposits are found in the Inter-Trappean geological setting. The coal and coal-bearing sediments reach a maximum thickness of 4 m and 300 m, respectively. The best coal deposits were hosted in sandstone-coal-shale and mudstone-coal-shale facies. The coal formations of Ethiopia are quite unique in that they are neither comparable to the coal measures of the Permo-Carboniferous Karroo Formation nor to the Late Devonian-Carboniferous of North America or Northwestern Europe. Proximate analysis and calorific value data indicated that the Ethiopian coals fall under lignite to high volatile bituminous coal, and genetically are classified under humic, sapropelic and mixed coal. Vitrinite reflectance studies confirmed 0.3-0.64% Ro values for the studied coals. Palynology studies confirmed that the Ethiopian coal-bearing sediments range in age from Eocene to Miocene. A total of about 297 Mt of coal reserve registered in the country. The coal reserve of the country can be considered as an important alternative source of energy. (author)

  14. Utilisation of chemically treated coal

    Directory of Open Access Journals (Sweden)

    Bežovská Mária

    2002-03-01

    Full Text Available The numerous application of coal with high content of humic substances are known. They are used in many branches of industry. The complex study of the composition of coal from upper Nitra mines has directed research to its application in the field of ecology and agriculture. The effective sorption layers of this coal and their humic acids can to trap a broad spectrum of toxic harmful substances present in industrial wastes, particularly heavy metals. A major source of humic acids is coal - the most abundant and predominant product of plant residue coalification. All ranks of coal containt humic acids but lignite from Nováky deposit represents the most easily available and concentrated form of humic acids. Deep oxidation of coal by HNO3 oxidation - degradation has been performed to produce water-soluble-organic acids. The possibilities of utilisation of oxidised coal and humic acids to remove heavy metals from waste waters was studied. The residual concentrations of the investigated metals in the aqueous phase were determined by AAs. From the results follows that the samples of oxidised coal and theirs humic acids can be used for the heavy metal removal from metal solutions and the real acid mine water.Oxidised coal with a high content of humic acids and nitrogen is used in agriculture a fertilizer. Humic acids are active component in coal and help to utilize almost quantitatively nitrogen in soil. The humic substances block and stabiliz toxic metal residues already present in soil.

  15. Studies of materials found in products and wastes from coal-conversion processes

    International Nuclear Information System (INIS)

    Petersen, M.R.; Fruchter, J.S.

    1979-01-01

    Researchers at Pacific Northwest Laboratory (PNL) have been investigating materials from synthetic fossil-fuel processes. During this past year, solids from the Lignite Gasification Pilot Plant and samples from the Solvent Refined Coal Pilot Plant (SRC-II mode) have been analyzed for organic and inorganic constituents. Observations on these samples are summarized

  16. Characterisation of lignite lithotypes from the “Kovin” deposit (Serbia - implications from petrographic, biomarker and isotopic analysis

    Directory of Open Access Journals (Sweden)

    Mitrović Danica

    2017-01-01

    Full Text Available Four lignite lithotypes (matrix coal, xylite-rich coal, mixture of matrix and mineral-rich coal and mixture of matrix and xylite-rich coal, originating from the Kovin deposit, were investigated in detail. The paper was aimed to determine the main maceral, biomarker and isotopic (δ13C characteristics of investigated lithotypes. Based on these results the sources and depositional environment of organic matter in 4 lithotypes were established. These samples were also used as substrates for investigation of the influence of diagenetic alteration on δ13C signatures of biomarkers, as well as for assessment of the most convenient utilization for each lithotype. The investigated lithotypes differ in accordance with the composition of huminite macerals. Xylite-rich coal notably distinguishes from other lithotypes beacuse of the highest content of conifer resins vs. epicuticular waxes. The mixture of matrix and mineral-rich coal is characterised by the greatest contribution of algae and fungi and the most intense methanotrophic activity at the time of deposition. In all coal lithotypes diagenetic aromatisation influenced isotopic composition of individual biomarkers. Xylite-rich coal has the poorest grindability properties. However, this coal lithotype is the most suitable for fluidized bed gasification, whereas the mixture of matrix and mineral-rich coal has the lowest applicability for this process. The calorific value decreases in order: xylite-rich coal > matrix coal > mixture of matrix and xylite-rich coal > mixture of matrix and mineral-rich coal. The increase of organic carbon content and calorific value is controlled by the increase of contribution of wood vegetation vs. herbaceous peat-forming plants, as well as by stability of water table during peatification. [Project of the Ministry of Education, Science and Technological Development of the Republic of Serbia, Grant no. 176006 and Grant no. 451-03-01039/2015-09/05

  17. Lignite mining and electricity generation in Poland: The current state and future prospects

    International Nuclear Information System (INIS)

    Widera, Marek; Kasztelewicz, Zbigniew; Ptak, Miranda

    2016-01-01

    This opinion paper presents the current state and future scenarios of Polish lignite mining. For many years, over 1/3 of domestic electricity, that is about 53–55 TWh, has been generated by lignite-fired power plants. Currently, with 63–66 million tons of extraction, Poland is the fourth lignite producer worldwide and the second in the European Union. There are three possible scenarios for the development of lignite mining in Poland by 2050. Unfortunately, despite the huge lignite resources, amounting to more than 23.5 billion tons, and great potential of the mining industry, the future of Polish lignite mining does not look optimistic from the economic point of view. This is associated with social and environmental problems, including the European Union's climate and energy policy. However, this may change in the event of a global economic crisis and unstable geopolitical conditions. Therefore, a new energy doctrine for Poland at least by 2050 is urgently needed. - Highlights: •Poland is one of the leaders in lignite production in the European Union. •Energy policy in Poland assumes a key role of lignite in energy mix. •Almost one-third of Polish electricity is currently generated from lignite. •For Polish lignite mining exist pessimistic, realistic and optimistic scenarios. •Extraction of lignite in Poland will gradually decrease in the coming decades.

  18. High-performance self-compacting concrete with the use of coal burning waste

    Science.gov (United States)

    Bakhrakh, Anton; Solodov, Artyom; Naruts, Vitaly; Larsen, Oksana; Alimov, Lev; Voronin, Victor

    2017-10-01

    Today, thermal power plants are the main producers of energy in Russia. Most of thermal power plants use coal as fuel. The remaining waste of coal burning is ash, In Russia ash is usually kept at dumps. The amount of utilized ash is quite small, less than 13%. Meanwhile, each ash dump is a local ecological disaster. Ash dumps take a lot of place and destroy natural landscape. The use of fly ash in building materials can solve the problem of fly ash dumps in Russia. A lot of papers of scientists are devoted to the use of fly ash as filler in concrete. The main advantage of admixing fly ash in concrete is decrease of amount of used cement. This investigation was held to find out if it is possible to utilize fly ash by its use in high amounts in self-compacting concrete. During experiments three mixtures of SCC with different properties were obtained. The first one is experimental and shows the possibility of obtaining SCC with high compressive strength with 60% of fly ash from the mass of cement. Two other mixtures were optimized with the help of the math planning method to obtain high 7-day and 28-day high compressive strength.

  19. Overview of Neyveli lignite complex

    Energy Technology Data Exchange (ETDEWEB)

    1984-09-01

    The growth and development of the Neyveli lignite complex in Tamil Nadu, India are discussed. A second lignite mine is being developed together with a second thermal power station and erection of transmission lines between Neyveli-Salem and Neyveli-Red Hills is under way. The contribution of power to Tamil Nadu has grown into an extremely valuable asset; exports have risen by 71% in the four years leading up to 1984 and company turn-over has increased 164% over the same period. Performance during 1983-84 is analysed in terms of production figures, productivity and capacity utilisation.

  20. Coal combustion aerothermochemistry research. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Witte, A.B.; Gat, N.; Denison, M.R.; Cohen, L.M.

    1980-12-15

    On the basis of extensive aerothermochemistry analyses, laboratory investigations, and combustor tests, significant headway has been made toward improving the understanding of combustion phenomena and scaling of high swirl pulverized coal combustors. A special attempt has been made to address the gap between scientific data available on combustion and hardware design and scaling needs. Both experimental and theoretical investigations were conducted to improve the predictive capability of combustor scaling laws. The scaling laws derived apply to volume and wall burning of pulverized coal in a slagging high-swirl combustor. They incorporate the findings of this investigation as follows: laser pyrolysis of coal at 10/sup 6/ K/sec and 2500K; effect of coal particle shape on aerodynamic drag and combustion; effect of swirl on heat transfer; coal burnout and slag capture for 20 MW/sub T/ combustor tests for fine and coarse coals; burning particle trajectories and slag capture; particle size and aerodynamic size; volatilization extent and burnout fraction; and preheat level. As a result of this work, the following has been gained: an increased understanding of basic burning mechanisms in high-swirl combustors and an improved model for predicting combustor performance which is intended to impact hardware design and scaling in the near term.

  1. Survey report for fiscal 1998 on the conversion of the existing coal burning power plant to natural gas burning plant in Sakhalin State; 1998 nendo Saharinshu muke, kisetsu sekitandaki hatsuden no tennen gas daki tenkan chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The present survey is intended to discuss a modernization plan effective in reducing greenhouse effect gases for the two existing coal burning power plants in Sakhalin Island, Sakhalin State, the Federal Republic of Russia. The power plants are Sakhalinskaya Power Plant (GRES) and Yuzhno Sakalinskaya Power Plant (TETs-1). Simultaneously with converting the fuel from coal to natural gas, discussions are given on an optimal plan including introduction of the combined cycle and repowering technologies aiming at improving the thermal efficiency. Reduction in greenhouse effect gases, finance, and economy are evaluated. At the same time, verification will be given on environment improvement in Sakhalin Island, and influence on sustainable economic and social activation. The GRES modernization plan intends to build four combined cycle units each of 80 MW class to have nearly the same total capacity as the current total power generation facility capacity (315 MW). The TETs-1 modernization plan will convert the fuel for the existing boilers from coal to natural gas, modify one of the boilers whose construction is being suspended into gas burning boiler, and add gas turbines. (NEDO)

  2. Maturation related changes in the distribution of ester bound fatty acids and alcohols in a coal series from the New Zealand Coal Band covering diagenetic to catagenetic coalification levels

    Energy Technology Data Exchange (ETDEWEB)

    Glombitza, C.; Mangelsdorf, K.; Horsfield, B. [German Research Cemter of Geoscience GFZ, Potsdam (Germany)

    2009-10-15

    Several lignites and coals of low to moderate maturation levels from the New Zealand Coal Band were investigated using alkaline ester cleavage experiments to reveal compositional changes of ester bound components during increasing maturation. Ester bound alcohols are found to be present in highest amounts in the very immature lignite samples but show a rapid decrease during early diagenesis. Ester bound fatty acids also show an initial exponential decrease during diagenesis but reveal an intermittent increase during early catagenesis before decreasing again during main catagenesis. This was related to the short chain fatty acids. To obtain a maturity related signal and to eliminate facies related scattering in the amounts of fatty acids in the coal samples, the carbon preference index of fatty acids (CPIFA) parameter is introduced. For the long chain fatty acids the CPIFA decreases with increasing maturity. During diagenesis, the same trend can be observed for the short chain fatty acids but the intermittent increase in the amounts of short chain fatty acids is also accompanied by high CPIFA values. This indicates less altered organic biomass at this maturation level and is in contrast to the mature CPIFA signal of the long chain fatty acids of the same samples. Thus could be due to extremely different amounts of short and long chain fatty acids in the original source organic matter or it could due to the incorporation of immature bacterial biomass from deep microbial communities containing C{sub 16} and C{sub 18} fatty acids as main cell membrane components. Deep microbial life might be stimulated at this interval by the increasing release of thermally generated potential substrates from the organic matrix during early catagenesis. The high amounts of alcohols in the immature lignite samples are also visible in the alkene distribution from the open system pyrolysis experiments of the organic matrix before and after saponification.

  3. Environmental care in coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Kvaerner Power will supply a CYMIC{reg_sign} circulating fluidized bed (CFB) boiler with a 63 MW electricity capacity to Manitowoc Public Utilities, in Manitowoc, Wisconsin, USA in 2006. This boiler is designed to burn bituminous coal and petroleum coke, with minimised emissions of SO{sub 2} and NOx. Kvaerner Power CFBs are capable of burning either coal or biomass (eg paper pellets) in any combination. Recent deliveries, to Indonesia and China as well as the USA, are listed. 1 tab., 5 photos.

  4. Meeting India's energy demand to the year 2020: the role of coal

    International Nuclear Information System (INIS)

    Sen, J.L.; Bhattacharya, B.C.

    1997-01-01

    The role of coal in Indian economy is undisputed. Coal occupies a dominating position right from the days of its commercial production and use and has reached its peak these days. Attempt has been made in this article to show that although lignite, oil, natural gas, hydro and nuclear power has prominent places in the energy scenario in India but these are of small significance compared to coal. The paper makes an in depth study of the resources of different fuels and demand there of estimated by different consuming sectors as also projection on production of coal till XIth Plan (2011-12) estimated by Planning Commission. A rough estimate has also been made on availability of coal by 2020. Demand projections made by different agencies shown in the article varies depending on the exercise done by them. (author)

  5. Production of low ash coal by thermal extraction with N-methyl-2-pyrrolidinone

    Energy Technology Data Exchange (ETDEWEB)

    Do Kim, S.; Woo, K.J.; Jeong, S.K.; Rhim, Y.J.; Lee, S.H. [Korean Institute for Energy Research, Taejon (Republic of Korea). Clean Coal Technological Research Center

    2008-07-15

    Present study was conducted for the purpose of producing low ash coal from LRC (low rank coals) such as lignite and sub-bituminous coal through thermal extraction using polar solvent. Extraction from bituminous coal was also investigated for comparison. NMP as a polar solvent was used. The ratio of coal to solvent was adjusted as 1:10. Experimental conditions were established which include the extraction temperature of 200-430{sup o}C, initial applied pressure of 1-20 bar and extraction time of 0.5-2 hr were used. Extraction yield and ash content of extracted and residual coal were measured. The extraction yield increased with the increase of extraction temperature, and the ash content of extracted coal decreased below 0.4% at 400{sup o}C from the raw coal samples that have the ash contents of 4-6%. According to the analysis of experiments results, fixed carbon and calorific value increased, and H/C and O/C decreased.

  6. Low-rank coal study: national needs for resource development. Volume 3. Technology evaluation

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    Technologies applicable to the development and use of low-rank coals are analyzed in order to identify specific needs for research, development, and demonstration (RD and D). Major sections of the report address the following technologies: extraction; transportation; preparation, handling and storage; conventional combustion and environmental control technology; gasification; liquefaction; and pyrolysis. Each of these sections contains an introduction and summary of the key issues with regard to subbituminous coal and lignite; description of all relevant technology, both existing and under development; a description of related environmental control technology; an evaluation of the effects of low-rank coal properties on the technology; and summaries of current commercial status of the technology and/or current RD and D projects relevant to low-rank coals.

  7. Cooperative research in coal liquefaction. Final report, May 1, 1992--April 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1996-03-01

    Research on sulfate and metal (Mo, Sn) promoted Fe{sub 2}O{sub 3} catalysts in the current year focused on optimization of conditions. Parameters varied included temperature, solvent, solvent-to-coal ratio, and the effect of presulfiding versus in situ sulfiding. Oil yields were found to increase approximately proportionately with both temperature and solvent-to-coal ratio. The donor solvent, tetralin, proved to give better total conversion and oil yields than either 1-methylnaphthalene or Wilsonville recycle oil. A significant enhancement of both total liquefaction yields and oil yields from lignites and subbituminous coals has been achieved by incorporating iron into the coal matrix by cation exchange. A study has been conducted on the synthesis of iron, molybdenum, and tungsten catalysts using a laser pyrolysis technique.

  8. Sustainable lignite mining and utilization. Developments in the Rhenish lignite-mining area; Nachhaltige Braunkohlegewinnung und -nutzung. Entwicklung im Rheinischen Revier

    Energy Technology Data Exchange (ETDEWEB)

    Gaertner, Dieter [RWE Power AG, Bergheim (Germany). Sparte Tagebaue

    2012-09-15

    Lignite is an essential module in the Rhenish mining area's economic power. Mini ng in a densely populated region like the Rhineland calls for keeping an eye equ ally on people, the environment and industry now and in the future. By considering all concerns and ensuring transparency in our approach to people, we have succeeded in obtaining public acceptance also for large-scale projects in an environment that is not always easy in Germany. RWE Power plans to use lignite in powe r generation and in upgrading operations for many decades to come, so that the company is systematically implementing the power-plant renewal programme with is planning for BoAplus as highly efficient next-generation lignite-based power plants. Research on CO{sub 2} utilization, flexibilization, energy storage and alternative uses of lignite are as much features of RWE Power's future-proof alignment in the Rhenish mining area as are further innovations in the opencast mines. Core aspects here include further automation in the deployment of main mine equipment, closely dovetailed with innovations in other operating units. Parallel restructuring of the operating units and the Lignite Approvals area are underpinning these measures. Innovations and their translation into technical progress will ensure the success of a measured energy turnaround both in Germany and throughout Europe. However, this requires dependable political conditions, so that an engineering spirit can go on being transformed into entrepreneurial action. (orig.)

  9. Sustainable lignite mining and utilization. Developments in the Rhenish lignite-mining area; Nachhaltige Braunkohlegewinnung und -nutzung. Entwicklung im Rheinischen Revier

    Energy Technology Data Exchange (ETDEWEB)

    Gaertner, Dieter [RWE Power AG, Bergheim (Germany). Opencast Mines Div.

    2012-03-15

    Lignite is an essential module in the Rhenish mining area's economic power. Mining in a densely populated region like the Rhineland calls for keeping an eye equally on people, the environment and industry now and in the future. By considering all concerns and ensuring transparency in our approach to people, we have succeeded in obtaining public acceptance also for large-scale projects in an environment that is not always easy in Germany. RWE Power plans to use lignite in power generation and in upgrading operations for many decades to come, so that the company is systematically implementing the power-plant renewal programme with is planning for BoAplus as highly efficient next-generation lignite-based power plants. Research on CO{sub 2} utilization, flexibilization, energy storage and alternative uses of lignite are as much features of RWE Power's future-proof alignment in the Rhenish mining area as are further innovations in the opencast mines. Core aspects here include further automation in the deployment of main mine equipment, closely dovetailed with innovations in other operating units. Parallel restructuring of the operating units and the Lignite Approvals area are underpinning these measures. Innovations and their translation into technical progress will ensure the success of a measured energy turnaround both in Germany and throughout Europe. However, this requires dependable political conditions, so that an engineering spirit can go on being transformed into entrepreneurial action. (orig.)

  10. Lignite mining in India - thirty years of rich experience

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, G L

    1984-11-01

    Exploration of the huge deposits of lignite at Neyveli in Tamil Nadu commenced in 1961 by the opencast method by deploying continuously operating machinery such as bucket-wheel excavators, spreaders and high-speed belt conveyor systems. Adoption of this mining technology to suit the peculiar site conditions at Neyveli has led to many modifications in the equipment and has enriched the experience of the Neyveli Lignite Corporation. This has also made it possible for NLC to formulate schemes for exploration and exploitation of lignite deposits occurring elsewhere in the country.

  11. Lignite mining in India - thirty years of rich experience

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, G L

    1984-11-01

    Exploitation of the huge deposits of lignite at Neyveli in Tamil Nadu commenced in 1961 by opencast method by deploying continuously operating machinery such as bucket-wheel excavators, headers and high speed belt conveyor systems. Adoption of this mining technology to suit the peculiar site conditions at Neyveli has led to many modifications in the equipment and has enriched the experience of the Neyveli Lignite Corporation. This has also made it possible for NLC to formulate schemes for exploration and exploitation of lignite deposits occurring elsewhere in the country.

  12. Petrographic properties of major coal seams in Turkey and their formation

    Energy Technology Data Exchange (ETDEWEB)

    Toprak, Selami [Mineral Research and Exploration Directorate (MTA), 06520 Ankara (Turkey)

    2009-06-01

    Most types of coal in Turkey are generally low in rank: lignite, and subbituminous. Most of the coal was formed during the Miocene, Eocene, and Pliocene ages. There are only a few thin Jurassic-age coal occurrences in Turkey. Pennsylvanian age bituminous coal is found on the Black Sea coast. General implications of the petrographic properties of Turkey's coal seams and coal deposits have not yet been taken into consideration comparatively or as a whole. For this study, about 190 channel samples were collected from different locales. The composite profile samples of the seams were taken into considerations. The content and depositional properties as well as some chemical and physical properties of the main coal seams are compared. All coal samples tend to have similar coal petrographic properties and were deposited in intermontane lacustrine basins. Later, they were affected by faulting and post-depositional volcanic activity. As a result, there are variations in the properties and rank of the coal samples. The most abundant coal maceral group is huminite and the most abundant maceral is gelinite. The liptinite and inertinite contents of the coal are low and the maceral contents of the coals show great similarity. The depositional environments of the all coals are lacustrine dominated. (author)

  13. An update on blast furnace granular coal injection

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D.G. [Bethlehem Steel Corp., Burns Harbor, IN (United States); Strayer, T.J.; Bouman, R.W. [Bethlehem Steel Corp., PA (United States)

    1997-12-31

    A blast furnace coal injection system has been constructed and is being used on the furnace at the Burns Harbor Division of Bethlehem Steel. The injection system was designed to deliver both granular (coarse) and pulverized (fine) coal. Construction was completed on schedule in early 1995. Coal injection rates on the two Burns Harbor furnaces were increased throughout 1995 and was over 200 lbs/ton on C furnace in September. The injection rate on C furnace reached 270 lbs/ton by mid-1996. A comparison of high volatile and low volatile coals as injectants shows that low volatile coal replaces more coke and results in a better blast furnace operation. The replacement ratio with low volatile coal is 0.96 lbs coke per pound of coal. A major conclusion of the work to date is that granular coal injection performs very well in large blast furnaces. Future testing will include a processed sub-bituminous coal, a high ash coal and a direct comparison of granular versus pulverized coal injection.

  14. Petrographic and biomarker analysis of xylite-rich coal from the Kolubara and Kostolac lignite basins (Pannonian Basin, Serbia)

    Science.gov (United States)

    Đoković, Nataša; Mitrović, Danica; Životić, Dragana; Bechtel, Achim; Sachsenhofer, Reinhard F.; Stojanović, Ksenija

    2018-02-01

    The maceral and biomarker characteristics of 4 sublithotypes of xylite-rich coal (SXCs), pale yellow, dark yellow, brown and black, originating from the Kolubara and Kostolac lignite basins were determined. Based on these results, differences in sources and changes of organic matter (OM) resulting in formation of 4 SXCs were established. Conifers (particularly Cupressaceae, Taxodiaceae and Pinacea) had a significant impact on the precursor OM of all SXCs. The contribution of gymnosperm vs. angiosperm vegetation decreased in order pale yellow SXC>dark yellow SXC>brown SXC>black SXC. The distribution of non-hopanoid triterpenoids indicates that change of SXC colour from yellow to black is associated with reduced input of angiosperm plants from the Betulacea family. Differences in hopane distribution, bitumen content, proportion of short-chain n-alkanes and degree of aromatization of di- and triterpenoids of pale yellow SXC are controlled by microbial communities which took part in the diagenetic alteration of OM. The content of total huminites increased from black to pale yellow SXC, whereas contents of total liptinite and inertinite macerals showed the opposite trend. SXCs differ according to textinite/ulminite ratio, which sharply decreased from pale yellow to black SXC, reflecting increase in gelification of woody tissue. Regarding the composition of liptinite macerals, the SXCs mostly differ according to resinite/liptodetrinite and resinite/suberinite ratios, which are higher in yellow than in brown and black SXC. This result along with values of TOC/N ratio and Carbon Preference Index indicate that the contribution of well preserved woody material, including lignin tissue vs. the impact of epicuticular waxes decreased from yellow to black SXC.

  15. Petrographic and biomarker analysis of xylite-rich coal from the Kolubara and Kostolac lignite basins (Pannonian Basin, Serbia

    Directory of Open Access Journals (Sweden)

    Đoković Nataša

    2018-02-01

    Full Text Available The maceral and biomarker characteristics of 4 sublithotypes of xylite-rich coal (SXCs, pale yellow, dark yellow, brown and black, originating from the Kolubara and Kostolac lignite basins were determined. Based on these results, differences in sources and changes of organic matter (OM resulting in formation of 4 SXCs were established. Conifers (particularly Cupressaceae, Taxodiaceae and Pinacea had a significant impact on the precursor OM of all SXCs. The contribution of gymnosperm vs. angiosperm vegetation decreased in order pale yellow SXC>dark yellow SXC>brown SXC>black SXC. The distribution of non-hopanoid triterpenoids indicates that change of SXC colour from yellow to black is associated with reduced input of angiosperm plants from the Betulacea family. Differences in hopane distribution, bitumen content, proportion of short-chain n-alkanes and degree of aromatization of di- and triterpenoids of pale yellow SXC are controlled by microbial communities which took part in the diagenetic alteration of OM. The content of total huminites increased from black to pale yellow SXC, whereas contents of total liptinite and inertinite macerals showed the opposite trend. SXCs differ according to textinite/ulminite ratio, which sharply decreased from pale yellow to black SXC, reflecting increase in gelification of woody tissue. Regarding the composition of liptinite macerals, the SXCs mostly differ according to resinite/liptodetrinite and resinite/suberinite ratios, which are higher in yellow than in brown and black SXC. This result along with values of TOC/N ratio and Carbon Preference Index indicate that the contribution of well preserved woody material, including lignin tissue vs. the impact of epicuticular waxes decreased from yellow to black SXC.

  16. Naturally Occurring Radionuclides of Ash Produced by Coal Combustion. The Case of the Kardia Mine in Northern Greece

    Science.gov (United States)

    Fotakis, M.; Tsikritzis, L.; Tzimkas, N.; Kolovos, N.; Tsikritzi, R.

    2008-08-01

    West Macedonia Lignite Center (WMLC), located in Northwest Greece, releases into the atmosphere about 21,400 tons/year of fly ash through the stacks of four coal fired plants. The lignite ash contains naturally occurring radionuclides, which are deposited on the WMLC basin. This work investigates the natural radioactivity of twenty six ash samples, laboratory produced from combustion of lignite, which was sampled perpendicularly to the benches of the Kardia mine. The concentrations of radionuclides 40K, 235U, 238U, 226Ra, 228Ra and 232Th, were measured spectroscopically and found round one order of magnitude as high as those of lignite. Subsequently the Radionuclide Partitioning Coefficients of radionuclides were calculated and it was found that they are higher for 232Th, 228Ra and 40K, because the latter have closer affinity with the inorganic matrix of lignite. During combustion up to one third of the naturally occurring radioisotopes escape from the solid phase into the flue gases. With comparison to relative global data, the investigated ash has been found to have relatively high radioactivity, but the emissions of the WMLC radionuclides contribute only 0.03% to the mean annual absorbed dose.

  17. Naturally Occurring Radionuclides of Ash Produced by Coal Combustion. The Case of the Kardia Mine in Northern Greece

    International Nuclear Information System (INIS)

    Fotakis, M.; Tsikritzis, L.; Tzimkas, N.; Kolovos, N.; Tsikritzi, R.

    2008-01-01

    West Macedonia Lignite Center (WMLC), located in Northwest Greece, releases into the atmosphere about 21,400 tons/year of fly ash through the stacks of four coal fired plants. The lignite ash contains naturally occurring radionuclides, which are deposited on the WMLC basin. This work investigates the natural radioactivity of twenty six ash samples, laboratory produced from combustion of lignite, which was sampled perpendicularly to the benches of the Kardia mine. The concentrations of radionuclides 40 K, 235 U, 238 U, 226 Ra, 228 Ra and 232 Th, were measured spectroscopically and found round one order of magnitude as high as those of lignite. Subsequently the Radionuclide Partitioning Coefficients of radionuclides were calculated and it was found that they are higher for 232 Th, 228 Ra and 40 K, because the latter have closer affinity with the inorganic matrix of lignite. During combustion up to one third of the naturally occurring radioisotopes escape from the solid phase into the flue gases. With comparison to relative global data, the investigated ash has been found to have relatively high radioactivity, but the emissions of the WMLC radionuclides contribute only 0.03% to the mean annual absorbed dose

  18. Role of Neyveli lignite in the energy map of India

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasaraghavan, S

    1984-08-01

    For more than two decades, about 35% of the energy demand of Tamil Nadu, a region of southern India, has been provided by Neyveli Lignite Corporation (NLC). NLC was founded as a company by the Indian government in 1956 and it comprises a lignite mine, a thermal power station, a briquetting and carbonisation plant; a fertilizer plant, a process steam plant, and a clay washing plant. The extent of the Neyveli lignite field, the production capacity of the three mines, and the linkage and utilisation of lignite are all considered. Future perspective plans beyond the seventh five year plan are reviewed. The use of coke and fertilizer by the chemical industries is outlined, and ecology and environmental control are discussed.

  19. Influence of coal properties on mercury uptake from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, J.; Brown, S.D.; Snape, C.E. [Miskolc University, Miskolc-Egyetemvaros (Hungary). Research Inst. of Applied Chemistry

    1999-10-01

    The uptake of mercury (II) from aqueous solution by a range of coals has been studied and the results have been compared to those for a number of other sorbents, including commercial active carbons and cation-exchange resins. At pH 5 in a buffer medium, the capacities for mercury removal of the low-rank coals and the oxidized bituminous coals investigated are comparable to those of the other sorbents tested. For the lignites investigated, a high content of organic sulfur does not markedly affect the capacity for mercury uptake in relatively neutral and low chloride media, owing to redox reactions being the most likely mechanism involved. However, in highly acidic solutions, the capacities for mercury uptake are considerably greater for the high-sulfur coals investigated than for their low-sulfur counterparts due to chelation being the major sorption process involved. 36 refs., 4 figs., 7 tabs.

  20. A comparison of improved power plant technologies on lignite with (PFBC) and (IGCC) cycles

    International Nuclear Information System (INIS)

    Cherepnalkovski, Ilija

    1997-01-01

    Technologies and process diagrams descriptions for PFBC (Pressurised Fluidized Bed Combustion) and IGCC (Integrated Gasification Combined Cycle) are presented as for improved cycles with modern clean coal technologies, the most popular currently. A special attention is paid to the possibilities for Macedonian lignites use on the power plants with PFBC and IGCC cycles. The comparison of the above mention technologies has been done particularly on the desulfurization, NO x reduction, ash elimination and its use in the building and construction industries. A comparison between the power plants with PFBC and IGCC cycles is made by the following criteria: cycle efficiency, desulfurization and nitrogen oxides reduction, power plant complexity and their cost, as well as plant reliability. (Author)

  1. Field performance of wood-burning and coal-burning appliances in Crested Butte during the 1989-90 heating season. Final report

    International Nuclear Information System (INIS)

    Jaasma, D.R.; Champion, M.R.; Gundappa, M.

    1991-10-01

    The field performance of woodburning and coalburning appliances in and around Crested Butte, CO, has been evaluated. Measurements included particulate matter (PM), carbon monoxide (CO), and weekly average burn rates. Woodburning appliances included conventional airtight stoves, EPA-certified catalytic stoves, and EPA-certified noncatalytic stoves. Compared to the emissions measured from conventional stoves, the certified stoves reduced PM emission factors (g/kg) by 53% and CO emission factors by 49%. Coalburning appliances included a commercial scale boiler, a residential stoker, and hand-fired coalstove. The coalburning appliances were compared to conventional woodstoves on a grams of pollutant per joule of heat output basis. The automatically stoked coal appliances reduced PM and CO emissions by roughly 84% and 85%, respectively. The hand-fired stove was cleaner than expected, reducing PM by 55% and CO by 27%

  2. Liquefaction of Warukin Formation Coal, Barito Basin, South Kalimantan on Low Pressure and Low Temperature

    Directory of Open Access Journals (Sweden)

    Edy Nursanto

    2013-06-01

    Full Text Available Research focusing on the quality of coal in Warukin Formation has been conducted in coal outcrops located on Tabalong area, particularly in 3 coal seams, namely Wara 120 which consists of low rank coal (lignite. Meanwhile, coals in seam Tutupan 210 and Paringin 712 are medium rank coal (sub-bituminous. Coal liquefaction is conducted in an autoclave on low pressure and temperature. Pressure during the process is 14 psi and temperature is 120oC. Catalyst used are alumina, hydrogen donor NaOH and water solvent. Liquefaction is conducted in three times variables of 30 minutes, 60 minutes and 90 minutes. This process shows following yield : Wara seam 120: 25.37% - 51.27%; Tutupan seam 210: 3.02%-15.45% and seam Paringin 712:1.99%-11.95%. The average result of yield shows that coals in seam Wara has higher yield conversion than coals in seam Tutupan and Paringin.

  3. The influence of water quality on the reuse of lignite-derived waters in the Latrobe Valley, Australia

    Energy Technology Data Exchange (ETDEWEB)

    C.J. Butler; A.M. Green; L. Chaffee [Monash University, Churchill, Vic. (Australia). CRC for Clean Power from Lignite, School of Applied Sciences and Engineering

    2005-03-01

    Mechanical Thermal Expression (MTE), a novel non-evaporative brown coal (lignite) dewatering process, is being developed to increase the efficiency of power stations in the Latrobe Valley (Victoria, Australia). A by-product of this process is a large volume (potentially 20 giga liters per annum) of product water stream. This paper examines water quality requirements for reuse and disposal within the Latrobe Valley and their compatibility with MTE process water. It has been established that remediation of this water will be required and that the maintenance of environmental flows in surface waters would be the most suitable use for the remediated water.

  4. [The mRNA expression of mitogen-activated protein kinase signal pathway related genes in the blood of arseniasis patients caused by burning coal].

    Science.gov (United States)

    Luo, Peng; Zhang, Ai-hua; Xiao, Yun; Pan, Xue-li; Dong, Xue-xin; Huang, Xiao-xin

    2013-09-01

    To detect the mRNA expression of ERK1, ERK2, JNK1 and P38 gene in mitogen-activated protein kinase(MAPK) path way in the arseniasis patients caused by burning coal. 70 arseniasis patients caused by burning coal at Jiaole village XingRen county in December 2006 were selected as case group, and another 30 villagers with similar living habits, matched gender and age, healthy physical condition without history of burning high arsenic coal were selected as control group from 12 km nearby the same village.Silver diethyl dithiocarbamate method (Ag-DDC) was taken to detect the arsenic contents in the environmental media, food, and arsenic level in the urine and hair of arseniasis patients.On the principle of informed consent, the peripheral blood was collected from the patients. The total RNA was extracted with Trizol method and cDNA was reversed from it. The mRNA expression of ERK1, ERK2, JNK1 and P38 gene in MAPK path way were tested by real-time fluorescent quantitative PCR (QT-PCR). A total of 70 cases of arseniasis patients (31 cases of mild, 25 cases of moderate and 14 cases of severe) and 30 cases of control were chosen. The median (quartile) of arsenic contents in the indoor air, outdoor air, coal, chili and corn were 0.079 (0.053-0.117) mg/m(3) ,0.007 (0.002-0.015) mg/m(3) , 93.010 (39.460-211.740) mg/kg, 3.460(0.550-16.760) mg/kg and 1.500(0.300-4.140) mg/kg respectively. They were above the national health standards. The median (quartile) of arsenic contents in the soil, rice and drinking water were separately 12.130(4.230-24.820) mg/kg, 0.650(0.300-0.980) mg/kg and 0.043(0.012-0.089)mg/kg, which were within the national health standards. Compared with the control group ((26.97 ± 9.71)µg/g Cr), arsenic level in the patients' urine ((71.48 ± 22.74)µg/g Cr) increased significantly, the differences were significant (F = 90.38, P coal.

  5. Characteristics of an open-cut coal mine fire pollution event

    Science.gov (United States)

    Reisen, Fabienne; Gillett, Rob; Choi, Jason; Fisher, Gavin; Torre, Paul

    2017-02-01

    On 9 February 2014, embers from a nearby grass/shrub fire spotted into an unused part of the Hazelwood open-cut brown coal mine located in the Latrobe Valley of Victoria, Australia and started a fire that spread rapidly and extensively throughout the mine under strong south-westerly winds and burned over a period of 45 days. The close proximity of the town to the coal mine and the low buoyancy of the smoke plume led to the accumulation of dense smoke levels in the township of Morwell (population of 14,000) particularly under south-westerly winds. A maximum daily PM2.5 concentration of 731 μg m-3 and 8-h CO concentration of 33 ppm were measured at Morwell South, the closest residential area located approximately 500 m from the mine. These concentrations were significantly higher than national air quality standards. Air quality monitoring undertaken in the Latrobe Valley showed that smoke from the Hazelwood mine fire affected a wide area, with particle air quality standards also exceeded in Traralgon (population of 25,000) located approximately 13 km from the mine. Pollutant levels were significantly elevated in February, decreased in March once the fire abated and then returned to background levels once the fire was declared safe at the end of March. While the smoke extent was of a similar order of magnitude to other major air pollution events worldwide, a closer look at emissions ratios showed that the open combustion of lignite brown coal in the Hazelwood mine was different to open combustion of biomass, including peat. It suggested that the dominant combustion process was char combustion. While particle and carbon monoxide monitoring started approximately 4 days after the fire commenced when smoke levels were very high, targeted monitoring of air toxics only began on 26 February (17 days after the fire) when smoke levels had subsided. Limited research on emission factors from open-cut coal mine fires make it difficult to assess the likely concentrations of air

  6. Geological and Rock Mechanics Perspectives for Underground Coal Gasification in India

    Science.gov (United States)

    Singh, Ajay K.; Singh, Rajendra

    2017-07-01

    The geological resources of coal in India are more than 308 billion tonnes upto a depth of 1200 m, out of which proved reserve has been reported at around 130 billion tonnes. There is an increasing requirement to increase the energy extraction efficiency from coal as the developmental prospects of India increase. Underground coal gasification (UCG) is a potential mechanism which may be utilized for extraction of deep-seated coal reserves. Some previous studies suggest that lignites from Gujarat and Rajasthan, along with tertiary coals from northeastern India can be useful from the point of view of UCG. We discuss some geological literature available for these areas. Coming to the rock mechanics perspectives, during UCG the rock temperature is considerable high. At this temperature, most empirical models of rock mechanics may not be applied. In this situation, the challenges for numerical modelling of UCG sites increases manifold. We discuss some of the important modelling geomechanical issues related to UCG in India.

  7. Source profiles of particulate matter emissions from a pilot-scale boiler burning North American coal blends.

    Science.gov (United States)

    Lee, S W

    2001-11-01

    Recent awareness of suspected adverse health effects from ambient particulate matter (PM) emission has prompted publication of new standards for fine PM with aerodynamic diameter less than 2.5 microm (PM2.5). However, scientific data on fine PM emissions from various point sources and their characteristics are very limited. Source apportionment methods are applied to identify contributions of individual regional sources to tropospheric particulate concentrations. The existing industrial database developed using traditional source measurement techniques provides total emission rates only, with no details on chemical nature or size characteristics of particulates. This database is inadequate, in current form, to address source-receptor relationships. A source dilution system was developed for sampling and characterization of total PM, PM2.5, and PM10 (i.e., PM with aerodynamic diameter less than 10 pm) from residual oil and coal combustion. This new system has automatic control capabilities for key parameters, such as relative humidity (RH), temperature, and sample dilution. During optimization of the prototype equipment, three North American coal blends were burned using a 0.7-megawatt thermal (MWt) pulverized coal-fired, pilot-scale boiler. Characteristic emission profiles, including PM2.5 and total PM soluble acids, and elemental and carbon concentrations for three coal blends are presented. Preliminary results indicate that volatile trace elements such as Pb, Zn, Ti, and Se are preferentially enriched in PM2.5. PM2.5 is also more concentrated in soluble sulfates relative to total PM. Coal fly ash collected at the outlet of the electrostatic precipitator (ESP) contains about 85-90% PM10 and 30-50% PM2.5. Particles contain the highest elemental concentrations of Si and Al while Ca, Fe, Na, Ba, and K also exist as major elements. Approximately 4-12% of the materials exists as soluble sulfates in fly ash generated by coal blends containing 0.2-0.8% sulfur by mass

  8. Proceedings of the third annual underground coal conversion symposium

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The Third Annual Underground Coal Conversion Symposium was held at Fallen Leaf Lake, CA, June 6--9, 1977. It was sponsored by the U.S. Department of Energy and hosted by Lawrence Livermore Laboratory. Forty-one papers have been entered individually into EDB and ERA; ten papers had been entered previously from other sources. The papers cover the in-situ gasification of lignite, subbituminous coal and bituminous coal, in flat lying seams and a steeply dipping beds, at moderate and at greater depths, and describe various technologies of (borehole linking, well spacings, gasifying agents (air, oxygen, steam, hydrogen, including mixtures). Measuring instruments for diagnostic and process control purposes are described. Environmental impacts (ground subsidence and possible groundwater pollution) are the subject of several papers. Finally, mathematical modelling and projected economics of the process are developed. (LTN)

  9. Clean fuel-magnesia bonded coal briquetting

    Energy Technology Data Exchange (ETDEWEB)

    Tosun, Yildirim I. [S. Demirel University Eng., Arch. Faculty Mining Eng. Department, Isparta (Turkey)

    2007-10-15

    Benefaction from coal fines as solid fuel in Turkey is very much important for economical development. Beneficiation from washed coal fines in the industry using solid fuel at lump size and in the municipal areas as an household solid fuel may be only provided by hot briquetting of the coal fines. The most practical common way of that benefication from coal fines in our country have been hot binding by sulfite liquor-sulfite liquor-melas and lime mixtures. Harmful the flue content of sulfite liquor-melas may only be eliminated by lime, a type of solid additive. However, cold bonded briquettes produced from coal fines are environmentally free. Just ash contents of these briquettes increase at a certain degree and heat content of them decrease at a certain extent. By using magnesia binder showed in this study, Tuncbilek lignite fines have been briquetted by cold and hot briquetting techniques. The qualities of briquettes produced by cold binders were compared with to those produced by other hot binding methods As a result, magnesia binder showed the similar characteristics with those of the briquettes produced by only cold bonded gypsum. Use of magnesite mixture and gypsum just as only cold binder was not suitable for the requirements from the coal briquettes to be used as solid fuels, particularly from household fuels, but just only as cold additive should be used. (author)

  10. Role of coal in the world and Asia

    International Nuclear Information System (INIS)

    Johnson, C.J.; Li, B.

    1994-10-01

    This paper examines the changing role of coal in the world and in Asia. Particular attention is given to the rapidly growing demand for coal in electricity generation, the importance of China as a producer and consumer of coal, and the growing environmental challenge to coal. Attention is given to the increasing importance of low sulfur coal and Clean Coal Technologies in reducing the environmental impacts of coal burning

  11. Coal Field Fire Fighting - Practiced methods, strategies and tactics

    Science.gov (United States)

    Wündrich, T.; Korten, A. A.; Barth, U. H.

    2009-04-01

    achieved. For an effective and efficient fire fighting optimal tactics are requiered and can be divided into four fundamental tactics to control fire hazards: - Defense (digging away the coal, so that the coal can not begin to burn; or forming a barrier, so that the fire can not reach the not burning coal), - Rescue the coal (coal mining of a not burning seam), - Attack (active and direct cooling of burning seam), - Retreat (only monitoring till self-extinction of a burning seam). The last one is used when a fire exceeds the organizational and/or technical scope of a mission. In other words, "to control a coal fire" does not automatically and in all situations mean "to extinguish a coal fire". Best-practice tactics or a combination of them can be selected for control of a particular coal fire. For the extinguishing works different extinguishing agents are available. They can be applied by different application techniques and varying distinctive operating expenses. One application method may be the drilling of boreholes from the surface or covering the surface with low permeability soils. The mainly used extinction agents for coal field fire are as followed: Water (with or without additives), Slurry, Foaming mud/slurry, Inert gases, Dry chemicals and materials and Cryogenic agents. Because of its tremendous dimension and its complexity the worldwide challenge of coal fires is absolutely unique - it can only be solved with functional application methods, best fitting strategies and tactics, organisation and research as well as the dedication of the involved fire fighters, who work under extreme individual risks on the burning coal fields.

  12. Radiation-thermal processes of conversion in the coals

    International Nuclear Information System (INIS)

    Mustafaev, I.I.

    2002-01-01

    Full text: The brief review, history, modern condition and bibliographic data on research of radiation-stimulated processes in coals are adduced in the report. Results of new researches of influence of gamma - radiation and accelerated electrons on pyrolysis, gasification, desulphurization, paramagnetism, adsorption and optical properties of coals in wide intervals of change of absorbed dose, dose rate, temperature, radiation type and other parameters of processes are stated. As object of researches Turkish (Yeni koy, Yatagan) and Russian (Siberia) coals were used. Specific peculiarities of influence of ionizing radiations on fossil fuels, bringing in change of their reactivity as result of destruction and polycondensation processes are considered. a)Pyrolysis: Under action of gamma-radiation and accelerated electrons the rate of thermal (t) pyrolysis grows and the ratio of radiation-thermal (rt) and thermal (t) processes: Wrt/ Wt depends on dose rate and temperature. By increase of dose rate the radiation effects grows, and at increase of temperature this effect is reduced. The influence of high rate heating of coals under pulls action of accelerated electrons on conversion degree and product composition has been established. The investigation regularities of formation liquid and gas products is resulted at radiation - thermal processing of mixtures of lignites with fuel oil. These experiments were conducted in flowing conditions in the interval of temperature T=350-500 degrees centigrade, power of the pulls accelerated electrons P=30-50 W, flow velocity of fuel oil 0,2-2 ml/minute. As a index of process were controlled conversion degree of coals, overall yield, contents and characteristic of liquid and gas products. The products of thermal treatment of these mixtures and also radiation-thermal treatment of separate components significantly less than radiation-thermal conversion of binary mixtures. It has been established that radiation effect has a positive

  13. Kinetics of coal combustion: Part 3, Mechanisms and kinetics of char combustion

    Energy Technology Data Exchange (ETDEWEB)

    Gavalas, G. R.; Flagan, R. C. [California Inst. of Tech., Pasadena, CA (USA)

    1988-09-01

    This report summarizes a three-year research program aimed at developing this level of understanding of char combustion through a combination of detailed analysis of chars as produced during devolatilization and as they evolve during oxidation, and theoretical studies of the porous microstructures and of pore diffusion and reaction within the coal particles. A small number of coals have been studied in detail, namely a HVA bituminous (PSOC 1451), a sub-bituminous (PSOC 1488), and a lignite (PSOC 1443). Chars have been generated from size-classified samples of these coals by pyrolysis in an inert atmosphere in a drop tube furnace. The chars were then characterized both chemically and physically. Subsequent oxidation studies were performed on these chars. 42 refs., 54 figs., 4 tabs.

  14. A comparative study between the coal-biomass briquette and raw coal in SO{sub 2} pollution and adverse effects in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Shuqun; Zhou Yanrong; Wang Yi' nan; Wang Xun; Liu Yuanfu; Iwao Uchiyama; Wang Qiangyue; Kazuhiki Sakamoto [Chongqing University of Medical Sciences. Chongqing (China). School of Public Health

    2006-12-15

    This study was conducted to evaluate the adverse health effects on rabbits exposed to SO{sub 2} emitted indoors from burning coals, and compare differences between coal-biomass briquette (BB) and raw coal (RC). Thirty-six male rabbits were divided equally into three groups at random, and then exposed to burning RC, BB, and the third without burning coal (Control) for 90 days. Data showed that the average concentration of SO{sub 2} in 24 h in RC was 13.04 mg m{sup -3}, which was 5-fold greater than BB and 31-fold higher than control (0.41 mg m{sup -3}). After 45 days, the numbers of rabbits, with increased frequency of Comet cell was highest in RC. After 90 days, the % positive Comet cell was significant at 10.36% in RC, 5.42% in BB, and 1.73% in Control. There was a nonlinear dose-effect relationship between % positive Comet cell and the concentration of SO{sub 2}. The incidence of interstitial pneumonia was 6/12 in RC and 4/12 in BB showing severe squamous metaplasia with atypical hyperplasia in bronchial epithelia in RC animals. The results of study indicate that use of BB reduced the emission of SO{sub 2}; but the smoke emitted from burning coal still produced DNA damage.

  15. Substitute Energy Carriers from Refinement of Coal using HTR-Module

    International Nuclear Information System (INIS)

    Barnert, Heiko; Kugeler, Kurt; Will, Michael

    2014-01-01

    There is a revival of coal refinement in the world: a recent press article in Germany titled “The Renaissance of Coal Refinement”. It reports about a large number of conventional plans and plants for coal refinement in many countries in the world, and in particular in China. Nuclear energy can be of assistance, in particular the High Temperature Reactor-Module, because it offers all needed process energies. The status of the research, development, and demonstration, RDD, of technology is summarized, in particular of the former programs in Germany: The primary energy carriers were hard coal and lignite. The envisaged products were: Substitute Natural Gas, SNG, for the gas market, Hydrogen, H2, for a future H2-market, e.g. for airplane traffic, Liquid Fuels, as Substitute Gasoline, or as Energy Alcohol, e.g. Methanol CH3OH, in mixture with higher alcohols, for the car traffic and for home heating. (author)

  16. Preparation and Evaluation of Adsorbents from Coal and Irvingia gabonensis Seed Shell for the Removal of Cd(II and Pb(II Ions from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Mercy A. Ezeokonkwo

    2018-01-01

    Full Text Available Cd(II and Pb(II ions removal using adsorbents prepared from sub-bituminous coal, lignite, and a blend of coal and Irvingia gabonensis seed shells was investigated. Fourier transform infrared, scanning electron microscope and X-ray fluorescence analyses implicated hydroxyl, carbonyl, Al2O3, and SiO2 as being responsible for attaching the metal ions on the porous adsorbents. The optimum adsorption of carbonized lignite for the uptake of Cd(II and Pb(II ions from aqueous media were 80.93 and 87.85%, respectively. Batch adsorption was done by effect of adsorbent dosage, pH, contact time, temperature, particle size, and initial concentration. Equilibrium for the removal of Pb(II and Cd(II was established within 100 and 120 min respectively. Blending the lignite-derived adsorbent with I. gabonensis seed shell improved the performance significantly. More improvement was observed on modification of the blend using NaOH and H3PO4. Pb(II was preferentially adsorbed than Cd(II in all cases. Adsorption of Cd(II and Pb(II ions followed Langmuir isotherm. The adsorption kinetics was best described by pseudo-second order model. The potential for using a blend of coal and agricultural byproduct (I. gabonensis seed shell was found a viable alternative for removal of toxic heavy metals from aqueous solutions.

  17. Ameliorative properties of lignite fly ash in reclaiming saline and alkali soils

    Energy Technology Data Exchange (ETDEWEB)

    Mahalingam, P K

    1973-08-01

    Statistical analysis of the yield of rice grain and straw reveals that there is a significant increase in the yield of grain and straw due to the application of lignite fly ash over controls and application of lignite fly ash either at 5 tons or 10 tons per acre was on par with gypsum application at 5 tons/acre. Maximum yield was recorded in treatment with 5 tons of daincha plus 5 tons of lignite fly ash per acre. This is due to the combined effect of green manure and lignite fly ash. 4 references, 3 tables.

  18. Coal pyrolysis under hydrogen-rich gases

    Energy Technology Data Exchange (ETDEWEB)

    Liao, H.; Sun, C.; Li, B.; Liu, Z. [Chinese Academy of Sciences, Taiyuan (China). State Key Laboratory of Coal Conversion, Institute of Coal Chemistry

    1998-04-01

    To improve the economy of the pyrolysis process by reducing the hydrogen cost, it is suggested to use cheaper hydrogen-rich gases such as coke-oven gas (COG) or synthesis gas (SG) instead of pure hydrogen. The pyrolysis of Chinese Xianfeng lignite which was carried out with real COG and SG at 3-5 MPa, a final temperature of 650{degree}C and a heating rate of 5{degree}C/min in a 10g fixed-bed reactor is compared with coal pyrolysis with pure hydrogen and nitrogen under the same conditions. The results indicate that compared with hydropyrolysis at the same total pressure, the total conversion and tar yields from coal pyrolysis with COG and SG decreases while the unwanted water increases. However, at the same H{sub 2} partial pressure, the tar yields and yields of BBTX, PCX and naphthalene from the pyrolysis of coal with COG and SG are all significantly higher than those of hydropyrolysis. Therefore, it is possible to use COG and SG instead of pure hydrogen. 8 refs., 3 figs., 6 tabs.

  19. Cleaning of flue gases from lignite-fired power plants by electron beam technology

    International Nuclear Information System (INIS)

    Ruskov, T.

    1998-01-01

    An essential part of the electricity production in Bulgaria depends on the combustion of lignite with high humidity and high sulphur content. As a result of burning, toxic gases as sulphur dioxide (SO 2 ) and nitrous oxides (NO x ) are emitted in the atmosphere. Both S0 2 and NO x in flue gases could be removed simultaneously by the Electron Beam (EB) process. Beforehand cleaned from fly ash, the flue gas is cooled by injection of water and ammonia is added. By irradiation with high energy electrons, S0 2 and NO x are converted into aerosols of ammonium sulphate and ammonium nitrate. The byproduct is collected by an electrostatic precipitator and is used for the production of fertilisers

  20. Thermodynamic analysis and economic evaluation of a 1000 MW bituminous coal fired power plant incorporating low-temperature pre-drying (LTPD)

    International Nuclear Information System (INIS)

    Xu, Cheng; Xu, Gang; Zhu, Mingming; Dong, Wei; Zhang, Yang; Yang, Yongping; Zhang, Dongke

    2016-01-01

    Highlights: • An improved design of coal pre-drying using flue gas waste heat was proposed. • 0.4% energy efficiency increase was achieved with the proposed system. • The additional net economic benefit of the proposed system is $1.91 M per year. • Proposed concept can be widely applied to improve coal-fired power plant efficiency. - Abstract: Low-temperature pre-drying (LTPD) of lignite has been identified as an effective approach to improve the efficiency of lignite fired power plants. In this study, an improved concept for the pre-drying of medium moisture bituminous coals using flue gas waste heat was proposed and its feasibility was assessed. In the proposed configuration, the boiler exhaust flue gas is drawn to dryers to heat and pre-dry the raw coal, removing a large proportion of the coal moisture and leading to an improvement in the energy efficiency of the power plant. Thermodynamic analysis and economic evaluation were performed based on a typical 1000 MW bituminous coal fired power plant incorporating the proposed LTPD concept. The results showed that the net power plant efficiency gain is as much as 0.4 percentage point with additional net power output of 9.3 MW as compared to the reference plant without coal pre-drying. This was attributed to the reduction in the moisture content from 10.3 to 2.7 wt%. The additional net economic benefit attained due to the coal pre-drying was estimated to reach $1.91 M per year. This work provides a broadly applicable and economically feasible approach to further improve the energy efficiency of power plants firing coals with medium moisture contents.

  1. A study of toxic emissions from a coal-fired power plant utilizing an ESP/Wet FGD system. Volume 1, Sampling, results, and special topics: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This was one of a group of assessments of toxic emissions from coal-fired power plants, conducted for DOE-PETC in 1993 as mandated by the 1990 Clean Air Act. It is organized into 2 volumes; Volume 1 describes the sampling effort, presents the concentration data on toxic chemicals in several power plant streams, and reports the results of evaluations and calculations. The study involved solid, liquid, and gaseous samples from input, output, and process streams at Coal Creek Station Unit No. 1, Underwood, North Dakota (1100 MW mine-mouth plant burning lignite from the Falkirk mine located adjacent to the plant). This plant had an electrostatic precipitator and a wet scrubber flue gas desulfurization unit. Measurements were conducted on June 21--24, 26, and 27, 1993; chemicals measured were 6 major and 16 trace elements (including Hg, Cr, Cd, Pb, Se, As, Be, Ni), acids and corresponding anions (HCl, HF, chloride, fluoride, phosphate, sulfate), ammonia and cyanide, elemental C, radionuclides, VOCs, semivolatiles (incl. PAH, polychlorinated dioxins, furans), and aldehydes. Volume 2: Appendices includes process data log sheets, field sampling data sheets, uncertainty calculations, and quality assurance results.

  2. Paleocene coal deposits of the Wilcox group, central Texas

    Science.gov (United States)

    Hook, Robert W.; Warwick, Peter D.; SanFilipo, John R.; Schultz, Adam C.; Nichols, Douglas J.; Swanson, Sharon M.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Valentine, Brett J.

    2011-01-01

    Coal deposits in the Wilcox Group of central Texas have been regarded as the richest coal resources in the Gulf Coastal Plain. Although minable coal beds appear to be less numerous and generally higher in sulfur content (1 percent average, as-received basis; table 1) than Wilcox coal deposits in the Northeast Texas and Louisiana Sabine assessment areas (0.5 and 0.6 percent sulfur, respectively; table 1), net coal thickness in coal zones in central Texas is up to 32 ft thick and more persistent along strike (up to 15 mi) at or near the surface than coals of any other Gulf Coast assessment area. The rank of the coal beds in central Texas is generally lignite (table 1), but some coal ranks as great as subbituminous C have been reported (Mukhopadhyay, 1989). The outcrop of the Wilcox Group in central Texas strikes northeast, extends for approximately 140 mi between the Trinity and Colorado Rivers, and covers parts of Bastrop, Falls, Freestone, Lee, Leon, Limestone, Milam, Navarro, Robertson, and Williamson Counties (Figure 1). Three formations, in ascending order, the Hooper, Simsboro, and Calvert Bluff, are recognized in central Texas (Figure 2). The Wilcox Group is underlain conformably by the Midway Group, a mudstone-dominated marine sequence, and is overlain and scoured locally by the Carrizo Sand, a fluvial unit at the base of the Claiborne Group.

  3. Burning issues

    Energy Technology Data Exchange (ETDEWEB)

    Ashmore, C.

    1998-10-01

    Coal is world`s most abundant source of energy. Turning this potential pollutant into a clean, cost-effective fuel for power production has become a matter for global concern. Some problems and their solutions are highlighted in this article. Environmental problems caused by the giant Mae Moh plant in Thailand were overcome with an extensive retrofit programme that included flue gas desulfurisation systems. For new and smaller coal-fuelled plant, boilers using circulating fluidised bed (CFB) technology provide a cost effective and efficient system which meets environmental standards. A large independent power plant at Colver, Pennsylvania, USA uses CFB technology to burn bituminous gob. AMM and Alstom can provide turnkey packages for coal-fired power plant using a modular concept based on CFB technology. 2 photos.

  4. Study on multi-stage hydropyrolysis of coal in fixed-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, N.; Li, W.; Li, B.-Q. [Chinese Academy of Sciences, Taiyuan (China). State Key Lab of Coal Conversion

    1999-07-01

    The composition and quantity of the oil in hydropyrolysis (HyPy) and multi-stage HyPy with high and slow heating rate were compared and the effect of multistage HyPy process on desulfurization was investigated. Multistage HyPy of lignite and high sulphur coal were investigated and the effects of residence time, heating rate and pressure on product yields were studied. 6 refs., 4 figs., 2 tabs.

  5. The need for verification of the Polish lignite deposits owing to development and nature conservation protection on land at the surface

    Directory of Open Access Journals (Sweden)

    Naworyta Wojciech

    2016-12-01

    Full Text Available Poland is a country rich in lignite. The area where the lignite occurs occupies approx. 22% of the total surface area of the country. Geological resources of Polish lignite deposits are estimated at 23.5 billion Mg, but in the majority (69% the accuracy of their identification is poor. Nevertheless the amount of coal in Polish deposits allows - at least in theory - for mining and energy production at the current level for hundreds of years to come. It is an important raw material for the energy security of the country both currently and in the future. Because the vast majority of Polish and foreign mines use an open pit method for lignite extraction the actual amount of mineral available for the extraction depends not only on the properties of the deposit but to a large extent on the method of development of the surface land above the deposit, as well as on the sensitivity of the environment in the vicinity of any future mines. After careful analysis it can be stated that only a few of the lignite deposits may be subject to cost-effective mining operations. These deposits should be subjected to special protection as a future resource base which will ensure the energy security of the country. Some examples of domestic deposits have been presented where due to the conflict resulting from the development of the area should be deleted from the Balance Sheet of Mineral Deposits because their exploitation is irrational and uneconomic. Keeping such deposits in the Balance Sheet, and the use of large numbers in the context of their resource base leads to an unwarranted sense of wealth which consequently does not encourage the protection of these deposits which may actually be subject to rational exploitation in the near future. In summary there is a need to find a compromise in order to adequately protect all natural resources including mineral deposits.

  6. Barium concentration in cast roe deer antlers related to air pollution caused by burning of barium-enriched coals in southern Poland.

    Science.gov (United States)

    Jabłońska, M; Kramarczyk, M; Smieja-Król, B; Janeczek, J

    2016-03-01

    Concentrations of Ba, Zn, Pb, Fe, and Mn were determined by atomic absorption spectroscopy in freshly cast antlers from male roe deer of different ages (2 to 4 years old and older than 4 years) collected in Balin near Chrzanów and in the vicinity of Żywiec, S Poland. Barium content ranged from 124 to 196 ppm (mean 165 ppm) in the Balin 12 samples and from 207 to 351 ppm (mean 287 ppm) in 3 antlers from Żywiec. The concentration of Ba was comparable to that of Zn (134-275 ppm, mean 169 ppm). Elevated concentrations of Ba in antlers most probably originated from direct uptake of airborne barite nanocrystals through the respiratory system and/or by digestion of barite-rich dust particles deposited on plants. Burning of Ba-enriched coals is regarded as the principal source of Ba in the investigated areas inhabited by roe deer. Increased concentrations of Ba in antlers from the Żywiec area compared to Balin reflect particularly high air pollution caused by coal-burning mostly for domestic purposes combined with an unfavorable topography that impedes efficient air circulation.

  7. Taipower - latest projects to boost coal import levels

    Energy Technology Data Exchange (ETDEWEB)

    Hargreaves, D

    1985-05-01

    The activities are reviewd for Taipower, the state enterprise electrical power utility for Taiwan RC: its generating facilities and comparability; the status of major projects, especially the Taichung thermal project; the status of coal; coal burn performance; air pollution controls; coal ash performance; coal imports; transport logistics; including terminal facilities at the Taichung thermal power plant.

  8. Formation of clinker and its effects on locating and limiting coal resources

    International Nuclear Information System (INIS)

    Sarnecki, J.C.

    1991-01-01

    Coal burns occur in nature primarily due to spontaneous combustion and the result is baked overburden known as clinker. Understanding occurrences of natural coal burns and formation of clinker is important for coal resource exploration and development. Clinker is an indication of potential commercial coal reserves, and can be located easily due to its difference from the unaltered coal section, especially color, geochemical properties, and aquifer properties. The high porosity and variable material strength of clinker create impacts for aspects of mine development such as foundation planning, slope stability, and water handling. This paper describes the formation of clinker, the use of clinker for coal deposit location, its effect on coal quality, its effect on coal resource development, and the use of clinker in surface mine reclamation

  9. Transformation of heavy metals in lignite during supercritical water gasification

    International Nuclear Information System (INIS)

    Chen, Guifang; Yang, Xinfei; Chen, Shouyan; Dong, Yong; Cui, Lin; Zhang, Yong; Wang, Peng; Zhao, Xiqiang; Ma, Chunyuan

    2017-01-01

    Highlights: • The transformations of heavy metals during lignite SCWG were investigated. • The risks of heavy metals in lignite and residues after SCWG were evaluated. • The effects of experimental conditions on corrosion during SCWG were studied. - Abstract: Transformation characteristics of heavy metals during lignite supercritical water gasification (SCWG) were studied. A sequential extraction procedure (modified Tessier method) was used to selectively extract different fractions of Pb, Cd, Cr, Mn, Cu, Ni, and Zn. Heavy metals transformed into more stable fractions after SCWG. For Pb, Cd, Mn, Cu, and Zn, SCWG reduced the bioavailability and the risks posed by heavy metals in lignite. Under the experimental conditions, the conversion rates for Pb and Cd were 16.0%–25.2% and 16.3%–23.4%, respectively, whereas those for Mn, Cu, and Zn were much lower. Solid products enriched with Pb, Cd, Mn, Cu, and Zn were obtained after SCWG; the contents of these metals varied slightly in the liquid products under different experimental conditions. Excess Cr and Ni that did not originate from lignite were found in the residues, owing to reactor corrosion during lignite SCWG. Higher temperatures alleviated corrosion, whereas higher pressures and equivalence ratios (ER) had the opposite effect. None of the heavy metals were detected in the gas phase under the experimental conditions used in the present study. The correlation between the distributions of heavy metals and the experimental conditions were also studied. The transformation pathways of Pb, Cd, Mn, Cu, and Zn during SCWG were deduced according to the experimental results.

  10. Dioxin emissions from coal combustion in domestic stove: Formation in the chimney and coal chlorine content influence

    Directory of Open Access Journals (Sweden)

    Paradiz Bostjan

    2015-01-01

    Full Text Available Combustion experiments conducted in domestic stove burning hard coal demonstrated a predominant influence of the coal chlorine content on the PCDD/F emissions, together with a pronounced effect of the flue gas temperature. PCDD/F concentrations of over 100 ng TEQ/m3, three orders of magnitude higher than in a modern waste incinerator, were measured in the flue gases of a domestic stove when combusting high chlorine coal (0.31 %. The PCDD/F concentrations in the flue gases dropped below 0,5 ng TEQ/m3, when low chlorine coal (0.07 % was used. When low chlorine coal was impregnated with NaCl to obtain 0.38 % chlorine content, the emission of the PCDD/Fs increased by two orders of magnitude. Pronounced nonlinearity of the PCDD/F concentrations related to chlorine content in the coal was observed. The combustion of the high chlorine coal yielded PCDD/F concentrations in flue gases one order of magnitude lower in a fan cooled chimney when compared to an insulated one, thus indicating formation in the chimney. The influence of flue gas temperature on the PCDD/F emissions was less pronounced when burning low chlorine coal. The predominant pathway of the PCDD/F emissions is via flue gases, 99 % of the TEQ in the case of the high chlorine coal for insulated chimney.

  11. Bio-coal briquettes using low-grade coal

    Science.gov (United States)

    Estiaty, L. M.; Fatimah, D.; Widodo

    2018-02-01

    The technology in using briquettes for fuel has been widely used in many countries for both domestic and industrial purposes. Common types of briquette used are coal, peat, charcoal, and biomass. Several researches have been carried out in regards to the production and the use of briquettes. Recently, researches show that mixing coal and biomass will result in an environmentally friendly briquette with better combustion and physical characteristics. This type of briquette is known as bio-coal briquettes. Bio-coal briquettes are made from agriculture waste and coal, which are readily available, cheap and affordable. Researchers make these bio-coal briquettes with different aims and objectives, depending on the issues to address, e.g. utilizing agricultural waste as an alternative energy to replace fossil fuels that are depleting its reserves, adding coal to biomass in order to add calorific value to bio-coal briquette, and adding biomass to coal to improve its chemical and physical properties. In our research, biocoal briquettes are made to utilize low grade coal. The biomass we use, however, is different from the ones used in past researches because it has undergone fermentation. The benefits of using such biomass are 1. Fermentation turns the hemi cellulose into a simpler form, so that the burning activation energy decreases while the calorific value increases. 2. Enzym produced will bind to heavy metals from coal as co-factors, forming metals that are environmentally friendly.

  12. Normalising corporate counterinsurgency: Engineering consent, managing resistance and greening destruction around the Hambach coal mine and beyond

    NARCIS (Netherlands)

    Dunlap, A.A.

    2018-01-01

    The German Rhineland is home to the world's largest opencast lignite coal mine and human-made hole – the Hambach mine. Over the last seven years, RWE, the mine operator, has faced an increase in militant resistance, culminating in the occupation of the Hambacher Forest and acts of civil disobedience

  13. Combustion of uraniferous lignites in fluidized bed

    International Nuclear Information System (INIS)

    Morales, G.; Gasos, P.

    1985-01-01

    In this paper a description of the continuous fluid bed combustion pilot plant unit, installed in the Junta de Energia Nuclear facilities, is presented. Besides, this paper deals with some of the studies carried out in the pilot plant aimed at the recovery of uranium from lignites, high in sulfur and ashes, coming from Calaf basin (Barcelona). These studies include the recovery of the heating value of these lignites and the reduction of environmental effect of SO 2 . Based on these studies an application exercise is presented. 9 references, 5 figures, 5 tables

  14. Perspectives of the German lignite industry 2014; Perspektiven der deutschen Braunkohlenindustrie 2014

    Energy Technology Data Exchange (ETDEWEB)

    Hartung, Matthias; Milojcic, George [DEBRIV, Koeln (Germany)

    2014-11-01

    The decision to phase out nuclear energy and gradually realign the electricity system towards more renewables in the future required some extensive changes to electricity generation transmission. One of the issues to be considered is what role lignite can play in the transformation of the electricity system and what application is offered to Germany and its regions. However, lignite has some stable factors and their development is fairly predictable. Domestic lignite is one such example. Beyond its familiar attributes, 'secure, competitive and economically important for the regions', 'flexibility' is a key word that indicates a new dimension for the German lignite industry.

  15. Indoor Emissions from the Household Combustion of Coal

    Science.gov (United States)

    Learn about the lung cancer risk associated with burning coal inside your home. Indoor emissions from the household combustion of coal contain harmful chemicals such as benzene, carbon monoxide, and formaldehyde.

  16. Foreseen development of mining of lignite; Przewidywany rozwoj gornictwa wegla brunatnego

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, Z. [Wroclaw University of Technology, Wroclaw (Poland). Dept. of Geo-engineering, Mining and Geology

    2004-07-01

    The future of activity in Poland's lignite sector will be determined by the demand for this fuel, which will in turn result from mining possibilities and economic competitiveness of the fuel in relation to other sources of electrical energy. The paper discusses all these factors and presents a framework programme for the development of Poland's lignite sector until 2040 (in detail) and further ahead to 2075, called the 'Agreement of manufacturers of lignite'. 4 refs., 5 tabs.

  17. Carbon dioxide emission factors for U.S. coal by origin and destination

    Science.gov (United States)

    Quick, J.C.

    2010-01-01

    This paper describes a method that uses published data to calculate locally robust CO2 emission factors for U.S. coal. The method is demonstrated by calculating CO2 emission factors by coal origin (223 counties, in 1999) and destination (479 power plants, in 2005). Locally robust CO2 emission factors should improve the accuracy and verification of greenhouse gas emission measurements from individual coal-fired power plants. Based largely on the county origin, average emission factors for U.S. lignite, subbituminous, bituminous, and anthracite coal produced during 1999 were 92.97,91.97,88.20, and 98.91 kg CO2/GJgross, respectively. However, greater variation is observed within these rank classes than between them, which limits the reliability of CO2 emission factors specified by coal rank. Emission factors calculated by destination (power plant) showed greater variation than those listed in the Emissions & Generation Resource Integrated Database (eGRID), which exhibit an unlikely uniformity that is inconsistent with the natural variation of CO2 emission factors for U.S. coal. ?? 2010 American Chemical Society.

  18. Characteristics of Mae Moh lignite: Hardgrove grindability index and approximate work index

    Directory of Open Access Journals (Sweden)

    Wutthiphong Tara

    2012-02-01

    Full Text Available The purpose of this research was to preliminarily study the Mae Moh lignite grindability tests emphasizing onHardgrove grindability and approximate work index determination respectively. Firstly, the lignite samples were collected,prepared and analyzed for calorific value, total sulfur content, and proximate analysis. After that the Hardgrove grindabilitytest using ball-race test mill was performed. Knowing the Hardgrove indices, the Bond work indices of some samples wereestimated using the Aplan’s formula. The approximate work indices were determined by running a batch dry-grinding testusing a laboratory ball mill. Finally, the work indices obtained from both methods were compared. It was found that allsamples could be ranked as lignite B, using the heating value as criteria, if the content of mineral matter is neglected. Similarly,all samples can be classified as lignite with the Hargrove grindability indices ranging from about 40 to 50. However, there isa significant difference in the work indices derived from Hardgrove and simplified Bond grindability tests. This may be due todifference in variability of lignite properties and the test procedures. To obtain more accurate values of the lignite workindex, the time-consuming Bond procedure should be performed with a number of corrections for different milling conditions.With Hardgrove grindability indices and the work indices calculated from Aplan’s formula, capacity of the roller-racepulverizer and grindability of the Mae Moh lignite should be investigated in detail further.

  19. Gasification of coal using nuclear process heat. Chapter D

    International Nuclear Information System (INIS)

    Schilling, H.-D.; Bonn, B.; Krauss, U.

    1979-01-01

    In the light of the high price of coal and the enormous advances made recently in nuclear engineering, the possibility of using heat from high-temperature nuclear reactors for gasification processes was discussed as early as the 1960s. The advantages of this technology are summarized. A joint programme of development work is described, in which the Nuclear Research Centre at Juelich is aiming to develop a high-temperature reactor which will supply process heat at as high a temperature as possible, while other organizations are working on the hydrogasification of lignites and hard coals, and steam gasification. Experiments are at present being carried out on a semi-technical scale, and no operational data for large-scale plants are available as yet. (author)

  20. Pemanfaatan Urea sebagai Sumber Nitrogen pada Biosolubisasi Batubara oleh Trichoderma sp.

    Directory of Open Access Journals (Sweden)

    Novi Mulyawati

    2016-03-01

    Full Text Available Lignite coal was found abundant in Indonesia, but usage for this type of coal was still relatively low. Economic value of coal increases when it is solubilized. Biosolubilization of coal by utilize of microbes produces compounds equivalent to petroleum. In this research, effect of urea on lignite biosolubilization by Trichoderma sp. was examined. Method of this research consisted of spore inoculum preparation, biosolubilization lignite coal with a variety of treatment that consists of treatment A (MSS + sucrose  1% + coal 5% + urea, and treatment B (MSS + sucrose  1% + coal 5%. Results showed that the addition of urea supported lignit coal biosolubilization by Trichoderma sp. based on increase in medium pH, concentration of phenolic and conjugated aromatic compounds, and activity of extracellular enzyme. In addition, result of product characterization using GCMS revealed compounds equivalent to 13,60%, 26,20% and 90,8% respectively for gasoline, kerosene and diesel components. Those confirmed that urea can be used as an alternative nitrogen source to support Trichoderma sp. in lignit biosolubilization producing petroleum compounds.

  1. Effects of privatization: A case study from Cayirhan coal district, Turkey

    International Nuclear Information System (INIS)

    Eyyuboglu, E. Mustafa

    2006-01-01

    Privatization of lignite coal-fired power plants in Turkey began in the middle of 1990 and is still an ongoing process. Among the 10 power plants offered to bidders in 1996, only Cayirhan power plant bundled with the coal mine was privatized. Considerable improvements have been obtained following the privatization of both the power plant and the coal mine. In view of its success, it is considered that Cayirhan experience could serve as a model for further privatization in energy sector, planned to be completed by the end of 2006 according to the agenda issued by government. This paper deals with the overall improvements following the privatization of both the power plant and the coal mine. In particular, mechanized roadway drivage performances before and after privatization are compared in order to highlight the specific effects of privatization in this area. It is found that competition, organizational and operational changes are the main causes of improvements attained in the post-privatization period

  2. Coal Calorific Value Prediction Based on Projection Pursuit Principle

    OpenAIRE

    QI Minfang; FU Zhongguang; JING Yuan

    2012-01-01

    The calorific value of coal is an important factor for the economic operation of coal-fired power plant. However, calorific value is tremendous difference between the different coal, and even if coal is from the same mine. Restricted by the coal market, most of coal fired power plants can not burn the designed-coal by now in China. The properties of coal as received are changing so frequently that pulverized coal firing is always with the unexpected condition. Therefore, the researches on the...

  3. SYSTEM ANALYSIS OF NUCLEAR-ASSISTED SYNGAS PRODUCTION FROM COAL

    International Nuclear Information System (INIS)

    E. A. Harvego; M. G. McKellar; J. E. O'Brien

    2008-01-01

    A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high-temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. Results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 66.1% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency

  4. System Analysis of Nuclear-Assisted Syngas Production from Coal

    International Nuclear Information System (INIS)

    Harvego, E.A.; McKellar, M.G.; O'Brien, J.E.

    2009-01-01

    A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. Results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 64.4% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.

  5. The production of activated carbon from nigerian mineral coal via steam activation

    International Nuclear Information System (INIS)

    Nwosu, F.O.; Owolabi, B.I.O.; Adebowale, O.

    2010-01-01

    Activated carbon was produced from Okpara sub-bituminous coal and Ogwashi brown lignite coal of Nigeria through steam activation at 900 degree C and 960 degree C each for 30 min and 60 min. Okpara and Ogwashi precursor coals had carbon content of 67.41 and 64.47%, respectively, whereas the bulk density and the ash content were 0.59 - 0.68 g/mL and 2.56-9.91%, respectively. The former exhibited up to 901.0 mg/g iodine number and Brunauer Emmett Teller (BET) surface area of 604 m/sup 2/g while the latter, iodine number of 998.0 mg/g and 669 m/sup 2/g BET surface area. Both showed adequate porosity indicative of their potential for utilization for commercial production of active carbons. (author)

  6. Coal and tire burning mixtures containing ultrafine and nanoparticulate materials induce oxidative stress and inflammatory activation in macrophages.

    Science.gov (United States)

    Gasparotto, Juciano; Somensi, Nauana; Caregnato, Fernanda F; Rabelo, Thallita K; DaBoit, Kátia; Oliveira, Marcos L S; Moreira, José C F; Gelain, Daniel P

    2013-10-01

    Ultra-fine and nano-particulate materials resulting from mixtures of coal and non-coal fuels combustion for power generation release to the air components with toxic potential. We evaluated toxicological and inflammatory effects at cellular level that could be induced by ultrafine/nanoparticles-containing ashes from burning mixtures of coal and tires from an American power plant. Coal fly ashes (CFA) samples from the combustion of high-S coal and tire-derived fuel, the latter about 2-3% of the total fuel feed, in a 100-MW cyclone utility boiler, were suspended in the cell culture medium of RAW 264.7 macrophages. Cell viability, assessed by MTT reduction, SRB incorporation and contrast-phase microscopy analysis demonstrated that CFA did not induce acute toxicity. However, CFA at 1mg/mL induced an increase of approximately 338% in intracellular TNF-α, while release of this proinflammatory cytokine was increased by 1.6-fold. The expression of the inflammatory mediator CD40 receptor was enhanced by 2-fold, the receptor for advanced glycation endproducts (RAGE) had a 5.7-fold increase and the stress response protein HSP70 was increased nearly 12-fold by CFA at 1mg/mL. Although CFA did not induce cell death, parameters of oxidative stress and reactive species production were found to be altered at several degrees, such as nitrite accumulation (22% increase), DCFH oxidation (3.5-fold increase), catalase (5-fold increase) and superoxide dismutase (35% inhibition) activities, lipoperoxidation (4.2 fold-increase) and sulfhydryl oxidation (40% decrease in free SH groups). The present results suggest that CFA containing ultra-fine and nano-particulate materials from coal and tire combustion may induce sub-chronic cell damage, as they alter inflammatory and oxidative stress parameters at the molecular and cellular levels, but do not induce acute cell death. © 2013.

  7. Supercritical gas extracts from low-quality coals. On the search of new precursors for carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Roberto; Arenillas, Ana; Rubiera, Fernando; Moinelo, Sabino R. [Instituto Nacional del Carbon INCAR, CSIC, Apartado 73, 33080, Oviedo (Spain)

    2004-11-25

    This paper studies the chemical composition of several supercritical gas (SCG) extracts and its influence on the thermal behaviour under carbonisation conditions. The extracts were obtained from a Spanish lignite (Mequinenza), a low-quality coal from the point of view of energy applications. The lignite was treated with toluene, ethanol (EtOH) and tetrahydrofuran (THF) as solvents under different supercritical temperature and pressure conditions. The extracts display high aliphatic nature and enhanced concentrations of oxygen functional groups, aided by the contribution of hydrogenation and oxygen incorporation reactions occurring in the SCG extraction with EtOH and THF. Thiophenic compounds are also present in great concentrations derived from the exceptionally high organic sulphur content of the parent coal. The carbonisation of the extracts renders anisotropic material with fine mosaic texture, as a consequence of the significant thermal reactivity inferred by the aliphatic and oxygenated groups. The size of the mosaic increases with the temperature of the SCG extraction and varies with the supercritical solvent in the order: toluene

  8. Comparison of Australasian tertiary coals based on resolution- enhanced solid-state /sup 13/C NMR spectra

    Energy Technology Data Exchange (ETDEWEB)

    Newman, R H; Davenport, S J

    1986-04-01

    /sup 13/C solid-state nuclear magnetic resonance spectroscopy was used to characterize 32 low-rank coals from New Zealand and Australia. A combination of high magnetic field (4.7 T) and resolution enhancement was used to extract spectral details beyond those seen in published spectra of coals of similar rank. Signal heights were used to characterize organic functional distributions. The spectra showed close similarities between Australian brown coals and low-rank New Zealand subbituminous coals, particularly those mined in the North Island. The spectra of New Zealand lignites all showed stronger signals from cellulose, methoxyl groups and phenols. Almost all of the New Zealand coals showed a relatively strong signal from polymethylene chains, compared with the Australian brown coals. This led to a prediction of higher alkene yields from pyrolysis of the New Zealand coals. Variations in phenolic substitution patterns were attributed to variations in the relative proportions of tannins and lignins in the depositional environments.

  9. Environmental impact assessment of coal fired thermal power stations

    International Nuclear Information System (INIS)

    Nambi, K.S.V.; Sadasivan, S.; Negi, B.S.; Meenakshy, V.

    1992-01-01

    Coal fly ash samples collected from various thermal power plants and one lignite ash sample were analysed for various elements such as As, Ca, Ce, Co, Cr, Cu, Eu, Fe, Hf, K, La, Lu, Mn, Na, Ni, Pb, Rb, Se, Si, Sb, Sc, Sm, Sr, Ti, V, Yb and Zn using energy dispersive X-ray fluorescence and instrumental neutron activation analysis methods. The two-step maximum leachability test was also performed on all fly ash samples. 13 refs, 9 tabs

  10. Fungal degradation of coal as a pretreatment for methane production

    Science.gov (United States)

    Haider, Rizwan; Ghauri, Muhammad A.; SanFilipo, John R.; Jones, Elizabeth J.; Orem, William H.; Tatu, Calin A.; Akhtar, Kalsoom; Akhtar, Nasrin

    2013-01-01

    Coal conversion technologies can help in taking advantage of huge low rank coal reserves by converting those into alternative fuels like methane. In this regard, fungal degradation of coal can serve as a pretreatment step in order to make coal a suitable substrate for biological beneficiation. A fungal isolate MW1, identified as Penicillium chrysogenum on the basis of fungal ITS sequences, was isolated from a core sample of coal, taken from a well drilled by the US. Geological Survey in Montana, USA. The low rank coal samples, from major coal fields of Pakistan, were treated with MW1 for 7 days in the presence of 0.1% ammonium sulfate as nitrogen source and 0.1% glucose as a supplemental carbon source. Liquid extracts were analyzed through Excitation–Emission Matrix Spectroscopy (EEMS) to obtain qualitative estimates of solubilized coal; these analyses indicated the release of complex organic functionalities. In addition, GC–MS analysis of these extracts confirmed the presence of single ring aromatics, polyaromatic hydrocarbons (PAHs), aromatic nitrogen compounds and aliphatics. Subsequently, the released organics were subjected to a bioassay for the generation of methane which conferred the potential application of fungal degradation as pretreatment. Additionally, fungal-mediated degradation was also prospected for extracting some other chemical entities like humic acids from brown coals with high huminite content especially from Thar, the largest lignite reserve of Pakistan.

  11. The origin and distribution of HAPs elements in relation to maceral composition of the A1 lignite bed (Paleocene, Calvert Bluff Formation, Wilcox Group), Calvert mine area, east-central Texas

    Science.gov (United States)

    Crowley, Sharon S.; Warwick, Peter D.; Ruppert, Leslie F.; Pontolillo, James

    1997-01-01

    The origin and distribution of twelve potentially Hazardous Air Pollutants (HAPs; As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb, Sb, Se, and U) identified in the 1990 Clean Air Act Amendments were examined in relation to the maceral composition of the A1 bed (Paleocene, Calvert Bluff Formation, Wilcox Group) of the Calvert mine in east-central Texas. The 3.2 m-thick A1 bed was divided into nine incremental channel samples (7 lignite samples and 2 shaley coal samples) on the basis of megascopic characteristics. Results indicate that As, Cd, Cr, Ni, Pb, Sb, and U are strongly correlated with ash yield and are enriched in the shaley coal samples. We infer that these elements are associated with inorganic constituents in the coal bed and may be derived from a penecontemporaneous stream channel located several kilometers southeast of the mining block. Of the HAPs elements studied, Mn and Hg are the most poorly correlated to ash yield. We infer an organic association for Mn; Hg may be associated with pyrite. The rest of the trace elements (Be, Co, and Se) are weakly correlated with ash yield. Further analytical work is necessary to determine the mode of occurrence for these elements. Overall, concentrations of the HAPs elements are generally similar to or less than those reported in previous studies of lignites of the Wilcox Group, east-central region, Texas. Petrographic analysis indicates the following ranges in composition for the seven lignite samples: liptinites (5–8%), huminites (88–95%), and inertinites (trace amounts to 7%). Samples from the middle portion of the A1 bed contain abundant crypto-eugelinite compared to the rest of the samples; this relationship suggests that the degradation of plant material was an important process during the development of the peat mire. With the exception of Hg and Mn, relatively low levels of the HAPs elements studied are found in the samples containing abundant crypto-eugelinite. We infer that the peat-forming environment for this

  12. Coal-peat compositions for co-combustion in local boilers

    Directory of Open Access Journals (Sweden)

    А. В. Михайлов

    2016-08-01

    Full Text Available In article results of experiments on creation of coal and peat fuel compositions for burning in solid-fuel boilers are described. The main objective of research consisted in development of combination of coal dust and natural peat without binding additives. The role of peat consists that it increases efficiency of process of granulation, being natural binding. The method of granulation allows to utilize waste of the coal industry. Joint burning of two types of fuel – coal dust and peat reduces emission of sulfur dioxides. The cost of peat raw materials is lower, than artificial binding, applied to briquetting of coal dust. The composition of mix of coal dust and peat varied in the ratio 2:1, 1:1 and 1:2 in volume ratio at humidity of mix before extrusion of 65 %. In the course of preparatory operations of coal raw materials its crushing and sifting through sieve of 24 mesh (0,707 mm was carried out. Procedure of hashing of samples of coal and peat was carried out before receiving homogeneous mixture. After hashing mix was located in piston press for receiving granules. Coal dust and wet peat pass semifixed extrusion on piston press with formation of cylindrical granules with a diameter of 16 mm. After extrusion of granule are dried to operational humidity of 25 %. Coal and peat fuel granules showed sufficient mechanical strength for transportation and power feed in solid-fuel boilers. Burning of coal and peat fuel granules in vitro at temperature of 800 °C does not lead to ashes agglomeration. The conducted preliminary researches showed prospects of utilization of coal waste by granulation method in mix with natural peat.

  13. Thermal Integration of CO{sub 2} Compression Processes with Coal-Fired Power Plants Equipped with Carbon Capture

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy

    2012-06-29

    Coal-fired power plants, equipped either with oxycombustion or post-combustion CO{sub 2} capture, will require a CO{sub 2} compression system to increase the pressure of the CO{sub 2} to the level needed for sequestration. Most analyses show that CO{sub 2} compression will have a significant effect on parasitic load, will be a major capital cost, and will contribute significantly to reduced unit efficiency. This project used first principle engineering analyses and computer simulations to determine the effects of utilizing compressor waste heat to improve power plant efficiency and increase net power output of coal-fired power plants with carbon capture. This was done for units with post combustion solvent-based CO{sub 2} capture systems and for oxyfired power plants, firing bituminous, PRB and lignite coals. The thermal integration opportunities analyzed for oxycombustion capture are use of compressor waste heat to reheat recirculated flue gas, preheat boiler feedwater and predry high-moisture coals prior to pulverizing the coal. Among the thermal integration opportunities analyzed for post combustion capture systems are use of compressor waste heat and heat recovered from the stripper condenser to regenerate post-combustion CO{sub 2} capture solvent, preheat boiler feedwater and predry high-moisture coals. The overall conclusion from the oxyfuel simulations is that thermal integration of compressor heat has the potential to improve net unit heat rate by up to 8.4 percent, but the actual magnitude of the improvement will depend on the type of heat sink used and to a lesser extent, compressor design and coal rank. The simulations of a unit with a MEA post combustion capture system showed that thermal integration of either compressor heat or stripper condenser heat to preheat boiler feedwater would result in heat rate improvements from 1.20 percent to 4.19 percent. The MEA capture simulations further showed that partial drying of low rank coals, done in combination

  14. Expansion of Neyveli lignite mines

    Energy Technology Data Exchange (ETDEWEB)

    Kasturi, T S

    1982-06-01

    This paper describes activities at Neyveli lignite mines in the Tamil Nadu region of India. The equipment used, in mining and materials handling is described. Problems encountered in the conveyor transport system are described, and the solutions finally adopted are presented.

  15. Geochemistry of coals, coal ashes and combustion wastes from coal-fired power stations

    International Nuclear Information System (INIS)

    Vassilev, S.V.; Vassileva, C.G.

    1997-01-01

    Contents, concentration trends, and modes of occurrence of 67 elements in coals, coal ashes, and combustion wastes at eleven Bulgarian thermoelectric power stations (TPS) were studied. A number of trace elements in coal and coal ash have concentrations greater than their respective worldwide average contents (Clarke values). Trace elements are concentrated mainly in the heavy accessory minerals and organic matter in coal. In decreasing order of significance, the trace elements in coal may occur as: element-organic compounds; impurities in the mineral matter; major components in the mineral matter; major and impurity components in the inorganic amorphous matter; and elements in the fluid constituent. A number of trace elements in the waste products, similar to coal ashes, exceed known Clarke contents. Trace elements are mainly enriched in non-magnetic, heavy and fine-grained fractions of fly ash. They are commonly present as impurities in the glass phases, and are included in the crystalline components. Their accessory crystalline phases, element-organic compounds, liquid and gas forms, are of subordinate importance. Some elements from the chalcophile, lithophile and siderophile groups may release into the atmosphere during coal burning. For others, the combustion process appears to be a powerful factor causing their relative enrichment in the fly ash and rarely in the bottom ash and slag. 65 refs., 1 fig., 11 tabs

  16. Differential sedimentation and selective flocculation in the desulfurization of Teruel lignite. Sedimentacion diferencial y floculacion selectiva en la desulfuracion de los lignitos de Teruel

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, R.; Clemente, C.; Gomez-Limon, D. (Escuela Tecnica Superior de Ingenieros de Minas de Madrid, Madrid (Spain))

    1988-01-01

    At the time of researching the possibility to remove the sulfur of the lignites located in the Teruel area via selective flocculation, it has been proved that in the case of the sulfur on its sulfur form, there's a pronounced interference with the differential sedimentation between coal and sulfur, increased by the fact of a selective liberation. This differential sedimentation shows better results on the sulfur removal process than that obtained by selective flocculation. 8 refs., 12 tabs.

  17. Parameters influencing the variation in mercury emissions from an Alberta power plant burning high inertinite coal over thirty-eight weeks period

    Energy Technology Data Exchange (ETDEWEB)

    Goodarzi, F.; Reyes, J. [Environmental Studies, Geological Survey of Canada-Calgary, 3303-33rd Street N.W., Calgary, Alberta (Canada T2L 2A7); Schulz, J.; Hollman, D. [EPCOR 10065 Jasper Ave Edmonton, Alberta (Canada T5J 3B1); Rose, D. [Air Pollution Prevention Directorate Environment Canada, 315 St-Joseph Blvd Hull, Quebec (Canada K1A 0H3)

    2006-01-03

    Feed coals and fly ashes from a coal-fired power station burning Alberta subbituminous coal were examined for a period of thirty-eight weeks to determine the variation in emitted mercury. Feed coal samples were analyzed for proximate, calorific value and Hg content, while fly ash samples were examined for C and Hg contents. The maceral content of the feed coal was also determined. The emitted mercury was calculated and compared to mercury emitted from the stack according to a mass-balance calculation from a previous study for the same station. Mercury contents ranged from 0.029 to 0.066 mg/kg for feed coal, and from 0.069 to 0.112 mg/kg for fly ash. The carbon/char in fly ash was separated into reactive (vitrinitic/bimacerate) and less reactive (inertinitic) chars using ZnBr{sub 2} at specific gravities of 1.7, 2.0, and 2.25 to 2.4. The result shows that there is a positive correlation between the carbon and mercury content of the fly ash. The reactive char particles in the fly ash may be responsible for the capture mercury in fly ash. The percentage of estimated captured mercury by fly ash increases with increasing carbon content (%) in fly ash. The percentage of emitted mercury for the period of 38 weeks is estimated to be within the range of 49% to 76% of the total input of mercury. (author)

  18. Application of nuclear techniques for analysis of Vietnamese coal and embedding rocks

    International Nuclear Information System (INIS)

    Vo Dac Bang; Pham Van Duong; Nguyen Thanh Binh; Le Tien Quan; Nguyen Manh Hung; Nguyen Thi Hong; Vu Hoang Lam

    1995-01-01

    In the paper the result of elemental analysis by Nuclear Techniques of Coal and Embedded rocks samples from Vietnamese Quang Ninh and Thai Nguyen basins were presented. Methods used were: Neutron activation Analysis at Dalat Reactor, low counting with HP-Ge and NaJ detectors and X-ray fluorescent analysis with planar Si (Si) detector. Mean concentrations of 19 elements in coal and 9 in rocks were determined. Correlation between concentrations of elements were found. It appears that the correlation between ash content and U, K, Th, concentrations was poor for Quang Ninh antracitecoal. Correlation coefficient was found to be 0,63 for ash range 0-40%. Content of Th in anthracite Quang Ninh coal was much higher than reported in literature for subbituminous, bituminous and lignite coals, while Thai Nguyen fat coal contains considerable amount of Cu, Pb, Zn. Obtained data were useful for evaluation of potential hazard for environment from using coal as fuel for coal fired power plants, for estimation of possibility of using nuclear technique in coal industry in Vietnam. They could be used also for geochemical investigations. The simple of-line coal ash gauge basing on attenuation of soft gamma radiation from Fe-55 was also described. (author). 6 refs, 3 figs, 8 tabs

  19. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Constance Senior; Temi Linjewile

    2003-07-25

    This is the first Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Ceramics GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, analysis of the coal, ash and mercury speciation data from the first test series was completed. Good agreement was shown between different methods of measuring mercury in the flue gas: Ontario Hydro, semi-continuous emission monitor (SCEM) and coal composition. There was a loss of total mercury across the commercial catalysts, but not across the blank monolith. The blank monolith showed no oxidation. The data from the first test series show the same trend in mercury oxidation as a function of space velocity that has been seen elsewhere. At space velocities in the range of 6,000-7,000 hr{sup -1} the blank monolith did not show any mercury oxidation, with or without ammonia present. Two of the commercial catalysts clearly showed an effect of ammonia. Two other commercial catalysts showed an effect of ammonia, although the error bars for the no-ammonia case are large. A test plan was written for the second test series and is being reviewed.

  20. Combustion of agro-waste with coal in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Atimtay, Aysel T. [Middle East Technical University, Department of Environmental Engineering, Ankara (Turkey)

    2010-02-15

    In this study, a review of the studies done on the co-combustion of some agro-waste in a bubbling fluidized bed combustor (BFBC) having an inside diameter of 102 mm and a height of 900 mm is given. The agro-waste used to investigate the co-combustion characteristics were peach and apricot stones produced as a waste from the fruit juice industry, and olive cake produced as a waste from the olive oil industry. These are typical wastes for a Mediterranean country. A lignite coal was used for co-combustion. On-line concentrations of O{sub 2}, CO, CO{sub 2}, SO{sub 2}, NO{sub x} and total hydrocarbons (C{sub m} H{sub n}) were measured in the flue gas during combustion experiments. Variations of emissions of various pollutants were studied by changing the operating parameters (excess air ratio, fluidization velocity and fuel feed rate). Temperature distribution along the bed was measured with thermocouples. Emissions were also monitored from the exhaust. Various combinations of coal and biomass mixtures were tested. During the combustion tests, it was observed that the volatile matter from the biomass quickly volatilizes and mostly burns in the freeboard. The temperature profiles along the bed and the freeboard also confirmed this phenomenon. It was found that as the volatile matter of the biomass increases, combustion takes place more in the freeboard region. Better combustion conditions occur at higher excess air ratios. The results showed that co-combustion with these three proposed biomasses lowers the SO{sub 2} and NO{sub x} emissions considerably. CO and hydrocarbon emissions are lower at the higher excess air ratios. (orig.)

  1. ExternE: Externalities of energy Vol. 3. Coal and lignite

    International Nuclear Information System (INIS)

    Berry, J.; Holland, M.; Lee, D.

    1995-01-01

    methodological issues was reached on both sides of the Atlantic. Since 1993 the study has continued in Europe as the ExternE-Project, and now involves an international team of more than 30 organisations. The current study has three main objectives: 1. to design a unified methodology for quantifying the various social costs associated with the production and consumption of energy; 2. to use the methodology to evaluate the external costs of incremental use of different fuel cycles in different locations in the European Union; 3. to identify critical methodological issues and research requirements. At the same time as the publication of the present report, further reports are being published on the other major fuel cycles for electricity generation, including uranium, oil, gas, wind and hydro. A further volume, providing greater detail on the methodology used for assessment of the impacts of the fossil fuel cycles and their valuation is also being published. Additional reports on other fuel cycles, and implementation of the methodology in different countries will follow shortly. This document assesses the progress made in quantifying environmental and health damages associated with the coal and lignite fuel cycles. Estimates of impacts have been made following critical review of existing data and models rather than from original basic research. This review has been performed by a multi-disciplinary team including specialists in the fields of health, forestry, ecology, materials science, atmospheric chemistry and physics, energy technology, computer science and economics. Wherever possible we have used exactly the same methodology to quantify the same form of damage for each fuel cycle and for each location. However, some differences will be observed in the assessment of the fuel cycles considered in this report. These arise largely through the status of development of the methodology when certain parts of the work were completed. Wherever possible these differences have been

  2. Distributed activation energy model for kinetic analysis of multi-stage hydropyrolysis of coal

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Li, W.; Wang, N.; Li, B. [Chinese Academy of Sciences, Taiyuan (China). Inst. of Coal Chemistry

    2003-07-01

    Based on the new analysis of distributed activation energy model, a bicentral distribution model was introduced to the analysis of multi-stage hydropyrolysis of coal. The hydropyrolysis for linear temperature programming with and without holding stage were mathematically described and the corresponding kinetic expressions were achieved. Based on the kinetics, the hydropyrolysis (HyPr) and multi-stage hydropyrolysis (MHyPr) of Xundian brown coal was simulated. The results shows that both Mo catalyst and 2-stage holding can lower the apparent activation energy of hydropyrolysis and make activation energy distribution become narrow. Besides, there exists an optimum Mo loading of 0.2% for HyPy of Xundian lignite. 10 refs.

  3. A kinetic study of gaseous potassium capture by coal minerals in a high temperature fixed-bed reactor

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    2008-01-01

    The reactions between gaseous potassium chloride and coal minerals were investigated in a lab-scale high temperature fixed-bed reactor using single sorbent pellets. The applied coal minerals included kaolin, mullite, silica, alumina, bituminous coal ash, and lignite coal ash that were formed...... into long cylindrical pellets. Kaolin and bituminous coal ash that both have significant amounts of Si and Al show superior potassium capture characteristics. Experimental results show that capture of potassium by kaolin is independent of the gas oxygen content. Kaolin releases water and forms metakaolin...... when heated at temperatures above 450°C. The amounts of potassium captured by metakaolin pellet decreases with increasing reaction temperature in the range of 900-1300°C and increases again with further increasing the temperature up to 1500°C. There is no reaction of pre-made mullite with KCl...

  4. Use of INAA for investigation of emission of elements in combustion of Polish lignite

    International Nuclear Information System (INIS)

    Janczyszyn, J.; Loska, L.; Pohorecki, W.; Wagner, M.

    2002-01-01

    Instrumental neutron activation analysis (INAA) has been applied for the determination of trace elements content in samples of Polish lignite and its ash. Pairs of results, for lignite and ash, and respective ash contents were used for calculation of the percentage of element remaining in ash after the lignite combustion. (author)

  5. Effects of lignite application on ammonia and nitrous oxide emissions from cattle pens

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jianlei, E-mail: su@unimelb.edu.au [Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, VIC 3010 (Australia); Bai, Mei [Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, VIC 3010 (Australia); Shen, Jianlin [Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); Griffith, David W.T. [Department of Chemistry, University of Wollongong, NSW 2522 (Australia); Denmead, Owen T. [Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, VIC 3010 (Australia); Hill, Julian [Ternes Agricultural Consulting Pty Ltd, Upwey, VIC 3158 (Australia); Lam, Shu Kee; Mosier, Arvin R. [Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, VIC 3010 (Australia); Chen, Deli, E-mail: delichen@unimelb.edu.au [Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, VIC 3010 (Australia)

    2016-09-15

    Beef cattle feedlots are a major source of ammonia (NH{sub 3}) emissions from livestock industries. We investigated the effects of lignite surface applications on NH{sub 3} and nitrous oxide (N{sub 2}O) emissions from beef cattle feedlot pens. Two rates of lignite, 3 and 6 kg m{sup −2}, were tested in the treatment pen. No lignite was applied in the control pen. Twenty-four Black Angus steers were fed identical commercial rations in each pen. We measured NH{sub 3} and N{sub 2}O concentrations continuously from 4th Sep to 13th Nov 2014 using Quantum Cascade Laser (QCL) NH{sub 3} analysers and a closed-path Fourier Transform Infrared Spectroscopy analyser (CP-FTIR) in conjunction with the integrated horizontal flux method to calculate NH{sub 3} and N{sub 2}O fluxes. During the feeding period, 16 and 26% of the excreted nitrogen (N) (240 g N head{sup −1} day{sup −1}) was lost via NH{sub 3} volatilization from the control pen, while lignite application decreased NH{sub 3} volatilization to 12 and 18% of the excreted N, for Phase 1 and Phase 2, respectively. Compared to the control pen, lignite application decreased NH{sub 3} emissions by approximately 30%. Nitrous oxide emissions from the cattle pens were small, 0.10 and 0.14 g N{sub 2}O-N head{sup −1} day{sup −1} (< 0.1% of excreted N) for the control pen, for Phase 1 and Phase 2, respectively. Lignite application increased direct N{sub 2}O emissions by 40 and 57%, to 0.14 and 0.22 g N{sub 2}O-N head{sup −1} day{sup −1}, for Phase 1 and Phase 2, respectively. The increase in N{sub 2}O emissions resulting from lignite application was counteracted by the lower indirect N{sub 2}O emission due to decreased NH{sub 3} volatilization. Using 1% as a default emission factor of deposited NH{sub 3} for indirect N{sub 2}O emissions, the application of lignite decreased total N{sub 2}O emissions. - Graphical abstract: Lignite application substantially decreased NH{sub 3} emissions from cattle feedlots and increased

  6. Development of a Temperature Programmed Identification Technique to Characterize the Organic Sulphur Functional Groups in Coal

    Directory of Open Access Journals (Sweden)

    Moinuddin Ghauri

    2017-06-01

    Full Text Available The Temperature Programmed Reduction (TPR technique is employed for the characterisation of various organic sulphur functional groups in coal. The TPR technique is modified into the Temperature Programmed Identification technique to investigate whether this method can detect various functional groups corresponding to their reduction temperatures. Ollerton, Harworth, Silverdale, Prince of Wales coal and Mequinenza lignite were chosen for this study. High pressure oxydesulphurisation of the coal samples was also done. The characterization of various organic sulphur functional groups present in untreated and treated coal by the TPR method and later by the TPI method confirmed that these methods can identify the organic sulphur groups in coal and that the results based on total sulphur are comparable with those provided by standard analytical techniques. The analysis of the untreated and treated coal samples showed that the structural changes in the organic sulphur matrix due to a reaction can be determined.

  7. Coal combustion products: trash or treasure?

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T.

    2006-07-15

    Coal combustion by-products can be a valuable resource to various industries. The American Coal Ash Association (ACAA) collects data on production and uses of coal combustion products (CCPs). 122.5 million tons of CCPs were produced in 2004. The article discusses the results of the ACCA's 2004 survey. Fly ash is predominantly used as a substitute for Portland cement; bottom ash for structural fill, embankments and paved road cases. Synthetic gypsum from the FGD process is commonly used in wallboard. Plant owners are only likely to have a buyer for a portion of their CCPs. Although sale of hot water (from Antelope Valley Station) from condensers for use in a fish farm to raise tilapia proved unviable, the Great Plains Synfuels Plant which manufactures natural gas from lignite produces a wide range of products including anhydrous ammonia, phenol, krypton, carbon dioxide (for enhanced oil recovery), tar oils and liquid nitrogen. ACCA's goal is to educate people about CCPs and how to make them into useful products, and market them, in order to reduce waste disposal and enhance revenue. The article lists members of the ACCA. 2 photos., 1 tab.

  8. Analytical investigation of lignite and its ash samples taken from the Afsin-Elbistan coal basin in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Kucukonder, Adnan; Paksoy, Emine; Biber, Seyma [Kahramanmaras Suetcue Imam Univ. (Turkey). Dept. of Physics; Durdu, Burhanettin Goeker [Kilis 7 Aralik Univ., Kilis (Turkey). Opticianry Program; Baskaya, H.; Dogru, Mahmut [Bitlis Eren Univ. (Turkey). Dept. of Physics

    2014-04-15

    Lignite, taken from basin in Afsin-Elbistan region, and ash samples were analyzed according to the qualitative, quantitative and radioactivity properties. An elemental analysis was made by using the Energy Dispersive X-Ray Fluorescence (EDXRF) technique. 59.5 keV photons emitted from a {sup 241}Am source and 5.9 keV photons emitted from a {sup 55}Fe radioactive source were used for excitation. The characteristic K X-rays of the elements were counted with a Si(Li) detector. For the same samples gross alpha, gross beta and radionuclide activities were also measured. (orig.)

  9. Liquid fuels from Canadian coals

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G. W.

    1979-06-15

    In Canadian energy planning, the central issue of security of supply must be addressed by developing flexible energy systems that make the best possible use of available resources. For liquid fuel production, oil sands and heavy oil currently appear more attractive than coal or biomass as alternatives to conventional crude oil, but the magnitude of their economic advantage is uncertain. The existence of large resources of oil sands, heavy oils, natural gas and low-sulfur coals in Western Canada creates a unique opportunity for Canadians to optimize the yield from these resources and develop new technology. Many variations on the three basic liquefaction routes - hydroliquefaction, pyrolysis and synthesis - are under investigation around the world, and the technology is advancing rapidly. Each process has merit under certain circumstances. Surface-mineable subbituminous and lignite coals of Alberta and Saskatchewan appear to offer the best combination of favorable properties, deposit size and mining cost, but other deposits in Alberta, Nova Scotia and British Columbia should not be ruled out. The research effort in Canada is small by world standards, but it is unlikely that technology could be imported that is ideally suited to Canadian conditions. Importing technology is undesirable: innovation or process modification to suit Canadian coals and markets is preferred; coprocessing of coal liquids with bitumen or heavy oils would be a uniquely Canadian, exportable technology. The cost of synthetic crude from coal in Canada is uncertain, estimates ranging from $113 to $220/m/sup 3/ ($18 to $35/bbl). Existing economic evaluations vary widely depending on assumptions, and can be misleading. Product quality is an important consideration.

  10. Experimental and Numerical Investigation of Effect of Coal Rank on Burn-off Time in Pulverized Coal Combustion

    OpenAIRE

    Nozawa, Sohei; Wada, Nozomi; Matsushita, Yosuke; Yamamoto, Tsuyoshi; Omori, Motohira; Harada, Tatsuro

    2012-01-01

    Thermogravimetry (TG) for two different coal ranks, Loy Yang coal and Newlands coal, was carried out in an atmospheric air environment. Detailed parameters of the heterogeneous oxidation reaction for each coal rank were estimated by analyzing the TG results. Heat and mass transfer of a single pulverized coal particle that was heated at a constant temperature were numerically simulated. In this calculation, the decrease in the mass ratio caused by the oxidation reaction was considered. The num...

  11. THERMODYNAMIC ANALYSIS OF CARBON SEQUESTRATION METHODS IN LIGNITE POWER PLANTS

    International Nuclear Information System (INIS)

    Koroneos J. Christopher; Sakiltzis Christos; Rovas C. Dimitrios

    2008-01-01

    The green house effect is a very pressing issue of our times due to the big impact it will have in the future of life in our planet. The temperature increase of the earth which is the major impact of the greenhouse effect may change forever the climate and the way of life in many countries. It may lead to the reduction of agricultural production and at the end to famine, in several nations. The minimization of CO2 emissions and the introduction of new energy sources is the only solution to the catastrophe that is coming if inaction prevails. The objective of this work is to analyze the methods of the CO2 removal from the flue gases of power plants that use solid fuels. It is especially fit to the Greek conditions where the main fuel used is lignite. Three methods have been examined and compared thermodynamically. These are: (a) Removal of CO2 from the flue gas stream by absorption, (b) The combustion of lignite with pure oxygen and (c) The gasification of lignite. The lignite used in the analysis is the Greek lignite, produced at the Western Macedonia mines. The power plant, before carbon sequestration, has an efficiency of 39%, producing 330MW of electric power. After sequestration, the CO2 is compressed to pressures between 80-110 atm, before its final disposal. In the first method, the sequestration of CO2 is done utilizing a catalyst. The operation requires electricity and high thermal load which is received from low pressure steam extracted from the turbines. Additionally, electricity is required for the compression of the CO2 to 100 bars. This leads to a lower efficiency of the power plant by by 13%. In the second method, the lignite combustion is done with pure O2 produced at an air separation unit. The flue gasses are made up of CO2 and water vapor. This method requires electricity for carbon dioxide compression and the Air Separation unit, thus, the power plant efficiency is lowered by 26%. In the lignite gasification method, the products are a mixture of

  12. Low-grade coals: a review of some prospective upgrading technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hassan Katalambula; Rajender Gupta [University of Alberta, Edmonton, AB (Canada). Department of Chemical and Materials Engineering

    2009-07-15

    There is a growing need of using low-grade coals because of higher quest for power generation. In the present carbon-constrained environment, there is a need of upgrading these coals in terms of moisture, ash, and/or other trace elements. The current paper reviews technologies used mainly categorized as drying for reducing moisture and cleaning the coal for reducing mineral content of coal and related harmful constituents, such as sulfur and mercury. The earliest upgrading of high-moisture lignite involved drying and manufacturing of briquettes. Drying technologies consist of both evaporative and non-evaporative (dewatering) types. The conventional coal cleaning used density separation in water medium. However, with water being a very important resource, conservation of water is pushing toward the development of dry cleaning of coal. There are also highly advanced coal-cleaning technologies that produce ultra-clean coals and produce coals with less than 0.1% of ash. The paper discusses some of the promising upgrading technologies aimed at improving these coals in terms of their moisture, ash, and other pollutant components. It also attempts to present the current status of the technologies in terms of development toward commercialization and highlights on problems encountered. It is obvious that still the upgrading goal has not been realized adequately. It can therefore be concluded that, because reserves for low-grade coals are quite plentiful, it is important to intensify efforts that will make these coals usable in an acceptable manner in terms of energy efficiency and environmental protection. 68 refs., 7 figs.

  13. "Coal Poisons Everything It Touches." Teaching about Coal, Climate, and the Future of the Earth

    Science.gov (United States)

    Bigelow, Bill

    2013-01-01

    This article describes an activity in which ninth graders explore a plan to strip-mine coal in Wyoming and Montana, send it by train to the Northwest, then ship it to Asia to be burned. Students' questions ranged from "Why are we mining for more coal if it's the biggest contributor to global warming" and "How can adults doom our…

  14. Natural radioactivity product from coal burning in PLTU Pacitan

    International Nuclear Information System (INIS)

    Sukirno; Sri Murniasih; Rosidi; Sutanto WW

    2016-01-01

    Monitoring of radioactivity in the coal-fired power plant has been carried out in the CAST-NAA laboratory at 2015. Monitoring includes analysis of soil, water, fly ash, bottom ash and coal. The basic purpose of this work is the investigation of natural radionuclide contents in coal and the actual product samples in the Pacitan power plant as a first step to estimate the radioactive in the vicinity. This paper presents the results of the analysis of radioactivity in samples of coal, fly ash and bottom ash as well as environment samples of soil and water. Ra-226, Th-232, K-40, U-235, U-238, and Pb-210 Natural radionuclides are determined by gamma spectrometry with HPGe detector. Natural radionuclide in fine grain coal, bottom ash and fly ash have concentrations range (162.182 to 0.057) Bq/kg. Radioactivity contained in soil ranges (0.041 to 169.34) Bq/kg, whereas in water ranges (0.003 to 0.045) Bq/L. According Perka BAPETEN. No. 7 of 2013. On Boundary Value Environmental Radioactivity, the results of measurement analysis contained water around the power plant Pacitan still below the limit values allowed by BAPETEN. (author)

  15. Hydrogen Transfer during Liquefaction of Elbistan Lignite to Biomass; Total Reaction Transformation Approach

    Science.gov (United States)

    Koyunoglu, Cemil; Karaca, Hüseyin

    2017-12-01

    Given the high cost of the tetraline solvent commonly used in liquefaction, the use of manure with EL is an important factor when considering the high cost of using tetraline as a hydrogen transfer source. In addition, due to the another cost factor which is the catalyst prices, red mud (commonly used, produced as a byproduct in the production of aluminium) is reduced cost in the work of liquefaction of coal, biomass, even coal combined biomass, corresponding that making the EL liquefaction an agenda for our country is another important factor. Conditions for liquefaction experiments conducted for hydrogen transfer from manure to coal; Catalyst concentration of 9%, liquid/solid ratio of 3/1, reaction time of 60 min, fertilizer/lignite ratio of 1/3, and the reaction temperature of 400 °C, the stirred speed of 400 rpm and the initial nitrogen pressure of 20 bar was fixed. In order to demonstrate the hydrogen, transfer from manure to coal, coal is used solely, by using tetraline (also known as a hydrogen carrier) and distilled water which is not hydrogen donor as a solvent in the co-liquefaction of experiments, and also the liquefaction conditions are carried out under an inert (N2) gas atmosphere. According to the results of the obtained liquefaction test; using tetraline solvent the total liquid product conversion percentage of the oil + gas conversion was 38.3 %, however, the results of oil+gas conversion obtained using distilled water and EL combined with manure the total liquid product conversion percentage was 7.4 %. According to the results of calorific value and elemental analysis, only the ratio of (H/C)atomic of coal obtained by using tetraline increased with the liquefaction of manure and distilled water. The reason of the increase in the amount of hydrogen due to hydrogen transfer from the manure on the solid surface of the coal, and also on the surface of the inner pore of the coal during the liquefaction, brings about the evaluation of the coal as a

  16. Modeling of the flame propagation in coal-dust- methane air mixture in an enclosed sphere volume

    International Nuclear Information System (INIS)

    Krainov, A Yu; Moiseeva, K M

    2016-01-01

    The results of the numerical simulation of the flame front propagation in coal-dust- methane-air mixture in an enclosed volume with the ignition source in the center of the volume are presented. The mathematical model is based on a dual-velocity two-phase model of the reacting gas-dispersion medium. The system of equations includes the mass-conversation equation, the impulse-conversation equation, the total energy-conversation equation of the gas and particles taking into account the thermal conductivity and chemical reactions in the gas and on the particle surface, mass-conversation equation of the mixture gas components considering the diffusion and the burn-out and the particle burn-out equation. The influence of the coal particle mass on the pressure in the volume after the mixture burn out and on the burn-out time has been investigated. It has been shown that the burning rate of the coal-dust methane air mixtures depends on the coal particle size. (paper)

  17. Powerful boost for Indian lignite

    Energy Technology Data Exchange (ETDEWEB)

    1985-06-01

    The Neyveli Lignite Corporation (NLC) of India has begun the first phase of an expansion program that will open a second mine and boost lignite production in Tamil Nadu to nearly five times its present level within the next 15 years. Mining conditions at Neyveli are particularly difficult. The harsh abrasive overburden strata present severe and strenuous conditions; sticky and marshy surface clays, the presence of groundwater aquifers, the cyclonic and monsoonal climate and high stripping ratios are other problems. The overburden is drilled and blasted; in areas of sticky topsoil, non-stick liners for the buckets etc. are used. Adequate safeguards and infrastructure are being developed to deal with differing strata conditions. The conveyor transport system features slow, wider belt conveyors, changeover from fixed type roller to freely hanging garland type, interlinking of benches and specially designed drive heads. The groundwater aquifers are continuously depressurized by grid pumping from a series of pumps; boreholes have been sunk to 120 m.

  18. Baseline risk assessment of ground water contamination at the inactive uriniferous lignite ashing site near Belfield, North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-08-01

    This Baseline Risk Assessment of Ground Water Contamination at the Inactive Uraniferous Lignite Ashing Site Near Belfield, North Dakota, evaluates potential impacts to public health or the environment resulting from ground water contamination at the site where coal containing uranium was burned to produce uranium. The US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project is evaluating plans to remedy soil and ground water contamination at the site. Phase I of the UMTRA Project consists of determining the extent of soil contamination. Phase II of the UMTRA Project consists of evaluating ground water contamination. Under Phase II, results of this risk assessment will help determine what remedial actions may be necessary for contaminated ground water at the site. This risk assessment evaluates the potential risks to human health and the environment resulting from exposure to contaminated ground water as it relates to historic processing activities at the site. Potential risk is quantified for constituents introduced from the processing activities, and not for those constituents naturally occurring in water quality in the site vicinity. Background ground water quality has the potential to cause adverse health effects from exposure through drinking. Any risks associated with contaminants attributable to site activities are incremental to these risks from background ground water quality. This incremental risk from site-related contaminants is quantified in this risk assessment. The baseline risk from background water quality is incorporated only into the assessment of potential chemical interactions and the definition of the overall site condition.

  19. Baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Belfield, North Dakota

    International Nuclear Information System (INIS)

    1994-08-01

    This Baseline Risk Assessment of Ground Water Contamination at the Inactive Uraniferous Lignite Ashing Site Near Belfield, North Dakota, evaluates potential impacts to public health or the environment resulting from ground water contamination at the site where coal containing uranium was burned to produce uranium. The US Department of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Project is evaluating plans to remedy soil and ground water contamination at the site. Phase I of the UMTRA Project consists of determining the extent of soil contamination. Phase II of the UMTRA Project consists of evaluating ground water contamination. Under Phase II, results of this risk assessment will help determine what remedial actions may be necessary for contaminated ground water at the site. This risk assessment evaluates the potential risks to human health and the environment resulting from exposure to contaminated ground water as it relates to historic processing activities at the site. Potential risk is quantified for constituents introduced from the processing activities, and not for those constituents naturally occurring in water quality in the site vicinity. Background ground water quality has the potential to cause adverse health effects from exposure through drinking. Any risks associated with contaminants attributable to site activities are incremental to these risks from background ground water quality. This incremental risk from site-related contaminants is quantified in this risk assessment. The baseline risk from background water quality is incorporated only into the assessment of potential chemical interactions and the definition of the overall site condition

  20. Etude Climat no. 42 'Power sector in Phase 2 of the EU ETS: fewer CO2 emissions, but just as much coal'

    International Nuclear Information System (INIS)

    Berghmans, Nicolas; Alberola, Emilie

    2013-01-01

    Among the publications of CDC Climat Research, 'Climate Reports' offer in-depth analyses on a given subject. This issue addresses the following points: Since 2005, 1,453 power and combined heat and power (CHP) generation plants have participated in the European Union Emission Trading Scheme, or EU ETS, which requires them to comply with an annual CO 2 emission cap set by the European Commission. Thermal power plants that use coal (bituminous coal, lignite, and other kinds of coal) and natural gas as their primary fuel jointly account for 86% of the generation capacity included in the EU ETS. There are twice as many gas-fired power plants as coal-fired ones, with 671 gas-fired power plants compared with 352 coal-fired ones

  1. Sulfomethylated lignite salt as a sacrifical agent in oil recovery processes

    Energy Technology Data Exchange (ETDEWEB)

    Kudchadker, M.V.; Weiss, W.J.

    1978-02-07

    A process is described for recovering petroleum from oil reservoirs by secondary recovery methods. The process involves injecting via an injection well into the reservoir an aqueous solution of sulfomethylated lignite salt as a sacrificial agent to inhibit the deposition of surfactant and polymer on the reservoir matrix. The process is conducted by first injecting the lignite salt into the formation through the injection well and following it with either a polymer or a surfactant solution, which also may contain the lignite salt. The polymer or surfactant would then be followed by a drive fluid, such as water, to push the chemicals and oil to the production well. (18 claims)

  2. Can switching fuels save water? A life cycle quantification of freshwater consumption for Texas coal- and natural gas-fired electricity

    International Nuclear Information System (INIS)

    Grubert, Emily A; Beach, Fred C; Webber, Michael E

    2012-01-01

    Thermal electricity generation is a major consumer of freshwater for cooling, fuel extraction and air emissions controls, but the life cycle water impacts of different fossil fuel cycles are not well understood. Much of the existing literature relies on decades-old estimates for water intensity, particularly regarding water consumed for fuel extraction. This work uses contemporary data from specific resource basins and power plants in Texas to evaluate water intensity at three major stages of coal and natural gas fuel cycles: fuel extraction, power plant cooling and power plant emissions controls. In particular, the water intensity of fuel extraction is quantified for Texas lignite, conventional natural gas and 11 unconventional natural gas basins in Texas, including major second-order impacts associated with multi-stage hydraulic fracturing. Despite the rise of this water-intensive natural gas extraction method, natural gas extraction appears to consume less freshwater than coal per unit of energy extracted in Texas because of the high water intensity of Texas lignite extraction. This work uses new resource basin and power plant level water intensity data to estimate the potential effects of coal to natural gas fuel switching in Texas’ power sector, a shift under consideration due to potential environmental benefits and very low natural gas prices. Replacing Texas’ coal-fired power plants with natural gas combined cycle plants (NGCCs) would reduce annual freshwater consumption in the state by an estimated 53 billion gallons per year, or 60% of Texas coal power’s water footprint, largely due to the higher efficiency of NGCCs. (letter)

  3. Thermal dewatering of lignite: Phase III - final report

    Energy Technology Data Exchange (ETDEWEB)

    Champagne, P J; Szladow, A J; Kybett, B D

    1981-01-01

    Phase III of this project extended the investigation of thermal dewatering on several lignite and peat samples at the temperature range up to 400 degrees C and investigated variables such as retention time, increased rates of heating and cooling, extent of trace element removal, effect of particle size and effect of dewatering under heavy and light oils. Lignites from three areas of Canada (Estevan and Coronach, Saskatchewan, and Onakawana, Ontario) and one peat sample (Garrick, Saskatchewan) were thermally dewatered. The equilibrium moisture values obtained for the dewatered products were as low as, or lower than those obtained in Phases I and II of this project (350 degrees C). However, the measured moisture contents of the thermally dewatered Saskatchewan lignites were somewhat higher than those measured in Phases I and II. The equilibrium moisture values and the moisture contents decreased with increasing temperature. An optimum balance between extent of dewatering and resulting steam pressures is obtained for a dewatering temperature between 300 and 350 degrees C. At these temperatures, residence times in the order of 15 minutes are required. (35 refs.)

  4. Retorts

    Energy Technology Data Exchange (ETDEWEB)

    Frank, F

    1921-11-29

    Materials are heated in a rotary retort by direct action of a flame produced by burning a combustible mixture of gases containing oxygen in certain predetermined amounts so as to distil off volatile constituents and otherwise subject the materials to a heat treatment. By this method coal, peat, lignite, shale, sawdust, roots, leaves and the like may be destructively distilled to recover coke and other byproducts, or coke such as that in the carbonized residues may be treated to produce water gas or producer gas and montan wax and other waxes and fats may be obtained directly from lignite. Oils may be distilled or refined or heated to obtain illuminating gas, and high-boiling asphaltic residues made to yield light hydrocarbons.

  5. Ash content of lignites - radiometric analysis

    International Nuclear Information System (INIS)

    Leonhardt, J.; Thuemmel, H.W.

    1986-01-01

    The quality of lignites is governed by the ash content varying in dependence upon the geologic conditions. Setup and function of the radiometric devices being used for ash content analysis in the GDR are briefly described

  6. Coal-oil coprocessing at HTI - development and improvement of the technology

    Energy Technology Data Exchange (ETDEWEB)

    Stalzer, R.H.; Lee, L.K.; Hu, J.; Comolli, A. [Hydrocarbon Technologies, Inc., Lawrenceville, NJ (United States)

    1995-12-31

    Co-Processing refers to the combined processing of coal and petroleum-derived heavy oil feedstocks. The coal feedstocks used are those typically utilized in direct coal liquefaction: bituminous, subbituminous, and lignites. Petroleum-derived oil, is typically a petroleum residuum, containing at least 70 W% material boiling above 525{degrees}C. The combined coal and oil feedstocks are processed simultaneously with the dual objective of liquefying the coal and upgrading the petroleum-derived residuum to lower boiling (<525{degrees}C) premium products. HTI`s investigation of the Co-Processing technology has included work performed in laboratory, bench and PDU scale operations. The concept of co-processing technology is quite simple and a natural outgrowth of the work done with direct coal liquefaction. A 36 month program to evaluate new process concepts in coal-oil coprocessing at the bench-scale was begun in September 1994 and runs until September 1997. Included in this continuous bench-scale program are provisions to examine new improvements in areas such as: interstage product separation, feedstock concentrations (coal/oil), improved supported/dispersed catalysts, optimization of reactor temperature sequencing, and in-line hydrotreating. This does not preclude other ideas from DOE contracts and other sources that can lead to improved product quality and economics. This research work has led to important findings which significantly increased liquid yields, improved product quality, and improved process economics.

  7. The lignite industry and regional development. Interactions exemplified by the Rhenish mining area

    International Nuclear Information System (INIS)

    Kulik, Lars; Voigt, Jens

    2013-01-01

    Even in times of globalised markets, the German lignite industry retains its local and regional roots. Viewed against this background, the relationship between lignite industry and regional actors, and the interactions between the two play a major role in the perspectives for this branch of Germany's energy sector. Today, the links between the lignite industry and regional bodies are those of a partnership at eye-level. This type of relationship between the industry and regional actors has led to new forms and methods of cooperation at various levels. This is particularly evident in the efforts to re-shape the regional structure, develop the structure of townships and strengthen the economic structure with lignite playing an important role and new partners which are gaining in importance. (orig.)

  8. National Coal Quality Inventory (NACQI)

    Energy Technology Data Exchange (ETDEWEB)

    Robert Finkelman

    2005-09-30

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

  9. Influence of rank and macerals on the burnout behaviour of pulverized Indian coal

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Nandita; Biswas, S.; Sarkar, P.; Kumar, Manish; Mukherjee, A.; Choudhury, A. [Central Institute of Mining and Fuel Research, Digwadih Campus (Formerly Central Fuel Research Institute), P.O. FRI, Dhanbad-828 108, Jharkhand (India); Ghosal, Sujit; Mitra, Tandra [Jadavpur University, Kolkata-700 032, West Bengal (India)

    2008-04-03

    The combustion behaviour of coal is significantly influenced by its rank and maceral and microlithotype compositions. Different macerals, due to their distinct and unique physical properties and chemical makeup, have different burning characteristics. This paper deals with the burning behaviour of coals of Indian origin by thermo gravimetric analysis (TGA) and in drop tube furnace (DTF) with particular emphasis on the role of macerals and their associations. Four coals of different rank and petrographic makeup, along with their two density fractions, with enriched vitrinite and inertinites, respectively,were studied in both TGA and DTF. The burnout behaviour was estimated from the chemical analyses of the char samples collected from the DTF. The burning characteristics of one of the coals deviate from the trend expected with the variations of rank. The behaviour of the density fractions in DTF was found to be different from that observed in TGA analyses. An attempt has been made to correlate the burnout with the petrographic macerals and microlithotypes present in the coals. The morphology of the residual chars indicates the contributions of the inertinites towards the formation of cenospheres and network types of reactive chars. The superior burning behaviour of the higher density inertinite-rich fractions over the raw coals and also some vitrinite-rich fractions indicate the better reactivity of the inertinites towards combustion. (author)

  10. Coal use, stove improvement, and adult pneumonia mortality in Xuanwei, China: a retrospective cohort study.

    NARCIS (Netherlands)

    Shen, M.; Chapman, R.S.; Vermeulen, R.C.H.|info:eu-repo/dai/nl/216532620; Tian, L.; Zheng, T.; Chen, B.E.; Engels, E.A.; He, X.; Blair, A.; Lan, Q.

    2009-01-01

    BACKGROUND: In Xuanwei County, China, unvented indoor coal burning is strongly associated with increased risk of lung cancer and chronic obstructive pulmonary disease. However, the impact of coal burning and stove improvement on risk of pneumonia is not clear. METHODS: We conducted a retrospective

  11. Findings obtained from the washing of black lignite from Teruel. Experiencias obtenidas en la depuracion mediante lavado de los lignitos negros de Teruel

    Energy Technology Data Exchange (ETDEWEB)

    Suarez Perez, A; Carbajo Josa, J I; Kindelan Alonso, J M; Fernandez Trabanco, J J [ENDESA, Madrid (Spain)

    1989-10-01

    The article summarises findings from ENDESA pilot plant in Andorra (Teruel) during cleaning of black lignite using different types of equipment and washing methods. The project received grants from the Directorate General of Mines, the Aragon Provincial Council, OCIDE and Ocicarbon. Research began in 1984 in the ENADIMSA pilot plant and laboratory and continued with the construction in Andorra of a 5 t/hour pilot plant to which other equipment was later added to give a capacity of 50 t/hour. Currently, the plant continues to treat and investigate various types of coal from the coalfield in order to define washability parameters and obtain data which, using mixtures of coal from various mines, make it possible to achieve optimum results in the 500 t/hour industrial plant which is being built by ENDESA. 1 fig., 4 tabs.

  12. A Combined Raman Spectroscopic and Thermogravimetric Analysis Study on Oxidation of Coal with Different Ranks

    Directory of Open Access Journals (Sweden)

    Weiqing Zhang

    2015-01-01

    Full Text Available Raman spectroscopy and nonisothermal thermogravimetric analysis (TGA measurements have been reported for different rank coals (lignite, bituminous coal, and anthracite and the relationship between the measurements was examined. It was found that the Raman spectra parameters can be used to characterize structure changes in the different rank coals, such as the band area ratios based on the curve-fitted results. Higher ranked coal was found to have higher values of IGR/IAll and IG+GR/IAll but lower values of ID/I(G+GR, IDL/I(G+GR, IS+SL/I(G+GR, and I(GL+GL'/I(G+GR. The oxidation properties of the coal samples were characterized by the reactivity indexes Tig, T20%, and Tmax from TGA data which were found to correlate well with the band area ratios of IGR/IAll, IG+GR/IAll, and IS+SL/I(G+GR. Based on these correlations, the Raman band area ratios were found to correlate with the oxidation activity of coal providing additional structural information which can be used to understand the changes in the TGA measurements.

  13. Energy and water conservation at lignite-fired power plants using drying and water recovery technologies

    International Nuclear Information System (INIS)

    Liu, Ming; Qin, Yuanzhi; Yan, Hui; Han, Xiaoqu; Chong, Daotong

    2015-01-01

    Highlights: • Pre-drying and water recovery technologies were used to conserve energy and water. • The energy and water conservation potential were analyzed with reference cases. • The air-cooling unit produces water when the water content of lignite is high enough. • Influences of main parameters on energy and water conservation were analyzed. - Abstract: Lignite is considered as a competitive energy raw material with high security of supply viewed from a global angle. However, lignite-fired power plants have many shortcomings, including high investment, low energy efficiency and high water use. To address these issues, the drying and water recovery technologies are integrated within lignite-fired power plants. Both air-cooling and wet-cooling units with three kinds of lignite as feeding fuel were analyzed quantitatively. Results showed that energy conservation and water conservation are obtained simultaneously. The power plant firing high moisture lignite becomes more environmental friendly with higher power generation efficiency and a lower water makeup rate than the one firing low moisture lignite. And further calculation revealed that the air-cooling unit needs no makeup water and even produces some water as it generates power, when the water carrying coefficient is higher than 40 g/MJ.

  14. Hoe Creek II field experiment on underground coal gasification, preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Aiman, W.R.; Thorsness, C.B.; Hill, R.W.; Rozsa, R.B.; Cena, R.; Gregg, D.W.; Stephens, D.R.

    1978-02-27

    A second in-situ coal gasification experiment was performed by Lawrence Livermore Laboratory at Hoe Creek in Wyoming. The Linked Vertical Wells scheme for in-situ coal gasification was used. The experiment took 100 days for air flow testing, reverse combustion linking, forward combustion gasification, and post-burn steam flow. Air was used for gasification except for a 2-day test with oxygen and steam. Reverse combustion linking took 14 days at 1.6 m/day. Air requirements for linking were 0.398 Mgmol per meter of link assuming a single direct link. The coal pyrolysed during linking was 17 m/sup 3/, which corresponds to a single link 1.0 m in diameter. There was, however, strong evidence of at least two linkage paths. The detected links stayed below the 3 m level in the 7.6 coal seam; however, the product flow from the forward-burn gasification probably followed the coal-overburden interface not the reverse burn channels at the 3 m level. A total of 232 Mgmols (194 Mscf) of gas was produced with heating value above 125 kJ/mol (140 Btu/scf) for significant time periods and an average of 96 kJ/mol (108 Btu/scf). During the oxygen-steam test the heating value was above 270 kJ/gmol (300 Btu/scf) twice and averaged 235 kJ/gmol (265 Btu/scf). The coal recovery was 1310 m/sup 3/ (1950 ton). Gasification was terminated because of decreasing product quality not because of burn through. The product quality decreased because of increasing underground heat loss.

  15. Phasing out coal : 2006 progress report

    International Nuclear Information System (INIS)

    2006-01-01

    In 2001, Ontario's minister of the environment issued a legally binding regulation requiring the phase-out of coal burning at the Lakeview Generating Station by 2005. On June 13, 2006, the premier of Ontario broke the promise to phase-out Ontario's 4 remaining coal-fired power plants by 2009, and directed the Ontario Power Authority (OPA) to develop a plan for coal-fired electricity generation in the province to be replaced by cleaner sources in the earliest practical time frame that ensured adequate generating capacity and electricity system reliability in Ontario. This report reviewed key milestones in Ontario's move towards a complete coal phase-out and outlined actions that the current provincial government might take, should they choose to renew their promise to phase-out all of Ontario's coal-fired power plants by 2009. Ontario's coal-free electricity resources were calculated to the year 2012. Ontario's summer peak required electricity resources from the year 2010 to 2012 were assessed. The coal phase-out gap between 2009 and 2012 was also investigated. It was suggested that Ontario could achieve a complete coal phase-out by 2009 by pursuing a more aggressive conservation and demand management strategy, as well as by adopting more aggressive renewable procurement targets for 2010. The phase-out could also be achieved by procuring more cogeneration or combined heat and power resources. It was concluded that the conversion of the Thunder Bay Generating Station to natural gas would permit the phase-out of coal-burning at the Atikokan and Thunder Bay Generating Stations in 2007 without jeopardizing electricity system reliability in Ontario. 29 refs., 8 tabs

  16. Capital cost: high and low sulfur coal plants-1200 MWe. [High sulfur coal

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This Commercial Electric Power Cost Study for 1200 MWe (Nominal) high and low sulfur coal plants consists of three volumes. The high sulfur coal plant is described in Volumes I and II, while Volume III describes the low sulfur coal plant. The design basis and cost estimate for the 1232 MWe high sulfur coal plant is presented in Volume I, and the drawings, equipment list and site description are contained in Volume II. The reference design includes a lime flue gas desulfurization system. A regenerative sulfur dioxide removal system using magnesium oxide is also presented as an alternate in Section 7 Volume II. The design basis, drawings and summary cost estimate for a 1243 MWe low sulfur coal plant are presented in Volume III. This information was developed by redesigning the high sulfur coal plant for burning low sulfur sub-bituminous coal. These coal plants utilize a mechanical draft (wet) cooling tower system for condenser heat removal. Costs of alternate cooling systems are provided in Report No. 7 in this series of studies of costs of commercial electrical power plants.

  17. The German lignite industry. Historical development, resources, technology, economic structures and environmental impact. Study

    International Nuclear Information System (INIS)

    2017-05-01

    Lignite has a key role to play in the transformation of the energy system due to its specific structural features in terms of industry, company history, policy, economics, the environment and regional structures. Understanding these structural features of the German lignite industry is an important requirement for classifying the significance of the lignite industry up to now and for the redesigning of this industrial sector. From these environmental, economic and regulatory structural characteristics, which are interwoven in a variety of ways, the incentives arise for the mining and power plant operators to react to energy price signals or energy policy steering. The aim of this research study is to define these structural features, to compile comprehensively the basic data and information that is not always transparently available, to understand the interactions, to enable the navigation of issues that are partly very complex, and to classify into the long-term developments that are especially important for political and social processes. In 2016 approx. 12 percent of German primary energy consumption was met using lignite. At the same time, lignite has the highest carbon dioxide (CO2) emissions of the fossil fuels; it currently accounts for approx. 19 percent of Germany's total greenhouse gas emissions as well as approx. 46 percent of the total CO2 emissions of the electricity sector. As a result of the mining of lignite and its conversion into electricity, substantial adverse impacts beyond the entry of greenhouse gases into the Earth's atmosphere arise for other environmental media. These impacts include half of Germany's mercury emissions, approx. a third of its sulfur dioxide emissions and approx. a tenth of its nitrogen oxide emissions. Lignite mining in open-cast mines takes up a substantial amount of landscape and soil and requires huge interventions in the water balance. Relatively high costs arise for the recultivation and rehabilitation of the open

  18. The natural radioactivity in vicinity of the brown coal mine Tusnica - Livno, BiH

    International Nuclear Information System (INIS)

    Saracevic, L.; Samek, D.; Mihalj, A.; Gradascevic, N.

    2009-01-01

    Coal mine Tusnica is located in South-West part of Bosnia and Herzegovina in the municipality Livno. Coal mine Tusnica consists of two surface coal mines. The first one is brown coal surface deposit called Drage and second one is lignite deposit called Table. The brown coal deposit shows increased levels of natural radionuclides. The highest absorbed dose rate is recorded in the center of the surface coal mine Tusnica-Drage (500 nGy h -1 ) as result of the increased content of uranium and radium in coal (average specific activity of U-238 is 623 ± 23 Bq kg -1 and Ra-226 is 1191 ± 5 Bq kg -1 ). Levels of natural radionuclides in the vicinity of the surface deposit Drage in agricultural soil (about 3 km of the centre mine) are slightly increased due to the use of the coal ash and coal dust for fertilization of the land (U-238 is 142 ± 11 Bq kg -1 and Ra-226 is 197 ± 2 Bq kg -1 ). Obtained results in soil-plant-animal products chain does not show significantly increased levels of natural radionuclides due to the fact that mentioned radionuclides, in general, have a low transfer factors in soil-plant-animal products chain. (author)

  19. In Developping a Bench-Scale Circulating Fluidized Bed Combustor to Burn High Ash Brazilian Coal-Dolomites Mixtures

    Science.gov (United States)

    Ramírez Behainne, Jhon Jairo; Hory, Rogério Ishikawa; Goldstein, Leonardo; Bernárdez Pécora, Araí Augusta

    This work considers some of the questions in burning high ash Brazilian coal-dolomite mixtures in a bench-scale circulating fluidized bed combustor (CFBC). Experimental tests were performed with the CE4500 coal from Santa Catarina State, in southern Brazil, with a Sauter mean diameter d p =43 μm. The coal particles were mixed with dolomite particles of d p = 111 μm and this fuel mixture was fed into the circulating fluidized reactor, previously loaded with quartz sand particles of d p =353 μm. This inert material was previously heated by the combustion of liquefied petroleum gas up to the ignition temperature of the fuel mixture. The CFBC unit has a 100mm internal diameter riser, 4.0m high, as well as a 62.8mm internal diameter downcomer. The loop has a cyclone, a sampling valve to collect particles and a 62.8mm internal diameter L-valve to recirculate the particles in the loop. A screw feeder with a rotation control system was used to feed the fuel mixture to the reactor. The operational conditions were monitored by pressure taps and thermocouples installed along the loop. A data acquisition system showed the main operational conditions to control. Experimental tests performed put in evidence the problems found during bed operation, with special attention to the solids feed device, to the L-valve operation, to particle size, solids inventory, fluidized gas velocity, fuel mixture and recirculated solids feeding positions.

  20. Advanced power assessment for Czech lignite task 3.6. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Sondreal, E.A.; Mann, M.D.; Weber, G.W.; Young, B.C.

    1995-12-01

    Major reforms in the Czech energy sector have been initiated to reverse 40 years of central planning, subsidized energy pricing, unchecked pollution from coal-fired plants, concerns over nuclear safety and fuel cycle management, and dependence on the former U.S.S.R. for oil, gas, and nuclear fuel processing. Prices for electricity, heat, and natural gas paid by industry are close to western levels, but subsidized prices for households are as much as 40% lower and below economic cost. State control of major energy enterprises is being reduced by moving toward government-regulated, investor-owned companies to raise needed capital, but with a strategic stake retained by the state. Foreign firms will participate in privatization, but they are not expected to acquire a controlling interest in Czech energy companies. Economic conditions in the Czech Republic are now improving after the disruptions caused by restructuring since 1989 and separation of the former Czech and Slovak Federal Republics in January 1993. The downturn in the economy after 1989 was concentrated in energy-intensive heavy industry, and recovery is paced by consumer trade, services, light industry and construction. Energy use in relation to gross domestic product (GDP) has declined, but it is still significantly higher than in OECD (Organization for Economic Cooperation and Development) countries. The GDP increased by 2% in 1994 after dropping 22% between 1989 and 1993. A positive balance of payments has been achieved, with foreign investment offsetting a small trade deficit. The government`s external debt is only 4% of GDP. This report studies the application of lignite resources within the newly formulated energy policies of the republic, in light of a move toward privatization and stronger air pollution regulations. Lignite has represented the major energy source for the country.