WorldWideScience

Sample records for burner test reactor

  1. Advanced burner test reactor preconceptual design report.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an

  2. Specification of the Advanced Burner Test Reactor Multi-Physics Coupling Demonstration Problem

    Energy Technology Data Exchange (ETDEWEB)

    Shemon, E. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Grudzinski, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Lee, C. H. [Argonne National Lab. (ANL), Argonne, IL (United States); Thomas, J. W. [Argonne National Lab. (ANL), Argonne, IL (United States); Yu, Y. Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-12-21

    This document specifies the multi-physics nuclear reactor demonstration problem using the SHARP software package developed by NEAMS. The SHARP toolset simulates the key coupled physics phenomena inside a nuclear reactor. The PROTEUS neutronics code models the neutron transport within the system, the Nek5000 computational fluid dynamics code models the fluid flow and heat transfer, and the DIABLO structural mechanics code models structural and mechanical deformation. The three codes are coupled to the MOAB mesh framework which allows feedback from neutronics, fluid mechanics, and mechanical deformation in a compatible format.

  3. Advanced Burner Reactor Preliminary NEPA Data Study.

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, L. L.; Cahalan, J. E.; Deitrich, L. W.; Fanning, T. H.; Grandy, C.; Kellogg, R.; Kim, T. K.; Yang, W. S.; Nuclear Engineering Division

    2007-10-15

    The Global Nuclear Energy Partnership (GNEP) is a new nuclear fuel cycle paradigm with the goals of expanding the use of nuclear power both domestically and internationally, addressing nuclear waste management concerns, and promoting nonproliferation. A key aspect of this program is fast reactor transmutation, in which transuranics recovered from light water reactor spent fuel are to be recycled to create fast reactor transmutation fuels. The benefits of these fuels are to be demonstrated in an Advanced Burner Reactor (ABR), which will provide a representative environment for recycle fuel testing, safety testing, and modern fast reactor design and safeguard features. Because the GNEP programs will require facilities which may have an impact upon the environment within the meaning of the National Environmental Policy Act of 1969 (NEPA), preparation of a Programmatic Environmental Impact Statement (PEIS) for GNEP is being undertaken by Tetra Tech, Inc. The PEIS will include a section on the ABR. In support of the PEIS, the Nuclear Engineering Division of Argonne National Laboratory has been asked to provide a description of the ABR alternative, including graphics, plus estimates of construction and operations data for an ABR plant. The compilation of this information is presented in the remainder of this report. Currently, DOE has started the process of engaging industry on the design of an Advanced Burner Reactor. Therefore, there is no specific, current, vendor-produced ABR design that could be used for this PEIS datacall package. In addition, candidate sites for the ABR vary widely as to available water, geography, etc. Therefore, ANL has based its estimates for construction and operations data largely on generalization of available information from existing plants and from the environmental report assembled for the Clinch River Breeder Reactor Plant (CRBRP) design [CRBRP, 1977]. The CRBRP environmental report was chosen as a resource because it thoroughly

  4. Applicability of RELAP5-3D for Thermal-Hydraulic Analyses of a Sodium-Cooled Actinide Burner Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    C. B. Davis

    2006-07-01

    The Actinide Burner Test Reactor (ABTR) is envisioned as a sodium-cooled, fast reactor that will burn the actinides generated in light water reactors to reduce nuclear waste and ease proliferation concerns. The RELAP5-3D computer code is being considered as the thermal-hydraulic system code to support the development of the ABTR. An evaluation was performed to determine the applicability of RELAP5-3D for the analysis of a sodium-cooled fast reactor. The applicability evaluation consisted of several steps, including identifying the important transients and phenomena expected in the ABTR, identifying the models and correlations that affect the code’s calculation of the important phenomena, and evaluating the applicability of the important models and correlations for calculating the important phenomena expected in the ABTR. The applicability evaluation identified code improvements and additional models needed to simulate the ABTR. The accuracy of the calculated thermodynamic and transport properties for sodium was also evaluated.

  5. Tests of gas-blast burners

    International Nuclear Information System (INIS)

    Testing of the most sold small gas-blast burners on the Danish market was carried out with regard to carbon monoxide emission contra the content of oxygen in the flue gas in relation to the burners' combustion stability at varying fire box pressures. The burners tested were Weishaupt WG 1: DG no. 2506, Riello 40 GS3: DG no. 2722, Bentone BEG 15: DG no. 2153 and Box 1 G: no. 1104. This covers 90% of the Danish market for gas burners. It was concluded that all the burners had a broader area of adjustment possibilities without carbon monoxide emission than previously tested box burners. This with the exception of when surplus oxygen is low, where large of amounts of carbon monoxide are generated at an oxygen content in flue gas of ca. 2% (10.8% CO2). Burners in which the total pressure in the blower was high were the most stable with regard to air supply and varying fire-box pressure. It is pointed out that other conditions of design have also influence in this respect. In the cases of Weishaupt, Bentone and Riello burners there is a significant relation between blast pressure and oxygen content in the flue gas, whereas in the case of the Box burner, the percentage of oxygen in the flue gas rises in relation to increased pressure in the smoke outlet. The results of the tests are presented in great detail. (AB)

  6. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition

  7. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward

    International Nuclear Information System (INIS)

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition from normal high

  8. Exposure calculation code module for reactor core analysis: BURNER

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Cunningham, G.W.

    1979-02-01

    The code module BURNER for nuclear reactor exposure calculations is presented. The computer requirements are shown, as are the reference data and interface data file requirements, and the programmed equations and procedure of calculation are described. The operating history of a reactor is followed over the period between solutions of the space, energy neutronics problem. The end-of-period nuclide concentrations are determined given the necessary information. A steady state, continuous fueling model is treated in addition to the usual fixed fuel model. The control options provide flexibility to select among an unusually wide variety of programmed procedures. The code also provides user option to make a number of auxiliary calculations and print such information as the local gamma source, cumulative exposure, and a fine scale power density distribution in a selected zone. The code is used locally in a system for computation which contains the VENTURE diffusion theory neutronics code and other modules.

  9. Assessment of Startup Fuel Options for the GNEP Advanced Burner Reactor (ABR)

    Energy Technology Data Exchange (ETDEWEB)

    Jon Carmack (062056); Kemal O. Pasamehmetoglu (103171); David Alberstein

    2008-02-01

    The Global Nuclear Energy Program (GNEP) includes a program element for the development and construction of an advanced sodium cooled fast reactor to demonstrate the burning (transmutation) of significant quantities of minor actinides obtained from a separations process and fabricated into a transuranic bearing fuel assembly. To demonstrate and qualify transuranic (TRU) fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype is needed. The ABR would necessarily be started up using conventional metal alloy or oxide (U or U, Pu) fuel. Startup fuel is needed for the ABR for the first 2 to 4 core loads of fuel in the ABR. Following start up, a series of advanced TRU bearing fuel assemblies will be irradiated in qualification lead test assemblies in the ABR. There are multiple options for this startup fuel. This report provides a description of the possible startup fuel options as well as possible fabrication alternatives available to the program in the current domestic and international facilities and infrastructure.

  10. Analysis of Reactor Deployment Scenarios with Introduction of SFR Breakeven Reactors and Burners Using DANESS Code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young In; Hahn, Do Hee; Won, Byung Chool; Lee, Dong Uk

    2008-01-15

    Using the DANESS code newly employed for future scenario analysis, reactor deployment scenarios with the introduction of sodium cooled fast reactors(SFRs) having different conversion ratios in the existing PWRs dominant nuclear fleet have been analyzed to find the SFR deployment strategy for replacing PWRs with the view of a spent fuel reduction and an efficient uranium utilization through its reuse in a closed nuclear fuel cycle. Descriptions of the DANESS code and how to use are briefly given from the viewpoint of its first application. The use of SFRs and recycling of TRUs by reusing PWR spent fuel leads to the substantial reduction of the amount of PWR spent fuel and environmental burden by decreasing radiotoxicity of high level waste, and a significant improvement on the natural uranium resources utilization. A continuous deployment of burners effectively decreases the amount of PWR spent fuel accumulation, thus lightening the burden for PWR spent fuel management. An introduction of breakeven reactors effectively reduces the uranium demand through producing excess TRU during the operation, thus contributing to a sustainable nuclear power development. With SFR introduction starting in 2040, PWRs will remain as a main power reactor type till 2100 and SFRs will be in support of waste minimization and fuel utilization.

  11. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  12. Fabrication of particulate metal fuel for fast burner reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Ho Jin; Lee, Sun Yong; Kim, Jong Hwan; Woo, Yoon Myung; Ko, Young Mo; Kim, Ki Hwan; Park, Jong Man; Lee, Chan Bok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    U Zr metallic fuel for sodium cooled fast reactors is now being developed by KAERI as a national R and D program of Korea. In order to recycle transuranic elements (TRU) retained in spent nuclear fuel, remote fabrication capability in a shielded hot cell should be prepared. Moreover, generation of long lived radioactive wastes and loss of volatile species should be minimized during the recycled fuel fabrication step. Therefore, innovative fuel concepts should be developed to address the fabrication challenges pertaining to TRU while maintaining good performances of metallic fuel. Particulate fuel concepts have already been proposed and tested at several experimental fast reactor systems and vipac ceramic fuel of RIAR, Russia is one of the examples. However, much less work has been reported for particulate metallic fuel development. Spherical uranium alloy particles with various diameters can be easily produced by the centrifugal atomization technique developed by KAERI. Using the atomized uranium and uranium zirconium alloy particles, we fabricated various kinds of powder pack, powder compacts and sintered pellets. The microstructures and properties of the powder pack and pellets are presented.

  13. Field testing the prototype BNL fan-atomized oil burner

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.; Celebi, Y. [Brookhaven National Lab., Upton, NY (United States)

    1995-04-01

    BNL has developed a new oil burner design referred to as the Fan Atomized burner System. The primary objective of the field study was to evaluate and demonstrate the reliable operation of the Fan Atomized Burner. The secondary objective was to establish and validate the ability of a low firing rate burner (0.3-0.4 gph) to fully satisfy the heating and domestic hot water load demands of an average household in a climate zone with over 5,000 heating-degree-days. The field activity was also used to evaluate the practicality of side-wall venting with the Fan Atomized Burner with a low stack temperature (300F) and illustrate the potential for very high efficiency with an integrated heating system approach based on the Fan Atomized Burner.

  14. Test reactor technology

    International Nuclear Information System (INIS)

    The Reactor Development Program created a need for engineering testing of fuels and materials. The Engineering Test Reactors were developed around the world in response to this demand. The design of the test reactors proved to be different from that of power reactors, carrying the fuel elements closer to the threshold of failure, requiring more responsive instrumentation, more rapid control element action, and inherent self-limiting behavior under accident conditions. The design of the experimental facilities to exploit these reactors evolved a new, specialized, branch of engineering, requiring a very high-lvel scientific and engineering team, established a meticulous concern with reliability, the provision for recovery from their own failures, and detailed attention to possible interactions with the test reactors. This paper presents this technology commencing with the Materials Testing Reactor (MTR) through the Fast Flux Test Facility, some of the unique experimental facilities developed to exploit them, but discusses only cursorily the experiments performed, since sample preparation and sample analyses were, and to some extent still are, either classified or proprietary. The Nuclear Engineering literature is filled with this information

  15. Use of freeze-casting in advanced burner reactor fuel design

    Energy Technology Data Exchange (ETDEWEB)

    Lang, A. L.; Yablinsky, C. A.; Allen, T. R. [Dept. of Engineering Physics, Univ. of Wisconsin Madison, 1500 Engineering Drive, Madison, WI 53711 (United States); Burger, J.; Hunger, P. M.; Wegst, U. G. K. [Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755 (United States)

    2012-07-01

    This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by that fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO{sub 2}) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models

  16. Validation of structural analysis methods using burner liner cyclic rig test data

    Science.gov (United States)

    Thompson, R.

    1983-01-01

    The objectives of the hot section technology (HOST) burner liner cyclic rig test program are basically threefold: (1) to assist in developing predictive tools needed to improve design analyses and procedures for the efficient and accurate prediction of burner liner structural response; (2) to calibrate, evaluate and validate these predictive tools by comparing the predicted results with the experimental data generated in the tests; and (3) to evaluate existing as well as advanced temperature and strain measurement instrumentation, both contact and noncontact, in a simulated engine cycle environment. The data generated will include measurements of the thermal environment (metal surface temperatures) as well as structural (strain) and life (fatigue) responses of simulated burner liners and specimens under controlled boundary and operating conditions. These data will be used to calibrate, compare and validate analytical theories, methodologies and design procedures, as well as improvements in them, for predicting liner temperatures, stress-strain responses and cycles to failure. Comparison of predicted results with experimental data will be used to show where the predictive theories, etc. need improvements. In addition, as the predictive tools, as well as the tests, test methods, and data acquisition and reduction techniques, are developed and validated, a proven, integrated analysis/experiment method will be developed to determine the cyclic life of a simulated burner liner.

  17. INITIAL TEST RESULTS OF THE LIMESTONE INJECTION MULTISTAGE BURNER (LIMB) DEMONSTRATION PROJECT

    Science.gov (United States)

    The paper discusses SO2 removal efficiency and low-NOx burner performance obtained during short term tests, as well as the impact of LIMB ash on electrostatic precipitator (ESP) performance at Ohio Edison's Edgewater Station. Project goals are to demonstrate 50% or more SO2 remov...

  18. Reactor Simulator Testing

    Science.gov (United States)

    Schoenfeld, Michael P.; Webster, Kenny L.; Pearson, Boise J.

    2013-01-01

    As part of the Nuclear Systems Office Fission Surface Power Technology Demonstration Unit (TDU) project, a reactor simulator test loop (RxSim) was design & built to perform integrated testing of the TDU components. In particular, the objectives of RxSim testing was to verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. In addition, it was decided to include a thermal test of a cold trap purification design and a pump performance test at pump voltages up to 150 V since the targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V. This paper summarizes RxSim testing. The gas and vacuum ground support test equipment performed effectively in NaK fill, loop pressurization, and NaK drain operations. The instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. The cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the cold temperature indicating the design provided some heat regeneration. The annular linear induction pump (ALIP) tested was able to produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

  19. Reactor Simulator Testing Overview

    Science.gov (United States)

    Schoenfeld, Michael P.

    2013-01-01

    Test Objectives Summary: a) Verify operation of the core simulator, the instrumentation & control system, and the ground support gas and vacuum test equipment. b) Examine cooling & heat regeneration performance of the cold trap purification. c) Test the ALIP pump at voltages beyond 120V to see if the targeted mass flow rate of 1.75 kg/s can be obtained in the RxSim. Testing Highlights: a) Gas and vacuum ground support test equipment performed effectively for operations (NaK fill, loop pressurization, and NaK drain). b) Instrumentation & Control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings and ramped within prescribed constraints. It effectively interacted with reactor simulator control model and defaulted back to temperature control mode if the transient fluctuations didn't dampen. c) Cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the minimum temperature indicating the design provided some heat regeneration. d) ALIP produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

  20. Dilapidation of the TBC system during the Burner Rig Test

    Directory of Open Access Journals (Sweden)

    S Sreenivas

    2015-06-01

    Full Text Available Substrate of Inconel 718 was deposited with a bond coat of nickel cobalt chromium aluminium yttriym (NiCoCrAlY. A top coat of thermal barrier coating of 8% Yttria stabilised zirconia (YSZ was sprayed over the bond coat by an air plasma spray (APS technique by employing standard process parameters. Static oxidation test conducted at 1000 0C and for 120 hours (h revealed that main degradation modes of the TBC system were connected with formation of porous NiAl2O4 oxides in the thermally grown oxide area followed by formation of micro-cracks, delamination of ceramic layer and spallation of ceramic topcoat.

  1. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud [Univ. of California, Berkeley, CA (United States)

    2015-11-04

    This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the radiation damage constraint of presently verified cladding materials. The S&B core is designed to maximize the fraction of neutrons that radially leak from the seed (or “driver”) into the subcritical blanket and reduce neutron loss via axial leakage. The blanket in the S&B core makes beneficial use of the leaking neutrons for improved economics and resource utilization. A specific objective of this study is to maximize the fraction of core power that can be generated by the blanket without violating the thermal hydraulic and material constraints. Since the blanket fuel requires no reprocessing along with remote fuel fabrication, a larger fraction of power from the blanket will result in a smaller fuel recycling capacity and lower fuel cycle cost per unit of electricity generated. A unique synergism is found between a low conversion ratio (CR) seed and a B&B blanket fueled by thorium. Among several benefits, this synergism enables the very low leakage S&B cores to have small positive coolant voiding reactivity coefficient and large enough negative Doppler coefficient even when using inert matrix fuel for the seed. The benefits of this synergism are maximized when using an annular seed surrounded by an inner and outer thorium blankets. Among the high-performance S&B cores designed to benefit from this unique synergism are: (1) the ultra-long cycle core that features a cycle length of ~7 years; (2) the high-transmutation rate core where the seed fuel features a TRU CR of 0.0. Its TRU transmutation rate is comparable to that of the reference Advanced Burner Reactor (ABR) with CR of 0.5 and the thorium blanket can generate close to 60% of the core power; but requires only one sixth of the reprocessing and

  2. Mathematical modeling and experimental tests of the air jets mixing process in a new prototype of lignite burner for lower NOx emissions

    International Nuclear Information System (INIS)

    In order to decrease the NOx emissions generated by a lignite steam generator, a new prototype burner has been designed. The burner should operate with staggered combustion, to achieve lower temperatures in the first zone of the flame. The paper presents in parallel the results of the mathematical model and experimental tests of the mixing process of primary, secondary and tertiary air-flow jets at environmental temperature. Keywords: mathematical modeling, experimental tests, lignite burner, NOx reduction

  3. Simulator for materials testing reactors

    International Nuclear Information System (INIS)

    A real-time simulator for both reactor and irradiation facilities of a materials testing reactor, “Simulator of Materials Testing Reactors”, was developed for understanding reactor behavior and operational training in order to utilize it for nuclear human resource development and to promote partnership with developing countries which have a plan to introduce nuclear power plant. The simulator is designed based on the JMTR (Japan Materials Testing Reactor), and it simulates operation, irradiation tests and various kinds of anticipated operational transients and accident conditions caused by the reactor and irradiation facilities. The development of the simulator was sponsored by the Japanese government as one of the specialized projects of advanced research infrastructure in order to promote basic as well as applied researches. This report summarizes the simulation components, hardware specification and operation procedure of the simulator. (author)

  4. Some aspects of risk reduction strategy by multiple recycling in fast burner reactors of the plutonium and minor actinide inventories

    International Nuclear Information System (INIS)

    The paper shows the impact of recycling LWR-MOX fuel in a fast burner reactor on the plutonium (Pu) and minor actinide (MA) inventories and on the related radio activities. Reprocessing of the targets for multiple recycling will become increasingly difficult as the burn up increases. Multiple recycling of Pu + MA in fast reactors is a feasible option which has to be studied very carefully: the Pu (except the isotopes Pu-238 and Pu-240), Am and Np levels decrease as a function of the recycle number, while the Cm-244 level accumulates and gradually transforms into Cm-245. Long cooling times (10 + 2 years) are necessary with aqueous processing. The paper discusses the problems associated with multiple reprocessing of highly active fuel types and particularly the impact of Pu-238, Am-241 and Cm-244 on the fuel cycle operations. The calculations were performed with the zero-dimensional ORIGEN-2 code. The validity of the results depends on that of the code and its cross section library. The time span to reduce the initial inventory of Pu + MA by a factor of 10, amounts to 255 years when average burn ups are limited to 150 GWd t-1. (orig.)

  5. Development and Test Performance of a Three-Burner Wood-Fired Stove

    International Nuclear Information System (INIS)

    A three-burner wood stove has been designed, constructed and its performance characteristics tested by computing the percentages of wood consumed and the quantity of heat utilized when three pots containing water were heated simultaneously in the three cooking compartments respectively. The result shows that the percentages of wood consumed and the heat energy used were 72.5% and 33.6% respectively. These indicate an improvement on the previous work, which gave the percentages of wood consumed and heat energy utilized to be respectively 61.8% and 10.4% for three-stone wood stove and 79.8% and 19.8% for a two-hole stove. Also the central heating compartment received more heat energy (465.4 KJ) than the side ones (336.3 KJ and 298.2 KJ) after 36 minutes so that the user could discriminate on their application with respect to the heat requirements of what is being cooked

  6. Numerical modelling of the CHEMREC black liquor gasification process. Conceptual design study of the burner in a pilot gasification reactor

    Energy Technology Data Exchange (ETDEWEB)

    Marklund, Magnus

    2001-02-01

    The work presented in this report is done in order to develop a simplified CFD model for Chemrec's pressurised black liquor gasification process. This process is presently under development and will have a number of advantages compared to conventional processes for black liquor recovery. The main goal with this work has been to get qualitative information on influence of burner design for the gas flow in the gasification reactor. Gasification of black liquor is a very complex process. The liquor is composed of a number of different substances and the composition may vary considerably between liquors originating from different mills and even for black liquor from a single process. When a black liquor droplet is gasified it loses its organic material to produce combustible gases by three stages of conversion: Drying, pyrolysis and char gasification. In the end of the conversion only an inorganic smelt remains (ideally). The aim is to get this smelt to form a protective layer, against corrosion and heat, on the reactor walls. Due to the complexity of gasification of black liquor some simplifications had to be made in order to develop a CFD model for the preliminary design of the gasification reactor. Instead of modelling droplets in detail, generating gas by gasification, sources were placed in a prescribed volume where gasification (mainly drying and pyrolysis) of the black liquor droplets was assumed to occur. Source terms for the energy and momentum equations, consistent with the mass source distribution, were derived from the corresponding control volume equations by assuming a symmetric outflow of gas from the droplets and a uniform degree of conversion of reactive components in the droplets. A particle transport model was also used in order to study trajectories from droplets entering the reactor. The resulting model has been implemented in a commercial finite volume code (AEA-CFX) through customised Fortran subroutines. The advantages with this simple

  7. Regenerative burner

    Energy Technology Data Exchange (ETDEWEB)

    Davies, T.E.; Quinn, D.E.; Watson, J.E.

    1986-08-05

    A regenerative burner is described operable in fire and flue modes comprising: a burner shell having first and second internal chambers, the first chamber being disposed on the flame axis of the burner and the second chamber surrounding the radial perimeter of the first chamber; a gas permeable annular regenerative bed separating the first and second chambers such that gas flow between the first and second chambers must travel through the regenerative bed in a generally radial direction with respect to the flame axis; means for supplying combustion air to the second chamber when the burner is in the fire mode and for exhausting the products of combustion from the second chamber when the burner is in the flue mode; and means for supplying fuel in the vicinity of the flame axis for mixing with combustion air to support combustion when the burner is in the fire mode.

  8. Advanced test reactor. Testing capabilities and plans

    International Nuclear Information System (INIS)

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world's premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The physical configuration of the ATR, a 4-leaf clover shape, allows the reactor to be operated at different power levels in the corner 'lobes' to allow for different testing conditions for multiple simultaneous experiments. The combination of high flux (maximum thermal neutron fluxes of 1E15 neutrons per square centimeter per second and maximum fast [E>1.0 MeV] neutron fluxes of 5E14 neutrons per square centimeter per second) and large test volumes (up to 122 cm long and 12.7 cm diameter) provide unique testing opportunities. For future research, some ATR modifications and enhancements are currently planned. In 2007 the US Department of Energy designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR for material testing research by a broader user community. This paper provides more details on some of the ATR capabilities, key design features, experiments, and plants for the NSUF. (author)

  9. Regenerative burner

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, G.M.

    1990-05-08

    This patent describes a method of combusting fuel in a furnace having a pair of regenerative burners, each burner having a combustion chamber. It comprises: supplying fuel and oxygen alternatively to each burner to create alternating firing burners wherein the oxygen is supplied from two sources providing first and second oxidizing gases having different oxygen concentrations and simultaneously alternating the application of negative pressure to the remaining non-firing burner to recover heat from flue gases exhausted by the regenerative bed of the non-firing burner to be used further to preheat at least part of the oxygen being supplied to the firing burner; mixing the fuel with a fraction of the oxygen under substoichiometric combustion condition to create products of incomplete combustion to form a hot, luminous flame core containing partially pyrolized fuel; and mixing the partially pyrolyzed fuel with a remaining fraction of the oxygen to complete combustion of the pyrolized fuel; and controlling the total flow of fuel and oxygen supplied to each burner to provide each burner with a desired flame stoichiometry.

  10. Oxy-Combustion Burner and Integrated Pollutant Removal Research and Development Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mark Schoenfield; Manny Menendez; Thomas Ochs; Rigel Woodside; Danylo Oryshchyn

    2012-09-30

    A high flame temperature oxy-combustion test facility consisting of a 5 MWe equivalent test boiler facility and 20 KWe equivalent IPR® was constructed at the Hammond, Indiana manufacturing site. The test facility was operated natural gas and coal fuels and parametric studies were performed to determine the optimal performance conditions and generated the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up. Flame temperatures between 4930-6120F were achieved with high flame temperature oxy-natural gas combustion depending on whether additional recirculated flue gases are added to balance the heat transfer. For high flame temperature oxy-coal combustion, flame temperatures in excess of 4500F were achieved and demonstrated to be consistent with computational fluid dynamic modeling of the burner system. The project demonstrated feasibility and effectiveness of the Jupiter Oxygen high flame temperature oxy-combustion process with Integrated Pollutant Removal process for CCS and CCUS. With these technologies total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20% of the gross power output. The Jupiter Oxygen high flame temperature oxy-combustion process has been demonstrated at a Technology Readiness Level of 6 and is ready for commencement of a demonstration project.

  11. PITR: Princeton Ignition Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    The principal objectives of the PITR - Princeton Ignition Test Reactor - are to demonstrate the attainment of thermonuclear ignition in deuterium-tritium, and to develop optimal start-up techniques for plasma heating and current induction, in order to determine the most favorable means of reducing the size and cost of tokamak power reactors. This report describes the status of the plasma and engineering design features of the PITR. The PITR geometry is chosen to provide the highest MHD-stable values of beta in a D-shaped plasma, as well as ease of access for remote handling and neutral-beam injection.

  12. FASTER test reactor preconceptual design report summary

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Belch, H. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Mohamed, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Passerini, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sumner, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Vilim, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hayes, Steven [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-29

    The FASTER reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  13. FASTER test reactor preconceptual design report summary

    International Nuclear Information System (INIS)

    The FASTER reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  14. Flame monitoring enhances burner management

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, T.; Bailey, R.; Fuller, T.; Daw, S.; Finney, C.; Stallings, J. [Babcock & Wilcox Research Center (USA)

    2003-02-01

    A new burner monitoring and diagnostic system called Flame Doctor offers users a more precise and discriminating understanding of burner conditions. Alpha testing on Unit 4 at AmerenUE's Meramec power plant in St. Louis, MO, USA and Beta testing is underway at plants owned by Dynegy and Allegheny Energy. 6 refs., 3 figs.

  15. Reactor Simulator Integration and Testing

    Science.gov (United States)

    Schoenfield, M. P.; Webster, K. L.; Pearson, J. B.

    2013-01-01

    As part of the Nuclear Systems Office Fission Surface Power Technology Demonstration Unit (TDU) project, a reactor simulator (RxSim) test loop was designed and built to perform integrated testing of the TDU components. In particular, the objectives of RxSim testing were to verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. In addition, it was decided to include a thermal test of a cold trap purification design and a pump performance test at pump voltages up to 150 V because the targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V. This Technical Memorandum summarizes RxSim testing. The gas and vacuum ground support test equipment performed effectively in NaK fill, loop pressurization, and NaK drain operations. The instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. The cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained, which was lower than the predicted 750 K but 156 K higher than the cold temperature, indicating the design provided some heat regeneration. The annular linear induction pump tested was able to produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

  16. Real time simulator for material testing reactor

    International Nuclear Information System (INIS)

    Japan Atomic Energy Agency (JAEA) is now developing a real time simulator for a material testing reactor based on Japan Materials Testing Reactor (JMTR). The simulator treats reactor core system, primary and secondary cooling system, electricity system and irradiation facility systems. Possible simulations are normal reactor operation, unusual transient operation and accidental operation. The developed simulator also contains tool to revise/add facility in it for the future development. (author)

  17. Testing and Modeling Fuel Regression Rate in a Miniature Hybrid Burner

    OpenAIRE

    Luciano Fanton; Christian Paravan; Luigi T. De Luca

    2012-01-01

    Ballistic characterization of an extended group of innovative HTPB-based solid fuel formulations for hybrid rocket propulsion was performed in a lab-scale burner. An optical time-resolved technique was used to assess the quasisteady regression history of single perforation, cylindrical samples. The effects of metalized additives and radiant heat transfer on the regression rate of such formulations were assessed. Under the investigated operating conditions and based on phenomenological models ...

  18. Testing of a low NOx wire-mesh duct burner for micro-cogeneration unit

    Energy Technology Data Exchange (ETDEWEB)

    Ramadan, O.B.; Gauthier, J.E.D. [Carleton Univ., Ottawa, ON (Canada). Dept. of Mechanical and Aerospace Engineering; Hughes, P.M.; Brandon, R. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2007-07-01

    Combined heat and power (CHP) or cogeneration involves the generation of electricity in addition to the productive use of waste heat from the combustion process using the same primary fuel. An alternative to combined electrical power and heat generation is a micro-cogeneration unit which uses a micro-turbine as a prime mover. This type of unit is expected to result in a shift from large and centralized plants to smaller, more economical on-site generation plants. This paper presented a new low nitrogen oxide (NOx) wire-mesh duct burner (WMDB) for the development of a more efficient micro-cogeneration unit. In order to increase its thermal output, the low NOx WMDB was designed, built and integrated for evaluation with the Ingersol-Rand 70 kw micro-cogeneration unit. The wire-mesh burner had a conical shape and was manufactured by ACOTECH. The paper also discussed the advantages of micro-CHP units which are more attractive to building owners, retail establishments, commercial and light industrial facilities. Advantages include quality of the power supply; more economical, cleaner power; and the addition of new capacity without new transmission lines. It was concluded that low levels of emission were achieved with the development of a low NOx wire-mesh duct burner for a micro-cogeneration plant. 2 refs., 5 figs.

  19. Analysis of thorium/U-233 lattices and cores in a breeder/burner heavy water reactor

    International Nuclear Information System (INIS)

    Due to the inevitable dwindling of uranium resources, advanced fuel cycles in the current generation of reactors stand to be of great benefit in the future. Heavy water moderated reactors have much potential to make use of thorium, a currently unexploited resource. Core fuelling configurations of a Heavy Water Reactor based on the self-sufficient thorium fuel cycle were simulated using the DRAGON and DONJON reactor physics codes. Three heterogeneously fuelled reactors and one homogeneously fuelled reactor were studied. (author)

  20. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME II. SECOND GENERATION LOW-NOX BURNERS

    Science.gov (United States)

    The report describes tests to evaluate the performance characteristics of three Second Generation Low-NOx burner designs: the Dual Register burner (DRB), the Babcock-Hitachi NOx Reducing (HNR) burner, and the XCL burner. The three represent a progression in development based on t...

  1. Blending of hydrogen in natural gas distribution systems. Volume II. Combustion tests of blends in burners and appliances. Final report, June 1, 1976--August 30, 1977. [8, 11, 14, 20, 22, 25, and 31% hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-10-01

    The emerging ''hydrogen economy'' is a strong contender as one method to supplement or extend the domestic natural gas supply. This volume of the subject study ''Blending Hydrogen in Natural Gas Distribution Systems'' describes combustion studies to determine the maximum amount of hydrogen that can be blended in natural gas and utilized satisfactorily in typical appliances with no adjustment or conversion. Eleven pilot burners and twenty-three main burners typical of those in current use were operated on hydrogen-natural gas mixtures containing approximately 8, 11, 14, 20, 22, 25, and 31 percent, by volume, hydrogen. The eleven pilot burners and thirteen main burners were tested outside the appliance they were a part of. Ten main burners were tested in their respective appliances. Performance of the various burners tested are as follows: (1) Gas blends containing more than 6 to 11% hydrogen are the limiting mixtures for target type pilot burners. (2) Gas blends containing more than 20 to 22% hyrogen are the limiting mixtures for main burners operating in the open. (3) Gas blends containing more than 22 to 25% hydrogen are the limiting mixtures for main burners tested in appliances. (4) Modification of the orifice in target pilots or increasing the supply pressure to a minimum of 7 inches water column will permit the use of gas blends with 20% hydrogen.

  2. Research, development, and testing of a prototype two-stage low-input rate oil burner for variable output heating system applications

    Energy Technology Data Exchange (ETDEWEB)

    Krajewski, R.F.; Butcher, T.A. [Brookhaven National Labs., Upton, NY (United States)

    1997-09-01

    The use of a Two-Stage Fan Atomized Oil Burner (TSFAB) in space and water heating applications will have dramatic advantages in terms of it`s potential for a high Annual Fuel Utilization Efficiency (AFUE) and/or Energy Factor (EF) rating for the equipment. While demonstrations of a single rate burner in an actual application have already yielded sufficient confidence that space and domestic heating loads can be met at a single low firing rate, this represents only a narrow solution to the diverse nature of building space heating and domestic water loads that the industry must address. The mechanical development, proposed control, and testing of the Two-Stage burner is discussed in terms of near term and long term goals.

  3. Testing and Modeling Fuel Regression Rate in a Miniature Hybrid Burner

    Directory of Open Access Journals (Sweden)

    Luciano Fanton

    2012-01-01

    Full Text Available Ballistic characterization of an extended group of innovative HTPB-based solid fuel formulations for hybrid rocket propulsion was performed in a lab-scale burner. An optical time-resolved technique was used to assess the quasisteady regression history of single perforation, cylindrical samples. The effects of metalized additives and radiant heat transfer on the regression rate of such formulations were assessed. Under the investigated operating conditions and based on phenomenological models from the literature, analyses of the collected experimental data show an appreciable influence of the radiant heat flux from burnt gases and soot for both unloaded and loaded fuel formulations. Pure HTPB regression rate data are satisfactorily reproduced, while the impressive initial regression rates of metalized formulations require further assessment.

  4. Material test reactor fuel research at the BR2 reactor

    International Nuclear Information System (INIS)

    The construction of new, high performance material test reactor or the conversion of such reactors' core from high enriched uranium (HEU) to low enriched uranium (LEU) based fuel requires several fuel qualification steps. For the conversion of high performance reactors, high density dispersion or monolithic fuel types are being developed. The Uranium-Molybdenum fuel system has been selected as reference system for the qualification of LEU fuels. For reactors with lower performance characteristics, or as medium enriched fuel for high performance reactors, uranium silicide dispersion fuel is applied. However, on the longer term, the U-Mo based fuel types may offer a more efficient fuel alternative and-or an easier back-end solution with respect to the silicide based fuels. At the BR2 reactor of the Belgian nuclear research center, SCK-CEN in Mol, several types of fuel testing opportunities are present to contribute to such qualification process. A generic validation test for a selected fuel system is the irradiation of flat plates with representative dimensions for a fuel element. By flexible positioning and core loading, bounding irradiation conditions for fuel elements can be performed in a standard device in the BR2. For fuel element designs with curved plates, the element fabrication method compatibility of the fuel type can be addressed by incorporating a set of prototype fuel plates in a mixed driver fuel element of the BR2 reactor. These generic types of tests are performed directly in the primary coolant flow conditions of the BR2 reactor. The experiment control and interpretation is supported by detailed neutronic and thermal-hydraulic modeling of the experiments. Finally, the BR2 reactor offers the flexibility for irradiation of full size prototype fuel elements, as 200mm diameter irradiation channels are available. These channels allow the accommodation of various types of prototype fuel elements, eventually using a dedicated cooling loop to provide the

  5. Advanced Test Reactor National Scientific User Facility

    Energy Technology Data Exchange (ETDEWEB)

    Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

    2011-08-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  6. Dynamic Response Testing in an Electrically Heated Reactor Test Facility

    Science.gov (United States)

    Bragg-Sitton, Shannon M.; Morton, T. J.

    2006-01-01

    Non-nuclear testing can be a valuable tool in development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Standard testing allows one to fully assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and full nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics, and assess potential design improvements at a relatively small fiscal investment. Initial system dynamic response testing was demonstrated on the integrated SAFE-100a heat pipe cooled, electrically heated reactor and heat exchanger hardware, utilizing a one-group solution to the point kinetics equations to simulate the expected neutronic response of the system (Bragg-Sitton, 2005). The current paper applies the same testing methodology to a direct drive gas cooled reactor system, demonstrating the applicability of the testing methodology to any reactor type and demonstrating the variation in system response characteristics in different reactor concepts. In each testing application, core power transients were controlled by a point kinetics model with reactivity feedback based on core average temperature; the neutron generation time and the temperature feedback coefficient are provided as model inputs. Although both system designs utilize a fast spectrum reactor, the method of cooling the reactor differs significantly, leading to a variable system response that can be demonstrated and assessed in a non-nuclear test facility.

  7. Operating experience of Fast Breeder Test Reactor

    International Nuclear Information System (INIS)

    Fast Breeder Test Reactor (FBTR) is a 40 MWt / 13.2 MWe sodium cooled, loop type mixed carbide fuelled reactor. Its main aim is to gain experience in the design, construction and operation of fast reactors and to serve as an irradiation facility for development of fuel and structural material for future fast reactors. The reactor achieved first criticality in October 1985 with small indigenously designed and fabricated Mark I core (70% PuC-30% UC). The reactor power was subsequently raised in steps to 17.4 MWt by addition of Mark II fuel subassemblies (55% PuC-45% UC) and with the Mark I fuel operating at the designed linear heat rating of 400 W/cm. The turbo-generator was synchronized with the grid in July 1997. The achieved peak burn-up is 137 000 MWd/t so far without any fuel-clad failure. Presently the reactor is being operated at a nominal power of 15.7 MWt for irradiation of a test fuel subassembly of the Prototype Fast Breeder Reactor, which is coming up at Kalpakkam. It is also planned to irradiate test subassemblies made of metallic fuel for future fast reactor program. Being a small reactor, all feed back coefficients of reactivity including void coefficient are negative and hence the reactor is inherently safe. This was confirmed by carrying out physics tests. The capability to remove decay heat under various incidental conditions including natural convection was demonstrated by carrying out engineering tests. Thermo couples are provided for on-line monitoring of fuel SA outlet temperature by dedicated real time computer and processed to generate trip signals for the reactor in case of power excursion, increase in clad hot spot temperature and subassembly flow blockage. All pipelines and capacities in primary main circuit are provided with segmented outer envelope to minimize and contain radioactive sodium leak while ensuring forced cooling through reactor to remove decay heat in case of failure of primary boundary. In secondary circuit, provision is

  8. Present status of Japan materials testing reactor

    International Nuclear Information System (INIS)

    The Japan Materials Testing Reactor (JMTR) in Japan Atomic Energy Agency (JAEA) is a light water cooled tank type reactor with first criticality in March 1968. Owing to the connection between the JMTR and hot laboratory by a canal, easy re-irradiation tests can be conducted with safe and quick transportation of irradiated samples. The JMTR has been applied to fuel/material irradiation examinations for LWRs, HTGR, fusion reactor and RI production. However, the JMTR operation was once stopped in August 2006, and check and review on the reoperation had been conducted by internal as well as external committees. As a result of the discussion, the JMTR reoperation was determined, and refurbishment works started from the beginning of JFY 2007. The refurbishment works have finished in March 2011 taking four years from JFY 2007. Unfortunately, at the end of the JFY 2010 on March 11, the Great-Eastern-Japan-Earthquake occurred, and functional tests before the JMTR restart, such as cooling system, reactor control system and so on, were delayed by the earthquake. Moreover, a detail inspection found some damages such as slight deformation of the truss structure at the roof of the JMTR reactor building. Consequently, the restart of the JMTR will be delayed from June to next October, 2012. Now, the safety evaluation after the earthquake disaster is being carried out aiming at the restart of the JMTR. The renewed JMTR will be started from JFY 2012 and operated for a period of about 20 years until around JFY 2030. The usability improvement of the JMTR, e.g. higher reactor availability, shortening turnaround time to get irradiation results, attractive irradiation cost, business confidence, is also discussed with users as the preparations for re-operation. (author)

  9. Dynamic Response Testing in an Electrically Heated Reactor Test Facility

    Science.gov (United States)

    Bragg-Sitton, Shannon M.; Morton, T. J.

    2006-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Standard testing allows one to fully assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and fueled nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics, and assess potential design improvements at a relatively small fiscal investment. Initial system dynamic response testing was demonstrated on the integrated SAFE-100a heat pipe (HP) cooled, electrically heated reactor and heat exchanger hardware, utilizing a one-group solution to the point kinetics equations to simulate the expected neutronic response of the system. Reactivity feedback calculations were then based on a bulk reactivity feedback coefficient and measured average core temperature. This paper presents preliminary results from similar dynamic testing of a direct drive gas cooled reactor system (DDG), demonstrating the applicability of the testing methodology to any reactor type and demonstrating the variation in system response characteristics in different reactor concepts. Although the HP and DDG designs both utilize a fast spectrum reactor, the method of cooling the reactor differs significantly, leading to a variable system response that can be demonstrated and assessed in a non-nuclear test facility. Planned system upgrades to allow implementation of higher fidelity dynamic testing are also discussed. Proposed DDG

  10. Jules Horowitz Reactor: a high performance material testing reactor

    Science.gov (United States)

    Iracane, Daniel; Chaix, Pascal; Alamo, Ana

    2008-04-01

    The physical modelling of materials' behaviour under severe conditions is an indispensable element for developing future fission and fusion systems: screening, design, optimisation, processing, licensing, and lifetime assessment of a new generation of structure materials and fuels, which will withstand high fast neutron flux at high in-service temperatures with the production of elements like helium and hydrogen. JANNUS and other analytical experimental tools are developed for this objective. However, a purely analytical approach is not sufficient: there is a need for flexible experiments integrating higher scales and coupled phenomena and offering high quality measurements; these experiments are performed in material testing reactors (MTR). Moreover, complementary representative experiments are usually performed in prototypes or dedicated facilities such as IFMIF for fusion. Only such a consistent set of tools operating on a wide range of scales, can provide an actual prediction capability. A program such as the development of silicon carbide composites (600-1200 °C) illustrates this multiscale strategy. Facing the long term needs of experimental irradiations and the ageing of present MTRs, it was thought necessary to implement a new generation high performance MTR in Europe for supporting existing and future nuclear reactors. The Jules Horowitz Reactor (JHR) project copes with this context. It is funded by an international consortium and will start operation in 2014. JHR will provide improved performances such as high neutron flux ( 10 n/cm/s above 0.1 MeV) in representative environments (coolant, pressure, temperature) with online monitoring of experimental parameters (including stress and strain control). Experimental devices designing, such as high dpa and small thermal gradients experiments, is now a key objective requiring a broad collaboration to put together present scientific state of art, end-users requirements and advanced instrumentation. To cite this

  11. ESTABLISHMENT OF DESIGN CRITERIA FOR OPTIMUM BURNERS FOR APPLICATION TO HEAVY FUEL FIRED PACKAGE BOILERS. VOLUME 2. PILOT SCALE TESTS

    Science.gov (United States)

    The report gives results of a research program to develop low-NOx heavy oil burners for application to industrial package boilers. Volume I documents Phase 1 of the program, bench scale studies which defined optimum conditions for two-stage combustion. The information led to a co...

  12. ESTABLISHMENT OF DESIGN CRITERIA FOR OPTIMUM BURNERS FOR APPLICATION TO HEAVY FUEL FIRED PACKAGE BOILERS. VOLUME 1. LABORATORY SCALE TESTS

    Science.gov (United States)

    The report gives results of a research program to develop low-NOx heavy oil burners for application to industrial package boilers. Volume I documents Phase 1 of the program, bench scale studies which defined optimum conditions for two-stage combustion. The information led to a co...

  13. Instrumentation to Enhance Advanced Test Reactor Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Rempe; D. L. Knudson; K. G. Condie; J. E. Daw; S. C. Taylor

    2009-09-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

  14. Instrumentation to Enhance Advanced Test Reactor Irradiations

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

  15. Short-term corrosion testing in a burner rig with oxy-fuel and conventional firing

    International Nuclear Information System (INIS)

    As part of the European ENCAP project, a test rig has been modified by IVD (Institute of Process - Engineering and Power Plant Technology), Stuttgart, Germany to compare oxy-fuel firing with conventional firing. A broad spectrum of alloys from low alloyed steels to nickel alloys were exposed on a cooled probe in this rig at a metal temperature of 630 C for up to 40 hours with lignite from the Lausitz region as the fuel, and for 26 hours with bituminous coal (Kleinkopje) as fuel. For lignite firing, both exposure with oxy-fuel firing with recirculation of flue gas and conventional firing has been conducted to compare the corrosion attack and deposit composition. Only oxy-fuel tests were conducted with the bituminous coal. For the lignite fuel, the deposit composition from oxy-fuel and conventional firing was similar, and consisted of calcium sulphate (anhydrite) and iron oxide (hematite). The corrosion attack for the different alloys was also similar for both types of combustion. The corrosion attack was oxidation with some sulfidation/sulphation at the oxide-metal interface. In general, the thickness of the corrosion product decreased for the higher alloyed steels. The ferritic steels formed a two layered oxide. The high nickel containing alloy Hastelloy C-2000 showed a surprisingly high corrosion rate with internal attack and an outer nickel oxide. The Kanthal APM and Nimonic 263 alloys had the best oxide with even surface coverage. For the bituminous coal test, there was very little deposit on the specimens, and the deposit was rich in aluminium, silicon, oxygen and iron with lesser amounts of calcium and sulphur. The corrosion attack for the different alloys was similar to that observed for lignite where Kanthal APM had the most protective oxide coverage. Generally the mass gain rates are similar between the different tests for the same material. The main findings from these short term tests are that alumina forming alloys and super austenitic stainless steels

  16. Short-term corrosion testing in a burner rig with oxy-fuel and conventional firing

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, M. [Vattenfall Heat Nordic/DTU Mekanik (Denmark); Hjornhede, A. [Vattenfall Power Consultant AB (Sweden); Gerhardt, A. [Institute of Process-Engineering and Power Plant Technology (IVD)/ Vattenfall Research and Development (Germany)

    2009-07-01

    As part of the European ENCAP project, a test rig has been modified by IVD (Institute of Process - Engineering and Power Plant Technology), Stuttgart, Germany to compare oxy-fuel firing with conventional firing. A broad spectrum of alloys from low alloyed steels to nickel alloys were exposed on a cooled probe in this rig at a metal temperature of 630 C for up to 40 hours with lignite from the Lausitz region as the fuel, and for 26 hours with bituminous coal (Kleinkopje) as fuel. For lignite firing, both exposure with oxy-fuel firing with recirculation of flue gas and conventional firing has been conducted to compare the corrosion attack and deposit composition. Only oxy-fuel tests were conducted with the bituminous coal. For the lignite fuel, the deposit composition from oxy-fuel and conventional firing was similar, and consisted of calcium sulphate (anhydrite) and iron oxide (hematite). The corrosion attack for the different alloys was also similar for both types of combustion. The corrosion attack was oxidation with some sulfidation/sulphation at the oxide-metal interface. In general, the thickness of the corrosion product decreased for the higher alloyed steels. The ferritic steels formed a two layered oxide. The high nickel containing alloy Hastelloy C-2000 showed a surprisingly high corrosion rate with internal attack and an outer nickel oxide. The Kanthal APM and Nimonic 263 alloys had the best oxide with even surface coverage. For the bituminous coal test, there was very little deposit on the specimens, and the deposit was rich in aluminium, silicon, oxygen and iron with lesser amounts of calcium and sulphur. The corrosion attack for the different alloys was similar to that observed for lignite where Kanthal APM had the most protective oxide coverage. Generally the mass gain rates are similar between the different tests for the same material. The main findings from these short term tests are that alumina forming alloys and super austenitic stainless steels

  17. TRIGA reactor dynamics: Frequency response tests

    International Nuclear Information System (INIS)

    In this work, the results of frequency response tests conducted on ITU TRIGA Reactor are presented. To conduct the experiments, a special 'micro control rod' and its submersible stepping-motor drive mechanism was designed and constructed. The experiments cover a frequency range of 0.002 - 2 Hz., and 0.02, 4, 200 kW nominal power levels. Zero-power and at-power reactivity to % power transfer functions are presented as gain, and phase shift vs. frequency diagrams. Low power response is in close agreement with the point reactor zero-power transfer function. Response at 200 kW is studied with the help of a Nyquist diagram, and found to be stable. An elaboration on the main features of the feedback mechanism is also given. Power to reactivity feedback was measured to be just about 1.5 cent / % power change. (authors)

  18. Decommissioning of the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    E. Perry; J. Chrzanowski; C. Gentile; R. Parsells; K. Rule; R. Strykowsky; M. Viola

    2003-10-28

    The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D&D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D&D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D&D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget.

  19. Decommissioning of the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D and D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D and D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D and D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget

  20. C Reactor overbore test facility review

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, P.A.; Nilson, R.

    1964-04-24

    In 1961, large-size, smooth-bore, Zircaloy process tubes were installed in C-Reactor graphite channels that had been enlarged to 2.275 inches. These tubes were installed to provide a test and demonstration facility for the concept of overboring as a means of securing significant improvement in the production capability of the reactors, After two years of facility operation, it is now appropriate to consider the extent to which original objectives have been achieved, to re-examine the original objectives, and to consider the best future use of this unique facility. This report presents the general results of such a review and re-examination in more detail.

  1. Thermal Hydraulic Tests for Reactor Core Safety

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S. K.; Baek, W. P.; Chun, S. Y. (and others)

    2007-06-15

    The main objectives of the present project are to resolve the current issues of reactor core thermal hydraulics, to develop an advanced measurement and analytical techniques, and to perform reactor core safety verification tests. 6x6 reflood experiments, various heat transfer experiments using Freon, and experiments on the spacer grids effects on the post-dryout are carried out using spacer grids developed in Korea in order to resolve the current issues of the reactor core thermal hydraulics. In order to develop a reflood heat transfer model, the detailed reflood phenomena are visualized and measured using round tube and 2x2 rod bundle. A detailed turbulent mixing phenomenon for subchannels is measured using advanced measurement techniques such as LDV and PIV. MARS and MATRA codes developed in Korea are assessed, verified and improved using the obtained experimental data. Finally, a systematic quality assurance program and experimental data generation system has been constructed in order to increase the reliability of the experimental data.

  2. Fuel irradiation test plan at the Japan materials testing reactor

    International Nuclear Information System (INIS)

    Development of high performance fuels, which enables burnup extension and high duty uses of light water reactors (LWRs) by means of power up rates and flexible operating cycles, is one of key technical issues for extending the uses for longer periods. Introduction of new design fuel rods with new cladding alloys and wider utilization of mixed oxide fuels is expected in Japan. Fuel irradiation tests for development and safety demonstration are quite important, in order to realize theses progress. Operational management on water chemistry, minimizing the long term degradation of reactor components, could have unfavorable influence on the integrity of the fuel rods. Japanese government and the Japan Atomic Energy Agency have decided to re new the Japan Materials Testing Reactor (JMTR) and to install new test rigs, in order to play an active role solving the issues on the development and the safety of the fuel and the plant aging. Fuel integrity under abnormal transient conditions will be investigated using a special capsule type test rig, which has its own power control system under simulated LWR cooling conditions. Water loops for simulation of high duty operation, e.g. high power, high burnup and high rod internal pressure conditions, are proposed for the development and safety examination of the high performance fuels. Combination of the JMTR tests with simulated reactivity initiated accident tests in the Nuclear Safety Research Reactor and loss of coolant accident tests in hot laboratories would provide a comprehensive data for safety evaluation and design progress of the high performance fuels at extended burnups, covering from the normal to the accident conditions, including abnormal transients

  3. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO{sub x} in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO{sub x} emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames--particularly under low NO{sub x} conditions. A CO/H{sub 2}/O{sub 2}/N{sub 2} flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state {sup 13}C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that

  4. SRS reactor stack plume marking tests

    Energy Technology Data Exchange (ETDEWEB)

    Petry, S.F.

    1992-03-01

    Tests performed in 105-K in 1987 and 1988 demonstrated that the stack plume can successfully be made visible (i.e., marked) by introducing smoke into the stack breech. The ultimate objective of these tests is to provide a means during an emergency evacuation so that an evacuee can readily identify the stack plume and evacuate in the opposite direction, thus minimizing the potential of severe radiation exposure. The EPA has also requested DOE to arrange for more tests to settle a technical question involving the correct calculation of stack downwash. New test canisters were received in 1988 designed to produce more smoke per unit time; however, these canisters have not been evaluated, because normal ventilation conditions have not been reestablished in K Area. Meanwhile, both the authorization and procedure to conduct the tests have expired. The tests can be performed during normal reactor operation. It is recommended that appropriate authorization and procedure approval be obtained to resume testing after K Area restart.

  5. Dielectric Heaters for Testing Spacecraft Nuclear Reactors

    Science.gov (United States)

    Sims, William Herbert; Bitteker, Leo; Godfroy, Thomas

    2006-01-01

    A document proposes the development of radio-frequency-(RF)-driven dielectric heaters for non-nuclear thermal testing of the cores of nuclear-fission reactors for spacecraft. Like the electrical-resistance heaters used heretofore for such testing, the dielectric heaters would be inserted in the reactors in place of nuclear fuel rods. A typical heater according to the proposal would consist of a rod of lossy dielectric material sized and shaped like a fuel rod and containing an electrically conductive rod along its center line. Exploiting the dielectric loss mechanism that is usually considered a nuisance in other applications, an RF signal, typically at a frequency .50 MHz and an amplitude between 2 and 5 kV, would be applied to the central conductor to heat the dielectric material. The main advantage of the proposal is that the wiring needed for the RF dielectric heating would be simpler and easier to fabricate than is the wiring needed for resistance heating. In some applications, it might be possible to eliminate all heater wiring and, instead, beam the RF heating power into the dielectric rods from external antennas.

  6. Process development report: 0. 20-m secondary burner system

    Energy Technology Data Exchange (ETDEWEB)

    Rickman, W.S.

    1977-09-01

    HTGR fuel reprocessing consists of crushing the spent fuel elements to a size suitable for burning in a fluidized bed to remove excess graphite; separating, crushing, and reburning the fuel particles to remove the remainder of the burnable carbon; dissolution and separation of the particles from insoluble materials; and solvent extraction separation of the dissolved uranium and thorium. Burning the crushed fuel particles is accomplished in a secondary burner. This is a batch fluidized-bed reactor with in-vessel, off-gas filtration. Process heat is provided by an induction heater. This report documents operational tests performed on a commercial size 0.20-m secondary burner using crushed Fort St. Vrain type TRISO fuel particles. Analysis of a parametric study of burner process variables led to recommending lower bed superficial velocity (0.8 m/s), lower ignition temperature (600/sup 0/C), lower fluid bed operating temperature (850/sup 0/C), lower filter blowback frequency (1 cycle/minute), and a lower fluid bed superficial velocity during final bed burnout (0.45 m/s).

  7. TREAT [Transient Reactor Test Facility] reactor control rod scram system simulations and testing

    International Nuclear Information System (INIS)

    Air cylinders moving heavy components (100 to 300 lbs) at high speeds (above 300 in/sec) present a formidable end-cushion-shock problem. With no speed control, the moving components can reach over 600 in/sec if the air cylinder has a 5 ft stroke. This paper presents an overview of a successful upgrade modification to an existing reactor control rod drive design using a computer model to simulate the modified system performance for system design analysis. This design uses a high speed air cylinder to rapidly insert control rods (278 lb moved 5 ft in less than 300 msec) to scram an air-cooled test reactor. Included is information about the computer models developed to simulate high-speed air cylinder operation and a unique new speed control and end cushion design. A patent application is pending with the US Patent ampersand Trade Mark Office for this system (DOE case number S-68,622). The evolution of the design, from computer simulations thru operational testing in a test stand (simulating in-reactor operating conditions) to installation and use in the reactor, is also described. 6 figs

  8. Corrosion of spent Advanced Test Reactor fuel

    International Nuclear Information System (INIS)

    The results of a study of the condition of spent nuclear fuel elements from the Advanced Test Reactor (ATR) currently being stored underwater at the Idaho National Engineering Laboratory (INEL) are presented. This study was motivated by a need to estimate the corrosion behavior of dried, spent ATR fuel elements during dry storage for periods up to 50 years. The study indicated that the condition of spent ATR fuel elements currently stored underwater at the INEL is not very well known. Based on the limited data and observed corrosion behavior in the reactor and in underwater storage, it was concluded that many of the fuel elements currently stored under water in the facility called ICPP-603 FSF are in a degraded condition, and it is probable that many have breached cladding. The anticipated dehydration behavior of corroded spent ATR fuel elements was also studied, and a list of issues to be addressed by fuel element characterization before and after forced drying of the fuel elements and during dry storage is presented

  9. Proposal of world network on material testing reactors

    International Nuclear Information System (INIS)

    Establishment of an international cooperation system of worldwide testing reactor network (world network) is proposed in order to achieve efficient facility utilization and provide high quality irradiation data by role sharing of irradiation tests with materials testing reactors in the world. As for the first step, mutual understanding among materials testing reactors is thought to be necessary. From this point, an international symposium on materials testing reactors (ISMTR) was held to construct the world network from 2008, and a common understanding of world network has begun to be shared. (author)

  10. High Temperature Gas-Cooled Test Reactor Options Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    Preliminary scoping calculations are being performed for a 100 MWt gas-cooled test reactor. The initial design uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to identify some reactor design features to investigate further. Current status of the effort is described.

  11. Catalyzed Ceramic Burner Material

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Amy S., Dr.

    2012-06-29

    period in accomplishing these objectives. Our work in the area of Pd-based, methane oxidation catalysts has led to the development of highly active catalysts with relatively low loadings of Pd metal using proprietary coating methods. The thermal stability of these Pd-based catalysts were characterized using SEM and BET analyses, further demonstrating that certain catalyst supports offer enhanced stability toward both PdO decomposition and/or thermal sintering/growth of Pd particles. When applied to commercially available fiber mesh substrates (both metallic and ceramic) and tested in an open-air burner, these catalyst-support chemistries showed modest improvements in the NOx emissions and radiant output compared to uncatalyzed substrates. More significant, though, was the performance of the catalyst-support chemistries on novel media substrates. These substrates were developed to overcome the limitations that are present with commercially available substrate designs and increase the gas-catalyst contact time. When catalyzed, these substrates demonstrated a 65-75% reduction in NOx emissions across the firing range when tested in an open air burner. In testing in a residential boiler, this translated into NOx emissions of <15 ppm over the 15-150 kBtu/hr firing range.

  12. Radiation exposure: Cytogenetic tests. Chernobyl reactor accident

    International Nuclear Information System (INIS)

    Forty test subjects who, either during or after the reactor accident of Chernobyl (26th April 1986), stayed at a building site at Shlobin 150 km away, were examined for spontaneously occurring as well as mitomycin C-induced Sister Chromatid Exchanges (SCE). The building site staff, who underwent a whole-body radionuclide count upon their return to Austria (June through September 1986), were used for the cytogenetic tests. The demonstration of the SCE was made from whole-blood cultures by the fluorescence/Giemse technique. At last 20 Metaphases of the 2nd mitotic cycle were evaluated per person. The radiation doses of the test subjects were calculated by adding the external exposure determined on the building site, the estimated thyroid dose through I-131, and the measured incorporation of Cs-134 and Cs-137. The subjects were divided into two groups for statistical analysis: One was a more exposed group (proven stay at Shlobin between 26th April and 31st May 1986, mostly working in the open air) and the other a less exposed group for comparison (staying at Shlobin from 1st Juni 1986 and working mainly indoors). (orig.)

  13. FIELD EVALUATION OF LOW-EMISSIONS COAL BURNER TECHNOLOGY ON UTILITY BOILERS; VOLUME II. SECOND GENERATION LOW-NOX BOILERS

    Science.gov (United States)

    The report describes tests to evaluate the performance characteristics of three Second Generation Low-NOx burner designs: the Dual Register burner (DRB), the Babcock-Hitachi NOx Reducing (HNR) burner, and the XCL burner. The three represent a progression in development based on t...

  14. New Sensors for Irradiation Testing at Materials and Test Reactors

    International Nuclear Information System (INIS)

    Enhanced instrumentation, capable of providing real-time measurements of parameters during fuels and material irradiations, is required to support irradiation testing requested by US nuclear research programs. For example, several research programs funded by the US Department of Energy (US DOE) are emphasizing the use of first principle models to characterize the performance of fuels and materials. To facilitate this approach, high fidelity, real-time data are essential to demonstrate the performance of these new fuels and materials during irradiation testing. Furthermore, sensors that obtain such data in US MTRs, such as the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL), must be miniature, reliable, and able to withstand high fluxes and high temperatures. Depending on program requirements, sensors may need to obtain data in inert gas, pressurized water, or liquid metal environments. To address these needs, INL has developed and deployed several new sensors to support irradiation testing in US DOE programs. The paper identifies the sensors currently available to support higher flux US MTR irradiations. Recent results and products from sensor research and development are highlighted. In particular, progress in deploying enhanced in-pile sensors for detecting temperature, elongation, and thermal conductivity is emphasized. Finally, initial results from research to evaluate the viability of ultrasonic and fiber optic technologies for irradiation testing are summarized. (author)

  15. TR-EDB: Test Reactor Embrittlement Data Base, Version 1

    Energy Technology Data Exchange (ETDEWEB)

    Stallmann, F.W.; Wang, J.A.; Kam, F.B.K. [Oak Ridge National Lab., TN (United States)

    1994-01-01

    The Test Reactor Embrittlement Data Base (TR-EDB) is a collection of results from irradiation in materials test reactors. It complements the Power Reactor Embrittlement Data Base (PR-EDB), whose data are restricted to the results from the analysis of surveillance capsules in commercial power reactors. The rationale behind their restriction was the assumption that the results of test reactor experiments may not be applicable to power reactors and could, therefore, be challenged if such data were included. For this very reason the embrittlement predictions in the Reg. Guide 1.99, Rev. 2, were based exclusively on power reactor data. However, test reactor experiments are able to cover a much wider range of materials and irradiation conditions that are needed to explore more fully a variety of models for the prediction of irradiation embrittlement. These data are also needed for the study of effects of annealing for life extension of reactor pressure vessels that are difficult to obtain from surveillance capsule results.

  16. TR-EDB: Test Reactor Embrittlement Data Base, Version 1

    International Nuclear Information System (INIS)

    The Test Reactor Embrittlement Data Base (TR-EDB) is a collection of results from irradiation in materials test reactors. It complements the Power Reactor Embrittlement Data Base (PR-EDB), whose data are restricted to the results from the analysis of surveillance capsules in commercial power reactors. The rationale behind their restriction was the assumption that the results of test reactor experiments may not be applicable to power reactors and could, therefore, be challenged if such data were included. For this very reason the embrittlement predictions in the Reg. Guide 1.99, Rev. 2, were based exclusively on power reactor data. However, test reactor experiments are able to cover a much wider range of materials and irradiation conditions that are needed to explore more fully a variety of models for the prediction of irradiation embrittlement. These data are also needed for the study of effects of annealing for life extension of reactor pressure vessels that are difficult to obtain from surveillance capsule results

  17. CHP Integrated with Burners for Packaged Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a

  18. Status of the irradiation test vehicle for testing fusion materials in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Gomes, I.C.; Smith, D.L. [Argonne National Lab., IL (United States); Palmer, A.J.; Ingram, F.W. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Wiffen, F.W. [Dept. of Energy, Germantown, MD (United States). Office of Fusion Energy

    1998-09-01

    The design of the irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) has been completed. The main application for the ITV is irradiation testing of candidate fusion structural materials, including vanadium-base alloys, silicon carbide composites, and low-activation steels. Construction of the vehicle is underway at the Lockheed Martin Idaho Technology Company (LMITCO). Dummy test trains are being built for system checkout and fine-tuning. Reactor insertion of the ITV with the dummy test trains is scheduled for fall 1998. Barring unexpected difficulties, the ITV will be available for experiments in early 1999.

  19. Proceedings of the international symposium on materials testing reactors

    International Nuclear Information System (INIS)

    This report is the Proceedings of the International Symposium on Materials Testing Reactors hosted by Japan Atomic Energy Agency (JAEA). The symposium was held on July 16 to 17, 2008, at the Oarai Research and Development Center of JAEA. This symposium was also held for the 40th anniversary ceremony of Japan Materials Testing Reactor (JMTR) from achieving its first criticality. The objective of the symposium is to exchange the information on current status, future plan and so on among each testing reactors for the purpose of mutual understanding. There were 138 participants from Argentina, Belgium, France, Indonesia, Kazakhstan, Korea, the Russian Federation, Sweden, the United State, Vietnam and Japan. The symposium was divided into four technical sessions and three topical sessions. Technical sessions addressed the general topics of 'status and future plan of materials testing reactors', 'material development for research and testing reactors', irradiation technology (including PIE technology)' and 'utilization with materials testing reactors', and 21 presentations were made. Also the topical sessions addressed 'establishment of strategic partnership', 'management on re-operation work at reactor trouble' and 'basic technology for neutron irradiation tests in MTRs', and panel discussion was made. The 21 of the presented papers are indexed individually. (J.P.N.)

  20. Development, utilization, and future prospects of materials test reactors

    International Nuclear Information System (INIS)

    Reactor radiation affects the chemical and physical properties of materials. These changes can be very drastic in certain cases. Special test reactors have therefore been built since the 1950's and specific skills were developed to expose materials specimens to the precise irradiation conditions required. Materials testing reactors are those research reactor facilities which are designed and operated predominantly for studies into radiation damage. About a dozen plants in European communities (EC) Member States and in the US can be identified in this category, with 5 to 100 MW fission power and neutron fluxes between 5 x 1013 and 1015 cm-2s-1. The paper elaborates common aspects of development, utilization, and future prospects of US and EC materials testing reactors, and indicates the most significant differences

  1. Thermal Characteristics of Heating-furnace with Regenerative Burner

    OpenAIRE

    HUA, Jianshe; Li, Xiaoming; Kawabata, Nobuyoshi

    2005-01-01

    Thermal characteristics between the heating-furnace with regenerative burner and the classical triple-fired continuous furnace by heat balance testing for two billet steel heating-furnace at the same billet steel heating have been analyzed. In addition, the operating principle, the thermal characteristics and the effect of energy saving for heating-furnace with regenerative burner are introduced.

  2. Emission characteristics of a novel low NOx burner fueled by hydrogen-rich mixtures with methane

    OpenAIRE

    Dutka, Marcin Damian; Ditaranto, Mario; Løvås, Terese

    2015-01-01

    The use of hydrogen-rich fuels may be challenging for burner designers due to unique properties of hydrogen compared to conventional fuels such as natural gas. Burner retrofit may be required to use hydrogen-enriched fuels in combustion systems that are designed for natural gas combustion. This study aimed to experimentally investigate NOx emissions from a novel low NOx burner fueled by methane-hydrogen mixtures. The burner was tested in a cylindrical combustion chamber at atmosph...

  3. Status and future plan of Japan materials testing reactor

    International Nuclear Information System (INIS)

    The Japan Materials Testing Reactor (JMTR) of Japan Atomic Energy Agency (JAEA) is a light water cooling tank typed reactor. JMTR has been used for fuel and material irradiation studies for LWRs, HTGR, fusion reactor and RI production. Since the JMTR is connected with hot laboratory through the canal, re-irradiation tests can conduct easily by safety and quick transportation of irradiation samples. First criticality was achieved in March 1968, and operation was stopped from August, 2006 for the refurbishment. The reactor facilities are refurbished during four years from the beginning of FY 2007, and necessary examination and work are carrying out on schedule. The renewed and upgraded JMTR will start from FY 2011 and operate for a period of about 20 years (until around FY 2030). The usability improvement of the JMTR, such as higher reactor available factor, shortening turnaround time to get irradiation results, attractive irradiation cost, business confidence, is also discussing as the preparations for re-operation. (author)

  4. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS. VOLUME I. DISTRIBUTED MIXING BURNER EVALUATION

    Science.gov (United States)

    The report gives results of a study in which NOx emissions and general combustion performance characteristics of four burners were evaluated under experimental furnace conditions. Of primary interest was the performance of a low NOx Distributed Mixing Burner (DMB), which was test...

  5. Ceramic application for regenerative burner system

    Energy Technology Data Exchange (ETDEWEB)

    Han, D.B.; Park, B.H.; Kim, Y.W.; Bae, W.S. [RIST, Pohang (Korea)

    1999-05-01

    Recently, regenerative burner system was developed and begins to be gradually used for better energy savings. Compared to conventional burner system, the regenerative one has the several merits such as higher fuel efficiency, light weight of apparatus, low harmful toxic gas and homogeneous heating zone, etc. The regenerative material, a very important component of the new regenerative burner system should possess the properties of low specific density, higher surface area and high specific heat capacity. Ceramics is the best regenerative material because of stable mechanical properties even at high temperature and better thermal properties and excellent chemical stability. In this study, alumina ball, alumina tube, 3-D ceramic foam and honeycomb as regenerative materials were tested and evaluated. The computer simulation was conducted and compared to the result of field test. This paper is aimed to introduce a new application of ceramics at high temperature. 7 refs., 5 figs., 3 tabs.

  6. Downhole burner for wells

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, H.; Hazard, H.R.; Hummell, J.D.; Schulz, E.J.

    1966-03-22

    This is a downhole gas and air burner for use in wells to stimulate production. The combustible mixture is supplied to the combustion chamber of the downhole burner through a delivery tube. This tube includes a flow-back preventer and a check valve. The flashback preventers consist of a porous material which has restricted flow paths. The check valve controls the flow of combustible mixture to the combustion chamber and prevents undesirable pulsating flow through the combustion chamber and the delivery tube. The check valve also prevents flooding of the combustion chamber by well fluid. The burner is ignited electrically. The porous material can be flat strip or a conically shaped piece of thin porous metal.

  7. Improving the proliferation resistance of research and test reactors

    International Nuclear Information System (INIS)

    Elimination, or substantial reduction, of the trade in highly enriched fuel elements for research and test reactors would significantly reduce the proliferation risk associated with the current potential for diversion of these materials. To this end, it is the long-term goal of U.S. policy to fuel all new and existing research and test reactors with uranium of less than 20% enrichment (but substantially greater than natural) excepting, perhaps, only a small number of high-power, high-performance, reactors. The U.S. development program for enrichment reduction in research and test reactor designs currently using 90-93% enriched uranium is based on the practical criterion that enrichment reduction should not cause significant flux performance (flux per unit power) or burnup performance degradation relative to the unmodified reactor design. A program is now beginning in the U.S. to develop the necessary fuel technology, but several years of work will be needed. Accordingly, as an immediate interim step, the U.S. is proposing to convert existing research and test reactors (and new designs) from the use of 90-93% enriched fuel to the use of 30-45% enriched fuel wherever this can be done without unacceptable reactor performance degradation

  8. The use of ceramic gas burner in paper drying. Combustion and paper coating tests - Final report; Paperin kuivatus keraamisella kaasupolttimella; Polttokokeet laboratoriossa sekae paperin paeaellystyskoe - Loppuraportti

    Energy Technology Data Exchange (ETDEWEB)

    Kiiskinen, H.; Edelman, K. [Technical Research Centre of Finland, Jyvaeskylae (Finland). Combustion and Thermal Engineering Lab.

    1992-12-31

    The use of infrared dryers in drying of paper has rapidly increased. Gas fired IR dryers cause lower investment and smaller operational cost than the electric ones. On the other hand, the massive construction of the gas fired IR dryers causes weaker controllability than possible for the electric IR dryers. Ceramic gas burner is intended for combustion of pre-mixed gas-air mixture. The combustion takes place in a thin layer on the surface of the burner. The heat from combustion is transferred to the ceramic material mainly through convection but also through radiation. The heated ceramic surface emits radiation to it`s surroundings, according to the radiation properties of the ceramic material. The measurements carried out reveal that the emissivity and the surface temperature of the ceramic burner are very close to the present gas fired IR dryers. The radiative heat efficiency of the present devices is about 36-40 %. The highest recorded radiative heat efficiency of the ceramic burner was 36 %. The controllability of the ceramic burner is better than the present ones: the burner responds to changes in the fuel flow within 1-2 seconds and the control range is broad, about 150-450 kW/m{sup 2}. The mechanic strength properties of the ceramic burner are rather poor due to porous and lightweight construction. It is possible to increase the strength e.g. through the use of thicker ceramic fibre but this will decrease the controllability of the burner. The ceramic materials - very likely - will be used in infrared dryers as soon as the mechanical strength problems will be resolved

  9. Georgia Tech Studies of Sub-Critical Advanced Burner Reactors with a D-T Fusion Tokamak Neutron Source for the Transmutation of Spent Nuclear Fuel

    Science.gov (United States)

    Stacey, W. M.

    2009-09-01

    The possibility that a tokamak D-T fusion neutron source, based on ITER physics and technology, could be used to drive sub-critical, fast-spectrum nuclear reactors fueled with the transuranics (TRU) in spent nuclear fuel discharged from conventional nuclear reactors has been investigated at Georgia Tech in a series of studies which are summarized in this paper. It is found that sub-critical operation of such fast transmutation reactors is advantageous in allowing longer fuel residence time, hence greater TRU burnup between fuel reprocessing stages, and in allowing higher TRU loading without compromising safety, relative to what could be achieved in a similar critical transmutation reactor. The required plasma and fusion technology operating parameter range of the fusion neutron source is generally within the anticipated operational range of ITER. The implications of these results for fusion development policy, if they hold up under more extensive and detailed analysis, is that a D-T fusion tokamak neutron source for a sub-critical transmutation reactor, built on the basis of the ITER operating experience, could possibly be a logical next step after ITER on the path to fusion electrical power reactors. At the same time, such an application would allow fusion to contribute to meeting the nation's energy needs at an earlier stage by helping to close the fission reactor nuclear fuel cycle.

  10. Irradiation testing of miniature fuel plates for the RERTR program. [Reduced Enrichment Research and Test Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Senn, R.L.; Martin, M.M.

    1981-07-01

    An irradiation test facility, which provides a test bed for irradiating a variety of miniature fuel plates (miniplates) for the Reduced Enrichment Research and Test Reactors (RERTR) program, has been placed into operation. These tests screen various candidate fuel materials on their suitability for replacing the highly enriched uranium fuel materials currently used by the world's test and research reactors with a lower enrichment fuel material, without significantly degrading reactor operating characteristics and power levels. The use of low uranium enrichment of about 20% /sup 235/U in place of highly enriched fuel for these reactors would reduce the potential for /sup 235/U diversion. The irradiation test facility, designated as HFED, is operating in core position E-7 in the Oak Ridge Research Reactor (ORR), a 30-MW water-moderated reactor. The miniplates will achieve burnups of up to approx. 2.2 x 10/sup 27/ fissions/m/sup 3/ of fuel.

  11. In-Research Reactor Tests for SCWR Fuel Verifications

    International Nuclear Information System (INIS)

    The Supercritical water cooled reactors (SCWRs) are essentially light water reactors (LWRs) operating at higher pressure and temperature. The SCWRs achieve high thermal efficiency (i.e., about 45% vs. about 35% efficiency for advanced LWRs) and are simpler plants as the need for many of the traditional LWR components is eliminated. The SCWRs build upon two proven technologies, the LWR and the supercritical coal-fired boiler. The main mission of the SCWR is production of low-cost electricity. Thus the SCWR is also suited for hydrogen generation with electrolysis, and can support the development of the hydrogen economy in the near term. In this paper, the SCWR fuel performance verification tests are reviewed. Based on this review results, in-research reactor verification tests to be performed in a fuel test loop through the international joint program are proposed. In addition, capsule tests and fuel test loop tests to be performed in HANARO are also proposed

  12. SMORN-III benchmark test on reactor noise analysis methods

    International Nuclear Information System (INIS)

    A computational benchmark test was performed in conjunction with the Third Specialists Meeting on Reactor Noise (SMORN-III) which was held in Tokyo, Japan in October 1981. This report summarizes the results of the test as well as the works made for preparation of the test. (author)

  13. HFR irradiation testing of light water reactor (LWR) fuel

    International Nuclear Information System (INIS)

    For the materials testing reactor HFR some characteristic information with emphasis on LWR fuel rod testing capabilities and hot cell investigation is presented. Additionally a summary of LWR fuel irradiation programmes performed and forthcoming programmes are described. Project management information and a list of publications pertaining to LWR fuel rod test programmes is given

  14. Reactor numerical simulation and hydraulic test research

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L. S. [Nuclear Power Institute of China, Beijing (China)

    2009-07-01

    In recent years, the computer hardware was improved on the numerical simulation on flow field in the reactor. In our laboratory, we usually use the Pro/e or UG commercial software. After completed topology geometry, ICEM-CFD is used to get mesh for computation. Exact geometrical similarity is maintained between the main flow paths of the model and the prototype, with the exception of the core simulation design of the fuel assemblies. The drive line system is composed of drive mechanism, guide bush assembly, fuel assembly and control rod assembly, and fitted with the rod level indicator and drive mechanism power device.

  15. Flat flame burner

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Y.; Mitsudomi, H.

    1976-02-24

    Osaka Gas Co., Ltd.'s new flat-flame heat-treatment burner offers lower material costs, reduced combustion noise, and elimination of the need for a high-pressure fuel gas to provide a high-velocity combustion burner. The flat-flame burner contains an air-swirling chamber with a flame opening in one side; the wall defining the flame opening has a small thickness around the opening and a flat outer face. This construction causes the combustion gas to be forced out from the flame opening in a spiral direction by the swirling air current within the air chamber; together with the orifice effect of permitting the flame to emanate from a small opening to an unconfined outer space, this helps assure the formation of a flat flame spreading out over a very wide area for very rapid, uniform, and highly efficient heat treatment of an article to be heated. This approach also permits the thickness of the overall device to be reduced. The supply of combustion air in the form of a swirling stream makes it possible to provide a high-velocity combustion burner without using a high-pressure fuel gas, with the advantage of satisfactory mixture of the fuel gas and combustion air and consequently markedly reduced combustion noise.

  16. The reactor core analysis code CITATION-1000VP for High Temperature Engineering Test Reactor

    International Nuclear Information System (INIS)

    Reactor core analysis with full core model has been necessary for the High Temperature Engineering Test Reactor (HTTR) design. The CITATION-1000VP code has been developed to enable reactor core analysis of HTTR with full core model through extending the number of zones and meshes, and enhancing the calculation speed of CITATION code. This report describes the program changes for extending the number of zones and meshes, and for vectorization. The maximum number of zones and meshes becomes 999 and 500, respectively. The calculation speed is enhanced up to 21 times. (author)

  17. Startup of the FFTF sodium cooled reactor. [Acceptance Test Program

    Energy Technology Data Exchange (ETDEWEB)

    Redekopp, R.D.; Umek, A.M.

    1981-03-01

    The Fast Flux Test Facility (FFTF), located on the Department of Energy (DOE) Hanford Reservation near Richland, Washington, is a 3 Loop 400 MW(t) sodium cooled fast reactor with a primary mission to test fuels and materials for development of the Liquid Metal Fast Breeder Reactor (LMFBR). Bringing FFTF to a condition to accomplish this mission is the goal of the Acceptance Test Program (ATP). This program was the mechanism for achieving startup of the FFTF. Highlights of the ATP involving the system inerting, liquid metal and inerted cell testing and initial ascent to full power are discussed.

  18. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS; SEMIANNUAL

    International Nuclear Information System (INIS)

    An initial testing campaign was carried out during the summer of 2000 to evaluate the impact of multiburner firing on NOx emissions. Extensive data had been collected during the Fall of 1999 and Spring of 2000 using a single pulverized-coal (PC) burner, and this data collection was funded by a separate Department of Energy program, the Combustion 2000 Low Emission Boiler System (LEBS) project under the direction of DB Riley. This single-burner data was thus available for comparison with NOx emissions obtained while firing three burners at the same overall load and operating conditions. A range of operating conditions were explored that were compatible with single-burner data, and thus the emission trends as a function of air staging, burner swirl and other parameters will be described below. In addition, a number of burner-to-burner operational variations were explored that provided interesing insight on their potential impact on NOx emissions. Some of these variations include: running one burner very fuel rich while running the others fuel lean; varying the swirl of a single burner while holding others constant; increasing the firing rate of a single burner while decreasing the others. In general, the results to date indicated that multiburner firing yielded higher NOx emissions than single burner firing at the same fuel rate and excess air. At very fuel rich burner stoichiometries (SR and lt; 0.75), the difference between multiple and single burners became indistinguishable. This result is consistent with previous single-burner data that showed that at very rich stoichiometries the NOx emissions became independent of burner settings such as air distributions, velocities and burner swirl

  19. The ''CAMERA'' test facility in the OSIRIS reactor

    International Nuclear Information System (INIS)

    CAMERA is an irradiation installation conceived to measure under neutronic flux and continuously the dimension variations of a fuel pencil of PWR reactors. The device, set in the periphery of the OSIRIS reactor, can receive new, preirradiated or reconstituted pencils. The principles of measurements is explained. Then, a brief description of the installation is given: in-pile part; out-of-pile part; connections. The technical characteristics of the installation are presented. A first qualification test of the installation under flux has been carried out at the end of the first semester 1984 in the OSIRIS reactor

  20. Reactor fault simulation at the closure of the Windscale advanced gas-cooled reactor: analysis of reactor transient tests

    International Nuclear Information System (INIS)

    The testing of fault transient analysis methods by direct simulation of fault sequences on a commercial reactor is clearly excluded on safety and economic grounds. The closure of the Windscale prototype advanced gas-cooled reactor (WAGR) therefore offered a unique opportunity to test fault study methods under extreme conditions relatively unfettered by economic constraints, although subject to appropriate safety regulations. One aspect of these important experiments was a series of reactor transient tests. The objective of these reactor transients was to increase confidence in the fault study computer models used for commercial AGR safety assessment by extending their range of validation to cover large amplitude and fast transients in temperature, power and flow, relevant to CAGR faults, and well beyond the conditions achievable experimentally on commercial reactors. A large number of tests have now been simulated with the fault study code KINAGRAX. Agreement with measurement is very good and sensitivity studies show that such discrepancies as exist may be due largely to input data errors. It is concluded that KINAGRAX is able to predict steady state conditions and transient amplitudes in both power and temperature to within a few percent. (author)

  1. High-Temperature Gas-Cooled Test Reactor Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Laboratory; Bayless, Paul David [Idaho National Laboratory; Nelson, Lee Orville [Idaho National Laboratory; Gougar, Hans David [Idaho National Laboratory; Kinsey, James Carl [Idaho National Laboratory; Strydom, Gerhard [Idaho National Laboratory; Kumar, Akansha [Idaho National Laboratory

    2016-04-01

    A point design has been developed for a 200 MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technological readiness level, licensing approach and costs.

  2. Entrained Flow Reactor Test of Potassium Capture by Kaolin

    DEFF Research Database (Denmark)

    Wang, Guoliang; Jensen, Peter Arendt; Wu, Hao;

    2015-01-01

    In the present study a method to simulate the reaction between gaseous KCl and kaolin at suspension fired condition was developed using a pilot-scale entrained flow reactor (EFR). Kaolin was injected into the EFR for primary test of this method. By adding kaolin, KCl can effectively be captured......-bed reactor. The method using the EFR developed in this study will be applied for further systematic investigation of different additives....

  3. Reduced enrichment for research and test reactors: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The 15th annual Reduced Enrichment for Research and Test Reactors (RERTR) international meeting was organized by Ris{o} National Laboratory in cooperation with the International Atomic Energy Agency and Argonne National Laboratory. The topics of the meeting were the following: National Programs, Fuel Fabrication, Licensing Aspects, States of Conversion, Fuel Testing, and Fuel Cycle. Individual papers have been cataloged separately.

  4. Reduced enrichment for research and test reactors: Proceedings

    International Nuclear Information System (INIS)

    The 15th annual Reduced Enrichment for Research and Test Reactors (RERTR) international meeting was organized by Ris oe National Laboratory in cooperation with the International Atomic Energy Agency and Argonne National Laboratory. The topics of the meeting were the following: National Programs, Fuel Fabrication, Licensing Aspects, States of Conversion, Fuel Testing, and Fuel Cycle. Individual papers have been cataloged separately

  5. Inductive testing of reactor pressure vessels

    International Nuclear Information System (INIS)

    In Service Inspection of Reactor Pressure Vessels is mostly done with ultrasonics. Using special 2 crystal-probes good detectability is achieved for near surface defects. The problem is to detect closely spaced cracks, to decide if the defects are surface braking and, if not, to decide the remaining ligament. The purpose of this study is to investigate to what extent Eddy Current can solve these problems. Detecting surfacebreaking cracks and fields of cracks can be done using conventional Eddy Current techniques. Mapping of closely spaced cracks requires a small probe and a high frequency. Measurement of depths a larger probe, a lower frequency and knowledge of the crackfield since 2 closely spaced shallow cracks might be mistaken for one deep crack. Depths of singel cracks can be measured down to 7-8 mm. In closely spaced crackfields the depths can not be measured. The measurement is mostly based on amplitude. For not surface breaking defects the problem is to decide the ligament, i.e. the distance between surface and cracktip. To achieve good penetration a large probe, low frequency and high energy or pulsed energy is used. Ligament up to 4 mm can be measured with good accuracy. The measurements is mostly based on phase. Noise, which originates from rough surface, varied material structure and lift off, can be reduced using multi frequency mix, probe design and scanning pattern. (author)

  6. THIRTY-DAY FIELD TESTS OF INDUSTRIAL BOILERS: SITE 5 - GAS-FIRED LOW-NOX BURNER

    Science.gov (United States)

    This is a final report on a test program to evaluate the long-term effectiveness of combustion modifications on industrial boilers. During previous programs, short-term tests were performed on industrial boilers to determine the effect of combustion modifications on air pollutant...

  7. Design of the Advanced Gas Reactor Fuel Experiments for Irradiation in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    S. Blaine Grover

    2005-10-01

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight particle fuel tests in the Advanced Test Reactor (ATR) located at the newly formed Idaho National Laboratory (INL) to support development of the next generation Very High Temperature Reactor (VHTR) in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments will be irradiated in an inert sweep gas atmosphere with on-line temperature monitoring and control combined with on-line fission product monitoring of the sweep gas. The final design phase has just been completed on the first experiment (AGR-1) in this series and the support systems and fission product monitoring system that will monitor and control the experiment during irradiation. This paper discusses the development of the experimental hardware and support system designs and the status of the experiment.

  8. Vibration tests on some models of PEC reactor core elements

    International Nuclear Information System (INIS)

    This paper describes the aims of the experimental tests carried out at ISMES, within an agreement with the Department of Fast Reactors of ENEA, on some models of the elements of PEC Fast Nuclear Reactor Core in the frame of the activities for the seismic verification of the PEC core. The seismic verification is briefly described with particular attention to the problems arising from the shocks among the various elements during an earthquake, as well as the computer code used, the purpose and the techniques used to perform tests, some results and the first comparison between the theory and the experimental data

  9. USE OF GAS BURNERS TYPE "DAVA" OPERATING UNDER VARIABLE LOAD TO PRODUCE HEAT AND HOT WATER

    Directory of Open Access Journals (Sweden)

    Daud V.

    2014-12-01

    Full Text Available The article brings additional information referred to upgraded gas burners type "DAVA", which are characterized by high performance at variable load. Adaptation of burner operation is carried out automatically. There are presented design features that allow increase of the efficiency and the reliability of these burners at variable load, and reducing natural gas consumption. The range of variation of the coefficient of excess air affects the efficiency of the burner. The experimental results of the tests of gas burners of different power had confirmed the economic effect of the upgraded burners at heat production. It is proved that economic effect increases with increasing of burner output and of operation time during the season.

  10. Waste burner overfire draft system

    Energy Technology Data Exchange (ETDEWEB)

    Kahlert, G.; Pommer, L.; Davis, J.; Whebell, B.

    1977-11-22

    An overfire draft system for a waste burner is disclosed. Such system comprises air vents arranged circumferentially around the base of the burner for communicating the interior of the burner to the atmosphere and a draft modulated damper plate located in each air vent for automatically regulating the volume of overfire air delivered to the interior of the burner. Each draft modulated damper plate is provided with a lower lip which is deflected by a predetermined angle with respect to the plate to create an aerodynamic lift effect with large opening moment to assist the damper plate in its response under low air velocity conditions, and an oppositely deflected upper lip with proportionately less bent surface to avoid flutter or hunting of the damper as it approaches the maximum open position and to provide added dynamic opening force. The overfire draft system is also provided with ducts connected to the air vents and oriented so as to direct air tangentially around the base of the burner and toward the lower inside wall of the burner so as to minimize the disturbance of the inside air. The waste burner may also be provided with draft modulated or forced air vents arranged circumferentially at mid-elevation around the burner and duct means connected to such vents and directed at a small angle with the radius of the burner so as to cause turbulence in the flame zone and reduce the vertical velocity of gases above the fire, thus reducing emission of particulate materials.

  11. Improving the proliferation resistance of research and test reactors

    International Nuclear Information System (INIS)

    Elimination, or substantial reduction, of the trade in unirradiated highly-enriched fuel elements for research and test reactors would significantly reduce the proliferation risk associated with the current potential for diversion of these materials. To this end, it is the long-term goal of U.S. policy to fuel all new and existing research and test reactors with uranium of less-than-20% enrichment (but substantially greater than natural) excepting, perhaps, only a small number of high-power, high-performance, reactors. The U.S. development program for enrichment reduction in research and test reactor designs currently using 90-93% enriched uranium is based on the practical criterion that enrichment reduction should not cause significant flux performance (flux per unit power) or burnup performance degradation relative to the unmodified reactor design. To first order, this implies the requirement that the 235U loading in the reduced-enrichment fuel elements be the same as the 235U loading in the 90-93% enriched fuel elements. This can be accomplished by substitution of higher uranium density fuel technology for currently-used fuel technology in the fuel meat volume of the current fuel element design and/or by increasing the usable fuel meat volume. For research and test reactors of power greater than 5-10 megawatts, fuel technology does not currently exist that would permit enrichment reductions to below 20% utilizing this criterion. A program is now beginning in the U.S. to develop the necessary fuel technology. Currently-proven fuel technology is capable, however, of accommodating enrichment reductions to the 30-45% range (from 90-93%) for many reactors in the 5-50MW range. Accordingly the U.S. is proposing to convert existing reactors (and new designs) in the 5-50MW range from the use of highly-enriched fuel to the use of 30-45% enriched fuel, and reactors of less that about 5MW to less-than-20% enrichment, wherever this can be done without significant performance

  12. The technology development for surveillance test of reactor vessel materials

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Ok; Kim, Byoung Chul; Lee, Sam Lai; Choi, Sun Phil; Park, Day Young; Choi, Kwen Jai

    1997-12-01

    Benchmark test was performed in accordance with the requirement of US NRC Reg. Guide DG-1053 for Kori unit-1 in order to determine best-estimated fast neutron fluence irradiated into reactor vessel. Since the uncertainty of radiation analysis comes from the calculation error due to neutron cross-section data, reactor core geometrical dimension, core source, mesh density, angular expansion and convergence criteria, evaluation of calculational uncertainty due to analytical method was performed in accordance with the regulatory guide and the proof was performed for entire analysis by comparing the measurement value obtained by neutron dosimetry located in surveillance capsule. Best-estimated neutron fluence in reactor vessel was calculated by bias factor, neutron flux measurement value/calculational value, from reanalysis result from previous 1st through 4th surveillance testing and finally fluence prediction was performed for the end of reactor life and the entire period of plant life extension. Pressurized thermal shock analysis was performed in accordance with 10 CFR 50.61 using the result of neutron fluence analysis in order to predict the life of reactor vessel material and the criteria of safe operation for Kori unit 1 was reestablished. (author). 55 refs., 55 figs.

  13. In situ tests on the PEC fast reactor building

    International Nuclear Information System (INIS)

    This paper describes forced excitation tests carried out at the PEC reactor building, to determine seismic motion amplifications produced in the building itself. Experimental results are used to gauge numerical methodologies capable of assessing the margins existing in the design analysis. (orig./HP)

  14. Natural convection test in Phenix reactor and associated CATHARE calculation

    International Nuclear Information System (INIS)

    The Phenix sodium cooled fast reactor started operation in 1973 and was stopped in 2009. Before the reactor was definitively stopped, final tests were performed, including a natural convection test in the primary circuit. One objective of this natural convection test in Phenix reactor is the qualification of plant dynamic codes as CATHARE code for future safety studies. The paper firstly describes the Phenix reactor primary circuit. The initial test conditions and the detailed transient scenario are presented. Then, the CATHARE modelling of the Phenix primary circuit is described. The whole transient scenario is calculated, including the nominal state, the steam generators dry out, the scram, the onset of natural convection in the primary circuit and the natural convection phases. The CATHARE calculations are compared to the Phenix measurements. A particular attention is paid to the significant decrease of the core power before the scram. Then, the evolution of main components inlet and outlet temperatures is compared. The need of coupling a system code with a CFD code to model the 3D behaviour of large pools is pointed out. This work is in progress. (author)

  15. Modelling of turbulent hydrocarbon combustion. Test of different reactor concepts for describing the interactions between turbulence and chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.; Kremer, H. [Ruhr-Universitaet Bochum, Lehrstuhl fuer Energieanlagentechnik, Bochum (Germany); Kilpinen, P.; Hupa, M. [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group

    1997-12-31

    The detailed modelling of turbulent reactive flows with CFD-codes is a major challenge in combustion science. One method of combining highly developed turbulence models and detailed chemistry in CFD-codes is the application of reactor based turbulence chemistry interaction models. In this work the influence of different reactor concepts on methane and NO{sub x} chemistry in turbulent reactive flows was investigated. Besides the classical reactor approaches, a plug flow reactor (PFR) and a perfectly stirred reactor (PSR), the Eddy-Dissipation Combustion Model (EDX) and the Eddy Dissipation Concept (EDC) were included. Based on a detailed reaction scheme and a simplified 2-step mechanism studies were performed in a simplified computational grid consisting of 5 cells. The investigations cover a temperature range from 1273 K to 1673 K and consider fuel-rich and fuel-lean gas mixtures as well as turbulent and highly turbulent flow conditions. All test cases investigated in this study showed a strong influence of the reactor residence time on the species conversion processes. Due to this characteristic strong deviations were found for the species trends resulting from the different reactor approaches. However, this influence was only concentrated on the `near burner region` and after 4-5 cells hardly any deviation and residence time dependence could be found. The importance of the residence time dependence increased when the species conversion was accelerated as it is the case for overstoichiometric combustion conditions and increased temperatures. The study focused furthermore on the fine structure in the EDC. Unlike the classical approach this part of the cell was modelled as a PFR instead of a PSR. For high temperature conditions there was hardly any difference between both reactor types. However, decreasing the temperature led to obvious deviations. Finally, the effect of the selective species transport between the cells on the conversion process was investigated

  16. Research on reactor physics using the Japan Materials Testing Reactor Critical Facility (JMTRC)

    International Nuclear Information System (INIS)

    The JMTRC of 100 W was installed for the purpose of carrying out the basic experiment on the nuclear characteristics of reactors and the preceding test related to the operation plan of the Japan material testing reactor (JMTR, 50 MW). After the attainment of the initial criticality in October, 1965, for obtaining the reactor physics characteristics, criticality experiment was begun. The items of the criticality experiment were critical mass, control rod worth, reactor dynamic characteristic parameters, shutdown margin and so on, and these experimental data were effectively utilized for the safety evaluation in the operation of the JMTR. The preceding test using the JMTRC has been carried out for obtaining the nuclear characteristics of samples and the thermal characteristics estimated from those results by simulating the JMTR core. In August, 1983, the degree of fuel enrichment for the JMTRC was reduced to 45 % U-235, and various experiments usig the MEU core were carried out. In this paper, the criticality experiment using the MEU core and the experiment on the characteristics of lithium-containing pellets are reported. (K.I.)

  17. Reduced enrichment for research and test reactors: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    The international effort to develop new research reactor fuel materials and designs based on the use of low-enriched uranium, instead of highly-enriched uranium, has made much progress during the eight years since its inception. To foster direct communication and exchange of ideas among the specialist in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at the Argonne National Laboratory, sponsored this meeting as the ninth of a series which began in 1978. All previous meetings of this series are listed on the facing page. The focus of this meeting was on the LEU fuel demonstration which was in progress at the Oak Ridge Research (ORR) reactor, not far from where the meeting was held. The visit to the ORR, where a silicide LEU fuel with 4.8 g A/cm/sup 3/ was by then in routine use, illustrated how far work has progressed.

  18. Standard Guide for Benchmark Testing of Light Water Reactor Calculations

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide covers general approaches for benchmarking neutron transport calculations in light water reactor systems. A companion guide (Guide E2005) covers use of benchmark fields for testing neutron transport calculations and cross sections in well controlled environments. This guide covers experimental benchmarking of neutron fluence calculations (or calculations of other exposure parameters such as dpa) in more complex geometries relevant to reactor surveillance. Particular sections of the guide discuss: the use of well-characterized benchmark neutron fields to provide an indication of the accuracy of the calculational methods and nuclear data when applied to typical cases; and the use of plant specific measurements to indicate bias in individual plant calculations. Use of these two benchmark techniques will serve to limit plant-specific calculational uncertainty, and, when combined with analytical uncertainty estimates for the calculations, will provide uncertainty estimates for reactor fluences with ...

  19. Reduced enrichment for research and test reactors: Proceedings

    International Nuclear Information System (INIS)

    The international effort to develop new research reactor fuel materials and designs based on the use of low-enriched uranium, instead of highly-enriched uranium, has made much progress during the eight years since its inception. To foster direct communication and exchange of ideas among the specialist in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at the Argonne National Laboratory, sponsored this meeting as the ninth of a series which began in 1978. All previous meetings of this series are listed on the facing page. The focus of this meeting was on the LEU fuel demonstration which was in progress at the Oak Ridge Research (ORR) reactor, not far from where the meeting was held. The visit to the ORR, where a silicide LEU fuel with 4.8 g A/cm3 was by then in routine use, illustrated how far work has progressed

  20. Present status and future perspective of research and test reactors in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Osamu [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Kaieda, Keisuke

    1999-08-01

    Since 1957, Japan Atomic Energy Research Institute (JAERI) has constructed several research and test reactors to fulfil a major role in the study of nuclear energy and fundamental research. At present, four reactors, the Japan Research Reactor No. 3 and No. 4 (JRR-3M and JRR-4 respectively), the Japan Materials Testing Reactor (JMTR) and the Nuclear Safety Research Reactor (NSRR), are in operation, and a new High Temperature Engineering Test Reactor (HTTR) has reached first criticality and is waiting for the power-up test. This paper introduce these reactors and describe their present operational status. The recent tendency of utilization and future perspectives are also reported. (author)

  1. In-reactor experiments in fast breeder test reactor for assessment of core structural materials

    International Nuclear Information System (INIS)

    Fast Breeder Test Reactor (FBTR) at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, India is a sodium cooled reactor with neutron flux level of the order of 1015 n/cm2/s and temperature of coolant in the range of 650-790K (380-520oC). This reactor is being used as a test bed for the development of fuel and structural materials required for Indian Fast Reactor Programme. FBTR is also used as a test facility to carry out accelerated irradiation tests on thermal reactor structural materials. In-reactor experiments on core structural materials are being carried out by subjecting prefabricated specimens to desired conditions of temperature and neutron fluence levels in FBTR. Non-instrumented irradiation capsules that can be loaded at any location of FBTR core are used for the experiments. Pressurised capsules of zirconium alloys have been developed and subjected to irradiation in FBTR to determine the irradiation creep rate of indigenously developed zirconium alloys (Zircaloy-2 and Zr-2.5%Nb alloy) for life assessment of pressure tubes of Indian Pressurised Heavy Water Reactors (PHWRs). Technology development of pressurised capsules was carried out at IGCAR. These pressurised capsules were filled with argon and a small fraction of helium at a high pressure (5.0-6.5 MPa at room temperature) in such a way that the target stresses were attained in the walls of the pressurised capsules at the desired temperature of irradiation in the reactor. FBTR was operated at a low power of 8 MWt during this irradiation campaign to have an inlet temperature of about 579 K (306oC) which was close to the temperature of pressure tubes at full power in PHWR. Irradiation of thirty pressurised capsules was carried out in FBTR using six irradiation capsules for different durations (upto 79 days). The fluence levels attained by the pressurised capsules were up to 1.1 x 1021 n/cm2 (E> 1 MeV) at temperatures of 579 to 592 K. Post-irradiation increase in diameter of the pressurised

  2. The decommissioning of the KEMA suspension test reactor

    International Nuclear Information System (INIS)

    In this report the decommissioning of the KEMA Suspension Test Reactor (KSTR) is described. This reactor was a 1 MWth aqueous homo-geneous nuclear reactor in which a suspension of a mixed oxide UO2/ ThO2 in light water was circulated in a closed loop through a sphere-shaped core vessel. The reactor, located on KEMA premises, made 150 MW of heat during its critical periods. Dismantling of this reactor, with its many connected subsystems, meant the mastering of activated components which were also contaminated on inner surfaces caused by small fuel deposits (alpha contaminants) and fission products (beta, gamma contaminants). A description is given of the save removal of the fuel, the remote dismantling of systems and components and the disposal of steel scrap and other materials. Important features are the measures to be taken and provisions needed for safe handling, for the reduction of the radiation dose for the working team and the prevention of spreading of activity over the working area and the environment. It has been demonstrated that safe dismantling and disposal of such systems can be achieved. Experience gained at KEMA for the proper dismantling and for safety measures to be taken for workers and the environment can be made available for similar dismantling projects. A cost break-down is included in the report. (author). 22 refs.; 52 figs.; 12 tabs

  3. Materials qualification testing for next generation nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, R.; Haehner, P. (European Commission, JRC Institute for Energy, Petten (Netherlands))

    2010-05-15

    The development of next generation, innovative nuclear fission reactors, needed to replace or supplement the current designs of nuclear reactors within the next say 30 years, critically depends on the availability of advanced structural and functional materials systems which must withstand extreme conditions: intense neuron irradiation, high temperatures, and potentially strongly corrosive coolant environments, in combination with complex loading states and cyclic loading histories. The mechanical performance and reliability of those materials depends on the service and off-normal conditions in whichever of the six candidate systems for Generation IV reactors, under the global Generation IV International Forum (GIF) agreement, they will be applied. This paper gives an overview of the suite of six selected reactor systems indicating where research on materials and structural integrity is still needed. Some of these reactor systems have been under study for many years whereas others are relatively new concepts but all still require a major expenditure of effort before they can be considered as realistic contenders. In particular the materials selection and component integrity for service will play a major role in a final successful design. Specific issues include: the endurance and stability with respect to creep, fatigue and fracture mechanics loading, the need for in situ environmental testing versus pre-exposure of materials and advanced structural-functional materials systems for specific applications. Using examples taken from research projects in which the authors' laboratory has participated, the materials qualification high temperature testing for three crucial components, reactor pressure vessel and piping, gas turbines and heat exchangers is described in some detail. Finally pointers are derived as to not only the scale of the remaining research needs but also the mechanisms which are planned to be followed in Europe, not to mention globally, to obtain

  4. Oil burner nozzle

    Science.gov (United States)

    Wright, Donald G.

    1982-01-01

    An oil burner nozzle for use with liquid fuels and solid-containing liquid fuels. The nozzle comprises a fuel-carrying pipe, a barrel concentrically disposed about the pipe, and an outer sleeve retaining member for the barrel. An atomizing vapor passes along an axial passageway in the barrel, through a bore in the barrel and then along the outer surface of the front portion of the barrel. The atomizing vapor is directed by the outer sleeve across the path of the fuel as it emerges from the barrel. The fuel is atomized and may then be ignited.

  5. Integrated leak rate test results of JOYO reactor containment vessel

    International Nuclear Information System (INIS)

    Integrated leak rate tests of JOYO after the reactor coolant system had been filled with sodium have been performed two times since 1978 (February 1978 and December 1979). The tests were conducted with the in-containment sodium systems, primary argon cover gas system and air conditioning systems operating. Both the absolute pressure method and the reference chamber method were employed during the test. The results of both tests confirmed the functioning of the containment vessel, and leak rate limits were satisfied. In Addition, the adequancy of the test instrumentation system and the test method was demonstrated. Finally the plant conditions required to maintain reasonable accuracy for the leak rate testing of LMFBR were established. In this paper, the test conditions and the test results are described. (author)

  6. Heat Pipe Reactor Dynamic Response Tests: SAFE-100 Reactor Core Prototype

    Science.gov (United States)

    Bragg-Sitton, Shannon M.

    2005-01-01

    The SAFE-I00a test article at the NASA Marshall Space Flight Center was used to simulate a variety of potential reactor transients; the SAFEl00a is a resistively heated, stainless-steel heat-pipe (HP)-reactor core segment, coupled to a gas-flow heat exchanger (HX). For these transients the core power was controlled by a point kinetics model with reactivity feedback based on core average temperature; the neutron generation time and the temperature feedback coefficient are provided as model inputs. This type of non-nuclear test is expected to provide reasonable approximation of reactor transient behavior because reactivity feedback is very simple in a compact fast reactor (simple, negative, and relatively monotonic temperature feedback, caused mostly by thermal expansion) and calculations show there are no significant reactivity effects associated with fluid in the HP (the worth of the entire inventory of Na in the core is .kinetics model was based on core thermal expansion via deflection measurements. It was found that core deflection was a strung function of how the SAFE-100 modules were fabricated and assembled (in terms of straightness, gaps, and other tolerances). To remove the added variable of how this particular core expands as compared to a different concept, it was decided to use a temperature based feedback model (based on several thermocouples placed throughout the core).

  7. Reactor Physics Scoping and Characterization Study on Implementation of TRIGA Fuel in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jennifer Lyons; Wade R. Marcum; Mark D. DeHart; Sean R. Morrell

    2014-01-01

    The Advanced Test Reactor (ATR), under the Reduced Enrichment for Research and Test Reactors (RERTR) Program and the Global Threat Reduction Initiative (GTRI), is conducting feasibility studies for the conversion of its fuel from a highly enriched uranium (HEU) composition to a low enriched uranium (LEU) composition. These studies have considered a wide variety of LEU plate-type fuels to replace the current HEU fuel. Continuing to investigate potential alternatives to the present HEU fuel form, this study presents a preliminary analysis of TRIGA® fuel within the current ATR fuel envelopes and compares it to the functional requirements delineated by the Naval Reactors Program, which includes: greater than 4.8E+14 fissions/s/g of 235U, a fast to thermal neutron flux ratio that is less than 5% deviation of its current value, a constant cycle power within the corner lobes, and an operational cycle length of 56 days at 120 MW. Other parameters outside those put forth by the Naval Reactors Program which are investigated herein include axial and radial power profiles, effective delayed neutron fraction, and mean neutron generation time.

  8. Reactor Physics Scoping and Characterization Study on Implementation of TRIGA Fuel in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    The Advanced Test Reactor (ATR), under the Reduced Enrichment for Research and Test Reactors (RERTR) Program and the Global Threat Reduction Initiative (GTRI), is conducting feasibility studies for the conversion of its fuel from a highly enriched uranium (HEU) composition to a low enriched uranium (LEU) composition. These studies have considered a wide variety of LEU plate-type fuels to replace the current HEU fuel. Continuing to investigate potential alternatives to the present HEU fuel form, this study presents a preliminary analysis of TRIGA® fuel within the current ATR fuel envelopes and compares it to the functional requirements delineated by the Naval Reactors Program, which includes: greater than 4.8E+14 fissions/s/g of 235U, a fast to thermal neutron flux ratio that is less than 5% deviation of its current value, a constant cycle power within the corner lobes, and an operational cycle length of 56 days at 120 MW. Other parameters outside those put forth by the Naval Reactors Program which are investigated herein include axial and radial power profiles, effective delayed neutron fraction, and mean neutron generation time.

  9. Design of high temperature Engineering Test Reactor (HTTR)

    International Nuclear Information System (INIS)

    Construction of High Temperature Engineering Test Reactor (HTTR) is now underway to establish and upgrade basic technologies for HTGRs and to conduct innovative basic research at high temperatures. The HTTR is a graphite-moderated and helium gas-cooled reactor with 30 MW in thermal output and outlet coolant temperature of 850degC for rated operation and 950degC for high temperature test operation. It is planned to conduct various irradiation tests for fuels and materials, safety demonstration tests and nuclear heat application tests. JAERI received construction permit of HTTR reactor facility in February 1990 after 22 months of safety review. This report summarizes evaluation of nuclear and thermal-hydraulic characteristics, design outline of major systems and components, and also includes relating R and D result and safety evaluation. Criteria for judgment, selection of postulated events, major analytical conditions for anticipated operational occurrences and accidents, computer codes used in safety analysis and evaluation of each event are presented in the safety evaluation. (author)

  10. Trends in large-scale testing of reactor structures

    International Nuclear Information System (INIS)

    Large-scale tests of reactor structures have been conducted at Sandia National Laboratories since the late 1970s. This paper describes a number of different large-scale impact tests, pressurization tests of models of containment structures, and thermal-pressure tests of models of reactor pressure vessels. The advantages of large-scale testing are evident, but cost, in particular limits its use. As computer models have grown in size, such as number of degrees of freedom, the advent of computer graphics has made possible very realistic representation of results - results that may not accurately represent reality. A necessary condition to avoiding this pitfall is the validation of the analytical methods and underlying physical representations. Ironically, the immensely larger computer models sometimes increase the need for large-scale testing, because the modeling is applied to increasing more complex structural systems and/or more complex physical phenomena. Unfortunately, the cost of large-scale tests is a disadvantage that will likely severely limit similar testing in the future. International collaborations may provide the best mechanism for funding future programs with large-scale tests. (author)

  11. Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors

    International Nuclear Information System (INIS)

    The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform various integral effect tests for design, operation, and safety regulation of pressurized water reactors. During the first phase of this project (1997.8∼2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished: a full-height, 1/300-volume-scaled full pressure facility for APR1400, an evolutionary pressurized water reactor that was developed by Korean industry. Main objectives of the present phase (2002.4∼2005.2), was to optimize the facility design and to construct the experimental facility. We have performed following researches: 1) Optimization of the basic design of the thermal-hydraulic integral effect test facility for PWRs - ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) - Reduced height design for APR1400 (+ specific design features of KSNP safety injection systems) - Thermal-hydraulic scaling based on three-level scaling methodology by Ishii et al. 2) Construction of the ATLAS facility - Detailed design of the test facility - Manufacturing and procurement of components - Installation of the facility 3) Development of supporting technology for integral effect tests - Development and application of advanced instrumentation technology - Preliminary analysis of test scenarios - Development of experimental procedures - Establishment and implementation of QA system/procedure

  12. Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Baek, W. P.; Song, C. H.; Kim, Y. S. and others

    2005-02-15

    The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform various integral effect tests for design, operation, and safety regulation of pressurized water reactors. During the first phase of this project (1997.8{approx}2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished: a full-height, 1/300-volume-scaled full pressure facility for APR1400, an evolutionary pressurized water reactor that was developed by Korean industry. Main objectives of the present phase (2002.4{approx}2005.2), was to optimize the facility design and to construct the experimental facility. We have performed following researches: 1) Optimization of the basic design of the thermal-hydraulic integral effect test facility for PWRs - ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) - Reduced height design for APR1400 (+ specific design features of KSNP safety injection systems) - Thermal-hydraulic scaling based on three-level scaling methodology by Ishii et al. 2) Construction of the ATLAS facility - Detailed design of the test facility - Manufacturing and procurement of components - Installation of the facility 3) Development of supporting technology for integral effect tests - Development and application of advanced instrumentation technology - Preliminary analysis of test scenarios - Development of experimental procedures - Establishment and implementation of QA system/procedure.

  13. Design and Status of RERTR Irradiation Tests in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Wachs; Richard G. Ambrosek; Gray Chang; Mitchell K. Meyer

    2006-10-01

    Irradiation testing of U-Mo based fuels is the central component of the Reduced Enrichment for Research and Test Reactors (RERTR) program fuel qualification plan. Several RERTR tests have recently been completed or are planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory in Idaho Falls, ID. Four mini-plate experiments in various stages of completion are described in detail, including the irradiation test design, objectives, and irradiation conditions. Observations made during and after the in-reactor RERTR-7A experiment breach are summarized. The irradiation experiment design and planned irradiation conditions for full-size plate test are described. Progress toward element testing will be reviewed.

  14. Advanced Test Reactor National Scientific User Facility Partnerships

    Energy Technology Data Exchange (ETDEWEB)

    Frances M. Marshall; Todd R. Allen; Jeff B. Benson; James I. Cole; Mary Catherine Thelen

    2012-03-01

    In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of

  15. Reactor vessel integrity analysis based upon large scale test results

    International Nuclear Information System (INIS)

    The fracture mechanics analysis of a nuclear reactor pressure vessel is discussed to illustrate the impact of knowledge gained by large scale testing on the demonstration of the integrity of such a vessel. The analysis must be able to predict crack initiation, arrest and reinitiation. The basis for the capability to make each prediction, including the large scale test information which is judged appropriate, is identified and the confidence in the applicability of the experimental data to a vessel is discussed. Where there is inadequate data to make a prediction with confidence or where there are apparently conflicting data, recommendations for future testing are presented. 15 refs., 6 figs.. 1 tab

  16. Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors

    International Nuclear Information System (INIS)

    The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform the tests for design, operation, and safety regulation of pressurized water reactors. In the first phase of this project (1997.8∼2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished. In the second phase (2002.4∼2005.2), an optimized design of the ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) was established and the construction of the facility was almost completed. In the third phase (2005.3∼2007.2), the construction and commission tests of the ATLAS are to be completed and some first-phase tests are to be conducted

  17. New results from pulse tests in the CABRI reactor

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, F.; Papin, J.; Haessler, M. [Institut de Proterction et de Surete Nucleaire, Saint Paul Lez Durance (France)] [and others

    1996-03-01

    At the 21st and 22nd WRSM (1,2), the motivation and objectives of the French program on the behaviour of high burnup PWR fuel under RIA conditions in the CABRI test reactor has been presented. The major results of the three first tests of the test matrix were presented and in particular REP-Na1, which failed at an unexpected low level of fuel enthalpy, was exposed to the community of nuclear safety research. At this time, no final understanding was reached for the origin of the failure. This objective is reached now. Two further tests, REP-Na4 and 5, have been performed in 1995, they demonstrated a satisfactory and safe behaviour by resisting to the early phase of severe loading during the RIA pulse test. Further examination work and analytical testing is in progress and the next tests with MOX fuel are being prepared.

  18. Fuels for research and test reactors, status review: July 1982

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, D.

    1982-12-01

    A thorough review is provided on nuclear fuels for steady-state thermal research and test reactors. The review was conducted to provide a documented data base in support of recent advances in research and test reactor fuel development, manufacture, and demonstration in response to current US policy on availability of enriched uranium. The review covers current fabrication practice, fabrication development efforts, irradiation performance, and properties affecting fuel utilization, including thermal conductivity, specific heat, density, thermal expansion, corrosion, phase stability, mechanical properties, and fission-product release. The emphasis is on US activities, but major work in Europe and elsewhere is included. The standard fuel types discussed are the U-Al alloy, UZrH/sub x/, and UO/sub 2/ rod fuels. Among new fuels, those given major emphasis include H/sub 3/Si-Al dispersion and UO/sub 2/ caramel plate fuels.

  19. Fuels for research and test reactors, status review: July 1982

    International Nuclear Information System (INIS)

    A thorough review is provided on nuclear fuels for steady-state thermal research and test reactors. The review was conducted to provide a documented data base in support of recent advances in research and test reactor fuel development, manufacture, and demonstration in response to current US policy on availability of enriched uranium. The review covers current fabrication practice, fabrication development efforts, irradiation performance, and properties affecting fuel utilization, including thermal conductivity, specific heat, density, thermal expansion, corrosion, phase stability, mechanical properties, and fission-product release. The emphasis is on US activities, but major work in Europe and elsewhere is included. The standard fuel types discussed are the U-Al alloy, UZrH/sub x/, and UO2 rod fuels. Among new fuels, those given major emphasis include H3Si-Al dispersion and UO2 caramel plate fuels

  20. Radial lean direct injection burner

    Science.gov (United States)

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  1. Acceptance test of graphite components in nuclear reactor

    International Nuclear Information System (INIS)

    The HTTR is the first high temperature gas-cooled reactor in Japan. It is a test reactor with thermal power of 30 MW and coolant outlet temperature of 950degC at maximum. To achieve high temperature coolant core internals were made of graphite and carbon materials due to their excellent thermal resistivity. After fabrication of graphite and carbon components at works they were installed in the HTTR, and now it is in the power up testing stage. Concerning the inspection standard of the graphite and carbon components, nondomestic standard exists as main components in the nuclear reactor. It is necessary, therefore, to prescribe the inspection standards for the HTTR graphite components. Many research and developments in relation to the inspection standard, e.g. in the research field of nondestructive examination of the graphite material, had been performed, and then the JAERI established the inspection standard. The acceptance test of the graphite and carbon components was carried out based on the inspection standard. This paper prescribes the outline of the established inspection standard. (author)

  2. Low NO sub x regenerative burner

    Energy Technology Data Exchange (ETDEWEB)

    Hovis, J.E.; Finke, H.P.

    1991-01-08

    This patent describes improvements in a regenerative burner having a regenerative bed, a burner port and a fuel nozzle. The improvement comprises: a burner baffle having apertures therein for selectively directing combustion air and inducing combustion gas recirculation into a primary combustion zone for suppressing NO{sub x} emissions, the baffle and the fuel nozzle being positioned substantially adjacent the burner port and being substantially coplanar in a plane perpendicular to a burner axis.

  3. 77 FR 36014 - Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors

    Science.gov (United States)

    2012-06-15

    ... COMMISSION Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors AGENCY: Nuclear...-1277, ``Initial Test Program of Emergency Core Cooling Systems for Boiling- Water Reactors.'' This... testing features of emergency core cooling systems (ECCSs) for boiling-water reactors (BWRs)....

  4. Flat flame burner

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Y.; Mitsudomi, H.

    1976-03-09

    Osaka Gas Co., Ltd.'s new flat-flame burner has an air-swirling chamber with a flame opening in one side so constructed that combustion gas is forced out from the flame opening in a spiral direction by the swirling air current within the air chamber. The orifice effect of permitting the flame to emanate from a small opening to an unconfined outer space assures formation of a flat flame spreading out over a very wide area, thereby ensuring very rapid, uniform and highly efficient heat treatment of an article to be heated. With the present invention, moreover, it is possible to materially reduce the thickness of the overall device.

  5. Test analysis of pulverizer starting up or shutting down without burner firing oil%锅炉磨煤机启停不投油的试验分析

    Institute of Scientific and Technical Information of China (English)

    贺光宇; 陈祥

    2015-01-01

    针对火电厂磨煤机启停时锅炉需投油助燃,增加发电成本的问题,华能大坝电厂对现有的磨煤机启停规程进行调整,对4台锅炉的磨煤机在设定条件下进行了启停不投油试验,确定了磨煤机启停时对应的燃烧器不投助燃油的锅炉运行条件。应用结果表明:实施磨煤机启停燃烧器不投油技术后,大坝电厂4台机组2014年至少节约燃油575 t,约合人民币413万多元,经济效益非常显著。%Aiming at the problem that when the pulverizer starting up or shutting down,burner need add oil to support hearth combustion,increasing the generation cost of coal-fired plant,under designed condition,makes the test of pulverizer starting up or shutting down without burner firing oil in Huaneng Ningxia Daba Power Plant,confirms the boiler running conditions of burner without the oil when the pulverizer starting up or shutting down. The application result shows that:after to implement the technology,4 units at least saving burning oil 575 ton,or about 4 130 000 Chinese yuan in Huaneng Ningxia Daba Power Plant,the economic benefit is evident.

  6. Conceptual design study of a scyllac fusion test reactor

    International Nuclear Information System (INIS)

    The report describes a conceptual design study of a fusion test reactor based on the Scyllac toroidal theta-pinch approach to fusion. It is not the first attempt to describe the physics and technology required for demonstrating scientific feasibility of the approach, but it is the most complete design in the sense that the physics necessary to achieve the device goals is extrapolated from experimentally tested MHD theories of toroidal systems,and it uses technological systems whose engineering performance has been carefully calculated to ensure that they meet the machine requirements

  7. Conceptual design study of a scyllac fusion test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Thomassen, K.I. (comp.)

    1975-07-01

    The report describes a conceptual design study of a fusion test reactor based on the Scyllac toroidal theta-pinch approach to fusion. It is not the first attempt to describe the physics and technology required for demonstrating scientific feasibility of the approach, but it is the most complete design in the sense that the physics necessary to achieve the device goals is extrapolated from experimentally tested MHD theories of toroidal systems,and it uses technological systems whose engineering performance has been carefully calculated to ensure that they meet the machine requirements.

  8. Advanced Test Reactor National Scientific User Facility Progress

    Energy Technology Data Exchange (ETDEWEB)

    Frances M. Marshall; Todd R. Allen; James I. Cole; Jeff B. Benson; Mary Catherine Thelen

    2012-10-01

    The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) is one of the world’s premier test reactors for studying the effects of intense neutron radiation on reactor materials and fuels. The ATR began operation in 1967, and has operated continuously since then, averaging approximately 250 operating days per year. The combination of high flux, large test volumes, and multiple experiment configuration options provide unique testing opportunities for nuclear fuels and material researchers. The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected highly-enriched uranium fueled, reactor with a maximum operating power of 250 MWth. The ATR peak thermal flux can reach 1.0 x1015 n/cm2-sec, and the core configuration creates five main reactor power lobes (regions) that can be operated at different powers during the same operating cycle. In addition to these nine flux traps there are 68 irradiation positions in the reactor core reflector tank. The test positions range from 0.5” to 5.0” in diameter and are all 48” in length, the active length of the fuel. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. Goals of the ATR NSUF are to define the cutting edge of nuclear technology research in high temperature and radiation environments, contribute to improved industry performance of current and future light water reactors, and stimulate cooperative research between user groups conducting basic and applied research. The ATR NSUF has developed partnerships with other universities and national laboratories to enable ATR NSUF researchers to perform research at these other facilities, when the research objectives

  9. Reactor power cutback system test experience at YGN 4

    International Nuclear Information System (INIS)

    YGN 3 and 4 are the nuclear power plants having System 80 characteristics with a rated thermal output of 2815 MWth and a nominal net electrical output of 1040 MWe. YGN 3 achieved commercial operation on March 31, 1995 and YGN 4 completed Power Ascension Test (PAT) at 20%, 50%, 80% and 100% power by September 23, 1995. YGN 3 and 4 design incorporates the Reactor POwer Cutback System (RPCS) which reduces plant trips caused by Loss of Load (LOL)/ Turbine Trip and Loss of One Main Feedwater Pump (LOMFWP). The key design objective of the RPCS is to improve overall plant availability and performance, while minimizing challenges to the plant safety systems. The RPCS is designed to rapidly reduce reactor power by dropping preselected Control Element Assemblies (CEAs) while other NSSS control systems maintain process parameters within acceptable ranges. Extensive RPCS related tests performed during the initial startup of YGN 4 demonstrated that the RPCS can maintain the reactor on-line without opening primary or secondary safety valves and without actuating the Engineered Safety Features Actuation System (ESFAS). It is expected that use of the RPCS at YGN will increase the overall availability of the units and reduce the number of challenges to plant safety systems

  10. Advanced Gas Reactor (AGR)-5/6/7 Fuel Irradiation Experiments in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    A. Joseph Palmer; David A. Petti; S. Blaine Grover

    2014-04-01

    The United States Department of Energy’s Very High Temperature Reactor (VHTR) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which each consist of at least five separate capsules, are being irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gases also have on-line fission product monitoring the effluent from each capsule to track performance of the fuel during irradiation. The first two experiments (designated AGR-1 and AGR-2), have been completed. The third and fourth experiments have been combined into a single experiment designated AGR-3/4, which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. The design of the fuel qualification experiment, designated AGR-5/6/7, is well underway and incorporates lessons learned from the three previous experiments. Various design issues will be discussed with particular details related to selection of thermometry.

  11. The Jules Horowitz reactor (JHR), a European material testing reactor (MTR), with extended experimental capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Ballagny, A.; Bergamaschi, Y.; Bouilloux, Y.; Bravo, X.; Guigon, B.; Rommens, M.; Tremodeux, P. [CEA Cadarache, Dir. de l' Energie Nucleaire DEN, 13 - Saint-Paul-lez-Durance (France)]|[CEA Saclay Dir. de l' Energie Nucleaire DEN, 91 - Gif sur Yvette (France)

    2003-07-01

    The Jules Horowitz Reactor (JHR) is the European MTR (Material Testing Reactor) designed to provide, after 2010, the necessary knowledge for keeping the existing power plants in operation and to design innovative reactors types with new objectives such as: minimizing the radioactive waste production, taking into account additional safety requirements, preventing risks of nuclear proliferation... To achieve such an ambitious objective. The JHR is designed with a high flexibility in order to satisfy the current demand from European industry, research and to be able to accommodate future requirements. The JHR will offer a wide range of performances and services in gathering, in a single site at Cadarache, all the necessary functionalities and facilities for an effective production of results: e.g. fuel fabrication laboratories, preparation of the instrumented devices, interpretation of the experiments, modelling. The JHR must rely on a top level scientific environment based on experts teams from CEA and EC and local universities. With a thermal flux of 7,4.10{sup 14} ncm{sup -2} s{sup -1} and a fast flux of 6,4.10{sup 14} ncm{sup -2}s{sup -1}, it is possible to carry out irradiation experiments on materials and fuels whatever the reactor type considered. It will also be possible to carry out locally, fast neutron irradiation to achieve damage effect up to 25 dpa/year. (dpa = displacement per atom.) The study of the fuels behavior under accidental conditions, from analytical experiments, on a limited amount of irradiated fuel, is a major objective of the project. These oriented safety tests are possible by taking into account specific requirements in the design of the facility such as the tightness level of the containment building, the addition of an alpha hot cell and a laboratory for on line fission products measurement. (authors)

  12. Reactor Testing and Qualification: Prioritized High-level Criticality Testing Needs

    Energy Technology Data Exchange (ETDEWEB)

    S. Bragg-Sitton; J. Bess; J. Werner; G. Harms; S. Bailey

    2011-09-01

    Researchers at the Idaho National Laboratory (INL) were tasked with reviewing possible criticality testing needs to support development of the fission surface power system reactor design. Reactor physics testing can provide significant information to aid in development of technologies associated with small, fast spectrum reactors that could be applied for non-terrestrial power systems, leading to eventual system qualification. Several studies have been conducted in recent years to assess the data and analyses required to design and build a space fission power system with high confidence that the system will perform as designed [Marcille, 2004a, 2004b; Weaver, 2007; Parry et al., 2008]. This report will provide a summary of previous critical tests and physics measurements that are potentially applicable to the current reactor design (both those that have been benchmarked and those not yet benchmarked), summarize recent studies of potential nuclear testing needs for space reactor development and their applicability to the current baseline fission surface power (FSP) system design, and provide an overview of a suite of tests (separate effects, sub-critical or critical) that could fill in the information database to improve the accuracy of physics modeling efforts as the FSP design is refined. Some recommendations for tasks that could be completed in the near term are also included. Specific recommendations on critical test configurations will be reserved until after the sensitivity analyses being conducted by Los Alamos National Laboratory (LANL) are completed (due August 2011).

  13. Final Physics Report for the Engineering Test Reactor

    International Nuclear Information System (INIS)

    This report is a summary of the physics design work performed on the Engineering Test Reactor. The ETR presents computational difficulties not found in other reactors because of the large number of experimental holes in the core. The physics of the ETR depends strongly upon the contents of the in-core experimental facilities. In order to properly evaluate the reactor' taking into account the experiments in the core, multi-region, two-dimensional calculations are required. These calculations require the use of a large computer such as the Remington Rand Univac and are complex and expensive enough to warrant a five-stage program: 1. In the early stages of design, only preliminary two-dimensional calculations were performed .in order to obtain a rough idea of the general behavior of the reactor and its critical mass with tentative experiments in place. 2. A large amount of work was carried out in which the reactor was approximated as one with a uniform homogeneous core. With this model, detailed studies were carried out to investigate the feasibility and to obtain general design data on such points as the design and properties of the gray and black control rods, the design of the beryllium reflector, gamma and neutron heating, the use of burnable poisons, etc. In performing these calculations, use was made of the IBM 650 PROD code obtained from KAPL. 3. With stages 1 and 2 carried out, two-dimensional calculations of the core at start-up conditions were performed on the Univac computer. 4. Detailed two-dimensional calculations of the properties of the ETR with a proposed first set of experiments in place were carried out. 5. A series of nuclear tests were performed at the reactivity measurements facility at the MTR site in order to confirm the validity of the analytical techniques in physics analysis. In performing the two-dimensional Univac calculations, the MUG code developed by KAPL and the Cuthill code developed at the David Taylor Model Basin were utilized. In

  14. Fusion-Fission Burner for Transuranic Actinides

    Science.gov (United States)

    Choi, Chan

    2013-10-01

    The 14-MeV DT fusion neutron spectrum from mirror confinement fusion can provide a unique capability to transmute the transuranic isotopes from light water reactors (LWR). The transuranic (TRU) actinides, high-level radioactive wastes, from spent LWR fuel pose serious worldwide problem with long-term decay heat and radiotoxicity. However, ``transmuted'' TRU actinides can not only reduce the inventory of the TRU in the spent fuel repository but also generate additional energy. Typical commercial LWR fuel assemblies for BWR (boiling water reactor) and PWR (pressurized water reactor) measure its assembly lengths with 4.470 m and 4.059 m, respectively, while its corresponding fuel rod lengths are 4.064 m and 3.851 m. Mirror-based fusion reactor has inherently simple geometry for transmutation blanket with steady-state reactor operation. Recent development of gas-dynamic mirror configuration has additional attractive feature with reduced size in central plasma chamber, thus providing a unique capability for incorporating the spent fuel assemblies into transmutation blanket designs. The system parameters for the gas-dynamic mirror-based hybrid burner will be discussed.

  15. Optimisation of safety parameters in fast breeder test reactor

    International Nuclear Information System (INIS)

    Full text: Optimisation of safety parameters is an important aspect to be considered in the design of nuclear power plant and also becomes extremely important activity to be followed up during the commissioning and operating phases of the plant taking into account the operational feed back and review of incidental situations and available diversity and reliability. Otherwise, the spurious/ superfluous trips on the reactor besides affecting the availability of the plant, initiate plant transients causing stress for the plant equipment resulting in reduction of plant life. This activity has a significant role to play in attaining the maximum availability of the plant, without compromising safety. The study and evolution of optimisation process in fast breeder test reactor (FBTR); at Kalpakkam has been an interesting and rewarding experience

  16. Decontamination and Decommissioning of the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    E. Perry; J. Chrzanowski; K. Rule; M. Viola; M. Williams; R. Strykowsky

    1999-11-01

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a-kind, tritium-fueled fusion research reactor that ceased operation in April 1997. The Decontamination and Decommissioning (D and D) of the TFTR is scheduled to occur over a period of three years beginning in October 1999. This is not a typical Department of Energy D and D Project where a facility is isolated and cleaned up by ''bulldozing'' all facility and hardware systems to a greenfield condition. The mission of TFTR D and D is to: (a) surgically remove items which can be re-used within the DOE complex, (b) remove tritium contaminated and activated systems for disposal, (c) clear the test cell of hardware for future reuse, (d) reclassify the D-site complex as a non-nuclear facility as defined in DOE Order 420.1 (Facility Safety) and (e) provide data on the D and D of a large magnetic fusion facility. The 100 cubic meter volume of the donut-shaped reactor makes it the second largest fusion reactor in the world. The record-breaking deuterium-tritium experiments performed on TFTR resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 Mev neutrons. The total tritium content within the vessel is in excess of 7,000 Curies while dose rates approach 75 mRem/hr. These radiological hazards along with the size and shape of the Tokamak present a unique and challenging task for dismantling.

  17. PROTOTYPE EVALUATION OF COMMERCIAL SECOND GENERATION LOW-NO BURNER PERFORMANCE AND SULFUR CAPTURE

    Science.gov (United States)

    The report gives results of pilot-scale combustion tests of a Riley Stoker second-generation low-NOx burner combined with dry sorbent injection for SO2 control. The burner design is based on the distributed mixing concept. Combustion tests were conducted at 100 million Btu/hr in ...

  18. In-reactor optical dosimetry in high-temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    The applicability of fused silica core optical fibres to in-reactor dosimetry was demonstrated at elevated temperatures and a special irradiation rig was developed for realizing high-temperature optical dosimetry in a high-temperature test reactor (HTTR) at the Oarai Research Establishment of JAERI (Japan Atomic Energy Research Institute). The paper will describe the present status of preparation for the high-temperature dosimetry in HTTR, utilising radiation-resistant optical fibres and radioluminescent materials. Temperature measurement with a high-speed response is the main target for the present optical dosimetry, which could be applied for monitoring transient behaviours of the HTTR. This could be realised by measuring the intensity of thermoluminescence and black body radiation in the infrared region. For monitoring reactor powers, optical measurements in the visible region are essential. At present, the measurement of the intensity of Cerenkov radiation is the most promising area of study. Other possibilities with radioluminescent materials having luminescent peaks in the visible region are under consideration. One of the candidates will be silica, which has a robust radioluminescent peak at 450 nm. (author)

  19. Reactor Accident Analysis Methodology for the Advanced Test Reactor Critical Facility Documented Safety Analysis Upgrade

    International Nuclear Information System (INIS)

    The regulatory requirement to develop an upgraded safety basis for a DOE Nuclear Facility was realized in January 2001 by issuance of a revision to Title 10 of the Code of Federal Regulations Section 830 (10 CFR 830). Subpart B of 10 CFR 830, ''Safety Basis Requirements,'' requires a contractor responsible for a DOE Hazard Category 1, 2, or 3 nuclear facility to either submit by April 9, 2001 the existing safety basis which already meets the requirements of Subpart B, or to submit by April 10, 2003 an upgraded facility safety basis that meets the revised requirements. 10 CFR 830 identifies Nuclear Regulatory Commission (NRC) Regulatory Guide 1.70, ''Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants'' as a safe harbor methodology for preparation of a DOE reactor documented safety analysis (DSA). The regulation also allows for use of a graded approach. This report presents the methodology that was developed for preparing the reactor accident analysis portion of the Advanced Test Reactor Critical Facility (ATRC) upgraded DSA. The methodology was approved by DOE for developing the ATRC safety basis as an appropriate application of a graded approach to the requirements of 10 CFR 830

  20. High flux testing reactor Petten. Replacement of the reactor vessel and connected components. Overall report

    International Nuclear Information System (INIS)

    The project of replacing the HFR originated in 1974 when results of several research programmes confirmed severe neutron embrittlement of aluminium alloys suggesting a limited life of the existing facility. This report contains the detailed chronology of events concerning preparation and execution of the replacement. After a 14 months' outage the reactor resumed routine operation on 14th February, 1985. At the end of several years of planning and preparation the reconstruction proceded in the following steps: unloading of the old core, decay of short-lived radioactivity in December 1983, removal of the old tank and of its peripheral equipment in January-February 1984, segmentation and waste disposal of the removed components in March-April, decontamination of the pools, bottom penetration overhauling in May-June, installation of the new tank and other new components in July-September, testing and commissioning, including minor modifications in October-December, and, trials runs and start-up preparation in January-February 1985. The new HFR Petten features increased and improved experimental facilities. Among others the obsolete thermal columns was replaced by two high flux beam tubes. Moreover the new plant has been designed for future increases of reactor power and neutron fluxes. For the next three to four years the reactor has to cope with a large irradiation programme, claiming its capacity to nearly 100%

  1. Local stability tests in Dresden 2 boiling water reactor

    International Nuclear Information System (INIS)

    This report presents the results of a local stability test performed at Dresden Unit 2 in May 1983 to determine the effect of a new fuel element design on local channel stability. This test was performed because the diameter of the new fuel rods increases the heat transfer coefficient, making the reactor more responsive and, thus, more susceptible to instabilities. After four of the new fuel elements with a 9 x 9 array of fuel rods were loaded into Dresden 2, the test was performed by inserting an adjacent control rod all the way in and then withdrawing it to its original position at maximum speed. At the moment of the test, reactor conditions were 52.7% power and 38.9% flow. Both the new 9 x 9 fuel elements and the standard 8 x 8 ones proved to be locally stable when operating at minimum pump speed at the beginning of cycle in Dresden 2, and no significant difference was found between the behavior of the two fuel types. Finally, Dresden 2 showed a high degree of stability during control rod and normal noise type perturbations

  2. Fracture toughness test methods and examples for fusion reactor materials

    International Nuclear Information System (INIS)

    This paper introduces the importance of the evaluation of fracture toughness in nuclear fusion reactor structural materials, and the fracture toughness evaluation methods that are used as the standards and their actual examples. It also discusses the problems involved in the standardized approach and the efforts for the technology improvement. To evaluate the material life under nuclear fusion reactor environment, fracture toughness measurement after neutron irradiation is indispensable. Due to a limitation in the irradiation area size of an irradiation reactor, and to avoid the temperature difference in a specimen, the size of the specimen is required to be minimized, which is different from the common standards. As for the size effect of the test specimen, toughness value tends to decrease when ligament length is 7 mm or below. The main problems and challenges are as follows. (1) As for the tendency that fracture toughness value decreases along with the miniaturization of the ligament length, it is necessary to elucidate the mechanism of size effects, and to develop the correction method for size effects. (2) As for the issues of the curve shape and application to irradiation time in the master curve method, it is necessary to review the data checking method and plastic constraint conditions for crack tip M = 30 that is stipulated in ASTM E1921, and to elucidate the material dependence of master curve shape. (A.O.)

  3. Program plan for decontamination and decommissioning the Materials Testing Reactor at the INEL

    International Nuclear Information System (INIS)

    A discussion is presented of a program plan developed for the dismantling of the Materials Testing Reactor located in the Testing Reactor Area (TRA) of the Idaho National Engineering Laboratory. Included are the scope of work, dismantling problems resulting from the nature of construction of the MTR, and a program plan for physically dismantling the reactor

  4. Alpha Particle Physics Experiments in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Zweben, S.J.; et al.

    1998-12-14

    Alpha particle physics experiments were done on the Tokamak Fusion Test Reactor (TFTR) during its deuterium-tritium (DT) run from 1993-1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single-particle confinement model in magnetohydrodynamic (MHD) quiescent discharges. Also, the observed alpha particle interactions with sawteeth, toroidal Alfvén eigenmodes (TAE), and ion cyclotron resonant frequency (ICRF) waves were roughly consistent with theoretical modeling. This paper reviews what was learned and identifies what remains to be understood.

  5. Reduced enrichment for research and test reactors: Proceedings

    International Nuclear Information System (INIS)

    November 9--10, 1978, marked the first of what has become an annual event--the International Meeting on Reduced Enrichment for Research and Test Reactors (RERTR). The meeting brought together for the first time many people who became major program participants in later years. This first meeting emphasized fuel development, and it established the basis for all later meetings. Believing that the proceedings of this first meeting are important as a historical record of the beginning of the international RERTR effort. This report provides presentations and discussions of this original meeting. Individual papers have been cataloged separately

  6. Entrained Flow Reactor Test of Potassium Capture by Kaolin

    OpenAIRE

    Wang, Guoliang; Jensen, Peter Arendt; Hao WU; Bøjer, Martin; Jappe Frandsen, Flemming; Glarborg, Peter

    2015-01-01

    In the present study a method to simulate the reaction between gaseous KCl and kaolin at suspension fired condition was developed using a pilot-scale entrained flow reactor (EFR). Kaolin was injected into the EFR for primary test of this method. By adding kaolin, KCl can effectively be captured, forming water-insoluble K-aluminosilicate. The amount of K captured by 1 g kaolin rose when increasing the molar ratio of K/Si in the reactant. Changing of reaction temperature from 1100 °C to 1300 °C...

  7. Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hogerton, John

    1964-01-01

    This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.

  8. LIGHT WATER REACTOR ACCIDENT TOLERANT FUELS IRRADIATION TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, William Jonathan [Idaho National Laboratory; Barrett, Kristine Eloise [Idaho National Laboratory; Chichester, Heather Jean MacLean [Idaho National Laboratory

    2015-09-01

    The purpose of Accident Tolerant Fuels (ATF) experiments is to test novel fuel and cladding concepts designed to replace the current zirconium alloy uranium dioxide (UO2) fuel system. The objective of this Research and Development (R&D) is to develop novel ATF concepts that will be able to withstand loss of active cooling in the reactor core for a considerably longer time period than the current fuel system while maintaining or improving the fuel performance during normal operations, operational transients, design basis, and beyond design basis events. It was necessary to design, analyze, and fabricate drop-in capsules to meet the requirements for testing under prototypic LWR temperatures in Idaho National Laboratory's Advanced Test Reactor (ATR). Three industry led teams and one DOE team from Oak Ridge National Laboratory provided fuel rodlet samples for their new concepts for ATR insertion in 2015. As-built projected temperature calculations were performed on the ATF capsules using the BISON fuel performance code. BISON is an application of INL’s Multi-physics Object Oriented Simulation Environment (MOOSE), which is a massively parallel finite element based framework used to solve systems of fully coupled nonlinear partial differential equations. Both 2D and 3D models were set up to examine cladding and fuel performance.

  9. Fast Shutdown System tests in the Georgia Tech Research Reactor

    International Nuclear Information System (INIS)

    The Fast Shutdown System (FSS) is a new safety system design concept being considered for in installation in the Savannah River (SRS) production reactors. This system is expected to mitigate the consequences of a Design Basis Loss of Coolant Accident, and therefore allow higher operational power levels. A test of this system in the Georgia Tech Research Reactor is proposed to demonstrate the efficacy of this concept. Three tests will be conducted at full power (5MW) and one at low power (100kw). Two full power tests will be conducted with the FSS rod backfilled with one (1) atmosphere of He-4, and one with the rod evacuated. The low power conducted with the FSS rod evacuated. Neutron flux and pressure data will be collected with an independent data acquisition system (DAS). Safety issues associated with the performance of the Fast Shutdown System experiments are addressed in this report. The credible accident scenarios were analyzed using worst case scenarios to demonstrate that no significant nuclear or personnel safety hazards would result from the performance of the proposed experiments

  10. Computational investigations of low-emission burner facilities for char gas burning in a power boiler

    Science.gov (United States)

    Roslyakov, P. V.; Morozov, I. V.; Zaychenko, M. N.; Sidorkin, V. T.

    2016-04-01

    Various variants for the structure of low-emission burner facilities, which are meant for char gas burning in an operating TP-101 boiler of the Estonia power plant, are considered. The planned increase in volumes of shale reprocessing and, correspondingly, a rise in char gas volumes cause the necessity in their cocombustion. In this connection, there was a need to develop a burner facility with a given capacity, which yields effective char gas burning with the fulfillment of reliability and environmental requirements. For this purpose, the burner structure base was based on the staging burning of fuel with the gas recirculation. As a result of the preliminary analysis of possible structure variants, three types of early well-operated burner facilities were chosen: vortex burner with the supply of recirculation gases into the secondary air, vortex burner with the baffle supply of recirculation gases between flows of the primary and secondary air, and burner facility with the vortex pilot burner. Optimum structural characteristics and operation parameters were determined using numerical experiments. These experiments using ANSYS CFX bundled software of computational hydrodynamics were carried out with simulation of mixing, ignition, and burning of char gas. Numerical experiments determined the structural and operation parameters, which gave effective char gas burning and corresponded to required environmental standard on nitrogen oxide emission, for every type of the burner facility. The burner facility for char gas burning with the pilot diffusion burner in the central part was developed and made subject to computation results. Preliminary verification nature tests on the TP-101 boiler showed that the actual content of nitrogen oxides in burner flames of char gas did not exceed a claimed concentration of 150 ppm (200 mg/m3).

  11. Action Memorandum for the Engineering Test Reactor under the Idaho Cleanup Project

    Energy Technology Data Exchange (ETDEWEB)

    A. B. Culp

    2007-01-26

    This Action Memorandum documents the selected alternative for decommissioning of the Engineering Test Reactor at the Idaho National Laboratory under the Idaho Cleanup Project. Since the missions of the Engineering Test Reactor Complex have been completed, an engineering evaluation/cost analysis that evaluated alternatives to accomplish the decommissioning of the Engineering Test Reactor Complex was prepared adn released for public comment. The scope of this Action Memorandum is to encompass the final end state of the Complex and disposal of the Engineering Test Reactor vessol. The selected removal action includes removing and disposing of the vessel at the Idaho CERCLA Disposal Facility and demolishing the reactor building to ground surface.

  12. Test on the reactor with the intelligent extrapolation criticality device for physical startup experiment

    International Nuclear Information System (INIS)

    The Intelligent Extrapolation Criticality Device is used for automatic counting and automatic extrapolation during the criticality experiment on the reactor. Test must be performed on the zero-power reactor or other reactor before the Device is used. The paper describes the test situation and test results of the Device on the zero-power reactor. The test results show that the Device has the function of automatic counting and automatic extrapolation, the deviation of the extrapolation data is small, and it can satisfy the requirements of physical startup on the reactor. (author)

  13. Action Memorandum for Decommissioning the Engineering Test Reactor Complex under the Idaho Cleanup Project

    International Nuclear Information System (INIS)

    This Action Memorandum documents the selected alternative for decommissioning of the Engineering Test Reactor at the Idaho National Laboratory under the Idaho Cleanup Project. Since the missions of the Engineering Test Reactor Complex have been completed, an engineering evaluation/cost analysis that evaluated alternatives to accomplish the decommissioning of the Engineering Test Reactor Complex was prepared and released for public comment. The scope of this Action Memorandum is to encompass the final end state of the Complex and disposal of the Engineering Test Reactor vessel. The selected removal action includes removing and disposing of the vessel at the Idaho CERCLA Disposal Facility and demolishing the reactor building to ground surface

  14. Light water reactor pressure isolation valve performance testing

    International Nuclear Information System (INIS)

    The Light Water Reactor Valve Performance Testing Program was initiated by the NRC to evaluate leakage as an indication of valve condition, provide input to Section XI of the ASME Code, evaluate emission monitoring for condition and degradation and in-service inspection techniques. Six typical check and gate valves were purchased for testing at typical plant conditions (550F at 2250 psig) for an assumed number of cycles for a 40-year plant lifetime. Tests revealed that there were variances between the test results and the present statement of the Code; however, the testing was not conclusive. The life cycle tests showed that high tech acoustic emission can be utilized to trend small leaks, that specific motor signature measurement on gate valves can trend and indicate potential failure, and that in-service inspection techniques for check valves was shown to be both feasible and an excellent preventive maintenance indicator. Life cycle testing performed here did not cause large valve leakage typical of some plant operation. Other testing is required to fully understand the implication of these results and the required program to fully implement them. (author)

  15. The Advanced Test Reactor as a National Scientific User Facility

    International Nuclear Information System (INIS)

    The Advanced Test Reactor (ATR) has been in operation since 1967 and mainly used to support U.S. Department of Energy (US DOE) materials and fuels research programs. Irradiation capabilities of the ATR and post-irradiation examination capabilities of the Idaho National Laboratory (INL) were generally not being utilized by universities and other potential users due largely to a prohibitive pricing structure. While materials and fuels testing programs using the ATR continue to be needed for US DOE programs such as the Advanced Fuel Cycle Initiative and Next Generation Nuclear Plant, US DOE recognized there was a national need to make these capabilities available to a broader user base. In April 2007, the U.S. Department of Energy designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). As a NSUF, most of the services associated with university experiment irradiation and post-irradiation examinations are provided free-of-charge. The US DOE is providing these services to support U.S. leadership in nuclear science, technology, and education and to encourage active university/industry/laboratory collaboration. The first full year of implementing the user facility concept was 2008 and it was a very successful year. The first university experiment pilot project was developed in collaboration with the University of Wisconsin and began irradiation in the ATR in 2008. Lessons learned from this pilot program will be applied to future NSUF projects. Five other university experiments were also competitively selected in March 2008 from the initial solicitation for proposals. The NSUF now has a continually open process where universities can submit proposals as they are ready. Plans are to invest in new and upgraded capabilities at the ATR, post-irradiation examination capabilities at the INL, and in a new experiment assembly facility to further support the implementation of the user facility concept. Through a newly created Partnership Program

  16. Burner ignition system

    Science.gov (United States)

    Carignan, Forest J.

    1986-01-21

    An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.

  17. The RERTR [Reduced Enrichment Research and Test Reactor] program:

    International Nuclear Information System (INIS)

    The progress of the Reduced Enrichment Research and Test Reactor (RERTR) program is described. After a brief summary of the results which the RERTR program, in collaboration with its many international partners, had achieved by the end of 1986, the activities, results and new developments which ocurred in 1987 are reviewed. Irradiation of the second miniplate series, concentrating on U3Si2-Al and U3Si-Al fuels was completed and postirradiation examinations were performed on many of its miniplates. The whole-core ORR demonstration with U3Si2-Al fuel at 4.8 g U/cm3 was completed at the end of March with excellent results and with 29 elements estimated to have reached at least 40 % average burnup. Good progress was made in the area of LEU usage for the production of fission 99Mo, and in the coordination of safety evaluations related to LEU conversions of U.S. university reactors. Planned activities include testing and demonstrating advanced fuels intended to allow use of reduced enrichment uranium in very-high-performance reactors. Two candidate fuels are U3Si-Al with 19.75 % enrichment and U3Si2-Al with 45 % enrichment. Demonstration of these fuels will include irradiation of full-size elements and, possibly, a full-core demonstration. Achievement of the final program goals is still projected for 1990. This progress could not have been possible without the close international cooperation which has existed from the beginning, and which is essential to the ultimate success of the RERTR program. (Author)

  18. Oil fired boiler/solar tank- and natural gas burner/solar tank-units

    DEFF Research Database (Denmark)

    Furbo, Simon; Vejen, Niels Kristian; Frederiksen, Karsten Vinkler

    1999-01-01

    During the last few years new units consisting of a solar tank and either an oil fired boiler or a natural gas burner have been introduced on the Danish market. Three different marketed units - two based on a natural gas burner and one based on an oil fired boiler - have been tested in a heat...

  19. Review of Transient Fuel Test Results at Sandia National Laboratories and the Potential for Future Fast Reactor Fuel Transient Testing in the Annular Core Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A.; Pickard, Paul S.; Parma, Edward J.; Vernon, Milton E.; Kelly, John; Tikare, Veena [Sandia National Laboratories, Org 6872 MS-1146, PO Box 5800 Albuquerque, New Mexico 87185 (United States)

    2009-06-15

    Reactor driven transient tests of fast reactor fuels may be required to support the development and certification of new fuels for Fast Reactors. The results of the transient fuel tests will likely be needed to support licensing and to provide validation data to support the safety case for a variety of proposed fast fuel types and reactors. In general reactor driven transient tests are used to identify basic phenomenology during reactor transients and to determine the fuel performance limits and margins to failure during design basis accidents such as loss of flow, loss of heat sink, and reactivity insertion accidents. This paper provides a summary description of the previous Sandia Fuel Disruption and Transient Axial Relocation tests that were performed in the Annular Core Research Reactor (ACRR) for the U.S. Nuclear Regulatory Commission almost 25 years ago. These tests consisted of a number of capsule tests and flowing gas tests that used fission heating to disrupt fresh and irradiated MOX fuel. The behavior of the fuel disruption, the generation of aerosols and the melting and relocation of fuel and cladding was recorded on high speed cinematography. This paper will present videos of the fuel disruption that was observed in these tests which reveal stark differences in fuel behavior between fresh and irradiated fuel. Even though these tests were performed over 25 years ago, their results are still relevant to today's reactor designs. These types of transient tests are again being considered by the Advanced Fuel Cycle Initiative to support the Global Nuclear Energy Partnership because of the need to perform tests on metal fuels and transuranic fuels. Because the Annular Core Research Reactor is the only transient test facility available within the US, a brief summary of Sandia's continued capability to perform these tests in the ACRR will also be provided. (authors)

  20. Direct efficiency measurement and analysis of residential oil-fired boiler systems: burner-boiler/furnace efficiency test project. Annual report FY 1978

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.J.; Batey, J.E.; Allen, T.W.; Hoppe, R.J.

    1979-11-01

    A laboratory study is made to measure the efficiencies of residential heating equipment. A direct measurement technique provides an accurate evaluation of the efficiency of residential heating units during full-load and part-load operation. The laboratory data is then used to determine annual fuel consumption and fuel-weighted seasonal efficiency for each heating unit based on typical operating parameters (size of residence, geographic location, and usage). The results of the study include both the evaluation of a wide range of hydronic (hot water) burner-boiler package units and the evaluation of retrofit items which are added to an existing heating system to enhance efficiency and performance. The combination of direct, accurate efficiency measurement, and calculation of annual fuel use provide a standard method for comparison of individual heating units and retrofit modifications on a common and realistic basis. This allows a cost effectiveness analysis to be performed so that direct quantitative comparisons can be made.

  1. Integrated infrastructure initiatives for material testing reactor innovations

    International Nuclear Information System (INIS)

    Highlights: → The EU FP7 MTR+I3 project has initiated a durable cooperation between MTR operators. → Improvements in irradiation test device technology and instrumentation were achieved. → Professional training efforts were streamlined and best practices were exchanged. → A framework has been set up to coordinate and optimize the use of MTRs in the EU. - Abstract: The key goal of the European FP6 project MTR+I3 was to build a durable cooperation between Material Testing Reactor (MTR) operators and relevant laboratories that can maintain European leadership with updated capabilities and competences regarding reactor performances and irradiation technology. The MTR+I3 consortium was composed of 18 partners with a high level of expertise in irradiation-related services for all types of nuclear plants. This project covered activities that foster integration of the MTR community involved in designing, fabricating and operating irradiation devices through information exchange, know-how cross-fertilization, exchanges of interdisciplinary personnel, structuring of key-technology suppliers and professional training. The network produced best practice guidelines for selected irradiation activities. This project allowed to launch or to improve technical studies in various domains dealing with irradiation test device technology, experimental loop designs and instrumentation. Major results are illustrated in this paper. These concern in particular: on-line fuel power determination, neutron screen optimization, simulation of transmutation process, power transient systems, water chemistry and stress corrosion cracking, fission gas measurement, irradiation behaviour of electronic modules, mechanical loading under irradiation, high temperature gas loop technology, heavy liquid metal loop development and safety test instrumentation. One of the major benefits of this project is that, starting from a situation of fragmented resources in a strongly competitive sector, it has

  2. Modeling the critical hydrogen concentration in the AECL test reactor

    International Nuclear Information System (INIS)

    Hydrogen is added to a pressurized water reactor (PWR) to suppress radiolysis and maintain reducing conditions. The minimum hydrogen concentration needed to prevent radiolysis is referred to as the critical hydrogen concentration (CHC). The CHC was measured experimentally in the mid-1990s by Elliot and Stuart in a reactor loop at Atomic Energy of Canada (AECL), and was found to be approximately 0.5 scc/kg for typical PWR conditions. This value is well below industry-normal PWR operating levels near 40 scc/kg. Radiation chemistry models have also predicted a low CHC, even below the AECL experimental result. In the last few years some of the radiation chemical kinetic rate constants have been re-measured and G-values have been reassessed by Elliot and Bartels. These new data have been used in this work to revise the models and compare them with AECL experimental data. It is quite clear that the scavenging yields tabulated for high-LET radiolysis by Elliot and Bartels are not appropriate to use in the present context, where track-escape yields are needed to describe the homogeneous recombination kinetics in the mixed radiation field. In the absence of such data for high temperature PWR conditions, we have used the neutron G-values as fitting parameters. Even with this expedient, the model predicts at least a factor of two smaller CHC than was observed. We demonstrate that to recover the reported CHC result, the chemistry of ammonia impurity must be included. - Highlights: ► Hydrogen is added to nuclear reactor cooling loops to prevent radiolysis. ► Tests at AECL were carried out to determine the critical hydrogen concentration. ► Neutron radiolysis G-values need to be modified to understand the results. ► Ammonia impurity needs to be included for quantitative modeling.

  3. Clinch River Breeder Reactor Plant steam generator: FEW tube test model post test examination

    International Nuclear Information System (INIS)

    The Steam Generator Few Tube Test (FTT) is part of an extensive testing program being carried out in support of the Clinch River Breeder Reactor Plant (CRBRP) steam generator design. The testing of full-length seven-tube evaporator and three-tube superheater models of the CRBRP design was conducted to provide steady-state thermal/hydraulic performance data to full power per tube and to verify the absence of multi-year endurance problems. The problems encountered with the mechanical features of the FTT model design which led to premature test termination and the results of the post-test examination are described

  4. Regenerative ceramic burner has highest efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Gettings, M.

    1986-01-01

    Regenerative ceramic burners consisting of a double gas/air burner and utilising waste heat which is stored via regenerators are described. The system is capable of operating at 1400/sup 0/C, it removes about 85-90% of energy from hot waste gases and exhibits energy savings of 40-60% over cold nozzle mix burners and 20-25% over recuperative burners. (UK).

  5. Ecothal burner development; Ecothal braennarutveckling

    Energy Technology Data Exchange (ETDEWEB)

    Lewin, Thomas [KANTHAL AB, Hallstahammar (Sweden)

    2004-08-01

    A SER burner system with catalytic cleaning have been optimised for an outer tube OD 100-115 mm. The aim has been to develop a burner with an emission of nitrogen oxides below 50 ppm and an efficiency higher than 80%. An optimised burner system have been realised but will not be stable enough for commercialisation. In order to fullfill the requirements it have to be regulated with closed loop oxygen sensor system regulating the air/gas supply (Lambda-value). Practically it is possible to reach 200-300 ppm nitrogen oxide with an efficiency around 70-80%. Following work have to focus on how to improve the stability considering geometrical changes when in operation but also towards accomodation of production tolerances and fluctuations in gas supply systems.

  6. Deuterium-tritium experiments on the Tokamak Fusion Test reactor

    International Nuclear Information System (INIS)

    The deuterium-tritium (D-T) experimental program on the Tokamak Fusion Test Reactor (TFTR) is underway and routine tritium operations have been established. The technology upgrades made to the TFTR facility have been demonstrated to be sufficient for supporting both operations and maintenance for an extended D-T campaign. To date fusion power has been increased to ∼9 MW and several physics results of importance to the D-T reactor regime have been obtained: electron temperature, ion temperature, and plasma stored energy all increase substantially in the D-T regime relative to the D-D regime at the same neutral beam power and comparable limiter conditioning; possible alpha electron heating is indicated and energy confinement improvement with average ion mass is observed; and alpha particle losses appear to be classical with no evidence of TAE mode activity up to the PFUS ∼6 MW level. Instability in the TAE mode frequency range has been observed at PFUS > 7 MW and its effect on performance in under investigation. Preparations are underway to enhance the alpha particle density further by increasing fusion power and by extending the neutral beam pulse length to permit alpha particle effects of relevance to the ITER regime to be more fully explored

  7. Deuterium-tritium experiments on the Tokamak Fusion Test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hosea, J.; Adler, J.H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J.L.; Anderson, J.W.; Arunasalam, V.; Ascione, G.; Ashcroft, D. [and others

    1994-09-01

    The deuterium-tritium (D-T) experimental program on the Tokamak Fusion Test Reactor (TFTR) is underway and routine tritium operations have been established. The technology upgrades made to the TFTR facility have been demonstrated to be sufficient for supporting both operations and maintenance for an extended D-T campaign. To date fusion power has been increased to {approx}9 MW and several physics results of importance to the D-T reactor regime have been obtained: electron temperature, ion temperature, and plasma stored energy all increase substantially in the D-T regime relative to the D-D regime at the same neutral beam power and comparable limiter conditioning; possible alpha electron heating is indicated and energy confinement improvement with average ion mass is observed; and alpha particle losses appear to be classical with no evidence of TAE mode activity up to the PFUS {approx}6 MW level. Instability in the TAE mode frequency range has been observed at PFUS > 7 MW and its effect on performance in under investigation. Preparations are underway to enhance the alpha particle density further by increasing fusion power and by extending the neutral beam pulse length to permit alpha particle effects of relevance to the ITER regime to be more fully explored.

  8. Similarity Analysis for Reactor Flow Distribution Test and Its Validation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Soon Joon; Ha, Jung Hui [Heungdeok IT Valley, Yongin (Korea, Republic of); Lee, Taehoo; Han, Ji Woong [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    The newly derived dimensionless groups are slightly different from Hetsroni's. Reynolds number, relative wall roughness, and Euler don't appear, instead, friction factor appears newly. In order to conserve friction factor Reynolds number and relative wall roughness should be conserved. Since the effect of Reynolds number in high range is small, and since the scaled model is far smaller than prototype the conservation of friction factor is easily obtained by making the model wall just smooth. It is much easier to implement the test design than Hetsroni's because the Reynolds number and relative wall roughness do not appear explicitly. In case that there is no free surface within the interested domain of the reactor, the gravity is of second importance, and in this case the pressure drops should be compensated for in order to compare them between prototype and model. The gravity head compensated pressure drop is directly same to the measured value by a differential pressure transmitter. In order to conserve the gravity effect Froude number should be conserved. In pool type SFR (Sodium Cooled Fast Reactor) there exists liquid level difference, and if the level difference is desired to be conserved, the Froude number should be conserved. Euler number, which represents pressure terms in momentum equation, should be well conserved according to Hetsroni's approach. It is not a wrong statement, but it should be noted that Euler number is NOT an independent variable BUT a dependent variable according to Hong et al. It means that if all the geometrical similarity and the dimensionless numbers are conserved, Euler number is automatically conserved. So Euler number need not be considered in case that the perfect geometrical similarity is kept. However, even in case that the geometrical similarity is not conserved, it possible to conserved the velocity field similarity by just conserve Euler number. It gives tolerance to the engineer who designs the test

  9. Similarity Analysis for Reactor Flow Distribution Test and Its Validation

    International Nuclear Information System (INIS)

    The newly derived dimensionless groups are slightly different from Hetsroni's. Reynolds number, relative wall roughness, and Euler don't appear, instead, friction factor appears newly. In order to conserve friction factor Reynolds number and relative wall roughness should be conserved. Since the effect of Reynolds number in high range is small, and since the scaled model is far smaller than prototype the conservation of friction factor is easily obtained by making the model wall just smooth. It is much easier to implement the test design than Hetsroni's because the Reynolds number and relative wall roughness do not appear explicitly. In case that there is no free surface within the interested domain of the reactor, the gravity is of second importance, and in this case the pressure drops should be compensated for in order to compare them between prototype and model. The gravity head compensated pressure drop is directly same to the measured value by a differential pressure transmitter. In order to conserve the gravity effect Froude number should be conserved. In pool type SFR (Sodium Cooled Fast Reactor) there exists liquid level difference, and if the level difference is desired to be conserved, the Froude number should be conserved. Euler number, which represents pressure terms in momentum equation, should be well conserved according to Hetsroni's approach. It is not a wrong statement, but it should be noted that Euler number is NOT an independent variable BUT a dependent variable according to Hong et al. It means that if all the geometrical similarity and the dimensionless numbers are conserved, Euler number is automatically conserved. So Euler number need not be considered in case that the perfect geometrical similarity is kept. However, even in case that the geometrical similarity is not conserved, it possible to conserved the velocity field similarity by just conserve Euler number. It gives tolerance to the engineer who designs the test

  10. 78 FR 64027 - Preoperational Testing of Emergency Core Cooling Systems for Pressurized-Water Reactors

    Science.gov (United States)

    2013-10-25

    ... COMMISSION Preoperational Testing of Emergency Core Cooling Systems for Pressurized-Water Reactors AGENCY... Core Cooling Systems for Pressurized-Water Reactors.'' This RG is being revised to incorporate guidance... emergency core cooling systems (ECCSs) of pressurized water reactors (PWRs). This RG also describes...

  11. Near term test plan using HTTR (high temperature engineering test reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Shoji, E-mail: takada.shoji@jaea.go.jp [HTTR Reactor Engineering Section, Department of HTTR, Oarai Research and Development Center, Japan Atomic Energy Agency, Narita, Oarai, Higashi-ibaraki, Ibaraki 311-1393 (Japan); Iigaki, Kazuhiko; Shinohara, Masanori; Tochio, Daisuke; Shimazaki, Yosuke; Ono, Masato; Yanagi, Shunki [HTTR Reactor Engineering Section, Department of HTTR, Oarai Research and Development Center, Japan Atomic Energy Agency (JAEA) (Japan); Nishihara, Tetsuo [Policy Department and Administration Department, JAEA (Japan); Fukaya, Yuji [HTGR Design Group, Small-Sized HTGR Research and Development Division, Nuclear Hydrogen and Heat Application Research Center, JAEA (Japan); Goto, Minoru [HTGR Safety Evaluation Group, Small-Sized HTGR Research and Development Division, Nuclear Hydrogen and Heat Application Research Center, JAEA (Japan); Tachibana, Yukio [HTGR Design Group, Small-Sized HTGR Research and Development Division, Nuclear Hydrogen and Heat Application Research Center, JAEA (Japan); Sawa, Kazuhiro [HTTR Reactor Engineering Section, Department of HTTR, Oarai Research and Development Center, Japan Atomic Energy Agency (JAEA) (Japan)

    2014-05-01

    JAEA has carried out research and development to establish the technical basis of high temperature gas cooled reactors (HTGRs) using HTTR. In order to connect hydrogen production system to HTTR, it is necessary to ensure the stability of plant dynamics when the thermal-load of the system is lost. Thermal-load fluctuation test is planned to demonstrate the stable reactor dynamics and to gain the test data for validation of the plant dynamics code. It will be confirmed that the reactor become stable state during a part of removed heat at HTTR heat-sink is lost. A temperature coefficient of reactivity is one of the important parameters for core dynamics calculations for safety analysis, and changes with burnup because of variance of fuel compositions. Measurement of temperature coefficient of reactivity has been conducted by HTTR to confirm the validity of the calculated temperature coefficient of reactivity. A loss of forced cooling (LOFC) test using HTTR has been carried out to verify the inherent safety of HTGR under the condition of loss of forced cooling while the reactor shut-down system disabled.

  12. Test Results from a Direct Drive Gas Reactor Simulator Coupled to a Brayton Power Conversion Unit

    Science.gov (United States)

    Hervol, David S.; Briggs, Maxwell H.; Owen, Albert K.; Bragg-Sitton, Shannon M.; Godfroy, Thomas J.

    2010-01-01

    Component level testing of power conversion units proposed for use in fission surface power systems has typically been done using relatively simple electric heaters for thermal input. These heaters do not adequately represent the geometry or response of proposed reactors. As testing of fission surface power systems transitions from the component level to the system level it becomes necessary to more accurately replicate these reactors using reactor simulators. The Direct Drive Gas-Brayton Power Conversion Unit test activity at the NASA Glenn Research Center integrates a reactor simulator with an existing Brayton test rig. The response of the reactor simulator to a change in Brayton shaft speed is shown as well as the response of the Brayton to an insertion of reactivity, corresponding to a drum reconfiguration. The lessons learned from these tests can be used to improve the design of future reactor simulators which can be used in system level fission surface power tests.

  13. Irradiation capsule for testing magnetic fusion reactor first-wall materials at 60 and 2000C

    International Nuclear Information System (INIS)

    A new type of irradiation capsule has been designed, and a prototype has been tested in the Oak Ridge Research Reactor (ORR) for low-temperature irradiation of Magnetic Fusion Reactor first-wall materials. The capsule meets the requirements of the joint US/Japanese collaborative fusion reactor materials irradiation program for the irradiation of first-wall fusion reactor materials at 60 and 2000C. The design description and results of the prototype capsule performance are presented

  14. Recent results on the RIA test in IGR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Asmolov, V.; Yegorova, L. [Nuclear Safety Institute, Moscow (Russian Federation)

    1997-01-01

    At the 23d WRSM meeting the data base characterizing results of VVER high burnup fuel rods tests under reactivity-initiated accident (RIA) conditions was presented. Comparison of PWR and VVER failure thresholds was given also. Additional analysis of the obtained results was being carried out during 1996. The results of analysis show that the two different failure mechanisms were observed for PWR and VVER fuel rods. Some factors which can be as the possible reasons of these differences are presented. First of them is the state of preirradiated cladding. Published test data for PWR high burnup fuel rods demonstrated that the PWR high burnup fuel rods failed at the RIA test are characterized by very high level of oxidation and hydriding for the claddings. Corresponding researches were performed at Institute of Atomic Reactors (RLAR, Dimitrovgrad, Russia) for large set of VVER high burnup fuel rods. Results of these investigations show that preirradiated commercial Zr-1%Nb claddings practically keep their initial levels of oxidation and H{sub 2} concentration. Consequently the VVER preirradiated cladding must keep the high level of mechanical properties. The second reason leading to differences between failure mechanisms for two types of high burnup fuel rods can be the test conditions. Now such kind of analysis have been performed by two methods.

  15. Very high temperature measurements: Applications to nuclear reactor safety tests

    International Nuclear Information System (INIS)

    This PhD dissertation focuses on the improvement of very high temperature thermometry (1100 deg. C to 2480 deg. C), with special emphasis on the application to the field of nuclear reactor safety and severe accident research. Two main projects were undertaken to achieve this objective: - The development, testing and transposition of high-temperature fixed point (HTFP) metal-carbon eutectic cells, from metrology laboratory precision (±0.001 deg. C) to applied research with a reasonable degradation of uncertainties (±3-5 deg. C). - The corrosion study and metallurgical characterization of Type-C thermocouple (service temp. 2300 deg. C) prospective sheath material was undertaken to extend the survivability of TCs used for molten metallic/oxide corium thermometry (below 2000 deg. C)

  16. Development and verification test of integral reactor major components

    International Nuclear Information System (INIS)

    The conceptual designs for SG, MCP, CEDM to be installed in the integral reactor SMART were developed. Three-dimensional CAD models for the major components were developed to visualize the design concepts. Once-through helical steam generator was conceptually designed for SMART. Canned motor pump was adopted in the conceptual design of MCP. Linear pulse motor type and ballscrew type CEDM, which have fine control capabilities were studied for adoption in SMART. In parallel with the structural design, the electro-magnetic design was performed for the sizing motors and electro-magnet. Prototypes for the CEDM and MCP sub-assemblies were developed and tested to verify the performance. The impeller design procedure and the computer program to analyze the dynamic characteristics of MCP rotor shaft were developed. The design concepts of SG, MCP, CEDM were also invetigated for the fabricability

  17. Natural radioactive materials at the Arco Reactor Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Singlevich, W; Healy, J W; Paas, H J; Carey, Z E

    1951-05-28

    At the request of the Division of Biology and Medicine of the AEC, the Biophysics Section of the Radiological Sciences Department at Hanford undertook the task of conducting a background survey for naturally occurring radioactive materials in the environs of the Arco Reactor Test Site in Central Idaho. This survey was part of an overall study which included meteorological measurements by the the Air Weather Service, Geological Studies by the USGS, and an ecological survey of plants and animals by members of the Idaho State College at Pocatello. In general, the measurements at Arco followed the pattern established for environmental monitoring at the Hanford Site with some additional measurements made for natural isotopes not normally of concern at Hanford. A number of analysis included materials such as plutonium and I-131 which were carried out for the purpose of establishing analytical backgrounds for the procedures used. 20 refs., 13 figs., 11 tabs.

  18. Development and verification test of integral reactor major components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. I.; Kim, Y. W.; Kim, J. H. and others

    1999-03-01

    The conceptual designs for SG, MCP, CEDM to be installed in the integral reactor SMART were developed. Three-dimensional CAD models for the major components were developed to visualize the design concepts. Once-through helical steam generator was conceptually designed for SMART. Canned motor pump was adopted in the conceptual design of MCP. Linear pulse motor type and ballscrew type CEDM, which have fine control capabilities were studied for adoption in SMART. In parallel with the structural design, the electro-magnetic design was performed for the sizing motors and electro-magnet. Prototypes for the CEDM and MCP sub-assemblies were developed and tested to verify the performance. The impeller design procedure and the computer program to analyze the dynamic characteristics of MCP rotor shaft were developed. The design concepts of SG, MCP, CEDM were also invetigated for the fabricability.

  19. INITIAL IRRADIATION OF THE FIRST ADVANCED GAS REACTOR FUEL DEVELOPMENT AND QUALIFICATION EXPERIMENT IN THE ADVANCED TEST REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    S. Blaine Grover; David A. Petti

    2007-09-01

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation.

  20. Design considerations of the irradiation test vehicle for the advanced test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Gomes, I.C.; Smith, D.L. [Argonne National Lab., IL (United States)] [and others

    1997-08-01

    An irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) is being jointly developed by the Lockheed Martin Idaho Technologies Company (LMIT) and the U.S. Fusion Program. The vehicle is intended for neutron irradiation testing of candidate structural materials, including vanadium-based alloys, silicon carbide composites, and low activation steels. It could possibly be used for U.S./Japanese collaboration in the Jupiter Program. The first test train is scheduled to be completed by September 1998. In this report, we present the functional requirements for the vehicle and a preliminary design that satisfies these requirements.

  1. CERCA LEU fuel assemblies testing in Maria Reactor - safety analysis summary and testing program scope.

    Energy Technology Data Exchange (ETDEWEB)

    Pytel, K.; Mieleszczenko, W.; Lechniak, J.; Moldysz, A.; Andrzejewski, K.; Kulikowska, T.; Marcinkowska, A.; Garner, P. L.; Hanan, N. A.; Nuclear Engineering Division; Institute of Atomic Energy (Poland)

    2010-03-01

    The presented paper contains neutronic and thermal-hydraulic (for steady and unsteady states) calculation results prepared to support annex to Safety Analysis Report for MARIA reactor in order to obtain approval for program of testing low-enriched uranium (LEU) lead test fuel assemblies (LTFA) manufactured by CERCA. This includes presentation of the limits and operational constraints to be in effect during the fuel testing investigations. Also, the scope of testing program (which began in August 2009), including additional measurements and monitoring procedures, is described.

  2. Dissolution of low burnup Fast Flux Test reactor fuel

    International Nuclear Information System (INIS)

    The first Fast-Flux Test Facility reactor fuel [mixed (U,Pu)O2 composition] has been used in dissolution tests for fuel reprocessing. The fuel tested here had a peak burnup of 0.22 at. %, with peak centerline temperatures of 19970C. Linear dissolution rates of 0.99 to 1.57 mm/h were determined for dissolver solution and fresh acid, respectively. Insoluble residues from dissolution at 950C ranged from 0.18 to 0.28% of the original fuel. From 2 to 37 wt % of the residue was recoverable plutonium. Dissolution at 290C yielded residues of 0.56 to 0.64% of the original fuel. The major elements present in the HF leached residue included Ru, Mo, and Rh. The recovered cladding from the 950C dissolution contained the equivalent of 198 mg of 239Pu per 100 g of hulls, while the cladding from the 290c experiments contained only 0.21 mg of 239Pu per 100 g of hulls. 9 references, 5 figures

  3. Enhanced In-pile Instrumentation for Material Testing Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Joy Rempe; Darrell Knudson; Joshua Daw; Troy Unruh; Benjamin Chase; Kurt Davis; Robert Schley

    2012-07-01

    An increasing number of U.S. nuclear research programs are requesting enhanced in-pile instrumentation capable of providing real-time measurements of key parameters during irradiations. For example, fuel research and development funded by the U.S. Department of Energy now emphasize approaches that rely on first principle models to develop optimized fuel designs that offer significant improvements over current fuels. To facilitate this approach, high fidelity, real-time data are essential for characterizing the performance of new fuels during irradiation testing. Furthermore, sensors that obtain such data must be miniature, reliable and able to withstand high flux/high temperature conditions. Depending on user requirements, sensors may need to obtain data in inert gas, pressurized water, or liquid metal environments. To address these user needs, in-pile instrumentation development efforts have been initiated as part of the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF), the Fuel Cycle Research & Development (FCR&D), and the Nuclear Energy Enabling Technology (NEET) programs. This paper reports on recent INL achievements to support these programs. Specifically, an overview of the types of sensors currently available to support in-pile irradiations and those sensors currently available to MTR users are identified. In addition, recent results and products available from sensor research and development are detailed. Specifically, progress in deploying enhanced in-pile sensors for detecting elongation and thermal conductivity are reported. Results from research to evaluate the viability of ultrasonic and fiber optic technologies for irradiation testing are also summarized.

  4. Testing of an advanced thermochemical conversion reactor system

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report presents the results of work conducted by MTCI to verify and confirm experimentally the ability of the MTCI gasification process to effectively generate a high-quality, medium-Btu gas from a wider variety of feedstock and waste than that attainable in air-blown, direct gasification systems. The system's overall simplicity, due to the compact nature of the pulse combustor, and the high heat transfer rates attainable within the pulsating flow resonance tubes, provide a decided and near-term potential economic advantage for the MTCI indirect gasification system. The primary objective of this project was the design, construction, and testing of a Process Design Verification System for an indirectly heated, thermochemical fluid-bed reactor and a pulse combustor an an integrated system that can process alternative renewable sources of energy such as biomass, black liquor, municipal solid waste and waste hydrocarbons, including heavy oils into a useful product gas. The test objectives for the biomass portion of this program were to establish definitive performance data on biomass feedstocks covering a wide range of feedstock qualities and characteristics. The test objectives for the black liquor portion of this program were to verify the operation of the indirect gasifier on commercial black liquor containing 65 percent solids at several temperature levels and to characterize the bed carbon content, bed solids particle size and sulfur distribution as a function of gasification conditions. 6 refs., 59 figs., 29 tabs.

  5. Reactor-pumped laser facility at DOE's Nevada Test Site

    Science.gov (United States)

    Lipinski, Ronald J.

    1994-05-01

    The Nevada Test Site (NTS) is one excellent possibility for a laser power beaming site. It is in the low latitudes of the U.S., is in an exceptionally cloud-free area of the southwest, is already an area of restricted access (which enhances safety considerations), and possesses a highly skilled technical team with extensive engineering and research capabilities from underground testing of our nation's nuclear deterrence. The average availability of cloud-free clear line of site to a given point in space is about 84%. With a beaming angle of +/- 60 degree(s) from the zenith, about 52 geostationary-orbit (GEO) satellites could be accessed continuously from NTS. In addition, the site would provide an average view factor of about 10% for orbital transfer from low earth orbit to GEO. One of the major candidates for a long-duration, high- power laser is a reactor-pumped laser being developed by DOE. The extensive nuclear expertise at NTS makes this site a prime candidate for utilizing the capabilities of a rector pumped laser for power beaming. The site then could be used for many dual-use roles such as industrial material processing research, defense testing, and removing space debris.

  6. ENVIRONMENTAL ASSESSMENT OF AN ENHANCED OIL RECOVERY STEAM GENERATOR EQUIPPED WITH A LOW-NOX BURNER. VOLUME 1. TECHNICAL RESULTS

    Science.gov (United States)

    The report discusses results from sampling flue gas from an enhanced oil recovery steam generator (EOR steamer) equipped with an MHI PM low-NOx burner. The tests included burner performance/emission mapping tests, comparative testing of an identical steamer equipped with a conven...

  7. Deterministic Modeling of the High Temperature Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ortensi, J.; Cogliati, J. J.; Pope, M. A.; Ferrer, R. M.; Ougouag, A. M.

    2010-06-01

    Idaho National Laboratory (INL) is tasked with the development of reactor physics analysis capability of the Next Generation Nuclear Power (NGNP) project. In order to examine INL’s current prismatic reactor deterministic analysis tools, the project is conducting a benchmark exercise based on modeling the High Temperature Test Reactor (HTTR). This exercise entails the development of a model for the initial criticality, a 19 column thin annular core, and the fully loaded core critical condition with 30 columns. Special emphasis is devoted to the annular core modeling, which shares more characteristics with the NGNP base design. The DRAGON code is used in this study because it offers significant ease and versatility in modeling prismatic designs. Despite some geometric limitations, the code performs quite well compared to other lattice physics codes. DRAGON can generate transport solutions via collision probability (CP), method of characteristics (MOC), and discrete ordinates (Sn). A fine group cross section library based on the SHEM 281 energy structure is used in the DRAGON calculations. HEXPEDITE is the hexagonal z full core solver used in this study and is based on the Green’s Function solution of the transverse integrated equations. In addition, two Monte Carlo (MC) based codes, MCNP5 and PSG2/SERPENT, provide benchmarking capability for the DRAGON and the nodal diffusion solver codes. The results from this study show a consistent bias of 2–3% for the core multiplication factor. This systematic error has also been observed in other HTTR benchmark efforts and is well documented in the literature. The ENDF/B VII graphite and U235 cross sections appear to be the main source of the error. The isothermal temperature coefficients calculated with the fully loaded core configuration agree well with other benchmark participants but are 40% higher than the experimental values. This discrepancy with the measurement stems from the fact that during the experiments the

  8. Multifuel burners based on the porous burner technology for the application in fuel cell systems; Mehrstofffaehige Brenner auf Basis der Porenbrennertechnik fuer den Einsatz in Brennstoffzellensystemen

    Energy Technology Data Exchange (ETDEWEB)

    Diezinger, S.

    2006-07-01

    The present doctoral thesis describes the development of multifuel burners based on the porous burner technology for the application in hydrocarbon driven fuel cell systems. One objective of such burners is the heating of the fuel cell system to the operating temperature at the cold start. In stationary operation the burner has to postcombust the waste gases from the fuel cell and the gas processing system in order to reduce the pollutant emissions. As the produced heat is required for endothermal processes like the steam reforming the burner has a significant influence on the system's efficiency. The performed investigations are targeting on a gasoline driven PEMFC-System with steam reforming. In such systems the burner has to be capable to combust the system's fuel gasoline at the cold start, a low calorific fuel cell offgas (HU = 6,4 MJ/kg) in stationary operation and a hydrogen rich gas in the case of an emergency shut down. Pre-tests revealed that in state of the art porous burners the flame front of hydrogen/air combustion can only be stabilized at very high excess air ratios. In basic investigations concerning the stabilization of flame fronts in porous media the dominant influence parameters were determined. Based on this findings a new flame trap was developed which increases the operational range with hydrogen rich mixtures significantly. Furthermore the burning velocity at stationary combustion in porous media was investigated. The dependency of the porous burning velocity on the excess air ratio for different hydrocarbons and hydrogen as well as for mixtures of both was determined. The results of these basic investigations were applied for the design of a multifuel burner. In order to achieve an evaporation of the gasoline without the use of additional energy, an internal heat exchanger section for heating the combustion air was integrated into the burner. Additionally different experimental and numerical methods were applied for designing the

  9. Experimental and numerical analysis of isothermal turbulent flows in interacting low NOx burners in coal-fired furnaces

    OpenAIRE

    Cvoro, Valentina

    2007-01-01

    Coal firing power stations represent the second largest source of global NOx emissions. The current practice of predicting likely exit NOx levels from multi-burner furnaces on the basis of single burner test rig data has been proven inadequate. Therefore, to further improve current NOx reduction technologies and assist in the assessment of NOx levels in new and retrofit plant cases, an improved understanding of the impact of burner interactions is required. The aim of this research is tw...

  10. Parametric Thermal Models of the Transient Reactor Test Facility (TREAT)

    Energy Technology Data Exchange (ETDEWEB)

    Bradley K. Heath

    2014-03-01

    This work supports the restart of transient testing in the United States using the Department of Energy’s Transient Reactor Test Facility at the Idaho National Laboratory. It also supports the Global Threat Reduction Initiative by reducing proliferation risk of high enriched uranium fuel. The work involves the creation of a nuclear fuel assembly model using the fuel performance code known as BISON. The model simulates the thermal behavior of a nuclear fuel assembly during steady state and transient operational modes. Additional models of the same geometry but differing material properties are created to perform parametric studies. The results show that fuel and cladding thermal conductivity have the greatest effect on fuel temperature under the steady state operational mode. Fuel density and fuel specific heat have the greatest effect for transient operational model. When considering a new fuel type it is recommended to use materials that decrease the specific heat of the fuel and the thermal conductivity of the fuel’s cladding in order to deal with higher density fuels that accompany the LEU conversion process. Data on the latest operating conditions of TREAT need to be attained in order to validate BISON’s results. BISON’s models for TREAT (material models, boundary convection models) are modest and need additional work to ensure accuracy and confidence in results.

  11. Design of the TFTR [Tokamak Fusion Test Reactor] maintenance manipulator

    International Nuclear Information System (INIS)

    The Tokamak Fusion Test Reactor (TFTR) plans to generate a total of 3 x 1021 neutrons during its deuterium-tritium run period in 1900. This will result in high levels of radiation, especially within the TFTR vacuum vessel. The maintenance manipulator's mission is to assist TFTR in meeting Princeton Plasma Physics Laboratory's personnel radiation exposure criteria and in maintaining as-low-as-reasonably-achievable principals by limiting the radiation exposure received by operating and maintenance personnel. The manipulator, which is currently being fabricated and tested by Kernforschungszentrum Karlsruhe, is designed to perform limited, but routine and necessary, functions within the TFTR vacuum torus after activation levels within the torus preclude such functions being performed by personnel. These functions include visual inspection, tile replacement, housekeeping tasks, diagnostic calibrations, and leak detection. To meet its functional objectives, the TFTR maintenance manipulator is required to be operable in TFTR's very high vacuum environment (typically 2 x 10-8 Torr). It must also be bakeable at 150 degree C and able to withstand the radiation environment

  12. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nelson, Lee Orville [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-01-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  13. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nelson, Lee Orville [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinsey, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  14. RERTR-2004: International meeting on Reduced Enrichment for Research and Test Reactors (RERTR). Book of abstracts

    International Nuclear Information System (INIS)

    Oral and poster presentations of the Meeting covered the following topics: National and international programs related to Reduced Enrichment for Research and Test Reactors (RERTR); development of new fuel types, testing, fabrication, modelling; studies of reactor cores conversion from highly enriched to low enriched fuel, including licensing; new and converted reactors; spent fuel management including storage and transportation; production of Molybdenum 99 under converted core conditions

  15. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    International Nuclear Information System (INIS)

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  16. Static and dynamic performance tests of nuclear powered ship Mutsu reactor (report on nuclear ship Mutsu power-up tests)

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Toshihisa; Kusunoki, Tsuyoshi; Ochiai, Masa-aki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tanaka, Yoshimi; Inoue, Kimio; Yao, Toshiaki; Kamai, Satoshi; Kitamura, Toshikatsu

    1992-08-01

    The power-up tests of the Mutsu reactor were performed from March 29th 1990 to December 14th. The tests were divided into six phases: The tests Phase 0 and Phase 1 were done in the state that the ship was moored at the quay of Sekinehama port in March and April; The tests Phase 2, Phase 3, Phase 4, and Phase 5 were done on the Pacific Ocean from July to December. Present report describes the test results on the static and dynamic plant performance. On static plant performance tests, there are 13 test items including measurements of primary system heat balance at low and high power levels, a virgin run of feed water pump with SG steam, a change-over test of steam supply of auxiliary boiler to SG. On the dynamic plant performance, there are 11 test items including a test of reactor power auto-control system, a test of main feed water auto-control system, a test of small load variation, a load increasing test, a turbine trip test, tests of ahead and astern maneuvering, a test of single loop operation, and a reactor scram test. The reactor power for each item`s test was increased step by step from zero power to the goal of rated power of 100 %, 36 MWt. In order to confirm proper reactor system performance, criteria were laid down for the static and dynamic tests: for example, (1) reactor scram shall not occur, (2) pressurizer relief valve and steam generator safety valve shall not work, and (3) after the transients reactor systems shall become the steady state without manual adjustment of the reactor control system. The test results satisfied these criteria and some of test data showed that reactor had much more margin in any performance for design. It is verified, therefore, that the Mutsu reactor systems have adequate performances as a marine reactor and that one is capable to respond smoothly and safely to the load of ship`s demand. (author).

  17. Static and dynamic performance tests of nuclear powered ship Mutsu reactor (report on nuclear ship Mutsu power-up tests)

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Toshihisa; Kusunoki, Tsuyoshi; Ochiai, Masa-aki (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment); Tanaka, Yoshimi; Inoue, Kimio; Yao, Toshiaki; Kamai, Satoshi; Kitamura, Toshikatsu.

    1992-08-01

    The power-up tests of the Mutsu reactor were performed from March 29th 1990 to December 14th. The tests were divided into six phases: The tests Phase 0 and Phase 1 were done in the state that the ship was moored at the quay of Sekinehama port in March and April; The tests Phase 2, Phase 3, Phase 4, and Phase 5 were done on the Pacific Ocean from July to December. Present report describes the test results on the static and dynamic plant performance. On static plant performance tests, there are 13 test items including measurements of primary system heat balance at low and high power levels, a virgin run of feed water pump with SG steam, a change-over test of steam supply of auxiliary boiler to SG. On the dynamic plant performance, there are 11 test items including a test of reactor power auto-control system, a test of main feed water auto-control system, a test of small load variation, a load increasing test, a turbine trip test, tests of ahead and astern maneuvering, a test of single loop operation, and a reactor scram test. The reactor power for each item's test was increased step by step from zero power to the goal of rated power of 100 %, 36 MWt. In order to confirm proper reactor system performance, criteria were laid down for the static and dynamic tests: for example, (1) reactor scram shall not occur, (2) pressurizer relief valve and steam generator safety valve shall not work, and (3) after the transients reactor systems shall become the steady state without manual adjustment of the reactor control system. The test results satisfied these criteria and some of test data showed that reactor had much more margin in any performance for design. It is verified, therefore, that the Mutsu reactor systems have adequate performances as a marine reactor and that one is capable to respond smoothly and safely to the load of ship's demand. (author).

  18. Tritium pellet injector for the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) plasma phase. An existing deuterium pellet injector (DPI) was modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed for frozen pellets ranging in size from 3 to 4 mm in diameter in arbitrarily programmable firing sequences at tritium pellet speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller (PLC). The new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were also made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed and the TPI was tested at ORNL with deuterium pellets. Results of the testing program at ORNL are described. The TPI has been installed and operated on TFTR in support of the CY-92 deuterium plasma run period. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and tritium gloveboxes and integrated into TFTR tritium processing systems to provide full tritium pellet capability

  19. Refurbish research and test reactors corresponding to global age of nuclear energy

    International Nuclear Information System (INIS)

    This special article featured arguments for refurbishment of research and test reactors corresponding to global age of nuclear energy, based on the report: 'Investigation of research facilities necessary for future joint usage' issued by the special committee of Atomic Energy Society of Japan (AESJ) in September 2010. It consisted of six papers titled as 'Introduction-establishment of AESJ special committee for investigation', 'State of research and test reactors in Japan', 'State of overseas research and test reactors', 'Needs analysis for research and test reactors', 'Proposal of AESJ special committee' and 'Summary and future issues'. In order to develop human resources and promote research and development needed in global age of nuclear energy, research and test reactors would be refurbished as an Asian regional center of excellence. (T. Tanaka)

  20. Sipping test update device for fuel elements cladding inspections in IPR-r1 TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R.R.; Mesquita, A.Z.; Andrade, E.P.D.; Gual, Maritza R., E-mail: rrr@cdtn.br, E-mail: amir@cdtn.br, E-mail: edson@cdtn.br, E-mail: maritzargual@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    It is in progress at the Centro de Desenvolvimento da Tecnologia Nuclear - CDTN (Nuclear Technology Development Center), a research project that aims to investigate possible leaks in the fuel elements of the TRIGA reactor, located in this research center. This paper presents the final form of sipping test device for TRIGA reactor, and results of the first experiments setup. Mechanical support strength tests were made by knotting device on the crane, charged with water from the conventional water supply, and tests outside the reactor pool with the use of new non-irradiated fuel elements encapsulated in stainless steel, and available safe stored in this unit. It is expected that tests with graphite elements from reactor pool are done soon after and also the test experiment with the first fuel elements in service positioned in the B ring (central ring) of the reactor core in the coming months. (author)

  1. Completing the Design of the Advanced Gas Reactor Fuel Development and Qualification Experiments for Irradiation in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    S. Blaine Grover

    2006-10-01

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the newly formed Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation.

  2. Clinch River Breeder Reactor Plant Steam Generator Few Tube Test model post-test examination

    International Nuclear Information System (INIS)

    The Steam Generator Few Tube Test (FTT) was part of an extensive testing program carried out in support of the Clinch River Breeder Reactor Plant (CRBRP) steam generator design. The testing of full-length seven-tube evaporator and three-tube superheater models of the CRBRP design was conducted to provide steady-state thermal/hydraulic performance data to full power per tube and to verify the absence of multi-year endurance problems. This paper describes the problems encountered with the mechanical features of the FTT model design which led to premature test termination, and the results of the post-test examination. Conditions of tube bowing and significant tube and tube support gouging was observed. An interpretation of the visual and metallurgical observations is also presented. The CRBRP steam generator has undergone design evaluations to resolve observed deficiences found in the FFTM

  3. High field, low current operation of engineering test reactors

    International Nuclear Information System (INIS)

    Steady state engineering test reactors with high field, low current operation are investigated and compared to high current, lower field concepts. Illustrative high field ETR parameters are R = 3 m, α ∼ 0.5 m, B ∼ 10 T, β = 2.2% and I = 4 MA. For similar wall loading the fusion power of an illustrative high field, low current concept could be about 50% that of a lower field device like TIBER II. This reduction could lead to a 50% decrease in tritium consumption, resulting in a substantial decrease in operating cost. Furthermore, high field operation could lead to substantially reduced current drive requirements and cost. A reduction in current drive source power on the order of 40 to 50 MW may be attainable relative to a lower field, high current design like TIBER II implying a possible cost savings on the order of $200 M. If current drive is less efficient than assumed, the savings could be even greater. Through larger β/sub p/ and aspect ratio, greater prospects for bootstrap current operation also exist. Further savings would be obtained from the reduced size of the first wall/blanket/shield system. The effects of high fields on magnet costs are very dependent on technological assumptions. Further improvements in the future may lie with advances in superconducting and structural materials

  4. Development of large insulator rings for the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    This paper discusses research and development leading to the manufacture of large ceramic insulator rings for the TFTR (TOKAMAK Fusion Test Reactor). Material applications, fabrication approach and testing activities are highlighted

  5. Regenerative burner generates more savings

    Energy Technology Data Exchange (ETDEWEB)

    Swinden, D.

    The latest developments in high-efficiency gas-fired burners are traced, and the transfer of the new technology from laboratory to industry is outlined. The system described depends on the ceramic regenerator reducing the flue gas temperature so that conventional cold air fans can be used and on a packing of alumina balls to recover 90% of the available heat in waste gases.

  6. Advances in sodium technology, testing and diagnostics of fast reactors

    International Nuclear Information System (INIS)

    The collection contains a selection of 29 papers from three international specialists' meetings: the CMEA conference ''Control and measuring instruments and diagnostic systems of fast reactors'' held in the GDR in April 1983; the IAEA conference on nuclear power experience held in Austria in September 1982; and the conference ''Problems of technology and corrosion in sodium coolant and protective gas'' held in the GDR in April 1977. Three papers on operating experience with Soviet fast reactors and their safety have a general character; they are followed up by three papers on sodium technology. Five papers deal with the diagnostics of fast sodium cooled reactors and nine papers are devoted to the diagnostics of steam generators. Eight papers relate to detectors for the diagnostics of fast reactors. Safety regulations for work with alkali metals are added. (A.K.)

  7. Testing mass-varying neutrinos with reactor experiments

    OpenAIRE

    Schwetz, Thomas; Winter, Walter

    2005-01-01

    We propose that reactor experiments could be used to constrain the environment dependence of neutrino mass and mixing parameters, which could be induced due to an acceleron coupling to matter fields. There are several short-baseline reactor experiment projects with different fractions of air and earth matter along the neutrino path. Moreover, the short baselines, in principle, allow the physical change of the material between source and detector. Hence, such experiments offer the possibility ...

  8. Operation and maintenance experience with control rod and their drive mechanisms of fast breeder test reactor

    International Nuclear Information System (INIS)

    This paper explains the functional and construction features of Control Rod Drive Mechanism (CRDM) and control rod used in Fast Breeder Test Reactor (FBTR) which is a 40 MWt loop type sodium cooled fast reactor. It discusses all safety related incidents and failures encountered during its service in reactor, the solutions evolved and modifications carried out to prevent recurrence. It also details the maintenance activities and periodical surveillance carried out. The results of a reliability analysis done are also discussed. (author)

  9. Irradiation of the First Advanced Gas Reactor Fuel Development and Qualification Experiment in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    S. Blaine Grover; David A. Petti

    2008-10-01

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. These AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control for each capsule. The swept gas will also have on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation. The design of the first experiment (designated AGR-1) was completed in 2005, and the fabrication and assembly of the test train as well as the support systems and fission product monitoring system that monitor and control the experiment during irradiation were completed in September 2006. The experiment was inserted in the ATR in December 2006, and is serving as a shakedown test of the multi-capsule experiment design that will be used in the subsequent irradiations as well as a test of the early variants of the fuel produced under this program. The experiment test train as well as the monitoring, control, and data collection systems are discussed and the status of the experiment is provided.

  10. Reactor coolant pump testing using motor current signatures analysis

    Energy Technology Data Exchange (ETDEWEB)

    Burstein, N.; Bellamy, J.

    1996-12-01

    This paper describes reactor coolant pump motor testing carried out at Florida Power Corporation`s Crystal River plant using Framatome Technologies` new EMPATH (Electric Motor Performance Analysis and Trending Hardware) system. EMPATH{trademark} uses an improved form of Motor Current Signature Analysis (MCSA), technology, originally developed at Oak Ridge National Laboratories, for detecting deterioration in the rotors of AC induction motors. Motor Current Signature Analysis (MCSA) is a monitoring tool for motor driven equipment that provides a non-intrusive means for detecting the presence of mechanical and electrical abnormalities in the motor and the driven equipment. The base technology was developed at the Oak Ridge National Laboratory as a means for determining the affects of aging and service wear specifically on motor-operated valves used in nuclear power plant safety systems, but it is applicable to a broad range of electric machinery. MCSA is based on the recognition that an electric motor (ac or dc) driving a mechanical load acts as an efficient and permanently available transducer by sensing mechanical load variations, large and small, long-term and rapid, and converting them into variations in the induced current generated in the motor windings. The motor current variations, resulting from changes in load caused by gears, pulleys, friction, bearings, and other conditions that may change over the life of the motor, are carried by the electrical cables powering the motor and are extracted at any convenient location along the motor lead. These variations modulate the 60 Hz carrier frequency and appear as sidebands in the spectral plot.

  11. IRRADIATION TESTING OF THE RERTR FUEL MINIPLATES WITH BURNABLE ABSORBERS IN THE ADVANCED TEST REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    I. Glagolenko; D. Wachs; N. Woolstenhulme; G. Chang; B. Rabin; C. Clark; T. Wiencek

    2010-10-01

    Based on the results of the reactor physics assessment, conversion of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) can be potentially accomplished in two ways, by either using U-10Mo monolithic or U-7Mo dispersion type plates in the ATR fuel element. Both designs, however, would require incorporation of the burnable absorber in several plates of the fuel element to compensate for the excess reactivity and to flatten the radial power profile. Several different types of burnable absorbers were considered initially, but only borated compounds, such as B4C, ZrB2 and Al-B alloys, were selected for testing primarily due to the length of the ATR fuel cycle and fuel manufacturing constraints. To assess and compare irradiation performance of the U-Mo fuels with different burnable absorbers we have designed and manufactured 28 RERTR miniplates (20 fueled and 8 non-fueled) containing fore-mentioned borated compounds. These miniplates will be tested in the ATR as part of the RERTR-13 experiment, which is described in this paper. Detailed plate design, compositions and irradiations conditions are discussed.

  12. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Laboratory; Bayless, Paul David [Idaho National Laboratory; Nelson, Lee Orville [Idaho National Laboratory; Gougar, Hans David [Idaho National Laboratory; Strydom, Gerhard [Idaho National Laboratory

    2016-03-01

    • Provide an initial summary description of the design and its main attributes o Summarize the main Test Reactor attributes: reactor type, power, coolant, irradiation conditions (fast and thermal flux levels, number of test loops, positions and volumes), costs (project, operational), schedule and availability factor. o Identify secondary missions and power conversion options, if applicable. o Include statements on the envisioned attractiveness of the reactor type in relation to anticipated domestic and global irradiation services needs, citing past and current trends in reactor development and deployment. o Include statements on Test Reactor scalability (e.g. trade-off between size, power/flux levels and costs), prototypical conditions, overall technology maturity of the specific design and the general technology type. The intention is that this summary must be readable as a stand-alone section.

  13. Application of non-destructive testing and in-service inspections to research reactors and preparation of ISI programme and manual for WWR-C research reactors

    International Nuclear Information System (INIS)

    The present report gives a review on the results of application of non-destructive testing and in-service inspections to WWR-C reactors in different countries. The major problems related to reactor safety and the procedure of inspection techniques are investigated to collect the experience gained from this type of reactors. Exchangeable experience in solving common problems in similar reactors play an important role in the effectiveness of their rehabilitation programmes. 9 figs., 4 tabs

  14. Proceedings of the 1984 international meeting on Reduced Enrichment for Research and Test Reactors. Base technology

    International Nuclear Information System (INIS)

    More than 40 papers were presented at this RERTR Meeting during the following sessions: Status of RERTR programs and licensing procedures; LEU fuel element development; fuel fabrication and testing; economics; mixed reactor cores; and applications, i.e. neutronics and thermal hydraulics design of upgraded reactors, with new LEU fuel, fuel cycle studies, feasibility and safety analyses

  15. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Caner Yurteri

    2001-08-20

    The proposed research is directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This fundamental research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners to the kinetic emissions limit (below 0.2 lb./MMBTU). Experimental studies include both cold and hot flow evaluations of the following parameters: flame holder geometry, secondary air swirl, primary and secondary inlet air velocity, coal concentration in the primary air and coal particle size distribution. Hot flow experiments will also evaluate the effect of wall temperature on burner performance. Cold flow studies will be conducted with surrogate particles as well as pulverized coal. The cold flow furnace will be similar in size and geometry to the hot-flow furnace but will be designed to use a laser Doppler velocimeter/phase Doppler particle size analyzer. The results of these studies will be used to predict particle trajectories in the hot-flow furnace as well as to estimate the effect of flame holder geometry on furnace flow field. The hot-flow experiments will be conducted in a novel near-flame down-flow pulverized coal furnace. The furnace will be equipped with externally heated walls. Both reactors will be sized to minimize wall effects on particle flow fields. The cold-flow results will be compared with Fluent computation fluid dynamics model predictions and correlated with the hot-flow results with the overall goal of providing insight for novel low NO{sub x} burner geometry's.

  16. 78 FR 63516 - Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors

    Science.gov (United States)

    2013-10-24

    ... COMMISSION Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors AGENCY... Cooling Systems for New Boiling-Water Reactors.'' This RG describes testing methods the NRC staff...)-1277, ``Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors.''...

  17. Conceptual design of a uranyl nitrate fueled reactor for the destructive testing of liquid metal fast breeder reactor fuel subassemblies

    International Nuclear Information System (INIS)

    A preliminary design of a uranyl nitrate test reactor is developed, with emphasis placed on the core neutronics and cross section development. ENDF/B-IV cross section data and the AMPX system were used to develop a 25 group neutron cross section library. A series of one-dimensional transport calculations were made in order to arrive at a reference design. Power densities of 16.5 Kw/1 appear to be attainable in the 217 pin FFTF test subassembly, with a peak neutron flux in the test zone of 2.4 x 1014 n/cm2-sec. Other engineering features pertinent to the overall system design are discussed, including: (1) corrosion, (2) treatment of radiolytic gas, (3) heat removal, and (4) reactor control

  18. Development of stoker-burner wood chip combustion systems for the UK market

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The document makes a case for the development of a design of wood chip stoker-burner more suited to the UK than those currently imported from Sweden and Finland. The differences would centre on market conditions, performance and cost-effectiveness and the devices would be manufactured or part-manufactured in the UK. Econergy Limited was contracted by the DTI as part of its Sustainable Energy Programmes to design and construct an operational prototype stoker-burner rated at 120 kWth. A test rig was built to: (i) study modified burner heads and (ii) develop control hardware and a control strategy. Both (i) and (ii) are described. Tests brought about an increase in performance of the burner head and its wet wood performance. It was considered that further improvements are achievable and six areas for future study were suggested.

  19. Development of research reactor simulator and its application to dynamic test-bed

    International Nuclear Information System (INIS)

    We developed a real-time simulator for 'High-flux Advanced Neutron Application ReactOr (HANARO), and the Jordan Research and Training Reactor (JRTR). The main purpose of this simulator is operator training, but we modified this simulator into a dynamic test-bed (DTB) to test the functions and dynamic control performance of reactor regulating system (RRS) in HANARO or JRTR before installation. The simulator hardware consists of a host computer, 6 operator stations, a network switch, and a large display panel. The software includes a mathematical model that implements plant dynamics in real-time, an instructor station module that manages user instructions, and a human machine interface module. The developed research reactor simulators are installed in the Korea Atomic Energy Research Institute nuclear training center for reactor operator training. To use the simulator as a dynamic test-bed, the reactor regulating system modeling software of the simulator was replaced by actual RRS cabinet, and was interfaced using a hard-wired and network-based interface. RRS cabinet generates control signals for reactor power control based on the various feedback signals from DTB, and the DTB runs plant dynamics based on the RRS control signals. Thus the Hardware-In-the-Loop Simulation between RRS and the emulated plant (DTB) has been implemented and tested in this configuration. The test result shows that the developed DTB and actual RRS cabinet works together simultaneously resulting in quite good dynamic control performances. (author)

  20. Reduced enrichment for research and test reactors. Proceedings

    International Nuclear Information System (INIS)

    The 12th meeting was attended by 113 participants coming from 21 countries and from EURATOM and IAEA.42 reports were presented orally within 10 sessions dealing with 5 main topics: 1) programs(5); 2) fuels(12); 3) reactor conversions(17); 5) high performance neutron sources(4); 5) others(4). (HP)

  1. Tokamak Fusion Test Reactor. Final conceptual design report

    International Nuclear Information System (INIS)

    The TFTR is the first U.S. magnetic confinement device planned to demonstrate the fusion of D-T at reactor power levels. This report addresses the physics objectives and the engineering goals of the TFTR project. Technical, cost, and schedule aspects of the project are included

  2. Study of fast reactor safety test facilities. Preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Bell, G.I.; Boudreau, J.E.; McLaughlin, T.; Palmer, R.G.; Starkovich, V.; Stein, W.E.; Stevenson, M.G.; Yarnell, Y.L.

    1975-05-01

    Included are sections dealing with the following topics: (1) perspective and philosophy of fast reactor safety analysis; (2) status of accident analysis and experimental needs; (3) experiment and facility definitions; (4) existing in-pile facilities; (5) new facility options; and (6) data acquisition methods. (DG)

  3. Study of fast reactor safety test facilities. Preliminary report

    International Nuclear Information System (INIS)

    Included are sections dealing with the following topics: (1) perspective and philosophy of fast reactor safety analysis; (2) status of accident analysis and experimental needs; (3) experiment and facility definitions; (4) existing in-pile facilities; (5) new facility options; and (6) data acquisition methods

  4. Research on Power Ramp Testing Method for PWR Fuel Rod at Research Reactor

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to develop high performance fuel assembly for domestic nuclear power plant, it is necessary to master some fundamental test technology. So the research on the power ramp testing methods is proposed. A tentative power ramp test for short PWR fuel rod has been conducted at the heavy water research reactor (HWRR) in China Institute of Atomic Energy (CIAE) in May of 2001. The in-pile test rig was placed into the central channel of the reactor . The test rig consists of pressure pipe assembly, thimble, solid neutron absorbing screen and its driving parts, etc.. The test

  5. Mixed oxide fuels testing in the advanced test reactor to support plutonium disposition

    International Nuclear Information System (INIS)

    An intense worldwide effort is now under way to find means of reducing the stockpile of weapons-grade plutonium. One of the most attractive solutions would be to use WGPu as fuel in existing light water reactors (LWRs) in the form of mixed oxide (MOX) fuel - i.e., plutonia (PUO2) mixed with urania (UO2). Before U.S. reactors could be used for this purpose, their operating licenses would have to be amended. Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification, (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania, (3) The effects of WGPu isotopic composition, (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight, (5) The effects of americium and gallium in WGPu, (6) Fission gas release from MOX fuel pellets made from WGPu, (7) Fuel/cladding gap closure, (8) The effects of power cycling and off-normal events on fuel integrity, (9) Development of radial distributions of burnup and fission products, (10) Power spiking near the interfaces of MOX and urania fuel assemblies, and (11) Fuel performance code validation. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified

  6. Computational fluid dynamics in oil burner design

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.A. [Brookhaven National Labs., Upton, NY (United States)

    1997-09-01

    In Computational Fluid Dynamics, the differential equations which describe flow, heat transfer, and mass transfer are approximately solved using a very laborious numerical procedure. Flows of practical interest to burner designs are always turbulent, adding to the complexity of requiring a turbulence model. This paper presents a model for burner design.

  7. 14 CFR 31.47 - Burners.

    Science.gov (United States)

    2010-01-01

    ... emergency operation. (d) The burner system (including the burner unit, controls, fuel lines, fuel cells...) Five hours at the maximum fuel pressure for which approval is sought, with a burn time for each one... intermediate fuel pressure, with a burn time for each one minute cycle of three to ten seconds. An...

  8. Outline of reactor physics tests conducted during the power-up tests in the nuclear ship MUTSU

    Energy Technology Data Exchange (ETDEWEB)

    Itagaki, Masafumi; Miyoshi, Yoshinori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Gakuhari, Kazuhiko; Okada, Noboru

    1992-11-01

    The present report describes the outline of a series of reactor physics tests conducted during the power-up tests in the nuclear ship MUTSU, which started on March 29, 1990. The basic physics design parameters have been confirmed from these test results. In spite of a 16 year reactor stop and refabrications of fuel assemblies and control rods in 1989, no change in reactor physics performance through the long period has been also demonstrated by comparing the present measured results with the data received in 1974. The digital reactivity meter used in the physics tests enabled us to perform more efficient and accurate measurements of reactivity than the conventional period method. Most of the physics test results show the three-dimensional (3-D) core characteristics peculiar to ship reactors which are caused by partial insertion of control rods even under full power conditions. A 3-D reactor physics code developed for the MUTSU reactor has given excellent calculation results which agree quite well with these measured characteristics. (author).

  9. Requirements, needs, and concepts for a new broad-application test reactor

    International Nuclear Information System (INIS)

    For a variety of reasons, including (a) the increasing demands of the 1990s regulatory environment, (b) limited existing test capactiy and capability to satisfy projected future testing missions, and (c) an expected increasing need for nuclear information to support development of advanced reactors, there is a need for requirements and preliminary concepts for a new broad-application test reactor (BATR). These requirements must include consideration not only for a broad range of projected testing missions but also for current and projected regulatory compliance and safety requirements. The requirements will form the basis for development and assessment of preconceptual reactor designs and lead to the identification of key technologies to support the government's long-term strategic and programmatic planning. This paper outlines the need for a new BATR and suggests a few preliminary reactor concepts that can meet that need

  10. Research and developments on nondestructive testing in fabrications of fast breeder reactor structural components in Japan

    International Nuclear Information System (INIS)

    Research and developments (R and D) have been conducted on the nondestructive testing techniques necessary for the construction of fast breeder reactor (FBR). Radiographic tests have been made on tube-tube plate welds and small-diameter tube welds, etc. Ultrasonic tests have been conducted on austenitic stainless steel welds. In the penetrant tests and magnetic particle tests, the investigations have been performed on the effects of various test factors on the test results

  11. Proceedings of the international meeting on reduced enrichment for research and test reactors

    International Nuclear Information System (INIS)

    The purpose of the Meeting was to exchange and discuss the most up-to-date information on the progress of various programs related to research and test reactor core conversion from high enriched uranium to lower enriched uranium. The papers presented during the Meeting were divided into 9 sessions and one round able discussion which concluded the Meeting. The Sessions were: Program, Fuel Development, Fuel Fabrication, Irradiation testing, Safety Analysis, Special Reactor Conversion, Reactor Design, Critical Experiments, and Reprocessing and Spent Fuel Storage. Thus, topics of this Meeting were of a very wide range that was expected to result in information exchange valuable for all the participants in the RERTR program

  12. The Status and Development Potential of Plate-Type Fuels for Research and Test Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, D.

    1979-03-01

    Recent U.S. Department of State action to restrict the shipment and use of highly enriched uranium for research and test reactors has renewed fuel development activity. The objective of these development activities is to increase the total uranium loading in the fuel meat so that enrichment reduction can be accomplished without significant performance penalties. This report characterizes the status and the potential for development of the currently utilized plate-type fuels for research and test reactors. The report also characterizes the newer high-density fuels which could be utilized in these reactors and indicates the impact of the utilization of both the new and current fuels on enrichment reduction.

  13. Research reactor fuel bundle design review by means of hydrodynamic testing

    International Nuclear Information System (INIS)

    During the design steps of a fuel bundle for a nuclear reactor, some vibration tests are usually necessary to verify the prototype dynamical response characteristics and the structural integrity. To perform these tests, the known hydrodynamic loop facilities are used to evaluate the vibrational response of the bundle under the different flow conditions that may appear in the reactor. This paper describes the tests performed on a 19 plate fuel bundle prototype designed for a low power research reactor. The tests were done in order to know the dynamical characteristics of the plates and also of the whole bundle under different flow rate conditions. The paper includes a description of the test facilities and the results obtained during the dynamical characterization tests and some preliminary comments about the tests under flowing water are also presented. (author)

  14. An Analysis of Testing Requirements for Fluoride Salt Cooled High Temperature Reactor Components

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Cetiner, Sacit M [ORNL; Flanagan, George F [ORNL; Peretz, Fred J [ORNL; Yoder Jr, Graydon L [ORNL

    2009-11-01

    This report provides guidance on the component testing necessary during the next phase of fluoride salt-cooled high temperature reactor (FHR) development. In particular, the report identifies and describes the reactor component performance and reliability requirements, provides an overview of what information is necessary to provide assurance that components will adequately achieve the requirements, and then provides guidance on how the required performance information can efficiently be obtained. The report includes a system description of a representative test scale FHR reactor. The reactor parameters presented in this report should only be considered as placeholder values until an FHR test scale reactor design is completed. The report focus is bounded at the interface between and the reactor primary coolant salt and the fuel and the gas supply and return to the Brayton cycle power conversion system. The analysis is limited to component level testing and does not address system level testing issues. Further, the report is oriented as a bottom-up testing requirements analysis as opposed to a having a top-down facility description focus.

  15. Calculation of fuel element temperature TRIGA 2000 reactor in sipping test tubes using CFD

    International Nuclear Information System (INIS)

    It has been calculated the fuel element temperature in the sipping test of Bandung TRIGA 2000 reactor. The calculation needs to be done to ascertain that the fuel element temperatures are below or at the limit of the allowable temperature fuel elements during reactor operation. ensuring that the implementation of the test by using this device, the temperature is still within safety limits. The calculation is done by making a model sipping test tubes containing a fuel element surrounded by 9 fuel elements. according to the position sipping test tubes in the reactor core. by using Gambit. Dimensional model adapted to the dimensions of the tube and the fuel element in the reactor core of Bandung TRIGA 2000 reactor. Sipping test Operation for each fuel element performed for 30 minutes at 300 kW power. Calculations were performed using CFD software and as input adjusted parameters of TRIGA 2000 reactor. Simulations carried out on the operation of the 30, 60, 90, 120, 150, 180 and 210 minutes. The calculation result shows that the temperature of the fuel in tubes sipping test of 236.06 °C, while the temperature of the wall is 87.58 °C. The maximum temperature in the fuel center of TRIGA 2000 reactor in normal operation is 650 °C. and the boiling is not allowed in the reactor. So it can be concluded that the operation of the sipping test device are is very safe because the fuel center temperature is below the temperature limits the allowable fuel under normal operating conditions as well as the fuel element wall temperature is below the boiling temperature of water. (author)

  16. The Next Generation Nuclear Plant/Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    S. Blaine Grover

    2009-09-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating eight separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006, and the second experiment (AGR-2) is currently in the design phase. The design of test trains, as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation will be discussed. In

  17. Reduced Enrichment for Research and Test Reactors. Proceedings of the XIV international meeting

    International Nuclear Information System (INIS)

    Apart from the progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program the national programs of Indonesia, Japan and China were presented. The major events, findings, and activities of 1991 are reviewed with a brief summary of the results which the RERTR Program had achieved by the end of 1990 in collaboration with its many international partners. The RERTR program, has concentrated its efforts on technology transfer and implementation activities consistent with the guidance received from the Department of Energy at the end of 1990. A number of presentations were devoted to development of new fuel uranium silicide fuel elements, fuel irradiation testing and reactor core conversions from highly enriched (HEU) to slightly enriched uranium (LEU). Calculations and measurements of converted reactor core parameters were shown related to safety test and analysis. Fuel cycle issue were discussed as well. One should note that a significant number of papers were devoted to Indonesian GA SIWABESSY reactor core conversion and related topics

  18. Heat transfer and combustion characteristics of a burner with a rotary regenerative heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Yasuo; Kaji, Hitoshi; Arai, Norio

    1998-07-01

    The authors have developed a Rotary Regenerative Combustion (RRX) System, which is coupled with a compact high efficiency regenerative air heat exchanger and a combustion burner. This system contributes to saving energy of fuel firing industrial furnaces and decreases NO{sub x} emission. This technology can be considered as a solution of greenhouse problem. This paper, discusses a compact high efficiency regenerative air heat exchanger in comparison with the existing types of regenerative burners and reverse firing with high momentum fuel jet (with motive fluid) in the furnace. This burner is compact in size, with high fuel efficiency, low NOx emission, easy to operate, and reliable, based on the results of field tests and commercial operations. The authors can say that the RRX system is a regenerative burner of the second generation.

  19. Proceedings of the international meeting on development, fabrication and application of reduced enrichment fuels for research and test reactors

    International Nuclear Information System (INIS)

    Separate abstracts were prepared for each of the papers presented in the following areas: (1) Reduced Enrichment Fuels for Research and Test Reactors (RERTR) Program Status; (2) Fuel Development; (3) Fuel Demonstrations; (4) General Topics; and (5) Specific Reactor Applications

  20. Welding of sule elements for nuclear reactors with solid state YAG laser using instrumentated testing equipments

    International Nuclear Information System (INIS)

    The instrumentation of the equipment for carrying out safety tests on fuel elements for nuclear reactors requires special thermocouples adapted to the prevailing agressive medium. The investigations described deal essentially with the operational and metallurgical weldability tests out on the safety test zircaloy piping in the pressurized water circuit (PHEBUS-programme)

  1. Development and demonstration of a gas-fired recuperative confined radiant burner (deliverable 42/43). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    The objective of the project was to develop and demonstrate an innovative, efficient, low-pollutant, recuperative gas-fired IR-system (infrared radiation) for industrial processes (hereafter referred to as the CONRAD-system). The CONRAD-system is confined, so flue gases from the combustion can be kept separated from the product. The gas/air mixture to the burner is preheated by means of the flue gas, which increases the radiant efficiency of the CONRAD-system significantly over traditional gas-fired IR burners. During the first phase of the project, the CONRAD-system was designed and developed. The conducted work included a survey on suitable burner materials, modelling of the burner system, basic design of burner construction, control etc., experimental characterisation of several preprototypes and detailed design of the internal heat exchanger in the burner. The result is a cost effective burner system with a documented radiant efficiency up to 66% and low emissions (NO{sub x} and CO) all in accordance with the criteria of success set up at the start of the project. In the second phase of the project, the burner system was established and tested in laboratory and in four selected industrial applications: 1) Drying of coatings on sand cores in the automotive industry. 2) Baking of bread/cake. 3) General purpose painting/powder curing process 4. Curing of powder paint on wood components. The results from the preliminary tests Overe used to optimise the CONRAD-system, before it was applied in the industrial processes and demonstrated. However, the optimised burners manufactured for demonstration suffered from different 'infant failures', which made the installation in an industrial environment very cumbersome, and even impossible in the food industry and the automotive industry. In the latter cases realistic laboratory tests Overe carried out and the established know how reported for use when the burner problems are overcome.(au)

  2. The development on tensile test technique in reactor surveillance specimens

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sang Bok; Hong, Kwon Pyo; Park, Dae Kyu; Choo, Yong Sun [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-06-01

    The techniques on tensile test in surveillance specimens were developed in hot cell at Irradiated Material Experimental Facility.ated materials. The universal testing machine(UTM) and accessories for hot cell usages were installed in M5 cell, and detailed test procedures in accordance with nuclear regulations and test standards. The detailed contents are as follows; 1. Introduction to surveillance test of NPP vessel materials. 2. Regulations and standards related to surveillance test. 3. Fabrication and installation of test equipments for hot cell usages. 4. Development the test procedures and evaluation techniques. 5. Adoption test techniques to evaluate domestic NPP's. (author). 5 refs., 32 figs., 2 tabs.

  3. 10 CFR 830 Major Modification Determination for the Advanced Test Reactor Remote Monitoring and Management Capability

    International Nuclear Information System (INIS)

    The Advanced Test Reactor (ATR; TRA-670), which is located in the ATR Complex at Idaho National Laboratory, was constructed in the 1960s for the purpose of irradiating reactor fuels and materials. Other irradiation services, such as radioisotope production, are also performed at ATR. While ATR is safely fulfilling current mission requirements, assessments are continuing. These assessments intend to identify areas to provide defense–in-depth and improve safety for ATR. One of the assessments performed by an independent group of nuclear industry experts recommended that a remote accident management capability be provided. The report stated that: 'contemporary practice in commercial power reactors is to provide a remote shutdown station or stations to allow shutdown of the reactor and management of long-term cooling of the reactor (i.e., management of reactivity, inventory, and cooling) should the main control room be disabled (e.g., due to a fire in the control room or affecting the control room).' This project will install remote reactor monitoring and management capabilities for ATR. Remote capabilities will allow for post scram reactor management and monitoring in the event the main Reactor Control Room (RCR) must be evacuated.

  4. 10 CFR 830 Major Modification Determination for the Advanced Test Reactor Remote Monitoring and Management Capability

    Energy Technology Data Exchange (ETDEWEB)

    Bohachek, Randolph Charles [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2015-09-01

    The Advanced Test Reactor (ATR; TRA-670), which is located in the ATR Complex at Idaho National Laboratory, was constructed in the 1960s for the purpose of irradiating reactor fuels and materials. Other irradiation services, such as radioisotope production, are also performed at ATR. While ATR is safely fulfilling current mission requirements, assessments are continuing. These assessments intend to identify areas to provide defense–in-depth and improve safety for ATR. One of the assessments performed by an independent group of nuclear industry experts recommended that a remote accident management capability be provided. The report stated that: “contemporary practice in commercial power reactors is to provide a remote shutdown station or stations to allow shutdown of the reactor and management of long-term cooling of the reactor (i.e., management of reactivity, inventory, and cooling) should the main control room be disabled (e.g., due to a fire in the control room or affecting the control room).” This project will install remote reactor monitoring and management capabilities for ATR. Remote capabilities will allow for post scram reactor management and monitoring in the event the main Reactor Control Room (RCR) must be evacuated.

  5. Handbook of materials testing reactors and ancillary hot laboratories in the European Community

    International Nuclear Information System (INIS)

    The purpose of this Handbook is to make available to those interested in 'in-pile' irradiation experiments important data on Materials Testing Reactors in operation in the European Community. Only thermal reactors having a power output of more than 5 MW(th) are taken into consideration. In particular, detailed technical information is given on the experimental irradiation facilities of the reactors, their specialized irradiation devices (loops and instrumented capsules), and the associated hot cell facilities for post-irradiation examination of samples

  6. ADAPTATION OF CRACK GROWTH DETECTION TECHNIQUES TO US MATERIAL TEST REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    A. Joseph Palmer; Sebastien P. Teysseyre; Kurt L. Davis; Gordon Kohse; Yakov Ostrovsky; David M. Carpenter; Joy L. Rempe

    2015-04-01

    A key component in evaluating the ability of Light Water Reactors to operate beyond 60 years is characterizing the degradation of materials exposed to radiation and various water chemistries. Of particular concern is the response of reactor materials to Irradiation Assisted Stress Corrosion Cracking (IASCC). Some test reactors outside the United States, such as the Halden Boiling Water Reactor (HBWR), have developed techniques to measure crack growth propagation during irradiation. The basic approach is to use a custom-designed compact loading mechanism to stress the specimen during irradiation, while the crack in the specimen is monitored in-situ using the Direct Current Potential Drop (DCPD) method. In 2012 the US Department of Energy commissioned the Idaho National Laboratory and the MIT Nuclear Reactor Laboratory (MIT NRL) to take the basic concepts developed at the HBWR and adapt them to a test rig capable of conducting in-pile IASCC tests in US Material Test Reactors. The first two and half years of the project consisted of designing and testing the loader mechanism, testing individual components of the in-pile rig and electronic support equipment, and autoclave testing of the rig design prior to insertion in the MIT Reactor. The load was applied to the specimen by means of a scissor like mechanism, actuated by a miniature metal bellows driven by pneumatic pressure and sized to fit within the small in-core irradiation volume. In addition to the loader design, technical challenges included developing robust connections to the specimen for the applied current and voltage measurements, appropriate ceramic insulating materials that can endure the LWR environment, dealing with the high electromagnetic noise environment of a reactor core at full power, and accommodating material property changes in the specimen, due primarily to fast neutron damage, which change the specimen resistance without additional crack growth. The project culminated with an in

  7. Regenerative burner combination and method of burning a fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wills, B.J.

    1992-06-17

    Regenerative burners fire alternatively into respective radiant tubes which are closed at their ends remote from the burners. Products of combustion from each flame tube pass to the closed end of the tube and back to be exhausted from the radiant tube associated with the firing burner through a transfer duct to the other burner, where heat is extracted before the products of combustion are discharged, for heating combustion air for use when the other burner is firing. (Author).

  8. Production test PTA-002, increased graphite temperature limit -- B, C and D Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Russell, A.

    1965-12-17

    The fundamental objective of the graphite temperature limit is to prevent excessive oxidation of the graphite moderator blocks with carbon dioxide and water vapor in the reactor atmosphere. Laboratory tests have shown that 10% uniform oxidation of graphite results in a loss in strength of approximately 50%. Production Test IP-725 was conducted at F Reactor for a period of six months at graphite temperatures approximately 50 and 100 C higher than the present graphite temperature limit of 650 C. The results from the F Reactor test suggest that an increase in the graphite temperature limit from 650 C to 700 C is technically feasible from the standpoint of oxidation of the graphite moderator with CO{sub 2}. Any significant additional increase was shown to lead to excessively high oxidation rates and is therefore not considered feasible. The objective of this test, therefore, is to extend the higher temperature investigations to B, C, and D Reactors. For the duration of this test, the graphite temperature limit will be increased from 650 C and 700 C, corresponding to an increase in the graphite stringer temperature limit from 735 C to 790 C. The test is expected to last for approximately six months but may be terminated early on any or all the reactors.

  9. Rotrix `vortex breakdown` burner turbulence-stabilized combustion of heating oil

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, P. [Viessmann Manufacturing Co., Inc., Ontario (Canada)

    1995-04-01

    For the past two years, the Viessmann MatriX radiant burner has been setting the standard for low emission combustion of gas. Now, with the RotriX burner, Viessmann has succeeded in drastically reducing nitrogenoxide emissions in the combustoin of oil. After a successful test period, the RotriX burner is now being introduced to the market. The RotriX oil burner consequently takes into account the mechanisms in the creation of harmful emissions in the combustion of heating oil No. 2, and guarantees stable combustion under any operating conditions. The burner has the following features: heating oil is combusted only after complete vaporization and mixing with combustion air and recirculated flue gases; the flame is not stabilized with a turbulator disk, but a strong turbulating current is created by means of the Vortex Breakdown phenomenon, which develops a very stable flame under any operating conditions; and high internal flue gas recirculation rates lower the flame temperature to the point where thermal NO formation is reduced to the same low level as in the combustion of gas. The new burner has extremely low emissions of NOx < 60 mg/kWh, and CO < 5 mg/kWh at a CO{sub 2} concentraiton of 14%.

  10. Limitations of eddy current testing in a fast reactor environment

    Science.gov (United States)

    Wu, Tao; Bowler, John R.

    2016-02-01

    The feasibility of using eddy current probes for detecting flaws in fast nuclear reactor structures has been investigated with the aim of detecting defects immersed in electrically conductive coolant including under liquid sodium during standby. For the inspections to be viable, there is a need to use an encapsulated sensor system that can be move into position with the aid of visualization tools. The initial objective being to locate the surface to be investigated using, for example, a combination of electromagnetic sensors and sonar. Here we focus on one feature of the task in which eddy current probe impedance variations due to interaction with the external surface of a tube are evaluated in order to monitor the probe location and orientation during inspection.

  11. Siting evaluation of High Temperature Engineering Test Reactor

    International Nuclear Information System (INIS)

    It is necessary to evaluate hypothetical accident to judge the appropriateness of reactor siting condition. Hypothetical accident is postulated assuming the occurrence of an accident which is unlikely to occur from a technical standpoint. The safety characteristics and/or advantages of the HTGRs are (1) slow response to core heatup events and (2) high temperature that fuel can sustain before the initiation of fission product release. A double-ended rupture of coaxial double pipe of the primary cooling system was selected as the hypothetical accident of the HTTR. Since the HTTR is a HTGR, the core temperature changes slowly and no instantaneous failure of coated fuel particles occur. Therefore, time-dependent release model was newly introduced to calculate the release amount of core contained fission products during the accident. From the result based on the analytical model developed here, appropriateness of siting condition of the HTTR was confirmed

  12. Evaluation of the qualification of SPERT [Special Power Excursion Reactor Test] fuel for use in non-power reactors

    International Nuclear Information System (INIS)

    This report summarizes the US Nuclear Regulatory Commission staff's evaluation of the qualification of the stainless-steel-clad uranium/oxide (UO2) fuel pins for use in non-power reactors. The fuel pins were originally procured in the 1960's as part of the Special Power Excursion Reactor Test (SPERT) program. Argonne National Laboratory (ANL) examined 600 SPERT fuel pins to verify that the pins were produced according to specification and to assess their present condition. The pins were visually inspected under 6X magnification and by X-radiographic, destructive, and metallographic examinations. Spectrographic and chemical analyses were performed on the UO2 fuel. The results of the qualification examinations indicated that the SPERT fuel pins meet the requirements of Phillips Specification No. F-1-SPT and have suffered no physical damage since fabrication. Therefore, the qualification results give reasonable assurance that the SPERT fuel rods are suitable for use in non-power reactors provided that the effects of thin-wall defects in the region of the upper end cap and low-density fuel pellets are evaluated for the intended operating conditions. 1 ref., 4 figs., 11 tabs

  13. The Jules Horowitz Reactor - A new High Performance European Material Testing Reactor open to International Users Present Status and Objectives

    Energy Technology Data Exchange (ETDEWEB)

    Iracane, Daniel; Bignan, Gilles [CEA Atomic Energy Commission Saclay Batiment 121- 91191 Gif Sur Yvette (France); Lindbaeck, Jan-Erik; Blomgren, Jan [VATTENFALL AB Nuclear Power Jaemtlandsgatan 99 SE-16287 Stockholm (Sweden)

    2010-07-01

    The development of sustainable nuclear energy requires R and D on fuel and material behaviour under irradiation with a high level of performance in order to meet the needs and challenges for the benefit of industry, research and public bodies. These stakes require a sustainable and secured access to an up-to-date high performance Material Testing Reactor. Following a broad survey within the European Research Area, the international community agreed that the need for Material Test Reactors in support of nuclear power plant safety and operation will continue in the context of sustainable nuclear energy. The Jules Horowitz Reactor project (JHR) copes with this context. JHR is designed as a user facility addressing the needs of the international community. This means: - flexibility with irradiation loops able to reproduce a large variation in operation conditions of different power reactor technologies, - high flux capacity to address Generations II, III, and IV needs. JHR is designed, built and operated as an international user facility because: - Given the maturity and globalization of the industry, domestic tools have no more the required level of economic and technical efficiency. Meanwhile, countries with nuclear energy need an access to high performance irradiation experimental capabilities to support technical skill and guarantee the competitiveness and safety of nuclear energy. - Many research items related to safety or public policy (waste management, etc.) require international cooperation to share costs and benefits of resulting consensus. JHR design is optimised for offering high performance material and fuel irradiation capability for the coming decades. This project is driven and funded by an international consortium gathering vendors, utilities and public stakeholders. This consortium has been set up in March 2007 when the construction began. The construction is in progress and the start of operation is scheduled for 2014. The JHR is a research

  14. Low NO[sub x] regenerative burner

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-12-01

    A joint development project between British Gas and Hotwork Development has resulted in maintaining the efficiency of a regenerative burner but without the penalty of the higher NO[sub x] emissions normally associated with combustion air preheat. (author)

  15. Load following tests on CANDU-type fuel elements in TRIGA research reactor of INR Pitesti

    International Nuclear Information System (INIS)

    Two load following (LF) tests on CANDU-type fuel elements were performed in the TRIGA Research Reactor of INR Pitesti, where the tests were designed to represent fuel in a CANDU reactor operating in a load following regime. In the first LF test the designated '78R' fuel element successfully experienced 367 power cycles, mostly between 23 and 56 kW/m average linear power. In the second LF test, developed under INR-AECL co-operation, the fuel element designated as 'ME01' withstood 200 power cycles from 27 to 54 kW/m average linear power, as well as additional ramps due to reactor trips and restarts during the test period. This experimental program is ongoing at INR Pitesti. Both LF tests were simulated with finite element computer codes in order to evaluate Stress Corrosion Fatigue (SCF) of the cladding arising from expansion and contraction of the pellets. New LF tests are planned to be performed in order to establish the limits and capabilities for CANDU fuel in LF conditions. This paper presents the results of the LF tests performed in the INR TRIGA Research Reactor compared with the analytical assessment for SCF conditions and their relation to CANDU fuel performance in LF conditions. (author)

  16. Design and Laboratory Evaluation of Future Elongation and Diameter Measurements at the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    K. L. Davis; D. L. Knudson; J. L. Rempe; J. C. Crepeau; S. Solstad

    2015-07-01

    New materials are being considered for fuel, cladding, and structures in next generation and existing nuclear reactors. Such materials can undergo significant dimensional and physical changes during high temperature irradiations. In order to accurately predict these changes, real-time data must be obtained under prototypic irradiation conditions for model development and validation. To provide such data, researchers at the Idaho National Laboratory (INL) High Temperature Test Laboratory (HTTL) are developing several instrumented test rigs to obtain data real-time from specimens irradiated in well-controlled pressurized water reactor (PWR) coolant conditions in the Advanced Test Reactor (ATR). This paper reports the status of INL efforts to develop and evaluate prototype test rigs that rely on Linear Variable Differential Transformers (LVDTs) in laboratory settings. Although similar LVDT-based test rigs have been deployed in lower flux Materials Testing Reactors (MTRs), this effort is unique because it relies on robust LVDTs that can withstand higher temperatures and higher fluxes than often found in other MTR irradiations. Specifically, the test rigs are designed for detecting changes in length and diameter of specimens irradiated in ATR PWR loops. Once implemented, these test rigs will provide ATR users with unique capabilities that are sorely needed to obtain measurements such as elongation caused by thermal expansion and/or creep loading and diameter changes associated with fuel and cladding swelling, pellet-clad interaction, and crud buildup.

  17. Characterisation of reactor steels in the brittle-ductile transition region using the small punch test

    International Nuclear Information System (INIS)

    Two ferritic reactor steels (A 533 B and A508) were investigated using the small punch test for different temperatures and irradiation states, with particular interest in the ductile-tensile transition region. The material characteristics obtained with the aid of neuronal nets were compared with the results of conventional tests. (orig.)

  18. Seismic hazard analysis for the NTS spent reactor fuel test site

    International Nuclear Information System (INIS)

    An experiment is being directed at the Nevada Test Site to test the feasibility for storage of spent fuel from nuclear reactors in geologic media. As part of this project, an analysis of the earthquake hazard was prepared. This report presents the results of this seismic hazard assessment. Two distinct components of the seismic hazard were addressed: vibratory ground motion and surface displacement

  19. Regenerative burner use on reheat furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Baggley, G.W. [Bloom Engineering Co. Inc., Pittsburgh, PA (United States)

    1995-06-01

    The environmental advantages of using regenerative burner technology on steel reheat furnaces are explored in this article, in particular improved fuel energy efficiencies and reduced pollution emissions, of nitrogen oxides and carbon monoxide. Experience of the use of regenerative burners in the United States and Japan, where they have achieved significant market penetration is also described, including a case history of a top-fired billet reheat furnace installed in the United States. (UK)

  20. Design and fabrication of irradiation testing capsule for research reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seong Woo; Kim, Bong Goo; Park, Seung Jae; Cho, Man Soon; Choo, Kee Nam; Oh, Jong Myeong; Choi, Myeong Hwan; Lee, Byung Chul; Kang, Suk Hoon; Kim, Dae Jong; Chun, Young Bum; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    Recently, the demand of research reactors is increasing because there are many ageing research reactors in the world. Also, the production of radioisotope related with the medical purpose is very important. Korea Atomic Energy Research Institute (KAERI) is designing and licensing for Jordan Research and Training Reactor (JRTR) and new type research reactor for export which will be constructed in Amman, Jordan and Busan, Korea, respectively. Thus, It is expected that more research reactors will be designed and constructed by KAERI. To design the research reactor, the irradiation performance and behavior of core structure material are necessary. However, the irradiation behavior of these materials is not yet investigated. Therefore, the irradiation performance must be verified by irradiation test. 11M 20K and 11M 21K irradiation capsules were designed and fabricated to conduct the irradiation test for some candidate core materials, Zircaloy 4, beryllium, and graphite, at HANARO. In this paper, the design and fabrication features of 11M 20K and 11M 21K were discussed.

  1. Research and Test Reactor Conversion to Low Enriched Uranium Fuel: Technical and Programmatic Progress

    International Nuclear Information System (INIS)

    The U.S Department of Energy (DOE) initiated a program - the Reduced Enrichment for Research and Test Reactors (RERTR) - in 1978 to develop the technology necessary to reduce the use of High Enriched Uranium (HEU) fuel in research reactors by converting them to low enriched uranium (LEU) fuel. In 2004, the reactor conversion program became the driving pilar of the Global Threat Reduction Initiative (GTRI), a program established by the U.S. DOE's National Nuclear Security Administration. The overall GTRI objectives are the conversion, removal or protection of vunerable civilian radiological and nuclear material. As part of the GTRI, the Conversion Program has accelerated the schedules and plans for conversion of additional research reactors operating with HEU. This paper provides an update on the progress made since 2007 and describes current technical challenges that the program faces. (author)

  2. Design and present status of high-temperature engineering test reactor

    International Nuclear Information System (INIS)

    The Japan Atomic Energy commission (JAEC) decided to construct the high-Temperature engineering Test Reactor (HTTR) in 1987 for establishing and upgrading the basic technologies for advanced HTGRs and serving an irradiation test facility for research in high temperature technologies. The HTTR is a graphite-moderated and helium-gas-cooled test reactor with thermal output of 30MW and inlet and maximum outlet coolant temperature of 395 C and 950 C respectively. Construction started in March 1991 at Oarai site of the Japan Atomic Energy Research Institute (JAERI), with its first criticality at the end of 1997 to be followed after a series of functional tests of half a year. Fabrication of reactor pressure vessel, an intermediate heat exchanger (IHX), gas circulators and other main cooling components has been finished in their factories and installed to the site in 1994. At present, the construction of HTTR reactor building and installation of containment vessel, main and auxiliary cooling systems, etc. are almost completed. This paper describes design of the HTTR reactor cooling system, control system and present status of the HTTR construction

  3. Multiple Irradiation Capsule Experiment (MICE)-3B Irradiation Test of Space Fuel Specimens in the Advanced Test Reactor (ATR) - Close Out Documentation for Naval Reactors (NR) Information

    Energy Technology Data Exchange (ETDEWEB)

    M. Chen; CM Regan; D. Noe

    2006-01-09

    Few data exist for UO{sub 2} or UN within the notional design space for the Prometheus-1 reactor (low fission rate, high temperature, long duration). As such, basic testing is required to validate predictions (and in some cases determine) performance aspects of these fuels. Therefore, the MICE-3B test of UO{sub 2} pellets was designed to provide data on gas release, unrestrained swelling, and restrained swelling at the upper range of fission rates expected for a space reactor. These data would be compared with model predictions and used to determine adequacy of a space reactor design basis relative to fission gas release and swelling of UO{sub 2} fuel and to assess potential pellet-clad interactions. A primary goal of an irradiation test for UN fuel was to assess performance issues currently associated with this fuel type such as gas release, swelling and transient performance. Information learned from this effort may have enabled use of UN fuel for future applications.

  4. Hazards review: N-Reactor 1.25% co-producer fuel element test

    Energy Technology Data Exchange (ETDEWEB)

    Miller, N.R.; Nechodom, W.S.

    1964-07-13

    The N-Reactor Hazard Summary Report examines the hazard from operating the N-Reactor with a uniform fuel loading enriched to 0.947% U{sup 235}. Incentives have been developed for reactor testing of a block of 49 tubes loaded with co-producer elements, i.e. elements capable of producing both weapons grade plutonium and tritium. The element utilizes an outer fuel tube enriched to 1.25% U{sup 235} with an inner target lithium-aluminum rod. Criteria have been developed to guide the evaluation of safety aspects of such tests. It is the purpose of this document to review the hazards associated with the proposed test and to set forth special precautions which will be necessary to maintain a high level of safety.

  5. Sodium natural convection testing in the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility

    International Nuclear Information System (INIS)

    A comparison is made between experimental data and analytical results for a single-phase natural convection test in an experimental sodium loop. The test was conducted in the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility, an engineering-scale high temperature sodium loop at the Oak Ridge National Laboratory (ORNL), used for thermal-hydraulic testing of simulated Liquid Metal Fast Breeder Reactor (LMFBR) subassemblies at normal and off-normal operating conditions. Electrical heating in the 19-pin assembly during the test was typical of decay heat levels. The test chosen for analysis in this paper was one of seven natural convection runs conducted in the facility. In this test the bypass line was open to simulate a parallel heated assembly and the test was begun with a pump coastdown from a small initial forced flow

  6. Influence of the mass flow rate of secondary air on the gas/particle flow characteristics in the near-burner region of a double swirl flow burner

    Energy Technology Data Exchange (ETDEWEB)

    Jing, J.P.; Li, Z.Q.; Wang, L.; Chen, Z.C.; Chen, L.Z.; Zhang, F.C. [Harbin Institute of Technology, Harbin (China)

    2011-06-15

    The influence of the mass flow rate of secondary air on the gas/particle flow characteristics of a double swirl flow burner, in the near-burner region, was measured by a three-component particle-dynamics anemometer, in conjunction with a gas/particle two-phase test facility. Velocities, particle volume flux profiles, and normalized particle number concentrations were obtained. The relationship between the gas/particle flows and the combustion characteristics of the burners was discussed. For different mass flow rates of secondary air, annular recirculation zones formed only in the region of r/d=0.3-0.6 at x/d=0.1-0.3. With an increasing mass flow rate of secondary air, the peaks of the root mean square (RMS) axial fluctuating velocities, radial mean velocities, RMS radial fluctuating velocities, and tangential velocities all increased, while the recirculation increased slightly. There was a low particle volume flux in the central zone of the burner. At x/d=0.1-0.7, the profiles of particle volume flux had two peaks in the secondary air flow zone near the wall. With an increasing mass flow rate of secondary air, the peak of particle volume flux in the secondary air flow zone decreased, but the peak of particle volume flux near the wall increased. In section x/d=0.1-0.5, the particle diameter in the central zone of the burner was always less than the particle diameter at other locations.

  7. High Temperature Stress Analysis on 61-pin Test Assembly for Reactor Core Sub-channel Flow Test

    International Nuclear Information System (INIS)

    In this study, a high temperature heat transfer and stress analysis of a 61-pin test fuel assembly scaled down from the full scale 217-pin sub-assembly was conducted. The reactor core subchannel flow characteristic test will be conducted to evaluate uncertainties in computer codes used for reactor core thermal hydraulic design. Stress analysis for a 61-pin fuel assembly scaled down from Prototype Generation IV Sodium-cooled Fast Reactor was conducted and structural integrity in terms of load controlled stress limits was conducted. In this study, The evaluations on load-controlled stress limits for a 61-pin test fuel assembly to be used for reactor core subchannel flow distribution tests were conducted assuming that the test assembly is installed in a Prototype Generation IV Sodium-cooled fast reactor core. The 61-pin test assembly has the geometric similarity on P/D and H/D with PGSFR and material of fuel assembly is austenitic stainless steel 316L. The stress analysis results showed that 4.05MPa under primary load occurred at mid part of the test assembly and it was shown that the value of 4.05Mpa was far smaller than the code allowable of 127MPa. , it was shown that the stress intensity due to due to primary load is very small. The stress analysis results under primary and secondary loads showed that maximum stress intensity of 84.08MPa occurred at upper flange tangent to outer casing and the value was well within the code allowable of 268.8MPa. Integrity evaluations based on strain limits and creep-fatigue damage are underway according to the elevated design codes

  8. High Temperature Stress Analysis on 61-pin Test Assembly for Reactor Core Sub-channel Flow Test

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dongwon; Kim, Hyungmo; Lee, Hyeongyeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this study, a high temperature heat transfer and stress analysis of a 61-pin test fuel assembly scaled down from the full scale 217-pin sub-assembly was conducted. The reactor core subchannel flow characteristic test will be conducted to evaluate uncertainties in computer codes used for reactor core thermal hydraulic design. Stress analysis for a 61-pin fuel assembly scaled down from Prototype Generation IV Sodium-cooled Fast Reactor was conducted and structural integrity in terms of load controlled stress limits was conducted. In this study, The evaluations on load-controlled stress limits for a 61-pin test fuel assembly to be used for reactor core subchannel flow distribution tests were conducted assuming that the test assembly is installed in a Prototype Generation IV Sodium-cooled fast reactor core. The 61-pin test assembly has the geometric similarity on P/D and H/D with PGSFR and material of fuel assembly is austenitic stainless steel 316L. The stress analysis results showed that 4.05MPa under primary load occurred at mid part of the test assembly and it was shown that the value of 4.05Mpa was far smaller than the code allowable of 127MPa. , it was shown that the stress intensity due to due to primary load is very small. The stress analysis results under primary and secondary loads showed that maximum stress intensity of 84.08MPa occurred at upper flange tangent to outer casing and the value was well within the code allowable of 268.8MPa. Integrity evaluations based on strain limits and creep-fatigue damage are underway according to the elevated design codes.

  9. Study and mathematical model of ultra-low gas burner

    International Nuclear Information System (INIS)

    The main objective of this project is prediction and reduction of NOx and CO2 emissions under levels recommended from European standards for gas combustion processes. A mathematical model of burner and combustion chamber is developed based on interacting fluid dynamics processes: turbulent flow, gas phase chemical reactions, heat and radiation transfer The NOx prediction model for prompt and thermal NOx is developed. The validation of CFD (Computer fluid-dynamics) simulations corresponds to 5 MWI burner type - TEA, installed on CASPER boiler. This burner is three-stream air distribution burner with swirl effect, designed by ENEL to meet future NOx emission standards. For performing combustion computer modelling, FLUENT CFD code is preferred, because of its capabilities to provide accurately description of large number of rapid interacting processes: turbulent flow, phase chemical reactions and heat transfer and for its possibilities to present wide range of calculation and graphical output reporting data The computational tool used in this study is FLUENT version 5.4.1, installed on fs 8200 UNIX systems The work includes: study the effectiveness of low-NOx concepts and understand the impact of combustion and swirl air distribution and flue gas recirculation on peak flame temperatures, flame structure and fuel/air mixing. A finite rate combustion model: Eddy-Dissipation (Magnussen-Hjertager) Chemical Model for 1, 2 step Chemical reactions of bi-dimensional (2D) grid is developed along with NOx and CO2 predictions. The experimental part of the project consists of participation at combustion tests on experimental facilities located in Livorno. The results of the experiments are used, to obtain better vision for combustion process on small-scaled design and to collect the necessary input data for further Fluent simulations

  10. Combustion Characteristics of Butane Porous Burner for Thermoelectric Power Generation

    Directory of Open Access Journals (Sweden)

    K. F. Mustafa

    2015-01-01

    Full Text Available The present study explores the utilization of a porous burner for thermoelectric power generation. The porous burner was tested with butane gas using two sets of configurations: single layer porcelain and a stacked-up double layer alumina and porcelain. Six PbSnTe thermoelectric (TE modules with a total area of 54 cm2 were attached to the wall of the burner. Fins were also added to the cold side of the TE modules. Fuel-air equivalence ratio was varied between the blowoff and flashback limit and the corresponding temperature, current-voltage, and emissions were recorded. The stacked-up double layer negatively affected the combustion efficiency at an equivalence ratio of 0.20 to 0.42, but single layer porcelain shows diminishing trend in the equivalence ratio of 0.60 to 0.90. The surface temperature of a stacked-up porous media is considerably higher than the single layer. Carbon monoxide emission is independent for both porous media configurations, but moderate reduction was recorded for single layer porcelain at lean fuel-air equivalence ratio. Nitrogen oxides is insensitive in the lean fuel-air equivalence ratio for both configurations, even though slight reduction was observed in the rich region for single layer porcelain. Power output was found to be highly dependent on the temperature gradient.

  11. Enhanced Combustion Low NOx Pulverized Coal Burner

    Energy Technology Data Exchange (ETDEWEB)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    economic evaluation and commercial application. During the project performance period, Alstom performed computational fluid dynamics (CFD) modeling and large pilot scale combustion testing in its Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut in support of these objectives. The NOx reduction approach was to optimize near-field combustion to ensure that minimum NOx emissions are achieved with minimal impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down. Several iterations of CFD and combustion testing on a Midwest coal led to an optimized design, which was extensively combustion tested on a range of coals. The data from these tests were then used to validate system costs and benefits versus SCR. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive subbituminous coal to a moderately reactive Western bituminous coal to a much less reactive Midwest bituminous coal. Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis. Bench-scale characterization of the three test coals showed that both NOx emissions and combustion performance are a strong function of coal properties. The more reactive coals evolved more of their fuel bound nitrogen in the substoichiometric main burner zone than less reactive coal, resulting in the potential for lower NOx emissions. From a combustion point of view, the more reactive coals also showed lower carbon in ash and CO values than the less reactive coal at any given main burner zone stoichiometry. According to bench-scale results, the subbituminous coal was found to be the most amenable to both low NOx, and acceptably low combustibles in the flue gas, in an air staged low NOx system. The Midwest bituminous coal, by contrast, was

  12. Design of Seismic Test Rig for Control Rod Drive Mechanism of Jordan Research and Training Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jongoh; Kim, Gyeongho; Yoo, Yeonsik; Cho, Yeonggarp; Kim, Jong In [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The reactor assembly is submerged in a reactor pool filled with water and its reactivity is controlled by locations of four control absorber rods(CARs) inside the reactor assembly. Each CAR is driven by a stepping motor installed at the top of the reactor pool and they are connected to each other by a tie rod and an electromagnet. The CARs scram the reactor by de-energizing the electromagnet in the event of a safe shutdown earthquake(SSE). Therefore, the safety function of the control rod drive mechanism(CRDM) which consists of a drive assembly, tie rod and CARs is to drop the CAR into the core within an appropriate time in case of the SSE. As well known, the operability for complex equipment such as the CRDM during an earthquake is very hard to be demonstrated by analysis and should be verified through tests. One of them simulates the reactor assembly and the guide tube of the CAR, and the other one does the pool wall where the drive assembly is installed. In this paper, design of the latter test rig and how the test is performed are presented. Initial design of the seismic test rig and excitation table had its first natural frequency at 16.3Hz and could not represent the environment where the CRDM was installed. Therefore, experimental modal analyses were performed and an FE model for the test rig and table was obtained and tuned based on the experimental results. Using the FE model, the design of the test rig and table was modified in order to have higher natural frequency than the cutoff frequency. The goal was achieved by changing its center of gravity and the stiffness of its sliding bearings.

  13. GERDA test facility for pressurized water reactors with straight tube steam generators

    International Nuclear Information System (INIS)

    A number of large-scale experimental facilities have been constructed and operate in order to experiment on the thermodynamic and thermohydraulic behaviour of nuclear facilities in case of LOCA. Most of them were designed for ''large leak'' accidents, but as ''small leak'' accidents became the focus of interest, such experiments were also carried out. Experiments carried out with this arrangement for PWR-type reactors with straight-tube steam generators are only partially evaluable. BBR and B and W therefore cooperated in the construction of the test facility GERDA, designed for testing reactors of BBR design. It supplied relevant experimental results for the nuclear power plant at Muelheim-Kaerlich. (orig.)

  14. Cold Model Study and Commercial Test on Novel Vapor-Liquid Distributor of Hydroprocessing Reactor

    Institute of Scientific and Technical Information of China (English)

    Wang Shaobing; Zhang Zhanzhu; Wu Defei; Guo Qingming

    2007-01-01

    A novel vapor-liquid distributor was developed on the basis of sufficient study on the existing distributors applied in hydroprocessing reactors.The cold model test data showed that the fluid distribution performance of the novel vapor-liquid distributor was evidently better than the traditional one.Commercial tests of the new distributor were carried out in the 300 kt/a gas oil hydrotreating reactor at SINOPEC Changling Branch Company,showing that the new vapor-liquid distributor could improve the fluid distribution,promote the hydrotreating efficiency and lead to better performance than the traditional one.

  15. Integrity assessment of test fuel assemblies of the High Temperature Engineering Test Reactor

    International Nuclear Information System (INIS)

    Assessment of integrity has been made on the B-type fuel assemblies, which will be loaded in the High Temperature Engineering Test Reactor (HTTR) as test fuel assemblies. Specifications of coated fuel particles for the B-1 type fuel assembly have been slightly changed in the fuel kernel diameter and thickness of coating layers from those for the A-type fuel assembly, which is employed as the driver fuel. These changes have been directed toward safer side in developing this advanced fuel for use up to higher burnups at higher temperatures. The B-2 type fuel assembly uses the zirconium-carbide (ZrC) coating layer with excellent high-temperature chemical stability, instead of the silicon carbide (SiC) layer. This change has lead to demonstration of its better performance than the A-type fuel assembly in the kernel migration, corrosion by fission products including palladium, and coating failure at extremely high temperatures. The B-3 type fuel assembly adopts the (U,Th)O2 kernel - SiC TRISO coated fuel articles. The service condition (1000degC and 22,000 MWd/t) of the B-3 type fuel assembly is decided as the range within which the performance data of the fuel have been sufficiently obtained. Thus, it has been judged that the integrity of these B-type fuel assemblies will be maintained under the normal operating conditions of the HTTR. Moreover, the validity of the permissible design limit of the fuel has been confirmed, which requires that the fuel temperature shall not exceed 1,600degC at anticipated operational transients. (author)

  16. Operation, test, research and development of the high temperature engineering test reactor (HTTR). FY1999-2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-05-01

    The HTTR (High Temperature Engineering Test Reactor) with the thermal power of 30 MW and the reactor outlet coolant temperature of 850/950 degC is the first high temperature gas-cooled reactor (HTGR) in Japan, which uses coated fuel particle, graphite for core components, and helium gas for primary coolant. The HTTR, which locates at the south-west area of 50,000 m{sup 2} in the Oarai Research Establishment, had been constructed since 1991 before accomplishing the first criticality on November 10, 1998. Rise to power tests of the HTTR started in September, 1999 and the rated thermal power of 30 MW and the reactor outlet coolant temperature of 850 degC was attained in December 2001. JAERI received the certificate of pre-operation test, that is, the commissioning license for the HTTR in March 2002. This report summarizes operation, tests, maintenance, radiation control, and construction of components and facilities for the HTTR as well as R and Ds on HTGRs from FY1999 to 2001. (author)

  17. Development of Research Reactor Simulator and Its Application to Dynamic Test-bed

    International Nuclear Information System (INIS)

    We developed HANARO and the Jordan Research and Training Reactor (JRTR) real-time simulator for operating staff training. The main purpose of this simulator is operator training, but we modified this simulator as a dynamic test-bed to test the reactor regulating system in HANARO or JRTR before installation. The simulator configuration is divided into hardware and software. The simulator hardware consists of a host computer, 6 operator stations, a network switch, and a large display panel. The simulator software is divided into three major parts: a mathematical modeling module, which executes the plant dynamic modeling program in real-time, an instructor station module that manages user instructions, and a human machine interface (HMI) module. The developed research reactors are installed in the Korea Atomic Energy Research Institute nuclear training center for reactor operator training. To use the simulator as a dynamic test-bed, the reactor regulating system modeling software of the simulator was replaced by a hardware controller and the simulator and target controller were interfaced with a hard-wired and network-based interface

  18. Testing of a Transport Cask for Research Reactor Spent Fuel - 13003

    Energy Technology Data Exchange (ETDEWEB)

    Mourao, Rogerio P.; Leite da Silva, Luiz [Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte (Brazil); Miranda, Carlos A.; Mattar Neto, Miguel [Instituto de Pesquisas Energeticas e Nucleares, Sao Paulo (Brazil); Quintana, Jose F.A.; Saliba, Roberto O. [Comision Nacional de Energia Atomica, Bariloche (Argentina); Novara, Oscar E. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina)

    2013-07-01

    Since the beginning of the last decade three Latin American countries that operate research reactors - Argentina, Brazil and Chile - have been joining efforts to improve the regional capability in the management of spent fuel elements from the TRIGA and MTR reactors operated in the region. A main drive in this initiative, sponsored by the International Atomic Energy Agency, is the fact that no definite solution regarding the back end of the research reactor fuel cycle has been taken by any of the participating country. However, any long-term solution - either disposition in a repository or storage away from reactor - will involve at some stage the transportation of the spent fuel through public roads. Therefore, a licensed cask that provides adequate shielding, assurance of subcriticality, and conformance to internationally accepted safety, security and safeguards regimes is considered a strategic part of any future solution to be adopted at a regional level. As a step in this direction, a packaging for the transport of irradiated fuel for MTR and TRIGA research reactors was designed by the tri-national team and a half-scale model equipped with the MTR version of the internal basket was constructed in Argentina and Brazil and tested in Brazil. Three test campaigns have been carried out so far, covering both normal conditions of transportation and hypothetical accident conditions. After failing the tests in the first two test series, the specimen successfully underwent the last test sequence. A second specimen, incorporating the structural improvements in view of the previous tests results, will be tested in the near future. Numerical simulations of the free drop and thermal tests are being carried out in parallel, in order to validate the computational modeling that is going to be used as a support for the package certification. (authors)

  19. Warm Water Oxidation Verification - Scoping and Stirred Reactor Tests

    Energy Technology Data Exchange (ETDEWEB)

    Braley, Jenifer C.; Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2011-06-15

    Scoping tests to evaluate the effects of agitation and pH adjustment on simulant sludge agglomeration and uranium metal oxidation at {approx}95 C were performed under Test Instructions(a,b) and as per sections 5.1 and 5.2 of this Test Plan prepared by AREVA. (c) The thermal testing occurred during the week of October 4-9, 2010. The results are reported here. For this testing, two uranium-containing simulant sludge types were evaluated: (1) a full uranium-containing K West (KW) container sludge simulant consisting of nine predominant sludge components; (2) a 50:50 uranium-mole basis mixture of uraninite [U(IV)] and metaschoepite [U(VI)]. This scoping study was conducted in support of the Sludge Treatment Project (STP) Phase 2 technology evaluation for the treatment and packaging of K-Basin sludge. The STP is managed by CH2M Hill Plateau Remediation Company (CHPRC) for the U.S. Department of Energy. Warm water ({approx}95 C) oxidation of sludge, followed by immobilization, has been proposed by AREVA and is one of the alternative flowsheets being considered to convert uranium metal to UO{sub 2} and eliminate H{sub 2} generation during final sludge disposition. Preliminary assessments of warm water oxidation have been conducted, and several issues have been identified that can best be evaluated through laboratory testing. The scoping evaluation documented here was specifically focused on the issue of the potential formation of high strength sludge agglomerates at the proposed 95 C process operating temperature. Prior hydrothermal tests conducted at 185 C produced significant physiochemical changes to genuine sludge, including the formation of monolithic concretions/agglomerates that exhibited shear strengths in excess of 100 kPa (Delegard et al. 2007).

  20. CFD Analysis of NOx Emissions of a Natural Gas Lean Premixed Burner for Heavy Duty Gas Turbine

    OpenAIRE

    Andreini, A.; Cerutti, M; B. Facchini; Innocenti, A.

    2015-01-01

    The present work presents a numerical analysis of a low NOx partially premixed burner for heavy duty gas turbine. The first part of the paper is focused on the study of the premixing process inside the burner using standard RANS CFD approach. The resulting profiles at different test points have been used to perform reactive simulations of an experimental test rig, where exhaust NOx emissions were measured. A reliable numerical setup was found comparing predicted and measured NOx emissions at ...

  1. Towards a better understanding of biomass suspension co-firing impacts via investigating a coal flame and a biomass flame in a swirl-stabilized burner flow reactor under same conditions

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2012-01-01

    increases the residence time of coal particles. Both the factors favor a complete burnout of the coal particles. The higher volatile yields of the straw produce more off-gas, requiring more O2 for the fast gas phase combustion and causing the off-gas to proceed to a much larger volume in the reactor prior...... to mixing with oxidizer. For the pulverized straw particles of a few hundred microns in diameters, the intra-particle conversion is found to be a secondary issue at most in their combustion. The simulations also show that a simple switch of the straw injection mode can not improve the burnout of the straw...

  2. Development of a combustion technology for ultra-low emission (< 5 ppm nox) industrial burner

    Energy Technology Data Exchange (ETDEWEB)

    Littlejohn, D.; Majeski, A.J.; Cheng, R.K.; Castaldini, C.

    2002-11-01

    A combustion concept to achieve ultra-low emissions (NO{sub x} {le} 2 ppm and CO {le} 20 ppm) was tested on an 18 kW low swirl burner (LSB). It is based on lean premixed combustion combined with flue gas recirculation (FGR) and partially reformed natural gas (PRNG). Flame stability and emissions were assessed as a function of {phi}, FGR, and PRNG. The results show that PRNG improves flame stability and reduces CO, with no impact on NO{sub x} at {phi} = 0.8. A 1D flame simulation satisfactorily predicted prompt NO{sub x} at lean conditions with high FGR. Two catalysts were tested in a prototype steam reformer, and the results were used to estimate reactor volume and steam requirements in a practical system. An advanced Sud Chemie catalyst displayed good conversion efficiency at relatively low temperatures and high space velocities, which indicates that the reformer can be small and will track load changes. Tests conducted on the LSB with FGR and 0.05 PRNG shows that boilers using a LSB with PRNG and high FGR and {phi} close to stoichiometry can operate with low emissions and high efficiency.

  3. Design of the material performance test apparatus for high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Most materials can be easily corroded or ineffective in carbonaceous atmospheres at high temperatures in the reactor core of the high temperature gas-cooled reactor (HTGR). To solve the problem, a material performance test apparatus was built to provide reliable materials and technical support for relevant experiments of the HTGR. The apparatus uses a center high-purity graphite heater and surrounding thermal insulating layers made of carbon fiber felt to form a strong carbon reducing atmosphere inside the apparatus. Specially designed tungsten rhenium thermocouples which can endure high temperatures in carbonaceous atmospheres are used to control the temperature field. A typical experimental process was analyzed in the paper, which lasted 76 hours including seven stages. Experimental results showed the test apparatus could completely simulate the carbon reduction atmosphere and high temperature environment the same as that confronted in the real reactor and the performance of screened materials had been successfully tested and verified. Test temperature in the apparatus could be elevated up to 1600℃, which covered the whole temperature range of the normal operation and accident condition of HTGR and could fully meet the test requirements of materials used in the reactor. (authors)

  4. Test Plan for the Boiling Water Reactor Dry Cask Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lindgren, Eric R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The thermal performance of commercial nuclear spent fuel dry storage casks are evaluated through detailed numerical analysis . These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and by increasing the internal convection through greater canister helium pressure. These same vertical, canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above and below-ground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of above-ground and below-ground canistered dry cask systems. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern vertical, canistered dry cask systems. The BWR cask simulator (BCS) has been designed in detail for both the above-ground and below-ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 deg C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that represents the

  5. Development and certification of the innovative pioneer oil burner for residential heating appliances

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, B. [Heat Wise Inc., Ridge, NY (United States)

    1997-09-01

    The Pioneer burner represents another important milestone for the oil heat industry. It is the first practical burner design that is designated for use in small capacity heating appliances matching the needs of modern energy efficient home designs. Firing in the range of 0.3 GPH to 0.65 GPH (40,000-90,000 Btu/hr) it allows for new oil heating appliance designs to compete with the other major fuel choices in the small design load residential market. This market includes energy efficient single family houses, town-houses, condominiums, modular units, and mobile homes. The firing range also is wide enough to cover a large percentage of more conventional heating equipment and home designs as well. Having recently passed Underwriters Laboratory certification tests the burner in now being field tested in several homes and samples are being made available to interested boiler and furnace manufacturers for product development and application testing.

  6. Application of a Central Composite Design for the Study of NOx Emission Performance of a Low NOx Burner

    Directory of Open Access Journals (Sweden)

    Marcin Dutka

    2015-04-01

    Full Text Available In this study, the influence of various factors on nitrogen oxides (NOx emissions of a low NOx burner is investigated using a central composite design (CCD approach to an experimental matrix in order to show the applicability of design of experiments methodology to the combustion field. Four factors have been analyzed in terms of their impact on NOx formation: hydrogen fraction in the fuel (0%–15% mass fraction in hydrogen-enriched methane, amount of excess air (5%–30%, burner head position (20–25 mm from the burner throat and secondary fuel fraction provided to the burner (0%–6%. The measurements were performed at a constant thermal load equal to 25 kW (calculated based on lower heating value. Response surface methodology and CCD were used to develop a second-degree polynomial regression model of the burner NOx emissions. The significance of the tested factors over their respective ranges has been evaluated using the analysis of variance and by the consideration of the coefficients of the model equation. Results show that hydrogen addition to methane leads to increased NOx emissions in comparison to emissions from pure methane combustion. Hydrogen content in a fuel is the strongest factor affecting NOx emissions among all the factors tested. Lower NOx formation because of increased excess air was observed when the burner was fuelled by pure methane, but this effect diminished for hydrogen-rich fuel mixtures. NOx emissions were slightly reduced when the burner head was shifted closer to the burner outer tube, whereas a secondary fuel stream provided to the burner was found to have no impact on NOx emissions over the investigated range of factors.

  7. Continuous-flow stirred-tank reactor 20-L demonstration test: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.D.; Collins, J.L.

    2000-02-01

    One of the proposed methods of removing the cesium, strontium, and transuranics from the radioactive waste storage tanks at Savannah River is the small-tank tetraphenylborate (TPB) precipitation process. A two-reactor-in-series (15-L working volume each) continuous-flow stirred-tank reactor (CSTR) system was designed, constructed, and installed in a hot cell to test the Savannah River process. The system also includes two cross-flow filtration systems to concentrate and wash the slurry produced in the process, which contains the bulk of radioactivity from the supernatant processed through the system. Installation, operational readiness reviews, and system preparation and testing were completed. The first test using the filtration systems, two CSTRs, and the slurry concentration system was conducted over a 61-h period with design removal of Cs, Sr, and U achieved. With the successful completion of Test 1a, the following tests, 1b and 1c, were not required.

  8. Digital System Reliability Test for the Evaluation of safety Critical Software of Digital Reactor Protection System

    Directory of Open Access Journals (Sweden)

    Hyun-Kook Shin

    2006-08-01

    Full Text Available A new Digital Reactor Protection System (DRPS based on VME bus Single Board Computer has been developed by KOPEC to prevent software Common Mode Failure(CMF inside digital system. The new DRPS has been proved to be an effective digital safety system to prevent CMF by Defense-in-Depth and Diversity (DID&D analysis. However, for practical use in Nuclear Power Plants, the performance test and the reliability test are essential for the digital system qualification. In this study, a single channel of DRPS prototype has been manufactured for the evaluation of DRPS capabilities. The integrated functional tests are performed and the system reliability is analyzed and tested. The results of reliability test show that the application software of DRPS has a very high reliability compared with the analog reactor protection systems.

  9. Evaluating and planning the radioactive waste options for dismantling the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rule, K.; Scott, J.; Larson, S. [Princeton Plasma Physics Lab., NJ (United States)] [and others

    1995-12-31

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a kind tritium fusion research reactor, and is planned to be decommissioned within the next several years. This is the largest fusion reactor in the world and as a result of deuterium-tritum reactions is tritium contaminated and activated from 14 Mev neutrons. This presents many unusual challenges when dismantling, packaging and disposing its components and ancillary systems. Special containers are being designed to accommodate the vacuum vessel, neutral beams, and tritium delivery and processing systems. A team of experienced professionals performed a detailed field study to evaluate the requirements and appropriate methods for packaging the radioactive materials. This team focused on several current and innovative methods for waste minimization that provides the oppurtunmost cost effective manner to package and dispose of the waste. This study also produces a functional time-phased schedule which conjoins the waste volume, weight, costs and container requirements with the detailed project activity schedule for the entire project scope. This study and project will be the first demonstration of the decommissioning of a tritium fusion test reactor. The radioactive waste disposal aspects of this project are instrumental in demonstrating the viability of a fusion power reactor with regard to its environmental impact and ultimate success.

  10. Proceedings of the 4th international symposium on material testing reactors

    International Nuclear Information System (INIS)

    This report is the Proceedings of the fourth International Symposium on Material Testing Reactors hosted by Japan Atomic Energy Agency (JAEA). The first symposium was held on 2008, at the Oarai Research and Development Center of JAEA, the second, 2009, Idaho National Laboratory (INL) of United States and the third 2010, Nuclear Research Institute (NRI) in Czech Republic to exchange information for deep mutual understanding of material testing reactors. The fourth symposium was originally scheduled to be held INVAP in Argentina. However, the aftermath of volcanic explosion at Chili forced the symposium to change place. Total 111 participants attended from Argentina, Belgium, France, Germany, Indonesia, Malasia, Korea, South Africa, Switzerland, the United State and Japan. This symposium addressed the general topics of 'status and future plan of material testing reactors', 'advancement of irradiation technology', 'expansion of industry use(RI)', 'facility, upgrade, aging management', 'new generation MTR', 'advancement of PIE technology', 'development of advanced driver fuel', and 'nuclear human resource development(HRD) for next generation', and 39 presentations were made. Furthermore, three topics, 'Necessity of cooperation for Mo-99 production by (n,gamma) reaction', 'Necessity of standardization of irradiation technology' and 'Conceptual design of next generation materials testing reactor by collaboration', were selected and discussed. (author)

  11. A simulated test of physical starting and reactor physics on zero power facility of PWR

    International Nuclear Information System (INIS)

    The core neutron economics has been verified through experiments conducted at a zero power reactor with baffles of various thickness. A simulated test of physical starting of Qinshan PWR has been introduced. The feasibility and safety of the programme are verified. The research provides a valuable foundation for developing physical starting programme

  12. Dose management in decommissioning the PLUTO Materials Testing Reactor at Harwell

    International Nuclear Information System (INIS)

    This paper outlines the aspects of decommissioning small and medium sized facilities, which lead to dose management problems. The dose management system, consisting of a work management data base and local dose control system developed for the decommissioning of PLUTO materials testing reactor at AEA Harwell is described. The effectiveness of the system and future developments are discussed. (author)

  13. Testing of an Integrated Reactor Core Simulator and Power Conversion System with Simulated Reactivity Feedback

    Science.gov (United States)

    Bragg-Sitton, Shannon M.; Hervol, David S.; Godfroy, Thomas J.

    2010-01-01

    A Direct Drive Gas-Cooled (DDG) reactor core simulator has been coupled to a Brayton Power Conversion Unit (BPCU) for integrated system testing at NASA Glenn Research Center (GRC) in Cleveland, Ohio. This is a closed-cycle system that incorporates an electrically heated reactor core module, turboalternator, recuperator, and gas cooler. Nuclear fuel elements in the gas-cooled reactor design are replaced with electric resistance heaters to simulate the heat from nuclear fuel in the corresponding fast spectrum nuclear reactor. The thermodynamic transient behavior of the integrated system was the focus of this test series. In order to better mimic the integrated response of the nuclear-fueled system, a simulated reactivity feedback control loop was implemented. Core power was controlled by a point kinetics model in which the reactivity feedback was based on core temperature measurements; the neutron generation time and the temperature feedback coefficient are provided as model inputs. These dynamic system response tests demonstrate the overall capability of a non-nuclear test facility in assessing system integration issues and characterizing integrated system response times and response characteristics.

  14. 2015 Groundwater Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Ponds

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Michael George [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    This report summarizes radiological monitoring results from groundwater wells associated with the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Ponds Reuse Permit (I-161-02). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  15. 2014 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Mike [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  16. Analytical Study of High Concentration PCB Paint at the Heavy Water Components Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, N.J.

    1998-10-21

    This report provides results of an analytical study of high concentration PCB paint in a shutdown nuclear test reactor located at the US Department of Energy's Savannah River Site (SRS). The study was designed to obtain data relevant for an evaluation of potential hazards associated with the use of and exposure to such paints.

  17. Analytical Study of High Concentration PCB Paint at the Heavy Water Components Test Reactor

    International Nuclear Information System (INIS)

    This report provides results of an analytical study of high concentration PCB paint in a shutdown nuclear test reactor located at the US Department of Energy's Savannah River Site (SRS). The study was designed to obtain data relevant for an evaluation of potential hazards associated with the use of and exposure to such paints

  18. Leakage tests of wall segments of reactor containments

    International Nuclear Information System (INIS)

    Two prestressed concrete wall segments simulating portions of containment walls were loaded by axial tensile forces to cause cracking of the concrete. At each load increment air pressure was applied in steps up to 21 psi to one side of the segment and the rate of leakage of air through the cracked concrete section was measured. A theoretical equation for the flow of air through concrete cracks is developed and the results from one leakage test are used to determine the dimensionless constant required for this equation. (author)

  19. Testing of reactor fuel materials using nuclear techniques

    International Nuclear Information System (INIS)

    The tests presented here apply to: the quantitative determination of uranium in the core of fuel element plates by the detection of the number of neutrons produced in photo induced reactions in uranium; the determination of 235U proportion in uranium dioxide samples, in the form of uranyl nitrate, by the technique of the detection of tracks produced by fission fragments and in pellet samples by passive gamma spectrometry and the checking of uranium homogenization distribution in fuel plates and uranium dioxide pellets. (Author)

  20. Analysis and Down Select of Flow Passages for Thermal Hydraulic Testing of a SNAP Derived Reactor

    Science.gov (United States)

    Godfroy, T. J.; Sadasivan, P.; Masterson, S.

    2007-01-01

    As past of the Vision for Space Exploration, man will return to the moon. To enable safe and productive time on the lunar surface will require adequate power resources. To provide the needed power and to give mission planners all landing site possibilities, including a permanently dark crater, a nuclear reactor provides the most options. Designed to be l00kWt providing approx. 25kWe this power plants would be very effective in delivering dependable, site non-specific power to crews or robotic missions on the lunar surface. An affordable reference reactor based upon the successful SNAP program of the 1960's and early 1970's has been designed by Los Alamos National Laboratory that will meet such a requirement. Considering current funding, environmental, and schedule limitations this lunar surface power reactor will be tested using non-nuclear simulators to simulate the heat from fission reactions. Currently a 25kWe surface power SNAP derivative reactor is in the early process of design and testing with collaboration between Los Alamos National Laboratory, Idaho National Laboratory, Glenn Research Center, Marshall Space Flight Center, and Sandia National Laboratory to ensure that this new design is affordable and can be tested using non-nuclear methods as have proven so effective in the past. This paper will discuss the study and down selection of a flow passage concept for a approx. 25kWe lunar surface power reactor. Several different flow passages designs were evaluated using computational fluid dynamics to determine pressure drop and a structural assessment to consider thermal and stress of the passage walls. The reactor design basis conditions are discussed followed by passage problem setup and results for each concept. A recommendation for passage design is made with rationale for selection.

  1. Design and Test of Advanced Thermal Simulators for an Alkali Metal-Cooled Reactor Simulator

    Science.gov (United States)

    Garber, Anne E.; Dickens, Ricky E.

    2011-01-01

    The Early Flight Fission Test Facility (EFF-TF) at NASA Marshall Space Flight Center (MSFC) has as one of its primary missions the development and testing of fission reactor simulators for space applications. A key component in these simulated reactors is the thermal simulator, designed to closely mimic the form and function of a nuclear fuel pin using electric heating. Continuing effort has been made to design simple, robust, inexpensive thermal simulators that closely match the steady-state and transient performance of a nuclear fuel pin. A series of these simulators have been designed, developed, fabricated and tested individually and in a number of simulated reactor systems at the EFF-TF. The purpose of the thermal simulators developed under the Fission Surface Power (FSP) task is to ensure that non-nuclear testing can be performed at sufficiently high fidelity to allow a cost-effective qualification and acceptance strategy to be used. Prototype thermal simulator design is founded on the baseline Fission Surface Power reactor design. Recent efforts have been focused on the design, fabrication and test of a prototype thermal simulator appropriate for use in the Technology Demonstration Unit (TDU). While designing the thermal simulators described in this paper, effort were made to improve the axial power profile matching of the thermal simulators. Simultaneously, a search was conducted for graphite materials with higher resistivities than had been employed in the past. The combination of these two efforts resulted in the creation of thermal simulators with power capacities of 2300-3300 W per unit. Six of these elements were installed in a simulated core and tested in the alkali metal-cooled Fission Surface Power Primary Test Circuit (FSP-PTC) at a variety of liquid metal flow rates and temperatures. This paper documents the design of the thermal simulators, test program, and test results.

  2. Efficiency Testing of the Air Cleaning System for a High Temperature Reactor

    International Nuclear Information System (INIS)

    The Los Alamos Ultra High Temperature Reactor Experiment (UHTREX) utilizes a helium-cooled, graphite-moderated reactor, employing refractory fuel elements. Under accident conditions, the effluent that may be released from this reactor requires an air-cleaning system capable of reducing radioactive gas and particulate contaminants to safe levels. Dioctyl phthalate and iodine-131 were used as test aerosols for the HEPA and activated carbon filters, respectively. Methods of aerosol generation and test procedures are detailed for the preinstallation tests of the carbon and in-place testing of the carbon and HEPA filters. The importance of visual inspection of the HEPA filters prior to installation and supervision of filter installation is discussed. In-place tests indicated desirable design changes which would (1) simplify in-place testing procedures, (2) expedite installation and future changing of the filters, and (3) ensure operation of a more efficient system. Problems encountered during in-place testing, recommendations for the design of similar systems, and acceptance criteria used at LASL are discussed. (author)

  3. A sipping test simulator for identifying defective fuels in MTR type nuclear research reactor

    International Nuclear Information System (INIS)

    Highlights: • This simulator based on windows application of C# programming language. • This simulator could be useful for training of technicians in spent nuclear fuels storage facility. • This simulator is user friendly and easy to learn. - Abstract: Integrity of fuel assemblies is critical to continuous operation of any nuclear reactor. NDT methods and sipping test are practical techniques which are used for this purpose. Assessing the fuel integrity by NDT is a troublesome process which could incur personal overdose due to high radiation, requiring large space, and heavy equipment. Therefore to overcome problems associated with the NDT process, sipping test is widely used. The main purpose of this article is introducing sipping test simulator (STS) which is so important for training. Also, this article describes the procedure and methodology used to perform sipping test on the fuel assemblies either in reactor pool or spent fuel storage pool. A unique ability of this simulator is analyzing direct spectroscopy files from experimental data of a real operating reactor. The sipping test simulator is a full-feature training curriculum in spent nuclear fuels storage technology with a PC-based simulator. This simulator is written in C# programming language for a Windows based computer. The simulator will teach everything needed to know for identifying the fuel defects using sipping test process. As learning the basics of sipping test step wise, a freshman operator will soon be able to accomplish all steps in practice

  4. Development and Testing of a High Capacity Plasma Chemical Reactor in the Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, Raymond W.

    2012-07-30

    This project, Development and Testing of a High Capacity Plasma Chemical Reactor in the Ukraine was established at the Kharkiv Institute of Physics and Technology (KIPT). The associated CRADA was established with Campbell Applied Physics (CAP) located in El Dorado Hills, California. This project extends an earlier project involving both CAP and KIPT conducted under a separate CRADA. The initial project developed the basic Plasma Chemical Reactor (PCR) for generation of ozone gas. This project built upon the technology developed in the first project, greatly enhancing the output of the PCR while also improving reliability and system control.

  5. Problems and future plan on material development of beryllium in materials testing reactors

    International Nuclear Information System (INIS)

    Beryllium has been utilized as a moderator and/or reflector in a number of material testing reactors. The attractive nuclear properties of beryllium are its low atomic number, low atomic weight, low parasitic capture cross section for thermal neutrons, readiness to part with one of its own neutrons, and good neutron elastic scattering characteristics. However, it is difficult to reprocess irradiated beryllium because of high induced radioactivity. Disposal has also been difficult because of toxicity issues and special nuclear material controls. In this paper, problems and future plans of beryllium technology are introduced for nuclear reactors. (author)

  6. Studies of the restructuring of fast breeder test reactor fuel by out-of-pile simulation

    International Nuclear Information System (INIS)

    The fast breeder test reactor (FBTR) at Kalpakkam, India, currently employs a mixed carbide of uranium and plutonium with a Pu/(Pu + U) ratio of 0.70 as fuel. The behavior of this fuel in a thermal gradient is investigated. An out-of-pile simulation facility is designed, set up, and commissioned. Experiments are conducted on FBTR fuel pellets to study the restructuring of the fuel at various levels of linear power and its cracking behavior in a thermal gradient. The results are discussed in terms of their significance for reactor operation

  7. Proceedings of the 1988 International Meeting on Reduced Enrichment for Research and Test Reactors

    International Nuclear Information System (INIS)

    The international effort to develop and implement new research reactor fuels utilizing low-enriched uranium, instead of highly- enriched uranium, continues to make solid progress. This effort is the cornerstone of a widely shared policy aimed at reducing, and possibly eliminating, international traffic in highly-enriched uranium and the nuclear weapon proliferation concerns associated with this traffic. To foster direct communication and exchange of ideas among the specialists in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at Argonne National Laboratory, sponsored this meeting as the eleventh of a series which began 1978. Individual papers presented at the meeting have been cataloged separately

  8. Proceedings of the 1988 International Meeting on Reduced Enrichment for Research and Test Reactors

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The international effort to develop and implement new research reactor fuels utilizing low-enriched uranium, instead of highly- enriched uranium, continues to make solid progress. This effort is the cornerstone of a widely shared policy aimed at reducing, and possibly eliminating, international traffic in highly-enriched uranium and the nuclear weapon proliferation concerns associated with this traffic. To foster direct communication and exchange of ideas among the specialists in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at Argonne National Laboratory, sponsored this meeting as the eleventh of a series which began 1978. Individual papers presented at the meeting have been cataloged separately.

  9. Review of Savannah River Site K Reactor inservice inspection and testing restart program

    International Nuclear Information System (INIS)

    Inservice inspection (ISI) and inservice testing (IST) programs are used at commercial nuclear power plants to monitor the pressure boundary integrity and operability of components in important safety-related systems. The Department of Energy (DOE) - Office of Defense Programs (DP) operates a Category A (> 20 MW thermal) production reactor at the Savannah River Site (SRS). This report represents an evaluation of the ISI and IST practices proposed for restart of SRS K Reactor as compared, where applicable, to current ISI/IST activities of commercial nuclear power facilities

  10. Alpha particle losses from Tokamak Fusion Test Reactor deuterium-tritium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Darrow, D.S.; Zweben, S.J. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Batha, S. [Fusion Physics and Technology, Torrance, CA (United States)

    1996-01-01

    Because alpha particle losses can have a significant influence on tokamak reactor viability, the loss of deuterium-tritium alpha particles from the Tokamak Fusion Test Reactor (TFTR) has been measured under a wide range of conditions. In TFTR, first orbit loss and stochastic toroidal field ripple diffusion are always present. Other losses can arise due to magnetohydrodynamic instabilities or due to waves in the ion cyclotron range of frequencies. No alpha particle losses have yet been seen due to collective instabilities driven by alphas. Ion Bernstein waves can drive large losses of fast ions from TFTR, and details of those losses support one element of the alpha energy channeling scenario.

  11. Alpha particle losses from Tokamak Fusion Test Reactor deuterium-tritium plasmas

    International Nuclear Information System (INIS)

    Because alpha particle losses can have a significant influence on tokamak reactor viability, the loss of deuterium-tritium alpha particles from the Tokamak Fusion Test Reactor (TFTR) has been measured under a wide range of conditions. In TFTR, first orbit loss and stochastic toroidal field ripple diffusion are always present. Other losses can arise due to magnetohydrodynamic instabilities or due to waves in the ion cyclotron range of frequencies. No alpha particle losses have yet been seen due to collective instabilities driven by alphas. Ion Bernstein waves can drive large losses of fast ions from TFTR, and details of those losses support one element of the alpha energy channeling scenario

  12. IMPROVEMENT OF OPERATIONAL CHARACTERISTICS OF ELECTRIC COOKER BURNERS

    Directory of Open Access Journals (Sweden)

    I. M. Kirick

    2008-01-01

    Full Text Available On the basis of a complex theoretical and experimental investigations a principally new design of small inertial burner for electric cookers has been developed that significantly out-perform burners of conventional types. 

  13. Power pulse tests on CANDU type fuel elements in TRIGA reactor of INR Pitesti

    International Nuclear Information System (INIS)

    Pulse irradiation tests on short fuel elements have been carried out in TRIGA Annular Core Pulse Reactor (TRIGA ACPR) of INR Pitesti to investigate aspects related to the thermal and mechanical behavior of CANDU type fuel elements under short duration and large amplitude power pulse conditions. Short test fuel elements were instrumented with thermocouples for cladding surface temperature measurements and pressure sensor for element internal pressure measurement. Transient histories of reactor power, cooling water pressure, fuel element internal pressure and cladding temperature were recorded during tests. The fuel elements were subjected to total energy deposition from 70 to 280cal g-1 UO2. Rapid fuel pellet expansion due to a power excursion caused radial and longitudinal deformation of the cladding. Cladding failure mechanism and the failure threshold have been established. This paper presents some recent results obtained from these power pulse tests performed in TRIGA ACPR of INR Pitesti. (author)

  14. A study on fast reactor core mechanics by an ex-reactor test and comparisons with calculations

    International Nuclear Information System (INIS)

    This paper presents and discusses the results of core bowing experiments performed with an ex-reactor rig holding a half hexagon array of 22 sub-assemblies (S/As) simulating the Japanese DFBR conditions and the comparisons of the measured results with calculations by individually developed codes--ARKAS, RAINBOW, SANBOW. The main conclusions of this study are (1) interwrapper loads and S/A displacements within the array were measured at selected positions for a series of five tests simulating the DFBR core bowing modes, (2) the overall comparison between the non-friction calculation and measurement showed good agreement for loads, displacements and their directions, and (3) validation of the friction algorithm has also been carried out and further improvement of the agreement was obtained

  15. Influential parameters of nitrogen oxides emissions for microturbine swirl burner with pilot burner

    Directory of Open Access Journals (Sweden)

    Adžić Miroljub M.

    2010-01-01

    Full Text Available Swirl burners are the most common type of device in wide range of applications, including gas turbine combustors. Due to their characteristics, swirl flows are extensively used in combustion systems because they enable high energy conversion in small volume with good stabilization behavior over the wide operating range. The flow and mixing process generated by the swirl afford excellent flame stability and reduced NOx emissions. Experimental investigation of NOx emission of a purposely designed micro turbine gas burner with pilot burner is presented. Both burners are equipped with swirlers. Mixtures of air and fuel are introduced separately: through the inner swirler - primary mixture for pilot burner, and through the outer swirler - secondary mixture for main burner. The effects of swirl number variations for the both burners were investigated, including parametric variations of the thermal power and air coefficient. It was found that the outer swirler affects the emission of NOx only for the air coefficient less than 1.4. The increase of swirl number resulted in decrease of NOx emission. The inner swirler and thermal power were found to have negligible effect on emission.

  16. Fuel and core testing plan for a target fueled isotope production reactor

    International Nuclear Information System (INIS)

    In recent years there has been an unstable supply of the critical diagnostic medical isotope 99Tc. Several concepts and designs have been proposed to produce 99Mo the parent nuclide of 99Tc, at a commercial scale sufficient to stabilize the world supply. This work lays out a testing and experiment plan for a proposed 2 MW open pool reactor fueled by Low Enriched Uranium (LEU) 99Mo targets. The experiments and tests necessary to support licensing of the reactor design are described and how these experiments and tests will help establish the safe operating envelop for a medical isotope production reactor is discussed. The experiments and tests will facilitate a focused and efficient licensing process in order to bring on line a needed production reactor dedicated to supplying medical isotopes. The Target Fuel Isotope Reactor (TFIR) design calls for an active core region that is approximately 40 cm in diameter and 40 cm in fuel height. It contains up to 150 cylindrical, 1-cm diameter, LEU oxide fuel pins clad with Zircaloy (zirconium alloy), in an annular hexagonal array on a ∼2.0 cm pitch surrounded, radially, by a graphite or a Be reflector. The reactor is similar to U.S. university reactors in power, hardware, and safety/control systems. Fuel/target pin fabrication is based on existing light water reactor fuel fabrication processes. However, as part of licensing process, experiments must be conducted to confirm analytical predictions of steady-state power and accident conditions. The experiment and test plan will be conducted in phases and will utilize existing facilities at the U.S. Department of Energy's Sandia National Laboratories. The first phase is to validate the predicted reactor core neutronics at delayed critical, zero power and very low power. This will be accomplished by using the Sandia Critical Experiment (CX) platform. A full scale TFIR core will be built in the CX and delayed critical measurements will be taken. For low power experiments, fuel

  17. Preliminary Benchmark Evaluation of Japan’s High Temperature Engineering Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    John Darrell Bess

    2009-05-01

    A benchmark model of the initial fully-loaded start-up core critical of Japan’s High Temperature Engineering Test Reactor (HTTR) was developed to provide data in support of ongoing validation efforts of the Very High Temperature Reactor Program using publicly available resources. The HTTR is a 30 MWt test reactor utilizing graphite moderation, helium coolant, and prismatic TRISO fuel. The benchmark was modeled using MCNP5 with various neutron cross-section libraries. An uncertainty evaluation was performed by perturbing the benchmark model and comparing the resultant eigenvalues. The calculated eigenvalues are approximately 2-3% greater than expected with an uncertainty of ±0.70%. The primary sources of uncertainty are the impurities in the core and reflector graphite. The release of additional HTTR data could effectively reduce the benchmark model uncertainties and bias. Sensitivity of the results to the graphite impurity content might imply that further evaluation of the graphite content could significantly improve calculated results. Proper characterization of graphite for future Next Generation Nuclear Power reactor designs will improve computational modeling capabilities. Current benchmarking activities include evaluation of the annular HTTR cores and assessment of the remaining start-up core physics experiments, including reactivity effects, reactivity coefficient, and reaction-rate distribution measurements. Long term benchmarking goals might include analyses of the hot zero-power critical, rise-to-power tests, and other irradiation, safety, and technical evaluations performed with the HTTR.

  18. Monitoring and Analysis of In-Pile Phenomena in Advanced Test Reactor using Acoustic Telemetry

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States). Dept. of Human Factors, Controls, and Statistics; Smith, James A. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Dept. of Fuel Performance and Design; Jewell, James Keith [Idaho National Lab. (INL), Idaho Falls, ID (United States). Dept. of Fuel Performance and Design

    2015-02-01

    The interior of a nuclear reactor presents a particularly harsh and challenging environment for both sensors and telemetry due to high temperatures and high fluxes of energetic and ionizing particles among the radioactive decay products. A number of research programs are developing acoustic-based sensing approach to take advantage of the acoustic transmission properties of reactor cores. Idaho National Laboratory has installed vibroacoustic receivers on and around the Advanced Test Reactor (ATR) containment vessel to take advantage of acoustically telemetered sensors such as thermoacoustic (TAC) transducers. The installation represents the first step in developing an acoustic telemetry infrastructure. This paper presents the theory of TAC, application of installed vibroacoustic receivers in monitoring the in-pile phenomena inside the ATR, and preliminary data processing results.

  19. Monitoring and Analysis of In-Pile Phenomena in Advanced Test Reactor using Acoustic Telemetry

    International Nuclear Information System (INIS)

    The interior of a nuclear reactor presents a particularly harsh and challenging environment for both sensors and telemetry due to high temperatures and high fluxes of energetic and ionizing particles among the radioactive decay products. A number of research programs are developing acoustic-based sensing approach to take advantage of the acoustic transmission properties of reactor cores. Idaho National Laboratory has installed vibroacoustic receivers on and around the Advanced Test Reactor (ATR) containment vessel to take advantage of acoustically telemetered sensors such as thermoacoustic (TAC) transducers. The installation represents the first step in developing an acoustic telemetry infrastructure. This paper presents the theory of TAC, application of installed vibroacoustic receivers in monitoring the in-pile phenomena inside the ATR, and preliminary data processing results.

  20. A premature demise for RERTR [Reduced Enrichment for Research and Test Reactors programme]?

    International Nuclear Information System (INIS)

    A common commitment from France, Belgium, Germany and the US to eliminate highly enriched uranium from their research reactors is needed to help guard against this material falling into the wrong hands. In the US, an essential part of this commitment would be rekindling the weakened Reduced Enrichment for Research and Test Reactors programme (RERTR). This is an American initiative to develop low-enrichment uranium fuel for research reactors that have previously required weapons-usable material. Underway since 1978 at Argonne National Laboratory, RERTR has achieved some impressive results: the development of higher density, low enriched fuels that are suitable for use at over 90% of the world's research reactors; a net reduction of US exports of highly enriched uranium (HEU) from the annual 700kg levels in the late 1970s to a 1990 level of just over 100kg; the encouragement of international scientific co-operation aimed at developing new fuels and facilitating the conversion of existing reactors to these fuels. However, in recent years, the US commitment to RERTR has been declining -budgets have fallen and advanced fuel development work has terminated. (author)

  1. Proceedings of the 1990 International Meeting on Reduced Enrichment for Research and Test Reactors

    International Nuclear Information System (INIS)

    The global effort to reduce, and possibly, eliminate the international traffic in highly-enriched uranium caused by its use in research reactors requires extensive cooperation and free exchange of information among all participants. To foster this free exchange of information, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at Argonne National Laboratory, sponsored this meeting as the thirteenth of a series which began in 1978. The common effort brought together, past, a large number of specialists from many countries. On hundred twenty-three participants from 26 countries, including scientists, reactor operators, and personnel from commercial fuel suppliers, research centers, and government organizations, convened in Newport, Rhode Island to discuss their results, their activities, and their plans relative to converting research reactors to low-enriched fuels. As more and more reactors convert to the use of low-enriched uranium, the emphasis of our effort has begun to shift from research and development to tasks more directly related to implementation of the new fuels and technologies that have been developed, and to refinements of those fuels and technologies. It is appropriate, for this reason, that the emphasis of this meeting was placed on safety and on conversion experiences. This individual papers in this report have been cataloged separately

  2. Proceedings of the 1990 International Meeting on Reduced Enrichment for Research and Test Reactors

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The global effort to reduce, and possibly, eliminate the international traffic in highly-enriched uranium caused by its use in research reactors requires extensive cooperation and free exchange of information among all participants. To foster this free exchange of information, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at Argonne National Laboratory, sponsored this meeting as the thirteenth of a series which began in 1978. The common effort brought together, past, a large number of specialists from many countries. On hundred twenty-three participants from 26 countries, including scientists, reactor operators, and personnel from commercial fuel suppliers, research centers, and government organizations, convened in Newport, Rhode Island to discuss their results, their activities, and their plans relative to converting research reactors to low-enriched fuels. As more and more reactors convert to the use of low-enriched uranium, the emphasis of our effort has begun to shift from research and development to tasks more directly related to implementation of the new fuels and technologies that have been developed, and to refinements of those fuels and technologies. It is appropriate, for this reason, that the emphasis of this meeting was placed on safety and on conversion experiences. This individual papers in this report have been cataloged separately.

  3. Thermal simulations and tests in the development of a helmet transport spent fuel elements Research Reactor

    International Nuclear Information System (INIS)

    A packaging for the transport of irradiated fuel from research reactors was designed by a group of researchers to improve the capability in the management of spent fuel elements from the reactors operated in the region. Two half-scale models for MTR fuel were constructed and tested so far and a third one for both MTR and TRIGA fuels will be constructed and tested next. Four test campaigns have been carried out, covering both normal and hypothetical accident conditions of transportation. The thermal test is part of the requirements for the qualification of transportation packages for nuclear reactors spent fuel elements. In this paper both the numerical modelling and experimental thermal tests performed are presented and discussed. The cask is briefly described as well as the finite element model developed and the main adopted hypotheses for the thermal phenomena. The results of both numerical runs and experimental tests are discussed as a tool to validate the thermal modelling. The impact limiters, attached to the cask for protection, were not modelled. (author)

  4. Hydraulic Shuttle Irradiation System (HSIS) Recently Installed in the Advanced Test Reactor (ATR)

    International Nuclear Information System (INIS)

    Most test reactors are equipped with shuttle facilities (sometimes called rabbit tubes) whereby small capsules can be inserted into the reactor and retrieved during power operations. With the installation of Hydraulic Shuttle Irradiation System (HSIS) this capability has been restored to the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). The general design and operating principles of this system were patterned after the hydraulic rabbit at Oak Ridge National Laboratory's (ORNL) High Flux Isotope Reactor (HFIR), which has operated successfully for many years. Using primary coolant as the motive medium the HSIS system is designed to simultaneously transport fourteen shuttle capsules, each 16 mm OD x 57 mm long, to and from the B-7 position of the reactor. The B-7 position is one of the higher flux positions in the reactor with typical thermal and fast (>1 Mev) fluxes of 2.8E+14 n/cm2/sec and 1.9E+14 n/cm2/sec respectively. The available space inside each shuttle is approximately 14 mm diameter x 50 mm long. The shuttle containers are made from titanium which was selected for its low neutron activation properties and durability. Shuttles can be irradiated for time periods ranging from a few minutes to several months. The Send and Receive Station (SRS) for the HSIS is located 2.5 m deep in the ATR canal which allows irradiated shuttles to be easily moved from the SRS to a wet loaded cask, or transport pig. The HSIS system first irradiated (empty) shuttles in September 2009 and has since completed a Readiness Assessment in November 2009. The HSIS is a key component of the ATR National Scientific User Facility (NSUF) operated by Battelle Energy Alliance, LLC and is available to a wide variety of university researchers for nuclear fuels and materials experiments as well as medical isotope research and production.

  5. The 5th surveillance testing for Kori unit 2 reactor vessel materials

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Ok; Kim, Byoung Chul; Lee, Sam Lai; Choi, Kwon Jae; Gong, Un Sik; Chang, Jong Hwa; Joo, Yong Sun; Ahn, Sang Bok; Hong, Joon Hwa [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2001-03-01

    Surveillance testing for reactor vessel materials is performed in order to evaluate the irradiation embrittlement due to neutrons during operation and set the condition of safe operation of nuclear reactor. The 5th surveillance testing was performed completely by Korea Atomic Energy Research Institute at Taejeon after the capsule was transported from Kori site including its removal from reactor. Fast neutron fluences for capsules were calculated and various testing including mechanical and chemistry analysis were performed in order to evaluate the integrity of Kori unit 2 reactor vessel during the operation until life time. The evaluation results are as follows; Fast neutron fluences for capsules V, R, P, T and N are 2.837E+18, 1.105E+19, 2.110E+19, 3.705E+19 and 4.831E+19n/cm{sup 2}, respectively. The bias factor, the ratio of measurement/calculation, was 0.918 for the 1st through 5th testing and the calculational uncertainty, 11.6% satisfied the requirement of USNRC Reg.Guide DG-1053, 20%. The best estimated neutron fluence for reactor vessel inside surface was 1.898E+19n/cm{sup 2} based on the end of 15th fuel cycle and it was predicted that the fluences of vessel inside surface at 32, 40, 48 and 56EFPY would reach 4.203E+19, 5.232E+19, 6.262E+19 and 7.291E+19n/cm{sup 2} based on the current calculation. The result through this analysis for Kori unit 2 showed that there would be no problem for the pressurized thermal shock(PTS) during the operation until design life. 49 refs., 35 figs., 48 tabs. (Author)

  6. The 4th surveillance testing for Kori unit 3 reactor vessel materials

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Ok; Kim, Byoung Chul; Lee, Sam Lai; Choi, Kwun Jae; Gong, Un Sik; Chang, Jong Hwa; Joo, Yong Sun; Ahn, Sang Bok; Hong, Joon Hwa [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-10-01

    Surveillance testing for reactor vessel materials is performed in order to evaluate the irradiation embrittlement due to neutrons during operation and set the condition of safe operation of nuclear reactor. The 4th surveillance testing was performed completely by Korea Atomic Energy Research Institute at Taejeon after the capsule was transported from Kori site including its removal from reactor. Fast neutron fluences for capsules were calculated and various testing including mechanical and chemistry analysis were performed in order to evaluate the integrity of Kori unit 3 reactor vessel during the operation until life time. The evaluation results are as follows; Fast neutron fluences for capsules U, V, X and W are 4.983E+18, 1.641E+19, 3.158E+19, and 4.469E+19n/cm{sup 2}, respectively. The bias factor, the ratio of calculation/measurement, was 0.840 for the 1st through 4th testing and the calculational uncertainty, 12% satisfied the requirement of USNRC Reg.Guide DG-1053, 20%. The best estimated neutron fluence for reactor vessel inside surface was 1.362E+19n/cm{sup 2} based on the end of 12th fuel cycle and it was predicted that the fluences of vessel inside surface at 32, 40, 48 and 56EFPY would reach 3.481E+19, 4.209E+19, 5.144E+19 and 5.974E+19n/cm{sup 2} based on the current calculation. The result through this analysis for Kori unit 3 showed that there would be no problem for the pressurized thermal shock(PTS) during the operation until design life. 48 refs., 35 figs., 41 tabs. (Author)

  7. Test results in the treatment of HTR reprocessing off-gas

    International Nuclear Information System (INIS)

    The AKUT II-facility (throughput 10 m3/h, STP) for the clean up of the burner off-gas has been tested with synthetic off-gas and with off-gas from cold burner tests. The results are reported. During dissolution of the burner ash in nitric acid an off-gas is formed whose main component is air and which, besides the gaseous fission products, contains NO/sub x/. Before the separation of the gaseous fission products NO/sub x/ and/or O2 are removed by reaction with H2 or NH3. For these reactions catalysts were used. Because of the known disadvantages of catalytic systems, like reduction in efficiency by poisoning or thermal influence, the alternative method of thermal, flameless reduction was tested. The reactions were carried out in a stainless steel and a quartz reactor. Throughput, reaction temperature, O2-, NO/sub x/-, H2-, and NH3-concentrations respectively were varied. The goal of these tests was to remove O2 and NO/sub x/ to below 1 ppM behind the reactor and NH3 to below the detection limit of 50 ppM. It was found that at a reaction temperature of 7500C in the stainless steel reactor these goals can be reached for both H2 and NH3 as reducing agents. In the quartz reactor only the O2-H2-reaction takes place. Obviously stainless steel acts as a catalyst for all other reactions

  8. Scaling the weak-swirl burner from 15 kW to 1 MW

    Energy Technology Data Exchange (ETDEWEB)

    Yegian, D.T.; Cheng, R.K. [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technologies Div.; Hack, R.L.; Miyasato, M.M.; Chang, A.; Samuelsen, G.S. [Univ. of California, Irvine, CA (United States). UCI Combustion Lab.

    1998-03-01

    With the passage of SCAQMD 1146.2, low NO{sub x} regulations will be enforced for new water heaters and boilers from 22 to 585 kW starting January 1, 2000; less than two years away. This has given an added impetus to develop a burner capable of producing NO{sub x} < 30 ppm and CO < 400 ppm without substantial manufacturing costs or complexity. Developed at the Berkeley Lab, the Weak-Swirl Burner (WSB) operates in the lean premixed combustion mode over a wide firing and equivalence ratio range. This work investigated scaling issues (e.g. swirl rates and stability limits) of the WSB when fired at higher rates useful to industry. Three test configurations which varied the ratio of furnace area to burner area were utilized to understand the effects of burner chamber coupling on emissions and stability. Preliminary tests from 12 to 18 kW of a WSB in a commercial heat exchanger were undertaken at LBNL, with further testing from 18 to 105 kW completed at UCI Combustion Laboratory in an octagonal enclosure. After scaling the small (5 cm diameter) to a 10 cm WSB, the larger burner was fired from 150 to 600 kW within a 1.2 MW furnace simulator at UCICL. Test results demonstrate that NO{sub x} emissions (15 ppm at 3% O{sub 2} at equivalence ratio {phi} = 0.80) were invariant with firing rate and chamber/burner ratio. However, the data indicates that CO and UHC are dependent on system parameters, such that a minimum firing rate exists below which CO and UHC rise from lower limits of 25 ppm and 0 ppm respectively.

  9. DESIGN REPORT LOW-NOX BURNERS FOR PACKAGE BOILERS

    Science.gov (United States)

    The report describes a low-NOx burner design, presented for residual-oil-fired industrial boilers and boilers cofiring conventional fuels and nitrated hazardous wastes. The burner offers lower NOx emission levels for these applications than conventional commercial burners. The bu...

  10. DESIGN REPORT: LOW-NOX BURNERS FOR PACKAGE BOILERS

    Science.gov (United States)

    The report describes a low-NOx burner design, presented for residual-oil-fired industrial boilers and boilers cofiring conventional fuels and nitrated hazardous wastes. The burner offers lower NOx emission levels for these applications than conventional commercial burners. The bu...

  11. LASER-ENHANCED IONIZATION SPECTROMETRY WITH A TOTAL CONSUMPTION BURNER

    OpenAIRE

    Green, R; Hall, Janet

    1983-01-01

    This paper describes the use of a total consumption burner as an analytical atom reservoir for laser-enhanced ionization spectrometry. A total consumption burner and premixed burner are compared for limits of detection and matrix interferences. These results demonstrate that high sensitivity laser-enhanced ionization measurements are possible in adverse sample environments where traditional methods of optical spectrometry have proven inadequate.

  12. RIA and LOCA simulating tests on experimental fuel elements in TRIGA MT reactor of INR Pitesti

    International Nuclear Information System (INIS)

    Full text: One of the main objectives of Institute for Nuclear Research (INR), Pitesti R and D Program is to investigate thermal and mechanical behaviour of fuel elements, thresholds and mechanisms of cladding failure during RIA and LOCA tests. Dual core TRIGA Material Testing Reactor of INR Pitesti (TRIGA SS MTR and TRIGA ACPR) is utilized extensively for studies of fuel behaviour under normal and postulated accident condition. A total of 39 test fuel elements have been irradiated in the TRIGA Annular Core Pulse Reactor (TRIGA ACPR) of INR Pitesti under RIA conditions. The ACPR tests program is still in progress and new experiments are foreseen to be performed in the following period. The test fuel elements are instrumented with CrAl thermocouples for cladding surface temperature measurement and every test fuel element has a pressure sensor for the internal pressure measurement. An experimental database of fuel behaviour parameters including fission - gas release, sheath strain, power - burnup history, etc. has been obtained using in-pile measurements and PIE results of test fuel elements irradiated in the TRIGA Steady State Material Testing Reactor (TRIGA SS MTR) of INR Pitesti. More than 100 test fuel elements have been irradiated in TRIGA SS MTR in different power history conditions. LOCA simulating tests are planned to be performed in C2 LOCA tests capsule and in Loop A of TRIGA SS MTR of INR Pitesti. The LOCA tests in capsule C2 are instrumented to measure fuel, sheath and coolant temperature, internal element and coolant pressure during the entire irradiation period. In the second phase of the experiment the C2 capsule will be connected to the sweep gas system with the on-line gamma ray spectrometer included. RIA type tests are planned in C6 capsule of TRIGA ACPR on test fuel elements with pre-hydrided claddings in order to investigate the influence of the precipitated hydride on fuel element cladding failure at high burnups in RIA conditions. This paper

  13. Evaluation of soil-structure interaction based on forced vibration tests of three reactor buildings within a site

    International Nuclear Information System (INIS)

    Three BWR type reactor buildings (Unit No. 1, 2, 3) have been constructed at Hamaoka site in Shizuoka prefecture, Japan, during the past fifteen years. In order to confirm and verify the seismic design procedure, forced vibration tests were performed for the completed three reactor buildings. Enough test data have been accumulated and consequently, it is now possible to consolidate these data and compare the differences of vibrational characteristics of the three reactor of soil-structure interaction effects through the simulation study of vibrational characteristics of the three reactor buildings and explores realistic vibration models

  14. Non destructive testing of irradiated fuel assemblies at the IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Fuel performance and nuclear fuel qualification require a post-irradiation analysis. Non-destructive methods are utilised both in irradiated fuel storage pools and in hot-cells laboratories. As Brazil does not have hot-cells facilities for post-irradiation analysis, a qualification program for the Material Testing Reactor (MTR) fuel elements made at IPEN/CNEN-SP was adopted, based on non-destructive tests. The IPEN Fuel Engineering Group - CENC developed basic facilities for fuels post-irradiated analysis inside the reactor pool, which gives indications of: general state, by visual inspection; the integrity of the irradiated fuel cladding, by sipping tests; thickness measurements of the fuel miniplates during the irradiation time, for swelling evaluation; and, local burn-up evaluation by gamma spectrometry along the active area of the fuel element. This work describes that facilities, equipment and examples of some irradiated fuels analysis performed. (author)

  15. Design, Testing and Modeling of the Direct Reactor Auxiliary Cooling System for AHTRs

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Quiping [The Ohio State Univ., Columbus, OH (United States); Sun, Xiaodong [The Ohio State Univ., Columbus, OH (United States); Chtistensen, Richard [The Ohio State Univ., Columbus, OH (United States); Blue, Thomas [The Ohio State Univ., Columbus, OH (United States); Yoder, Graydon [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-05-08

    The principal objective of this research is to test and model the heat transfer performance and reliability of the Direct Reactor Auxiliary Cooling System (DRACS) for AHTRs. In addition, component testing of fluidic diodes is to be performed to examine the performance and viability of several existing fluidic diode designs. An extensive database related to the thermal performance of the heat exchangers involved will be obtained, which will be used to benchmark a computer code for the DRACS design and to evaluate and improve, if needed, existing heat transfer models of interest. The database will also be valuable for assessing the viability of the DRACS concept and benchmarking any related computer codes in the future. The experience of making a liquid fluoride salt test facility available, with lessons learned, will greatly benefit the development of the Fluoride Salt-cooled High-temperature Reactor (FHR) and eventually the AHTR programs.

  16. Design, Testing and Modeling of the Direct Reactor Auxiliary Cooling System for AHTRs

    International Nuclear Information System (INIS)

    The principal objective of this research is to test and model the heat transfer performance and reliability of the Direct Reactor Auxiliary Cooling System (DRACS) for AHTRs. In addition, component testing of fluidic diodes is to be performed to examine the performance and viability of several existing fluidic diode designs. An extensive database related to the thermal performance of the heat exchangers involved will be obtained, which will be used to benchmark a computer code for the DRACS design and to evaluate and improve, if needed, existing heat transfer models of interest. The database will also be valuable for assessing the viability of the DRACS concept and benchmarking any related computer codes in the future. The experience of making a liquid fluoride salt test facility available, with lessons learned, will greatly benefit the development of the Fluoride Salt-cooled High-temperature Reactor (FHR) and eventually the AHTR programs.

  17. In-reactor tests of the nuclear light bulb rocket concept

    Science.gov (United States)

    Gauntt, R. O.; Slutz, S. A.; Latham, T. S.; Roman, W. C.; Rogers, R. J.

    1992-07-01

    An overview is given of the closed-cycle Gas Core Nuclear Rocket outlining scenarios for its use in short-duration Mars missions and results of Nuclear Light Bulb (NLB) tests. Isothermal and nonnuclear tests are described which confirmed the fundamental concepts behind the NLB. NLB reference-engine performance characteristics are given for hypothetical engines that could be used for manned Mars missions. Vehicle/propulsion sizing is based on a Mars mission with three trans-Mars impulse burns, capture and escape burns, and a total mission duration of 600 days. The engine would have a specific impulse of 1870 seconds, a 412-kN thrust, and a thrust/weight ratio of 1.3. Reactor tests including small-scale in-reactor tests are shown to be prerequisites for studying: (1) fluid mechanical confinement of the gaseous nuclear fuel; (2) buffer gas separation and circulation; and (3) the minimization of transparent wall-heat loading. The reactor tests are shown to be critical for establishing the feasibility of the NLB concept.

  18. The 5th surveillance testing for Kori unit 1 reactor vessel materials

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kee Ok; Kim, Byoung Chul; Lee, Sam Lai; Choi, Kwun Jae; Gong, Un Sik; Chang, Jong Hwa; Joo, Yong Sun; Ahn, Sang Bok; Hong, Joon Hwa [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-08-01

    Surveillance testing for reactor vessel materials is performed in order to evaluate the irradiation embrittlement due to neutrons during operation and set the condition of safe operation of nuclear reactor. The 5th surveillance testing was performed primarily by Korea Atomic Energy Research Institute and Westinhouse corporation partially involved in testing and calculation data evaluation in order to obtain reliable test result. Fast neutron fluences for capsule V, T, S, R and P were 5.087E+18, 1.115E+19, 1.228E+19, 2.988E+19, and 3.938E+19n/cm2, respectively. The bias factor, the ratio of calculation/measurement, was 0.940 for the 1st through 5th testing and the calculational uncertainty, 7% satisfied the requirement of USNRC Reg.Guide DG-1053, 20%. The best estimated neutron fluence for reactor vessel inside surface was 1.9846E+19n/cm{sup 2} based on the end of 17th fuel cycle and it was predicted that the fluences of vessel inside surface at 24, 32, 40 and 48EFPY would reach 3.0593E+19, 4.0695E+19, 5.0797E+19 and 6.0900E+19n/cm{sup 2} based on the current calculation. PTS analysis for Kori unit 1 showed that 27.93EFPY was the threshold value for 300 deg F requirement. 71 refs., 33 figs., 52 tabs. (Author)

  19. Hydraulic Shuttle Irradiation System (HSIS) Recently Installed in the Advanced Test Reactor (ATR)

    Energy Technology Data Exchange (ETDEWEB)

    A. Joseph Palmer; Gerry L. McCormick; Shannon J. Corrigan

    2010-06-01

    2010 International Congress on Advances in Nuclear Power Plants (ICAPP’10) ANS Annual Meeting Imbedded Topical San Diego, CA June 13 – 17, 2010 Hydraulic Shuttle Irradiation System (HSIS) Recently Installed in the Advanced Test Reactor (ATR) Author: A. Joseph Palmer, Mechanical Engineer, Irradiation Test Programs, 208-526-8700, Joe.Palmer@INL.gov Affiliation: Idaho National Laboratory P.O. Box 1625, MS-3840 Idaho Falls, ID 83415 INL/CON-10-17680 ABSTRACT Most test reactors are equipped with shuttle facilities (sometimes called rabbit tubes) whereby small capsules can be inserted into the reactor and retrieved during power operations. With the installation of Hydraulic Shuttle Irradiation System (HSIS) this capability has been restored to the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). The general design and operating principles of this system were patterned after the hydraulic rabbit at Oak Ridge National Laboratory’s (ORNL) High Flux Isotope Reactor (HFIR), which has operated successfully for many years. Using primary coolant as the motive medium the HSIS system is designed to simultaneously transport fourteen shuttle capsules, each 16 mm OD x 57 mm long, to and from the B-7 position of the reactor. The B-7 position is one of the higher flux positions in the reactor with typical thermal and fast (>1 Mev) fluxes of 2.8E+14 n/cm2/sec and 1.9E+14 n/cm2/sec respectively. The available space inside each shuttle is approximately 14 mm diameter x 50 mm long. The shuttle containers are made from titanium which was selected for its low neutron activation properties and durability. Shuttles can be irradiated for time periods ranging from a few minutes to several months. The Send and Receive Station (SRS) for the HSIS is located 2.5 m deep in the ATR canal which allows irradiated shuttles to be easily moved from the SRS to a wet loaded cask, or transport pig. The HSIS system first irradiated (empty) shuttles in September 2009 and has since completed

  20. Nuclear characteristics of a fissioning uranium plasma test reactor with light-water cooling

    Science.gov (United States)

    Whitmarsh, C. L., Jr.

    1973-01-01

    An analytical study was performed to determine a design configuration for a cavity test reactor. Test section criteria were that an average flux of 10 to the 15th power neutrons/sq cm/sec (E less than or equal to 0.12 eV) be supplied to a 61-cm-diameter spherical cavity at 200-atm pressure. Design objectives were to minimize required driver power, to use existing fuel-element technology, and to obtain fuel-element life of 10 to 100 full-power hours. Parameter calculations were made on moderator region size and material, driver fuel arrangement, control system, and structure in order to determine a feasible configuration. Although not optimized, a configuration was selected which would meet design criteria. The driver fuel region was a cylindrical annular region, one element thick, of 33 MTR-type H2O-cooled elements (Al-U fuel plate configuration), each 101 cm long. The region between the spherical test cavity and the cylindrical driver fuel region was Be (10 vol. % H2O coolant) with a midplane dimension of 8 cm. Exterior to the driver fuel, the 25-cm-thick cylindrical and axial reflectors were also Be with 10 vol. % H2O coolant. The entire reactor was contained in a 10-cm-thick steel pressure vessel, and the 200-atm cavity pressure was equalized throughout the driver reactor. Fuel-element life was 50 hr at the required driver power of 200 MW. Reactor control would be achieved with rotating poison drums located in the cylindrical reflector region. A control range of about 18 percent delta k/k was required for reactor operation.

  1. Heat Transfer Behaviour and Thermohydraulics Code Testing for Supercritical Water Cooled Reactors (SCWRs)

    International Nuclear Information System (INIS)

    The supercritical water cooled reactor (SCWR) is an innovative water cooled reactor concept which uses water pressurized above its thermodynamic critical pressure as the reactor coolant. This concept offers high thermal efficiencies and a simplified reactor system, and is hence expected to help to improve economic competitiveness. Various kinds of SCWR concepts have been developed, with varying combinations of reactor type (pressure vessel or pressure tube) and core spectrum (thermal, fast or mixed). There is great interest in both developing and developed countries in the research and development (R&D) and conceptual design of SCWRs. Considering the high interest shown in a number of Member States, the IAEA established in 2008 the Coordinated Research Project (CRP) on Heat Transfer Behaviour and Thermo-hydraulics Code Testing for SCWRs. The aim was to foster international collaboration in the R&D of SCWRs in support of Member States’ efforts and under the auspices of the IAEA Nuclear Energy Department’s Technical Working Groups on Advanced Technologies for Light Water Reactors (TWG-LWR) and Heavy Water Reactors (TWG-HWR). The two key objectives of the CRP were to establish accurate databases on the thermohydraulics of supercritical pressure fluids and to test analysis methods for SCWR thermohydraulic behaviour to identify code development needs. In total, 16 institutes from nine Member States and two international organizations were involved in the CRP. The thermohydraulics phenomena investigated in the CRP included heat transfer and pressure loss characteristics of supercritical pressure fluids, development of new heat transfer prediction methods, critical flow during depressurization from supercritical conditions, flow stability and natural circulation in supercritical pressure systems. Two code testing benchmark exercises were performed for steady state heat transfer and flow stability in a heated channel. The CRP was completed with the planned outputs in

  2. Development of lean premixed low-swirl burner for low NO{sub x} practical application

    Energy Technology Data Exchange (ETDEWEB)

    Yegian, D.T.; Cheng, R.K.

    1999-07-07

    Laboratory experiments have been performed to evaluate the performance of a premixed low-swirl burner (LSB) in configurations that simulate commercial heating appliances. Laser diagnostics were used to investigate changes in flame stabilization mechanism, flowfield, and flame stability when the LSB flame was confined within quartz cylinders of various diameters and end constrictions. The LSB adapted well to enclosures without generating flame oscillations and the stabilization mechanism remained unchanged. The feasibility of using the LSB as a low NO{sub x} commercial burner has also been verified in a laboratory test station that simulates the operation of a water heater. It was determined that the LSB can generate NO{sub x} emissions < 10 ppm (at 3% O{sub 2}) without significant effect on the thermal efficiency of the conventional system. The study has demonstrated that the lean premixed LSB has commercial potential for use as a simple economical and versatile burner for many low emission gas appliances.

  3. Summary of several hydraulic tests in support of the light water breeder reactor design (LWBR development program)

    International Nuclear Information System (INIS)

    As part of the Light Water Breeder Reactor development program, hydraulic tests of reactor components were performed. This report presents the results of several of those tests performed for components which are somewhat unique in their application to a pressurized water reactor design. The components tested include: triplate orifices used for flow distribution purposes, multiventuri type flowmeters, tight lattice triangular pitch rod support grids, fuel rod end support plates, and the balance piston which is a major component of the movable fuel balancing system. Test results include component pressure loss coefficients, flowmeter coefficients and fuel rod region pressure drop characteristics

  4. Light Water Reactor Sustainability Program Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor Demonstration Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Curtis Smith; David Schwieder; Cherie Phelan; Anh Bui; Paul Bayless

    2012-08-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about LWR design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the RISMC Pathway R&D is to support plant decisions for risk-informed margins management with the aim to improve economics, reliability, and sustain safety of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced “RISMC toolkit” that enables more accurate representation of NPP safety margin. This report describes the RISMC methodology demonstration where the Advanced Test Reactor (ATR) was used as a test-bed for purposes of determining safety margins. As part of the demonstration, we describe how both the thermal-hydraulics and probabilistic safety calculations are integrated and used to quantify margin management strategies.

  5. Determination of a test section parameters for Iris nuclear reactor pressurizer

    International Nuclear Information System (INIS)

    An integral, modular and medium size nuclear reactor, known as IRIS, is being developed by Westinghouse and by research centers. IRIS is characterized by having most of its components inside the pressure vessel, eliminating the probability of accidents. Due to its integral configuration, there is no spray system for boron homogenization, which may cause power transients. Thus, boron mixing must be investigated. The aim of this paper is to establish the conditions under which a test section has to be built for boron dispersion analysis inside IRIS reactor pressurizer. Through Fractional Scaling Analysis, which is a new methodology of similarity, the main parameters for a test section are obtained. By combining Fractional Scaling Analysis with local scaling for the densimetric Froude number and a previously established volumetric scale factor, the values of recirculation orifices, inlet water temperature, time scale factor and recirculation flow for the test section (model) are determined so that boron distribution is well represented in IRIS reactor pressurizer (prototype). Analytical solutions were used to validate the adopted methodology and when the results simulated in the model are compared to those that characterize the prototype, the agreement for both systems is absolute. The thermal power also influences boron distribution inside the test section. This power is determined by condensation laws in the vapor region and by suitable correlations for free convection. The fractions for rising inlet recirculation water enthalpy and vapor formation are also considered. (author)

  6. Shutdown transients analysis for reflector devices power calculations in Jules Horowitz Material Testing Reactor (JHR)

    International Nuclear Information System (INIS)

    Jules Horowitz Material Testing Reactor (JHR) is planned to be the first European nuclear experimental facility of next decades thanks to its testing capacity. High flux level according to 100 MW power is exploited through many test slots. Fast core spectrum allows high dose rates for material testing and thermal neutron flux is achieved inside a large reflector. Here fuel samples are irradiated inside experimental devices – namely MADISON, ADELINE and MOLFI – and each specific power is then worth to be evaluated for safety reasons. Moreover, devices transients require particular analyses for reactor shutdown conditions, in order to evaluate power behavior. All nuclear heating effects are concerned and related time-dependent description is carried out in this work. First, thermal hydraulic and neutronic core model is implemented through DULCINEE code to obtain core transients. Then, detailed power calculations for reflector devices are obtained through an enhanced multi-point kinetics model accounting for every device which is now thought of as a single lumped system - coupled with reactor core as external source. Core-device coupling coefficients to define this model are finally obtained by means of Monte Carlo simulations with TRIPOLI 4.8 code, about different core fuel compositions – namely Beginning of Cycle (BOC), Xenon Saturation Point (XSP), Middle of Cycle (MOC) and End of Cycle (EOC). Complete power deposition in devices is obtained through TRIPOLI simulations considering prompt gamma irradiation. Delayed gamma sources are evaluated with PEPIN2 burnup code. (author)

  7. Operating the Advanced Test Reactor in today's economic and regulatory environment

    International Nuclear Information System (INIS)

    The Advanced Test Reactor (ATR), located at the Idaho National Engineering and Environmental Laboratory, is the US Department of Energy's largest and most versatile test reactor. Base programs at ATR are planned well into the 21st century. The ATR and support facilities along with an overview of current programs will be reviewed, but the main focus of the presentation will be on the impact that today's economic and regulatory concerns have had on the operation of this test reactor. Today's economic and regulatory concerns have demanded more work be completed at lower cost while increasing the margin of safety. By the beginning of the 1990 s, federal budgets for research generally and particularly for nuclear research had decreased dramatically. Many national needs continued to require testing in the ATR; but demanded lower cost, increased efficiency, improved performance, and an increased margin of safety. At the same time budgets were decreasing, there was an increase in regulatory compliance activity. The new standards imposed higher margins of safety. The new era of greater openness and higher safety standards complemented research demands to work safer, smarter and more efficiently. Several changes were made at the ATR to meet the demands of the sponsors and public. Such changes included some workforce reductions, securing additional program sponsors, upgrading some facilities, dismantling other facilities, and implementing new safety programs. (author)

  8. Irradiation tests in TRIGA MT reactor of INR Pitesti related to safety of nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Horhoianu, Grigore; Olteanu, Gheorghe [Institute for Nuclear Research, INR, PO Box 78, 1 Campului Street, RO-115400 Mioveni, Jud. Arges (Romania); Makihara, Yoshiaki [International Atomic Energy Agency Wagramerstr. 5, A-1400 Vienna (Austria)

    2006-07-01

    The design of modern power reactors reflects the close attention paid to improve safety and reliability of nuclear fuel. With the evolution of fuel design and the possibilities for more stringent operational conditions it is of concern to determine if the present safety criteria are adequate as most of them were established 15 to 20 years ago most of the time on un-irradiated materials. One of the main objectives of Institute for Nuclear Research (INR), Pitesti R and D Program is to investigate thermal and mechanical behaviour of fuel elements, thresholds and mechanisms of cladding failure during RIA and LOCA tests. Dual core TRIGA Material Testing Reactor of INR Pitesti (TRIGA SS MTR and TRIGA ACPR) is utilized extensively for studies of fuel behaviour under normal and postulated accident conditions such as reactivity - initiated accident (RIA) and loss-of-coolant accident (LOCA). A total of 40 test fuel elements have been irradiated in the TRIGA Annular Core Pulse Reactor (TRIGA ACPR) of INR Pitesti under RIA conditions. The ACPR tests program is still in progress and new experiments are foreseen to be performed in the following period. The test fuel elements are instrumented with CrAl thermocouples for cladding surface temperature measurement and every test fuel element has a pressure sensor for the internal pressure measurement. New RIA type tests are planned in C6 capsule of TRIGA ACPR on test fuel elements with pre-hydrided claddings in order to investigate the influence of the precipitated hydride on fuel element cladding failure at high burnups in RIA conditions. An experimental database of fuel behaviour parameters concerning fission - gas release, sheath strain, power - burnup history, etc. has been obtained using in-pile measurements and PIE results of test fuel elements irradiated in the TRIGA Steady State Material Testing Reactor (TRIGA SS MTR) of INR Pitesti. More than 110 test fuel elements have been irradiated in TRIGA SS MTR in different power

  9. Vortex Diode Analysis and Testing for Fluoride Salt-Cooled High-Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yoder Jr, Graydon L [ORNL; Elkassabgi, Yousri M. [Texas A& M University, Kingsville; De Leon, Gerardo I. [Texas A& M University, Kingsville; Fetterly, Caitlin N. [Texas A& M University, Kingsville; Ramos, Jorge A. [Texas A& M University, Kingsville; Cunningham, Richard Burns [University of Tennessee, Knoxville (UTK)

    2012-02-01

    Fluidic diodes are presently being considered for use in several fluoride salt-cooled high-temperature reactor designs. A fluidic diode is a passive device that acts as a leaky check valve. These devices are installed in emergency heat removal systems that are designed to passively remove reactor decay heat using natural circulation. The direct reactor auxiliary cooling system (DRACS) uses DRACS salt-to-salt heat exchangers (DHXs) that operate in a path parallel to the core flow. Because of this geometry, under normal operating conditions some flow bypasses the core and flows through the DHX. A flow diode, operating in reverse direction, is-used to minimize this flow when the primary coolant pumps are in operation, while allowing forward flow through the DHX under natural circulation conditions. The DRACSs reject the core decay heat to the environment under loss-of-flow accident conditions and as such are a reactor safety feature. Fluidic diodes have not previously been used in an operating reactor system, and therefore their characteristics must be quantified to ensure successful operation. This report parametrically examines multiple design parameters of a vortex-type fluidic diode to determine the size of diode needed to reject a particular amount of decay heat. Additional calculations were performed to size a scaled diode that could be tested in the Oak Ridge National Laboratory Liquid Salt Flow Loop. These parametric studies have shown that a 152.4 mm diode could be used as a test article in that facility. A design for this diode is developed, and changes to the loop that will be necessary to test the diode are discussed. Initial testing of a scaled flow diode has been carried out in a water loop. The 150 mm diode design discussed above was modified to improve performance, and the final design tested was a 171.45 mm diameter vortex diode. The results of this testing indicate that diodicities of about 20 can be obtained for diodes of this size. Experimental

  10. Highly Perturbed Operational Test Configurations at the WSMR Fast Burst Reactor

    Directory of Open Access Journals (Sweden)

    Flanders T. Michael

    2016-01-01

    Full Text Available The White Sands Missile Range (WSMR MoLLY-G reactor has a long history of producing a well characterized environment for testing electronic systems/devices in fission environments. As an unmoderated, unreflected, bare critical assembly, it provides a slightly degraded fission spectrum with a 1/E tail. For radiation hardness testing of electronics, the neutron fluence is usually reported as the 1-MeV Equivalent Neutron Fluence for Silicon. In this paper, we examine additional neutron environments and characterizations ranging from low intensity neutron fields to more extreme modifications of our normal test environment.

  11. Model test on interaction of reactor building and soil. Part 1

    International Nuclear Information System (INIS)

    Theoretical and experimental studies on the effects of dynamic interaction between structures and soil have been carried out in recent years. Most of the dynamic tests, however, have been conducted using comparatively small-scale models. In order to evaluate the effects of soil-structure interaction for rigid structure such as reactor building, a series of tests, including forced vibration test and earthquake observations, was carried out. Large-scale models constructed on an actual soil were used. These tests included forced vibration tests on individual foundations, on foundations with superstructures, on cross interaction through the soil between adjacent structures. Tests on the embedded effects of foundation, on artificial ground-shaking, on large amplitude excitation, and aging effects in soil properties were performed. This paper describes the results of forced vibration tests and analyses of cross interaction through the soil between adjacent structures

  12. Safety research program of LWR fuels and materials using the Japan materials testing reactor

    International Nuclear Information System (INIS)

    Power up-rates, burn-up extension and long term operation enable us to utilize Light Water Reactors efficiently. This will have the fuels and structural materials exposed to severe operational condition for a longer period, which can affect their integrity. Continuous researches for solving irradiation-related issues on the fuels for high-duty uses and the plant aging are essential in order to realize the up-graded uses of LWR safely. Japanese regulator has decided to install new irradiation test facilities in the Japan Material Testing Reactor (JMTR) at the Japan Atomic Energy Agency (JAEA). For the fuels tests, transient tests facility is being constructed for the power transient tests of new design BWR fuels. For the materials tests, the irradiation test loops under well controlled environment simulating BWR water chemistry condition and a large irradiation capsule, which can accommodate 1 inch-thickness compact tension specimens in an inert gas environment, are being prepared for the researches on stress corrosion cracking and irradiation embrittlement, respectively. These fuels and materials irradiation tests will be started in 2011 after refurbishment of JMTR. (author)

  13. Neutronic tests and reactivity balance in the IPR-R1 TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Rose Mary Gomes do Prado; Souza, Luiz Claudio Andrade, E-mail: souzarm@cdtn.br, E-mail: lcas@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    This paper presents the 2014 neutronic tests performed on CDTN's TRIGA IPR-R1 research reactor. Such tests are performed annually, as prescribed by the Safety Analysis Report. The three control rods, Regulating, Shim and Safety, were calibrated and their worth determined to be 0.52 $, 3.08 $ and 2.78 $, respectively. The Shim rod takes 0.44 s to shutdown the reactor and the Safety rod 0.48 s. The maximum reactivity insertion rates are 48 pcm/s by the Shim rod and 46 pcm/s by the Safety rod. Total reactivity excess is 1.88 $. The temperature reactivity coefficient determined is -0.94 cent/deg C. A reactivity insertion of 0.71 $ is necessary in order to achieve the licensed maximum reactor power of 100 kW. Reactivity losses due to xenon poisoning, after operating for 8 h at maximum power, is 0.20 $, and the insertion of a void tube in the Central Thimble corresponds to 0.22 $. A significant amount of reactivity is required to overcome the temperature effect and allow the reactor to operate at full power for extended periods of time. Given all these reactivity losses, a new fuel element should soon be added to the core in order to increase the reactivity excess. Adding this new fuel element to the C ring and moving the element withdrawn from that position to the F ring, replacing a graphite dummy element, would increase 45.5 cents in the reactivity excess worth. Calculations and experimental results will be used to optimize a new core configuration for the reactor. (author)

  14. Feasibility of conducting a dynamic helium charging experiment for vanadium alloys in the advanced test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Gomes, I.; Strain, R.V.; Smith, D.L. [Argonne National Lab., IL (United States); Matsui, H. [Tohoku Univ. (Japan)

    1996-10-01

    The feasibility of conducting a dynamic helium charging experiment (DHCE) for vanadium alloys in the water-cooled Advanced Test Reactor (ATR) is being investigated as part of the U.S./Monbusho collaboration. Preliminary findings suggest that such an experiment is feasible, with certain constraints. Creating a suitable irradiation position in the ATR, designing an effective thermal neutron filter, incorporating thermocouples for limited specimen temperature monitoring, and handling of tritium during various phases of the assembly and reactor operation all appear to be feasible. An issue that would require special attention, however, is tritium permeation loss through the capsule wall at the higher design temperatures (>{approx}600{degrees}C). If permeation is excessive, the reduced amount of tritium entering the test specimens would limit the helium generation rates in them. At the lower design temperatures (<{approx}425{degrees}C), sodium, instead of lithium, may have to be used as the bond material to overcome the tritium solubility limitation.

  15. A preliminary neutronic evaluation of high temperature engineering test reactor using the SCALE6 code

    Science.gov (United States)

    Tanure, L. P. A. R.; Sousa, R. V.; Costa, D. F.; Cardoso, F.; Veloso, M. A. F.; Pereira, C.

    2014-02-01

    Neutronic parameters of some fourth generation nuclear reactors have been investigated at the Departamento de Engenharia Nuclear/UFMG. Previous studies show the possibility to increase the transmutation capabilities of these fourth generation systems to achieve significant reduction concerning transuranic elements in spent fuel. To validate the studies, a benchmark on core physics analysis, related to initial testing of the High Temperature Engineering Test Reactor and provided by International Atomic Energy Agency (IAEA) was simulated using the Standardized Computer Analysis for Licensing Evaluation (SCALE). The CSAS6/KENO-VI control sequence and the 44-group ENDF/B-V 0 cross-section neutron library were used to evaluate the keff (effective multiplication factor) and the result presents good agreement with experimental value.

  16. Regenerative burner in the metals industry

    Energy Technology Data Exchange (ETDEWEB)

    Gettings, M.

    1986-07-01

    The Regenerative Ceramic Burner, RCB is becoming widely accepted in the UK as the successor of the world famous recuperative burner. This paper describes the RCB and its modes of operation and compares it with the recuperative burner. This comparison uses the example of a reheating furnace employed to heat a 10 tonne billet to 1250/sup 0/C. The superior technical performance of the RCB is mirrored in its economic attractiveness. For most medium and large furnace applications the device can pay for itself in less than two years with 40 to 50% fuel savings. Examples of the use of the device are presented from both the steel and aluminium industries. In all cases, operation and worthwhile energy savings have been achieved. In its role on an aluminum melter, the burner has demonstrated its ability to handle contaminated gases with minimum maintenance requirement. The paper concludes with ideas for future developments of the technology which will extend its use into other industry sectors.

  17. Dynamic parameters test of Haiyang Nuclear Power Engineering in reactor areas, China

    Science.gov (United States)

    Zhou, N.; Zhao, S.; Sun, L.

    2012-12-01

    Haiyang Nuclear Power Project is located in Haiyang city, China. It consists of 6×1000MW AP1000 Nuclear Power generator sets. The dynamic parameters of the rockmass are essential for the design of the nuclear power plant. No.1 and No.2 reactor area are taken as research target in this paper. Sonic logging, single hole and cross-hole wave velocity are carried out respectively on the site. There are four types of rock lithology within the measured depth. They are siltstone, fine sandstone, shale and allgovite. The total depth of sonic logging is 409.8m and 2049 test points. The sound wave velocity of the rocks are respectively 5521 m/s, 5576m/s, 5318 m/s and 5576 m/s. Accroding to the statistic data, among medium weathered fine sandstone, fairly broken is majority, broken and relatively integrity are second, part of integrity. Medium weathered siltstone, relatively integrity is mojority, fairly broken is second. Medium weathered shale, fairly broken is majority, broken and relatively integrity for the next and part of integrity. Slight weathered fine sandstone, siltstone, shale and allgovite, integrity is the mojority, relatively integrity for the next, part of fairly broken.The single hole wave velocity tests are set in two boreholesin No.1 reactor area and No.2 reactor area respectively. The test depths of two holes are 2-24m, and the others are 2-40m. The wave velocity data are calculated at different depth in each holes and dynamic parameters. According to the test statistic data, the wave velocity and the dynamic parameter values of rockmass are distinctly influenced by the weathering degree. The test results are list in table 1. 3 groups of cross hole wave velocity tests are set for No.1 and 2 reactor area, No.1 reactor area: B16, B16-1, B20(Direction:175°, depth: 100m); B10, B10-1, B11(269°, 40m); B21, B21-1, B17(154°, 40m); with HB16, HB10, HB21 as trigger holes; No.2 reactor area: B47, B47-1, HB51(176°, 100m); B40, B40-1, B41(272°, 40m); B42, B42-1, B

  18. Market assessment for the fan atomized oil burner

    Energy Technology Data Exchange (ETDEWEB)

    Westphalen, D. [A.D. Little, Inc., Cambridge, MA (United States)

    1996-07-01

    The market potential for the fan atomized burner (FAB) in water and space heating applications was examined. The major findings of the study are as follows. (1). The FAB`s low-input capability allows development of oil-fired room heaters and wall furnaces, a new market area for oil heat. (2). Among conventional oil-fired products, furnaces will benefit most from the burner`s low input capability due to (1) their quick delivery of heat and (2) their more prevalent use in warmer climates and smaller homes. (3). The greatest potential for increased product sales or oil sales exists in the use of the burner with new products (i.e., room heaters). Sales of boilers and direct-fired water heaters are not likely to increase with the use of the burner. (4). Acceptance of the burner will be dependent on proof of reliability. Proof of better reliability than conventional burners would accelerate acceptance.

  19. 10 CFR Appendix J to Part 50 - Primary Reactor Containment Leakage Testing for Water-Cooled Power Reactors

    Science.gov (United States)

    2010-01-01

    ... CFR 50.12, are still applicable to Option B of this appendix if necessary, unless specifically revoked...-Cooled Power Reactors J Appendix J to Part 50 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Pt. 50, App. J Appendix J to Part 50—Primary Reactor...

  20. After Action Report: Advanced Test Reactor Complex 2015 Evaluated Drill October 6, 2015

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Forest Howard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    The Advanced Test Reactor (ATR) Complex, operated by Battelle Energy Alliance, LLC, at the Idaho National Laboratory (INL) conducted an evaluated drill on October 6, 2015, to allow the ATR Complex emergency response organization (ERO) to demonstrate the ability to respond to and mitigate an emergency by implementing the requirements of DOE O 151.1C, “Comprehensive Emergency Management System.”

  1. A thermal-hydraulic test rig for advanced fast reactor fuel assemblies

    International Nuclear Information System (INIS)

    A new design of fast reactor fuel assemblies has been proposed in which the pins are supported in grids attached to the wrapper by flexible skirts. Coolant mixing is enhanced by the skirts diverting flow into the cluster of pins at each grid. There are insufficient empirical data available for the detailed design of the skirt or for the input to computer calculations of flow and heat transfer. A test rig to provide these data has been designed and built. (author)

  2. Fuzzy-PID control algorithm of a loop reactor for microbial corrosion testing

    OpenAIRE

    D. Rangel-Miranda; D. Alaniz-Lumbreras; Victor Castano

    2015-01-01

    The thermal control of loop reactor utilized to run hydrodynamic tests of microbical corrosion, where full control of the temperature is crucial, is presented. Since the accuracy of the temperature is critical along the pipe trajectory for the microbial culture, it must be controlled with an accuracy of ± 0.5°C, which is achieved by an implemented fuzzy-PID (Proportional Integral and Derivative) control algorithm, capable to provide the accuracy at the temperature range required. The system c...

  3. After Action Report: Advanced Test Reactor Complex 2015 Evaluated Drill October 6, 2015

    International Nuclear Information System (INIS)

    The Advanced Test Reactor (ATR) Complex, operated by Battelle Energy Alliance, LLC, at the Idaho National Laboratory (INL) conducted an evaluated drill on October 6, 2015, to allow the ATR Complex emergency response organization (ERO) to demonstrate the ability to respond to and mitigate an emergency by implementing the requirements of DOE O 151.1C, ''Comprehensive Emergency Management System.''

  4. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report

    International Nuclear Information System (INIS)

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form

  5. Direct-Drive Gas-Cooled Reactor Power System: Concept and Preliminary Testing

    Science.gov (United States)

    Wright, S. A.; Lipinski, R. J.; Godfroy, T. J.; Bragg-Sitton, S. M.; VanDyke, M. K.

    2002-01-01

    This paper describes the concept and preliminary component testing of a gas-cooled, UN-fueled, pin-type reactor which uses He/Xe gas that goes directly into a recuperated Brayton system to produce electricity for nuclear electric propulsion. This Direct-Drive Gas-Cooled Reactor (DDG) is designed to be subcritical under water or wet- sand immersion in case of a launch accident. Because the gas-cooled reactor can directly drive the Brayton turbomachinery, it is possible to configure the system such that there are no external surfaces or pressure boundaries that are refractory metal, even though the gas delivered to the turbine is 1144 K. The He/Xe gas mixture is a good heat transport medium when flowing, and a good insulator when stagnant. Judicious use of stagnant cavities as insulating regions allows transport of the 1144-K gas while keeping all external surfaces below 900 K. At this temperature super-alloys (Hastelloy or Inconel) can be used instead of refractory metals. Super-alloys reduce the technology risk because they are easier to fabricate than refractory metals, we have a much more extensive knowledge base on their characteristics, and, because they have a greater resistance to oxidation, system testing is eased. The system is also relatively simple in its design: no additional coolant pumps, heat exchanger, or freeze-thaw systems are required. Key to success of this concept is a good knowledge of the heat transfer between the fuel pins and the gas, as well as the pressure drop through the system. This paper describes preliminary testing to obtain this key information, as well as experience in demonstrating electrically heated testing of simulated reactor components.

  6. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

  7. Eddy current testing of PWR fuel pencils in the pool of the Osiris reactor

    International Nuclear Information System (INIS)

    A nondestructive testing bench is described. It is devoted to examination of high residual power fuel pencils without stress on the cladding nor interference with cooling. Guiding by fluid bearings decrease the background noise. Scanning speed is limited only by safety criteria and data acquisition configuration. Simultaneous control of various parameters is possible. Associated to an irradiation loop, loaded and unloaded in a reactor swinning pool, this bench can follow fuel pencil degradation after each irradiation cycle

  8. High flux materials testing reactor HFR Petten. Characteristics of facilities and standard irradiation devices

    International Nuclear Information System (INIS)

    For the materials testing reactor HFR some characteristic information is presented. Besides the nuclear data for the experiment positions short descriptions are given of the most important standard facilities for material irradiation and radionuclide production. One paragraph deals with the experimental set-ups for solid state and nuclear structure investigations. The information in this report refers to a core type, which is operational since March 1977. The numerical data compiled have been up-dated to June 1978

  9. Evaluation of reactivity coefficients for High Temperature Engineering Test Reactor (HTTR)

    International Nuclear Information System (INIS)

    This report presents the evaluation methods and evaluated results of doppler-, moderator temperature- and power coefficients for High Temperature Engineering Test Reactor (HTTR). From this study, it was made clear that the HTTR possesses inherent power-suppressing feed back characteristic due to the negative power coefficient though the moderator temperature coefficient is slightly positive due to the accumulated isotopes 135Xe and 239Pu. (author)

  10. Feasibility Test of a Waveguide Sensor for Ranging Inspection in a Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hoe-Woong; Kim, Sang-Hwal; Joo, Young-Sang; Park, Chang-Gyu; Kim, Jong-Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Han, Jae-Won [Chungnam National University, Daejeon (Korea, Republic of)

    2014-10-15

    In the refueling process of an SFR, the assurance of clearance between the reactor core and the Upper Internal Structure (UIS) is very important because the rotating plug on the reactor head should be rotated to load new fuels as well as to unload spent fuels. However, the assurance of clearance between the reactor core and the UIS is very difficult because liquid sodium is optically opaque. One possible solution to check the clearance is the use of the ultrasonic wave technique. Since the ultrasonic wave can propagate through opaque sodium, obstacles between the reactor core and the UIS can be detected. In this work, a 10 m long horizontal beam waveguide sensor was developed and its feasibility for ranging inspection in an SFR is studied through several underwater experiments. In this work, the feasibility of the 10 m long horizontal beam waveguide sensor for ranging inspection was experimentally studied in water. Two hollow cylinder targets were inspected using the remote inspection module and the under sodium ranging program. Through several feasibility tests, it was shown that the clearance can be assured if the vertical distance between the sensor and the target is larger than 20 mm.

  11. Procedures and techniques for the management of experimental fuels from research and test reactors. Proceedings of an advisory group meeting

    International Nuclear Information System (INIS)

    Almost all countries that have undertaken fuel development programs for power, research or military reactors have experimental and exotic fuels, either stored at the original research reactors where they have been tested or at some away-from-reactor storage facility. These spent fuel liabilities cannot follow the standard treatment recognized for modern power reactor fuels. They include experimental and exotic fuels ranging from liquids to coated spheres and in configurations ranging from full test assemblies to post irradiation examination specimens set in resin. This document contains an overview of the extent of the problem of managing experimental and exotic fuels from research and test reactors and an expert evaluation of the overall situation in countries which participated in the meeting

  12. Summary of Thermocouple Performance During Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor and Out-of-Pile Thermocouple Testing in Support of Such Experiments

    Energy Technology Data Exchange (ETDEWEB)

    A. J. Palmer; DC Haggard; J. W. Herter; M. Scervini; W. D. Swank; D. L. Knudson; R. S. Cherry

    2011-07-01

    High temperature gas reactor experiments create unique challenges for thermocouple based temperature measurements. As a result of the interaction with neutrons, the thermoelements of the thermocouples undergo transmutation, which produces a time dependent change in composition and, as a consequence, a time dependent drift of the thermocouple signal. This drift is particularly severe for high temperature platinum-rhodium thermocouples (Types S, R, and B); and tungsten-rhenium thermocouples (Types C and W). For lower temperature applications, previous experiences with type K thermocouples in nuclear reactors have shown that they are affected by neutron irradiation only to a limited extent. Similarly type N thermocouples are expected to be only slightly affected by neutron fluxes. Currently the use of these Nickel based thermocouples is limited when the temperature exceeds 1000°C due to drift related to phenomena other than nuclear irradiation. High rates of open-circuit failure are also typical. Over the past ten years, three long-term Advanced Gas Reactor (AGR) experiments have been conducted with measured temperatures ranging from 700oC – 1200oC. A variety of standard Type N and specialty thermocouple designs have been used in these experiments with mixed results. A brief summary of thermocouple performance in these experiments is provided. Most recently, out of pile testing has been conducted on a variety of Type N thermocouple designs at the following (nominal) temperatures and durations: 1150oC and 1200oC for 2000 hours at each temperature, followed by 200 hours at 1250oC, and 200 hours at 1300oC. The standard Type N design utilizes high purity crushed MgO insulation and an Inconel 600 sheath. Several variations on the standard Type N design were tested, including Haynes 214 alloy sheath, spinel (MgAl2O4) insulation instead of MgO, a customized sheath developed at the University of Cambridge, and finally a loose assembly thermocouple with hard fired alumina

  13. Advancing nuclear technology and research. The advanced test reactor national scientific user facility

    International Nuclear Information System (INIS)

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world's premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research. The mission of the ATR NSUF is to provide access to world-class facilities, thereby facilitating the advancement of nuclear science and technology. Cost free access to the ATR, INL post irradiation examination facilities, and partner facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to United States Department of Energy. To increase overall research capability, ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. (author)

  14. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-04-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

  15. Nondestructive testing of PWR type fuel rods by eddy currents and metrology in the OSIRIS reactor pool

    International Nuclear Information System (INIS)

    The Saclay Reactor Department has developed a nondestructive test bench, now installed above channel 1 of the OSIRIS reactor. As part of investigations into the dynamics of PWR fuel degradation, a number of fuel rods underwent metrological and eddy current inspection, after irradiation

  16. Transients and safety testing of LMFBR fuel pins in the reactor BR2

    International Nuclear Information System (INIS)

    Testing of the behaviour of LMFBR fuel pins under operational transients has been performed in the reactor BR2 at S.C.K./C.E.N.-Mol (Belgium) since 1981 in the framework of the DEBENE programme ''SNR-Betriebstransienten-experimente''. A special purpose sodium loop, called ''VIC'', has therefore been developed to allow off-nominal and transient experiments on single fuel pins under realistic fast reactor operating conditions. Two basic types of tests can be run, either separately or simultaneously: fission power alteration, e.g. steady overpower runs, power cycling and fast transient overpower (TOP); mismatch of the sodium cooling, e.g. operation with reduced sodium flow and transient loss of flow (LOF). The loop allows the loading and testing of pre-irradiated fuel pins. In the field of safety oriented tests, the programme ''MOL 7 C'' investigates the LMFBR fuel element behaviour under locally blocked cooling conditions and the possible failure propagation. The work is jointly carried out by the Karlsruhe center KfK (FRG) and S.C.K./C.E.N.-Mol (Belgium). The related in-pile tests in the reactor BR2 have started in 1977 and are performed in a fully integrated sodium loop. The test section contains a 30-rod bundle with fresh or pre-irradiated fuel pins. A local porous blockage within the fuel bundle initiates severe local damage to the central rods. Important informations are obtained with respect to the problems of pin to pin propagation and the long term behaviour of a fuel subassembly with defect pins. The MOL 7 C loop system can also be used to run operational transients on a fuel bundle with representative fuel pins. The paper describes the irradiation devices VIC and MOL 7 C from their technological point of view and depicts their field of testing applications. Also the major experiments already performed and relevant irradiation data are reviewed

  17. Advanced Gas Cooled Reactor Materials Program. Reducing helium impurity depletion in HTGR materials testing

    International Nuclear Information System (INIS)

    Moisture depletion in HTGR materials testing rigs has been empirically studied in the GE High Temperature Reactor Materials Testing Laboratory (HTRMTL). Tests have shown that increased helium flow rates and reduction in reactive (oxidizable) surface area are effective means of reducing depletion. Further, a portion of the depletion has been shown to be due to the presence of free C released by the dissociation of CH4. This depletion component can be reduced by reducing the helium residence time (increasing the helium flow rate) or by reducing the CH4 concentration in the test gas. Equipment modifications to reduce depletion have been developed, tested, and in most cases implemented in the HTRMTL to date. These include increasing the Helium Loop No. 1 pumping capacity, conversion of metallic retorts and radiation shields to alumina, isolation of thermocouple probes from the test gas by alumina thermowells, and substitution of non-reactive Mo-TZM for reactive metallic structural components

  18. Development of the installation for zirconium alloy corrosion testing in superheated steam flow in a reactor channel

    International Nuclear Information System (INIS)

    The technological flowsheet of an installation for corrosion testing of structural materials in a reactor channel under conditions typical for the RBMK type reactors is described. The structural specific features of a capsule for zirconium alloy in-pile testing at superheated steam pressure of 2MPa and temperature upto 550 deg C are considered. The peculiarities of such capsule parameter calculation are discussed. On the base of the results of the installation performance testing in a reactor channel at power density of 1-1.5 W/g during 3500 h the conclusion on its high operational reliability is made

  19. PROTOTYPE EVALUATION OF COMMERCIAL SECOND GENERATION LOW-NOX BURNER PERFORMANCE AND SULFUR DIOXIDE CAPTURE POTENTIAL

    Science.gov (United States)

    The report gives results of tests on two large-scale staged-mixing (SM) burners developed by L and L Steinmuller of West Germany. One objective was to optimize their performance for low-NOx emissions, high efficiency, and combined NOx/SO2 control with sorbent injection. The exper...

  20. Cordierite Bricks for Ceramic Burner of Hot Blast Stove YB/T 4128-2005

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaohui; Chai Junlan

    2009-01-01

    @@ 1 Scope This standard specifies the classification,brand,technical requirements,shape and dimension,test method,quality appraisal procedure,packing,marking,transportation,storage and quality certificate of cordierite bricks for ceramic burner of blast furnace and hot blast stove.

  1. Underwater plasma arc cutting of in-reactor tube of In-Pile Creep Test Facility

    International Nuclear Information System (INIS)

    The in-reactor tube of the In-Pile Creep Facility had been irradiated periodically for over 6 years in the Japan Materials Testing Reactor (JMTR) up to the end of 1978 under an operating condition of high temperature and high pressure identical to that of the Prototype Advanced Thermal Reactor, FUGEN, to gain the basic data for estimating the amount of creep which would occur in the pressure tubes of FUGEN. Following the removal of the in-reactor tube out of the JMTR, the test sections in the tube which were to be subjected to post irradiation examination were cut out. Underwater plasma arc cutting was employed to prevent the spread of contamination to the work area, to confine the heat affected zone in the test pieces to a minimum and to simplify disposal of the unneeded portions of the pressure tube. Setup of the cutting machine, cutting operations, radiological conditions during cutting of the highly radioactive portion of the tube and disassembly of the cutting equipment are described. In addition a brief description of the underwater plasma arc cutting machine is presented. The hot-cutting operations were done remotely to control personal exposure. The containment envelope prevented the spread of contamination to the environment and radioactive particles deposited on the cutting machine were removed without any difficulties. External exposure received by cutting personnel was small. Internal radionuclide deposit examinations were conducted, determining no crew member inhaled radioactive substances. Contamination spreads to the work area were minimal and release of radionuclide was well controlled. (author)

  2. Use and Storage of Test and Operations Data from the High Temperature Test Reactor Acquired by the US Government from the Japan Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    Hans Gougar

    2010-02-01

    This document describes the use and storage of data from the High Temperature Test Reactor (HTTR) acquired from the Japan Atomic Energy Agency (JAEA) by the U.S. Government for high temperature reactor research under the Next Generation Nuclear Plant (NGNP) Project.

  3. The RERTR (Reduced Enrichment Research and Test Reactor) program: A progress report

    Energy Technology Data Exchange (ETDEWEB)

    Travelli, A.

    1986-11-01

    The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program is described. After a brief summary of the results which the RERTR Program, in collaboration with its many international partners, had achieved by the end of 1985, the activities, results, and new developments which occurred in 1986 are reviewed. The second miniplate series, concentrating on U/sub 3/Si/sub 2/-Al and U/sub 3/Si-Al fuels, was expanded and its irradiation continued. Postirradiation examinations of several of these miniplates and of six previously irradiated U/sub 3/Si/sub 2/-Al full-size elements were completed with excellent results. The whole-core ORR demonstration with U/sub 3/Si/sub 2/-Al fuel at 4.8 g U/cm/sup 3/ is well under way and due for completion before the end of 1987. DOE removed an important barrier to conversions by announcing that the new LEU fuels will be accepted for reprocessing. New DOE prices for enrichment and reprocessing services were calculated to have minimal effect on HEU reactors, and to reduce by about 8 to 10% the total fuel cycle costs of LEU reactors. New program activities include preliminary feasibility studies of LEU use in DOE reactors, evaluation of the feasibility to use LEU targets for the production of fission-product /sup 99/Mo, and responsibility for coordinating safety evaluations related to LEU conversions of US university reactors, as required by NRC. Achievement of the final program goals is projected for 1990. This progress could not have been achieved without close international cooperation, whose continuation and intensification are essential to the achievement of the ultimate goals of the RERTR Program.

  4. Design and fabrication of sodium test facility for fast breeder reactor

    International Nuclear Information System (INIS)

    The purpose of the promotion policy for energy research and development base construction plan (priority facility) of the Japanese government in FY2009 is 'to construct in Tsuruga City the research and development base for plant operation technology for the practical use of fast breeder reactor where researchers in and out of Japan gather, and to contribute to the development and revitalization of the region as the base with international characteristics.' In conformity to this purpose, the Japan Atomic Energy Agency built 'sodium engineering research facilities' in Tsuruga. This paper describes the design, fabrication, and installation of interior equipment that were carried out by Kawasaki Heavy Industries. 'Sodium engineering research facilities' are the test and research facilities to conduct research and development related to sodium, while reflecting the experiences of operation and maintenance of 'Monju,' which aims at the commercialization of fast reactor. The facilities specialize in the handling technology of sodium to meet the needs in and out of Japan, and were completed in June 2015. The facilities consist of six units including tank-loop test equipment, mini-loop test equipment, sodium purification and supply equipment, etc. For the tank-loop test equipment, a sodium transfer test of about 5.5 tons, and a subsequent comprehensive function test using sodium are scheduled. (A.O.)

  5. Assessment of the Technical Maturity of Generation IV Concepts for Test or Demonstration Reactor Applications, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    The United States Department of Energy (DOE) commissioned a study the suitability of different advanced reactor concepts to support materials irradiations (i.e. a test reactor) or to demonstrate an advanced power plant/fuel cycle concept (demonstration reactor). As part of the study, an assessment of the technical maturity of the individual concepts was undertaken to see which, if any, can support near-term deployment. A Working Group composed of the authors of this document performed the maturity assessment using the Technical Readiness Levels as defined in DOE’s Technology Readiness Guide . One representative design was selected for assessment from of each of the six Generation-IV reactor types: gas-cooled fast reactor (GFR), lead-cooled fast reactor (LFR), molten salt reactor (MSR), supercritical water-cooled reactor (SCWR), sodium-cooled fast reactor (SFR), and very high temperature reactor (VHTR). Background information was obtained from previous detailed evaluations such as the Generation-IV Roadmap but other technical references were also used including consultations with concept proponents and subject matter experts. Outside of Generation IV activity in which the US is a party, non-U.S. experience or data sources were generally not factored into the evaluations as one cannot assume that this data is easily available or of sufficient quality to be used for licensing a US facility. The Working Group established the scope of the assessment (which systems and subsystems needed to be considered), adapted a specific technology readiness scale, and scored each system through discussions designed to achieve internal consistency across concepts. In general, the Working Group sought to determine which of the reactor options have sufficient maturity to serve either the test or demonstration reactor missions.

  6. Development of the Radiation Stabilized Distributed Flux Burner. Phase 1, final report

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J.D.; Duret, M.J.

    1997-06-01

    The RSB was first developed for Thermally Enhanced Oil Recovery steamers which fire with a single 60 MMBtu/hr burner; the California Energy Commission and Chevron USA were involved in the burner development. The burner has also since found applications in refinery and chemical plant process heaters. All Phase I goals were successfully met: the RSB achieved sub-9 ppM NOx and sub-50 ppM CO emissions using high excess air, external flue gas recirculation (FGR), and fuel staging in the 3 MMBtu/hr laboratory watertube boiler. In a test in a 50,000 lb/hr oil field steamer with fuel staging, it consistently achieved sub-20 ppM NOx and as low as 10 ppM NOx. With high CO{sub 2} casing gas in this steamer, simulating external FGR, sub-20 ppM NOx and as low as 5 ppM NOx were achieved. Burner material cost was reduced by 25% on a per Btu basis by increasing the effective surface firing rate at the burner; further reductions will occur in Phase II. The market for 30 ppM and 9 ppM low NOx burners has been identified as package boilers in the 50,000 to 250,000 lb/hr size range (the 30 ppM is for retrofit, the 9 ppM for the new boiler market). Alzeta and Babcock & Wilcox have teamed to sell both boiler retrofits and new boilers; they have identified boiler designs which use the compact flame shape of the RSB and can increase steam capacity while maintaining the same boiler footprint. Alzeta, Chevron, and B & W have teamed to identify sites to demonstrate the RSB in Phases II and III. In Phase II, the RSB will be demonstrated in a 100,000 lb/hr industrial watertube boiler.

  7. Industrial Hygiene Concerns during the Decontamination and Decommissioning of the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    A significant industrial hygiene concern during the Decontamination and Decommissioning (D and D) of the Tokamak Fusion Test Reactor (TFTR) was the oxidation of the lead bricks' surface, which were utilized for radiation shielding. This presented both airborne exposure and surface contamination issues for the workers in the field removing this material. This paper will detail the various protection and control methods tested and implemented to protect the workers, including those technologies deployed to decontaminate the work surfaces. In addition, those techniques employed to recycle the lead for additional use at the site will be discussed

  8. Industrial Hygiene Concerns during the Decontamination and Decommissioning of the Tokamak Fusion Test Reactor

    CERN Document Server

    Lumia, M E

    2002-01-01

    A significant industrial hygiene concern during the Decontamination and Decommissioning (D and D) of the Tokamak Fusion Test Reactor (TFTR) was the oxidation of the lead bricks' surface, which were utilized for radiation shielding. This presented both airborne exposure and surface contamination issues for the workers in the field removing this material. This paper will detail the various protection and control methods tested and implemented to protect the workers, including those technologies deployed to decontaminate the work surfaces. In addition, those techniques employed to recycle the lead for additional use at the site will be discussed.

  9. Industrial Hygiene Concerns during the Decontamination and Decommissioning of the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    M.E. Lumia; C.A. Gentile

    2002-01-18

    A significant industrial hygiene concern during the Decontamination and Decommissioning (D and D) of the Tokamak Fusion Test Reactor (TFTR) was the oxidation of the lead bricks' surface, which were utilized for radiation shielding. This presented both airborne exposure and surface contamination issues for the workers in the field removing this material. This paper will detail the various protection and control methods tested and implemented to protect the workers, including those technologies deployed to decontaminate the work surfaces. In addition, those techniques employed to recycle the lead for additional use at the site will be discussed.

  10. The Jules Horowitz Reactor: A New European Material Test Reactor (MTR) Open to International Collaboration: Update Description and Focus on Modern Safety Approach

    International Nuclear Information System (INIS)

    The Jules Horowitz Reactor (JHR) is a new Material Testing Reactor currently under construction at CEA Cadarache research centre in the south of France. It will represent a major Research Infrastructure for scientific studies dealing with material and fuel behaviour under irradiation (and is consequently identified for this purpose within various European road maps and forums; ESFRI, SNE-TP, etc.). The reactor will also be devoted to medical isotopes production. The reactor will perform R and D programs for the optimization of the present generation of NPP, support the development of the next generation of NPP (mainly LWR) and also offer irradiation capacities for future reactors. JHR is designed, built and will be operated as an international user-facility open to international collaboration. In order to comply with the evolution of safety requirements and to guarantee long term operations, the construction safety standards of JHR have been significantly improved compared to MTRs built in the 60s. The paper gives an up-to-date status of the construction and of the developments performed to build the future experimental capacity and is particularly focusing on the modern Safety approach used and its consequences on the design of the reactor. (author)

  11. Assessment of Feasibility of the Beneficial Use of Waste Heat from the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Donna P. Guillen

    2012-07-01

    This report investigates the feasibility of using waste heat from the Advanced Test Reactor (ATR). A proposed glycol waste heat recovery system was assessed for technical and economic feasibility. The system under consideration would use waste heat from the ATR secondary coolant system to preheat air for space heating of TRA-670. A tertiary coolant stream would be extracted from the secondary coolant system loop and pumped to a new plate and frame heat exchanger, where heat would be transferred to a glycol loop for preheating outdoor air in the heating and ventilation system. Historical data from Advanced Test Reactor operations over the past 10 years indicates that heat from the reactor coolant was available (when needed for heating) for 43.5% of the year on average. Potential energy cost savings by using the waste heat to preheat intake air is $242K/yr. Technical, safety, and logistics considerations of the glycol waste heat recovery system are outlined. Other opportunities for using waste heat and reducing water usage at ATR are considered.

  12. Low-temperature neutron irradiation tests of superconducting magnet materials using reactor neutrons at KUR

    Science.gov (United States)

    Yoshida, M.; Nakamoto, T.; Ogitsu, T.; Xu, Q.; Itahashi, T.; Kuno, Y.; Kuriyama, Y.; Mori, Y.; Qin, B.; Sato, A.; Sato, K.; Yoshiie, T.

    2012-06-01

    Radiation resistant superconducting magnets are required for high intensity particle accelerators and associated secondary particle beamlines, such as the LHC upgrade and the COMET experiment at J-PARC. Expected neutron fluence on the superconducting coils reaches 1021 n/m2 or higher, therefore the magnet should be designed taking into account the irradiation effects. Irradiation tests for superconducting magnet materials have been carried out using reactor neutrons at Kyoto Univ. Research Reactor Institute. As a first step of the experiment, aluminum alloy stabilizer for superconducting cable was exposed to the reactor neutrons at low temperature and the resistance has been measured in situ during neutron exposure. After the irradiation at 12 K-15 K, the sample resistance increase was proportional to the integrated neutron fluence, and reached almost double for a fast-neutron fluence of 2.3×1020 n/m2 (>0.1 MeV). It is also confirmed that the induced resistance is fully recovered by thermal cycling to room temperature. Details of the irradiation test and the prospects are described.

  13. Standard review plan for the review and evaluation of emergency plans for research and test reactors

    International Nuclear Information System (INIS)

    This document provides a Standard Review Plan to assure that complete and uniform reviews are made of research and test reactor radiological emergency plans. The report is organized under ten planning standards which correspond to the guidance criteria in American National Standard ANSI/ANS 15.16 - 1982 as endorsed by Revision 1 to Regulatory Guide 2.6. The applicability of the items under each planning standard is indicated by subdivisions of the steady-state thermal power levels at which the reactors are licensed to operate. Standard emergency classes and example action levels for research and test reactors which should initiate these classes are given in an Appendix. The content of the emergency plan is as follows: the emergency plan addresses the necessary provisions for coping with radiological emergencies. Activation of the emergency plan is in response to the emergency action levels. In addition to addressing those severe emergencies that will fall within one of the standard emergency classes, the plan also discusses the necessary provisions to deal with radiological emergencies of lesser severity that can occur within the operations boundary. The emergency plan allows for emergency personnel to deviate from actions described in the plan for unusual or unanticipated conditions

  14. The OECD Halden reactor project fuels testing programme: methods, selected results and plans

    International Nuclear Information System (INIS)

    The fuels testing programme conducted in the Halden reactor (heavy boiling water reactor (HBWR)) is aimed at providing data for a mechanistic understanding of phenomena, which may affect fuel performance and safety parameters. The investigations focus on implications of high burnup and address thermal property changes, fission gas release as influenced by power level and operation mode, fuel swelling, and pellet-clad interaction. Relevant burnup levels (>50 MWd kg-1 U) are provided through long-term irradiation in the HBWR and through utilisation of re-instrumented fuel segments from commercial light water reactors (LWR). Both urania and MOX fuels are being studied regarding thermal behaviour, conductivity degradation, and aspects of fission gas release. Experiments are also conducted to assess the cladding creep behaviour at different stress levels and to establish the overpressure below which the combination of fuel swelling and cladding creep does not cause increasing fuel temperatures. Clad elongation measurements provide information on the strain during a power increase, the relaxation behaviour and the extent of a possible ratcheting effect during consecutive start-ups. Investigations foreseen in the programme period 2000-2002 include the behaviour of MOX and Gd-bearing fuel and other variants developed in conjunction with burnup extension programmes. Some LWR-irradiated fuel segments will undergo a burnup increase in the HBWR to exposures not yet achieved in LWRs, while others will be re-instrumented and tested for shorter durations

  15. On-line test of power distribution prediction system for boiling water reactors

    International Nuclear Information System (INIS)

    A power distribution prediction system for boiling water reactors has been developed and its on-line performance test has proceeded at an operating commercial reactor. This system predicts the power distribution or thermal margin in advance of control rod operations and core flow rate change. This system consists of an on-line computer system, an operator's console with a color cathode-ray tube, and plant data input devices. The main functions of this system are present power distribution monitoring, power distribution prediction, and power-up trajectory prediction. The calculation method is based on a simplified nuclear thermal-hydraulic calculation, which is combined with a method of model identification to the actual reactor core state. It has been ascertained by the on-line test that the predicted power distribution (readings of traversing in-core probe) agrees with the measured data within 6% root-mean-square. The computing time required for one prediction calculation step is less than or equal to 1.5 min by an HIDIC-80 on-line computer

  16. Nondestructive testing on graphite structures for high temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    The application of ultrasonic (for internal defects) and eddy current testing (for surface defects) were investigated on the structures of nuclear-grade IG-110 and PGX graphite for the HTTR. The equipment were developed in order to detect the specific configuration of graphite blocks and the testing conditions were defined as the practical testing methods. The established testing methods are being used for the acceptance tests of graphite structures in the HTTR. (author)

  17. The Tokamak Fusion Test Reactor D-T modifications and operations

    International Nuclear Information System (INIS)

    This Environmental Assessment (EA) was prepared in accordance with the National Environmental Policy Act (NEPA) of 1969, as amended, in support of the Department of Energy's proposal for the Tokamak Fusion Test Reactor (TFTR) D-T program. The objective of the proposed D-T program is to take the initial step in studying the effects of alpha particle heating and transport in a magnetic fusion device. These studies would enable the successful completion of the original TFTR program objectives, and would support the research and development needs of the Burning Plasma Experiment, BPX (formerly the Compact Ignition Tokamak (CIT)) and International Thermonuclear Experimental Reactor (ITER) in the areas of alpha particle physics, tritium retention, alpha particle diagnostic development, and tritium handling

  18. Operational Philosophy for the Advanced Test Reactor National Scientific User Facility

    Energy Technology Data Exchange (ETDEWEB)

    J. Benson; J. Cole; J. Jackson; F. Marshall; D. Ogden; J. Rempe; M. C. Thelen

    2013-02-01

    In 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). At its core, the ATR NSUF Program combines access to a portion of the available ATR radiation capability, the associated required examination and analysis facilities at the Idaho National Laboratory (INL), and INL staff expertise with novel ideas provided by external contributors (universities, laboratories, and industry). These collaborations define the cutting edge of nuclear technology research in high-temperature and radiation environments, contribute to improved industry performance of current and future light-water reactors (LWRs), and stimulate cooperative research between user groups conducting basic and applied research. To make possible the broadest access to key national capability, the ATR NSUF formed a partnership program that also makes available access to critical facilities outside of the INL. Finally, the ATR NSUF has established a sample library that allows access to pre-irradiated samples as needed by national research teams.

  19. Mirror Fusion Test Facility: an intermediate device to a mirror fusion reactor

    International Nuclear Information System (INIS)

    The Mirror Fusion Test Facility (MFTF-B) now under construction at Lawrence Livermore National Laboratory represents more than an order-of-magnitude step from earlier magnetic-mirror experiments toward a future mirror fusion reactor. In fact, when the device begins operating in 1986, the Lawson criteria of ntau = 1014 cm-3.s will almost be achieved for D-T equivalent operation, thus signifying scientific breakeven. Major steps have been taken to develop MFTF-B technologies for tandem mirrors. Steady-state, high-field, superconducting magnets at reactor-revelant scales are used in the machine. The 30-s beam pulses, ECRH, and ICRH will also introduce steady-state technologies in those systems

  20. Liquid metal seal (LMS) - challenges for fast breeder test reactor (FBTR)

    International Nuclear Information System (INIS)

    In Fast Breeder Test reactor (FBTR), Liquid Metal Seal (LMS) is being used to maintain leak tightness between reactor vessel and rotating plugs. It is a eutectic mixture of 42% tin and 58% bismuth. This paper describes measurements of melting point of LMS using Differential Scanning Calorimeter (DSC), Make: Setaram; Model- 131 evo. The instrument was calibrated using Indium as standard with different heating rates, 5 °C/min, 10 °C/min, 15°C/min and 20 °C/min. The observed value of melting point was found to be in agreement with the literature value. The melting point of as received and used LMS (LMSH8, LMSH10 and LMSH12) from three locations of FBTR were studied using DSC with different heating rates as above. The results are presented and it can be clearly seen that LMS has undergone some modifications during the continuous usage in FBTR

  1. The development and the tests of the electrostatic probe for dust particle collection in thermonuclear reactors

    Science.gov (United States)

    Begrambekov, L. B.; Voityuk, A. N.; Zakharov, A. M.

    2016-09-01

    Formation of dust particles in thermonuclear reactors can greatly affect the plasma parameters and lead to accumulation of tritium. The rates of formation and deposition of dust need to be measured, and the parameters of formation of dust particles and clusters need to be studied. A model of a device for collection of fine conductive particles capable of removing them from the reactor chamber for future research is proposed in this paper. The dust collector's operation is based on a principle of applied electrostatic field. The model was tested in different operating conditions: in vacuum, at the atmospheric pressure in the atmosphere of air and dry nitrogen. The experiments were conducted with a stationary system and with the dust collector in motion relative to the dusty surface. It is shown that, during the probe moving relative to the surface, it can remove up to 95% of fine tungsten particles with sizes ranging from 1 to 10 μm.

  2. SP-100 nuclear space power reactor system hardware and testing progress

    International Nuclear Information System (INIS)

    The SP-100 Space Reactor System was established by agencies of the US government as the system of choice to meet the nation's long lifetime, high reliability space power needs in the 10's to 100's of kWe power range. SP-100 is compatible with all power conversion technologies that can utilize reactor coolant temperatures ≤ 1,350 K. The technologies incorporated in SP-100 are directly applicable to earth orbiting satellites, planetary probes or surface power for commercial, military or civil missions. The most significant hardware and testing accomplishments that were made during the past year are reported in this summary paper, including fuel, fabrication technologies, control mechanisms, liquid metal pumps, lithium thaw behavior and characterization, and thermoelectric power conversion

  3. Risk-based management system development for the Advanced Test Reactor

    International Nuclear Information System (INIS)

    A Risk-Based Management System (RBMS) is being developed to facilitate the use of the Advanced Test Reactor (ATR) probabilistic risk assessment to support ATR operation. Most ATR RBMS questions can best be answered using the System Analysis and Risk Assessment System (SARA) developed at the Idaho National Engineering Laboratory. However, some applications may require employment of the other four codes used to develop and report the PRA. These four codes include the Integrated Reliability and Risk Analysis System (IRRAS), SETS, ETA-II, and the Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR). The ATR RBMS will evolve over three years, and will include the results of the Level 3 and external events analysis

  4. Test on the Reactor with the Period Protection Device for Research Reactor%研究堆周期保护装置堆上考验试验

    Institute of Scientific and Technical Information of China (English)

    黄礼渊

    2011-01-01

    Period Protection Device is necessary for research reactor, is of nuclear safety class I . Test must be performed on the zero power reactor or other reactor before the Devices are installed in the reactor, in order to check its function of period protection and measurement, and the accuracy of measurement. The paper describes the test facility, test core, test items, test methods and test results. The test results show that all of the three Devices achieve the technical specification, and satisfy the requirements of period measurement and period protection during the operation of the reactor.%周期保护装置是研究堆必备的设备之一,属于核安全一级设备.新研制的周期保护装置在安装到反应堆之前,必须在零功率堆或其它反应堆上进行堆上考验试验,以检验其周期保护和周期测量功能及测量精度.叙述了新研制的三套周期保护装置在堆上考验的试验设施、试验堆芯、试验内容和方法以及试验结果.试验结果表明:三套周期保护装置均满足技术指标的要求,满足反应堆运行的周期测量和周期保护的要求.

  5. Status of the NGNP Fuel Experiment AGR-2 Irradiated in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Blaine Grover

    2012-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and support systems will be briefly discussed, followed by the progress and status of the experiment to date.

  6. The Jules Horowitz Reactor : A new high Performances European MTR (Material Testing Reactor) with modern experimental capacities : Toward an International User Facility

    International Nuclear Information System (INIS)

    The Jules Horowitz Reactor (JHR) is a new Material Testing Reactor (MTR) currently under construction at CEA Cadarache research centre in the south of France. It will be a major Research facility in support to the development and the qualification of materials and fuels under irradiation with sizes and environment conditions relevant for nuclear power plants in order to optimise and demonstrate safe operations of existing power reactors as well as to support future reactor design. It will represent also an important Research Infrastructure for scientific studies dealing with material and fuel behaviour under irradiation. The JHR will contribute also to secure the production of radioisotope for medical application. This is a key public health stake. The construction of JHR which was started in 2007 is on-going. The first operation is planned before the end of this decade.The design of the reactor will provide an essential facility supporting the programs for the nuclear energy for the next 50 years. JHR is designed to provide high neutron flux (enhancing the maximum available today in MTRs), to run highly instrumented experiments to support advanced modelling giving prediction beyond experimental points, and to operate experimental devices giving environment conditions (pressure, temperature, flux, coolant chemistry, ···) relevant for water reactors, for gas cooled thermal or fast reactors, for sodium fast reactors, ···So, the reactor will perform R and D programs for the optimization of the present generation of NPP, support the development of the next generation of NPP (mainly LWR) and also offer irradiation possibilities for future reactors. In parallel to the construction of the reactor, the preparation of an international community around JHR is continuing; this is an important topic as building and gathering a strong international community in support to MTR experiments is a key-issue for the R and D in nuclear energy field. Consequently, CEA is

  7. Breeding zone models of DEMO ceramic helium cooled blanket test module for testing in IVV-2M reactor

    International Nuclear Information System (INIS)

    The goal of DEMO ceramic helium cooled blanket test module (CHC BTM) is to demonstrate a breeding capability that would lead to tritium self-sufficiency in ITER reactor and to extract a high-grade heat suitable for electricity generation. Experimental validation of all the adopted design solutions is main important problem at design and calculation works carrying out in order to develop the CHC BTM. One important task for breeding zones feasibility validation is in-pile tests. Two models were developed and fabricated for testing in the fission IVV-2M reactor. Breeding zone is based on poloidal BIT-conception. The models structural material is ferrito-martensitic steel. Breeder material is lithium orthosilicate in pebble beds and pellet forms. Multiplier material is beryllium in pebble beds and porosity forms. The cooling is provided by helium at 10 MPa. The tritium produced in the breeder material is purged by the helium flow at 0.1-0.2 MPa. Designs of model description and experimental channel, results of neutronic and thermo-hydraulic calculations are presented in the paper. (orig.)

  8. Technical concept for a test of geologic storage of spent reactor fuel in the climax granite, Nevada Test Site

    International Nuclear Information System (INIS)

    We plan to emplace spent fuel assemblies from an operating commercial nuclear reactor in the Climax granite at the US Department of Energy's Nevada Test Site. In this generic test, 11 canisters of spent fuel will be emplaced with 6 electrical simulator canisters in a storage drift 420 m below in surface and their effects compared. Two adjacent drifts will contain electrical heaters, operated to simulate the temperature-stress-displacement fields of a large repository. We describe the test objectives, the technical issues, the site, the preoperational measurement program, thermal and mechanical response calculations, the characteristics of the spent fuel, the field instrumentation and data-acquisition systems, and the system for handling the spent fuel

  9. The advanced test reactor national scientific user facility advancing nuclear technology

    International Nuclear Information System (INIS)

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team

  10. The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology

    Energy Technology Data Exchange (ETDEWEB)

    T. R. Allen; J. B. Benson; J. A. Foster; F. M. Marshall; M. K. Meyer; M. C. Thelen

    2009-05-01

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team

  11. The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology

    International Nuclear Information System (INIS)

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team

  12. 2007 international meeting on Reduced Enrichment for Research and Test Reactors (RERTR). Abstracts and available papers presented at the meeting

    International Nuclear Information System (INIS)

    The Meeting papers discuss research and test reactor fuel performance, manufacturing and testing. Some of the main topics are: conversion from HEU to LEU in different reactors and corresponding problems and activities; flux performance and core lifetime analysis with HEU and LEU fuels; physics and safety characteristics; measurement of gamma field parameters in core with LEU fuel; nondestructive analysis of RERTR fuel; thermal hydraulic analysis; fuel interactions; transient analyses and thermal hydraulics for HEU and LEU cores; microstructure research reactor fuels; post irradiation analysis and performance; computer codes and other related problems

  13. Design, implementation and cost-benefit analysis of a dynamic testing program in the Experimental Breeder Reactor-II

    International Nuclear Information System (INIS)

    Dynamic tests have been performed for many years in commercial pressurized and boiling water reactors. The purpose of this study was to evaluate the technological and economical feasibility of extending the current light water reactor testing procedures to both present and future liquid metal fast breeder reactors. A 38 node linearized, lumped parameter, EBR-II system model was developed. This model was analyzed to obtain the predicted system time and frequency response for reactivity perturbations, intermediate heat exchanger secondary inlet sodium temperature perturbation frequency response, and various system nodal frequency response sensitivities

  14. Surveillance tests for light-water cooled nuclear power reactor vessels in IMEF

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Yong-Sun; Ahn, Sang-Bok; Park, Dae-Gyu; Jung, Yang-Hong; Yoo, Byung-Ok; Oh, Wan-Ho; Baik, Seung-Je; Koo, Dae-Seo; Lee, Key-Soon [Korea Atomic Energy Research Institute, Irradiated Materials Examination Facility, Taejon (Korea)

    1999-09-01

    The surveillance tests for light-water cooled nuclear power reactor vessels were established to monitor the radiation-induced changes in the mechanical properties of ferritic materials in the beltline according to US NRC 10 CFR 50 App. G, US NRC RG1.99-rev.2, ASTM E185-82 and E185-94 in Irradiated Materials Examination Facility(IMEF). The surveillance capsule was transported from NPPs pool sites to KAERI IMEF by using a shipping cask. The capsule was cut and dismantled by capsule cutting machine and milling machine in M2 hot cell. Charpy tests and tension tests were performed in M5a and M5b hot cells respectively. Especially the EPMA located at hot lab was used to analyze the Ni and Cu wt% composition of base metal and weld for predicting the adjusted reference temperature(ART). The established process and test results were summarized in this paper. (author)

  15. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-07-19

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  16. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-07-19

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element design for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition as part of a fuel meat thickness optimization effort for reactor performance other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.

  17. A review on the utilization of the Japan materials testing reactor (JMTR)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Kang, Y. H.; Kim, B. G.; Choo, K. N.; Oh, J. M.; Park, S. J.; Shin, Y. T

    1999-04-01

    The HANARO has possessed the potential capability for the testing of materials and fuels since the beginning of its operation in 1995. Recently, this reactor has contributed to various activities in nuclear power research in Korea. We need the recent technical data of developed countries to support these activities in nuclear power. Most of the developed countries in nuclear power have more than thirty years' experience in the irradiation test of nuclear fuel and material for performing their complicated in-core measurements of the change of material properties. They also have developed various types of sensors, equipment and techniques. This report describes the status of utilization of the irradiation facilities of the Japan Materials Testing Reactor(JMTR). It also describes the recent efforts of the JMTR in order to develop new irradiation test techniques. It will be our great pleasure for this report to help a broad range of people understand the generic contents (JMTR utilization, new techniques) of the JMTR. (author)

  18. Characterization and testing of materials for nuclear reactors. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    Nuclear techniques in general and neutrons based methods in particular have played and will continue to play an important role in research in materials science and technology. Today the world is looking at nuclear fission and nuclear fusion as the main sources of energy supply for the future. Research reactors have played a key role in the development of nuclear technology. A materials development programme will thus play a major role in the design and development of new nuclear power plants, for the extension of the life of operating reactors as well as for fusion reactors. Against this background, the IAEA had organized a Technical Meeting on Development, Characterization and Testing of Materials - With Special Reference to the Energy Sector under the activity on specific applications of research reactors. The meeting was held in Vienna, May 29- June 2, 2006. There was also participation by experts in techniques, complementary to neutrons. The participants for the technical meeting were experts in the utilization of nuclear techniques namely the high flux and medium flux research reactors, fusion research and positron annihilation. They presented the design, development and utilization of the facilities at their respective centres for materials characterization with main focus on materials for nuclear energy, both fission and fusion. In core irradiation of materials, development of instrument for residual stress measurement in large and / or irradiated specimen, neutron radiography for inspection of irradiated fuel, work on oxide dispersion strengthened (ODS) steels and SiC composites, relevant to future power systems were cited as application of nuclear techniques in fission reactors. The use of neutron scattering for helium bubbles in steel, application of positron annihilation to study helium bubbles in Cu, Ti-stabilized stainless steel and voidswelling studies etc. show that these techniques have an important role in the development of materials for energy

  19. Refinery burner simulation design architecture summary.

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

    2011-10-01

    This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

  20. Emission characteristics and axial flame temperature distribution of producer gas fired premixed burner

    Energy Technology Data Exchange (ETDEWEB)

    Bhoi, P.R. [Department of Mechanical Engineering, L and T-Sargent and Lundy Limited, L and T Energy Centre, Near Chhani Jakat Naka, Baroda 390 002 (India); Channiwala, S.A. [Department of Mechanical Engineering, Sardar Vallabhbhai National Institute of Technology, Deemed University, Ichchhanath, Surat 395 007, Gujarat (India)

    2009-03-15

    This paper presents the emission characteristics and axial flame temperature distribution of producer gas fired premixed burner. The producer gas fired premixed burner of 150 kW capacity was tested on open core throat less down draft gasifier system in the present study. A stable and uniform flame was observed with this burner. An instrumented test set up was developed to evaluate the performance of the burner. The conventional bluff body having blockage ratio of 0.65 was used for flame stabilization. With respect to maximum flame temperature, minimum pressure drop and minimum emissions, a swirl angle of 60 seems to be optimal. The experimental results also showed that the NO{sub x} emissions are inversely proportional to swirl angle and CO emissions are independent of swirl angle. The minimum emission levels of CO and NO{sub x} are observed to be 0.167% and 384 ppm respectively at the swirl angle of 45-60 . The experimental results showed that the maximum axial flame temperature distribution was achieved at A/F ratio of 1.0. The adiabatic flame temperature of 1653 C was calculated theoretically at A/F ratio of 1.0. Experimental results are in tune with theoretical results. It was also concluded that the CO and UHC emissions decreases with increasing A/F ratio while NO{sub x} emissions decreases on either side of A/F ratio of 1.0. (author)

  1. Waste Heat Recovery from the Advanced Test Reactor Secondary Coolant Loop

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen

    2012-11-01

    This study investigated the feasibility of using a waste heat recovery system (WHRS) to recover heat from the Advanced Test Reactor (ATR) secondary coolant system (SCS). This heat would be used to preheat air for space heating of the reactor building, thus reducing energy consumption, carbon footprint, and energy costs. Currently, the waste heat from the reactor is rejected to the atmosphere via a four-cell, induced-draft cooling tower. Potential energy and cost savings are 929 kW and $285K/yr. The WHRS would extract a tertiary coolant stream from the SCS loop and pump it to a new plate and frame heat exchanger, from which the heat would be transferred to a glycol loop for preheating outdoor air supplied to the heating and ventilation system. The use of glycol was proposed to avoid the freezing issues that plagued and ultimately caused the failure of a WHRS installed at the ATR in the 1980s. This study assessed the potential installation of a new WHRS for technical, logistical, and economic feasibility.

  2. DT and DHe3 tokamak test reactor concepts using advanced, high field superconductors

    International Nuclear Information System (INIS)

    If practical high temperature superconducting ceramic magnets can be developed, there could be a significant impact on reactor design. Potential advantages include a simpler, more robust magnet design, the possibility of demountable superconducting toroidal field coils and reduced shielding requirements. The high temperature superconductors can also have very high critical fields and could provide super high field operation. This could substantially increase eta tau/sub E/ values, reduce β requirements, and improve prospects for ohmic heating to ignition. The combination of moderately high β and super high field could make DHe3 operation possible in a JET size tokamak. In this paper we discuss possibilities for test reactor designs using high temperature high field superconductors. An illustrative design has a field at the plasma of 15 T. This reduces the required β to less than 2% for DT operation. The required plasma current is 5 MA. For a reactor size of R0 = 3.4m and a = 0.6m, the neutron wall loading is 3.3 MW/m2 at β = 1.5% for DT operation and an equal amount of fusion power is produced at β = 10% for DHe3 operation. One possible mode of operation is to use ohmic heating to ignition in a DT plasma followed by thermal runaway to DHe3 temperatures. 7 refs., 1 fig., 2 tabs

  3. FLOX burner technology for wood furnaces

    International Nuclear Information System (INIS)

    Current research at IVD focuses on the development of FLOX burners for small furnaces, with the intention of making problematic biomass available for energetic utilisation. At the same time, soiling and emission problems are to be reduced or avoided by using innovative technologies. One of these is the technology of flameless oxidation, which is already applied successfully in the natural gas industry because of its low NOx emissions. The IVD is working on two different plant concepts. (orig.)

  4. PULSE DRYING EXPERIMENT AND BURNER CONSTRUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Robert States

    2006-07-15

    Non steady impingement heat transfer is measured. Impingement heating consumes 130 T-BTU/Yr in paper drying, but is only 25% thermally efficient. Pulse impingement is experimentally shown to enhance heat transfer by 2.8, and may deliver thermal efficiencies near 85%. Experimental results uncovered heat transfer deviations from steady theory and from previous investigators, indicating the need for further study and a better theoretical framework. The pulse burner is described, and its roll in pulse impingement is analyzed.

  5. Design and development of a low NOx regenerative burner

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    Regenerative burner technology is used worldwide by a range of process industries to utilize waste heat and reduce specific energy consumption. Regenerative burners are associated with annual energy savings of 6.2 PJ and consequently have a further benefit, reducing CO[sub 2] emissions by approximately 316,000 tonnes/year. However, the high air pre-heat temperatures attained by these burners are also responsible for NOx emissions rates which are substantially higher than those for cold air fired burners. To address this problem the current project was set up to develop a low NOx regenerative burner which would comply with the then anticipated NOx emission legislation. The combination of computational fluid dynamic (CFD) modelling and experimental work has shown that there are available methods to reduce NOx emissions. For instance, in this project NOx emissions from a 3 MW burner were reduced to levels similar to those of a 600 kW unit. (author)

  6. DEVELOPMENT AND DEMONSTRATION OF NOVEL LOW-NOx BURNERS IN THE STEEL INDUSTRY

    Energy Technology Data Exchange (ETDEWEB)

    Cygan, David

    2006-12-28

    -catalytic reduction. The FIR burner was previously demonstrated on firetube and watertube boilers, and these units are still operating at several industrial and commercial boiler sites in sizes ranging from 2.5 to 60 million Btu/h. This report covers the development of an innovative combustion system suitable for natural gas or coke-oven gas firing within the steel industry. The prototype FIR burner was evaluated on a 20 million Btu/h watertube boiler. Acceptable burner performance was obtained when firing natural gas and simulated coke-oven gas doped with ammonia. The laboratory data reveals a direct relationship between NOx formation and the ammonia concentration in the fuel. In addition, NOx formation increases as the primary stoichiometric ratio (PSR) increases. Representative ammonia concentrations, as documented in the steel industry, ranged from 200 to 500 vppm. When the laboratory burner/boiler was operated with 500 vppm ammonia in the fuel, NOx emissions ranged from 50 to 75 vppm. This, conservatively, is 75% less than state-of-the-art burner performance. When the burner is operated with 200 vppm ammonia in the fuel, the corresponding NOx emissions would range from 30 to 45 vppm, 84% less than present burner technology. During field evaluation on a 174 million Btu/h industrial prototype burner both natural gas and actual COG from on-site generation were tested. Despite the elevated hydrogen cyanide and ammonia content in the COG throughout the test program, the FIR burner showed an improvement over baseline emissions. At full load; 167 million Btu/h, NOx emissions were relatively low at 169 vppm. This represents a 30% reduction compared to baseline emissions not accounting for the higher hydrogen cyanide content in the COG. CO emissions remained below 20 vppm and were stable across the firing range. This represents a 68% reduction compared to baseline CO emissions. When firing natural gas, emissions were stable as firing rate increased over the range. At low fire; 45 million

  7. Status of the Combined Third and Fourth NGNP Fuel Irradiations In the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    S. Blaine Grover; David A. Petti; Michael E. Davenport

    2013-07-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and is currently scheduled to be completed in September 2013. The third and fourth experiments have been combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. Since the purpose of this combined experiment is to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment is

  8. Final Assembly and Initial Irradiation of the First Advanced Gas Reactor Fuel Development and Qualification Experiment in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    S. B. Grover

    2007-05-01

    The United States Department of Energy’s Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotropic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing.1,2 The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The final design phase for the first experiment was completed in 2005, and the fabrication and assembly of the first experiment test train (designated AGR-1) as well as the support systems and fission product monitoring system that will monitor and control the experiment

  9. Diagnostics for hybrid reactors

    International Nuclear Information System (INIS)

    The Hybrid Reactor(HR) can be considered an attractive actinide-burner or a fusion assisted transmutation for destruction of transuranic(TRU) nuclear waste. The hybrid reactor has two important subsystems: the tokamak neutron source and the blanket which includes a fuel zone where the TRU are placed and a tritium breeding zone. The diagnostic system for a HR must be as simple and robust as possible to monitor and control the plasma scenario, guarantee the protection of the machine and monitor the transmutation.

  10. Completion summary for borehole USGS 136 near the Advanced Test Reactor Complex, Idaho National Laboratory, Idaho

    Science.gov (United States)

    Twining, Brian V.; Bartholomay, Roy C.; Hodges, Mary K.V.

    2012-01-01

    In 2011, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, cored and completed borehole USGS 136 for stratigraphic framework analyses and long-term groundwater monitoring of the eastern Snake River Plain aquifer at the Idaho National Laboratory. The borehole was initially cored to a depth of 1,048 feet (ft) below land surface (BLS) to collect core, open-borehole water samples, and geophysical data. After these data were collected, borehole USGS 136 was cemented and backfilled between 560 and 1,048 ft BLS. The final construction of borehole USGS 136 required that the borehole be reamed to allow for installation of 6-inch (in.) diameter carbon-steel casing and 5-in. diameter stainless-steel screen; the screened monitoring interval was completed between 500 and 551 ft BLS. A dedicated pump and water-level access line were placed to allow for aquifer testing, for collecting periodic water samples, and for measuring water levels. Geophysical and borehole video logs were collected after coring and after the completion of the monitor well. Geophysical logs were examined in conjunction with the borehole core to describe borehole lithology and to identify primary flow paths for groundwater, which occur in intervals of fractured and vesicular basalt. A single-well aquifer test was used to define hydraulic characteristics for borehole USGS 136 in the eastern Snake River Plain aquifer. Specific-capacity, transmissivity, and hydraulic conductivity from the aquifer test were at least 975 gallons per minute per foot, 1.4 × 105 feet squared per day (ft2/d), and 254 feet per day, respectively. The amount of measureable drawdown during the aquifer test was about 0.02 ft. The transmissivity for borehole USGS 136 was in the range of values determined from previous aquifer tests conducted in other wells near the Advanced Test Reactor Complex: 9.5 × 103 to 1.9 × 105 ft2/d. Water samples were analyzed for cations, anions, metals, nutrients, total organic

  11. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

  12. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices

    International Nuclear Information System (INIS)

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data

  13. First Test of Lorentz Violation with a Reactor-based Antineutrino Experiment

    CERN Document Server

    Abe, Y; Anjos, J C dos; Bergevin, M; Bernstein, A; Bezerra, T J C; Bezrukhov, L; Blucher, E; Bowden, N S; Buck, C; Busenitz, J; Cabrera, A; Caden, E; Camilleri, L; Carr, R; Cerrada, M; Chang, P -J; Chimenti, P; Classen, T; Collin, A P; Conover, E; Conrad, J M; Crespo-Anadón, J I; Crum, K; Cucoanes, A; D'Agostino, M V; Damon, E; Dawson, J V; Dazeley, S; Dietrich, D; Djurcic, Z; Dracos, M; Durand, V; Ebert, J; Efremenko, Y; Elnimr, M; Erickson, A; Fallot, M; Fechner, M; von Feilitzsch, F; Felde, J; Fischer, V; Franco, D; Franke, A J; Franke, M; Furuta, H; Gama, R; Gil-Botella, I; Giot, L; Göger-Neff, M; Gonzalez, L F G; Goodman, M C; Goon, J TM; Greiner, D; Haag, N; Habib, S; Hagner, C; Hara, T; Hartmann, F X; Haser, J; Hatzikoutelis, A; Hayakawa, T; Hofmann, M; Horton-Smith, G A; Ishitsuka, M; Jochum, J; Jollet, C; Jones, C L; Kaether, F; Kalousis, L N; Kamyshkov, Y; Kaplan, D M; Katori, T; Kawasaki, T; Keefer, G; Kemp, E; de Kerret, H; Konno, T; Kryn, D; Kuze, M; Lachenmaier, T; Lane, C E; Lasserre, T; Letourneau, A; Lhuillier, D; Lima, H P; Lindner, M; López-Castanõ, J M; LoSecco, J M; Lubsandorzhiev, B K; Lucht, S; McKee, D; Maeda, J; Maesano, C N; Mariani, C; Maricic, J; Martino, J; Matsubara, T; Mention, G; Meregaglia, A; Meyer, M; Miletic, T; Milincic, R; Miyata, H; Mueller, Th A; Nagasaka, Y; Nakajima, K; Novella, P; Obolensky, M; Oberauer, L; Onillon, A; Osborn, A; Ostrovskiy, I; Palomares, C; Pepe, I M; Perasso, S; Perrin, P; Pfahler, P; Porta, A; Potzel, W; Pronost, G; Reichenbacher, J; Reinhold, B; Remoto, A; Röhling, M; Roncin, R; Roth, S; Rybolt, B; Sakamoto, Y; Santorelli, R; Sato, F; Schönert, S; Schoppmann, S; Schwetz, T; Shaevitz, M H; Shrestha, D; Sida, J -L; Sinev, V; Skorokhvatov, M; Smith, E; Spitz, J; Stahl, A; Stancu, I; Stokes, L F F; Strait, M; Stüken, A; Suekane, F; Sukhotin, S; Sumiyoshi, T; Sun, Y; Terao, K; Tonazzo, A; Toups, M; Thi, H H Trinh; Valdiviesso, G; Veyssiere, C; Wagner, S; Watanabe, H; White, B; Wiebusch, C; Winslow, L; Worcester, M; Wurm, M; Yanovitch, E; Yermia, F; Zimmer, V

    2012-01-01

    We present a search for Lorentz violation with 8249 candidate electron antineutrino events taken by the Double Chooz experiment in 227.9 live days of running. This analysis, featuring a search for a sidereal time dependence of the events, is the first test of Lorentz invariance using a reactor-based antineutrino source. No sidereal variation is present in the data and the disappearance results are consistent with sidereal time independent oscillations. Under the Standard-Model Extension (SME), we set the first limits on fourteen Lorentz violating coefficients associated with transitions between electron and tau flavor, and set two competitive limits associated with transitions between electron and muon flavor.

  14. Environmental control of tritium use at the Tokamak Fusion Test Reactor (TFTR)

    Energy Technology Data Exchange (ETDEWEB)

    Howe, H.J. Jr.; Lind, K.E.

    1978-12-01

    A primary objective of the Tokamak Fusion Test Reactor Project (TFTR) is to demonstrate the production of fusion energy using the deuterium--tritium fusion reaction in a magnetically confined plasma system. This paper will discuss the various tritium control methods employed to minimize the release of tritium to the environment. The methods to be described include the containment and ALAP philosophy, engineered safety features, redundant tritium cleanup systems, redundant instrumentation and control systems, interlocks, monitoring systems, management controls, and waste handling systems. Estimates will be included concerning the impact of routine and accidental tritium releases with these control systems in place.

  15. The advanced test reactor national scientific user facility: advancing nuclear technology education

    International Nuclear Information System (INIS)

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy designated the Idaho National Laboratory (INL) Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The ATR NSUF provides education programs including a Users Week, internships, faculty student team projects and faculty/staff exchanges. In addition, the ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. (author)

  16. Environmental control of tritium use at the Tokamak Fusion Test Reactor (TFTR)

    International Nuclear Information System (INIS)

    A primary objective of the Tokamak Fusion Test Reactor Project (TFTR) is to demonstrate the production of fusion energy using the deuterium--tritium fusion reaction in a magnetically confined plasma system. This paper will discuss the various tritium control methods employed to minimize the release of tritium to the environment. The methods to be described include the containment and ALAP philosophy, engineered safety features, redundant tritium cleanup systems, redundant instrumentation and control systems, interlocks, monitoring systems, management controls, and waste handling systems. Estimates will be included concerning the impact of routine and accidental tritium releases with these control systems in place

  17. Progress of the RERTR (Reduced Enrichment Research and Test Reactor) Program in 1989

    Energy Technology Data Exchange (ETDEWEB)

    Travelli, A.

    1989-01-01

    The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program is described. After a brief summary of the results which the RERTR Program, in collaboration with its many international partners, had achieved by the end of 1988, the major events, findings, and activities of 1989 are reviewed. The scope of the RERTR Program activities was curtailed, in 1989, by an unexpected legislative restriction which limited the ability of the Arms Control and Disarmament Agency to adequately fund the program. Nevertheless, the thrust of the major planned program activities was maintained, and meaningful results were obtained in several areas of great significance for future work. 15 refs., 12 figs.

  18. Development of eddy current testing technique of the rod cluster control assembly of pressurized water reactor

    International Nuclear Information System (INIS)

    Rod Control Cluster Assembly(RCCA) of pressurized water reactor(PWR) can be damaged by neutron irradiation and continuous vibration caused by pressurized water flowing with a high speed within the reactor. Typically, there are three different types of RCCA damage: (1) Fretting wear caused by interactions of the control rod with upper internal guide cards, (2) Sliding wear caused by the up-and-down sliding movement of the control rod during the operation, and (3) Intergranular cracking caused by the material embrittlement stemming from neutron irradiation. In the past, either ultrasonics or Eddy current testing(ECT) methods were used to inspect RCCAs. However, due to inconvenient and tedious operation of ultrasonic method, Eddy current testing method is being used more frequently. Nondestructive Evaluation(NDE) group of the Materials and Corrosion Research Laboratory at KEPRI has recently developed ECT method and the associated testing equipment, and applied successfully to Ulchin Unit 1 and Kori Unit 2 nuclear power plants(NPPs) during the overhaul period. This paper summarizes the results of the ECT of RCCAs.

  19. Performance evaluation of two CANDU fuel elements tested in the TRIGA reactor

    International Nuclear Information System (INIS)

    Nuclear Research Institute at Pitesti has a set of facilities, which allow the testing, manipulation and examination of nuclear fuel and structure materials irradiated in CANDU reactors from Cernavoda NPP. These facilities consist of TRIGA materials testing reactor and Post-Irradiation Examination Laboratory (LEPI). The purpose of this work is to describe the post-irradiation examination, of two experimental CANDU fuel elements (EC1 and EC2). The fuel elements were mounted into a pattern port, one in extension of the other in a measuring test for the central temperature evolution. The results of post-irradiation examination are obtained from: Visual inspection and photography of the outer appearance of sheath; Profilometry (diameter, bending, ovalization) and length measuring; Determination of axial and radial distribution of the fission products activity by gamma scanning; Measurement of pressure, volume and isotopic composition of fission gas; Microstructural characterization by metallographic and ceramographic analyzes; Isotopic composition and burn-up determination. The post-irradiation examination results are used, on one hand, to confirm the security, reliability and performance of the irradiated fuel, and on the other hand, for further development of CANDU fuel. (authors)

  20. Integrity assessment of research reactor fuel cladding and material testing using eddy current inspection

    International Nuclear Information System (INIS)

    A methodology to perform the integrity assessment of research reactors nuclear fuels cladding, such as those installed in IPR-Rl (TRIGA) and IEA-R1 (MTR), using nondestructive electromagnetic inspection (eddy current) is presented. This methodology is constituted by: the development of calibration reference standards, specific for each type of fuel; the development of special test probes; the recommendations for the inspection equipment calibration; the construction of voltage based evaluation curves and the inspection procedures developed for the characterization of detected flaws. The test probes development, specially those designed for the inspection of MTR fuels cladding, which present access difficulties due to the narrow gap between fuel plates (2,89 mm for IEAR-R1), constituted a challenge that demanded the introduction of unusual materials and constructive techniques. The operational performance of the developed resources, as well as the special operative characteristics of the test probes, such as their immunity to adjacent fuel plates interference and electrical resistivity changes of the fuels meat are experimentally demonstrated. The practical applicability of the developed methodology is verified in non radioactive environment, using a dummy MTR fuel element model, similar to an IEA-R1 reactor fuel element, produced and installed in IPEN, Sao Paulo. The efficacy of the proposed methodology was verified by the achieved results. (author)

  1. Supported Pd-Au Membrane Reactor for Hydrogen Production: Membrane Preparation, Characterization and Testing.

    Science.gov (United States)

    Iulianelli, Adolfo; Alavi, Marjan; Bagnato, Giuseppe; Liguori, Simona; Wilcox, Jennifer; Rahimpour, Mohammad Reza; Eslamlouyan, Reza; Anzelmo, Bryce; Basile, Angelo

    2016-01-01

    A supported Pd-Au (Au 7wt%) membrane was produced by electroless plating deposition. Permeation tests were performed with pure gas (H₂, H₂, N₂, CO₂, CH₄) for long time operation. After around 400 h under testing, the composite Pd-Au membrane achieved steady state condition, with an H₂/N₂ ideal selectivity of around 500 at 420 °C and 50 kPa as transmembrane pressure, remaining stable up to 1100 h under operation. Afterwards, the membrane was allocated in a membrane reactor module for methane steam reforming reaction tests. As a preliminary application, at 420 °C, 300 kPa of reaction pressure, space velocity of 4100 h(-1), 40% methane conversion and 35% hydrogen recovery were reached using a commercial Ni/Al₂O₃ catalyst. Unfortunately, a severe coke deposition affected irreversibly the composite membrane, determining the loss of the hydrogen permeation characteristics of the supported Pd-Au membrane. PMID:27171067

  2. Model test on interaction of reactor building and soil-Part 2

    International Nuclear Information System (INIS)

    Theoretical studies of soil-structure interaction have progressed in recent years. At the same time, experimental studies to verify the theoretical results have been carried out energetically. These experimental studies, however, have been mostly conducted by means of vibration tests or earthquake observations individually. In order to investigate experimentally the effects of soil-structure interaction, it is desirable to carry both the forced vibration tests and the earthquake observations of the same models. To this end, the earthquake observations were conducted to obtain the dynamic behaviors of soil-reactor building system during earthquakes and to compare them with the results of the forced vibration tests. The results are described in this paper

  3. ENVIRONMENTAL ASSESSMENT OF AN ENHANCED OIL RECOVERY STEAM GENERATOR EQUIPPED WITH A LOW-NOX BURNER. VOLUME 2. DATA SUPPLEMENT

    Science.gov (United States)

    The report is a compendium of detailed test sampling and analysis data obtained in field tests of an enhanced oil recovery steam generator (EOR steamer) equipped with a MHI PM low-NOx crude oil burner. Test data included in the report include equipment calibration records, steame...

  4. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    Energy Technology Data Exchange (ETDEWEB)

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials

  5. Performance analysis of porous radiant burners used in LPG cooking stove

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumar, P.; Anand, Piyush; Sachdeva, Prateek [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati - 781039 (India)

    2011-07-01

    This paper discusses the performance investigations of a porous radiant burner (PRB) used in LPG cooking stove. Performance of the burner was studied at different equivalence ratios and power intensities. Thermal efficiency was found using the water-boiling test described in IS: 4246:2002. The newly designed PRB showed a maximum thermal efficiency of about 71%, which is 6% higher than that of the conventional burners. Influence of ambient temperature on the thermal efficiency of the PRB was also investigated. Using a PRB of 80 mm diameter at the operating conditions of 0.68 equivalence ratio and 1.24 kW power intensity, the thermal efficiency was found to increase from 61% at 18.5 oC to 71% at 31 oC ambient temperature. The CO and NOx emissions of the PRB are in the range of 9 to 16 ppm and 0 to 0.2 ppm, respectively, while the respective values for the conventional burner are in the range of 50 to 225 ppm and 2 to 7 ppm.

  6. Performance analysis of porous radiant burners used in LPG cooking stove

    Directory of Open Access Journals (Sweden)

    P. Muthukumar, Piyush Anand, Prateek Sachdeva

    2011-03-01

    Full Text Available This paper discusses the performance investigations of a porous radiant burner (PRB used in LPG cooking stove. Performance of the burner was studied at different equivalence ratios and power intensities. Thermal efficiency was found using the water-boiling test described in IS: 4246:2002. The newly designed PRB showed a maximum thermal efficiency of about 71%, which is 6% higher than that of the conventional burners. Influence of ambient temperature on the thermal efficiency of the PRB was also investigated. Using a PRB of 80 mm diameter at the operating conditions of 0.68 equivalence ratio and 1.24 kW power intensity, the thermal efficiency was found to increase from 61% at 18.5 oC to 71% at 31 oC ambient temperature. The CO and NOx emissions of the PRB are in the range of 9 to 16 ppm and 0 to 0.2 ppm, respectively, while the respective values for the conventional burner are in the range of 50 to 225 ppm and 2 to 7 ppm.

  7. The RERTR (Reduced Enrichment Research and Test Reactor) Program: Progress and plans

    Energy Technology Data Exchange (ETDEWEB)

    Travelli, A.

    1987-01-01

    The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program is described. After a brief summary of the results which the RERTR Program, in collaboration with its many international partners, had achieved by the end of 1986, the activities, results, and new developments which occurred in 1987 are reviewed. Irradiation of the second miniplate series, concentrating on U/sub 3/Si/sub 2/-Al and U/sub 3/Si-Al fuels, was completed and postirradiation examinations were performed on many of its miniplates. The whole-core ORR demonstration with U/sub 3/Si/sub 2/-Al fuel at 4.8 g U/cm/sup 3/ was completed at the end of March with excellent results and with 29 elements estimated to have reached at least 40% average burnup. Good progress was made in the area of LEU usage for the production of fission /sup 99/Mo, and in the coordination of safety evaluations related to LEU conversions of US university reactors. Planned activities include testing and demonstrating advanced fuels intended to allow use of reduced enrichment uranium in very-high-performance reactors. Two candidate fuels are U/sub 3/Si-Al with 19.75% enrichment and U/sub 3/Si/sub 2/-Al with 45% enrichment. Demonstration of these fuels will include irradiation of full-size elements and, possibly, a full-core demonstration. Achievement of the final program goals is still projected for 1990. This progress could not have been possible without the close international cooperation which has existed from the beginning, and which is essential to the ultimate success of the RERTR Program.

  8. Non-Nuclear Testing of Compact Reactor Technologies at NASA MSFC

    Science.gov (United States)

    Houts, Michael G.; Pearson, J. Boise; Godfroy, Thomas J.

    2011-01-01

    Safe, reliable, compact, autonomous, long-life fission systems have numerous potential applications, both terrestrially and in space. Technologies and facilities developed in support of these systems could be useful to a variety of concepts. At moderate power levels, fission systems can be designed to operate for decades without the need for refueling. In addition, fast neutron damage to cladding and structural materials can be maintained at an acceptable level. Nuclear design codes have advanced to the stage where high confidence in the behavior and performance of a system can be achieved prior to initial testing. To help ensure reactor affordability, an optimal strategy must be devised for development and qualification. That strategy typically involves a combination of non-nuclear and nuclear testing. Non-nuclear testing is particularly useful for concepts in which nuclear operating characteristics are well understood and nuclear effects such as burnup and radiation damage are not likely to be significant. To be mass efficient, a SFPS must operate at higher coolant temperatures and use different types of power conversion than typical terrestrial reactors. The primary reason is the difficulty in rejecting excess heat to space. Although many options exist, NASA s current reference SFPS uses a fast spectrum, pumped-NaK cooled reactor coupled to a Stirling power conversion subsystem. The reference system uses technology with significant terrestrial heritage while still providing excellent performance. In addition, technologies from the SFPS system could be applicable to compact terrestrial systems. Recent non-nuclear testing at NASA s Early Flight Fission Test Facility (EFF-TF) has helped assess the viability of the reference SFPS and evaluate methods for system integration. In July, 2011 an Annular Linear Induction Pump (ALIP) provided by Idaho National Laboratory was tested at the EFF-TF to assess performance and verify suitability for use in a10 kWe technology

  9. Testing and Commissioning of a Multifunctional Tool for the Dismantling of the Activated Internals of the KNK Reactor Shaft - 13524

    International Nuclear Information System (INIS)

    The Compact Sodium Cooled Reactor Facility Karlsruhe (KNK), a prototype reactor to demonstrate the Fast Breeder Reactor Technology in Germany, was in operation from 1971 to 1991. The dismantling activities started in 1991. The project aim is the green field in 2020. Most of the reactor internals as well as the primary and secondary cooling loops are already dismantled. The total contaminated sodium inventory has already been disposed of. Only the high activated reactor vessel shielding structures are remaining. Due to the high dose rates these structures must be dismantled remotely. For the dismantling of the primary shielding of the reactor vessel, 12 stacked cast iron blocks with a total mass of 90 Mg and single masses up to 15.5 Mg, a remote-controlled multifunctional dismantling device (HWZ) was designed, manufactured and tested in a mock-up. After successful approval of the test sequences by the authorities, the HWZ was implemented into the reactor building containment for final assembling of the auxiliary equipment and subsequent hot commissioning in 2012. Dismantling of the primary shielding blocks is scheduled for early 2013. (authors)

  10. Testing and Commissioning of a Multifunctional Tool for the Dismantling of the Activated Internals of the KNK Reactor Shaft - 13524

    Energy Technology Data Exchange (ETDEWEB)

    Rothschmitt, Stefan; Graf, Anja [WAK Rueckbau- und Entsorgungs- GmbH, P.O.Box 12 63, 76339 Eggenstein-Leopoldshafen (Germany); Bauer, Stefan; Klute, Stefan; Koselowski, Eiko [Siempelkamp Nukleartechnik GmbH, Am Taubenfeld 25/1, 69123 Heidelberg (Germany); Hendrich, Klaus [Ingenieurbuero Hendrich, Moerikeweg 14, 75015 Bretten (Germany)

    2013-07-01

    The Compact Sodium Cooled Reactor Facility Karlsruhe (KNK), a prototype reactor to demonstrate the Fast Breeder Reactor Technology in Germany, was in operation from 1971 to 1991. The dismantling activities started in 1991. The project aim is the green field in 2020. Most of the reactor internals as well as the primary and secondary cooling loops are already dismantled. The total contaminated sodium inventory has already been disposed of. Only the high activated reactor vessel shielding structures are remaining. Due to the high dose rates these structures must be dismantled remotely. For the dismantling of the primary shielding of the reactor vessel, 12 stacked cast iron blocks with a total mass of 90 Mg and single masses up to 15.5 Mg, a remote-controlled multifunctional dismantling device (HWZ) was designed, manufactured and tested in a mock-up. After successful approval of the test sequences by the authorities, the HWZ was implemented into the reactor building containment for final assembling of the auxiliary equipment and subsequent hot commissioning in 2012. Dismantling of the primary shielding blocks is scheduled for early 2013. (authors)

  11. Gas cooled fast breeder reactor design for a circulator test facility (modified HTGR circulator test facility)

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    A GCFR helium circulator test facility sized for full design conditions is proposed for meeting the above requirements. The circulator will be mounted in a large vessel containing high pressure helium which will permit testing at the same power, speed, pressure, temperature and flow conditions intended in the demonstration plant. The electric drive motor for the circulator will obtain its power from an electric supply and distribution system in which electric power will be taken from a local utility. The conceptual design decribed in this report is the result of close interaction between the General Atomic Company (GA), designer of the GCFR, and The Ralph M. Parson Company, architect/engineer for the test facility. A realistic estimate of total project cost is presented, together with a schedule for design, procurement, construction, and inspection.

  12. Gas cooled fast breeder reactor design for a circulator test facility (modified HTGR circulator test facility)

    International Nuclear Information System (INIS)

    A GCFR helium circulator test facility sized for full design conditions is proposed for meeting the above requirements. The circulator will be mounted in a large vessel containing high pressure helium which will permit testing at the same power, speed, pressure, temperature and flow conditions intended in the demonstration plant. The electric drive motor for the circulator will obtain its power from an electric supply and distribution system in which electric power will be taken from a local utility. The conceptual design decribed in this report is the result of close interaction between the General Atomic Company (GA), designer of the GCFR, and The Ralph M. Parson Company, architect/engineer for the test facility. A realistic estimate of total project cost is presented, together with a schedule for design, procurement, construction, and inspection

  13. Naval Reactors Prime Contractor Team (NRPCT) Experiences and Considerations With Irradiation Test Performance in an International Environment

    Energy Technology Data Exchange (ETDEWEB)

    MH Lane

    2006-02-15

    This letter forwards a compilation of knowledge gained regarding international interactions and issues associated with Project Prometheus. The following topics are discussed herein: (1) Assessment of international fast reactor capability and availability; (2) Japanese fast reactor (JOYO) contracting strategy; (3) NRPCT/Program Office international contract follow; (4) Completion of the Japan Atomic Energy Agency (JAEA)/Pacific Northwest National Laboratory (PNNL) contract for manufacture of reactor test components; (5) US/Japanese Departmental interactions and required Treaties and Agreements; and (6) Non-technical details--interactions and considerations.

  14. Naval Reactors Prime Contractor Team (NRPCT) Experiences and Considerations With Irradiation Test Performance in an International Environment

    International Nuclear Information System (INIS)

    This letter forwards a compilation of knowledge gained regarding international interactions and issues associated with Project Prometheus. The following topics are discussed herein: (1) Assessment of international fast reactor capability and availability; (2) Japanese fast reactor (JOYO) contracting strategy; (3) NRPCT/Program Office international contract follow; (4) Completion of the Japan Atomic Energy Agency (JAEA)/Pacific Northwest National Laboratory (PNNL) contract for manufacture of reactor test components; (5) US/Japanese Departmental interactions and required Treaties and Agreements; and (6) Non-technical details--interactions and considerations

  15. Testing and analyses of a high temperature duct for gas-cooled reactors

    International Nuclear Information System (INIS)

    A 0.6 scale model of a steam cycle gas-cooled reactor high temperature duct was tested in a closed loop helium facility. The object of the test series was to determine: 1) the thermal effects of gas permeation within the thermal barrier, 2) the plastic deformation of the metallic components, and 3) the thermal performance of the fibrous insulation. A series of tests was performed with thermal cyclings from 1000C to 7600C at 50 atmospheres until the system thermal performance had stabilized hence enabling predictions for the reactor life. Additional tests were made to assess permeation by deliberately simulating sealing weld failures thereby allowing gas flow by-pass within the primary thermal barrier. After 100 cycles the entire primary structure was found to have performed without structural failure. Due to high pressures exerted by the insulation on the cover plates and a design oversight, the thin seal sheets were unable to expand in an anticipated manner. Local buckling resulted. The insulation retained an acceptable degree of resiliency. However, some fiber damage was observed within both the high and low temperature insulation blankets. A thermal analysis was conducted to correlate the hot duct heat transfer results with those obtained from the analytical techniques used for the HTGR design using a computer thermal model representative of the duct and test setup. The thermal performance of the insulation, the temperature gradient through the structural components, the heating load to the cooling system and the permeation flow effect on heat transfer were verified. Exellent correlation between the experimental data and the analytical techniques were obtained

  16. Laser-Ultrasonic Testing and its Applications to Nuclear Reactor Internals

    Science.gov (United States)

    Ochiai, M.; Miura, T.; Yamamoto, S.

    2008-02-01

    A new nondestructive testing technique for surface-breaking microcracks in nuclear reactor components based on laser-ultrasonics is developed. Surface acoustic wave generated by Q-switched Nd:YAG laser and detected by frequency-stabilized long pulse laser coupled with confocal Fabry-Perot interferometer is used to detect and size the cracks. A frequency-domain signal processing is developed to realize accurate sizing capability. The laser-ultrasonic testing allows the detection of surface-breaking microcrack having a depth of less than 0.1 mm, and the measurement of their depth with an accuracy of 0.2 mm when the depth exceeds 0.5 mm including stress corrosion cracking. The laser-ultrasonic testing system combined with laser peening system, which is another laser-based maintenance technology to improve surface stress, for inner surface of small diameter tube is developed. The generation laser in the laser-ultrasonic testing system can be identical to the laser source of the laser peening. As an example operation of the system, the system firstly works as the laser-ultrasonic testing mode and tests the inner surface of the tube. If no cracks are detected, the system then changes its work mode to the laser peening and improves surface stress to prevent crack initiation. The first nuclear industrial application of the laser-ultrasonic testing system combined with the laser peening was completed in Japanese nuclear power plant in December 2004.

  17. Status Report on Efforts to Enhance Instrumentation to Support Advanced Test Reactor Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Rempe; D. L. Knudson; J. E. Daw

    2011-03-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors was completed. Based on this review, recommendations were made with respect to what instrumentation is needed at the ATR; and a strategy was developed for obtaining these sensors. In 2009, a report was issued documenting this program’s strategy and initial progress toward accomplishing program objectives. In 2009, a report was issued documenting this instrumentation development strategy and initial progress toward accomplishing instrumentation development program objectives. This document reports progress toward implementing this strategy in 2010.

  18. Irradiation tests on PHWR type fuel elements in TRIGA research reactor of INR Pitesti

    International Nuclear Information System (INIS)

    Nine PHWR type fuel elements with reduced length were irradiated in loop A of the TRIGA Research Reactor of INR Pitesti. The primary objective of the test was to determine the performance of nuclear fuel fabricated at INR Pitesti at high linear powers in pressurized water conditions. Six fuel elements were irradiated with a ramp power history, achieving a maximum power of 45 kW/m during pre-ramp and of 64 kW/m in the ramp. The maximum discharge burnup was of 216 MWh/kgU. Another three fuel elements with reduced length were irradiated with declining power history. At the beginning of irradiation the fuel elements achieved a maximum linear power of 66 kW/m. The maximum fuel power was about 1.3 times the maximum expected in PHWR. The maximum discharge burnup was 205 MWh/kgU. The elements were destructively examined in the hot cells of INR Pitesti. Temperature-sensitive parameters such as UO2 grain growth, fission-gas release and sheath deformations were examined. The tests proved the feasibility of irradiating PHWR type fuel elements at linear powers up to 66 kW/m under pressurized water conditions and demonstrated the possibility of more flexible operation of this fuel in power reactors. This paper presents the results of the investigation. (orig.)

  19. Status Report on Efforts to Enhance Instrumentation to Support Advanced Test Reactor Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    J. Rempe; D. Knudson; J. Daw; T. Unruh; B. Chase; R. Schley; J. Palmer; K. Condie

    2014-01-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support the growth of nuclear science and technology in the United States (US). By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort at the Idaho National Laboratory (INL) is to design, develop, and deploy new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors was completed. Based on this initial review, recommendations were made with respect to what instrumentation is needed at the ATR, and a strategy was developed for obtaining these sensors. In 2009, a report was issued documenting this program’s strategy and initial progress toward accomplishing program objectives. Since 2009, annual reports have been issued to provide updates on the program strategy and the progress made on implementing the strategy. This report provides an update reflecting progress as of January 2014.

  20. Status Report on Efforts to Enhance Instrumentation to Support Advanced Test Reactor Irradiations

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors was completed. Based on this review, recommendations were made with respect to what instrumentation is needed at the ATR; and a strategy was developed for obtaining these sensors. In 2009, a report was issued documenting this program's strategy and initial progress toward accomplishing program objectives. In 2009, a report was issued documenting this instrumentation development strategy and initial progress toward accomplishing instrumentation development program objectives. This document reports progress toward implementing this strategy in 2010.

  1. Status of the RERTR (Reduced Enrichment Research and Test Reactor) Program

    Energy Technology Data Exchange (ETDEWEB)

    Travelli, A.

    1988-01-01

    The progress of the Reduced Enrichment Research and Test Reactor (RERTR) Program is described. After a brief summary of the results which the RERTR Program, in collaboration with its many international partners, had achieved by the end of 1987, the major events, findings and activities of 1988 are reviewed. The US Nuclear Regulatory Commission issued a formal and generic approval of the use of U3Si2-Al dispersion fuel in research and test reactors, with densities up to 4.8 g U/cmT. New significant findings from postirradiation examinations, from ion-beam irradiations, and from analytical modeling, have raised serious doubts about the potential of LEU U3Si-Al dispersion fuel for applications requiring very high uranium densities and high burnups (>6 g U/cmT, >50% burnup). As a result of these findings, the fuel development efforts have been redirected towards three new initiatives: (1) a systematic application of ion-beam irradiations to screen new materials; (2) application of Hot Isostatic Pressing (HIP) procedures to produce U3Si2-Al plates with high uranium densities and thin uniform cladding; and (3) application of HIP procedures to produce plates with U3Si wires imbedded in an aluminum matrix, achieving stability, high uranium density, and thin uniform cladding. The new fuel concepts hold the promise of extraordinary performance potential and require approximately five years to develop.

  2. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS; SEMIANNUAL

    International Nuclear Information System (INIS)

    The proposed research is directed at evaluating the effect of flame aerodynamics on NO(sub x) emissions from coal fired burners in a systematic manner. This fundamental research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO(sub x) burners to the kinetic emissions limit (below 0.2 lb./MMBTU). Experimental studies include both cold and hot flow evaluations of the following parameters: flame holder geometry, secondary air swirl, primary and secondary inlet air velocity, coal concentration in the primary air and coal particle size distribution. Hot flow experiments will also evaluate the effect of wall temperature on burner performance. Cold flow studies will be conducted with surrogate particles as well as pulverized coal. The cold flow furnace will be similar in size and geometry to the hot-flow furnace but will be designed to use a laser Doppler velocimeter/phase Doppler particle size analyzer. The results of these studies will be used to predict particle trajectories in the hot-flow furnace as well as to estimate the effect of flame holder geometry on furnace flow field. The hot-flow experiments will be conducted in a novel near-flame down-flow pulverized coal furnace. The furnace will be equipped with externally heated walls. Both reactors will be sized to minimize wall effects on particle flow fields. The cold-flow results will be compared with Fluent computation fluid dynamics model predictions and correlated with the hot-flow results with the overall goal of providing insight for novel low NO(sub x) burner geometry's

  3. An Advanced Option for Sodium Cooled TRU Burner Loaded with Uranium-Free Fuels

    Energy Technology Data Exchange (ETDEWEB)

    You, WuSeung; Hong, Ser Gi [Kyung Hee University, Yongin (Korea, Republic of)

    2015-05-15

    The sodium cooled fast reactors of this kind that are called burners are designed to have low conversion ratio by reducing fuel volume fraction or reducing neutron leakage or increasing neutron absorption. However, the typical SFR burners have a limited ability of TRU burning rate due to the fact that they use metallic or oxide fuels containing fertile nuclides such as {sup 238}U and {sup 232}Th and these fertile nuclides generate fissile nuclides through neutron capture even if they are designed to have low conversion ratio (e.g., 0.6). To further enhance the TRU burning rate, the removal of the fertile nuclides from the initial fuels is required and it will accelerate the reduction of TRUs that are accumulated in storages of LWR spent fuels. However, it has been well-known 4 that the removals of the fertile nuclides from the fuel degrade the inherent safety of the SFR burner cores through the significant decrease of the fuel Doppler effect, the increase of sodium void reactivity worth, and reduction of delayed neutron fraction. In this work, new option for the sodium cooled fast TRU burner cores loaded with fertile-free metallic fuels was proposed and the new cores were designed by using the suggested option. The cores were designed to enhance the inherent safety characteristics by using axially central absorber region and 6 or 12 ZrH1.8 moderator rods per fuel assembly. For each option, we considered two different types of fertile-free ternary metallic fuel (i.e., TRU-W-10Zr and TRU-Ni-10Zr). Also, we performed the BOR (Balance of Reactivity) analyses to show the self-controllability under ATWS as a measure of inherent safety. The core performance analysis showed that the new cores using axially central absorber region substantially improve the core performance parameters such as burnup reactivity swing and sodium void reactivity worth.

  4. Fuzzy-PID control algorithm of a loop reactor for microbial corrosion testing

    Directory of Open Access Journals (Sweden)

    D. Rangel-Miranda

    2015-06-01

    Full Text Available The thermal control of loop reactor utilized to run hydrodynamic tests of microbical corrosion, where full control of the temperature is crucial, is presented. Since the accuracy of the temperature is critical along the pipe trajectory for the microbial culture, it must be controlled with an accuracy of ± 0.5°C, which is achieved by an implemented fuzzy-PID (Proportional Integral and Derivative control algorithm, capable to provide the accuracy at the temperature range required. The system counts with an especially-designed software to program the desired temperature. Several tests were carried out at different temperatures and water volumes to characterize the rising time and thermal inertia presented by the system. As a result, the performance and power consumption were notability improved.

  5. An inspection standard of fuel for the high temperature engineering test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Fumiaki; Shiozawa, Shusaku; Sawa, Kazuhiro; Sato, Sadao (Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment); Hayashi, Kimio; Fukuda, Kosaku; Kaneko, Mitsunobu; Sato, Tsutomu.

    1992-06-01

    The High Temperature Engineering Test Reactor (HTTR) uses the fuel comprising coated fuel particles. A general inspection standard for the coated particle fuel, however, has not been established in Japan. Therefore, it has been necessary to prescribe the inspection standard of the fuel for HTTR. Under these circumstances, a fuel inspection standard of HTTR has been established under cooperation of fuel specialists both inside and outside of JAERI on referring to the inspection methods adopted in USA, Germany and Japan for HTGR fuels. Since a large number of coated fuel particle samples is needed to inspect the HTTR fuel, the sampling inspection standard has also been established considering the inspection efficiency. This report presents the inspection and the sampling standards together with an explanation of these standards. These standards will be applied to the HTTR fuel acceptance tests. (author).

  6. An inspection standard of fuel for the high temperature engineering test reactor

    International Nuclear Information System (INIS)

    The High Temperature Engineering Test Reactor (HTTR) uses the fuel comprising coated fuel particles. A general inspection standard for the coated particle fuel, however, has not been established in Japan. Therefore, it has been necessary to prescribe the inspection standard of the fuel for HTTR. Under these circumstances, a fuel inspection standard of HTTR has been established under cooperation of fuel specialists both inside and outside of JAERI on referring to the inspection methods adopted in USA, Germany and Japan for HTGR fuels. Since a large number of coated fuel particle samples is needed to inspect the HTTR fuel, the sampling inspection standard has also been established considering the inspection efficiency. This report presents the inspection and the sampling standards together with an explanation of these standards. These standards will be applied to the HTTR fuel acceptance tests. (author)

  7. Design, Test and Demonstration of Saturable Reactor High-Temperature Superconductor Fault Current Limiters

    Energy Technology Data Exchange (ETDEWEB)

    Darmann, Frank [Zenergy Power, Inc., Burlingame, CA (United States); Lombaerde, Robert [Zenergy Power, Inc., Burlingame, CA (United States); Moriconi, Franco [Zenergy Power, Inc., Burlingame, CA (United States); Nelson, Albert [Zenergy Power, Inc., Burlingame, CA (United States)

    2012-03-01

    Zenergy Power has successfully designed, built, tested, and installed in the US electrical grid a saturable reactor Fault Current Limiter. Beginning in 2007, first as SC Power Systems and from 2008 as Zenergy Power, Inc., ZP used DOE matching grant and ARRA funds to help refine the design of the saturated reactor fault current limiter. ZP ultimately perfected the design of the saturated reactor FCL to the point that ZP could reliably design a suitable FCL for most utility applications. Beginning with a very basic FCL design using 1G HTS for a coil housed in a LN2 cryostat for the DC bias magnet, the technology progressed to a commercial system that was offered for sale internationally. Substantial progress was made in two areas. First, the cryogenics cooling system progressed from a sub-cooled liquid nitrogen container housing the HTS coils to cryostats utilizing dry conduction cooling and reaching temperatures down to less than 20 degrees K. Large, round cryostats with warm bore diameters of 1.7 meters enabled the design of large tanks to hold the AC components. Second, the design of the AC part of the FCL was refined from a six legged spider design to a more compact and lighter design with better fault current limiting capability. Further refinement of the flux path and core shape led to an efficient saturated reactor design requiring less Ampere-turns to saturate the core. In conclusion, the development of the saturable reactor FCL led to a more efficient design not requiring HTS magnets and their associated peripheral equipment, which yielded a more economical product in line with the electric utility industry expectations. The original goal for the DOE funding of the ZP project Design, Test and Demonstration of Saturable Reactor High-Temperature Superconductor Fault Current Limiters was to stimulate the HTS wire industry with, first 1G, then 2G, HTS wire applications. Over the approximately 5 years of ZP's product development program, the amount of HTS

  8. Energy saving by regenerative burner; Rigene burner ni yoru sho energy

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, S. [Chugai Ro Co. Ltd., Osaka (Japan)

    2000-03-01

    Described are the characteristics of a regenerative burner (RB) and some important respects to consider before its employment. In this burner system, a set of two burners are operated, with one burning and the other sucking gas out of the furnace. The roles are switched over between the two burners every minute or every tens of seconds, and the repetition of heat accumulation and radiation by the heat accumulating bodies in the heat accumulators results in an air temperature which is near the gas temperature in the furnace. An optimum switchover time is determined by the make, or the specific heat and weight, of the heat accumulating bodies. The configuration may be effectively employed in the modification of existing furnaces (1) when treatment capacity improvement is required or (2) when sufficient waste heat recovery is impossible. In the case of (1), an increase in combustion will be mandatory for capacity enhancement. Refurbishment to increase combustion, however, will not be required when RB is installed, and this enables capacity improvement while maintaining or enhancing energy saving performance at a low cost. In the case of (2), at a steel-making plant where recovery of waste heat is difficult because a ladle preheater or tandish preheater has no flue, effective heat recovery will be realized if RB is installed. (NEDO)

  9. Standard Test Method for Application and Analysis of Helium Accumulation Fluence Monitors for Reactor Vessel Surveillance, E706 (IIIC)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This test method describes the concept and use of helium accumulation for neutron fluence dosimetry for reactor vessel surveillance. Although this test method is directed toward applications in vessel surveillance, the concepts and techniques are equally applicable to the general field of neutron dosimetry. The various applications of this test method for reactor vessel surveillance are as follows: 1.1.1 Helium accumulation fluence monitor (HAFM) capsules, 1.1.2 Unencapsulated, or cadmium or gadolinium covered, radiometric monitors (RM) and HAFM wires for helium analysis, 1.1.3 Charpy test block samples for helium accumulation, and 1.1.4 Reactor vessel (RV) wall samples for helium accumulation. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  10. Residual radioactivity guidelines for the heavy water components test reactor at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Owen, M.B. Smith, R.; McNeil, J.

    1997-04-01

    Guidelines were developed for acceptable levels of residual radioactivity in the Heavy Water Components Test Reactor (HWCTR) facility at the conclusion of its decommissioning. Using source terms developed from data generated in a detailed characterization study, the RESRAD and RASRAD-BUILD computer codes were used to calculate derived concentration guideline levels (DCGLs) for the radionuclides that will remain in the facility. The calculated DCGLs, when compared to existing concentrations of radionuclides measured during a 1996 characterization program, indicate that no decontamination of concrete surfaces will be necessary. Also, based on the results of the calculations, activated concrete in the reactor biological shield does not have to be removed, and imbedded radioactive piping in the facility can remain in place. Viewed in another way, the results of the calculations showed that the present inventory of residual radioactivity in the facility (not including that associated with the reactor vessel and steam generators) would produce less than one millirem per year above background to a hypothetical individual on the property. The residual radioactivity is estimated to be approximately 0.04 percent of the total inventory in the facility as of March, 1997. According to the results, the only radionuclides that would produce greater than 0.0.1-millirem per year are Am-241 (0.013 mrem/yr at 300 years), C-14 (0.022 mrem/yr at 1000 years) and U-238 (0.034 mrem/yr at 6000 years). Human exposure would occur only through the groundwater pathways, that is, from water drawn from, a well on the property. The maximum exposure would be approximately one percent of the 4 millirem per year ground water exposure limit established by the U.S. Environmental Protection Agency. 11 refs., 13 figs., 15 tabs.

  11. Kinetic parameters of a material test research reactor fueled with various low enriched uranium dispersion fuels

    International Nuclear Information System (INIS)

    The effects of using different low enriched uranium fuels, having same uranium density, on the kinetic parameters of a material test research reactor were studied. For this purpose, the original aluminide fuel (UAlx-Al) containing 4.40 gU/cm3 of an MTR was replaced with silicide (U3Si-Al and U3Si2-Al) and oxide (U3O8-Al) dispersion fuels having the same uranium density as of the original fuel. Simulations were carried out to calculate prompt neutron generation time, effective delayed-neutron fraction, core excess reactivity and neutron flux spectrum. Nuclear reactor analysis codes including WIMS-D4 and CITATION were used to carry out these calculations. It was observed that both the silicide fuels had the same prompt neutron generation time 0.02% more than that of the original aluminide fuel, while the oxide fuel had a prompt neutron generation time 0.05% less than that of the original aluminide fuel. The effective delayed-neutron fraction decreased for all the fuels; the decrease was maximum at 0.06% for U3Si2-Al followed by 0.03% for U3Si-Al, and 0.01% for U3O8-Al fuel. The U3O8-Al fueled reactor gave the maximum ρexcess at BOL which was 21.67% more than the original fuel followed by U3Si-Al which was 2.55% more, while that of U3Si2-Al was 2.50% more than the original UAlx-Al fuel. The neutron flux of all the fuels was more thermalized, than in the original fuel, in the active fuel region of the core. The thermalization was maximum for U3O8-Al followed by U3Si-Al and then U3Si2-Al fuel.

  12. Melt-dilute treatment of spent nuclear fuel assemblies from research and test reactors

    International Nuclear Information System (INIS)

    The Savannah River Site is the U.S. Department of Energy's preferred site for return and treatment of all aluminum-base, spent, research and test reactor fuel assemblies. There are over 20,000 spent fuel assemblies now stored in different countries around the world, and by 2035 many will be returned to SRS for treatment and interim storage, in preparation for disposal in a geologic repository. The early fuel assemblies for research and test reactors were made using aluminum clad plates that were fabricated from highly enriched (93%) uranium-aluminum alloy. Later, powder metallurgical fabrication methods were developed to produce plate fuels with higher uranium contents using either uranium aluminide, uranium oxide or uranium silicide powders mixed with aluminum. Silicide fuel elements generally are fabricated with low enriched uranium containing less than 20% 2'35U. Following irradiation, the spent fuel assemblies are discharged from the reactor, and most assemblies have been stored in underwater pools, some since the early 1950's. A number of disposition options including direct/co-disposal and melt-dilute treatment were evaluated recently. The melt-dilute technique was identified as the preferred method for treatment of aluminum-base spent fuel. The technique consists of melting the spent fuel assembly and adding depleted uranium to the melt for isotopic dilution to 2'35U. Aluminum is added, if necessary, to produce a predetermined alloy composition. Additionally, neutron poisons may be added to the melt where they form solid solution phases or compounds with uranium and/or aluminum. Lowering the enrichment reduces both criticality and proliferation concerns for storage. Consolidation by melting also reduces the number of storage canisters. Laboratory and small-scale process demonstration using irradiated fuel is underway. Tests of the off gas absorption system have been initiated using both surrogate and irradiated RERTR mini fuel plates. An experimental L

  13. In-situ Creep Testing Capability Development for Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    B. G. Kim; J. L. Rempe; D. L. Knudson; K. G. Condie; B. H. Sencer

    2010-08-01

    Creep is the slow, time-dependent strain that occurs in a material under a constant strees (or load) at high temperature. High temperature is a relative term, dependent on the materials being evaluated. A typical creep curve is shown in Figure 1-1. In a creep test, a constant load is applied to a tensile specimen maintained at a constant temperature. Strain is then measured over a period of time. The slope of the curve, identified in the figure below, is the strain rate of the test during Stage II or the creep rate of the material. Primary creep, Stage I, is a period of decreasing creep rate due to work hardening of the material. Primary creep is a period of primarily transient creep. During this period, deformation takes place and the resistance to creep increases until Stage II, Secondary creep. Stage II creep is a period with a roughly constant creep rate. Stage II is referred to as steady-state creep because a balance is achieved between the work hardening and annealing (thermal softening) processes. Tertiary creep, Stage III, occurs when there is a reduction in cross sectional area due to necking or effective reduction in area due to internal void formation; that is, the creep rate increases due to necking of the specimen and the associated increase in local stress.

  14. Furnaces with multiple flameless combustion burners

    NARCIS (Netherlands)

    Danon, B.

    2011-01-01

    In this thesis three different combustion systems, equipped with either a single or multiple flameless combustion burner(s), are discussed. All these setups were investigated both experimentally and numerically, i.e., using Computational Fluid Dynamics (CFD) simulations. Flameless combustion is a com

  15. Proceedings of the international meeting on research and test reactor core conversions from HEU to LEU fuels

    International Nuclear Information System (INIS)

    Separate abstracts have been prepared for each paper presented in the following areas of interest: (1) fuel development; (2) post-irradiation examinations; (3) reprocessing; (4) thermite reaction; (5) fuel fabrication; (6) element tests; (7) core tests; (8) criticals; (9) shipping; and (10) reactors and methods

  16. Preliminary Analysis of the Transient Reactor Test Facility (TREAT) with PROTEUS

    Energy Technology Data Exchange (ETDEWEB)

    Connaway, H. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Lee, C. H. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-11-30

    The neutron transport code PROTEUS has been used to perform preliminary simulations of the Transient Reactor Test Facility (TREAT). TREAT is an experimental reactor designed for the testing of nuclear fuels and other materials under transient conditions. It operated from 1959 to 1994, when it was placed on non-operational standby. The restart of TREAT to support the U.S. Department of Energy’s resumption of transient testing is currently underway. Both single assembly and assembly-homogenized full core models have been evaluated. Simulations were performed using a historic set of WIMS-ANL-generated cross-sections as well as a new set of Serpent-generated cross-sections. To support this work, further analyses were also performed using additional codes in order to investigate particular aspects of TREAT modeling. DIF3D and the Monte-Carlo codes MCNP and Serpent were utilized in these studies. MCNP and Serpent were used to evaluate the effect of geometry homogenization on the simulation results and to support code-to-code comparisons. New meshes for the PROTEUS simulations were created using the CUBIT toolkit, with additional meshes generated via conversion of selected DIF3D models to support code-to-code verifications. All current analyses have focused on code-to-code verifications, with additional verification and validation studies planned. The analysis of TREAT with PROTEUS-SN is an ongoing project. This report documents the studies that have been performed thus far, and highlights key challenges to address in future work.

  17. Conceptual design of the integral test loop (I): Reactor coolant system and secondary system

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chul Hwa; Lee, Seong Je; Kwon, Tae Soon; Moon, Sang Ki [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    This report describes the conceptual design of the primary coolant system and the secondary system of the Integral Test Loop (ITL) which simulates overall thermal hydraulic phenomena of the primary system of a nuclear power plant during postulated accidents or transients. The design basis for the primary coolant system and secondary system is as follows ; Reference plant: Korean Standard Nuclear Plant (KSNP), Height ratio : 1/1, Volume ratio : 1/200, Power scale : Max. 15% of the scaled nominal power, Temperature, Pressure : Real plant conditions. The primary coolant system includes a reactor vessel, which contains a core simulator, a steam generator, a reactor coolant pump simulator, a pressurizer and piping, which consists of two hot legs, four cold legs and four intermediate legs. The secondary system consists of s steam discharge system, a feedwater supply system and a steam condensing system. This conceptual design report describes general configuration of the reference plant, and major function and operation of each system of the plant. Also described is the design philosophy of each component and system of the ITL, and specified are the design criteria and technical specifications of each component and system of the ITL in the report. 17 refs., 43 figs., 51 tabs. (Author)

  18. Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Rahmat Aryaeinejad; Douglas S. Crawford; Mark D. DeHart; George W. Griffith; D. Scott Lucas; Joseph W. Nielsen; David W. Nigg; James R. Parry; Jorge Navarro

    2010-09-01

    Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance and, to some extent, experiment management are obsolete, inconsistent with the state of modern nuclear engineering practice, and are becoming increasingly difficult to properly verify and validate (V&V). Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In 2009 the Idaho National Laboratory (INL) initiated a focused effort to address this situation through the introduction of modern high-fidelity computational software and protocols, with appropriate V&V, within the next 3-4 years via the ATR Core Modeling and Simulation and V&V Update (or “Core Modeling Update”) Project. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF).

  19. Measurement of photon flux with a miniature gas ionization chamber in a Material Testing Reactor

    Science.gov (United States)

    Fourmentel, D.; Filliatre, P.; Villard, J. F.; Lyoussi, A.; Reynard-Carette, C.; Carcreff, H.

    2013-10-01

    Nuclear heating measurements in Material Testing Reactors (MTR) are crucial for the design of the experimental devices and the prediction of the temperature of the hosted samples. Nuclear heating in MTR materials (except fuel) is mainly due to the energy deposition by the photon flux. Therefore, the photon flux is a key input parameter for the computer codes which simulate nuclear heating and temperature reached by samples/devices under irradiation. In the Jules Horowitz MTR under construction at the CEA Cadarache, the maximal expected nuclear heating levels will be about 15 to 18 W g-1 and it will be necessary to assess this parameter with the best accuracy. An experiment was performed at the OSIRIS reactor to combine neutron flux, photon flux and nuclear heating measurements to improve the knowledge of the nuclear heating in MTR. There are few appropriate sensors for selective measurement of the photon flux in MTR even if studies and developments are ongoing. An experiment, called CARMEN-1, was conducted at the OSIRIS MTR and we used in particular a gas ionization chamber based on miniature fission chamber design to measure the photon flux. In this paper, we detail Monte-Carlo simulations to analyze the photon fluxes with ionization chamber measurements and we compare the photon flux calculations to the nuclear heating measurements. These results show a good accordance between photon flux measurements and nuclear heating measurement and allow improving the knowledge of these parameters.

  20. Measurement of photon flux with a miniature gas ionization chamber in a Material Testing Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fourmentel, D., E-mail: damien.fourmentel@cea.fr [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Filliatre, P.; Villard, J.F.; Lyoussi, A. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Reynard-Carette, C. [Aix-Marseille Université, LISA EA 4672, cedex 20, Marseille 13397 (France); Carcreff, H. [CEA, DEN, DRSN, Saclay, F-91191 Gif-sur-Yvette (France)

    2013-10-01

    Nuclear heating measurements in Material Testing Reactors (MTR) are crucial for the design of the experimental devices and the prediction of the temperature of the hosted samples. Nuclear heating in MTR materials (except fuel) is mainly due to the energy deposition by the photon flux. Therefore, the photon flux is a key input parameter for the computer codes which simulate nuclear heating and temperature reached by samples/devices under irradiation. In the Jules Horowitz MTR under construction at the CEA Cadarache, the maximal expected nuclear heating levels will be about 15 to 18 W g{sup −1} and it will be necessary to assess this parameter with the best accuracy. An experiment was performed at the OSIRIS reactor to combine neutron flux, photon flux and nuclear heating measurements to improve the knowledge of the nuclear heating in MTR. There are few appropriate sensors for selective measurement of the photon flux in MTR even if studies and developments are ongoing. An experiment, called CARMEN-1, was conducted at the OSIRIS MTR and we used in particular a gas ionization chamber based on miniature fission chamber design to measure the photon flux. In this paper, we detail Monte-Carlo simulations to analyze the photon fluxes with ionization chamber measurements and we compare the photon flux calculations to the nuclear heating measurements. These results show a good accordance between photon flux measurements and nuclear heating measurement and allow improving the knowledge of these parameters.