WorldWideScience

Sample records for burner reactor abr

  1. Assessment of Startup Fuel Options for the GNEP Advanced Burner Reactor (ABR)

    Energy Technology Data Exchange (ETDEWEB)

    Jon Carmack (062056); Kemal O. Pasamehmetoglu (103171); David Alberstein

    2008-02-01

    The Global Nuclear Energy Program (GNEP) includes a program element for the development and construction of an advanced sodium cooled fast reactor to demonstrate the burning (transmutation) of significant quantities of minor actinides obtained from a separations process and fabricated into a transuranic bearing fuel assembly. To demonstrate and qualify transuranic (TRU) fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype is needed. The ABR would necessarily be started up using conventional metal alloy or oxide (U or U, Pu) fuel. Startup fuel is needed for the ABR for the first 2 to 4 core loads of fuel in the ABR. Following start up, a series of advanced TRU bearing fuel assemblies will be irradiated in qualification lead test assemblies in the ABR. There are multiple options for this startup fuel. This report provides a description of the possible startup fuel options as well as possible fabrication alternatives available to the program in the current domestic and international facilities and infrastructure.

  2. Advanced burner test reactor preconceptual design report.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an

  3. Advanced Burner Reactor Preliminary NEPA Data Study

    International Nuclear Information System (INIS)

    The Global Nuclear Energy Partnership (GNEP) is a new nuclear fuel cycle paradigm with the goals of expanding the use of nuclear power both domestically and internationally, addressing nuclear waste management concerns, and promoting nonproliferation. A key aspect of this program is fast reactor transmutation, in which transuranics recovered from light water reactor spent fuel are to be recycled to create fast reactor transmutation fuels. The benefits of these fuels are to be demonstrated in an Advanced Burner Reactor (ABR), which will provide a representative environment for recycle fuel testing, safety testing, and modern fast reactor design and safeguard features. Because the GNEP programs will require facilities which may have an impact upon the environment within the meaning of the National Environmental Policy Act of 1969 (NEPA), preparation of a Programmatic Environmental Impact Statement (PEIS) for GNEP is being undertaken by Tetra Tech, Inc. The PEIS will include a section on the ABR. In support of the PEIS, the Nuclear Engineering Division of Argonne National Laboratory has been asked to provide a description of the ABR alternative, including graphics, plus estimates of construction and operations data for an ABR plant. The compilation of this information is presented in the remainder of this report. Currently, DOE has started the process of engaging industry on the design of an Advanced Burner Reactor. Therefore, there is no specific, current, vendor-produced ABR design that could be used for this PEIS datacall package. In addition, candidate sites for the ABR vary widely as to available water, geography, etc. Therefore, ANL has based its estimates for construction and operations data largely on generalization of available information from existing plants and from the environmental report assembled for the Clinch River Breeder Reactor Plant (CRBRP) design [CRBRP, 1977]. The CRBRP environmental report was chosen as a resource because it thoroughly

  4. Advanced Burner Reactor Preliminary NEPA Data Study.

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, L. L.; Cahalan, J. E.; Deitrich, L. W.; Fanning, T. H.; Grandy, C.; Kellogg, R.; Kim, T. K.; Yang, W. S.; Nuclear Engineering Division

    2007-10-15

    The Global Nuclear Energy Partnership (GNEP) is a new nuclear fuel cycle paradigm with the goals of expanding the use of nuclear power both domestically and internationally, addressing nuclear waste management concerns, and promoting nonproliferation. A key aspect of this program is fast reactor transmutation, in which transuranics recovered from light water reactor spent fuel are to be recycled to create fast reactor transmutation fuels. The benefits of these fuels are to be demonstrated in an Advanced Burner Reactor (ABR), which will provide a representative environment for recycle fuel testing, safety testing, and modern fast reactor design and safeguard features. Because the GNEP programs will require facilities which may have an impact upon the environment within the meaning of the National Environmental Policy Act of 1969 (NEPA), preparation of a Programmatic Environmental Impact Statement (PEIS) for GNEP is being undertaken by Tetra Tech, Inc. The PEIS will include a section on the ABR. In support of the PEIS, the Nuclear Engineering Division of Argonne National Laboratory has been asked to provide a description of the ABR alternative, including graphics, plus estimates of construction and operations data for an ABR plant. The compilation of this information is presented in the remainder of this report. Currently, DOE has started the process of engaging industry on the design of an Advanced Burner Reactor. Therefore, there is no specific, current, vendor-produced ABR design that could be used for this PEIS datacall package. In addition, candidate sites for the ABR vary widely as to available water, geography, etc. Therefore, ANL has based its estimates for construction and operations data largely on generalization of available information from existing plants and from the environmental report assembled for the Clinch River Breeder Reactor Plant (CRBRP) design [CRBRP, 1977]. The CRBRP environmental report was chosen as a resource because it thoroughly

  5. High conversion burner type reactor

    International Nuclear Information System (INIS)

    Purpose: To simply and easily dismantle and reassemble densified fuel assemblies taken out of a high conversion ratio area thereby improve the neutron and fuel economy. Constitution: The burner portion for the purpose of fuel combustion is divided into a first burner region in adjacent with the high conversion ratio area at the center of the reactor core, and a second burner region formed to the outer circumference thereof and two types of fuels are charged therein. Densified fuel assemblies charged in the high conversion ratio area are separatably formed as fuel assemblies for use in the two types of burners. In this way, dense fuel assembly is separated into two types of fuel assemblies for use in burner of different number and arranging density of fuel elements which can be directly charged to the burner portion and facilitate the dismantling and reassembling of the fuel assemblies. Further, since the two types of fuel assemblies are charged in the burner portion, utilization factor for the neutron fuels can be improved. (Kamimura, M.)

  6. Thermal-hydraulics of actinide burner reactors

    International Nuclear Information System (INIS)

    As a part of conceptual study of actinide burner reactors, core thermal-hydraulic analyses were conducted for two types of reactor concepts, namely (1) sodium-cooled actinide alloy fuel reactor, and (2) helium-cooled particle-bed reactor, to examine the feasibility of high power-density cores for efficient transmutation of actinides within the maximum allowable temperature limits of fuel and cladding. In addition, calculations were made on cooling of actinide fuel assembly. (author)

  7. The anaerobic baffled reactor (ABR) treating communal wastewater under mesophilic conditions: a review.

    Science.gov (United States)

    Reynaud, N; Buckley, C A

    2016-01-01

    A review concerning the anaerobic baffled reactor (ABR) treating communal wastewater under mesophilic conditions is presented. Existing studies indicate strong resilience of the reactor towards loading variations and shock-loads. The compartmentalisation of the ABR is a strongly stabilising factor with feed fluctuations being evened out across reactor chambers. Significant chemical oxygen demand (COD) reduction occurs almost exclusively in the first three chambers. The hydraulic rather than the organic loading rate is treatment limiting. Laboratory-scale studies show high treatment efficiencies of above 80% COD removal. It was found that most laboratory-scale studies do not factor in important aspects of field operation, such as diurnal fluctuations of feed characteristics, adequate start-up periods and periods of constant loading and optimised chamber outlet design, and never studied the effect of loading on sludge digestion. Performance data on full-scale ABR implementations, however, are extremely scarce, and existing studies are without exception affected by site-specific treatment-limiting factors hindering the extrapolation of generally valid conclusions. In view of a large-scale roll-out, communal ABRs are not sufficiently understood. Current challenges concerning the optimisation of reactor design require numerous well-monitored long-term full-scale reactor investigations. Existing ABR investigations yield encouraging results, supporting that the ABR may be one of the solutions answering the global call for low-maintenance, robust treatment systems. PMID:26877027

  8. Carbide and nitride fuels for advanced burner reactor

    International Nuclear Information System (INIS)

    Full text: Under the U.S. fast reactor program, reference and alternative 1000 MWth Advanced Burner Reactor (ABR) core concepts were developed using ternary metallic (U-TRU-Zr) and mixed oxide (UO2+TRUO2) fuels. Recently, mixed carbide and nitride fuels have been considered as fast reactor fuels on the basis of their high density, compatibility with coolant, high melting temperature, and excellent thermal conductivity although they are ceramic fuel like a mixed oxide fuel. Thus, the performance of the ABR core loaded with carbide and nitride fuels was evaluated in this study with an expectation that the carbide and nitride fuels can mitigate disadvantages of both metallic and oxide fuels in the ABR: favorable passive safety features in a severe accident compared to the oxide core, a higher discharge burnup compared to the metallic core, and a potential to increase thermal efficiency. All calculations performed in this study were focused on the neutronics characteristics, although the fabrication and irradiation experiences for carbide and nitride fuels are limited and some problems were observed in the reprocessing and irradiation of these fuels. The mixed monocarbide and mixed mononitride fuels were selected as the alternative fuel forms and the ABR core concepts with these fuels were developed based on the reference 1000 MWth ABR core concepts. For consistency, the potential design goals used in the reference ABR core concepts were also employed in this study: a 1000 MWth power rating, medium TRU conversion ratio of ∼0.75, a compact core, one-year operational cycle length at least with a capacity factor of 90%, sufficient shutdown margin with a limited maximum single control assembly fault, and possible use of either metallic or any ceramic fuels in the same core layout. The core layout and outer assembly dimensions of the reference 1000 MWth ABR core were kept, but the intra assembly design parameters were varied to maximize the discharge burnup within the

  9. A blueprint for GNEP advanced burner reactor startup fuel fabrication facility

    International Nuclear Information System (INIS)

    Research highlights: → This article discusses use of WG-plutonium as the startup fuel for Advanced Burner Reactor. → The presence of gallium in WG fuel may compromise the fuel integrity. → There is no facility exists to remove gallium from plutonium except at laboratory scale. → This article discusses the processes and issues associated with the gallium removal. → The article provides realistic scenario to all stack-holders involved in designing and operating ABR. - Abstract: The purpose of this article is to identify the requirements and issues associated with design of GNEP Advanced Burner Reactor Fuel Facility. The report was prepared in support of providing data for preparation of a NEPA Environmental Impact Statement in support the U.S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives was to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu)-239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept was proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR was proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu was assumed to be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) was being considered for fabrication of WG Pu fuel for the ABR. It was estimated that the facility will provide the

  10. Ball plasma dynamics for FBX BURNER reactor

    International Nuclear Information System (INIS)

    The authors have been conducting fundamental experiments on the moving plasma balls in the major axis direction. This has a fundamental importance for the quasi-steady fusion reactor scheme FBX BURNER. This configuration is the descendants of Spheromak type nuclear fusion scheme but with long toroidal field coils. The main issues have been focused onto the dynamic stability of the moving plasma balls. The second issue is the collision between two successive plasma balls as shown. This shows a basic result from an optical measurement. The comparison with magnetic measurements shows peculiar but interesting features of the system. The dimension of the plasma injector is 2 m in length as a whole. It is in a coaxial configuration. The external electrode is 150 mm in inner diameter and the inner electrode is 50 mm in diameter. This is attached to a 1 m insulation reservoir with same inner diameter. An axial magnetic field up to 0.1 Tesla is applied on the discharge with a current of up to 10 kA in few ms. The authors show their experimental and numerical simulation results on these problems

  11. Linear accelerator for burner-reactor

    International Nuclear Information System (INIS)

    Future development of nuclear power engineering depends on the successful solution of two key problems of safety and utilization of high level radioactive wastes (HLRW) of atomic power plants (APP). Modern methods of HLRW treatment involve solidification, preliminary storing for a period of 30-50 years necessary for the decay of long-living nuclides and final burial in geological formations several hundred meters below the ground surface. The depth burial of the radioactive wastes requires complicated under ground constructions. It's very expensive and doesn't meet modern ecological requirements. Alternative modern and more reasonable methods of APP HLRW treatment are under consideration now. One of the methods involves separation of APP waste radionuclides for use in economy with subsequent transmutation of the long-living isotopes into the short-living ones by high-intensity neutron fluxes generated by proton accelerators. The installation intended for the long-living radionuclides transmutation into the short-living ones is called burner-reactor. It can be based on the continuous regime proton accelerator with 1.5 GeV energy, 0.3 A current and beam mean power of 450 MW. The preferable type of the proton accelerator with the aforementioned parameters is the linear accelerator

  12. RESEARCH ADVANCES IN ANAEROBIC BAFFLED REACTOR (ABR)%折流式厌氧反应器(ABR)的研究进展

    Institute of Scientific and Technical Information of China (English)

    王建龙; 韩英健; 钱易

    2000-01-01

    Anaerobic baffled reactor (ABR) is a new high efficient anaerobic treatmen t system. ABR has some advantages over other anaerobic reactors, such as sim ple design,inexpensive to construct,stable to hydraulic and organic shock load ings, and high treatment efficiency. Different types of ABR are described, the study progress and application situation are summarized, and the future development is prospected in this paper. Fig 2, Tab 2, Ref 45

  13. Carbide and Nitride Fuels for Advanced Burner Reactor

    International Nuclear Information System (INIS)

    The impacts of the mixed carbide and nitride fuels on the core performances and passive safety features of TRU burner were assessed and comapred with the metallic and oxide fuels. Targeting the potential design goals adopted in the Advanced Burner Reactor core concepts, the alternative TRU burner concepts were developed by loading carbide and nitride fuels. The neutron spectrum is softer than that of the metal core, but harder than that of the oxide core, and the core performance parameters such as fuel residence time, discharge burnup, flux level, etc are generally between the values of the metal and oxide cores. The margin to fuel melt was significantly increased because of the high thermal conductivity and high melting temperature, and hence there is an additional room to improve the thermal efficiency by increasing the operating temperature. The changed fuel composition affected the kinetics parameters and reactivity feedback coefficients, but the variations were minimal. The reduced core height decreases the sodium void worth, and the high thermal conductivity decreases the fuel temperature and Doppler constant. As a result, both carbide and nitride cores have favorable passive safety features without additional design fixes that are required in the oxide core concepts. (author)

  14. Investigation of CANDU reactors as a thorium burner

    International Nuclear Information System (INIS)

    Large quantities of plutonium have been accumulated in the nuclear waste of civilian LWRs and CANDU reactors. Reactor grade plutonium can be used as a booster fissile fuel material in the form of mixed ThO2/PuO2 fuel in a CANDU fuel bundle in order to assure reactor criticality. The paper investigates the prospects of exploiting the rich world thorium reserves in CANDU reactors. Two different fuel compositions have been selected for investigations: (1) 96% thoria (ThO2) + 4% PuO2 and (2) 91% ThO2 + 5% UO2 + 4% PuO2. The latter is used for the purpose of denaturing the new 233U fuel with 238U. The behavior of the reactor criticality k ∞ and the burn-up values of the reactor have been pursued by full power operation for >∼8 years. The reactor starts with k ∞ = ∼1.39 and decreases asymptotically to values of k ∞ > 1.06, which is still tolerable and useable in a CANDU reactor. The reactor criticality k ∞ remains nearly constant between the 4th year and the 7th year of plant operation, and then, a slight increase is observed thereafter, along with a continuous depletion of the thorium fuel. After the 2nd year, the CANDU reactor begins to operate practically as a thorium burner. Very high burn-up can be achieved with the same fuel (>160,000 MW D/MT). The reactor criticality would be sufficient until a great fraction of the thorium fuel is burned up, provided that the fuel rods could be fabricated to withstand such high burn-up levels. Fuel fabrication costs and nuclear waste mass for final disposal per unit energy could be reduced drastically

  15. Exposure calculation code module for reactor core analysis: BURNER

    International Nuclear Information System (INIS)

    The code module BURNER for nuclear reactor exposure calculations is presented. The computer requirements are shown, as are the reference data and interface data file requirements, and the programmed equations and procedure of calculation are described. The operating history of a reactor is followed over the period between solutions of the space, energy neutronics problem. The end-of-period nuclide concentrations are determined given the necessary information. A steady state, continuous fueling model is treated in addition to the usual fixed fuel model. The control options provide flexibility to select among an unusually wide variety of programmed procedures. The code also provides user option to make a number of auxiliary calculations and print such information as the local gamma source, cumulative exposure, and a fine scale power density distribution in a selected zone. The code is used locally in a system for computation which contains the VENTURE diffusion theory neutronics code and other modules

  16. Preliminary safety evaluation of the advanced burner test reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, F. E.; Fanning, T. H.; Cahalan, J. E.; Nuclear Engineering Division

    2006-09-15

    Results of a preliminary safety evaluation of the Advanced Burner Test Reactor (ABTR) pre-conceptual design are reported. The ABTR safety design approach is described. Traditional defense-in-depth design features are supplemented with passive safety performance characteristics that include natural circulation emergency decay heat removal and reactor power reduction by inherent reactivity feedbacks in accidents. ABTR safety performance in design-basis and beyond-design-basis accident sequences is estimated based on analyses. Modeling assumptions and input data for safety analyses are presented. Analysis results for simulation of simultaneous loss of coolant pumping power and normal heat rejection are presented and discussed, both for the case with reactor scram and the case without reactor scram. The analysis results indicate that the ABTR pre-conceptual design is capable of undergoing bounding design-basis and beyond-design-basis accidents without fuel cladding failures. The first line of defense for protection of the public against release of radioactivity in accidents remains intact with significant margin. A comparison and evaluation of general safety design criteria for the ABTR conceptual design phase are presented in an appendix. A second appendix presents SASSYS-1 computer code capabilities and modeling enhancements implemented for ABTR analyses.

  17. Use of freeze-casting in advanced burner reactor fuel design

    Energy Technology Data Exchange (ETDEWEB)

    Lang, A. L.; Yablinsky, C. A.; Allen, T. R. [Dept. of Engineering Physics, Univ. of Wisconsin Madison, 1500 Engineering Drive, Madison, WI 53711 (United States); Burger, J.; Hunger, P. M.; Wegst, U. G. K. [Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755 (United States)

    2012-07-01

    This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by that fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO{sub 2}) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models

  18. Use of freeze-casting in advanced burner reactor fuel design

    International Nuclear Information System (INIS)

    This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by that fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO2) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models. Preliminary results

  19. Fast Burner Reactor Devoted to Minor Actinide Incineration

    International Nuclear Information System (INIS)

    This study proposes a new fast reactor core concept dedicated to plutonium and minor actinide burning by transmutation. This core has a large power level of ∼1500 MW(electric) favoring the economic aspect. To promote plutonium and minor actinide burning as much as possible, total suppression of 238U, which produces 239Pu by conversion, and large quantities of minor actinides in the core are desirable. Therefore, the 238U-free fuel is homogeneously mixed with a considerable quantity of minor actinides.From the safety point of view, both the Doppler effect and the coolant (sodium) void reactivity become less favorable in a 238U-free core. To preserve these two important safety parameters on an acceptable level, a hydrogenated moderator separated from the fuel and nuclides, such as W or 99Tc, is added to the core in the place of 238U. Tungsten and 99Tc have strong capture resonances at appropriate energies, and 99Tc itself is a long-lived fission product to be transmuted with profit.This core allows the achievement of a consumption rate of ∼100 kg/TW(electric).h of transuranic elements, ∼70 kg/TW(electric).h for plutonium (due to 238U suppression), and 30 to 35 kg/TW(electric).h for minor actinides. In addition, ∼14 kg/TW(electric).h of 99Tc is destroyed when this element is present in the core (the initial loading of 99Tc is >4000 kg in the core).The activity of newly designed subassemblies has also been investigated in comparison to standard fast reactor subassemblies (neutron sources, decay heat, and gamma dose rate). Finally, a transmutation scenario involving pressurized water reactors and minor actinide-burning fast reactors has been studied to estimate the necessary proportion of burner reactors and the achievable radiotoxicity reduction with respect to a reference open cycle

  20. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud [Univ. of California, Berkeley, CA (United States)

    2015-11-04

    This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the radiation damage constraint of presently verified cladding materials. The S&B core is designed to maximize the fraction of neutrons that radially leak from the seed (or “driver”) into the subcritical blanket and reduce neutron loss via axial leakage. The blanket in the S&B core makes beneficial use of the leaking neutrons for improved economics and resource utilization. A specific objective of this study is to maximize the fraction of core power that can be generated by the blanket without violating the thermal hydraulic and material constraints. Since the blanket fuel requires no reprocessing along with remote fuel fabrication, a larger fraction of power from the blanket will result in a smaller fuel recycling capacity and lower fuel cycle cost per unit of electricity generated. A unique synergism is found between a low conversion ratio (CR) seed and a B&B blanket fueled by thorium. Among several benefits, this synergism enables the very low leakage S&B cores to have small positive coolant voiding reactivity coefficient and large enough negative Doppler coefficient even when using inert matrix fuel for the seed. The benefits of this synergism are maximized when using an annular seed surrounded by an inner and outer thorium blankets. Among the high-performance S&B cores designed to benefit from this unique synergism are: (1) the ultra-long cycle core that features a cycle length of ~7 years; (2) the high-transmutation rate core where the seed fuel features a TRU CR of 0.0. Its TRU transmutation rate is comparable to that of the reference Advanced Burner Reactor (ABR) with CR of 0.5 and the thorium blanket can generate close to 60% of the core power; but requires only one sixth of the reprocessing and

  1. The energy analysis of burner reactor power systems

    International Nuclear Information System (INIS)

    Currently most commercial nuclear power stations are based on thermal reactor designs called burner reactors which are net consumers of fissile material. These power stations form one part of a larger system that generates electricity from uranium. However, in addition to producing energy, such systems also consume energy, in the form of various fuels, during construction and operation. This thesis describes the use of energy analysis to determine the total energy required by these systems. A number of factors are shown to influence energy consumption and, in particular, the effect of extracting uranium from different sources is studied in detail. For ores, an important inverse relationship between energy use and ore grade is investigated and quantified. The physical limit at which the energy input to the system is equal to its output is shown to correspond to an average grade of 15 parts per million of 'triuranium octoxide'. Analysis of proposals for extracting uranium from seawater indicates that the only schemes giving a positive energy balance are costly (500 dollars/lb U3O8) and limited to low production rates. The effects of feedback within fuel systems are analysed and the results are used to formulate an economic model in which nuclear electricity prices determine uranium ore costs as well as vice versa. The model demonstrates that, with present techniques, the average economic limit to ore grade is 50 ppm U3O8 with subsequent resources, on current assessment, of only 107 tonnes U3O8. This contradicts most traditional studies which, by assuming fixed, non-dependent fuel costs, suggest an ore grade limit of less than 4 ppm U3O8 and economically recoverable resources in excess of 1010 tonnes U3O8. (author)

  2. The effect of pH and operation mode for COD removal of slaughterhouse wastewater with Anaerobic Batch Reactor (ABR

    Directory of Open Access Journals (Sweden)

    Maria Octoviane Dyan

    2015-01-01

    Full Text Available Disposal of industrial wastes in large quantities was not in accordance with today's standards of waste into environmental issues that must be overcome with proper treatment. Similarly, the abattoir wastewater that contains too high organic compounds and suspended solids. The amount of liquid waste disposal Slaughterhouse (SW with high volume also causes pollution. The research aim to resolve this problem by lowering the levels of BOD-COD to comply with effluent quality standard. Anaerobic process is the right process for slaughterhouse wastewater treatment because of high content of organic compounds that can be utilized by anaerobic bacteria as a growth medium. Some research has been conducted among abattoir wastewater treatment using anaerobic reactors such as ABR, UASB and ASBR. Our research focuses on the search for the optimum results decline effluent COD levels to match the quality standards limbah and cow rumen fluid with biodigester ABR (Anaerobic Batch Reactor. The variables used were PH of 6, 7, and 8, as well as the concentration ratio of COD: N is 400:7; 450:7, and 500:7. COD value is set by the addition of N derived from urea [CO(NH2 2]. COD levels will be measured daily by water displacement technique. The research’s result for 20 days seen that optimum PH for biogas production was PH 7,719 ml. The optimum PH for COD removal is PH 6, 72.39 %. The operation mode COD:N for biogas production and COD removal is 500:7, with the production value is 601 ml and COD removal value is 63.85 %. The research’s conclusion, the PH optimum for biogas production was PH 7, then the optimum PH for COD removal is PH 6. The optimum operation mode COD:N for biogas production and COD removal was 500:7

  3. Advanced fuel cycle scenario study in the European context using different burner reactor concepts

    International Nuclear Information System (INIS)

    Different types of fast spectrum dedicated burners have been proposed for the management of radioactive wastes in the frame of various advanced fuel cycle scenarios. Accelerator-driven systems (ADS) and critical low conversion ratio fast reactors have been studied, e.g. within the European context. A potential alternative system is a fusion-fission hybrid (FFH). In the present study, a sodium-cooled fast reactor driven by a D-T fusion neutron source, the subcritical advanced burner reactor (SABR) system is considered. In order to intercompare the different systems, a systematic study is under way. The performances of the two types of systems (SABR, ADS) will be compared from a minor actinide (MA) or transuranic (i.e. Pu+MA) burning potential point of view. The present paper reports preliminary results of the first phase of study, i.e. the comparison of SABR and ADS when used as minor actinides burners. (authors)

  4. Neutron economy and transmutation performance of coupling system of fast reactor and a-burner

    International Nuclear Information System (INIS)

    Neutron economy and transmutation performance are examined for a fast reactor (FR), a PWR, and an A-Burner which transmutes Minor-Actinide (MA) in a well-thermalized neutron field and a slightly hard neutron field optimized for the burn-up of 246Cm. The neutron economies of the FR and the A-Burner are, respectively, favorable and acceptable to transmute MA. The coupling system of both the reactors can reduce 8.1 ton of MA to almost zero within 60 years by using one FR and one A-Burner. This coupling system is expected to achieve the final goal of transmutation, i.e., to make us free from the geological disposal. (authors)

  5. Analysis of Reactor Deployment Scenarios with Introduction of SFR Breakeven Reactors and Burners Using DANESS Code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young In; Hahn, Do Hee; Won, Byung Chool; Lee, Dong Uk

    2008-01-15

    Using the DANESS code newly employed for future scenario analysis, reactor deployment scenarios with the introduction of sodium cooled fast reactors(SFRs) having different conversion ratios in the existing PWRs dominant nuclear fleet have been analyzed to find the SFR deployment strategy for replacing PWRs with the view of a spent fuel reduction and an efficient uranium utilization through its reuse in a closed nuclear fuel cycle. Descriptions of the DANESS code and how to use are briefly given from the viewpoint of its first application. The use of SFRs and recycling of TRUs by reusing PWR spent fuel leads to the substantial reduction of the amount of PWR spent fuel and environmental burden by decreasing radiotoxicity of high level waste, and a significant improvement on the natural uranium resources utilization. A continuous deployment of burners effectively decreases the amount of PWR spent fuel accumulation, thus lightening the burden for PWR spent fuel management. An introduction of breakeven reactors effectively reduces the uranium demand through producing excess TRU during the operation, thus contributing to a sustainable nuclear power development. With SFR introduction starting in 2040, PWRs will remain as a main power reactor type till 2100 and SFRs will be in support of waste minimization and fuel utilization.

  6. Removal of Organic Load in Communal Wastewater by using the Six Stage Anaerobic Baffle Reactor (ABR

    Directory of Open Access Journals (Sweden)

    Trilita Minarni Nur

    2016-01-01

    Full Text Available The reduction of water quality in the urban drainage is a crucial problem to overcome because it can affect the health of community. This fact encouraged the researcher to conduct the research in efforts to increase the water quality in the drainage. One of the solutions to increase the water quality in the drainage is that the domestic wastewater must be treated at first before it is flown through the drainage. Furthermore, the wastewater treatment was conducted by employing the communal wastewater processor. The research was aimed at knowing the capability of Anaerobic Baffle Reactor with the six-stage design in communal wastewater processor in efforts to decrease the organic load. This research was conducted in a laboratory scale. Meanwhile, the sort of waste used was taken from the domestic wastewater of settlement by varying its discharge and waste concentration flowing into the waste processor. Finally, the research result showed that the reduction of organic load of COD was reaching up to 92%, N was 85% and Phosphate was 50%.

  7. ZZ WPPR-FR-MOX/BNCMK, Benchmark on Pu Burner Fast Reactor

    International Nuclear Information System (INIS)

    Description of program or function: In order to intercompare the characteristics of the different reactors considered for Pu recycling, in terms of neutron economy, minor actinide production, uranium content versus Pu burning, the NSC Working Party on Physics of Plutonium Recycling (WPPR) is setting up several benchmark studies. They cover in particular the case of the evolution of the Pu quality and Pu fissile content for Pu recycling in PWRs; the void coefficient in PWRs partly fuelled with MOX versus Pu content; the physics characteristics of non-standard fast reactors with breeding ratios around 0.5. The following benchmarks are considered here: - Fast reactors: Pu Burner MOX fuel, Pu Burner metal fuel; - PWRs: MOX recycling (bad quality Pu), Multiple MOX recycling

  8. Fuel cycle of actinide burner-reactor. Review of investigations by > program

    International Nuclear Information System (INIS)

    The problem of long-lived minor-actinides (Np, Am, Cm) transmutation is one of major part of problem of nuclear power ecological safety. The problem of Pu surpluses burning-out adjoins to this problem. Existing and perspective reactor systems could be used for it, but task of optimum organization of the external closed cycle for actinide burner reactor becomes the important aspect of transmutation problem. Since 1992, SSC RIAR has proposed the demonstration program-concept DOVITA (Dry reprocessing, Oxide fuel, Vibropac, Integral, Transmutation of Actinides), which should demonstrate opportunities of new technologies for realization of the optimized fuel cycle for actinide burner reactor. The brief review of study on DOVITA program for 5 years is given in this paper. (J.P.N.)

  9. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  10. Treating Tannin Substances Treatment with ABR Reactor%ABR反应器对单宁类物质的处理效果研究

    Institute of Scientific and Technical Information of China (English)

    丁绍兰; 蔡丽; 董凌霄; 贾文颖

    2013-01-01

    采用单宁废水驯化厌氧折流板反应器(ABR),然后用驯化后的ABR预处理栲胶废水,研究ABR反应器对BA浅色栲胶和荆树皮栲胶的处理效果.结果表明:驯化过程中,VFA、pH以及碱度都保持在一个比较稳定的水平.驯化结束后,污泥产甲烷活性更高.驯化后的ABR反应器对栲胶废水有较高的去除作用,COD为2000mg/L的BA浅色栲胶废水和荆树皮栲胶废水的去除率分别达80%以上和70%以上,表明荆树皮栲胶废水比BA浅色栲胶废水更难降解.%Tanning extracts were domesticated by tannin with anaerobic baffled reactor (ABR) and the tannin waste water was pre-treated.It shows that the values of VFA,pH and alkalinity are kept at a relatively stable level during the process of domestication.When domestication ended,ABR reactor has higher sludge activity of producing methane.It has higher removal rate for tanning extracts when ABR was domesticated by tannin.When COD of wastewater,which was simulated with BA light color vegetable wastewater and the thorns bark tannin extracts,is 2000 mg/L,removal rate of COD is more than 80% and 70%,respectively.It shows that the thorns bark tannin extracts wastewater is more difficult for degradation than BA light color tanning extracts.

  11. Fundamental experiments for FBX burner linear fusion reactor core with FBX plasma flow

    International Nuclear Information System (INIS)

    FBX is a production and confinement scheme of a spherical torus that carries a strong plasma current with both toroidal and poloidal components. On the other hand HI-I is a fundamental experiment on moving plasma. With two of them, a new type of fusion reactor scheme FBX-III BURNER (III) is established. In this paper, the fundamental results of the first two types of experiments are introduced to find out a total plasma behavior of the long term project. 9 refs., 5 figs

  12. Physical-chemical and operational performance of an anaerobic baffled reactor (ABR treating swine wastewater - 10.4025/actascitechnol.v32i4.7203

    Directory of Open Access Journals (Sweden)

    Erlon Lopes Pereira

    2010-12-01

    Full Text Available Since hog raising concentrates a huge amount of swine manure in small areas, it is considered by the environmental government organizations to be one of the most potentially pollutant activities. Therefore the main objective of this research was to evaluate by operational criteria and removal efficiency, the performance of a Anaerobic Baffled Reactor (ABR, working as a biological pre-treatment of swine culture effluents. The physical-chemical analyses carried out were: total COD, BOD5, total solids (TS, fix (TFS and volatiles (TVS, temperature, pH, total Kjeldahl nitrogen, phosphorus, total acidity and alkalinity. The ABR unit worked with an average efficiency of 65.2 and 76.2%, respectively, concerning total COD and BOD5, with a hydraulic retention time (HRT about 15 hours. The results for volumetric organic loading rate (VOLR, organic loading rate (OLR and hydraulic loading rate (HLR were: 4.46 kg BOD m-3 day-1; 1.81 kg BOD5 kg TVS-1 day-1 and 1.57 m3 m-3 day-1, respectively. The average efficiency of the whole treatment system for total COD and BOD5 removal were 66.5 and 77.8%, showing an adequate performance in removing the organic matter from swine wastewater.

  13. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition

  14. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward

    International Nuclear Information System (INIS)

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition from normal high

  15. Reduction of COD and Turbidity of Effluent in the Swine Productions Unit Employing Anaerobic Baffled Reactor (ABR Followed by Biological Filters and Sand Filter

    Directory of Open Access Journals (Sweden)

    Euzebio Beli

    2010-04-01

    Full Text Available The growing swine production is constantly in conflict with the environment due to the lack of environmental management directed to the cycle of animal production and the industrial sector, mainly due to the mishandling of slurry produced. In association with large concentrations of confined animals appear huge dumps of organic matter, inorganic nutrients and gaseous emissions, which require special care for its disposal to the environment. The aim of this study was to evaluate the use of an anaerobic baffled reactor (ABR in series with two downflow biological filters, followed by a sand filter as a polishing treatment. It were analyzed the reduction of COD and turbidity, and the behavior of pH in all phases of treatment. The removal of COD in the conjugated system, which occurred during treatment ranged from 74.55% to 94.41% with an average removal of 84.24%. In turn, the removal of turbidity from the period ranged from 53.07% to 96.11% with an average removal of 85.49%. In the studied period the pH changed from 5,6 to 8,4. This system was efficient in the removal of COD and turbidity of swine wastewater.

  16. Production of bioenergy in anaerobic baffled reactor (ABR) and sludge blanket (UASB) in the treatment os swine waste water; Producao de bioenergia em reatores anaerobios compartimentado (RAC) e de manta de lodo (UASB) no tratamento de efluentes de suinocultura

    Energy Technology Data Exchange (ETDEWEB)

    Moterani, Fabricio; Pereira, Erlon Lopes; Campos, Claudio M.M. [Universidade Federal de Lavras (DEG/UFLA), MG (Brazil). Dept. de Engenharia], email: fabricio_moterani@yahoo.com.br

    2011-07-01

    The biogas is obtained in the processes of degradation of organic matter by the action of bacterial consortium in the environment. The aim of this study was to evaluate the biogas production in anaerobic UASB and ABR in swine wastewater treatment. For this we used the theoretical estimated and actual production of biogas measured by anaerobic gasometers installed in the units. Methane was determined by gas chromatography (GC) and its theoretical output was 66 LCH4 kgSVT d{sup -1} and 11.9 LCH4 kgSVT d{sup -1} and 24.7 m{sup 3} d{sup -1} and 5.4 m{sup 3} d{sup -1} to ABR and UASB, respectively. Regarding the actual production of biogas in the reactor provided by the gas tank, found the values of 1,166.4 m{sup 3}; 0.1 m{sup 3}; 27.4 m{sup 3} and 12,598.5 m{sup 3} of biogas for compartments 1, 2 and 3 and ABR for the UASB reactor, respectively, totaling, production of 13,792.4 m{sup 3} in the units together, with an average of 113 m{sup 3} of biogas per day. But, it concludes with this research that the use of effluent from produce energy through biogas in swine farming is effective, which can be used in rural productive system itself. (author)

  17. Actinide transmutation using inert matrix fuels versus recycle in a low conversion fast burner reactor

    International Nuclear Information System (INIS)

    infinite fuel residence time. In previous work we have shown that the amount of fluence required to achieve a unit of burnup in yttrium stabilized ZrO2 based IMF with 85 w/o zirconium oxide and 15 w/o minor actinides (MA) and plutonium increases dramatically beyond 750 MWd/kgIHM (75% burnup). In this paper we discuss the repository implications for recycle of actinides in LWR's using this type of IMF and compare this to actinide recycle in a low conversion fast burner reactor. We perform the analysis over a finite horizon of 100 years, in which reprocessing of spent LWR fuel begins in 2020. Reference [1] C. Lombardi and A. Mazzola, Exploiting the plutonium stockpiles in PWRs by using inert matrix fuel, Annals of Nuclear Energy. 23 (1996) 1117-1126. [2] U. Kasemeyer, J.M. Paratte, P. Grimm and R. Chawla, Comparison of pressurized water reactor core characteristics for 100% plutonium-containing loadings, Nuclear Technology. 122 (1998) 52-63. [3] G. Ledergerber, C. Degueldre, P. Heimgartner, M.A. Pouchon and U. Kasemeyer, Inert matrix fuel for the utilisation of plutonium, Progress in Nuclear Energy. 38 (2001) 301-308. [4] U. Kasemeyer, C. Hellwig, J. Lebenhaft and R. Chawla, Comparison of various partial light water reactor core loadings with inert matrix and mixed oxide fuel, Journal of Nuclear Materials. 319 (2003) 142-153. [5] E.A. Schneider, M.R. Deinert and K.B. Cady, Burnup simulations of an inert matrix fuel using a two region, multi-group reactor physics model, in Proceedings of the physics of advanced fuel cycles, PHYSOR 2006, Vancouver, BC, 2006. [6] E.A. Schneider, M.R. Deinert and K.B. Cady, Burnup simulations and spent fuel characteristics of ZRO2 based inert matrix fuels, Journal of Nuclear Materials. 361 (2007) 41-51. (authors)

  18. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition

  19. Status of the EC-FP7 Project ARCAS: Comparing the economics of accelerator-driven systems and fast reactors as minor actinide burners

    International Nuclear Information System (INIS)

    The ARCAS Project aims to compare, on a technological and economical basis, accelerator-driven systems and fast reactors as minor actinide burners. It is split into five work packages: the reference scenario definition, the fast reactor system definition, the accelerator-driven system definition, the fuel reprocessing and fabrication facilities definition and the economical comparison. This paper summarises the status of the project and its five work packages. (authors)

  20. Some aspects of risk reduction strategy by multiple recycling in fast burner reactors of the plutonium and minor actinide inventories

    International Nuclear Information System (INIS)

    This paper shows the impact of recycling light water reactor (LWR) mixed oxide (MOX) fuel in a fast burner reactor on the plutonium (Pu) and minor actinide (MA) inventories and on the related radioactivities. Reprocessing of the targets for multiple recycling will become increasingly difficult as the burnup increases. Multiple recycling of Pu + MA in fast reactors is a feasible option which has to be studied very carefully: the Pu (except the isotopes Pu-238 and Pu-240), Am and Np levels decrease as a function of the recycle number, while the Cm-244 level accumulates and gradually transforms into Cm-245. Long cooling times (10 + 2 years) are necessary with aqueous processing. The paper discusses the problems associated with multiple reprocessing of highly active fuel types and particularly the impact of Pu-238, Am-241 and Cm-244 on the fuel cycle operations. The calculations were performed with the zero-dimensional ORIGEN-2 code. The validity of the results depends on that of the code and its cross-section library. The time span to reduce the initial inventory of Pu + MA by a factor of 10 amounts to 255 years when average burnups are limited to 150 GW.d t-1 (tonne). (orig.)

  1. Molten salt related extensions of the SIMMER-III code and its application for a burner reactor

    International Nuclear Information System (INIS)

    Molten salt reactors (MSRs) can be used as effective burners of plutonium (Pu) and minor actinides (MAs) from light water reactor (LWR) spent fuel. In this paper a study was made to examine the thermal hydraulic behaviour of the conceptual design of the molten salt advanced reactor transmuter (MOSART) [Ignatiev, V., Feynberg, O., Myasnikov, A., Zakirov, R., 2003a. Neutronic properties and possible fuel cycle of a molten salt transmuter. Proceedings of the 2003 ANS/ENS International Winter Meeting (GLOBAL 2003), Hyatt Regency, New Orleans, LA, USA 16-20 November 2003]. The molten salt fuel is a ternary NaF-LiF-BeF2 system fuelled with ca. 1 mol% typical compositions of transuranium-trifluorides (PuF3, etc.) from light water reactor spent fuel. The MOSART reactor core does not contain graphite structure elements to guide the flow, so the neutron spectrum is rather hard in order to improve the burning performance. Without those structure elements in the core, the molten salt in core flows freely and the flow pattern could be potentially complicated and may affect significantly the fuel temperature distribution in the core. Therefore, some optimizations of the salt flow pattern may be needed. Here, the main attention has been paid to the fluid dynamic simulations of the MOSART core with the code SIMMER-III [Kondo, Sa., Morita, K., Tobita, Y., Shirakawa, K., 1992. SIMMER-III: an advanced computer program for LMFBR severe accident analysis. Proceedings of the ANP' 92, Tokyo, Japan; Kondo, Sa., Tobita, Y., Morita, K., Brear, D.J., Kamiyama, K., Yamano, H., Fujita, S., Maschek, W., Fischer, E.A., Kiefhaber, E., Buckel, G., Hesselschwerdt, E., Flad, M., Costa, P., Pigny, S., 1999. Current status and validation of the SIMMER-III LMFR safety analysis code. Proceedings of the ICONE-7, Tokyo, Japan], which was originally developed for the safety assessment of sodium-cooled fast reactors and recently extended by the authors for the thermo-hydraulic and neutronic models so as to

  2. Some aspects of risk reduction strategy by multiple recycling in fast burner reactors of the plutonium and minor actinide inventories

    International Nuclear Information System (INIS)

    The paper shows the impact of recycling LWR-MOX fuel in a fast burner reactor on the plutonium (Pu) and minor actinide (MA) inventories and on the related radio activities. Reprocessing of the targets for multiple recycling will become increasingly difficult as the burn up increases. Multiple recycling of Pu + MA in fast reactors is a feasible option which has to be studied very carefully: the Pu (except the isotopes Pu-238 and Pu-240), Am and Np levels decrease as a function of the recycle number, while the Cm-244 level accumulates and gradually transforms into Cm-245. Long cooling times (10 + 2 years) are necessary with aqueous processing. The paper discusses the problems associated with multiple reprocessing of highly active fuel types and particularly the impact of Pu-238, Am-241 and Cm-244 on the fuel cycle operations. The calculations were performed with the zero-dimensional ORIGEN-2 code. The validity of the results depends on that of the code and its cross section library. The time span to reduce the initial inventory of Pu + MA by a factor of 10, amounts to 255 years when average burn ups are limited to 150 GWd t-1. (orig.)

  3. Economic Analysis of Symbiotic Light Water Reactor/Fast Burner Reactor Fuel Cycles Proposed as Part of the U.S. Advanced Fuel Cycle Initiative (AFCI)

    International Nuclear Information System (INIS)

    A spreadsheet-based 'static equilibrium' economic analysis was performed for three nuclear fuel cycle scenarios, each designed for 100 GWe-years of electrical generation annually: 1) a 'once-through' fuel cycle based on 100% LWRs fueled by standard UO2 fuel assemblies with all used fuel destined for geologic repository emplacement, 2) a 'singletier recycle' scenario involving multiple fast burner reactors (37% of generation) accepting actinides (Pu,Np,Am,Cm) from the reprocessing of used fuel from the uranium-fueled LWR fleet (63% of generation), and 3) a 'two-tier' 'thermal+fast' recycle scenario where co-extracted U,Pu from the reprocessing of used fuel from the uranium-fueled part of the LWR fleet (66% of generation) is recycled once as full-core LWR MOX fuel (8% of generation), with the LWR MOX used fuel being reprocessed and all actinide products from both UO2 and MOX used fuel reprocessing being introduced into the closed fast burner reactor (26% of generation) fuel cycle. The latter two 'closed' fuel cycles, which involve symbiotic use of both thermal and fast reactors, have the advantages of lower natural uranium requirements per kilowatt-hour generated and less geologic repository space per kilowatt-hour as compared to the 'once-through' cycle. The overall fuel cycle cost in terms of $ per megawatt-hr of generation, however, for the closed cycles is 15% (single tier) to 29% (two-tier) higher than for the once-through cycle, based on 'expected values' from an uncertainty analysis using triangular distributions for the unit costs for each required step of the fuel cycle. (The fuel cycle cost does not include the levelized reactor life cycle costs.) Since fuel cycle costs are a relatively small percentage (10 to 20%) of the overall bus-bar cost (LUEC or 'levelized unit electricity cost') of nuclear power generation, this fuel cycle cost increase should not have a highly deleterious effect on the competitiveness of nuclear power. If the reactor life cycle

  4. Regenerative burner

    Energy Technology Data Exchange (ETDEWEB)

    Davies, T.E.; Quinn, D.E.; Watson, J.E.

    1986-08-05

    A regenerative burner is described operable in fire and flue modes comprising: a burner shell having first and second internal chambers, the first chamber being disposed on the flame axis of the burner and the second chamber surrounding the radial perimeter of the first chamber; a gas permeable annular regenerative bed separating the first and second chambers such that gas flow between the first and second chambers must travel through the regenerative bed in a generally radial direction with respect to the flame axis; means for supplying combustion air to the second chamber when the burner is in the fire mode and for exhausting the products of combustion from the second chamber when the burner is in the flue mode; and means for supplying fuel in the vicinity of the flame axis for mixing with combustion air to support combustion when the burner is in the fire mode.

  5. Regenerative burner

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, G.M.

    1990-05-08

    This patent describes a method of combusting fuel in a furnace having a pair of regenerative burners, each burner having a combustion chamber. It comprises: supplying fuel and oxygen alternatively to each burner to create alternating firing burners wherein the oxygen is supplied from two sources providing first and second oxidizing gases having different oxygen concentrations and simultaneously alternating the application of negative pressure to the remaining non-firing burner to recover heat from flue gases exhausted by the regenerative bed of the non-firing burner to be used further to preheat at least part of the oxygen being supplied to the firing burner; mixing the fuel with a fraction of the oxygen under substoichiometric combustion condition to create products of incomplete combustion to form a hot, luminous flame core containing partially pyrolized fuel; and mixing the partially pyrolyzed fuel with a remaining fraction of the oxygen to complete combustion of the pyrolized fuel; and controlling the total flow of fuel and oxygen supplied to each burner to provide each burner with a desired flame stoichiometry.

  6. Lead coolant for the fast reactor-burner with a hard neutron spectrum

    International Nuclear Information System (INIS)

    The possibility of the efficiency increasing of the junior actinides burn-up on the account of their fission in the fast reactor by using the Pb-208 lead isotope as a coolant is considered. The calculation relative values of the fission reduction: rates and capture the neutrons by the Np-237, Am-241 and Am-243 nuclei in the fast reactor blanket for different coolants: sodium, lead, lead of natural composition and lead with 100%-Pb-208 content are presented. The radioactivity, induced during one year of the reactor operation and its decay during the time up to 1000 years is calculated for the lead coolants of various isotopic composition

  7. Concept of fast reactors-plutonium burners and their fuel cycle

    International Nuclear Information System (INIS)

    In this report the concept is considered of a closed fuel cycle of nuclear power, consisting of thermal and fast reactors, providing utilization of practically all actinides produced in the nuclear power. The major calculation results and the ways to form fast reactors cores for effective actinides burning are presented. The existing limitations on the fresh fuel composition by heat release and radiation characteristics are given. The calculation studies results on the fuel cycle characteristics at repeated fuel recycling in a system of VVER-1000 and BN-800 types reactors are presented. The calculations were carried out for different type cores of the BN-800 reactor -with oxide fuel of increased enrichment and with fuel without uranium-238, varying the burn-out level and the decay time of spent fuel. (author)

  8. Numerical modelling of the CHEMREC black liquor gasification process. Conceptual design study of the burner in a pilot gasification reactor

    Energy Technology Data Exchange (ETDEWEB)

    Marklund, Magnus

    2001-02-01

    The work presented in this report is done in order to develop a simplified CFD model for Chemrec's pressurised black liquor gasification process. This process is presently under development and will have a number of advantages compared to conventional processes for black liquor recovery. The main goal with this work has been to get qualitative information on influence of burner design for the gas flow in the gasification reactor. Gasification of black liquor is a very complex process. The liquor is composed of a number of different substances and the composition may vary considerably between liquors originating from different mills and even for black liquor from a single process. When a black liquor droplet is gasified it loses its organic material to produce combustible gases by three stages of conversion: Drying, pyrolysis and char gasification. In the end of the conversion only an inorganic smelt remains (ideally). The aim is to get this smelt to form a protective layer, against corrosion and heat, on the reactor walls. Due to the complexity of gasification of black liquor some simplifications had to be made in order to develop a CFD model for the preliminary design of the gasification reactor. Instead of modelling droplets in detail, generating gas by gasification, sources were placed in a prescribed volume where gasification (mainly drying and pyrolysis) of the black liquor droplets was assumed to occur. Source terms for the energy and momentum equations, consistent with the mass source distribution, were derived from the corresponding control volume equations by assuming a symmetric outflow of gas from the droplets and a uniform degree of conversion of reactive components in the droplets. A particle transport model was also used in order to study trajectories from droplets entering the reactor. The resulting model has been implemented in a commercial finite volume code (AEA-CFX) through customised Fortran subroutines. The advantages with this simple

  9. Specification of the Advanced Burner Test Reactor Multi-Physics Coupling Demonstration Problem

    Energy Technology Data Exchange (ETDEWEB)

    Shemon, E. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Grudzinski, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Lee, C. H. [Argonne National Lab. (ANL), Argonne, IL (United States); Thomas, J. W. [Argonne National Lab. (ANL), Argonne, IL (United States); Yu, Y. Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-12-21

    This document specifies the multi-physics nuclear reactor demonstration problem using the SHARP software package developed by NEAMS. The SHARP toolset simulates the key coupled physics phenomena inside a nuclear reactor. The PROTEUS neutronics code models the neutron transport within the system, the Nek5000 computational fluid dynamics code models the fluid flow and heat transfer, and the DIABLO structural mechanics code models structural and mechanical deformation. The three codes are coupled to the MOAB mesh framework which allows feedback from neutronics, fluid mechanics, and mechanical deformation in a compatible format.

  10. Fast burner reactor benchmark results from the NEA working party on physics of plutonium recycle

    International Nuclear Information System (INIS)

    As part of a program proposed by the OECD/NEA Working Party on Physics of Plutonium Recycling (WPPR) to evaluate different scenarios for the use of plutonium, fast reactor physics benchmarks were developed; fuel cycle scenarios using either PUREX/TRUEX (oxide fuel) or pyrometallurgical (metal fuel) separation technologies were specified. These benchmarks were designed to evaluate the nuclear performance and radiotoxicity impact of a transuranic-burning fast reactor system. International benchmark results are summarized in this paper; and key conclusions are highlighted

  11. The different facilities of the reactor PHENIX for radio isotope production and fission product burner

    International Nuclear Information System (INIS)

    During the last few years different tests have been made to optimize the blanket of the reactor. Year after year the breeding ratio has lost a part of interest regarding the production and availability of plutonium in the world. A characteristic of a fast reactor is to have important neutron leaks from the core. The spectrum of those neutrons is intermediate, the idea was to find a moderator compatible with sodium and stable in temperature. After different tests we kept as a moderator the calcium hydride and as a samply support, a cluster which is separated from the carrier. At the end we present the model used for thermalized calculations. The scheme is then applied to a heavy nuclide transmutation example (Np237 Pu238) and to fission product transmutation (Tc99). (author)

  12. Cooperative Russian-French experiment on plutonium-enriched fuels for fast burner reactor

    International Nuclear Information System (INIS)

    Various kinds of nuclear fuels with an increased plutonium content are under study according to the program including three stages: fabrication, irradiation in BOR-60 reactor, post-irradiation examination. Flowsheets for fabricating pelletized and vibrocompacted fuels of UPu0.45O2, UPu0.45N, UPu0.6N, PuN + ZrN, PuO2 + MgO are presented along with basic fuel properties. The irradiation of oxide fuel is carried out in an individual irradiation device at rated maximum temperature of the fuel at the beginning of irradiation equal to 2100 deg C. The irradiation of nitride fuel and the fuel based on inert matrices is performed in the other device with the aim of limitation of maximum temperature by the value of 1550 deg C. The duration of irradiation for all fuel types constitutes 750 EFPD. Fuel element charge in Bor-60 reactor core was realized in 2000

  13. Economic Analyiss of "Symbiotic" Light Water Reactor/Fast Burner Reactor Fuel Cycles Proposed as Part of the U.S. Advanced Fuel Cycle Initiative (AFCI)

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kent Alan [ORNL; Shropshire, David E. [Idaho National Laboratory (INL)

    2009-01-01

    A spreadsheet-based 'static equilibrium' economic analysis was performed for three nuclear fuel cycle scenarios, each designed for 100 GWe-years of electrical generation annually: (1) a 'once-through' fuel cycle based on 100% LWRs fueled by standard UO2 fuel assemblies with all used fuel destined for geologic repository emplacement, (2) a 'single-tier recycle' scenario involving multiple fast burner reactors (37% of generation) accepting actinides (Pu,Np,Am,Cm) from the reprocessing of used fuel from the uranium-fueled LWR fleet (63% of generation), and (3) a 'two-tier' 'thermal+fast' recycle scenario where co-extracted U,Pu from the reprocessing of used fuel from the uranium-fueled part of the LWR fleet (66% of generation) is recycled once as full-core LWR MOX fuel (8% of generation), with the LWR MOX used fuel being reprocessed and all actinide products from both UO2 and MOX used fuel reprocessing being introduced into the closed fast burner reactor (26% of generation) fuel cycle. The latter two 'closed' fuel cycles, which involve symbiotic use of both thermal and fast reactors, have the advantages of lower natural uranium requirements per kilowatt-hour generated and less geologic repository space per kilowatt-hour as compared to the 'once-through' cycle. The overall fuel cycle cost in terms of $ per megawatt-hr of generation, however, for the closed cycles is 15% (single tier) to 29% (two-tier) higher than for the once-through cycle, based on 'expected values' from an uncertainty analysis using triangular distributions for the unit costs for each required step of the fuel cycle. (The fuel cycle cost does not include the levelized reactor life cycle costs.) Since fuel cycle costs are a relatively small percentage (10 to 20%) of the overall busbar cost (LUEC or 'levelized unit electricity cost') of nuclear power generation, this fuel cycle cost increase should not have a

  14. Neutronic design of a plutonium-thorium burner small nuclear reactor

    International Nuclear Information System (INIS)

    A small nuclear reactor using thorium and plutonium fuel has been designed from the neutronic point of view. The thermal power of the reactor is 150 MWth and it is proposed to be used to supply electricity in an island in Indonesia. Thorium and plutonium fuel was chosen because in recent years the thorium fuel cycle is one of the promising ways to deal with the increasing number of plutonium stockpiles, either from the utilization of uranium fuel cycle or from nuclear weapon dismantling. A mixed fuel of thorium and plutonium will not generate the second generation of plutonium which will be a better way to incinerate the excess plutonium compared with the MOX fuel. Three kinds of plutonium grades which are the reactor grade (RG), weapon grade (WG), and spent fuel grade (SFG) plutonium, were evaluated as the thorium fuel mixture in the 17x17 Westinghouse PWR Fuel assembly. The evaluated parameters were the multiplication factor, plutonium depletion, fissile buildup, neutron spectrum, and temperature reactivity feedback. An optimization was also done to increase the plutonium depletion by changing the Moderator to Fuel Ratio (MFR). The computer codes TRITON (coupled NEWT and ORIGEN-S) in SCALE version 6 were used as the calculation tool for this assembly level. From the evaluation and optimization of the fuel assembly, the whole core was designed. The core was consisted of 2 types of thorium fuel with different plutonium grade and it followed the checkerboard loading pattern. A new concept of enriched burnable poison was also introduced to the core. The core life is 6.4 EFPY or 75 GWd/MTHM. It can burn up to 58% of its total mass of initial plutonium. VENTURE was used as the calculation tool for the core level

  15. TCP performance in ATM networks: ABR parameter tuning and ABR/UBR comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Chien Fang [Sandia National Labs., Livermore, CA (United States); Lin, A. [Cisco Systems, Inc., San Jose, CA (United States)

    1996-02-27

    This paper explores two issues on TOP performance over ATM networks: ABR parameter tuning and performance comparison of binary mode ABR with enhanced UBR services. Of the fifteen parameters defined for ABR, two parameters dominate binary mode ABR performance: Rate Increase Factor (RIF) and Rate Decrease Factor (RDF). Using simulations, we study the effects of these two parameters on TOP over ABR performance. We compare TOP performance with different ABR parameter settings in terms of through-puts and fairness. The effects of different buffer sizes and LAN/WAN distances are also examined. We then compare TOP performance with the best ABR parameter setting with corresponding UBR service enhanced with Early Packet Discard and also with a fair buffer allocation scheme. The results show that TOP performance over binary mode ABR is very sensitive to parameter value settings, and that a poor choice of parameters can result in ABR performance worse than that of the much less expensive UBR-EPD scheme.

  16. Desempenho de processo anaeróbio em dois estágios (reator compartimentado seguido de reator UASB para tratamento de águas residuárias de suinocultura Performance of two-stage anaerobic process (baffled reactor (ABR followed by an upflow sludge blanket reactor (UASB treating swine wastewater

    Directory of Open Access Journals (Sweden)

    Gracie F. R. Fernandes

    2006-04-01

    Full Text Available Avaliou-se o efeito das águas residuárias de suinocultura com concentrações de sólidos suspensos totais em torno de 6.000 mg L-1 (DQOtotal variando de 7.557 a 11.640 mg L-1 no desempenho de processo anaeróbio em dois estágios compostos por reator compartimentado (ABR e reator de fluxo ascendente com manta de lodo (UASB, instalados em série, em escala-piloto (volumes de 530 e 120 L, respectivamente, submetidos a tempos de detenção hidráulica (TDH de 56 a 18 h no primeiro reator e de 13 a 4 h no segundo reator. As eficiências médias de remoção de DQOtotal variaram de 71,1 a 87,5% no reator ABR e de 41,5 a 50,1% no reator UASB, resultando em valores médios de 86,8 a 94,9% para o sistema de tratamento anaeróbio em dois estágios com carga orgânica volumétrica (COV, na faixa de 5,05 a 10,12 kg DQOtotal (m³ d-1, no reator ABR, e de 2,83 a 9,63 kg DQOtotal (m³ d-1, no reator UASB. As eficiências de remoção de SST e SSV foram da ordem de 95,6%. O teor de metano no biogás manteve-se acima de 70% para os dois reatores. A produção volumétrica de metano máxima de 0,755 m³ CH4 (m³ d-1 ocorreu no reator 1, com COV de 10,12 kg DQOtotal (m³ d-1 e TDH de 18 h. Os valores médios de pH variaram na faixa de 7,2 a 8,0 para os efluentes dos reatores 1 e 2. Os ácidos voláteis totais mantiveram-se estáveis com concentrações abaixo de 200 mg L-1. Com variações abruptas e acentuadas de concentrações de SST e DQOtotal do afluente, os reatores mantiveram as eficiências de remoção de DQO e sólidos suspensos, em torno de 70%, e a qualidade do biogás, com 80% de CH4.In this work it was evaluated the effect of swine wastewater with total suspended solid (TSS concentration around 6000 mg L-1 (CODtotal from 7557 to 11640 mg L-1 on the performance of two stage anaerobic process constituted of anaerobic baffled reactors (ABR and an upflow sludge blanket reactor (UASB installed in series, in pilot scale testing (volumes of 530 L and

  17. Analysis of thorium/U-233 lattices and cores in a breeder/burner heavy water reactor

    International Nuclear Information System (INIS)

    Due to the inevitable dwindling of uranium resources, advanced fuel cycles in the current generation of reactors stand to be of great benefit in the future. Heavy water moderated reactors have much potential to make use of thorium, a currently unexploited resource. Core fuelling configurations of a Heavy Water Reactor based on the self-sufficient thorium fuel cycle were simulated using the DRAGON and DONJON reactor physics codes. Three heterogeneously fuelled reactors and one homogeneously fuelled reactor were studied. (author)

  18. RF torch discharge combined with conventional burner

    International Nuclear Information System (INIS)

    The design of the combined flame-rf-plasma reactor and experimental examination of this reactor are presented. For the determination of the temperature in different parts of the combined burner plasma the methods of emission spectroscopy were used. The temperatures measured in the conventional burner reach the maximum temperature 1900 K but in the burner with the superimposed rf discharge the neutral gas temperature substantially increased up to 2600 K but also the plasma volume increases substantially. Consequently, the resident time of reactants in the reaction zone increases

  19. Comparative study of fast critical burner reactors and subcritical accelerator driven systems and the impact on transuranics inventory in a regional fuel cycle

    International Nuclear Information System (INIS)

    Research highlights: → Double-strata fuel cycle has a potential to minimize transuranics mass in Europe. → European Minor Actinides legacy can be reduced down to 0 before the end of century. → 40% higher capacity needed to burn MA for fast critical reactor then for EFIT fleet. → Na cooled fast reactor cores with high content of MA and low CR have been assessed. → Fast critical and ADS-EFIT reactors show comparable MA transmutation performance. - Abstract: In the frame of Partitioning and Transmutation (P and T) strategies, many solutions have been proposed in order to burn transuranics (TRU) discharged from conventional thermal reactors in fast reactor systems. This is due to the favourable feature of neutron fission to capture cross section ratio in a fast neutron spectrum for most TRU. However the majority of studies performed use the Accelerator Driven Systems (ADS), due to their potential flexibility to utilize various fuel types, loaded with significant amounts of TRU having very different Minor Actinides (MA) over Pu ratios. Recently the potential of low conversion ratio critical fast reactors has been rediscovered, with very attractive burning capabilities. In the present paper the burning performances of two systems are directly compared: a sodium cooled critical fast reactor with a low conversion ratio, and the European lead cooled subcritical ADS-EFIT reactor loaded with fertile-free fuel. Comparison is done for characteristics of both the intrinsic core and the regional fuel cycle within a European double-strata scenario. Results of the simulations, obtained by use of French COSI6 code, show comparable performance and confirm that in a double strata fuel cycle the same goals could be achieved by deploying dedicated fast critical or ADS-EFIT type reactors. However the critical fast burner reactor fleet requires ∼30-40% higher installed power then the ADS-EFIT one. Therefore full comparative assessment and ranking can be done only by a

  20. Thermal-hydraulic analyses of transients in an actinide-burner reactor cooled by forced convection of lead-bismuth

    International Nuclear Information System (INIS)

    The Idaho National Engineering and Environmental Laboratory (INEEL) and the Massachusetts Institute of Technology (MIT) are investigating the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The current analysis evaluated a pool type design that relies on forced circulation of the primary coolant, a conventional steam power conversion system, and a passive decay heat removal system. The ATHENA computer code was used to simulate various transients without reactor scram, including a primary coolant pump trip, a station blackout, and a step reactivity insertion. The reactor design successfully met identified temperature limits for each of the transients analyzed

  1. Sodium fast reactors (SFRs) and recyclers

    International Nuclear Information System (INIS)

    This presentation is about Sodium Fast Reactor (SFRs) and Recyclers. Their pursuit has been going on in the United States (U.S.) since 1941 and that development work could help support the penetration of SFRs into the current nuclear power market in three forms: 1. A breeding SFR to increase the supply of fissile material. It will not happen for many decades because of increased uranium (U) resources, nuclear market ability to absorb increased U prices, and/or switch to a Thorium (Th) fuel cycle (under development in India) until the anticipated stringent regulations for breeding SFRs are defined and tested. 2. An economic SFR capable of competing with the Advance Light Water Reactor (ALWR) expected to produce electricity in the near future. The Generation IV (Gen IV) program is pursuing that goal under conceptual studies in South Korea (1) and, particularly under the demonstration Japan Sodium Fast Reactor (JSFR) (2) forecasted to start up by 2025 followed by the deployment of commercial JSFRs before 2050. 3. To use the pyro-processing and electro refining methodology developed under the Integral Fast Reactor (IFR) (3) to separate the Light Water Reactor (LWR) spent nuclear fuel (SNF) Transuranics (TRUs) and to burn them in SFRs referred to as Advanced Burner Reactors (ABR). That innovative approach can significantly increase the capacity of geological repositories for disposition of LWR SNF. That last form of SFR is needed urgently to cope with the continued increase in U.S. inventories of recyclable fissile and fertile materials and, particularly, with the projected growth in LWR SNF. According to a recent Electrical Power Research Institute (EPRI) study (4) to reduce CO2 emissions, the U.S. nuclear generated electricity will increase by 64 Gigawatt electrical (GWe) by 2030. While it is realized that additional long term interim storage can alleviate this need, it is not a long term solution because it will have to be followed eventually by final disposal or

  2. Fuel cycle analysis of TRU or MA burner fast reactors with variable conversion ratio using a new algorithm at equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Salvatores, Massimo [CEA Cadarache, 13108 St-Paul-Lez-Durance (France); Argonne National Laboratory, NE Division, Argonne, IL 60439 (United States)], E-mail: massimo.salvatores@cea.fr; Chabert, Christine [CEA Cadarache, 13108 St-Paul-Lez-Durance (France); Fazio, Concetta [Forschungszentrum Karlsruhe GmbH, P.O. Box 3640, 76021 Karlsruhe (Germany); Hill, Robert [Argonne National Laboratory, NE Division, Argonne, IL 60439 (United States); Peneliau, Yannick; Slessarev, Igor [CEA Cadarache, 13108 St-Paul-Lez-Durance (France); Yang, Won Sik [Argonne National Laboratory, NE Division, Argonne, IL 60439 (United States)

    2009-10-15

    Partitioning and Transmutation (P and T) strategies assessment and implementation play a key role in the definition of advanced fuel cycles, in order to insure both sustainability and waste minimization. Several options are under study worldwide, and their impact on core design and associated fuel cycles are under investigation, to offer a rationale to down selection and to streamline efforts and resources. Interconnected issues like fuel type, minor actinide content, conversion ratio values, etc. need to be understood and their impact quantified. Then, from a practical point of view, studies related to advanced fuel cycles require a considerable amount of analysis to assess performances both of the reactor cores and of the associated fuel cycles. A physics analysis should provide a sound understanding of major trends and features, in order to provide guidelines for more detailed studies. In this paper, it is presented an improved version of a generalization of the Bateman equation that allows performing analysis at equilibrium for a large number of systems. It is shown that the method reproduces very well the results obtained with full depletion calculations. The method is applied to explore the specific issue of the features of the fuel cycle parameters related to fast reactors with different fuel types, different conversion ratios (CR) and different ratios of Pu over minor actinide (Pu/MA) in the fuel feed. As an example of the potential impact of such analysis, it is shown that for cores with CR below {approx}0.8, the increase of neutron doses and decay heat can represent a significant drawback to implement the corresponding reactors and associated fuel cycles.

  3. Fuel cycle analysis of TRU or MA burner fast reactors with variable conversion ratio using a new algorithm at equilibrium

    International Nuclear Information System (INIS)

    Partitioning and Transmutation (P and T) strategies assessment and implementation play a key role in the definition of advanced fuel cycles, in order to insure both sustainability and waste minimization. Several options are under study worldwide, and their impact on core design and associated fuel cycles are under investigation, to offer a rationale to down selection and to streamline efforts and resources. Interconnected issues like fuel type, minor actinide content, conversion ratio values, etc. need to be understood and their impact quantified. Then, from a practical point of view, studies related to advanced fuel cycles require a considerable amount of analysis to assess performances both of the reactor cores and of the associated fuel cycles. A physics analysis should provide a sound understanding of major trends and features, in order to provide guidelines for more detailed studies. In this paper, it is presented an improved version of a generalization of the Bateman equation that allows performing analysis at equilibrium for a large number of systems. It is shown that the method reproduces very well the results obtained with full depletion calculations. The method is applied to explore the specific issue of the features of the fuel cycle parameters related to fast reactors with different fuel types, different conversion ratios (CR) and different ratios of Pu over minor actinide (Pu/MA) in the fuel feed. As an example of the potential impact of such analysis, it is shown that for cores with CR below ∼0.8, the increase of neutron doses and decay heat can represent a significant drawback to implement the corresponding reactors and associated fuel cycles.

  4. ABR Examinations: The Why, What, and How

    International Nuclear Information System (INIS)

    The American Board of Radiology (ABR) has provided certification for diagnostic radiologists and other specialists and subspecialists for more than 75 years. The Board certification process is a tangible expression of the social contract between the profession and the public by which the profession enjoys the privilege of self-regulation and the public is assured that it can expect medical professionals to put patients' interests first, guarantees the competence of practitioners, and guards the public health. A primary tool used by the ABR in fulfilling this responsibility is the secure proctored examination. This article sets forth seven standards based on authoritative sources in the field of psychometrics (the science of mental measurements), and explains in each case how the ABR implements that standard. Readers are encouraged to understand that, despite the multiple opinions that may be held, these standards developed over decades by experts using the scientific method should be the central feature in any discussion or critique of examinations given for the privilege of professional practice and for safeguarding the public well-being

  5. ABR Examinations: The Why, What, and How

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Gary J.; Bosma, Jennifer L., E-mail: jbosma@theabr.org; Guiberteau, Milton J.; Gerdeman, Anthony M.; Frush, Donald P.; Borgstede, James P.

    2013-10-01

    The American Board of Radiology (ABR) has provided certification for diagnostic radiologists and other specialists and subspecialists for more than 75 years. The Board certification process is a tangible expression of the social contract between the profession and the public by which the profession enjoys the privilege of self-regulation and the public is assured that it can expect medical professionals to put patients' interests first, guarantees the competence of practitioners, and guards the public health. A primary tool used by the ABR in fulfilling this responsibility is the secure proctored examination. This article sets forth seven standards based on authoritative sources in the field of psychometrics (the science of mental measurements), and explains in each case how the ABR implements that standard. Readers are encouraged to understand that, despite the multiple opinions that may be held, these standards developed over decades by experts using the scientific method should be the central feature in any discussion or critique of examinations given for the privilege of professional practice and for safeguarding the public well-being.

  6. Track 5: safety in engineering, construction, operations, and maintenance. Reactor physics design, validation, and operating experience. 5. A Negative Reactivity Feedback Device for Actinide Burner Cores

    International Nuclear Information System (INIS)

    per atmosphere increase in pressure. 4. This lifts the floats higher into the core above their equilibrium position at hot full power. 5. The increased neutron absorption produces a negative reactivity feedback. 6. The surrounding primary coolant keeps all boundaries at nearly constant temperature. The ex-core helium has very low energy absorption, plus good heat transfer, which helps maintain constant temperature and pressure. The neutron absorber floats are thin metal tubes that contain a rhenium slug, as a high-capture cross-section ballast, and an upper section of 10B4C pellets. The tops and bottoms of the floats are rounded to guard against sticking inside the riser tubes. The top of the float is vented through a porous disk into the cool helium plenum to allow the helium produced in 10B capture to escape. The absorber float is cooled by conduction through the LBE bath, and guide-tube wall, into the ambient LBE primary coolant. Whole-core Monte Carlo calculations for RFDs substituted for the central void tube in 20% of the streaming fuel assemblies proposed for actinide burner cores in Ref. 1 indicate a steady- state reactivity power feedback coefficient exceeding -1 c/% power, which is better than that of sodium-cooled integral fast reactor (IFR)-type cores (at approximately 20.5 c/%) and about half of that of oxide-fueled fast breeder reactors (FBRs). However, the RFD feedback is considerably slower following a step power increase: Preliminary estimates suggest a factor of 5 slower than the oxide fuel Doppler reactivity insertion rate. Nevertheless, this may be adequate since the reactors in question can be designed to have no obvious large, rapid reactivity insertion accidents to cope with. Much remains to be done to refine and optimize this concept. Among necessary evaluations are seismic response, the consequences of gas plenum failure, and reactivity insertion by the automatic RFD withdrawal following a power reduction, safety scram in particular. Various

  7. Thermionic cogeneration burner assessment

    International Nuclear Information System (INIS)

    Both electric power and high-temperature flue gas can be cogenerated by combining a furnace burner with thermionic converters, forming a thermionic cogeneration burner. To assess the performance and cost of such a burner, a one-for-one replacement, bolt-on burner, which could be used in most industrial applications, was designed in detail. It was analyzed and parametric performance data was derived from a mathematical model. Details of the design analysis, as well as an economic evaluation of installed cost ($/kW) and internal rate-of-return, are presented

  8. [Nitrogen removal performance of ANAMMOX ABR process in tannery wastewater treatment].

    Science.gov (United States)

    Zeng, Guo-Qu; Jia, Xiao-Shan

    2014-12-01

    Anaerobic ammonium-N removal from tannery wastewater was investigated using a lab-scale anaerobic baffled reactor (ABR). The results indicated that ABR could be used as a good anaerobic ammonium oxidation reactor, the stable and effective performance of ammonium-N and COD removal from tannery wastewater was demonstrated in the ANAMMOX ABR. When the NH4(+) -N concentration of the influents were in the range of 25.0 mg x L(-1) to 76.2 mg x L(-1) and COD ranged from 131 mg x L(-1) to 237 mg x L(-1), under the volumetric loading of 0.05 kg x (m3 x d)(-1) to 0.15 kg x (m3 x d)(-1), the NH4(+)-N and COD of the effluents were from 0.20 mg x L(-1) to 7.12 mg x L(-1) and from 35.1 mg x L(-1) to 69.2 mg x L(-1), respectively, and the removal efficiency of NH4(+) -N and COD were 90.8% to 99.6% and 66.9% to 74.7%, respectively. In addition, the brown-red, brown-yellow, red granular sludges were developed in ABR. SEM observation confirmed the presence of ANAMMOX bacteria in granular sludge of all four compartments of ANAMMOX ABR. According to FISH results, ANAMMOX bacteria had grown in all four compartments to various degrees during the acclimatization and running process, the percentage of ANAMMOX bacteria in sludge increased from 4% to 9%, 8%, 12% and 30% in compartment 1, compartment 2, compartment 3 and compartment 4, respectively, and a higher population percentage of ANAMMOX bacteria existed in the rear than in the front compartments. PMID:25826933

  9. A computer code for analysis of core transient behavior in a Na-cooled metal fuel fast reactor

    International Nuclear Information System (INIS)

    The core transient behavior calculation code 'EXCURS' for a Na-cooled oxide fuel fast reactor was modified for the application to a Na-cooled metal fuel fast reactor (LMR). The results of the core transient behavior calculated with the modified EXCURS were compared with those calculated by ANL for EBR-II and also compared with those by CRIEPI for 1000MWe-LMR. These calculations agreed quite well. The modified EXCURS, therefore, can be used for analysing the core transient behavior of LMR. In a design study of actinide burner reactors (ABR), the analysis of core transient behavior is important from the viewpoint of safety. The ULOF and UTOP analyses for a Na-cooled metal fuel ABR (M-ABR) were carried out using the modified EXCURS. The effect of heat conductivity of fuel and that of feedback reactivity coefficients on the core transient behavior were also evaluated. It is calculated that the maximum temperature of fuel is strongly affected by flowering reactivity coefficient, delayed neutron fraction and heat conductivity of fuel in this order. (author)

  10. Biological Imaging Capability in the ABRS Facility on ISS

    Science.gov (United States)

    Cox, David R.; Murdoch, T.; Regan, M. F.; Meshlberger, R. J.; Mortenson, T. E.; Albino, S. A.; Paul, A. L.; Ferl, R. J.

    2010-01-01

    This slide presentation reviews the Advanced Biological Research System (ABRS) on the International Space Station (ISS) and its biological imaging capability. The ABRS is an environmental control chamber. It has two indpendently controlled Experiment Research Chambers (ERCs) with temperature, relative humidity and carbon dioxide controls. ABRS is a third generation plant growth system. Several experiments are reviewed, with particular interest in the use of Green Fluorescent Protein (GFP) a non-destructive plant stress reporting mechanism, naturally found in jellyfish.

  11. Combustor burner vanelets

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, Benjamin (Greer, SC); Varatharajan, Balachandar (Loveland, OH); Kraemer, Gilbert Otto (Greer, SC); Yilmaz, Ertan (Albany, NY); Zuo, Baifang (Simpsonville, SC)

    2012-02-14

    The present application provides a burner for use with a combustor of a gas turbine engine. The burner may include a center hub, a shroud, a pair of fuel vanes extending from the center hub to the shroud, and a vanelet extending from the center hub and/or the shroud and positioned between the pair of fuel vanes.

  12. Downhole burner for wells

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, H.; Hazard, H.R.; Hummell, J.D.; Schulz, E.J.

    1966-03-22

    This is a downhole gas and air burner for use in wells to stimulate production. The combustible mixture is supplied to the combustion chamber of the downhole burner through a delivery tube. This tube includes a flow-back preventer and a check valve. The flashback preventers consist of a porous material which has restricted flow paths. The check valve controls the flow of combustible mixture to the combustion chamber and prevents undesirable pulsating flow through the combustion chamber and the delivery tube. The check valve also prevents flooding of the combustion chamber by well fluid. The burner is ignited electrically. The porous material can be flat strip or a conically shaped piece of thin porous metal.

  13. Physical-chemical and operational performance of an anaerobic baffled reactor (ABR treating swine wastewater = Desempenho físico-químico e operacional de um reator anaeróbio compartimentado (RAC como tratamento biológico preliminar de efluentes de suinocultura

    Directory of Open Access Journals (Sweden)

    Erlon Lopes Pereira

    2010-10-01

    Full Text Available Since hog raising concentrates a huge amount of swine manure in smallareas, it is considered by the environmental government organizations to be one of the most potentially pollutant activities. Therefore the main objective of this research was to evaluate by operational criteria and removal efficiency, the performance of a Anaerobic Baffled Reactor (ABR, working as a biological pre-treatment of swine culture effluents. The physical-chemical analyses carried out were: total COD, BOD5, total solids (TS, fix (TFS and volatiles (TVS, temperature, pH, total Kjeldahl nitrogen, phosphorus, total acidity and alkalinity. The ABR unit worked with an average efficiency of 65.2 and 76.2%, respectively, concerning total COD and BOD5, with a hydraulic retention time (HRT about 15 hours. The results for volumetric organic loading rate (VOLR, organic loading rate (OLR andhydraulic loading rate (HLR were: 4.46 kg BOD m-3 day-1; 1.81 kg BOD5 kg TVS-1 day-1 and 1.57 m3 m-3 day-1, respectively. The average efficiency of the whole treatment system for total COD and BOD5 removal were 66.5 and 77.8%, showing an adequate performancein removing the organic matter from swine wastewater.A suinocultura por ser uma atividade pecuária concentradora de dejetos em pequenas áreas é considerada, pelos órgãos de gerência ambiental, como uma das atividades mais degradadoras do meio ambiente. Nesta pesquisa objetivou-se, por conseguinte, avaliar a utilização de um reator anaeróbio compartimentado (RAC, como unidade de prétratamento de um reator tipo UASB, em escala piloto, na adequação ambiental dos efluentes de suinocultura, avaliando critérios operacionais e a eficiência. As análises físico-químicasrealizadas foram: DQOtotal, DBO5, sólidos totais (ST, fixos (SF e voláteis (SV, temperatura, pH, nitrogênio total Kjeldahl, fósforo, acidez total e alcalinidade. A unidade RAC trabalhou com eficiência de 65,2 e 76,2% para a remoção de DQOtotal e DBO5

  14. Fundamental studies on porous flame reactors for minimizing pollutant emissions of premix burners. Continued report; Grundlagenuntersuchungen an poroesen Flammenreaktoren zur Minimierung von Schadgasemissionen bei der vorgemischten Verbrennung. Fortsetzungsbericht

    Energy Technology Data Exchange (ETDEWEB)

    Durst, F.; Moessbauer, S.

    2001-01-31

    The report summarizes investigations of effective heat transport processes inside highly porous solid structures. These heat transport processes are of decisive importance for the pore burner technology developed at Erlangen-Nuremberg University. A test stand was set up for recording the two-dimensional temperature field of cross-flowed solid structures. [German] Der vorliegende Bericht fasst Arbeiten zusammen, die sich mit der Bestimmung effektiver Waermetransportvorgaenge im Inneren von hochporoesen Festkoerperstrukturen befassen. Diese Waermetransportvorgaenge sind entscheidend fuer die Vorteile der am Lehrstuhl fuer Stroemungsmechanik der Friedrich-Alexander-Universitaet Erlangen-Nuernberg entwickelten Porenbrennertechnologie. Um diese Vorteile besser zu nutzen und um diese neuartige Technologie weiter verbessern zu koennen, ist es erforderlich, dass die ablaufenden Waermetransportvorgaenge im Inneren von hochporoesen Strukturen im Detail verstanden werden. Zu diesem Zweck wurde ein Versuchsstand erstellt, mit dem das zweidimensionale Temperaturfeld von durchstroemten Festkoerperstrukturen erfasst werden kann. (orig.)

  15. Flat flame burner

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Y.; Mitsudomi, H.

    1976-02-24

    Osaka Gas Co., Ltd.'s new flat-flame heat-treatment burner offers lower material costs, reduced combustion noise, and elimination of the need for a high-pressure fuel gas to provide a high-velocity combustion burner. The flat-flame burner contains an air-swirling chamber with a flame opening in one side; the wall defining the flame opening has a small thickness around the opening and a flat outer face. This construction causes the combustion gas to be forced out from the flame opening in a spiral direction by the swirling air current within the air chamber; together with the orifice effect of permitting the flame to emanate from a small opening to an unconfined outer space, this helps assure the formation of a flat flame spreading out over a very wide area for very rapid, uniform, and highly efficient heat treatment of an article to be heated. This approach also permits the thickness of the overall device to be reduced. The supply of combustion air in the form of a swirling stream makes it possible to provide a high-velocity combustion burner without using a high-pressure fuel gas, with the advantage of satisfactory mixture of the fuel gas and combustion air and consequently markedly reduced combustion noise.

  16. Desempenho de processo anaeróbio em dois estágios (reator compartimentado seguido de reator UASB) para tratamento de águas residuárias de suinocultura Performance of two-stage anaerobic process (baffled reactor (ABR) followed by an upflow sludge blanket reactor (UASB)) treating swine wastewater

    OpenAIRE

    Gracie F. R. Fernandes; Roberto A. de Oliveira

    2006-01-01

    Avaliou-se o efeito das águas residuárias de suinocultura com concentrações de sólidos suspensos totais em torno de 6.000 mg L-1 (DQOtotal variando de 7.557 a 11.640 mg L-1) no desempenho de processo anaeróbio em dois estágios compostos por reator compartimentado (ABR) e reator de fluxo ascendente com manta de lodo (UASB), instalados em série, em escala-piloto (volumes de 530 e 120 L, respectivamente), submetidos a tempos de detenção hidráulica (TDH) de 56 a 18 h no primeiro reator e de 13 a ...

  17. An improved method for fuel cycle analysis at equilibrium and its application to the study of fast burner reactors with variable conversion ratio

    International Nuclear Information System (INIS)

    Studies related to advanced fuel cycles require a considerable amount of analysis to assess performances both of the reactor cores and of the associated fuel cycles. A physics analysis should provide a sound understanding of major trends and features, in order to provide guidelines for detailed studies. In this paper we present an improved version of a generalization of the Bateman equation that allows performing analysis at equilibrium for a large number of systems. It is shown that the method reproduces very well the results obtained with full depletion calculations. The method is applied to explore the features of the fuel cycles parameters related to fast reactors with different fuel types, different conversion ratios (CR) and different MA/Pu ratios in the fuel feed. It is shown that for cores with CR below ∼0.8, the increase of neutron doses and decay heat can represent a significant drawback to implement the corresponding reactors and associated fuel cycles. (authors)

  18. Source Behavior for ATM ABR Traffic Management: An Explanation

    OpenAIRE

    Jain, Raj; Kalyanaraman, Shiv; Fahmy, Sonia; Goyal, Rohit; Kim, S.

    1998-01-01

    The Available Bit Rate (ABR) service has been developed to support data applications over Asynchronous Transfer Mode (ATM) networks. The network continuously monitors its traffic and provides feedback to the source end systems. This paper explains the rules that the sources have to follow to achieve a fair and efficient allocation of network resources.

  19. Oil burner nozzle

    Science.gov (United States)

    Wright, Donald G.

    1982-01-01

    An oil burner nozzle for use with liquid fuels and solid-containing liquid fuels. The nozzle comprises a fuel-carrying pipe, a barrel concentrically disposed about the pipe, and an outer sleeve retaining member for the barrel. An atomizing vapor passes along an axial passageway in the barrel, through a bore in the barrel and then along the outer surface of the front portion of the barrel. The atomizing vapor is directed by the outer sleeve across the path of the fuel as it emerges from the barrel. The fuel is atomized and may then be ignited.

  20. P and T: An option for spent fuel and waste management using a double strata fuel cycle with a dedicated waste burner reactor

    International Nuclear Information System (INIS)

    The present commercial reactors (LWR, CANDU, etc.) operate in a Once Through Fuel Cycle OTC, and based in a feed of uranium. From around 400 operating reactors a large stock pile of radioactive waste are being produced, mainly long lived TRU- Plutonium, MA( Am, Np, Cm), and Long Lived Fission Products, LLFP, such as I-129, Tc- 99, Cs-135 etc. It is estimated around 300,000 t of the spent fuel be produced in this decade, with 1% of Pu (3,000 tons), 0.1% MA, 300 t, and 400 tons of LLFP. The build up of radioactive stock piles, besides the concern of waste disposal, also brings the issue of proliferation. To overcome these issues, the next generations of nuclear reactors are considering concepts that coupled with a closed fuel cycles in many new initiatives, such as GIF and INPRO. This is the main point to note, that is P and T is sustainable option for spent fuel and HLW management, considering the renascence of Nuclear Energy for the next decades. Some issues such as safety, economics had already been almost solved. The contribution of nuclear energy to avoid the threat of global warming due to CO2 emissions in short term is also a positive point. So the only point which still remains as a controversy issue for a complete acceptance of Nuclear Energy, is what is going to be done with the HLW (long term hazard). There is a need to give answers acceptable for the public, and as established in the Joint Convention for Safety Spent Fuel Management and Radioactive Waste Management to protect the people, the society, and the environment presently and in the future in such way that the needs from present generation be satisfied without compromising the future needs of the future generations. The scheme shown in this presentation, summarizes almost all possibilities of waste and spent fuel management. At present OTC cycle, only uranium is being used as fuel. The first point is that the utilization of thorium fuel cycle is an option to reduce long lived radio toxicity and

  1. Partial Nitrification and Denitrifying Phosphorus Removal in a Pilot-Scale ABR/MBR Combined Process.

    Science.gov (United States)

    Wu, Peng; Xu, Lezhong; Wang, Jianfang; Huang, Zhenxing; Zhang, Jiachao; Shen, Yaoliang

    2015-11-01

    A pilot-scale combined process consisting of an anaerobic baffled reactor (ABR) and an aerobic membrane bioreactor (MBR) for the purpose of achieving easy management, low energy demands, and high efficiencies on nutrient removal from municipal wastewater was investigated. The process operated at room temperature with hydraulic retention time (HRT) of 7.5 h, recycle ratio 1 of 200%, recycle ratio 2 of 100%, and dissolved oxygen (DO) of 1 mg/L and achieved good effluent quality with chemical oxygen demand (COD) of 25 mg/L, NH4 (+)-N of 4 mg/L, total nitrogen (TN) of 11 mg/L, and total phosphorus (TP) of 0.7 mg/L. The MBR achieved partial nitrification, and NO2 (-)-N has been accumulated (4 mg/L). Efficient short-cut denitrification was occurred in the ABR with a TN removal efficiency of 51%, while the role of denitrification and phosphorus removal removed partial TN (14%). Furthermore, nitrogen was further removed (11%) by simultaneous nitrification and denitrification in the MBR. In addition, phosphorus accumulating organisms in the MBR sufficiently uptake phosphorus; thus, effluent TP further reduced with a TP removal efficiency of 84%. Analysis of fluorescence in situ hybridization (FISH) showed that ammonia oxidizing bacteria (AOB) and phosphorus accumulating organisms (PAOs) were enriched in the process. In addition, the accumulation of NO2 (-)-N was contributed to the inhibition on the activities of the NOB rather than its elimination. PMID:26411352

  2. Radial lean direct injection burner

    Science.gov (United States)

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  3. Optimisation of efficiency and emissions in pellet burners

    International Nuclear Information System (INIS)

    There is a trade-off between the emissions of nitrogen oxides (NOx) and of unburnt hydrocarbons and carbon monoxide (OGC and CO). Decreasing the excess air results in lower NOx emission but also increased emission of unburnt. The efficiency increases, as the excess air is decreased until the losses due to incomplete combustion become too high. The often-high NOx emission in today's pellet burners can be significantly reduced using well-known techniques such as air staging. The development of different chemical sensors is very intensive and recently sensors for CO and OGC have been introduced on the market. These sensors may, together with a Lambda sensor, provide efficient control for optimal performance with respect to emissions and efficiency. In this paper, results from an experimental parameter study in a modified commercial burner, followed by Chemkin simulations with relevant input data and experiments in a laboratory reactor and in a prototype burner, are summarised. Critical parameters for minimisation of NOx emission from pellet burners are investigated in some detail. Also, results from tests of a new sensor for unburnt are reported. In conclusion, relatively simple design modifications can significantly decrease NOx emission from today's pellet burners

  4. Low NO sub x regenerative burner

    Energy Technology Data Exchange (ETDEWEB)

    Hovis, J.E.; Finke, H.P.

    1991-01-08

    This patent describes improvements in a regenerative burner having a regenerative bed, a burner port and a fuel nozzle. The improvement comprises: a burner baffle having apertures therein for selectively directing combustion air and inducing combustion gas recirculation into a primary combustion zone for suppressing NO{sub x} emissions, the baffle and the fuel nozzle being positioned substantially adjacent the burner port and being substantially coplanar in a plane perpendicular to a burner axis.

  5. Flat flame burner

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Y.; Mitsudomi, H.

    1976-03-09

    Osaka Gas Co., Ltd.'s new flat-flame burner has an air-swirling chamber with a flame opening in one side so constructed that combustion gas is forced out from the flame opening in a spiral direction by the swirling air current within the air chamber. The orifice effect of permitting the flame to emanate from a small opening to an unconfined outer space assures formation of a flat flame spreading out over a very wide area, thereby ensuring very rapid, uniform and highly efficient heat treatment of an article to be heated. With the present invention, moreover, it is possible to materially reduce the thickness of the overall device.

  6. Catalyzed Ceramic Burner Material

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Amy S., Dr.

    2012-06-29

    Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant

  7. Fusion-Fission Burner for Transuranic Actinides

    Science.gov (United States)

    Choi, Chan

    2013-10-01

    The 14-MeV DT fusion neutron spectrum from mirror confinement fusion can provide a unique capability to transmute the transuranic isotopes from light water reactors (LWR). The transuranic (TRU) actinides, high-level radioactive wastes, from spent LWR fuel pose serious worldwide problem with long-term decay heat and radiotoxicity. However, ``transmuted'' TRU actinides can not only reduce the inventory of the TRU in the spent fuel repository but also generate additional energy. Typical commercial LWR fuel assemblies for BWR (boiling water reactor) and PWR (pressurized water reactor) measure its assembly lengths with 4.470 m and 4.059 m, respectively, while its corresponding fuel rod lengths are 4.064 m and 3.851 m. Mirror-based fusion reactor has inherently simple geometry for transmutation blanket with steady-state reactor operation. Recent development of gas-dynamic mirror configuration has additional attractive feature with reduced size in central plasma chamber, thus providing a unique capability for incorporating the spent fuel assemblies into transmutation blanket designs. The system parameters for the gas-dynamic mirror-based hybrid burner will be discussed.

  8. Process development report: 0.40-m primary burner system

    International Nuclear Information System (INIS)

    Fluidized bed combustion is required in reprocessing the graphite-based fuel elements from high-temperature gas-cooled reactor (HTGR) cores. This burning process requires combustion of beds containing both large particles and very dense particles, and also of fine graphite particles which elutriate from the bed. This report documents the successful long-term operation of the 0.40-m primary burner in burning crushed fuel elements. The 0.40-m system operation is followed from its first short heatup test in September 1976 to a > 40-h burning campaign that processed 20 LHTGR blocks in September 1977. The 0.40-m perforated conical gas distributor, scaled up from the 0.20-m primary burner, has proven reliable in safely burning even the largest, densest adhered graphite/fuel particle clusters originating from the crushing of loaded fuel elements. Such clusters had never been fed to the 0.20-m system. Efficient combustion of graphite fines using the pressurized recycle technique was demonstrated throughout the long-duration operation required to reduce a high carbon fresh feed bed to a low carbon particle bed. Again, such operation had never been completed on the 0.20-m system from which the 0.40-m burner was scaled. The successful completion of the tests was due, in part, to implementation of significant equipment revisions which were suggested by both the initial 0.40-m system tests and by results of ongoing development work on the 0.2-m primary burner. These revisions included additional penetrations in the burner tube side-wall for above-bed fines recycle, replacement and deletion of several metal bellows with bellows of more reliable design, and improvements in designs for burner alignment and feeder mechanisms. 76 figures, 8 tables

  9. Regenerative ceramic burner has highest efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Gettings, M.

    1986-01-01

    Regenerative ceramic burners consisting of a double gas/air burner and utilising waste heat which is stored via regenerators are described. The system is capable of operating at 1400/sup 0/C, it removes about 85-90% of energy from hot waste gases and exhibits energy savings of 40-60% over cold nozzle mix burners and 20-25% over recuperative burners. (UK).

  10. ABR and auditory P300 findings inchildren with ADHD

    Directory of Open Access Journals (Sweden)

    Schochat Eliane

    2002-01-01

    Full Text Available Auditory processing disorders (APD, also referred as central auditory processing disorders (CAPD and attention deficit hyperactivity disorders (ADHD have become popular diagnostic entities for school age children. It has been demonstrated a high incidence of comorbid ADHD with communication disorders and auditory processing disorder. The aim of this study was to investigate ABR and P300 auditory evoked potentials in children with ADHD, in a double-blind study. Twenty-one children, ages between 7 and 10 years, with a primary diagnosis of ADHD, participated in this experiment. Results showed that all children had normal ABR with normal latency for wave V. Results also showed that among 42 ears combined 52.38% did not have P300. For the medicated subjects we observed that among 28 ears, 42.85% did not have P300 and for the non-medicated 71.43% (N = 14 ears did not have P300. Our results suggest that the medicated subjects had more presence of P300 (57.15% than the non-medicated group (28.57%, though the absence of these potentials were high among the group - 52.38%.

  11. A gas burner device for highspeed heating

    Energy Technology Data Exchange (ETDEWEB)

    Nosach, V.G.; Danchenko, V.N.; Zanemonets, V.F.

    1979-01-01

    The design and the results of the investigations of gas burners with porous cooling by fire Pv of two forms: a gas burner which makes it possible to organize the process of the burning for Pv heating, and a gas burner creating a stream of combustion products.

  12. The Case for Integrating Nuclear Material /Waste Management into Reactor Development for the Modular Helium-Cooled Reactor (MHR)

    International Nuclear Information System (INIS)

    The demonstrated MHR fuel capability to consume weapon-grade Plutonium (w-Pu) to better than 90% (>700,000 MWD/ton burnup, more than 10 times the burnup possible in LWRs) forms the basis for the inclusion of the MHR in the DOE-NNSA program to destroy w-Pu. Transuranics extracted from LWR spent fuel (a mixture of Plutonium, Neptunium, Americium and Curium) can also be destroyed to a similar extent in the MHR, providing a natural GNEP (Global Nuclear Energy Partnership) role for the MHR together with the fast spectrum Advanced Burner Reactor (ABR). The MHR high-burnup disposition concept (Deep Burn) has been proposed by General Atomics and positively evaluated by National Laboratories and academic researchers for destruction of w-Pu and the transuranic waste from LWRs, as recently proposed in a GNEP expression of interest (EOI). The appropriate MHR core and fuel designs are expected to be substantially identical and easily testable in the reactor considered by DOE for construction at the Idaho National Laboratory site (NGNP)

  13. Performance analysis of the 840 MWt PRISM reference burner core

    International Nuclear Information System (INIS)

    The General Electric PRISM (Power Reactor, Innovative Small Module) is a modular, pool-type sodium-cooled fast reactor employing innovative, passive features to provide an extremely high level of public safety. A PRISM power block consists of two 840 MWt reactor modules, each with a vessel diameter of 9.15 m (30 ft), tied to a turbine generator and producing 622 MWe. A full-size plant consists of three power blocks producing 1866 MWe of electrical power. Two core configurations have been analyzed. The reference is a 'burner' core (conversion ratio of 0.8) and the alternative is a breakeven' core (plutonium consumption balanced by plutonium generation). The core nuclear designs are largely governed by passive safety and reactivity control issues. The key features employed to produce the desired passive safety characteristics are: a small core with a tight restraint system, the use of metallic U-Pu-Zr fuel, control rod withdrawal limiters (rod stops) and gas expansion modules (GEMs). A passive reactor vessel auxiliary cooling system (RVACS) assures safety-grade decay heat removal. This paper summarizes the operational and safety performance of the 840 MWt PRISM modular reactor, with emphasis on the reference burner core. (author)

  14. ABR-生物接触氧化法处理果汁废水实验分析%Study on Juice Wastewater Treatment by ABR-Biological Contact Oxidation Process

    Institute of Scientific and Technical Information of China (English)

    王晓玉; 樊萍; 芦艳

    2011-01-01

    Anaerobic Baffled Reactor (ABR) is a new and high-efficiency anaerobic reactor with many advantages such as straightforward process, low construction costs, convenient operation and management, effective solid-liquid separation, highquality outlet water, stable and reliable operation, strong adaptability to toxic substances, etc. It is a new technology for biological wastewater treatment and has vast foreground on development and application. The most important feature of ABR is set next baffled in the direction of flow turn into a series of chambers so that the microbial populations along the length direction of achieving different compartment acid production and the production of methane phase separation. The reactor is simple in structure, strong in sludge retaining ability, stable treatme.nt system and easy in operation and management. This paper summarized the application of ABR and the combination of ABR with other processes in juice wastewater treatment.%厌氧式折流反应器(Anaerobic Baffled Reactor,简称ABR)是一种新型高效厌氧反应器,具有工艺技术简单、建设投资费用低、运行管理方便、固液分离效果好、出水水质好、运行稳定可靠、对有毒物质适应性强等优点,是一种极具开发应用前景的废水生物处理新技术。ABR最大的特点是在反应器中设置上下折流板而在水流方向上形成依次串联的隔室,从而使其中的微生物种群沿长度方向的不同隔室实现产酸和产甲烷相的分离。该反应器具有结构简单,截留污泥能力强,系统处理效果稳定,运行管理方便等优点。分析了ABR及ABR与其它工艺的联合在果汁废水处理方面的应用。

  15. Core Function Changes from a Breakeven Core to a TRU Burner Core

    International Nuclear Information System (INIS)

    A 600MWe sodium cooled fast reactor named as KALIMER-600 has been developed with a single enrichment fuel. This reactor is a pool-type reactor with a 1,523MW thermal power. The core is loaded with a ternary metallic fuel of 15 w/o TRU enriched TRU-U- 10Zr and it is designed to have breakeven breeding characteristics (CR∼1.0). However, a new demand is how to solve a spent fuel disposal problem because nuclear spent fuel storages shall become full by 2016 year. Therefore, a TRU burner concept which can burn out spent fuel actively is needed instead of a breakeven reactor concept. After all spent fuels from LWRs are burned, another issue may be that a TRU burner can not be operated in a breakeven mode any more. In order to overcome this problem, a new concept, a core function change is proposed in this paper. A reactor will operate as a TRU burner at first and then, will play the role of a breakeven core without any core layout change which does not need TRU supply. Since the nuclear conceptual design of a breakeven core - KALIMER-600 is already finished, TRU burner concepts are based on the KALIMER-600 breakeven core and its safety parameters are asked to be compatible with those of the KALIMER- 600 breakeven core

  16. Regenerative burner generates more savings

    Energy Technology Data Exchange (ETDEWEB)

    Swinden, D.

    The latest developments in high-efficiency gas-fired burners are traced, and the transfer of the new technology from laboratory to industry is outlined. The system described depends on the ceramic regenerator reducing the flue gas temperature so that conventional cold air fans can be used and on a packing of alumina balls to recover 90% of the available heat in waste gases.

  17. Evaluation of wavelet techniques in rapid extraction of ABR variations from underlying EEG

    International Nuclear Information System (INIS)

    The aim of this study is to analyse an effective wavelet method for denoising and tracking temporal variations of the auditory brainstem response (ABR). The rapid and accurate extraction of ABRs in clinical practice has numerous benefits, including reductions in clinical test times and potential long-term patient monitoring applications. One method of achieving rapid extraction is through the application of wavelet filtering which, according to earlier research, has shown potential in denoising signals with low signal-to-noise ratios. The research documented in this paper evaluates the application of three such wavelet approaches on a common set of ABR data collected from eight participants. We introduced the use of the latency–intensity curve of ABR wave V for performance evaluation of tracking temporal variations. The application of these methods to the ABR required establishing threshold functions and time windows as an integral part of the research. Results revealed that the cyclic-shift-tree-denoising performed superior compared to other tested approaches. This required an ensemble of only 32 epochs to extract a fully featured ABR compared to the 1024 epochs with conventional ABR extraction based on linear moving time averaging

  18. Fitting model of ABR age dependency in a clinical population of normal hearing children

    OpenAIRE

    Coenraad, Saskia; Immerzeel, Tabitha; Hoeve, Hans; Goedegebure, Andre

    2010-01-01

    textabstractThe purpose of this study was to present a simple and powerful fitting model that describes age-dependent changes of auditory brainstem responses (ABR) in a clinical population of normal hearing children. A total of 175 children (younger than 200 weeks postconceptional age) were referred for audiologic assessment with normal ABR results. ABR parameters of normal hearing children between 2003 and 2008 were included. The results of the right ears recorded at 90 dB nHL were analyzed....

  19. Disposition of weapon-grade plutonium with pebble bed type HTGRs using Pu burner balls and Th breeder balls

    International Nuclear Information System (INIS)

    A concept of reactor system was developed with which weapons-grade plutonium could be made perfectly worthless in use for weapons. It is a pebble bed type HTGR using Pu burner ball fuels and Th breeder ball fuels. The residual amounts of 239Pu in spent Pu balls become less than 1% of the initial loading. Furthermore, a method was found that the power coefficient could be made negative by heavy Pu loading in the Pu burner ball fuels

  20. Tests of gas-blast burners

    International Nuclear Information System (INIS)

    Testing of the most sold small gas-blast burners on the Danish market was carried out with regard to carbon monoxide emission contra the content of oxygen in the flue gas in relation to the burners' combustion stability at varying fire box pressures. The burners tested were Weishaupt WG 1: DG no. 2506, Riello 40 GS3: DG no. 2722, Bentone BEG 15: DG no. 2153 and Box 1 G: no. 1104. This covers 90% of the Danish market for gas burners. It was concluded that all the burners had a broader area of adjustment possibilities without carbon monoxide emission than previously tested box burners. This with the exception of when surplus oxygen is low, where large of amounts of carbon monoxide are generated at an oxygen content in flue gas of ca. 2% (10.8% CO2). Burners in which the total pressure in the blower was high were the most stable with regard to air supply and varying fire-box pressure. It is pointed out that other conditions of design have also influence in this respect. In the cases of Weishaupt, Bentone and Riello burners there is a significant relation between blast pressure and oxygen content in the flue gas, whereas in the case of the Box burner, the percentage of oxygen in the flue gas rises in relation to increased pressure in the smoke outlet. The results of the tests are presented in great detail. (AB)

  1. Process development report: 0. 20-m secondary burner system

    Energy Technology Data Exchange (ETDEWEB)

    Rickman, W.S.

    1977-09-01

    HTGR fuel reprocessing consists of crushing the spent fuel elements to a size suitable for burning in a fluidized bed to remove excess graphite; separating, crushing, and reburning the fuel particles to remove the remainder of the burnable carbon; dissolution and separation of the particles from insoluble materials; and solvent extraction separation of the dissolved uranium and thorium. Burning the crushed fuel particles is accomplished in a secondary burner. This is a batch fluidized-bed reactor with in-vessel, off-gas filtration. Process heat is provided by an induction heater. This report documents operational tests performed on a commercial size 0.20-m secondary burner using crushed Fort St. Vrain type TRISO fuel particles. Analysis of a parametric study of burner process variables led to recommending lower bed superficial velocity (0.8 m/s), lower ignition temperature (600/sup 0/C), lower fluid bed operating temperature (850/sup 0/C), lower filter blowback frequency (1 cycle/minute), and a lower fluid bed superficial velocity during final bed burnout (0.45 m/s).

  2. Process development report: 0.20-m secondary burner system

    International Nuclear Information System (INIS)

    HTGR fuel reprocessing consists of crushing the spent fuel elements to a size suitable for burning in a fluidized bed to remove excess graphite; separating, crushing, and reburning the fuel particles to remove the remainder of the burnable carbon; dissolution and separation of the particles from insoluble materials; and solvent extraction separation of the dissolved uranium and thorium. Burning the crushed fuel particles is accomplished in a secondary burner. This is a batch fluidized-bed reactor with in-vessel, off-gas filtration. Process heat is provided by an induction heater. This report documents operational tests performed on a commercial size 0.20-m secondary burner using crushed Fort St. Vrain type TRISO fuel particles. Analysis of a parametric study of burner process variables led to recommending lower bed superficial velocity (0.8 m/s), lower ignition temperature (6000C), lower fluid bed operating temperature (8500C), lower filter blowback frequency (1 cycle/minute), and a lower fluid bed superficial velocity during final bed burnout

  3. Lack of bcr and abr promotes hypoxia-induced pulmonary hypertension in mice.

    Directory of Open Access Journals (Sweden)

    Min Yu

    Full Text Available BACKGROUND: Bcr and Abr are GTPase activating proteins that specifically downregulate activity of the small GTPase Rac in restricted cell types in vivo. Rac1 is expressed in smooth muscle cells, a critical cell type involved in the pathogenesis of pulmonary hypertension. The molecular mechanisms that underlie hypoxia-associated pulmonary hypertension are not well-defined. METHODOLOGY/PRINCIPAL FINDINGS: Bcr and abr null mutant mice were compared to wild type controls for the development of pulmonary hypertension after exposure to hypoxia. Also, pulmonary arterial smooth muscle cells from those mice were cultured in hypoxia and examined for proliferation, p38 activation and IL-6 production. Mice lacking Bcr or Abr exposed to hypoxia developed increased right ventricular pressure, hypertrophy and pulmonary vascular remodeling. Perivascular leukocyte infiltration in the lungs was increased, and under hypoxia bcr-/- and abr-/- macrophages generated more reactive oxygen species. Consistent with a contribution of inflammation and oxidative stress in pulmonary hypertension-associated vascular damage, Bcr and Abr-deficient animals showed elevated endothelial leakage after hypoxia exposure. Hypoxia-treated pulmonary arterial smooth muscle cells from Bcr- or Abr-deficient mice also proliferated faster than those of wild type mice. Moreover, activated Rac1, phosphorylated p38 and interleukin 6 were increased in these cells in the absence of Bcr or Abr. Inhibition of Rac1 activation with Z62954982, a novel Rac inhibitor, decreased proliferation, p38 phosphorylation and IL-6 levels in pulmonary arterial smooth muscle cells exposed to hypoxia. CONCLUSIONS: Bcr and Abr play a critical role in down-regulating hypoxia-induced pulmonary hypertension by deactivating Rac1 and, through this, reducing both oxidative stress generated by leukocytes as well as p38 phosphorylation, IL-6 production and proliferation of pulmonary arterial smooth muscle cells.

  4. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

    2001-08-20

    The proposed research is directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This fundamental research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners to the kinetic emissions limit (below 0.2 lb./MMBTU). Experimental studies include both cold and hot flow evaluations of the following parameters: flame holder geometry, secondary air swirl, primary and secondary inlet air velocity, coal concentration in the primary air and coal particle size distribution. Hot flow experiments will also evaluate the effect of wall temperature on burner performance. Cold flow studies will be conducted with surrogate particles as well as pulverized coal. The cold flow furnace will be similar in size and geometry to the hot-flow furnace but will be designed to use a laser Doppler velocimeter/phase Doppler particle size analyzer. The results of these studies will be used to predict particle trajectories in the hot-flow furnace as well as to estimate the effect of flame holder geometry on furnace flow field. The hot-flow experiments will be conducted in a novel near-flame down-flow pulverized coal furnace. The furnace will be equipped with externally heated walls. Both reactors will be sized to minimize wall effects on particle flow fields. The cold-flow results will be compared with Fluent computation fluid dynamics model predictions and correlated with the hot-flow results with the overall goal of providing insight for novel low NO{sub x} burner geometry's.

  5. Computational fluid dynamics in oil burner design

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.A. [Brookhaven National Labs., Upton, NY (United States)

    1997-09-01

    In Computational Fluid Dynamics, the differential equations which describe flow, heat transfer, and mass transfer are approximately solved using a very laborious numerical procedure. Flows of practical interest to burner designs are always turbulent, adding to the complexity of requiring a turbulence model. This paper presents a model for burner design.

  6. Transcriptional profiling of pea ABR17 mediated changes in gene expression in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Deyholos Michael K

    2008-09-01

    Full Text Available Abstract Background Pathogenesis-related proteins belonging to group 10 (PR10 are elevated in response to biotic and abiotic stresses in plants. Previously, we have shown a drastic salinity-induced increase in the levels of ABR17, a member of the PR10 family, in pea. Furthermore, we have also demonstrated that the constitutive expression of pea ABR17 cDNA in Arabidopsis thaliana and Brassica napus enhances their germination and early seedling growth under stress. Although it has been reported that several members of the PR10 family including ABR17 possess RNase activity, the exact mechanism by which the aforementioned characteristics are conferred by ABR17 is unknown at this time. We hypothesized that a study of differences in transcriptome between wild type (WT and ABR17 transgenic A. thaliana may shed light on this process. Results The molecular changes brought about by the expression of pea ABR17 cDNA in A. thaliana in the presence or absence of salt stress were investigated using microarrays consisting of 70-mer oligonucleotide probes representing 23,686 Arabidopsis genes. Statistical analysis identified number of genes which were over represented among up- or down-regulated transcripts in the transgenic line. Our results highlight the important roles of many abscisic acid (ABA and cytokinin (CK responsive genes in ABR17 transgenic lines. Although the transcriptional changes followed a general salt response theme in both WT and transgenic seedlings under salt stress, many genes exhibited differential expression patterns when the transgenic and WT lines were compared. These genes include plant defensins, heat shock proteins, other defense related genes, and several transcriptional factors. Our microarray results for selected genes were validated using quantitative real-time PCR. Conclusion Transcriptional analysis in ABR17 transgenic Arabidopsis plants, both under normal and saline conditions, revealed significant changes in abundance of

  7. Experimental study of porous metal burners for domestic stove applications

    International Nuclear Information System (INIS)

    Highlights: • The flat flame cooktop burner is experimental and analytical investigated. • The heat transfer flux can be evaluated using analytical and numerical methods. • The performance of the flat flame burners is superior to Bunsen flame type burners. • Efficiency and emissions of the flat flame burners can be well controlled. - Abstract: This paper investigates a clean and highly efficient domestic stove burner composed of a flat flame burner for cooking and water heating. The feasibility of the flat flame burner is experimentally verified by demonstrating that the flame is stabilized by a porous metal medium and by comparison with a typical Bunsen flame burner. The flame appearance, temperature distribution, relative thermal efficiency and pollution emissions in terms of Emission Index of CO (EICO) and Emission Index of NOx (EINOx) were measured and analyzed. The results show that the operating range, turndown ratio, and pollution emissions of the flat flame burners are superior to those of traditional Bunsen flame burners. The heat transfer and efficiency for both the jet flame burner and the flat flame burner can be evaluated using analytical and numerical methods. Furthermore, in contrast to traditional Bunsen flame burners, the efficiency and pollution emissions of flat flame burners are not strongly affected by the distance between the cool boundary of pot or pan and the burner exit. For domestic stove applications in particular, where different sized pots and pans are used, the efficiency and pollution emissions can be well controlled with a flat flame burner

  8. A walkthrough of the Copenhagen atomics waste burner design

    International Nuclear Information System (INIS)

    This talk will give an introduction on Copenhagen Atomics and then elaborate on Copenhagen Atomics major objectives, which is to build thorium molten salt reactors (MSR) on an assembly line preferably with the reactor core fitted in a 40 foot shipping container. The first model will be 50 MWt and it will start on a 78% LiF-22% ThF4 salt, mixed with plutonium and actinides from spent nuclear fuel (SNF). Over decades 233U in the salt will increase and eventually help to burn out long lived actinides. The plan is to locate these waste burners at the site of existing Light Water Reactors (LWR) plants to avoid SNF transport, avoid approval of new sites and take advantage of the security and power grid infrastructures. The talk will allow the audience to understand similarities and differences between the Copenhagen Atomics Waste Burner and other MSRs such as LFTR and IMSR. The main objective of Copenhagen Atomics is to convince the public that it is possible to build a machine (MSR), which can burn many of the long lived actinides out of SNF and reduce the storage time from 100.000+ years to 300 years, while at the same time produce enough energy to pay for the process and decommissioning. The heavy water cooled thorium reactor is feasible to be introduced by using Pu recovered from spent fuel of LWR, keeping continuity with current LWR infrastructure. This thorium reactor can be operated as sustainable energy supplier and also MA transmuter to realize future society with less long-lived nuclear waste. (author)

  9. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME II. SECOND GENERATION LOW-NOX BURNERS

    Science.gov (United States)

    The report describes tests to evaluate the performance characteristics of three Second Generation Low-NOx burner designs: the Dual Register burner (DRB), the Babcock-Hitachi NOx Reducing (HNR) burner, and the XCL burner. The three represent a progression in development based on t...

  10. Regenerative burner combination and method of burning a fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wills, B.J.

    1992-06-17

    Regenerative burners fire alternatively into respective radiant tubes which are closed at their ends remote from the burners. Products of combustion from each flame tube pass to the closed end of the tube and back to be exhausted from the radiant tube associated with the firing burner through a transfer duct to the other burner, where heat is extracted before the products of combustion are discharged, for heating combustion air for use when the other burner is firing. (Author).

  11. Design Strategy and Constraints for Medium-Power Lead-Alloy-Cooled Actinide Burners

    International Nuclear Information System (INIS)

    We outline the strategy and constraints adopted for the design of medium-power lead-alloy-cooled actinide-burning reactors that strive for a lower cost than accelerator-driven systems and for robust safety. Reduced cost is pursued through the use of (1) a modular design and maximum power rating to capitalize on an economy of scale within the constraints imposed by modularity, (2) a very compact and simple supercritical-CO2 power cycle, and (3) simplifications of the primary system allowed by the use of lead coolant. Excellent safety is pursued by adopting the integral fast reactor approach of achieving a self-controllable reactor that responds to all key abnormal occurrences, including anticipated transients without scrams, by a safe shutdown without exceeding core integrity limits. The three concepts developed are the fertile-free actinide burner for incineration of all transuranics from light water reactor (LWR) spent fuel, the fertile-free minor actinide (MA) burner for preferential burning of MAs working in tandem with LWRs or gas-cooled thermal reactors, and the actinide burner with thorium fuel aimed also at reducing the electricity generation costs through longer-cycle operation

  12. Deep-Burner DB-MHR: physics and computation

    International Nuclear Information System (INIS)

    The paper summarizes the studies on the Deep-Burner Modular Helium Reactor (DBMHR) concept-design of General Atomics, which have been carried-out by FRAMATOME-ANP, General Atomics and Entergy, with the valuable support of CEA, in the framework of a joint collaboration on the Reactor-Based Transmutation Program. Preliminary design studies as well as sensitivity studies and fuel-cycle studies performed both with probabilistic and deterministic methodology are described. Emphasis is put on most attractive physical and computational aspects. A survey on the current investigation on the design uncertainties, the future search for ways to improve the transmutation worth in a double-stratum strategy, and the computational tools improvement are also presented. (authors)

  13. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS; FINAL

    International Nuclear Information System (INIS)

    The focus of this program is to provide insight into the formation and minimization of NO(sub x) in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO(sub x) emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames-particularly under low NO(sub x) conditions. A CO/H(sub 2)/O(sub 2)/N(sub 2) flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state(sup 13)C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that

  14. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO{sub x} in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO{sub x} emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames--particularly under low NO{sub x} conditions. A CO/H{sub 2}/O{sub 2}/N{sub 2} flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state {sup 13}C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that

  15. Low NO[sub x] regenerative burner

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-12-01

    A joint development project between British Gas and Hotwork Development has resulted in maintaining the efficiency of a regenerative burner but without the penalty of the higher NO[sub x] emissions normally associated with combustion air preheat. (author)

  16. Regenerative burner use on reheat furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Baggley, G.W. [Bloom Engineering Co. Inc., Pittsburgh, PA (United States)

    1995-06-01

    The environmental advantages of using regenerative burner technology on steel reheat furnaces are explored in this article, in particular improved fuel energy efficiencies and reduced pollution emissions, of nitrogen oxides and carbon monoxide. Experience of the use of regenerative burners in the United States and Japan, where they have achieved significant market penetration is also described, including a case history of a top-fired billet reheat furnace installed in the United States. (UK)

  17. Process development report: 0. 40-m primary burner system. [Spent fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Young, D.T.

    1978-04-01

    Fluidized bed combustion is required in reprocessing the graphite-based fuel elements from high-temperature gas-cooled reactor (HTGR) cores. This burning process requires combustion of beds containing both large particles and very dense particles, and also of fine graphite particles which elutriate from the bed. This report documents the successful long-term operation of the 0.40-m primary burner in burning crushed fuel elements. The 0.40-m system operation is followed from its first short heatup test in September 1976 to a > 40-h burning campaign that processed 20 LHTGR blocks in September 1977. The 0.40-m perforated conical gas distributor, scaled up from the 0.20-m primary burner, has proven reliable in safely burning even the largest, densest adhered graphite/fuel particle clusters originating from the crushing of loaded fuel elements. Such clusters had never been fed to the 0.20-m system. Efficient combustion of graphite fines using the pressurized recycle technique was demonstrated throughout the long-duration operation required to reduce a high carbon fresh feed bed to a low carbon particle bed. Again, such operation had never been completed on the 0.20-m system from which the 0.40-m burner was scaled. The successful completion of the tests was due, in part, to implementation of significant equipment revisions which were suggested by both the initial 0.40-m system tests and by results of ongoing development work on the 0.2-m primary burner. These revisions included additional penetrations in the burner tube side-wall for above-bed fines recycle, replacement and deletion of several metal bellows with bellows of more reliable design, and improvements in designs for burner alignment and feeder mechanisms. 76 figures, 8 tables.

  18. HTGR actinide burner feasibility studies: Calculation scheme related considerations

    International Nuclear Information System (INIS)

    At the CEA, the actinides burner version of the prismatic block-type reactor is currently investigated, including studies about the design proposed by General Atomics. The purpose of this paper is essentially to evaluate the capability of the deterministic methods to calculate a wide range of core configurations. In the first part of the paper, the analysis is carried out on the 'Deep Burner' fuel element geometry. The fuel element calculations are performed with both Transport code APOLLO2 and Monte-Carlo code TRIPOLI4. This preliminary analysis shows the reliability of the deterministic code APOLLO2 to calculate heterogeneous fuel element configurations (fuel element loaded with plutonium and minor actinides). In the second part, the analysis deals with the core geometry in order to estimate the impact of some physical assumptions on the fine fuel isotopic depletion. Due to the strong spectrum transient in the core, it turns out that the transuranic mass balances in a GT-MHR cannot be estimated easily from fuel element calculations but rather need the use of a core modeling approach taking into account the presence of the graphite reflectors. Two different methods based on a fine core Diffusion calculation in CRONOS2 and a simplified Transport calculation in APOLLO2 are investigated in this paper. (authors)

  19. Destruction of weapons-grade plutonium with pebble bed type HTGRs using burner balls and breeder balls

    International Nuclear Information System (INIS)

    As the method of disposing the plutonium coming from disassembled weapons, the method of burning the fuel in which the plutonium is mixed with a parent material in LWRs or the disposal by glass solidification is proposed. In the former method, it is desirable to do the reprocessing of spent fuel for effectively utilizing fission products. The latter method needs watch against the diversion of the plutonium. The authors devised the method of effectively annihilating plutonium by separating into the burner balls of plutonium and the breeder balls of a parent material, and burning those by mixing in a pebble bed type high temperature gas-cooled reactor, while continuously exchanging them. It was clarified from the aspect of nuclear characteristics that by using this method, 239Pu can be annihilated to the state of enabling the direct abandonment without reprocessing. The flow of burner balls and breeder balls in the reactor is shown, and multi-pass fuel exchange method was adopted to burn Pu in burner balls up. The rate of Pu annihilation was determined by the change of the amount of Pu for the burnup evaluated by lattice burning calculation. The maximum amount of Pu charge in one burner ball is limited by the maximum allowable power output of burner balls. (K.I.)

  20. CHP Integrated with Burners for Packaged Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a

  1. IMPROVEMENT OF OPERATIONAL CHARACTERISTICS OF ELECTRIC COOKER BURNERS

    Directory of Open Access Journals (Sweden)

    I. M. Kirick

    2015-01-01

    Full Text Available On the basis of a complex theoretical and experimental investigations a principally new design of small inertial burner for electric cookers has been developed that significantly out-perform burners of conventional types. 

  2. Disposition of plutonium with HTGRs using Pu burner balls and Th breeder balls

    International Nuclear Information System (INIS)

    A concept of reactor system was developed with which weapons-grade Plutonium could be made perfectly worthless in use for weapons. It is a pebble bed type HTGR using Pu burner ball fuels and Th breeder ball fuels. The residual amounts of 239Pu in spent Pu balls become less than 1% of the initial loading. The power coefficient was made negative by reducing the parasitic neutron absorption reaction rate of 135Xe. (author)

  3. Influential parameters of nitrogen oxides emissions for microturbine swirl burner with pilot burner

    Directory of Open Access Journals (Sweden)

    Adžić Miroljub M.

    2010-01-01

    Full Text Available Swirl burners are the most common type of device in wide range of applications, including gas turbine combustors. Due to their characteristics, swirl flows are extensively used in combustion systems because they enable high energy conversion in small volume with good stabilization behavior over the wide operating range. The flow and mixing process generated by the swirl afford excellent flame stability and reduced NOx emissions. Experimental investigation of NOx emission of a purposely designed micro turbine gas burner with pilot burner is presented. Both burners are equipped with swirlers. Mixtures of air and fuel are introduced separately: through the inner swirler - primary mixture for pilot burner, and through the outer swirler - secondary mixture for main burner. The effects of swirl number variations for the both burners were investigated, including parametric variations of the thermal power and air coefficient. It was found that the outer swirler affects the emission of NOx only for the air coefficient less than 1.4. The increase of swirl number resulted in decrease of NOx emission. The inner swirler and thermal power were found to have negligible effect on emission.

  4. Nuclear reactor

    International Nuclear Information System (INIS)

    In an improved reactor core for a high conversion BWR reactor, Pu-breeding type BWR type reactor, Pu-breeding type BWR type rector, FEBR type reactor, etc., two types of fuel assemblies are loaded such that fuel assemblies using a channel box of a smaller irradiation deformation ratio are loaded in a high conversion region, while other fuel assemblies are loaded in a burner region. This enables to suppress the irradiation deformation within an allowable limit in the high conversion region where the fast neutron flux is high and the load weight from the inside of the channel box due to the pressure loss is large. At the same time, the irradiation deformation can be restricted within an allowable limit without deteriorating the neutron economy in the burner region in which fast neutron flux is low and the load weight from the inside of the channel box is small since a channel box with smaller neutron absorption cross section or reduced wall thickness is charged. As a result, it is possible to prevent structural deformations such as swelling of the channel box, bending of the entire assemblies, bending of fuel rods, etc. (K.M.)

  5. Ceramic application for regenerative burner system

    Energy Technology Data Exchange (ETDEWEB)

    Han, D.B.; Park, B.H.; Kim, Y.W.; Bae, W.S. [RIST, Pohang (Korea)

    1999-05-01

    Recently, regenerative burner system was developed and begins to be gradually used for better energy savings. Compared to conventional burner system, the regenerative one has the several merits such as higher fuel efficiency, light weight of apparatus, low harmful toxic gas and homogeneous heating zone, etc. The regenerative material, a very important component of the new regenerative burner system should possess the properties of low specific density, higher surface area and high specific heat capacity. Ceramics is the best regenerative material because of stable mechanical properties even at high temperature and better thermal properties and excellent chemical stability. In this study, alumina ball, alumina tube, 3-D ceramic foam and honeycomb as regenerative materials were tested and evaluated. The computer simulation was conducted and compared to the result of field test. This paper is aimed to introduce a new application of ceramics at high temperature. 7 refs., 5 figs., 3 tabs.

  6. DESIGN REPORT LOW-NOX BURNERS FOR PACKAGE BOILERS

    Science.gov (United States)

    The report describes a low-NOx burner design, presented for residual-oil-fired industrial boilers and boilers cofiring conventional fuels and nitrated hazardous wastes. The burner offers lower NOx emission levels for these applications than conventional commercial burners. The bu...

  7. DESIGN REPORT: LOW-NOX BURNERS FOR PACKAGE BOILERS

    Science.gov (United States)

    The report describes a low-NOx burner design, presented for residual-oil-fired industrial boilers and boilers cofiring conventional fuels and nitrated hazardous wastes. The burner offers lower NOx emission levels for these applications than conventional commercial burners. The bu...

  8. LASER-ENHANCED IONIZATION SPECTROMETRY WITH A TOTAL CONSUMPTION BURNER

    OpenAIRE

    Green, R; Hall, Janet

    1983-01-01

    This paper describes the use of a total consumption burner as an analytical atom reservoir for laser-enhanced ionization spectrometry. A total consumption burner and premixed burner are compared for limits of detection and matrix interferences. These results demonstrate that high sensitivity laser-enhanced ionization measurements are possible in adverse sample environments where traditional methods of optical spectrometry have proven inadequate.

  9. Towards a better understanding of biomass suspension co-firing impacts via investigating a coal flame and a biomass flame in a swirl-stabilized burner flow reactor under same conditions

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2012-01-01

    increases the residence time of coal particles. Both the factors favor a complete burnout of the coal particles. The higher volatile yields of the straw produce more off-gas, requiring more O2 for the fast gas phase combustion and causing the off-gas to proceed to a much larger volume in the reactor prior...... to mixing with oxidizer. For the pulverized straw particles of a few hundred microns in diameters, the intra-particle conversion is found to be a secondary issue at most in their combustion. The simulations also show that a simple switch of the straw injection mode can not improve the burnout of the...

  10. Removal of Organic Load in Communal Wastewater by using the Six Stage Anaerobic Baffle Reactor (ABR)

    OpenAIRE

    Trilita Minarni Nur; Hendrasarie Novirina; Wahjudijanto Iwan

    2016-01-01

    The reduction of water quality in the urban drainage is a crucial problem to overcome because it can affect the health of community. This fact encouraged the researcher to conduct the research in efforts to increase the water quality in the drainage. One of the solutions to increase the water quality in the drainage is that the domestic wastewater must be treated at first before it is flown through the drainage. Furthermore, the wastewater treatment was conducted by employing the communal was...

  11. Bed burners for grate boilers; Baeddbraennare foer rosterpannor

    Energy Technology Data Exchange (ETDEWEB)

    Sendelius, Mikael; Schuster, Robert [AaF-Energikonsult AB, Stockholm (Sweden)

    2003-10-01

    The objective of this work is to increase the knowledge of bed burners and their optimal positions in furnaces. The results from several computational fluid mechanics calculations are presented. An investigation concerning bed burners among plant owners is included as well. A bed burner is defined as a burner used for enhancing the combustion process on the bed i.e. it is used to dry incoming wet fuel. A load burner is used to quickly increase the boiler load and primarily not for creating better combustion conditions on the grate. Fluid mechanics calculations have been performed for five different cases, including the reference case. The following four bed burner arrangements have been examined: flat flame burner, six burners placed in the combustion chamber, two symmetric placed burners and two asymmetric placed burners. The same furnace model has been used through all the simulations. The incident radiation has been calculated in order to determine which one of the bed burners having the best possibility to improve the combustion process on the grate. The results showed that the flat flame burner and the six burners placed in the combustion chamber gave the most incident radiation on the first two grate zones. Bed burners placed further back in the furnace gave less good results. A comparison between the reference case (the case without burners) and the case with two burners showed that there was almost no difference in incident radiation between the two cases. The case with six burners placed in the combustion chamber gave most incident radiation, however this arrangement gave an irregular distribution of the radiation on the bed. Too high or irregular distributed radiation increases the risk for getting regions, on the grate, where the fuel is completely burnt. Primary air will pass through these regions. This phenomenon will lead to high temperatures that cause increased levels of emissions, in particular NO{sub x}. Reorganizing the burner positions and

  12. Regenerative burner in the metals industry

    Energy Technology Data Exchange (ETDEWEB)

    Gettings, M.

    1986-07-01

    The Regenerative Ceramic Burner, RCB is becoming widely accepted in the UK as the successor of the world famous recuperative burner. This paper describes the RCB and its modes of operation and compares it with the recuperative burner. This comparison uses the example of a reheating furnace employed to heat a 10 tonne billet to 1250/sup 0/C. The superior technical performance of the RCB is mirrored in its economic attractiveness. For most medium and large furnace applications the device can pay for itself in less than two years with 40 to 50% fuel savings. Examples of the use of the device are presented from both the steel and aluminium industries. In all cases, operation and worthwhile energy savings have been achieved. In its role on an aluminum melter, the burner has demonstrated its ability to handle contaminated gases with minimum maintenance requirement. The paper concludes with ideas for future developments of the technology which will extend its use into other industry sectors.

  13. Market assessment for the fan atomized oil burner

    Energy Technology Data Exchange (ETDEWEB)

    Westphalen, D. [A.D. Little, Inc., Cambridge, MA (United States)

    1996-07-01

    The market potential for the fan atomized burner (FAB) in water and space heating applications was examined. The major findings of the study are as follows. (1). The FAB`s low-input capability allows development of oil-fired room heaters and wall furnaces, a new market area for oil heat. (2). Among conventional oil-fired products, furnaces will benefit most from the burner`s low input capability due to (1) their quick delivery of heat and (2) their more prevalent use in warmer climates and smaller homes. (3). The greatest potential for increased product sales or oil sales exists in the use of the burner with new products (i.e., room heaters). Sales of boilers and direct-fired water heaters are not likely to increase with the use of the burner. (4). Acceptance of the burner will be dependent on proof of reliability. Proof of better reliability than conventional burners would accelerate acceptance.

  14. Nonlocal two dimensional denoising of frequency specific chirp evoked ABR single trials.

    Science.gov (United States)

    Schubert, J Kristof; Teuber, Tanja; Steidl, Gabriele; Strauss, Daniel J; Corona-Strauss, Farah I

    2012-01-01

    Recently, we have shown that denoising evoked potential (EP) images is possible using two dimensional diffusion filtering methods. This restoration allows for an integration of regularities over multiple stimulations into the denoising process. In the present work we propose the nonlocal means (NLM) method for EP image denoising. The EP images were constructed using auditory brainstem responses (ABR) collected in young healthy subjects using frequency specific and broadband chirp stimulations. It is concluded that the NLM method is more efficient than conventional approaches in EP imaging denoising, specially in the case of ABRs, where the relevant information can be easily masked by the ongoing EEG activity, i.e., signals suffer from rather low signal-to-noise ratio SNR. The proposed approach is for the a posteriori denoising of single trials after the experiment and not for real time applications. PMID:23366439

  15. Synthetic studies on taxanes: A domino-enyne metathesis/Diels-Alder approach to the AB-ring

    Indian Academy of Sciences (India)

    Krishna P Kaliappan; Velayutham Ravikumar; Sandip A Pujari

    2008-01-01

    A domino enyne cross-metathesis/intramolecular Diels-Alder reaction has been successfully used to synthesize a bicyclo[5.3.1] undecene, corresponding to AB-ring of taxol without the gem dimethyl group.

  16. Gas/particle flow characteristics of two swirl burners

    International Nuclear Information System (INIS)

    A three-component particle-dynamics anemometer is used to measure, in the near-burner region, the characteristics of gas/particle two-phase flows with a centrally fuel rich swirl coal combustion burner and enhanced ignition-dual register burner, on a gas/particle two-phase test facility. Velocities, RMS velocities, particle mean diameters and particle volume flux profiles were obtained. For the centrally fuel rich burner, particles penetrate the central recirculation zone partially, and are then deflected radially. For the enhanced ignition-dual register burner, particles completely penetrate the central recirculation zone. Compared with the enhanced ignition-dual register burner, in the same cross-section, the particle volume flux peak value for the centrally fuel rich burner is much closer to the chamber axis and much larger near the chamber axis. In six cross-sections from x/d = 0.3 to 2.5, the particle volume flux in the central recirculation zone for the centrally fuel rich burner is much larger than that for the enhanced ignition-dual register burner. For the centrally fuel rich burner, most of bigger particles are resident in the region near the chamber axis and the residence time is prolonged. The influence of gas/particle flow characteristics on combustion has been analyzed.

  17. Reactors

    International Nuclear Information System (INIS)

    Purpose: To provide a spray cooling structure wherein the steam phase in a bwr reactor vessel can sufficiently be cooled and the upper cap and flanges in the vessel can be cooled rapidly which kept from direct contaction with cold water. Constitution: An apertured shielding is provided in parallel spaced apart from the inner wall surface at the upper portion of a reactor vessel equipped with a spray nozzle, and the lower end of the shielding and the inner wall of the vessel are closed to each other so as to store the cooling water. Upon spray cooling, cooling water jetting out from the nozzle cools the vapor phase in the vessel and then hits against the shielding. Then the cooling water mostly falls as it is, while partially enters through the apertures to the back of the shielding plate, abuts against stoppers and falls down. The stoppers are formed in an inverted L shape so that the spray water may not in direct contaction with the inner wall of the vessel. (Horiuchi, T.)

  18. Refinery burner simulation design architecture summary.

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

    2011-10-01

    This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

  19. FLOX burner technology for wood furnaces

    International Nuclear Information System (INIS)

    Current research at IVD focuses on the development of FLOX burners for small furnaces, with the intention of making problematic biomass available for energetic utilisation. At the same time, soiling and emission problems are to be reduced or avoided by using innovative technologies. One of these is the technology of flameless oxidation, which is already applied successfully in the natural gas industry because of its low NOx emissions. The IVD is working on two different plant concepts. (orig.)

  20. PULSE DRYING EXPERIMENT AND BURNER CONSTRUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Robert States

    2006-07-15

    Non steady impingement heat transfer is measured. Impingement heating consumes 130 T-BTU/Yr in paper drying, but is only 25% thermally efficient. Pulse impingement is experimentally shown to enhance heat transfer by 2.8, and may deliver thermal efficiencies near 85%. Experimental results uncovered heat transfer deviations from steady theory and from previous investigators, indicating the need for further study and a better theoretical framework. The pulse burner is described, and its roll in pulse impingement is analyzed.

  1. Porosity effects in flame length of the porous burners

    Directory of Open Access Journals (Sweden)

    Fatemeh Bahadori

    2014-10-01

    Full Text Available Furnaces are the devices for providing heat to the industrial systems like boilers, gas turbines and etc. The main challenge of furnaces is emission of huge air pollutants. However, porous burners produce less contaminant compared to others. The quality of the combustion process in the porous burners depends on the length of flame in the porous medium. In this paper, the computational fluid dynamic (CFD is used to investigate the porosity effects on the flame length of the combustion process in porous burner. The simulation results demonstrate that increasing the porosity increases the flame length and the combustion zone extends forward. So, combustion quality increases and production of carbon monoxide decrease. It is possible to conclude that temperature distribution in low porosity burner is lower and more uniform than high porosity one. Therefore, by increasing the porosity of the burner, the production of nitrogen oxides increases. So, using an intermediate porosity in the burner appears to be reasonable.

  2. Design and development of a low NOx regenerative burner

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    Regenerative burner technology is used worldwide by a range of process industries to utilize waste heat and reduce specific energy consumption. Regenerative burners are associated with annual energy savings of 6.2 PJ and consequently have a further benefit, reducing CO[sub 2] emissions by approximately 316,000 tonnes/year. However, the high air pre-heat temperatures attained by these burners are also responsible for NOx emissions rates which are substantially higher than those for cold air fired burners. To address this problem the current project was set up to develop a low NOx regenerative burner which would comply with the then anticipated NOx emission legislation. The combination of computational fluid dynamic (CFD) modelling and experimental work has shown that there are available methods to reduce NOx emissions. For instance, in this project NOx emissions from a 3 MW burner were reduced to levels similar to those of a 600 kW unit. (author)

  3. Field testing the prototype BNL fan-atomized oil burner

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.; Celebi, Y. [Brookhaven National Lab., Upton, NY (United States)

    1995-04-01

    BNL has developed a new oil burner design referred to as the Fan Atomized burner System. The primary objective of the field study was to evaluate and demonstrate the reliable operation of the Fan Atomized Burner. The secondary objective was to establish and validate the ability of a low firing rate burner (0.3-0.4 gph) to fully satisfy the heating and domestic hot water load demands of an average household in a climate zone with over 5,000 heating-degree-days. The field activity was also used to evaluate the practicality of side-wall venting with the Fan Atomized Burner with a low stack temperature (300F) and illustrate the potential for very high efficiency with an integrated heating system approach based on the Fan Atomized Burner.

  4. Design and construction of thermionic cogeneration burner module

    International Nuclear Information System (INIS)

    The thermionic cogeneration burner module is a high temperature burner equipped with thermionic converters. A demonstration of a thermionic cogeneration system is under way. In this demonstration a hot oil heater (used in various industrial processes) was equipped with a thermionic cogeneration burner module. This module contained converters that were connected in series to produce approximately 180 watts at 2.4 volts. The system is now undergoing preliminary testing. It is expected that additional test results will be available in the fall

  5. A heated chamber burner for atomic absorption spectroscopy.

    Science.gov (United States)

    Venghiattis, A A

    1968-07-01

    A new heated chamber burner is described. The burner is of the premixed type, and burner heads of the types conventionally used in atomic absorption may be readily adapted to it. This new sampling system has been tested for Ag, Al, Ca, Cu, Fe, Mg, Mn, Ni, Pb, Si, Ti, and Zn in aqueous solutions. An improvement of the order of ten times has been obtained in sensitivity, and in detection limits as well, for the elements determined. Interferences controllable are somewhat more severe than in conventional burners but are controllable. PMID:20068792

  6. MO-F-16A-03: AAPM Online Learning Support of New ABR MOC Requirements

    International Nuclear Information System (INIS)

    In 2002 the American Board of Radiology (ABR) discontinued issuing lifetime board certification. After that time diplomates received a timelimited certificate and must participate in the Maintenance of Certification (MOC) program in order to maintain their certification. Initially certificates were issued with a 10 year expiration period and the MOC had requirements to be met over that 10 year period. The goal was to demonstrate continuous maintenance of clinical competency, however some diplomates were attempting to fulfill most or all of the requirements near the end of the 10 year period. This failed to meet the continuous aspect of the goal and so the ABR changed to a sliding 3-year window. This was done to recognize that not every year would be the same, but that diplomates should be able to maintain a reasonable average over any 3 year period.A second significant change occurred in 2013. The initial requirements included 20 selfassessment modules (SAMs) over the original 10 year term. SAMs are a special type of continuing education (CE) credit that were an addition to the 250 standard CE credits required over the 10 year period. In 2013, however, the new requirement is 75 CE credits over the previous 3 years, of which 25 must include self-assessment. Effectively this raised the self-assessment requirement from 20 in 10 years to 25 in 3 years. Previously SAMs were an interactive presentation available in limited quantities at live meetings. However, the new requirement is not for SAMs but CE-SA which includes SAMs, but also includes the online quizzes provided at the AAPM online learning center. All credits earned at the AAPM online learning center fulfill the ABR SA requirement.This talk will be an interactive demonstration of the AAPM online learning center along with a discussion of the MOC requirements

  7. Airborne and underwater hearing in the great cormorant (Phalacrocorax carbo) studied with ABR and laser vibrometry

    DEFF Research Database (Denmark)

    Huulvej, Tina Marie; Wahlberg, Magnus; Christensen-Dalsgaard, Jakob;

    Airborne and Underwater Hearing in the Great Cormorant (Phalacrocorax carbo) Studied with ABR and Laser Vibrometry Ole Næsbye Larsen1, Tina Marie Huulvej1, Magnus Wahlberg1, Jakob Christensen-Dalsgaard1 1Department of Biology, University of Southern Denmark, Denmark Background Numerous studies have...... anthropogenic noise influences their hearing during a dive. In the present study, we measured the audiogram of cormorants in air and under water and compared the results to biophysical measurements of eardrum vibrations. Methods We obtained audiograms from wild-caught Great Cormorants (Phalacrocorax carbo...

  8. An energy amplifier fluidized bed nuclear reactor concept

    International Nuclear Information System (INIS)

    The concept of a fluidized bed nuclear reactor driven by an energy amplifier system is described. The reactor has promising characteristics of inherent safety and passive cooling. The reactor can easily operate with any desired spectrum in order to be a plutonium burner or have it operate with thorium fuel cycle. (orig.)

  9. SU-B-213-06: Development of ABR Examination Questions

    International Nuclear Information System (INIS)

    The North American medical physics community validates the education received by medical physicists and the clinical qualifications for medical physicists through accreditation of educational programs and certification of medical physicists. Medical physics educational programs (graduate education and residency education) are accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP), whereas medical physicists are certified by several organizations, the most familiar of which is the American Board of Radiology (ABR). In order for an educational program to become accredited or a medical physicist to become certified, the applicant must meet certain specified standards set by the appropriate organization. In this Symposium, representatives from both CAMPEP and the ABR will describe the process by which standards are established as well as the process by which qualifications of candidates for accreditation or certification are shown to be compliant with these standards. The Symposium will conclude with a panel discussion. Learning Objectives: Recognize the difference between accreditation of an educational program and certification of an individual Identify the two organizations primarily responsible for these tasks Describe the development of educational standards Describe the process by which examination questions are developed GS is Executive Secretary of CAMPEP

  10. ABrIL - Advanced Brain Imaging Lab : a cloud based computation environment for cooperative neuroimaging projects.

    Science.gov (United States)

    Neves Tafula, Sérgio M; Moreira da Silva, Nádia; Rozanski, Verena E; Silva Cunha, João Paulo

    2014-01-01

    Neuroscience is an increasingly multidisciplinary and highly cooperative field where neuroimaging plays an important role. Neuroimaging rapid evolution is demanding for a growing number of computing resources and skills that need to be put in place at every lab. Typically each group tries to setup their own servers and workstations to support their neuroimaging needs, having to learn from Operating System management to specific neuroscience software tools details before any results can be obtained from each setup. This setup and learning process is replicated in every lab, even if a strong collaboration among several groups is going on. In this paper we present a new cloud service model - Brain Imaging Application as a Service (BiAaaS) - and one of its implementation - Advanced Brain Imaging Lab (ABrIL) - in the form of an ubiquitous virtual desktop remote infrastructure that offers a set of neuroimaging computational services in an interactive neuroscientist-friendly graphical user interface (GUI). This remote desktop has been used for several multi-institution cooperative projects with different neuroscience objectives that already achieved important results, such as the contribution to a high impact paper published in the January issue of the Neuroimage journal. The ABrIL system has shown its applicability in several neuroscience projects with a relatively low-cost, promoting truly collaborative actions and speeding up project results and their clinical applicability. PMID:25570014

  11. SU-B-213-05: Development of ABR Certification Standards

    International Nuclear Information System (INIS)

    The North American medical physics community validates the education received by medical physicists and the clinical qualifications for medical physicists through accreditation of educational programs and certification of medical physicists. Medical physics educational programs (graduate education and residency education) are accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP), whereas medical physicists are certified by several organizations, the most familiar of which is the American Board of Radiology (ABR). In order for an educational program to become accredited or a medical physicist to become certified, the applicant must meet certain specified standards set by the appropriate organization. In this Symposium, representatives from both CAMPEP and the ABR will describe the process by which standards are established as well as the process by which qualifications of candidates for accreditation or certification are shown to be compliant with these standards. The Symposium will conclude with a panel discussion. Learning Objectives: Recognize the difference between accreditation of an educational program and certification of an individual Identify the two organizations primarily responsible for these tasks Describe the development of educational standards Describe the process by which examination questions are developed GS is Executive Secretary of CAMPEP

  12. Study on the Bioremediation of Petroleum Contaminated Soil by Wastewater Treatment Agent ABR Hydrocarbon%废水处理剂ABR Hydrocarbon对石油污染土壤生物修复的研究

    Institute of Scientific and Technical Information of China (English)

    杜国丰

    2016-01-01

    The application conditions of wastewater treatment agent ABR Hydrocarbon and the microbial remediation of petroleum contaminated soil were studied. The results showed that the optimal fermentation temperature of wastewater treatment agent ABR Hydrocarbon was 40 ℃, and the optimal fermentation pH was 7. 0 , surfactants produced in the fermentation liquid, there was a good correlation between the activity of dehydrogenase activity and the degradation rate of petroleum hydrocarbons in soil. After continuous cultivation for 32 days, petroleum hydrocarbon degradation rate reached 33. 4%, soil microbial dehydrogenase activity was 83. 0 μg/( g · h ) . The experiments showed that the wastewater treatment agent ABR Hydrocarbon had good petroleum hydrocarbon degradation ability.%对废水处理剂ABR Hydrocarbon的应用条件及其对石油污染土壤的微生物修复进行了研究。结果表明:废水处理剂ABR Hydrocarbon的最佳发酵温度为40益、最佳发酵pH为7.0,发酵液中有表面活性物质产生,土壤中微生物的脱氢酶活性与石油烃降解率之间存在较好的相关性。连续培养32天,石油烃的降解率达到了33.4%,土壤微生物脱氢酶活性为83.0μg/( g·h)。试验表明废水处理剂ABR Hydrocarbon具有较好的石油烃降解能力。

  13. Energy saving by regenerative burner; Rigene burner ni yoru sho energy

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, S. [Chugai Ro Co. Ltd., Osaka (Japan)

    2000-03-01

    Described are the characteristics of a regenerative burner (RB) and some important respects to consider before its employment. In this burner system, a set of two burners are operated, with one burning and the other sucking gas out of the furnace. The roles are switched over between the two burners every minute or every tens of seconds, and the repetition of heat accumulation and radiation by the heat accumulating bodies in the heat accumulators results in an air temperature which is near the gas temperature in the furnace. An optimum switchover time is determined by the make, or the specific heat and weight, of the heat accumulating bodies. The configuration may be effectively employed in the modification of existing furnaces (1) when treatment capacity improvement is required or (2) when sufficient waste heat recovery is impossible. In the case of (1), an increase in combustion will be mandatory for capacity enhancement. Refurbishment to increase combustion, however, will not be required when RB is installed, and this enables capacity improvement while maintaining or enhancing energy saving performance at a low cost. In the case of (2), at a steel-making plant where recovery of waste heat is difficult because a ladle preheater or tandish preheater has no flue, effective heat recovery will be realized if RB is installed. (NEDO)

  14. An Advanced Option for Sodium Cooled TRU Burner Loaded with Uranium-Free Fuels

    International Nuclear Information System (INIS)

    The sodium cooled fast reactors of this kind that are called burners are designed to have low conversion ratio by reducing fuel volume fraction or reducing neutron leakage or increasing neutron absorption. However, the typical SFR burners have a limited ability of TRU burning rate due to the fact that they use metallic or oxide fuels containing fertile nuclides such as 238U and 232Th and these fertile nuclides generate fissile nuclides through neutron capture even if they are designed to have low conversion ratio (e.g., 0.6). To further enhance the TRU burning rate, the removal of the fertile nuclides from the initial fuels is required and it will accelerate the reduction of TRUs that are accumulated in storages of LWR spent fuels. However, it has been well-known 4 that the removals of the fertile nuclides from the fuel degrade the inherent safety of the SFR burner cores through the significant decrease of the fuel Doppler effect, the increase of sodium void reactivity worth, and reduction of delayed neutron fraction. In this work, new option for the sodium cooled fast TRU burner cores loaded with fertile-free metallic fuels was proposed and the new cores were designed by using the suggested option. The cores were designed to enhance the inherent safety characteristics by using axially central absorber region and 6 or 12 ZrH1.8 moderator rods per fuel assembly. For each option, we considered two different types of fertile-free ternary metallic fuel (i.e., TRU-W-10Zr and TRU-Ni-10Zr). Also, we performed the BOR (Balance of Reactivity) analyses to show the self-controllability under ATWS as a measure of inherent safety. The core performance analysis showed that the new cores using axially central absorber region substantially improve the core performance parameters such as burnup reactivity swing and sodium void reactivity worth

  15. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS; SEMIANNUAL

    International Nuclear Information System (INIS)

    The proposed research is directed at evaluating the effect of flame aerodynamics on NO(sub x) emissions from coal fired burners in a systematic manner. This fundamental research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO(sub x) burners to the kinetic emissions limit (below 0.2 lb./MMBTU). Experimental studies include both cold and hot flow evaluations of the following parameters: flame holder geometry, secondary air swirl, primary and secondary inlet air velocity, coal concentration in the primary air and coal particle size distribution. Hot flow experiments will also evaluate the effect of wall temperature on burner performance. Cold flow studies will be conducted with surrogate particles as well as pulverized coal. The cold flow furnace will be similar in size and geometry to the hot-flow furnace but will be designed to use a laser Doppler velocimeter/phase Doppler particle size analyzer. The results of these studies will be used to predict particle trajectories in the hot-flow furnace as well as to estimate the effect of flame holder geometry on furnace flow field. The hot-flow experiments will be conducted in a novel near-flame down-flow pulverized coal furnace. The furnace will be equipped with externally heated walls. Both reactors will be sized to minimize wall effects on particle flow fields. The cold-flow results will be compared with Fluent computation fluid dynamics model predictions and correlated with the hot-flow results with the overall goal of providing insight for novel low NO(sub x) burner geometry's

  16. An Advanced Option for Sodium Cooled TRU Burner Loaded with Uranium-Free Fuels

    Energy Technology Data Exchange (ETDEWEB)

    You, WuSeung; Hong, Ser Gi [Kyung Hee University, Yongin (Korea, Republic of)

    2015-05-15

    The sodium cooled fast reactors of this kind that are called burners are designed to have low conversion ratio by reducing fuel volume fraction or reducing neutron leakage or increasing neutron absorption. However, the typical SFR burners have a limited ability of TRU burning rate due to the fact that they use metallic or oxide fuels containing fertile nuclides such as {sup 238}U and {sup 232}Th and these fertile nuclides generate fissile nuclides through neutron capture even if they are designed to have low conversion ratio (e.g., 0.6). To further enhance the TRU burning rate, the removal of the fertile nuclides from the initial fuels is required and it will accelerate the reduction of TRUs that are accumulated in storages of LWR spent fuels. However, it has been well-known 4 that the removals of the fertile nuclides from the fuel degrade the inherent safety of the SFR burner cores through the significant decrease of the fuel Doppler effect, the increase of sodium void reactivity worth, and reduction of delayed neutron fraction. In this work, new option for the sodium cooled fast TRU burner cores loaded with fertile-free metallic fuels was proposed and the new cores were designed by using the suggested option. The cores were designed to enhance the inherent safety characteristics by using axially central absorber region and 6 or 12 ZrH1.8 moderator rods per fuel assembly. For each option, we considered two different types of fertile-free ternary metallic fuel (i.e., TRU-W-10Zr and TRU-Ni-10Zr). Also, we performed the BOR (Balance of Reactivity) analyses to show the self-controllability under ATWS as a measure of inherent safety. The core performance analysis showed that the new cores using axially central absorber region substantially improve the core performance parameters such as burnup reactivity swing and sodium void reactivity worth.

  17. Increasing the efficiency of radiant burners by using polymer membranes

    International Nuclear Information System (INIS)

    Gas-fired radiant burners are used to convert fuel chemical energy into radiation energy for various applications. The radiation output of a radiant burner largely depends on the temperature of the combustion flame. In fact, the radiation output and, thus, the radiant efficiency increase to a great extent with flame temperature. Oxygen-enriched combustion can increase the flame temperature without increasing fuel cost. However, it has not been widely applied because of the high cost of oxygen production. In the present work, oxygen-enriched combustion of natural gas in porous radiant burners was studied. The oxygen-enriched air was produced passively, using polymer membranes. The membranes were shown to be an effective means of obtaining an oxygen-enriched environment for gas combustion in the radiant burners. Two different porous radiant burners were used in this study. One is a reticulated ceramic burner and the other is a ceramic fibre burner. The experimental results showed that the radiation output and the radiant efficiency of these burners increased markedly with rising oxygen concentrations in the combustion air. Also investigated were the effects of oxygen enrichment on combustion mode, and flame stability on the porous media

  18. Furnaces with multiple flameless combustion burners

    NARCIS (Netherlands)

    Danon, B.

    2011-01-01

    In this thesis three different combustion systems, equipped with either a single or multiple flameless combustion burner(s), are discussed. All these setups were investigated both experimentally and numerically, i.e., using Computational Fluid Dynamics (CFD) simulations. Flameless combustion is a com

  19. Thermal Characteristics of Heating-furnace with Regenerative Burner

    OpenAIRE

    HUA, Jianshe; Li, Xiaoming; Kawabata, Nobuyoshi

    2005-01-01

    Thermal characteristics between the heating-furnace with regenerative burner and the classical triple-fired continuous furnace by heat balance testing for two billet steel heating-furnace at the same billet steel heating have been analyzed. In addition, the operating principle, the thermal characteristics and the effect of energy saving for heating-furnace with regenerative burner are introduced.

  20. Deciphering the regulon of the Streptomyces coelicolor AbrC3, a positive response regulator of antibiotic production.

    OpenAIRE

    Rico, Sergio; Santamaría, Ramón I; Yepes, Ana; Rodríguez, Héctor; Laing, Emma; Bucca, Giselda; Smith, Colin P; Díaz, Margarita

    2014-01-01

    The atypical two-component system (TCS) AbrC1/C2/C3 (encoded by SCO4598, SCO4597, and SCO4596), comprising two histidine kinases (HKs) and a response regulator (RR), is crucial for antibiotic production in Streptomyces coelicolor and for morphological differentiation under certain nutritional conditions. In this study, we demonstrate that deletion of the RR-encoding gene, abrC3 (SCO4596), results in a dramatic decrease in actinorhodin (ACT) and undecylprodiginine (RED) production and delays m...

  1. Abr1, a Transposon-Like Element in the Genome of the Cultivated Mushroom Agaricus bisporus (Lange) Imbach

    OpenAIRE

    Sonnenberg, Anton S.M.; Baars, Johan J. P.; Mikosch, Thomas S. P.; Schaap, Peter J.; Van Griensven, Leo J. L. D.

    1999-01-01

    A 300-bp repetitive element was found in the genome of the white button mushroom, Agaricus bisporus, and designated Abr1. It is present in ∼15 copies per haploid genome in the commercial strain Horst U1. Analysis of seven copies showed 89 to 97% sequence identity. The repeat has features typical of class II transposons (i.e., terminal inverted repeats, subterminal repeats, and a target site duplication of 7 bp). The latter shows a consensus sequence. When used as probe on Southern blots, Abr1...

  2. A Cochlear Implant Performance Prognostic Test Based on Electrical Field Interactions Evaluated by eABR (Electrical Auditory Brainstem Responses)

    Science.gov (United States)

    Guevara, Nicolas; Hoen, Michel; Truy, Eric; Gallego, Stéphane

    2016-01-01

    Background Cochlear implants (CIs) are neural prostheses that have been used routinely in the clinic over the past 25 years. They allow children who were born profoundly deaf, as well as adults affected by hearing loss for whom conventional hearing aids are insufficient, to attain a functional level of hearing. The “modern” CI (i.e., a multi-electrode implant using sequential coding strategies) has yielded good speech comprehension outcomes (recognition level for monosyllabic words about 50% to 60%, and sentence comprehension close to 90%). These good average results however hide a very important interindividual variability as scores in a given patients’ population often vary from 5 to 95% in comparable testing conditions. Our aim was to develop a prognostic model for patients with unilateral CI. A novel method of objectively measuring electrical and neuronal interactions using electrical auditory brainstem responses (eABRs) is proposed. Methods and Findings The method consists of two measurements: 1) eABR measurements with stimulation by a single electrode at 70% of the dynamic range (four electrodes distributed within the cochlea were tested), followed by a summation of these four eABRs; 2) Measurement of a single eABR with stimulation from all four electrodes at 70% of the dynamic range. A comparison of the eABRs obtained by these two measurements, defined as the monaural interaction component (MIC), indicated electrical and neural interactions between the stimulation channels. Speech recognition performance without lip reading was measured for each patient using a logatome test (64 "vowel-consonant-vowel"; VCV; by forced choice of 1 out of 16). eABRs were measured in 16 CI patients (CIs with 20 electrodes, Digisonic SP; Oticon Medical ®, Vallauris, France). Significant correlations were found between speech recognition performance and the ratio of the amplitude of the V wave of the eABRs obtained with the two measurements (Pearson's linear regression

  3. A Cochlear Implant Performance Prognostic Test Based on Electrical Field Interactions Evaluated by eABR (Electrical Auditory Brainstem Responses.

    Directory of Open Access Journals (Sweden)

    Nicolas Guevara

    Full Text Available Cochlear implants (CIs are neural prostheses that have been used routinely in the clinic over the past 25 years. They allow children who were born profoundly deaf, as well as adults affected by hearing loss for whom conventional hearing aids are insufficient, to attain a functional level of hearing. The "modern" CI (i.e., a multi-electrode implant using sequential coding strategies has yielded good speech comprehension outcomes (recognition level for monosyllabic words about 50% to 60%, and sentence comprehension close to 90%. These good average results however hide a very important interindividual variability as scores in a given patients' population often vary from 5 to 95% in comparable testing conditions. Our aim was to develop a prognostic model for patients with unilateral CI. A novel method of objectively measuring electrical and neuronal interactions using electrical auditory brainstem responses (eABRs is proposed.The method consists of two measurements: 1 eABR measurements with stimulation by a single electrode at 70% of the dynamic range (four electrodes distributed within the cochlea were tested, followed by a summation of these four eABRs; 2 Measurement of a single eABR with stimulation from all four electrodes at 70% of the dynamic range. A comparison of the eABRs obtained by these two measurements, defined as the monaural interaction component (MIC, indicated electrical and neural interactions between the stimulation channels. Speech recognition performance without lip reading was measured for each patient using a logatome test (64 "vowel-consonant-vowel"; VCV; by forced choice of 1 out of 16. eABRs were measured in 16 CI patients (CIs with 20 electrodes, Digisonic SP; Oticon Medical ®, Vallauris, France. Significant correlations were found between speech recognition performance and the ratio of the amplitude of the V wave of the eABRs obtained with the two measurements (Pearson's linear regression model, parametric correlation: r

  4. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS. VOLUME I. DISTRIBUTED MIXING BURNER EVALUATION

    Science.gov (United States)

    The report gives results of a study in which NOx emissions and general combustion performance characteristics of four burners were evaluated under experimental furnace conditions. Of primary interest was the performance of a low NOx Distributed Mixing Burner (DMB), which was test...

  5. Advanced Safeguards Approaches for New Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-12-15

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

  6. Modeling the performance of an anaerobic baffled reactor with the variation of hydraulic retention time.

    Science.gov (United States)

    Li, Jianzheng; Shi, En; Antwi, Philip; Leu, Shao-Yuan

    2016-08-01

    Anaerobic baffled reactors (ABRs) have been widely used in engineering but very few models have been developed to simulate its performance. Based on the integration of biomass retention and liquid-gas mass transfer of biogas into the biochemical process derived in the International Water Association (IWA) Anaerobic Digestion Model No.1 (ADM1), a mathematical model was developed to predict volatile fatty acids (VFAs), chemical oxygen demand (CODCr) and biogas in a 4-compartment ABR operated with variable hydraulic retention time (HRT). The model was calibrated and validated with the experimental data obtained from the reactor when the HRT decreased from 2.0 to 1.0d by stages. It was found that the predicted VFAs, CODCr and biogas agreed well with the experimental data. Consequently, the developed model was a reliable tool to enhance the understanding among the mechanisms of the anaerobic digestion in ABRs, as well as to reactor's designing and operation. PMID:27174615

  7. Binary ABR flow control over ATM networks with uncertainty using discrete-time variable structure controller

    Institute of Scientific and Technical Information of China (English)

    Ming YAN; Yuanwei JING

    2008-01-01

    A binary available bit rate (ABR) scheme based on discrete-time variable structure control (DVSC) theory is proposed to solve the problem of asynchronous transfer mode (ATM) networks congestion in this paper. A discrete-time system model with uncertainty is introduced to depict the time-varying ATM networks. Based on the system model, an asymptotically stable sliding surface is designed by linear matrix inequality (LMI). In addition, a novel discrete-time reaching law that can obviously reduce chatter is also put forward. The proposed discrete-time variable structure controller can effectively constrain the oscillation of allowed cell rate (ACR) and the queue length in a router. Moreover, the controller is self-adaptive against the uncertainty in the system. Simulations are done in different scenarios. The results demonstrate that the controller has better stability and robustness than the traditional binary flow controller, so it is good for adequately exerting the simplicity of binary flow control mechanisms.

  8. Audiometria de tronco encefálico (abr: o uso do mascaramento na avaliação de indivíduos portadores de perda auditiva unilateral Auditory brainstem response (abr: use of masking in unilateral hearing loss patients

    Directory of Open Access Journals (Sweden)

    Melissa M. T. Toma

    2003-06-01

    Full Text Available A necessidade do mascaramento na avaliação da audição por meio da ABR ainda é um assunto consideravelmente debatido (Durrant & Ferraro, 2001. OBJETIVO: O presente estudo propôs investigar a necessidade do mascaramento contralateral, empregado na orelha normal, ao realizar a ABR em indivíduos portadores de perda auditiva neurossensorial unilateral. FORMA DE ESTUDO: Clínico prospectivo. MATERIAL E MÉTODO: A amostra constituiu-se de 22 indivíduos portadores de perda auditiva neurossensorial unilateral de grau profundo, sendo 10 do sexo feminino e 12 do sexo masculino, com idades variando entre 9 e 44 anos. Todos os indivíduos foram submetidos a: audiometria tonal liminar, logoaudiometria (SRT, IPRF e SDT, medidas de imitância acústica (incluindo a pesquisa dos reflexos acústicos - modo ipsilateral e contralateral e audiometria de tronco encefálico na ausência e na presença do mascaramento. RESULTADOS: Todos os indivíduos apresentaram perda auditiva neurossensorial unilateral de grau profundo e curvas timpanométricas do tipo A bilateralmente. Na avaliação da ABR, 100% da amostra apresentou presença da Onda V na orelha comprometida, sendo que ao introduzir o mascaramento contralateral tais respostas não foram observadas. CONCLUSÕES: O mascaramento é um procedimento necessário para a avaliação da audição por meio da ABR em indivíduos portadores de perdas auditivas unilaterais, visando a obtenção de resultados fidedignos. Na ABR, a atenuação interaural para clicks foi maior (65 dB do que a observada na audiometria tonal liminar, sendo necessário, portanto, uma menor intensidade de mascaramento para eliminar a resposta da via auditiva contralateral.The need of masking in auditory brainstem response (ABR evaluation is still considerably debated issue (Durrant and Ferraro, 2001. AIM: In addition, the present study was to investigate the need of masking in ABR with unilateral hearing loss. STUDY DESIGN: Clinical

  9. Fan Atomized Burner design advances & commercial development progress

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, B. [Heat-Wise, Inc., Ridge, NY (United States); Butcher, T.A. [Brookhaven National Lab., Upton, NY (United States)

    1996-07-01

    As a part of the Oil Heat Research and Development program, sponsored by the US Department of Energy, Brookhaven National Laboratory (BNL) has an on-going interest in advanced combustion technologies. This interest is aimed at: improving the initial efficiency of heating equipment, reducing long term fouling and efficiency degradation, reducing air pollutant emissions, and providing practical low-firing rate technologies which may lead to new, high efficiency oil-fired appliances. The Fan-Atomized Burner (FAB) technology is being developed at BNL as part of this general goal. The Fan-Atomized Burner uses a low pressure, air atomizing nozzle in place of the high pressure nozzle used in conventional burners. Because it is air-atomized the burner can operate at low firing rates without the small passages and reliability concerns of low input pressure nozzles. Because it uses a low pressure nozzle the burner can use a fan in place of the small compressor used in other air-atomized burner designs. High initial efficiency of heating equipment is achieved because the burner can operate at very low excess air levels. These low excess air levels also reduce the formation of sulfuric acid in flames. Sulfuric acid is responsible for scaling and fouling of heat exchanger surfaces.

  10. Mathematical Modelling of Cassava Wastewater Treatment Using Anaerobic Baffled Reactor

    OpenAIRE

    A.O. Ibeje

    2013-01-01

    The performance of an anaerobic baffled reactor (ABR) was evaluated in the treatment of cassava wastewater as a pollutant residue. An ABR divided in four equal volume compartments (total volume 4L) and operated at 35°C was used in cassava wastewater treatment. Feed tank chemical oxygen demand (COD) was varied from 2000 to 7000mg L-1. The objective of the study was to formulate an improved mathematical model to describe cassava wastewater treatment without taking into account its inhibition ch...

  11. Diagnostics for hybrid reactors

    International Nuclear Information System (INIS)

    The Hybrid Reactor(HR) can be considered an attractive actinide-burner or a fusion assisted transmutation for destruction of transuranic(TRU) nuclear waste. The hybrid reactor has two important subsystems: the tokamak neutron source and the blanket which includes a fuel zone where the TRU are placed and a tritium breeding zone. The diagnostic system for a HR must be as simple and robust as possible to monitor and control the plasma scenario, guarantee the protection of the machine and monitor the transmutation.

  12. OECD/NEA Benchmark Calculations for an Accelerator-Driven Minor Actinide Burner

    International Nuclear Information System (INIS)

    Noticing the current interest in accelerator-driven systems as actinide waste burners, the OECD/NEA has organised an international benchmark exercise for evaluating the performance of computational tools and nuclear data for this type of system. The benchmark model simulates a lead-bismuth cooled sub-critical system driven by a beam of 1 GeV protons. The core design is similar to that of an ALMR, and the fuel composition is typical for a minor actinide burner in a 'double strata' fuel cycle. Lead-bismuth was chosen as target material. Since the intention was to validate data and codes in the energy region below 20 MeV, a predefined spallation neutron source was provided to the benchmark participants. The solutions from seven organisations (ANL, CIEMAT, KAERI, JAERI, PSI/CEA, RIT and SCK-CEN) are based on three different basic data libraries (ENDF/B-VI, JEF-2.2 and JENDL-3.2) and both deterministic and Monte Carlo reactor codes. Significant discrepancies are observed for important neutronic parameters such as initial keff, burn-up reactivity swing and flux distribution. Additional investigations of the basic nuclear data, the data processing methods and the approximations for the reactor simulation will be necessary to understand the origin of all observed discrepancies. (authors)

  13. Optimizing advanced liquid metal reactors for burning actinides

    International Nuclear Information System (INIS)

    In this report, the process to design an Advanced Liquid Metal Reactor (ALMR) for burning the transuranic part of nuclear waste is discussed. The influence of design parameters on ALMR burner performance is studied and the results are incorporated in a design schedule for optimizing ALMRs for burning transuranics. This schedule is used to design a metallic and an oxide fueled ALMR burner to burn as much as possible transurancis. The two designs burn equally well. (orig.)

  14. AGA answers complaints on burner tip prices

    International Nuclear Information System (INIS)

    This paper reports that the American Gas Association has rebutted complaints that natural gas prices have dropped at the wellhead but not at the burner tip. AGA Pres. Mike Baly the an association study of the issue found that all classes of customers paid less for gas in 1991 than they did in 1984, when gas prices were at their peak. He the, the study also shows that 100% of the wellhead price decline has been passed through to natural gas consumers in the form of lower retail prices. Baly the the average cost of gas delivered to all customers classes fell by $1.12/Mcf from 1984 to 1991, which exceeds the $1.10/Mcf decline in average wellhead prices during the same period

  15. Firing in fluid beds and burners

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.; Lans, R. van der; Storm Pedersen, L.; Philbert Nielsen, H.; Aslaug Hansen, L.; Lin, W.; Johnsson, J.E.; Dam-Johansen, K.

    1998-02-01

    An investigation of the effect of co-firing straw and pulverized coal was performed. Based on experiments from pilot-scale and full-scale it was concluded that a higher fraction of straw in the fuel feedstock mixture results in lower NO and SO{sub 2} emissions. The lower NO emission was mainly due to the higher volatile content of the straw, which leads to lower stoichiometry in the gas phase and in subsequent suppression of NO{sub x} formation. This conclusion is consistent with experimental and modeling results for pure coal combustion. The effect of coal quality on NO emissions has been investigated with three coals of different characteristics in three furnaces: in the Funen power station, unit 7 (FVO7), the Midtkraft Studstrup power station, unit 4 (MKS4), and the Mitsui Babcock Energy Ltd (MBEL) test-rig. The MBEL test-rig was able to reproduce qualitatively the emissions from the MKS4 plant, and quantitatively the emissions from the FVO7 plant. The better agreement between the MBEL test-rig and FVO7 is presumed to be related to the existence of a large primary zone with a relatively low stoichiometry, diminishing the influence of near burner air and fuel mixing rate on the NO emissions. An engineering model has been developed for the prediction of NO emissions and burnout from pulverized fuel combustion in swirl burners. A simplified model for reduction of N{sub 2}O in CFBC has been developed, and simulation results are in good agreement with experimental data from a 12 MW{sub th} CFB-boiler. (EG) EFP-94. 108 refs.

  16. Relationships between chemical oxygen demand (COD) components and toxicity in a sequential anaerobic baffled reactor/aerobic completely stirred reactor system treating Kemicetine

    International Nuclear Information System (INIS)

    In this study the interactions between toxicity removals and Kemicetine, COD removals, intermediate products of Kemicetine and COD components (CODs originating from slowly degradable organics, readily degradable organics, inert microbial products and from the inert compounds) were investigated in a sequential anaerobic baffled reactor (ABR)/aerobic completely stirred tank reactor (CSTR) system with a real pharmaceutical wastewater. The total COD and Kemicetine removal efficiencies were 98% and 100%, respectively, in the sequential ABR/CSTR systems. 2-Amino-1 (p-nitrophenil)-1,3 propanediol, l-p-amino phenyl, p-amino phenol and phenol were detected in the ABR as the main readily degradable inter-metabolites. In the anaerobic ABR reactor, the Kemicetin was converted to corresponding inter-metabolites and a substantial part of the COD was removed. In the aerobic CSTR reactor the inter-metabolites produced in the anaerobic reactor were completely removed and the COD remaining from the anerobic reactor was biodegraded. It was found that the COD originating from the readily degradable organics did not limit the anaerobic degradation process, while the CODs originating from the slowly degradable organics and from the inert microbial products significantly decreased the anaerobic ABR reactor performance. The acute toxicity test results indicated that the toxicity decreased from the influent to the effluent of the aerobic CSTR reactor. The ANOVA test statistics showed that there was a strong linear correlation between acute toxicity, CODs originating from the slowly degradable organics and inert microbial products. A weak correlation between acute toxicity and CODs originating from the inert compounds was detected.

  17. Microwave plasma burner and temperature measurements in its flames

    International Nuclear Information System (INIS)

    An apparatus for generating flames and more particularly the microwave plasma burner for generating high-temperature large-volume plasma flame was presented. The plasma burner is operated by injecting liquid hydrocarbon fuels into a microwave plasma torch in air discharge and by mixing the resultant gaseous hydrogen and carbon compounds with air or oxygen gas. The microwave plasma torch can instantaneously vaporize and decompose the hydrogen and carbon containing fuels. It was observed that the flame volume of the burner was more than 50 times that of the torch plasma. While the temperature of the torch plasma flame was only 550 K at a measurement point, that of the plasma-burner flame with the addition of 0.025 lpm (liters per minute) kerosene and 20 lpm oxygen drastically increased to about 1850 K. A preliminary experiment was carried out, measuring the temperature profiles of flames along the radial and axial directions

  18. Study of a ceramic burner for shaftless stoves

    Institute of Scientific and Technical Information of China (English)

    Fang-qin Dai; Suo-yi Huang; Shao-hua Li; Ke Liu

    2009-01-01

    A multi-burner-port annular flameless ceramic burner (MAFCB) of the shaftless stove for blast furnaces was designed.The characteristics of pressure drop, homogeneousness of the flows at burner ports, and distribution of the flows in the chambers and joint were studied by cold model experiments.This type of ceramic burner was successfully applied in 6# blast furnace at Liuzhou Iron & Steel Co.Ltd.(LISC) and this practice proved that it could be used in the hot blast stove and other stoves with a higher effi-ciency and a higher steadiness of hot blast temperature at 1200℃.With the combustion of blast furnace gas alone, the thermal effi- ciency was up to 78.95%, saving energy remarkably.

  19. Experimental and Theoretical Studies of a Low Nox Swirl Burner

    OpenAIRE

    Spangelo, Øystein

    2004-01-01

    Nitrogen oxides emitted to the atmosphere can cause health problems for humans and environmental problems such as acid rain and global warming. The main part of the world energy consumption involves combustion; hence nitrogen oxide abatement in combustion is an important research field. Formation and reduction of NOx in combustion and the current regulations on NOx emissions are reviewed.A novel low NOx swirl stabilized gas burner concept, the Swirl Burner, has been studied experimentally, th...

  20. Furnaces with multiple flameless combustion burners

    OpenAIRE

    Danon, B.

    2011-01-01

    In this thesis three different combustion systems, equipped with either a single or multiple flameless combustion burner(s), are discussed. All these setups were investigated both experimentally and numerically, i.e., using Computational Fluid Dynamics (CFD) simulations. Flameless combustion is a combustion technology capable of accomplishing the combination of high energy efficiency (by preheating of the combustion air) and low emissions, especially nitrogen oxides (NOx ). These high combustio...

  1. Sensors and methods for control of modulating burners

    Energy Technology Data Exchange (ETDEWEB)

    Michel, J.-B.; Neumann, V.; Theurillat, P. [Centre Suisse d' Electronique et de Microtechnique, Neuchatel (Switzerland); Abu-Sharekh, Y. [Erlangen-Nuremberg Univ. (Germany). LSTM

    2003-07-01

    In recent years, many interesting developments have taken place for an improved control of domestic burners, with an emphasis on modulating gas and oil burners. These relate to new types of sensors for the control of excess air and to new methods and tools for the implantation of control systems on micro-controllers. These developments are reviewed and the application to the Bioflam domestic boiler is described. (orig.)

  2. Corrosion of Stainless Steels of Cryogenic Hydrocarbon Flare Tips Burners

    OpenAIRE

    H. U. Nwosu; A. U. Iwuoha

    2011-01-01

    Analysis of the corrosion resistance of AISI Type 304 Stainless Steel (SS) used in flare tips (burners) of natural gas (NG) extraction facilities is considered to determine the resistance of this grade of austenitic stainless steel to the aggressive corrosive actions of the environment. It was observed that the grade of SS yielded quite early to corrosion attacks which gave effects to scaling, flaking, pitting, material thinning and flare distortions in the burners contrary to expectations. T...

  3. Ethnobotany, chemical constituents and biological activities of the flowers of Hydnora abyssinica A.Br. (Hydnoraceae).

    Science.gov (United States)

    Al-Fatimi, M; Ali, N A A; Kilian, N; Franke, K; Arnold, N; Kuhnt, C; Schmidt, J; Lindequist, U

    2016-04-01

    Hydnora abyssinica A.Br. (Hydnoraceae), a holoparasitic herb, is for the first time recorded for Abyan governorate of South Yemen. Flowers of this species were studied for their ethnobotanical, biological and chemical properties for the first time. In South Yemen, they are traditionally used as wild food and to cure stomach diseases, gastric ulcer and cancer. Phytochemical analysis of the extracts showed the presence of terpenes, tannins, phenols, and flavonoids. The volatile components of the air-dried powdered flowers were identified using a static headspace GC/MS analysis as acetic acid, ethyl acetate, sabinene, α-terpinene, (+)-D-limonene and γ-terpinene. These volatile compounds that characterize the odor and taste of the flowers were detected for the first time in a species of the family Hydnoraceae. The flowers were extracted by n-hexane, dichlormethane, ethyl acetate, ethanol, methanol and water. With exception of the water extract all extracts demonstrated activities against Gram-positive bacteria as well as remarkable radical scavenging activities in DPPH assay. Ethyl acetate, methanol and water extracts exhibited good antifungal activities. The cytotoxic activity of the extracts against FL cells, measured in neutral red assay, was only weak (IC50 > 500 μg/mL). The results justify the traditional use of the flowers of Hydnora abyssinica in South Yemen. PMID:27209704

  4. Tödliches Menetekel für die Menschheit : Abrüstung am Anfang des 21. Jahrhunderts

    OpenAIRE

    Kötter, Wolfgang

    2008-01-01

    Atomare, biologische und chemische Waffen bedrohen das Überleben der Menschheit. Friedens- und Konfliktforscher Wolfgang Kötter aus Potsdam untersucht die differenzierten Ergebnisse bei der Beseitigung dieser Gefahr. Während die chemische Abrüstung, wenn auch mit Verzögerungen, voran kommt, fehlt dem Verbot der B-Waffen ein wirksames Kontrollinstrument. Atomare Waffen erleben sogar eine Renaissance und das nukleare Nichtverbreitungsregime droht zu zerbrechen.

  5. Flashback Analysis in Tangential Swirl Burners

    Directory of Open Access Journals (Sweden)

    Valera-Medina A.

    2011-10-01

    Full Text Available Premixed lean combustion is widely used in Combustion Processes due to the benefits of good flame stability and blowoff limits coupled with low NOx emissions. However, the use of novel fuels and complex flows have increased the concern about flashback, especially for the use of syngas and highly hydrogen enriched blends. Thus, this paper describes a combined practical and numerical approach to study the phenomenon in order to reduce the effect of flashback in a pilot scale 100 kW tangential swirl burner. Natural gas is used to establish the baseline results and effects of different parameters changes. The flashback phenomenon is studied with the use of high speed photography. The use of a central fuel injector demonstrates substantial benefits in terms of flashback resistance, eliminating coherent structures that may appear in the flow channels. The critical boundary velocity gradient is used for characterization, both via the original Lewis and von Elbe formula and via analysis using CFD and investigation of boundary layer conditions in the flame front.

  6. Enhanced Combustion Low NOx Pulverized Coal Burner

    Energy Technology Data Exchange (ETDEWEB)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for

  7. Prototype moving-ring reactor

    International Nuclear Information System (INIS)

    We have completed a design of the Prototype Moving-Ring Reactor. The fusion fuel is confined in current-carrying rings of magnetically-field-reversed plasma (Compact Toroids). The plasma rings, formed by a coaxial plasma gun, undergo adiabatic magnetic compression to ignition temperature while they are being injected into the reactor's burner section. The cylindrical burner chamber is divided into three burn stations. Separator coils and a slight axial guide field gradient are used to shuttle the ignited toroids rapidly from one burn station to the next, pausing for 1/3 of the total burn time at each station. D-T-3He ice pellets refuel the rings at a rate which maintains constant radiated power

  8. Performance and analysis by particle image velocimetry (PIV) of cooker-top burners in Thailand

    International Nuclear Information System (INIS)

    Cooker-top burners are used extensively in Thailand because of the rapid combustion and high heating-rates created by an impinging flame, which is characteristic of these types of burners. High thermal efficiency with low level of CO emissions is the most important performance criteria for these burners. The wide variation in reported performances of the burners appears to be due to the ad hoc knowledge gained through trial and error of the local manufacturers rather than sound scientific principles. This is extremely undesirable in view of safety, energy conservation and environmental protection. In the present work, a nationwide cooker-top burner performance survey and an implementation of a PIV technique to analyze the burner performance as well as advising local manufacturers were carried out. Experimental data were reported for the base line value of thermal efficiency of all the burners. The thermal performance parameters and dynamic properties of the flow field at a flame impingement area, i.e. velocity magnitude, turbulent intensity, vorticity and strain rate were also reported as a function of burner type, which was categorized into four types based on the configuration of the burner head: radial flow burners, swirling flow burners, vertical flow burners and porous radiant burners

  9. Bioswirl: A Wood Pellet Burner for Oil Retrofit

    Energy Technology Data Exchange (ETDEWEB)

    Ljungdahl, Boo; Lundberg, Henrik [TPS Termiska Processer AB, Nykoeping (Sweden)

    2002-11-01

    A compact and robust firing system for wood pellets has been developed and its operation demonstrated during one season. The firing system was developed with the aim to retrofit heat producing oil-fired burners in the range of 0.5 to 5 MW. In this power range there are severe economical restrictions on the firing systems used; operation with high availability and low emissions of unburned gases and NO{sub x} should be secured with only periodic supervision of the boiler. At the same time there are technical restrictions since, for instance, scale up of existing commercial small grate firing technique leads to an undesired volumetric increase of the pellet burner, compared to the oil-burners to be retrofitted. Here a burner system for crushed wood pellets was developed in order to increase the combustion intensity. The pellets are fed from the storage silo to a mill/crusher where the fuel is crushed to a coarse wood powder with a size distribution of 0.5 to 4 mm, which is about the same size as the original particle size distribution used for the pellet production. Thus a simple crushing mill can be used and any excess energy demand for milling is avoided. The crushed pellets are thereafter directly fed into a cyclone burner. The centrifugal forces assure a sufficient residence time to complete thermal conversion of the large wood particles in the burner, i.e. the particles are large compared to pulverised fuel. The burner is designed with secondary -and tertiary air registers for a staged air supply and connected to a furnace in which the final burn out of combustible gases takes place. This results in an efficient burn out and low NO, emissions even at turn down ratios in the order of 1:8. Ash particles will follow the exhaust gas as fly ash. During the heating season 2001-2002 the Bioswirl burner has been demonstrated in a small-scale district heating system. A 1200 kW oil burner has been replaced with an 800 kW Bioswirl burner. The system has been operated with

  10. Design and construction of an air inductor burner

    International Nuclear Information System (INIS)

    This article presents research results performed with the purpose of obtain design parameters, construction, and air inductor burner operation, which are used in industrial combustion systems, in several processes such as: metal fusion (fusion furnaces), fluids heating (immerse heating tubes), steam production (steam boiler), drying processes, etc. In order to achieve such objectives, a prototype with thermal power modulation from 6 to 52 kW, was built to be either operated with natural gas or with LPG. The burner was built taking in mind the know how (design procedure) developed according to theoretical schemes of different bibliographic references and knowledge of the research group in gas science and technology of the University of Antioquia. However, with such procedure only the burner mixer is dimensioned and five parameters must to be selected by the designer: burner thermal power, primary aeration ratio, counter pressure at combustion chamber, air pressure admission and gas fuel intended to use. For head design we took in mind research done before by the group of science and technology in gas research: Mono port and bar burner heads with their respective stabilization flame systems

  11. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

    2001-09-04

    It is well understood that the stability of axial diffusion flames is dependent on the mixing behavior of the fuel and combustion air streams. Combustion aerodynamic texts typically describe flame stability and transitions from laminar diffusion flames to fully developed turbulent flames as a function of increasing jet velocity. Turbulent diffusion flame stability is greatly influenced by recirculation eddies that transport hot combustion gases back to the burner nozzle. This recirculation enhances mixing and heats the incoming gas streams. Models describing these recirculation eddies utilize conservation of momentum and mass assumptions. Increasing the mass flow rate of either fuel or combustion air increases both the jet velocity and momentum for a fixed burner configuration. Thus, differentiating between gas velocity and momentum is important when evaluating flame stability under various operating conditions. The research efforts described herein are part of an ongoing project directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners. Experimental studies include both cold-and hot-flow evaluations of the following parameters: primary and secondary inlet air velocity, coal concentration in the primary air, coal particle size distribution and flame holder geometry. Hot-flow experiments will also evaluate the effect of wall temperature on burner performance.

  12. Flow processes in a radiant tube burner: Combusting flow

    International Nuclear Information System (INIS)

    Highlights: → 3D combusting flow in an industrial radiant tube burner is modelled using the ANSYS-CFX CFD code. → Results are validated against data from an industrial furnace (NO emissions within 7%). → The flame is long and narrow with slight asymmetry. Mixing near the fuel injector is very effective. → The recuperator section is reasonably effective, but design improvements are proposed. → The design is vulnerable to eccentricities due to manufacturing or assembly tolerances. -- Abstract: This paper describes a study of the combustion process in an industrial radiant tube burner (RTB), used in heat treating furnaces, as part of an attempt to improve burner performance. A detailed three-dimensional Computational Fluid Dynamics model has been used, validated with experimental test furnace temperature and flue gas composition measurements. Simulations using the Eddy Dissipation combustion model with peak temperature limitation and the Discrete Transfer radiation model showed good agreement with temperature measurements in the inner and outer walls of the burner, as well as with flue gas composition measured at the exhaust (including NO). Other combustion and radiation models were also tested but gave inferior results in various aspects. The effects of certain RTB design features are analysed, and an analysis of the heat transfer processes within the burner is presented.

  13. SU-E-E-02: An Excel-Based Study Tool for ABR-Style Exams

    International Nuclear Information System (INIS)

    Purpose: As the landscape of learning and testing shifts toward a computer-based environment, a replacement for paper-based methods of studying is desirable. Using Microsoft Excel, a study tool was developed that allows the user to populate multiple-choice questions and then generate an interactive quiz session to answer them. Methods: The code for the tool was written using Microsoft Excel Visual Basic for Applications with the intent that this tool could be implemented by any institution with Excel. The base tool is a template with a setup macro, which builds out the structure based on user’s input. Once the framework is built, the user can input sets of multiple-choice questions, answer choices, and even add figures. The tool can be run in random-question or sequential-question mode for single or multiple courses of study. The interactive session allows the user to select answer choices and immediate feedback is provided. Once the user is finished studying, the tool records the day’s progress by reporting progress statistics useful for trending. Results: Six doctoral students at UTHSCSA have used this tool for the past two months to study for their qualifying exam, which is similar in format and content to the American Board of Radiology (ABR) Therapeutic Part II exam. The students collaborated to create a repository of questions, met weekly to go over these questions, and then used the tool to prepare for their exam. Conclusion: The study tool has provided an effective and efficient way for students to collaborate and be held accountable for exam preparation. The ease of use and familiarity of Excel are important factors for the tool’s use. There are software packages to create similar question banks, but this study tool has no additional cost for those that already have Excel. The study tool will be made openly available

  14. SU-E-E-02: An Excel-Based Study Tool for ABR-Style Exams

    Energy Technology Data Exchange (ETDEWEB)

    Cline, K; Stanley, D; Defoor, D; Stathakis, S; Gutierrez, A; Papanikolaou, N; Kirby, N [University of Texas Health Science Center at San Antonio, Cancer Therapy and Research Center, San Antonio, TX (United States)

    2015-06-15

    Purpose: As the landscape of learning and testing shifts toward a computer-based environment, a replacement for paper-based methods of studying is desirable. Using Microsoft Excel, a study tool was developed that allows the user to populate multiple-choice questions and then generate an interactive quiz session to answer them. Methods: The code for the tool was written using Microsoft Excel Visual Basic for Applications with the intent that this tool could be implemented by any institution with Excel. The base tool is a template with a setup macro, which builds out the structure based on user’s input. Once the framework is built, the user can input sets of multiple-choice questions, answer choices, and even add figures. The tool can be run in random-question or sequential-question mode for single or multiple courses of study. The interactive session allows the user to select answer choices and immediate feedback is provided. Once the user is finished studying, the tool records the day’s progress by reporting progress statistics useful for trending. Results: Six doctoral students at UTHSCSA have used this tool for the past two months to study for their qualifying exam, which is similar in format and content to the American Board of Radiology (ABR) Therapeutic Part II exam. The students collaborated to create a repository of questions, met weekly to go over these questions, and then used the tool to prepare for their exam. Conclusion: The study tool has provided an effective and efficient way for students to collaborate and be held accountable for exam preparation. The ease of use and familiarity of Excel are important factors for the tool’s use. There are software packages to create similar question banks, but this study tool has no additional cost for those that already have Excel. The study tool will be made openly available.

  15. Role of small lead-cooled fast reactors for international deployment in worldwide sustainable nuclear energy supply

    International Nuclear Information System (INIS)

    Most recently, the global nuclear energy partnership (GNEP) has identified, as one of its key objectives, the development and demonstration of concepts for small and medium-sized reactors (SMRs) that can be globally deployed while assuring a high level of proliferation resistance. Lead-cooled systems offer several key advantages in meeting these goals. The small lead-cooled fast reactor concept known as the small secure transportable autonomous reactor (SSTAR) has been under ongoing development as part of the US advanced nuclear energy systems programs. Meeting future worldwide projected energy demands during this century (e.g., 1000 to 2000 GWe by 2050) in a sustainable manner while maintaining CO2 emissions at or below today's level will require massive deployments of nuclear reactors in non-fuel cycle states as well as fuel cycle states. The projected energy demands of non-fuel cycle states will not be met solely through the deployment of Light Water Reactors (LWRs) in those states without using up the world's resources of fissile material (e.g., known plus speculative virgin uranium resources = 15 million tonnes). The present U.S. policy is focused upon domestic deployment of large-scale LWRs and sodium-cooled fast spectrum Advanced Burner Reactors (ABRs) working in a symbiotic relationship that burns existing fissile material while destroying the actinides which are generated. Other major nuclear nations are carrying out the development and deployment of SFR breeders as witness the planning for SFR breeder deployments in France, Japan, China, India, and Russia. Small (less that 300 MWe) and medium (300 to 700 MWe) size reactors are better suited to the growing economies and infrastructures of many non-fuel cycle states and developing nations. For those deployments, fast reactor converters which are fissile self-sufficient by creating as much fissile material as they consume are preferred to breeders that create more fissile material than they consume. Thus

  16. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS; SEMIANNUAL

    International Nuclear Information System (INIS)

    An initial testing campaign was carried out during the summer of 2000 to evaluate the impact of multiburner firing on NOx emissions. Extensive data had been collected during the Fall of 1999 and Spring of 2000 using a single pulverized-coal (PC) burner, and this data collection was funded by a separate Department of Energy program, the Combustion 2000 Low Emission Boiler System (LEBS) project under the direction of DB Riley. This single-burner data was thus available for comparison with NOx emissions obtained while firing three burners at the same overall load and operating conditions. A range of operating conditions were explored that were compatible with single-burner data, and thus the emission trends as a function of air staging, burner swirl and other parameters will be described below. In addition, a number of burner-to-burner operational variations were explored that provided interesing insight on their potential impact on NOx emissions. Some of these variations include: running one burner very fuel rich while running the others fuel lean; varying the swirl of a single burner while holding others constant; increasing the firing rate of a single burner while decreasing the others. In general, the results to date indicated that multiburner firing yielded higher NOx emissions than single burner firing at the same fuel rate and excess air. At very fuel rich burner stoichiometries (SR and lt; 0.75), the difference between multiple and single burners became indistinguishable. This result is consistent with previous single-burner data that showed that at very rich stoichiometries the NOx emissions became independent of burner settings such as air distributions, velocities and burner swirl

  17. Emission characteristics of a novel low NOx burner fueled by hydrogen-rich mixtures with methane

    OpenAIRE

    Dutka, Marcin Damian; Ditaranto, Mario; Løvås, Terese

    2015-01-01

    The use of hydrogen-rich fuels may be challenging for burner designers due to unique properties of hydrogen compared to conventional fuels such as natural gas. Burner retrofit may be required to use hydrogen-enriched fuels in combustion systems that are designed for natural gas combustion. This study aimed to experimentally investigate NOx emissions from a novel low NOx burner fueled by methane-hydrogen mixtures. The burner was tested in a cylindrical combustion chamber at atmosph...

  18. Co-firing straw with coal in a swirl-stabilized dual-feed burner: modelling and experimental validation

    DEFF Research Database (Denmark)

    Yin, Chungen; Kær, Søren Knudsen; Rosendahl, Lasse;

    2010-01-01

    This paper presents a comprehensive computational fluid dynamics (CFD) modelling study of co-firing wheat straw with coal in a 150 kW swirl-stabilized dual-feed burner flow reactor, in which the pulverized straw particles (mean diameter of 451μm) and coal particles (mean diameter of 110.4μm) are ...... burnout of the two fuels is predicted: about 93% for coal char vs. 73% for straw char. As the conclusion, a reliable modelling methodology for pulverized biomass/coal co-firing and some useful co-firing design considerations are suggested....

  19. The effect of pH and operation mode for COD removal of slaughterhouse wastewater with Anaerobic Batch Reactor (ABR)

    OpenAIRE

    Maria Octoviane Dyan; Gita Permana Putra; Budiyono Budiyono; Siswo Sumardiono; Tutuk Djoko Kusworo

    2015-01-01

    Disposal of industrial wastes in large quantities was not in accordance with today's standards of waste into environmental issues that must be overcome with proper treatment. Similarly, the abattoir wastewater that contains too high organic compounds and suspended solids. The amount of liquid waste disposal Slaughterhouse (SW) with high volume also causes pollution. The research aim to resolve this problem by lowering the levels of BOD-COD to comply with effluent quality standard. Anaerobic p...

  20. Preliminary design of a future neptunium burner

    International Nuclear Information System (INIS)

    Neptunium 237 dominates the toxicity of highly active waste after about 10 000 years. It could be separated during reprocessing and subsequently used as metallic fueld of a sodium cooled fast reactor with a very hard neutron spectrum. Electrochemical reprocessing would be suitable for this fuel. One reactor of this type would be sufficient to convert into fission products the neptunium produced by 125 light water reactors. Thus the period after which the toxicity of highly active waste in a final depository has reached the toxicity of natural uranium ore could be reduced from 106 to 104 years. In a second step which also provides for burning all of the other actinides (Pu-238, Am-241, Am-243, Cm-244) a further reduction to 103 years could be achieved. (orig.)

  1. Figure of merit for the feasibility of a CANDU PHWR actinide burner

    International Nuclear Information System (INIS)

    In this work it is presented a global criterion (GCR) to evaluate feasibility of a CANDU PHWR actinide burner (CPAB). A set of dimensionless criteria as components of GCR is given and discussed. This set comprises ten terms and is based on the newest data appeared in worldwide literature. We considered the Open Fuel Cycle Option (OFCO) and the Closed Fuel Cycle Option (CFCO) too. The evaluation of the GCR is considered for these two options. The purpose of this work was to put in evidence the minimum cost approach. In international literature there were proposed many options to burn the actinide species resulted from fuel burnup in nuclear reactors. Until now it is not clear which is the most advantageous version. However, the problem is very important and therefore further developments can be foreseen. (author)

  2. Actinide transmutation in nuclear reactors

    International Nuclear Information System (INIS)

    This report has also been published as a PhD thesis. It discusses the reduction of the transuranics part of nuclear waste. Requirements and criteria for efficient burning of transuranics are developed. It is found that a large reduction of transuranics produced per unit of energy is possible when the losses in reprocessing are small and when special transuranics burner reactors are used at the end of the nuclear era to reduce the transuranics inventory. Two special burner reactors have been studied in this thesis. In chapter 3, the Advanced Liquid Metal Reactor is discussed. A method has been developed to optimize the burning capability while complying to constraints imposed on the design for safety, reliability, and economics. An oxide fueled and metallic fueled ALMR have been compared for safety and transuranics burning. Concluded is that the burning capability is the same, but that the higher thermal conductivity of the metallic fuel has a positive effect on safety. In search for a more effective waste transmuter, a modified Molten Salt Reactor was designed for this study. The continuous refueling capability and the molten salt fuel make a safe design possible without uranium as fuel. A four times faster reduction of the transuranics is possible with this reactor type. The amount of transuranics can be halved every 10 years. The most important conclusion of this work is that it is of utmost importance in the study of waste transmutation that a high burning is obtained with a safe design. In future work, safety should be the highest priority in the design process of burner reactors. (orig.)

  3. Altitude Performance Characteristics of Tail-pipe Burner with Convergingconical Burner Section on J47 Turbojet Engine

    Science.gov (United States)

    Prince, William R; Mcaulay, John E

    1950-01-01

    An investigation of turbojet-engine thrust augmentation by means of tail-pipe burning was conducted in the NACA Lewis altitude wind tunnel. Performance data were obtained with a tail-pipe burner having a converging conical burner section installed on an axial-flow-compressor type turbojet engine over a range of simulated flight conditions and tail-pipe fuel-air ratios with a fixed-area exhaust nozzle. A maximum tail-pipe combustion efficiency of 0.86 was obtained at an altitude of 15,000 feet and a flight Mach number of 0.23. Tail-pipe burner operation was possible up to an altitude of 45,000 feet at a flight Mach number of 0.23.

  4. Oil burner system with an individual regulation of the burners within a wide range of loading and low emissions of NOx

    International Nuclear Information System (INIS)

    An oil burner system is implemented with an individual regulation of the burners within a wide range of loading and low emissions of NOx. The air regime of the burners is organized according to the requirements for a 'deferred combustion', a pre-condition for low level of the NOx emissions. The lances are Y nozzles with practically linear characteristic of the flow depending on the oil pressure. The oil (heavy boiler fuel) is heated up to 138 deg C (viscosity 16.0 mm2/s) for initial ignition and cold furnace and 130 deg C (viscosity 18,5 mm2/s) for a heated furnace and air temperature 150 deg C. The regulation of the fuel - air ratio is individual for each burner. The oil burner system and the various burners are controlled automatically by a DCS Teleperm XP - Siemens of the Unit. (authors)

  5. Process evaluation of the health education resource Abre los Ojos for street-involved youth in Medellín

    Directory of Open Access Journals (Sweden)

    John L. Wylie

    2012-02-01

    Full Text Available Objective: Conduct a process evaluation of a health education resource (pamphlet¸ Abre los Ojos, designed for street-involved youth in Medellín. The primary foci of the evaluation were the process of developing the resource and youth’s subsequent perception of the resource. Methodology: Drawing upon both qualitative and quantitative data, a process evaluation was undertaken. Ninety four street-involved youth between the ages of 14–24 years completed surveys about the resource. These semi-structured interviews were key for the information about youth perception of the resource. In addition to individual interviews, prior to resource creation, a series of focus groups were integral for the development of the resource. Results: The process of consulting with the target population through the focus groups was effective in obtaining their ideas and feedback about what type of content they would like to see in a health education resource, and how they wanted that content presented. After distribution, participants described that Abre los Ojos contained information that was valuable and relevant to their experiences. While not a primary focus of this evaluation, the individual interviews were also able to provide some preliminary insight into whether Abre los Ojos was an effective means for participants to increase their knowledge of content included in the resource. Conclusion: The collaborative process of jointly developing the resource content in partnership with the youth proved very worthwhile. While our research team chose to include information about HIV, through focus group dialogue, the youth themselves determined the additional content themes (piercings, use of solvents, and description of life on the street. The resulting resource was well-received by members of the street-involved population who had not been involved in its design.

  6. FIELD EVALUATION OF LOW-EMISSIONS COAL BURNER TECHNOLOGY ON UTILITY BOILERS; VOLUME II. SECOND GENERATION LOW-NOX BOILERS

    Science.gov (United States)

    The report describes tests to evaluate the performance characteristics of three Second Generation Low-NOx burner designs: the Dual Register burner (DRB), the Babcock-Hitachi NOx Reducing (HNR) burner, and the XCL burner. The three represent a progression in development based on t...

  7. Study of the Effects of Ambient Conditions Upon the Performance of Fan Powered, Infrared Natural Gas Burners

    Energy Technology Data Exchange (ETDEWEB)

    Clark Atlanta University

    2002-12-02

    The objective of this investigation was to characterize the operation of a fan-powered, infrared burner (IR burner) at various gas compositions and ambient conditions, develop numerical model to simulate the burner performances, and provide design guidelines for appliances containing PIR burners for satisfactory performance.

  8. LOW NOX, HIGH EFFICIENCY MULTISTAGED BURNER: GASEOUS FUEL RESULTS

    Science.gov (United States)

    The paper discusses the evaluation of a multistaged combustion burner design on a 0.6 MW package boiler simulator for in-furnace NOx control and high combustion efficiency. Both deep air staging, resulting in a three-stage configuration, and boiler front wall fuel staging of undo...

  9. Pulverized straw combustion in a low-NOx multifuel burner

    DEFF Research Database (Denmark)

    Mandø, Matthias; Rosendahl, Lasse; Yin, Chungen;

    2010-01-01

    A CFD simulation of pulverized coal and straw combustion using a commercial multifuel burner have been undertaken to examine the difference in combustion characteristics. Focus has also been directed to development of the modeling technique to deal with larger non-spherical straw particles and to...

  10. Demonstration test of burner liner strain measuring system

    Science.gov (United States)

    Stetson, K. A.

    1984-01-01

    A demonstration test was conducted for two systems of static strain measurement that had been shown to have potential for application jet engine combustors. A modified JT12D combustor was operated in a jet burner test stand while subjected simultaneously to both systems of instrumentation, i.e., Kanthal A-1 wire strain gages and laser speckle photography. A section of the burner was removed for installation and calibration of the wire gages, and welded back into the burner. The burner test rig was modified to provide a viewing port for the laser speckle photography such that the instrumented section could be observed during operation. Six out of ten wire gages survived testing and showed excellent repeatability. The extensive precalibration procedures were shown to be effective in compensating for the large apparent strains associated with these gages. Although all portions of the speckle photography system operated satisfactorily, a problem was encountered in the form of optical inhomogeneities in the hot, high-pressure gas flowing by the combustor case which generate large and random apparent strain distributions.

  11. Feasibility Study of Regenerative Burners in Aluminum Holding Furnaces

    Science.gov (United States)

    Hassan, Mohamed I.; Al Kindi, Rashid

    2014-09-01

    Gas-fired aluminum holding reverberatory furnaces are currently considered to be the lowest efficiency fossil fuel system. A considerable volume of gas is consumed to hold the molten metal at temperature that is much lower than the flame temperature. This will lead to more effort and energy consumption to capture the excessive production of the CO2. The concern of this study is to investigate the feasibility of the regenerative-burners' furnaces to increase the furnace efficiency to reduce gas consumption per production and hence result in less CO2 production. Energy assessments for metal holding furnaces are considered at different operation conditions. Onsite measurements, supervisory control and data acquisition data, and thermodynamics analysis are performed to provide feasible information about the gas consumption and CO2 production as well as area of improvements. In this study, onsite measurements are used with thermodynamics modeling to assess a 130 MT rectangular furnace with two regenerative burners and one cold-air holding burner. The assessment showed that the regenerative burner furnaces are not profitable in saving energy, in addition to the negative impact on the furnace life. However, reducing the holding and door opening time would significantly increase the operation efficiency and hence gain the benefit of the regenerative technology.

  12. Regenerative burner system for thermoelectric power sources. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Guazzoni, G.; Angello, J.; Herchakowski, A.

    1979-07-01

    A thermoelectric power source is being developed to provide a multifuel, silent, maintenance free tactical power generator for forward area and unattended-operation applications. An experimental study of a regenerative burner system for the 500-Watt Thermoelectric Power Source has resulted in significant reduction in fuel consumption and infrared signature of the power source.

  13. Burner tilting angle effect on velocity profile in 700 MW Utility Boiler

    Science.gov (United States)

    Munisamy, K. M.; Yusoff, M. Z.; Thangaraju, S. K.; Hassan, H.; Ahmad, A.

    2015-09-01

    700 MW of utility boiler is investigated with manipulation of inlet burner angle. Manipulation of burner titling angle is an operational methodology in controlling rear pass temperature in utility boilers. The rear pass temperature unbalance between right and left side is a problem caused by fouling and slagging of the ash from the coal fired boilers. This paper presents the CFD investigation on the 0° and -30° of the burner angle of the utility boiler. The results focusing on the velocity profile. The design condition of 0° burner firing angle is compared with the off-design burner angle -30° which would be the burner angle to reduce the rear pass temperature un-balance by boiler operators. It can be concluded that the -30° burner angle reduce the turbulence is fire ball mixing inside the furnace. It also shift the fire ball position in the furnace to reduce the rear pass temperature.

  14. Freeze-casting as a Novel Manufacturing Process for Fast Reactor Fuels. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wegst, Ulrike G.K. [Dartmouth College, Hanover, NH (United States). Thayer School of Engineering; Allen, Todd [Idaho National Lab. (INL), Idaho Falls, ID (United States); Univ. of Wisconsin, Madison, WI (United States); Sridharan, Kumar [Idaho National Lab. (INL), Idaho Falls, ID (United States); Univ. of Wisconsin, Madison, WI (United States)

    2014-04-07

    Advanced burner reactors are designed to reduce the amount of long-lived radioactive isotopes that need to be disposed of as waste. The input feedstock for creating advanced fuel forms comes from either recycle of used light water reactor fuel or recycle of fuel from a fast burner reactor. Fuel for burner reactors requires novel fuel types based on new materials and designs that can achieve higher performance requirements (higher burn up, higher power, and greater margins to fuel melting) then yet achieved. One promising strategy to improved fuel performance is the manufacture of metal or ceramic scaffolds which are designed to allow for a well-defined placement of the fuel into the host, and this in a manner that permits greater control than that possible in the production of typical CERMET fuels.

  15. Freeze-casting as a Novel Manufacturing Process for Fast Reactor Fuels. Final Report

    International Nuclear Information System (INIS)

    Advanced burner reactors are designed to reduce the amount of long-lived radioactive isotopes that need to be disposed of as waste. The input feedstock for creating advanced fuel forms comes from either recycle of used light water reactor fuel or recycle of fuel from a fast burner reactor. Fuel for burner reactors requires novel fuel types based on new materials and designs that can achieve higher performance requirements (higher burn up, higher power, and greater margins to fuel melting) then yet achieved. One promising strategy to improved fuel performance is the manufacture of metal or ceramic scaffolds which are designed to allow for a well-defined placement of the fuel into the host, and this in a manner that permits greater control than that possible in the production of typical CERMET fuels.

  16. Nuclear power on Britain's back burner

    International Nuclear Information System (INIS)

    The author argues that recent United Kingdom government policies which at present impose an embargo on the building of new nuclear power stations, will lead to a deskilling of the nuclear engineering capacity of this country. He argues the environmental and economic case for increased nuclear capacity to meet the United Kingdom's electricity demand, but fears that we will continue to illogically use gas to generate power. He predicts enormous gas price rises, accompanied by a return to nuclear power, but using reactor designs developed abroad instead of with British expertise. (UK)

  17. Recent Changes to ABR Maintenance of Certification Part 4 (PQI): Acknowledgment of Radiologists' Activities to Improve Quality and Safety.

    Science.gov (United States)

    Donnelly, Lane F; Mathews, Vincent P; Laszakovits, David J; Jackson, Valerie P; Guiberteau, Milton J

    2016-02-01

    The ABR has recently reviewed and revised its policy establishing how ABR diplomates may comply with requirements for Maintenance of Certification Part 4: Practice Quality Improvement (PQI). The changes were deemed necessary by the Board of Trustees to acknowledge and credit the numerous ways in which radiology professionals contribute to improving patient care through existing and evolving activities available to them within the radiology community. In addition to meeting requirements by completing a traditional PQI project, the policy revision now allows diplomates to meet criteria by completing one of a number of activities in an expanded spectrum of PQI options recognized by the ABR. The new policy also acknowledges the maturing state of quality improvement science by permitting PQI projects to use "any standard quality improvement methodology," such as Six Sigma, Lean, the Institute for Healthcare Improvement's Model for Improvement, and others in addition to the previously prescribed three-phase plan-do-study-act format. PMID:26412749

  18. EVALUATION AND DEMONSTRATION OF LOW-NOX BURNER SYSTEMS FOR TEOR (THERMALLY ENHANCED OIL RECOVERY) STEAM GENERATORS: FINAL REPORT - FIELD EVALUATION OF COMMERCIAL PROTOTYPE BURNER

    Science.gov (United States)

    The report gives results of the final phase of a program to develop, demonstrate, and evaluate a low-NOx burner for crude-oil-fired steam generators used for thermally enhanced oil recovery (TEOR). The burner designed and demonstrated under this program was developed from design ...

  19. A double-regenerative burner for blast-furnace gas

    Energy Technology Data Exchange (ETDEWEB)

    Edmundson, J.T. (British Steel Corp., Port Talbot (UK)); Jenkins, D.P. (Bristol Polytechnic (GB))

    1990-12-01

    The purpose of this project was to demonstrate the operative reliability of a novel regenerative burner system utilising low-calorific-value fuel gas and capable of high-temperature performance at high efficiency. The system is based on the extension of the application of the self-generative principle to both fuel gas and air supplies. Two burners operate in tandem, of which one fires while the other regenerates both the fuel gas and combustion air preheat beds. Blast-furnace gas with a calorific value of 2.9 MJ m{sup -3} was the fuel source. 1500 hours of operative trials were carried out. For the duration of the trials all the planned investigations were completed satisfactorily, and the results successfully indicate the ability of the system to achieve high-temperature performance at high thermal efficiency. (author).

  20. Fuel burner with air-deflecting object and method therefor

    Energy Technology Data Exchange (ETDEWEB)

    Durfee, E.P.

    1980-12-16

    There is provided an improved fuel burner of the type having an air blower and blast tube. The improvement involves placement of an air-deflecting object inside the housing of the air blower or in the blast tube. In one embodiment, the object has a v-shaped cross section, and is attached to a gently tapered cylinder; the object can be held in place by inserting it through a hole of appropriate dimension in the air blower or blast tube, and tapping on the exposed end of the tapered cylinder until the latter is engaged in the hole. There is also provided a method of improving a fuel burner by mounting a air-deflecting object of the type described in the air blower housing or in the blast tube.

  1. Study and mathematical model of ultra-low gas burner

    International Nuclear Information System (INIS)

    The main objective of this project is prediction and reduction of NOx and CO2 emissions under levels recommended from European standards for gas combustion processes. A mathematical model of burner and combustion chamber is developed based on interacting fluid dynamics processes: turbulent flow, gas phase chemical reactions, heat and radiation transfer The NOx prediction model for prompt and thermal NOx is developed. The validation of CFD (Computer fluid-dynamics) simulations corresponds to 5 MWI burner type - TEA, installed on CASPER boiler. This burner is three-stream air distribution burner with swirl effect, designed by ENEL to meet future NOx emission standards. For performing combustion computer modelling, FLUENT CFD code is preferred, because of its capabilities to provide accurately description of large number of rapid interacting processes: turbulent flow, phase chemical reactions and heat transfer and for its possibilities to present wide range of calculation and graphical output reporting data The computational tool used in this study is FLUENT version 5.4.1, installed on fs 8200 UNIX systems The work includes: study the effectiveness of low-NOx concepts and understand the impact of combustion and swirl air distribution and flue gas recirculation on peak flame temperatures, flame structure and fuel/air mixing. A finite rate combustion model: Eddy-Dissipation (Magnussen-Hjertager) Chemical Model for 1, 2 step Chemical reactions of bi-dimensional (2D) grid is developed along with NOx and CO2 predictions. The experimental part of the project consists of participation at combustion tests on experimental facilities located in Livorno. The results of the experiments are used, to obtain better vision for combustion process on small-scaled design and to collect the necessary input data for further Fluent simulations

  2. Infrared Imaging of Uninhibited Cup-Burner Flame

    Czech Academy of Sciences Publication Activity Database

    Nevrlý, Václav; Bitala, P.; Střižík, Michal; Zelinger, Zdeněk; Danihelka, P.; Kollárik, T.; Grigorová, E.; Jánošík, L.; Jelínková, R.; Mikoczy, A.; Filipi, B.; Dudáček, A.

    Vienna: Verlag ProcessEng Engineering GmbH, 2009. s. 317-317. ISBN 978-3-902655-06-6. [European Combustion Meeting /4./. 14.04.2009–17.04.2009, Vienna] R&D Projects: GA MŠk OC 111 Institutional research plan: CEZ:AV0Z20760514; CEZ:AV0Z40400503 Keywords : cup burner * flame * infrared imaging * soot Subject RIV: JB - Sensors, Measurment, Regulation

  3. Optimization of a premixed cylindrical burner for low pollutant emission

    International Nuclear Information System (INIS)

    Highlights: • The mixing uniformity of methane closely relates to low burning emissions. • Optimal exit position and diameter of nozzle are obtained with high methane mixing. • Low emissions of optimal burner are experimentally validated. - Abstract: A premixed cylindrical burner is numerically and experimentally investigated to realize low pollutant emission. The geometrical parameters of nozzle exit position and nozzle diameter are optimized by using a validated Computational Fluid Dynamics model. The natural gas-air mixing in the mix chamber indicates that the uniformity of methane concentration increases with the increase of distance from ejector outlet. It is found that the nozzle exit position at −3.0 mm improves the overall performance of premixed cylindrical burner, when nozzle diameter is not less than 1.6 mm. The emission characteristics of nitrogen oxides and carbon monoxide are also examined by experimental approach. It is found that load factor has a great influence on nitrogen oxides and carbon monoxide emissions, but the effect is gradually disappeared when air coefficient is not less than 1.4. When nozzle exit position is −3.0 mm, nozzle diameter is not less than 1.6 mm and air coefficient is not less than 1.4, the emissions of nitrogen oxides and carbon monoxide are less than 20 ppm and 50 ppm, respectively

  4. Combustion Characteristics of Butane Porous Burner for Thermoelectric Power Generation

    Directory of Open Access Journals (Sweden)

    K. F. Mustafa

    2015-01-01

    Full Text Available The present study explores the utilization of a porous burner for thermoelectric power generation. The porous burner was tested with butane gas using two sets of configurations: single layer porcelain and a stacked-up double layer alumina and porcelain. Six PbSnTe thermoelectric (TE modules with a total area of 54 cm2 were attached to the wall of the burner. Fins were also added to the cold side of the TE modules. Fuel-air equivalence ratio was varied between the blowoff and flashback limit and the corresponding temperature, current-voltage, and emissions were recorded. The stacked-up double layer negatively affected the combustion efficiency at an equivalence ratio of 0.20 to 0.42, but single layer porcelain shows diminishing trend in the equivalence ratio of 0.60 to 0.90. The surface temperature of a stacked-up porous media is considerably higher than the single layer. Carbon monoxide emission is independent for both porous media configurations, but moderate reduction was recorded for single layer porcelain at lean fuel-air equivalence ratio. Nitrogen oxides is insensitive in the lean fuel-air equivalence ratio for both configurations, even though slight reduction was observed in the rich region for single layer porcelain. Power output was found to be highly dependent on the temperature gradient.

  5. The BNL fan-atomized burner system prototype

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.A.; Celebi, Y. [Brookhaven National Lab., Upton, NY (United States)

    1995-04-01

    Brookhaven National Laboratory (BNL) has a continuing interest in the development of advanced oil burners which can provide new capabilities not currently available with pressure atomized, retention head burners. Specifically program goals include: the ability to operate at firing rates as low as 0.25 gph; the ability to operate with very low excess air levels for high steady state efficiency and to minimize formation of sulfuric acid and iron sulfate fouling; low emissions of smoke, CO, and NO{sub x} even at very low excess air levels; and the potential for modulation - either staged firing or continuous modulation. In addition any such advanced burner must have production costs which would be sufficiently attractive to allow commercialization. The primary motivation for all work sponsored by the US DOE is, of course, improved efficiency. With existing boiler and furnace models this can be achieved through down-firing and low excess air operation. Also, with low excess air operation fouling and efficiency degradation due to iron-sulfate scale formation are reduced.

  6. Fast Reactor Development Strategy in China

    International Nuclear Information System (INIS)

    As one of the largest developing countries, China needs a reliable energy supplement. At the same time, China should improve the energy structure to decrease CO2 emissions. Nuclear and renewable energies are the main solutions to these issues. According to the research results, the nuclear capacity should increase to 400 GW(e) up to 2050. Fast reactors must be developed considering the limitation of uranium resources. In order to deploy fast reactor technology, the ‘experimental reactor, demonstration reactor and commercial reactor’ strategy has been suggested. China has finished the construction of the China Experimental Fast Reactor (CEFR) and gained necessary experience about fast reactors. The China Institute of Atomic Energy (CIAE) has begun to design the CFR-600, a 600 MW(e) demonstration fast reactor. This reactor will be put into operation before 2025. After that, a larger commercial reactor will be constructed. Besides fast reactors, all of other key sectors of fuel cycle will be developed at the same time such as reprocessing, fast reactor fuel, etc. There are two main tasks of fast reactors, one of which is to raise the utility ratio of uranium, and the other one is to transmute the long life waste of light water reactors. The fast reactor will be designed as a breeder and burner, respectively. (author)

  7. Computational investigations of low-emission burner facilities for char gas burning in a power boiler

    Science.gov (United States)

    Roslyakov, P. V.; Morozov, I. V.; Zaychenko, M. N.; Sidorkin, V. T.

    2016-04-01

    Various variants for the structure of low-emission burner facilities, which are meant for char gas burning in an operating TP-101 boiler of the Estonia power plant, are considered. The planned increase in volumes of shale reprocessing and, correspondingly, a rise in char gas volumes cause the necessity in their cocombustion. In this connection, there was a need to develop a burner facility with a given capacity, which yields effective char gas burning with the fulfillment of reliability and environmental requirements. For this purpose, the burner structure base was based on the staging burning of fuel with the gas recirculation. As a result of the preliminary analysis of possible structure variants, three types of early well-operated burner facilities were chosen: vortex burner with the supply of recirculation gases into the secondary air, vortex burner with the baffle supply of recirculation gases between flows of the primary and secondary air, and burner facility with the vortex pilot burner. Optimum structural characteristics and operation parameters were determined using numerical experiments. These experiments using ANSYS CFX bundled software of computational hydrodynamics were carried out with simulation of mixing, ignition, and burning of char gas. Numerical experiments determined the structural and operation parameters, which gave effective char gas burning and corresponded to required environmental standard on nitrogen oxide emission, for every type of the burner facility. The burner facility for char gas burning with the pilot diffusion burner in the central part was developed and made subject to computation results. Preliminary verification nature tests on the TP-101 boiler showed that the actual content of nitrogen oxides in burner flames of char gas did not exceed a claimed concentration of 150 ppm (200 mg/m3).

  8. Porous medium burners for the combustion of gases from landfills. The direct simulation approach

    OpenAIRE

    Malico, Isabel

    2013-01-01

    Landfill methane recovery associated to its conversion to carbon dioxide through combustion is a common greenhouse gas mitigation strategy in developed countries. The typically low and fluctuating energy content of landfill gas makes combustion challenging. Among the several possible energy conversion technologies, innovative porous burners are a potential option. These burners offer a set of advantages when compared to free flame burners, but are still under investigation. The development...

  9. Multifuel burners based on the porous burner technology for the application in fuel cell systems; Mehrstofffaehige Brenner auf Basis der Porenbrennertechnik fuer den Einsatz in Brennstoffzellensystemen

    Energy Technology Data Exchange (ETDEWEB)

    Diezinger, S.

    2006-07-01

    The present doctoral thesis describes the development of multifuel burners based on the porous burner technology for the application in hydrocarbon driven fuel cell systems. One objective of such burners is the heating of the fuel cell system to the operating temperature at the cold start. In stationary operation the burner has to postcombust the waste gases from the fuel cell and the gas processing system in order to reduce the pollutant emissions. As the produced heat is required for endothermal processes like the steam reforming the burner has a significant influence on the system's efficiency. The performed investigations are targeting on a gasoline driven PEMFC-System with steam reforming. In such systems the burner has to be capable to combust the system's fuel gasoline at the cold start, a low calorific fuel cell offgas (HU = 6,4 MJ/kg) in stationary operation and a hydrogen rich gas in the case of an emergency shut down. Pre-tests revealed that in state of the art porous burners the flame front of hydrogen/air combustion can only be stabilized at very high excess air ratios. In basic investigations concerning the stabilization of flame fronts in porous media the dominant influence parameters were determined. Based on this findings a new flame trap was developed which increases the operational range with hydrogen rich mixtures significantly. Furthermore the burning velocity at stationary combustion in porous media was investigated. The dependency of the porous burning velocity on the excess air ratio for different hydrocarbons and hydrogen as well as for mixtures of both was determined. The results of these basic investigations were applied for the design of a multifuel burner. In order to achieve an evaporation of the gasoline without the use of additional energy, an internal heat exchanger section for heating the combustion air was integrated into the burner. Additionally different experimental and numerical methods were applied for designing the

  10. Characterization of combustion in a fabric singeing burner operating with varsol

    International Nuclear Information System (INIS)

    The textile industry uses singeing burners to diminish the amount of pilling on surface fabrics. Some of these burners use Stoddard solvent which has high cost per unit of energy, high flammability and emits volatile organic compounds that pose an occupational safety hazard. This study characterized a singing burner operating with varsol performing measurements of temperature downstream the burner, air and fuel flows, and concentration of CO, CO2, O2 and NOx. These measurements defined the most important characteristics of the Stoddard solvent flame that should be maintained to obtain a similar behavior in an eventual change to natural gas.

  11. Hydrodynamic characteristics of a four-compartment periodic anaerobic baffled reactor

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Periodic anaerobic baffled reactor (PABR) is a novel reactor based on the design concept of anaerobic baffled reactor (ABR).Residence time distribution (RTD) studies on both clean and working reactors at the same hydraulic residence time (HRT) of 2 d were carried out to investigate the dead spaces and mixing patterns in PABRs at different organic loading rates (OLRs) in various switching manners and frequencies. The results showed that the fraction of dead space in PABR was similar to that in ABR, which was low in comparison with other reactor designs. Dead space may be divided into two categories, hydraulic and biological. In RTD studies without biomass, the hydraulic dead space in the PABR run in an "every second" switching manner with T = 2 d was the lowest whereas that in the PABR run in a T = ∞ (ABR) switching manner was the highest. The same trend was obtained with the total dead space in RTD studies with biomass no matter what the OLR was. Biological dead space was the major contributor to dead space but affected decreasingly at higher OLR whichever switching manner the PABR run in. The flow patterns within the PABRs were intermediate between plug-flow and perfectly mixed under all the conditions tested.

  12. Co-firing straw with coal in a swirl-stabilized dual-feed burner: modelling and experimental validation.

    Science.gov (United States)

    Yin, Chungen; Kaer, Søren K; Rosendahl, Lasse; Hvid, Søren L

    2010-06-01

    This paper presents a comprehensive computational fluid dynamics (CFD) modelling study of co-firing wheat straw with coal in a 150kW swirl-stabilized dual-feed burner flow reactor, in which the pulverized straw particles (mean diameter of 451microm) and coal particles (mean diameter of 110.4microm) are independently fed into the burner through two concentric injection tubes, i.e., the centre and annular tubes, respectively. Multiple simulations are performed, using three meshes, two global reaction mechanisms for homogeneous combustion, two turbulent combustion models, and two models for fuel particle conversion. It is found that for pulverized biomass particles of a few hundred microns in diameter the intra-particle heat and mass transfer is a secondary issue at most in their conversion, and the global four-step mechanism of Jones and Lindstedt may be better used in modelling volatiles combustion. The baseline CFD models show a good agreement with the measured maps of main species in the reactor. The straw particles, less affected by the swirling secondary air jet due to the large fuel/air jet momentum and large particle response time, travels in a nearly straight line and penetrate through the oxygen-lean core zone; whilst the coal particles are significantly affected by secondary air jet and swirled into the oxygen-rich outer radius with increased residence time (in average, 8.1s for coal particles vs. 5.2s for straw particles in the 3m high reactor). Therefore, a remarkable difference in the overall burnout of the two fuels is predicted: about 93% for coal char vs. 73% for straw char. As the conclusion, a reliable modelling methodology for pulverized biomass/coal co-firing and some useful co-firing design considerations are suggested. PMID:20117929

  13. Low-NOx combustion on regenerative burner systems in an industrial furnace; Kanetsuroyo chikunetsu saisei burner ni okeru tei NOx ka gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, M.; Suzuki, T.; Nakanishi, R.; Kitamura, R. [Kobe Steel, Ltd., Kobe (Japan)

    1996-05-01

    This paper describes the injection combustion experiments using low-NOx regenerative burner and its application to the forging furnace. For this combustion, the fuel was separately injected on an angle to the axis of the air stream. The mixing of fuel and air was restricted at the initial stage of combustion. The mixing combustion proceeded with separating the burner. The flue gas was exhausted with self-recirculation. With increasing the injection angle (difference between the injection angles of fuel and air), the NOx concentration was lowered when the velocity ratio of fuel/air injection was 1.34. The NOx concentration decreased by the increase of fuel injection velocity. For the industrial furnace, it had better set the combustion and idle periods mutually. The NOx concentration increases with increasing the temperature, qualitatively. The temperature in the axis of fuel injection was lower than the other region. For the forging furnace using existed original burners and modified low-NOx burners, the NOx concentration increased with increasing the proportion of original burners. When the modified burners were used, the NOx concentration was below 50 ppm even above 1,000 centigrade inside the furnace. For the modified burners, the fuel can be saved and the period for temperature up can be shortened. 4 refs., 12 figs.

  14. Transmutation efficiency in the prismatic deep burner HTR concept by a 3D Monte Carlo depletion analysis

    International Nuclear Information System (INIS)

    This paper summarizes studies performed on the Deep-Burner Modular Helium Reactor (DB-MHR) concept-design. Feasibility and sensitivity studies as well as fuel-cycle studies with probabilistic methodology are presented. Current investigations on design strategies in one and two pass scenarios, and the computational tools are also presented. Computations on the prismatic concept-design were performed on a full-core 3D model basis. The probabilistic MCNP-MONTEBURNS-ORIGEN chain, with either JEF2.2 or BVI libraries, was used. One or two independently depleting media per assembly were accounted. Due to the calculation time necessary to perform MCNP5 calculations with sufficient accuracy, the different parameters of the depletion calculations have to be optimized according to the desired accuracy of the results. Three strategies were compared: the two pass with driver and transmuter fuel loading in three rings, the one pass with driver fuel only in three rings geometry and finally the one pass in four rings. The 'two pass' scenario is the best deep burner with about 70% mass reduction of actinides for the PWR discharged fuel. However the small difference obtained for incineration (∼5%) raises the question of the interest of this scenario given the difficulty of the process for TF fuel. Finally the advantage of the 'two pass' scenario is mainly the reduction of actinide activity. (author)

  15. Passive safety features of low sodium void worth metal fueled cores in a bottom supported reactor vessel

    International Nuclear Information System (INIS)

    A study has been performed on the passive safety features of low-sodium-void-worth metallic-fueled reactors with emphasis on using a bottom-supported reactor vessel design. The reactor core designs included self-sufficient types as well as actinide burners. The analyses covered the reactor response to the unprotected, i.e. unscrammed, transient overpower accident and the loss-of-flow accident. Results are given demonstrating the safety margins that were attained. (author)

  16. Moving-ring field-reversed mirror reactor concept

    International Nuclear Information System (INIS)

    The Moving-Ring Field-Reversed Mirror Reactor (MRFRMR) concept envisions production of electric power by burning magnetically field-reversed rings of fusion fuel which are translated continuously down the bore of a straight, cylindrical reactor burner chamber. Our interest in this reactor scheme arises from its potential design simplicity and the hope that it might be piloted in small size (50 to 100 MW(e)). This reactor has been evaluated only on a preliminary basis thus far and much of the following discussion is founded on the results of that first evaluation

  17. Plasma-assisted combustion technology for NOx reduction in industrial burners.

    Science.gov (United States)

    Lee, Dae Hoon; Kim, Kwan-Tae; Kang, Hee Seok; Song, Young-Hoon; Park, Jae Eon

    2013-10-01

    Stronger regulations on nitrogen oxide (NOx) production have recently promoted the creation of a diverse array of technologies for NOx reduction, particularly within the combustion process, where reduction is least expensive. In this paper, we discuss a new combustion technology that can reduce NOx emissions within industrial burners to single-digit parts per million levels without employing exhaust gas recirculation or other NOx reduction mechanisms. This new technology uses a simple modification of commercial burners, such that they are able to perform plasma-assisted staged combustion without altering the outer configuration of the commercial reference burner. We embedded the first-stage combustor within the head of the commercial reference burner, where it operated as a reformer that could host a partial oxidation process, producing hydrogen-rich reformate or synthesis gas product. The resulting hydrogen-rich flow then ignited and stabilized the combustion flame apart from the burner rim. Ultimately, the enhanced mixing and removal of hot spots with a widened flame area acted as the main mechanisms of NOx reduction. Because this plasma burner acted as a low NOx burner and was able to reduce NOx by more than half compared to the commercial reference burner, this methodology offers important cost-effective possibilities for NOx reduction in industrial applications. PMID:24032692

  18. PROTOTYPE EVALUATION OF COMMERCIAL SECOND GENERATION LOW-NO BURNER PERFORMANCE AND SULFUR CAPTURE

    Science.gov (United States)

    The report gives results of pilot-scale combustion tests of a Riley Stoker second-generation low-NOx burner combined with dry sorbent injection for SO2 control. The burner design is based on the distributed mixing concept. Combustion tests were conducted at 100 million Btu/hr in ...

  19. DISTRIBUTED MIXING BURNER (DMB) ENGINEERING DESIGN FOR APPLICATION TO INDUSTRIAL AND UTILITY BOILERS

    Science.gov (United States)

    The report summarizes the design of two prototype distributed mixing burners (DMBs) for application to industrial and utility boilers. The DMB is a low-NOx pulverized-coal-fired burner in which: (1) mixing of the coal with combustion air is controlled to minimize NOx emissions, a...

  20. Oil fired boiler/solar tank- and natural gas burner/solar tank-units

    DEFF Research Database (Denmark)

    Furbo, Simon; Vejen, Niels Kristian; Frederiksen, Karsten Vinkler

    1999-01-01

    During the last few years new units consisting of a solar tank and either an oil fired boiler or a natural gas burner have been introduced on the Danish market. Three different marketed units - two based on a natural gas burner and one based on an oil fired boiler - have been tested in a heat...

  1. OH Diffusion in Silica Glass Preform During Jacketing Process by Oxy-Hydrogen Burner

    Institute of Scientific and Technical Information of China (English)

    B.H.Kim; S.R.Han; U.; C.Paek; W.-T.Han; S.; K.Oh

    2003-01-01

    Radial distribution of OH diffusion in silica glass preform during jacketing process using a oxy-hydrogen burner was investigated by FTIR spectroscopy. The OH peaks at the jacketing boundary and the surface of the preform were found to be due to diffusion of OH incorporated from the burner.

  2. CFCC radiant burner assessment. Final report, April 1, 1992--July 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Schweizer, S.; Sullivan, J.

    1994-11-01

    The objective of this work was to identify methods of improving the performance of gas-fired radiant burners through the use of Continuous Fiber Ceramic Composites (CFCCs). Methods have been identified to improve the price and performance characteristics of the porous surface burner. Results are described.

  3. NOx formation in combustion of gaseous fuel in ejection burner

    Science.gov (United States)

    Rimár, Miroslav; Kulikov, Andrii

    2016-06-01

    The aim of this work is to prepare model for researching of the formation in combustion of gaseous fuels. NOx formation is one of the main ecological problems nowadays as nitrogen oxides is one of main reasons of acid rains. The ANSYS model was designed according to the calculation to provide full combustion and good mixing of the fuel and air. The current model is appropriate to research NOx formation and the influence of the different principles of NOx reduction method. Applying of designed model should spare both time of calculations and research and also money as you do not need to measure the burner characteristics.

  4. Processamento auditivo e potenciais evocados auditivos de tronco cerebral (BERA Auditory precessing and auditory brainstem response (ABR

    Directory of Open Access Journals (Sweden)

    Marcela Pfeiffer

    2009-01-01

    Full Text Available OBJETIVO: verificar relação existente entre os potenciais auditivos de tronco cerebral e a avaliação comportamental do processamento auditivo. MÉTODOS: foi realizada em um grupo de 60 meninas residentes de Paraíba do Sul na idade de nove a 12 anos com limiares tonais dentro dos padrões de normalidade e timpanometria tipo A com presença dos reflexos acústicos. Os testes utilizados para a avaliação comportamental do processamento auditivo foram: avaliação simplificada do processamento auditivo, teste de fala no ruído, teste de dissílabos alternados e teste dicótico não verbal. Após a avaliação do processamento auditivo, as crianças foram subdivididas em dois grupos, G1 (sem alteração no processamento auditivo e G2 (com alteração no processamento auditivo e submetidas aos potenciais auditivos de tronco cerebral. Os parâmetros utilizados na comparação dos dois grupos foram: latência absoluta das ondas I, III e V; latência interpicos das ondas I-III, I-V, III-V; diferença interaural da latência interpico I-V; e diferença interaural da latência da onda V. RESULTADOS: foram encontradas diferenças estatísticas nos parâmetros de latência interpico das ondas I-V na orelha esquerda (p=0,009, diferença interaural da latência interpico de ondas I-V (p=0,020 e diferença da latência interpico de ondas I e V da orelha direita para a esquerda entre os grupos G1 e G2 (p=0,025. CONCLUSÃO: foi possível encontrar relação dos potenciais evocados auditivos de tronco cerebral com a avaliação comportamental do processamento auditivo nos parâmetros de latência interpico entre as ondas I e V da orelha esquerda e diferença interaural da latência interpico I-V na orelha esquerda.PURPOSE: to investigate the correlation of auditory brainstem response (ABR and behavioral auditory processing evaluation. METHODS: sixty girls, from Paraíba do Sul, ranging from 9 to 12-year-old were evaluated. In order to take part in the study

  5. 16 CFR Figure 6 to Part 1633 - Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame...

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame Allowing Burner Height Adjustment 6 Figure 6 to Part 1633... and Pivots (Shoulder Screws), in Relation to, Portable Frame Allowing Burner Height...

  6. Laboratory measurements in a turbulent, swirling flow. [measurement of soot inside a flame-tube burner

    Science.gov (United States)

    Hoult, D. P.

    1979-01-01

    Measurements of soot inside a flame-tube burner using a special water-flushed probe are discussed. The soot is measured at a series of points at each burner, and upon occasion gaseous constitutents NO, CO, hydrocarbons, etc., were also measured. Four geometries of flame-tube burners were studied, as well as a variety of different fuels. The role of upstream geometry on the downstream pollutant formation was studied. It was found that the amount of soot formed in particularly sensitive to how aerodynamically clean the configuration of the burner is upstream of the injector swirl vanes. The effect of pressure on soot formation was also studied. It was found that beyond a certain Reynolds number, the peak amount of soot formed in the burner is constant.

  7. Development of the Radiation Stabilized Distributed Flux Burner - Phase III Final Report

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Sullivan; A. Webb

    1999-12-01

    The development and demonstration of the Radiation Stabilized Burner (RSB) was completed as a project funded by the US Department of Energy Office of Industrial Technologies. The technical goals of the project were to demonstrate burner performance that would meet or exceed emissions targets of 9 ppm NOx, 50 ppm CO, and 9 ppm unburned hydrocarbons (UHC), with all values being corrected to 3 percent stack oxygen, and incorporate the burner design into a new industrial boiler configuration that would achieve ultra-low emissions while maintaining or improving thermal efficiency, operating costs, and maintenance costs relative to current generation 30 ppm low NOx burner installations. Both the ultra-low NOx RSB and the RSB boiler-burner package are now commercially available.

  8. Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hogerton, John

    1964-01-01

    This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.

  9. Transmutation capabilities of generation 4 reactors

    International Nuclear Information System (INIS)

    The Generation IV reactors all have the potential to play a significant role in future scenarios dealing with transmutation of spent fuel from LWR power reactors. The nature of the flux spectrum, thermal or fast, is the major factor in the effectiveness of transmuting various transuranic isotopes. We conclude that each Generation IV reactor concept could have a role, if properly co-ordinated and supported by significant development programmes. The fast reactor concepts (liquid metal and gas-cooled) are the most effective in consumption by fission of unwanted actinides (plutonium, neptunium, americium and possibly curium). Thermal spectrum concepts (water-cooled reactors with and without inert-matrix cores, high-temperature gas-cooled reactors with and without inert-matrix cores, and liquid-salt-cooled thermal reactors) all can potentially reduce some of the minor actinides, even if only used in a single pass. When teamed up with subsequent fast-reactor irradiations to reduce higher minor actinides (specifically americium and curium), their use could result in reducing the number of fast burner reactors required, per spent-fuel-producing LWR, compared to a system of only LWRs and fast burner reactors. After listing the six main Generation IV candidates with attributes, benefits and viability concerns, this presentation will focus on one example of fast spectrum systems and two thermal spectrum systems to indicate transmuting capabilities of both types of systems. These will be used for illustrative purposes only and are not meant to give any indication of the relative importance of these systems to concepts not mentioned. Likewise, the figures and graphs in this paper are presented without alteration from the originators (see acknowledgements), and are for illustration purposes only. (authors)

  10. OECD/NEA comparison calculations for an accelerator-driven minor actinide burner: analysis of preliminary results

    International Nuclear Information System (INIS)

    In the framework of the NEA Nuclear Science Committee, an international benchmark exercise for an accelerator-driven system is being undertaken. A model of a lead-bismuth cooled subcritical system driven by a beam of 1 GeV protons was chosen for the exercise. Except for the subassembly geometry, the design of the subcritical core is based on the ALMR reference design of a sodium-cooled actinide burner. To reduce the high pumping power for the lead-bismuth coolant, the reference subassembly was replaced by a subassembly with a smaller number of pins, and the fission power of the system was proportionally reduced. Lead-bismuth was chosen as target material to reflect the generally increased interest in this material for high-power spallation target applications. An interesting role of accelerator-driven systems is to burn actinide waste from reactors with conventional fuel cycles. The benchmark reactor is assumed to operate as a minor actinide burner in a 'double strata' fuel cycle scheme, featuring a fully closed fuel cycle with a top-up of pure minor actinides. Two fuel compositions for a start-up and an equilibrium core are considered, both differing considerably from normal U-Pu mixed oxide fuel compositions. Six organisations (ANL, CIEMAT, JAERI, KAERI, PSI/CEA and RIT) have contributed preliminary results for inclusion in this paper. The results are based on deterministic transport as well as Monte Carlo calculations using data from ENDF/B-VI, JENDL3.2 and JEF2.2. Significant difference in important neutronic parameters are observed. (authors)

  11. Root-cause analysis of burner tip failures in coal-fired power plants

    International Nuclear Information System (INIS)

    Warpage and complete or partial tear of burner material was frequently experienced in coal-fired power plants due to material overheating. Root-cause analysis of a burner tip failure is investigated employing stress modeling in the burner tip material in this study. The analyses performed in this research paper include heat transfer and stress analyses employing computational tools. Thermal analysis was performed using Computational Fluid Dynamics (CFD) software FLUENT for computing temperature distribution within the burner tip due to convection and radiation. Once the temperature distribution in the burner tip is determined, Finite Element Analysis (FEA) is employed using ANSYS to determine the maximum stress and deformations in burner tip material. Both FLUENT and ANSYS are numerical commercial simulation tools employed in this study. Large temperature gradients along the burner tip result in local bending stresses. These stresses resulting in creep stresses might be causing warpage in the burner tip. In this study, a design option was exercised to eliminate the excessive stress gradient in the burner tip material. Seven different FEA models were developed to simulate different operating conditions. Proposed design modification (Model 5) was able to reduce the maximum compressive stress from 76.09 MPa to 33.59 MPa. Significant reduction in the thermal stress due to design modification in Model 5 made author believe that the proposed design solution would eliminate the burner tip failures in this particular power plant. - Highlights: • Maximum stress and displacement values in the baseline model were computed. • Computations were performed using commercial FEA software ANSYS. • Different operating conditions were simulated in models 1-2-3-4. • Proposed geometry to prevent the failure is simulated in Models 5 and 6. • The proposed design solution reduced the maximum compressive stresses by ∼50%

  12. The influence of the furnace design on emissions from small wood pellet burners

    International Nuclear Information System (INIS)

    Two pellet burners have been installed and tested in a small scale boiler for house heating. The boiler is representative for the Swedish households and the burners, upwards and forward burning, are commercially available on the Swedish market. This work focuses on the boiler operation and particularly the potential of improved emissions by changing the furnace design. An insulation of the fireplace lowered the emission of CO by 50% and the emission of OGC by 60% for the upwards burning burner at low load. Modifying the furnace using baffles did not have any influence on the emissions. It is concluded that an increased temperature in the furnace is more important than an increased residence time of the combustible gases to decrease the emissions. At full load both burners emit approximately 300 mg CO per nm3 gas and the emission of OGC are negligible. At half load the emissions of CO increased to 1000 mg/mn3 and OGC to 125 mg/mn3 in the upward burning burner. The forwards burning burner had a small increase in OGC to about 10 mg/mn3 at half load while the emission of CO increased to 800 mg/mn3. The forward burning burner is less influenced on the furnace design compared to the upward burning burner. The comparatively high emissions of OGC for the upward burning burner is explained by the intermittent operation. However, it was possible to reduce the emissions from this burner by ceramic insulation of the furnace Project report from the program: Small scale combustion of biofuels. 3 refs, 12 figs, 2 tab, 1 appendix with 33 figs and 12 tabs

  13. Design and construction of a regenerative radiant tube burner

    International Nuclear Information System (INIS)

    The technological development of the gas industry in Colombia, aiming at efficient and safe use of the natural gas, requires the assimilation and adaptation of new generation, technologies for this purpose in this article results are presented on the design, construction and characterization of a prototype of a burner of regenerative radiant robe with a thermal power of 9,94 kW and a factor of air 1,05. This system takes advantage of the high exit temperature of the combustion smokes, after they go trough a metallic robe where they transfer the heat by radiation, to heat a ceramic channel that has the capacity to absorbing a part of the heat of the smokes and then transferring them to a current of cold air. The benefits of air heating are a saving in fuel, compared with other processes that don't incorporate the recovery of heat from the combustion gases. In this work it was possible to probe a methodology for the design of this type of burners and to reach maximum temperatures of heating of combustion air of 377,9 centigrade degrees, using a material available in the national market, whose regenerative properties should be studied in depth

  14. The GDT-based fusion neutron source as driver of a minor actinides burner

    International Nuclear Information System (INIS)

    To become a long-term sustainable option for the world's energy supply fission reactor technology must minimize its high-level waste, which finally has to be disposed. To solve the problem, worldwide great Research and Development effort is made to develop new closed fuel cycle options. Longlived fission products and, in particular, minor actinides are the components of the spent nuclear fuel which cause the most concern. Regarding the incineration of minor actinides, systems producing and confining the high-energetic (fast) neutrons have the highest efficiency. These systems can be built as fast reactors and as sub-critical nuclear fuel systems, the so-called driven systems, which are fed with neutrons from an outer neutron source. At present, the accelerator driven spallation neutron source is favored for this purpose thanks to the high neutron emission intensity achievable. Compared to fast reactors the combined accelerator driven system (ADS) has several advantages. The most important are the higher possible burning efficiency and the enhanced inherent safety characteristics. Therefore this develop-ment line is intensively pursued by several research projects, e.g. by the project EUROTRANS of the European Union [1]. The Budker Institute of Nuclear Physics Novosibirsk has made the proposal of a powerful 14 MeV neutron source on the base of the gas dynamic trap (GDT) plasma device [2,3]. This neutron source is primarily thought for an irradiation test facility of materials that must be developed for the fusion DEMO reactor. A research project of the Budker Institute aims at completing the database of the GDT in the range of high plasma parameters, which are relevant for the neutron source, and at demonstrating its feasibility and suitability by a hydrogen-prototype [4]. The situation outlined before raises the questions whether the GDT based neutron source could also be a candidate for driving a sub-critical system devoted to nuclear waste transmutation and how

  15. Forecasting the Effect of the Change in Timing of the ABR Diagnostic Radiology Examinations: Results of the ACR Survey of Practice Leaders.

    Science.gov (United States)

    Bluth, Edward I; Muroff, Lawrence R; Cernigliaro, Joseph G; Moore, Arl V; Smith, Geoffrey G; Flug, Jonathan; DeStigter, Kristen K; Allen, Bibb; Thorwarth, William T; Roberts, Anne C

    2015-05-01

    The results of a survey sent to practice leaders in the ACR Practice of Radiology Environment Database show that the majority of responding groups will continue to hire recently trained residents and fellows even though they have been unable to take the final ABR diagnostic radiology certifying examination. However, a significant minority of private practice groups will not hire these individuals. The majority of private practices expect the timing change for the ABR certifying examinations to affect their groups' function. In contrast, the majority of academic medical school practices expect little or no impact. Residents and fellows should not expect work time off or protected time to study for the certifying examination or for their maintenance of certification examinations in the future. PMID:25737379

  16. PEATE automático em recém nascidos de risco: estudo da sensibilidade e especificidade Automatic ABR in newborns risk: study of sensitivity and specificity

    Directory of Open Access Journals (Sweden)

    Rosanna Mariangela Giaffredo Angrisani

    2012-04-01

    Full Text Available OBJETIVO: verificar a sensibilidade e especificidade do teste de potencial evocado auditivo de tronco encefálico em equipamento automático (PEATEa, comparando-o ao teste de potencial evocado auditivo de tronco encefálico em equipamento diagnóstico (PEATE em um programa de triagem auditiva neonatal em neonatos de risco. MÉTODO: foram avaliados 186 neonatos, 83 nascidos a termo e 103 pré-termo, sendo 88 do sexo masculino e 98 feminino. A triagem constou de emissões otoacústicas evocadas por estímulos transientes (EOAT, PEATEa e ao PEATE na mesma semana. RESULTADOS: dos 186 neonatos avaliados, 156 (83,9% apresentaram audição normal. A perda condutiva foi encontrada em 9 neonatos (4,8%,sendo 7 bilaterais e 2 unilaterais. A perda auditiva coclear foi observada em 5 neonatos (2,7% sendo um unilateral. Alteração central foi obtida em 11 neonatos (5,9% e um neonato foi diagnosticado como espectro da neuropatia auditiva -ENA(0,5%.Em 4 casos houve atraso maturacional na avaliação inicial com normalização das respostas no mês seguinte Comparando-se os resultados do PEATEa com o PEATE, observou-se alta sensibilidade ( superior a 99% para identificação de perda coclear,condutiva, central, atraso maturacional e ENA .A especificidade do PEATEa foi de 100% para ENA, mediana para perda coclear (75% na OD e 60% na OE, e para alterações centrais (54,5%OD e 63,6% OE. Para identificação de perdas condutivas (inferior a 43%. CONCLUSÃO: o PEATEa foi eficaz na identificação das neuropatias auditivas com elevada especificidade e sensibilidade. Contudo, falsos negativos foram observados para perdas cocleares, condutivas, para alterações centrais e atraso maturacional.PURPOSE: to study the sensitivity and specificity of automatic ABR in comparison to diagnostic ABR of newborns under risk in a neonatal hearing screening program. METHOD: one hundred and eighty six neonates were evaluated, 83 born at term and 103 were pre terms, 88 male and 98

  17. Calculation of ex-core detector weighting functions for a sodium-cooled tru burner mockup using MCNP5

    International Nuclear Information System (INIS)

    Power regulation systems of fast reactors are based on the signals of excore detectors. The excore detector weighting functions, which establish correspondence between the core power distribution and detector signal, are very useful for detector response analyses, e.g., in rod drop experiments. This paper presents the calculation of the weighting functions for a TRU burner mockup of the Korean Prototype Generation-IV Sodium-cooled Fast Reactor (named BFS-76-1A) using the MCNP5 multi-group adjoint capability. For generation of the weighting functions, all fuel assemblies were considered and each of them was divided into ten horizontal layers. Then the weighting functions for individual fuel assembly horizontal layers, the assembly weighting functions, and the shape annealing functions at RCP (Reactor Critical Point) and at conditions under which a control rod group was fully inserted into the core while other control rods at RCP were determined and evaluated. The results indicate that the weighting functions can be considered relatively insensitive to the control rods position during the rod drop experiments and therefore those weighting values at RCP can be applied to the dynamic rod worth simulation for the BFS-76-1A. (author)

  18. Performance study of an induced air porous radiant burner for household applications at high altitude

    International Nuclear Information System (INIS)

    Porous radiant burners are presented as an alternative technology for improving the thermal efficiency of conventional burners. A performance study of an induced air porous radiant burner (IAPRB) with submerged combustion using natural gas was performed at high altitude to assess the feasibility of employing a porous burner operated with induced air in household applications. The experiments were performed in two-layer porous media. The preheating and combustion zones consisted of 400 ppi alumina honeycomb and 90% porosity silicon carbide foam, respectively. Three power per unit area levels, 370 kW/m2, 480 kW/m2 and 670 kW/m2, were evaluated. Pollutant emissions (CO and NOx), the radiation efficiency, the temperature profile along the bed, the primary air rate and the pressure drop across the porous materials were measured. A maximum burner thermal efficiency near 50% was obtained for 370 kW/m2, with a radiation efficiency of 27%. The preheating of the premix caused an increased bed pressure drop, which resulted in a reduction in ambient air entrainment and an air deficiency in the reaction zone. The CO emissions exceeded the standard allowable emissions. - Highlights: • A performance study of an induced air porous radiant burner was carried out. • Thermal and radiation efficiencies were measured for a porous radiant burner. • CO and NOx emission levels were measured for a porous radiant burner. • A maximum porous burner thermal efficiency near 50% was obtained for 370 kW/m2

  19. Pilot scale application of anaerobic baffled reactor for biologically enhanced primary treatment of raw municipal wastewater.

    Science.gov (United States)

    Hahn, Martha J; Figueroa, Linda A

    2015-12-15

    A four-cell anaerobic baffled reactor (ABR) was operated for two years treating raw municipal wastewater at ambient water and air temperatures of 12-23 °C and -10 to 35 °C, respectively. The 1000-L pilot reactor operated at a 12-h hydraulic residence time and was located in the Headworks building of the Plum Creek Water Reclamation Authority. The average influent was TSS = 510 ± 400 mg/L, BOD5 = 320 ± 80 mg/L and the average removal of TSS and BOD5 was 83 ± 10% and 47 ± 15%, respectively. The TSS and BOD removal exceeded that of conventional primary clarification, with no wasting of the settled solids over the two-years and stoichiometric production of methane. The estimated energy content of the biogas produced per unit volume of wastewater treated averaged 0.45 kWh/m(3). The TSS and total COD removal in the first cell averaged 75 ± 15% and 43 ± 14%, respectively, but methane production was only 20% of the total observed for the full ABR. The performance of the ABR relative to the extent of solids hydrolysis and methane production can be varied by the number of cells and hydraulic residence time. The anaerobic baffled reactor is an energy-positive technology that can be used for biologically enhanced primary treatment of raw municipal wastewater in cold climates. PMID:26414605

  20. Reproduction of the PSBR reactor with Exterminator-2; Reproduccion del reactor PSBR con exterminador-2

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1983-08-15

    To reproduce the reactor PSBR reported in (1), with the available version of the Exterminator-II in the ININ, they took the dimensions, composition specifications, effective sections of the different compositions (excepting those of the central thimble and of the moderator), the K{sub eff} and the factors of power (FP) for the different burners. Based on the comparison of the K{sub eff} and of the FP obtained with those reported the precision it is determined before in the reproduction of the reactor mentioned. (Author)

  1. Industrial applications of Tenova FlexyTech flame-less low NO{sub x} burners

    Energy Technology Data Exchange (ETDEWEB)

    Fantuzzi, M.; Ballarino, L. [Tenova LOI Italimpianti, Genova (Italy)

    2008-04-15

    Environmental emissions constraints have led manufacturers to improve their low NO{sub x} recuperative burners. The development by Tenova of the FlexyTech Flame-less burners with low NO{sub x} emissions, even below the present 'Best Available Technology' limit of 40 ppm at 3% O{sub 2} with furnace temperature 1250 C, air preheat 450 C, is described. The results achieved during the R and D programme have been also improved in the industrial installations. Some details and performances of the recent furnaces equipped with such burners are provided. (authors)

  2. Industrial applications of Tenova FlexyTech flame-less low NOx burners

    International Nuclear Information System (INIS)

    Environmental emissions constraints have led manufacturers to improve their low NOx recuperative burners. The development by Tenova of the FlexyTech Flame-less burners with low NOx emissions, even below the present 'Best Available Technology' limit of 40 ppm at 3% O2 with furnace temperature 1250 C, air preheat 450 C, is described. The results achieved during the R and D programme have been also improved in the industrial installations. Some details and performances of the recent furnaces equipped with such burners are provided. (authors)

  3. Premixed burner experiments: Geometry, mixing, and flame structure issues

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.K.; Lewis, M.J.; Gupta, M. [Univ of Maryland, College Park, MD (United States)] [and others

    1995-10-01

    This research program is exploring techniques for improved fuel-air mixing, with the aim of achieving combustor operations up to stoichiometric conditions with minimal NO x and maximum efficiency. The experimental studies involve the use of a double-concentric natural gas burner that is operable in either premixed or non-premixed modes, and the system allows systematic variation of equivalence ratio, swirl strength shear length region and flow momentum in each annulus. Flame structures formed with various combinations of swirl strengths, flow throughput and equivalence ratios in premixed mode show the significant impact of swirl flow distribution on flame structure emanating from the mixedness. This impact on flame structure is expected to have a pronounced effect on the heat release rate and the emission of NO{sub x}. Thus, swirler design and configuration remains a key factor in the quest for completely optimized combustion. Parallel numerical studies of the flow and combustion phenomena were carried out, using the RSM and thek-{epsilon} turbulence models. These results have not only indicated the strengths and limitations of CFD in performance and pollutants emission predictions, but have provided guidelines on the size and strength of the recirculation produced and the spatio-temporal structure of the combustion flowfield. The first stage of parametric studies on geometry and operational parameters at Morgan State University have culminated in the completion of a one-dimensional flow code that is integrated with a solid, virtual model of the existing premixed burner. This coupling will provide the unique opportunity to study the impact of geometry on the flowfield and vice-versa, with particular emphasis on concurrent design optimization.

  4. Use of fast reactors for actinide transmutation

    International Nuclear Information System (INIS)

    The management of radioactive waste is one of the key issues in today's discussions on nuclear energy, especially the long term disposal of high level radioactive wastes. The recycling of plutonium in liquid metal fast breeder reactors (LMFBRs) would allow 'burning' of the associated extremely long life transuranic waste, particularly actinides, thus reducing the required isolation time for high level waste from tens of thousands of years to hundreds of years for fission products only. The International Working Group on Fast Reactors (IWGFR) decided to include the topic of actinide transmutation in liquid metal fast breeder reactors in its programme. The IAEA organized the Specialists Meeting on Use of Fast Breeder Reactors for Actinide Transmutation in Obninsk, Russian Federation, from 22 to 24 September 1992. The specialists agree that future progress in solving transmutation problems could be achieved by improvements in: Radiochemical partitioning and extraction of the actinides from the spent fuel (at least 98% for Np and Cm and 99.9% for Pu and Am isotopes); technological research and development on the design, fabrication and irradiation of the minor actinides (MAs) containing fuels; nuclear constants measurement and evaluation (selective cross-sections, fission fragments yields, delayed neutron parameters) especially for MA burners; demonstration of the feasibility of the safe and economic MA burner cores; knowledge of the impact of maximum tolerable amount of rare earths in americium containing fuels. Refs, figs and tabs

  5. Combustion Characteristics of Oxy-fuel Burners for CO2 Capturing Boilers

    Science.gov (United States)

    Ahn, Joon; Kim, Hyouck Ju; Choi, Kyu Sung

    Oxy-fuel boilers have been developed to capture CO2 from the exhaust gas. A 50 kW class model burner has been developed and tested in a furnace type boiler. The burner has been scaled up to 0.5 and 3 MW class for fire-tube type boilers. The burners are commonly laid out in a coaxial type to effectively heat the combustion chamber of boilers. Burners are devised to support air and oxy-fuel combustion modes for the retrofitting scenario. FGR (flue gas recirculation) has been tried during the scale-up procedure. Oxy-fuel combustion yields stretched flame to uniformly heat the combustion chamber. It also provides the high CO2 concentration, which is over 90% in dry base. However, pure oxy-fuel combustion increases NO concentration, because of the reduced flow rate. The FGR can suppress the thermal NOx induced by the infiltration of the air.

  6. Low-NOx Burner Technologies for High-Temperature Processes With High Furnace Heating Density

    International Nuclear Information System (INIS)

    The general objective of the presented work is process intensification by means of reduced furnace chamber volumes in combination with the use of low-NOx burner technologies. Fundamental experimental investigations of the reaction zone of different burner types were made. For the development of new burner designs the CFD code FLUENT was used. Throughout the investigations it was possible to increase the furnace heating density from 62 kW/m3 up to 1133 kW/m3. To demonstrate possible technical applications two simulated industrial furnaces designs have been investigated. One main conclusion the work gave is that process intensification without an increase of pollutant emissions is possible by optimizing furnace and burner design and also position and geometry of the furnace load in a combined strategy. (author)

  7. PECULIARITIES OF CHOICE OF BURNER DEVICES FOR HEATING FURNACES OF MACHINE-BUILDING AND METALLURGICAL PRODUCTIONS

    Directory of Open Access Journals (Sweden)

    S. V. Korneev

    2016-02-01

    Full Text Available It is shown that the choice of recuperative burners is more reasonable for different types of heating furnaces of machine-building and metallurgical productions of little efficiency.

  8. Burning low volatile fuel in tangentially fired furnaces with fuel rich/lean burners

    International Nuclear Information System (INIS)

    Pulverized coal combustion in tangentially fired furnaces with fuel rich/lean burners was investigated for three low volatile coals. The burners were operated under the conditions with varied value Nd, which means the ratio of coal concentration of the fuel rich stream to that of the fuel lean stream. The wall temperature distributions in various positions were measured and analyzed. The carbon content in the char and NOx emission were detected under various conditions. The new burners with fuel rich/lean streams were utilized in a thermal power station to burn low volatile coal. The results show that the Nd value has significant influences on the distributions of temperature and char burnout. There exists an optimal Nd value under which the carbon content in the char and the NOx emission is relatively low. The coal ignition and NOx emission in the utilized power station are improved after retrofitting the burners

  9. Development of stoker-burner wood chip combustion systems for the UK market

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The document makes a case for the development of a design of wood chip stoker-burner more suited to the UK than those currently imported from Sweden and Finland. The differences would centre on market conditions, performance and cost-effectiveness and the devices would be manufactured or part-manufactured in the UK. Econergy Limited was contracted by the DTI as part of its Sustainable Energy Programmes to design and construct an operational prototype stoker-burner rated at 120 kWth. A test rig was built to: (i) study modified burner heads and (ii) develop control hardware and a control strategy. Both (i) and (ii) are described. Tests brought about an increase in performance of the burner head and its wet wood performance. It was considered that further improvements are achievable and six areas for future study were suggested.

  10. Heat transfer and combustion characteristics of a burner with a rotary regenerative heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Yasuo; Kaji, Hitoshi; Arai, Norio

    1998-07-01

    The authors have developed a Rotary Regenerative Combustion (RRX) System, which is coupled with a compact high efficiency regenerative air heat exchanger and a combustion burner. This system contributes to saving energy of fuel firing industrial furnaces and decreases NO{sub x} emission. This technology can be considered as a solution of greenhouse problem. This paper, discusses a compact high efficiency regenerative air heat exchanger in comparison with the existing types of regenerative burners and reverse firing with high momentum fuel jet (with motive fluid) in the furnace. This burner is compact in size, with high fuel efficiency, low NOx emission, easy to operate, and reliable, based on the results of field tests and commercial operations. The authors can say that the RRX system is a regenerative burner of the second generation.

  11. FMC Chemicals: Burner Management System Upgrade Improves Performance and Saves Energy at a Chemical Plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-07-01

    FMC Chemicals Corporation increased the efficiency of two large coal-fired boilers at its soda ash mine in Green River, Wyoming, by upgrading the burner management system. The project yields annual energy savings of 250,000 MMBtu.

  12. Design aspects of a Low-NOx burner for a Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Zepter, Klaus

    2003-07-01

    The Stirling engine is a promising prime mover for micro-scale combined heat and power. For Stirling engines with heat supply by combustion, the external heating system is one of the most important parts. It has major influence on the overall performance. The central component of the external heating system is the burner. This thesis describes the theoretical and experimental studies in the development of a gas fired burner for the extemal heating system that have been carried out. The focus was on low emissions and high system efficiency. As a first step, a system analysis of the external heating system is presented based on fundamental considerations about the thermodynamics and practical aspects of the Stirling engine. The results of the analysis show that the expected NOx emissions are strongly determined by the system design. Without making any restrictions to the burner design, a span of the NOx emissions with a ratio of 1:800 was found. Modern design methodology is then introduced in order to analyze a large number of different low-NOx burner concepts that were found in literature. The concepts are evaluated and classified with help of the methodology in order to find possible new low-NOx concepts by favourable combinations of generic principles. Based on this, the concept of the porous inert media (PIM) burner is chosen for further development as a burner for the Stirling engine. The selection is confirmed by an experimental benchmark study in which the PIM burner shows low NOx emissions and the lowest pressure drop compared to three other low NOx burner concepts. The optimization of the design of the PIM burner is described. A favourable combination of materials was found, which enables stable operation with a turn-down ratio of 1:15 and a span of the excess-air ratio from 1.28 to 2.0 when methane is used as the fuel. Temperature and CO measurements inside the combustion region were made which enable conclusion about the stabilization of the combustion

  13. Characterization of a Rijke Burner as a Tool for Studying Distribute Aluminum Combustion

    OpenAIRE

    Newbold, Brian R.

    1996-01-01

    As prelude to the quantitative study of aluminum distributed combustion, the current work has characterized the acoustic growth, frequency, and temperature of a Rijke burner as a function of mass flow rate, gas composition, and geometry. By varying the exhaust temperature profile, the acoustic growth rate can be as much as tripled from the baseline value of approximately 120 s-1• At baseline, the burner operated in the third harmonic mode at a frequency of 1300 Hz, but geometry or temperature...

  14. Design Aspects of a Low-NOx Burner for a Stirling Engine

    OpenAIRE

    Zepter, Klaus

    2003-01-01

    The Stirling engine is a promising prime mover for micro-scale combined heat and power. For Stirling engines with heat supply by combustion, the external heating system is one of the most important parts. It has major infulence on the overall performance. The central component of the external heating system is the burner. This thesis describes the theoretical and experimental studies in the developement of a gas fired burner for the external heating system that have been carried out. The focu...

  15. A numerical investigation of the aerodynamics of a furnace with a movable block burner

    OpenAIRE

    T.J. Fudihara; L. Goldstein Jr.; Mori, M.

    2007-01-01

    In this work the air flow in a furnace was computationally investigated. The furnace, for which experimental test data are available, is composed of a movable block burner connected to a cylindrical combustion chamber by a conical quarl. The apertures between the movable and the fixed blocks of the burner determine the ratio of the tangential to the radial air streams supplied to the furnace. Three different positions of the movable blocks were studied at this time. A three-dimensional invest...

  16. Application of Laser-based Diagnostics to a Prototype Gas Turbine Burner at Selected Pressures

    OpenAIRE

    Whiddon, Ronald

    2014-01-01

    The matured laser-diagnostic techniques of planar laser-induced fluorescence (PLIF) and particle image velocimetry (PIV) were applied to a prototype gas turbine burner operating on various fuels. The work was performed to provide verification of computational fluid dynamic (CFD) models of the combustion of atypical fuels in a gas turbine combustor. The burner was operated using methane and three synthesized fuels of interest- one with hydrogen as the principle component and two with a low hea...

  17. Experimental investigations and numerical simulations of methane cup-burner flame

    Directory of Open Access Journals (Sweden)

    Kubát P.

    2013-04-01

    Full Text Available Pulsation frequency of the cup-burner flame was determined by means of experimental investigations and numerical simulations. Simplified chemical kinetics was successfully implemented into a laminar fluid flow model applied to the complex burner geometry. Our methodical approach is based on the monitoring of flame emission, fast Fourier transformation and reproduction of measured spectral features by numerical simulations. Qualitative agreement between experimental and predicted oscillatory behaviour was obtained by employing a two-step methane oxidation scheme.

  18. Abréviations

    OpenAIRE

    2013-01-01

    AB Agriculture biologique certifiée et réglementée AC Agriculture conventionnelle AE Agriculture agro-écologique Afsaa Agence française de sécurité sanitaire des aliments Amap Associations pour le maintien d'une agriculture paysanne AOP Appellation d'origine protégée. Appellation européenne qui remplace l'appellation française AOC (appellation d'origine contrôlée) AR Agriculture raisonnée (ou agriculture intégrée) Bio Issu de l'agriculture biologique (AB) Coopmar Coopérative porcine de Martin...

  19. Abréviations

    OpenAIRE

    2013-01-01

    ADEGE Agence nationale pour la démoustication et la gestion des espaces démoustiqués CAREC Caribbean Epidemiology Center CDC Center for Disease Control and Prevention CIRE Cellule interrégionale d'épidémiologie Antilles-Guyane CIRE Cellule interrégionale d'épidémiologie Antilles-Guyane DFA Département français d'Amérique DHF Dengue Hemorrhagic Fever DSDS Direction de la santé et du développement social DSS Dengue shock Syndrome EDEN European Association of Public Operators for Mosquito Contro...

  20. Abréviations

    OpenAIRE

    Beckford, James A.; Joly, Danièle; Khosrokhavar, Farhad

    2013-01-01

    ABH Actual bodily harm BNP British National Party BOV Board of Visitors (now renamed Independent Monitoring Board CADIS Centre d'Analyse et d'Intervention Sociologiques CARATS Counselling, Assessment, Referral, Advice and Throughcare Services CFCM Conseil Français du Culte Musulman CI Circular Instruction CNA Certified Normal Accommodation CRE Commission for Racial Equality DAP Direction de l'Administration Pénitentiaire DOM Département d'Outre-Mer EIHS European Institute of Human Sciences ES...

  1. Abréviations

    OpenAIRE

    2016-01-01

    Sigle Signification $ Dollar (monnaie) £ Livre sterling (monnaie) AA Administration apostolique, administrateur apostolique AA.EE.SS. Segreteria di Stato, Sezione per i Rapporti con gli Stati, Archivio Storico (Città del Vaticano), fondo Archivio della Congregazione degli Affari Ecclesiastici Straordinari AAC Archives du prieuré bénédictin d’Amay-Chevetogne AAS Acta Apostolicae Sedis (périodique) ACDF Archivio della Congregazione per la Dottrina della Fede ACEC Archivio della Congregazione pe...

  2. Abréviations

    OpenAIRE

    2014-01-01

    OUVRAGES Pour les œuvres de Massignon : Essai : Essai sur les origines techniques de la mystique musulmane Examen : Examen du présent de l’homme lettré d’Ibn Turdéma H.I. : Hégire d’Ismaïl O.M. : Opera Minora P.D. : Parole donnée Passion : La passion d’al-Hallâj, martyr mystique de l’Islam P.R. : Les trois prières d’Abraham Pour les ouvrages sur Massignon : Linceul : Le linceul de feu Mémorial : Mémorial Louis Massignon Miroir : L’Islam dans le miroir de l’Occident Pentalogie : Pentalogie isl...

  3. Abréviations

    OpenAIRE

    2013-01-01

    MALTE ACM : Archives of the Cathedral of Mdina AIM : Archives of the Inquisition of Malta AOM : Archives of the Order of Malta NAM : National Archives of Malta NAV : Notarial Archives of Valetta NLM : National Library of Malta ROME ACDF : Archivio della Congregazione per la Dottrina della Fede ARSI : Archivum romanum Societatis Iesu ASPF : Archivio storico de Propaganda Fide ASV : Archivio segreto vaticano BAV : Biblioteca apostolica vaticana SMOM : Sovrano militare Ordine di Malta FRANCE AN ...

  4. Abréviations

    OpenAIRE

    2012-01-01

    A ACCT — Agence de collaboration culturelle et techniqueACICI — Agence de coopération et d’information pour le commerce internationalADPIC — Accord sur les aspects des droits de propriété intellectuelle liés au commerceAELE — Association européenne de libre-échangeAFF — Administration fédérale des financesAI — Amnesty InternationalAID/IDA — Association internationale de développementALENA — Accord de libre-échange nord-américainAMGI/MIGA — Agence multilatérale de garantie des investissementsA...

  5. Abréviations

    OpenAIRE

    2013-01-01

    A ADB – Asian Development Bank (Banque asiatique de développement)AMF – Arrangement multifibres. Arrangement concernant le commerce international des textiles B BAD – Banque africaine de développementBIT – Bureau international du travailBNS – Banque nationale suisse C CAD – Comité d’aide au développement de l’OCDECEE – Communauté économique européenneCNUCED – Conférence des Nations Unies sur le commerce et le développementCOMECON – Conseil d’assistance économique mutuelle D DDA – Direction de...

  6. Abréviations

    OpenAIRE

    2012-01-01

    A ACICI — Agence de coopération et d’information pour le commerce internationalADPIC — Accord sur les aspects des droits de propriété intellectuelle liés au commerceAELE — Association européenne de libre-échangeAFU — Arrêté fédéral urgentAGCS — Accord général sur le commerce des servicesAGE — Accords généraux d’empruntsAID — Association internationale de développementAIEA — Agence internationale pour l’énergie atomiqueAMGI/MIGA — Agence multilatérale de garantie des investissementsAMI — Accor...

  7. Abréviations

    OpenAIRE

    2015-01-01

    act. Actualité aff. Affaire AJDA Actualité juridique Droit administratif ALD Actualité législative Dalloz al. Alinéa anc. Ancien Arch. phil. dr. Archives de philosophie du droit art. Article Ass. Plén. Arrêt de l'Assemblée plénière de la Cour de cassation auj. Aujourd'hui BGB Bürgerliches Gesetzbuch (Code civil allemand) BOCCRF Bulletin officiel de la concurrence, consommation et répression des fraudes (à compter de 1987) BOSP Bulletin officiel du service des prix (jusqu'en 1986) BW Burgerlij...

  8. Abréviations

    OpenAIRE

    2013-01-01

    ALAS Association latino-américaine de scientifiques CAST Chinese Association of Scientists and Technologists DST Diasporas scientifiques et techniques FORIM Forum permanent des OSIM MIDA Migration pour le développement en Afrique OSIM Organisations de solidarité issues de la migration PED Pays en développement R&D Recherche et développement SANSA South African Network of Skills Abroad(Réseau sud-africain des compétences à l'étranger) S&T Science et technique, scientifique et technique TIC Tec...

  9. Abréviations

    OpenAIRE

    2014-01-01

    A : acte adapt. : adapté ap. : après A. N. : Archives Nationales b. : ballet b.f. : ballet-féerie b.p. : ballet-pantomime B. O. : Bibliothèque de l’Opéra com. : comédie com. lyr. : comédie lyrique coul. : couleur div. : divertissement div. p. : divertissement-pantomime dr. : drame, dramatique dr. mus. : drame musical dr. : droite extr. : extrait fol. : folie fol. p. : folie-pantomime fol., ff. : folio, folios g. : gauche h. : hauteur id. : idem indic. : indication l. : largeur lég. : légen...

  10. Design evaluation of the 20-cm (8-inch) secondary burner system

    Energy Technology Data Exchange (ETDEWEB)

    Rode, J.S.

    1977-08-01

    This report describes an evaluation of the design of the existing 20-cm (8-inch) engineering-scale secondary burner system in the HTGR reprocessing cold pilot plant at General Atomic Co. The purpose of this evaluation is to assess the suitability of the existing design as a prototype of the HTGR Recycle Demonstration Facility (HRDF) secondary burner system and to recommend alternatives where the existing design is thought to be unsuitable as a prototype. This evaluation has led to recommendations for the parallel development of two integrated design concepts for a prototype secondary burner system. One concept utilizes the existing burner heating and cooling subsystems in order to minimize development risk, but simplifies a number of other features associated with remote maintenance and burner operation. The other concept, which offers maximum cost reduction, utilizes internal gas cooling of the burner, retains the existing heating subsystem for design compatibility, but requires considerable development to reduce the risk to acceptable limits. These concepts, as well as other design alternatives, are described and evaluated.

  11. Burner Rig with an Unattached Duct for Evaluating the Erosion Resistance of Thermal Barrier Coatings

    Science.gov (United States)

    Miller, Robert A.; Kuczmarski, Maria A.; Zhu, Dongming

    2011-01-01

    Extensive computational fluid dynamics (CFD) modeling backed by experimental observation has demonstrated the feasibility of using an unattached duct to increase the velocity and spatial spread of erodent particles exiting from a burner rig. It was shown that gas velocity and temperature are mostly retained if the inner diameter of the unattached duct equaled the exit diameter of the burner rig nozzle. For particles having a mean diameter of 550 millimeters, the modeled velocity attained at a distance 2.0 in. (50.8 millimeters) beyond the exit of a 12 in. (305 millimeters) long duct was approximately twice as large as the velocity the same distance from the nozzle when the duct was not present. For finer particles, the relative enhancement was somewhat less approximately 1.5 times greater. CFD modeling was also used to guide the construction of a device for slowing down the velocity of the particles being injected into the burner rig. This device used a simple 45 degree fitting to slow the particle velocity in the feed line from 20 meters per second, which is in the range needed to convey the particles, to about 3 meters per second just as they are injected into the burner. This lower injection velocity would lessen the severity of the collision of large particles with the wall of the burner liner opposite the injection port, thereby reducing potential damage to the burner liner by high-velocity particles.

  12. Low NOx Burner Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Seltzer

    2005-05-01

    The objective of the low NOx burner design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the burner design to ensure stable ignition, to provide safe operation, and to minimize pollutant formation. The burners were designed and analyzed using the Fluent computer program. Four burner designs were developed: (1) with no over-fire gas (OFG) and 65% flue gas recycle, (2) with 20% OFG and 65% flue gas recycle, (3) with no OFG and 56% flue gas recycle and (4) with 20% OFG and 56% flue gas recycle. A 3-D Fluent simulation was made of a single wall-fired burner and horizontal portion of the furnace from the wall to the center. Without primary gas swirl, coal burnout was relatively small, due to the low oxygen content of the primary gas stream. Consequently, the burners were modified to include primary gas swirl to bring the coal particles in contact with the secondary gas. An optimal primary gas swirl was chosen to achieve sufficient burnout.

  13. Neutronic Analysis of Advanced SFR Burner Cores using Deep-Burn PWR Spent Fuel TRU Feed

    International Nuclear Information System (INIS)

    In this work, an advanced sodium-cooled fast TRU (Transuranics) burner core using deep-burn TRU feed composition discharged from small LWR cores was neutronically analyzed to show the effects of deeply burned TRU feed composition on the performances of sodium-cooled fast burner core. We consider a nuclear park that is comprised of the commercial PWRs, small PWRs of 100MWe for TRU deep burning using FCM (Fully Ceramic Micro-encapsulated) fuels and advanced sodium-cooled fast burners for their synergistic combination for effective TRU burning. In the small PWR core having long cycle length of 4.0 EFPYs, deep burning of TRU up to 35% is achieved with FCM fuel pins whose TRISO particle fuels contain TRUs in their central kernel. In this paper, we analyzed the performances of the advanced SFR burner cores using TRU feeds discharged from the small long cycle PWR deep-burn cores. Also, we analyzed the effect of cooling time for the TRU feeds on the SFR burner core. The results showed that the TRU feed composition from FCM fuel pins of the small long cycle PWR core can be effectively used into the advanced SFR burner core by significantly reducing the burnup reactivity swing which reduces smaller number of control rod assemblies to satisfy all the conditions for the self controllability than the TRU feed composition discharged from the typical PWR cores

  14. Rotrix `vortex breakdown` burner turbulence-stabilized combustion of heating oil

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, P. [Viessmann Manufacturing Co., Inc., Ontario (Canada)

    1995-04-01

    For the past two years, the Viessmann MatriX radiant burner has been setting the standard for low emission combustion of gas. Now, with the RotriX burner, Viessmann has succeeded in drastically reducing nitrogenoxide emissions in the combustoin of oil. After a successful test period, the RotriX burner is now being introduced to the market. The RotriX oil burner consequently takes into account the mechanisms in the creation of harmful emissions in the combustion of heating oil No. 2, and guarantees stable combustion under any operating conditions. The burner has the following features: heating oil is combusted only after complete vaporization and mixing with combustion air and recirculated flue gases; the flame is not stabilized with a turbulator disk, but a strong turbulating current is created by means of the Vortex Breakdown phenomenon, which develops a very stable flame under any operating conditions; and high internal flue gas recirculation rates lower the flame temperature to the point where thermal NO formation is reduced to the same low level as in the combustion of gas. The new burner has extremely low emissions of NOx < 60 mg/kWh, and CO < 5 mg/kWh at a CO{sub 2} concentraiton of 14%.

  15. An intelligent monitoring system for the detection of slag deposition on a pulverized coal fired burner

    Energy Technology Data Exchange (ETDEWEB)

    Tan, C.K.; Wilcox, S.J.; Ward, J.; Lewitt, M. [University of Glamorgan, Pontypridd (United Kingdom). School for Technology

    2005-08-01

    The objective of this paper is to describe the further development of a monitoring system to detect the presence of so-called burner eyebrows, i.e. relatively large deposits of slag around the burner quarl in pulverized coal fired boilers. Experiments were undertaken with a range of coals and with various artificial eyebrows constructed from cast refractory inserts. The system uses a microphone to detect combustion noise and an infrared sensor which measures flame radiation, and the signals from these cheap, easily installed sensors were analyzed by a hybrid neural network. In tests with two coals, the system was able to distinguish the different eyebrows with a high degree of accuracy if representative data were used to train the network for each particular coal. In further tests with a range of six different coals, the system was able to distinguish between a clean burner and one fitted with a particular sized eyebrow. In this case, it proved to be possible to use only the features from three of the coals in the training process and the data from the remaining fuels for validation. The monitoring system, therefore, appears to be relatively independent of changes to the coal fired by the burner if trained with a representative range of coals. Finally, this paper presents a possible method to detect burner eyebrows via the evaluation of so-called 'eyebrow indices' using a self-organizing map which is trained solely using clean burner sensor patterns.

  16. Fast reactor core concepts to improve transmutation efficiency

    International Nuclear Information System (INIS)

    Fast Reactor (FR) core concepts to improve transmutation efficiency were conducted. A heterogeneous MA loaded core was designed based on the 1000MWe-ABR breakeven core. The heterogeneous MA loaded core with Zr-H loaded moderated targets had a better transmutation performance than the MA homogeneous loaded core. The annular pellet rod design was proposed as one of the possible design options for the MA target. It was shown that using annular pellet MA rods mitigates the self-shielding effect in the moderated target so as to enhance the transmutation rate

  17. ¡Abre los ojos! Un proyecto de mejora educativa para la prevención de drogas en adolescentes

    Directory of Open Access Journals (Sweden)

    Cecilia Mª AZORÍN ABELLÁN

    2016-01-01

    Full Text Available La Educación para la Salud (EpS es un tema transversal del currículo que adolece de propuestas didácticas novedosas para la intervención pedagógica. El objetivo del trabajo que se presenta es poner en marcha un plan de mejora para la prevención de drogadicciones en adolescentes. Para ello, se ha trabajado con un total de 142 estudiantes de 3º de Educación Secundaria Obligatoria (ESO con edades comprendidas entre los 14 y los 16 años que cursan estudios en el Instituto “Francisco Salzillo” de la localidad de Alcantarilla (Murcia. Concretamente, este artículo da luz al Proyecto ¡Abre los ojos!, que forma parte del Plan de Acción Tutorial (PAT y del Plan de Mejora para la Prevención de Drogas (PMPD propuesto desde el Departamento de Orientación. Se exponen ad hoc las actividades implementadas durante las 3 sesiones trabajadas con cada uno de los 6 grupos-clase escolarizados en este nivel. Haciendo uso de la reflexión-acción, el alumnado ha desarrollado una conciencia crítica acerca de los riesgos que entraña para la salud el consumo de drogas. Asimismo, mediante la técnica de grupos de discusión los discentes han realizado un interesante debate cuyas ideas han sido organizadas en torno a tres aspectos clave: causas por las que se empieza a consumir, cómo evitar caer en las drogas, y alternativas de ocio y tiempo libre para una vida saludable. Finalmente, se especifica la necesidad de abordar tareas de prevención en los centros educativos así como de facilitar información y de resolver las inquietudes de los jóvenes acerca de esta temática.

  18. Experimental and numerical analysis of isothermal turbulent flows in interacting low NOx burners in coal-fired furnaces

    OpenAIRE

    Cvoro, Valentina

    2007-01-01

    Coal firing power stations represent the second largest source of global NOx emissions. The current practice of predicting likely exit NOx levels from multi-burner furnaces on the basis of single burner test rig data has been proven inadequate. Therefore, to further improve current NOx reduction technologies and assist in the assessment of NOx levels in new and retrofit plant cases, an improved understanding of the impact of burner interactions is required. The aim of this research is tw...

  19. Evaluation of NOx emissions from advanced-technology range burners. Final report, March 1, 1990-June 30, 1991

    International Nuclear Information System (INIS)

    With growing concern for indoor air quality, it was important that emission rates from unvented combustion sources be cataloged to evaluate the effect they may have on the indoor air quality. Flue gas emissions were evaluated from new or European type or Japanese sealed or not sealed blue flame type range top burners installed in a conventional free standing gas range. Emissions were also evaluated from burners in advanced technology market ranges equipped with either blue flame or infrared burners

  20. Role of AbrB in Spo0A- and Spo0B-dependent utilization of a sporulation promoter in Bacillus subtilis.

    OpenAIRE

    Zuber, P; Losick, R

    1987-01-01

    Transcription of the Bacillus subtilis gene spoVG is induced at the onset of sporulation and is dependent on the products of the stage-0 regulatory genes spo0A, spo0B, and spo0H. We show here that the dependence of spoVG transcription on Spo0A and Spo0B (but not Spo0H) can be bypassed by a mutation at abrB, a previously identified locus at which mutations that suppress some of the phenotypes of spo0A are often located, or by a cis-acting mutation within the spoVG promoter. To explain the epis...

  1. Innovative reactor core: potentialities and design

    International Nuclear Information System (INIS)

    Gen IV nuclear reactors are considered a very attractive answer for the demand of energy. Because public acceptance they have to fulfil very clearly the requirement of sustainable development. In this sense a reactor concept, having by itself a rather no significant interaction with the environment both on the front and back end ('adiabatic concept'), is vital. This goal in mind, a new way of designing such a core has to be assumed. The starting point must be the 'zero impact'. Therefore the core will be designed having as basic constraints: a) fed with only natural or depleted Uranium, and b) discharges only fission products. Meantime its potentiality as a net burner of Minor Actinide has to be carefully estimated. This activity, referred to the ELSY reactor, shows how to design such an 'adiabatic' core and states its reasonable capability of burning MA legacy in the order of 25-50 kg/GWey. (authors)

  2. Computation system for nuclear reactor core analysis

    International Nuclear Information System (INIS)

    This report documents a system which contains computer codes as modules developed to evaluate nuclear reactor core performance. The diffusion theory approximation to neutron transport may be applied with the VENTURE code treating up to three dimensions. The effect of exposure may be determined with the BURNER code, allowing depletion calculations to be made. The features and requirements of the system are discussed and aspects common to the computational modules, but the latter are documented elsewhere. User input data requirements, data file management, control, and the modules which perform general functions are described. Continuing development and implementation effort is enhancing the analysis capability available locally and to other installations from remote terminals

  3. Premixed Combustion of Coconut Oil on Perforated Burner

    Directory of Open Access Journals (Sweden)

    I.K.G. Wirawan

    2013-10-01

    Full Text Available Coconut oil premixed combustion behavior has been studied experimentally on perforated burner with equivalence ratio (φ varied from very lean until very rich. The results showed that burning of glycerol needs large number of air so that the laminar burning velocity (SL is the highest at very lean mixture and the flame is in the form of individual Bunsen flame on each of the perforated plate hole. As φ is increased the  SL decreases and the secondary Bunsen flame with open tip occurs from φ =0.54 at the downstream of perforated flame. The perforated flame disappears at φ = 0.66 while the secondary Bunsen flame still exist with SL increases following that of hexadecane flame trend and then extinct when the equivalence ratio reaches one or more. Surrounding ambient air intervention makes SL decreases, shifts lower flammability limit into richer mixture, and performs triple and cellular flames. The glycerol diffusion flame radiation burned fatty acids that perform cellular islands on perforated hole.  Without glycerol, laminar flame velocity becomes higher and more stable as perforated flame at higher φ. At rich mixture the Bunsen flame becomes unstable and performs petal cellular around the cone flame front. Keywords: cellular flame; glycerol; perforated flame;secondary Bunsen flame with open tip; triple flame

  4. Development of a lean premixed burner for hydrogen utilization

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.O. [Sandia National Lab., Livermore, CA (United States)

    1996-10-01

    The long-term mandate of the hydrogen program is to develop the technologies needed to establish a hydrogen economy. Although a hydrogen fueled automobile has been established as a demonstration project, there are at least three other end use sectors that are recognized by the H{sub 2} program and that are addressed by this project. These end uses are: (1) power generation from stationary turbines, (2) generation of process heat or steam, and (3) commercial and residential direct use applications. Eliminating carbon from the fuel will remove carbon containing species from the emissions, however, NO{sub x} resulting from thermal NO production cannot be ignored. Thermal NO production is minimized by reducing the peak combustion temperature and the residence time at the peak temperature. NO can be reduced to extremely low levels (a few ppm) by operating sufficiently lean to reduce the peak combustion temperatures below 1700 to 1800 K. The objectives for this project are to: (1) develop an environmentally benign and safe burner operating on hydrogen in a lean premixed mode, (2) provide a facility in which fundamental investigations can be performed to support other programs.

  5. Radiation-Induced Segregation and Phase Stability in Candidate Alloys for the Advanced Burner Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gary S. Was; Brian D. Wirth

    2011-05-29

    Major accomplishments of this project were the following: 1) Radiation induced depletion of Cr occurs in alloy D9, in agreement with that observed in austenitic alloys. 2) In F-M alloys, Cr enriches at PAG grain boundaries at low dose (<7 dpa) and at intermediate temperature (400°C) and the magnitude of the enrichment decreases with temperature. 3) Cr enrichment decreases with dose, remaining enriched in alloy T91 up to 10 dpa, but changing to depletion above 3 dpa in HT9 and HCM12A. 4) Cr has a higher diffusivity than Fe by a vacancy mechanism and the corresponding atomic flux of Cr is larger than Fe in the opposite direction to the vacancy flux. 5) Cr concentration at grain boundaries decreases as a result of vacancy transport during electron or proton irradiation, consistent with Inverse Kirkendall models. 6) Inclusion of other point defect sinks into the KLMC simulation of vacancy-mediated diffusion only influences the results in the low temperature, recombination dominated regime, but does not change the conclusion that Cr depletes as a result of vacancy transport to the sink. 7) Cr segregation behavior is independent of Frenkel pair versus cascade production, as simulated for electron versus proton irradiation conditions, for the temperatures investigated. 8) The amount of Cr depletion at a simulated planar boundary with vacancy-mediated diffusion reaches an apparent saturation value by about 1 dpa, with the precise saturation concentration dependent on the ratio of Cr to Fe diffusivity. 9) Cr diffuses faster than Fe by an interstitial transport mechanism, and the corresponding atomic flux of Cr is much larger than Fe in the same direction as the interstitial flux. 10) Observed experimental and computational results show that the radiation induced segregation behavior of Cr is consistent with an Inverse Kirkendall mechanism.

  6. Radiation Damage in Nuclear Fuel for Advanced Burner Reactors: Modeling and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Niels Gronbech; Asta, Mark; Ozolins, Nigel Browning' Vidvuds; de Walle, Axel van; Wolverton, Christopher

    2011-12-29

    The consortium has completed its existence and we are here highlighting work and accomplishments. As outlined in the proposal, the objective of the work was to advance the theoretical understanding of advanced nuclear fuel materials (oxides) toward a comprehensive modeling strategy that incorporates the different relevant scales involved in radiation damage in oxide fuels. Approaching this we set out to investigate and develop a set of directions: 1) Fission fragment and ion trajectory studies through advanced molecular dynamics methods that allow for statistical multi-scale simulations. This work also includes an investigation of appropriate interatomic force fields useful for the energetic multi-scale phenomena of high energy collisions; 2) Studies of defect and gas bubble formation through electronic structure and Monte Carlo simulations; and 3) an experimental component for the characterization of materials such that comparisons can be obtained between theory and experiment.

  7. The effect of orifice plate insertion on low NOx radial swirl burner performances (simulated variable area burner)

    International Nuclear Information System (INIS)

    The effect of inserting an outlet orifice plate of different sizes at the exit plane of the swirler outlet were studied for small radial swirler with fixed curves vanes. Tests were carried out using two different sizes flame tubes of 76 mm and 140 mm inside diameter, respectively and 330 mm in length. The system was fuelled via eight vane passage fuel nozzles of 3.5 mm diameter hole. This type of fuel injection helps in mixing the fuel and air better prior to ignition. Tests were carried out at 20 mm W.G. pressure loss which is representative of gas burners for domestic central heating system operating conditions. Tests were also carried out at 400 K preheated inlet air temperature and using only natural gas as fuel. The aim of the insertion of orifice plate was to create the swirler pressure loss at the swirler outlet phase so that the swirler outlet shear layer turbulence was maximize to assist with fuel/air mixing. For the present work, the smallest orifice plate exhibited a very low NOx emissions even at 0.7 equivalence ratio were NOx is well below 10 ppm corrected at 0% oxygen at dry basis. Other emissions such as carbon monoxide and unburned hydrocarbon were below 10 ppm and 100 ppm, respectively, over a wide range of operating equivalence ratios. The implies that good combustion was achieved using the smallest orifice plate. (Author)

  8. Pebble Bed Reactor: core physics and fuel cycle analysis

    International Nuclear Information System (INIS)

    The Pebble Bed Reactor is a gas-cooled, graphite-moderated high-temperature reactor that is continuously fueled with small spherical fuel elements. The projected performance was studied over a broad range of reactor applicability. Calculations were done for a burner on a throwaway cycle, a converter with recycle, a prebreeder and breeder. The thorium fuel cycle was considered using low, medium (denatured), and highly enriched uranium. The base calculations were carried out for electrical energy generation in a 1200 MW/sub e/ plant. A steady-state, continuous-fueling model was developed and one- and two-dimensional calculations were used to characterize performance. Treating a single point in time effects considerable savings in computer time as opposed to following a long reactor history, permitting evaluation of reactor performance over a broad range of design parameters and operating modes

  9. MA-burners efficiency parameters allowing for the duration of transmutation process

    International Nuclear Information System (INIS)

    Transmutation of minor actinides (MA) means their transforming into the fission products. Usually, MA-burner's transmutation efficiency is characterized by the static parameters only, such as the number of neutrons absorbed and the rate of MA feeding. However, the proper characterization of MA-burner's efficiency additionally requires the consideration of parameters allowing for the duration of the MA transmutation process. Two parameters of that kind are proposed: a) transmutation time τ - mean time period from the moment a mass of MA is loaded into the burner's fuel cycle to be transmuted to the moment this mass is completely transmuted; b) number of reprocessing cycles nrep - effective number of reprocessing cycles a mass of loaded MA has to undergo before being completely transmuted. Some of MA-burners' types have been analyzed from the point of view of these parameters. It turned out that all of them have the value of parameters too high from the practical point of view. It appears that some new approaches to MA-burner's design have to be used to significantly reduce the value of these parameters in order to make the large-scale MA transmutation process practically reasonable. Some of such approaches are proposed and their potential efficiency is discussed. (authors)

  10. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS; FINAL

    International Nuclear Information System (INIS)

    It is well understood that the stability of axial diffusion flames is dependent on the mixing behavior of the fuel and combustion air streams. Combustion aerodynamic texts typically describe flame stability and transitions from laminar diffusion flames to fully developed turbulent flames as a function of increasing jet velocity. Turbulent diffusion flame stability is greatly influenced by recirculation eddies that transport hot combustion gases back to the burner nozzle. This recirculation enhances mixing and heats the incoming gas streams. Models describing these recirculation eddies utilize conservation of momentum and mass assumptions. Increasing the mass flow rate of either fuel or combustion air increases both the jet velocity and momentum for a fixed burner configuration. Thus, differentiating between gas velocity and momentum is important when evaluating flame stability under various operating conditions. The research efforts described herein are part of an ongoing project directed at evaluating the effect of flame aerodynamics on NO(sub x) emissions from coal fired burners in a systematic manner. This research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO(sub x) burners. Experimental studies include both cold-and hot-flow evaluations of the following parameters: primary and secondary inlet air velocity, coal concentration in the primary air, coal particle size distribution and flame holder geometry. Hot-flow experiments will also evaluate the effect of wall temperature on burner performance

  11. Fast reactors and nonproliferation

    International Nuclear Information System (INIS)

    1.Three aspects of nonproliferation relevant to nuclear power are: Pu buildup in NPP spent fuel cooling ponds (∼ 104 t in case of consumption of ∼ 107 t cheap uranium). Danger of illegal radiochemical extraction of Pu for weapons production; Pu extraction from NPP fuel at the plants available in nuclear countries, its burning along with weapon-grade Pu in NPP reactors or in special-purpose burners; increased hazard of nuclear weapons sprawl with breeders and closed fuel cycle technology spreading all over the world. 2.The latter is one of major obstacles to creation of large-scale nuclear power. 3.Nuclear power of the first stage using 235 U will be able to meet the demands of certain fuel-deficient countries and regions, replacing ∼ 5-10% of conventional fuels in the global consumption for a number of decades. 4.Fast reactors of the first generation and the currently employed fuel technology are far from exhausting their potential for solving economic problems and meeting the challenges of safety, radioactive waste and nonproliferation. Development of large-scale nuclear power will become an option accepted by society for solving energy problems in the following century, provided a breeder technology is elaborated and demonstrated in the next 15-20 years, which would comply with the totality of the following requirement: full internal Pu breeding deterministic elimination of severe accidents involving fuel damage and high radioactivity releases: fast runaway, loss of coolant, fires, steam and hydrogen explosions, etc.; reaching a balance between radioactive wastes disposed of and uranium mined in terms of radiation hazard; technology of closed fuel cycle preventing its use for Pu extraction and permitting physical protection from fuel thefts;economic competitiveness of nuclear power for most of countries and regions, i.e. primarily the cost of NPPs with fat reactors is to be below the cost of modern LWR plants, etc

  12. Utilization of fast reactor excess neutrons for burning minor actinides and long lived FPs

    International Nuclear Information System (INIS)

    An evaluation is made on a large MOX fuel fast reactor's capability of burning minor actinides and long lived fission products (FPs) without imposing penalties on core nuclear and safety characteristics. The excess neutrons generated in the fast reactor core are fully utilized not only to generate the fissile material but also to transmute the minor actinides and long lived FPs. The FP target assemblies which consist of Tc-99 and I-129 are loaded into the selected blanket positions whereas the minor actinides are loaded to the rest of the blanket. A long term FP accumulation scenario is also considered in the mix of FP burner fast reactor and non-burner LWRs. (author)

  13. Elimination of weapons grade plutonium via burning in a Particle Bed Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Powell, J.R.; Ludewig, H.; Maise, G.; Todosow, M.

    1993-08-01

    An initial assessment of a concept for burning weapons grade plutonium based on the Particle Bed Reactor (PBR) is described. The high power density/flux level achievable with the PBR make it an attractive candidate for this application. The PBR based plutonium burner concept also possesses a number of safety and economic benefits relative to other reactor based Pu-burner approaches including a safeguards advantages, a low inventory of radionuclides, and high integrity, coated fuel particles which can withstand extremely high temperatures while retaining virtually all fission products. In addition the reactor also possesses a number of ``engineered safety features,`` which, along with the use of high temperature capable materials further enhance its safety characteristics.

  14. PERFORMANCE AND AIR POLLUTANT EMISSIONS OF AN EXPERIMENTAL WATER/RESIDUAL OIL EMULSION BURNER IN A COMMERCIAL BOILER

    Science.gov (United States)

    The paper presents the performance and air pollutant emissions of an experimental water/oil emulsion burner. The burner was fired with two residual oils at selected emulsion water fractions. In addition, various stoichiometric ratios and two load conditions were used to determine...

  15. ENVIRONMENTAL ASSESSMENT OF AN ENHANCED OIL RECOVERY STEAM GENERATOR EQUIPPED WITH A LOW-NOX BURNER. VOLUME 1. TECHNICAL RESULTS

    Science.gov (United States)

    The report discusses results from sampling flue gas from an enhanced oil recovery steam generator (EOR steamer) equipped with an MHI PM low-NOx burner. The tests included burner performance/emission mapping tests, comparative testing of an identical steamer equipped with a conven...

  16. EVALUATION AND DEMONSTRATION OF LOW-NOX BURNER SYSTEMS FOR TEOR (THERMALLY ENHANCED OIL RECOVERY) STEAM GENERATORS: DESIGN PHASE REPORT

    Science.gov (United States)

    The report documents the detailed scale-up and design phase of a program to develop a low-NOx burner system that can be retrofitted to an existing thermally enhanced oil recovery (TEOR) steam generator. The emission design goal for the 16 MW commercial grade burner system is to m...

  17. Regenerative burner systems for batch furnaces in the steel industry; Regenerativbrenner fuer Doppel-P-Strahlheizrohre in einer Feuerverzinkungslinie

    Energy Technology Data Exchange (ETDEWEB)

    Georgiew, A. [Salzgitter Flachstahl GmbH, Salzgitter (Germany); Wuenning, J.G.; Bonnet, U. [WS Waermeprozesstechnik GmbH, Renningen (Germany)

    2007-09-15

    This article will describe the application of a new self regenerative burner in a continuous galvanizing line. After a brief introduction of the process line, the self regenerative burner will be described. Very high air preheat temperatures enable considerable energy savings and flameless oxidation suppresses the formation of NO{sub x}. (orig.)

  18. Regenerative burner systems for batch furnaces in the steel industry; Regenerativbrenner fuer Doppel-P-Strahlheizrohre in einer Feuerverzinkungslinie

    Energy Technology Data Exchange (ETDEWEB)

    Georgiew, Alexander [Salzgitter Flachstahl GmbH, Salzgitter (Germany); Wuenning, Joachim G.; Bonnet, Uwe [WS Waermeprozesstechnik GmbH, Renningen (Germany)

    2009-07-01

    This article will describe the application of a new self regenerative burner in a continuous galvanizing line. After a brief introduction of the process line, the self regenerative burner will be described. Very high air preheat temperatures enable considerable energy savings and flameless oxidation suppresses the formation of NO{sub X}. (orig.)

  19. Some parameters and conditions defining the efficiency of burners in the destruction of long-lived nuclear wastes

    Indian Academy of Sciences (India)

    V V Seliverstov

    2007-02-01

    A number of new wordings and statements regarding the targeted problem of destruction of long-lived wastes (transmutation) is considered. Some new criteria concerning the efficiency of a particular burner type are proposed. It is shown that the destruction efficiency of a specific burner is greatly influenced by the prospective time period of the whole destruction process.

  20. Effect of fuel volatility on performance of tail-pipe burner

    Science.gov (United States)

    Barson, Zelmar; Sargent, Arthur F , Jr

    1951-01-01

    Fuels having Reid vapor pressures of 6.3 and 1.0 pounds per square inch were investigated in a tail-pipe burner on an axial-flow-type turbojet engine at a simulated flight Mach number of 0.6 and altitudes from 20,000 to 45,000 feet. With the burner configuration used in this investigation, having a mixing length of only 8 inches between the fuel manifold and the flame holder, the low-vapor-pressure fuel gave lower combustion efficiency at a given tail-pipe fuel-air ratio. Because the exhaust-nozzle area was fixed, the lower efficiency resulted in lower thrust and higher specific fuel consumption. The maximum altitude at which the burner would operate was practically unaffected by the change in fuel volatility.

  1. Development and certification of the innovative pioneer oil burner for residential heating appliances

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, B. [Heat Wise Inc., Ridge, NY (United States)

    1997-09-01

    The Pioneer burner represents another important milestone for the oil heat industry. It is the first practical burner design that is designated for use in small capacity heating appliances matching the needs of modern energy efficient home designs. Firing in the range of 0.3 GPH to 0.65 GPH (40,000-90,000 Btu/hr) it allows for new oil heating appliance designs to compete with the other major fuel choices in the small design load residential market. This market includes energy efficient single family houses, town-houses, condominiums, modular units, and mobile homes. The firing range also is wide enough to cover a large percentage of more conventional heating equipment and home designs as well. Having recently passed Underwriters Laboratory certification tests the burner in now being field tested in several homes and samples are being made available to interested boiler and furnace manufacturers for product development and application testing.

  2. Optimal Switching Control of Burner Setting for a Compact Marine Boiler Design

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Maciejowski, Jan M.;

    2010-01-01

    from their respective setpoints and the cost of burner switches and variation of continuous input flows. Direct minimisation was found computational infeasible and two different suboptimal strategies have beenconsidered. The first one is based on the Mixed Logical Dynamical framework. Thesecond......This paper discusses optimal control strategies for switching between different burner modes in a novel compact  marine boiler design. The ideal behaviour is defined in a performance index the minimisation of which defines an ideal trade-off between deviations in boiler pressure and water level...... approach is based on a generalisation of hysteresis control. The strategies are verified on a simulation model of the compact marine boiler for control of low/high burner load switches.  ...

  3. Development of the Radiation Stabilized Distributed Flux Burner. Phase 1, final report

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J.D.; Duret, M.J.

    1997-06-01

    The RSB was first developed for Thermally Enhanced Oil Recovery steamers which fire with a single 60 MMBtu/hr burner; the California Energy Commission and Chevron USA were involved in the burner development. The burner has also since found applications in refinery and chemical plant process heaters. All Phase I goals were successfully met: the RSB achieved sub-9 ppM NOx and sub-50 ppM CO emissions using high excess air, external flue gas recirculation (FGR), and fuel staging in the 3 MMBtu/hr laboratory watertube boiler. In a test in a 50,000 lb/hr oil field steamer with fuel staging, it consistently achieved sub-20 ppM NOx and as low as 10 ppM NOx. With high CO{sub 2} casing gas in this steamer, simulating external FGR, sub-20 ppM NOx and as low as 5 ppM NOx were achieved. Burner material cost was reduced by 25% on a per Btu basis by increasing the effective surface firing rate at the burner; further reductions will occur in Phase II. The market for 30 ppM and 9 ppM low NOx burners has been identified as package boilers in the 50,000 to 250,000 lb/hr size range (the 30 ppM is for retrofit, the 9 ppM for the new boiler market). Alzeta and Babcock & Wilcox have teamed to sell both boiler retrofits and new boilers; they have identified boiler designs which use the compact flame shape of the RSB and can increase steam capacity while maintaining the same boiler footprint. Alzeta, Chevron, and B & W have teamed to identify sites to demonstrate the RSB in Phases II and III. In Phase II, the RSB will be demonstrated in a 100,000 lb/hr industrial watertube boiler.

  4. Development of a multi-fuel burner for coal gasification process; Entwicklung eines Kombibrenners fuer den Kohlevergasungsprozess

    Energy Technology Data Exchange (ETDEWEB)

    Al-Halbouni, Ahmad; Rahms, Hendrik; Chalh-Andreas, Bachir [Brinkmann Industrielle Feuerungssysteme GmbH, Voerde (Germany); Giese, Anne [Gas- und Waerme-Institut Essen e.V., Essen (Germany); Benim, Ali Cemal [Fachhochschule Duesseldorf (Germany)

    2013-08-15

    In the course of a German ZIM cooperative research project, Brinkmann Industrielle Feuerungssysteme GmbH develops a supersonic oxygen-multi-fuel burner in close cooperation with its research partners Gas- und Waerme-Institut essen e.V. (GWI) and Duesseldorf University of Applied Sciences (FHD). This burner is capable of combusting natural gas as well as light oil efficiently, using pure oxygen as an oxidizer. It is intended to be used primarily for energy-intensive applications, but especially as a start-up burner for coal gasification processes. In these processes, specific operating conditions can be found, such as fluctuating pressures, high temperatures and inert atmospheres. Therefore, the main goal of the development is aimed at utilizing the high energy densities found in supersonic by oxy-fuel combustion. This article covers several burner development phases, from initial design and manufacturing activities to burner testing and optimisation. Results achieved up to now are presented and next steps defined. (orig.)

  5. Polonium release from an ATW burner system with liquid lead-bismuth coolant

    International Nuclear Information System (INIS)

    The authors analyzed polonium release hazards in a conceptual pool-type ATW burner with liquid lead-bismuth eutectic (LBE) coolant. Simplified quantitative models are used based on experiments and real NPP experience. They found little Po contamination outside the burner under normal operating conditions with nominal leakage from the gas system. In sudden gas leak and/or coolant spill accidents, the P contamination level can reach above the regulation limit but short exposure would not lead to severe health consequences. They are evaluating and developing mitigation methods

  6. COST-EFFECTIVE CONTROL OF NOx WITH INTEGRATED ULTRA LOW-NOx BURNERS AND SNCR

    Energy Technology Data Exchange (ETDEWEB)

    Hamid Farzan; Jennifer Sivy; Alan Sayre; John Boyle

    2003-07-01

    Under sponsorship of the Department of Energy's National Energy Technology Laboratory (NETL), McDermott Technology, Inc. (MTI), the Babcock & Wilcox Company (B&W), and Fuel Tech teamed together to investigate an integrated solution for NOx control. The system was comprised of B&W's DRB-4Z{trademark} low-NO{sub x} pulverized coal (PC) burner technology and Fuel Tech's NO{sub x}OUT{reg_sign}, a urea-based selective non-catalytic reduction (SNCR) technology. The technology's emission target is achieving 0.15 lb NO{sub x}/10{sup 6} Btu for full-scale boilers. Development of the low-NOx burner technology has been a focus in B&W's combustion program. The DRB-4Z{trademark} burner (see Figure 1.1) is B&W's newest low-NO{sub x} burner capable of achieving very low NO{sub x}. The burner is designed to reduce NO{sub x} by diverting air away from the core of the flame, which reduces local stoichiometry during coal devolatilization and, thereby, reduces initial NO{sub x} formation. Figure 1.2 shows the historical NO{sub x} emission levels from different B&W burners. Figure 1.2 shows that based on three large-scale commercial installations of the DRB-4Z{trademark} burners in combination with OFA ports, using Western subbituminous coal, the NO{sub x} emissions ranged from 0.16 to 0.18 lb/10{sup 6} Btu. It appears that with continuing research and development the Ozone Transport Rule (OTR) emission level of 0.15 lb NO{sub x}/10{sup 6} Btu is within the reach of combustion modification techniques for boilers using western U.S. subbituminous coals. Although NO{sub x} emissions from the DRB-4Z{trademark} burner are nearing OTR emission level with subbituminous coals, the utility boiler owners that use bituminous coals can still benefit from the addition of an SNCR and/or SCR system in order to comply with the stringent NO{sub x} emission levels facing them.

  7. N Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The last of Hanfordqaodmasdkwaspemas7ajkqlsmdqpakldnzsdflss nine plutonium production reactors to be built was the N Reactor.This reactor was called a dual purpose...

  8. Development and demonstration of a gas-fired recuperative confined radiant burner (deliverable 42/43). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    The objective of the project was to develop and demonstrate an innovative, efficient, low-pollutant, recuperative gas-fired IR-system (infrared radiation) for industrial processes (hereafter referred to as the CONRAD-system). The CONRAD-system is confined, so flue gases from the combustion can be kept separated from the product. The gas/air mixture to the burner is preheated by means of the flue gas, which increases the radiant efficiency of the CONRAD-system significantly over traditional gas-fired IR burners. During the first phase of the project, the CONRAD-system was designed and developed. The conducted work included a survey on suitable burner materials, modelling of the burner system, basic design of burner construction, control etc., experimental characterisation of several preprototypes and detailed design of the internal heat exchanger in the burner. The result is a cost effective burner system with a documented radiant efficiency up to 66% and low emissions (NO{sub x} and CO) all in accordance with the criteria of success set up at the start of the project. In the second phase of the project, the burner system was established and tested in laboratory and in four selected industrial applications: 1) Drying of coatings on sand cores in the automotive industry. 2) Baking of bread/cake. 3) General purpose painting/powder curing process 4. Curing of powder paint on wood components. The results from the preliminary tests Overe used to optimise the CONRAD-system, before it was applied in the industrial processes and demonstrated. However, the optimised burners manufactured for demonstration suffered from different 'infant failures', which made the installation in an industrial environment very cumbersome, and even impossible in the food industry and the automotive industry. In the latter cases realistic laboratory tests Overe carried out and the established know how reported for use when the burner problems are overcome.(au)

  9. Development and testing of the pore burner technology for oil burners. Final report; Entwicklung und Erprobung der Porenbrennertechnik fuer Oelbrenner. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Durst, F.; Trimis, D.; Wawrzinek, K.; Koehne, H.; Lucka, K.; Rudolphi, I.; Hatzfeld, O.; Volkert, J.; Rutsche, A.; Adler, J.; Standke, G.; Haase, F.; Krueger, K.; Kuechen, C.

    2001-11-01

    The application of the pore burner technology in oil burners was investigated. Together with a new concept for oil-fuelled high efficiency boilers, this technology opens up a vast potential for energy conservation and pollutant reduction. [German] Der Waermebedarf von Wohneinheiten nimmt, flankiert durch Vorgaben des Gesetzgebers, in Zukunft weiter ab. Parallel dazu werden die Grenzwerte fuer die maximal zulaessigen Schadgasemissionen der Heizanlagen verschaerft und die emissionsintensiven und im intermittierenden Betrieb bei Teillast sehr haeufigen Start/Stop-Betriebsphasen konventioneller Oel-Heizsysteme strenger bewertet. Ziel dieses Vorhabens ist es, die fuer die Verbrennung gasfoermiger Brennstoffe bereits erfolgreich demonstrierten Vorteile der Porenbrennertechnik (sehr niedrige Schadstoffemissionen, aeusserst breiter Bereich der Leistungsmodulation bis 1:20, hohe Energiedichte und damit kleine Baugroesse, minimale Geraeuschemission) auch fuer die Verbrennung von Heizoel nutzbar zu machen. In Verbindung mit einem neuen Konzept fuer die Oel-Brennwerttechnik erschliesst diese Technologie ein hohes Einsparpotential hinsichtlich Energieverbrauch und Schadstoffemissionen. (orig.)

  10. Design and Structural Evaluation of the ABTR IHTS Piping for Representative Duty Events of a Level A Service

    International Nuclear Information System (INIS)

    The ABTR(Advanced Burner Test reactor) developed at Argon National Laboratory is a 95MWe(250MWt) pool-type Sodium-cooled Fast Reactor. The primary objectives of the ABTR are 1) to demonstrate reactor-based transmutation of transuranics as part of an advanced fuel cycle, 2) to qualify the transuranics-containing fuels and advanced structural materials needed for a full-scale ABR(Advanced Burner Reactor), 3) to support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. The structural design of the ABTR preconceptual design can accommodate the specified duty cycle events to assure its structural integrity. In this study, the structural integrity of the IHTS piping is evaluated for the representative duty cycle events for Level A Service

  11. BWR type reactor

    International Nuclear Information System (INIS)

    No channel box is mounted to a fuel assembly, but a partition plate for separating coolant flow channels between each of fuel bundles is disposed between each of fuel bundles along the direction of height for the reactor core instead of the channel box. The partition plate has a shape surrounding the fuel bundles only in a specific region, or so that coolant flow channels for a plurality of fuel bundles of identical output are integrated. As a result, cross-flow of coolants can be prevent without channel box and, further, radial expansion of the channel box can be eliminated. As the same time, the bending for the entire assembly due to the irradiation growth of the channel box is also eliminated and structural stability can be attained without using upper grid plates. Further, it is possible to minimize the pressure loss caused between the upper and lower portions of the assembly and it is possible to adjsut with respective thermohydrodynamic properties of the high conversion region and the burner region. (K.M.)

  12. Opposed Jet Burner Extinction Limits: Simple Mixed Hydrocarbon Scramjet Fuels vs Air

    Science.gov (United States)

    Pellett, Gerald L.; Vaden, Sarah N.; Wilson, Lloyd G.

    2007-01-01

    Opposed Jet Burner tools have been used extensively by the authors to measure Flame Strength (FS) of laminar non-premixed H2 air and simple hydrocarbon (HC) air counterflow diffusion flames at 1-atm. FS represents a strain-induced extinction limit based on air jet velocity. This paper follows AIAA-2006-5223, and provides new HC air FSs for global testing of chemical kinetics, and for characterizing idealized flameholding potentials during early scramjet-like combustion. Previous FS data included six HCs, pure and N2-diluted; and three HC-diluted H2 fuels, where FS decayed very nonlinearly as HC was added to H2, due to H-atom scavenging. This study presents FSs on mixtures of (candidate surrogate) HCs, some with very high FS ethylene. Included are four binary gaseous systems at 300 K, and a hot ternary system at approx. 600 K. The binaries are methane + ethylene, ethane + ethylene, methane + ethane, and methane + propylene. The first three also form two ternary systems. The hot ternary includes both 10.8 and 21.3 mole % vaporized n-heptane and full ranges of methane + ethylene. Normalized FS data provide accurate means of (1) validating, globally, chemical kinetics for extinction of non-premixed flames, and (2) estimating (scaling by HC) the loss of incipient flameholding in scramjet combustors. The n-heptane is part of a proposed baseline simulant (10 mole % with 30% methane + 60% ethylene) that mimics the ignition of endothermically cracked JP-7 like kerosene fuel, as suggested by Colket and Spadaccini in 2001 in their shock tube Scramjet Fuels Autoignition Study. Presently, we use FS to gauge idealized flameholding, and define HC surrogates. First, FS was characterized for hot nheptane + methane + ethylene; then a hot 36 mole % methane + 64% ethylene surrogate was defined that mimics FS of the baseline simulant system. A similar hot ethane + ethylene surrogate can also be defined, but it has lower vapor pressure at 300 K, and thus exhibits reduced gaseous

  13. Comparative study of plutonium burning in heavy and light water reactors

    International Nuclear Information System (INIS)

    There is interest in the U.S. and world-wide in reducing the burden on geological nuclear fuel disposal sites. In some disposal scenarios, the decay heat loading of the surrounding rock limits the commercial spent fuel capacity of the sites. In the long term (100 to 1,500 years), this decay heat is generated primarily by actinides, particularly 241Am and 241Pu. One possible approach to reducing this decay-heat burden would be to reprocess commercial spent nuclear fuel and use intermediate-tier thermal reactors to 'burn' these actinides and other transuranics (plutonium and higher actinides). The viability of this approach is dependent on the detailed changes in chemical and isotopic compositions of actinide-bearing fuels after irradiation in thermal reactor spectra. The intermediate-tier thermal burners could bridge the commercial water-cooled reactors and fast reactors required for ultimate consumption of the transuranics generated in the commercial reactors. This would reduce the number of such fast reactors required to complete the mission of burning transuranics. If thermal systems are to be used for the transmutation mission, it is likely that they would be similar to or are advanced versions of the systems currently used for power generation. In both the U.S. and Canada, light- and heavy-water-cooled thermal reactors are used for power generation in the commercial nuclear sector. About 103 pressurized- and boiling- light water reactors (PWRs and BRWs) are deployed in the U.S. nuclear industry while about 18 CANDU (heavy-water-cooled) reactors are used in the Canadian industry. There are substantial differences between light and heavy water-cooled reactors that might affect transmutation potential. These arise from differences in neutron balance of the reactors, in neutron energy spectra, in operational approaches (e.g., continuous refueling enhancing fuel burnup), and so on. A systematic study has been conducted to compare the transmutation potentials of

  14. DEVELOPMENT AND DEMONSTRATION OF NOVEL LOW-NOx BURNERS IN THE STEEL INDUSTRY

    Energy Technology Data Exchange (ETDEWEB)

    Cygan, David

    2006-12-28

    Gas Technology Institute (GTI), together with Hamworthy Peabody Combustion Incorporated (formerly Peabody Engineering Corporation), the University of Utah, and Far West Electrochemical have developed and demonstrated an innovative combustion system suitable for natural gas and coke-oven gas firing within the steel industry. The combustion system is a simple, low-cost, energy-efficient burner that can reduce NOx by more than 75%. The U.S. steel industry needs to address NOx control at its steelmaking facilities. A significant part of NOx emissions comes from gas-fired boilers. In steel plants, byproduct gases – blast furnace gas (BFG) and coke-oven gas (COG) – are widely used together with natural gas to fire furnaces and boilers. In steel plants, natural gas can be fired together with BFG and COG, but, typically, the addition of natural gas raises NOx emissions, which can already be high because of residual fuel-bound nitrogen in COG. The Project Team has applied its expertise in low-NOx burners to lower NOx levels for these applications by combining advanced burner geometry and combustion staging with control strategies tailored to mixtures of natural gas and byproduct fuel gases. These methods reduce all varieties of NOx – thermal NOx produced by high flame temperatures, prompt NOx produced by complex chain reactions involving radical hydrocarbon species and NOx from fuel-bound nitrogen compounds such as ammonia found in COG. The Project Team has expanded GTI’s highly successful low-NOx forced internal recirculation (FIR) burner, previously developed for natural gas-fired boilers, into facilities that utilize BFG and COG. For natural gas firing, these burners have been shown to reduce NOx emissions from typical uncontrolled levels of 80-100 vppm to single-digit levels (9 vppm). This is done without the energy efficiency penalties incurred by alternative NOx control methods, such as external flue gas recirculation (FGR), water injection, and selective non

  15. Passive safety features of low sodium void worth metal fueled cores in a bottom supported reactor vessel

    International Nuclear Information System (INIS)

    A study has been performed on the passive safety features of low-sodium-void-worth metallic-fueled reactors with emphasis on using a bottom-supported reactor vessel design. The reactor core designs included self-sufficient types as well as actinide burners. The analyses covered the reactor response to the unprotected, i.e. unscrammed, transient overpower accident and the loss-of-flow accident. Results are given demonstrating the safety margins that were attained. 4 refs., 4 figs., 2 tabs

  16. SU-E-E-01: ABR Diagnostic Radiology Core Exam: Was Our Redesigned Physics Course Successful in Teaching Physics to Radiology Residents?

    International Nuclear Information System (INIS)

    Purpose: Our purpose is to evaluate the effectiveness of our two year physics course in preparing radiology residents for the American Board of Radiology (ABR) diagnostic radiology exam. Methods: We designed a new two-year physics course that integrates radiology clinical content and practice and is primarily based on the AAPM curriculum and RSNA/AAPM physics modules. Biweekly classes focus on relevant concepts from assigned reading and use audience response systems to encourage participation. Teaching efficiency is optimized through lecturer rotations of physicists, radiologists, and guest speakers. An emphasis is placed on clinical relevance by requiring lab work and providing equipment demonstrations. Periodic quiz were given during the course. The course website was also redesigned for usability, and physics review lectures were conducted two weeks before the board exam to refresh key concepts. At the completion of our first two-year course, we conducted a confidential evaluation of the faculty and course. The evaluation assessed metrics such as overall organization, clinical relevance of content, and level of difficulty, with a rating scale from poor to excellent. Results: Our evaluation indicated that the redesigned course provided effective board exam preparation, with most responses between good and excellent. There was some criticism on the course length and on chronological discontinuity, but the review lectures were appreciated by the residents. All of our residents passed the physics component of the ABR exam with scores exceeding the minimum passing score by a significant margin. Conclusion: The course evaluation and board exam results indicate that our new two-year course format provides valuable board exam preparation. This is possible thanks to the time and effort taken by the physics faculty on ensuring the residents get quality physics education

  17. SU-E-E-01: ABR Diagnostic Radiology Core Exam: Was Our Redesigned Physics Course Successful in Teaching Physics to Radiology Residents?

    Energy Technology Data Exchange (ETDEWEB)

    Kanal, K; Hoff, M; Dickinson, R; Zamora, D; Stewart, B [UniversityWashington, Seattle, WA (United States)

    2014-06-01

    Purpose: Our purpose is to evaluate the effectiveness of our two year physics course in preparing radiology residents for the American Board of Radiology (ABR) diagnostic radiology exam. Methods: We designed a new two-year physics course that integrates radiology clinical content and practice and is primarily based on the AAPM curriculum and RSNA/AAPM physics modules. Biweekly classes focus on relevant concepts from assigned reading and use audience response systems to encourage participation. Teaching efficiency is optimized through lecturer rotations of physicists, radiologists, and guest speakers. An emphasis is placed on clinical relevance by requiring lab work and providing equipment demonstrations. Periodic quiz were given during the course. The course website was also redesigned for usability, and physics review lectures were conducted two weeks before the board exam to refresh key concepts. At the completion of our first two-year course, we conducted a confidential evaluation of the faculty and course. The evaluation assessed metrics such as overall organization, clinical relevance of content, and level of difficulty, with a rating scale from poor to excellent. Results: Our evaluation indicated that the redesigned course provided effective board exam preparation, with most responses between good and excellent. There was some criticism on the course length and on chronological discontinuity, but the review lectures were appreciated by the residents. All of our residents passed the physics component of the ABR exam with scores exceeding the minimum passing score by a significant margin. Conclusion: The course evaluation and board exam results indicate that our new two-year course format provides valuable board exam preparation. This is possible thanks to the time and effort taken by the physics faculty on ensuring the residents get quality physics education.

  18. The Integral Molten Salt Reactor (IMSR)

    Energy Technology Data Exchange (ETDEWEB)

    Leblanc, D. [Terrestrial Energy, Mississauga, Ontario (Canada)

    2014-12-15

    The Integral Molten Salt Reactor is a simple burner or converter design that seeks to maximize passive and inherent safety features in order to minimize development time and achieve true cost innovation. Its integration of all primary systems into a unit sealed for the design life of the reactor will be reviewed with focus on the unique design aspects that make this a pragmatic approach. The IMSR is being developed by Terrestrial Energy in a range of power outputs with initial focus on an 80 MWth (32.5 MWe) unit primarily for remote energy needs. Similar units of modestly larger dimension and up to 600 MWth (291 MWe) are planned that remain truck transportable and able to compete in base load electricity markets worldwide. (author)

  19. The Integral Molten Salt Reactor (IMSR)

    International Nuclear Information System (INIS)

    The Integral Molten Salt Reactor is a simple burner or converter design that seeks to maximize passive and inherent safety features in order to minimize development time and achieve true cost innovation. Its integration of all primary systems into a unit sealed for the design life of the reactor will be reviewed with focus on the unique design aspects that make this a pragmatic approach. The IMSR is being developed by Terrestrial Energy in a range of power outputs with initial focus on an 80 MWth (32.5 MWe) unit primarily for remote energy needs. Similar units of modestly larger dimension and up to 600 MWth (291 MWe) are planned that remain truck transportable and able to compete in base load electricity markets worldwide. (author)

  20. Numerical and experimental study of the application of roof flat-flame burners

    International Nuclear Information System (INIS)

    The objective of the work was to investigate the essential features of radiation and convection heat transfer in the chamber furnace heated with roof flat-flame burners and conventional side-fired torch burner. The effect of change in the furnace chamber height on the heat transfer rate in the furnace enclosure, particularly on the heat flux onto the heated material, was determined numerically and experimentally. The results obtained by means of a computer-based mathematical model and those obtained on the laboratory chamber furnace showed a good agreement. The experimental results showed that a decrease in chamber height from 1760 mm to 1160 mm at low temperatures of the calorimeter surfaces, in all the heating modes, led to an increase in the heat transfer rate of 10-12 per cent, and at high temperatures of the calorimeter surfaces from 10 per cent (torch burner) up to 15-20 per cent (flat-flame burners). The calculations of heat fluxes onto the load surface were conducted in order to determine the real value of the coefficient of convective heat transfer from combustion gases to the load surface.

  1. PROTOTYPE EVALUATION OF COMMERCIAL SECOND GENERATION LOW-NOX BURNER PERFORMANCE AND SULFUR DIOXIDE CAPTURE POTENTIAL

    Science.gov (United States)

    The report gives results of tests on two large-scale staged-mixing (SM) burners developed by L and L Steinmuller of West Germany. One objective was to optimize their performance for low-NOx emissions, high efficiency, and combined NOx/SO2 control with sorbent injection. The exper...

  2. INITIAL TEST RESULTS OF THE LIMESTONE INJECTION MULTISTAGE BURNER (LIMB) DEMONSTRATION PROJECT

    Science.gov (United States)

    The paper discusses SO2 removal efficiency and low-NOx burner performance obtained during short term tests, as well as the impact of LIMB ash on electrostatic precipitator (ESP) performance at Ohio Edison's Edgewater Station. Project goals are to demonstrate 50% or more SO2 remov...

  3. Plutonium destruction with pebble bed type HTGRs using Pu burner balls and breeder balls

    International Nuclear Information System (INIS)

    It was made clear that pebble bed type HTGRs using Pu burner balls (pu balls) and breeder balls (Th balls) possesses a potential to burn weapons-grade Pu to 740 Gwd/TPu. The total amounts of Pu and 239Pu of can reduced to about 20 and 1%, respectively. (author). 10 refs, 4 figs, 2 tabs

  4. The porous medium oil burner applied to a household heating system

    Energy Technology Data Exchange (ETDEWEB)

    Heiderman, T.; Rutsche, A.; Tanke, D. [Invent GmbH, Uttenreuth (Germany); Hatzfeld, O.; Koehne, H.; Lucka, K.; Rudolphi, I. [Technische Hochschule Aachen (Germany). Lehr- und Forschungsgebiet Energie- und Stofftransport; Durst, F.; Trimis, D.; Wawrzinek, K. [Erlangen-Nuernberg Univ., Erlangen (Germany). Lehrstuhl fuer Stroemungsmechanik

    2000-03-01

    The thermal power used in the household is a combination of two contributions. Firstly, the power for the water heating and secondly, for the room heating. While the first contribution is roughly constant at around 20 kW the latter decreases for modern low energy houses continually down to a few kW in the last years. Therefore, a heating system with a high dynamic power range like the porous medium burner technology developed at the University of Erlangen-Nuernberg is required. This burner technology is extended to oil burner using the concept of cold flames in the oil evaporation zone, developed at EST Aachen. The oil burner is working with high thermal efficiency and low noise. The pollutant emission low is due to this new combustion concept and due to the strongly reduced number of start-stop-cycles. (orig.) [German] Waehrend der Raumwaermebedarf moderner Wohneinheiten stetig sinkt, erfordert die Warmwasserbereitung nach wie vor die Bereitstellung ausreichend grosser Waermeleistungen. Aus diesem Grund geht der Trend bei modernen Oelfeuerungsanlagen im Haushaltsbereich hin zu kompakten, emissionsarmen Einheiten mit Brennwertnutzung. Einen Durchbruch verspricht der Oelporenbrenner. Die Porenbrennertechnik wurde am LSTM Erlangen entwickelt. Der Oelporenbrenner vereinigt das am EST der RWTH Aachen entwickelte Verdampfungskonzept unter Nutzung der 'Kalte Flamme' mit der Porenbrennertechnik zu einem neuartigen Heizgeraetekonzept, das die hochmodulierbare, schadstoff- und geraeuscharme Verbrennung von Heizoel mit Brennwertnutzung ermoeglicht. Dadurch wird eine Verbesserung des Feuerungswirkungsgrads bis zu 10% erreicht. (orig.)

  5. WALL-FIRED BOILER DESIGN CRITERIA FOR DRY SORBENT SO2 CONTROL WITH LOW NOX BURNERS

    Science.gov (United States)

    The report assesses the impact of Limestone Injection Multistage Burner (LIMB) technology on wall-fired utility boilers for both new and retrofit designs. Recent attention has focused on dry sorbent sulfur dioxide (SO2) control technology which, in conjunction with low-nitrogen-o...

  6. LOW-NOX BURNERS FOR PULVERIZED-COAL-FIRED BOILERS IN JAPAN

    Science.gov (United States)

    The paper describes nitrogen oxide (NOx) abatement by low-NOx burners (LNBs) and combustion modification (CM) for dry-bottom pulverized-coal-fired boilers in Japan. LNBs have been widely used in Japan as a simple way to reduce NOx emissions by 20-50%. NOx abatement by a LNB and C...

  7. BOILER DESIGN CRITERIA FOR DRY SORBENT SO2 CONTROL WITH LOW-NOX BURNERS

    Science.gov (United States)

    The report describes the development of boiler design criteria for application of dry sorbent control technology with low-NOx burners on tangentially fired pulverized-coal-burning boilers. A comprehensive review of past and current research in the area of sorbent SOx control prov...

  8. Use of a regenerative burner system for aluminium melting furnaces; Einsatz eines Regenerativbrennersystems fuer Aluminiumschmelzoefen

    Energy Technology Data Exchange (ETDEWEB)

    Schwabe, Jan [Aluminium Norf GmbH, Neuss (Germany); Wellner, Ulli [Wellner Technische Managementberatung, Leuk (Switzerland); Kutzner, Dieter [BTS Engineering GmbH, Erkrath (Germany)

    2011-12-15

    The regenerative burner system that went into operation in May 2011 is presented. The special feature of this installation is the design of the burners to output 8 MW per burner. Since two burners are operated in parallel, this yields a total capacity of 16 MW. This corresponds to a gas flow of 1700 Nm{sup 3}/h, which is switched according to the cycle time of 90 seconds. This construction requires having an optimal design of automation and the use of hardware components having a high intrinsic safety. In order to achieve the high availability and the intended increase in production with optimum energy consumption, technical innovations in design and control were introduced. Undeniably, the cost for such a plant design is higher than that for a standard design. For compensation, the payback time was grossly reduced due to the high increase of the production. With less production required, the system can be switched into an energy saving mode. The maintenance staff quickly recognizes through an integrated condition monitoring system problem areas can be obtained without much effort the production readiness. Thus an availability of more than 98% (excluding the scheduled maintenance times) is achieved. The system fully complies with the current trend in the development of integrated mechatronic systems, namely, to dissolve the hitherto conventional discipline-bound ways of thinking to be replaced by an interdisciplinary, cross-border thinking.

  9. Performance analysis of porous radiant burners used in LPG cooking stove

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumar, P.; Anand, Piyush; Sachdeva, Prateek [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati - 781039 (India)

    2011-07-01

    This paper discusses the performance investigations of a porous radiant burner (PRB) used in LPG cooking stove. Performance of the burner was studied at different equivalence ratios and power intensities. Thermal efficiency was found using the water-boiling test described in IS: 4246:2002. The newly designed PRB showed a maximum thermal efficiency of about 71%, which is 6% higher than that of the conventional burners. Influence of ambient temperature on the thermal efficiency of the PRB was also investigated. Using a PRB of 80 mm diameter at the operating conditions of 0.68 equivalence ratio and 1.24 kW power intensity, the thermal efficiency was found to increase from 61% at 18.5 oC to 71% at 31 oC ambient temperature. The CO and NOx emissions of the PRB are in the range of 9 to 16 ppm and 0 to 0.2 ppm, respectively, while the respective values for the conventional burner are in the range of 50 to 225 ppm and 2 to 7 ppm.

  10. Performance analysis of porous radiant burners used in LPG cooking stove

    Directory of Open Access Journals (Sweden)

    P. Muthukumar, Piyush Anand, Prateek Sachdeva

    2011-03-01

    Full Text Available This paper discusses the performance investigations of a porous radiant burner (PRB used in LPG cooking stove. Performance of the burner was studied at different equivalence ratios and power intensities. Thermal efficiency was found using the water-boiling test described in IS: 4246:2002. The newly designed PRB showed a maximum thermal efficiency of about 71%, which is 6% higher than that of the conventional burners. Influence of ambient temperature on the thermal efficiency of the PRB was also investigated. Using a PRB of 80 mm diameter at the operating conditions of 0.68 equivalence ratio and 1.24 kW power intensity, the thermal efficiency was found to increase from 61% at 18.5 oC to 71% at 31 oC ambient temperature. The CO and NOx emissions of the PRB are in the range of 9 to 16 ppm and 0 to 0.2 ppm, respectively, while the respective values for the conventional burner are in the range of 50 to 225 ppm and 2 to 7 ppm.

  11. Formation of nitric oxide in an industrial burner measured by 2-D laser induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, A.; Bombach, R.; Kaeppeli, B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    We have performed two-dimensional Laser Induced Fluorescence (2-D LIF) measurements of nitric oxide and hydroxyl radical distributions in an industrial burner at atmospheric pressure. The relative 2-D LIF data of NO were set to an absolute scale by calibration with probe sampling combined with gas analysis. (author) 3 figs., 7 refs.

  12. Cordierite Bricks for Ceramic Burner of Hot Blast Stove YB/T 4128-2005

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaohui; Chai Junlan

    2009-01-01

    @@ 1 Scope This standard specifies the classification,brand,technical requirements,shape and dimension,test method,quality appraisal procedure,packing,marking,transportation,storage and quality certificate of cordierite bricks for ceramic burner of blast furnace and hot blast stove.

  13. Confronting the "Bra-Burners": Teaching Radical Feminism with a Case Study

    Science.gov (United States)

    Kreydatus, Beth

    2008-01-01

    In many of the U.S. History courses the author has taught, she has encountered students who refer to the second-wave feminists of the 1960s and 1970s as "bra-burners." Unsurprisingly, these students know very little about the origin of this epithet, and frequently, they know even less about the women's movement generally. Second-wave feminism, and…

  14. Thermophotovoltaic generation of electricity in a gas fired heater: Influence of radiant burner configurations and combustion processes

    International Nuclear Information System (INIS)

    With recent advances in low bandgap thermophotovoltaic (TPV) devices, further research into the radiant burner and its effect on the performance of TPV systems is particularly needed. The present work investigates various gas fired radiant burner/emitters and the influence of the combustion processes on radiant power and radiant efficiency. The performance tests with the burner/emitters have been conducted in a TPV self powered heater (mini cogenerator). It is shown that the radiant burner performance is affected markedly by the combustion parameters. Care must be taken to diminish the risk of flashback for the surface flame type burner. The maximum radiant power density and radiant efficiency of the burner/emitters have been determined. This is of great interest to TPV generation in gas fired heating appliances. Furthermore, the maximum electric power generated by the GaSb TPV converter is measured under a range of operating conditions for the different burner/emitter configurations. An electric power density of 0.332 W/cm2 has been achieved. Finally, the cogenerating aspects of the TPV systems are discussed

  15. Integration of a wood pellet burner and a Stirling engine to produce residential heat and power

    International Nuclear Information System (INIS)

    The integration a Stirling engine with a pellet burner is a promising alternative to produce heat and power for residential use. In this context, this study is focused on the experimental evaluation of the integration of a 20 kWth wood pellet burner and a 1 kWe Stirling engine. The thermal power not absorbed by the engine is used to produce hot water. The evaluation highlights the effects of pellet type, combustion chamber length and cycling operation on the Stirling engine temperatures and thermal power absorbed. The results show that the position of the Stirling engine is highly relevant in order to utilize as much as possible of the radiative heat from the burner. Within this study, only a 5 cm distance change between the Stirling engine and the pellet burner could result in an increase of almost 100 °C in the hot side of the engine. However, at a larger distance, the temperature of the hot side is almost unchanged suggesting dominating convective heat transfer from the hot flue gas. Ash accumulation decreases the temperature of the hot side of the engine after some cycles of operation when a commercial pellet burner is integrated. The temperature ratio, which is the relation between the minimum and maximum temperatures of the engine, decreases when using Ø8 mm wood pellets in comparison to Ø6 mm pellets due to higher measured temperatures on the hot side of the engine. Therefore, the amount of heat supplied to the engine is increased for Ø8 mm wood pellets. The effectiveness of the engine regenerator is increased at higher pressures. The relation between temperature of the hot side end and thermal power absorbed by the Stirling engine is nearly linear between 500 °C and 660 °C. Higher pressure inside the Stirling engine has a positive effect on the thermal power output. Both the chemical and thermal losses increase somewhat when integrating a Stirling engine in comparison to a stand-alone boiler for only heat production. The overall efficiency of

  16. Fast reactors using molten chloride salts as fuel

    International Nuclear Information System (INIS)

    This report deals with a rather exotic 'paper reactor', in which the fuel is in the form of molten chlorides. (a) Fast breeder reactor with a mixed fuel cycle of thorium/uranium-233 and uranium 238/plutonium in which all of the plutonium can be burned in situ and in which a denatured mixture of uranium-233 and uranium-238 is used to supply further reactors. The breeding ratio is relatively high, 1.58 and the specific power is 0.75 GW(th)/m3 of core. (b) Fast breeder reactor with two and three zones (internal fertile zone, intermediate fuel zone, external fertile zone) with an extremely high breeding ratio of 1.75 and a specific power of 1.1 GW(th)/m3 of core. (c) Extremely high flux reactor for the transmutation of the fission products: strontium-90 and caesium-137. The efficiency of transmutation is approximately 15 times greater than the spontaneous beta decay. This high flux burner reactor is intended as part of a complex breeder/burner system. (d) Internally cooled fast breeder in which the cooling agent is the molten fertile material, the same as in the blanket zone. This reactor has a moderate breeding ratio of 1.38, a specific power of 0.22 GW(th)/m3 of core and very good inherent safety properties. All of these reactors have the fuel in the form of molten chlorides: PuCl3 as fissile, UCl3 as fertile (if needed) and NaCl as dilutent. (Auth.)

  17. Fast reactors using molten chloride salts as fuel

    International Nuclear Information System (INIS)

    This report deals with a rather exotic ''paper reactor'' in which the fuel is in the form of molten chlorides. (a) Fast breeder reactor with a mixed fuel cycle of thorium/uranium-233 and uranium 238/plutonium in which all of the plutonium can be burned in situ and in which a denatured mixture of uranium-233 and uranium-238 is used to supply further reactors. The breeding ratio is relatively high, 1.58 and the specific power is 0.75 GW(th)/m3 of core. (b) Fast breeder reactor with two and three zones (internal fertile zone, intermediate fuel zone, external fertile zone) with an extremely high breeding ratio of 1.75 and a specific power of 1.1 GW(th)/m3 of core. (c) Extremely high flux reactor for the transmutation of the fission products: strontium-90 and caesium-137. The efficiency of transmutation is approximately 15 times greater than the spontaneous beta decay. This high flux burner reactor is intended as part of a complex breeder/burner system. (d) Internally cooled fast breeder in which the cooling agent is the molten fertile material, the same as in the blanket zone. This reactor has a moderate breeding ratio of 1.38, a specific power of 0.22 GW(th)/m3 of core and very good inherent safety properties. All of these reactors have the fuel in the form of molten chlorides: PuCl3 as fissile, UCl3 as fertile (if needed) and NaCl as dilutent. The fertile material can be 238UCl3 as fertile and NaCl as dilutent. In mixed fuel cycles the 233UCl3 is also a fissile component with 232ThCl4 as the fertile constituent

  18. Application of a Central Composite Design for the Study of NOx Emission Performance of a Low NOx Burner

    Directory of Open Access Journals (Sweden)

    Marcin Dutka

    2015-04-01

    Full Text Available In this study, the influence of various factors on nitrogen oxides (NOx emissions of a low NOx burner is investigated using a central composite design (CCD approach to an experimental matrix in order to show the applicability of design of experiments methodology to the combustion field. Four factors have been analyzed in terms of their impact on NOx formation: hydrogen fraction in the fuel (0%–15% mass fraction in hydrogen-enriched methane, amount of excess air (5%–30%, burner head position (20–25 mm from the burner throat and secondary fuel fraction provided to the burner (0%–6%. The measurements were performed at a constant thermal load equal to 25 kW (calculated based on lower heating value. Response surface methodology and CCD were used to develop a second-degree polynomial regression model of the burner NOx emissions. The significance of the tested factors over their respective ranges has been evaluated using the analysis of variance and by the consideration of the coefficients of the model equation. Results show that hydrogen addition to methane leads to increased NOx emissions in comparison to emissions from pure methane combustion. Hydrogen content in a fuel is the strongest factor affecting NOx emissions among all the factors tested. Lower NOx formation because of increased excess air was observed when the burner was fuelled by pure methane, but this effect diminished for hydrogen-rich fuel mixtures. NOx emissions were slightly reduced when the burner head was shifted closer to the burner outer tube, whereas a secondary fuel stream provided to the burner was found to have no impact on NOx emissions over the investigated range of factors.

  19. Characteristics of premixed flames stabilized in an axisymmetric curved-wall jet burner with tip modification

    KAUST Repository

    Kim, Daejoong

    2009-11-10

    The stabilization characteristics of premixed flames in an axisymmetric curved-wall jet burner have been experimentally investigated. This burner utilized the Coanda effect on top of a burner tip. The initially spherical burner tip was modified to a flat tip and a concave tip in order to improve flame stabilization by providing enough space for flow recirculation above the burner tip region. The flow characteristics have been visualized using a schlieren technique. Small-scale turbulence structure has been observed mainly in the interaction jet region (located downstream of the recirculation region) for large jet velocity (Reynolds number >11,500). An appreciable amount of air entrainment was exhibited from the half-angle of the jet spread, approximately 20. The averaged planar laser-induced fluorescence images of the flames for this large velocity demonstrated that the strong signal of OH radicals, representing reaction zones, existed in the recirculation zone, while it was weak in the interaction jet region due to intermittency and local extinction by the generation of small scale turbulence. The OH radical signals strengthened again in the merged jet region (downstream of the interaction jet region). In extreme cases of Reynolds number over 19,000, a unique flame exhibiting OH radicals only in the recirculation zone was observed for the concave tip. The flame stabilization has been mapped by varying jet velocity and equivalence ratio, and the result showed that the stabilization characteristics were improved appreciably from the initial spherical tip design, especially for rich mixtures. The flow fields measured by a laser Doppler velocimetry confirmed the existence of recirculation zone and the expansion of the recirculation zones for the modified tips. The temperature profile measured by a coherent anti-Stokes Raman spectroscopy exhibited an intermittent nature, especially near the recirculation zone.

  20. Regenerative burner systems for batch furnaces in the steel industry; Regenerativ-Brennersysteme fuer Chargenoefen in der Stahlindustrie

    Energy Technology Data Exchange (ETDEWEB)

    Teufert, Joerg [Bloom Engineering (Europa) GmbH, Duesseldorf (Germany); Domagala, Josef [Engineering and Trade Services, Duesseldorf (Germany)

    2009-07-01

    Regenerative burner systems for steel-industry batch furnaces are now state-of-the-art. They permit furnace operation with extremely low energy consumptions (reduction of CO{sub 2} emissions), with simultaneous minimization of NO{sub X} emissions. They are systems tried and proven in practical operation for sidewall and roof installation of low-NO{sub X} high-speed and flat-flame radiant burners. Optimum planning of regenerative burner systems makes it possible, thanks to high energy savings, to achieve short amortization times, particularly in new installations. (orig.)

  1. Reactor Physics

    International Nuclear Information System (INIS)

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised

  2. Reactor Physics

    International Nuclear Information System (INIS)

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised

  3. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  4. Burners. Reduction of nitrogen oxides in combustion: 2. generation of GR LONOxFLAM burner; Les bruleurs. La reduction des oxydes d`azote dans la combustion: bruleur GR LONOxFLAM de 2. generation

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, J.C. [EGCI Pillard, 13 - Marseille (France)

    1997-12-31

    This paper presents the research work carried out by the French Pillard company in collaboration with Gaz de France for the design of low NO{sub x} burners. The different type of low NO{sub x} burners are presented according to the type of fuel: gas, liquid fuels and fuel oils. The gas burner uses the fuel staging principle and the recirculation of smokes and leads to NO{sub x} emissions lower than 100 mg/Nm{sup 3}. The liquid fuel and fuel oil burners use the separate flames and the smoke self-recirculation methods (fuel-air mixture staging, reduction of flame temperature and of the residence time in flames). (J.S.)

  5. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  6. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    2013-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  7. Burners. The decrease of nitrogen oxides in combustion process: the 2 nd generation GR LONOxFLAM burner; Les bruleurs, la reduction des oxydes d`azote dans la combustion: bruleur GR LONOxFLAM de 2. generation

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, J.C. [EGCI Pillard, 13 - Marseille (France)

    1997-12-31

    The Pillard company has developed, in cooperation with GDF (the French national gas utility), the GR-LONOxFLAM burner concept for reducing NOx emission levels and solid combustion products. The concept consists, for gaseous fuels, in the combination of an internal recirculation and a gas staging process; for liquid fuels, a separated flame process and air staging are combined. These concepts allow for an important reduction in NOx and non-burned residues, even with standard-size burners

  8. EC-FP7 ARCAS: technical and economical comparison of Fast Reactors and Accelerator Driven Systems for transmutation of Minor Actinides

    International Nuclear Information System (INIS)

    The ARCAS project aims to compare, on a technological and economical basis, Accelerator Driven Systems and Fast Reactors as Minor Actinide burners. It is split in five work packages: the reference scenario definition, the fast reactor system definition, the accelerator driven system definition, the fuel reprocessing and fabrication facilities definition and the economical comparison. This paper summarizes the status of the project and its five work packages. (author)

  9. Experimental data regarding the characterization of the flame behavior near lean blowout in a non-premixed liquid fuel burner

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi

    2016-03-01

    The data are related to the research article “Image processing for the characterization of flame stability in a non-premixed liquid fuel burner near lean blowout” in Aerospace Science and Technology [1].

  10. The analysis of some low NOx hydrocarbon burners designs based on a numerical modelling of flame processes

    International Nuclear Information System (INIS)

    In order to develop low pollutant burning technologies ICPET-RESEARCH S.A. Bucharest studied new solutions of burners able to limit the NOx emissions from the furnaces of the power plants and industrial unit boilers. In this paper we present the results of analysis of the processes in some low NOx hydrocarbon burners. These results were obtained by applying a numerical modelling approach of the gas-thermodynamical and chemical processes in the flame. The FLUENT computer program was used in this purpose. The new solutions, for the case of a 10 MWth power burner showed a reduction of NOx emission of about 3 times for heavy oil fuel and of 22 % for natural gas fuel, respectively, as compared with the currently operated burners in Romania.(author).19 figs

  11. IR sensor for monitoring of burner flame; IR sensor foer oevervakning av braennarflamma

    Energy Technology Data Exchange (ETDEWEB)

    Svanberg, Marcus; Funkquist, Jonas; Clausen, Soennik; Wetterstroem, Jonas

    2007-12-15

    To obtain a smooth operation of the coal-fired power plants many power plant managers have installed online mass flow measurement of coal to all burners. This signal is used to monitor the coal mass flow to the individual burner and match it with appropriate amount of air and also to monitor the distribution of coal between the burners. The online mass flow measurement system is very expensive (approximately 150 kEUR for ten burners) and is not beneficial for smaller plants. The accuracy of the measurement and the sample frequency are also questionable. The idea in this project has been to evaluate a cheaper system that can present the same information and may also provide better accuracy and faster sample frequency. The infrared sensor is a cheap narrow banded light emission sensor that can be placed in a water cooed probe. The sensor was directed at the burner flame and the emitted light was monitored. Through calibration the mass flow of coal can be presented. Two measurement campaigns were performed. Both campaigns were carried out in Nordjyllandsverket in Denmark even though the second campaign was planned to be in Uppsala. Due to severe problems in the Uppsala plant the campaign was moved to Nordjyllandsverket. The pre-requisites for the test plant were that online measurement of coal flow was installed. In Nordjyllandsverket 4 out of 16 burners have the mass flow measurement installed. Risoe Laboratories has vast experiences in the IR technology and they provided the IR sensing equipment. One IR sensor was placed in the flame guard position just behind the flame directed towards the ignition zone. A second sensor was placed at the boiler wall directed towards the flame. The boiler wall position did not give any results and the location was not used during the second campaign. The flame-guard-positioned-sensor- signal was thoroughly evaluated and the results show that there is a clear correlation between the coal mass flow and the IR sensor signal. Tests were

  12. Comparative analysis of thorium and uranium fuel for transuranic recycle in a sodium cooled Fast Reactor

    International Nuclear Information System (INIS)

    Highlights: • Thorium as support fertile material for TRU transmutation in Fast Reactors. • Comparative analysis of Th and U based breakeven and burner Fast Reactors. • Thorium fosters significant advantages in terms of safety parameters. • Inherent safety is investigated through quasi-static reactivity and energy balances. • Th use in low-CR Fast Reactors does not reduce fuel decay heat and neutron sources. - Abstract: The present paper compares the reactor physics and transmutation performance of sodium-cooled Fast Reactors (FRs) for TRansUranic (TRU) burning with thorium (Th) or uranium (U) as fertile materials. The 1000 MWt Toshiba-Westinghouse Advanced Recycling Reactor (ARR) conceptual core has been used as benchmark for the comparison. Both burner and breakeven configurations sustained or started with a TRU supply, and assuming full actinide homogeneous recycle strategy, have been developed. State-of-the-art core physics tools have been employed to establish fuel inventory and reactor physics performances for equilibrium and transition cycles. Results show that Th fosters large improvements in the reactivity coefficients associated with coolant expansion and voiding, which enhances safety margins and, for a burner design, can be traded for maximizing the TRU burning rate. A trade-off of Th compared to U is the significantly larger fuel inventory required to achieve a breakeven design, which entails additional blankets at the detriment of core compactness as well as fuel manufacturing and separation requirements. The gamma field generated by the progeny of U-232 in the U bred from Th challenges fuel handling and manufacturing, but in case of full recycle, the high contents of Am and Cm in the transmutation fuel impose remote fuel operations regardless of the presence of U-232

  13. The uncertainty analysis of a liquid metal reactor for burning minor actinides from light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    The neutronics analysis of a liquid metal reactor for burning minor actinides has shown that uncertainties in the nuclear data of several key minor actinide isotopes can introduce large uncertainties in the predicted performance of the core. A comprehensive sensitivity and uncertainty analysis was performed on a 1200 MWth actinide burner designed for a low burnup reactivity swing, negative doppler coefficient, and low sodium void worth. Sensitivities were generated using depletion perturbation methods for the equilibrium cycle of the reactor and covariance data was taken ENDF-B/V and other published sources. The relative uncertainties in the burnup swing, doppler coefficient, and void worth were conservatively estimated to be 180%, 97%, and 46%, respectively. 5 refs., 1 fig., 3 tabs. (Author)

  14. CFD Analysis of NOx Emissions of a Natural Gas Lean Premixed Burner for Heavy Duty Gas Turbine

    OpenAIRE

    Andreini, A.; Cerutti, M; B. Facchini; Innocenti, A.

    2015-01-01

    The present work presents a numerical analysis of a low NOx partially premixed burner for heavy duty gas turbine. The first part of the paper is focused on the study of the premixing process inside the burner using standard RANS CFD approach. The resulting profiles at different test points have been used to perform reactive simulations of an experimental test rig, where exhaust NOx emissions were measured. A reliable numerical setup was found comparing predicted and measured NOx emissions at ...

  15. Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Frederick H. [Argonne National Laboratory; Jacobson, Norman H.

    1968-09-01

    This booklet discusses research reactors - reactors designed to provide a source of neutrons and/or gamma radiation for research, or to aid in the investigation of the effects of radiation on any type of material.

  16. Combustion of solid alternative fuels in the cement kiln burner

    DEFF Research Database (Denmark)

    Nørskov, Linda Kaare

    In the cement industry there is an increasing environmental and financial motivation for substituting conventional fossil fuels with alternative fuels, being biomass or waste derived fuels. However, the introduction of alternative fuels may influence emissions, cement product quality, process...... conditions relevant to suspension fired combustion. An experimental combustion reactor for simulating suspension fired combustion of large, single particles is established and experiments are performed to investigate conversion pathways, ignition, devolatilisation, and char oxidation times of pine wood, and.......e. grinding and drying, is insufficient to ensure the dried sewage sludge to be converted within the available time in suspension, however a partial particle downsizing without drying can be allowed for refuse derived fuel firing. By increasing the entrainment rate of secondary air, the primary air percentage...

  17. Fast molten salt reactor-transmuter for closing nuclear fuel cycle on minor actinides

    International Nuclear Information System (INIS)

    Creation fast critical molten salt reactor for burning-out minor actinides and separate long-living fission products in the closed nuclear fuel cycle is the most perspective and actual direction. The reactor on melts salts - molten salt homogeneous reactor with the circulating fuel, working as burner and transmuter long-living radioactive nuclides in closed nuclear fuel cycle, can serve as an effective ecological cordon from contamination of the nature long-living radiotoxic nuclides. High-flux fast critical molten-salt nuclear reactors in structure of the closed nuclear fuel cycle of the future nuclear power can effectively burning-out / transmute dangerous long-living radioactive nuclides, make radioisotopes, partially utilize plutonium and produce thermal and electric energy. Such reactor allows solving the problems constraining development of large-scale nuclear power, including fueling, minimization of radioactive waste and non-proliferation. Burning minor actinides in molten salt reactor is capable to facilitate work solid fuel power reactors in system NP with the closed nuclear fuel cycle and to reduce transient losses at processing and fabrications fuel pins. At substantiation MSR-transmuter/burner as solvents fuel nuclides for molten-salt reactors various salts were examined, for example: LiF - BeF2; NaF - LiF - BeF2; NaF-LiF ; NaF-ZrF4 ; LiF-NaF -KF; NaCl. RRC 'Kurchatov institute' together with other employees have developed the basic design reactor installations with molten salt reactor - burner long-living nuclides for fluoride fuel composition with the limited solubility minor actinides (MAF3 10 mol %) allows to develop in some times more effective molten salt reactor with fast neutron spectrum - burner/ transmuter of the long-living radioactive waste. In high-flux fast reactors on melts salts within a year it is possible to burn ∼300 kg minor actinides per 1 GW thermal power of reactor. The technical and economic estimation given power

  18. The energy-saving anaerobic baffled reactor membrane bioreactor (EABR-MBR) system for recycling wastewater from a high-rise building.

    Science.gov (United States)

    Ratanatamskul, Chavalit; Charoenphol, Chakraphan

    2015-01-01

    A novel energy-saving anaerobic baffled reactor-membrane bioreactor (EABR-MBR) system has been developed as a compact biological treatment system for reuse of water from a high-rise building. The anaerobic baffled reactor (ABR) compartment had five baffles and served as the anaerobic degradation zone, followed by the aerobic MBR compartment. The total operating hydraulic retention time (HRT) of the EABR-MBR system was 3 hours (2 hours for ABR compartment and very short HRT of 1 hour for aerobic MBR compartment). The wastewater came from the Charoen Wisawakam building. The results showed that treated effluent quality was quite good and highly promising for water reuse purposes. The average flux of the membrane was kept at 30 l/(m2h). The EABR-MBR system could remove chemical oxygen demand, total nitrogen and total phosphorus from building wastewater by more than 90%. Moreover, it was found that phosphorus concentration was rising in the ABR compartment due to the phosphorus release phenomenon, and then the concentration decreased rapidly in the aerobic MBR compartment due to the phosphorus uptake phenomenon. This implies that phosphorus-accumulating organisms inside the EABR-MBR system are responsible for biological phosphorus removal. The research suggests that the EABR-MBR system can be a promising system for water reuse and reclamation for high-rise building application in the near future. PMID:26067504

  19. Numerical simulation and experimental study of three-stage coal ignition burner by high-temperature air

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Z.Z.; Sun, B.M. [North China Electric Power Univ., Beijing (China). Key Laboratory of Condition Monitoring and Control for Power Plant Equipment; Liu, Y. [Beijing Guolineng Technology Co. Ltd., Beijing (China)

    2008-07-01

    Coal is in short supply in China. In addition, the quality of power derived from coal is both poor and unstable. Several million tons of oil are needed annually to ignite pulverized coal (PC) during boiler start-up. Since the calorific capacity of some of China's coal is lower than 13 MJ/kg, flameout often occurs in the PC fired boiler, which severely affect the safety of utility boilers. In order to stabilize combustion, several kinds of oil-saving ignition methods are being used, such as plasma ignition technology, hot-wall ignition combustion and small oil gun burners. This paper focused on a new burner, high-temperature air oil-free ignition burner, in which air is heated to 1000 degrees C by an intermediate frequency electricity heater. When the combustion is not stable, the burner is put into operation to prevent flameout. Experiments and numerical simulations were carried out to research the combustion in the burner. The factors influencing the ignition of PC were analyzed, including PC concentration, the inlet velocity of primary air flow, the velocity of high temperature air and PC fineness. The simulation results were in good agreement with experimental data. It was concluded that the results can be useful for optimizing the design of three-stage coal ignition burners. 8 refs., 2 tabs., 12 figs.

  20. Sodium fast reactor safety and licensing research plan. Volume II.

    Energy Technology Data Exchange (ETDEWEB)

    Ludewig, H. (Brokhaven National Laboratory, Upton, NY); Powers, D. A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A. (Argonne National Laboratory, Argonne, IL); Phillips, J.; Zeyen, R. (Institute for Energy Petten, Saint-Paul-lez-Durance, France); Clement, B. (IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France); Garner, Frank (Radiation Effects Consulting, Richland, WA); Walters, Leon (Advanced Reactor Concepts, Los Alamos, NM); Wright, Steve; Ott, Larry J. (Oak Ridge National Laboratory, Oak Ridge, TN); Suo-Anttila, Ahti Jorma; Denning, Richard (Ohio State University, Columbus, OH); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki, Japan); Ohno, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Miyhara, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Yacout, Abdellatif (Argonne National Laboratory, Argonne, IL); Farmer, M. (Argonne National Laboratory, Argonne, IL); Wade, D. (Argonne National Laboratory, Argonne, IL); Grandy, C. (Argonne National Laboratory, Argonne, IL); Schmidt, R.; Cahalen, J. (Argonne National Laboratory, Argonne, IL); Olivier, Tara Jean; Budnitz, R. (Lawrence Berkeley National Laboratory, Berkeley, CA); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki, Japan); Serre, Frederic (Centre d' %C3%94etudes nucl%C3%94eaires de Cadarache, Cea, France); Natesan, Ken (Argonne National Laboratory, Argonne, IL); Carbajo, Juan J. (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin-Madison, Madison, WI); Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Flanagan, George F. (Oak Ridge National Laboratory, Oak Ridge, TN); Bari, R. (Brokhaven National Laboratory, Upton, NY); Porter D. (Idaho National Laboratory, Idaho Falls, ID); Lambert, J. (Argonne National Laboratory, Argonne, IL); Hayes, S. (Idaho National Laboratory, Idaho Falls, ID); Sackett, J. (Idaho National Laboratory, Idaho Falls, ID); Denman, Matthew R.

    2012-05-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  1. Sodium fast reactor safety and licensing research plan - Volume II

    International Nuclear Information System (INIS)

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  2. Use of numerical modeling in design for co-firing biomass in wall-fired burners

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse Aistrup; Kær, Søren Knudsen;

    2004-01-01

    numerical modeling. The models currently used to predict solid fuel combustion rely on a spherical particle shape assumption, which may deviate a lot from reality for big biomass particles. A sphere gives a minimum in terms of the surface-area-to-volume ratio, which impacts significantly both motion and...... reaction of a particle. To better understand biomass combustion and thus improve the design for co-firing biomass in wall-fired burners, non-sphericity of biomass particles is considered. To ease comparison, two cases are numerically studied in a 10m long gas/biomass co-fired burner model. (1) The biomass...... particles are assumed as solid or hollow cylinders in shape, depending on the particle group. To model accurately the motion of biomass particles, the forces that could be important are all considered in the particle force balance, which includes a drag for non-spherical particles, an additional lift due to...

  3. Computational Fluid Dynamics Based Investigation of Sensitivity of Furnace Operational Conditions to Burner Flow Controls

    Energy Technology Data Exchange (ETDEWEB)

    Marc Cremer; Dave Wang; Connie Senior; Andrew Chiodo; Steven Hardy; Paul Wolff

    2005-07-01

    This is the Final Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project was to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. The focus of this project was to quantify the potential impacts of ''fine level'' controls rather than that of ''coarse level'' controls (i.e. combustion tuning). Although it is well accepted that combustion tuning will generally improve efficiency and emissions of an ''out of tune'' boiler, it is not as well understood what benefits can be derived through active multiburner measurement and control systems in boiler that has coarse level controls. The approach used here was to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner air and fuel flow rates. The Electric Power Research Institute (EPRI) provided co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center have been active participants in this project. CFD simulations were completed for five coal fired boilers as planned: (1) 150 MW wall fired, (2) 500 MW opposed wall fired, (3) 600 MW T-Fired, (4) 330 MW cyclone-fired, and (5) 200 MW T-Fired Twin Furnace. In all cases, the unit selections were made in order to represent units that were descriptive of the utility industry as a whole. For each unit, between 25 and 44 furnace simulations were completed in order to evaluate impacts of burner to burner variations in: (1) coal and primary air flow rate, and (2) secondary air flow

  4. COMPUTATIONAL FLUID DYNAMICS BASED INVESTIGATION OF SENSITIVITY OF FURNACE OPERATIONAL CONDITIONS TO BURNER FLOW CONTROLS

    Energy Technology Data Exchange (ETDEWEB)

    Marc Cremer; Zumao Chen; Dave Wang; Paul Wolff

    2004-06-01

    This is the extended second Semiannual Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project is to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. Our approach is to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner flow controls. The Electric Power Research Institute (EPRI) is providing co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center are active participants in this project. This program contains multiple tasks and good progress is being made on all fronts.

  5. Correction of edge-flame propagation speed in a counterflow, annular slot burner

    KAUST Repository

    Tran, Vu Manh

    2015-10-22

    To characterize the propagation modes of flames, flame propagation speed must be accurately calculated. The impact of propagating edge-flames on the flow fields of unburned gases is limited experimentally. Thus, few studies have evaluated true propagation speeds by subtracting the flow velocities of unburned gases from flame displacement speeds. Here, we present a counterflow, annular slot burner that provides an ideal one-dimensional strain rate and lengthwise zero flow velocity that allowed us to study the fundamental behaviors of edge-flames. In addition, our burner has easy optical access for detailed laser diagnostics. Flame displacement speeds were measured using a high-speed camera and related flow fields of unburned gases were visualized by particle image velocimetry. These techniques allowed us to identify significant modifications to the flow fields of unburned gases caused by thermal expansion of the propagating edges, which enabled us to calculate true flame propagation speeds that took into account the flow velocities of unburned gases.

  6. Use of regenerative burner systems in batchwise furnace operation; Einsatz von regenerativen Brennersystemen im satzweisen Ofenbetrieb

    Energy Technology Data Exchange (ETDEWEB)

    Tschapowetz, Erwin; Krammer, Helmut; Geidies, Joerg [Andritz Maerz GmbH, Duesseldorf (Germany)

    2013-06-15

    The use of regenerative burner heating systems in continuously operated plants in the steel and forging industries is tested in practice over the years. Due to the enormous energy savings with correspondingly large power requirements, and the continuous mode, these systems are used very successfully. In batch-wise operation, especially in the forging business, this system was rather uneconomical due to the batch operation and the cost situation. Due to the development of combination burner, regenerator and regulation a system was developed that in the light of rising gas prices and the demand for emission reduction also allows the use in batch-wise operation. The system at Saarschmiede and Boehler Edelstahl will be presented. (orig.)

  7. Interaction of turblence and chemistry in a low-swirl burner

    Science.gov (United States)

    Bell, J. B.; Cheng, R. K.; Day, M. S.; Beckner, V. E.; Lijewski, M. J.

    2008-07-01

    New combustion systems based on ultra-lean premixed combustion have the potential for dramatically reducing pollutant emissions in transportation systems, heat, and stationary power generation. However, lean premixed flames are highly susceptible to fluid-dynamical combustion instabilities, making robust and reliable systems difficult to design. Low-swirl burners are emerging as an important technology for meeting design requirements in terms of both reliability and emissions for next-generation combustion devices. In this paper, we present simlations of a laboratory-scale low-swirl burner using detailed chemistry and transport without incorporating explicit models for turbulence or turbulence/chemistry interaction. We consider two fuels, methane and hydrogen, each at two turbulent intensities. Here we examine some of the basic properties of the flow field and the flame structure. We focus on the differences in flame behavior for the two fuels, particularly on the hydrogen flame, which burns with a cellular structures.

  8. Method for reducing NOx during combustion of coal in a burner

    Science.gov (United States)

    Zhou, Bing; Parasher, Sukesh; Hare, Jeffrey J.; Harding, N. Stanley; Black, Stephanie E.; Johnson, Kenneth R.

    2008-04-15

    An organically complexed nanocatalyst composition is applied to or mixed with coal prior to or upon introducing the coal into a coal burner in order to catalyze the removal of coal nitrogen from the coal and its conversion into nitrogen gas prior to combustion of the coal. This process leads to reduced NOx production during coal combustion. The nanocatalyst compositions include a nanoparticle catalyst that is made using a dispersing agent that can bond with the catalyst atoms. The dispersing agent forms stable, dispersed, nano-sized catalyst particles. The catalyst composition can be formed as a stable suspension to facilitate storage, transportation and application of the catalyst nanoparticles to a coal material. The catalyst composition can be applied before or after pulverizing the coal material or it may be injected directly into the coal burner together with pulverized coal.

  9. Transmutation rates of technetium 99 and iodine 129 in the CANDU actinide burner

    International Nuclear Information System (INIS)

    Transmutation rates for the two long-lived fission products technetium 99 and iodine 129 have been calculated for the CANDU Actinide Burner that operates with weapons grade plutonium in an inert matrix as fuel. These transmutation rates are compared with those obtained for the current natural uranium CANDU and for LWRs and FBRs. The higher thermal flux and the softer neutron spectrum of the CANDU Actinide Burner, which is a result of its lower fissile requirements can provide net transmutation half lives as short as 14 y for technetium 99 and 2 y for iodine 129. It is assumed that the iodine 129 can be irradiated as a solution in heavy water. The shorter half life for iodine 129 is due to the large volume of moderator and reflector available that leads to negligible self shielding of the iodine 129 cross section. (author) 1 fig., 2 tabs., 2 refs

  10. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    This Public Design Report provides available nonproprietary design information on the Low NO{sub x}SO{sub x} Burner Retrofit of Utility Cyclone Boilers project. In addition to the design aspects, the history of the project, the organization of the project, and the role of the funding parties are discussed. An overview of the Low NO{sub x}SO{sub x} (LNS) Burner, the cyclone boiler and the Southern Illinois Power Cooperative host site is presented. A detailed nonproprietary description of the individual process steps, plant systems, and resulting performance then follows. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions and requirements are given for each unit. The plant demonstration program and start up provisions, the environmental considerations and control, monitoring and safety factors that are considered are also addressed.

  11. Effects of bluff-body burner and coal particle size on NOx emissions and burnout

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, L.S.; Cheng, J.F.; Zeng, H.C. [Huazhong University of Science and Technology, Wuhan (China). National Coal Combustion Lab.

    1999-12-01

    Investigations on air staging have been carried out using various coals with different degrees of fineness and a variety of burners with a 92.9 kw h{sup -1} tunnel furnace burning pulverized coal. It has been observed that using the bluff-body burner can reduce both the unburned carbon in fly ash and NOx emissions in the case of air staging. The experimental results show that air-staging combustion has a more remarkable effect on NOx reduction for higher-volatile coal than for lower-volatile coal. The results also show that there is a strong influence of coal particle size on NOx emissions and unburned carbon in the fly ash in the case of air staging. 13 refs., 12 figs., 2 tabs.

  12. Biomethanation of vegetable market waste in an anaerobic baffled reactor: Effect of effluent recirculation and carbon mass balance analysis.

    Science.gov (United States)

    Gulhane, Madhuri; Khardenavis, Anshuman A; Karia, Sneha; Pandit, Prabhakar; Kanade, Gajanan S; Lokhande, Satish; Vaidya, Atul N; Purohit, Hemant J

    2016-09-01

    In the present study, feasibility of biomethanation of vegetable market waste in a 4-chambered anaerobic baffled reactor (ABR) was investigated at 30d hydraulic retention time and organic loading rate of 0.5gVS/L/d for one year. Indicators of process stability viz., butyrate/acetate and propionate/acetate ratios were consistent with phase separation in the different chambers, which remained unaltered even during recirculation of effluent. Chemical oxygen demand (COD) and volatile solids (VS) removal efficiencies were observed to be consistently high (above 90%). Corresponding biogas and methane yields of 0.7-0.8L/g VS added/d and 0.42-52L/g VS added/d respectively were among the highest reported in case of AD of vegetable waste in an ABR. Process efficiency of the ABR for vegetable waste methanation, which is indicated by carbon recovery factor showed that, nearly 96.7% of the input carbon considered for mass balance was accounted for in the product. PMID:27133362

  13. Research reactors

    International Nuclear Information System (INIS)

    This article proposes an overview of research reactors, i.e. nuclear reactors of less than 100 MW. Generally, these reactors are used as neutron generators for basic research in matter sciences and for technological research as a support to power reactors. The author proposes an overview of the general design of research reactors in terms of core size, of number of fissions, of neutron flow, of neutron space distribution. He outlines that this design is a compromise between a compact enough core, a sufficient experiment volume, and high enough power densities without affecting neutron performance or its experimental use. The author evokes the safety framework (same regulations as for power reactors, more constraining measures after Fukushima, international bodies). He presents the main characteristics and operation of the two families which represent almost all research reactors; firstly, heavy water reactors (photos, drawings and figures illustrate different examples); and secondly light water moderated and cooled reactors with a distinction between open core pool reactors like Melusine and Triton, pool reactors with containment, experimental fast breeder reactors (Rapsodie, the Russian BOR 60, the Chinese CEFR). The author describes the main uses of research reactors: basic research, applied and technological research, safety tests, production of radio-isotopes for medicine and industry, analysis of elements present under the form of traces at very low concentrations, non destructive testing, doping of silicon mono-crystalline ingots. The author then discusses the relationship between research reactors and non proliferation, and finally evokes perspectives (decrease of the number of research reactors in the world, the Jules Horowitz project)

  14. Reactor physics and reactor computations

    International Nuclear Information System (INIS)

    Mathematical methods and computer calculations for nuclear and thermonuclear reactor kinetics, reactor physics, neutron transport theory, core lattice parameters, waste treatment by transmutation, breeding, nuclear and thermonuclear fuels are the main interests of the conference

  15. A quasi-adiabatic laminar flat flame burner for high temperature calibration

    International Nuclear Information System (INIS)

    Flat flame burners were developed for many purposes. In this study, a new flat flame burner for the high temperature calibration of combustion product species and temperature is presented. The burner is operated on methane/air mixtures. Equivalence ratios can be varied from φ = 0.65 to φ = 1.5. A flat, laminar, premixed flame stabilizes above the flame holder that is manufactured from porous material and differently to other designs is not water cooled. Unlike most other realizations, the flame burns detached by 1.5–2.5 mm from the flame holder. This is realized by adjusting the exit speed to a value very close to the burning velocity of the corresponding equivalence ratio. As the control range between flame blow-off and attachment to the flame holder is very narrow, this strategy requires spatially very uniform porous materials and a precise mass flow control. Heat losses to the flame holder necessary for flame stabilization are minimized furthermost by these detached flames. This becomes manifested by a temperature rise of the flame holder by less than 10 K and an almost homogeneous temperature distribution within the flame holder. In consequence, flame temperatures measured by Rayleigh thermometry are observed to be close to adiabatic flame temperatures. Differences between adiabatic and measured temperatures depend on the equivalence ratio and range from 35 K to 50 K. By comparison with 1D-flame simulations with and without radiation models, it is shown that these temperature losses are mainly due to radiation but not to heat conduction to the flame holder. For this reason, flames stabilized on this burner are termed quasi-adiabatic as they exhibit exhaust gas temperatures very similar to freely propagating flames

  16. Performance Evaluation of Palm Oil-Based Biodiesel Combustion in an Oil Burner

    OpenAIRE

    Abdolsaeid Ganjehkaviri; Mohammad Nazri Mohd Jaafar; Seyed Ehsan Hosseini; Anas Basri Musthafa

    2016-01-01

    This paper presents an experimental investigation of the combustion characteristics of palm methyl ester (PME), also known as palm oil-based biodiesel, in an oil burner system. The performance of conventional diesel fuel (CDF) and various percentages of diesel blended with palm oil-based biodiesel is also studied to evaluate their performance. The performance of the various fuels is evaluated based on the temperature profile of the combustor’s wall and emissions, such as nitrogen oxides (NOx)...

  17. The porous burner - concept, technique, and fields of application; Der Porenbrenner - Konzept, Technik und Anwendungsgebiete

    Energy Technology Data Exchange (ETDEWEB)

    Durst, F.; Kesting, A.; Moessbauer, S.; Pickenaecker, K.; Pickenaecker, O.; Trimis, D. [Erlangen Univ. (Germany). Lehrstuhl fuer Stroemungsmechanik

    1997-06-01

    In its efforts to optimize combustion processes, the Institute of Fluid Dynamics in Erlangen (LSTM-Erlangen) has succeeded in developing the technology of combustion in a porous medium. This novel technique stands out for its advantages that no other modern burner technology can show so far. These advantages can be summarized by an extremely high, infinitely variable power dynamic range combined with minimum waste gas emissions and a very compact size. The concept of porous burner technology is briefly described in the present article. Starting with general principles, the basic design as well as the structures and the properties of materials that are suitable for the combustion in porous media are described. Additionally, some important fields of application for this novel technology are outlined including a precompetitive latent heat gas boiler. Moreover, first studies showing the possibility of applying the porous burner technology in gas turbine furnaces or as radiation burners, respectively, were performed. (orig.) [Deutsch] Im Zuge der Optimierung von Verbrennungsprozessen gelang am LSTM-Erlangen die Entwicklung der neuartigen Porenbrennertechnologie, die sich durch Vorteile auszeichnet, welche derart zur Zeit keine andere moderne Brennertechnologie aufweist. Diese Vorteile koennen mit einer aeusserst kompakten Bauweise und einer extrem hohen, stufenlosen Leistungsdynamik bei gleichzeitig minimaler Schadstoffemission charakterisiert werden. Das Konzept der Porenbrennertechnik wird in dem vorliegenden Artikel kurz vorgestellt. Ausgehend von allgemeinen Grundlagen werden neben den konstruktiven Grundueberlegungen und den Arten und Eigenschaften poroeser Strukturen, die sich fuer die Verbrennung in poroesen Medien eignen, einige wichtige Anwendungsgebiete dieser neuartigen Technologie dargestellt. Im Bereich der Haushaltstechnik wird ein vorwettbewerblicher Brennwert-Gas-Wassererhitzer vorgestellt, der auf dem Porenbrennerkonzept basiert. Ebenso werden erste

  18. Heat transfer characteristics of evaporator modules for a 2 t/h class multi burner boiler

    International Nuclear Information System (INIS)

    A finned tube type evaporator module has been applied to a water tube type industrial boiler adopting multiple burners. Fins change their geometry along the streamwise direction to maximize the performance, which makes it difficult to apply conventional bulk design procedure. A numerical simulation has been performed to evaluate the 2 or 3 dimensional effects such as inlet conditions. The numerical simulation also includes the conjugate heat transfer problem to predict the fin tip temperature.

  19. The method of waste liquid atomization/incineration by using ultrasonic industrial burners

    International Nuclear Information System (INIS)

    The problem of burning a fuel is closely related to distributing that fuel and mixing it with the combustion air within a pre-designated space, the combustion chamber. For fuel engineers, the rule of thumb is unchanged: mix it and it will burn. That is why the burner designer focuses his attention on incorporating the best possible atomization and mixing, equipment, i.c. in the end, on the construction of the atomizer nozzle and the control of the combustion air. It was these considerations plus the inability of conventional burners to meet the tough demands of today's applications that led DUMAG to undertake an intensive program of research which has now been crowned with success. Below, basic points drawn from the fundamental knowledge of all fuel engineers have been included to bring into sharper focus the operating principles of the DUMAG Ultrasonic Industrial Burner, a world class Austrian product. This paper describes a plant which has been operating without incident since October 1977. Its level of operational effectiveness is at least equivalent to that of a standard oil burner plant. The plant is also in full compliance with current environmental standards following the installation of additional safety equipment such as pre-combustion chambers, sensors to monitor pre-combustion chamber temperatures, cut-off valves for reaction water and solvents to block their flow if no heating oil is being fed in, flue gas density monitor, and finer atomization and better mixing by means of an ultrasonic system - even with fluctuations in the viscosity. By eliminating disposal costs and recovering power from liquid waste materials, the entire plant pays for itself within one year. (Original)

  20. Coal Particle Flow Patterns for O2 Enriched, Low NOx Burners

    Energy Technology Data Exchange (ETDEWEB)

    Jennifer Sinclair Curtis

    2005-08-01

    This project involved a systematic investigation examining the effect of near-flame burner aerodynamics on standoff distance and stability of turbulent diffusion flames and the resultant NO{sub x} emissions from actual pulverized coal diffusion flames. Specifically, the scope of the project was to understand how changes in near-flame aerodynamics and transport air oxygen partial pressure can influence flame attachment and coal ignition, two properties essential to proper operation of low NO{sub x} burners. Results from this investigation utilized a new 2M tall, 0.5m in diameter combustor designed to evaluate near-flame combustion aerodynamics in terms of transport air oxygen partial pressure (Po{sub 2}), coal fines content, primary fuel and secondary air velocities, and furnace wall temperature furnish insight into fundamental processes that occur during combustion of pulverized coal in practical systems. Complementary cold flow studies were conducted in a geometrically similar chamber to analyze the detailed motion of the gas and particles using laser Doppler velocimetry. This final technical report summarizes the key findings from our investigation into coal particle flow patterns in burners. Specifically, we focused on the effects of oxygen enrichment, the effect of fines, and the effect of the nozzle velocity ratio on the resulting flow patterns. In the cold flow studies, detailed measurements using laser Doppler velocimetry (LDV) were made to determine the details of the flow. In the hot flow studies, observations of flame stability and measurements of NO{sub x} were made to determine the effects of the flow patterns on burner operation.

  1. Fuzzy logic for burner, solar boiler and catalytic converter; Brander, zonneboiler en katalysator vaag geregeld

    Energy Technology Data Exchange (ETDEWEB)

    Voorter, P.H.C.

    1995-05-01

    The application of fuzzy logic in the process control of a cement furnace at a Dutch cement industry (Enci in Maastricht) proved to be successful: the production increased by 4% and the energy consumption was reduced by 3% per ton product. Fuzzy logic can also be used in smaller energy equipment. Applications in a burner of a central heating boiler, a solar water heater and a catalytic converter in a motorcycle are discussed. 5 figs., 1 tab., 2 refs.

  2. Pollutant Exposures from Natural Gas Cooking Burners: A Simulation-Based Assessment for Southern California

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Jennifer M.; Klepeis, Neil E.; Lobscheid, Agnes B.; Singer, Brett C.

    2014-06-01

    Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants and they are typically used without venting. The objective of this study is to quantify pollutant concentrations and occupant exposures resulting from NGCB use in California homes. A mass balance model was applied to estimate time-dependent pollutant concentrations throughout homes and the "exposure concentrations" experienced by individual occupants. The model was applied to estimate nitrogen dioxide (NO{sub 2}), carbon monoxide (CO), and formaldehyde (HCHO) concentrations for one week each in summer and winter for a representative sample of Southern California homes. The model simulated pollutant emissions from NGCBs, NO{sub 2} and CO entry from outdoors, dilution throughout the home, and removal by ventilation and deposition. Residence characteristics and outdoor concentrations of CO and NO{sub 2} were obtained from available databases. Ventilation rates, occupancy patterns, and burner use were inferred from household characteristics. Proximity to the burner(s) and the benefits of using venting range hoods were also explored. Replicate model executions using independently generated sets of stochastic variable values yielded estimated pollutant concentration distributions with geometric means varying less than 10%. The simulation model estimates that in homes using NGCBs without coincident use of venting range hoods, 62%, 9%, and 53% of occupants are routinely exposed to NO{sub 2}, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3000, and 20 ppb for NO{sub 2}, CO, and HCHO, respectively. Reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health

  3. Predictive analysis of combined burner parameter effects on oxy-fuel flames

    OpenAIRE

    Boushaki, T.; Guessasma, S.; Sautet, J.C.

    2010-01-01

    Abstract The present paper aims at studying the influence of burner parameters with a separated jet configuration, namely nozzles diameters and separation distance between the jets, on the flame characteristics (lift-off positions of flame and flame length). The experimental layout considers the use of OH-chemilumenescence to measure the flame characteristics for different combinations of processing conditions. The predictive analysis is based on a neural computation that considers...

  4. Free of pollution gas - an utopia or attainable goal? Gas radiant burner with a small capacity

    International Nuclear Information System (INIS)

    The firm Viessmann has developed a gas radiant burner for boiler capacities up to 100 kN combusting gas with extremely low pollutant emissions. This is possible since from the reaction zone a considerable part of the combustion heat is delivered through radiation by means of a glowing special steel structure. The theoretical fundamentals are explained by means of considerations regarding the equilibrium and a reaction kinetic numerical model. (orig.)

  5. Testing and Modeling Fuel Regression Rate in a Miniature Hybrid Burner

    OpenAIRE

    Luciano Fanton; Christian Paravan; Luigi T. De Luca

    2012-01-01

    Ballistic characterization of an extended group of innovative HTPB-based solid fuel formulations for hybrid rocket propulsion was performed in a lab-scale burner. An optical time-resolved technique was used to assess the quasisteady regression history of single perforation, cylindrical samples. The effects of metalized additives and radiant heat transfer on the regression rate of such formulations were assessed. Under the investigated operating conditions and based on phenomenological models ...

  6. CFD simulation of a burner for syngas characterization and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Fantozzi, Francesco; Desideri, Umberto [University of Perugia (Italy). Dept. of Industrial Engineering], Emails: fanto@unipg.it, umberto.desideri@unipg.it; D' Amico, Michele [University of Perugia (Italy). Dept. of Energetic Engineering], E-mail: damico@crbnet.it

    2009-07-01

    Biomass and waste are distributed and renewable energy sources that may contribute effectively to sustainability if used on a small and micro scale. This requires the transformation through efficient technologies (gasification, pyrolysis and anaerobic digestion) into a suitable gaseous fuel to use in small internal combustion engines and gas turbines. The characterization of biomass derived syngas during combustion is therefore a key issue to improve the performance of small scale integrated plants because synthesis gas show significant differences with respect to Natural Gas (mixture of gases, low calorific value, hydrogen content, tar and particulate content) that may turn into ignition problems, combustion instabilities, difficulties in emission control and fouling. To this aim a burner for syngas combustion and LHV measurement through mass and energy balance was realized and connected to the rotary-kiln laboratory scale pyrolyzer at the Department of Industrial Engineering of the University of Perugia. A computational fluid dynamics (CFD) simulation of the burner was carried out considering the combustion of propane to investigate temperature and pressure distribution, heat transmission and distribution of the combustion products and by products. The simulation was carried out using the CFD program Star-CD. Before the simulation a geometrical model of the burner was built and the volume of model was subdivided in cells. A sensibility analysis of cells was carried out to estimate the approximation degree of the model. Experimental data about combustion emission were carried out with the propane combustion in the burner, the comparison between numerical results and experimental data was studied to validate the simulation for future works involved with the combustion of treated or raw (syngas with tar) syngas obtained from pyrolysis process. (author)

  7. Design and development of a SPMB (self-aspirating, porous medium burner) with a submerged flame

    International Nuclear Information System (INIS)

    This work reports design and development of a SPMB (self-aspirating porous medium burner) for replacing the self-aspirating, CB (conventional gaseous fuel, free flame burners), which are widely used in heating process of SMEs (small and medium scale enterprises) in Thailand but they have relatively low thermal efficiency of about 30 percent. Design of the SPMB relies on the same important characteristics of the CB, i.e. using the same mixing tube and the same fuel nozzle. The SPMB is formed by a packed bed of alumina spheres. The pressure drop across the packed bed, diameter of particles and a combustion chamber diameter are estimated by Ergun's equation in combination with Pe (Peclet number). The SPMB yields a submerged flame with an intense thermal radiation emitted downstream. An output radiation efficiency as high as 23 percent can be achieved at relatively high turn-down ratio of 2.65 and firing rate ranging from 23 to 61 kW. The SPMB shows a more complete combustion with relatively low CO emission of less than 200 ppm and acceptably high NOx emission of less than 98 ppm as compared with the CB throughout the range of firing rate studied, suggesting the possibility of the SPMB in replacing the CB. -- Highlights: → We successfully design and develop a new SPMB (self-aspirating porous medium burner) operating with a submerged flame. → High output radiation efficiency can be achieved through steady state submerged flame within the SPMB. → The firing rate is a dominant controlling parameter of the SPMB performance. → The SPMB yields a more complete combustion as compared with the CB (conventional gaseous fuel, free flame burners). → The SPMB suggests the possibility in replacing the CB for energy conservation.

  8. Flashback investigations in a premixed swirl burner by high-speed laser imaging

    OpenAIRE

    Heeger, Christof

    2012-01-01

    In this thesis flame flashback in a lean premixed swirl burner with central bluff-body was investigated using high speed multi-parameter laser imaging diagnostics. Starting with the fundamentals, the theoretical background of fluid dynamics was presented. This included turbulence, swirl and flows in boundary layers. Regarding the involved chemistry, the oxidation of methane was detailed and six mechanisms of nitric oxides formation together with reduction strategies were pictured. Lean premix...

  9. Abnormal mRNA splicing but normal auditory brainstem response (ABR) in mice with the prestin (SLC26A5) IVS2-2A>G mutation.

    Science.gov (United States)

    Zhang, Jian; Liu, Ziyi; Chang, Aoshuang; Fang, Jie; Men, Yuqin; Tian, Yong; Ouyang, Xiaomei; Yan, Denise; Zhang, Aizhen; Sun, Xiaoyang; Tang, Jie; Liu, Xuezhong; Zuo, Jian; Gao, Jiangang

    2016-08-01

    Prestin is critical to OHC somatic motility and hearing sensitivity in mammals. Several mutations of the human SLC26A5 gene have been associated with deafness. However, whether the IVS2-2A>G mutation in the human SLC26A5 gene causes deafness remains controversial. In this study, we created a mouse model in which the IVS2-2A>G mutation was introduced into the mouse Slc26a5 gene by gene targeting. The homozygous Slc26a5 mutant mice were viable and fertile and displayed normal hearing sensitivity by ABR threshold analysis. Whole-mount immunostaining using prestin antibody demonstrated that prestin was correctly targeted to the lateral wall of OHCs, and no obvious hair cell loss occurred in mutant mice. No significant difference in the amount of prestin protein was observed between mutants and controls using western blot analysis. In OHCs isolated from mutants, the NLC was also normal. However, we observed a splicing abnormality in the Slc26a5 mRNA of the mutant mice. Eleven nucleotides were missing from the 5' end of exon 3 in Slc26a5 mRNA, but the normal ATG start codon in exon 3 was still detected. Thus, the IVS2-2A>G mutation in the Slc26a5 gene is insufficient to cause hearing loss in mice. PMID:27232762

  10. Computation system for nuclear reactor core analysis. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.; Petrie, L.M.

    1977-04-01

    This report documents a system which contains computer codes as modules developed to evaluate nuclear reactor core performance. The diffusion theory approximation to neutron transport may be applied with the VENTURE code treating up to three dimensions. The effect of exposure may be determined with the BURNER code, allowing depletion calculations to be made. The features and requirements of the system are discussed and aspects common to the computational modules, but the latter are documented elsewhere. User input data requirements, data file management, control, and the modules which perform general functions are described. Continuing development and implementation effort is enhancing the analysis capability available locally and to other installations from remote terminals.

  11. Research reactors

    International Nuclear Information System (INIS)

    There are currently 284 research reactors in operation, and 12 under construction around the world. Of the operating reactors, nearly two-thirds are used exclusively for research, and the rest for a variety of purposes, including training, testing, and critical assembly. For more than 50 years, research reactor programs have contributed greatly to the scientific and educational communities. Today, six of the world's research reactors are being shut down, three of which are in the USA. With government budget constraints and the growing proliferation concerns surrounding the use of highly enriched uranium in some of these reactors, the future of nuclear research could be impacted

  12. Reactor container

    International Nuclear Information System (INIS)

    Object: To provide a jet and missile protective wall of a configuration being inflated toward the center of a reactor container on the inside of a body of the reactor container disposed within a biological shield wall to thereby increase safety of the reactor container. Structure: A jet and missile protective wall comprised of curved surfaces internally formed with a plurality of arch inflations filled with concrete between inner and outer iron plates and shape steel beam is provided between a reactor container surrounded by a biological shield wall and a thermal shield wall surrounding the reactor pressure vessel, and an adiabatic heat insulating material is filled in space therebetween. (Yoshino, Y.)

  13. The influence of near burner region aerodynamics on the formation and emission of nitrogen oxides in a pulverized coal-fired furnace

    International Nuclear Information System (INIS)

    This paper reports that detailed measurements have been performed for two distinct pulverized-coal-fired burners in a large-scale laboratory furnace. Comparative in-flame data are archived and include gas temperature, O2, CO concentration, and an inventory of stable fuel nitrogen species and solids (HCN, NH3, N2O, NO, nitrogen release, mass flux, and particle burnout). A significant decrease in the NO concentration in the near burner region and a substantial decrease in the furnace exit values are observed when the central tube from a single annular orifice burner jet (normally the location of a gas or oil burner for light-up purposes) is replaced with a single central orifice burner jet of same cross-sectional area. The latter burner exhibits the delayed combustion phenomena normally associated with a tangentially fired system. The particle burnout remains unaffected due to the longer particles' residence time in the all-important oxygen lean internal recirculation zone

  14. Concept of the heavy water MA-burner with the neutral fuel matrix

    International Nuclear Information System (INIS)

    The concept of the heavy water moderated and cooled critical MA-burner with the solid neutral fuel matrix is proposed. The distinguishing feature of the system is the high thermal neutron flux level. This leads to the high neutron reaction rates on the actinides and, consequently, to the low values of MA transmutation time. The concept of MA stage-transmutation strategy is proposed for this system. The transmutation process is divided into several time-stages of different duration and each of them includes a proper number of the burner's identical fuel cycles with the stage-peculiar feed and discharge fuel compositions. Some basic design features of the proposed MA burner are given. Results of one MA stage-transmutation strategy are presented. It is concluded that the proposed concept promises to be an efficient one and may be realized based on the current technologies, regarding both system design and fuel reprocessing ones. Some possible ways of the stage-transmutation strategy efficiency further increasing are proposed, in particular, reasonable distribution of transmutation stages between the fast systems and the thermal ones. (author)

  15. FRACTAL CHARACTERISTICS OF AERODYNAMIC FIELD AT OUTLET OF LOW-NOx COAXIAL SWIRLING BURNER

    Institute of Scientific and Technical Information of China (English)

    WU Jiang; TIAN Feng-guo; ZHANG Ming-chuan; SONG Yu-bao; GAO Mao; YIN Bin

    2004-01-01

    The primary wind of a low-NOx coaxial swirling burner was visualized by using glycol as smog tracer. The information of the visual flow field was input into a computer through image-capturing card with CCD camera as the image-capturing element. The boundary of the visual zone, i.e., the interface of the primary wind and secondary wind was obtained by image processing. The fractal dimension (FD) of the boundary was examined and found to vary from 1.10 to 1.40 with S1, S2 and ζ1. It is concluded that when FD is small, the complex level of the interface is low, and mixture between the primary and secondary wind is weak near the exit of the burner at the initial phase of combustion resulting in stratified flow; when FD is big, mixture becomes strong near the exit of the burner. It is showed that the flow with FD ranging from 1.10 to 1.20 is stratified flow, which is benefical to reduce NOx yield and the flow with FD from 1.25 to 1.40 is mixed flow, producing much NOx. The mechanism of the forming of stratified flow and mixed flow was theoretically analyzed. The corresponding S1, S2 and ζ1 of these flows were given.

  16. A New Low NOx Combustion Concept for Fan-assisted gas Burners

    International Nuclear Information System (INIS)

    The Department of Heat and Mass Transfer at Aachen Technical University has developed a combustion concept which makes low-emission combustion inside a burn-up chamber possible. In addition to the very low NOx emissions (ENOX < 10 mg/kWh) the fan-assisted gas burner is characterised by the comparatively low noise emissions which are obtained from the stabilisation of the flame within the burn-up chamber and the low flow rates in the flame. The main aim of the fan-assisted gas burner development work is to influence the thermal nitrogen oxide formation in order to obtain minimum emissions combined with low combustion noise. High fan pressures and the resulting increase in turbulence energy in marketable fan-assisted burner concepts often cause a high excitation of thermo-acoustic vibrations which are heard as interfering combustion noises and are often emitted via the chimney into the living space. Low noise emission must therefore be taken into consideration when approaches to reduce nitrogen oxide emissions are developed. One approach which achieves this aim and is in use is combustion on porous surfaces. This reduces the flow rates and therefore the kinetic turbulence energy. One problem with these concepts is, however, the thermal loading of the material which is exposed to a high thermal alternating stress which sometimes makes it brittle. An uneven flow rate distribution can also lead to increased emission of harmful substances. (author)

  17. THEORETICAL ANALYSIS AND PRACTICE ON THE SELECTION OF KEY PARAMETERS FOR HORIZONTAL BIAS BURNER

    Institute of Scientific and Technical Information of China (English)

    刘泰生; 许晋源

    2003-01-01

    The air flow ratio and the pulverized-coal mass flux ratio between the rich and lean sides are the key parameters of horizontal bias burner. In order to realize high combustion efficiency, excellent stability of ignition, low NOx emission and safe operation, six principal demands are presented on the selection of key parameters. An analytical model is established on the basis of the demands, the fundamentals of combustion and the operation results. An improved horizontal bias burner is also presented and applied. The experiment and numerical simulation results show the improved horizontal bias burner can realize proper key parameters, lower NOx emission, high combustion efficiency and excellent performance of part load operation without oil support. It also can reduce the circumfluence and low velocity zone existing at the downstream sections of vanes, and avoid the burnout of the lean primary-air nozzle and the jam in the lean primary-air channel. The operation and test results verify the reasonableness and feasibility of the analytical model.

  18. Influence of the combustion chamber design on the equivalence ratio of atmospheric gas burners

    International Nuclear Information System (INIS)

    A lot of residential gas appliances for heating and hot water supply are equipped with atmospheric burners. To ensure flame stability and constant favourable equivalence ratio of fully premixed gas burners for low pollutant emissions the response of air entrainment on combustion chamber design has to be taken into account. Optimization of geometrical parameters is often based on experience and time consuming experimental work. This report deals with results of a theoretical and experimental study performed on three common gas burners with and without combustion chamber and heat exchanger installed. The influence of combustion chamber geometry and cooling on burnt and unburnt gas temperature and consequently density gradients has been examined with thermal loads in the normal operation range. This leads to changes in the pressure field of the injector tubes as well as in the combustion chamber and hence equivalence ratio due to variation of pressure losses and mass flow. A significant decrease of the equivalence ratio has been obtained especially under lower thermal load operation with a sealed combustion chamber which could result in flash back or increased CO- emissions. The optimized geometry yields an almost constant equivalence ratio under design operating condition. The methods described and coherences obtained can help to lower expenditure of time on development. (author)

  19. A Development and Application of a Ladle Regenerative Burner System for a Steel Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Seong Soo [POSCO, Pohang (Korea); Park, Heung Soo [Research Institute of Industrial Science and Technology, Pohang (Korea)

    2001-06-01

    This study developed a self-model on a regenerative ladle heating system, 300 millions kcal/hr of a burning capacity using COG fuel, and conducted a performance test through applying it to a field. The model has a structure, which can tilt through loading a mixed burner with a high-speed spay nozzle on a ladle cover, as well as a fixed duct and can inhale and exhaust the air through the inside of a rotating duct built horizontally. The regenerative system is designed of a rectangular parallelepiped, 0.56 m{sup 3} of an inside volume, and uses 25 mm diameter of a ceramic ball as a regenerating material. This study got conclusions through operating the installed system in field and testing burning as follows: 1) The structure of a burner and a duct system selected through this study is a vertical burning regenerative ladle heating system and suitable to a space application and an operation; 2) The self-designed burner shows the stable burning state, its ignition is excellent in high loading time, and the designed speed of a moving fluid in spray is adequate; 3) In the condition of the lowest absorption, the preheating temperature of burning air reaches to 530 deg C, and the sensible heat of burning exhaust gas can be recovered over 50%; 4) The saving effect of fuel gas due to the installation of this system is measured minimum 25%{approx}30%. 3 figs.

  20. Testing of a low NOx wire-mesh duct burner for micro-cogeneration unit

    Energy Technology Data Exchange (ETDEWEB)

    Ramadan, O.B.; Gauthier, J.E.D. [Carleton Univ., Ottawa, ON (Canada). Dept. of Mechanical and Aerospace Engineering; Hughes, P.M.; Brandon, R. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2007-07-01

    Combined heat and power (CHP) or cogeneration involves the generation of electricity in addition to the productive use of waste heat from the combustion process using the same primary fuel. An alternative to combined electrical power and heat generation is a micro-cogeneration unit which uses a micro-turbine as a prime mover. This type of unit is expected to result in a shift from large and centralized plants to smaller, more economical on-site generation plants. This paper presented a new low nitrogen oxide (NOx) wire-mesh duct burner (WMDB) for the development of a more efficient micro-cogeneration unit. In order to increase its thermal output, the low NOx WMDB was designed, built and integrated for evaluation with the Ingersol-Rand 70 kw micro-cogeneration unit. The wire-mesh burner had a conical shape and was manufactured by ACOTECH. The paper also discussed the advantages of micro-CHP units which are more attractive to building owners, retail establishments, commercial and light industrial facilities. Advantages include quality of the power supply; more economical, cleaner power; and the addition of new capacity without new transmission lines. It was concluded that low levels of emission were achieved with the development of a low NOx wire-mesh duct burner for a micro-cogeneration plant. 2 refs., 5 figs.

  1. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS; SEMIANNUAL

    International Nuclear Information System (INIS)

    Coal continues to be one of the principal energy sources for electric power generation in the United States. One of the biggest environmental challenges involved with coal utilization is the reduction of nitrogen oxides (NO(sub x)) formed during coal combustion. The most economical method of NO(sub x) abatement in coal combustion is through burner modification. Air-staging techniques have been widely used in the development of low-NO(sub x) pulverized coal burners, promoting the conversion of NO(sub x) to N(sub 2) by delaying the mixing in the fuel-rich zone near the burner inlet. Previous studies have looked at the mechanisms of NO(sub x) evolution at relatively low temperatures where primary pyrolysis is dominant, but data published for secondary pyrolysis in the pulverized coal furnace are scarce. In this project, the nitrogen evolution behavior during secondary coal pyrolysis will be explored. The end result will be a complete model of nitrogen evolution and NO(sub x) precursor formation due to primary and secondary pyrolysis

  2. Medium-Power Lead-Alloy Reactors: Missions for This Reactor Technology

    International Nuclear Information System (INIS)

    A multiyear project at the Idaho National Engineering and Environmental Laboratory and the Massachusetts Institute of Technology investigated the potential of medium-power lead-alloy-cooled technology to perform two missions: (1) the production of low-cost electricity and (2) the burning of actinides from light water reactor (LWR) spent fuel. The goal of achieving a high power level to enhance economic performance simultaneously with adoption of passive decay heat removal and modularity capabilities resulted in designs in the range of 600-800 MW(thermal), which we classify as a medium power level compared to the lower [∼100 MW(thermal)] and higher [2800 MW(thermal)] power ratings of other lead-alloy-cooled designs. The plant design that was developed shows promise of achieving all the Generation-IV goals for future nuclear energy systems: sustainable energy generation, low overnight capital cost, a very low likelihood and degree of core damage during any conceivable accident, and a proliferation-resistant fuel cycle. The reactor and fuel cycle designs that evolved to achieve these missions and goals resulted from study of the following key trade-offs: waste reduction versus reactor safety, waste reduction versus cost, and cost versus proliferation resistance. Secondary trade-offs that were also considered were monolithic versus modular design, active versus passive safety systems, forced versus natural circulation, alternative power conversion cycles, and lead versus lead-bismuth coolant.These studies led to a selection of a common modular design with forced convection cooling, passive decay heat removal, and a supercritical CO2 power cycle for all our reactor concepts. However, the concepts adopt different core designs to optimize the achievement of the two missions. For the low-cost electricity production mission, a design approach based on fueling with low enriched uranium operating without costly reprocessing in a once-through cycle was pursued to achieve a

  3. Mathematical modeling and experimental tests of the air jets mixing process in a new prototype of lignite burner for lower NOx emissions

    International Nuclear Information System (INIS)

    In order to decrease the NOx emissions generated by a lignite steam generator, a new prototype burner has been designed. The burner should operate with staggered combustion, to achieve lower temperatures in the first zone of the flame. The paper presents in parallel the results of the mathematical model and experimental tests of the mixing process of primary, secondary and tertiary air-flow jets at environmental temperature. Keywords: mathematical modeling, experimental tests, lignite burner, NOx reduction

  4. Analysis of the cause of stopping up of honeycomb regenerative burner%蓄热式烧嘴堵塞因为分析

    Institute of Scientific and Technical Information of China (English)

    孙维强; 刘常鹏; 徐大勇; 贾振

    2011-01-01

    Studying the problems of jam during using the burner, analyzing the material and reason that caused the burner jam we find out the way that avoids the burner jam.%针对蜂窝式蓄热烧嘴在使用过程中出现的堵塞问题,分析了造成烧嘴堵塞的因为,并提出了避免烧嘴堵塞的办法.

  5. Self-Sustaining Thorium Boiling Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud [Univ. of California, Berkeley, CA (United States); Gorman, Phillip M. [Univ. of California, Berkeley, CA (United States); Bogetic, Sandra [Univ. of California, Berkeley, CA (United States); Seifried, Jeffrey E. [Univ. of California, Berkeley, CA (United States); Zhang, Guanheng [Univ. of California, Berkeley, CA (United States); Varela, Christopher R. [Univ. of California, Berkeley, CA (United States); Fratoni, Massimiliano [Univ. of California, Berkeley, CA (United States); Vijic, Jasmina J. [Univ. of California, Berkeley, CA (United States); Downar, Thomas [Univ. of Michigan, Ann Arbor, MI (United States); Hall, Andrew [Univ. of Michigan, Ann Arbor, MI (United States); Ward, Andrew [Univ. of Michigan, Ann Arbor, MI (United States); Jarrett, Michael [Univ. of Michigan, Ann Arbor, MI (United States); Wysocki, Aaron [Univ. of Michigan, Ann Arbor, MI (United States); Xu, Yunlin [Univ. of Michigan, Ann Arbor, MI (United States); Kazimi, Mujid [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Shirvan, Koroush [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Mieloszyk, Alexander [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Todosow, Michael [Brookhaven National Lab. (BNL), Upton, NY (United States); Brown, Nicolas [Brookhaven National Lab. (BNL), Upton, NY (United States); Cheng, Lap [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-03-15

    The primary objectives of this project are to: Perform a pre-conceptual design of a core for an alternative to the Hitachi proposed fuel-self- sustaining RBWR-AC, to be referred to as a RBWR-Th. The use of thorium fuel is expected to assure negative void coefficient of reactivity (versus positive of the RBWR-AC) and improve reactor safety; Perform a pre-conceptual design of an alternative core to the Hitachi proposed LWR TRU transmuting RBWR-TB2, to be referred to as the RBWR-TR. In addition to improved safety, use of thorium for the fertile fuel is expected to improve the TRU transmutation effectiveness; Compare the RBWR-Th and RBWR-TR performance against that of the Hitachi RBWR core designs and sodium cooled fast reactor counterparts - the ARR and ABR; and, Perform a viability assessment of the thorium-based RBWR design concepts to be identified along with their associated fuel cycle, a technology gap analysis, and a technology development roadmap. A description of the work performed and of the results obtained is provided in this Overview Report and, in more detail, in the Attachments. The major findings of the study are summarized.

  6. Self-Sustaining Thorium Boiling Water Reactors

    International Nuclear Information System (INIS)

    The primary objectives of this project are to: Perform a pre-conceptual design of a core for an alternative to the Hitachi proposed fuel-self- sustaining RBWR-AC, to be referred to as a RBWR-Th. The use of thorium fuel is expected to assure negative void coefficient of reactivity (versus positive of the RBWR-AC) and improve reactor safety; Perform a pre-conceptual design of an alternative core to the Hitachi proposed LWR TRU transmuting RBWR-TB2, to be referred to as the RBWR-TR. In addition to improved safety, use of thorium for the fertile fuel is expected to improve the TRU transmutation effectiveness; Compare the RBWR-Th and RBWR-TR performance against that of the Hitachi RBWR core designs and sodium cooled fast reactor counterparts - the ARR and ABR; and, Perform a viability assessment of the thorium-based RBWR design concepts to be identified along with their associated fuel cycle, a technology gap analysis, and a technology development roadmap. A description of the work performed and of the results obtained is provided in this Overview Report and, in more detail, in the Attachments. The major findings of the study are summarized.

  7. COST-EFFECTIVE CONTROL OF NOx WITH INTEGRATED ULTRA LOW-NOx BURNERS AND SNCR

    International Nuclear Information System (INIS)

    Coal-fired electric utilities are facing a serious challenge with regards to curbing their NO(sub x) emissions. At issue are the NO(sub x) contributions to the acid rain, ground level ozone, and particulate matter formation. Substantial NO(sub x) control requirements could be imposed under the proposed Ozone Transport Rule, National Ambient Air Quality Standards, and New Source Performance Standards. McDermott Technology, Inc. (MTI), Babcock and Wilcox (B and W), and Fuel Tech are teaming to provide an integrated solution for NO(sub x) control. The system will be comprised of an ultra low-NO(sub x) pulverized coal (PC) burner technology plus a urea-based, selective non-catalytic reduction (SNCR) system. This system will be capable of meeting a target emission limit of 0.15 lb NO(sub x)/10(sup 6) Btu and target ammonia (NH3) slip level targeted below 5 ppmV for commercial units. Our approach combines the best available combustion and post-combustion NO(sub x) control technologies. More specifically, B and W's DRB-4Z TM ultra low-NO(sub x) PC burner technology will be combined with Fuel Tech's NO(sub x)OUT (SNCR) and NO(sub x)OUT Cascade (SNCR/SCR hybrid) systems and jointly evaluated and optimized in a state-of-the-art test facility at MTI. Although the NO(sub x)OUT Cascade (SNCR/SCR hybrid) system will not be tested directly in this program, its potential application for situations that require greater NO(sub x) reductions will be inferred from other measurements (i.e., SNCR NO(sub x) removal efficiency plus projected NO(sub x) reduction by the catalyst based on controlled ammonia slip). Our analysis shows that the integrated ultra low-NO(sub x) burner and SNCR system has the lowest cost when the burner emissions are 0.25 lb NO(sub x)/10(sup 6) Btu or less. At burner NO(sub x) emission level of 0.20 lb NO(sub x)/10(sup 6) Btu, the levelized cost per ton of NO(sub x) removed is 52% lower than the SCR cost

  8. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NO, reduction (70VO) could be achieved. Sponsors of the project included the U.S. Depatiment of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was petformed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado bituminous, low-sulfur coal. It had a baseline NO, emission level of 0.73 lb/1 OG Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50Y0. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NO, in the flue gas by staged fuel combustion. This technology involves the introduction of' natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NO, emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX

  9. Linear accelerator driven (LADR) and regenerative reactors (LARR) for nuclear non-proliferation

    International Nuclear Information System (INIS)

    Linear accelerator breeders (LAB) could be used to produce fissile fuel in two modes, either with fuel reprocessing or without fuel reprocessing. With fuel reprocessing, the fissile material would be separated from the target and refabricated into a fuel element for use in a burner power reactor. Without reprocessing, the fissile material would be produced in-situ, either in a fresh fuel element or in a depleted or burned element after use in a power reactor. In the latter mode the fissile material would be increased in concentration for reuse in a power reactor. This system is called a Linear Accelerator Regenerative Reactor (LARR). The LAB can also be conceived of operating in a power production mode in which the spallation neutrons would be used to drive a subcritical assembly to produce power. This is called a Linear Accelerator Driven Reactor (LADR). A discussion is given of the principles and some of the technical problems of both types of accelerator breeders

  10. Conceptual design of a Demonstration Tokamak Hybrid Reactor (DTHR), September 1978

    International Nuclear Information System (INIS)

    The flexibility of the fusion hybrid reactor to function as a fuel production facility, power plant, waste disposal burner or combinations of all of these, as well as the reactor's ability to use proliferation resistant fuel cycles, has provided the incentive to assess the feasibility of a near-term demonstration plant. The goals for a Demonstration Tokamak Hybrid Reactor (DTHR) were established and an initial conceptual design was selected. Reactor performance and economics were evaluated and key developmental issues were assessed. The study has shown that a DTHR is feasible in the late 1980's, a significant quantity of fissile fuel could be produced from fertile thorium using present day fission reactor blanket technology, and a large number of commercially prototypical components and systems could be developed and operationally verified. The DTHR concept would not only serve as proof-of-principle for hybrid technology, but could be operated in the ignited mode and provide major advancements for pure fusion technology

  11. Simple economics parametric analysis of fissile fuel production by fusion--fision reactors

    International Nuclear Information System (INIS)

    A simplified but general analytic model is formulated and evaluated to relate all major elements of fissile-fuel production by fusion-fission (hybrid) reactors on basis of simple economic constraints. The hybrid reactor performance is examined in terms of its fissile-fuel conversion ratio, blanket multiplication, and intrinsic efficiency. A stationary, equilibrium fissile-fuel/energy market is assumed, and the economically constrained performance is evaluated parametrically as a function of burner-converter conversion ratio, plant capital costs, and ratio of fissile-fuel to energy costs. The model and results presented herein can be applied to other means of fissile-fuel production

  12. Reactor building

    International Nuclear Information System (INIS)

    The whole reactor building is accommodated in a shaft and is sealed level with the earth's surface by a building ceiling, which provides protection against penetration due to external effects. The building ceiling is supported on walls of the reactor building, which line the shaft and transfer the vertical components of forces to the foundations. The thickness of the walls is designed to withstand horizontal pressure waves in the floor. The building ceiling has an opening above the reactor, which must be closed by cover plates. Operating equipment for the reactor can be situated above the building ceiling. (orig./HP)

  13. Heterogeneous reactors

    International Nuclear Information System (INIS)

    The microscopic study of a cell is meant for the determination of the infinite multiplication factor of the cell, which is given by the four factor formula: K(infinite) = n(epsilon)pf. The analysis of an homogeneous reactor is similar to that of an heterogeneous reactor, but each factor of the four factor formula can not be calculated by the formulas developed in the case of an homogeneous reactor. A great number of methods was developed for the calculation of heterogeneous reactors and some of them are discussed. (Author)

  14. Tasquinimod (ABR-215050, a quinoline-3-carboxamide anti-angiogenic agent, modulates the expression of thrombospondin-1 in human prostate tumors

    Directory of Open Access Journals (Sweden)

    Isaacs John T

    2010-05-01

    Full Text Available Abstract Background The orally active quinoline-3-carboxamide tasquinimod [ABR-215050; CAS number 254964-60-8, which currently is in a phase II-clinical trial in patients against metastatic prostate cancer, exhibits anti-tumor activity via inhibition of tumor angiogenesis in human and rodent tumors. To further explore the mode of action of tasquinimod, in vitro and in vivo experiments with gene microarray analysis were performed using LNCaP prostate tumor cells. The array data were validated by real-time semiquantitative reversed transcriptase polymerase chain reaction (sqRT-PCR and protein expression techniques. Results One of the most significant differentially expressed genes both in vitro and in vivo after exposure to tasquinimod, was thrombospondin-1 (TSP1. The up-regulation of TSP1 mRNA in LNCaP tumor cells both in vitro and in vivo correlated with an increased expression and extra cellular secretion of TSP1 protein. When nude mice bearing CWR-22RH human prostate tumors were treated with oral tasquinimod, there was a profound growth inhibition, associated with an up-regulation of TSP1 and a down- regulation of HIF-1 alpha protein, androgen receptor protein (AR and glucose transporter-1 protein within the tumor tissue. Changes in TSP1 expression were paralleled by an anti-angiogenic response, as documented by decreased or unchanged tumor tissue levels of VEGF (a HIF-1 alpha down stream target in the tumors from tasquinimod treated mice. Conclusions We conclude that tasquinimod-induced up-regulation of TSP1 is part of a mechanism involving down-regulation of HIF1α and VEGF, which in turn leads to reduced angiogenesis via inhibition of the "angiogenic switch", that could explain tasquinimods therapeutic potential.

  15. Investigation of Nitrogen Removal Efficiency from Wastewater using Modified Anaerobic Baffled Reactor (MABR

    Directory of Open Access Journals (Sweden)

    H Ganjidoust

    2010-02-01

    Full Text Available "n "nBackgrounds and Objectives : Nitrogen compounds in wastewater are mainly in four types of organic, am- monia, nitrite and nitrate. Total nitrogen concentration in municipal wastewater is usually within 25 to 45 mg/L as nitrogen. The most important problem with nitrogen is its oxygen demand and human health effect."nMaterials and Methods: Anaerobic Baffled Reactor (ABR is a system in which baffles are used to direct  wastewater flow. During 9 months study, a 15 liter modified ABR (104*30*15 cm with eight baffled com- partments was used for nitrification-denitrification processes. In the seventh compartment, the wastewater was aerated to oxidize ammonia to nitrite and nitrate."nResults : Denitrification was done in the first four compartments with removal efficiency from 60 to 84 per- cent for nitrite and nitrate, respectively. During the shock loading study (4 times of the last influent, a sharp decrease in nitrogen removal rate was observed which was then returned to the previous efficiency after 11 days. Artificial neural network was used to evaluate and process the data in which the observed error in 10 patterns was less than 15 percent."nConclusion : Anaerobic baffled reactor with an influent of up to 200 mg/L has capability to remove total  nitrogen concentration to less than the standard level of Iranian Department of Environment of 50 mg/L as nitrate and 10 mg/L as nitrogen.

  16. Safety Aspects of Thorium Fuel in Sodium-Cooled Fast Reactors

    International Nuclear Information System (INIS)

    While detrimental to the breeding performance, use of thorium (Th) in Fast Reactors (FRs) has certain positive aspects: in principle, it has better thermal properties and irradiation performance than uranium (U)-based fuels, and it increases the potential burning rate of legacy transuranic waste for a burner design. The impact of thorium on the top-level operational and safety characteristics of a sodium-cooled transuranic-burner FR design is the focus of this paper. Different fuel cycle burning schemes are considered, including the development of a breakeven design to cover the long-term transition to a self-sufficient cycle. For completeness, a comparison with the counterpart U-based cores is also given. Reactivity feedback coefficients and other parameters are employed to predict the impact on the reactor passive-safety features of the various fuel cycle options. Reactivity decomposition techniques are employed to show the key contributors to the reactivity effects of the different fuels. The results show significant safety improvements fostered by implementing thorium fuel, with notable reductions in the reactivity insertion in case of core voiding, ~2$ for the burner designs and ~6$ for the breakeven design (which shows overall negative voids), while preserving a relatively simple core configuration. (author)

  17. Plasma reactor

    OpenAIRE

    Molina Mansilla, Ricardo; Erra Serrabasa, Pilar; Bertrán Serra, Enric

    2008-01-01

    [EN] A plasma reactor that can operate in a wide pressure range, from vacuum and low pressures to atmospheric pressure and higher pressures. The plasma reactor is also able to regulate other important settings and can be used for processing a wide range of different samples, such as relatively large samples or samples with rough surfaces.

  18. Reactor physics

    International Nuclear Information System (INIS)

    Progress in research on reactor physics in 1997 at the Belgian Nuclear Research Centre SCK/CEN is described. Activities in the following four domains are discussed: core physics, ex-core neutron transport, experiments in Materials Testing Reactors, international benchmarks

  19. Investigation of Nuclear Data Libraries with TRIPOLI-4 Monte Carlo Code for Sodium-cooled Fast Reactors

    Science.gov (United States)

    Lee, Y.-K.; Brun, E.

    2014-04-01

    The Sodium-cooled fast neutron reactor ASTRID is currently under design and development in France. Traditional ECCO/ERANOS fast reactor code system used for ASTRID core design calculations relies on multi-group JEFF-3.1.1 data library. To gauge the use of ENDF/B-VII.0 and JEFF-3.1.1 nuclear data libraries in the fast reactor applications, two recent OECD/NEA computational benchmarks specified by Argonne National Laboratory were calculated. Using the continuous-energy TRIPOLI-4 Monte Carlo transport code, both ABR-1000 MWth MOX core and metallic (U-Pu) core were investigated. Under two different fast neutron spectra and two data libraries, ENDF/B-VII.0 and JEFF-3.1.1, reactivity impact studies were performed. Using JEFF-3.1.1 library under the BOEC (Beginning of equilibrium cycle) condition, high reactivity effects of 808 ± 17 pcm and 1208 ± 17 pcm were observed for ABR-1000 MOX core and metallic core respectively. To analyze the causes of these differences in reactivity, several TRIPOLI-4 runs using mixed data libraries feature allow us to identify the nuclides and the nuclear data accounting for the major part of the observed reactivity discrepancies.

  20. Microbiological studies of an anaerobic baffled reactor: microbial community characterisation and deactivation of health-related indicator bacteria.

    Science.gov (United States)

    Lalbahadur, T; Pillay, S; Rodda, N; Smith, M; Buckley, C; Holder, F; Bux, F; Foxon, K

    2005-01-01

    This WRC funded project has studied the appropriateness of the ABR (anaerobic baffled reactor) for on-site primary sanitation in low-income communities. A 3,000 L pilot reactor was located at the Kingsburgh wastewater treatment plant south of Durban, South Africa. Feed to the reactor was raw domestic wastewater containing a significant proportion of particulate organic matter. The compartments of the ABR were routinely monitored for pH, COD, and gas production, among other physical-chemical determinants. The microbial population in each compartment was analysed by fluorescent in situ hybridisation, using general oligonucleotide probes for eubacteria and archeae and a suite of 10 genera or family specific probes. Scanning electron microscopy was conducted on the sludge fraction of each compartment. Mixed fractions from each compartment were also analysed for health-related indicator bacteria (total coliforms and E. coli). Results indicated that methanogenesis was not occurring to the expected extent in the latter compartments, and that this was probably due to a hydraulic load limitation. This contrasted with earlier studies on industrial effluent, for which the organic load was exclusively in soluble form. Inactivation of health-related indicator bacteria was less than 1 log, indicating the need for an additional post-treatment of the effluent to protect community health. PMID:16104417

  1. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-09-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, especially NOX. The project involved operating gas reburning technology combined with low NO, burner technology (GR-LNB) on a coal-fired utility boiler. Low NOX burners are designed to create less NOX than conventional burners. However, the NO, control achieved is in the range of 30-60-40, and typically 50%. At the higher NO, reduction levels, CO emissions tend to be higher than acceptable standards. Gas Reburning (GR) is designed to reduce the level of NO. in the flue gas by staged fuel combustion. When combined, GR and LNBs work in harmony to both minimize NOX emissions and maintain an acceptable level of CO emissions. The demonstration was performed at Public Service Company of Colorado's (PSCO) Cherokee Unit 3, located in Denver, Colorado. This unit is a 172 MW. wall-fired boiler that uses Colorado bituminous, low-sulfur coal and had a pre GR-LNB baseline NOX emission of 0.73 lb/1 Oe Btu. The target for the project was a reduction of 70 percent in NOX emissions. Project sponsors included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation (EER). EER conducted a comprehensive test demonstration program over a wide range of boiler conditions. Over 4,000 hours of operation were achieved. Intensive measurements were taken to quantify the reductions in NOX emissions, the impact on boiler equipment and operability, and all factors influencing costs. The results showed that GR-LNB technology achieved excellent emission reductions. Although the performance of the low NOX burners (supplied by others) was somewhat less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 180A. The performance goal

  2. Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Ajay; Taylor, Robert

    2013-09-30

    This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a

  3. Unirradiated high temperature reactor fuel element head-end reprocessing tests

    International Nuclear Information System (INIS)

    For several years, the United States and the Federal Republic of Germany (FRG) have engaged in a successful cooperative program to develop high temperature gas-cooled reactor (HTGR) fuel cycle technology. Recent tests in reprocessing pilot plant facilities at General Atomic Company have demonstrated the feasibility of performing HTGR head-end unit operations for both spherical (German) and block-type (American) fuel elements in a single process line. Because of an unexpected high fines generation and elutriation rate, extended fluidized bed primary burning of FRG fuel material was impossible to accomplish with the burner system and operating procedures optimized for U.S. fuel burning. Operational modification, including startup with a carbon-poor bed and reduction of the fluidizing velocity, resulted in dramatic improvements in FRG fuel-burning behavior and allowed extended processing campaigns. Additional modifications to the fines recycle system and burner are recommended to optimize the system for processing of FRG fuels

  4. Central recirculation zone analysis in an unconfined tangential swirl burner with varying degrees of premixing

    Science.gov (United States)

    Valera-Medina, A.; Syred, N.; Kay, P.; Griffiths, A.

    2011-06-01

    Swirl-stabilised combustion is one of the most widely used techniques for flame stabilisation, uses ranging from gas turbine combustors to pulverised coal-fired power stations. In gas turbines, lean premixed systems are of especial importance, giving the ability to produce low NOx systems coupled with wide stability limits. The common element is the swirl burner, which depends on the generation of an aerodynamically formed central recirculation zone (CRZ) and which serves to recycle heat and active chemical species to the root of the flame as well as providing low-velocity regions where the flame speed can match the local flow velocity. Enhanced mixing in and around the CRZ is another beneficial feature. The structure of the CRZ and hence that of the associated flames, stabilisation and mixing processes have shown to be extremely complex, three-dimensional and time dependent. The characteristics of the CRZ depend very strongly on the level of swirl (swirl number), burner configuration, type of flow expansion, Reynolds number (i.e. flowrate) and equivalence ratio. Although numerical methods have had some success when compared to experimental results, the models still have difficulties at medium to high swirl levels, with complex geometries and varied equivalence ratios. This study thus focuses on experimental results obtained to characterise the CRZ formed under varied combustion conditions with different geometries and some variation of swirl number in a generic swirl burner. CRZ behaviour has similarities to the equivalent isothermal state, but is strongly dependent on equivalence ratio, with interesting effects occurring with a high-velocity fuel injector. Partial premixing and combustion cause more substantive changes to the CRZ than pure diffusive combustion.

  5. Low NOx burners--prediction of emissions concentration based on design, measurements and modelling.

    Science.gov (United States)

    Bebar, Ladislav; Kermes, Vit; Stehlik, Petr; Canek, Josef; Oral, Jaroslav

    2002-01-01

    This paper describes possible ways of prediction of nitrogen oxides formation during combustion of hydrocarbon fuels. Mathematical model based on experimental data acquired from the testing facility has been developed. The model enables to predict--at a high probability measure--the extent of nitrogen oxides emissions. The mathematical model of nitrogen oxide formation relies on the application of simplified kinetic equations describing the formation of nitrogen oxides at so-called equivalent temperature. It is a semi-empirical model that comes out of experimental knowledge. An important role played by the burner design itself has been emphasized and therefore an important supplementary parameter of the model is the characteristic of the burner design. It has been established that there was a good agreement between experimental data and those calculated by the application of the model to various conditions marked out by different combustion parameters in the combustion chamber. The results obtained by application of the model respect the influence of parameters validated by industrial practice that control the formation of nitrogen oxides in the course of fuel combustion. Such parameters-first of all-tare the temperature in the combustion chamber and the concentration of the substances taking part in the reaction. By application of the model, it is possible to assess the consequence of, for example the surplus of combustion air, the increase of temperature of combustion air, the supply of inert gas, etc. on the nitrogen oxides emissions of the operating burner under evaluation. Efficient combining of experience and sophisticated approach together with importance of thus access for an improved design are shown. PMID:12099503

  6. Structures and stabilization of low calorific value gas turbulent partially premixed flames in a conical burner

    Energy Technology Data Exchange (ETDEWEB)

    Yan, B.; Liu, C. [Faculty of Environmental Science and Engineering, Tianjin University, 300072 Tianjin (China); Division of Fluid Mechanics, Lund University, 221 00 Lund (Sweden); Li, B.; Sun, Z.W.; Li, Z.S.; Alden, M. [Division of Combustion Physics, Lund University, 221 00 Lund (Sweden); Baudoin, E.; Bai, X.S. [Division of Fluid Mechanics, Lund University, 221 00 Lund (Sweden); Chen, G. [Faculty of Environmental Science and Engineering, Tianjin University, 300072 Tianjin (China); Mansour, M.S. [Cairo University, Natl Inst Laser Enhanced Sci., Cairo (Egypt)

    2010-04-15

    Experiments are carried out on partially premixed turbulent flames stabilized in a conical burner. The investigated gaseous fuels are methane, methane diluted with nitrogen, and mixtures of CH{sub 4}, CO, CO{sub 2}, H{sub 2} and N{sub 2}, simulating typical products from gasification of biomass, and co-firing of gasification gas with methane. The fuel and air are partially premixed in concentric tubes. Flame stabilization behavior is investigated and significantly different stabilization characteristics are observed in flames with and without the cone. Planar laser induced fluorescence (LIF) imaging of a fuel-tracer species, acetone, and OH radicals is carried out to characterize the flame structures. Large eddy simulations of the conical flames are carried out to gain further understanding of the flame/flow interaction in the cone. The data show that the flames with the cone are more stable than those without the cone. Without the cone (i.e. jet burner) the critical jet velocities for blowoff and liftoff of biomass derived gases are higher than that for methane/nitrogen mixture with the same heating values, indicating the enhanced flame stabilization by hydrogen in the mixture. With the cone the stability of flames is not sensitive to the compositions of the fuels, owing to the different flame stabilization mechanism in the conical flames than that in the jet flames. From the PLIF images it is shown that in the conical burner, the flame is stabilized by the cone at nearly the same position for different fuels. From large eddy simulations, the flames are shown to be controlled by the recirculation flows inside cone, which depends on the cone angle, but less sensitive to the fuel compositions and flow speed. The flames tend to be hold in the recirculation zones even at very high flow speed. Flame blowoff occurs when significant local extinction in the main body of the flame appears at high turbulence intensities. (author)

  7. Evaluation of Sodium Void Effect in the Kalimer-600 TRU Burner

    International Nuclear Information System (INIS)

    Outline of this study: • To evaluate the coolant void effect in the KALIMER-600 TRU burner: - Effects of varying sodium content & voiding location; - Self-shielding change & fuel temperature feedback; - Effects of fission products buildup & control rods position; - Differences in applying calculation models & methods. • Analysis tools: - DIF3D (ANL): three-dimensional multi-group diffusion code; - PERT-K (KAERI): DIF3D-based perturbation code; - TRANSX & DANTSYS to prepare the neutron cross-sections. ◆ To reveal details on responsive core reactivity behaviors upon various coolant voiding accident scenarios aimed at improving the passive safety characteristics of the core in the standard design phase (2012-2017)

  8. COAL PARTICLE FLOW PATTERNS FOR O2 ENRICHED, LOW NOx BURNERS; F

    International Nuclear Information System (INIS)

    Over the past year, the hot flow studies have focused on the validation of a novel 2M near-flame combustion furnace. The 2M furnace was specifically designed to investigate burner aerodynamics and flame stability phenomena. Key accomplishments include completion of coal and oxygen mass balance calculations and derivation of emission conversion equations, upgrade of furnace equipment and flame safety systems, shakedown testing and partial completion of a parametric flame stability study. These activities are described in detail below along with a description of the 2M furnace and support systems

  9. Optimization of a premixed low-swirl burner for industrial applications

    OpenAIRE

    Fable, S.E.; Cheng, R. K.

    2000-01-01

    This study was motivated by recent tests results showing that a 5cm i.d. low-swirl burner (LSB) stabilizes ultra-lean premixed turbulent flames up to 600kW. A parametric study has been performed to determine the optimum ultra-lean LSB configuration, i.e. one that will achieve low NOx and flame stability, for thermal input between 15kW to 150kW. Using Laser Doppler Velocimetry (LDV), non-reacting centerline velocity and rms fluctuation profiles were measured, and were found to show self-...

  10. Numerical Study of NOx and Flame Shape of a DLE Burner

    OpenAIRE

    Hamedi, Naser

    2012-01-01

    For natural gas combustion, there is a large amount of experience in the gas turbine industry. However, much of the design work is based on costly combustion tests due to insufficient accuracy of existing prediction tools for data such as emissions and effects due to fuel composition. In the present work, Computational Fluid Dynamics (CFD) approach is used to study partially premixed combustion in the 3rd generation DLE (Dry Low Emission) burner that is used in SGT-700 and SGT-800 gas turbine...

  11. A small scale solar agricultural dryer with biomass burner and heat storage back-up heater

    Energy Technology Data Exchange (ETDEWEB)

    Tarigan, Elieser [Univ. Surabaya (UBAYA) Jl. Raya Kalirungkut, Surabaya (Indonesia); Tekasakul, Perapong [Prince of Songkla Univ., Hat Yai, Songkhla (Thailand)

    2008-07-01

    This paper describes a small scale solar agricultural dryer with a simple biomass burner and heat storage back-up heater. The key design features of the dryer are the combination of direct and indirect type solar dryer, the jacket and gap enclosing the drying chamber as a hot gas passage, and the arrangement of the real bricks in the heat storage system. The overall thermal efficiency of the dryer, tested for drying of some different agricultural products, was found to be in the range of 3% - 13%. The overall thermal efficiency of the biomass back-up heater was found to be about 20%. (orig.)

  12. The Study of Numerical Simulation of Oxygen-‎enriched Burner System

    OpenAIRE

    Yuesheng Fan; Pengfei Si

    2010-01-01

    In order to reduce overall fuel consumption, or partially substitute a “valuable” fuel with a ‎poor one, in electric power plant boilers, oxygen enrichment of combustion air can be very ‎effective. The paper proposes an oxygen-enriched ignition system which based on the ‎existing pulverized coal fired boiler ignition devices. Small coal particle is suitable for this ‎system. The new burner includes inside, outside and middle casings. And it transfer heat in ‎two ways of downstream and upstrea...

  13. Premixing hydrogen burners for surface refinement of glass; Vormischende Wasserstoffbrenner zur Oberflaechenbearbeitung von Glas

    Energy Technology Data Exchange (ETDEWEB)

    Goerisch, Matthias [Linde AG, Linde Gas Deutschland, Nuernberg (Germany)

    2013-02-15

    As a result, inter alia, of unceasing globalisation, European glass producers in practically all sectors - flat glass, container glass, crystal glass and special glasses - are faced with ever tougher competition from Asia. In the 2012 to 2015 period and beyond, the principal focuses in the manufacture of glass products will again be on reducing overall production costs and increasing process efficiency wherever possible, on greater productivity and on enhanced product (surface) quality. To meet these challenges in the field of surface refinement and flame polishing of glass products as efficiently as possible, Linde AG/Linde Gases Division has developed premixing Hydropox {sup registered} burner technology for hydrogen/oxygen fuels. (orig.)

  14. Interim design status and operational report for remote handling fixtures: primary and secondary burners

    International Nuclear Information System (INIS)

    The HTGR reprocessing flowsheet consists of two basic process elements: (1) spent fuel crushing and burning and (2) solvent extraction. Fundamental to these elements is the design and development of specialized process equipment and support facilities. A major consideration of this design and development program is equipment maintenance: specifically, the design and demonstration of selected remote maintenance capabilities and the integration of these into process equipment design. This report documents the current status of the development of remote handling and maintenance fixtures for the primary and secondary burners

  15. Computational Fluid Dynamics Based Investigation of Sensitivity of Furnace Operational Conditions to Burner Flow Controls

    Energy Technology Data Exchange (ETDEWEB)

    Marc Cremer; Kirsi St. Marie; Dave Wang

    2003-04-30

    This is the first Semiannual Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project is to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. Our approach is to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner flow controls. The Electric Power Research Institute (EPRI) is providing co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center are active participants in this project. This program contains multiple tasks and good progress is being made on all fronts. A project kickoff meeting was held in conjunction with NETL's 2002 Sensors and Control Program Portfolio Review and Roadmapping Workshop, in Pittsburgh, PA during October 15-16, 2002. Dr. Marc Cremer, REI, and Dr. Paul Wolff, EPRI I&C, both attended and met with the project COR, Susan Maley. Following the review of REI's database of wall-fired coal units, the project team selected a front wall fired 150 MW unit with a Riley Low NOx firing system including overfire air for evaluation. In addition, a test matrix outlining approximately 25 simulations involving variations in burner secondary air flows, and coal and primary air flows was constructed. During the reporting period, twenty-two simulations have been completed, summarized, and tabulated for sensitivity analysis. Based on these results, the team is developing a suitable approach for quantifying the sensitivity coefficients associated with the parametric tests. Some of the results of the CFD

  16. Preliminary design and analysis on nuclear fuel cycle for fission-fusion hybrid spent fuel burner

    International Nuclear Information System (INIS)

    A wet-processing-based fuel cycle and a dry-processing were designed for a fission-fusion hybrid spent fuel burner (FDS-SFB). Mass flow of SFB was preliminarily analyzed. The feasibility analysis of initial loaded fuel inventory, recycle fuel fabrication and spent fuel reprocessing were preliminarily evaluated. The results of mass flow of FDS-SFB demonstrated that the initial loaded fuel inventory, recycle fuel fabrication and spent fuel reprocessing of nuclear fuel cycle of FDS-SFB is preliminarily feasible. (authors)

  17. A higher-order projection method for the simulation of unsteady turbulent nonpremixed combustion in an industrial burner

    Energy Technology Data Exchange (ETDEWEB)

    Pember, R.B.; Almgren, A.S.; Bell, J.B.; Colella, P.; Howell, L.; Lai, M.

    1994-12-01

    The modeling of transient effects in burners is becoming increasingly important. The problem of ensuring the safe performance of an industrial burner, for example, is much more difficult during the startup or shutdown phases of operation. The peak formation of pollutants is also much more dependent on transient behavior, in particular, on peak temperatures, than on average operating conditions. In this paper we present a new methodology for the modeling of unsteady, nonpremixed, reacting flow in industrial burners. The algorithm uses a second-order projection method for unsteady, low-Mach number reacting flow and accounts for species diffusion, convective and radiative heat transfer, viscous transport, turbulence, and chemical kinetics. The time step used by the method is restricted solely by an advective CFL condition. The methodology is applicable only in the low-Mach number regime (M < .3), typically met in industrial burners. The projection method for low-Mach number reacting flow is an extension of a higher-order projection method for incompressible flow [9, 5, 3,4] to the low-Mach number equations of reacting flow. Our method is based on an approximate projection formulation. Radiative transport is modeled using the discrete ordinates method. The main goal of this work is to introduce and investigate the simulation of burners using a higher-order projection method for low-Mach number combustion. As such, the methodology is applied here only to axisymmetric flow in gas-fired burners for which the boundaries can be aligned with a rectangular grid. The perfect gas law is also assumed. In addition, we use a one-step reduced kinetics mechanism, a {kappa} {minus} {epsilon} model for turbulent transport, and a simple turbulent combustion model.

  18. Design process and instrumentation of a low NOx wire-mesh duct burner for micro-cogeneration unit

    Energy Technology Data Exchange (ETDEWEB)

    Ramadan, O.B.; Gauthier, J.E.D. [Carleton Univ., Ottawa, ON (Canada). Dept. of Mechanical and Aerospace Engineering; Hughes, P.M.; Brandon, R. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2007-07-01

    Air pollution and global climate change have become a serious environmental problem leading to increasingly stringent government regulations worldwide. New designs and methods for improving combustion systems to minimize the production of toxic emissions, like nitrogen oxides (NOx) are therefore needed. In order to control smog, acid rain, ozone depletion, and greenhouse-effect warming, a reduction of nitrogen oxide is necessary. One alternative for combined electrical power and heat generation (CHP) are micro-cogeneration units which use a micro-turbine as a prime mover. However, to increase the efficiencies of these units, micro-cogeneration technology still needs to be developed further. This paper described the design process, building, and testing of a new low NOx wire-mesh duct burner (WMDB) for the development of a more efficient micro-cogeneration unit. The primary goal of the study was to develop a practical and simple WMDB, which produces low emissions by using lean-premixed surface combustion concept and its objectives were separated into four phases which were described in this paper. Phase I involved the design and construction of the burner. Phase II involved a qualitative flow visualization study for the duct burner premixer to assist the new design of the burner by introducing an efficient premixer that could be used in this new application. Phase III of this research program involved non-reacting flow modeling on the burner premixer flow field using a commercial computational fluid dynamic model. In phase IV, the reacting flow experimental investigation was performed. It was concluded that the burner successfully increased the quantity and the quality of the heat released from the micro-CHP unit and carbon monoxide emissions of less than 9 ppm were reached. 3 refs., 3 figs.

  19. Fast reactor technology development in china status and prospects

    International Nuclear Information System (INIS)

    China has decided to speed-up the nuclear power development. It is programmed that the nuclear power capacity will reach 40 GWe in 2020 and envisaged 60 GWe and 240 GWe in 2030 and 2050 respectively. The basic strategy of PWR-FBR matched development with Fast reactor metal fuel closed cycle for a sustainable and quick increasing nuclear energy supply is adopted. Another strategy also decided is that the partitioning and transmutation of MA will be realized using fast burner and ADS. The fast reactor engineering development will be divided into three steps: China Experimental Fast Reactor (CEFR 65 MWt/20 MWe), 3China Prototype/Demonstration Fast Reactor (CPFR/CDFR ≥1 500 MWt/600 MWe) and China Demonstration Fast Breeder Reactor (CDFBR 1 000-1 500 MWe). The CEFR is under installation and pre-operation testing with it's first criticality planned in 2009. The design study of CPFR is just started in 2006. Recently a discussion for the second step is under way to faster the fast reactor development by a larger than 600 MWe CPFR and as a role of CDFR. (authors)

  20. Compact Reactor

    International Nuclear Information System (INIS)

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date

  1. Application of a Central Composite Design for the Study of NOx Emission Performance of a Low NOx Burner

    OpenAIRE

    Marcin Dutka; Mario Ditaranto; Terese Løvås

    2015-01-01

    In this study, the influence of various factors on nitrogen oxides (NOx) emissions of a low NOx burner is investigated using a central composite design (CCD) approach to an experimental matrix in order to show the applicability of design of experiments methodology to the combustion field. Four factors have been analyzed in terms of their impact on NOx formation: hydrogen fraction in the fuel (0%–15% mass fraction in hydrogen-enriched methane), amount of excess air (5%–30%), burner head posit...

  2. Application of a Central Composite Design for the Study of NO x Emission Performance of a Low NO x Burner

    OpenAIRE

    Marcin Dutka; Mario Ditaranto; Terese Løvås

    2015-01-01

    In this study, the influence of various factors on nitrogen oxides (NO x ) emissions of a low NO x burner is investigated using a central composite design (CCD) approach to an experimental matrix in order to show the applicability of design of experiments methodology to the combustion field. Four factors have been analyzed in terms of their impact on NO x formation: hydrogen fraction in the fuel (0%–15% mass fraction in hydrogen-enriched methane), amount of excess air (5%–30%), burner hea...

  3. A review of fast reactor activities in Italy

    International Nuclear Information System (INIS)

    In this paper, Italian activities on liquid metal fast reactors are shown for the period May 1995 - April 1996. During this period the ENEA collaboration with General Electric on ALMR came to an end as a consequence of the reduced effort on the design development. Nevertheless ENEA completed the studies on the PRISM Mod B oxide burner core, the neutronic configuration of which was presented at last year's meeting. Some results of the dynamic calculations are shown. ENEA participated in the IAEA/EC benchmark on the comparative calculations for severe accident in BN-800 reactor. A complete neutronic evaluation has been made including power distribution, Doppler, sodium void and material coefficients. Activities on seismic isolation are also outlined. The Italian contribution to SPX restart and operation is described; some information about the complementary convention of the Nersa society is given, together with the Italian industry participation in the SPX restart. (author)

  4. Metal fire implications for advanced reactors. Part 1, literature review

    International Nuclear Information System (INIS)

    Public safety and acceptance is extremely important for the nuclear power renaissance to get started. The Advanced Burner Reactor and other potential designs utilize liquid sodium as a primary coolant which provides distinct challenges to the nuclear power industry. Fire is a dominant contributor to total nuclear plant risk events for current generation nuclear power plants. Utilizing past experience to develop suitable safety systems and procedures will minimize the chance of sodium leaks and the associated consequences in the next generation. An advanced understanding of metal fire behavior in regards to the new designs will benefit both science and industry. This report presents an extensive literature review that captures past experiences, new advanced reactor designs, and the current state-of-knowledge related to liquid sodium combustion behavior

  5. Metal fire implications for advanced reactors. Part 1, literature review.

    Energy Technology Data Exchange (ETDEWEB)

    Nowlen, Steven Patrick; Radel, Ross F.; Hewson, John C.; Olivier, Tara Jean; Blanchat, Thomas K.

    2007-10-01

    Public safety and acceptance is extremely important for the nuclear power renaissance to get started. The Advanced Burner Reactor and other potential designs utilize liquid sodium as a primary coolant which provides distinct challenges to the nuclear power industry. Fire is a dominant contributor to total nuclear plant risk events for current generation nuclear power plants. Utilizing past experience to develop suitable safety systems and procedures will minimize the chance of sodium leaks and the associated consequences in the next generation. An advanced understanding of metal fire behavior in regards to the new designs will benefit both science and industry. This report presents an extensive literature review that captures past experiences, new advanced reactor designs, and the current state-of-knowledge related to liquid sodium combustion behavior.

  6. Investigations of coal ignition in a short-range flame burner using optical measuring systems; Untersuchungen zur Kohlezuendung am Flachflammenbrenner unter Verwendung optischer Messtechnik

    Energy Technology Data Exchange (ETDEWEB)

    Hackert, G.; Kremer, H.; Wirtz, S. [Bochum Univ. (Germany). Lehrstuhl fuer Energieanlagentechnik

    1999-09-01

    The short-range flame burner and the KOALA reactor of DMT are experimental facilities for realistic simulation of coal conversion processes at high temperatures and pressures in atmospheric conditions. The TOSCA system enable measurements of temperatures, sizes, shapes and velocities of the fuel particles, which serve as a basis for a three-dimensional simulation model of coal combustion. In the future, further parameter studies will deepen the present knowledge of coal dust combustion under pressure and enable optimisation of the numerical models for simulation of industrial-scale systems for coal dust combustion under pressure. [Deutsch] Mit dem Flachflammenbrenner und dem KOALA-Reaktor der DMT stehen Versuchsapparaturen zur Verfuegung, mit deren Hilfe die Kohleumwandlungsprozesse bei hohen Temperaturen unter Druck und unter atmosphaerischen Bedingungen realistisch wiedergegeben werden. Das TOSCA-System erlaubt dabei die Bestimmung von Temperaturen, Groessen, Formen und Geschwindigkeiten der Brennstoffpartikel. Diese Daten liefern die Grundlage fuer die Erstellung eines dreidimensionalen Simulationsmodells zur Modellierung der Kohleverbrennung. In Zukunft werden weitere Parameterstudien das Verstaendnis der Kohlenstaubdruckverbrennung vertiefen und ein Optimierung der numerischen Modelle ermoeglichen, so dass die Simulation grosstechnischer Kohlenstaubdruckverbrennungsanlagen realisiert werden kann. (orig.)

  7. Ankles back in randomized controlled trial (ABrCt: braces versus neuromuscular exercises for the secondary prevention of ankle sprains. Design of a randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Verhagen Evert ALM

    2011-09-01

    Full Text Available Abstract Background Ankle sprains are the most common sports and physical activity related injury. There is extensive evidence that there is a twofold increased risk for injury recurrence for at least one year post injury. In up to 50% of all cases recurrences result in disability and lead to chronic pain or instability, requiring prolonged medical care. Therefore ankle sprain recurrence prevention in athletes is essential. This RCT evaluates the effect of the combined use of braces and neuromuscular training (e.g. proprioceptive training/sensorimotor training/balance training against the individual use of either braces or neuromuscular training alone on ankle sprain recurrences, when applied to individual athletes after usual care. Methods/Design This study was designed as three way randomized controlled trial with one year follow-up. Healthy individuals between 12 and 70 years of age, who were actively participating in sports and who had sustained a lateral ankle sprain in the two months prior to inclusion, were eligible for inclusion. After subjects had finished ankle sprain treatment by means of usual care, they were randomised to any of the three study groups. Subjects in group 1 received an eight week neuromuscular training program, subjects in group 2 received a sports brace to be worn during all sports activities for the duration of one year, and group 3 received a combination of the neuromuscular training program and a sports brace to be worn during all sports activities for the duration of eight weeks. Outcomes were assessed at baseline and every month for 12 months therafter. The primary outcome measure was incidence of ankle sprain recurrences. Secondary outcome measures included the direct and indirect costs of recurrent injury, the severity of recurrent injury, and the residual complaints during and after the intervention. Discussion The ABrCt is the first randomized controlled trial to directly compare the secondary preventive

  8. Clinical significance of ABR results in unilateral tinnitus with normal hearing%听力正常单侧耳鸣的双侧ABR结果比较及临床意义

    Institute of Scientific and Technical Information of China (English)

    杨海弟; 彭解人; 区永康; 黄夏茵

    2012-01-01

    目的 听力正常单侧耳鸣患者的双侧听性脑干反应(ABR)的结果比较及临床意义进行探讨,阐明听力正常耳鸣的可能发病机制.方法 对20例听力正常的单侧耳鸣患者,常规进行耳专科检查及声导抗检查,排除外中耳病变.分别记录双侧纯音测听、耳声发射(DPOAE)及ABR,将耳鸣侧与非耳鸣侧的ABR结果进行对比分析.结果 耳鸣侧与非耳鸣侧在纯音听阈、声导抗、DPOAE及ABR阈值上均表现正常,无统计学差异,但耳鸣侧ABR的I波幅度0.19uV,V波幅度0.24uV,V/I比值为1.31;非耳鸣侧ABR的I波幅度0.14uV,V波幅度0.26uV,V/I比值为2.19.结论 虽然单侧耳鸣患者耳鸣侧未发现听阈提高,但其V/I比值明显较非耳鸣侧下降(V/I比值为1.31vs2.19),提示在中脑传入信号减少,在听觉中枢维持内环境神经平衡的机制作用下导致听觉皮层神经元兴奋性增强,可能是耳鸣产生的原因之一.%Objective Comparison the bilateral auditory brainstem response ( ABR ) results of unilateral tinnitus patients with normal hearing and analysis clinical significance,discussed the possible mechanism of tinnitus with normal hearing. Methods 20 cases of unilateral tinnitus patients with normal hearing were documented bilateral audiometry, otoacoustic emission ( DPOAE ) and ABR, comparative analysis the ABR results of the side with the tinnitus and non-tinnitus side.Results The pure tone audiometry, DPOAE and ABR threshold showed normal, no statistical difference, but the tinnitus side I wave amplitude is 0.19uV,V wave amplitude is 0.24uV, V/I ratio is 1.31; but the non-tinnitus side I wave amplitude is 0.14uV, V wave amplitude is 0.26uV,V/I ratio is 2.19. Conclusion Although unilateral tinnitus patients with tinnitus side did not found threshold increase, but the V/I ratio was significantly decreased than the non-tinnitus side (V/I is 1.31vs 2.19), prompting in the midbrain afferent signal is reduced, in the central auditory system of

  9. Design Study on the Advanced Recycling Reactor

    International Nuclear Information System (INIS)

    The design study on the Advanced Recycling Reactor (ARR) has been conducted. This paper presents the pre-conceptual design of the ARR that is a loop-typed sodium cooled reactor with MOX fuel. International Nuclear Recycling Alliance (INRA) takes advantage of international experience and uses the design based on Japan Sodium-cooled Fast Reactor (JSFR) as reference for FOA studies of DOE in the U.S., because Japan has conducted R and Ds for the JSFR incorporating thirteen technology enhancements expected to improve safety, enhance economics, and increase reactor reliability. ARR's goal is to generate electricity while consuming fuel containing transuranics and to be cost-competitive with LWRs of similar size. INRA proposes 3 evolutions of the ARR; ARR1, a 500 MWe demonstration plant, online in 2025; ARR2, a 1,000 MWe commercial plant, online in 2035; ARR3, a 1,500 MWe full-scale commercial plant, online in 2050. INRA believes the scale-up factor of two is acceptable increase from manufacturing and licensing points of view. Major features of the ARR1 are the following: The reactor core of 70 cm high is working for a burner of TRU. The conversion ratio of fissile is set up less than 0.6 and the amount of burned TRU is 45-51 kg/TWeh. Decay heat can be removed by natural circulation to improve safety. The primary cooling system consists of two-loop arrangement and the integrated IHX/Pump to improve economics. The steam generator with the straight doublewalled tube is used to improve reliability. The capital cost, the construction schedule and regulatory and licensing schedule are estimated. Furthermore, the technology readiness level and the technology development roadmap are studied and identified to be ready for commercial deployment. (author)

  10. NEUTRONIC REACTOR

    Science.gov (United States)

    Anderson, H.L.

    1960-09-20

    A nuclear reactor is described comprising fissionable material dispersed in graphite blocks, helium filling the voids of the blocks and the spaces therebetween, and means other than the helium in thermal conductive contact with the graphite for removing heat.

  11. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  12. Nuclear reactors

    International Nuclear Information System (INIS)

    This draft chart contains graphical symbols from which the type of (nuclear) reactor can be seen. They will serve as illustrations for graphical sketches. Important features of the individual reactor types are marked out graphically. The user can combine these symbols to characterize a specific reactor type. The basic graphical symbol is a square with a point in the centre. Functional groups can be depicted for closer specification. If two functional groups are not clearly separated, this is symbolized by a dotted line or a channel. Supply and discharge lines for coolant, moderator and fuel are specified in accordance with DIN 2481 and can be further specified by additional symbols if necessary. The examples in the paper show several different reactor types. (orig./AK)

  13. Innovative reactor technologies - Enabling success

    International Nuclear Information System (INIS)

    development costs for modular components. 3.2. Low Development Risk. By moving toward the SCWR in a series of steps, the innovations in each step represent a modest technology risk that can be assessed through testing and demonstration and then performance in first units. 3.3. Scope and Flexibility of Development Potential. The heavy water moderator fuel-channel reactor family has a relatively broad and extensive scope for development. Earlier development has refined and improved the familiar natural-uranium fuelled CANDU line. ACR represents the first optimization of the CANDU concept to take advantage of slightly enriched fuel. The result is a significant opportunity for further development. The fuel channel concept has characteristics naturally suited to fuel cycle flexibility, as noted above. 3.4. Synergies With Other Technologies. As a fuel-efficient burner technology, heavy-water moderated fuel channel reactors represent a good complement to breeder technologies as they are developed. (author)

  14. Performance Evaluation of Palm Oil-Based Biodiesel Combustion in an Oil Burner

    Directory of Open Access Journals (Sweden)

    Abdolsaeid Ganjehkaviri

    2016-02-01

    Full Text Available This paper presents an experimental investigation of the combustion characteristics of palm methyl ester (PME, also known as palm oil-based biodiesel, in an oil burner system. The performance of conventional diesel fuel (CDF and various percentages of diesel blended with palm oil-based biodiesel is also studied to evaluate their performance. The performance of the various fuels is evaluated based on the temperature profile of the combustor’s wall and emissions, such as nitrogen oxides (NOx and carbon monoxide (CO. The combustion experiments were conducted using three different oil burner nozzles (1.25, 1.50 and 1.75 USgal/h under lean (equivalence ratio (Φ = 0.8, stoichiometric (Φ = 1 and rich fuel (Φ = 1.2 ratio conditions. The results show that the rate of emission formation decreases as the volume percent of palm biodiesel in a blend increases. PME combustion tests present a lower temperature inside the chamber compared to CDF combustion. High rates of NOx formation occur under lean mixture conditions with the presence of high nitrogen and sufficient temperature, whereas high CO occurs for rich mixtures with low oxygen presence.

  15. Optimization of a premixed low-swirl burner for industrial applications

    International Nuclear Information System (INIS)

    This study was motivated by recent tests results showing that a 5cm i.d. low-swirl burner (LSB) stabilizes ultra-lean premixed turbulent flames up to 600kW. A parametric study has been performed to determine the optimum ultra-lean LSB configuration, i.e. one that will achieve low NOx and flame stability, for thermal input between 15kW to 150kW. Using Laser Doppler Velocimetry (LDV), non-reacting centerline velocity and rms fluctuation profiles were measured, and were found to show self-similar behavior. This self-similarity may explain why the flame remains stationary relative to the burner exit despite a change in bulk flow velocity from 5 to 90m/s. The recess distance of the swirler affects the shape of the mean and rms velocity profiles. Lean blow-off limits were also determined for various recess distances, and an optimum exit length was found that provides stable operation for ultra-lean flames

  16. Advancement of Cellular Ceramics Made of Silicon Carbide for Burner Applications

    International Nuclear Information System (INIS)

    Lower emissions of CO and NOx as well as a higher power density were observed in combustion processes performed in porous media like ceramic foams. Only a few materials are applicable for porous burners. Open-celled ceramic foams made of silicon carbide are of particular interest because of their outstanding properties. Two different SiC materials have been investigated, silicon-infiltrated silicon carbide (SiSiC) and pressureless sintered silicon carbide (SSiC). The oxidation behaviour of both has been characterized by furnace oxidation and burner tests up to 500 h operating time. Up to a temperature of 1200 deg. C SiSiC exhibited a good oxidation resistance in combustion gases by forming a protective layer of silica. High inner porosity up to 30% in the ceramic struts was found in the SSiC material. Caused by inner oxidation processes the pure material SSiC allows only short time applications with a temperature limit of 1550 deg. C in combustion gases. An increase of the lifetime of the SSiC foams was obtained by development of a new SSiC with an inner porosity of less than 12%. The result was a considerable reduction of the inner oxidation processes in the SSiC struts.

  17. The oil pore burner for household furnaces; Der Oelporenbrenner fuer die Haushaltsfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Heidermann, T.; Keppler, M.; Rutsche, A.; Hatzfeld, O.; Koehne, H.; Lucka, K.; Rudolphi, R.; Trimis, D.; Durst, F.

    1999-07-01

    While heating of modern buildings requires less and less energy, sufficient heat is still required for water heating. There is a trend towards compact, low-emission and high-efficiency systems. The oil pore burner developed at LSTM Erlangen is a promising technology, which combines the cold flame evaporation concept of EST of RWTH Aachen with the pore burner technology. The result is a modern system for high-modulating, low-emission and low-noise combustion of heating oil with exhaust condensation. A 10% improvement in furnace efficiency is achieved. [German] Waehrend der Raumwaermebedarf moderner Wohneinheiten stetig sinkt, erfordert die Warmwasserbereitung nach wie vor die Bereitstellung ausreichend grosser Waermeleistungen. Aus diesem Grund geht der Trend bei modernen Oelfeuerungsanlagen im Haushaltsbereich in zu kompakten, emissionsarmen Einheiten mit Brennwertnutzung. Einen Druchbruch verspricht der Oelporenbrenner. Der Porenbrennertechnik wurde am LSTM Erlangen entwickelt. Der Oelporenbrenner vereinigt das am EST der RWTH Aachen entwickelte Verdampfungskonzept unter Nutzung der Kalten Flammen mit der Porenbrennertechnik zu einem neuartigen Heizgeraetekonzept, das die hochmodulierbare, schadstoff- und geraeuscharme Verbrennung von Heizoel mit Brennwertnutzung ermoeglicht. Dadurch wird eine Verbesserung des Feuerungwirkungsgrades bis zu 10% erreicht. (orig.)

  18. Feasibility investigation and combustion enhancement of a new burner functioning with pulverized solid olive waste

    Directory of Open Access Journals (Sweden)

    Bounaouara H., Sautet J.C., Ben Ticha H., Mhimid A.

    2014-01-01

    Full Text Available This article describes an experimental study on solid olive residue (olive cake combustion in form of pulverized jet. This is a contribution to the valorization of olive residue as a source of renewable energy available in the majority of mediterranean countries. A sample of olive cake from Tunisian origin is prepared for the experiment; this sample is crushed, dried and sifted in order to obtain the desired particles form. A new burner made up of a coaxial cylindrical tube is especially designed and fabricated. In order to start the combustion of olive cake and maintain the main flame, two types of pilot flame were used: a central premixed flame of methane/oxygen and an annular diffusion flame of methane. This paper shows the conditions for an efficient olive cake burner operation in free air. The effects of particle size and pilot flame position have been discussed. The olive cake combustion is possible only with particles at a size below 200 μm. Moreover, the combustion maintained by the annular pilot flame ensures better burning conditions than the central pilot flame. Finally, the inserted preheating system has improved the olive cake combustion.

  19. Behaviors of tribrachial edge flames and their interactions in a triple-port burner

    KAUST Repository

    Yamamoto, Kazuhiro

    2015-05-01

    In a triple-port burner, various non-premixed flames have been observed previously. Especially for the case with two lifted flames, such configuration could be suitable in studying interaction between two tribrachial flames. In the present study, the flame characteristics have been investigated numerically by adopting a reduced kinetic mechanism in the triple-port burner. Four different types of flame configurations, including two attached flames, inner lifted/outer attached flames, inner attached/outer lifted flames, and twin lifted flames, were successfully simulated depending on the flow conditions. The representative edge propagation speed of a single lifted flame or an upstream lifted flame in the case of twin lifted flames increased as the liftoff height became higher. In the twin lifted flames, the inner lifted flame was affected appreciably when the other flame was located further upstream such that the lifted flame located further downstream encountered the axial velocity acceleration induced by the gas expansion from the lifted flame located upstream, while thermal effects were not observed since the temperature of the incoming flow toward the lifted flame was not affected. A unique flip-flop behavior between the inner and outer flames, observed experimentally previously, was successfully captured in the simulation such that the inner lifted flame became attached to the nozzle as the liftoff height of the outer lifted flame grew higher with an increase in the outer air velocity.

  20. Large Eddy Simulation of Flow Structures in the Sydney Swirl Burner

    DEFF Research Database (Denmark)

    Yang, Yang

    This thesis represents the research on swirling flow using large eddy simulation(LES). Three cases from the Sydney swirl burner database have been chosen as test cases; one medium swirl isothermal case N29S054, one high swirl isothermal case N16S159 and one medium swirl reacting case SM1. The the...... LES method strategy has limitations concerning wall bounded flows, especially for complex geometries typically found in industry. Multi‐phase flows need special treatment.......This thesis represents the research on swirling flow using large eddy simulation(LES). Three cases from the Sydney swirl burner database have been chosen as test cases; one medium swirl isothermal case N29S054, one high swirl isothermal case N16S159 and one medium swirl reacting case SM1. The...... theories of LES and the corresponding closure models have been well developed. This research focuses on statistical analysing flow field and characteristic features. Validation studies show good agreement in the isothermal cases, while for the reacting case, the LES predictions are less satisfactory. There...

  1. Modeling Population Exposures to Pollutants Emitted from Natural Gas Cooking Burners

    Energy Technology Data Exchange (ETDEWEB)

    Lobscheid, Agnes; Singer, Brett C.; Klepeis, Neil E.

    2011-06-01

    We developed a physics-based data-supported model to investigate indoor pollutant exposure distributions resulting from use of natural gas cooking appliances across households in California. The model was applied to calculate time-resolved indoor concentrations of CO, NO2 and formaldehyde resulting from cooking burners and entry with outdoor air. Exposure metrics include 1-week average concentrations and frequency of exceeding ambient air quality standards. We present model results for Southern California (SoCal) using two air-exchange scenarios in winter: (1) infiltration-only, and (2) air exchange rate (AER) sampled from lognormal distributions derived from measurements. In roughly 40percent of homes in the SoCal cohort (N=6634) the 1-hour USEPA NO2 standard (190 ?g/m3) was exceeded at least once. The frequency of exceeding this standard was largely independent of AER assumption, and related primarily to building volume, emission rate and amount of burner use. As expected, AER had a more substantial impact on one-week average concentrations.

  2. The Study of Numerical Simulation of Oxygen-‎enriched Burner System

    Directory of Open Access Journals (Sweden)

    Yuesheng Fan

    2010-12-01

    Full Text Available In order to reduce overall fuel consumption, or partially substitute a “valuable” fuel with a ‎poor one, in electric power plant boilers, oxygen enrichment of combustion air can be very ‎effective. The paper proposes an oxygen-enriched ignition system which based on the ‎existing pulverized coal fired boiler ignition devices. Small coal particle is suitable for this ‎system. The new burner includes inside, outside and middle casings. And it transfer heat in ‎two ways of downstream and upstream. The burner has authorized a patent in China. A ‎numerical simulation theory were used to analysis it. The results indicate that: it can ‎increase the maximum burning velocity ‎ ‎ and the average burning ‎velocity ‎, and decrease ignition temperature Ti and burnout temperature Tb of ‎pulverized coal. In addition, the pulverized coal fired boilers are easier to be ignited and the ‎comprehensive combustibility index S is improved. At the same time, it demonstrates that it ‎is an effective way to warm-up the pulverized coal in ignition of the boiler in the power ‎plant.‎

  3. A numerical investigation of the aerodynamics of a furnace with a movable block burner

    Directory of Open Access Journals (Sweden)

    T. J. Fudihara

    2007-06-01

    Full Text Available In this work the air flow in a furnace was computationally investigated. The furnace, for which experimental test data are available, is composed of a movable block burner connected to a cylindrical combustion chamber by a conical quarl. The apertures between the movable and the fixed blocks of the burner determine the ratio of the tangential to the radial air streams supplied to the furnace. Three different positions of the movable blocks were studied at this time. A three-dimensional investigation was performed by means of the finite volume method. The numerical grid was developed by the multiblock technique. The turbulence phenomenon was addressed by the RNG k-epsilon model. Profiles of the axial, tangential and radial velocities in the combustion chamber were outlined. The map of the predicted axial velocity in the combustion chamber was compared with a map of the experimental axial velocity. The internal space of the furnace was found to be partially filled with a reverse flow that extended around the longitudinal axis. A swirl number profile along the furnace length is presented and shows an unexpected increase in the swirl in the combustion chamber.

  4. Optimum feeding rate of solid hazardous waste in a cement kiln burner

    Directory of Open Access Journals (Sweden)

    W.K. Hiromi Ariyaratne, Morten C. Melaaen, Lars-André Tokheim

    2013-01-01

    Full Text Available Solid hazardous waste mixed with wood chips (SHW is a partly CO2 neutral fuel, and hence is a good candidate for substituting fossil fuels like pulverized coal in rotary kiln burners used in cement kiln systems. SHW is used in several cement plants, but the optimum substitution rate has apparently not yet been fully investigated. The present study aims to find the maximum possible replacement of coal by SHW, without negatively affecting the product quality, emissions and overall operation of the process. A full-scale experiment was carried out in the rotary kiln burner of a cement plant by varying the SHW substitution rate from 0 to 3 t/hr. Clinker quality, emissions and other relevant operational data from the experiment were analysed using fuel characteristics of coal and SHW. The results revealed that SHW could safely replace around 20% of the primary coal energy without giving negative effects. The limiting factor is the free lime content of the clinker. Results from the present study were also compared with results from a previous test using meat and bone meal.

  5. Multifunctional reactors

    OpenAIRE

    Westerterp, K.R.

    1992-01-01

    Multifunctional reactors are single pieces of equipment in which, besides the reaction, other functions are carried out simultaneously. The other functions can be a heat, mass or momentum transfer operation and even another reaction. Multifunctional reactors are not new, but they have received much emphasis in research in the last decade. A survey is given of modern developments and the first successful applications on a large scale. It is explained why their application in many instances is ...

  6. NUCLEAR REACTOR

    Science.gov (United States)

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  7. Nuclear reactor

    International Nuclear Information System (INIS)

    In order to reduce neutron embrittlement of the pressue vessel of an LWR, blanked off elements are fitted at the edge of the reactor core, with the same dimensions as the fuel elements. They are parallel to each other, and to the edge of the reactor taking the place of fuel rods, and are plates of neutron-absorbing material (stainless steel, boron steel, borated Al). (HP)

  8. Breeder reactors

    International Nuclear Information System (INIS)

    The reasons for the development of fast reactors are briefly reviewed (a propitious neutron balance oriented towards a maximum uranium burnup) and its special requirements (cooling, fissile material density and reprocessing) discussed. The three stages in the French program of fast reactor development are outlined with Rapsodie at Cadarache, Phenix at Marcoule, and Super Phenix at Creys-Malville. The more specific features of the program of research and development are emphasized: kinetics and the core, the fuel and the components

  9. Effect of inlet and outlet configurations on blow-off and flashback with premixed combustion for methane and a high hydrogen content fuel in a generic swirl burner

    International Nuclear Information System (INIS)

    Highlights: • Correlation of blowoff and flashback using the tangential inlet velocity. • The correlation appears to arise from the exhaust shear flow. • Reynolds Number effects can be important with methane and flashback. • For flashback the correlation was effective for 0.8 ⩽ swirl number ⩽ 2.2. • For blowoff the correlation was effective for 0.8 ⩽ swirl number ⩽ 4. - Abstract: The paper analyses new data for three fuels, natural gas, methane and Coke Oven Gas (COG) in two swirl burners. Flashback and blowoff can be correlated with the inlet tangential velocity, not the inlet mass flow, over a range of swirl numbers from 0.8 to more than 4. Geometry and fuel type are important. The correlation gives best fit for a particular outlet geometry and with higher hydrogen content fuels. The correlation still holds with methane and natural gas, especially with confinement. Analysis of the correlation infers that both blowoff and flashback occurrences are governed by the shear layer surrounding the Central Recirculation Zone (CRZ). The CRZ acts to control the width and strength of the shear flow region. Blowoff was found to occur when the CRZ was extensive and well develop and could be modeled by a well stirred reactor system. Two modes of flashback were found, both of which could be characterized by the same correlation of inlet tangential velocity. The first flashback case occurred at lower swirl numbers when the flame attached to the burner rim and flashed back through the outer boundary layer. At higher swirl numbers the CRZ and associated flame located next to its boundary extended back over the fuel nozzle inside the swirl chamber. Flashback occurred when the flame suddenly moved radially outwards towards the inlets. A clear trend was established for COG; as the swirl number was increased from 0.8 to 1.5 blowoff slightly worsened, whilst flashback improved. Thus higher swirl numbers are tentatively favored for flashback protection for higher

  10. ESTABLISHMENT OF DESIGN CRITERIA FOR OPTIMUM BURNERS FOR APPLICATION TO HEAVY FUEL FIRED PACKAGE BOILERS. VOLUME 2. PILOT SCALE TESTS

    Science.gov (United States)

    The report gives results of a research program to develop low-NOx heavy oil burners for application to industrial package boilers. Volume I documents Phase 1 of the program, bench scale studies which defined optimum conditions for two-stage combustion. The information led to a co...

  11. ESTABLISHMENT OF DESIGN CRITERIA FOR OPTIMUM BURNERS FOR APPLICATION TO HEAVY FUEL FIRED PACKAGE BOILERS. VOLUME 1. LABORATORY SCALE TESTS

    Science.gov (United States)

    The report gives results of a research program to develop low-NOx heavy oil burners for application to industrial package boilers. Volume I documents Phase 1 of the program, bench scale studies which defined optimum conditions for two-stage combustion. The information led to a co...

  12. ENVIRONMENTAL ASSESSMENT OF AN ENHANCED OIL RECOVERY STEAM GENERATOR EQUIPPED WITH A LOW-NOX BURNER. VOLUME 2. DATA SUPPLEMENT

    Science.gov (United States)

    The report is a compendium of detailed test sampling and analysis data obtained in field tests of an enhanced oil recovery steam generator (EOR steamer) equipped with a MHI PM low-NOx crude oil burner. Test data included in the report include equipment calibration records, steame...

  13. DESIGN AND FIELD DEMONSTRATION OF A LOW-NOX BURNER FOR TEOR (THERMALLY ENHANCED OIL RECOVERY) STEAMERS

    Science.gov (United States)

    The paper discusses a program that addresses the need for advanced NOx control technology for thermally enhanced oil recovery (TEOR) steam generators. A full-scale (60 million Btu/hr) burner system has been developed and tested, the concept for which was based on fundamental stud...

  14. DEVELOPMENT OF CRITERIA FOR EXTENSION OF APPLICABILITY OF LOW-EMISSION, HIGH-EFFICIENCY COAL BURNERS: FOURTH ANNUAL REPORT

    Science.gov (United States)

    The report summarizes technical progress during the fourth year of effort on EPA contract 68-02-2667. NOx and SOx emission characteristics of two low-NOx distributed-mixing burners were tested with three coals in a large water-tube simulator furnace (50-70 million Btu/hr firing r...

  15. Hybrid model predictive control applied to switching control of burner load for a compact marine boiler design

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Maciejowski, Jan;

    2008-01-01

    This paper discusses the application of hybrid model predictive control to control switching between different burner modes in a novel compact marine boiler design. A further purpose of the present work is to point out problems with finite horizon model predictive control applied to systems for w...

  16. Emissions of Toxic Components from Firing of Used Oils in a 102 kW Burner Boiler

    Czech Academy of Sciences Publication Activity Database

    Tydlitát, Vratislav; Janota, J.; Pekárek, Vladimír; Punčochář, Miroslav

    Vol. 5. Prague: Process Engineering Publisher, 2002, s. 190. ISBN 80-86059-33-2. [International Congress of Chemical and Process Engineering CHISA 2002 /15./. Prague (CZ), 25.08.2002-29.08.2002] Institutional research plan: CEZ:AV0Z4072921 Keywords : toxic emission * wasre oil * burner Subject RIV: CC - Organic Chemistry

  17. Research reactors - an overview

    Energy Technology Data Exchange (ETDEWEB)

    West, C.D.

    1997-03-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

  18. Burner (Stinger)

    Science.gov (United States)

    ... Tips: Football Sports and Exercise Safety Dealing With Sports Injuries Sports Center Magnetic Resonance Imaging (MRI) Contact Us Print Resources Send to a friend Reprint Guidelines ... Corbis, Veer, Science Photo Library, Science Source Images, Shutterstock, and Clipart.com

  19. Foundational development of an advanced nuclear reactor integrated safety code.

    Energy Technology Data Exchange (ETDEWEB)

    Clarno, Kevin (Oak Ridge National Laboratory, Oak Ridge, TN); Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth (Ktech Corporation, Albuquerque, NM); Hooper, Russell Warren; Humphries, Larry LaRon

    2010-02-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  20. Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan [Univ. Of Texas, El Paso, TX (United States)

    2013-09-30

    Oxy-fuel combustion has been used previously in a wide range of industrial applications. Oxy- combustion is carried out by burning a hydrocarbon fuel with oxygen instead of air. Flames burning in this configuration achieve higher flame temperatures which present opportunities for significant efficiency improvements and direct capture of CO2 from the exhaust stream. In an effort to better understand and characterize the fundamental flame characteristics of oxy-fuel combustion this research presents the experimental measurements of flame stability of various oxyfuel flames. Effects of H2 concentration, fuel composition, exhaust gas recirculation ratio, firing inputs, and burner diameters on the flame stability of these fuels are discussed. Effects of exhaust gas recirculation i.e. CO2 and H2O (steam) acting as diluents on burner operability are also presented. The roles of firing input on flame stability are then analyzed. For this study it was observed that many oxy-flames did not stabilize without exhaust gas recirculation due to their higher burning velocities. In addition, the stability regime of all compositions was observed to decrease as the burner diameter increased. A flashback model is also presented, using the critical velocity gradient gF) values for CH4-O2-CO2 flames. The second part of the study focuses on the experimental measurements of the flow field characteristics of premixed CH4/21%O2/79%N2 and CH4/38%O2/72%CO2 mixtures at constant firing input of 7.5 kW, constant, equivalence ratio of 0.8, constant swirl number of 0.92 and constant Reynolds Numbers. These measurements were taken in a swirl stabilized combustor at atmospheric pressure. The flow field visualization using Particle Imaging Velocimetry (PIV) technique is implemented to make a better understanding of the turbulence characteristics of