WorldWideScience

Sample records for burnable absorbers design

  1. Burnable neutron absorbers

    International Nuclear Information System (INIS)

    This patent deals with the fabrication of pellets for neutron absorber rods. Such a pellet includes a matrix of a refractory material which may be aluminum or zirconium oxide, and a burnable poison distributed throughout the matrix. The neutron absorber material may consist of one or more elements or compounds of the metals boron, gadolinium, samarium, cadmium, europium, hafnium, dysprosium and indium. The method of fabricating pellets of these materials outlined in this patent is designed to produce pores or voids in the pellets that can be used to take up the expansion of the burnable poison and to absorb the helium gas generated. In the practice of this invention a slurry of Al2O3 is produced. A hard binder is added and the slurry and binder are spray dried. This powder is mixed with dry B4C powder, forming a homogeneous mixture. This mixture is pressed into green tubes which are then sintered. During sintering the binder volatilizes leaving a ceramic with nearly spherical high-density regions of

  2. A Novel Burnable Absorber Concept for PWR: BigT (Burnable Absorber-Integrated Guide Thimble)

    Energy Technology Data Exchange (ETDEWEB)

    Yahya, Mohdsyukri; Kim, Yonghee [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Chung, Chang Kyu [KEPCO Engineering and Construction Company, Daejeon (Korea, Republic of)

    2014-05-15

    This paper presents the essential BigT design concepts and its lattice neutronic characteristics. Neutronic performance of a newly-proposed BA concept for PWR named BigT is investigated in this study. Preliminary lattice analyses of the BigT absorber-loaded WH 17x17 fuel assembly show a high potential of the concept as it performs relatively well in comparison with commercial burnable absorber technologies, especially in managing reactivity depletion and peaking factor. A sufficiently high control rod worth can still be obtained with the BigT absorbers in place. It is expected that with such performance and design flexibilities, any loading pattern and core management objective, including a soluble boron-free PWR, can potentially be fulfilled with the BigT absorbers. Future study involving full 3D reactor core simulations with the BigT absorbers shall hopefully verify this hypothesis. A new burnable absorber design for Pressurized Water Reactor (PWR) named 'Burnable absorber-Integrated control rod Guide Thimble' (BigT) was recently proposed. Unlike conventional burnable absorber (BA) technologies, the BigT integrates BA materials directly into the guide thimble but still allows insertion of control rod (CR). In addition, the BigT offers a variety of design flexibilities such that any loading pattern and core management objective can potentially be fulfilled.

  3. A feasibility study for the application of enriched gadolinia burnable absorber rods in nuclear core design

    International Nuclear Information System (INIS)

    An analysis model using MICBURN-3/CASMO-3 is established for the enriched gadolinia burnable absorber rods. A homogenized cross section editing code, PROLOG, is modified so that it can handle such a fuel assembly that includes two different types of gadolinia rods. Study shows that Gd-155 and Gd-157 are almost same in suppressing the excess reactivity and it is recommended to enrich both odd number isotopes, Gd-155 and Gd-157. It is estimated that the cycle length increases by 2 days if enriched gadolinia rods are used in the commercial nuclear power plant such as YGN-3 of which the cycle length is assumed 2 years. For the advanced integral reactor SMART in which ultra long cycle length and soluble boron-free operation concept is applied, natural gadolinia burnable absorber rods fail to control the excess reactivity. On the other hand, enriched gadolinia rods are successful in controling the excess reactivity. To minimize power peakings, various placements of gadolinia rods are tested. Also initial reactivity holddown and gadolinia burnout time are parametrized with respect to the number of gadolinia rods and gadolinia weight fractions

  4. Absorber management using burnable poisons

    International Nuclear Information System (INIS)

    An investigation of the problem of optimal control carried out by means of a two-dimensional model of a PWR reactor. A solution is found to the problem, and the possibility of achieving optimal control with burnable poisons such as boron, cadmium and gadolinium is discussed. Further, an attempt is made to solve the control problem of BWR, but no final solution is found. (author)

  5. Effectiveness of using burnable absorbers in a VVER-1000

    International Nuclear Information System (INIS)

    The operational efficiency and safety of a nuclear reactor depends on the method used to compensate its excess reactivity. In a VVER-1000, along with the boron dissolved in the water in the primary coolant loop, the excess reactivity is compensated with a burnable absorber. The main purpose of using burnable absorber rods as a method to compensate for part of the excess reactivity instead of a liquid absorber is to provide the reactor negative feedback with respect to the coolant temperature and consequently to make it self-regulating. There are disadvantages associated with burnable poisons that can be partially corrected by using another type of absorber - an integral absorber. Examples of such an absorber are gadolinium, integrated in the form of an oxide (Gd2O3) with the fuel, and boron, which is incorporated in the form of zirconium diboride (ZrB2) on the surface of the fuel pellets. Successful experience has been accumulated abroad in using both uranium - gadolinium fuel and fuel coated with a thin film containing ZrB2 in PWRs. The effectiveness of using different types of burnable absorbers in a VVER-1000 was investigated, using a stationary three-year fuel cycle as an example. The neutron physics characteristics of the reactor were calculated using the KASSETA-OKA-BIPR-KR program package. The results of the comparative calculations of the fuel loading characteristics of a VVER-1000 show that replacing lumped absorbers with integral ones demonstrates a real possibility of improving the economic indices and safety of nuclear power plants with VVER's

  6. Impact of Integral Burnable Absorbers on PWR Burnup Credit Criticality Safety Analyses

    International Nuclear Information System (INIS)

    The concept of taking credit for the reduction in reactivity of burned or spent nuclear fuel (SNF) due to fuel burnup is commonly referred to as burnup credit. The reduction in reactivity that occurs with fuel burnup is due to the net reduction of fissile nuclide concentrations and the production of actinide and fission-product neutron absorbers. The change in the inventory of these nuclides with fuel burnup, and the consequent reduction in reactivity, is dependent upon the depletion environment. Therefore, the use of burnup credit necessitates consideration of all possible fuel operating conditions, including the use of integral burnable absorbers (IBAs). The Interim Staff Guidance on burnup credit [1] issued by the Nuclear Regulatory Commission's (NRC) Spent Fuel Project Office recommends licensees restrict the use of burnup credit to assemblies that have not used burnable absorbers (e.g., IBAs or burnable poison rods, BPRs). This restriction eliminates a large portion of the currently discharged spent fuel assemblies from cask loading, and thus severely limits the practical usefulness of burnup credit. The reason for this restriction is that the presence of burnable absorbers during depletion hardens the neutron spectrum, resulting in lower 235U depletion and higher production of fissile plutonium isotopes. Enhanced plutonium production has the effect of increasing the reactivity of the fuel at discharge and beyond. Consequently, an assembly exposed to burnable absorbers may have a slightly higher reactivity for a given burnup than an assembly that has not been exposed to burnable absorbers. This paper examines the effect of IBAs on reactivity for various designs and enrichment/poison loading combinations as a function of burnup. The effect of BPRs, which are typically removed during operation, is addressed elsewhere [2

  7. Application of the BigT Burnable Absorber to an OPR1000 Core

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hwanyeal; Kim, Yonghee [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Hyeongheon [KEPCO Engineering and Construction Company, Daejeon (Korea, Republic of)

    2014-05-15

    This paper presents a feasibility study of applying BigT to an OPR1000 core as the burnable absorber to replace the conventional Gd{sub 2}O{sub 3} integral burnable absorber. Preliminary lattice calculations based on the PLUS7 fuel assembly installed with the BigT burnable absorber were performed to characterize BigT using metallic Gd as the burnable absorber material. A 3-D OPR1000 core was subsequently modeled with the BigT-installed fuel assemblies and 3-D core depletion analyses were performed to find an equilibrium cycle for a 3-batch fuel management. All neutronic calculations were completed using the continuous energy Monte Carlo SERPENT code with ENDF/B-VII.0 library. The neutronic feasibility study of the BigT loaded OPR1000 core has been performed in this work. It has been shown that an 18-month equilibrium cycle can be designed with 64 feed fuel assemblies and the critical boron centration can much lowered in a BigT-loaded OPR1000 core. The power peaking factor of the core was understandably high because the core loading pattern was not optimized yet for the 3-batch fuel management simulation. Nevertheless, it has been demonstrated that the new BigT scheme can replace the traditional gadolinia without any serious compromise in the core performances. It is concluded that the BigT has a very high potential as a promising burnable absorber for the OPR1000 core and it deserves detailed evaluations. Burnable absorber is a strong neutron absorber material which transmutes into a less-absorbent material once it captures a neutron. It is used to control excess reactivity and local power peaking, and to optimize fuel utilization. Boron is widely used in Westinghouse-type nuclear reactor designs in the form of the Integral Fuel Burnable Absorber (IFBA). Gadolinia (Gd{sub 2}O{sub 3}) is only used in Korea-designed nuclear power plants such as OPR1000 in which Gd{sub 2}O{sub 3} of 6∼8 w/o is directly admixed with UO{sub 2} fuel with a lower enrichment 0.72∼2 w

  8. Impact of burnable absorber Gd on nuclide composition for VVER-440 fuel (Gd-2)

    International Nuclear Information System (INIS)

    The latest version of Russian fuel VVER-440 includes burnable absorber in 6 pins. In this article is impact of burnable absorber on nuclide composition and criticality analyzed. In part 1 was analyzed whole burnup interval 0-50 MWd/kgU. In present part 2 are detailed analysis only for first cycle (burnup 0-10 MWd/kgU). (Authors)

  9. IRRADIATION TESTING OF THE RERTR FUEL MINIPLATES WITH BURNABLE ABSORBERS IN THE ADVANCED TEST REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    I. Glagolenko; D. Wachs; N. Woolstenhulme; G. Chang; B. Rabin; C. Clark; T. Wiencek

    2010-10-01

    Based on the results of the reactor physics assessment, conversion of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) can be potentially accomplished in two ways, by either using U-10Mo monolithic or U-7Mo dispersion type plates in the ATR fuel element. Both designs, however, would require incorporation of the burnable absorber in several plates of the fuel element to compensate for the excess reactivity and to flatten the radial power profile. Several different types of burnable absorbers were considered initially, but only borated compounds, such as B4C, ZrB2 and Al-B alloys, were selected for testing primarily due to the length of the ATR fuel cycle and fuel manufacturing constraints. To assess and compare irradiation performance of the U-Mo fuels with different burnable absorbers we have designed and manufactured 28 RERTR miniplates (20 fueled and 8 non-fueled) containing fore-mentioned borated compounds. These miniplates will be tested in the ATR as part of the RERTR-13 experiment, which is described in this paper. Detailed plate design, compositions and irradiations conditions are discussed.

  10. First results on study of gadolinium as burnable absorber

    International Nuclear Information System (INIS)

    Following on with the work included in the 'Burnable absorbers research plan' several experiments were carried out oriented to determine Ga2O3 burn up. Cold tests were performed and samples were irradiated in the RA-3 reactor. In this paper, some calculated values are presented together with their comparisons with experimental ones. The parameters foreseen for performing the experiments were verified and also the predictions on burn up of uranium and gadolinium isotopes concentrations. These results imply that the nuclear data of these isotopes included in the library are satisfactory. Next steps will be to measure other isotopes concentrations, gamma spectrum, and the irradiation of one pellet to determine self shielding effects in order to obtain effective cross sections i.e. for CAREM geometry. (author)

  11. WLUP burnable absorber isotopic influence on coolant void reactivity in an ACR lattice

    International Nuclear Information System (INIS)

    ACRTM-1000 is the topmost nuclear power reactor promoted by AECL during the next years as a response to increasing competitiveness in the nuclear energy market. Recent AECL innovations allowed overriding for the first time the main CANDU drawback - the positive Coolant Void Reactivity (CVR). The solution was using of burnable absorbers in the central element (CE) whose radius was significantly increased. The paper's goal is to evaluate the isotopic influence on CVR and, as result, on nuclear safety when the central element is filled one by one with the most common oxide of burnable isotopes from the IAEA updated WIMS library (WLUP). The isotopes taken into account are: Dysprosium, Hafnium, Gadolinium, Erbium and Holmium. A comparison between CVRs given at the using of above lanthanides and their suitability to be used in the central element design is illustrated in the paper. (authors)

  12. A reduced-boron OPR1000 core based on the BigT burnable absorber

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hwan Yeal; Yahya, Mohd-Syukri; Kim, Yong Hee [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of)

    2016-04-15

    Reducing critical boron concentration in a commercial pressurized water reactor core offers many advantages in view of safety and economics. This paper presents a preliminary investigation of a reduced-boron pressurized water reactor core to achieve a clearly negative moderator temperature coefficient at hot zero power using the newly-proposed 'Burnable absorber-Integrated Guide Thimble' (BigT) absorbers. The reference core is based on a commercial OPR1000 equilibrium configuration. The reduced-boron ORP1000 configuration was determined by simply replacing commercial gadolinia-based burnable absorbers with the optimized BigT-loaded design. The equilibrium cores in this study were directly searched via repetitive Monte Carlo depletion calculations until convergence. The results demonstrate that, with the same fuel management scheme as in the reference core, application of the BigT absorbers can effectively reduce the critical boron concentration at the beginning of cycle by about 65 ppm. More crucially, the analyses indicate promising potential of the reduced-boron OPR1000 core with the BigT absorbers, as its moderator temperature coefficient at the beginning of cycle is clearly more negative and all other vital neutronic parameters are within practical safety limits. All simulations were completed using the Monte Carlo Serpent code with the ENDF/B-VII.0 library.

  13. Safe core management with burnable absorbers in WWERs

    International Nuclear Information System (INIS)

    The objective of this TECDOC is to present state of the art information on burnable poisoned fuel during the CRP. It is based on experimental evidence and on the utilization of theoretical models and will help achieve improvements in safety and economy of LWR cores with hexagonal geometries. 149 refs, figs and tabs

  14. Preliminary Nuclear Analysis for the HANARO Fuel Element with Burnable Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chul Gyo; Kim, So Young; In, Won Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Burnable absorber is used for reducing reactivity swing and power peaking in high performance research reactors. Development of the HANARO fuel element with burnable absorber was started in the U-Mo fuel development program at HANARO, but detailed full core analysis was not performed because the current HANARO fuel management system is uncertain to analysis the HANARO core with burnable absorber. A sophisticated reactor physics system is required to analysis the core. The McCARD code was selected and the detailed McCARD core models, in which the basic HANARO core model was developed by one of the McCARD developers, are used in this study. The development of nuclear fuel requires a long time and correct developing direction especially by the nuclear analysis. This paper presents a preliminary nuclear analysis to promote the fuel development. Based on the developed fuel, the further nuclear analysis will improve reactor performance and safety. Basic nuclear analysis for the HANARO and the AHR were performed for getting the proper fuel elements with burnable absorber. Addition of 0.3 - 0.4% Cd to the fuel meat is promising for the current HANARO fuel element. Small addition of burnable absorber may not change any fuel characteristics of the HANARO fuel element, but various basic tests and irradiation tests at the HANARO core are required.

  15. Preliminary Investigation of the Soluble Boron Free AP 1000 Core with the BigT Burnable Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Yahya, Mohd-Syukri; Kim, Yonghee [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, HyeongHeon [KEPCO Engineering and Construction Company., Inc., Daejeon (Korea, Republic of)

    2014-10-15

    The measurement of the U and Pu peak ratio provides information on the relative concentration of U and Pu elements. Photon measurements of spent nuclear fuel using high resolution spectrometers show a large background continuum in the low energy x-ray region in large part from Compton scattering of energetic gamma-rays. The high Compton continuum can make measurements of plutonium x-rays difficult because the relatively small signal to background ratio produced. According to the performance of the MCNPX simulation, the suppression ratios for the measurements of spent nuclear fuels were more than a factor of five. This result shows the feasibility of a Compton suppression system to the XRF technique. Many advanced PWRs are required to have a 24-month operating cycle to improve plant economy, and to keep the boron concentration low to allow an adequately negative moderator feedback during any ATWS event through 100% core life. Too much boron, typically greater than 1,300 ppm at full power, will make the MTC positive. The optimal design of burnable absorbers is key to the feasibility of this extended cycle and low boron core below the design limit of peak pin power. New concepts for burnable absorbers include changing the materials and geometry in the burnable absorber. k{sub inf}, peaking factor, MTC, and control rod worth of new BAs were compared with those of the conventional BA.

  16. A simple method for burnable absorbers assignment in the in-core fuel management

    International Nuclear Information System (INIS)

    Process of assignment of necessary number of burnable absorbers in fresh fuel assemblies in WWER-1000 (ETE) loading, primarily based on Haling power distribution (HPD), which should be preserved during cycle depletion, is described and analysed in this paper. Finding of optimal number of burnable absorbers, in our case for WWER-1000 reactor (now of IFBA type), is one from the important steps in the in-core fuel management optimization process. Original process based on PSDPI (Power Shape Driven Progressive Iteration (Method)) has been changed by process of direct searching of requested number of fuel assemblies in each burnup step. This process has been modified in this sense, that HPD is not requested in all fresh fuel assemblies, only is requested, that power in all fresh fuel assemblies will not be higher than maximal from HPD (or possibly from the end of cycle EOB) (Authors)

  17. Implementation of a Gadolinium Burnable Absorber in the Carbide LEU-NTR

    Energy Technology Data Exchange (ETDEWEB)

    Venneria, Paolo; Kim, Yonghee [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-05-15

    Among the most crucial are the rapid reactivity depletion during full-power operation and the positive reactivity insertion during the full-submersion criticality accident. In previous work, it has been suggested that both challenges can be mitigated through the successful implementation of a burnable absorber in the active core. Of the poisons previously surveyed, one of the most promising is Gadolinium in the form of Gadolina (Gd2O4). This paper explores the possibility of different methods by which the Gadolinia can be implemented in the core and makes a preliminary study of its effect on the full submersion criticality accident and the reactivity depletion during operation. The application of a Gadolinium neutron absorber in the active core region of the LEU-NTR has been shown to be neutronically feasible. It can be introduced into the core in various locations without resulting in core performance loss. The utility of the poison in terms of mitigating the full-submersion reactivity accident and the rapid change in reactivity during full-power operation have been preliminarily shown and the first steps towards eventual implementation made. Future work will consist of determining the maximum poison content in the core and tailoring the self-shielding effect in order to determine a specific Gd depletion rate.

  18. Gas emission from the UO2 samples, containing fission products and burnable absorber

    Science.gov (United States)

    Kopytin, V. P.; Baranov, V. G.; Burlakova, M. A.; Tenishev, A. V.; Kuzmin, R. S.; Pokrovskiy, S. A.; Mikhalchik, V. V.

    2016-04-01

    The process gas released from the fuel pellets of uranium fuel during fuel burn-up reduces the thermal conductivity of the rod-shell gap, enhances hydrogen embrittlement of the cladding material, causes it's carbonization, as well as transport processes in the fuel. In this study a technique of investigating the thermal desorption of gases from the UO2 fuel material were perfected in the temperature range 300-2000 K for uniform sample heating rate of 15 K/min in vacuum. The characteristic kinetic dependences are acquired for the gas emission from UO2 samples, containing simulators of fission products (SFP) and the burnable neutron absorber (BNA). Depending on the amount of SFP and BNA contained in the sample thermal desorption gas spectra (TDGS) vary. The composition of emitted gas varies, as well as the number of peaks in the TDGS and the peaks shift to higher temperatures. This indicates that introduction of SFPs and BNA alters the sample material structure and cause the creation of so- called traps which have different bonding energies to the gases. The traps can be a grid of dislocations, voids, and contained in the UO2 matrix SFP and BNA. Similar processes will occur in the fuel pellets in the real conditions of the Nuclear Power Plant as well.

  19. Incorporation of Integral Fuel Burnable Absorbers Boron and Gadolinium into Zirconium-Alloy Fuel Clad Material

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, K.; Renk, T.J.; Lahoda, E.J.; Corradini, M.L

    2004-12-14

    Long-lived fuels require the use of higher enrichments of 235U or other fissile materials. Such high levels of fissile material lead to excessive fuel activity at the beginning of life. To counteract this excessive activity, integral fuel burnable absorbers (IFBA) are added to some rods in the fuel assembly. The two commonly used IFBA elements are gadolinium, which is added as gadolinium-oxide to the UO2 powder, and boron, which is applied as a zirconium-diboride coating on the UO2 pellets using plasma spraying or chemical vapor deposition techniques. The incorporation of IFBA into the fuel has to be performed in a nuclear-regulated facility that is physically separated from the main plant. These operations tend to be very costly because of their small volume and can add from 20 to 30% to the manufacturing cost of the fuel. Other manufacturing issues that impact cost and performance are maintaining the correct levels of dosing, the reduction in fuel melting point due to gadolinium-oxide additions, and parasitic neutron absorption at fuel's end-of-life. The goal of the proposed research is to develop an alternative approach that involves incorporation of boron or gadolinium into the outer surface of the fuel cladding material rather than as an additive to the fuel pellets. This paradigm shift will allow for the introduction of the IFBA in a non-nuclear regulated environment and will obviate the necessity of additional handling and processing of the fuel pellets. This could represent significant cost savings and potentially lead to greater reproducibility and control of the burnable fuel in the early stages of the reactor operation. The surface alloying is being performed using the IBEST (Ion Beam Surface Treatment) process developed at Sandia National Laboratories. IBEST involves the delivery of energetic ion beam pulses onto the surface of a material, near-surface melting, and rapid solidification. The non-equilibrium nature of such processing allows for

  20. Self-shielding effects in burnup of Gd used as burnable absorber. Previous studies on its experimental verification

    International Nuclear Information System (INIS)

    Continuing with the domestic 'Burnable Absorbers Research Plan' studies were done to estimate self-shielding effects during Gd2O3 burnup as burnable absorber included in fuel pins of a CAREM geometry. In this way, its burnup was calculated without and with self-shielding. For the second case, were obtained values depending on internal pin radius and the effective one for the homogenized pin. For Gd 157, the burnup corresponding to the first case resulted 52.6 % and of 1.23 % for the effective one. That shows the magnitude of the effects under study. Considering that is necessary to perform one experimental verification, also are presented calculational results for the case to irradiate a pellet containing UO2 (natural) and 8 wt % of Gd2O3, as a function of cooling time, that include: measurable isotopes concentrations, expected activities, and photon spectra for conditions able to be compared with bidimensional calculations with self-shielding. The irradiation time was supposed 30 dpp using RA-3 reactor at 10 MW. (author)

  1. A study on the nuclear characteristics of enriched gadolinia burnable absorber rods; the first year (2000) report

    International Nuclear Information System (INIS)

    An analysis model using MICBURN-3/CASMO-3 is established for the enriched gadolinia burnable absorber rods. A homogenized cross section editing code, PROLOG, is modified so that it can handle such a fuel assembly that includes two different types of gadolinia rods. Study shows that Gd-155 and Gd-157 are almost same in suppressing the excess reactivity and it is recommended to enrich both odd number isotopes, Gd-155 and Gd-157. It is estimated that the cycle length increases by 2 days if enriched gadolinia rods are used in the commercial nuclear power plant such as YGN-3 of which the cycle length is assumed 2 years. For the advanced integral reactor SMART in which ultra long cycle length and soluble boron-free operation concept is applied, natural gadolinia burnable absorber rods fail to control the excess reactivity. On the other hand, enriched gadolinia rods are successful in controling the excess reactivity. To minimize power peakings, various placements of gadolinia rods are tested. Also initial reactivity holddown and gadolinia burnout time are parametrized with respect to the number of gadolinia rods and gadolinia weight fractions

  2. Surface Modification of Fuel Cladding Materials with Integral Fuel BUrnable Absorber Boron

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Kumar Sridharan; Dr. Todd Allen; Jesse Gudmundson; Benjamin Maier

    2008-11-03

    Integral fuel burnable absorgers (IFBA) are added to some rods in the fuel assembly to counteract excessive reactivity. These IFBA elements (usually boron or gadolinium) are presently incorporated in the U)2 pellets either by mixing in the pellets or as coatings on the pellet surface. In either case, the incorporation of ifba into the fuel has to be performed in a nuclear-regulated facility that is physically separated from the main plant. These operations tend to be costly and can add from 20 to 30% to the manufacturing cost of the fuel. The goal of this NEER research project was to develop an alternative approach that involves incorporation of IFBA element boron at the surface of the fuel cladding material.

  3. Development of neural network for predicting local power distributions in BWR fuel bundles considering burnable neutron absorber

    International Nuclear Information System (INIS)

    A neural network model is under development to predict the local power distribution in a BWR fuel bundle as a high speed simulator of precise nuclear physical analysis model. The relation between 235U enrichment of fuel rods and local peaking factor (LPF) has been learned using a two-layered neural network model ENET. The training signals used were 33 patterns having considered a line symmetry of a 8x8 assembly lattice including 4 water rods. The ENET model is used in the first stage and a new model GNET which learns the change of LPFs caused by burnable neutron absorber Gadolinia, is added to the ENET in the second stage. Using this two-staged model EGNET, total number of training signals can be decreased to 99. These training signals are for zero-burnup cases. The effect of Gadolinia on LPF has a large nonlinearity and the GNET should have three layers. This combined model of EGNET can predict the training signals within 0.02 of LPF error, and the LPF of a high power rod is predictable within 0.03 error for Gadolinia rod distributions different from the training signals when the number of Gadolinia rods is less than 10. The computing speed of EGNET is more than 100 times faster than that of a precise nuclear analysis model, and EGNET is suitable for scoping survey analysis. (author)

  4. Usage of burnable poison on research reactors

    International Nuclear Information System (INIS)

    The fuel assemblies with burnable poison are widely used on power reactors, but there are not commonly used on research reactors. This paper shows a neutronic analysis of the advantages and disadvantages of the burnable poison usage on research reactors. This paper analyses both burnable poison design used on research reactors: Boron on the lateral wall and Cadmium wires. Both designs include a parametric study on the design parameters like the amount and geometry of the burnable poison. This paper presents the design flexibility using burnable poisons, it does not find an optimal or final design, which it will strongly depend on the core characteristics and fuel management strategy. (author)

  5. Evaluation of the presence of a burnable absorber in an assembly 3x3 type PWR; Evaluacion de la presencia de un absorbedor quemable en un ensamble 3x3 tipo PWR

    Energy Technology Data Exchange (ETDEWEB)

    Martinez F, M. A.; Del Valle G, E.; Alonso V, G. [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Col. Lindavista, Mexico D. F. 07738 (Mexico)]. e-mail: mike_ipn_esfm@hotmail.com

    2008-07-01

    In the present work the effect is evaluated that causes the presence of a burnable absorber in an adjustment of rods of 3x3 of a fuel assembly type PWR using CASMO-4 code, when comparing the infinite multiplication factor and some average cross sections by means of codes MCNP-4A, CASMO-3 and HELIOS. For this evaluation two cases are evaluated: first consists of an adjustment of rods of 3x3 full completely of fuel and the second consists of a central rod full with a burnable absorber type wet annular burnable absorber (WABA) and the remaining full fuel rods. In both cases the enrichment of the fissile isotopes is varied, for two types of fuel, MOX degree armament and UO{sub 2}. (Author)

  6. Nodal Diffusion Burnable Poison Treatment for Prismatic Reactor Cores

    Energy Technology Data Exchange (ETDEWEB)

    A. M. Ougouag; R. M. Ferrer

    2010-10-01

    The prismatic block version of the High Temperature Reactor (HTR) considered as a candidate Very High Temperature Reactor (VHTR)design may use burnable poison pins in locations at some corners of the fuel blocks (i.e., assembly equivalent structures). The presence of any highly absorbing materials, such as these burnable poisons, within fuel blocks for hexagonal geometry, graphite-moderated High Temperature Reactors (HTRs) causes a local inter-block flux depression that most nodal diffusion-based method have failed to properly model or otherwise represent. The location of these burnable poisons near vertices results in an asymmetry in the morphology of the assemblies (or blocks). Hence the resulting inadequacy of traditional homogenization methods, as these “spread” the actually local effect of the burnable poisons throughout the assembly. Furthermore, the actual effect of the burnable poison is primarily local with influence in its immediate vicinity, which happens to include a small region within the same assembly as well as similar regions in the adjacent assemblies. Traditional homogenization methods miss this artifact entirely. This paper presents a novel method for treating the local effect of the burnable poison explicitly in the context of a modern nodal method.

  7. New Small LWR Core Designs using Particle Burnable Poisons for Low Boron Concentration

    International Nuclear Information System (INIS)

    The soluble boron has two major important roles in commercial PWR operations : 1) the control of the long-term reactivity to maintain criticality under normal operation, and 2) the shutdown of the reactor under accidents. However, the removal of the soluble boron gives several advantages in SMRs (Small Modular Reactor). These advantages resulted from the elimination of soluble boron include the significant simplification of nuclear power plant through the removal of pipes, pumps, and purification systems. Also, the use of soluble boron mitigates corrosion problems on the primary coolant loop. Furthermore, the soluble boron-free operation can remove an inadvertent boron dilution accident (BDA) which can lead to a significant insertion of positive reactivity. From the viewpoint of core physics, the removal of soluble boron or reduction of soluble boron concentration makes the moderator temperature coefficient (MTC) more negative. From the core design studies using new fuel assemblies, it is shown that the cores have very low critical soluble boron concentrations less than 500ppm, low peaking factors within the design targets, strong negative MTCs over cycles, and large enough shutdown margins both at BOC and EOC. However, the present cores have relatively low average discharge burnups of ∼ 30MWD/kg leading to low fuel economy because the cores use lots of non-fuel burnable poison rods to achieve very low critical boron concentrations. So, in the future, we will perform the trade-off study between the fuel discharge burnup and the boron concentrations by changing fuel assembly design and the core loading pattern

  8. A study on the oxidation characteristic of UO2-Gd2O3 pellet for recycling of burnable absorber pellet scrap

    International Nuclear Information System (INIS)

    The development of recycling process of defective (U,Gd)O2 scrap is one of the important subject in this project. Among the several burnable absorbers, Gd has a very large neutron absorption cross-section. Therefore, gadolinia bearing UO2 fuel, (U,Gd)O2, has been widely used as a burnable absorber in light water reactors. During the pellet fabrication process, fairly amount of defective (U,Gd)O2 pellets are produced and it is necessary to recycle the scraps. Generally, the defective scraps are powdered through the oxidation in air in the temperature range of 450 to 550 deg C and then mixed with co-milled powder, and further processed to fabricate (U,Gd)O2 pellets. In addition, the sintered pellet properties are closely depend on the powder property of oxidized M3O8 powder. Therefore, the careful investigate of oxidation kinetics and related powder property of (U,Gd)O2 is very important. The oxidation behavior of UO2-6wt% Gd2O3 and UO2-12wt% Gd2O3 has been studied in the temperature range from 350 to 700 deg C using TGA and XRD techniques in air. UO2 was necessarily oxidized to U3O8 regardless of oxidation temperature and its weight gain was 4wt%. However, (U,Gd)O2 exhibit a different oxidation behavior ; The final phase and saturated weight gain depends on oxidation temperature. The saturated weight gain increases with oxidation temperature up to 500deg C and thereafter decreases with temperature. In addition, the amount of weight gain obtained at 500 deg C was smaller in UO2-12wt% Gd2O3 than in UO2-6wt% Gd2O3 and the final phase at the saturated weight gain was M3O8 in UO2-6wt% Gd2O3 but the mixture of M4O9 and M3O8 in UO2-12wt% Gd2O3. It is supposed that Gd substitution for U decreases the equilibrium O/M ratio and thereby enhance the stability of M4O9 type cubic phase

  9. Neutronics Design Flexibilities of the BigT Gadolinium Absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Yahya, Mohd-Syukri; Kim, Yonghee [KAIST, Daejeon (Korea, Republic of); Kim, HyeongHeon [KEPCO Engineering and Construction Company, Daejeon (Korea, Republic of)

    2015-05-15

    A new BA design named 'Burnable absorber-Integrated Guide Thimble' (BigT) was recently proposed for PWR. The BigT offers flexibility in BA self-shielding adjustment per design specifications. It is upon this assertion that this paper was prepared; i.e. this research aims to demonstrate the neutronics design flexibilities of BigT gadolinium absorbers. Specifically, three studies were completed to investigate sensitivities of the BigT gadolinium absorbers: (1) at a constant BA mass, (2) with a similar initial reactivity hold-down, and (3) for an optimal burnup reactivity swing. The paper clearly demonstrates neutronics flexibilities of the BigT gadolinium absorbers. Ascertained design variables are: (1) gadolinium effective shape, (2) BigT loading per lattice, and (3) BigT location in the lattice. Hybrid combination of the BigT designs may also alter the lattice depletion pattern, as well as density of gadolinium installed in the BigT absorbers. It is concluded that self-shielding of Gd can easily be adjusted in the BigT applications.

  10. Neutronic analysis of Gd2O3 as burnable poison

    International Nuclear Information System (INIS)

    For the reactors core design, the use of burnable poisons is one of the options for the control of in excess reactivity and the power form factor. As alternative procedures, the absorbing material may be included in pellets of an inert material or in fuel pellets. Besides, a cladding material and the locations of the fuel elements must be chosen for the first case. The CAREM reactor core design foresees the use of gadolinium oxide (Gd2O3) as burnable poison. In this work, a comparative study was made, from the neutronic point of view, among the following alternatives for the poisons location: a) Gd2O3 bars supports in alumina (Al2O3), sheathed in steel; b) Gd2O3 bars supports in alumina sheathed in Zry-4; c) Gd2O3 in uranium dioxide (UO2) fuel pellets. (Author)

  11. Experimental validation of calculation schemes connected with PWR absorbers and burnable poisons; Validation experimentale des schemas de calcul relatifs aux absorbants et poisons consommables dans les REP

    Energy Technology Data Exchange (ETDEWEB)

    Klenov, P.

    1995-10-01

    In France 80% of electricity is produced by PWR reactors. For a better exploitation of these reactors a modular computer code Apollo-II has been developed. his code compute the flux transport by discrete ordinate method or by probabilistic collisions on extended configurations such as reactor cells, assemblies or little cores. For validation of this code on mixed oxide fuel lattices with absorbers an experimental program Epicure in the reactor Eole was induced. This thesis is devoted to the validation of the Apollo code according to the results of the Epicure program. 43 refs., 65 figs., 1 append.

  12. Heterogeneous burnable poisons:

    International Nuclear Information System (INIS)

    The use of materials possessing high neutron absorption cross-section commonly known as 'burnable poisons' have its origin in BWR reactors with the purpose of improving the efficiency of the first fuel load. Later on, it was extended to PWR to compensate of initial reactivity without infringing the requirement of maintaining a negative moderator coefficient. The present tendency is to increase the use of solid burnable poisons to extend the fuel cycle life and discharge burnup. There are two concepts for the burnable poisons utilization: 1) heterogeneously distributions in the form of rods, plates, etc. and 2) homogeneous dispersions of burnable poisons in the fuel. The purpose of this work is to present the results of sinterability studies, performed on Al2O3-B4C and Al2O3-Gd2O3 systems. Experiments were carried on pressing at room temperature mixtures of powders containing up to 5 wt % of B4C or Gd2O3 in Al2O3 and subsequently sintering at 1750 deg C in reducing atmosphere. Evaluation of density, porosity and microstructures were done and a comparison with previous experiences is shown. (Author)

  13. A Preliminary Study on the Conceptual Design of Thorium/Uranium Mixed Nuclear Fuel for the Alternative of Burnable Poison in Commercial Pressurized Water Reactor

    International Nuclear Information System (INIS)

    Thorium has higher neutron absorption cross section than that of U-238. Thus, the thorium mixed uranium oxide nuclear fuel can reduce the initial excessive reactivity and the long-live radio-wastes with increasing the fuel utilization efficiency. In this study, a preliminary study on the application of the thorium/uranium mixed fuel is performed for the alternative of the PLUS7 fuel assembly which includes burnable poison. A conceptual design without geometrical change is proposed and the reactor characteristics are analyzed. In this study, a fuel assembly using the uranium/thorium mixed fuel was designed to substitute the assembly which includes burnable poison. The reactor characteristics, which are kinf, power distribution and plutonium production rate, were evaluated and the results are compared with the E1 assembly which is used in the OPR1000 reactor. The results show that the proposed design can efficiently reduce the excessive reactivity, peak power, and plutonium production with increasing the fuel utilization period

  14. Improved Neutronics Treatment of Burnable Poisons for the Prismatic HTR

    Energy Technology Data Exchange (ETDEWEB)

    Y. Wang; A. A. Bingham; J. Ortensi; C. J. Permann

    2012-10-01

    In prismatic block High Temperature Reactors (HTR), highly absorbing material such a burnable poison (BP) cause local flux depressions and large gradients in the flux across the blocks which can be a challenge to capture accurately with traditional homogenization methods. The purpose of this paper is to quantify the error associated with spatial homogenization, spectral condensation and discretization and to highlight what is needed for improved neutronics treatments of burnable poisons for the prismatic HTR. A new triangular based mesh is designed to separate the BP regions from the fuel assembly. A set of packages including Serpent (Monte Carlo), Xuthos (1storder Sn), Pronghorn (diffusion), INSTANT (Pn) and RattleSnake (2ndorder Sn) is used for this study. The results from the deterministic calculations show that the cross sections generated directly in Serpent are not sufficient to accurately reproduce the reference Monte Carlo solution in all cases. The BP treatment produces good results, but this is mainly due to error cancellation. However, the Super Cell (SC) approach yields cross sections that are consistent with cross sections prepared on an “exact” full core calculation. In addition, very good agreement exists between the various deterministic transport and diffusion codes in both eigenvalue and power distributions. Future research will focus on improving the cross sections and quantifying the error cancellation.

  15. ANL Advanced Photon Source crotch absorber design

    International Nuclear Information System (INIS)

    The ANL 7-GeV Advanced Photon Source storage ring crotch absorber will be subjected to a very high photon loading power density, approximately 750 W/mm2 at normal incidence. To accommodate this high heat load, two designs were studied: one is a V-type compound angle absorber and the other is a horizontally rotated plate absorber. For both models, thermal and structural analyses have been carried out using 3-D finite element analysis. The analysis indicates that the V-type compound angle absorber controlled the peak temperatures effectively within the given geometric constraints. Test samples made of GlidCop AL 15 (alumina dispersion strengthened copper) were evaluated with an electron beam welder. The predicted and measured temperatures were in reasonable agreement. The overall absorber design includes a perforated screen in the positron beam area of the storage ring vacuum chamber to reduce RF impedance and to provide pumping access for the high local gas load

  16. Design and application of functional absorbers

    Institute of Scientific and Technical Information of China (English)

    WANG Jiqing

    2004-01-01

    This paper gives an overview of the research at Institute of Acoustics, Tongji University, on functional absorbers and experience acquired in practical applications over the past three decades. Experiments and analysis of the absorption characteristics of three different geometrical forms of functional absorbers, i.e., panels, cubes and tubes, were conducted with different arrangements. The resulting esthetical effects are illustrated with pictures. Several non-fiber materials are used to compose functional absorbers with advantages both in acoustic properties and in architectural features. Cost effectiveness analysis is also given in order to provide design guidelines.

  17. Design of a magnetorheological automotive shock absorber

    Science.gov (United States)

    Lindler, Jason E.; Dimock, Glen A.; Wereley, Norman M.

    2000-06-01

    Double adjustable shock absorbers allow for independent adjustment of the yield force and post-yield damping in the force versus velocity response. To emulate the performance of a conventional double adjustable shock absorber, a magnetorheological (MR) automotive shock absorber was designed and fabricated at the University of Maryland. Located in the piston head, an applied magnetic field between the core and flux return increases the force required for a given piston rod velocity. Between the core and flux return, two different shaped gaps meet the controllable performance requirements of a double adjustable shock. A uniform gap between the core and the flux return primarily adjusts the yield force of the shock absorber, while a non-uniform gap allows for control of the post-yield damping. Force measurements from sinusoidal displacement cycles, recorded on a mechanical damper dynamometer, validate the performance of uniform and non- uniform gaps for adjustment of the yield force and post-yield damping, respectively.

  18. ANL Advanced Photon Source crotch absorber design

    International Nuclear Information System (INIS)

    The ANL 7-GeV Advanced Photon Source storage ring crotch absorber will be subjected to a very high photon loading power density, approximately 750 W/mm2 at normal incidence. To accommodate this high heat load, two designs were studied: one is a V-type compound angle absorber and the other is a horizontally rotated plate absorber. For both models, thermal and structural analyses have been carried out using 3-D finite element analysis. The analysis indicates that the V-type compound angle absorber controlled the peak temperatures effectively within the given geometric constraints. Test samples made of GlidCop Al 15 (alumina dispersion strengthened copper) were evaluated with an electron beam welder. The predicted and measured temperatures were in reasonable agreement. The overall absorber design includes a perforated screen in the positron beam area of the storage ring vacuum chamber to reduce rf impedance and to provide pumping access for the high local gas load. 3 refs., 4 figs., 2 tabs

  19. Analysis of a possible experimental assessment of a prototype fuel element containing burnable poison in the RA-3 reactor

    International Nuclear Information System (INIS)

    The Argentine RA-3 research reactor (5 MW) is presently operated with LEU fuel by the National Atomic Energy Commission (CNEA). It belongs to the group of nuclear installations controlled, from the radiological and nuclear safety point of view, by the Nuclear Regulatory Authority (ARN). A new type of fuel elements containing burnable absorbers, with similar enrichment as the standard fuel elements but greater fissile contents, has recently been proposed for a new Argentine reactor design (RRR). In this framework the ARN considers interesting, if technically possible, the performance of an experiment in the RA-3 reactor. The experiment might enable, for such fuel element containing burnable poison, the verification of its neutronic behaviour under irradiation as well as a validation of the calculation line by comparison to measured values. It should be desirable that such experiment could reproduce as much as possible those conditions estimated for the RRR reactor, still under design in Argentina, having Silicide fuel elements with burnable poison, in the shape of cadmium wires in their structure. We here analyse a possible experiment consisting in the loading of a prototype fuel element with burnable poison in a normally loaded RA-3 core configuration. It would essentially be a standard RA-3 fuel element, having cadmium wires in its frame. This experiment would enable the verification of the prototype behaviour under irradiation, its operation limits and conditions, and particularly, the reactivity safety margins established in Argentine Standards, both calculated and measured. The main part of the experiment would imply some 200 full power days of operation at 5 MW, which would be drastically reduced if the reactor power is increased to 10 MW, as foreseen. We also show that under the proposed conditions, the experiment would not represent a significant penalty to the reactor normal operation. (author)

  20. Reactivity and neutron flux measurements in IPEN/MB-01 reactor with B4C burnable poison

    International Nuclear Information System (INIS)

    Burnable poison rods, made of B4C- Al2 O3 pellets with 5.01 mg/cm310 B concentration, have been manufactured for a set of experiments in the IPEN/MB-01 zero-power reactor. Several core parameters which are affected by the burnable poisons rods have been measured. The principal results, for the situation in which the burnable poison rods are located near the absorber rods of a control rod, are they cause a 29% rod worth shadowing, a reduction of 39% in the local void coefficient of reactivity, a reduction of 4.8% in the isothermal temperature coefficient of reactivity, and a reduction of 9% in the thermal neutron flux in the region where the burnable poison rods are located. These experimental results will be used for the validation of burnable poison calculation methods in the CTMSP. (author)

  1. Development of Improved Burnable Poisons for Commercial Nuclear Power Reactors

    International Nuclear Information System (INIS)

    Burnable poisons are used in all modern nuclear reactors to permit higher loading of fuel without the necessity of an overly large control rod system. This not only permits a longer core life but can also be used to level the power distribution. Commercial nuclear reactors commonly use B4C in separate non-fueled rods and more recently, zirconium boride coatings on the fuel pellets or gadolinium oxide mixed with the fuel. Although the advantages are great, there are problems with using these materials. Boron, which is an effective neutron absorber, transmutes to lithium and helium upon absorption of a neutron. Helium is insoluble and is eventually released to the interior of the fuel rod, where it produces an internal pressure. When sufficiently high, this pressure stress could cause separation of the cladding from the fuel, causing overly high centerline temperatures. Gadolinium has several very strongly absorbing isotopes, but not all have large cross sections and result in residual burnable poison reactivity worth at the end of the fuel life. Even if the amount of this residual absorber is small and the penalty in operation small, the cost of this penalty, even if only several days, can be very high. The objective of this investigation was to study the performance of single isotopes in order to reduce the residual negative reactivity left over at the end of the fuel cycle. Since the behavior of burnable poisons can be strongly influenced by their configuration, four forms for the absorbers were studied: homogeneously mixed with the fuel, mixed with only the outer one-third of the fuel pellet, coated on the perimeter of the fuel pellets, and alloyed with the cladding. In addition, the numbers of fuel rods containing burnable poison were chosen as 8, 16, 64, and 104. Other configurations were chosen for a few special cases. An enrichment of 4.5 wt% 235U was chosen for most cases for study in order to achieve a 4-year fuel cycle. A standard pressurized water reactor

  2. Tracking Performances of Several Front-Absorber Designs

    CERN Document Server

    Lautridou, P; CERN. Geneva; Métivier, V; Rahmani, A; Ramillien, V; Reposeur, T; Morsch, Andreas; Cussonneau, J P

    1998-01-01

    The tracking performances of the ALICE forward muon spectrometer are investigated for several front-absorbers designs. The obtained mass resolution is compared to the one of the absorber proposed in the LOI. Out of punchthrough considerations, two absorbers compositions, including a Carbon+Concrete sandwich design, allow to reach the requested mass resolution for the Y's. Almost identical behaviours are observed versus rapidity and transverse momentum of resonances for both new candidates. These proposed designs improve the mass resolution performances and could stand as suitable absorber options for the forward muon spectrometer of ALICE. The Carbon+Concrete absorber has been retained for the Technical Proposal [1].

  3. Application of burnable poisons integrated with fuel pellets in LWR

    International Nuclear Information System (INIS)

    The problem of using burnable poisons (gadolinium and erbium oxides) integrated with fuel pellets for suppression of the excess reactivity in the LWR reactor cores at fuel cycle begin when the fuel with maximum enrichment is loaded in the core is discussed. It is shown that application of the fuel elements with such pellets ensures sufficient burnup growth for fuel with increased enrichment, increase in the fuel cycle duration and decrease in neutron fluence on reactor vessel in the cases of optimized layouts of fresh and irradiated fuel assemblies in the reactor core. Basing on the analysis of studying into (U, Gd)O2 pellet heating and thermal conductivity under high burnups it is proved that the fuel with enrichment of 4.4 % of 235U may be used if the Gd2O3 content amounts to 2 %. Application of erbium absorber is recommended in uranium and plutonium fuel in inertial (nonfissible) matrix designed for burnups greater than 100 GeV · days/t

  4. Minor actinide transmutation on PWR burnable poison rods

    International Nuclear Information System (INIS)

    Highlights: • Key issues associated with MA transmutation are the appropriate loading pattern. • Commercial PWRs are the only choice to transmute MAs in large scale currently. • Considerable amount of MA can be loaded to PWR without disturbing keff markedly. • Loading MA to PWR burnable poison rods for transmutation is an optimal loading pattern. - Abstract: Minor actinides are the primary contributors to long term radiotoxicity in spent fuel. The majority of commercial reactors in operation in the world are PWRs, so to study the minor actinide transmutation characteristics in the PWRs and ultimately realize the successful minor actinide transmutation in PWRs are crucial problem in the area of the nuclear waste disposal. The key issues associated with the minor actinide transmutation are the appropriate loading patterns when introducing minor actinides to the PWR core. We study two different minor actinide transmutation materials loading patterns on the PWR burnable poison rods, one is to coat a thin layer of minor actinide in the water gap between the zircaloy cladding and the stainless steel which is filled with water, another one is that minor actinides substitute for burnable poison directly within burnable poison rods. Simulation calculation indicates that the two loading patterns can load approximately equivalent to 5–6 PWR annual minor actinide yields without disturbing the PWR keff markedly. The PWR keff can return criticality again by slightly reducing the boric acid concentration in the coolant of PWR or removing some burnable poison rods without coating the minor actinide transmutation materials from PWR core. In other words, loading minor actinide transmutation material to PWR does not consume extra neutron, minor actinide just consumes the neutrons which absorbed by the removed control poisons. Both minor actinide loading patterns are technically feasible; most importantly do not need to modify the configuration of the PWR core and

  5. Nano-Composite Superfine Nickel Powder Double Absorbent Coating Designing

    Institute of Scientific and Technical Information of China (English)

    LU Yan-hong; WANG Zhi-hui; HUANG Dong-zhen; HU Chuan-xin; ZHANG Chen-jia; LI Wan-zhi; LIANG Wen-ting

    2004-01-01

    We adopt a definite procedure to compound traditional absorbing material-superfine powder nickel and nano -SiC powder to obtain the nano-composite nickel powder, then testing the absorbing speciality of the composite powder. In virtue of computer assistant designing, we apply double-deck absorbent structure to improve absorbent effect and widen wave band. The experiment indicated that it is possible to achieve the anticipative object to improve the absorbing capability by adopting nano-composite absorbing material, but each component of the composite material must have matched electromagnetic parameter with another. For matching double-coating structure, it ought to modulate the correlativity of each factor to achieve the most matching in order to optimise the absorbent speciality.

  6. Study on the metal vapor generator for the production of improved gadolinia burnable poison material

    International Nuclear Information System (INIS)

    A longer cycle operation of a nuclear fuel is one of the ways to promote the economy of a nuclear power plant. For this purpose, high burn up fuel which has initial higher enrichment is required with higher loading of fuel. As a result, adequate burnable poison material must be used to control peak fuel pin power. Devices to manufacture the improved gadolinia burnable poison are developed. The improved gadolinia contains higher abundance of the preferred thermal neutron absorbers. Devices are composed of metal vapor generator, lasers and ion extractor. In this paper, a metal vapor generator by using electron beam gun is reported

  7. Study on the laser spectroscopic technique for the production of lmproved gadolinia burnable poison material

    International Nuclear Information System (INIS)

    A longer cycle operation of a nuclear fuel is one of the ways to promote the economy of a nuclear power plant. For this purpose, high burn up fuel which has initial higher enrichment is required with higher loading of fuel. Therefore, adequate burnable poison material must be used to control peak fuel pin power. Technologies to manufacture the improved gadolinia burnable poison, which contains higher abundance of the preferred thermal neutron absorbers, are composed of metal vapor generation-, lasers spectroscopic-, and photoion extraction technology. In this paper, laser spectroscopic technology with a small scale metal vapor generator is reported

  8. Design of integration-ready metasurface-based infrared absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Ogando, Karim, E-mail: karim@cab.cnea.gov.ar; Pastoriza, Hernán [Laboratorio de Bajas Temperaturas, Instituto Balseiro and Centro Atómico Bariloche, Bariloche 8400 (Argentina)

    2015-07-28

    We introduce an integration ready design of metamaterial infrared absorber, highly compatible with many kinds of fabrication processes. We present the results of an exhaustive experimental characterization, including an analysis of the effects of single meta-atom geometrical parameters and collective arrangement. We confront the results with the theoretical interpretations proposed in the literature. Based on the results, we develop a set of practical design rules for metamaterial absorbers in the infrared region.

  9. Design of a multiband terahertz perfect absorber

    Science.gov (United States)

    Dan, Hu; Hong-yan, Wang; Zhen-jie, Tang; Xi-wei, Zhang; Lin, Ju; Hua-ying, Wang

    2016-03-01

    A thin-flexible multiband terahertz metamaterial absorber (MA) has been investigated. Each unit cell of the MA consists of a simple metal structure, which includes the top metal resonator ring and the bottom metallic ground plane, separated by a thin-flexible dielectric spacer. Finite-difference time domain simulation indicates that this MA can achieve over 99% absorption at frequencies of 1.50 THz, 3.33 THz, and 5.40 THz by properly assembling the sandwiched structure. However, because of its asymmetric structure, the MA is polarization-sensitive and can tune the absorptivity of the second absorption peak by changing the incident polarization angle. The effect of the error of the structural parameters on the absorption efficiency is also carefully analyzed in detail to guide the fabrication. Moreover, the proposed MA exhibits high refractive-index sensing sensitivity, which has potential applications in multi-wavelength sensing in the terahertz region. Project supported by the National Natural Science Foundation of China (Grant No. 11504006), the Key Scientific Research Project of Higher Education of Henan Province, China (Grant No. 15A140002), and the Science and Technology Planning Project of Henan Province, China (Grant No. 142300410366).

  10. Ultrathin planar broadband absorber through effective medium design

    Institute of Scientific and Technical Information of China (English)

    Dong Liu; Haitong Yu; Zhen Yang; Yuanyuan Duan

    2016-01-01

    Ultrathin planar absorbers hold promise in solar energy systems because they can reduce the material,fabrication,and system cost.Here,we present a general strategy of effective medium design to realize ultrathin planar broadband absorbers.The absorber consists of two ultrathin absorbing dielectrics to designan effective absorbing medium,a transparent layer,and metallic substrate.Compared with previous studies,this strategy provides another dimension of freedom to enhance optical absorption;therefore,destructive interference can be realized over a broad spectrum.To demonstrate the power and simplicity of this strategy,we both experimentally and theoretically characterized an absorber with 5-nm-thick Ge,10-nm-thick Ti,and 50-nm-thick SiO2 films coated on an Ag substrate fabricated using simple deposition methods.Absorptivity higher than 80% was achieved in 15-nm-thick (1/50 of the center wavelength) Ge and Ti films from 400 nm to near 1 μm.As an application example,we experimentally demonstrated that the absorber exhibited a normal solar absorptivity of 0.8 with a normal emittance of 0.1 at 500 ℃,thus demonstrating its potential in solar thermal systems.The effective medium design strategy is general and allows material versatility,suggesting possible applications in real-time optical manipulation using dynamic materials.

  11. Development of a highly efficient burnable poison matrix material for cycle lifetime extension

    Energy Technology Data Exchange (ETDEWEB)

    Tulenko, J.S. [Florida Univ., 202 Nuclear Science Center, Gainesville, FL (United States); Baney, R.H.; Pressley, L. [Florida Univ., Gainesville, FL (United States)

    2001-07-01

    The University of Florida (UF) is carrying out basic research on a new class of thermally stable boron containing materials that from early indications appear to have special properties that will greatly enhance the performance of Burnable Poison Rod Assemblies (BPRA(tm)s) and address one of the major disadvantages of the use of boron shims. The new class of polymer materials, poly-acetylenic carbonyl-siloxane, termed ''Carborane'', were developed by Dr. T. Keller of the Naval Research Laboratory (NRL). Dr. T. Keller is cooperating in this research effort. Other classes of boron containing polymer materials are also under review. Displacement of water by the boron shims incurs an ''end of cycle reactivity penalty'' since at the end of cycle the moderator coefficient is strongly negative. ''Carborane'' has the property of being able to contain a tailored amount of boron while maintaining an extremely high hydrogen content, and at the same time being extremely stable to high temperatures and to neutron irradiation. Tests run by the NRL have shown that ''Carborane'' is stable to about 1000 C. The high hydrogen and carbon content contained in the ''Carborane'' Polymer offsets the large fuel cycle reactivity penalty which occurs with current generation BPRA(tm)s, as a result of the reactivity loss resulting from the BPRA(tm)s displacement of moderator water in the guide tubes of Pressurized Water Reactor (PWR) assemblies. Current generation BPRA utilize B{sub 4}C in an Al{sub 2}O{sub 3} matrix. In an attempt to minimize the reactivity penalty from water displacement, Westinghouse has developed a costly annular BPRA, called the Wet Annular Burnable Absorber (WABA) assembly. This burnable poison rod design reduces the moderator displacement by 22% by the use of a central annular water hole. The ''Carborane'' matrix proposed by the University of Florida

  12. Development of a highly efficient burnable poison matrix material for cycle lifetime extension

    International Nuclear Information System (INIS)

    The University of Florida (UF) is carrying out basic research on a new class of thermally stable boron containing materials that from early indications appear to have special properties that will greatly enhance the performance of Burnable Poison Rod Assemblies (BPRA(tm)s) and address one of the major disadvantages of the use of boron shims. The new class of polymer materials, poly-acetylenic carbonyl-siloxane, termed ''Carborane'', were developed by Dr. T. Keller of the Naval Research Laboratory (NRL). Dr. T. Keller is cooperating in this research effort. Other classes of boron containing polymer materials are also under review. Displacement of water by the boron shims incurs an ''end of cycle reactivity penalty'' since at the end of cycle the moderator coefficient is strongly negative. ''Carborane'' has the property of being able to contain a tailored amount of boron while maintaining an extremely high hydrogen content, and at the same time being extremely stable to high temperatures and to neutron irradiation. Tests run by the NRL have shown that ''Carborane'' is stable to about 1000 C. The high hydrogen and carbon content contained in the ''Carborane'' Polymer offsets the large fuel cycle reactivity penalty which occurs with current generation BPRA(tm)s, as a result of the reactivity loss resulting from the BPRA(tm)s displacement of moderator water in the guide tubes of Pressurized Water Reactor (PWR) assemblies. Current generation BPRA utilize B4C in an Al2O3 matrix. In an attempt to minimize the reactivity penalty from water displacement, Westinghouse has developed a costly annular BPRA, called the Wet Annular Burnable Absorber (WABA) assembly. This burnable poison rod design reduces the moderator displacement by 22% by the use of a central annular water hole. The ''Carborane'' matrix proposed by the University of Florida reduces the water displacement penalty by 59%, utilizing the hydrogen and carbon present in the ''Carborane''. In addition to increasing

  13. Design of electromagnetic shock absorbers for automotive suspensions

    Science.gov (United States)

    Amati, Nicola; Festini, Andrea; Tonoli, Andrea

    2011-12-01

    Electromechanical dampers seem to be a valid alternative to conventional shock absorbers for automotive suspensions. They are based on linear or rotative electric motors. If they are of the DC-brushless type, the shock absorber can be devised by shunting its electric terminals with a resistive load. The damping force can be modified by acting on the added resistance. To supply the required damping force without exceeding in size and weight, a mechanical or hydraulic system that amplifies the speed is required. This paper illustrates the modelling and design of such electromechanical shock absorbers. This paper is devoted to describe an integrated design procedure of the electrical and mechanical parameters with the objective of optimising the device performance. The application to a C class front suspension car has shown promising results in terms of size, weight and performance.

  14. DESIGN METHOD OF MAGNETORHEOLOGICAL FLUID SHOCK ABSORBER FOR CAR SUSPENSION

    Institute of Scientific and Technical Information of China (English)

    LIAO Changrong; ZHANG Honghui; YU Miao; CHEN Weimin

    2008-01-01

    The Bingham constitutive model, which is previously used in depiction of magnetorheological (MR) fluids rheological behaviors for design devices, exhibits discontinuous characteristics in representation of pre-yield behaviors and post-yield behaviors. A Biviscous constitutive model is presented to depict rheological behaviors of MR fluids and design automotive shock absorber. Quasi-static flow equations of MR fluids in annular channels are set theoretically up based on Navier-Stokes equations and several rational simplifications are made. And both flow boundary conditions and flow compatibilities conditions are established. Meantime, analytical velocity profiles of MR fluids though annular channels are obtained via solution of the quasi-static flow equations using Biviscous constitutive model. The prediction methodology of damping force offered by MR fluid shock absorber is formulated and damping performances are predicated in order to determine design parameters. MR fluid shock absorber for Mazda 323 car suspension is designed and fabricated in Chongqing University, China. Measurements from sinusoidal displacement cycle by Shanchuan Shock Absorber Ltd. of China North Industry Corporation reveal that the analytical methodology and design theory are reasonable.

  15. Rare earths as burnable poison for extended cycles control in electricity generation reactors

    International Nuclear Information System (INIS)

    The search of an optimization of the French electronuclear network operations leads to a necessary optimization of the core performances. All the economic studies performed by the utilities had shown that there is a real gain to minimize shut down periods for refueling. So, increasing the cycle length from 12 to 18 months will present a gain of shut down for a three years operation period. The theoretical burnable absorber will be a fuel admixed material bringing the required initial negative reactivity with a burn-up kinetic well suited to the fuel and allowing the lowest residual penalty as possible. The residual penalty us defined in this case by the non complete burn up of the poison, by the low of fissile material and by the accumulate of residual isotopes or nuclides. Because of the well known use of gadolinium as burnable absorber for BWR's and PWR's operations, the search for the best compromise to optimize all the above stress is pointed towards the rare earths. In the nuclides family, considering criteria such as cross sections, natural abundance and availability only five nuclides can play the role as burnable absorbers, namely: gadolinium, samarium, dysprosium, europium and erbium. The study presented here will show that only gadolinium and erbium will be considered to control the reactivity of the PWR's. (author). 58 refs., 65 figs., 47 tabs

  16. Parametric Study of the Effect of Burnable Poison Rods for PWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.C.

    2001-09-28

    The Interim Staff Guidance on burnup credit (ISG-8) issued by the United States Nuclear Regulatory Commission's (U.S. NRC) Spent Fuel Project Office recommends restricting the use of burnup credit to assemblies that have not used burnable absorbers. This recommended restriction eliminates a large portion of the currently discharged spent fuel assemblies from cask loading, and thus severely limits the practical usefulness of burnup credit. In the absence of readily available information on burnable poison rod (BPR) design specifications and usage in U.S. pressurized-water-reactors (PWRs), and the subsequent reactivity effect of BPR exposure on discharged spent nuclear fuel (SNF), NRC staff has indicated a need for additional information in these areas. In response, this report presents a parametric study of the effect of BPR exposure on the reactivity of SNF for various BPR designs, fuel enrichments, and exposure conditions, and documents BPR design specifications. Trends in the reactivity effects of BPRs are established with infinite pin-cell and assembly array calculations with the SCALE and HELIOS code packages, respectively. Subsequently, the reactivity effects of BPRs for typical initial enrichment and burnup combinations are quantified based on three-dimensional (3-D) KENO V.a Monte Carlo calculations with a realistic rail-type cask designed for burnup credit. The calculations demonstrate that the positive reactivity effect due to BPR exposure increases nearly linearly with burnup and is dependent on the number, poison loading, and design of the BPRs and the initial fuel enrichment. Expected typical reactivity increases, based on one-cycle BPR exposure, were found to be less than 1% {Delta}k. Based on the presented analysis, guidance is offered on an appropriate approach for calculating bounding SNF isotopic data for assemblies exposed to BPRs. Although the analyses do not address the issue of validation of depletion methods for assembly designs with BPRs

  17. Parametric Study of the Effect of Burnable Poison Rods for PWR Burnup Credit

    International Nuclear Information System (INIS)

    The Interim Staff Guidance on burnup credit (ISG-8) issued by the United States (U.S.) Nuclear Regulatory Commission's (NRC) Spent Fuel Project Office recommends restricting the use of burnup credit to assemblies that have not used burnable absorbers. This recommended restriction eliminates a large portion of the currently discharged spent fuel assemblies from cask loading, and thus severely limits the practical usefulness of burnup credit. In the absence of readily available information on burnable poison rod (BPR) design specifications and usage in U.S. pressurized water reactors (PWRs), and the subsequent reactivity effect of BPR exposure on discharged spent nuclear fuel (SNF), NRC staff has indicated a need for additional information in these areas. In response, this report presents a parametric study of the effect of BPR exposure on the reactivity of SNF for various BPR designs, fuel enrichments, and exposure conditions, and documents BPR design specifications. Trends in the reactivity effects of BPRs are established with infinite pin-cell and assembly array calculations with the SCALE and HELIOS code packages, respectively. Subsequently, the reactivity effects of BPRs for typical initial enrichment and burnup combinations are quantified based on three-dimensional (3-D) KENO V.a Monte Carlo calculations with a realistic rail-type cask designed for burnup credit. The calculations demonstrate that the positive reactivity effect due to BPR exposure increases nearly linearly with burnup and is dependent on the number, poison loading, and design of the BPRs and the initial fuel enrichment. Expected typical reactivity increases, based on one-cycle BPR exposure, were found to be less than 1% Δk. Based on the presented analysis, guidance is offered on an appropriate approach for calculating bounding SNF isotopic data for assemblies exposed to BPRs. Although the analyses do not address the issue of validation of depletion methods for assembly designs with BPRs, they

  18. Use of erbium as burnable poison for VVER reactors

    International Nuclear Information System (INIS)

    Problems related to use of Erbium as burnable poison for VVER are discussed. Comparison is made between neutronics characteristics of Uranium-Gadolinium and Uranium-Erbium fuel cycles. The study shows that use of Erbium as burnable poison allows decreasing the peaking factor in the core. Meanwhile residual Erbium at the end of the fuel cycle makes it necessary to increase fuel enrichment. There is made the conclusion of prospects of using Erbium as burnable poison for VVER. (orig.)

  19. Parametric design of an electrorheological shock absorber with the mixed-mode

    Institute of Scientific and Technical Information of China (English)

    ZHENG Ling; DENG Zhaoxiang; LI Yinong

    2003-01-01

    A mathematical model based on an electrorheological (ER) shock absorber with the mixed-mode is presented. Its application to the parametric design of an electrorheological fluid shock absorber with the simulation calculation performed by program MATLAB demonstrates that the model can predict the behavior of ER shock absorbers satisfactorily, shorten the design period of an electrorheological shock absorber, and reduce the cost in the prototype manufacturing. The strength analysis based on a three-dimensional finite element model for the electrorheological shock absorber confirm that the structure design of the ER shock absorber is reasonable, and the stress distribution is uniform.

  20. The treatment of burnable poison pins in LWRWIMS

    International Nuclear Information System (INIS)

    This report describes an investigation into the modelling approximations normally made when the LWR lattice code LWRWIMS is used for design calculations on assemblies containing burnable poison pins. Parameters investigated include energy group structure, intervals between calculations in MWd/te and spatial subdivision of the poison pins. An estimate is made of the effect of using pin-cell smearing with diffusion theory for the assembly geometry, instead of a more exact heterogeneous transport theory calculation. The influence on reactivity of the minor gadolinium isotopes 152, 154, 156, 158 and 160 in a poison pin dominated by the isotopes 155 and 157 is presented, and finally, recommendations on the use of LWRWIMS for this type of calculation are made. (author)

  1. Graphene metascreen for designing compact infrared absorbers with enhanced bandwidth

    KAUST Repository

    Chen, Pai-Yen

    2015-03-31

    We propose a compact, wideband terahertz and infrared absorber, comprising a patterned graphene sheet on a thin metal-backed dielectric slab. This graphene-based nanostructure can achieve a low or negative effective permeability, necessary for realizing the perfect absorption. The dual-reactive property found in both the plasmonic graphene sheet and the grounded highpermittivity slab introduces extra poles into the equivalent circuit model of the system, thereby resulting in a dual-band or broadband magnetic resonance that enhances the absorption bandwidth. More interestingly, the two-dimensional patterned graphene sheet significantly simplifies the design and fabrication processes for achieving resonant magnetic response, and allows the frequency-reconfigurable operation via electrostatic gating.

  2. Performance of Different Experimental Absorber Designs in Absorption Heat Pump Cycle Technologies: A Review

    Directory of Open Access Journals (Sweden)

    Jonathan Ibarra-Bahena

    2014-02-01

    Full Text Available The absorber is a major component of absorption cycle systems, and its performance directly impacts the overall size and energy supplies of these devices. Absorption cooling and heating cycles have different absorber design requirements: in absorption cooling systems, the absorber works close to ambient temperature, therefore, the mass transfer is the most important phenomenon in order to reduce the generator size; on the other hand, in heat transformer absorption systems, is important to recover the heat delivered by exothermic reactions produced in the absorber. In this paper a review of the main experimental results of different absorber designs reported in absorption heat pump cycles is presented.

  3. Graphene Based Terahertz Absorber Designed With Effective Surface Conductivity Approach

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Pizzocchero, Filippo; Booth, Tim;

    Young field of terahertz (THz) science and technology demands new materials and devices, such as filters, modulators, polarization converters and absorbers. Graphene, a recently discovered single-atom-thick material, provides exciting properties for functional terahertz applications. Graphene...

  4. Design of Absorbing Wave Maker based on Digital Filters

    DEFF Research Database (Denmark)

    Christensen, Morten; Frigaard, Peter

    An absorbing wave maker operated by means of on-line signals from digital FIR filters is presented. Surface elevations are measured in two positions in front of the wave maker. The reflected wave train is seperated by the sum of the incident and reflected wave trains by means of digital filtering...... and subsequent superposition of the measured surface elevations. The motion of the wave paddle required to absorb reflected waves is determined and added to the original wave paddle control signal. Irregular wave tests involving test structures with different degrees of reflection show that excellent absorption...

  5. New LWR Fuel Assembly Concepts using Particle Burnable Poisons for Low Boron Concentration

    International Nuclear Information System (INIS)

    The most importance role of the soluble boron is the control of the long term reactivity to maintain the criticality of the reactor cores by reducing core excess reactivity. However, the use of soluble boron in the coolant leads to several issues. First, boron is corrosive and the presence of boron in the coolant will increase corrosion on the primary coolant loop and the corrosive nuclides will be mixed with the coolant. Furthermore, CVCS (Chemical and Volume Control System) is required to clean these corrosive elements from the coolant and to purify and control the level of boron diluted in the coolant. The presence of CVCS including the corrosive elements requires complicated maintenance and operation leading to increases of additional pipes which can add the possibilities of occurrences of LOCAs (Loss of Coolant Accident). Furthermore, the removal of soluble boron or reduction of soluble boron concentration makes the moderator temperature coefficient (MTC) more negative. In this paper, we suggest use of burnable poison rods where burnable poison particles are distributed in the SiC matrix as in the FCM (Fully Ceramic Micro-encapsulated) fuel and we performed a feasibility study on the use of the new LWR fuel assembly design concepts using this concept of new burnable poison rods to achieve low boron or boron-free cores

  6. Practical design of a nonlinear tuned vibration absorber

    DEFF Research Database (Denmark)

    Grappasonni, C.; Habib, G.; Detroux, T.;

    2014-01-01

    The aim of the paper is to develop a new nonlinear tuned vibration absorber (NLTVA) capable of mitigating the vibrations of nonlinear systems which are known to exhibit frequency-energy-dependent oscillations. A nonlinear generalization of Den Hartog's equal-peak method is proposed to ensure equal...

  7. Optimal design of MR shock absorber and application to vehicle suspension

    International Nuclear Information System (INIS)

    This paper presents an optimal design of a magnetorheological (MR) shock absorber based on finite element analysis. The MR shock absorber is constrained in a specific volume and the optimization problem identifies geometric dimensions of the shock absorber that minimize a multi-objective function. The objective function is proposed by considering the damping force, dynamic range and the inductive time constant of the shock absorber. After describing the configuration of the MR shock absorber, a quasi-static modeling of the shock absorber is performed based on the Bingham model of an MR fluid. The initial geometric dimensions of the shock absorber are then determined based on the assumption of constant magnetic flux density throughout the magnetic circuit. The objective function of the optimization problem is derived based on the solution of the initial shock absorber. An optimization procedure using a golden-section algorithm and a local quadratic fitting technique is constructed via a commercial finite element method parametric design language. Using the developed optimization tool, optimal solutions of the MR shock absorber, which is constrained in a specific cylindrical volume defined by its radius and height, are determined. Subsequently, a quarter-car suspension model with the optimized MR shock absorber is formulated and the vibration control performance of the suspension is evaluated under bump and sinusoidal road conditions

  8. Design of absorber assemblies with intentional pellet-cladding mechanical interaction

    International Nuclear Information System (INIS)

    A number of improvements in absorber assembly performance characteristics can be achieved through implementation of absorber cladding mechanical interaction (ACMI). Benefits include lower operating temperatures, less potential for material relocation, longer lifetime, and increased reactivity worth. Analyses indicate that substantial cladding strains may be attainable without significant risk of breach. However, actual in-reactor testing of ACMI in absorber elements will be required before design criteria can be revised to accept ACMI

  9. Design of wide bandwidth pyramidal microwave absorbers using ferrite composites with broad magnetic loss spectra

    Science.gov (United States)

    Park, Myung-Jun; Kim, Sung-Soo

    2016-09-01

    Wide bandwidth microwave absorbers with a pyramidal shape and a significantly reduced thickness can be designed using high lossy ferrite materials with broad magnetic loss spectra. The microwave absorbing properties of pyramidal cone absorbers are analyzed using the transmission line approximation, which provides the reflection loss as a function of the material parameters and absorber geometry. Three types of ferrite materials (NiZn spinel ferrite, Co2Z hexaferrite, and RuCoM hexaferrite) are used as the absorbent fillers in a rubber matrix. Among these, Co2Z ferrite is the most suitable material for wide bandwidth pyramidal absorbers, due to its broad magnetic loss spectrum in the GHz frequency range. The optimal geometry of the pyramidal absorber is also determined using the transmission line theory. With the reduced total height of the pyramidal absorber (approximately 60 mm), a wide bandwidth (1.5-18 GHz with respect to the -20 dB reflection loss) can be realized. The proposed absorbers have a thickness advantage over the classical pyramidal ohmic absorbers; thus, they are suitable for small and semi-anechoic chambers.

  10. The design of impact absorbing structures for additive manufacture

    International Nuclear Information System (INIS)

    Additive manufacturing (AM) is increasingly becoming a viable manufacturing process due to dramatic advantages that it facilitates in the area of design complexity. This paper investigates the potential of additively manufactured lattice structures for the application of tailored impact absorption specifically for conformal body protection. It explores lattice cell types based on foam microstructures and assesses their suitability for impact absorption. The effect of varying the cell strut edge design is also investigated. The implications of scaling these cells up for AM are discussed as well as the design issues regarding the handling of geometric complexity and the requirement for body conformity. The suitability of AM materials for this application is also discussed.

  11. Apply Burnable Poison For Fuel Pebble Of PBMR-400 With OTTO Refueling

    International Nuclear Information System (INIS)

    A new fuel pebble was designed by adding spherical Gd2O3 particles for obtaining the minimum reactivity swing. Optimization is done in a lattice model to determine the combination of radius and number of burnable poison (BP) particles per pebble to obtain the minimum reactivity swing. The numerical calculation so that with 740 μm and 13 particles of Gd2O3. The reactivity swing is reduced from 38% to 2.0%, whereas the k∞ is 1.06 - 1.08 for a fuel lattice with the target burnup of 55 GWd/t. (author)

  12. Basic Problems in Design and Inverse Engineering Solution for Outer Characteristic of Vehicle Suspension Shock Absorbers

    Institute of Scientific and Technical Information of China (English)

    俞德孚; 陈庆东; 李文君

    2003-01-01

    Based on the theory and the practical experiences of linearity design of feasible design area and inverse solution of non-linear outer characteristic of suspension shock absorber, in accordance with non-linearity outer characteristic formed by open-up damping coefficient, full-open damping coefficient and smoothness to safety ratio of suspension shock absorber, a method and a research conclusion of the feasible design and inverse solution for the basic problems of designing and inverse solution of non-linear outer characteristic of suspension damping components are provided.

  13. Design of Matched Absorbing Layers for Surface Plasmon-Polaritons

    Directory of Open Access Journals (Sweden)

    Sergio de la Cruz

    2012-01-01

    Full Text Available We describe a procedure for designing metal-metal boundaries for the strong attenuation of surface plasmon-polaritons without the introduction of reflections or scattering effects. Solutions associated with different sets of matching materials are found. To illustrate the results and the consequences of adopting different solutions, we present calculations based on an integral equation formulation for the scattering problem and the use of a nonlocal impedance boundary condition.

  14. Robust Optimal Design of a Nonlinear Dynamic Vibration Absorber Combining Sensitivity Analysis

    Directory of Open Access Journals (Sweden)

    R.A. Borges

    2010-01-01

    Full Text Available Dynamic vibration absorbers are discrete devices developed in the beginning of the last century used to attenuate the vibrations of different engineering structures. They have been used in several engineering applications, such as ships, power lines, aeronautic structures, civil engineering constructions subjected to seismic induced excitations, compressor systems, etc. However, in the context of nonlinear dynamics, few works have been proposed regarding the robust optimal design of nonlinear dynamic vibration absorbers. In this paper, a robust optimization strategy combined with sensitivity analysis of systems incorporating nonlinear dynamic vibration absorbers is proposed. Although sensitivity analysis is a well known numerical technique, the main contribution intended for this study is its extension to nonlinear systems. Due to the numerical procedure used to solve the nonlinear equations, the sensitivities addressed herein are computed from the first-order finite-difference approximations. With the aim of increasing the efficiency of the nonlinear dynamic absorber into a frequency band of interest, and to augment the robustness of the optimal design, a robust optimization strategy combined with the previous sensitivities is addressed. After presenting the underlying theoretical foundations, the proposed robust design methodology is performed for a two degree-of-freedom system incorporating a nonlinear dynamic vibration absorber. Based on the obtained results, the usefulness of the proposed methodology is highlighted.

  15. MICE - Absorber and focus coil safety working group design document: Preliminary design and assessments

    International Nuclear Information System (INIS)

    A Neutrino Factory based on a muon storage ring is the ultimate tool for studies of neutrino oscillations, including possibly the discovery of leptonic CP violation. it is also the first step toward a muon collider. To develop a stored-muon-beam facility to serve as a Neutrino Factory, it is necessary to ''cool'' a muon beam (decrease its phase-space volume). The short lifetime of the muon, 2.2 (micro)s at rest, eliminates all currently demonstrated cooling techniques and requires that a new, heretofore untried, technique--ionization cooling--be employed. Although ionization cooling of muons has never been demonstrated in practice, it has been shown by end-to-end simulation and design studies to be an important factor both for the performance and for the cost of a Neutrino Factory. This motivates an international program of R and D, including an experimental demonstration at Rutherford Appleton Laboratory (RAL). The aims of the international Muon Ionization Cooling Experiment are: (1) to show that it is possible to design, engineer and build a section of cooling channel capable of giving the desired performance for a Neutrino Factory; and (2) to place it in a muon beam and measure its performance in various modes of operation and beam conditions, thereby investigating the limits and practicality of cooling. The MICE collaboration has designed an experiment in which a section of an ionization cooling channel is exposed to a muon beam. This cooling channel assembles liquid-hydrogen absorbers providing energy loss and high-gradient radio frequency (RF) cavities to re-accelerate the particles, all tightly contained in a magnetic channel. It reduces the beam transverse emittance by > 10% for muon momenta between 140 and 240 MeV/c. The layout of the experiment is shown. They utilize one complete magnetic cell of the cooling channel, comprising three absorber-focus-coil (AFC) modules and two RF-coupling-coil (RFCC) modules. Spectrometers placed before and after the

  16. Fuel Temperature Characteristics for Fuel Channels using Burnable Poison in the CANDU reactor

    International Nuclear Information System (INIS)

    Although the CANFLEX RU fuel bundle loaded 11.0 wt% Er2O3 are originally designed focused on the safety characteristics, the fuel temperature characteristics is revealed to be not deteriorated but rather is slightly enhanced by the decreased fuel temperature in the outer ring compared with that of standard 37 fuel bundle. Recently, for an equilibrium CANDU core, the power coefficient was reported to be slightly positive when newly developed Industry Standard Tool set reactor physics codes were used. Therefore, it is required to find a new way to effectively decrease the positive power coefficient of CANDU reactor without seriously compromising the economy. In order to make the power coefficient of the CANDU reactor negative at the operating power, Roh et al. have evaluated the various burnable poison (BP) materials and its loading scheme in terms of the fuel performance and reactor safety characteristics. It was shown that reactor safety characteristics can be greatly improved by the use of the BP in the CANDU reactor. In a view of safety, the fuel temperature coefficient (FTC) is an important safety parameter and it is dependent on the fuel temperature. For an accurate evaluation of the safety-related physics parameters including FTC, the fuel temperature distribution and its correlation with the coolant temperature should be accurately identified. Therefore, we have evaluated the fuel temperature distribution of a CANFLEX fuel bundle loaded with a burnable poison and compared the standard 37 element fuel bundle and CANFELX-NU fuel bundle

  17. Design of absorbency photometer used in a fully automatic ELISA analyzer

    Science.gov (United States)

    Dong, Ningning; Zhu, Lianqing; Dong, Mingli; Niu, Shouwei

    2008-03-01

    Absorbency measurement is the most important step in the ELISA analysis. Based on the spectrophotometry, absorbency photometer system used in a fully automatic ELISA analyzer is developed. The system is one core module of the fully automatic ELISA analyzer. The principle and function of the system is analyzed. Three main units of the system, the photoelectric transform unit, the data processing unit and the communication and control unit, are designed and debugged. Finally, the test of the system is carried out using the verification plate. The experiment results agree well with the requirements.

  18. Leaky Mode Engineering: A General Design Principle for Dielectric Optical Antenna Solar Absorbers

    CERN Document Server

    Yu, Yiling

    2014-01-01

    We present a general principle for the rational design of dielectric optical anatennas with optimal solar absorption: leaky mode engineering. This builds upon our previous study that demonstrates the solar absorption in a given amount of materials dictated by the modal properties of leaky modes. Here we synergistically examine the correlation among the modal properties of leaky modes, the physical features of dielectric structures, and the solar absorption in these structures. Our analysis clearly points out the general guideline for the design of dielectric optical antennas with optimal solar absorption enhenacement: a) using 0D structures; b) the shape does not matter much; c) heterostructuring with non-absorbing materials is a promising strategy; d) the design of a large-scale nanostructure array can literally build upon the design of single nanostructure solar absorbers.

  19. Design of four-band terahertz perfect absorber based on a simple #-shaped metamaterial resonator

    Science.gov (United States)

    Hu, Dan; Wang, Hongyan; Tang, Zhenjie; Zhang, Xiwei; Zhu, Qiaofen

    2016-09-01

    We propose a simple and novel design of four-band terahertz perfect metamaterial absorber composed of a periodic arrangement of metallic #-shaped strip and a metallic background plane, separated by a dielectric polyimide spacer. Theoretical results show that the proposed absorber has four distinct absorption bands whose peaks are average over 99 %. Different from previous reports by combining the resonances of the complex structure (coplanar super-unit structure or stacked multilayer structure) to realize multiband response, the proposed structure primarily utilizes the combination of LC and electric dipole resonances of the single patterned structure, thus making the proposed structure very easy to be fabricated. Furthermore, sensing performance of the absorber is analyzed in terms of the over-layer and the surrounding index.

  20. The design, fabrication and properties of B4C/Al neutron absorbers

    International Nuclear Information System (INIS)

    Neutron absorber is used for the criticality safety during the storage or transportation of spent nuclear fuel. In this work, the metal matrix composite with good mechanical property and thermal neutron absorbing ability was investigated based on B4C/Al neutron radiation shielding material. The composition ratio for B4C/Al composite was firstly designed and the dependence of the neutron transmission on the thickness of the material was calculated. By vacuum hot-pressing technique at a low temperature, the neutron absorbers with high concentration of B4C were fabricated. Furthermore, the corresponding microstructure, physical, mechanical and corrosion properties as well as fracture surface were analyzed, proving that the developed composites can shield the neutron radiation as effectively as cadmium materials

  1. Modelling of TES X-ray Microcalorimeters with a Novel Absorber Design

    Science.gov (United States)

    Iyomoto, Naoko; Bandler, Simon; Brefosky, Regis; Brown, Ari; Chervenak, James; Figueroa-Feliciano, Enectali; Finkbeiner, Frederick; Kelley, Richard; Kilbourne, Caroline; Lindeman, Mark; Porter, Frederick; Saab, Tarek; Sadleir, Jack; Smith, Stephen

    2007-01-01

    Our development of a novel x-ray absorber design that has enabled the incorporation of high-conductivity electroplated gold into our absorbers has yielded devices that not only have achieved breakthrough performance at 6 keV, but also are extraordinarily well modelled. We have determined device parameters that reproduce complex impedance curves and noise spectra throughout transition. Observed pulse heights, decay time and baseline energy resolution were in good agreement with simulated results using the same parameters. In the presentation, we will show these results in detail and we will also show highlights of the characterization of our gold/bismuth-absorber devices. We will discuss possible improvement of our current devices and expected performance of future devices using the modelling results.

  2. APPLICATION OF MODERN ROBUST OPTIMAL DESIGN METHOD TO THE SHOCK ABSORBER IN A CAR

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    To reduce the variation of velocity characteristic of the shock absorber in a car, a modern robust optimal design method is applied to its structural parameters design. Firstly, the method is used to obtain the robust values which have low sensitivity to velocity characteristic and analyze the influences of the parameters on velocity characteristic. Secondly, the method is used to obtain their maximum tolerances under the condition of ensuring product quality. The results obviously improve the velocity characteristic.

  3. A universal design to realize a tunable perfect absorber from infrared to microwaves

    Science.gov (United States)

    Smaali, Rafik; Omeis, Fatima; Moreau, Antoine; Taliercio, Thierry; Centeno, Emmanuel

    2016-01-01

    We propose a design for an universal absorber, characterized by a resonance frequency that can be tuned from visible to microwave frequencies independently of the choice of the metal and the dielectrics involved. An almost perfect absorption up to 99.8% is demonstrated at resonance for all polarization states of light and for a very wide angular aperture. These properties originate from a magnetic Fabry-Perot mode that is confined in a dielectric spacer of λ/100 thickness by a metamaterial layer and a mirror. An extraordinary large funneling through nano-slits explains how light can be trapped in the structure. Simple scaling laws can be used as a recipe to design ultra-thin perfect absorbers whatever the materials and the desired resonance wavelength, making our design truly universal. PMID:27599634

  4. Design, simulation and optimization of a solar dish collector with spiral-coil thermal absorber

    Directory of Open Access Journals (Sweden)

    Pavlović Saša R.

    2016-01-01

    Full Text Available The efficient conversion of solar radiation into heat at high temperature levels requires the use of concentrating solar collectors. The goal of this paper is to present the optical and the thermal analysis of a parabolic dish concentrator with a spiral coil receiver. The parabolic dish reflector consists of 11 curvilinear trapezoidal reflective petals constructed by PMMA with silvered mirror layer and has a diameter of 3.8 m, while its focal distance is 2.26m. This collector is designed with commercial software SolidWorks and simulated, optically and thermally in its Flow Simulation Studio. The optical analysis proved that the ideal position of the absorber is at 2.1m from the reflector in order to maximize the optical efficiency and to create a relative uniform heat flux over the absorber. In thermal part of the analysis, the energetic efficiency was calculated approximately 65%, while the exergetic efficiency is varied from 4% to 15% according to the water inlet temperature. Moreover, other important parameters as the heat flux and temperature distribution over the absorber are presented. The pressure drop of the absorber coil is calculated at 0.07bar, an acceptable value.

  5. Flattening of burnup reactivity in long-life prismatic HTGR by particle type burnable poisons

    International Nuclear Information System (INIS)

    Highlights: ► The effect of particle-type burnable poisons in long-life prismatic HTGR was analyzed in detail. ► Different burnable poison particles can be combined to minimize excess reactivity during the core life. ► The use of burnable poison particles increases the passive safety features of prismatic HTGRs. - Abstract: For the flattening of burnup reactivity in long-life prismatic High-Temperature Gas-cooled Reactors (HTGRs), the effect of particle type on burnable poison properties is analyzed in detail using Monte Carlo calculations. Some examples of optimized specifications are shown. It is shown that combinations of particles with different materials, diameters, and concentrations make it possible to reduce excess reactivity to around or below 1 $ during the core life. The use of optimized burnable poison particles will help improve the passive safety features of long-life prismatic HTGR

  6. New Design of Potentially Low-cost Solar Cells Using TiO2/Graphite Composite as Photon Absorber

    OpenAIRE

    Rahman, Dui Yanto; Rokhmat, Mamat; Yuliza, Elfi; Sustini, Euis; Abdullah, Mikrajuddin

    2015-01-01

    A solar cell design using the combination of titanium dioxide and graphite as active photon absorbing materials were proposed. The titanium dioxide absorbs photons of nearly ultraviolet wavelengths to produce electron hole pairs, while graphite is expected to absorb photons of longer wavelengths. Although many authors have claimed that graphite is not a semiconductor, we observed that a model of a solar cell containing titanium dioxide only as the active material behaves exactly the same as a...

  7. A development of burnable poison fuel for the JMTR

    International Nuclear Information System (INIS)

    This paper describes the results of fabrication tests of fuel plate and side plate containing natural boron and their irradiation tests and post-irradiation examinations for the JMTR (50 MWt). In order to increase uranium loading density in fuel meat from present 22 wt% to 30 wt%, powder metallurgy techniques were used for fabricating the fuel plates. And fabrication procedure of the side plates with natural boron was nearly the same as that of fuel plates. Irradiation tests and post-irradiation experiments on the fuel plates and the mini-side plates showed satisfiable results. However, oxide film spallation was observed on one of four plates irradiated under the same conditions. It is unable to clear the reason why such a phenomenon was observed on only one plate. In the first program, fuel elements with burnable poison and full core irradiation tests were planned as well. However, in the application of safety approval for the core conversion with burnable poison fuel, by the competent authority in Japan, difficulties were felt with a problem of hypothetical accident analysis which were not directly related to the core conversion. The program was therefore stopped from the viewpoint of man power and cost needed for obtaining the safety approval. (author)

  8. LBNF Hadron Absorber: Mechanical Design and Analysis for 2.4MW Operation

    Energy Technology Data Exchange (ETDEWEB)

    Hartsell, B. [Fermilab; Anderson, K. [Fermilab; Hylen, J. [Fermilab; Sidorov, V. [Fermilab; Tariq, S. [Fermilab

    2015-06-01

    Fermilab’s Long-Baseline Neutrino Facility (LBNF) requires an absorber, essentially a large beam dump consisting of actively cooled aluminum and steel blocks, at the end of the decay pipe to stop leftover beam particles and provide radiation protection to people and groundwater. At LBNF’s final beam power of 2.4 MW and assuming the worst case condition of a 204 m long helium filled decay pipe, the absorber is required to handle a heat load of about 750 kW. This results in significant thermal management challenges which have been mitigated by the addition of an aluminum ‘spoiler’ and ‘sculpting’ the central portion of the aluminum core blocks. These thermal effects induce structural stresses which can lead to fatigue and creep considerations. Various accident conditions are considered and safety systems are planned to monitor operation and any accident pulses. Results from these thermal and structural analyses will be presented as well as the mechanical design of the absorber. The design allows each of the core blocks to be remotely removed and replaced if necessary. A shielded remote handling structure is incorporated to hold the hadron monitor when it is removed from the beam.

  9. Design Guidelines for Ferrite Absorbers Submitted to RF-induced Heating

    CERN Document Server

    Bertarelli, A

    2013-01-01

    The use of ferrite absorbers is one of the most effective means of damping potentially harmful high order RF modes, which may lead to beam instabilities and excessive power losses in accelerator devices. However, the power deposited on ferrite absorbers themselves maylead to ferrite exceeding its Curie temperature, losing its damping properties. An evaluation of the ferrite capability to dissipate deposited heat is hence of paramount importance for the safe design of particle accelerator devices. In this paper, figures of merit are proposed to assess the maximum specific power allowed on a generic ferrite tile, before it reaches its Curie temperature. Due to its inherent brittleness, sufficient contact pressure between ferrite and its housing, allowing heat transmission by conduction, can hardly be applied. A semi-analytical study is thus performed, assuming that ferrite is evacuating heat solely through radiation. The described method is then exemplified in the case of the BPM-embedded tertiary collimator (T...

  10. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    CERN Document Server

    Baffes, C; Leibfritz, J; Oplt, S; Rakhno, I

    2013-01-01

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type RF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a Helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. In addition, the potential for radiation-induced degradation of the graphite is discussed.

  11. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  12. Optimal burnable poison-loading in a PWR with carbon coated particle fuel

    International Nuclear Information System (INIS)

    An innovative PWR concept that uses carbon-coated particle fuels moderated by graphite as that of HTGR but cooled by pressurized light water has been studied. The aim of this concept is to take both the best advantages of fuel integrity against fission products release and the reliability PWR technology based on the long operational experience. The purpose of the study is to optimize loading pattern of burnable poison in the proposed core in order to suppress excess reactivity during a cycle. Although there are many parameters to be determined for optimization of the usage of burnable poison, the emphasis is put here on loading patterns of Gadolinia in an assembly and in the core. We investigated the burnup characteristics of the core varying the concentration of burnable poison in a fuel rod, the number of burnable poison-rods in an assembly, and the number of burnable poison-assemblies in the core. The result suggested that Gadolinia was more suitable for this reactor than boron as burnable poison, and it was possible to make the reactivity swing negligible by combining at least three kinds of burnable poison-assemblies in which the amount of Gadolinia was different. Therefore the requirement for the number of control rods was reduced and it meant that Control Rod Programming would become easier. (author)

  13. Design of practicable phase-change metadevices for near-infrared absorber and modulator applications.

    Science.gov (United States)

    Carrillo, Santiago García-Cuevas; Nash, Geoffrey R; Hayat, Hasan; Cryan, Martin J; Klemm, Maciej; Bhaskaran, Harish; Wright, C David

    2016-06-13

    Phase-change chalcogenide alloys, such as Ge2Sb2Te5 (GST), have very different optical properties in their amorphous and crystalline phases. The fact that such alloys can be switched, optically or electrically, between such phases rapidly and repeatedly means that they have much potential for applications as tunable photonic devices. Here we incorporate chalcogenide phase-change films into a metal-dielectric-metal metamaterial electromagnetic absorber structure and design absorbers and modulators for operation at technologically important near-infrared wavelengths, specifically 1550 nm. Our design not only exhibits excellent performance (e.g. a modulation depth of ~77% and an extinction ratio of ~20 dB) but also includes a suitable means for protecting the GST layer from environmental oxidation and is well-suited, as confirmed by electro-thermal and phase-transformation simulations, to in situ electrical switching. We also present a systematic study of design optimization, including the effects of expected manufacturing tolerances on device performance and, by means of a sensitivity analysis, identify the most critical design parameters. PMID:27410372

  14. Design of an adjustable polarization-independent and wideband electromagnetic absorber

    Science.gov (United States)

    He, Yun; Jiang, Jianjun; Chen, Mi; Li, Shicai; Miao, Ling; Bie, Shaowei

    2016-03-01

    An adjustable polarization-independent electromagnetic absorber based on a frequency-selective surface is proposed for both C and X microwave-band applications. The design using a symmetric fan-shaped pattern significantly reduces the sensitivity to different polarizations of normal incident microwaves. To achieve adjustability, PIN diodes are connected between patterned unit cells. By incorporating inductors into the metal patterns, an S-shaped series bias provides the bias voltage to PIN diodes. By tuning the working states of the diodes, an adjustable absorption performance from 4.6 to 13 GHz is achieved for both transverse electric and transverse magnetic polarizations in normal incidence.

  15. Multi-objective optimal design of active vibration absorber with delayed feedback

    Science.gov (United States)

    Huan, Rong-Hua; Chen, Long-Xiang; Sun, Jian-Qiao

    2015-03-01

    In this paper, a multi-objective optimal design of delayed feedback control of an actively tuned vibration absorber for a stochastically excited linear structure is investigated. The simple cell mapping (SCM) method is used to obtain solutions of the multi-objective optimization problem (MOP). The continuous time approximation (CTA) method is applied to analyze the delayed system. Stability is imposed as a constraint for MOP. Three conflicting objective functions including the peak frequency response, vibration energy of primary structure and control effort are considered. The Pareto set and Pareto front for the optimal feedback control design are presented for two examples. Numerical results have found that the Pareto optimal solutions provide effective delayed feedback control design.

  16. Design and simulation of multi-color infrared CMOS metamaterial absorbers

    Science.gov (United States)

    Cheng, Zhengxi; Chen, Yongping; Ma, Bin

    2016-05-01

    Metamaterial electromagnetic wave absorbers, which usually can be fabricated in a low weight thin film structure, have a near unity absorptivity in a special waveband, and therefore have been widely applied from microwave to optical waveband. To increase absorptance of CMOS MEMS devices in 2-5 μmm waveband, multi-color infrared metamaterial absorbers are designed with CSMC 0.5 μmm 2P3M and 0.18 μmm 1P6M CMOS technology in this work. Metal-insulator-metal (MIM) three-layer MMAs and Insulator-metal-insulator-metal (MIMI) four-layer MMAs are formed by CMOS metal interconnect layers and inter metal dielectrics layer. To broaden absorption waveband in 2-5μmm range, MMAs with a combination of different sizes cross bars are designed. The top metal layer is a periodic aluminum square array or cross bar array with width ranging from submicron to several microns. The absorption peak position and intensity of MMAs can be tuned by adjusting the top aluminum micro structure array. Post-CMOS process is adopted to fabricate MMAs. The infrared absorption spectra of MMAs are verified with finite element method simulation, and the effects of top metal structure sizes, patterns, and films thickness are also simulated and intensively discussed. The simulation results show that CMOS MEMS MMAs enhance infrared absorption in 2-20 μmm. The MIM broad MMA has an average absorptance of 0.22 in 2-5 μmm waveband, and 0.76 in 8-14 μm waveband. The CMOS metamaterial absorbers can be inherently integrated in many kinds of MEMS devices fabricated with CMOS technology, such as uncooled bolometers, infrared thermal emitters.

  17. Rare earths as burnable poison for extended cycles control in electricity generation reactors; Etude des terres rares en tant que poison consommable pour le controle des cycles allonges pour les reacteurs electrogenes

    Energy Technology Data Exchange (ETDEWEB)

    Asou, M.

    1995-05-12

    The search of an optimization of the French electronuclear network operations leads to a necessary optimization of the core performances. All the economic studies performed by the utilities had shown that there is a real gain to minimize shut down periods for refueling. So, increasing the cycle length from 12 to 18 months will present a gain of shut down for a three years operation period. The theoretical burnable absorber will be a fuel admixed material bringing the required initial negative reactivity with a burn-up kinetic well suited to the fuel and allowing the lowest residual penalty as possible. The residual penalty us defined in this case by the non complete burn up of the poison, by the low of fissile material and by the accumulate of residual isotopes or nuclides. Because of the well known use of gadolinium as burnable absorber for BWR`s and PWR`s operations, the search for the best compromise to optimize all the above stress is pointed towards the rare earths. In the nuclides family, considering criteria such as cross sections, natural abundance and availability only five nuclides can play the role as burnable absorbers, namely: gadolinium, samarium, dysprosium, europium and erbium. The study presented here will show that only gadolinium and erbium will be considered to control the reactivity of the PWR`s. (author). 58 refs., 65 figs., 47 tabs.

  18. Design of high performance multilayer microwave absorbers using fast Pareto genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    JIANG LiYong; LI XiangYin; ZHANG Jie

    2009-01-01

    The application of the Non-dominated Sorting Genetic Algorithm Ⅱ (NSGA-Ⅱ) in designing microwave absorbers is described in this paper. To obtain high performance coatings, we put forward three cost functions, which represent three objectives of strong-absorption, broad-bandwidth and thin structure, and study the tradeoffs between each other. Numerical calculations on available materials in 2-18 GHz are implemented to construct the Pareto front and Pareto-optimal surface for two and three objectives respectively. Results indicate that the NSGA-Ⅱ can work more efficiently and effectively than traditional Pareto genetic algorithms. Additionally, we present several particular designs from the above Pareto front (surface) for potential applications in different frequency bands. For example, a four-layer ab-sorber with thickness of 2.8071 mm is obtained to provide average reflection coefficient of -11.95 dB and average reflection bandwidth of 0.5780 in 2-18 GHz, considering arbitrary incident angles (0°-89°) and both TE and TM polarizations.

  19. Design of high performance multilayer microwave absorbers using fast Pareto genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The application of the Non-dominated Sorting Genetic Algorithm Ⅱ (NSGA-Ⅱ) in designing microwave absorbers is described in this paper. To obtain high performance coatings,we put forward three cost functions,which represent three objectives of strong-absorption,broad-bandwidth and thin structure,and study the tradeoffs between each other. Numerical calculations on available materials in 2―18 GHz are implemented to construct the Pareto front and Pareto-optimal surface for two and three objectives respectively. Results indicate that the NSGA-Ⅱ can work more efficiently and effectively than traditional Pareto genetic algorithms. Additionally,we present several particular designs from the above Pareto front (surface) for potential applications in different frequency bands. For example,a four-layer absorber with thickness of 2.8071 mm is obtained to provide average reflection coefficient of -11.95 dB and average reflection bandwidth of 0.5780 in 2―18 GHz,considering arbitrary incident angles (0°―89°) and both TE and TM polarizations.

  20. Improved design of dynamic vibration absorber by using the inerter and its application in vehicle suspension

    Science.gov (United States)

    Shen, Yujie; Chen, Long; Yang, Xiaofeng; Shi, Dehua; Yang, Jun

    2016-01-01

    Inerter is a recently proposed mechanical element with two terminals. The novelty of this paper is to present the improved design which aims to add traditional dynamic vibration absorber to the vehicle body by using the inerter. Based on this background, a new vehicle suspension structure called ISD suspension, including the inerter, spring and damper has been created. A dual-mass vibration model including the ISD suspension is considered in this study. Parameters are obtained by using the genetic optimizing algorithm. The frequency-domain simulation confirms that the ISD suspension can effectively improve the damping performance of the suspension system, especially at the offset frequency of the vehicle body, which is consistent with the feature of the dynamic vibration absorber added to the vehicle body mass. At last, a prototype ball screw inerter has been designed and the bench test of a quarter-car model has been undertaken. Under the conditions of the random road input, the vehicle ride comfort evaluation of body acceleration RMS value decreases by 4% at most, the suspension deflection RMS value decreases by 16% at most, the tire dynamic load RMS value decreases by 6% at most. Power spectral density results also indicate that the ISD suspension has superior damping performance than passive suspension which proves that the proposed ISD suspension is deemed effective.

  1. Sound Absorbers

    Science.gov (United States)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  2. TECHNICAL NOTE: Design and development of electromagnetic absorbers with carbon fiber composites and matching dielectric layers

    Science.gov (United States)

    Neo, C. P.; Varadan, V. K.

    2001-10-01

    Radar absorbing materials are designed and developed with carbon fibers and suitable matching layers. Complex permittivities of carbon fiber composite are predicted on the basis that the modulus of permittivity obeys a logarithmic law of mixtures and the dielectric loss tangents are related through a linear law of mixtures. Linear regression analysis performed on the data points provides the constants which are used to predict the effective permittivities of carbon fiber composite at different frequencies. Using the free space measurement system, complex permittivities of the lossy dielectric at different frequencies are obtained. These complex permittivities are used to predict the reflectivity of a thin lossy dielectric layer on carbon fiber composite substrate. The predicted results agree quite well with the measured data. It is interesting to note that the thin lossy dielectric layer, about 0.03 mm thick, has helped to reduce the reflectivity of the 5.2 mm thick carbon fiber composite considerably.

  3. Isotope Separation Effect of Burnable Absorber for Long-cycle Boron-free Reactor Core

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Chidong; Choe, Jiwon; Lee, Deokjung Lee [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Shin, Ho Cheol [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2015-05-15

    To satisfy these requirements, BA rods in the boron-free reactor should be depleted in proportion to the cycle depletion, and burned out completely at EOC. However, there remain residues of the BA to the end, which reduces the cycle length of the reactors. In order to create more economic profits, these residues should be minimized so that the cycle length can get longer. The amount of burned BA and the corresponding assembly lifetime are analyzed to investigate the effectiveness of isotope separation for BA of a long-cycle boron-free reactor. It was noted that only Erbium and Hafnium can be burned relatively in a flat rate over the whole cycle, whereas Gd, Sm, Eu, Cd, {sup 157}Gd, {sup 149}Sm, {sup 151}Eu, and {sup 113}Cd are burned almost 100% even within the half of lifetime. In terms of assembly lifetime, Hafnium showed higher improvement than Erbium between the single isotope and its naturally occurring element.

  4. A new fast neutron collar for safeguards inspection measurements of fresh low enriched uranium fuel assemblies containing burnable poison rods

    International Nuclear Information System (INIS)

    Safeguards inspection measurements must be performed in a timely manner in order to detect the diversion of significant quantities of nuclear material. A shorter measurement time can increase the number of items that a nuclear safeguards inspector can reliably measure during a period of access to a nuclear facility. In turn, this improves the reliability of the acquired statistical sample, which is used to inform decisions regarding compliance. Safeguards inspection measurements should also maintain independence from facility operator declarations. Existing neutron collars employ thermal neutron interrogation for safeguards inspection measurements of fresh fuel assemblies. A new fast neutron collar has been developed for safeguards inspection measurements of fresh low-enriched uranium (LEU) fuel assemblies containing gadolinia (Gd2O3) burnable poison rods. The Euratom Fast Collar (EFC) was designed with high neutron detection efficiency to make a fast (Cd) mode measurement viable whilst meeting the high counting precision and short assay time requirements of the Euratom safeguards inspectorate. A fast mode measurement reduces the instrument sensitivity to burnable poison rod content and therefore reduces the applied poison correction, consequently reducing the dependence on the operator declaration of the poison content within an assembly. The EFC non-destructive assay (NDA) of typical modern European pressurized water reactor (PWR) fresh fuel assembly designs have been simulated using Monte Carlo N-particle extended transport code (MCNPX) simulations. Simulations predict that the EFC can achieve 2% relative statistical uncertainty on the doubles neutron counting rate for a fast mode measurement in an assay time of 600 s (10 min) with the available 241AmLi (α,n) interrogation source strength of 5.7×104 s−1. Furthermore, the calibration range of the new collar has been extended to verify 235U content in variable PWR fuel designs in the presence of up to 32

  5. A new fast neutron collar for safeguards inspection measurements of fresh low enriched uranium fuel assemblies containing burnable poison rods

    Science.gov (United States)

    Evans, Louise G.; Swinhoe, Martyn T.; Menlove, Howard O.; Schwalbach, Peter; Baere, Paul De; Browne, Michael C.

    2013-11-01

    Safeguards inspection measurements must be performed in a timely manner in order to detect the diversion of significant quantities of nuclear material. A shorter measurement time can increase the number of items that a nuclear safeguards inspector can reliably measure during a period of access to a nuclear facility. In turn, this improves the reliability of the acquired statistical sample, which is used to inform decisions regarding compliance. Safeguards inspection measurements should also maintain independence from facility operator declarations. Existing neutron collars employ thermal neutron interrogation for safeguards inspection measurements of fresh fuel assemblies. A new fast neutron collar has been developed for safeguards inspection measurements of fresh low-enriched uranium (LEU) fuel assemblies containing gadolinia (Gd2O3) burnable poison rods. The Euratom Fast Collar (EFC) was designed with high neutron detection efficiency to make a fast (Cd) mode measurement viable whilst meeting the high counting precision and short assay time requirements of the Euratom safeguards inspectorate. A fast mode measurement reduces the instrument sensitivity to burnable poison rod content and therefore reduces the applied poison correction, consequently reducing the dependence on the operator declaration of the poison content within an assembly. The EFC non-destructive assay (NDA) of typical modern European pressurized water reactor (PWR) fresh fuel assembly designs have been simulated using Monte Carlo N-particle extended transport code (MCNPX) simulations. Simulations predict that the EFC can achieve 2% relative statistical uncertainty on the doubles neutron counting rate for a fast mode measurement in an assay time of 600 s (10 min) with the available 241AmLi (α,n) interrogation source strength of 5.7×104 s-1. Furthermore, the calibration range of the new collar has been extended to verify 235U content in variable PWR fuel designs in the presence of up to 32

  6. Lumbar load attenuation for rotorcraft occupants using a design methodology for the seat impact energy-absorbing system

    Science.gov (United States)

    Moradi, Rasoul; Beheshti, Hamid; Lankarani, Hamid

    2012-12-01

    Aircraft occupant crash-safety considerations require a minimum cushion thickness to limit the relative vertical motion of the seat-pelvis during high vertical impact loadings in crash landings or accidents. In military aircraft and helicopter seat design, due to the potential for high vertical accelerations in crash scenarios, the seat system must be provided with an energy absorber to attenuate the acceleration level sustained by the occupants. Because of the limited stroke available for the seat structure, the design of the energy absorber becomes a trade-off problem between minimizing the stroke and maximizing the energy absorption. The available stroke must be used to prevent bottoming out of the seat as well as to absorb maximum impact energy to protect the occupant. In this study, the energy-absorbing system in a rotorcraft seat design is investigated using a mathematical model of the occupant/seat system. Impact theories between interconnected bodies in multibody mechanical systems are utilized to study the impact between the seat pan and the occupant. Experimental responses of the seat system and the occupant are utilized to validate the results from this study for civil and military helicopters according to FAR 23 and 25 and MIL-S-58095 requirements. A model for the load limiter is proposed to minimize the lumbar load for the occupant by minimizing the relative velocity between the seat pan and the occupant's pelvis. The modified energy absorber/load limiter is then implemented for the seat structure so that it absorbs the energy of impact in an effective manner and below the tolerable limit for the occupant in a minimum stroke. Results show that for a designed stroke, the level of occupant lumbar spine injury would be significantly attenuated using this modified energy-absorber system.

  7. THE CALCULATION OF BURNABLE POISON CORRECTION FACTORS FOR PWR FRESH FUEL ACTIVE COLLAR MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Croft, Stephen [Los Alamos National Laboratory; Favalli, Andrea [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory

    2012-06-19

    Verification of commercial low enriched uranium light water reactor fuel takes place at the fuel fabrication facility as part of the overall international nuclear safeguards solution to the civilian use of nuclear technology. The fissile mass per unit length is determined nondestructively by active neutron coincidence counting using a neutron collar. A collar comprises four slabs of high density polyethylene that surround the assembly. Three of the slabs contain {sup 3}He filled proportional counters to detect time correlated fission neutrons induced by an AmLi source placed in the fourth slab. Historically, the response of a particular collar design to a particular fuel assembly type has been established by careful cross-calibration to experimental absolute calibrations. Traceability exists to sources and materials held at Los Alamos National Laboratory for over 35 years. This simple yet powerful approach has ensured consistency of application. Since the 1980's there has been a steady improvement in fuel performance. The trend has been to higher burn up. This requires the use of both higher initial enrichment and greater concentrations of burnable poisons. The original analytical relationships to correct for varying fuel composition are consequently being challenged because the experimental basis for them made use of fuels of lower enrichment and lower poison content than is in use today and is envisioned for use in the near term. Thus a reassessment of the correction factors is needed. Experimental reassessment is expensive and time consuming given the great variation between fuel assemblies in circulation. Fortunately current modeling methods enable relative response functions to be calculated with high accuracy. Hence modeling provides a more convenient and cost effective means to derive correction factors which are fit for purpose with confidence. In this work we use the Monte Carlo code MCNPX with neutron coincidence tallies to calculate the influence of

  8. Ultra-long cycle SMART core design using thorium fuel

    International Nuclear Information System (INIS)

    A ultra-long cycle(5 years) SMART core design is examined using the thorium fuel. Most of design configurations of SMART core such as fuel loading pattern, control rod management strategy, and burnable absorber material remain unchanged but uranium fuel which is replaced with a homogeneous mixture of 20% enriched uranium and thorium. The number of burnable absorber pins of the thorium loaded SMART core was adjusted to control the excess reactivity during the cycle burnup. It was shown that mixing ratio of 40:60 of uranium fuel and thorium fuel is necessary to achieve a 5 year cycle length of SMART core. The results also show that the ultra-longer cycle SMART core satisfying all design constraints such as Fq less than 2.5, axial offset less than 0.3, keff less than 0.95 when refueling shutdown margin of 1% with most reactive control rod stuck, and ejected rod worth less than 250 pcm, are possible by using thorium fuel and absorber materials effectively

  9. Thermalhydraulic characteristics for fuel channels using burnable poison in the CANDU reactor

    International Nuclear Information System (INIS)

    The power coefficient is one of the most important physics parameters governing nuclear reactor safety and operational stability, and its sign and magnitude have a significant effect on the safety and control characteristics of the power reactor. Recently, for an equilibrium CANDU core, the power coefficient was reported to be slightly positive when newly developed Industry Standard Tool set reactor physics codes were used. Therefore, it is required to find a new way to effectively decrease the positive power coefficient of CANDU reactor without seriously compromising the economy. In order to make the power coefficient of the CANDU reactor negative at the operating power, Roh et al. have evaluated the various burnable poison (BP) materials and its loading scheme in terms of the fuel performance and reactor safety characteristics. It was shown that reactor safety characteristics can be greatly improved by the use of the BP in the CANDU reactor. However, the previous study has mainly focused on the safety characteristics by evaluating the power coefficient for the fuel channel using BP in the CANDU reactor. Together with the safety characteristics, the economic performance is also important in order to apply the newly designed fuel channel to the power plant. In this study, the economic performance has been evaluated by analyzing the thermal hydraulic characteristics for the fuel channel using BP in the CANDU reactor

  10. Design and Evaluation of Ionic Liquids as Novel CO2 Absorbents

    Energy Technology Data Exchange (ETDEWEB)

    Edward J. Maginn

    2006-01-12

    Progress from the fourth quarter 2005 activity on the project ''Design and Evaluation of Ionic Liquids as Novel CO{sub 2} Absorbents'' is provided. Major activities in three areas are reported: compound synthesis, property measurement and molecular modeling. Last quarter we reported the first ever experimental measurement of SO{sub 2} solubility in an ionic liquid. We showed that SO{sub 2} was very soluble in the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([hmim][Tf{sub 2}N]). This quarter, we have measured SO{sub 2} solubility in two more ionic liquids: 1-hexyl-3-methylpyridinium bis(trifluoromethanesulfonyl)imide ([hmpy][Tf{sub 2}N]) and 1-hexyl-3-methylimidazolium lactate ([hmim][lactate]). As with [hmim][Tf{sub 2}N], we find very high solubility of SO{sub 2} in these ionic liquids, but the lactate compounds shows the highest affinity for SO{sub 2} at low pressure. CO{sub 2} solubility was measured in three new compounds: [boronium][Tf{sub 2}N], 1-hexyl-3-methylimidazolium acesulfumate ([hmim][ace]), and 1-hexyl-3-methylimidazolium saccharinate ([hmim][sac]). We find relatively poor solubility of CO{sub 2} in the latter two compounds, and solubility comparable to [hmim][Tf{sub 2}N] in the boronium compound. We also synthesized four new ionic liquids this quarter and continued refinement of our molecular simulation technique for measuring gas solubility.

  11. Design of dual Beam multi-wavelength UV-visible absorbance detectors based on CCD

    Institute of Scientific and Technical Information of China (English)

    SHEN Shuang; TANG Zhen-an; LI Tong

    2006-01-01

    @@ Because the general multi-wavelength UV-Visible absorbance detector cannot avoid the noise and drift resulting from the intensity fluctuation of the light source,a dual beam multi-wavelength UV-Visible detector based on CCD was designed.The ray of light source is divided into a signal ray and a reference ray by the beam splitter after it passes through the chopper.The signal ray shines into the sample cell.The signal ray passing through the sample cell falls onto a concave mirror which focuses it onto a slot that is imaged on one portion of CCD by a concave grating.The reference ray is imaged on the other portion of CCD by the concave grating after the slot.The signal spectrum,the reference spectrum and the dark current of CCD can be measured on the same CCD under the cooperation of the optical system and accessorial circuits.The real-time compensation for the signal spectrum by using the reference spectrum and the dark current of CCD can effectively depress the noise and drift of the detector.The short-term noise is 10-5AU and the drift is 10-4AU/h.

  12. Design and performance simulation of a segmented-absorber based muon detection system for high energy heavy ion collision experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, S. [University of Kashmir, Srinagar (India); Bhaduri, P.P. [Variable Energy Cyclotron Centre, Kolkata (India); Jahan, H. [Aligarh Muslim University, Aligarh (India); Senger, A. [GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany); Adak, R.; Samanta, S. [Bose Institute, Kolkata (India); Prakash, A. [Banaras Hindu University, Varanasi (India); Dey, K. [Gauhati University, Guwahati (India); Lebedev, A. [Institute für Kernphysik, Goethe Universität Frankfurt, Frankfurt (Germany); Kryshen, E. [Petersburg Nuclear Physics Institute (PNPI) NRC Kurchatov Institute, Gatchina (Russian Federation); Chattopadhyay, S., E-mail: sub@vecc.gov.in [Variable Energy Cyclotron Centre, Kolkata (India); Senger, P. [GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany); Bhattacharjee, B. [Gauhati University, Guwahati (India); Ghosh, S.K.; Raha, S. [Bose Institute, Kolkata (India); Irfan, M.; Ahmad, N. [Aligarh Muslim University, Aligarh (India); Farooq, M. [University of Kashmir, Srinagar (India); Singh, B. [Banaras Hindu University, Varanasi (India)

    2015-03-01

    A muon detection system (MUCH) based on a novel concept using a segmented and instrumented absorber has been designed for high-energy heavy-ion collision experiments. The system consists of 6 hadron absorber blocks and 6 tracking detector triplets. Behind each absorber block a detector triplet is located which measures the tracks of charged particles traversing the absorber. The performance of such a system has been simulated for the CBM experiment at FAIR (Germany) that is scheduled to start taking data in heavy ion collisions in the beam energy range of 6–45 A GeV from 2019. The muon detection system is mounted downstream to a Silicon Tracking System (STS) that is located in a large aperture dipole magnet which provides momentum information of the charged particle tracks. The reconstructed tracks from the STS are to be matched to the hits measured by the muon detector triplets behind the absorber segments. This method allows the identification of muon tracks over a broad range of momenta including tracks of soft muons which do not pass through all the absorber layers. Pairs of oppositely charged muons identified by MUCH could therefore be combined to measure the invariant masses in a wide range starting from low mass vector mesons (LMVM) up to charmonia. The properties of the absorber (material, thickness, position) and of the tracking chambers (granularity, geometry) have been varied in simulations of heavy-ion collision events generated with the UrQMD generator and propagated through the setup using the GEANT3, the particle transport code. The tracks are reconstructed by a Cellular Automaton algorithm followed by a Kalman Filter. The simulations demonstrate that low mass vector mesons and charmonia can be clearly identified in central Au+Au collisions at beam energies provided by the international Facility for Antiproton and Ion Research (FAIR)

  13. Design and performance simulation of a segmented-absorber based muon detection system for high energy heavy ion collision experiments

    International Nuclear Information System (INIS)

    A muon detection system (MUCH) based on a novel concept using a segmented and instrumented absorber has been designed for high-energy heavy-ion collision experiments. The system consists of 6 hadron absorber blocks and 6 tracking detector triplets. Behind each absorber block a detector triplet is located which measures the tracks of charged particles traversing the absorber. The performance of such a system has been simulated for the CBM experiment at FAIR (Germany) that is scheduled to start taking data in heavy ion collisions in the beam energy range of 6–45 A GeV from 2019. The muon detection system is mounted downstream to a Silicon Tracking System (STS) that is located in a large aperture dipole magnet which provides momentum information of the charged particle tracks. The reconstructed tracks from the STS are to be matched to the hits measured by the muon detector triplets behind the absorber segments. This method allows the identification of muon tracks over a broad range of momenta including tracks of soft muons which do not pass through all the absorber layers. Pairs of oppositely charged muons identified by MUCH could therefore be combined to measure the invariant masses in a wide range starting from low mass vector mesons (LMVM) up to charmonia. The properties of the absorber (material, thickness, position) and of the tracking chambers (granularity, geometry) have been varied in simulations of heavy-ion collision events generated with the UrQMD generator and propagated through the setup using the GEANT3, the particle transport code. The tracks are reconstructed by a Cellular Automaton algorithm followed by a Kalman Filter. The simulations demonstrate that low mass vector mesons and charmonia can be clearly identified in central Au+Au collisions at beam energies provided by the international Facility for Antiproton and Ion Research (FAIR)

  14. Design, fabrication, and characterization of lightweight and broadband microwave absorbing structure reinforced by two dimensional composite lattice

    Science.gov (United States)

    Chen, Mingji; Pei, Yongmao; Fang, Daining

    2012-07-01

    Microwave absorbing structures (MASs) reinforced by two dimensional (2D) composite lattice elements have been designed and fabricated. The density of these MASs is lower than 0.5 g/cm3. Experimental measurements show that the sandwich structure with glass fiber reinforced composite (GFRC) lattice core can serve as a broadband MAS with its reflectivity below -10 dB over the frequency range of 4-18 GHz. The low permittivity GFRC is indicated to be the proper material for both the structural element of the core and the transparent face sheet. Calculations by the periodic moment method (PMM) demonstrate that the 2D Kagome lattice performs better for microwave absorbing than the square one at relatively low frequencies. The volume fraction and cell size of the structural element are also revealed to be key factors for microwave absorbing performance.

  15. Design and characterization of a soft magneto-rheological miniature shock absorber for a controllable variable stiffness sole

    Directory of Open Access Journals (Sweden)

    Grivon Daniel

    2015-12-01

    Full Text Available The proposed paper discusses the design and characterization of a soft miniature Magneto-Rheological (MR shock absorber. In particular, the final application considered for the insertion of the designed devices is a controllable variable stiffness sole for patients with foot neuropathy. Such application imposes particularly challenging constraints in terms of miniaturization (cross-sectional area ≤ 1.5 cm2, height ≤ 25 mm and high sustainable loads (normal loads up to 60 N and shear stresses at the foot/device interface up to 80 kPa while ensuring moderate to low level of power consumption. Initial design considerations are done to introduce and justify the chosen novel configuration of soft shock absorber embedding a MR valve as the core control element. Successively, the dimensioning of two different MR valves typologies is discussed. In particular, for each configuration two design scenarios are evaluated and consequently two sets of valves satisfying different specifications are manufactured. The obtained prototypes result in miniature modules (external diam. ≤ 15 mm, overall height ≤ 30 mm with low power consumption (from a minimum of 63 mW to a max. of 110 mW and able to sustain a load up to 65 N. Finally, experimental sessions are performed to test the behaviour of the realized shock absorbers and results are presented.

  16. Design and Evaluation of Ionic Liquids as Novel CO2 Absorbents

    Energy Technology Data Exchange (ETDEWEB)

    Edward Maginn

    2007-07-15

    This is the final report for project DE-FG26-04NT42122 'Design and Evaluation of Ionic Liquids as Novel CO{sub 2} Absorbents'. The objective of this 'breakthrough concepts' project was to investigate the feasibility of using ionic liquids for post-combustion CO{sub 2} capture and obtain a fundamental understanding of the solubility of CO{sub 2} and other components present in flue gas in ionic liquids. Our plan was to obtain information on how composition and structure of ionic liquid molecules affected solubility and other important physical properties via two major efforts: synthesis and experimental measurements and molecular simulation. We also planned to perform preliminary systems modeling study to assess the economic viability of a process based on ionic liquids. We accomplished all the milestones and tasks specified in the original proposal. Specifically, we carried out extensive quantum and classical atomistic-level simulations of a range of ionic liquids. These calculations provided detailed information on how the chemical composition of ionic liquids affects physical properties. We also learned important factors that govern CO{sub 2} solubility. Using this information, we synthesized or acquired 33 new ionic liquids. Many of these had never been made before. We carried out preliminary tests on all of these compounds, and more extensive tests on those that looked most promising for CO{sub 2} capture. We measured CO{sub 2} solubility in ten of these ionic liquids. Through our efforts, we developed an ionic liquid that has a CO{sub 2} solubility 2.6 times greater than the 'best' ionic liquid available to us at the start of the project. Moreover, we demonstrated that SO{sub 2} is also extremely soluble in ionic liquids, opening up the possibility of using ionic liquids to remove both SO{sub 2} and CO{sub 2} from flue gas. In collaboration with Trimeric Inc., a preliminary systems analysis was conducted and the results used to

  17. Engineering design feasibility of low boron concentration core in PWR

    Energy Technology Data Exchange (ETDEWEB)

    Daing, A. T.; Kim, M. H. [Kyung Hee University, Yongin-shi, Gyeonggi-do, 446-701 Republic of Korea (Korea, Republic of); Woo, I.; Shon, S. R., E-mail: atdaing@khu.ac.k [Korea Nuclear Fuel, 1047 Daedukdaero, Yuseong-gu, Daejeon, 305-353 Republic of Korea (Korea, Republic of)

    2010-10-15

    In pressurized water reactor operation, higher level of soluble boron concentration could contribute higher impact from boron dilution situations, higher amount of liquid waste, and higher radiation dose to operators from higher corrosion potential to cladding and structure. Two practical and feasible means to reduce the maximum boron concentration were investigated in this study. A technically straightforward, possible means, can be achieved either by implementation of enriched boric acid (Eba) or by increasing more shim rod (fixed burnable absorber) worth. A simplest option is that the Eba is applied into reference core (Ref) design, OPR-1000 design, Ulchin unit-5 by allowing use of same fuel assemblies and core design without changing any nuclear design methodology used in that Ref design. Although results of Eba option proved its favorable power distribution and peaking factor, its moderator temperature coefficient (MTC) value reached positive, 3.25 pcm/ C at 40 EFPD which is beyond the design safety limit. An alternative option with more shim rods in fuel assemblies was tried with four types of integral burnable absorbers: gadolinia, integral fuel burnable absorber (Ifba), erbium and alumina boron carbide. Four core design candidates have been developed by keeping major engineering designs and preserving equivalent fuel enrichment level used in Ref design. However, all optimal designs were targeted to achieve comparable discharge burnup as well as favorable design safety parameters. The comparative analysis between Ref and optimal core designs is presented here. One of them is suggested as the most promising and favorable low boron core (Lbc) design in this framework. The proper combination of axial and radial enrichment zoning pattern in Lbc design candidate with Ifba-bearing fuel assemblies at equilibrium cycle, could bring 2 times narrower axial offset variation than that of Ref design, and maintain acceptable power peaking factor around 23% lower than

  18. Design and analysis of a shock absorber with variable moment of inertia for passive vehicle suspensions

    Science.gov (United States)

    Xu, Tongyi; Liang, Ming; Li, Chuan; Yang, Shuai

    2015-10-01

    A two-terminal mass (TTM) based vibration absorber with variable moment of inertia (VMI) for passive vehicle suspension is proposed. The VMI of the system is achieved by the motion of sliders embedded in a hydraulic driven flywheel. The moment of inertia increases in reaction to strong vertical vehicle oscillations and decreases for weak vertical oscillations. The hydraulic mechanism of the system converts the relative linear motion between the two terminals of the suspension into rotating motion of the flywheel. In the case of stronger vehicle vertical oscillation, the sliders inside the flywheel move away from the center of the flywheel because of the centrifugal force, hence yielding higher moment of inertia. The opposite is true in the case of weaker vehicle oscillation. As such, the moment of inertia adjusts itself adaptively in response to the road conditions. The performance of the proposed TTM-VMI absorber has been analyzed via dynamics modeling and simulation and further examined by experiments. In comparison to its counterpart with constant moment of inertia, the proposed VMI system offers faster response, better road handling and safety, improved ride comfort, and reduced suspension deflection except in the case of sinusoidal excitations.

  19. Burn-up measurements at TRIGA fuel elements containing strong burnable poison

    International Nuclear Information System (INIS)

    The reactivity method of determining the burn-up of research reactor fuel elements is applied to the highly enriched FLIP elements of TRIGA reactors. In contrast to other TRIGA fuel element types, the reactivity of FLIP elements increases with burn-up due to consumption of burnable poison. 33 fuel elements with burn-up values between 3% and 14% were investigated. The experiments showed that variations in the initial fuel composition significantly influence the reactivity and, consequently, increase the inaccuracy of the burn-up measurements. Particularly important are variations in the initial concentration of erbium, which is used as burnable poison in FLIP fuel. A method for reducing the effects of the material composition variations on the measured reactivity is presented. If it is applied, the accuracy of the reactivity method for highly poisoned fuel elements becomes comparable to the accuracy of other methods for burn-up determination. (orig.)

  20. Delayed resonator with acceleration feedback - Complete stability analysis by spectral methods and vibration absorber design

    Science.gov (United States)

    Vyhlídal, Tomáš; Olgac, Nejat; Kučera, Vladimír

    2014-12-01

    This paper deals with the problem of active vibration suppression using the concept of delayed resonator (DR) absorber with acceleration feedback. A complete dynamic analysis of DR and its coupling with a single degree of freedom mechanical system are performed. Due to the presence of a delay in the acceleration feedback, the dynamics of the resonator itself, as well as the dynamics of combined system are of ‘neutral' character. On this system, spectral methods are applied to perform a complete stability analysis. Particularly, the method of cluster treatment of characteristic roots is used to determine stability boundaries in the space of the resonator parameters. Based on this analysis, a methodology to select the resonator parameters is proposed in order to guarantee desirable suppression characteristics and to provide safe stability margins. An example case study is included to demonstrate these analytical results.

  1. A Deep Search For Faint Galaxies Associated With Very Low-redshift C IV Absorbers: II. Program Design, Absorption-line Measurements, and Absorber Statistics

    CERN Document Server

    Burchett, Joseph N; Prochaska, J Xavier; Werk, Jessica K; Tumlinson, Jason; O'Meara, John M; Bordoloi, Rongmon; Katz, Neal; Willmer, C N A

    2015-01-01

    To investigate the evolution of metal-enriched gas over recent cosmic epochs as well as to characterize the diffuse, ionized, metal-enriched circumgalactic medium (CGM), we have conducted a blind survey for C IV absorption systems in 89 QSO sightlines observed with the Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS). We have identified 42 absorbers at z < 0.16, comprising the largest uniform blind sample size to date in this redshift range. Our measurements indicate an increasing C IV absorber number density per comoving path length (dN/dX = 7.5 +/- 1.1) and modestly increasing mass density relative to the critical density of the Universe (Omega(C IV) = 10.0 +/- 1.5 x 10^-8 ) from z ~ 1.5 to the present epoch, consistent with predictions from cosmological hydrodynamical simulations. Furthermore, the data support a functional form for the column density distribution function that deviates from a single power-law, also consistent with independent theoretical predictions. As the data also probe...

  2. Design of Vibration Absorber using Spring and Rubber for Armored Vehicle 5.56 mm Caliber Rifle

    Directory of Open Access Journals (Sweden)

    Aditya Sukma Nugraha

    2014-12-01

    Full Text Available This paper presents a design of vibration absorber using spring and rubber for 5.56 mm caliber rifle armored vehicle. Such a rifle is used in a Remote-Controlled Weapon System (RCWS or a turret where it is fixed using a two degree of freedom pan-tilt mechanism. A half car lumped mass dynamic model of armored vehicles was derived. Numerical simulation was conducted using fourth order Runge Kutta method. Various types of vibration absorbers using spring and rubber with different configurations are installed in the elevation element. Vibration effects on horizontal direction, vertical direction and angular deviation of the elevation element was investigated. Three modes of fire were applied i.e. single fire, semi-automatic fire and automatic fire. From simulation results, it was concluded that the parallel configuration of damping rubber type 3, which has stiffness of 980,356.04 (N/m2 and damping coefficient of 107.37 (N.s/m, and Carbon steel spring whose stiffness coefficient is 5.547 x 106 (N/m2 provides the best vibration absorption. 

  3. The case for using a sacrificial layer of absorbent insulation in the design of flat and low-sloped roofing

    Science.gov (United States)

    Stockton, Gregory R.

    2013-05-01

    Beginning about twenty-five years ago, there was a marked increase in the number of single-ply membrane roof designs used to cover and waterproof flat and low-sloped building roofs. Over the past ten years, there has been a substantial increase in the number of installations of white and more reflective single-ply roof systems, mostly using high density cellular foam insulation in the substrate for insulation. A major factor in the increase in the popularity of these highly insulated and more reflective roof systems is the fact that many governments began offering incentives for building owners to use reflective coverings and better insulated roofs. Now, owing to the energy efficient requirements for the design and construction of new buildings put forth in ASHRAE Standard 90.1, "Energy Standard for Buildings Except Low-Rise Residential Buildings" and the world's apparent desire to be "green" (or at least appear to be), more and more roof designs will include these reflective single-ply membranes, which use the cellular foam insulation boards to meet these requirements. Using a lower density traditional insulation will mean that the roof will have to be very thick to comply, increasing the costs of installation. High density cellular foams do not absorb water until time, vapor pressure drive, UV and thermal shock break down the foam and it becomes more absorbent. This could be 5-7 years or longer, depending on the roof construction and other factors. This means that any water that enters the roof through a breach (leak) in the membrane goes straight into the building. This is not a good consequence since the failure mode of any roof is water entering the building. Keeping the water out of the building is the purpose of the waterproofing layer. This paper reviews the techniques of moisture testing on building roofs and infrared (IR) thermography, and puts forth the idea and reasoning behind having a sacrificial layer of very absorbent insulation installed in every

  4. Absorber materials, control rods and designs of shutdown systems for advanced liquid metal fast reactors. Proceeding of a technical committee meeting

    International Nuclear Information System (INIS)

    Thirty-five specialists from France, Germany, India, Japan, the Republic of Kazakhsan, the Russian Federation and the Republic of Georgia (observer) attended the meeting. The meeting had seven sessions. The main topics of discussions were: Status of control rod designs for fast reactors and experience with operation; properties and behaviour of absorber materials for control rods; results of post-irradiation examination of absorber materials, and mechanisms affecting their properties and behaviour; design of a backup reactivity shutdown system utilizing passive mechanisms: Curie point electromagnetic mechanism; enhancement of thermal expansion of absorber rdo drive lines; hydraulically suspended control rods; gas expansion modules in the core; and the possibility of optimizing the reactivity coefficients and the efficiency of Pu burning by using absorber and moderator materials in the core. A total of 23 papers were presented, and a technical tour of the IPPE also took place. Refs, figs, tabs

  5. Optimization and Design of an Absorbance Spectrometer Controlled Using a Raspberry Pi to Improve Analytical Skills

    Science.gov (United States)

    Bougot-Robin, Kristelle; Paget, Jack; Atkins, Stephen C.; Edel, Joshua B.

    2016-01-01

    It is not uncommon for students to view laboratory instruments as black boxes. Unfortunately, this can often result in poor experimental results and interpretation. To tackle this issue, a laboratory course was designed to enable students not only to critically think about operating principles of the instrument but also to improve interpretation…

  6. Extended charge accumulation in ruthenium-4H-imidazole-based black absorbers: a theoretical design concept.

    Science.gov (United States)

    Kupfer, Stephan

    2016-05-11

    A theoretical-guided design concept aiming to achieve highly efficient unidirectional charge transfer and multi-charge separation upon successive photoexcitation for light-harvesting dyes in the scope of supramolecular photocatalysts is presented. Four 4H-imidazole-ruthenium(ii) complexes incorporating a biimidazole-based electron-donating ligand sphere have been designed based on the well-known 4H-imidazole-ruthenium(ii) polypyridyl dyes. The quantum chemical evaluation, performed at the density functional and time-dependent density functional level of theory, revealed extraordinary unidirectional charge transfer bands from the near-infrared to the ultraviolet region of the absorption spectrum upon multi-photoexcitation. Spectro-electrochemical simulations modeling photoexcited intermediates determined the outstanding multi-electron storage capacity for this novel class of black dyes. These remarkable photochemical and photophysical properties are found to be preserved upon site-specific protonation rendering 4H-imidazole-ruthenium(ii) biimidazole dyes ideal for light-harvesting applications in the field of solar energy conversion. PMID:27121270

  7. A Neutronic Feasibility Study of an OPR-1000 Core Design with Boron-bearing Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Hoon; Park, Sang Yoon; Lee, Chung Chan; Yang, Yong Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In Westinghouse plants, boron is mainly used as a form of the integral fuel burnable absorber (IFBA) with a thin coating of zirconium diboride (ZrB{sub 2}) or wet annular burnable absorber (WABA) with a hollow Al{sub 2}O{sub 3}+B{sub 4}C pellet. In OPR-1000, on the other hand, gadolinia is currently employed as a form of an admixture which consists of Gd{sub 2}O{sub 3} of 6∼8 w/o and UO{sub 2} of natural uranium. Recently, boron-bearing UO{sub 2} fuel (BBF) with the high density of greater than 94%TD has been developed by using a low temperature sintering technique. In this paper, the feasibility of replacing conventional gadolinia-bearing UO{sub 2} fuel (GBF) in OPR-1000 with newly developed boron-bearing fuel is evaluated. Neutronic feasibility study to utilize the BBF in OPR-1000 core has been performed. The results show that the OPR-1000 core design with the BBF is feasible and promising in neutronic aspects. Therefore, the use of the BBF in OPR-1000 can reduce the dependency on the rare material such as gadolinium. However, the burnout of the {sup 10}B isotope results in helium gas, so fuel performance related study with respect to helium generation is needed.

  8. Design Considerations for an MEBT Chopper Absorber of 2.1 MeV H- at the Project X Injector Experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Baffes, C.; Awida, M.; Chen, A.; Eidelman, Y.; Lebedev, V.; Prost, L.; Shemyakin, A.; Solyak, N.; Yakovlev, V.; /Fermilab

    2012-05-14

    The Project X Injector Experiment (PIXIE) will be a prototype of the Project X front end that will be used to validate the design concept and decrease technical risks. One of the most challenging components of PIXIE is the wide-band chopping system of the Medium Energy Beam Transport (MEBT) section, which will form an arbitrary bunch pattern from the initially CW 162.5 MHz 5mA beam. The present scenario assumes diverting 80% of the beam to an absorber to provide a beam with the average current of 1mA to SRF linac. This absorber must withstand a high level of energy deposition and high ion fluence, while being positioned in proximity of the superconductive cavities. This paper discusses design considerations for the absorber. Thermal and mechanical analyses of a conceptual design are presented, and future plans for the fabrication and testing of a prototype are described.

  9. The design, microstructure and tensile properties of B{sub 4}C particulate reinforced 6061Al neutron absorber composites

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.S. [School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, W.X., E-mail: Wangwenxian@tyut.edu.cn [School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Li, Y.L.; Zhang, P. [School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Nie, H.H. [Shanxi Coal-Mining Administrators College, Taiyuan 030024 (China); Wu, Q.C. [School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2015-05-25

    Highlights: • B{sub 4}C/Al composites for neutron shielding were designed by MCNP program. • B{sub 4}C/Al composite were fabricated by vacuum hot pressing followed by hot rolling. • The properties can be enhanced by vacuum hot pressing followed by hot rolling. - Abstract: Based on the Monte Carlo Particle transport program MCNP, a novel boron carbide particulate reinforced 6061Al composite for neutron shielding (B{sub 4}C/6061Al NACs) with high strength and low density was designed. The NACs with four volume fractions (10%, 20%, 30% and 40%) were successfully fabricated by vacuum hot pressing followed by hot rolling (VPHR) in atmospheric environments. The calculation results indicated that the neutron transmission ratio decreased with the increasing of B{sub 4}C content and the thickness of plates. B{sub 4}C particle is uniformly distributed in the matrix, exhibiting the good bonding in interface. The phases of neutron absorbers were mainly B{sub 4}C and Al, and a spot of AlB{sub 2} and Al{sub 3}BC. The grain of the matrix was refined and the dislocation was formed around the particles. With increasing the B{sub 4}C content, the particles gathered, breakage appeared, and the tensile strength of composite first increased and then decreased. The failure mode of B{sub 4}C/6061Al NACs included: the interfacial debonding and the cleavage fracture of particles.

  10. Absorbing Outflows in AGN

    Science.gov (United States)

    Mathur, Smita

    2002-01-01

    The goal of this program was a comprehensive multiwavelength study of absorption phenomena in active galactic nuclei (AGN). These include a variety of associated absorption systems: X-ray warm absorbers, X-ray cold absorbers. UV absorbers with high ionization lines, MgII absorbers, red quasars and BALQSOs. The aim is to determine the physical conditions in the absorbing outflows, study their inter-relations and their role in AGN. We designed several observing programs to achieve this goal: X-ray spectroscopy, UV spectroscopy, FLAY spectroscopy and X-ray imaging. We were very successful towards achieving the goal over the five year period as shown through following observing programs and papers. Copies of a few papers are attached with this report.

  11. Design and Development of Expanded Graphite-Based Non-metallic and Flexible Metamaterial Absorber for X-band Applications

    Science.gov (United States)

    Borah, Dipangkar; Bhattacharyya, Nidhi S.

    2016-09-01

    The possibility of using expanded graphite instead of a metallic layer as unit cells and ground planes for metamaterial absorbers in X-band is investigated. A metamaterial absorber was fabricated on a flexible linear low-density polyethylene substrate using an expanded graphite-based circular ring as the unit cell structure. The unit cell was simulated and optimized for which the metamaterial absorber exhibited 98.9% absorption at 11.22 GHz. The fabricated expanded graphite-based absorber showed a reflection loss of -24.51 dB at 11.56 GHz with -10 dB bandwidth of 0.39 GHz (3.37%). The performance of the same structure with copper was also measured. The expanded graphite-based metamaterial absorber showed enhanced performance as compared to the copper-based metamaterial absorber. The width of the ring was varied to tune the reflection loss. The proposed expanded graphite-based metamaterial absorber possesses the advantages of being ultra-thin, flexible and non-corrosive.

  12. Modification of Japanese first nuclear ship reactor for a regional energy supply system using gadolinia as a burnable poison

    International Nuclear Information System (INIS)

    In our laboratory, a small regional energy supply system which uses a small nuclear reactor has been studied for a long time. This system could supply not only heat but also electricity. Heat could be used for hot-water supply, a heating system of a house, melting snow and so on. In this point, this system seems to be useful for the places like northern part of Japan where it snows in winter. This reactor is based on Nuclear Ship Mutsu which was developed as the first nuclear ship of Japan about 40 years ago. It has several advantages for a small reactor. For example, its moderator temperature coefficient is always to be deeply negative because boric acid solution is not used in moderator and coolant. This can lead to a self-controlled operation without control rod maneuvering for load change. But some modifications have been performed in order to satisfy requirements such as (1) longer core life without refueling and reshuffling, (2) reactivity adjustment for load change without control rods or soluble boron, (3) simpler operations for load changes and (4) ultimate safety with sufficient passive capability. In our previous study, we confirmed the core based on Mutsu core had longer core life (about 10 years) using high uranium enrichment fuel (more than 5wt%) and current 17x17 fuel assemblies. We also confirmed excess reactivity during the cycle could be suppressed using combination of erbium oxide (Er2O3) and gadolinium oxide (Gd2O3) as burnable poisons. Er2O3 has advantages such that criticality safety can be kept even if uranium enrichment is more than 5wt% and burnup characteristics of the core can be gradual. But at this time there are 2 problems to apply for the core using Er2O3 in Japan. First problem is that more than 5wt% enrichment fuel is not yet accepted in Japan. Second problem is that there are no experiences of using Er2O3 in commercial reactors in Japan. Considering these problems, we have to modify the design of the core, using only Gd2O3 as a

  13. Sensing with THz metamaterial absorbers

    CERN Document Server

    Cong, Longqing

    2014-01-01

    Metamaterial perfect absorbers from microwaves to optical part of the electromagnetic spectrum has been intensely studied for its ability to absorb electromagnetic radiation. Perfect absorption of light by metamaterials have opened up new opportunities for application oriented functionalities such as efficient sensors and emitters. We present an absorber based sensing scheme at the terahertz frequencies and discuss optimized designs to achieve high frequency and amplitude sensitivities. The major advantage of a perfect metamaterial absorber as a sensor is the sensitive shift in the absorber resonance frequency along with the sharp change in the amplitude of the resonance due to strong interaction of the analyte with the electric and the magnetic fields at resonant perfect absorption frequency. We compare the sensing performance of the perfect metamaterial absorber with its complementary structural design and planar metasurface with identical structure. The best FoM values obtained for the absorber sensor here...

  14. Multiband terahertz metamaterial absorber

    Institute of Scientific and Technical Information of China (English)

    Gu Chao; Qu Shao-Bo; Pei Zhi-Bin; Xu Zhuo; Liu Jia; Gu Wei

    2011-01-01

    This paper reports the design of a multiband metamaterial (MM) absorber in the terahertz region. Theoretical and simulated results show that the absorber has four distinct and strong absorption points at 1.69, 2.76, 3.41 and that the impedance of MM could be tuned to match approximately the impedance of the free space to minimise the reflectance at absorption frequencies and large power loss exists at absorption frequencies. The distribution of the power loss indicates that the absorber is an excellent electromagnetic wave collector: the wave is first trapped and reinforced in certain specific locations and then consumed. This multiband absorber has applications in the detection of explosives and materials characterisation.

  15. Shielding and Containment Evaluations of the NAC-LWT Cask with Tritium Burnable Poison Rods

    International Nuclear Information System (INIS)

    In 1989, the NAC legal weight truck cask (NAC-LWT) was approved by the U.S. Nuclear Regulatory Commission to transport either one pressurized water reactor (PWR) fuel assembly or two boiling water reactor (BWR) fuel assemblies. Since that time, license amendments have allowed the shipment of high-burnup PWR and BWR fuel rods, MTR-type research reactor fuel elements, and TRIGA-type fuel elements. In 1999, DOE approved an NAC-LWT submittal for a shipment of lead test assemblies (LTAs) containing tritium-producing burnable poison rods (TPBARs). This paper presents the 10 CFR Part 71 shielding and containment evaluations of the NAC-LWT with the LTA payload

  16. 阻尼可调减振器外特性的设计%Design of External Characteristics of Adjustable Damping Shock Absorber

    Institute of Scientific and Technical Information of China (English)

    王勋; 陈思忠

    2009-01-01

    针对可变串联阻尼孔减振器外特性的特点,提出了其主要参数的设计方法. 建立了整车7自由度数学模型,以提高整车的瞬态响应特性、平顺性、车轮接地性为目的,对某越野车的串联阻尼孔可调减振器外特性进行了设计. 结果表明,采用串联阻尼孔可调减振器的越野车辆,其在不同的路面上均有良好的操纵稳定性和平顺性,越野车速也有所提高.%According to the features of external characteristics of shock absorber whose series orifice is variable, a design approach of its key parameters is put forward. A mathematical vehicle model of a seven-freedom was built up and solved in order to design the key parameters of shock absorber whose series orifice is changeable. The purpose to optimize external characteristics of shock absorber is to improve the transient response characteristic, riding and wheel ground adhesion index. The results indicated that using such a kind of shock absorber, the stability and comfort of off-road vehicles are acceptable, and the speed on rough road is increased.

  17. Design of a Transpired Air Heating Solar Collector with an Inverted Perforated Absorber and Asymmetric Compound Parabolic Concentrator.

    OpenAIRE

    Shams, Nasif

    2013-01-01

    absorber and an asymmetric compound parabolic concentrator was applied to increase the intensity of solar radiation incident on the perforated absorber. A 2D ray tracing model quantified optical efficiency at different incident angles within 27o to 89o incident angles. The beam efficiency was found to vary between 72% and 79% and diffuse efficiency was found to vary between 48.2% and 65%. The average thermal efficiency was found to be approximately 55%-65% with average radiation above 400 W/m...

  18. Design and Experimental Implementation of a Beam-Type Twin Dynamic Vibration Absorber for a Cantilevered Flexible Structure Carrying an Unbalanced Rotor: Numerical and Experimental Observations

    OpenAIRE

    Abdullah Özer; Mojtaba Ghodsi; Akio Sekiguchi; Ashraf Saleem; Mohammed Nasser Al-Sabari

    2015-01-01

    This paper presents experimental and numerical results about the effectiveness of a beam-type twin dynamic vibration absorber for a cantilevered flexible structure carrying an unbalanced rotor. An experimental laboratory prototype setup has been built and implemented in our laboratory and numerical investigations have been performed through finite element analysis. The proposed system design consists of a primary cantilevered flexible structure with an attached dual-mass cantilevered secondar...

  19. Reactivity determination of the Al2O3-B4C burnable poison as a function of its concentration in the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Burnable poison rods made of Al2O3-B4C pellets with different concentrations of 10B have been manufactured for a set of experiments in the IPEN/MB-01 zero-power reactor. The experiments evaluated the reactivity of the burnable poison rods as a function of the 10B concentration, and the shadowing effect on the control rod reactivity worth as a function of the distance between the burnable position rods and the control rod. The results showed that the burnable poison rods have a non-linear behavior as function of the 10 B concentration, starting to reach an asymptotic value for concentrations higher than 7 g/cm3 of 10B. The shadowing effect on the control rods was substantial. When the burnable poison rods were beside the control rod, its reactivity worth decreased as much as 30 %, and when they were 10,5 cm distant, the control rod worth decreased by 7 %. The MCNP results for the burnable poison reactivity effects agreed within experimental errors with the measured values. (author)

  20. Design and Experimental Implementation of a Beam-Type Twin Dynamic Vibration Absorber for a Cantilevered Flexible Structure Carrying an Unbalanced Rotor: Numerical and Experimental Observations

    Directory of Open Access Journals (Sweden)

    Abdullah Özer

    2015-01-01

    Full Text Available This paper presents experimental and numerical results about the effectiveness of a beam-type twin dynamic vibration absorber for a cantilevered flexible structure carrying an unbalanced rotor. An experimental laboratory prototype setup has been built and implemented in our laboratory and numerical investigations have been performed through finite element analysis. The proposed system design consists of a primary cantilevered flexible structure with an attached dual-mass cantilevered secondary dynamic vibration absorber arrangement. In addition, an unbalanced rotor system is attached to the tip of the flexible cantilevered structure to inspect the system response under harmonic excitations. Numerical findings and experimental observations have revealed that significant vibration reductions are possible with the proposed dual-mass, cantilevered dynamic vibration absorber on a flexible cantilevered platform carrying an unbalanced rotor system at its tip. The proposed system is efficient and it can be practically tuned for variety of design and operating conditions. The designed setup and the results in this paper can serve for practicing engineers, researchers and can be used for educational purposes.

  1. Applying burnable poison particles to reduce the reactivity swing in high temperature reactors with batch-wise fuel loading

    International Nuclear Information System (INIS)

    Burnup calculations have been performed on a standard HTR fuel pebble with a radius of 3 cm containing 9 g of 8% enriched uranium and burnable poison particles (BPP) made of B4C highly enriched in 10B. The radius of the BPP and the number of particles per fuel pebble have been varied to find the flattest reactivity-to-time curve. It was found that for a k∞ of 1.1, a reactivity swing as low as 2% can be obtained when each fuel pebble contains about 1070 BPP with a radius of 75 μm. For coated BPP that consist of a graphite kernel with a radius of 300 μm covered with a B4C burnable poison layer, a similar value for the reactivity swing can be obtained. Cylindrical particles seem to perform worse. In general, the modification of the geometry of BPP is an effective means to tailor the reactivity curve of HTRs

  2. Low-temperature grown near surface semiconductor saturable absorber mirror: Design, growth conditions, characterization, and mode-locked operation

    International Nuclear Information System (INIS)

    We have developed a mode-locked diode-pumped Yb:KY(WO4)2 laser generating nearly bandwidth limited pulses as short as 101 fs. At 1.1 W of absorbed power and for 3% transmission output coupler, the laser delivers 150 mW in pulses of 110 fs duration, which corresponds to the efficiency of 14%. This has been achieved using semiconductor saturable absorber mirror (SESAM) grown by molecular beam epitaxy. The low-temperature (LT) absorbers were crystallized under the carefully optimized growth conditions. The resonantlike type structures ensured relatively high enhancement factor and in consequence high absorption modulation. The main device parameters such as group delay dispersion (GDD) and enhancement factor were chosen to be wavelength independent. The optimization of the growth conditions resulted in a reduction in the nonsaturable absorption in as-grown LT-InGaAs absorbing layer and ensured the fast carrier trapping and recombination. We assume that the nonsaturable losses of the annealed LT layers result from the absorption connected with defects generated in the crystal during LT growth. Moreover, the annealing deteriorates the interface sharpness and the crystal quality of LT pseudomorphic, nonstoichiometric InGaAs layer. On the other hand, higher growth temperature and lower ratio of group V to group III beam equivalent pressure (V/III ratio) ensure lower defect densities and high crystal quality but suffer from the absorption related to AsGa0 conduction band transitions. The careful balancing of these contradictory tendencies allowed for optimization of the absorber properties. The InGaAs quantum well absorbing layer was grown at the temperature as high as 420 deg. C, under the V/III ratio as low as 10. No postgrowth annealing was performed. The recovery time of the SESAM structure characterized by the pump-probe measurements was equal to 9.6 ps. The nonsaturable losses of 1.94% decreased the modulation depth to 1.48% but still self-starting and stable mode

  3. Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array

    International Nuclear Information System (INIS)

    A dynamically tunable terahertz (THz) narrowband metamaterial absorber is presented. The absorber is based on an electrostatically actuated micro-electro-mechanical systems (MEMS) cantilever and split ring resonator (SRR) array. An equivalent LC circuit model for a transverse electric (TE) polarization wave is introduced to analyze the mechanism of frequency tuning. A finite element method is applied to simulate the mechanical characteristics of the cantilever, and a finite integration technique is used to study the frequency tuning properties of the absorber. The results show that, for a TE polarization wave, there is only one absorption peak in the frequency range from 0.6 to 1.6 THz. The absorption peak frequency can be continuously tuned from 1.32 to 1.28 THz, and then abruptly to 1.12 THz. The maximum tunable frequency is 0.20 THz, which is about 15% of the initial resonance frequency. For a transverse magnetic (TM) polarization wave, there are two tunable absorption peaks in this frequency range. Moreover, for a TE wave, some geometric dimensions affecting the initial resonance frequency are investigated. (paper)

  4. Design and Implementation of a High-Voltage Generator with Output Voltage Control for Vehicle ER Shock-Absorber Applications

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2013-01-01

    Full Text Available A self-oscillating high-voltage generator is proposed to supply voltage for a suspension system in order to control the damping force of an electrorheological (ER fluid shock absorber. By controlling the output voltage level of the generator, the damping force in the ER fluid shock absorber can be adjusted immediately. The shock absorber is part of the suspension system. The high-voltage generator drives a power transistor based on self-excited oscillation, which converts dc to ac. A high-frequency transformer with high turns ratio is used to increase the voltage. In addition, the system uses the car battery as dc power supply. By regulating the duty cycle of the main switch in the buck converter, the output voltage of the buck converter can be linearly adjusted so as to obtain a specific high voltage for ER. The driving system is self-excited; that is, no additional external driving circuit is required. Thus, it reduces cost and simplifies system structure. A prototype version of the actual product is studied to measure and evaluate the key waveforms. The feasibility of the proposed system is verified based on experimental results.

  5. Unidirectional perfect absorber

    Science.gov (United States)

    Jin, L.; Wang, P.; Song, Z.

    2016-09-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices.

  6. Metasurface Broadband Solar Absorber

    CERN Document Server

    Azad, A K; Sykora, M; Weisse-Bernstein, N R; Luk, T S; Taylor, A J; Dalvit, D A R; Chen, H -T

    2015-01-01

    We demonstrate a broadband, polarization independent, omnidirectional absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low emissivity at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. Furthermore, we discuss the potential use of our metasurface absorber design in solar thermophotovoltaics by exploiting refractory plasmonic materials.

  7. Unidirectional perfect absorber.

    Science.gov (United States)

    Jin, L; Wang, P; Song, Z

    2016-01-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices. PMID:27615125

  8. 电涡流耗能动力吸振器设计与试验研究%Eddy Current Vibration Absorber Design and Experiments

    Institute of Scientific and Technical Information of China (English)

    李斌; 牛文超; 徐兆懿

    2016-01-01

    针对飞机垂尾抖振抑制的需要,提出一种空间布局紧凑、基于非接触式电涡流耗能机理、阻尼可设计的动力吸振器设计方案。电涡流耗能机制的引入保证该动力吸振器具有良好的环境适应性、耐久性和可靠性。基于电磁场理论,建立了电涡流阻尼力的计算模型,获得电磁阻尼的设计规律,通过与试验结果对比,验证了电涡流阻尼模型的准确性。并以等效悬臂梁结构为对象,应用最优参数设计原理确定动力吸振器参数,设计制造了动力吸振器样机。试验结果表明,该电涡流动力吸振器具有良好的吸振性能,最大减幅比可达98%。%Aiming at the need of vertical tail buffet suppression, a design scheme of dynamic vibration absorber with compact layout and adjustable damping is proposed; this is based on the mechanism of eddy current energy dissipation. Eddy current energy dissipation can ensure that the dynamic vibration absorber has good environmental adaptability, durability and reliability. Based on the electromagnetic theory, the calculation model of eddy current damping force is established and the design rule of eddy damping force is concluded. Through the comparison be⁃tween the calculations and the experiments, the validation and accuracy of eddy current damping force model are verified. Taking an equivalent cantilever beam system as the object of vibration control, and on the basis of the the⁃ory of dynamic vibration absorber optimal design, we determined the optimal parameters of dynamic vibration ab⁃sorber and completed the design and manufacture of eddy current dynamic vibration absorber prototype. Experimen⁃tal results show that the maximum amplitude of cantilever beam can be decreased at most by 98%, and the pro⁃posed eddy current dynamic vibration absorber has obvious vibration-absorption effect.

  9. Energy absorber for the CETA

    Science.gov (United States)

    Wesselski, Clarence J.

    1994-01-01

    The energy absorber that was developed for the CETA (Crew Equipment and Translation Aid) on Space Station Freedom is a metal on metal frictional type and has a load regulating feature that prevents excessive stroking loads from occurring while in operation. This paper highlights some of the design and operating aspects and the testing of this energy absorber.

  10. Energy absorber for the CETA

    Science.gov (United States)

    Wesselski, Clarence J.

    1994-05-01

    The energy absorber that was developed for the CETA (Crew Equipment and Translation Aid) on Space Station Freedom is a metal on metal frictional type and has a load regulating feature that prevents excessive stroking loads from occurring while in operation. This paper highlights some of the design and operating aspects and the testing of this energy absorber.

  11. Depletion of gadolinium burnable poison in a PWR assembly with high burnup fuel

    International Nuclear Information System (INIS)

    A tendency to increase the discharge burnup of nuclear fuel for Advanced Pressurized Water Reactors (PWR) has been a characteristic of its operation for many years. It will be able to burn at very high burnup of about 70 GWd/t with UO2 fuels. The U-235 enrichment must be higher than 5 %, which leads to the necessity of using an extremely efficient burnable poison like Gadolinium oxide. Using gadolinium isotope is significant due to its particular depletion behavior (''Onion-Skin'' effect). In this paper, the MCNPX2.7 code is used to calculate the important neutronic parameters of the next generation fuels of PWR. K-infinity, local peaking factor and fission rate distributions are calculated for a PWR assembly which burn at very high burnup reaching 70 GWd/t. The calculations are performed using the recently released evaluated Gadolinium cross section data. The results obtained are close to those of a LWR next generation fuel benchmark problem. This demonstrates that the calculation scheme used is able to accurately model a PWR assembly that operates at high burnup values.

  12. Depletion of gadolinium burnable poison in a PWR assembly with high burnup fuel

    Energy Technology Data Exchange (ETDEWEB)

    Refeat, Riham Mahmoud [Nuclear and Radiological Regulatory Authority (NRRA), Cairo (Egypt). Safety Engineering Dept.

    2015-12-15

    A tendency to increase the discharge burnup of nuclear fuel for Advanced Pressurized Water Reactors (PWR) has been a characteristic of its operation for many years. It will be able to burn at very high burnup of about 70 GWd/t with UO{sub 2} fuels. The U-235 enrichment must be higher than 5 %, which leads to the necessity of using an extremely efficient burnable poison like Gadolinium oxide. Using gadolinium isotope is significant due to its particular depletion behavior (''Onion-Skin'' effect). In this paper, the MCNPX2.7 code is used to calculate the important neutronic parameters of the next generation fuels of PWR. K-infinity, local peaking factor and fission rate distributions are calculated for a PWR assembly which burn at very high burnup reaching 70 GWd/t. The calculations are performed using the recently released evaluated Gadolinium cross section data. The results obtained are close to those of a LWR next generation fuel benchmark problem. This demonstrates that the calculation scheme used is able to accurately model a PWR assembly that operates at high burnup values.

  13. Study of burnable poisons and gadolinium qualification in light water reactors

    International Nuclear Information System (INIS)

    The aim of this work is to develop a calculation procedure for analyzing light water moderated reactors utilizing gadolinium as a burnable poison. The main points of this work can be summarized as follows: the available cross section data of gadolinium were analysed and corrected whenever it was necessary. The processes which include required precautions for obtaining multigroup cross sections were defined; an exhaustive study of the assumptions used in multicell calculation methods allowed the definition of option to be used for obtaining good results without excessive calculation cost. This study was followed by the interpretation of experimental results; when gadolinium is used in grain structure, a problem of double heterogeneity is encountered. A new calculation method was developed for such situations. Its validity was confirmed by a comparison with the Monte Carlo method; the problems encountered in performing a study of burn up of fuel elements containing gadolinium were analysed and the necessary precautions were established. The effect of the initial charge and geometrical form of the gadolinium and the behavior of lattices during the burn up were examined

  14. Universal metamaterial absorbe

    CERN Document Server

    Smaali, Rafik; Moreau, Antoine; Taliercio, Thierry; Centeno, Emmanuel

    2016-01-01

    We propose a design for an universal absorber, characterized by a resonance frequency that can be tuned from visible to microwave frequencies independently of the choice of the metal and the dielectrics involved. An almost resonant perfect absorption up to 99.8 % is demonstrated at resonance for all polarization states of light and for a very wide angular aperture. These properties originate from a magnetic Fabry-Perot mode that is confined in a dielectric spacer of $\\lambda/100$ thickness by a metamaterial layer and a mirror. An extraordinary large funneling through nano-slits explains how light can be trapped in the structure. Simple scaling laws can be used as a recipe to design ultra-thin perfect absorbers whatever the materials and the desired resonance wavelength, making our design truly universal.

  15. Optimal Sound Absorbing Structures

    CERN Document Server

    Yang, Min; Fu, Caixing; Sheng, Ping

    2016-01-01

    Causal nature of the acoustic response, for any materials or structures, dictates an inequality that relates the absorption spectrum of the sample to its thickness. We present a general recipe for constructing sound-absorbing structures that can attain near-equality for the causal relation with very high absorption performance; such structures are denoted optimal. Our strategy involves using carefully designed acoustic metamaterials as backing to a thin layer of conventional sound absorbing material, e.g., acoustic sponge. By using this design approach, we have realized a 12 cm-thick structure that exhibits broadband, near-perfect flat absorption spectrum starting at around 400 Hz. From the causal relation, the calculated minimum sample thickness is 11.5 cm for the observed absorption spectrum. We present the theory that underlies such absorption performance, involving the evanescent waves and their interaction with a dissipative medium, and show the excellent agreement with the experiment.

  16. Preliminary Evaluation of Alternate Designs for HFIR Low-Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David G [ORNL; Chandler, David [ORNL; Cook, David Howard [ORNL; Ilas, Germina [ORNL; Jain, Prashant K [ORNL; Valentine, Jennifer R [ORNL

    2014-11-01

    Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL) as part of an effort sponsored by the U.S. Department of Energy s Global Threat Reduction Initiative (GTRI)/Reduced Enrichment for Research and Test Reactors (RERTR) program. The fuel type selected by the program for the conversion of the five high-power research reactors in the U.S. that still use HEU fuel is a new U-Mo monolithic fuel. Studies by ORNL have previously indicated that HFIR can be successfully converted using the new fuel provided (1) the reactor power can be increased from 85 MW to 100 MW and (2) the fuel can be fabricated to a specific reference design. Fabrication techniques for the new fuel are under development by the program but are still immature, especially for the complex aspects of the HFIR fuel design. In FY 2012, the program underwent a major shift in focus to emphasize developing and qualifying processes for the fabrication of reliable and affordable LEU fuel. In support of this new focus and in an effort to ensure that the HFIR fuel design is as suitable for reliable fabrication as possible, ORNL undertook the present study to propose and evaluate several alternative design features. These features include (1) eliminating the fuel zone axial contouring in the previous reference design by substituting a permanent neutron absorber in the lower unfueled region of all of the fuel plates, (2) relocating the burnable neutron absorber from the fuel plates of the inner fuel element to the side plates of the inner fuel element (the fuel plates of the outer fuel element do not contain a burnable absorber), (3) relocating the fuel zone inside the fuel plate to be centered on the centerline of the depth of the plate, and (4) reshaping the radial contour of the relocated fuel zone to be symmetric about this centerline. The present

  17. Preliminary Evaluation of Alternate Designs for HFIR Low-Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David [ORNL; Chandler, David [ORNL; Cook, David [ORNL; Ilas, Germina [ORNL; Jain, Prashant [ORNL; Valentine, Jennifer [ORNL

    2014-10-30

    Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL) as part of an effort sponsored by the U.S. Department of Energy’s Global Threat Reduction Initiative (GTRI)/Reduced Enrichment for Research and Test Reactors (RERTR) program. The fuel type selected by the program for the conversion of the five high-power research reactors in the U.S. that still use HEU fuel is a new U-Mo monolithic fuel. Studies by ORNL have previously indicated that HFIR can be successfully converted using the new fuel provided (1) the reactor power can be increased from 85 MW to 100 MW and (2) the fuel can be fabricated to a specific reference design. Fabrication techniques for the new fuel are under development by the program but are still immature, especially for the “complex” aspects of the HFIR fuel design. In FY 2012, the program underwent a major shift in focus to emphasize developing and qualifying processes for the fabrication of reliable and affordable LEU fuel. In support of this new focus and in an effort to ensure that the HFIR fuel design is as suitable for reliable fabrication as possible, ORNL undertook the present study to propose and evaluate several alternative design features. These features include (1) eliminating the fuel zone axial contouring in the previous reference design by substituting a permanent neutron absorber in the lower unfueled region of all of the fuel plates, (2) relocating the burnable neutron absorber from the fuel plates of the inner fuel element to the side plates of the inner fuel element (the fuel plates of the outer fuel element do not contain a burnable absorber), (3) relocating the fuel zone inside the fuel plate to be centered on the centerline of the depth of the plate, and (4) reshaping the radial contour of the relocated fuel zone to be symmetric about this centerline. The

  18. Liquid metal reactor absorber technology

    International Nuclear Information System (INIS)

    This paper reports that the selection of boron carbide as the reference liquid metal reactor absorber material is supported by results presented for irradiation performance, reactivity worth, compatibility, and benign failure consequences. Scram response requirements are met easily with current control rod configurations. The trend in absorber design development is toward larger sized pins with fewer pins per bundle, providing economic savings and improved hydraulic characteristics. Very long-life absorber designs appear to be attainable with the application of vented pin and sodium-bonded concepts

  19. Design and optimization of a SiC thermal emitter/absorber composed of periodic microstructures based on a non-linear method

    Science.gov (United States)

    Wang, Wei-Jie; Zhao, Zhen-Guo; Zhao, Yi; Zhou, Hai-Jing; Fu, Ce-Ji

    2015-09-01

    Spectral and directional control of thermal emission based on excitation of confined electromagnetic resonant modes paves a viable way for the design and construction of microscale thermal emitters/absorbers. In this paper, we present numerical simulation results of the thermal radiative properties of a silicon carbide (SiC) thermal emitter/absorber composed of periodic microstructures. We illustrate different electromagnetic resonant modes which can be excited with the structure, such as surface phonon polaritons, magnetic polaritons and photonic crystal modes, and the process of radiation spectrum optimization based on a non-linear optimization algorithm. We show that the spectral and directional control of thermal emission/absorption can be efficiently achieved by adjusting the geometrical parameters of the structure. Moreover, the optimized spectrum is insensitive to 3% dimension modification. Project supported by the National Natural Science Foundation of China (Grant No. 51076002), the National Basis Research Program of China (Grant No. 2013CA328900), and the Key Project of Complicated Electromagnetic Environment Laboratory of CAEP, China (Grant No. 2015E0-01-1).

  20. Small, long-life high temperature gas-cooled reactor free from prompt supercritical accidents by particle-type burnable poisons

    International Nuclear Information System (INIS)

    A design concept for a high temperature gas-cooled reactor without the possibility of a prompt supercritical accident has been proposed by coupling the use of particle-type burnable poison (BP) and criticality control by the core temperature. The combinations of two different BPs, B4C and Gd2O3 particles and B4C and CdO particles, with the proper particle sizes and the appropriate volume ratio, showed excellent performance in controlling excess reactivity and flattening the reactivity swing. To maintain reactivity at a lower level than the prompt critical state, the reactor was designed to operate in a subcritical mode for a burnup period or for the whole operation cycle. Under subcritical operation during the partial burnup period, the core temperature had to be lowered by at least 164 K for the loading of B4C + Gd2O3 particles and by at least 178 K for the B4C + CdO particles, which in turn dropped the thermal efficiency from 48% to 42.26% and 41.77%, respectively. On the other hand, under full subcritical operation, a greater decrease of core temperature was required. Remarkable decreases in the core temperatures, approximately 347 K for the B4C + Gd2O3 case and approximately 280 K for the B4C + CdO case, resulted in the drop of thermal efficiency to only 35.9% and 38.2%, respectively. Therefore, the relative importance of the increase in passive safety and the decrease in thermal efficiency must be considered with regard to their importance in nuclear reactor design. (author)

  1. Design of Multiple Dynamic Vibration Absorbers for Buffet Control of Vertical Tails%垂尾抖振控制中多重动力吸振器设计

    Institute of Scientific and Technical Information of China (English)

    牛文超; 李斌

    2016-01-01

    Aiming at the need of vertical tail buffet suppression, the eddy current vibration absorber is designed and its parameters is introduced. The optimal design parameters method of the multiple dynamic vibration absorber is deduced to realize the vibration absorber miniaturization. Taking an equivalent cantilever beam system and a scaled vertical tail as the objects respectively for vibration control, considering the actual size of the vibration absorber and the vertical tail, and choosing the reasonable installation position, the vibration absorption effect of the multiple-dynamic-vibration-absorber is verified through the finite element simulation. Simulation results show that the vibration suppression property of the multiple-dynamic-vibration-absorber scheme is very good. Compared to the single large dynamic vibration absorber, the vibration attenuation rate of the quadruple dynamic vibration absorber scheme is increased by 16%, and will be raised by 20%for the ten-dynamic-vibration-absorber scheme.%针对飞机垂尾抖振抑制的需要,进行小型电涡流耗能动力吸振器设计,并推导多重动力吸振器最优参数设计方法。分别以悬臂梁系统和缩比垂尾为被控对象,并考虑动力吸振器与垂尾实际尺寸,选定合理安装位置,通过有限元仿真验证多重动力吸振器吸振性能,仿真结果表明多重动力吸振器具有良好的振动抑制效果,可满足设计预期要求。

  2. Design and Control of the PowerTake-Off System for a Wave Energy Converter with Multiple Absorbers

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm

    powertransmissions, which have applicability to wave energy. One of the difficulties in PTO design is performing the trade-off between contradicting PTO characteristics, e.g. controllability, efficiency and peak power capacity. A PTO system for wave energy is a classic example of a mechatronic design problem, where...... in that the Oscillation Control is Implemented Resistively (OCIR). The OCIR control implements a causal non-linear control, which achieve similar manipulation of the absorber’s behaviour as reactive control, but through non-linear damping techniques. The control is shown to be superior to other resistive control...... techniques. The research leads to three potential PTO systems, where one is a magnetic gear based PTO. The gear is based on implementing the function of a screw and nut magnetically by placing permanent magnets in a helical pattern. A PTO layout with the magnetic lead screw is found and analysed using...

  3. Crashworthy Energy Absorbing Car-body Design Method for Pass enger Train%客运列车耐冲击吸能车体设计方法

    Institute of Scientific and Technical Information of China (English)

    田红旗

    2001-01-01

    In order to reduce the losses suffered from collision between passenger trains,a new design method for the car body structure of motor car and trailer is advanced.Car body structures are made up of three parts with diffferen tstiffness,by carefully designed.The parts of the front and the end are the wea kstiffness structure to absorb energy through plastic deformation in the collision.The middle part,where only elastic deformation occurs,is an elastic deformati on structure with strong stiffness.As the passenger train runs normally,car body structure measure up to regulation of intensity and stiffness in the standards. Once collision accident occurred when the train is moving with fairly high speed ,the energy-absorbing structure produces large plastic deformation along the direction needed to absorb sufficient energy,at the same time,the deceleration must be controlled within the endurable limits to human body.%为了减轻客运列车碰撞事故造成的损失,实现被动安全保护,对组成列车的动车、客车车体结构提出了新的设计方法,重新分配车体各部分刚度,设计出具有合适吸能结构的耐冲击车体,车体结构均按前、中、后三种纵向刚度设置,前后 两部分为可以产生塑性变形的弱刚度吸能结构,中间部分为仅产生弹性变形的强刚度弹变结 构。当列车在正常运行时,车体有足够的强度和刚度,需要满足有关规范规定的强度、刚度 要求;在较高速下发生碰撞事故时,吸能结构能够沿所需方向产生塑性大变形吸收足够冲击 动能,保证机器间和乘客区不发生破坏,并延缓碰撞作用时间,降低碰撞瞬间最大减速度,使撞击减速度在人体承受范围内。

  4. Employing exergy-optimized pin fins in the design of an absorber in a solar air heater

    Energy Technology Data Exchange (ETDEWEB)

    Nwosu, Nwachukwu P. [National Centre for Energy Research and Development (NCERD) and Department of Mechanical Engineering, University of Nigeria, Nsukka (UNN) (Nigeria)

    2010-02-15

    Fins serve as heat transfer augmentation features in solar air heaters; however, they increase pressure drop in flow channels. Pin fins are relatively good heat transfer augmentation features with superior aerodynamic performance, and as a result find application in some solar air heaters. The exergy optimization method is employed in sizing the pin fin. Results indicate that high efficiency of the optimized fin improves the heat absorption and dissipation potential of a solar air heater. With optimum fin efficiency and superior absorptive coating quality, useful energy losses can be minimized. Some important observations pertinent in design are made. (author)

  5. Preparation of acrylic acid-modified chitin improved by an experimental design and its application in absorbing toxic organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chao-Ming, E-mail: charming@mail.ksu.edu.tw [Department of Materials Engineering, Kun Shan University, Tainan, Taiwan (China); Chen, Lung-Chuan, E-mail: lcchen@mail.ksu.edu.tw [Department of Materials Engineering, Kun Shan University, Tainan, Taiwan (China); Yang, Hui-Chia, E-mail: yang.junkdna@gmail.com [Department of Environmental Engineering, Kun Shan University, Tainan, Taiwan (China); Li, Min-Hsing, E-mail: a1487561a@yahoo.com.tw [Department of Environmental Engineering, Kun Shan University, Tainan, Taiwan (China); Pan, Ting-Chung, E-mail: tcpan@mail.ksu.edu.tw [Department of Environmental Engineering, Kun Shan University, Tainan, Taiwan (China)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Acrylic acid-modified chitin. Black-Right-Pointing-Pointer Experimental design. Black-Right-Pointing-Pointer Graft copolymerization. Black-Right-Pointing-Pointer Adsorption of toxic organic compounds. Black-Right-Pointing-Pointer Very high adsorption capacity. - Abstract: Chitin grafted poly (acrylic acid) (chi-g-PAA) is synthesized and characterized as an adsorbent of toxic organic compounds. Chi-g-PAA copolymers are prepared using of ammonium cerium (IV) nitrate (Ce{sup 4+}) as the initiator. The highest grafting percentage of AA in chitin obtained using the traditional technique is 163.1%. A maximum grafting percentage of 230.6% is obtained using central composite design (CCD). Experimental results are consistent with theoretical calculations. The grafted copolymer is characterized by Fourier transform Infrared spectroscopy and solid state {sup 13}C NMR. A representative chi-g-AA copolymer is hydrolyzed to a type of sodium salt (chi-g-PANa) and used in the adsorption of malachite green (MG), methyl violet (MV), and paraquat (PQ) in aqueous. The monolayer adsorption capacities of these substances are 285.7, 357.1, and 322.6 mg/g-adsorbent, respectively. Thermodynamic calculations show that the adsorption of MG, MV, and PQ are more favored at diluted solutions. The high adsorption capacity of chi-g-PANa for toxic matter indicates its potential in the treatment of wastewater and emergency treatment of PQ-poisoned patients.

  6. Laboratory differential simulation design method of pressure absorbers for carbonization of phenolate solution by carbon dioxide in coal-tar processing

    Energy Technology Data Exchange (ETDEWEB)

    Linek, V.; Sinkule, J.; Moucha, T.; Rejl, J.F. [Prague Institute for Chemical Technology, Prague (Czech Republic). Dept. of Chemical Engineering

    2009-01-15

    A laboratory differential simulation method is used for the design of carbonization columns at coal-tar processing in which phenols are regenerated from phenolate solution by carbon dioxide absorption. The design method is based on integration of local absorption rates of carbon dioxide along the column. The local absorption rates into industrial phenolate mixture are measured in a laboratory model contactor for various compositions of the gas and liquid phases under the conditions that ensure the absorption rates in the laboratory absorber simulate the local rates in the industrial column. On the bases of the calculations, two-step carbonization columns were designed for 30000 t/year of the phenolate solution treatment by carbon dioxide. The absorption proceeds at higher pressure of 500 kPa and temperatures from 50 to 65 C, pure carbon dioxide is used and toluene is added. These conditions have the following favourable effects: (I) significant size reduction of the columns, (ii) it is possible to process more concentrated solutions without danger of silting the columns by crystallization of NaHCO{sub 3} on the packing. (iii) small amount of inert gas is released, (iv) lower alkalinity and better separability of the organic phase (phenols with toluene) from water phase (soda or bicarbonate solution) in separators.

  7. Mechanism Analysis of Absorbing Electromagnetic Wave in design of Microwave Anechoic Chamber%微波暗室设计中的吸波材料吸波机理分析

    Institute of Scientific and Technical Information of China (English)

    易鸣镝; 王冰; 王迪

    2016-01-01

    文章首先简述电磁波吸波材料的发展史,然后重点讨论广泛应用于微波暗室建设中的尖劈形吸波材料的几何吸波原理,并进行了数学推导,从理论上说明了电磁波在尖劈形吸波材料中能够形成多次反射,并给出了反射强度公式。籍此为暗室的设计及其测量误差的排查提供理论依据和理论分析方法。%This paper firstly gives a brief introduction to electromagnetic wave absorber wave material development history, and then introduce the ceiling materials in electromagnetic wave absorbing physical process, combined with the necessary experi-mental data on darkroom absorbing wave material selection is briefly discussed, finally focuses on discussion is widely used in the microwave anechoic chamber design in wedge-shaped absorber geometric wave absorbing mechanism, and the mathematic formulas are deduced. In theory illustrates the electromagnetic wave in the wedge-shaped absorber can form multiple reflection is presented, and the reflection intensity formula. Take this as the darkroom design and measurement error of the investigation provides a theoretical basis and theoretical analysis method.

  8. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping

    2016-05-18

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  9. Absorber materials in CANDU PHWRs

    International Nuclear Information System (INIS)

    In a CANDU reactor the fuel channels are arranged on a square lattice in a calandria filled with heavy water moderator. This arrangement allows five types of tubular neutron absorber devices to be located in the relatively benign environment of low pressure, low temperature heavy water between neighbouring rows or columns of fuel channels. This paper will describe the roles of the devices and outline the design requirements of the absorber component from a reactor physics viewpoint. Nuclear heating and activation problems associated with the different absorbers will be briefly discussed. The design and manufacture of the devices will be also discussed. The control rod absorbers and shut off materials are cadmium and stainless steel. In the tubular arrangement, the cadmium is sandwiched between stainless steel tubes. This type of device has functioned well, but there is now concern over the availability and expense of cadmium which is used in two types of CANDU control devices. There are also concerns about the toxicity of cadmium during the fabrication of the absorbers. These concerns are prompting AECL to study alternatives. To minimize design changes, pure boron-10 alloyed in stainless steel is a favoured option. Work is underway to confirm the suitability of the boron-loaded steel and identify other encapsulated absorber materials for practical application. Because the reactivity devices or their guide tubes span the calandria vessel, the long slender components must be sufficiently rigid to resist operational vibration and also be seismically stable. Some of these components are made of Zircaloy to minimize neutron absorption. Slow irradiation growth and creep can reduce the spring tension, and periodic adjustments to the springs are required. Experience with the control absorber devices has generally been good. In one instance liquid zone controllers had a problem of vibration induced fretting but a redesigned back-fit resolved the problem. (author). 3 refs, 8

  10. Design and Experimental Research of Solar Blackbody Cavity Absorber%太阳能黑腔集热器的设计及实验研究

    Institute of Scientific and Technical Information of China (English)

    张晓晖; 姜伟娜; 徐鉴鉴

    2014-01-01

    在黑体概念的基础上,设计了1种新型太阳能腔体集热器,并进行了实验。新型太阳能腔体集热器利用黑腔的高吸收率、泡沫板的良好隔热性以及玻璃板营造的温室效应,使得集热器的整体热损失明显下降,从而提高了集热效率。测试结果表明:集热器内介质为水时,平均温升为15.1℃,最大温升为21℃,热效率最低为53%。各项热损失计算结果表明:黑腔辐射造成的热损失最大,反射热损失和对流热损失很小。新型太阳能腔体集热器结构紧凑,单位体积的有效吸热面积较平板太阳能集热器和真空管太阳能集热器大。%On the basis of traditional cavity absorber,a kind of new solar cavity-heat receiver is designed.With advantage of high absorptivity and good thermal insulation,the whole heat loss gets smaller and can obtain high thermal efficiency.The result of the experiment shows that the mean temperature rise is 15.1℃ and the highest temperature rise is 21℃ when water is filled,and the thermal efficiency is 53% under present situa-tion.The result of the thermal loss calculation indicates that radiation heat loss accounts for the most,while reflection heat loss and convection heat loss is small.The compact design has bigger effective heat absorbing area per volume than flat plate solar collector and evacuated tubular collector.

  11. The ALICE absorbers

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Weighing more than 400 tonnes, the ALICE absorbers and the surrounding support structures have been installed and aligned with a precision of 1-2 mm, hardly an easy task but a very important one. The ALICE absorbers are made of three parts: the front absorber, a 35-tonne cone-shaped structure, and two small-angle absorbers, long straight cylinder sections weighing 18 and 40 tonnes. The three pieces lined up have a total length of about 17 m.

  12. Carbon Absorber Retrofit Equipment (CARE)

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Eric [Neumann Systems Group, Incorporated, Colorado Springs, CO (United States)

    2015-12-23

    During Project DE-FE0007528, CARE (Carbon Absorber Retrofit Equipment), Neumann Systems Group (NSG) designed, installed and tested a 0.5MW NeuStream® carbon dioxide (CO2) capture system using the patented NeuStream® absorber equipment and concentrated (6 molal) piperazine (PZ) as the solvent at Colorado Springs Utilities’ (CSU’s) Martin Drake pulverized coal (PC) power plant. The 36 month project included design, build and test phases. The 0.5MW NeuStream® CO2 capture system was successfully tested on flue gas from both coal and natural gas combustion sources and was shown to meet project objectives. Ninety percent CO2 removal was achieved with greater than 95% CO2product purity. The absorbers tested support a 90% reduction in absorber volume compared to packed towers and with an absorber parasitic power of less than 1% when configured for operation with a 550MW coal plant. The preliminary techno-economic analysis (TEA) performed by the Energy and Environmental Research Center (EERC) predicted an over-the-fence cost of $25.73/tonne of CO2 captured from a sub-critical PC plant.

  13. Optimum design of composite panel with photovoltaic-thermo module. Absorbing effect of cooling panel; Hikari netsu fukugo panel no saiteki sekkei. Reikyaku panel no kyunetsu koka

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Kikuchi, S.; Tani, T. [Science University of Tokyo, Tokyo (Japan); Kadotani, K.; Imaizumi, H. [Komatsu Ltd., Tokyo (Japan)

    1996-10-27

    The composite panel with photovoltaic-thermo module becomes higher in energy-saving than the conventional air-conditioning system by the independent radiational heating and cooling effect obtained when the generating panel using a solar cell module is combined with the heating and cooling panel using a thermo-element module. The output of a solar cell module can be directly used because the solar cell module operates in AC. This paper reports the relation between the absorbed value and power consumption of the cooling panel, while paying attention to the cooling panel. The performance coefficient of the maximum absorbed value from an non-absorbing substance to a cooling panel is 2 to 3. Assume that the cooling panel during non-adiabatic operation is operated using a solar cell module of 800 W/m{sup 2} in solar intensity and 15% in conversion efficiency. The cooling-surface temperature difference is 12.12 K, and the maximum absorbed value of a non-absorbing substance to a cooling panel is 39.12 W/m{sup 2}. The absorbed value of the outer temperature to the cooling panel is 74.4 W/m{sup 2}, and each performance coefficient is 3.26 and 0.62. The absorbed value must be calculated for evaluation from the cooling-surface temperature difference measured directly from the cooling panel. 4 refs., 8 figs., 1 tab.

  14. Multiband Negative Permittivity Metamaterials and Absorbers

    Directory of Open Access Journals (Sweden)

    Yiran Tian

    2013-01-01

    Full Text Available Design and characteristics of multiband negative permittivity metamaterial and its absorber configuration are presented in this paper. The proposed multiband metamaterial is composed of a novel multibranch resonator which can possess four electric resonance frequencies. It is shown that, by controlling the length of the main branches of such resonator, the resonant frequencies and corresponding absorbing bands of metamaterial absorber can be shifted in a large frequency band.

  15. Effect of Burnable Absorbers on Inert Matrix Fuel Performance and Transuranic Burnup in a Low Power Density Light-Water Reactor

    Directory of Open Access Journals (Sweden)

    Geoff Recktenwald

    2013-04-01

    Full Text Available Zirconium dioxide has received particular attention as a fuel matrix because of its ability to form a solid solution with transuranic elements, natural radiation stability and desirable mechanical properties. However, zirconium dioxide has a lower coefficient of thermal conductivity than uranium dioxide and this presents an obstacle to the deployment of these fuels in commercial reactors. Here we show that axial doping of a zirconium dioxide based fuel with erbium reduces power peaking and fuel temperature. Full core simulations of a modified AP1000 core were done using MCNPX 2.7.0. The inert matrix fuel contained 15 w/o transuranics at its beginning of life and constituted 28% of the assemblies in the core. Axial doping reduced power peaking at startup by more than ~23% in the axial direction and reduced the peak to average power within the core from 1.80 to 1.44. The core was able to remain critical between refueling while running at a simulated 2000 MWth on an 18 month refueling cycle. The results show that the reactor would maintain negative core average reactivity and void coefficients during operation. This type of fuel cycle would reduce the overall production of transuranics in a pressurized water reactor by 86%.

  16. Mushroom plasmonic metamaterial infrared absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Shinpei, E-mail: Ogawa.Shimpei@eb.MitsubishiElectric.co.jp; Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji [Advanced Technology R and D Center, Mitsubishi Electric Corporation, 8-1-1 Tsukaguchi-Honmachi, Amagasaki, Hyogo 661-8661 (Japan); Kimata, Masafumi [College of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577 (Japan)

    2015-01-26

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF{sub 2} etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.

  17. Structured Metal Film as Perfect Absorber

    Science.gov (United States)

    Xiong, Xiang; Jiang, Shang-Chi; Peng, Ru-Wen; Wang, Mu

    2014-03-01

    With standing U-shaped resonators, fish-spear-like resonator has been designed for the first time as the building block to assemble perfect absorbers. The samples have been fabricated with two-photon polymerization process and FTIR measurement results support the effectiveness of the perfect absorber design. In such a structure the polarization-dependent resonance occurs between the tines of the spears instead of the conventional design where the resonance occurs between the metallic layers separated by a dielectric interlayer. The incident light neither transmits nor reflects back which results in unit absorbance. The power of light is trapped between the tines of spears and finally be absorbed. The whole structure is covered with a continuous metallic layer with good thermo-conductance, which provides an excellent approach to deal with heat dissipation, is enlightening in exploring metamaterial absorbers.

  18. A Six-Fold Symmetric Metamaterial Absorber

    Directory of Open Access Journals (Sweden)

    Humberto Fernández Álvarez

    2015-04-01

    Full Text Available A novel microwave metamaterial absorber design is introduced along with its manufacturing and characterization. Significant results considering both bandwidth and angular stability are achieved. Parametric analysis and simplified equivalent circuit are provided to give an insight on the key elements influencing the absorber performance. In addition, the constitutive parameters of the effective medium model are obtained and related to the absorber resonant behavior. Moreover, a new thinner and more flexible absorber version, preserving broad bandwidth and angular insensitive performance, is simulated, and an 8 × 8 unit-cells prototype is manufactured and measured for a limited angular margin in an anechoic chamber.

  19. Methods for absorbing neutrons

    Science.gov (United States)

    Guillen, Donna P.; Longhurst, Glen R.; Porter, Douglas L.; Parry, James R.

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  20. Planar Metamaterial Absorber Based on Lumped Elements

    Institute of Scientific and Technical Information of China (English)

    GU Chao; QU Shao-Bo; PEI Zhi-Bin; ZHOU Hang; XU Zhuo; BAI Peng; PENG Wei-Dong; LIN Bao-Qin

    2010-01-01

    @@ We present the design of a planar metamaterial absorber based on lumped elements,which shows a wide-band polarization-insensitive and wide-angle strong absorption.This absorber consists of metal electric resonators,the dielectric substrate,the metal film and lumped elements.The simulated absorbances under two different loss conditions indicate that high absorbance in the absorption band is mainly due to lumped resistances.The simulated absorbances under three different load conditions indicate that the local resonance circuit(lumped resistance and capacitance)could boost up the resonance of the whole RLC circuit.The simulated voltage in lumped elements indicates that the transformation efficiency from electromagnetic energy to electric energy in the absorption band is high,and electric energy is subsequently consumed by lumped resistances.This absorber may have potential applications in many military fields.

  1. Design and Research of Hydraulic Absorber for Building%房屋液压减震装置的设计与研究

    Institute of Scientific and Technical Information of China (English)

    高军霞; 杨国权; 郭子利

    2011-01-01

    介绍一种房屋液压减震器实验装置,建立其数学模型,通过MATLAB/Simulink对该装置的减震效果进行仿真分析。仿真和实物模型演示结果表明:在地震来临瞬间,应用该装置的建筑物减震效果显著。%A type of experimental device of hydraulic absorber for building was introduced. Its mathematical model was built. The hydraulic absorber for building was simulated by MATLAB/Simulink. The simulation and physical model experimental results show the hydraulic absorber for building has significant damping effect when earthquake comes.

  2. Design of microwave absorbing asphalt mixture pavement material%吸波沥青混合料路面材料设计

    Institute of Scientific and Technical Information of China (English)

    袁斌; 刘銮成; 李敬才

    2012-01-01

    Directing against low microwave absorbing property of limestone aggregate asphalt mixture,asphalt mixture absorbing microwave with 3∶ 7 and limestone aggregate was prepared.The mixture was heated with a microwave oven for 60 s and the surface temperature was measured.The results indicate that the asphalt mixture absorbing microwave had higher temperature enhancement efficiency.%针对普通石灰岩集料沥青混合料吸波效率低等问题,按照铁矿石集料与普通石灰岩集料体积比3∶7,配制吸波沥青混合料,利用微波炉并加热60 s后,测试混合料表面温度差别,结果表明,吸波沥青混合料具有明显的升温效率高的特点。

  3. TOMS Absorbing Aerosol Index

    Data.gov (United States)

    Washington University St Louis — TOMS_AI_G is an aerosol related dataset derived from the Total Ozone Monitoring Satellite (TOMS) Sensor. The TOMS aerosol index arises from absorbing aerosols such...

  4. Metasurface Broadband Solar Absorber

    OpenAIRE

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Milan Sykora; Nina R. Weisse-Bernstein; Luk, Ting S.; Antoinette J. Taylor; Dalvit, Diego A. R.; Hou-Tong Chen

    2016-01-01

    We demonstrate a broadband, polarization independent, omnidirectional absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low emissivity at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experiment...

  5. Optimisation of initial core of AHWR-LEU using burnable poison

    International Nuclear Information System (INIS)

    This paper focuses on the physics design optimisation of initial core of AHWR-LEU. Advanced Heavy Water Reactor (AHWR) being designed for 920 MWth, is a vertical pressure tube thorium-based reactor cooled by boiling light water and moderated by heavy water designed to maximise power production from thorium. The equilibrium fuel cycle is based on the conversion of naturally available thorium into fissile 233U driven by plutonium as external fissile feed. Plutonium is used as makeup fuel to achieve high discharge burnup and self-sustaining characteristics of Th-233U fuel cycle. The reactor would be operated in closed fuel cycle by recycling 233U back into the reactor. Physics design of AHWR offers considerable flexibility to accommodate different kinds of fuel cycles. Use of Low Enriched Uranium (LEU) fuel with thorium in AHWR has several attractive features like enhanced safe where all the reactivity coefficients are negative by design. The delayed neutron parameter β will be larger than the reference AHWR fuelled with (Th,Pu)MOX and (Th,233U) MOX and hence enhanced controllability. This fuel cycle would be operated in a once-through mode. The initial core will have large excess reactivity and will require large amount of neutron poison (boron) to be dissolved in moderator to quench this initial core excess reactivity. Generally, flux flattening is achieved by using differential enrichment in the central and outer region of the core. (author)

  6. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Lavrinenko, Andrei

    2013-01-01

    In this paper we present the efficient design of functional thin-film metamaterial devices with the effective surface conductivity approach. As an example, we demonstrate a graphene based perfect absorber. After formulating the requirements to the perfect absorber in terms of surface conductivity...... we investigate the properties of graphene wire medium and graphene fishnet metamaterials and demonstrate both narrowband and broadband tunable absorbers....

  7. Graphene and Graphene Metamaterials for Terahertz Absorbers

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Pizzocchero, Filippo; Booth, Tim;

    2013-01-01

    Graphene, due to the possibility to tune its conductivity, is the promising material for a range of the terahertz (THz) applications, such as tunable reflectors, absorbers, modulators, filters and polarization converters. Subwavelength structuring of graphene in order to form metamaterials allows...... for even more control over the THz waves. In this poster presentation I will show an elegant way to describe the graphene metamaterials and the design of graphene based absorbers. I will also present our recent experimental results on the graphene absorbers characterization....

  8. Advanced PWR fuel design concepts

    International Nuclear Information System (INIS)

    For nearly 15 years, Combustion Engineering has provided pressurized water reactor fuel with the features most suppliers are now introducing in their advanced fuel designs. Zircaloy grids, removable upper end fittings, large fission gas plenum, high burnup, integral burnable poisons and sophisticated analytical methods are all features of C-E standard fuel which have been well proven by reactor performance. C-E's next generation fuel for pressurized water reactors features 24-month operating cycles, optimal lattice burnable poisons, increased resistance to common industry fuel rod failure mechanisms, and hardware and methodology for operating margin improvements. Application of these various improvements offer continued improvement in fuel cycle economics, plant operation and maintenance. (author)

  9. Perfect terahertz absorber using fishnet based metafilm

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Abul Kalam [Los Alamos National Laboratory; Shchegolkov, Dmitry Yu [Los Alamos National Laboratory; Chen, Houtong [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; Smirnova, E I [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory

    2009-01-01

    We present a perfect terahertz (THz) absorber working for a broad-angle of incidence. The two fold symmetry of rectangular fishnet structure allows either complete absorption or mirror like reflection depending on the polarization of incident the THz beam. Metamaterials enable the ability to control the electromagnetic wave in a unique fashion by designing the permittivity or permeability of composite materials with desired values. Although the initial idea of metamaterials was to obtain a negative index medium, however, the evolution of metamaterials (MMs) offers a variety of practically applicable devices for controlling electromagnetic wave such as tunable filters, modulators, phase shifters, compact antenna, absorbers, etc. Terahertz regime, a crucial domain of the electromagnetic wave, is suffering from the scarcity of the efficient devices and might take the advantage of metamaterials. Here, we demonstrate design, fabrication, and characterization of a terahertz absorber based on a simple fishnet metallic film separated from a ground mirror plane by a dielectric spacer. Such absorbers are in particular important for bolometric terahertz detectors, high sensitivity imaging, and terahertz anechoic chambers. Recently, split-ring-resonators (SRR) have been employed for metamaterial-based absorbers at microwave and THz frequencies. The experimental demonstration reveals that such absorbers have absorptivity close to unity at resonance frequencies. However, the downside of these designs is that they all employ resonators of rather complicated shape with many fine parts and so they are not easy to fabricate and are sensitive to distortions.

  10. Adaptive Piezoelectric Absorber for Active Vibration Control

    Directory of Open Access Journals (Sweden)

    Sven Herold

    2016-02-01

    Full Text Available Passive vibration control solutions are often limited to working reliably at one design point. Especially applied to lightweight structures, which tend to have unwanted vibration, active vibration control approaches can outperform passive solutions. To generate dynamic forces in a narrow frequency band, passive single-degree-of-freedom oscillators are frequently used as vibration absorbers and neutralizers. In order to respond to changes in system properties and/or the frequency of excitation forces, in this work, adaptive vibration compensation by a tunable piezoelectric vibration absorber is investigated. A special design containing piezoelectric stack actuators is used to cover a large tuning range for the natural frequency of the adaptive vibration absorber, while also the utilization as an active dynamic inertial mass actuator for active control concepts is possible, which can help to implement a broadband vibration control system. An analytical model is set up to derive general design rules for the system. An absorber prototype is set up and validated experimentally for both use cases of an adaptive vibration absorber and inertial mass actuator. Finally, the adaptive vibration control system is installed and tested with a basic truss structure in the laboratory, using both the possibility to adjust the properties of the absorber and active control.

  11. Effect of burnable poison addition on the thermo-mechanical properties of UO2-5wt5CeO2 pellets

    International Nuclear Information System (INIS)

    The microstructural characteristics and the thermo-mechanical properties of the pellets were evaluated and compared for UO2 and UO2-5wt%CeO2 pellets doped with burnable poisons (5wt% and 10wt% of Gd2O3, Sm2O3 and Dy2O3), sintered in reducing atmosphere for 4h. The sintered density and the grain size of UO2 and UO2-5wt%CeO2 pellets decreased by adding Gd2O3, Sm2O3 and Dy2O3 and the Vickers handness (Hv) of these pellets were found not affected with density and grain size variations. The fracture toughness (KIC) of the UO2 pellets increased with Gd2O3 and Dy2O3 adding and decreased with 10wt% Sm2O3 but that of UO2-5wt%CeO2 pellets were not changed. The fracture strength (of) of UO2 and UO2-5wt%CeO2 pellets were not affected by addition of burnable poison material and the critical thermal shock temperature difference (ΔTc) of the pellets increased for UO2 pellets doped with Gd2O3. Sm2O3 and Dy2O3 in the low temperature range (80 ∼ 200 .deg. C)

  12. Solar concentrator/absorber

    Science.gov (United States)

    Von Tiesenhausen, G. F.

    1976-01-01

    Collector/energy converter, consisting of dual-slope optical concentrator and counterflow thermal energy absorber, is attached to multiaxis support structure. Efficient over wide range of illumination levels, device may be used to generate high temperature steam, serve as solar powered dryer, or power absorption cycle cooler.

  13. Negative impedance shunted electromagnetic absorber for broadband absorbing: experimental investigation

    International Nuclear Information System (INIS)

    The traditional tuned mass absorber is widely employed to control the vibration of a primary structure by transferring the vibrating energy to the absorber. However, the working band of the absorber is very narrow, which limits the application of broadband vibration control. This study presents a novel broadband electromagnetic absorber by first introducing two negative impedance shunts to improve broadband damping of the absorber. The electromagnetic absorber is modeled, and the corresponding electromagnetic coupling coefficient is tested. A cantilever beam is employed to verify the broadband vibration absorption of the negative resistance (NR) shunted electromagnetic absorber (NR absorber) and the negative inductance NR shunted electromagnetic absorber (NINR absorber). The governing equations of the beam with two absorbers are derived, and the experiments are set up. The results point out that the NR and NINR absorbers can attenuate the broadband vibration. The proposed absorbers do not need the feedback system and the real-time controller compared to the active absorber; hence, they have great application potential in aerospace and in submarine applications, as well as in civil and mechanical engineering. (paper)

  14. An ultra-broadband multilayered graphene absorber

    KAUST Repository

    Amin, Muhammad

    2013-01-01

    An ultra-broadband multilayered graphene absorber operating at terahertz (THz) frequencies is proposed. The absorber design makes use of three mechanisms: (i) The graphene layers are asymmetrically patterned to support higher order surface plasmon modes that destructively interfere with the dipolar mode and generate electromagnetically induced absorption. (ii) The patterned graphene layers biased at different gate voltages backedup with dielectric substrates are stacked on top of each other. The resulting absorber is polarization dependent but has an ultra-broadband of operation. (iii) Graphene\\'s damping factor is increased by lowering its electron mobility to 1000cm 2=Vs. Indeed, numerical experiments demonstrate that with only three layers, bandwidth of 90% absorption can be extended upto 7THz, which is drastically larger than only few THz of bandwidth that can be achieved with existing metallic/graphene absorbers. © 2013 Optical Society of America.

  15. Tuned mass absorber on a flexible structure

    DEFF Research Database (Denmark)

    Krenk, Steen; Høgsberg, Jan Becker

    2014-01-01

    The classic design of a tuned mass absorber is based on a simple two-mass analogy in which the tuned mass is connected to the structural mass with a spring and a viscous damper. In a flexible multi-degree-of-freedom structure the tuned mass absorber is typically introduced to provide damping...... of a specific mode. The motion of the point of attachment of the tuned mass absorber to the structure has not only a contribution from the targeted mode, but also a background contribution from other non-resonant modes. Similarly, the force provided by the tuned mass absorber is distributed between the targeted...... with the desired maximum amplification, from which the device damper, mass and stiffness are determined, accounting for the background flexibility. Examples demonstrate the influence of the flexibility effect and the efficiency of the proposed procedure....

  16. Study on buffering characteristics of hydraulic absorber

    International Nuclear Information System (INIS)

    Control rod hydraulic drive mechanism (CRHDM) is a new type of in-vessel control rod drive technology. Hydraulic absorber is one of the key parts of control rod hydraulic drive line. It is used to buffer control rod when the rod scrams to prevent the cross-blades of control rod from deformation and damage. Based on the working process of the hydraulic absorber, a theoretical model of the buffering process was established. Calculation results of the theoretical model agree well with the experiment results. The trend of pressure change in absorber cylinder, the displacement and velocity of the piston and buffering force during the buffering process were obtained from the calculation results of the theoretical model. Then influence parameters about cushioning characteristics were analyzed, which laid foundation for optimal design of the hydraulic absorber. (authors)

  17. Metasurface Broadband Solar Absorber

    Science.gov (United States)

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-02-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure.

  18. Metasurface Broadband Solar Absorber.

    Science.gov (United States)

    Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  19. Galaxy Clusters in the Line of Sight to Background Quasars: I. Survey Design and Incidence of MgII Absorbers at Cluster Redshifts

    CERN Document Server

    López, S; Lira, P; Padilla, N; Gilbank, D G; Gladders, M D; Maza, J; Tejos, N; Vidal, M; Yee, H K C

    2008-01-01

    We describe the first optical survey of absorption systems associated with galaxy clusters at z= 0.3-0.9. We have cross-correlated SDSS DR3 quasars with high-redshift cluster/group candidates from the Red-Sequence Cluster Survey. We have found 442 quasar-cluster pairs for which the MgII doublet might be detected at a transverse (physical) distance d2.0 Ang.) near cluster redshifts shows a significant (>3 sigma) overabundance (up to a factor of 15) when compared with the 'field' population; (2) the overabundance is more evident at smaller distances (d<1 Mpc) than larger distances (d<2 Mpc) from the cluster center; and, (3) the population of weak MgII systems (W_0<0.3 Ang.) near cluster redshifts conform to the field statistics. Unlike in the field, this dichotomy makes n(W) in clusters appear flat and well fitted by a power-law in the entire W-range. A sub-sample of the most massive clusters yields a stronger and still significant signal. Since either the absorber number density or filling-factor/cros...

  20. The Design Thinking of the Concentrated Absorb Refrigeration System%一种聚光吸附式制冷系统的设计思路

    Institute of Scientific and Technical Information of China (English)

    赵书东

    2016-01-01

    With the environmental pollution aggravation and fossil fuel depletion,harnessing the power of the sun directly or indirectly remains at the core of future energy scenarios,this article put forward a suspect to combine the technology of Concentrated Photo Voltaic and Adsorption Refrigeration creatively,and use the example of 30 degrees north latitude Chinese city,described the theoretical feasibility of the concentrated absorb refrigeration.%随着化石能源的消耗和环境污染的加剧,直接或间接利用太阳能成为了未来能源模式的核心内容之一,本文创新地提出了将聚光光伏技术和太阳能吸附式制冷技术相结合的思路,并以中国北纬30度的城市为例,阐述了聚光吸附式制冷的理论可行性。

  1. Ionized Absorbers in AGN

    Science.gov (United States)

    Mathur, S.

    1999-01-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  2. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W

    2003-01-01

    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  3. Review of LMFBR absorber development in DeBeNe

    International Nuclear Information System (INIS)

    The control rods design methods for LMFBRs, design criteria and choice of absorber materials are reviewed in presented paper. The results of the absorber rods material testing and its in-pile behaviour investigation as well as the programme of the future R and D work are also given

  4. Design and manufacture of a Q-switched Nd:YAG laser by Cr4+:YAG saturable absorber and simulation of the system

    International Nuclear Information System (INIS)

    In this article, we design and set up a Q-switched Nd:YAG laser by Cr4+:YAG crystal in order to obtain a desired output beam, energy per pulse 250 mj, pulse width 10 ns and good beam quality. This system have been also simulated by a powerful laser design and analysis software. The output beam profile in near and far-field resulted from the simulation process show a good agreement with the corresponding ones obtained from the measurement

  5. Absorber for terahertz radiation management

    Science.gov (United States)

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  6. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan; Farmer, Joseph C.; Lee, Chuck K.; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  7. Fractal Absorbing Body Design and Its Application in Microstrip Antenna%分形吸波体设计及其在微带天线中的应用

    Institute of Scientific and Technical Information of China (English)

    商楷; 曹祥玉; 高军; 杨欢欢; 郑秋容

    2013-01-01

    基于Hilbert分形结构,设计了一种小型化、超薄、高吸波率以及无表面损耗层的超材料吸波体,该吸波体单元尺寸仅为0.071λ,厚度约0.02λ,吸波率达99.3%.将该吸波体与普通微带天线共形设计,制备了一种新型超材料天线.与初始天线相比,新天线的单站和双站带内雷达散射截面都有明显减缩,最大减缩达到7.2 dB,且天线辐射性能保持不变,证实了该吸波体具有良好的吸波效果.仿真和实测结果吻合得很好,表明该吸波体可以应用于微带天线的带内隐身.%A metamaterial absorber based on hilbert fractal structure is designed with miniaturization,slim,high absorptivity and no surface ullage layer.Its unit size is only 0.071λ,the thickness is about 0.02λ and the absorber can exhibit absorption of 99.3 %.It is conformed on microstrip antenna to preparation of a novel metamaterial antenna.Compared with the conventional microstrip antenna,the proposed antenna has a obvious monstatic and bistatic radar cross section reduction at the working frequency band.the greatest decrement can amounted to 7.2 dB,while the radiation performance is kept,which proves that the absorber had an excellent absorptivity.The simulation and measured resultes are in good agreement,indicating that the absorbing body can be applied to microstrip antennas to achieve in-band stealth.

  8. A sound absorbing metasurface with coupled resonators

    Science.gov (United States)

    Li, Junfei; Wang, Wenqi; Xie, Yangbo; Popa, Bogdan-Ioan; Cummer, Steven A.

    2016-08-01

    An impedance matched surface is able, in principle, to totally absorb the incident sound and yield no reflection, and this is desired in many acoustic applications. Here we demonstrate a design of impedance matched sound absorbing surface with a simple construction. By coupling different resonators and generating a hybrid resonance mode, we designed and fabricated a metasurface that is impedance-matched to airborne sound at tunable frequencies with subwavelength scale unit cells. With careful design of the coupled resonators, over 99% energy absorption at central frequency of 511 Hz with a 50% absorption bandwidth of 140 Hz is achieved experimentally. The proposed design can be easily fabricated, and is mechanically stable. The proposed metasurface can be used in many sound absorption applications such as loudspeaker design and architectural acoustics.

  9. 减振器活塞杆侧向弯曲疲劳试验机构设计%Design on Lateral Bending Fatigue Test Mechanism of Piston Rod in Shock Absorber

    Institute of Scientific and Technical Information of China (English)

    孙晓帮; 杨晓琦; 杨殿旭; 王国东

    2014-01-01

    在介绍减振器活塞杆侧向弯曲疲劳试验原理的基础上,设计出实现活塞杆侧向弯曲试验功能的曲柄连杆双弹簧机构,并确定了关键功能参数。试验结果表明,该试验机构能满足直径小于25 mm的活塞杆侧向弯曲疲劳试验。%Based on introducing the principle on lateral bending fatigue test of piston rod in shock absorber, crank connecting rod double spring mechanism was designed to implement function of lateral bending test of piston rod, and key function parameters were determined. Experimental results show that this mechanism can meet lateral bending fatigue test of piston rod whose diameter is less than 32mm.

  10. Tribology Aspect of Rubber Shock Absorbers Development

    Directory of Open Access Journals (Sweden)

    M. Banić

    2013-09-01

    Full Text Available Rubber is a very flexible material with many desirable properties Which enable its broad use in engineering practice. Rubber or rubber-metal springs are widely used as anti-vibration or anti-shock components in technical systems. Rubber-metal springs are usually realized as a bonded assembly, however especially in shock absorbers, it is possible to realize free contacts between rubber and metal parts. In previous research it authors was observed that friction between rubber and metal in such case have a significant influence on the damping characteristics of shock absorber. This paper analyzes the development process of rubber or rubber-metal shock absorbers realized free contacts between the constitutive parts, starting from the design, construction, testing and operation, with special emphasis on the development of rubber-metal springs for the buffing and draw gear of railway vehicles.

  11. Design of straight-retractable energy-absorbing beam for electric cars and its crashworthiness analysis%电动汽车直形收缩梁的轻量化设计与耐撞性分析

    Institute of Scientific and Technical Information of China (English)

    王秋成; 刘卫国; 葛东东; 赵福全; 李芳

    2012-01-01

    The insufficient mileage is one of the major bottleneck factors which affect the promotion and application of electric cars. To reduce the electric vehicle body mass is an effective way to improve the mileage of an electric vehicle. Two kinds of contraction beams, straight retractable (SR) and tapered retractable (TR) beams, were designed to lighten the electric car mass. A frontal crash model was established by using the Hypermesh and LS-DYNA to study the frontal structural component crashworthiness of an electric car during collisions at a low-speed of 16 km/h and a high-speed of 50 km/h. The collision energy absorption, the impact force, and the body acceleration, when using new energy-absorbing beams, were analyzed and compared with those when using the original energy-absorbing beam. Simulation results demonstrate that the straight retractable beam can absorb more crash energy by 18.0% at the high-speed collision and reduce the mass by 23.6%, which optimizes both the light mass and the crashworthiness of an electric car.%电动车续航里程过短是影响推广应用的主要瓶颈因素之一,而电动汽车车身结构的轻量化是提高续航里程的有效途径。该文提出了两款新型梁--直形收缩梁和锥形收缩梁,对某款电动汽车原吸能部件,进行轻量化设计。建立了电动汽车正面碰撞结构模型,运用Hypermesh和LS—DYNA软件,对新型吸能梁和原吸能梁进行低速(16km/h)碰撞和高速(50km/h)碰撞模拟,研究了其碰撞能量吸收、刚性墙撞击力、车身加速度等碰撞行为。仿真计算结果表明:新型直形收缩梁在高速碰撞时吸能提高了18.0%,同时吸能部件的质量减轻了23.6%,兼顾了电动汽车零部件的轻量化和耐撞性。

  12. Liquid Hydrogen Absorber for MICE

    Energy Technology Data Exchange (ETDEWEB)

    Ishimoto, S.; Suzuki, S.; Yoshida, M.; Green, Michael A.; Kuno, Y.; Lau, Wing

    2010-05-30

    Liquid hydrogen absorbers for the Muon Ionization Cooling Experiment (MICE) have been developed, and the first absorber has been tested at KEK. In the preliminary test at KEK we have successfully filled the absorber with {approx}2 liters of liquid hydrogen. The measured hydrogen condensation speed was 2.5 liters/day at 1.0 bar. No hydrogen leakage to vacuum was found between 300 K and 20 K. The MICE experiment includes three AFC (absorber focusing coil) modules, each containing a 21 liter liquid hydrogen absorber made of aluminum. The AFC module has safety windows to separate its vacuum from that of neighboring modules. Liquid hydrogen is supplied from a cryocooler with cooling power 1.5 W at 4.2 K. The first absorber will be assembled in the AFC module and installed in MICE at RAL.

  13. Heat and mass transfer characteristics of a small helical absorber

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jung-In [College of Engineering, School of Mechanical Engineering, Pukyong National University, San 100, Yongdang-dong, Nam-gu, Pusan 608-739 (Korea, Republic of); Kwon, Oh-Kyung [KITECH, 35-3 Hongchon-ri, Ipjang-meon, Chonan, Chungnam 330-825 (Korea, Republic of); Bansal, P.K. [Department of Mechanical Engineering, The University of Auckland, Private bag 92019, Auckland (New Zealand); Moon, Choon-Geun; Lee, Ho-Saeng [Department of Refrigeration and Air-conditioning Engineering, Graduate School, Pukyong National University, San 100, Yongdang-dong, Nam-gu, Pusan 608-739 (Korea, Republic of)

    2006-02-01

    This paper presents experimental results of heat and mass transfer investigation of the falling film absorber (with strong lithium bromide solution) for a small household absorption chiller/heater. Various components (e.g. low temperature generator, absorber and evaporator) were arranged concentrically in cylindrical form such that the helical-arrangement of the heat exchangers allowed the system to be more compact than the conventional system. Measurements from the helical absorber were compared with data from the literature. The comparison revealed that the heat and mass transfer performance of the helical absorber tube is similar to the existing tube bundle absorber. As a result, the proposed helical absorber shows a good potential due its reduced size and weight for the future designs of small capacity absorption chillers/heaters. (author)

  14. Energy-absorbing effectiveness factor

    OpenAIRE

    Jones, Norman

    2010-01-01

    Abstract A study is reported on the energy-absorbing effectiveness factor which was introduced recently. The factor is defined as the quotient of the total energy, which can be absorbed in a system, to the maximum energy up to failure in a normal tensile specimen, which is made from the same volume of material. This dimensionless parameter allows comparisons to be made of the effectiveness of various geometrical shapes and of energy-absorbers made from different materials. The infl...

  15. Nuclear design report for system-integrated modular advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Yoon; Lee, Chung Chan; Zee, Sung Quun; Chang, Moon Hee [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-02-01

    This report presents nuclear characteristics analysis results for SMART. Information is given on fuel loading, power density distributions, reactivity coefficients and control rod worths. The core consists of 57 modified Korean Standard Fuel Assemblies (m-KOFAs). and all fuel assemblies contain burnable absorbers to control the power distribution and the excess reactivity that is required for soluble boron-free and ultra longer cycle operation. The cycle length of SMART amounts to 990 EFPD corresponding to a cycle burnup of 26,160 MWD/MTU. 4 refs., 92 figs., 5 tabs. (Author)

  16. Review of Plasmonic Nanocomposite Metamaterial Absorber

    Directory of Open Access Journals (Sweden)

    Mehdi Keshavarz Hedayati

    2014-02-01

    Full Text Available Plasmonic metamaterials are artificial materials typically composed of noble metals in which the features of photonics and electronics are linked by coupling photons to conduction electrons of metal (known as surface plasmon. These rationally designed structures have spurred interest noticeably since they demonstrate some fascinating properties which are unattainable with naturally occurring materials. Complete absorption of light is one of the recent exotic properties of plasmonic metamaterials which has broadened its application area considerably. This is realized by designing a medium whose impedance matches that of free space while being opaque. If such a medium is filled with some lossy medium, the resulting structure can absorb light totally in a sharp or broad frequency range. Although several types of metamaterials perfect absorber have been demonstrated so far, in the current paper we overview (and focus on perfect absorbers based on nanocomposites where the total thickness is a few tens of nanometer and the absorption band is broad, tunable and insensitive to the angle of incidence. The nanocomposites consist of metal nanoparticles embedded in a dielectric matrix with a high filling factor close to the percolation threshold. The filling factor can be tailored by the vapor phase co-deposition of the metallic and dielectric components. In addition, novel wet chemical approaches are discussed which are bio-inspired or involve synthesis within levitating Leidenfrost drops, for instance. Moreover, theoretical considerations, optical properties, and potential application of perfect absorbers will be presented.

  17. Preparation of Active Absorbent for Flue Gas Desulfurization From Coal Bottom Ash: Effect of Absorbent Preparation Variables

    Directory of Open Access Journals (Sweden)

    Chang Chin Li, Lee Keat Teong, Subhash Bhatia and Abdul Rahman Mohamed

    2012-08-01

    Full Text Available An active absorbent for flue gas desulfurization was prepared from coal bottom ash, calcium oxide (CaO and calcium sulfate by hydro-thermal process. The absorbent was examined for its micro-structural properties. The experiments conducted were based on Design Of Experiments (DOE according to 23 factorial design. The effect of various absorbent preparation variables such as ratio of CaO to bottom ash (A, hydration temperature (B and hydration period (C towards the BET (Brunauer-Emmett-Teller specific surface area of the absorbent were studied. At a CaO to bottom ash ratio = 2, hydration temperature = 200 ?C and hydration period = 10 hrs, absorbent with a surface area of 90.1 m2/g was obtained. Based on the analysis of the factorial design, it was concluded that factor A and C as well as the interaction of factors ABC and BC are the significant factors that effect the BET surface area of the absorbent. A linear mathematical model that describes the relation between the independent variables and interaction between variables towards the BET specific surface area of the absorbent was also developed. Analysis of variance (ANOVA showed that the model was significant at 1% level.Key Words: Absorbent, Bottom Ash, Design Of Experiments, Desulfurization, Surface Area.

  18. 用于应力吸收层使用的沥青混合料配合比设计方法研究%Study on the Design Method of Mix Proportion about HMA for Stress Absorbing Layer

    Institute of Scientific and Technical Information of China (English)

    刘小滔; 王旭东; 周兴业; 熊琴

    2012-01-01

    根据AC10型细粒式沥青混凝土应力吸收层的设计,提出基于路用性能均衡的应力吸收层的设计方法。即采用最佳紧密状态油石比为下限,谢伦堡析漏试验析漏损失率拐点油石比为上限,并根据路用性能最优确定应力吸收层最佳油石比。通过广西一高速公路实体工程验证,取得了良好的应用效果。%According to the design of AC10 fined grained asphalt concrete used as stress absorbing layer,this paper proposes the related design method based on equilibrium of pavement performance.This method adopts the asphalt-aggregate ratio under closest compact condition as lower limit and that at the inflexion of run-off loss ratio in Schellenberg Binder Drainage Test as upper limit to finally determine the optimum asphalt-aggregate ratio according to the optimum pavement performance.Through the verification of a substantial highway project in Guangxi province,it achieves good application result.

  19. New Technology in Hydrogen Absorbers for Muon Cooling Channels

    CERN Document Server

    Cummings, M A C

    2005-01-01

    Ionization cooling is the only technique fast enough to cool and focus muons for neutrino factories and muon colliders, and hydrogen is the optimal material for maximum cooling and minimal multiple scattering. Liquid hydrogen absorber R&D for the Muon Collaboration has proceeded on parallel and complementary fronts. The continuing LH2 absorber engineering and technical developments by the MuCool group conducted by ICAR* institutions (NIU, IIT and UIUC), the University of Mississippi and Oxford University, in cooperation with Fermilab, will be summarized, including results from the first hydrogen absorber tests at the newly constructed FNAL Mucool Test Area (MTA). The program includes designs for the high-powered test of an absorber prototype (external heat exchange) at the MTA which are nearing completion to be installed by summer 2005, an alternative absorber design (internal heat exchange) being finalized for the approved cooling experiment (MICE) at Rutherford-Appleton Laboratory, and a novel idea for ...

  20. Leaf absorbance and photosynthesis

    Science.gov (United States)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  1. Absorber design in sour natural gas treatment plants: Impact of process variables on operation and economics = Absorberentwurf für Anlagen zur Behandlung von sauren Erdgasen: Einfluss Prozessparameter auf Betriebsführung und Prozesswirtschaftlichkeit

    NARCIS (Netherlands)

    Blauwhoff, P.M.M.; Kamphuis, B.; Swaaij, van W.P.M.; Westerterp, K.R.

    1985-01-01

    Two models of absorber have been developed which describe the absorption of H2S and CO2 from natural gases by aqueous di-isopropanolamine (DIPA) or methyl-di-ethanolamine (MDEA) solutions. In these models mass transfer, reaction and equilibrium processes as they prevail in conventional tray absorber

  2. Ultra-broadband terahertz metamaterial absorber

    Science.gov (United States)

    Zhu, Jianfei; Ma, Zhaofeng; Sun, Wujiong; Ding, Fei; He, Qiong; Zhou, Lei; Ma, Yungui

    2014-07-01

    We demonstrated an ultra-broadband, polarization-insensitive, and wide-angle metamaterial absorber for terahertz (THz) frequencies using arrays of truncated pyramid unit structure made of metal-dielectric multilayer composite. In our design, each sub-layer behaving as an effective waveguide is gradually modified in their lateral width to realize a wideband response by effectively stitching together the resonance bands of different waveguide modes. Experimentally, our five layer sample with a total thickness 21 μm is capable of producing a large absorptivity above 80% from 0.7 to 2.3 THz up to the maximum measurement angle 40°. The full absorption width at half maximum of our device is around 127%, greater than those previously reported for THz frequencies. Our absorber design has high practical feasibility and can be easily integrated with the semiconductor technology to make high efficient THz-oriented devices.

  3. High-performance THz metamaterial absorber

    CERN Document Server

    Zhu, Jianfei; Sun, Wujiong; Ding, Fei; He, Qiong; Zhou, Lei; Ma, Yungui

    2014-01-01

    We demonstrated an ultra-broadband, polarization-insensitive and wide-angle metamaterial absorber for terahertz (THz) frequencies using arrays of truncated pyramid unit structure made of metal-dielectric multilayer composite. In our design each sub-layer behaving as an effective waveguide is gradually modified in their lateral width to realize a wideband response by effectively stitching together the resonance bands of different waveguide modes. Experimentally, our five layer sample with a total thickness 21um is capable of producing a large absorptivity above 80% from 0.7 to 2.3 THz up to the maximum measurement angle 40{\\deg}. The full absorption width at half maximum (FWHM) of our device is around 127%, greater than those previously reported for THz frequencies. Our absorber design has high practical feasibility and can be easily integrated with the semiconductor technology to make high efficient THz-oriented devices.

  4. Metamaterial perfect absorber based on artificial dielectric "atoms".

    Science.gov (United States)

    Liu, Xiaoming; Bi, Ke; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-09-01

    In this work, we numerically designed and then experimentally verified a metamaterial perfect absorber based on artificial dielectric "atoms". This metamaterial absorber is composed of dielectric ceramic material (SrTiO3) "atoms" embedded in a background matrix on a metal plate. The dielectric "atoms" couple strongly to the incident electric and magnetic fields at the Mie resonance mode, leading to the narrow perfect absorption band with simulated and experimental absorptivities of 99% and 98.5% at 8.96 GHz, respectively. The designed metamaterial perfect absorber is polarization insensitive and can operate in wide angle incidence. PMID:27607650

  5. Flexible subterahertz metamaterial absorber fabrication using inkjet printing technology

    Science.gov (United States)

    Lee, Dongju; Sung, Hyuk-Kee; Lim, Sungjoon

    2016-07-01

    In this study, a flexible metamaterial (MM) absorber was designed at 0.1 THz and fabricated using inkjet printing technology. The unit cell of the MM absorber was designed using a finite element method-based full-wave simulation. The unit cell comprised square rings, and it was printed with silver nanoparticle ink on flexible Kapton polyimide film. The fabrication processes were performed using a material printer. The absorber's reflection coefficient was measured using a vector network analyzer and a WR-10 waveguide. The absorption ratio was 93.5 % at 0.102 THz. Therefore, we demonstrated the possibility of inkjet printing at a subterahertz band.

  6. Absorbers: Definitions, properties and applications

    Directory of Open Access Journals (Sweden)

    G. Belitskii

    1998-01-01

    Full Text Available Roughly speaking, the absorber is a set, which includes, after finite number of initial states, each trajectory of a transformation of space into itself. This paper deals with the exact definition of absorbers for linear operators, the study of the properties, the applications to “classical” dynamics and to solvability of operator equations. It is expected that the description of the structure of absorbers will add new insights to the recent discussion of nature and content of notion of attractiveness for nonlinear dynamics.

  7. 均匀设计法优化一种高吸水性树脂的制备工艺%Optimal preparation of a type of super absorbent resin using uniform design

    Institute of Scientific and Technical Information of China (English)

    苏秀霞; 耿肖沙; 李仲谨; 杨玉娜

    2012-01-01

    A super absorbent resin,xanthan gum-g-poly(acrylic acid-co-2-acrylanido-2-methlpropanesulfonic acid)[XG/P(AA-AMPS)],was prepared by solution polymerization in this study.The synthesis process was optimized by using U10 *(104)uniform design.The results showed that the best weight ratio of acrylic acid is 12 g,the amount of initiator is 0.5%,the neutralization degree of acrylic acid is 80% and the synthesis temperature of graft copolymerization is 60 ℃.Under the optimal condition of absorbent resin synthesizing,the water absorption multiple is up to 997.1 g/g,with normal saline is up to 176.2 g/g.The fourier infrared spectroscopy(FTIR),scanning electron microscopy(SEM) and integrated thermal analyzers were used for the characterization of the super absorbent resin.The results of FTIR characterization show that acrylic acid(AA)and 2-acrylanido-2-methlpropanesulfonic acid(AMPS)are grafted to the molecular chain of xanthan gum,and the SEM observation results showed that the resin forms a porous network structure.The thermal performance analysis results show that the resin has good thermal stability at high temperature.%采用水溶液聚合的方法制备了黄原胶接枝丙烯酸/2-丙烯酰胺基-2-甲基丙磺酸[XG/P(AA-AMPS)]高吸水树脂。采用U10*(104)均匀设计对合成工艺进行优化,得出最佳合成条件为丙烯酸用量12 g、引发剂用量为单体总量的0.5%、丙烯酸的中和度为80%、聚合反应温度60℃。最佳合成条件下制备的高吸水性树脂吸水倍率达997.1 g/g,吸生理盐水倍率为176.2 g/g。采用傅里叶红外光谱(FTIR)、扫描电镜(SEM)和综合热分析仪对高吸水树脂进行表征。红外光谱分析结果显示丙烯酸(AA)和2-丙烯酰胺基-2-甲基丙磺酸(AMPS)已接枝到黄原胶分子链上,扫描电镜观察结果显示树脂形成一种多孔性网络结构,热性能分析结果显示树脂在高温下具有良好的热稳定性。

  8. Performance evaluation of CFRP-rubber shock absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Lamanna, Giuseppe, E-mail: giuseppe.lamanna@unina2.it; Sepe, Raffaele, E-mail: giuseppe.lamanna@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, via Roma, 29 - 81031 Aversa (Italy)

    2014-05-15

    In the present work a numerical investigation on the energy absorbing capability of dedicated structural components made of a carbon fiber reinforced polymer and an emulsion polymerised styrene butadiene rubber is reported. The shock absorbers are devices designed to absorb large amounts of energy by sacrificing their own structural integrity. Their aim is to cushion the effects of an impact phenomenon with the intent to preserve other structures from global failure or local damaging. Another important role of shock absorbers is reducing the peak of the acceleration showed during an impact phenomenon. This effect is of considerable interest in the case of vehicles to preserve passengers’ safety. Static and dynamic numerical results are compared with experimental ones in terms of mean crushing forces, energy and peak crushing. The global performance of the absorbers has been evaluated by referencing to a proposed quality index.

  9. The absorber hypothesis of electrodynamics

    OpenAIRE

    De Luca, Jayme

    2008-01-01

    We test the absorber hypothesis of the action-at-a-distance electrodynamics for globally-bounded solutions of a finite-particle universe. We find that the absorber hypothesis forbids globally-bounded motions for a universe containing only two charged particles, otherwise the condition alone does not forbid globally-bounded motions. We discuss the implication of our results for the various forms of electrodynamics of point charges.

  10. Design of Thermopile-Based Infrared Detectors with Suspended Absorber-Thermopile Bi-Layers%一种基于悬浮吸收层的双层结构的热电堆红外探测器

    Institute of Scientific and Technical Information of China (English)

    陈媛婧; 毛海央; 谭秋林; 薛晨阳; 欧文; 陈大鹏; 熊继军

    2014-01-01

    A novel infrared ( IR ) detector is designed and presented. The detector takes advantage of suspended absorber-thermopile bi-layers to achieve high performance with a relatively small size. The bi-layers are realized by using two separated sacrificial layers, which include a Poly-Si film beneath the thermopiles and a polyimide deposition over the thermopiles. Simulation results demonstrate that the detectivity,responsibility and response time of the IR detectors can reach 2. 85×108 cmHz(1/2)/W,1 800 V/W and 6 ms,respectively. Moreover,the fabrication of the IR detector is highly compatible with standard CMOS process, which as a result, makes the high-yield and low-cost production possible.%提出一种新颖红外传感器,这种传感器采用悬浮吸收层的双层结构的优势,来实现相对小尺寸下的高探测性能。双层结构采用2种牺牲层材料,分别为聚酰亚胺牺牲层和预埋在热偶条和沉底之间的多晶硅材料。仿真结果证明了该种结构的探测率、响应率和响应时间分别达到2.85×108 cm Hz(1/2)/W、1800 V/W和6 ms。本文给出了该种热电堆红外探测器高度兼容于CMOS工艺的制备流程,使器件的高效量产和低成本生产成为可能。

  11. Analysis of buffering process of control rod hydraulic absorber

    International Nuclear Information System (INIS)

    Control Rod Hydraulic Drive Mechanism(CRHDM) is a newly invented build-in control rod drive mechanism. Hydraulic absorber is the key part of this mechanism, and is used to cushion the control rod when the rod scrams. Thus, it prevents the control rod from being deformed and damaged. In this paper dynamics program ANSYS CFX is used to calculate all kinds of flow conditions in hydraulic absorber to obtain its hydraulic characteristics. Based on the flow resistance coefficients obtained from the simulation results, fluid mass and momentum equations were developed to get the trend of pressure change in the hydraulic cylinder and the displacement of the piston rod during the buffering process of the control rod. The results obtained in this paper indicate that the hydraulic absorber meets the design requirement. The work in this paper will be helpful for the design and optimization of the control rod hydraulic absorber. (author)

  12. THE INFLUENCE OF CaO AND P2O5 OF BONE ASH UPON THE REACTIVITY AND THE BURNABILITY OF CEMENT RAW MIXTURES

    Directory of Open Access Journals (Sweden)

    TOMÁŠ IFKA

    2012-03-01

    Full Text Available The influence of CaO and P2O5 upon the reactivity of cement raw meal was investigated in this paper. Ash of bone meal containing Ca3(PO42 - 3CaO·P2O5 was used as the source of P2O5. Two series of samples with different content of the ash of bone meal were prepared. In the first series, the ash of bone was added into cement raw meal. The second series of samples were prepared by considering ash as one of CaO sources. Therefore, the total content of CaO in cement raw meal was kept constant, while the amount of P2O5 increased. These different series of samples were investigated by analyzing free lime content in the clinkers. The XRD analysis and Electron Micro Probe Analyzer analysis of the clinkers were also carried out. Two parameters were used to characterize the reactivity of cement raw meal: content of free lime and Burnability Index (BI calculated from free lime content in both series of samples burnt at 1350 ºC, 1400 ºC, 1450 ºC and 1500 ºC. According to the first parameter, P2O5 content that drastically makes worse the reactivity of cement raw meal was found at 1.11 wt.% in the first series, while this limit has reached 1.52 wt.% in the second one. According to the BI, the limit of P2O5 was found at 1.42 wt. % in the first series and 1, 61 wt.% in the second one. Furthermore, EPMA has demonstrated the presence of P2O5 in both calcium silicate phases forming thus solid solutions.

  13. Waveform-dependent absorbing metasurfaces

    CERN Document Server

    Wakatsuchi, Hiroki; Rushton, Jeremiah J; Sievenpiper, Daniel F

    2014-01-01

    We present the first use of a waveform-dependent absorbing metasurface for high-power pulsed surface currents. The new type of nonlinear metasurface, composed of circuit elements including diodes, is capable of storing high power pulse energy to dissipate it between pulses, while allowing propagation of small signals. Interestingly, the absorbing performance varies for high power pulses but not for high power continuous waves (CWs), since the capacitors used are fully charged up. Thus, the waveform dependence enables us to distinguish various signal types (i.e. CW or pulse) even at the same frequency, which potentially creates new kinds of microwave technologies and applications.

  14. Anomalous Diffusion with Absorbing Boundary

    OpenAIRE

    Kantor, Yacov; Kardar, Mehran

    2007-01-01

    In a very long Gaussian polymer on time scales shorter that the maximal relaxation time, the mean squared distance travelled by a tagged monomer grows as ~t^{1/2}. We analyze such sub-diffusive behavior in the presence of one or two absorbing boundaries and demonstrate the differences between this process and the sub-diffusion described by the fractional Fokker-Planck equation. In particular, we show that the mean absorption time of diffuser between two absorbing boundaries is finite. Our res...

  15. Perfectly Reflectionless Omnidirectional Electromagnetic Absorber

    CERN Document Server

    Sainath, Kamalesh

    2014-01-01

    We demonstrate the existence of metamaterial blueprints describing, and fundamental limitations concerning, perfectly reflectionless omnidirectional electromagnetic absorbers (PR-OEMA). Previous attempts to define PR-OEMA blueprints have led to active (gain), rather than passive, media. We explain this fact and unveil new, distinct limitations of true PR-OEMA devices including the appearance of an "electromagnetic horizon" on physical solutions. As practical alternatives, we introduce two new OEMA blueprints. While these two blueprints do not correspond to reflectionless media, they are effective in absorbing incident waves in a manner robust to incident wave diversity.

  16. Absorber Model for CO2 Capture by Monoethanolamine

    DEFF Research Database (Denmark)

    Faramarzi, Leila; Kontogeorgis, Georgios; Michelsen, Michael Locht;

    2010-01-01

    The rate-based steady-state model proposed by Gabrielsen et al. (Gabrielsen, J.; Michelsen, M. L.; Kontogeorgis, G. M.; Stenby, E. H. AIChE J. 2006, 52, 10, 3443-3451) for the design of the CO2-2-amino-2-methylpropanol absorbers is adopted and improved for the design of the CO2-monoethanolamine a......, and their impact on the model's prediction is compared. The model has been successfully applied to CO2 absorber packed columns and validated against pilot plant data with good agreement.......The rate-based steady-state model proposed by Gabrielsen et al. (Gabrielsen, J.; Michelsen, M. L.; Kontogeorgis, G. M.; Stenby, E. H. AIChE J. 2006, 52, 10, 3443-3451) for the design of the CO2-2-amino-2-methylpropanol absorbers is adopted and improved for the design of the CO2-monoethanolamine...

  17. Piston-rotaxanes as molecular shock absorbers.

    Science.gov (United States)

    Sevick, E M; Williams, D R M

    2010-04-20

    We describe the thermomechanical response of a new molecular system that behaves as a shock absorber. The system consists of a rodlike rotaxane connected to a piston and tethered to a surface. The response of this system is dominated by the translational entropy of the rotaxane rings and can be calculated exactly. The force laws are contrasted with those for a rigid rod and a polymer. In some cases, the rotaxanes undergo a sudden transition to a tilted state when compressed. These piston-rotaxanes provide a potential motif for the design of a new class of materials with a novel thermomechanical response. PMID:20158174

  18. A novel broadband waterborne acoustic absorber

    Science.gov (United States)

    Wang, Changxian; Wen, Weibin; Huang, Yixing; Chen, Mingji; Lei, Hongshuai; Fang, Daining

    2016-07-01

    In this paper, we extended the ray tracing theory in polar coordinate system, and originally proposed the Snell-Descartes law in polar coordinates. Based on these theories, a novel broadband waterborne acoustic absorber device was proposed. This device is designed with gradient-distributing materials along radius, which makes the incidence acoustic wave ray warps. The echo reduction effects of this device were investigated by finite element analysis, and the numerical results show that the reflectivity of acoustic wave for the new device is lower than that of homogenous and Alberich layers in almost all frequency 0-30 kHz at the same loss factor.

  19. Single-mode cavity with HOMs absorber

    International Nuclear Information System (INIS)

    We present a new 500 MHz cavity which has a simple damped structure for the 1.5 GeV high-brilliant VUV ring. The feature of the cavity design is that higher-order modes (HOMs) propagate out from the cavity through the beam duct with a large diameter and are absorbed in resistive parts in the duct. A low power measurement on a prototype model of the cavity was carried out and the Q-values of HOMs were confirmed to strongly reduce. Thus the coupled-bunch instabilities due to HOMs are expected to be sufficiently suppressed. (author)

  20. Innovative Anti Crash Absorber for a Crashworthy Landing Gear

    Science.gov (United States)

    Guida, Michele; Marulo, Francesco; Montesarchio, Bruno; Bruno, Massimiliano

    2014-06-01

    This paper defines an innovative concept to anti-crash absorber in composite material to be integrated on the landing gear as an energy-absorbing device in crash conditions to absorb the impact energy. A composite cylinder tube in carbon fiber material is installed coaxially to the shock absorber cylinder and, in an emergency landing gear condition, collapses in order to enhance the energy absorption performance of the landing system. This mechanism has been developed as an alternative solution to a high-pressure chamber installed on the Agusta A129 CBT helicopter, which can be considered dangerous when the helicopter operates in hard and/or crash landing. The characteristics of the anti-crash device are presented and the structural layout of a crashworthy landing gear adopting the developed additional energy absorbing stage is outlined. Experimental and numerical results relevant to the material characterization and the force peaks evaluation of the system development are reported. The anti-crash prototype was designed, analysed, optimized, made and finally the potential performances of a landing gear with the additional anti-crash absorber system are tested by drop test and then correlated with a similar test without the anti-crash system, showing that appreciable energy absorbing capabilities and efficiencies can be obtained in crash conditions.

  1. Sensors of absorbed dose of ionizing radiation based on mosfet

    OpenAIRE

    Perevertaylo V. L.

    2010-01-01

    The requirements to technology and design of p-channel and n-channel MOS transistors with a thick oxide layer designed for use in the capacity of integral dosimeters of absorbed dose of ionizing radiation are defined. The technology of radiation-sensitive MOS transistors with a thick oxide in the p-channel and n-channel version is created.

  2. Stretchable Metamaterial Absorber Using Liquid Metal-Filled Polydimethylsiloxane (PDMS

    Directory of Open Access Journals (Sweden)

    Kyeongseob Kim

    2016-04-01

    Full Text Available A stretchable metamaterial absorber is proposed in this study. The stretchability was achieved by liquid metal and polydimethylsiloxane (PDMS. To inject liquid metal, microfluidic channels were fabricated using PDMS powers and microfluidic-channel frames, which were built using a three-dimensional printer. A top conductive pattern and ground plane were designed after considering the easy injection of liquid metal. The proposed metamaterial absorber comprises three layers of PDMS substrate. The top layer is for the top conductive pattern, and the bottom layer is for the meandered ground plane. Flat PDMS layers were inserted between the top and bottom PDMS layers. The measured absorptivity of the fabricated absorber was 97.8% at 18.5 GHz, and the absorption frequency increased from 18.5 to 18.65 GHz as the absorber was stretched from its original length (5.2 cm to 6.4 cm.

  3. Calculations in the Wheeler-Feynman absorber theory of radiation

    International Nuclear Information System (INIS)

    One dimensional computer aided calculations were done to find the self consistent solutions for various absorber configurations in the context of the Wheeler-Feynman absorber theory, wherein every accelerating charge is assumed to produce a time symmetric combination of advanced and retarded fields. These calculations picked out the so called outerface solution for incomplete absorbers and showed that advanced as well as retarded signals interact with matter in the same manner as in the full retarded theory. Based on these calculations, the Partridge experiment and the Schmidt-Newman experiment were ruled out as tests of the absorber theory. An experiment designed to produce and detect advanced effects is proposed, based on more one-dimensional calculations

  4. Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yijun [Institute of Optoelectronic Technology, Department of Electronic Engineering, Xiamen University, Xiamen 361005 (China); Institute of Electromagnetics and Acoustics, Department of Electronic Science, Xiamen University, Xiamen 361005 (China); Zhu, Jinfeng, E-mail: nanoantenna@hotmail.com [Institute of Electromagnetics and Acoustics, Department of Electronic Science, Xiamen University, Xiamen 361005 (China); Liu, Qing Huo [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States)

    2015-01-26

    Enhancement and manipulation of light absorption in graphene is a significant issue for applications of graphene-based optoelectronic devices. In order to achieve this purpose in the visible region, we demonstrate a design of a graphene optical absorber inspired by metal-dielectric-metal metamaterial for perfect absorption of electromagnetic waves. The optical absorbance ratios of single and three atomic layer graphene are enhanced up to 37.5% and 64.8%, respectively. The graphene absorber shows polarization-dependence and tolerates a wide range of incident angles. Furthermore, the peak position and bandwidth of graphene absorption spectra are tunable in a wide wavelength range through a specific structural configuration. These results imply that graphene in combination with plasmonic perfect absorbers have a promising potential for developing advanced nanophotonic devices.

  5. The rat bowel of β-asaron absorbs the research

    Institute of Scientific and Technical Information of China (English)

    QI Yue; JIA Dong; YOU Xian-min; ZOU Gui-xin; JIANG Hong

    2008-01-01

    Objective Study the β-asaron under the condition that the bowel each segment of rat and be worth in the diffent medicine density and pH of the absorption dynamics characteristic, as to it's the rat absorbs the part in the body and it absorbs the mechanism to carry on the study, for the further design β-asaron settle release the product to provide the living creature medicine learn the basis. Methods Apply the rat to the body to infuse to flow the bowel absorption experiment investigation and absorption dynamics characteristic;adopt the HPLC method measurement β-asaron is in rat body the bowel absorbs the medicine density within the reflux liquid. Results It absorb the quantity and β-asaron of the medicine in the reflux liquid, the density of β-asaron becomes the direct proption, the absorption speed constant of the medicine is basic and constant within the scope of the 19 μg·mL-1- 57 μg·mL-1; In the pH is 5.6; 6.9; 8.0 three kinds of dissimilarities lie the absorption velocity constant of the quality and absorb the of percentage and also did not show the difference of salience;β-asaron is in the small intestines the lower part absorb better, absorbthe velocity to press to return to bowel, ileum, jejunum, duodenum, colon to descend one by one in order, absorb the velocity constant one by one in order is 0.402, 0.396, 0.385, 0.325 h-1. Conclusions β-asaron absorbs to present a class absorption dynamics characteristic in the bowel way, absorbing the mechanism as passive absorption; in order to return to ileum and jejunums, main absorption part there is certain absorption in the colon, too.

  6. CAD/CAE OF THE WORKING CHARACTERISTICS OF A NEW TYPE OF FLUID COUPLING SHOCK ABSORBER

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    For purpose of simulation of the working characteristics of a new type of fluid coupling shock absorber for vibration protection of sensitive equipment, a physical model is presented by analyzing the internal fluid dynamic phenomenon with respect to the coupling shock absorber and implemented in MATLAB software package. Using the model it is possible to evaluate the importance of different factors for design of the shock absorber. In the meantime, the key-model machine is designed for coupling dynamic test. Comparisons with experimental results confirm the validity of the model. So the CAD/CAE software has been developed in MATLAB for design and experimental test of the new coupling shock absorber.

  7. Two-phase control absorber development program: out-reactor measurements with hoorizontal absorber elements

    International Nuclear Information System (INIS)

    The two-phase control absorber works on the principle that the neutron flux in a nuclear reactor can be regulated by changing the density of a two-phase fluid flowing through U-tubes in the reactor core. The concept is considered to be a strong candidate for use in future CANDU nuclear reactors with either vertical or horizontal pressure tubes. In addition to the experiments carried out previously on vertically oriented U-tubes and reported separately, a series of tests with horizontal U-tubes was performed. The results confirmed that U-tube orientation has no measurable effect on the performance of the two-phase control absorber concept. In particular, the measured pressure drops, mixture densities, fluid velocities and void propagation velocities, at given operating conditions, were identical in the two orientations, within experimental error. The results of the experiments and analyses were incorporated in a steady-state design code that was used in the conceptual design of a Two-Phase Absorber Control System for a CANDU-PHW-1250 power reactor. The experimental data are available separately as AECL-6532 Supplement. (auth)

  8. Insight into magnetorheological shock absorbers

    CERN Document Server

    Gołdasz, Janusz

    2015-01-01

    This book deals with magnetorheological fluid theory, modeling and applications of automotive magnetorheological dampers. On the theoretical side a review of MR fluid compositions and key factors affecting the characteristics of these fluids is followed by a description of existing applications in the area of vibration isolation and flow-mode shock absorbers in particular. As a majority of existing magnetorheological devices operates in a so-called flow mode a critical review is carried out in that regard. Specifically, the authors highlight common configurations of flow-mode magnetorheological shock absorbers, or so-called MR dampers that have been considered by the automotive industry for controlled chassis applications. The authors focus on single-tube dampers utilizing a piston assembly with one coil or multiple coils and at least one annular flow channel in the piston.

  9. Optical trapping of absorbing particles

    CERN Document Server

    Rubinsztein-Dunlop, H; Friese, M E J; Heckenberg, N R

    1998-01-01

    Radiation pressure forces in a focussed laser beam can be used to trap microscopic absorbing particles against a substrate. Calculations based on momentum transfer considerations show that stable trapping occurs before the beam waist, and that trapping is more effective with doughnut beams. Such doughnut beams can transfer angular momentum leading to rotation of the trapped particles. Energy is also transferred, which can result in heating of the particles to temperatures above the boiling point of the surrounding medium.

  10. Optimum thickness of Mossbauer absorber

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    If recoilless fraction fa is available, the optimum absorber thickness dopt can be calculated by maximizing the signal to noise ratio or Q factor. In this work,an approach presented is to get experimental Qexp as a function of the thickness, and then fitting Qexp by its theoretical expression gives fa value. At last the dopt value is deduced from a maximum on the fitted curve. In such a way, thicknesses of six specimens with quadrupole or magnetic hyperfine splitting were optimized.

  11. Side branch absorber for exhaust manifold of two-stroke internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Ralph E. (San Antonio, TX); Broerman, III, Eugene L. (San Antonio, TX); Bourn, Gary D. (Laramie, WY)

    2011-01-11

    A method of improving scavenging operation of a two-stroke internal combustion engine. The exhaust pressure of the engine is analyzed to determine if there is a pulsation frequency. Acoustic modeling is used to design an absorber. An appropriately designed side branch absorber may be attached to the exhaust manifold.

  12. Control system design for the deethanizer absorber tower pressure in the light end unit of the Nico Lopez refinery; Diseno del sistema de control para la presion en la torre absorvedora deetanizadora de la unidad de finales ligeros de la refineria Nico Lopez

    Energy Technology Data Exchange (ETDEWEB)

    Morales Corral, Camilo [Refineria Nico Lopez, Ciudad Habana (Cuba)]. E-mail: Camilo.morales@refhab.cupet.cu; Pedre Mendoza, Isabel [DAISA, Ciudad Habana (Cuba)]. E-mail: Isabel@daisa.copextel.com.cu; Garcini Leal, Hector J. [Instituto Superior Politecnico Jose A. Echeverria, La Habana (Cuba)]. E-mail: garcini,novi@electrica.cujae.edu.cu; Fernandez, Luis M. [Instituto de Cibernetica, Matematica y Fisica, La Habana (Cuba)]. E-mail: luis@icmf.inf.cu; Benitez Gonzalez, Ivon Oristela [Instituto Superior Politecnico Jose A. Echeverria, La Habana (Cuba)

    2010-11-15

    This paper is about pressure feed forward control. It is for an absorber tower of the Light End Unit. This one is in the Havana Oil Refinery. Control loop was designed using identification technic and simulation software. Moreover the design control loop has been validated and his quality has been determined. [Spanish] En el presente trabajo se aborda un control anticipatorio de presion. Fue desarrollado para la torre absorvedora de la Unidad de Finales Ligeros. La cual pertenece a la refineria de La Habana. Fue disenado un lazo de control empleando tecnicas de identificacion y programas de simulacion. Ademas el lazo disenado es validado y se determina su calidad.

  13. Simulation of terahertz metamaterial absorbers with microbolometer structure

    Science.gov (United States)

    Ding, Jie; Wang, Jun; Guo, Xiaopei; Jiang, Yadong; Fan, Lin

    2014-09-01

    The metamaterial absorber in terahertz (THz) region, with the metal pattern layer/dielectric spacer/metal reflective layer sandwich structure, is characterized in this paper. The principle of metamaterial absorber absorbing terahertz wave was introduced firstly. The top layer of metamaterial absorber is a periodically patterned with metallic subwavelength structure, which also serves as an electric resonator. The bottom layer is a thick metal plane, which is used to reduce THz wave transmittance. The dielectric layer between two metallic layers results in magnetic resonance and the resonance depends on the thickness and dielectric constant of the dielectric layer. The absorption of metamaterial absorber to terahertz wave was simulated with CST software. The relationship between the size of the metamaterial structure and absorption frequency was analyzed with the simulation results. The results indicate that the absorption frequency is affected by the cell constant and geometric structure of top metal pattern, and absorption rate is related to both the thickness of dielectric layer and the size of resonator. In the end, the possibility of integrating the metamaterial absorber with micro-bridge structure to design room temperature terahertz detector was discussed, and the manufacturing process was introduced about room temperature terahertz detector with high THz wave absorption rate.

  14. Ammonia-water absorption in vertical tubular absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Seara, Jose; Sieres, Jaime; Rodriguez, Cristobal; Vazquez, Manuel [Area de Maquinas y Motores Termicos, Escuela Tecnica Superior de Ingenieros Industriales, Campus Lagoas-Marcosende, No 9, 36200 Vigo (Spain)

    2005-03-01

    This paper presents a detailed analysis of the heat and mass transfer processes during the absorption of ammonia into water in a co-current vertical tubular absorber. The absorber configuration is of the shell and tubes type. The absorption process progresses as the vapour and liquid contact inside the tubes. Water is used as the absorber cooling medium. A differential mathematical model has been developed on the basis of mass and energy balances and heat and mass transfer equations, in order to provide further understanding of the absorber behaviour. The model takes into account separately for the churn, slug and bubbly flow patterns experimentally forecasted in this type of absorption processes inside vertical tubes and considers the simultaneous heat and mass transfer processes in both liquid and vapour phases, as well as heat transfer to the cooling medium. The model equations have been solved using the finite-difference method. Results obtained for specific data are depicted to show local values of the most important variables all along the absorber length. Parametric analyses have been performed to show the influence of design parameters and operating conditions on the absorber performance. The effect of the heat and mass transfer coefficients has also been evaluated. (authors)

  15. Broadband terahertz metamaterial absorber based on sectional asymmetric structures

    Science.gov (United States)

    Gong, Cheng; Zhan, Mingzhou; Yang, Jing; Wang, Zhigang; Liu, Haitao; Zhao, Yuejin; Liu, Weiwei

    2016-01-01

    We suggest and demonstrate the concept and design of sectional asymmetric structures which can manipulate the metamaterial absorber’s working bandwidth with maintaining the other inherent advantages. As an example, a broadband terahertz perfect absorber is designed to confirm its effectiveness. The absorber’s each cell integrates four sectional asymmetric rings, and the entire structure composed of Au and Si3N4 is only 1.9 μm thick. The simulation results show the bandwidth with absorptivity being larger than 90% is extended by about 2.8 times comparing with the conventional square ring absorber. The composable small cell, ultra-thin, and broadband absorption with polarization and incident angle insensitivity will make the absorber suitable for the applications of focal plane array terahertz imaging. PMID:27571941

  16. Plasmonic titanium nitride nanostructures for perfect absorbers

    DEFF Research Database (Denmark)

    Guler, Urcan; Li, Wen-Wei; Kinsey, Nathaniel;

    2013-01-01

    We propose a metamaterial based perfect absorber in the visible region, and investigate the performance of titanium nitride as an alternative plasmonic material. Numerical and experimental results reveal that titanium nitride performs better than gold as a plasmonic absorbing material...

  17. Glueing of solar absorbers; Solarabsorber kleben

    Energy Technology Data Exchange (ETDEWEB)

    Berner, Joachim

    2012-04-20

    Bonding technologies in absorber fabrication are evolving. After soldering, ultrasonic welding and laser welding, glueing is the latest development. The Go Innovate AG company developed a process for glueing the most varied absorber materials.

  18. Acoustical model of a Shoddy fibre absorber

    Science.gov (United States)

    Manning, John Peter

    Shoddy fibres or "Shoddies" are a mixture of post-consumer and post-industrial fibres diverted from textile waste streams and recycled into their raw fibre form. They have found widespread use as a raw material for manufacturing sound absorbers that include, but are not limited to: automotive, architectural and home appliance applications. The purpose of this project is to develop a simple acoustic model to describe the acoustic behaviour of sound absorbers composed primarily of Shoddy fibres. The model requires knowledge of the material's bulk density only. To date, these materials have not been the focus of much published research and acoustical designers must rely on models that were developed for other materials or are overly complex. For modelling purposes, an equivalent fluid approach is chosen to balance complexity and accuracy. In deriving the proposed model, several popular equivalent fluid models are selected and the required input parameters for each model identified. The models are: the model of Delaney and Bazley, two models by Miki, the model of Johnson in conjunction with the model of Champoux and Allard and the model of Johnson in conjunction with the model of Lafarge. Characterization testing is carried out on sets of Shoddy absorbers produced using three different manufacturing methods. The measured properties are open porosity, tortuosity, airflow resistivity, the viscous and thermal characteristic lengths and the static thermal permeability. Empirical relationships between model parameters and bulk density are then derived and used to populate the selected models. This yields several 'simplified' models with bulk density as the only parameter. The most accurate model is then selected by comparing each model's prediction to the results of normal incidence sound absorption tests. The model of Johnson-Lafarge populated with the empirical relations is the most accurate model over the range of frequencies considered (approx. 300 Hz - 4000 Hz

  19. An Energy Absorber with Force Modificator

    Institute of Scientific and Technical Information of China (English)

    SU Hao; ZHANG Xiaowei; YU Tongxi

    2006-01-01

    Thin-walled tubes are extensively applied in engineering,especially in vehicle structures to resist axial or traversal impact loads,for their excellent energy absorbing capacity.However,in the axial deformation mode,the force history has an extremely high peak force which may bring not only fatal injury to occupants but also damage to structures,cargo and environment.Aiming to develop energy absorbers with impact-force modificator,square metal tube with force modificator is investigated which can monitor the force-deformation history of the tube.A small device is designed to serve as an impact-force modificator,which introduces desired imperfections to the square tube just before the impact happens between the impactor and the tube,so as to reduce the peak force.Prototypes with various governing parameters were manufactured and tested both quasi-statically and dynamically to study the effects of these parameters on the characteristics of energy absorption.The results show that the force modificator can achieve the desired reduction of the peak force well whilst remaining the specific energy absorption capacity of the original square tube.With future improvements,it could be applied to vehicles or roadside safety hardware to mitigate the consequences produced by traffic accidents.

  20. Piezooptic effect of absorbing environment

    Directory of Open Access Journals (Sweden)

    Ю. А. Рудяк

    2013-07-01

    Full Text Available Application of piezooptic effect of absorbing environment for the definition of the parameter of stress deformation state was examined. The analysis of dielectric permeability tensor of imaginary parts was done. It is shown that changes in the real part dielectric permeability tensor mainly the indicator of fracture was fixed by means of mechanics interference methods and the changes in the imaginary part (α – real rate of absorption can be measured by means of analysis of light absorption and thus stress deformation state can be determined

  1. Optimally tuned vibration absorbers to control sound transmission

    Science.gov (United States)

    Grissom, Michael; Belegundu, Ashok; Koopmann, Gary

    2002-05-01

    A design optimization method is proposed for controlling broadband vibration of a structure and it concomitant acoustic radiation using multiple-tuned absorbers. A computationally efficient model of a structure is developed and coupled with a nonlinear optimization search algorithm. The eigenvectors of the original structure are used as repeated basis functions in the analysis of the structural dynamic re-analysis problem. The re-analysis time for acoustic power computations is reduced by calculating and storing modal radiation resistance matrices at discrete frequencies. The matrices are then interpolated within the optimization loop for eigenvalues that fall between stored frequencies. The method is demonstrated by applying multiple-tuned vibration absorbers to an acoustically-excited composite panel. The absorber parameters are optimized with an objective of maximizing the panel's sound power transmission loss. It is shown that in some cases the optimal solution includes vibration absorbers that are tuned very closely in frequency, thus acting effectively as a broadband vibration absorber (BBVA). The numerical model and design optimization method are validated experimentally, and the BBVA is found to be an effective noise abatement tool.

  2. An innovative MRE absorber with double natural frequencies for wide frequency bandwidth vibration absorption

    Science.gov (United States)

    Sun, Shuaishuai; Yang, Jian; Li, Weihua; Deng, Huaxia; Du, Haiping; Alici, Gursel; Yan, Tianhong

    2016-05-01

    A new design of adaptive tuned vibration absorber was proposed in this study for vibration reduction. The innovation of the new absorber is the adoption of the eccentric mass on the top of the multilayered magnetorheological elastomer (MRE) structure so that this proposed absorber has two vibration modes: one in the torsional direction and the other in translational direction. This property enables the absorber to expand its effective bandwidth and to be more capable of reducing the vibrations especially dealing with those vibrations with multi-frequencies. The innovative MRE absorber was designed and tested on a horizontal vibration table. The test results illustrate that the MRE absorber realized double natural frequencies, both of which are controllable. Inertia’s influence on the dynamic behavior of the absorber is also investigated in order to guide the design of the innovative MRE absorber. Additionally, the experimentally obtained natural frequencies coincide with the theoretical data, which sufficiently verifies the feasibility of this new design. The last part in terms of the vibration absorption ability also proves that both of these two natural frequencies play a great role in absorbing vibration energy.

  3. Study on the Optical Properties of Triangular Cavity Absorber for Parabolic Trough Solar Concentrator

    Directory of Open Access Journals (Sweden)

    Fei Chen

    2015-01-01

    Full Text Available A theoretical analytical method for optical properties of cavity absorber was proposed in this paper and the optical design software TracePro was used to analyze the optical properties of triangular cavity absorber. It was found that the optimal optical properties could be achieved with appropriate aperture width, depth-to-width ratio, and offset distance from focus of triangular cavity absorber. Based on the results of orthogonal experiment, the optimized triangular cavity absorber was designed. Results showed that the standard deviation of irradiance and optical efficiency of optimized designed cavity absorber were 30528 W/m2 and 89.23%, respectively. Therefore, this study could offer some valuable references for designing the parabolic trough solar concentrator in the future.

  4. Perfect plasmonic absorbers for photovoltaic applications

    International Nuclear Information System (INIS)

    A novel regime of perfect absorption in a thin plasmonic layer corresponds to a collective mode of an array of plasmonic nanospheres. In our theoretical study we show that the absorption of the incident light occurs mainly in the semiconductor material hosting plasmonic nanospheres, whereas the absorption in the metal is very small. The regime survives when the uniform host layer is replaced by a practical photovoltaic cell. Trapping the light allows the thickness of the doped semiconductor to be reduced to values for which the degradation under light exposure should be insufficient. The light-trapping regime is compatible with both the metal-backed variant of the photovoltaic cell and its semitransparent variant when both electrodes are preformed of a conductive oxide. Negligible parasitic losses, a variety of design solutions and a reasonable operational band make our perfect plasmonic absorbers promising for photovoltaic applications. (paper)

  5. A variable passive low-frequency absorber

    DEFF Research Database (Denmark)

    Larsen, Niels Werner; Thompson, Eric Robert; Gade, Anders

    2005-01-01

    Multi-purpose concert halls face a dilemma. They can host classical music concerts, rock concerts and spoken word performances in a matter of a short period. These different performance types require significantly different acoustic conditions in order to provide the best sound quality to both...... the performers and the audience. A recommended reverberation time for classical music may be in the range of 1.5–2 s for empty halls, where rock music sounds best with a reverberation time around 0.8-1 s. Modern rhythmic music often contains high levels of sound energy in the low frequency bands but still...... typically been too expensive or requires too much space to be practical for multi-purpose halls. Measurements were made on a variable low-frequency absorber to develop a practical solution to the dilemma. The paper will present the results of the measurements as well as a possible design....

  6. Energy Deposition and Radiological Studies for the LBNF Hadron Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Rakhno, I. L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Mokhov, N. V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Tropin, I. S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Eidelman, Y. I. [Euclid Techlabs LLC., Cleveland, OH (United States)

    2015-06-25

    Results of detailed Monte Carlo energy deposition and radiological studies performed for the LBNF hadron absorber with the MARS15 code are described. The model of the entire facility, that includes a pion-production target, focusing horns, target chase, decay channel, hadron absorber system – all with corresponding radiation shielding – was developed using the recently implemented ROOT-based geometry option in the MARS15 code. Both normal operation and accidental conditions were studied. Results of detailed thermal calculations with the ANSYS code helped to select the most viable design options.

  7. Energy deposition and radiological studies for the LBNF Hadron Absorber

    CERN Document Server

    Rakhno, I L; Tropin, I S; Eidelman, Y I

    2015-01-01

    Results of detailed Monte Carlo energy deposition and radiological studies performed for the LBNF hadron absorber with the MARS15 code are described. The model of the entire facility, that includes a pion-production target, focusing horns, target chase, decay channel, hadron absorber system - all with corresponding radiation shielding - was developed using the recently implemented ROOT-based geometry option in the MARS15 code. Both normal operation and accidental conditions were studied. Results of detailed thermal calculations with the ANSYS code helped to select the most viable design options.

  8. Integrity of neutron-absorbing components of LWR fuel systems

    International Nuclear Information System (INIS)

    A study of the integrity and behavior of neutron-absorbing components of light-water (LWR) fuel systems was performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE). The components studies include control blades (cruciforms) for boiling-water reactors (BWRs) and rod cluster control assemblies for pressurized-water reactors (PWRs). The results of this study can be useful for understanding the degradation of neutron-absorbing components and for waste management planning and repository design. The report includes examples of the types of degradation, damage, or failures that have been encountered. Conclusions and recommendations are listed. 84 refs

  9. Integrity of neutron-absorbing components of LWR fuel systems

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, W.J.; Berting, F.M.

    1991-03-01

    A study of the integrity and behavior of neutron-absorbing components of light-water (LWR) fuel systems was performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE). The components studies include control blades (cruciforms) for boiling-water reactors (BWRs) and rod cluster control assemblies for pressurized-water reactors (PWRs). The results of this study can be useful for understanding the degradation of neutron-absorbing components and for waste management planning and repository design. The report includes examples of the types of degradation, damage, or failures that have been encountered. Conclusions and recommendations are listed. 84 refs.

  10. ANALYSIS OF THE DEFLECTION OF REEDS INAUTOMOTIVE HYDRAULIC SHOCK ABSORBERS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The deformation of reeds in automotive hydraulic shock absorbers is analyzed with the finite element method Combination of different thick reeds mounted on different supports is studied The computational results show that deformation of the overlapped reeds is not always equal to the sum of deflection of single reed under any conditions Experimental results prove computational results to be correct and computational method effective The method of analysis and view of point can provide reference to the design and manuf acture of hydraulic shock absorbers using reeds

  11. Development of the FracTherm absorber - simulations and experiments; Entwicklung des FracTherm-Absorbers - Simulationen und Experimente

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, M. [Fraunhofer Inst. fuer Solare Energiesysteme, Freiburg (Germany)

    2005-07-01

    The energy efficiency of a solar absorber is strongly influenced by the flow of the heat transfer fluid. In order to obtain a high thermal efficiency (expressed by a high collector efficiency factor F'), the volume flow distribution should be uniform all over the absorber. Moreover, the pressure drop should be low in order to reduce the primary energy which is needed to drive the pump. Conventional absorber designs often show disadvantages (e.g. high pressure drop for serial connection, non-uniform flow distribution for parallel connection). This paper describes an alternative, ''bionic'' approach with a multiple branched, ''fractal'' channel design for solar absorbers. The aim of a current research work, which is sponsored by the Scholarship Programme of the German Federal Environmental Foundation (DBU), is to compare these structures with conventional ones concerning the pressure drop and the thermal efficiency. In order to achieve a fractal channel design on a given area, an algorithm (patent pending) and a simulation programme called FracTherm were developed. FracTherm allows to calculate the volume flow distribution, the pressure drop as well as the distribution of the collector efficiency factor F' and the fluid temperature. The simulations show that rather high F' values (about 0.97) can be expected (water; about 50 l/(m{sup 2}h)). Flow experiments with ink and thermography with an absorber model also revealed a uniform flow distribution and indicate a high thermal efficiency. Three aluminium test absorbers (590 mm x 1000 mm) were built by the Pechiney Rhenalu Chambery Company using the rollbond process. (orig.)

  12. An Evaluation on the Criticality Control Ability of a Neutron Absorber based on Artificial Rare Earth Compounds in PLUS7 and WH17x17 Spent Fuel Storage

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hyun; Yim, Che Wook; Shin, Chang Ho; Kim, Song Hyun [Hanyang Univ., Seoul (Korea, Republic of); Choe, Jung Hun; Cho, In Hak; Kim, Jong Kyung; Park, Hwan Seo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Hyun Seo; Kim, Jung Ho; Kim, Yoon Ho [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2014-10-15

    Storages have been designed to minimize space due to increasing storage efficiency. Therefore, the neutron absorbers are generally used for the design of dense spent fuel storages. In a previous study, a neutron absorber based on artificial rare earth compounds with a conceptual design was proposed for efficient and economic disposal of spent nuclear fuel. In this study, the design criteria of the neutron absorber are established by performance evaluations of the neutron absorber. In this study, a design criterion of the neutron absorber based on the artificial rare earth compound was established by the sensitivity analysis of the design parameters. The sensitivity estimations were pursued as the material composition, geometrical feature, heterogeneous conditions, and the arrangement of the absorber. The results show that the neutron absorber has an enough margin of the criticality control when the absorber is manufactured by the minimum requirements.

  13. 基于UC-EBG的吸波结构设计及其在微带天线中的应用*%Design of an Absorber Based on UC-EBG and its Application in Microstrip Antenna

    Institute of Scientific and Technical Information of China (English)

    张浩; 曹祥玉; 杨欢欢; 赵一; 郑秋容

    2013-01-01

      在共面紧凑型光子晶体结构(Uniplanar Compact Electromagnetic Bandgap,UC-EBG)基础上加载集总电阻,设计出一种新型吸波结构,并分析了其吸波原理。将其加载于微带天线,用于减缩天线带内雷达散射截面(Radar Cross Section,RCS)。仿真结果表明,在谐振频点,该吸波结构的吸波率达到99.8%。加载该结构后,天线的辐射性能基本保持不变,而对于垂直入射的TE波和TM波,其带内RCS分别减缩了26.22 dB和15.08 dB。实测结果与仿真结果较为吻合,证实了该结构可以减缩微带天线的带内RCS,从而提高其带内隐身性能。%A novel absorber is proposed based on Uniplanar Compact Electromagnetic Bandgap(UC-EBG)with lumped resistance,and its operating mechanism is analyzed. The new absorber is loaded on microstrip antenna to reduce antenna′s in-band Radar Cross Section(RCS). The simulated result shows that its absorptivity reaches 99.8% at operating frequency. The loaded antenna′s radiation performance has not been influenced a lot,while for the incident wave of TE and TM mode,the in-band RCS of antenna has declined by 26.22 dB and 15.08 dB respectively. There is a good agreement between measured and simulated results,which verifies that this ab-sorber can be used for reduction of antenna′s in-band RCS so as to improve its in-band stealth performance.

  14. KINIK, Absorber Rod Calibration Kinetics

    International Nuclear Information System (INIS)

    1 - Description of program or function: KINIK is an inverse kinetic code that solves the inverse form of the point kinetic equations using the Runge-Kutta method. An optimization procedure is involved to control the time step and to reduce the running time. Up to 24 delayed neutron groups of different types (in case of heavy water as moderator or beryllium as reflector) are considered. KINIK is commonly applied to determine reactivity worths and to calibrate absorber rods. Following a rod drop, neutron flux or power is recorded as a function of time and used as input. 2 - Method of solution: The inverse point kinetic equations are numerically solved for each time step using the Runge-Kutta method. The input data resulting from measurements are first approximated by polynomials of maximum degree 10 using a least-squares approach

  15. A principle of similarity for nonlinear vibration absorbers

    CERN Document Server

    Habib, Giuseppe

    2016-01-01

    This paper develops a principle of similarity for the design of a nonlinear absorber, the nonlinear tuned vibration absorber (NLTVA), attached to a nonlinear primary system. Specifically, for effective vibration mitigation, we show that the NLTVA should feature a nonlinearity possessing the same mathematical form as that of the primary system. A compact analytical formula for the nonlinear coefficient of the absorber is then derived. The formula, valid for any polynomial nonlinearity in the primary system, is found to depend only on the mass ratio and on the nonlinear coefficient of the primary system. When the primary system comprises several polynomial nonlinearities, we demonstrate that the NLTVA obeys a principle of additivity, i.e., each nonlinear coefficient can be calculated independently of the other nonlinear coefficients using the proposed formula.

  16. Sensors of absorbed dose of ionizing radiation based on mosfet

    Directory of Open Access Journals (Sweden)

    Perevertaylo V. L.

    2010-10-01

    Full Text Available The requirements to technology and design of p-channel and n-channel MOS transistors with a thick oxide layer designed for use in the capacity of integral dosimeters of absorbed dose of ionizing radiation are defined. The technology of radiation-sensitive MOS transistors with a thick oxide in the p-channel and n-channel version is created.

  17. Advanced UV Absorbers for the Protection of Human Skin.

    Science.gov (United States)

    Hüglin, Dietmar

    2016-01-01

    The increasing awareness of the damaging effects of UV radiation to human skin triggered the market introduction of new cosmetic UV absorbers. This article summarizes the outcome of a multi-year research program, in which the author contributed to the development of different new UV filters. First of all, the molecular design and the basic properties of bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT) will be presented. This oil-soluble filter, which today is widely used in both beach products and skin care products, exhibits inherent photostability and strong broad-spectrum UV-A+B absorbance. Based on the concept of micronized organic UV absorbers, the UV-B filter tris biphenyl triazine (TBPT) will be introduced. At present TBPT exhibits the highest efficacy of all cosmetic UV absorbers in the market (measured by area under the UV spectrum). Finally, the concept of liposomogenic UV absorbers will be featured. This approach was developed to create water-resistant UV filters, as liposomogenic structures are thought to integrate into the lipids of the horny layer. Due to prohibitively high costs, this technology did not result in a commercial product so far. PMID:27561611

  18. Colorful solar selective absorber integrated with different colored units.

    Science.gov (United States)

    Chen, Feiliang; Wang, Shao-Wei; Liu, Xingxing; Ji, Ruonan; Li, Zhifeng; Chen, Xiaoshuang; Chen, Yuwei; Lu, Wei

    2016-01-25

    Solar selective absorbers are the core part for solar thermal technologies such as solar water heaters, concentrated solar power, solar thermoelectric generators and solar thermophotovoltaics. Colorful solar selective absorber can provide new freedom and flexibility beyond energy performance, which will lead to wider utilization of solar technologies. In this work, we present a monolithic integration of colored solar absorber array with different colors on a single substrate based on a multilayered structure of Cu/TiN(x)O(y)/TiO(2)/Si(3)N(4)/SiO(2). A colored solar absorber array with 16 color units is demonstrated experimentally by using combinatorial deposition technique via changing the thickness of SiO(2) layer. The solar absorptivity and thermal emissivity of all the color units is higher than 92% and lower than 5.5%, respectively. The colored solar selective absorber array can have colorful appearance and designable patterns while keeping high energy performance at the same time. It is a new candidate for a number of solar applications, especially for architecture integration and military camouflage. PMID:26832602

  19. Enhanced Thermal Stability of W-Ni-Al[subscript 2]O[subscript 3] Cermet-Based Spectrally Selective Solar Absorbers with Tungsten Infrared Reflectors

    OpenAIRE

    Cao, Feng; Kraemer, Daniel; Sun, Tianyi; Lan, Yucheng; Chen, Gang; Ren, Zhifeng

    2014-01-01

    Solar thermal technologies such as solar hot water and concentrated solar power trough systems rely on spectrally selective solar absorbers. These solar absorbers are designed to efficiently absorb the sunlight while suppressing re-emission of infrared radiation at elevated temperatures. Efforts for the development of such solar absorbers must not only be devoted to their spectral selectivity but also to their thermal stability for high temperature applications. Here, selective solar absorber...

  20. Energy-harvesting shock absorber with a mechanical motion rectifier

    Science.gov (United States)

    Li, Zhongjie; Zuo, Lei; Kuang, Jian; Luhrs, George

    2013-02-01

    Energy-harvesting shock absorbers are able to recover the energy otherwise dissipated in the suspension vibration while simultaneously suppressing the vibration induced by road roughness. They can work as a controllable damper as well as an energy generator. An innovative design of regenerative shock absorbers is proposed in this paper, with the advantage of significantly improving the energy harvesting efficiency and reducing the impact forces caused by oscillation. The key component is a unique motion mechanism, which we called ‘mechanical motion rectifier (MMR)’, to convert the oscillatory vibration into unidirectional rotation of the generator. An implementation of a MMR-based harvester with high compactness is introduced and prototyped. A dynamic model is created to analyze the general properties of the motion rectifier by making an analogy between mechanical systems and electrical circuits. The model is capable of analyzing electrical and mechanical components at the same time. Both simulation and experiments are carried out to verify the modeling and the advantages. The prototype achieved over 60% efficiency at high frequency, much better than conventional regenerative shock absorbers in oscillatory motion. Furthermore, road tests are done to demonstrate the feasibility of the MMR shock absorber, in which more than 15 Watts of electricity is harvested while driving at 15 mph on a smooth paved road. The MMR-based design can also be used for other applications of vibration energy harvesting, such as from tall buildings or long bridges.

  1. Ultrathin Semiconductor Perfect Light Absorbers with High Spectral, Polarization, and Angle Selectivity for Arbitrary Wavelengths

    CERN Document Server

    Huang, Lujun; Cao, Linyou

    2014-01-01

    Enabling perfect light absorption in ultrathin materials promises the development of exotic photonic devices. Here we demonstrate new strategies that can provide capabilities to rationally design ultrathin (thickness < {\\lambda}/10~{\\lambda}/5) semiconductor perfect absorbers for arbitrary wavelengths, including those at which the intrinsic absorption of the semiconductor is weak, e.g. Si for near-IR wavelengths. This is in stark contrast with the existing studies on ultrathin perfect absorbers, which have focused on metallic materials or highly-absorptive semiconductors. Our design strategies are built upon an intuitive model, coupled leaky mode theory that we recently developed and can turn the design for perfect absorbers to the design for leaky modes. The designed absorber is featured with extraordinary absorption enhancement, miniaturized dimension, and high selectivity for the wavelength, polarization, and angle of incident light. It can enable the development of flexible, light-weight, high-performa...

  2. Emitter and absorber assembly for multiple self-dual operation and directional transparency

    CERN Document Server

    Kalozoumis, P A; Kodaxis, G; Diakonos, F K; Schmelcher, P

    2016-01-01

    A recursive scheme for the design of scatterers acting simultaneously as emitters and absorbers, such as lasers and coherent perfect absorbers in optics, at multiple prescribed frequencies is proposed. The approach is based on the assembly of non-Hermitian emitter and absorber units into self-dual emitter-absorber trimers at different composition levels, exploiting the simple structure of the corresponding transfer matrices. In particular, lifting the restriction to parity-time-symmetric setups enables the realization of emitter and absorber action at distinct frequencies and provides flexibility in the choice of realistic parameters. We further show how the same assembled scatterers can be rearranged to produce unidirectional and bidirectional transparency at the selected frequencies. With the design procedure being generically applicable to wave scattering in single-channel settings, we demonstrate it with concrete examples of photonic multilayer setups.

  3. Comments on liquid hydrogen absorbers for MICE

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A.

    2003-02-01

    This report describes the heat transfer problems associatedwith a liquid hydrogen absorber for the MICE experiment. This reportdescribes a technique for modeling heat transfer from the outside world,to the abosrber case and in its vacuum vessel, to the hydrogen and theninto helium gas at 14 K. Also presented are the equation for freeconvection cooling of the liquid hydrogen in the absorber.

  4. 21 CFR 872.6050 - Saliva absorber.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A...

  5. PARAMETRIC MATCHING SELECTION OF MULTI-MEDIUM COUPLING SHOCK ABSORBER

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To achieve the dual demand of resisting violent impact and attenuating vibration in vibration-impact-safety of protection for precision equipment such as MEMS packaging system, a theoretical mathematical model of multi-medium coupling shock absorber is presented. The coupling of quadratic damping, linear damping, Coulomb damping and nonlinear spring are considered in the model. The approximate theoretical calculating formulae are deduced by introducing transformation-tactics. The contrasts between the analytical results and numerical integration results are developed. The resisting impact characteristics of the model are also analyzed in progress. In the meantime,the optimum model of the parameters matching selection for design of the shock absorber is built.The example design is illustrated to confirm the validity of the modeling method and the theoretical solution.

  6. Flexible metamaterial absorbers for stealth applications at terahertz frequencies

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Strikwerda, Andrew; Fan, K.;

    2012-01-01

    We have wrapped metallic cylinders with strongly absorbing metamaterials. These resonant structures, which are patterned on flexible substrates, smoothly coat the cylinder and give it an electromagnetic response designed to minimize its radar cross section. We compare the normal-incidence, small...... frequency of 0.87 THz. In addition we discuss the effect of finite sample dimensions and the spatial dependence of the reflection spectrum of the metamaterial. (C)2011 Optical Society of America...

  7. Characterization of diethylenetriamine (DETA) as absorbent for CO2

    OpenAIRE

    Hartono, Ardi

    2009-01-01

    Absorption of CO2 with amine-based absorbents is an established and proven technology. Unfortunately, it is still very energy intensive and has high capital costs. The overall challenge when aiming at using this technology for world wide CO2 capture, is to bring these two factors down with new and environmentally acceptable solvents. The search forward can be carried out by process design improvements or by finding new and better solvents. An ideal solvent should have a high capacity, high ab...

  8. Mechanical Characteristics of Oil-Damping Shock Absorber for Protection of Electronic-Packaging Components

    Institute of Scientific and Technical Information of China (English)

    YANG Ping

    2005-01-01

    A microstructure oil-damping shock absorber was designed for the protection of electronic-packaging components in vibration-impact environments. The nonlinearity of the oil viscosity, the oil flow characteristics, and the coupling between the oil and the physical structure were included in a mathematical model of the oil-damping shock absorber to attenuate vibrations. The results of multi-parameter-coupled dynamic tests show that the mathematical model accurately simulates the actual physical system of the oil-damping shock absorber. The model could be used for engineering designs of vibration-impact isolation of electronic-packaging components.

  9. New resonant cavity-enhanced absorber structures for mid-infrared detector application

    OpenAIRE

    Zohar, Moshe; Auslender, Mark; Faraone, Lorenzo; Hava, Shlomo

    2012-01-01

    A new dielectric Fabry-Perot cavity was designed for a resonant enhancing optical absorption by a thin absorber layer embedded into the cavity. In this cavity, the front mirror is a subwavelength grating with $\\sim 100$% retroreflection. For a HgCdTe absorber in a matching cavity of the new type, the design is shown to meet the combined challenges of increasing the absorbing efficiency of the entire device up to $\\sim 100$% and reducing its size and overall complexity, compared to a conventio...

  10. Method of absorbing UF6 from gaseous mixtures in alkamine absorbents

    International Nuclear Information System (INIS)

    A method is described for recovering UF6 from gaseous mixtures by absorption in a liquid. The liquid absorbent must have a relatively low viscosity and at least one component of the absorbent is an alkamine having less than 3 carbon atoms bonded to the amino nitrogen, less than 2 of the carbon atoms other than those bonded to the amino nitrogen are free of the hydroxy radical and precipitate the absorbed uranium from the absorbent. At least one component of the absorbent is chosen from the group consisting of ethanolamine, diethanolamine, and 3-methyl-3-amino-propane-diol-1,2

  11. CMOS absorbance detection system for capillary electrophoresis

    International Nuclear Information System (INIS)

    This paper presents a cost-effective portable photodetection system for capillary electrophoresis absorptiometry. By using a CMOS BDJ (buried double p-n junction) detector, a dual-wavelength method for absorbance measurement is implemented. This system includes associated electronics for low-noise pre-amplification and A/D conversion, followed by digital signal acquisition and processing. Two signal processing approaches are adopted to enhance the signal to noise ratio. One is variable time synchronous detection, which optimizes the sensitivity and measuring rate compared to a conventional synchronous detection technique. The other is a statistical approach based on principal component analysis, which allows optimal estimation of detected signal. This system has been designed and tested in capillary electrophoresis conditions. Its operation has been verified with performances comparable to those of a commercialized spectrophotometric system (HP-3D CE). With potential on-chip integration of associated electronics, it may be operated as an integrable detection module for microchip electrophoresis and other microanalysis systems

  12. On the definition of absorbed dose

    International Nuclear Information System (INIS)

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before. - Highlights: • A stringent definition of absorbed dose is given. • This requires the definition of an irradiation and a suitable probability space. • A stringent definition is important for an understanding of the concept absorbed dose

  13. Absorbed dose by a CMOS in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Valero L, C. Y.; Guzman G, K. A.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L. C., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-10-15

    Absorbed dose by a complementary metal oxide semiconductor (CMOS) circuit as part of a pacemaker, has been estimated using Monte Carlo calculations. For a cancer patient who is a pacemaker carrier, scattered radiation could damage pacemaker CMOS circuits affecting patient's health. Absorbed dose in CMOS circuit due to scattered photons is too small and therefore is not the cause of failures in pacemakers, but neutron calculations shown an absorbed dose that could cause damage in CMOS due to neutron-hydrogen interactions. (Author)

  14. CO2 Absorbing Capacity of MEA

    OpenAIRE

    José I Huertas; Gomez, Martin D.; Nicolas Giraldo; Jessica Garzón

    2015-01-01

    We describe the use of a gas bubbler apparatus in which the gas phase is bubbled into a fixed amount of absorbent under standard conditions as a uniform procedure for determining the absorption capacity of solvents. The method was systematically applied to determine the CO2 absorbing capacity of MEA (Ac) at several aqueous MEA (β) and gas-phase CO2 concentrations. Ac approached the nominal CO2 absorbing capacity of MEA (720 g CO2/kg MEA) at very low β levels, increasing from 447.9±18.1 to 581...

  15. Study on an innovative fast reactor utilizing hydride neutron absorber development of coating technique on cladding inner surface

    International Nuclear Information System (INIS)

    The study to extend the control rod life of the Fast Reactor (FR) and to compress its excess reactivity are being performed by adopting the hafnium hydride (HfHx) for control rod material and by using the gadolinium hydride (GdHx) burnable poison (BP) for the reactivity recession, respectively. In the program named 'Study on an innovative Fast Reactor utilizing Hydride Neutron Absorber', the coating technique on inner surface of cladding has been developed to prevent hydrogen transfer through cladding at occasions of the temperature rise events. The Cr2O3 coating (chromizing) and the Al2O3 coating (calorizing) were selected for the coating techniques from the viewpoint of stability under in-core conditions. Following tests were performed for austenitic steel SUS316 which is widely used in FRs and for ferritic steel SUS430. The SUS430 was selected to simulate the ODS (Oxide Dispersion Strengthened ferritic steel) which is the attractive candidate material for the high burn-up FR. Examination of coating processing conditions by using short length claddings (100-200 mm). Approval of coating conditions to mock-up length cladding (1000 mm). Measurement of hydrogen transfer coefficient. Then appropriate conditions for coating were clarified and the formation of homogeneous films of both chromizing and calorizing was achieved on the inner surfaces of long length claddings (1000 mm). The hydrogen transfer experiments showed that the hydrogen transfer coefficient of coated SUS316 and SUS430 can be reduced to below 1/10 of SUS316 raw material. (author)

  16. Research on Simulation and Test of the Nonlinear Responses for the Hydraulic Shock Absorber

    Institute of Scientific and Technical Information of China (English)

    张建武; 刘延庆

    2003-01-01

    Basically on the multi-body system dynamics,the virtual prototype of the hydraulic shock absorber for the bench test is developed in the ADAMS environment.Dynamic behaviors of the absorber are studied by both computer simulation and real test.Numerical predictions of dynamic responses are produced by the established virtual prototype of the absorber and compared with experimental results.It has been shown from the comparison that the vibration behaviors of the prototype with hysteretic damping characteristics are considered to be more identical with the bench test results than those of the same prototype with piecewise linear damping properties are.The current virtual prototype of the shock absorber is correct and can be a developing terrace for the optimizing design of the absorber and matching capability of the whole car.

  17. Experimental Study of Heat Energy Absorber with Porous Medium for Thermoelectric Conversion System

    Directory of Open Access Journals (Sweden)

    Tzer-Ming Jeng

    2013-12-01

    Full Text Available The thermoelectric conversion system usually consists of the heat absorber, the thermoelectric generator (TEG and the heat sink, while the heat absorber collects the heat to increase the temperature on the hot surface of TEG and enhances the generating electricity. This study experimentally investigated the performance of the brass-beads packed-bed heat absorber for the thermoelectric conversion system. The packed-bed heat absorber is installed in a square channel with the various flow orientation systems and the small ratio of channel width to bead diameter. The flow orientation systems included the straight flow and jet flow systems. This study showed the local and average heat transfer characteristics for various parameters. The experimental results can be the base of designs for the novel porous heat absorber of the thermoelectric conversion system.

  18. Optical absorbers based on strong interference in ultra-thin films

    CERN Document Server

    Kats, Mikhail A

    2016-01-01

    Optical absorbers find uses in a wide array of applications across the electromagnetic spectrum, including photovoltaic and photochemical cells, photodetectors, optical filters, stealth technology, and thermal light sources. Recent efforts have sought to reduce the footprint of optical absorbers, conventionally based on graded structures or Fabry-Perot-type cavities, by using the emerging concepts of plasmonics, metamaterials, and metasurfaces. Unfortunately, these new absorber designs require patterning on subwavelength length scales, and are therefore impractical for many large-scale optical and optoelectronic devices. In this article, we summarize recent progress in the development of optical absorbers based on lossy films with thicknesses significantly smaller than the incident optical wavelength. These structures have a small footprint and require no nanoscale patterning. We outline the theoretical foundation of these absorbers based on "ultra-thin-film interference", including the concepts of loss-induc...

  19. Optically Modulated Multiband Terahertz Perfect Absorber

    DEFF Research Database (Denmark)

    Seren, Huseyin R.; Keiser, George R.; Cao, Lingyue;

    2014-01-01

    response of resonant metamaterials continues to be a challengingendeavor. Resonant perfect absorbers have flourished as one of the mostpromising metamaterial devices with applications ranging from power har-vesting to terahertz imaging. Here, an optically modulated resonant perfectabsorber is presented...

  20. Space Compatible Radar Absorbing Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase 1 project shall investigate novel radar absorbing materials (RAM) for use in space or simulated space environments. These materials are lightweight...

  1. Directed percolation with an absorbing boundary

    OpenAIRE

    Lauritsen, K. B.; K. Sneppen; Markosova, M.; Jensen, M. H.

    1997-01-01

    We consider directed percolation with an absorbing boundary in 1+1 and 2+1 dimensions. The distribution of cluster lifetimes and sizes depend on the boundary. The new scaling exponents can be related to the exponents characterizing standard directed percolation in 1+1 dimension. In addition, we investigate the backbone cluster and red bonds, and calculate the distribution of living sites along the absorbing boundary.

  2. Taming electromagnetic metamaterials for isotropic perfect absorbers

    Directory of Open Access Journals (Sweden)

    Doan Tung Anh

    2015-07-01

    Full Text Available Conventional metamaterial absorbers, which consist of a dielectric spacer sandwiched between metamaterial resonators and a metallic ground plane, have been inherently anisotropic. In this paper, we present an alternative approach for isotropic perfect absorbers using symmetric metamaterial structures. We show that by systematically manipulating the electrically and magnetically induced losses, one can achieve a desired absorption without breaking the structural homogeneity. Finite integration simulations and standard retrieval method are performed to elaborate on our idea.

  3. Absorbing Boundary Conditions for Hyperbolic Systems

    Institute of Scientific and Technical Information of China (English)

    Matthias Ehrhardt

    2010-01-01

    This paper deals with absorbing boundary conditions for hyperbolic systems in one and two space dimensions. We prove the strict well-posedness of the resulting initial boundary value problem in 1D. Afterwards we establish the GKS-stability of the corresponding Lax-Wendroff-type finite difference scheme. Hereby, we have to extend the classical proofs, since the (discretized) absorbing boundary conditions do not fit the standard form of boundary conditions for hyperbolic systems.

  4. Semiconductor saturable absorbers for ultrafast THz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths.......We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths....

  5. Synchronous and non-synchronous responses of systems with multiple identical nonlinear vibration absorbers

    Science.gov (United States)

    Issa, Jimmy S.; Shaw, Steven W.

    2015-07-01

    In this work we investigate the nonlinear dynamic response of systems composed of a primary inertia to which multiple identical vibration absorbers are attached. This problem is motivated by observations of systems of centrifugal pendulum vibration absorbers that are designed to reduce engine order torsional vibrations in rotating systems, but the results are relevant to translational systems as well. In these systems the total absorber mass is split into multiple equal masses for purposes of distribution and/or balance, and it is generally expected that the absorbers will act in unison, corresponding to a synchronous response. In order to capture nonlinear effects of the responses of the absorbers, specifically, their amplitude-dependent frequency, we consider them to possess nonlinear stiffness. The equations of motion for the system are derived and it is shown how one can uncouple the equations for the absorbers from that for the primary inertia, resulting in a system of identical resonators that are globally coupled. These symmetric equations are scaled for weak nonlinear effects, near resonant forcing, and small damping. The method of averaging is applied, from which steady-state responses and their stability are investigated. The response of systems with two, three, and four absorbers are considered in detail, demonstrating a rich variety of bifurcations of the synchronous response, resulting in responses with various levels of symmetry in which sub-groups of absorbers are mutually synchronous. It is also shown that undamped models with more than two absorbers possess a degenerate response, which is made robust by the addition of damping to the model. Design guidelines are proposed based on the nature of the system response, with the aim of minimizing the acceleration of the primary system. It is shown that the desired absorber parameters are selected so that the system achieves a stable synchronous response which does not undergo jumps via saddle

  6. Multimodal tuned dynamic absorber for split Stirling linear cryocooler

    Science.gov (United States)

    Veprik, Alexander; Tuito, Avi

    2016-05-01

    Low size, weight, power and price split Stirling linear cryocooler usually comprises electro-dynamically driven compressor and pneumatically driven expander which are side-by-side fixedly mounted upon the common frame and interconnected by the configurable transfer line. Vibration export produced by such a cryocooler comprises of a pair of tonal forces, the frequency of which essentially equals fixed driving frequency. In vibration sensitive applications, this may result in excessive angular line of sight jitter and translational defocusing affecting the image quality. The authors present Multimodal Tuned Dynamic Absorber, having one translational and two tilting modes essentially tuned to the driving frequency. Dynamic analysis shows that the dynamic reactions (force and moment) produced by such a dynamic absorber are capable of simultaneous attenuation of translational and tilting components of cryocooler induced vibration. The authors reveal the preferable design, the method of fine tuning and outcomes of numerical simulation on attainable performance.

  7. A Method for Reducing Noise Radiated from Structures with Vibration Absorbers by Using an Accelerated Neural Network

    Institute of Scientific and Technical Information of China (English)

    李连进; 葛为民

    2004-01-01

    A method for reducing noise radiated from structures by vibration absorbers is presented. Since usual design method for the absorbers is invalid for noise reduction, the peaks of noise power in the frequency domain as cost functions are applied. Hence, the equations for obtaining optimal parameters of the absorbers become nonlinear expressions. To have the parameters, an accelerated neural network procedure has been presented. Numerical calculations have been carried out for a plate-type cantilever beam with a large width, and experimental tests have been also performed for the same beam. It is clarified that the present method is valid for reducing noise radiated from structures. As for the usual design method for the absorbers, model analysis has been given, so the number of absorbers should be the same as that of the considered modes. While the nonlinear problem can be dealt with by the present method, there is no restriction on the number of absorbers or the model number.

  8. Beam Pipe HOM Absorber for 750 MHz RF Cavity Systems

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland; Neubauer, Michael

    2014-10-29

    This joint project of Muons, Inc., Cornell University and SLAC was supported by a Phase I and Phase II grant monitored by the SBIR Office of Science of the DOE. Beam line HOM absorbers are a critical part of future linear colliders. The use of lossy materials at cryogenic temperatures has been incorporated in several systems. The design in beam pipes requires cylinders of lossy material mechanically confined in such a way as to absorb the microwave energy from the higher-order modes and remove the heat generated in the lossy material. Furthermore, the potential for charge build-up on the surface of the lossy material requires the conductivity of the material to remain consistent from room temperature to cryogenic temperatures. In this program a mechanical design was developed that solved several design constraints: a) fitting into the existing Cornell load vacuum component, b) allowing the use of different material compositions, c) a thermal design that relied upon the compression of the lossy ceramic material without adding stress. Coating experiments were performed that indicated the design constraints needed to fully implement this approach for solving the charge build-up problem inherent in using lossy ceramics. In addition, the ACE3P program, used to calculate the performance of lossy cylinders in beam pipes in general, was supported by this project. Code development and documentation to allow for the more wide spread use of the program was a direct result of this project was well.

  9. A new laboratory-scale experimental facility for detailed aerothermal characterizations of volumetric absorbers

    Science.gov (United States)

    Gomez-Garcia, Fabrisio; Santiago, Sergio; Luque, Salvador; Romero, Manuel; Gonzalez-Aguilar, Jose

    2016-05-01

    This paper describes a new modular laboratory-scale experimental facility that was designed to conduct detailed aerothermal characterizations of volumetric absorbers for use in concentrating solar power plants. Absorbers are generally considered to be the element with the highest potential for efficiency gains in solar thermal energy systems. The configu-ration of volumetric absorbers enables concentrated solar radiation to penetrate deep into their solid structure, where it is progressively absorbed, prior to being transferred by convection to a working fluid flowing through the structure. Current design trends towards higher absorber outlet temperatures have led to the use of complex intricate geometries in novel ceramic and metallic elements to maximize the temperature deep inside the structure (thus reducing thermal emission losses at the front surface and increasing efficiency). Although numerical models simulate the conjugate heat transfer mechanisms along volumetric absorbers, they lack, in many cases, the accuracy that is required for precise aerothermal validations. The present work aims to aid this objective by the design, development, commissioning and operation of a new experimental facility which consists of a 7 kWe (1.2 kWth) high flux solar simulator, a radiation homogenizer, inlet and outlet collector modules and a working section that can accommodate volumetric absorbers up to 80 mm × 80 mm in cross-sectional area. Experimental measurements conducted in the facility include absorber solid temperature distributions along its depth, inlet and outlet air temperatures, air mass flow rate and pressure drop, incident radiative heat flux, and overall thermal efficiency. In addition, two windows allow for the direct visualization of the front and rear absorber surfaces, thus enabling full-coverage surface temperature measurements by thermal imaging cameras. This paper presents the results from the aerothermal characterization of a siliconized silicon

  10. A Titanium Nitride Absorber for Controlling Optical Crosstalk in Horn-Coupled Aluminum LEKID Arrays for Millimeter Wavelengths

    OpenAIRE

    McCarrick, H.; Flanigan, D.; Jones, G.; Johnson, B. R.; Ade, P. A. R.; Bradford, K.; Bryan, S.; Cantor, R; Che, G.; Day, P.; Doyle, S.; Leduc, H.; Limon, M.; Mauskopf, P.; Miller, A.

    2015-01-01

    We discuss the design and measured performance of a titanium nitride (TiN) mesh absorber we are developing for controlling optical crosstalk in horn-coupled lumped-element kinetic inductance detector arrays for millimeter-wavelengths. This absorber was added to the fused silica anti-reflection coating attached to previously-characterized, 20-element prototype arrays of LEKIDs fabricated from thin-film aluminum on silicon substrates. To test the TiN crosstalk absorber, we compared the measured...

  11. Ultrathin triple-band polarization-insensitive wide-angle compact metamaterial absorber

    Science.gov (United States)

    Shang, Shuai; Yang, Shizhong; Tao, Lu; Yang, Lisheng; Cao, Hailin

    2016-07-01

    In this study, the design, realization, and characterization of an ultrathin triple-band polarization-insensitive wide-angle metamaterial absorber are reported. The metamaterial absorber comprises a periodic array of modified six-fold symmetric snowflake-shaped resonators with strip spiral line load, which is printed on a dielectric substrate backed by a metal ground plane. It is shown that the absorber exhibits three distinct near-unity absorption peaks, which are distributed across C, X, Ku bands, respectively. Owing to the six-fold symmetry, the absorber is insensitive to the polarization of the incident radiation. In addition, the absorber shows excellent absorption performance over wide oblique incident angles for both transverse electric and transverse magnetic polarizations. Simulated surface current and field distributions at the three absorption peaks are demonstrated to understand the absorption mechanism. Particularly, the absorption modes come from the fundamental and high-order dipole resonances. Furthermore, the experimental verification of the designed absorber is conducted, and the measured results are in reasonable agreement with the simulated ones. The proposed ultrathin (˜0.018λ0, λ0 corresponding to the lowest peak absorption frequency) compact (0.168λ0×0.168λ0 corresponding to the area of a unit cell) absorber enables potential applications such as stealth technology, electromagnetic interference and spectrum identification.

  12. On the definition of absorbed dose

    Science.gov (United States)

    Grusell, Erik

    2015-02-01

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before.

  13. Warm Absorber Diagnostics of AGN Dynamics

    Science.gov (United States)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  14. Ultrathin flexible dual band terahertz absorber

    Science.gov (United States)

    Shan, Yan; Chen, Lin; Shi, Cheng; Cheng, Zhaoxiang; Zang, Xiaofei; Xu, Boqing; Zhu, Yiming

    2015-09-01

    We propose an ultrathin and flexible dual band absorber operated at terahertz frequencies based on metamaterial. The metamaterial structure consists of periodical split ring resonators with two asymmetric gaps and a metallic ground plane, separated by a thin-flexible dielectric spacer. Particularly, the dielectric spacer is a free-standing polyimide film with thickness of 25 μm, resulting in highly flexible for our absorber and making it promising for non-planar applications such as micro-bolometers and stealth aircraft. Experimental results show that the absorber has two resonant absorption frequencies (0.41 THz and 0.75 THz) with absorption rates 92.2% and 97.4%, respectively. The resonances at the absorption frequencies come from normal dipole resonance and high-order dipole resonance which is inaccessible in the symmetrical structure. Multiple reflection interference theory is used to analyze the mechanism of the absorber and the results are in good agreement with simulated and experimental results. Furthermore, the absorption properties are studied under various spacer thicknesses. This kind of metamaterial absorber is insensitive to polarization, has high absorption rates (over 90%) with wide incident angles range from 0° to 45° and the absorption rates are also above 90% when wrapping it to a curved surface.

  15. Study on the shock absorbing technique of high speed railway bridges

    Institute of Scientific and Technical Information of China (English)

    Li Chenggen; Gao Ri

    2011-01-01

    Based on the idea of "bearing function separation", a structural member called shock absorber that makes use of its plastic deformation is presented for reducing the seismic response of the bridge. The design criterion for matching material stress, strain and earthquake fortification aim, is also given. The analysis results show that the high speed railway box girder with the absorber in this paper has great reduction effect in seismic response of the bridge piers.

  16. A Thin Film Broadband Absorber Based on Multi-sized Nanoantennas

    CERN Document Server

    Cui, Yanxia; Fung, Kin Hung; Jin, Yi; Kumar, Anil; He, Sailing; Fang, Nicholas X

    2011-01-01

    We experimentally demonstrate an infrared broadband absorber for TM polarized light based on an array of nanostrip antennas of several different sizes. The broadband property is due to the collective effect of magnetic responses excited by these nano-antennas at distinct wavelengths. By manipulating the differences of the nanostrip widths, the measured spectra clearly validate our design for the purpose of broadening the absorption band. The present broadband absorber works very well in a wide angular range.

  17. Innovative small and medium sized reactors: Design features, safety approaches and R and D trends. Final report of a technical meeting

    International Nuclear Information System (INIS)

    In order to beat the economy of scale small and medium sized reactors (SMRs) have to incorporate specific design features that result into simplification of the overall plant design, modularization and mass production. Several approaches are being under development and consideration, including the increased use of passive features for reactivity control and reactor shut down, decay heat removal and core cooling, and reliance on the increased margin to fuel failure achieved through the use of advanced high-temperature fuel forms and structural materials. Some SMRs also offer the possibility of very long core lifetimes with burnable absorbers or high conversion ratio in the core. These reactors incorporate increased proliferation resistance and may offer a very attractive solution for the implementation of adequate safeguards in a scenario of global deployment of nuclear power. About 50 concepts and designs of the innovative SMRs are under development in more than 15 IAEA Member States representing both industrialized and developing countries. SMRs are under development for all principle reactor lines, i.e., water cooled, liquid metal cooled, gas cooled, and molten salt cooled reactors, as well as for some non-conventional combinations thereof. Upon a diversity of the conceptual and design approaches to SMRs, it may be useful to identify the so-called enabling technologies that are common to certain reactor types or lines. An enabling technology is the technology that needs to be developed and demonstrated to make a certain reactor concept viable. When a certain technology is common to several SMR concepts or designs, it could benefit from being developed on a common or shared basis. The identification of common enabling technologies could speed up the development and deployment of many SMRs by merging the efforts of their designers through an increased international cooperation. This publication has been prepared through the collaboration of all participants of this

  18. Wireless device for activation of an underground shock wave absorber

    Science.gov (United States)

    Chikhradze, M.; Akhvlediani, I.; Bochorishvili, N.; Mataradze, E.

    2011-10-01

    The paper describes the mechanism and design of the wireless device for activation of energy absorber for localization of blast energy in underground openings. The statistics shows that the greatest share of accidents with fatal results associate with explosions in coal mines due to aero-methane and/or air-coal media explosion. The other significant problem is terrorist or accidental explosions in underground structures. At present there are different protective systems to reduce the blast energy. One of the main parts of protective Systems is blast Identification and Registration Module. The works conducted at G. Tsulukidze Mining Institute of Georgia enabled to construct the wireless system of explosion detection and mitigation of shock waves. The system is based on the constant control on overpressure. The experimental research continues to fulfill the system based on both threats, on the constant control on overpressure and flame parameters, especially in underground structures and coal mines. Reaching the threshold value of any of those parameters, the system immediately starts the activation. The absorber contains a pyrotechnic device ensuring the discharge of dispersed water. The operational parameters of wireless device and activation mechanisms of pyrotechnic element of shock wave absorber are discussed in the paper.

  19. Ferrite HOM Absorber for the RHIC ERL

    Energy Technology Data Exchange (ETDEWEB)

    Hahn,H.; Choi, E.M.; Hammons, L.

    2008-10-01

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

  20. Neutron absorbed dose in a pacemaker CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L., E-mail: fermineutron@yahoo.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-06-15

    The neutron spectrum and the absorbed dose in a Complementary Metal Oxide Semiconductor (CMOS), has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes an oncology patient that must be treated in a linear accelerator. Pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. Above 7 MV therapeutic beam is contaminated with photoneutrons that could damage the CMOS. Here, the neutron spectrum and the absorbed dose in a CMOS cell was calculated, also the spectra were calculated in two point-like detectors in the room. Neutron spectrum in the CMOS cell shows a small peak between 0.1 to 1 MeV and a larger peak in the thermal region, joined by epithermal neutrons, same features were observed in the point-like detectors. The absorbed dose in the CMOS was 1.522 x 10{sup -17} Gy per neutron emitted by the source. (Author)

  1. Broadband plasmonic absorber for photonic integrated circuits

    CERN Document Server

    Xiong, Xiao; Ren, Xi-Feng; Guo, Guang-Can

    2013-01-01

    The loss of surface plasmon polaritons has long been considered as a fatal shortcoming in information transport. Here we propose a plasmonic absorber utilizing this "shortcoming" to absorb the stray light in photonic integrated circuits (PICs). Based on adiabatic mode evolution, its performance is insensitive to incident wavelength with bandwidth larger than 300nm, and robust against surrounding environment and temperature. Besides, the use of metal enables it to be very compact and beneficial to thermal dissipation. With this 40um-long absorber, the absorption efficiency can be over 99.8% at 1550nm, with both the reflectivity and transmittance of incident light reduced to less than 0.1%. Such device may find various applications in PICs, to eliminate the residual strong pump laser or stray light.

  2. A metamaterial absorber with direction-selective and polarisation-insensitive properties

    Institute of Scientific and Technical Information of China (English)

    Gu Chao; Qu Shao-Bo; Pei Zhi-Bin; Xu Zhuo

    2011-01-01

    This paper reports the design of a metamaterial absorber with direction-selective and polarisation-insensitive property. Both theoretical and simulated results reveal that the absorber has a distinct absorption point with direction selectivity at 7.48 GHz, which is related to the resonance of the metamaterial and is not influenced by the polarisation. The retrieved impedance indicates that the impedance of the absorber can be tuned to approximatively match the impedance of the free space on one side and not to match the impedance of the free space on the other side. This design can result in the minimal reflectance, the minimal transmission and the highest absorbance at the absorption frequency. The distribution of the power loss indicates that the absorber is an excellent electromagnetic wave collector: the wave is first trapped and reinforced in certain specific locations, and then mostly consumed. The distribution of the surface current is consistent with the design, the retrieved impedance and the distribution of the power loss. This absorber may have applications in many scientific and technological areas.

  3. The MIRD method of estimating absorbed dose

    Energy Technology Data Exchange (ETDEWEB)

    Weber, D.A.

    1991-01-01

    The estimate of absorbed radiation dose from internal emitters provides the information required to assess the radiation risk associated with the administration of radiopharmaceuticals for medical applications. The MIRD (Medical Internal Radiation Dose) system of dose calculation provides a systematic approach to combining the biologic distribution data and clearance data of radiopharmaceuticals and the physical properties of radionuclides to obtain dose estimates. This tutorial presents a review of the MIRD schema, the derivation of the equations used to calculate absorbed dose, and shows how the MIRD schema can be applied to estimate dose from radiopharmaceuticals used in nuclear medicine.

  4. PT-symmetric laser-absorber

    OpenAIRE

    Longhi, Stefano

    2010-01-01

    In a recent work, Y.D. Chong et al. [Phys. Rev. Lett. {\\bf 105}, 053901 (2010)] proposed the idea of a coherent perfect absorber (CPA) as the time-reversed counterpart of a laser, in which a purely incoming radiation pattern is completely absorbed by a lossy medium. The optical medium that realizes CPA is obtained by reversing the gain with absorption, and thus it generally differs from the lasing medium. Here it is shown that a laser with an optical medium that satisfies the parity-time $(\\m...

  5. Spin Particle in an Absorbing Environment

    Science.gov (United States)

    Amooshahi, M.

    2015-10-01

    The quantum dynamics of a localized spin Particle interacting with an absorbing environment is investigated. The quantum Langevin-Schrödinger equation for spin is obtained. The susceptibility function of the environment is calculated in terms of the coupling function of the spin and the environment. it is shown that the susceptibility function satisfies the Kramers-Kronig relations. Spontaneous emission and the shift frequency of the spin is obtained in terms of the imaginary part of the susceptibility function in frequency domain. Some transition probabilities between the spin states are calculated when the absorbing environment is in the thermal state.

  6. Absorbing metasurface created by diffractionless disordered arrays of nanoantennas

    Science.gov (United States)

    Chevalier, Paul; Bouchon, Patrick; Jaeck, Julien; Lauwick, Diane; Bardou, Nathalie; Kattnig, Alain; Pardo, Fabrice; Haïdar, Riad

    2015-12-01

    We study disordered arrays of metal-insulator-metal nanoantenna in order to create a diffractionless metasurface able to absorb light in the 3-5 μm spectral range. This study is conducted with angle-resolved reflectivity measurements obtained with a Fourier transform infrared spectrometer. A first design is based on a perturbation of a periodic arrangement, leading to a significant reduction of the radiative losses. Then, a random assembly of nanoantennas is built following a Poisson-disk distribution of given density, in order to obtain a nearly perfect cluttered assembly with optical properties of a homogeneous material.

  7. Thin Film Absorbers Based on Plasmonic Phase Resonances

    CERN Document Server

    Cui, Yanxia; Xu, Jun; He, Sailing; Fang, Nicholas X

    2010-01-01

    We demonstrate an efficient double-layer light absorber by exciting plasmonic phase resonances. We show that the addition of grooves can cause mode splitting of the plasmonic waveguide cavity modes and all the new resonant modes exhibit large absorptivity greater than 90%. Some of the generated absorption peaks have wide-angle characteristics. Furthermore, we find that the proposed structure is fairly insensitive to the alignment error between different layers. The proposed plasmonic nano-structure designs may have exciting potential applications in thin film solar cells, thermal emitters, novel infrared detectors, and highly sensitive bio-sensors.

  8. Redesign of a Shock Absorber Piston Using Sintering

    OpenAIRE

    Kus, Ömer; Mojtabavi, Hamed

    2012-01-01

    The main objective of this report is to re-design of a product by substituting for another manufacturing process in order to get a cheaper product with the same function and quality. The current shock absorber piston is manufactured by the machining process at Öhlins Racing AB Company. Power Metallurgy (P/M) method could be a good substitute process to meet the technical requirements of the current piston with total lower cost. In this case, the whole process of product development gets invol...

  9. Absorbing metasurface created by diffractionless disordered arrays of nanoantennas

    Energy Technology Data Exchange (ETDEWEB)

    Chevalier, Paul [Minao, ONERA, The French Aerospace Lab, 91761 Palaiseau (France); Minao, Laboratoire de Photonique et Nanostructures (LPN), CNRS, Université Paris-Saclay, Route de Nozay, 91460 Marcoussis (France); Bouchon, Patrick, E-mail: patrick.bouchon@onera.fr; Jaeck, Julien; Lauwick, Diane; Kattnig, Alain [Minao, ONERA, The French Aerospace Lab, 91761 Palaiseau (France); Bardou, Nathalie; Pardo, Fabrice [Minao, Laboratoire de Photonique et Nanostructures (LPN), CNRS, Université Paris-Saclay, Route de Nozay, 91460 Marcoussis (France); Haïdar, Riad [Minao, ONERA, The French Aerospace Lab, 91761 Palaiseau (France); École Polytechnique, Département de Physique, 91128 Palaiseau (France)

    2015-12-21

    We study disordered arrays of metal-insulator-metal nanoantenna in order to create a diffractionless metasurface able to absorb light in the 3–5 μm spectral range. This study is conducted with angle-resolved reflectivity measurements obtained with a Fourier transform infrared spectrometer. A first design is based on a perturbation of a periodic arrangement, leading to a significant reduction of the radiative losses. Then, a random assembly of nanoantennas is built following a Poisson-disk distribution of given density, in order to obtain a nearly perfect cluttered assembly with optical properties of a homogeneous material.

  10. Development of a carbonaceous selective absorber for solar thermal energy collection and process for its formation

    Science.gov (United States)

    Garrison, John D.

    1989-02-01

    The main goal of the US Department of Energy supported part of this project is to develop information about controlling the complicated chemical processes involved in the formation of a carbonaceous selective absorber and learn what equipment will allow production of this absorber commercially. The work necessary to accomplish this goal is not yet complete. Formation of the carbonaceous selective absorber in the conveyor oven tried so far has been unsatisfactory, because the proper conditions for applying the carbonaceous coating in each conveyor oven fabricated, either have been difficult to obtain, or have been difficult to maintain over an extended period of time. A new conveyor oven is nearing completion which is expected to allow formation of the carbonaceous selective absorber on absorber tubes in a continuous operation over many days without the necessity of cleaning the conveyor oven or changing the thickness of the electroplated nickel catalyst to compensate for changes in the coating environment in the oven. Work under this project concerned with forming and sealing glass panels to test ideas on evacuated glass solar collector designs and production have been generally quite satisfactory. Delays in completion of the selective absorber work, has caused postponement of the fabrication of a small prototype evacuated glass solar collector panel. Preliminary cost estimates of the selective absorber and solar collector panel indicate that this collector system should be lower in cost than evacuated solar collectors now on the market.

  11. Moving core beam energy absorber and converter

    Science.gov (United States)

    Degtiarenko, Pavel V.

    2012-12-18

    A method and apparatus for the prevention of overheating of laser or particle beam impact zones through the use of a moving-in-the-coolant-flow arrangement for the energy absorbing core of the device. Moving of the core spreads the energy deposition in it in 1, 2, or 3 dimensions, thus increasing the effective cooling area of the device.

  12. Technology and assessment of neutron absorbing materials

    International Nuclear Information System (INIS)

    The present review assesses more recent developments in the technology and application of those absorber materials which are considered to be established or to have shown potential in reactor control. Emphasis is placed on physical, chemical and metallurgical properties and upon irradiation behaviour. (author)

  13. Timing the warm absorber in NGC 4051

    CERN Document Server

    Silva, Catia; Costantini, Elisa

    2016-01-01

    We investigated, using spectral-timing analysis, the characterization of highly ionized outflows in Seyfert galaxies, the so-called warm absorbers. Here, we present our results on the extensive ~ 600 ks of XMM-Newton archival observations of the bright and highly variable Seyfert 1 galaxy NGC 4051, whose spectrum has revealed a complex multicomponent wind. Making use of both RGS and EPIC-pn data, we performed a detailed analysis through a time-dependent photoionization code in combination with spectral and Fourier spectral-timing techniques. The source light curves and the warm absorber parameters obtained from the data were used to simulate the response of the gas due to variations in the ionizing flux of the central source. The resulting time variable spectra were employed to predict the effects of the warm absorber on the time lags and coherence of the energy dependent light curves. We have found that, in the absence of any other lag mechanisms, a warm absorber with the characteristics of the one observed ...

  14. On Delayed Choice and Contingent Absorber Experiments

    OpenAIRE

    Kastner, R. E.

    2012-01-01

    It is pointed out that a slight variation on the Wheeler Delayed Choice Experiment presents the same challenge to orthodox quantum mechanics as Maudlin-type contingent absorber experiments present to the Transactional Interpretation (TI). Therefore, the latter cannot be used as a basis for refutation of TI.

  15. Semiconductor saturable absorbers for ultrafast terahertz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2010-01-01

    We demonstrate saturable absorber behavior of n-type semiconductors GaAs, GaP, and Ge in the terahertz THz frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum...

  16. Absorbed fractions for electrons in ellipsoidal volumes

    Science.gov (United States)

    Amato, E.; Lizio, D.; Baldari, S.

    2011-01-01

    We applied a Monte Carlo simulation in Geant4 in order to calculate the absorbed fractions for monoenergetic electrons in the energy interval between 10 keV and 2 MeV, uniformly distributed in ellipsoids made from soft tissue. For each volume, we simulated a spherical shape, four oblate and four prolate ellipsoids, and one scalene shape. For each energy and for every geometrical configuration, an analytical relationship between the absorbed fraction and a 'generalized radius' was found, and the dependence of the fit parameters from electron energy is discussed and fitted by proper parametric functions. With the proposed formulation, the absorbed fraction for electrons in the 10-2000 keV energy range can be calculated for all volumes and for every ellipsoidal shape of practical interest. This method can be directly applied to evaluation of the absorbed fraction from the radionuclide emission of monoenergetic electrons, such as Auger or conversion electrons. The average deposited energy per disintegration in the case of extended beta spectra can be evaluated through integration. Two examples of application to a pure beta emitter such as 90Y and to 131I, whose emission include monoenergetic and beta electrons plus gamma photons, are presented. This approach represent a generalization of our previous studies, allowing a comprehensive treatment of absorbed fractions from electron and photon sources uniformly distributed in ellipsoidal volumes of any ellipticity and volume, in the whole range of practical interest for internal dosimetry in nuclear medicine applications, as well as in radiological protection estimations of doses from an internal contamination.

  17. Design parameters for carbon nanobottles to absorb and store methane.

    Science.gov (United States)

    Lee, Richard K F; Hill, James M

    2011-08-01

    We investigate the internal mechanics for methane storage in a nanobottle, which is assumed to comprise a metallofullerene located inside a carbon nanobottle, which is constructed from a half-fullerene as the base, and two nanotubes which are joined by a nanocone. The interaction potential energy for the metallofullerene is obtained from the 6-12 Lennard-Jones potential and the continuum approximation, which assumes that a discrete atomic structure can be replaced by an average atomic surface density. This potential energy shows that the metallofullerene has two minimum energy positions, which are located close to the neck of the bottle and at the base of the nanobottle, and therefore it may be used as a bottle-stopper to open or to close the nanobottle. At the neck of the bottle, the encapsulated metallofullerene closes the nanobottle, and by applying an external electrical force, the metallofullerene can overcome the energy barrier of the nanotube, and pass from the neck of the nanobottle to the base so that the nanobottle is open. For methane storage, the metallofullerene serves the dual purposes of opening and closing the nanobottle, as well as an attractor for the methane gas. The analytical formulation gives rise to a rapid computational capacity, and enables the direct determination of the optimal dimensions necessary to ensure the correct working function of the nanobottle, and specific ranges for the critical parameters are formulated. PMID:22103096

  18. Scrubbing of high sulfur coal - operating experiences with spray dryer absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Felsvang, K.; Spannbauer, H.; Gedbjerg, P. (A/S Niro Atomizer, Copenhagen (Denmark))

    1990-01-01

    The use of spray dryer absorbers for flue gas desulfurization was pioneered in the United States in the late 70's. In Europe the use of spray dryer absorbers was introduced later, and now there is a wide application of spray dryer absorbers throughout the countries of Europe. The paper presents a description of the spray dryer absorption process and the key design features which are vital for successful spray dryer absorber operation. Operating data from medium to high sulfur applications are presented. Two European applications (the Salzburg Mitte plant and the Studstrup plant) are described. Operating experience has demonstrated that spray dryer absorption technology can be considered as a proven technology for medium to high sulfur coals. 11 refs., 15 figs.

  19. Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit.

    Science.gov (United States)

    Rephaeli, Eden; Fan, Shanhui

    2009-08-17

    We present theoretical considerations as well as detailed numerical design of absorber and emitter for Solar Thermophotovoltaics (STPV) applications. The absorber, consisting of an array of tungsten pyramids, was designed to provide near-unity absorptivity over all solar wavelengths for a wide angular range, enabling it to absorb light effectively from solar sources regardless of concentration. The emitter, a tungsten slab with Si/SiO(2) multilayer stack, provides a sharp emissivity peak at the solar cell band-gap while suppressing emission at lower frequencies. We show that, under a suitable light concentration condition, and with a reasonable area ratio between the emitter and absorber, a STPV system employing such absorber-emitter pair and a single-junction solar cell can attain efficiency that exceeds the Shockley-Queisser limit.

  20. Absorber and regenerator models for liquid desiccant air conditioning systems. Validation and comparison using experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Krause, M.; Heinzen, R.; Jordan, U.; Vajen, K. [Kassel Univ., Inst. of Thermal Engineering, Kassel (Germany); Saman, W.; Halawa, E. [Sustainable Energy Centre, Univ. of South Australia, Mawson Lakes, Adelaide (Australia)

    2008-07-01

    Solar assisted air conditioning systems using liquid desiccants represent a promising option to decrease high summer energy demand caused by electrically driven vapor compression machines. The main components of liquid desiccant systems are absorbers for dehumidifying and cooling of supply air and regenerators for concentrating the desiccant. However, high efficient and validated reliable components are required and the design and operation have to be adjusted to each respective building design, location, and user demand. Simulation tools can help to optimize component and system design. The present paper presents new developed numerical models for absorbers and regenerators, as well as experimental data of a regenerator prototype. The models have been compared with a finite-difference method model as well as experimental data. The data are gained from the regenerator prototype presented and an absorber presented in the literature. (orig.)

  1. Solar biogas digester with built-in reverse absorber heater

    International Nuclear Information System (INIS)

    In this work the design, fabrication and investigation of a solar biogas digester with built-in RAH (Reverse Absorber Heater) is presented. The maximum temperature (50 deg. C) inside of the methane tank was taken as a main parameter at the design of the digester. Using energy balance equation for the case of a static mass of fluid being heated; the parameters of thermal insulation of the methane tank were counted. The biogas digester is consisting of methane tank with built-in solar RAH to utilize solar energy for the heating of the slurry prepared from the different organic wastes (dung, sewage, food wastes etc). The methane tank was filled up to 70% of volume by organic wastes of the GIK Institute sewage, firstly, and secondly, by sewage and cow dung as well. During three months (October-December, 2009) and two months (February-March, 2010) the digester was investigated. The solar irradiance incident to the absorber, slurry's temperature and ambient temperature were measured. It was found that using sewage only and sewage with cow dung the retention times was 4 weeks and two weeks respectively and biogas quantity produced was 0.4 and 8.0 m 3 respectively. In addition, biogas upgradation scheme for removal of carbon dioxide, hydrogen sulphide and water vapor from biogas and conversion of biogas energy conversion into electric power is also discussed. (author)

  2. Solar Biogas Digester with Built-In Reverse Absorber Heater

    Directory of Open Access Journals (Sweden)

    Khasan S. Karimov

    2013-01-01

    Full Text Available In this work the design, fabrication and investigation of a solar biogas digester with built-in RAH (Reverse Absorber Heater is presented. The maximum temperature (50 o C inside of the methane tank was taken as a main parameter at the design of the digester. Using energy balance equation for the case of a static mass of fluid being heated; the parameters of thermal insulation of the methane tank were counted. The biogas digester is consisting of methane tank with built-in solar RAH to utilize solar energy for the heating of the slurry prepared from the different organic wastes (dung, sewage, food wastes etc. The methane tank was filled up to 70% of volume by organic wastes of the GIK Institute sewage, firstly, and secondly, by sewage and cow dung as well. During three months (October-December, 2009 and two months (February-March, 2010 the digester was investigated. The solar irradiance incident to the absorber, slurry's temperature and ambient temperature were measured. It was found that using sewage only and sewage with cow dung the retention times was 4 weeks and two weeks respectively and biogas quantity produced was 0.4 and 8.0 m 3 respectively. In addition, biogas upgradation scheme for removal of carbon dioxide, hydrogen sulphide and water vapor from biogas and conversion of biogas energy conversion into electric power is also discussed.

  3. Multi-Level Experimental and Analytical Evaluation of Two Composite Energy Absorbers

    Science.gov (United States)

    Jackson, Karen E.; Littell, Justin D.; Fasanella, Edwin L.; Annett, Martin S.; Seal, Michael D., II

    2015-01-01

    Two composite energy absorbers were developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program. A conical-shaped energy absorber, designated the conusoid, was evaluated that consisted of four layers of hybrid carbon-Kevlar plain weave fabric oriented at [+45 deg/-45 deg/-45 deg/+45 deg] with respect to the vertical, or crush, direction. A sinusoidal-shaped energy absorber, designated the sinusoid, was developed that consisted of hybrid carbon-Kevlar plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical direction and a closed-cell ELFOAM P200 polyisocyanurate (2.0-lb/cu ft) foam core. The design goal for the energy absorbers was to achieve average floor-level accelerations of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in both designs were assessed through dynamic crush testing of component specimens. Once the designs were finalized, subfloor beams of each configuration were fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorbers prior to retrofit into TRACT 2. The retrofitted airframe was crash tested under combined forward and vertical velocity conditions onto soil, which is characterized as a sand/clay mixture. Finite element models were developed of all test articles and simulations were performed using LS-DYNA, a commercial nonlinear explicit transient dynamic finite element code. Test-analysis results are presented for each energy absorber as comparisons of time-history responses, as well as predicted and experimental structural deformations and progressive damage under impact loading for each evaluation level.

  4. Absorbing Software Testing into the Scrum Method

    Science.gov (United States)

    Tuomikoski, Janne; Tervonen, Ilkka

    In this paper we study, how to absorb software testing into the Scrum method. We conducted the research as an action research during the years 2007-2008 with three iterations. The result showed that testing can and even should be absorbed to the Scrum method. The testing team was merged into the Scrum teams. The teams can now deliver better working software in a shorter time, because testing keeps track of the progress of the development. Also the team spirit is higher, because the Scrum team members are committed to the same goal. The biggest change from test manager’s point of view was the organized Product Owner Team. Test manager don’t have testing team anymore, and in the future all the testing tasks have to be assigned through the Product Backlog.

  5. Absorber rod drive for nuclear reactors

    International Nuclear Information System (INIS)

    The invention concerns an absorber rod drive for Boiling Water Reactors, in which a mechanical drive is combined with a hydraulic drive working separately from it, so that both drives are situated concentric within an overall length. The driving torque of a motor is transmitted to a threaded spindle, which moves a free adjacent hollow piston vertically via a fixed nut. The same means are used for the hydraulic liquid which is used as coolant or moderator and there are nozzles, annular gaps and/or bores between the hydraulic system and the reactor pressure vessel for the purpose of pressure compensation. All the components of the absorber rod drive except the sealing housing and the setting drive are situated in one casing tube taking the differential pressure. (orig./HP)

  6. Imaging highly absorbing nanoparticles using photothermal microscopy

    Science.gov (United States)

    Lussier, Simon-Alexandre; Moradi, Hamid; Price, Alain; Murugkar, Sangeeta

    2015-03-01

    Gold nanoparticles (NPs) have tremendous potential in biomedicine. They can be used as absorbing labels inside living cells for the purpose of biomedical imaging, biosensing as well as for photothermal therapy. We demonstrate photothermal imaging of highly-absorbing particles using a pump-probe setup. The photothermal signal is recovered by heterodyne detection, where the excitation pump laser is at 532 nm and the probe laser is at 638 nm. The sample is moved by a scanning stage. Proof of concept images of red polystyrene microspheres and gold nanoparticles are obtained with this home-built multimodal microscope. The increase in temperature at the surface of the gold NPs, due to the pump laser beam, can be directly measured by means of this photothermal microscope and then compared with the results from theoretical predictions. This technique will be useful for characterization of nanoparticles of different shapes, sizes and materials that are used in cancer diagnosis and therapy.

  7. Phase separation in systems with absorbing states

    OpenAIRE

    Munoz, M. A.; Marconi, U. Marini Bettolo; Cafiero, R.

    1998-01-01

    We study the problem of phase separation in systems with a positive definite order parameter, and in particular, in systems with absorbing states. Owing to the presence of a single minimum in the free energy driving the relaxation kinetics, there are some basic properties differing from standard phase separation. We study analytically and numerically this class of systems; in particular we determine the phase diagram, the growth laws in one and two dimensions and the presence of scale invaria...

  8. 2D Saturable Absorbers for Fibre Lasers

    Directory of Open Access Journals (Sweden)

    Robert I. Woodward

    2015-11-01

    Full Text Available Two-dimensional (2D nanomaterials are an emergent and promising platform for future photonic and optoelectronic applications. Here, we review recent progress demonstrating the application of 2D nanomaterials as versatile, wideband saturable absorbers for Q-switching and mode-locking fibre lasers. We focus specifically on the family of few-layer transition metal dichalcogenides, including MoS2, MoSe2 and WS2.

  9. Cylinder light concentrator and absorber: theoretical description

    OpenAIRE

    Kildishev, Alexander V.; Prokopeva, Ludmila J.; Narimanov, Evgenii

    2010-01-01

    We present a detailed theoretical description of a broadband omnidirectional light concentrator and absorber with cylinder geometry. The proposed optical "trap" captures nearly all the incident light within its geometric cross-section, leading to a broad range of possible applications from solar energy harvesting to thermal light emitters and optoelectronic components. We have demonstrated that an approximate lamellar black-hole with a moderate number of homogeneous layers, while giving the d...

  10. Broadband metasurface absorber for solar thermal applications

    Science.gov (United States)

    Wan, C.; Chen, L.; Cryan, M. J.

    2015-12-01

    In this paper we propose a broadband polarization-independent selective absorber for solar thermal applications. It is based on a metal-dielectric-metal metasurface structure, but with an interlayer of absorbing amorphous carbon rather than a low loss dielectric. Optical absorbance results derived from finite difference time domain modelling are shown for ultra-thin carbon layers in air and on 200 nm of gold for a range of carbon thicknesses. A gold-amorphous carbon-gold trilayer with a top layer consisting of a 1D grating is then optimised in 2D to give a sharp transition from strong absorption up to 2 μm to strong reflection above 2 μm resulting in good solar selective performance. The gold was replaced by the high-melting-point metal tungsten, which is shown to have very similar performance to the gold case. 3D simulations then show that the gold-based structure performs well as a square periodic array of squares, however there is low absorption around 400 nm. A cross-based structure is found to increase this absorption without significantly reducing the performance at longer wavelengths.

  11. Microscopic modeling of nitride intersubband absorbance

    Science.gov (United States)

    Montano, Ines; Allerman, A. A.; Wierer, J. J.; Moseley, M.; Skogen, E. J.; Tauke-Pedretti, A.; Vawter, G. A.

    III-nitride intersubband structures have recently attracted much interest because of their potential for a wide variety of applications ranging from electro-optical modulators to terahertz quantum cascade lasers. To overcome present simulation limitations we have developed a microscopic absorbance simulator for nitride intersubband devices. Our simulator calculates the band structure of nitride intersubband systems using a fully coupled 8x8 k.p Hamiltonian and determines the material response of a single period in a density-matrix-formalism by solving the Heisenberg equation including many-body and dephasing contributions. After calculating the polarization due to intersubband transitions in a single period, the resulting absorbance of a superlattice structure including radiative coupling between the different periods is determined using a non-local Green's-function formalism. As a result our simulator allows us to predict intersubband absorbance of superlattice structures with microscopically determined lineshapes and linewidths accounting for both many-body and correlation contributions. This work is funded by Sandia National Laboratories Laboratory Directed Research and Development program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin.

  12. Flexible metamaterial absorbers for stealth applications at terahertz frequencies.

    Science.gov (United States)

    Iwaszczuk, Krzysztof; Strikwerda, Andrew C; Fan, Kebin; Zhang, Xin; Averitt, Richard D; Jepsen, Peter Uhd

    2012-01-01

    We have wrapped metallic cylinders with strongly absorbing metamaterials. These resonant structures, which are patterned on flexible substrates, smoothly coat the cylinder and give it an electromagnetic response designed to minimize its radar cross section. We compare the normal-incidence, small-beam reflection coefficient with the measurement of the far-field bistatic radar cross section of the sample, using a quasi-planar THz wave with a beam diameter significantly larger than the sample dimensions. In this geometry we demonstrate a near-400-fold reduction of the radar cross section at the design frequency of 0.87 THz. In addition we discuss the effect of finite sample dimensions and the spatial dependence of the reflection spectrum of the metamaterial. PMID:22274387

  13. Absorbance and fluorometric sensing with capillary wells microplates

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Han Yen; Cheong, Brandon Huey-Ping; Neild, Adrian; Wah Ng, Tuck [Laboratory for Optics, Acoustics, and Mechanics, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800 (Australia); Liew, Oi Wah [Cardiovascular Biomarkers Laboratory, Cardiovascular Research Institute, 30 Medical Drive, Singapore 117609 (Singapore)

    2010-12-15

    Detection and readout from small volume assays in microplates are a challenge. The capillary wells microplate approach [Ng et al., Appl. Phys. Lett. 93, 174105 (2008)] offers strong advantages in small liquid volume management. An adapted design is described and shown here to be able to detect, in a nonimaging manner, fluorescence and absorbance assays minus the error often associated with meniscus forming at the air-liquid interface. The presence of bubbles in liquid samples residing in microplate wells can cause inaccuracies. Pipetting errors, if not adequately managed, can result in misleading data and wrong interpretations of assay results; particularly in the context of high throughput screening. We show that the adapted design is also able to detect for bubbles and pipetting errors during actual assay runs to ensure accuracy in screening.

  14. Preparation of perlite-based carbon dioxide absorbent.

    Science.gov (United States)

    He, H; Wu, L; Zhu, J; Yu, B

    1994-02-01

    A new highly efficient carbon dioxide absorbent consisting of sodium hydroxide, expanded perlite and acid-base indicator was prepared. The absorption efficiency, absorption capacity, flow resistance and color indication for the absorbent were tested and compared with some commercial products. The absorbent can reduce the carbon dioxide content in gases to 3.3 ppb (v/v) and absorbs not less than 35% of its weight of carbon dioxide. Besides its large capacity and sharp color indication, the absorbent has an outstanding advantage of small flow resistance in comparison with other commercial carbon dioxide absorbents. Applications in gas analysis and purification were also investigated.

  15. The characteristic of power flow in broad band dynamic vibration absorber

    Institute of Scientific and Technical Information of China (English)

    WANG Minqing; SHENG Meiping; SUN Jincai; LIU Yi

    2002-01-01

    DVA (dynamic vibration absorber) is good for restrain of the resonance vibration in low frequency, especially under the condition that there are only one mode or two modes in a frequency band. It seems rather difficult to control the resonance vibration of elastic structures in high frequency, since usually there are so many modes in high frequency band. The broad band DVA is brought forward to reduce the resonance vibration of elastic structures. The broad band DVA is designed on the basis of the characteristic of power flow in structure in this paper.The broad band DVA is effective on absorbing the resonance vibration power flow of the mostimportant modes. The ability of absorbing vibration for the broad band DVA is analyzed indetail. The results obtained in this paper provide a basis for the optimization design of thebroad band DVA and the optimization positions on structures.

  16. Slow and Fast Light in an Electro-Absorber

    DEFF Research Database (Denmark)

    Öhman, Filip; Bermejo Ramirez, Andres; Sales, Salvador;

    2006-01-01

    We demonstrate controllable and large time delay in cascaded semiconductor saturable absorbers and amplifiers. The possibility of further increasing the tuneable phase shift by utilizing field screening effects in the quantum well absorber is demonstrated....

  17. Modeling the Effect of Polychromatic Light in Quantitative Absorbance Spectroscopy

    Science.gov (United States)

    Smith, Rachel; Cantrell, Kevin

    2007-01-01

    Laboratory experiment is conducted to give the students practical experience with the principles of electronic absorbance spectroscopy. This straightforward approach creates a powerful tool for exploring many of the aspects of quantitative absorbance spectroscopy.

  18. Diskrete-cotinuum methods application for rotating machine-absorber interaction analysis

    Directory of Open Access Journals (Sweden)

    Z. Stocko

    2007-01-01

    Full Text Available Purpose: The main aim of this paper is improved dynamic vibration absorbers design with taking into accountcomplex rotating machines dynamic.Design/methodology/approach: The numerical schemes row is considered for the complex vibroexitatedconstructions. Methods of decomposition and the numerical schemes synthesis are considered on the basis ofnew methods of modal synthesis.Findings: Development of mathematical models of complicated machines and buildings in view of theirinteraction with system of dynamic vibration absorbers. Dynamic vibration absorbers – complicated rotatingmachines system design optimized on vibro- absorption properties.Research limitations/implications: The research must be done for non-linear rotor dynamics.Practical implications: The absorbers designed in accordance with this paper can be applied not only toelectric machines or aeronautic structures, but to any other type of vibro-exitated structure, such as cars, chiselinstallation, optical, magneto-optical disks, washing machine, refrigerator, vacuum cleaner, etc.Originality/value: The paper has novelty both in theoretical, and in practical aspect, In order that optimalparameters of DVA be determinate the complete modeling of dynamics of rotating machine should be made.Traditional design methodology, based on discontinuous models of structures and machines are not effective forhigh frequency vibration.

  19. Absorbent material for type a radioactive materials packaging containing liquids

    International Nuclear Information System (INIS)

    The application of absorbent materials to the packaging and transport of liquid radioactive materials in Type A packages has not been reported in the literature. However, a significant body of research exists on absorbent materials for personal hygiene products such as diapers. Absorption capacity is dependent on both the absorbent material and the liquid being absorbed. Theoretical principles for capillary absorption in both the horizontal and the vertical plane indicate that small contact angle between the absorbent fibre and the liquid, and a small inter-fibre pore size are important. Some fluid parameters such as viscosity affect the rate of absorption but not the final absorption capacity. There appears to be little comparability between results obtained for the same absorbent and fluid using different test procedures. Test samples of materials from several classes of potential absorbents have been evaluated in this study, and shown to have a wide range of absorbent capacities. Foams, natural fibres, artificial fibres and granular materials are all potentially useful absorbents, with capacities ranging from as little as 0.86 to as much as 40.6 grams of distilled water per gram of absorbent. Two experimental procedures for evaluating the absorbent capacity of these materials have been detailed in this report, and found suitable for evaluating granular, fibrous or foam materials. Compression of the absorbent material reduces its capacity, but parameters such as relative humidity, pH, temperature, and viscosity appear to have little significant influence on capacity. When the materials were loaded to 50% of their one-minute absorbency, subsequent loss of the absorbed liquid was generally minimal. All of the absorbent materials rapidly lost their absorbed water through evaporation within twenty-four hours in still air at 21 degrees C and 50% relative humidity

  20. Material Model Evaluation of a Composite Honeycomb Energy Absorber

    Science.gov (United States)

    Jackson, Karen E.; Annett, Martin S.; Fasanella, Edwin L.; Polanco, Michael A.

    2012-01-01

    A study was conducted to evaluate four different material models in predicting the dynamic crushing response of solid-element-based models of a composite honeycomb energy absorber, designated the Deployable Energy Absorber (DEA). Dynamic crush tests of three DEA components were simulated using the nonlinear, explicit transient dynamic code, LS-DYNA . In addition, a full-scale crash test of an MD-500 helicopter, retrofitted with DEA blocks, was simulated. The four material models used to represent the DEA included: *MAT_CRUSHABLE_FOAM (Mat 63), *MAT_HONEYCOMB (Mat 26), *MAT_SIMPLIFIED_RUBBER/FOAM (Mat 181), and *MAT_TRANSVERSELY_ANISOTROPIC_CRUSHABLE_FOAM (Mat 142). Test-analysis calibration metrics included simple percentage error comparisons of initial peak acceleration, sustained crush stress, and peak compaction acceleration of the DEA components. In addition, the Roadside Safety Verification and Validation Program (RSVVP) was used to assess similarities and differences between the experimental and analytical curves for the full-scale crash test.

  1. Porphyrin Based Near Infrared-Absorbing Materials for Organic Photovoltaics

    Science.gov (United States)

    Zhong, Qiwen

    photosynthesis. Photosynthesis uses light from the sun to drive a series of chemical reactions. Most natural photosynthetic systems utilize chlorophylls to absorb light energy and carry out photochemical charge separation that stores energy in the form of chemical bonds. The sun produces a broad spectrum of light output that ranges from gamma rays to radio waves. The entire visible range of light (400-700 nm) and some wavelengths in the NIR (700-1000 nm), are highly active in driving photosynthesis. Although the most familiar chlorophyll-containing organisms, such as plants, algae and cyanobacteria, cannot use light longer than 700 nm, anoxygenic bacterium containing bacteriochlorophylls can use the NIR part of the solar spectrum. No organism is known to utilize light of wavelength longer than about 1000 nm for photosynthesis. NIR light has a very low-energy content in each photon, so that large numbers of these low-energy photons would have to be used to drive the chemical reactions of photosynthesis. This is thermodynamically possible but would require a fundamentally different molecular mechanism that is more akin to a heat engine than to photochemistry. Early work on developing light absorbing materials for OPVs was inspired by photosynthesis in which light is absorbed by chlorophyll. Structurally related to chlorophyll is the porphyrin family, which has accordingly drawn much interest as the potential light absorbing component in OPV applications. In this dissertation, the design and detail studies of several porphyrin-based NIR absorbing materials, including pi--extended perylenyl porphryins and pyrazole-containing carbaporphyrins, as well as porphyrin modified single-walled carbon nanotube hybrids, will be presented, dedicating efforts to develop novel and application-oriented materials for efficient utilization of sustainable solar energy.

  2. 21 CFR 886.3300 - Absorbable implant (scleral buckling method).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Absorbable implant (scleral buckling method). 886... SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3300 Absorbable implant (scleral buckling method). (a) Identification. An absorbable implant (scleral buckling method) is a...

  3. A MICROGAP SURGE ABSORBER FABRICATED USING CONVENTIONAL SEMICONDUCTOR TECHNOLOGY

    Institute of Scientific and Technical Information of China (English)

    李宏; 阮航宇

    2001-01-01

    A new type microgap surge absorber fabricated by only semiconductor technique has in it a special structure silicon chip which forms microgaps for gas discharge with electrodes, and has advantages such as small size, low cost, suitability for mass production besides the desirable characteristics that common microgap surge absorbers have. Applications of this absorber in communication facilities are discussed.

  4. 21 CFR 868.5310 - Carbon dioxide absorber.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in...

  5. Optical momentum transfer to absorbing mie particles.

    Science.gov (United States)

    Kemp, Brandon A; Grzegorczyk, Tomasz M; Kong, Jin Au

    2006-09-29

    The momentum transfer to absorbing particles is derived from the Lorentz force density without prior assumption of the momentum of light in media. We develop a view of momentum conservation rooted in the stress tensor formalism that is based on the separation of momentum contributions to bound and free currents and charges consistent with the Lorentz force density. This is in contrast with the usual separation of material and field contributions. The theory is applied to predict a decrease in optical momentum transfer to Mie particles due to absorption, which contrasts the common intuition based on the scattering and absorption by Rayleigh particles. PMID:17026034

  6. Cylinder light concentrator and absorber: theoretical description.

    Science.gov (United States)

    Kildishev, Alexander V; Prokopeva, Ludmila J; Narimanov, Evgenii E

    2010-08-01

    We present a detailed theoretical description of a broadband omnidirectional light concentrator and absorber with cylinder geometry. The proposed optical "trap" captures nearly all the incident light within its geometric cross-section, leading to a broad range of possible applications--from solar energy harvesting to thermal light emitters and optoelectronic components. We have demonstrated that an approximate lamellar black-hole with a moderate number of homogeneous layers, while giving the desired ray-optical performance, can provide absorption efficiencies comparable to those of ideal devices with a smooth gradient in index. PMID:20721056

  7. Absorbency of Superabsorbent Polymers in Cementitious Environments

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro; Jensen, Ole Mejlhede

    2012-01-01

    Optimal use of superabsorbent polymers (SAP) in cement-based materials relies on knowledge on how SAP absorbency is influenced by different physical and chemical parameters. These parameters include salt concentration in the pore fluid, temperature of the system and SAP particle size. The present...... work shows experimental results on this and presents a new technique to measure the swelling of SAP particles. This new technique is compared with existing techniques that have been recently proposed for the measurement of pore fluid absorption by superabsorbent polymers. It is seen...

  8. DHCAL with Minimal Absorber: Measurements with Positrons

    CERN Document Server

    Freund, B; Repond, J.; Schlereth, J.; Xia, L.; Dotti, A.; Grefe, C.; Ivantchenko, V.; Antequera, J.Berenguer; Calvo Alamillo, E.; Fouz, M.C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Brianne, E.; Ebrahimi, A.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Irles, A.; Krivan, F.; Krüger, K.; Kvasnicka, J.; Lu, S.; Lutz, B.; Morgunov, V.; Provenza, A.; Reinecke, M.; Sefkow, F.; Schuwalow, S.; Tran, H.L.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Schroeder, S.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kovalcuk, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; van Doren, B.; Wilson, G.W.; Kawagoe, K.; Hirai, H.; Sudo, Y.; Suehara, T.; Sumida, H.; Takada, S.; Tomita, T.; Yoshioka, T.; Bilokin, S.; Bonis, J.; Cornebise, P.; Pöschl, R.; Richard, F.; Thiebault, A.; Zerwas, D.; Hostachy, J.Y.; Morin, L.; Besson, D.; Chadeeva, M.; Danilov, M.; Markin, O.; Popova, E.; Gabriel, M.; Goecke, P.; Kiesling, C.; Kolk, N.van der; Simon, F.; Szalay, M.; Corriveau, F.; Blazey, G.C.; Dyshkant, A.; Francis, K.; Zutshi, V.; Kotera, K.; Ono, H.; Takeshita, T.; Ieki, S.; Kamiya, Y.; Ootani, W.; Shibata, N.; Jeans, D.; Komamiya, S.; Nakanishi, H.

    2016-01-01

    In special tests, the active layers of the CALICE Digital Hadron Calorimeter prototype, the DHCAL, were exposed to low energy particle beams, without being interleaved by absorber plates. The thickness of each layer corresponded approximately to 0.29 radiation lengths or 0.034 nuclear interaction lengths, defined mostly by the copper and steel skins of the detector cassettes. This paper reports on measurements performed with this device in the Fermilab test beam with positrons in the energy range of 1 to 10 GeV. The measurements are compared to simulations based on GEANT4 and a standalone program to emulate the detailed response of the active elements.

  9. Use of burnup credit in criticality safety design analysis of spent fuel storage systems

    International Nuclear Information System (INIS)

    temperature and density, presence of soluble boron in the core (PWR), use of fixed neutron absorbers (control rods, burnable poison rods, axial power shaping rods), use of integral burnable absorbers (gadolinium or erbium bearing fuel rods, IFBA rods). It will be shown how a bounding approach can be obtained for the impact of these parameters on the reactivity of the storage system. The criticality calculation procedure consists in the following main steps: Isotopic selection and validation; Validation of the criticality calculation code applied; Sensitivity studies on the reactivity effects of axial and horizontal burnup profiles of fuel assemblies; Determination of the criticality acceptance criterion (maximum allowable neutron multiplication factor including the impacts of all the mechanical and calculational uncertainties) and determination of the loading curve. The fundamentals of isotopic selection will be defined, and a survey of the benchmark experiments available for isotopic validation and validation of the criticality calculation code applied will be given. Since the parameters and conditions characterizing the benchmark experiments are usually different from the parameters and conditions describing the spent fuel storage system of interest, a method of checking the applicability of such experiments to the storage system will be briefly described. This method bases the applicability on the similarity of sensitivity coefficients which are defined for the underlying nuclear data characterizing the isotopic compositions and their effect on the spent fuel reactivity. The fact that the axial burnup distribution in a fuel assembly is non-uniform must be considered in the analysis of the storage system. The difference between the system's neutron multiplication factor obtained by using an axially varying burnup profile and the system's neutron multiplication factor obtained by assuming a uniform distribution of the averaged burnup of this profile is known as the 'end

  10. Mode superposition transient dynamic analysis for dental implants with stress-absorbing elements: a finite element analysis.

    Science.gov (United States)

    Tanimoto, Yasuhiro; Hayakawa, Tohru; Nemoto, Kimiya

    2006-09-01

    The purpose of this study was to analyze the dynamic behavior of a dental implant with a stress-absorbing element, using dynamic analysis. Two model types, stress-absorbing model with a resilient stress absorber made of polyoxymethylene and non-stress-absorbing model with rigid titanium, were employed. In both model types, the implant was 4.0 mm in diameter and 13.0 mm in length and placed in the mandibular first molar region. Shapes of the finite element implant and implant-bone were modeled using computer-aided design. All calculations for the dynamic analysis were performed using the finite element method. It was found that the stress-absorbing model had a lower natural frequency than the non-stress-absorbing model. In addition, the stress-absorbing model had a higher damping effect than the non-stress-absorbing model. It was concluded that mode superposition transient dynamic analysis is a useful technique for determining dynamic behavior around dental implants. PMID:17076317

  11. The role of absorbent building materials in moderating changes of relative humidity

    DEFF Research Database (Denmark)

    Padfield, Tim

    The problem studied in this work is, how porous, absorbent materials surroundning or placed in a room influence the relative humidity of the room. This is of interest in designing precautions and machinery to monitor the indoor climate in museums and dwelling rooms. - A novel technique for the...

  12. Warm absorbers in active galactic nuclei

    CERN Document Server

    Reynolds, C S; Reynolds, C S; Fabian, A C

    1995-01-01

    Recent {\\it ASCA} observations confirm the presence of X-ray absorption due to partially ionized gas in many Seyfert 1 galaxies; the so-called warm absorber. Constraints on the location of the warm material are presented with the conclusion that this material lies at radii coincident with, or just outside, the broad-line region. The stability of this warm material to isobaric perturbations under the assumptions of thermal and photoionization equilibrium is also studied. It is shown that there is a remarkably small range of ionization parameter, \\xi, for which the warm absorber state is stable. The robustness of this result to changes in the shape of the primary continuum, the assumed density and optical depth is investigated. Given the constraints on the location and the stability properties of the material, several models for the environments of Seyfert nuclei are discussed. These attempt to explain the presence of significant amounts of partially ionized material. In particular, various models of the broad-...

  13. Metamaterial perfect absorber based hot electron photodetection.

    Science.gov (United States)

    Li, Wei; Valentine, Jason

    2014-06-11

    While the nonradiative decay of surface plasmons was once thought to be only a parasitic process that limits the performance of plasmonic devices, it has recently been shown that it can be harnessed in the form of hot electrons for use in photocatalysis, photovoltaics, and photodetectors. Unfortunately, the quantum efficiency of hot electron devices remains low due to poor electron injection and in some cases low optical absorption. Here, we demonstrate how metamaterial perfect absorbers can be used to achieve near-unity optical absorption using ultrathin plasmonic nanostructures with thicknesses of 15 nm, smaller than the hot electron diffusion length. By integrating the metamaterial with a silicon substrate, we experimentally demonstrate a broadband and omnidirectional hot electron photodetector with a photoresponsivity that is among the highest yet reported. We also show how the spectral bandwidth and polarization-sensitivity can be manipulated through engineering the geometry of the metamaterial unit cell. These perfect absorber photodetectors could open a pathway for enhancing hot electron based photovoltaic, sensing, and photocatalysis systems. PMID:24837991

  14. Calculations of a wideband metamaterial absorber using equivalent medium theory

    Science.gov (United States)

    Huang, Xiaojun; Yang, Helin; Wang, Danqi; Yu, Shengqing; Lou, Yanchao; Guo, Ling

    2016-08-01

    Metamaterial absorbers (MMAs) have drawn increasing attention in many areas due to the fact that they can achieve electromagnetic (EM) waves with unity absorptivity. We demonstrate the design, simulation, experiment and calculation of a wideband MMA based on a loaded double-square-loop (DSL) array of chip resisters. For a normal incidence EM wave, the simulated results show that the absorption of the full width at half maximum is about 9.1 GHz, and the relative bandwidth is 87.1%. Experimental results are in agreement with the simulations. More importantly, equivalent medium theory (EMT) is utilized to calculate the absorptions of the DSL MMA, and the calculated absorptions based on EMT agree with the simulated and measured results. The method based on EMT provides a new way to analysis the mechanism of MMAs.

  15. Bottom Slamming on Heaving Point Absorber Wave Energy Devices

    DEFF Research Database (Denmark)

    De Backer, Griet; Vantorre, Marc; Frigaard, Peter;

    2010-01-01

    Oscillating point absorber buoys may rise out of the water and be subjected to bottom slamming upon re-entering the water. Numerical simulations are performed to estimate the power absorption, the impact velocities and the corresponding slamming forces for various slamming constraints. Three buoy...... occurrence probabilities can be significantly reduced by adapting the control parameters. The magnitude of the slamming load is severely influenced by the buoy shape. The ratio between the peak impact load on the hemisphere and that on the 45 cone is approximately 2, whereas the power absorption is only 4......-8% higher for the 45 degrees cone. This work illustrates the need to include slamming considerations aside from power absorption criteria in the buoy shape design process and the control strategy....

  16. Fluorine-Free Oil Absorbents Made from Cellulose Nanofibril Aerogels.

    Science.gov (United States)

    Mulyadi, Arie; Zhang, Zhe; Deng, Yulin

    2016-02-01

    Aerogels based on cellulose nanofibrils (CNFs) have been of great interest as absorbents due to their high absorption capacity, low density, biodegradability, and large surface area. Hydrophobic aerogels have been designed to give excellent oil absorption tendency from water. Herein, we present an in situ method for CNF surface modification and hydrophobic aerogel preparation. Neither solvent exchange nor fluorine chemical is used in aerogel preparations. The as-prepared hydrophobic aerogels exhibit low density (23.2 mg/cm(-3)), high porosity (98.5%), good flexibility, and solvent-induced shape recovery property. Successful surface modification was confirmed through field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and water contact angle measurements. The hydrophobic aerogels show high absorption capacities for various oils, depending on liquid density, up to 47× their original weight but with low water uptake (aerogel). PMID:26761377

  17. Design

    Science.gov (United States)

    Buchanan, Richard; Cross, Nigel; Durling, David; Nelson, Harold; Owen, Charles; Valtonen, Anna; Boling, Elizabeth; Gibbons, Andrew; Visscher-Voerman, Irene

    2013-01-01

    Scholars representing the field of design were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Richard Buchanan, Nigel Cross, David Durling, Harold Nelson, Charles Owen, and Anna Valtonen. Scholars…

  18. Design

    DEFF Research Database (Denmark)

    Volf, Mette

    2009-01-01

    Design - proces og metode går bag om designerens arbejde og giver et indblik i den skabelsesproces, som designeren er involveret i. Bogen er enestående, fordi den fokuserer på processens flygtige og komplekse karakter, afmystificerer den og gør den operationel - uden at fjerne dens magi. Ud over...

  19. Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Stynes, J. K.; Ihas, B.

    2012-04-01

    As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.

  20. Influence of absorber doping in a-SiC:H/a-Si:H/a-SiGe:H solar cells

    Institute of Scientific and Technical Information of China (English)

    Muhammad Nawaz; Ashfaq Ahmad

    2012-01-01

    This work deals with the design evaluation and influence of absorber doping for a-Si:H/a-SiC:H/a-SiGe:H based thin-film solar cells using a two-dimensional computer aided design (TCAD) tool.Various physical parameters of the layered structure,such as doping and thickness of the absorber layer,have been studied.For reliable device simulation with realistic predictability,the device performance is evaluated by implementing necessary models (e.g.,surface recombinations,thermionic field emission tunneling model for carrier transport at the heterojunction,Schokley-Read Hall recombination model,Auger recombination model,bandgap narrowing effects,doping and temperature dependent mobility model and using Fermi-Dirac statistics).A single absorber with a graded design gives an efficiency of 10.1% for 800 nm thick multiband absorption.Similarly,a tandem design shows an efficiency of 10.4% with a total absorber of thickness of 800 nm at a bandgap of 1.75 eV and 1.0 eV for the top a-Si and bottom a-SiGe component cells.A moderate n-doping in the absorber helps to improve the efficiency while p doping in the absorber degrades efficiency due to a decrease in the Voc (and fill factor) of the device.

  1. Neutron Absorbing Ability Variation in Neutron Absorbing Material Caused by the Neutron Irradiation in Spent Fuel Storage Facility

    International Nuclear Information System (INIS)

    In spent fuel storage facility like high density spent fuel storage racks and dry storage casks, spent fuels are stored with neutron absorbing materials installed as a part of those facilities, and they are used for absorbing neutrons emitted from spent fuels. Usually structural material with neutron absorbing material of racks and casks are located around spent fuels, so it is irradiated by neutrons for long time. Neutron absorbing ability could be changed by the variation of nuclide composition in neutron absorbing material caused by the irradiation of neutrons. So, neutron absorbing materials are continuously faced with spent fuels with boric acid solution or inert gas environment. Major nuclides in neutron absorbing material are Al27, C12, B11, B10 and they are changed to numerous other ones as radioactive decay or neutron absorption reaction. The B10 content in neutron absorbing material dominates the neutron absorbing ability, so, the variation of nuclide composition including the decrease of B10 content is the critical factor on neutron absorbing ability. In this study, neutron flux in spent fuel, the activation of neutron absorbing material and the variation of nuclide composition are calculated. And, the minimum neutron flux causing the decrease of B10 content is calculated in spent fuel storage facility. Finally, the variation of neutron multiplication factor is identified according to the one of B10 content in neutron absorbing material. The minimum neutron flux to impact the neutron absorbing ability is 1010 order, however, usual neutron flux from spent fuel is 108 order. Therefore, even though neutron absorbing material is irradiated for over 40 years, B10 content is little decreased, so, initial neutron absorbing ability could be kept continuously

  2. Tungsten band edge absorber/emitter based on a monolayer of ceramic microspheres.

    Science.gov (United States)

    Dyachenko, P N; do Rosário, J J; Leib, E W; Petrov, A Yu; Störmer, M; Weller, H; Vossmeyer, T; Schneider, G A; Eich, M

    2015-09-21

    We report on a band edge absorber/emitter design for high-temperature applications based on an unstructured tungsten substrate and a monolayer of ceramic microspheres. The absorber was fabricated as a monolayer of ZrO(2) microparticles on a tungsten layer with a HfO(2) nanocoating. The band edge of the absorption is based on critically coupled microsphere resonances. It can be tuned from visible to near-infrared range by varying the diameter of the microparticles. The absorption properties were found to be stable up to 1000°C. PMID:26406752

  3. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band.

    Science.gov (United States)

    Huang, Li; Chowdhury, Dibakar Roy; Ramani, Suchitra; Reiten, Matthew T; Luo, Sheng-Nian; Taylor, Antoinette J; Chen, Hou-Tong

    2012-01-15

    We present the design, numerical simulations and experimental measurements of terahertz metamaterial absorbers with a broad and flat absorption top over a wide incidence angle range for either transverse electric or transverse magnetic polarization depending on the incident direction. The metamaterial absorber unit cell consists of two sets of structures resonating at different but close frequencies. The overall absorption spectrum is the superposition of individual components and becomes flat at the top over a significant bandwidth. The experimental results are in excellent agreement with numerical simulations.

  4. Tunable wideband absorber based on resistively loaded lossy high-impedance surface

    Institute of Scientific and Technical Information of China (English)

    党可征; 时家明; 汪家春; 林志丹; 王启超

    2015-01-01

    A lossy high-impedance surface comprised of two layers of resistive frequency selective surfaces is employed to design a tunable electromagnetic absorber. The tunability is realized through changing the composite unit cell by moving the top layer mechanically. To explain the absorbing mechanism, an equivalent circuit model with an interacting coefficient is proposed. Then, simulations and measurements are carried out and agree well with each other. Results show that the complex structure with a thickness less than λ0/4 is able to achieve a wideband absorption in a frequency range from 5.90 GHz to 19.73 GHz. Moreover, it is tunable in the operation frequency band.

  5. Experimental study of the acoustic characteristics of micro-perforated functional absorbers

    Institute of Scientific and Technical Information of China (English)

    WANG Jiqing; SONG Yongmin; SHENG Shengwo

    2005-01-01

    Micro-perforated panels have been widely used as fiber-free acoustical material for decades in the form of wall or ceiling covering with some air space behind. This paper presents the test study on the acoustical characteristics of two different types of functional absorbers,panel type and tube type, constructed with micro-perforated metal or PVC (polyvinyl chloride) sheets. Acoustical measurements of such functional absorbers in reverberation chamber demonstrate the merit of good absorption as expected. They are not only cost effective in construction and installation, but also appealing esthetically for architectural interior design.

  6. Impact Testing and Simulation of a Sinusoid Foam Sandwich Energy Absorber

    Science.gov (United States)

    Jackson, Karen E.; Fasanella, Edwin L; Littell, Justin D.

    2015-01-01

    A sinusoidal-shaped foam sandwich energy absorber was developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research project. The energy absorber, designated the "sinusoid," consisted of hybrid carbon- Kevlar® plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical or crush direction, and a closed-cell ELFOAM(TradeMark) P200 polyisocyanurate (2.0-lb/ft3) foam core. The design goal for the energy absorber was to achieve an average floor-level acceleration of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in the design were assessed through quasi-static and dynamic crush testing of component specimens. Once the design was finalized, a 5-ft-long subfloor beam was fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorber prior to retrofit into TRACT 2. Finite element models were developed of all test articles and simulations were performed using LSDYNA ®, a commercial nonlinear explicit transient dynamic finite element code. Test analysis results are presented for the sinusoid foam sandwich energy absorber as comparisons of load-displacement and acceleration-time-history responses, as well as predicted and experimental structural deformations and progressive damage for each evaluation level (component testing through barrel section drop testing).

  7. Magneto-rheological fluid shock absorber for suspension of an off-road motorcycle: a theoretical study

    Science.gov (United States)

    Ericksen, Everet O.; Gordaninejad, Faramarz

    2000-06-01

    This work presents a theoretical model for the damping force of a magneto-rheological fluid (MRF) shock absorber of an off-road motorcycle. The Bingham plastic model and a 3D electromagnetic finite-element analysis are employed to develop a theoretical model to estimate the damping force of a MRF shock absorber. The mode is based on the physical parameters of the device as well as the properties of the fluid, making a valuable tool in shock absorber design for a particular application. By comparing the theoretical and experimental results, it is demonstrated that the model accurately predicts the damping force.

  8. Applied acoustics concepts, absorbers, and silencers for acoustical comfort and noise control alternative solutions, innovative tools, practical examples

    CERN Document Server

    Fuchs, Helmut V

    2013-01-01

    The author gives a comprehensive overview of materials and components for noise control and acoustical comfort. Sound absorbers must meet acoustical and architectural requirements, which fibrous or porous material alone can meet. Basics and applications are demonstrated, with representative examples for spatial acoustics, free-field test facilities and canal linings. Acoustic engineers and construction professionals will find some new basic concepts and tools for developments in order to improve acoustical comfort. Interference absorbers, active resonators and micro-perforated absorbers of different materials and designs complete the list of applications.

  9. Moisture buffering capacity of highly absorbing materials

    Energy Technology Data Exchange (ETDEWEB)

    Cerolini, S.; D' Orazio, M.; Stazi, A. [Department of Architecture, Construction and Structures (DACS), Faculty of Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60100 Ancona (Italy); Di Perna, C. [Department of Energetics, Faculty of Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60100 Ancona (Italy)

    2009-02-15

    This research investigates the possibility to use highly absorbing materials to dampen indoor RH% variations. The practical MBV of sodium polyacrylate, cellulose-based material, perlite and gypsum is evaluated for a daily cyclic exposure that alternates high (75%) and low (33%) RH% levels for 8 h and 16 h, respectively. The adjustment velocity to RH% variations and the presence of hysteretic phenomena are also presented. The cellulose-based material proves to be the most suitable for moisture buffering applications. Starting from this material's properties, the effect of thickness, vapour resistance factor ({mu}) and mass surface exchange coefficient (Z{sub v}) on sorption capacity is evaluated by the use of a numerical model. (author)

  10. Corundum-based transparent infrared absorbers

    KAUST Repository

    Schwingenschlögl, Udo

    2009-10-01

    Hypothetical corundum-based compounds are studied by electronic structure calculations. One quarter of the Al atoms in Al2O3 is replaced by a 3d transition metal from the M = Ti, ..., Zn (d1, ..., d9) series. Structure optimisations are performed for all the M-Al2O3 compounds and the electronic states are evaluated. Due to the M substitutes, narrow partially filled bands are formed at the Fermi energy. Beyond, for M = Ni and M = Cu the optical properties of Al2O3 in the visible range are conserved, while for M = Ti, ..., Co the systems form high accuracy optical filters. Since the compounds absorb the infrared radiation, the M = Ni and M = Cu systems are good candidates for heat-protective coatings. © 2009 Elsevier B.V. All rights reserved.

  11. PLD-grown thin film saturable absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Tellkamp, Friedjof

    2012-11-01

    The subject of this thesis is the preparation and characterization of thin films made of oxidic dielectrics which may find their application as saturable absorber in passively Q-switched lasers. The solely process applied for fabrication of the thin films was the pulsed laser deposition (PLD) which stands out against other processes by its flexibility considering the composition of the systems to be investigated. Within the scope of this thesis the applied saturable absorbers can be divided into two fundamentally different kinds of functional principles: On the one hand, saturable absorption can be achieved by ions embedded in a host medium. Most commonly applied bulk crystals are certain garnets like YAG (Y{sub 3}Al{sub 5}O{sub 12}) or the spinel forsterite (Mg{sub 2}SiO{sub 4}), in each case with chromium as dopant. Either of these media was investigated in terms of their behavior as PLD-grown saturable absorber. Moreover, experiments with Mg{sub 2}GeO{sub 4}, Ca{sub 2}GeO{sub 4}, Sc{sub 2}O{sub 3}, and further garnets like YSAG or GSGG took place. The absorption coefficients of the grown films of Cr{sup 4+}:YAG were determined by spectroscopic investigations to be one to two orders of magnitude higher compared to commercially available saturable absorbers. For the first time, passive Q-switching of a Nd:YAG laser at 1064 nm with Cr{sup 4+}:YAG thin films could be realized as well as with Cr:Sc{sub 2}O{sub 3} thin films. On the other hand, the desirable effect of saturable absorption can also be generated by quantum well structures. For this purpose, several layer system like YAG/LuAG, Cu{sub 2}O/MgO, and ZnO/corumdum were investigated. It turned out that layer systems with indium oxide (In{sub 2}O{sub 3}) did not only grew in an excellent way but also showed up a behavior regarding their photo luminescence which cannot be explained by classical considerations. The observed luminescence at roughly 3 eV (410 nm) was assumed to be of excitonic nature and its

  12. Hot Carrier extraction with plasmonic broadband absorbers

    CERN Document Server

    Ng, Charlene; Dligatch, Svetlana; Roberts, Ann; Davis, Timothy J; Mulvaney, Paul; Gomez, Daniel E

    2016-01-01

    Hot charge carrier extraction from metallic nanostructures is a very promising approach for applications in photo-catalysis, photovoltaics and photodetection. One limitation is that many metallic nanostructures support a single plasmon resonance thus restricting the light-to-charge-carrier activity to a spectral band. Here we demonstrate that a monolayer of plasmonic nanoparticles can be assembled on a multi-stack layered configuration to achieve broad-band, near-unit light absorption, which is spatially localised on the nanoparticle layer. We show that this enhanced light absorbance leads to $\\sim$ 40-fold increases in the photon-to-electron conversion efficiency by the plasmonic nanostructures. We developed a model that successfully captures the essential physics of the plasmonic hot-electron charge generation and separation in these structures. This model also allowed us to establish that efficient hot carrier extraction is limited to spectral regions where the photons possessing energies higher than the S...

  13. Absorbing layers for the Dirac equation

    Energy Technology Data Exchange (ETDEWEB)

    Pinaud, Olivier, E-mail: pinaud@math.colostate.edu

    2015-05-15

    This work is devoted to the construction of perfectly matched layers (PML) for the Dirac equation, that not only arises in relativistic quantum mechanics but also in the dynamics of electrons in graphene or in topological insulators. While the resulting equations are stable at the continuous level, some care is necessary in order to obtain a stable scheme at the discrete level. This is related to the so-called fermion doubling problem. For this matter, we consider the numerical scheme introduced by Hammer et al. [19], and combine it with the discretized PML equations. We state some arguments for the stability of the resulting scheme, and perform simulations in two dimensions. The perfectly matched layers are shown to exhibit, in various configurations, superior absorption than the absorbing potential method and the so-called transport-like boundary conditions.

  14. Effects of rubber shock absorber on the flywheel micro vibration in the satellite imaging system

    Science.gov (United States)

    Deng, Changcheng; Mu, Deqiang; Jia, Xuezhi; Li, Zongxuan

    2016-07-01

    When a satellite is in orbit, its flywheel will generate micro vibration and affect the imaging quality of the camera. In order to reduce this effect, a rubber shock absorber is used, and a numerical model and an experimental set up are developed to investigate its effect on the micro vibration in the study. An integrated model is developed for the system, and a ray tracing method is used in the modeling. The spot coordinates and displacements of the image plane are obtained, and the modulate transfer function (MTF) of the system is calculated. A satellite including a rubber shock absorber is designed, and the experiments are carried out. Both simulation and experiments results show that the MTF increases almost 10 %, suggesting the rubber shock absorber is useful to decrease the flywheel vibration.

  15. A polarization insensitive and broadband metamaterial absorber based on three-dimensional structure

    Science.gov (United States)

    Tang, Jingyao; Xiao, Zhongyin; Xu, Kaikai; Liu, Dejun

    2016-08-01

    In this paper, we propose a three-dimensional metamaterial absorber based on tailored resistive film patch array. The numerical results show that a broadband abs orption more than 90% can be achieved from 58.6 to 91.4 GHz for either transverse electric or magnetic polarization wave at normal incidence. And the E-field, surface current and power loss density distributions in the absorber are investigated to explain the physical mechanism of high absorption. In addition, the absorption efficiency of oblique incidence is also elucidated. According to the analysis of the E-field and power loss density distributions, we explain the absorption differences between TE and TM mode at oblique incidence. The proposed metamaterial absorber will pave the way for practical applications, such as sensing, imaging and stealth technology. Importantly, the design idea has the ability to be extended to terahertz, infrared and optical region.

  16. Photothermally tunable silicon-microring-based optical add-drop filter through integrated light absorber.

    Science.gov (United States)

    Chen, Xi; Shi, Yuechun; Lou, Fei; Chen, Yiting; Yan, Min; Wosinski, Lech; Qiu, Min

    2014-10-20

    An optically pumped thermo-optic (TO) silicon ring add-drop filter with fast thermal response is experimentally demonstrated. We propose that metal-insulator-metal (MIM) light absorber can be integrated into silicon TO devices, acting as a localized heat source which can be activated remotely by a pump beam. The MIM absorber design introduces less thermal capacity to the device, compared to conventional electrically-driven approaches. Experimentally, the absorber-integrated add-drop filter shows an optical response time of 13.7 μs following the 10%-90% rule (equivalent to a exponential time constant of 5 μs) and a wavelength shift over pump power of 60 pm/mW. The photothermally tunable add-drop filter may provide new perspectives for all-optical routing and switching in integrated Si photonic circuits. PMID:25401557

  17. Double-layer Perfect Metamaterial Absorber and Its Application for RCS Reduction of Antenna

    Directory of Open Access Journals (Sweden)

    S. Li

    2014-04-01

    Full Text Available To reduce the radar cross section (RCS of a circularly polarized (CP tilted beam antenna, a double-layer perfect metamaterial absorber (DLPMA in the microwave frequency is proposed. The DLPMA exhibits a wider band by reducing the distance between the three absorption peaks. Absorbing characteristics are analyzed and the experimental results demonstrate that the proposed absorber works well from 5.95 GHz to 6.86 GHz (relative bandwidth 14.1% with the thickness of 0.5 mm. Then, the main part of perfect electric conductor ground plane of the CP tilted beam antenna is covered by the DLPMA. Simu¬lated and experimental results reveal that the novel antenna performs well from 5.5 GHz to 7 GHz, and its monostatic RCS is reduced significantly from 5.8 GHz to 7 GHz. The agreement between measured and simulated data validates the present design.

  18. Tunable omnidirectional absorber and mode splitter based on semiconductor photonic crystal

    International Nuclear Information System (INIS)

    In this paper, the properties of one-dimensional (1D) photonic crystals (PCs) composed of the semiconductor (GaAs) and dielectric layers are theoretically investigated by the transfer matrix method (TMM). The absorption of semiconductor layers is investigated theoretically. Due to the magneto-optical Voigt effect, the dielectric constant of the semiconductor is modified differently in different modes and frequency ranges. If the frequency range of the incident wave is larger than the plasma frequency, TE and TM modes of the incident wave will be absorbed in a wide incident angle. TM wave will be absorbed but TE wave will be reflected while the frequency range is less than the plasma frequency. The absorption of semiconductor can also be tuned by varying the external magnetic field. The proposed PCs have a reconfigurable application to design a tunable omnidirectional absorber and mode splitter at same time

  19. Electromagnetic resonances of solar-selective absorbers with nanoparticle arrays embedded in a dielectric layer

    Science.gov (United States)

    Sakurai, Atsushi; Kawamata, Tomoaki

    2016-11-01

    We numerically investigate a solar-selective absorber with tungsten core-shell nanoparticle arrays embedded in an SiO2 layer. The 3D full-wave finite-difference time-domain (FDTD) simulations are performed to investigate the geometric effects of different types of solar-selective absorbers. Consequently, broadband light absorption was achieved with either a tungsten nanoparticle array or a tungsten core-shell nanoparticle array because of the strong electric field enhancement in the gap between the core nanoparticles. The solar performance of the proposed structure is shown for high-efficiency solar light absorption. This study enhances understanding of the light absorption mechanism of metallic nanoparticle/dielectric composite and facilitates the design of high-efficiency solar-selective absorbers.

  20. Estimation of the RF Characteristics of Absorbing Materials in Broad RF Frequency Ranges

    CERN Document Server

    Fandos, R

    2008-01-01

    Absorbing materials are very often used in RF applications. Their electromagnetic characteristics (relative permittivity εr, loss tangent tan δ and conductivity σ) are needed in order to obtain a high-quality design of the absorbing pieces in the frequency range of interest. Unfortunately, suppliers often do not provide these quantities. A simple technique to determine them, based on the RF measurement of the disturbance created by the insertion of a piece of absorber in a waveguide, is presented in this note. Results for samples of two different materials, silicon carbide and aluminum nitride are presented. While the former has a negligible conductivity at the working frequencies, the conductivity of the latter has to be taken into account in order to obtain a meaningful estimation of εr and tan δ. The equations of Kramers & Kronig have been applied to the data as a cross check, confirming the results.

  1. Neutron absorbed dose in a pacemaker CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C. Y.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    The absorbed dose due to neutrons by a Complementary Metal Oxide Semiconductor (CMOS) has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes a patient that must be treated by radiotherapy with a linear accelerator; the pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. When the Linac is working in Bremsstrahlung mode an undesirable neutron field is produced due to photoneutron reactions; these neutrons could damage the CMOS putting the patient at risk during the radiotherapy treatment. In order to estimate the neutron dose in the CMOS a Monte Carlo calculation was carried out where a full radiotherapy vault room was modeled with a W-made spherical shell in whose center was located the source term of photoneutrons produced by a Linac head operating in Bremsstrahlung mode at 18 MV. In the calculations a phantom made of tissue equivalent was modeled while a beam of photoneutrons was applied on the phantom prostatic region using a field of 10 x 10 cm{sup 2}. During simulation neutrons were isotropically transported from the Linac head to the phantom chest, here a 1 {theta} x 1 cm{sup 2} cylinder made of polystyrene was modeled as the CMOS, where the neutron spectrum and the absorbed dose were estimated. Main damages to CMOS are by protons produced during neutron collisions protective cover made of H-rich materials, here the neutron spectrum that reach the CMOS was calculated showing a small peak around 0.1 MeV and a larger peak in the thermal region, both connected through epithermal neutrons. (Author)

  2. Light Absorbing Aerosols in Mexico City

    Science.gov (United States)

    Marley, N. A.; Kelley, K. L.; Kilaparty, P. S.; Gaffney, J. S.

    2008-12-01

    The direct effects of aerosol radiative forcing has been identified by the IPCC as a major uncertainty in climate modeling. The DOE Megacity Aerosol Experiment-Mexico City (MAX-Mex), as part of the MILAGRO study in March of 2006, was undertaken to reduce these uncertainties by characterization of the optical, chemical, and physical properties of atmospheric aerosols emitted from this megacity environment. Aerosol samples collected during this study using quartz filters were characterized in the uv-visible-infrared by using surface spectroscopic techniques. These included the use of an integrating sphere approach combined with the use of Kubelka-Munk theory to obtain aerosol absorption spectra. In past work black carbon has been assumed to be the only major absorbing species in atmospheric aerosols with an broad band spectral profile that follows a simple inverse wavelength dependence. Recent work has also identified a number of other absorbing species that can also add to the overall aerosol absorption. These include primary organics from biomass and trash burning and secondary organic aerosols including nitrated PAHs and humic-like substances, or HULIS. By using surface diffuse reflection spectroscopy we have also obtained spectra in the infrared that indicate significant IR absorption in the atmospheric window-region. These data will be presented and compared to spectra of model compounds that allow for evaluation of the potential importance of these species in adding strength to the direct radiative forcing of atmospheric aerosols. This work was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64327 as part of the Atmospheric Science Program.

  3. Determination of absorbed dose in reactors

    International Nuclear Information System (INIS)

    There are many areas in the use and operation of research reactors where the absorbed dose and the neutron fluence are required. These include work on the determination of the radiolytic stability of the coolant and moderator and on the determination of radiation damage in structural materials, and reactor experiments involving radiation chemistry and radiation biology. The requirements range from rough estimates of the total heating due to radiation to precise values specifying the contributions of gamma rays, thermal neutrons and fast neutrons. To meet all these requirements a variety of experimental measurements and calculations as well as a knowledge of reactor radiations and their interactions is necessary. Realizing the complexity and importance of this field, its development at widely separated laboratories and the need to bring the experts in this work together, the IAEA has convened three panel meetings. These were: 'In-pile dosimetry', held in July 1964 (published by the Agency as Technical Reports Series No. 46); 'Neutron fluence measurements', in October 1965; and 'In-pile dosimetry', in November 1966. The recommendations of these three panels led the Agency to form a Working Group on Reactor Radiation Measurements and to commission the writing of this book and a book on Neutron Fluence Measurements. The latter was published in May 1970 (Technical Reports Series No. 107). The material on neutron fluence and absorbed dose measurements is widely scattered in reports and reviews. It was considered that it was time for all relevant information to be evaluated and put together in the form of a practical guide that would be valuable both to experienced workers and beginners in the field

  4. Diskrete-cotinuum methods application for rotating machine-absorber interaction analysis

    OpenAIRE

    Z. Stocko; B. Diveyev; V. Topilnyckyj

    2007-01-01

    Purpose: The main aim of this paper is improved dynamic vibration absorbers design with taking into accountcomplex rotating machines dynamic.Design/methodology/approach: The numerical schemes row is considered for the complex vibroexitatedconstructions. Methods of decomposition and the numerical schemes synthesis are considered on the basis ofnew methods of modal synthesis.Findings: Development of mathematical models of complicated machines and buildings in view of theirinteraction with syste...

  5. Global Navigation Satellite System Multipath Mitigation Using a Wave-Absorbing Shield.

    Science.gov (United States)

    Yang, Haiyan; Yang, Xuhai; Sun, Baoqi; Su, Hang

    2016-08-22

    Code multipath is an unmanaged error source in precise global navigation satellite system (GNSS) observation processing that limits GNSS positioning accuracy. A new technique for mitigating multipath by installing a wave-absorbing shield is presented in this paper. The wave-absorbing shield was designed according to a GNSS requirement of received signals and collected measurements to achieve good performance. The wave-absorbing shield was installed at the KUN1 and SHA1 sites of the international GNSS Monitoring and Assessment System (iGMAS). Code and carrier phase measurements of three constellations were collected on the dates of the respective installations plus and minus one week. Experiments were performed in which the multipath of the measurements obtained at different elevations was mitigated to different extents after applying the wave-absorbing shield. The results of an analysis and comparison show that the multipath was mitigated by approximately 17%-36% on all available frequencies of BeiDou Navigation Satellite System (BDS), Global Positioning System (GPS), and Global Navigation Satellite System (GLONASS) satellites. The three-dimensional accuracies of BDS, GPS, and GLONASS single-point positioning (SPP) were, respectively, improved by 1.07, 0.63 and 0.49 m for the KUN1 site, and by 0.72, 0.79 and 0.73 m for the SHA1 site. Results indicate that the multipath of the original observations was mitigated by using the wave-absorbing shield.

  6. The Effects Of Antiretroviral Drugs On The Absorbance Characteristics Of Blood Components

    Directory of Open Access Journals (Sweden)

    O. I. Ani

    2015-08-01

    Full Text Available Abstract The effects of antiretroviral drugs on the absorbance characteristics of blood components have been studied. The methodology involved the serial dilution of the five different antiretroviral drugs two HAARTFDC and three single drugs and the subsequent incubation with the blood samples collected from ten blood samples of HIV negative persons for the absorbance measurement using a digital Ultraviolet Visible MetaSpecAE1405031Pro Spectrophotometer. Reflectance Dielectric constant etc were derived from the absorbance data. For these drugs to be effective as HIV blockers they should be able to coat the surfaces of the lymphocytes. The question therefore arises as to what extent these drugs are able to coat the surfaces of the blood cells This was established using the extent of absorbance change. Models for coating effectiveness were formulated. The coating effectiveness was therefore calculated from peak absorbance values. Red blood cells were shown not to give reliable results. The results obtained however establish the fact that some coating of the drug had really occurred on the surfaces of the lymphocytes. The drug films were determined for lymphocytes and used to explain some observed clinical findings. The use of the findings of this work in drug design may be expected to yield good results.

  7. Absorber Tube with Internal Pin-Fins for Solar Parabolic Trough Collector

    Directory of Open Access Journals (Sweden)

    Kalidasan B.

    2016-01-01

    Full Text Available Solar parabolic trough collectors exploit solar energy for power generation in solar thermal power stations. These systems require long arrays of reflective troughs with absorber tube running along the axis of parabolic dish. A successful attempt to reduce the length of arrays was accomplished by experimentally analysing the modifications done in absorber tube. Two out of three tubes were fabricated and they were employed to obtain the performance parameters through experimentation conducted at VIT University, Vellore, India. Distilled water was used as the working fluid. Maximum efficiency of 39.12% was obtained at 451.6 W/m2 of direct normal irradiance (DNI for absorber tube with internal pin-fins and without glass tube (AFWGt compared to 8.15% obtained at same value of DNI and other conditions for simple absorber tube without glass cover (AWGt. Cylindrical parabolic trough available at the university was utilized, providing the basis for designing and fabrication of the tubes. Plots for varying mass flow rate at interval of 10 minutes were made against instantaneous thermal efficiency and heat utilized, for direct normal irradiance vs. temperature difference across the tubes and instantaneous thermal efficiency. Through the experimentation conducted, better performance was procured compared to earlier works. Thus, the proposal infers that absorber tube with internal fins has good scope for its application, both domestically as well as industrially. It also calls for further research and development of proposed techniques so as to achieve better performance curves.

  8. Global Navigation Satellite System Multipath Mitigation Using a Wave-Absorbing Shield

    Directory of Open Access Journals (Sweden)

    Haiyan Yang

    2016-08-01

    Full Text Available Code multipath is an unmanaged error source in precise global navigation satellite system (GNSS observation processing that limits GNSS positioning accuracy. A new technique for mitigating multipath by installing a wave-absorbing shield is presented in this paper. The wave-absorbing shield was designed according to a GNSS requirement of received signals and collected measurements to achieve good performance. The wave-absorbing shield was installed at the KUN1 and SHA1 sites of the international GNSS Monitoring and Assessment System (iGMAS. Code and carrier phase measurements of three constellations were collected on the dates of the respective installations plus and minus one week. Experiments were performed in which the multipath of the measurements obtained at different elevations was mitigated to different extents after applying the wave-absorbing shield. The results of an analysis and comparison show that the multipath was mitigated by approximately 17%–36% on all available frequencies of BeiDou Navigation Satellite System (BDS, Global Positioning System (GPS, and Global Navigation Satellite System (GLONASS satellites. The three-dimensional accuracies of BDS, GPS, and GLONASS single-point positioning (SPP were, respectively, improved by 1.07, 0.63 and 0.49 m for the KUN1 site, and by 0.72, 0.79 and 0.73 m for the SHA1 site. Results indicate that the multipath of the original observations was mitigated by using the wave-absorbing shield.

  9. Global Navigation Satellite System Multipath Mitigation Using a Wave-Absorbing Shield.

    Science.gov (United States)

    Yang, Haiyan; Yang, Xuhai; Sun, Baoqi; Su, Hang

    2016-01-01

    Code multipath is an unmanaged error source in precise global navigation satellite system (GNSS) observation processing that limits GNSS positioning accuracy. A new technique for mitigating multipath by installing a wave-absorbing shield is presented in this paper. The wave-absorbing shield was designed according to a GNSS requirement of received signals and collected measurements to achieve good performance. The wave-absorbing shield was installed at the KUN1 and SHA1 sites of the international GNSS Monitoring and Assessment System (iGMAS). Code and carrier phase measurements of three constellations were collected on the dates of the respective installations plus and minus one week. Experiments were performed in which the multipath of the measurements obtained at different elevations was mitigated to different extents after applying the wave-absorbing shield. The results of an analysis and comparison show that the multipath was mitigated by approximately 17%-36% on all available frequencies of BeiDou Navigation Satellite System (BDS), Global Positioning System (GPS), and Global Navigation Satellite System (GLONASS) satellites. The three-dimensional accuracies of BDS, GPS, and GLONASS single-point positioning (SPP) were, respectively, improved by 1.07, 0.63 and 0.49 m for the KUN1 site, and by 0.72, 0.79 and 0.73 m for the SHA1 site. Results indicate that the multipath of the original observations was mitigated by using the wave-absorbing shield. PMID:27556466

  10. Application of Tuned Vibration Absorbers in Fluid Mounts

    Directory of Open Access Journals (Sweden)

    Mohammad Jalali Mashayekhi

    2009-01-01

    Full Text Available The need to reduce the fuel consumption of vehicles leads to having lighter chassis’ with lighter engines yet maintaining engine power. These new design requirements are in contrast with the vibration isolation requirements. To keep the vehicles light yet provide good cabin noise and vibration isolation, requires a new vibration isolation technology. Fluid mounts have been used in the aerospace and the automotive industry to provide cabin noise and vibration reduction for years. With the use of passive fluid mounts, the highest cabin noise and vibration reduction is achieved at a frequency called “Notch Frequency”. But typical passive fluid mounts have only one notch frequency. So the best cabin noise and vibration reduction is only achievable at one frequency. In this paper, a new fluid mount design in combination with a tuned vibration absorber is proposed. Bond graph modelling technique is used to model the new fluid mount design. The physical model and simulation results are presented. The effect of the natural frequency of the TVA on the dynamic stiffness of the fluid mount is studied.

  11. The Effect of Pitch, Burnup, and Absorbers on a TRIGA Spent-Fuel Pool Criticality Safety

    International Nuclear Information System (INIS)

    It has been shown that supercriticality might occur for some postulated accident conditions at the TRIGA spent-fuel pool. However, the effect of burnup was not accounted for in previous studies. In this work, the combined effect of fuel burnup, pitch among fuel elements, and number of uniformly mixed absorber rods for a square arrangement on the spent-fuel pool keff is investigated.The Monte Carlo computer code MCNP4B with the ENDF-B/VI library and detailed three dimensional geometry was used. The WIMS-D code was used to model the isotopic composition of the standard TRIGA and FLIP fuel for 5, 10, 20 and 30% burnup level and 2- and 4-yr cooling time.The results show that out of the three studied effects, pitch from contact (3.75 cm) up to rack design pitch (8 cm), number of absorbers from zero to eight, and burnup up to 30%, the pitch has the greatest influence on the multiplication factor keff. In the interval in which the pitch was changed, keff decreased for up to ∼0.4 for standard and ∼0.3 for FLIP fuel. The number of absorber rods affects the multiplication factor much less. This effect is bigger for more compact arrangements, e.g., for contact of standard fuel elements with eight absorber rods among them, keff values are smaller for ∼0.2 (∼0.1 for FLIP) than for arrangements without absorber rods almost regardless of the burnup. The effect of burnup is the smallest. For standard fuel elements, it is ∼0.1 for almost all pitches and numbers of absorbers. For FLIP fuel, it is smaller for a factor of 3, but increases with the burnup for compact arrangements. Cooling time of fuel has just a minor effect on the keff of spent-fuel pool and can be neglected in spent-fuel pool design

  12. Large area bismuth absorbers for X-ray microcalorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Vaillancourt, J.E. E-mail: vaillancourt@wisp.physics.wisc.edu; Allen, C.A.; Brekosky, R.; Dosaj, A.; Galeazzi, M.; Kelley, R.; Liu, D.; McCammon, D.; Porter, F.S.; Rocks, L.E.; Sanders, W.T.; Stahle, C.K

    2004-03-11

    Two challenges facing the use of large area (2 mmx2 mm) bismuth absorbers for microcalorimetry are uncertainties in the heat capacity of bismuth and the effects of lateral heat conduction and position dependence due to the absorber's large size. We have measured the heat capacity of three Bi samples to be 0.3-0.6 J K{sup -1} m{sup -3} at 100 mK. These absorbers also exhibit response variations as phonons created by an X-ray event at an absorber edge will take longer to propagate to the thermometer attachment point than those at the absorber center. This effect may degrade the detector's energy resolution if the propagation time is not very short compared to the thermometer time constant. We show that the response of the largest absorber varies by {approx}4% across its area.

  13. Specific absorbed fractions and S-factors for calculating absorbed dose to embryo and fetus

    International Nuclear Information System (INIS)

    The variation of specific absorbed fractions from maternal tissues to embryo/fetus is investigated for four different target masses and geometries. S-factors are calculated for selected radionuclides assumed to be distributed uniformly in fetal tissues represented by spheres from 1 mg to 4 kg. As an example, the dose to fetal tissues for iodine-131 and iron-59 is estimated based on human biokinetic data for various stages of pregnancy. 24 references, 4 tables

  14. Experimental investigation of damping force of twin tube shock absorber

    OpenAIRE

    Sandip K. Kadu; Milind S. Mhaske

    2014-01-01

    A shock absorber is a mechanical device to damp shock impulse and convert kinetic energy into thermal energy. The damping effect of shock absorber depends on damping force and damping force is affected by various process parameters. In this analysis three process parameters damping diameter(A), number of holes(B) and suspension velocity(C) were considered and their effect on damping force of shock absorber was studied and accordingly suitable orthogonal array was selected by t...

  15. Absorbency properties of nonwoven hygenic peds in Turkish markets

    OpenAIRE

    Ağırgan, Mehtap

    2005-01-01

    ABSTRACT The absorbation features (degrees) of the most used hygenic pads in Turkish market have been studied. The baby diapers, hygienic pads and adult incontienents pads used in this project have been choosen as the one whichare most sold on the base of the sale amounts in Turkey. Besides the production analysis, width/thickness analysis liquid absorbation and several absorbency tests have been carried out and the final results have been shown in the form of graphics. The pads exami...

  16. Microscopic analysis of saturable absorbers: Semiconductor saturable absorber mirrors versus graphene

    Energy Technology Data Exchange (ETDEWEB)

    Hader, J.; Moloney, J. V. [Nonlinear Control Strategies, Inc., 3542 N. Geronimo Ave., Tucson, Arizona 85705 (United States); College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Yang, H.-J.; Scheller, M. [College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Koch, S. W. [Department of Physics and Materials Sciences Center, Philipps Universität Marburg, Renthof 5, 35032 Marburg (Germany)

    2016-02-07

    Fully microscopic many-body calculations are used to study the influence of strong sub-picosecond pulses on the carrier distributions and corresponding optical response in saturable absorbers used for mode-locking—semiconductor (quantum well) saturable absorber mirrors (SESAMs) and single layer graphene based saturable absorber mirrors (GSAMs). Unlike in GSAMs, the saturation fluence and recovery time in SESAMs show a strong spectral dependence. While the saturation fluence in the SESAM is minimal at the excitonic bandgap, the optimal recovery time and least pulse distortion due to group delay dispersion are found for excitation higher in the first subband. For excitation near the SESAM bandgap, the saturation fluence is about one tenth of that in the GSAM. At energies above the bandgap, the fluences in both systems become similar. A strong dependence of the saturation fluence on the pulse width in both systems is caused by carrier relaxation during the pulse. The recovery time in graphene is found to be about two to four times faster than that in the SESAMs. The occurrence of negative differential transmission in graphene is shown to be caused by dopant related carriers. In SESAMs, a negative differential transmission is found when exciting below the excitonic resonance where excitation induced dephasing leads to an enhancement of the absorption. Comparisons of the simulation data to the experiment show a very good quantitative agreement.

  17. Microscopic analysis of saturable absorbers: Semiconductor saturable absorber mirrors versus graphene

    Science.gov (United States)

    Hader, J.; Yang, H.-J.; Scheller, M.; Moloney, J. V.; Koch, S. W.

    2016-02-01

    Fully microscopic many-body calculations are used to study the influence of strong sub-picosecond pulses on the carrier distributions and corresponding optical response in saturable absorbers used for mode-locking—semiconductor (quantum well) saturable absorber mirrors (SESAMs) and single layer graphene based saturable absorber mirrors (GSAMs). Unlike in GSAMs, the saturation fluence and recovery time in SESAMs show a strong spectral dependence. While the saturation fluence in the SESAM is minimal at the excitonic bandgap, the optimal recovery time and least pulse distortion due to group delay dispersion are found for excitation higher in the first subband. For excitation near the SESAM bandgap, the saturation fluence is about one tenth of that in the GSAM. At energies above the bandgap, the fluences in both systems become similar. A strong dependence of the saturation fluence on the pulse width in both systems is caused by carrier relaxation during the pulse. The recovery time in graphene is found to be about two to four times faster than that in the SESAMs. The occurrence of negative differential transmission in graphene is shown to be caused by dopant related carriers. In SESAMs, a negative differential transmission is found when exciting below the excitonic resonance where excitation induced dephasing leads to an enhancement of the absorption. Comparisons of the simulation data to the experiment show a very good quantitative agreement.

  18. Dual band metamaterial perfect absorber based on artificial dielectric "molecules".

    Science.gov (United States)

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-01-01

    Dual band metamaterial perfect absorbers with two absorption bands are highly desirable because of their potential application areas such as detectors, transceiver system, and spectroscopic imagers. However, most of these dual band metamaterial absorbers proposed were based on resonances of metal patterns. Here, we numerically and experimentally demonstrate a dual band metamaterial perfect absorber composed of artificial dielectric "molecules" with high symmetry. The artificial dielectric "molecule" consists of four "atoms" of two different sizes corresponding to two absorption bands with near unity absorptivity. Numerical and experimental absorptivity verify that the dual-band metamaterial absorber is polarization insensitive and can operate in wide-angle incidence. PMID:27406699

  19. Simulated mixed absorbers and effective atomic numbers for attenuation

    Indian Academy of Sciences (India)

    K Karunakaran Nair; N Ramachandran; K K Abdullah; K M Varier

    2006-09-01

    The total -ray interaction crosss-sections on mixed absorbers were determined at 662 keV with a view to study the effective atomic numbers for -ray absorption under narrow beam good geometry set-up. The measurements were taken for the combination of metallic absorbers like aluminium, copper, lead and mercury and also for the simulated absorbers by rotating the targets. ORTEC HPGe and NaI(Tl) detectors were used for detection of -rays.The experimental results compare favourably with theoretical values derived from XCOM package and suggest the usefulness of the concept of effective atomic numbers and the utility of the rotating absorbers technique.

  20. A Study of the Anechoic Performance of Rice Husk-Based, Geometrically Tapered, Hollow Absorbers

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem Iqbal

    2014-01-01

    Full Text Available Although solid, geometrically tapered microwave absorbers are preferred due to their better performance, they are bulky and must have a thickness on the order of λ or more. The goal of this study was to design lightweight absorbers that can reduce the electromagnetic reflections to less than −10 dB. We used a very simple approach; two waste materials, that is, rice husks and tire dust in powder form, were used to fabricate two independent samples. We measured and used their dielectric properties to determine and compare the propagation constants and quarter-wave thickness. The quarter-wave thickness for the tire dust was 3 mm less than that of the rice husk material, but we preferred the rice-husk material. This preference was based on the fact that our goal was to achieve minimum backward reflections, and the rice-husk material, with its low dielectric constant, high loss factor, large attenuation per unit length, and ease of fabrication, provided a better opportunity to achieve that goal. The performance of the absorbers was found to be better (lower than −20 dB, and comparison of the results proved that the hollow design with 58% less weight was a good alternative to the use of solid absorbers.

  1. Tremor Reduction at the Palm of a Parkinson’s Patient Using Dynamic Vibration Absorber

    Directory of Open Access Journals (Sweden)

    Sarah Gebai

    2016-07-01

    Full Text Available Parkinson’s patients suffer from severe tremor due to an abnormality in their central oscillator. Medications used to decrease involuntary antagonistic muscles contraction can threaten their life. However, mechanical vibration absorbers can be used as an alternative treatment. The objective of this study is to provide a dynamic modeling of the human hand that describes the biodynamic response of Parkinson’s patients and to design an effective tuned vibration absorber able to suppress their pathological tremor. The hand is modeled as a three degrees-of-freedom (DOF system describing the flexion motion at the proximal joints on the horizontal plane. Resting tremor is modeled as dual harmonic excitation due to shoulder and elbow muscle activation operating at resonance frequencies. The performance of the single dynamic vibration absorber (DVA is studied when attached to the forearm and compared with the dual DVA tuned at both excitation frequencies. Equations of motion are derived and solved using the complex transfer function of the non-Lagrangian system. The absorber’s systems are designed as a stainless steel alloy cantilevered beam with an attached copper mass. The dual DVA was the most efficient absorber which reduces 98.3%–99.5%, 97.0%–97.3% and 97.4%–97.5% of the Parkinson’s tremor amplitude at the shoulder, elbow and wrist joint.

  2. Liquid effluent treatment using inorganic absorbers

    International Nuclear Information System (INIS)

    The use of inorganic absorbers for the removal of a number of specified elements from aqueous waste streams has been studied. A worldwide review of the literature on the subject has been carried out and a number of processes identified at various stages of development, from the experimental to the fully developed industrial scale. The processes have been reduced to two major types; precipitation techniques, both seeded and unseeded and ion exchange. The chemical aspects of the use of such materials have been examined with regard to the processes and the nuclides in question. A comparative costing exercise has been carried out on typical processes examining plant, process and disposal costs, and has shown that one of the over-riding factors in deciding the economics of precipitation processes is the subsequent dewatering stage; because of the relatively low amounts of waste produced ion-exchange processes involving the use of columns have been found to have the lowest overall costs. Finally, a number of gaps in the present state of knowledge in this field have been identified and a number of recommendations are made. (author)

  3. On the Optimization of Point Absorber Buoys

    Directory of Open Access Journals (Sweden)

    Linnea Sjökvist

    2014-05-01

    Full Text Available A point absorbing wave energy converter (WEC is a complicated dynamical system. A semi-submerged buoy drives a power take-off device (PTO, which acts as a linear or non-linear damper of the WEC system. The buoy motion depends on the buoy geometry and dimensions, the mass of the moving parts of the system and on the damping force from the generator. The electromagnetic damping in the generator depends on both the generator specifications, the connected load and the buoy velocity. In this paper a velocity ratio has been used to study how the geometric parameters buoy draft and radius, assuming constant generator damping coefficient, affects the motion and the energy absorption of a WEC. It have been concluded that an optimal buoy geometry can be identified for a specific generator damping. The simulated WEC performance have been compared with experimental values from two WECs with similar generators but different buoys. Conclusions have been drawn about their behaviour.

  4. Tuned dynamic absorber for split Stirling cryogenic cooler

    Science.gov (United States)

    Veprik, Alexander; Tuito, Avi

    2016-05-01

    Tuned dynamic absorbers (TDA) find use, in particular, for attenuating tonal vibration export produced by the moving components of cryogenic cooler. For the best performance, the resonant frequency of TDA needs to be essentially equal the driving frequency; accurate frequency match is favorably achieved by minimizing the cooler induced vibration by adjusting the driving frequency. For the best performance, the design of TDA needs to ensure minimum damping ratio; this is achievable by using planar flexural bearings having zero friction anchoring features. Accurate evaluation of effective mass, damping ratio and frequency is needed for TDA characterization during development and manufacturing. This data may be also important for the dynamic modelling. The authors are exploring the express method requiring no physical access to the proof mass of TDA. In this approach, the TDA is mounted upon the low frequency vibration mounted rod, the dynamic properties of TDA are then evaluated using the frequency response function - local accelerance - captured on the above rod using accelerometer, instrumented modal hammer and dual-channel signal analyzer. The authors are presenting the TDA design, outcomes of full-scale experimentation on dynamic properties evaluation and attained performance.

  5. 76 FR 60017 - Notice of Intent To Prepare a Supplemental Environmental Impact Statement (SEIS) for the...

    Science.gov (United States)

    2011-09-28

    ... burnable absorber rods. The rods are inserted in the reactor fuel assemblies to absorb excess neutrons... Statement (SEIS) for the Production of Tritium in a Commercial Light Water Reactor AGENCY: National Nuclear... Tennessee Valley Authority (TVA) reactors using tritium-producing burnable absorber rods (TPBARs). In...

  6. An Omnidirectional Polarization Detector Based on a Metamaterial Absorber

    Science.gov (United States)

    Zhang, Binzhen; Zhang, Yong; Duan, Junping; Zhang, Wendong; Wang, Wanjun

    2016-01-01

    The theory, design, simulation, fabrication, and performance of an omnidirectional polarization detector (PD) with two resonances located in the X and Ka ranges based on a metamaterial absorber (MMA) are presented in this paper. The sandwich structure of PD is composed of 0.1 μm periodic “I” shaped patches on the metasurface, a dielectric of 200 μm FR-4 on the interlayer, and a 0.3 μm copper film on the substrate. PD absorptivity is first used to reflect and describe the polarization of the incident wave. The numerical results, derived from the standard full wave finite integration technology (FIT) of CST 2015, indicates that the designed PD shows polarization sensitivity at all incidence angles. The effects on absorptivity produced by the incidence angles, polarization angles, and materials are investigated. The amplitude of absorptivity change caused by polarization reaches 99.802%. A laser ablation process is adopted to prepare the designed PD on a FR-4 board coated with copper on the double plane with a thickness that was 1/93 and 1/48 of wavelength at a resonance frequency of 16.055 GHz and 30.9 GHz, respectively. The sample test results verify the designed PD excellent detectability on the polarization of the incident waves. The proposed PD, which greatly enriches the applications of metamaterials in bolometers, thermal images, stealth materials, microstructure measurements, and electromagnetic devices, is easy to mass produce and market because of its strong detectability, ultrathin thickness, effective cost, and convenient process. PMID:27455280

  7. An Omnidirectional Polarization Detector Based on a Metamaterial Absorber.

    Science.gov (United States)

    Zhang, Binzhen; Zhang, Yong; Duan, Junping; Zhang, Wendong; Wang, Wanjun

    2016-01-01

    The theory, design, simulation, fabrication, and performance of an omnidirectional polarization detector (PD) with two resonances located in the X and Ka ranges based on a metamaterial absorber (MMA) are presented in this paper. The sandwich structure of PD is composed of 0.1 μm periodic "I" shaped patches on the metasurface, a dielectric of 200 μm FR-4 on the interlayer, and a 0.3 μm copper film on the substrate. PD absorptivity is first used to reflect and describe the polarization of the incident wave. The numerical results, derived from the standard full wave finite integration technology (FIT) of CST 2015, indicates that the designed PD shows polarization sensitivity at all incidence angles. The effects on absorptivity produced by the incidence angles, polarization angles, and materials are investigated. The amplitude of absorptivity change caused by polarization reaches 99.802%. A laser ablation process is adopted to prepare the designed PD on a FR-4 board coated with copper on the double plane with a thickness that was 1/93 and 1/48 of wavelength at a resonance frequency of 16.055 GHz and 30.9 GHz, respectively. The sample test results verify the designed PD excellent detectability on the polarization of the incident waves. The proposed PD, which greatly enriches the applications of metamaterials in bolometers, thermal images, stealth materials, microstructure measurements, and electromagnetic devices, is easy to mass produce and market because of its strong detectability, ultrathin thickness, effective cost, and convenient process. PMID:27455280

  8. An Omnidirectional Polarization Detector Based on a Metamaterial Absorber

    Directory of Open Access Journals (Sweden)

    Binzhen Zhang

    2016-07-01

    Full Text Available The theory, design, simulation, fabrication, and performance of an omnidirectional polarization detector (PD with two resonances located in the X and Ka ranges based on a metamaterial absorber (MMA are presented in this paper. The sandwich structure of PD is composed of 0.1 μm periodic “I” shaped patches on the metasurface, a dielectric of 200 μm FR-4 on the interlayer, and a 0.3 μm copper film on the substrate. PD absorptivity is first used to reflect and describe the polarization of the incident wave. The numerical results, derived from the standard full wave finite integration technology (FIT of CST 2015, indicates that the designed PD shows polarization sensitivity at all incidence angles. The effects on absorptivity produced by the incidence angles, polarization angles, and materials are investigated. The amplitude of absorptivity change caused by polarization reaches 99.802%. A laser ablation process is adopted to prepare the designed PD on a FR-4 board coated with copper on the double plane with a thickness that was 1/93 and 1/48 of wavelength at a resonance frequency of 16.055 GHz and 30.9 GHz, respectively. The sample test results verify the designed PD excellent detectability on the polarization of the incident waves. The proposed PD, which greatly enriches the applications of metamaterials in bolometers, thermal images, stealth materials, microstructure measurements, and electromagnetic devices, is easy to mass produce and market because of its strong detectability, ultrathin thickness, effective cost, and convenient process.

  9. Studying low-redshift universe through observation of Damped Lyman-alpha quasar absorbers

    Science.gov (United States)

    Gharanfoli, Soheila

    2009-06-01

    In recent years, an extremely successful method to study galaxy formation and evolution, has been provided by observation of quasar absorbers. Quasar absorbers are systems intercepting our line-of-sight to a given quasar and thus produce a feature in the quasar spectrum, the so-called absorption lines. The Damped Lyman-a (DLA) and sub-Damped Lyman-a (sub-DLA) absorption features in quasar spectra are believed to be produced by intervening galaxies. However, the connection of quasar absorbers to galaxies is not well-understood, since attempts to image the absorbing galaxies have often failed. DLAs and sub-DLAs were originally thought to be the precursors of present day disk galaxies, but there is evidence that they may be dominated by gas-rich, proto-dwarf galaxies representing the basic building blocks of hierarchical growth of structure. While most DLAs appear to be metal-poor, a population of metal-rich absorbers, mostly sub-DLAs, has been discovered in recent spectroscopic studies. It is of great interest to image these metal-rich absorbers, especially with high spatial resolution, to understand the connection between the stellar and interstellar content of the underlying galaxies. This dissertation consists of several projects designed to further our understanding of galaxies and galactic structures associated with intervening quasar absorption lines. Two projects were completed that involved the imaging of 13 DLA/sub-DLA galaxies at z DLA/sub-DLA galaxies was performed using the 10-m Keck telescope with LRIS spectrograph, and 8-m Gemini- North telescope with the GMOS spectrograph. Several emission lines (e.g., Ha, Hb, [N II], [O II], [O III]) were detected and analyzed, which revealed the redshift, metallicity, dust extinction, and star formation rate of the candidate galaxies.

  10. A mechanical analysis of woodpecker drumming and its application to shock-absorbing systems

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sang-Hee [Molecular Cell Biomechanics Laboratory, Department of Bioengineering, University of California, Berkeley, CA 94720 (United States); Park, Sungmin, E-mail: sang-hee.yoon@wyss.harvard.edu [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States)

    2011-03-15

    A woodpecker is known to drum the hard woody surface of a tree at a rate of 18 to 22 times per second with a deceleration of 1200 g, yet with no sign of blackout or brain damage. As a model in nature, a woodpecker is studied to find clues to develop a shock-absorbing system for micromachined devices. Its advanced shock-absorbing mechanism, which cannot be explained merely by allometric scaling, is analyzed in terms of endoskeletal structures. In this analysis, the head structures (beak, hyoid, spongy bone, and skull bone with cerebrospinal fluid) of the golden-fronted woodpecker, Melanerpes aurifrons, are explored with x-ray computed tomography images, and their shock-absorbing mechanism is analyzed with a mechanical vibration model and an empirical method. Based on these analyses, a new shock-absorbing system is designed to protect commercial micromachined devices from unwanted high-g and high-frequency mechanical excitations. The new shock-absorbing system consists of close-packed microglasses within two metal enclosures and a viscoelastic layer fastened by steel bolts, which are biologically inspired from a spongy bone contained within a skull bone encompassed with the hyoid of a woodpecker. In the experimental characterizations using a 60 mm smoothbore air-gun, this bio-inspired shock-absorbing system shows a failure rate of 0.7% for the commercial micromachined devices at 60 000 g, whereas a conventional hard-resin method yields a failure rate of 26.4%, thus verifying remarkable improvement in the g-force tolerance of the commercial micromachined devices.

  11. A Titanium Nitride Absorber for Controlling Optical Crosstalk in Horn-Coupled Aluminum LEKID Arrays for Millimeter Wavelengths

    Science.gov (United States)

    McCarrick, H.; Flanigan, D.; Jones, G.; Johnson, B. R.; Ade, P. A. R.; Bradford, K.; Bryan, S.; Cantor, R.; Che, G.; Day, P.; Doyle, S.; Leduc, H.; Limon, M.; Mauskopf, P.; Miller, A.; Mroczkowski, T.; Tucker, C.; Zmuidzinas, J.

    2016-07-01

    We discuss the design and measured performance of a titanium nitride (TiN) mesh absorber we are developing for controlling optical crosstalk in horn-coupled lumped-element kinetic inductance detector (LEKID) arrays for millimeter wavelengths. This absorber was added to the fused silica anti-reflection coating attached to previously characterized, 20-element prototype arrays of LEKIDs fabricated from thin-film aluminum on silicon substrates. To test the TiN crosstalk absorber, we compared the measured response and noise properties of LEKID arrays with and without the TiN mesh. For this test, the LEKIDs were illuminated with an adjustable, incoherent electronic millimeter-wave source. Our measurements show that the optical crosstalk in the LEKID array with the TiN absorber is reduced by 66 % on average, so the approach is effective and a viable candidate for future kilo-pixel arrays.

  12. A Titanium Nitride Absorber for Controlling Optical Crosstalk in Horn-Coupled Aluminum LEKID Arrays for Millimeter Wavelengths

    CERN Document Server

    McCarrick, H; Jones, G; Johnson, B R; Ade, P A R; Bradford, K; Bryan, S; Cantor, R; Che, G; Day, P; Doyle, S; Leduc, H; Limon, M; Mauskopf, P; Miller, A; Mroczkowski, T; Tucker, C; Zmuidzinas, J

    2015-01-01

    We discuss the design and measured performance of a titanium nitride (TiN) mesh absorber we are developing for controlling optical crosstalk in horn-coupled lumped-element kinetic inductance detector arrays for millimeter-wavelengths. This absorber was added to the fused silica anti-reflection coating attached to previously-characterized, 20-element prototype arrays of LEKIDs fabricated from thin-film aluminum on silicon substrates. To test the TiN crosstalk absorber, we compared the measured response and noise properties of LEKID arrays with and without the TiN mesh. For this test, the LEKIDs were illuminated with an adjustable, incoherent electronic millimeter-wave source. Our measurements show that the optical crosstalk in the LEKID array with the TiN absorber is reduced by 66\\% on average, so the approach is effective and a viable candidate for future kilo-pixel arrays.

  13. Experimental investigation of a nanofluid absorber employed in a low-profile, concentrated solar thermal collector

    Science.gov (United States)

    Li, Qiyuan; Zheng, Cheng; Mesgari, Sara; Hewakuruppu, Yasitha L.; Hjerrild, Natasha; Crisostomo, Felipe; Morrison, Karl; Woffenden, Albert; Rosengarten, Gary; Scott, Jason A.; Taylor, Robert A.

    2015-12-01

    Recent studies [1-3] have demonstrated that nanotechnology, in the form of nanoparticles suspended in water and organic liquids, can be employed to enhance solar collection via direct volumetric absorbers. However, current nanofluid solar collector experimental studies are either relevant to low-temperature flat plate solar collectors (100 °C) indoor laboratory-scale concentrating solar collectors [1, 5]. Moreover, many of these studies involve in thermal properties of nanofluid (such as thermal conductivity) enhancement in solar collectors by using conventional selective coated steel/copper tube receivers [6], and no full-scale concentrating collector has been tested at outdoor condition by employing nanofluid absorber [2, 6]. Thus, there is a need of experimental researches to evaluate the exact performance of full-scale concentrating solar collector by employing nanofluids absorber at outdoor condition. As reported previously [7-9], a low profile (designed and analysed which can potentially supply thermal energy in the 100-250 °C range (an application currently met by gas and electricity). The present study focuses on the design and experimental investigation of a nanofluid absorber employed in this newly designed collector. The nanofluid absorber consists of glass tubes used to contain chemically functionalized multi-walled carbon nanotubes (MWCNTs) dispersed in DI water. MWCNTs (average diameter of 6-13 nm and average length of 2.5-20 μm) were functionalized by potassium persulfate as an oxidant. The nanofluids were prepared with a MCWNT concentration of 50 +/- 0.1 mg/L to form a balance between solar absorption depth and viscosity (e.g. pumping power). Moreover, experimentally comparison of the thermal efficiency between two receivers (a black chrome-coated copper tube versus a MWCNT nanofluid contained within a glass tubetube) is investigated. Thermal experimentation reveals that while the collector efficiency reduced from 73% to 54% when operating

  14. Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber

    Science.gov (United States)

    Xu, He-Xiu; Wang, Guang-Ming; Qi, Mei-Qing; Liang, Jian-Gang; Gong, Jian-Qiang; Xu, Zhi-Ming

    2012-11-01

    We report on the design, fabrication, and measurement of a triple-band absorber enhanced from a planar two-dimensional artificial metamaterial transmission line (TL) concept. Unlike previous multiband absorbers, this implementation incorporates fractal geometry into the artificial TL framework. As a consequence of the formed large LC values, the utilized element is compact in size, which approaches λ0/15 at the lowest fundamental resonant frequency. For independent control and design, a theoretical characterization based on a circuit model analysis (TL theory) is performed and a set of design procedures is also derived. Both numerical and experimental results have validated three strong absorption peaks across the S, C, and X bands, respectively, which are attributable to a series of self-resonances induced in the specific localized area. The absorber features near-unity absorption for a wide range of incident angles and polarization states and a great degree of design flexibility by manipulating the LC values in a straightforward way.

  15. Why muscle is an efficient shock absorber.

    Directory of Open Access Journals (Sweden)

    Michael A Ferenczi

    Full Text Available Skeletal muscles power body movement by converting free energy of ATP hydrolysis into mechanical work. During the landing phase of running or jumping some activated skeletal muscles are subjected to stretch. Upon stretch they absorb body energy quickly and effectively thus protecting joints and bones from impact damage. This is achieved because during lengthening, skeletal muscle bears higher force and has higher instantaneous stiffness than during isometric contraction, and yet consumes very little ATP. We wish to understand how the actomyosin molecules change their structure and interaction to implement these physiologically useful mechanical and thermodynamical properties. We monitored changes in the low angle x-ray diffraction pattern of rabbit skeletal muscle fibers during ramp stretch compared to those during isometric contraction at physiological temperature using synchrotron radiation. The intensities of the off-meridional layer lines and fine interference structure of the meridional M3 myosin x-ray reflection were resolved. Mechanical and structural data show that upon stretch the fraction of actin-bound myosin heads is higher than during isometric contraction. On the other hand, the intensities of the actin layer lines are lower than during isometric contraction. Taken together, these results suggest that during stretch, a significant fraction of actin-bound heads is bound non-stereo-specifically, i.e. they are disordered azimuthally although stiff axially. As the strong or stereo-specific myosin binding to actin is necessary for actin activation of the myosin ATPase, this finding explains the low metabolic cost of energy absorption by muscle during the landing phase of locomotion.

  16. A blast absorber test: measurement and model results

    NARCIS (Netherlands)

    Eerden, F.J.M. van der; Berg, F. van den; Hof, J. van 't; Arkel, E. van

    2006-01-01

    A blast absorber test was conducted at the Aberdeen Test Centre from 13 to 17 June 2005. The test was set up to determine the absorbing and shielding effect of a gravel pile, of 1.5 meters high and 15 by 15 meters wide, on blasts from large weapons: e.g. armor, artillery or demolition. The blast was

  17. Performance of Closely Spaced Point Absorbers with Constrained Floater Motion

    DEFF Research Database (Denmark)

    De Backer, G.; Vantorre, M.; Beels, C.;

    2009-01-01

    The performance of a wave energy converter array of twelve heaving point absorbers has been assessed numerically in a frequency domain model. Each point absorber is assumed to have its own linear power take-off. The impact of slamming, stroke and force restrictions on the power absorption...

  18. Photochromic And Thermochromic Pigments For Solar Absorbing-Reflecting Coatings

    Science.gov (United States)

    Novinson, Thomas

    1987-11-01

    Both photochromic and thermochromic compounds were synthesized and physical measurements were made to determine coefficients of relectance, absorbance and emission. The most interesting group of thermochromic compounds are related to silver tctraiodomercurate and the most interesting photochromic compounds are substituted benzoindolinopyrospirans. The synthesis and optical reflectance and absorbance properties of other classes of compounds are also reported.

  19. Absorbed fraction of electrons in human respiratory tract

    International Nuclear Information System (INIS)

    Absorbed fractions of electrons, defined as part of electron energy deposited in the target, were calculated for various combinations of source and targets in HRTM. In that propose source code for PENELOPE was developed while respirator tract was modeled according to ICRP66. Absorbed fractions were fitted with the function presented in the paper

  20. Comparison of piezoelectronic networks acting as distributed vibration absorbers

    OpenAIRE

    Maurini, Corrado; Dell'Isola, Francesco; Del Vescovo, Dionisio

    2004-01-01

    International audience Electric vibration absorbers made of distributed piezoelectric devices for the control of beam vibrations are studied. The absorbers are obtained by interconnecting an array of piezoelectric transducers uniformly distributed on a beam with different modular electric networks. Five different topologies are considered and their damping performance is analysed and compared.

  1. Nylon shock absorber prevents injury to parachute jumpers

    Science.gov (United States)

    Mandel, J. A.

    1966-01-01

    Nylon shock absorbers reduce the canopy-opening shock of a parachute to a level that protects the wearer from injury. A shock absorber is mounted on each of the four risers between the shroud lines and the harness. Because of their size and location, they pose no problem in repacking the chute and harness after a jump.

  2. Low fluid level in pulse rod shock absorber

    International Nuclear Information System (INIS)

    On various occasions during pulse mode operation the shim and regulating control rods would drop when the pulse rod was withdrawn. Subsequent investigation traced the problem to the pulse rod shock absorber which was found to be low in hydraulic fluid. The results of the investigation, the corrective action taken, and a method for measuring the shock absorber fluid level are presented. (author)

  3. Desulfurizing absorbent for flue gas and its absorption mechanism

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new desulfurizing absorbent for flue gas, i.e., anorganic physical solvent of DMSO(dimethyl sulfoxide) mixed with arelatively small amount of chemical solvent(Mn2+) was studied.Compared with pure physical solvent of DMSO, the purificationefficiency of the new absorbent has been much improved. And itsabsorption and reaction mechanism are discussed.

  4. Effects of Root-Growing Space on Its Absorbing Characteristics

    Institute of Scientific and Technical Information of China (English)

    SONG Hai-xing; LI Sheng-xiu

    2003-01-01

    Influences of root-growing space of maize upon root physiological characteristics, nutrient uptake and crop yields were studied under conditions with and without supply of water and N. Results showed that limitation of the root-growing space greatly affected root growth, decreased total root-absorbing area and TTC-reductive amounts. However, it obviously increased the root active-absorbing area, specific absorbing area (absorbing area per gram root weight) and specific active-absorbing area (actively absorbing area per gram root weight) in addition to promoting the TTC-reductive intensity. This clearly showed that plants were not passively tolerant to stress, but actively regulated their physiological metabolic processes, and strengthened their absorbing ability to increase water and nutrient uptake so that root injury by the environmental stress could be reduced. Supply of water and N stimulated root growth, increased root-absorbing area and activity, promoted nutrient uptake, and therefore increased crop yield and decreased the detrimental effects resulting from the limitation of roots-growing space.

  5. Absorber-evaporator unit for an absorption-refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Hallatt, R.J.; Rorschach, R.L.

    1965-01-26

    This low temperature absorption-refrigeration system uses an absorber-evaporator. A conduit is connected between the upper portion of the absorber and the lower portion of the evaporator to conduct inert gas from the absorber to the evaporator. A second conduit connects the upper portion of the evaporator to the lower portion of the absorber and a blower in this conduit circulates the inert gas through the closed system. By placing the blower between the evaporator ad the absorber, the pressure in the evaporator is maintained at a minimum so that the working temperature is as low as possible. The medium to be cooled by the refrigerant is circulated through a heat exchanger located within the evaporator, whereby the latent heat of vaporization of the liquid refrigerant is employed to cool the outside medium. (2 claims)

  6. Pool fire upon a balsa-filled shock absorber

    International Nuclear Information System (INIS)

    When performing a safety assessment of a transport flask with balsa-filled shock absorbers it is important to know how the shock absorbers, which may have the outer skin punctured by an impact, will perform in a fire. A 30 minute pool test, which satisfied all the requirements of a thermal test under the IAEA regulations, was carried out upon a small, balsa-filled shock absorber. The outer steel shell was partly cut away exposing the wood to the fire and the air. The balsa wood prevented 90% of the heat from the fire from being transferred through the shock absorber, even though the balsa was only 133 mm thick. The maximum heat flux through to the inside of the shock absorber due to the burning of the balsa wood was relatively low, 2.8 kW/m2, and occurred 2 to 3 hours after the end of the pool fire. (author)

  7. Magnetically rotational reactor for absorbing benzene emissions by ionic liquids

    Institute of Scientific and Technical Information of China (English)

    Yangyang; Jiang; Chen; Guo; Huizhou; Liu

    2007-01-01

    A magnetically rotational reactor (MRR) has been developed and used in absorbing benzene emissions. The MRR has a permanent magnet core and uses magnetic ionic liquid [bmim]FeCl4 as absorbent. Benzene emissions were carried by N2 into the MRR and were absorbed by the magnetic ionic liquid. The rotation of the permanent magnet core provided impetus for the agitation of the magnetic ionic liquid, enhancing mass transfer and making benzene better dispersed in the absorbent. 0.68 g benzene emissions could be absorbed by a gram of [bmim]FeCl4, 0.27 and 0.40 g/ghigher than that by [bmim]PF6 and [bmim]BF4, respectively. The absorption rate increased with increasing rotation rate of the permanent magnet.

  8. Structure and Performance Analysis of Regenerative Electromagnetic Shock Absorber

    Directory of Open Access Journals (Sweden)

    Longxin Zhen

    2010-12-01

    Full Text Available This paper analyzed the structure and principle of a regenerative electromagnetic shock absorber in detail. The innovative shock absorber resembles linear generator in principle and can generate electric power through the relative reciprocating motion between coil assembly and permanent magnet assembly. At the same time, the damping can remove discomfort caused by road roughness. The regenerated electric power can be recovered through battery. Analysis of magnetic flux density of the permanent magnet array of the innovative shock absorber was performed using ANSYS software based on the structure parameters given in the paper,then the performance parameters of the shock absorber was determined . Analysis and calculation results prove the viability of this shock absorber.

  9. Theory of patch-antenna metamaterial perfect absorbers

    Science.gov (United States)

    Bowen, Patrick T.; Baron, Alexandre; Smith, David R.

    2016-06-01

    A metasurface that absorbs waves from all directions of incidence can be achieved if the surface impedance is made to vary as a function of incidence angle in a specific manner. Here we show that a periodic array of planar nanoparticles coupled to a metal film can act as an absorbing metasurface with an angle-dependent impedance. Through a semi-analytical calculation based on coupled-mode theory, we find the perfect absorbing condition is equivalent to balancing the Ohmic and radiative losses of the nanoparticles at normal incidence. Absorption over a wide range of incidence angles can then be obtained by tailoring the scattered far-field pattern of the individual planar nanoparticles such that their radiative losses remain constant. The theory provides a means of understanding the behavior of perfect absorbing structures that have been observed experimentally or numerically, reconciling previously published theories and enabling the optimization of absorbing surfaces.

  10. Multilayer metamaterial absorbers inspired by perfectly matched layers

    CERN Document Server

    Pastuszczak, Anna; Antosiewicz, Tomasz J; Kotynski, Rafal

    2014-01-01

    We derive periodic multilayer absorbers with effective uniaxial properties similar to perfectly matched layers (PML). This approximate representation of PML is based on the effective medium theory and we call it an effective medium PML (EM-PML). We compare the spatial reflection spectrum of the layered absorbers to that of a PML material and demonstrate that after neglecting gain and magnetic properties, the absorber remains functional. This opens a route to create electromagnetic absorbers for real and not only numerical applications and as an example we introduce a layered absorber for the wavelength of $8$~$\\mu$m made of SiO$_2$ and NaCl. We also show that similar cylindrical core-shell nanostructures derived from flat multilayers also exhibit very good absorptive and reflective properties despite the different geometry.

  11. Experimental demonstration of trapping waves with terahertz metamaterial absorbers on flexible polyimide films

    Science.gov (United States)

    Wang, Wei; Liu, Jinsong; Wang, Kejia

    2016-02-01

    We present the design, numerical simulations and experimental measurements of an asymmetric cross terahertz metamaterial absorber (MPA) on ultra-flexible polyimide film. The perfect metamaterial absorber composed of two structured metallic layers separated with a polyimide film with a total thickness of functional layers much smaller than the operational wavelength. Two distinct absorption peaks are found at resonance frequencies of 0.439THz and 0.759 THz with resonance amplitude of near unity, which are in good agreement with the simulation results. The sample is also measured by a THz-TDS imaging system to illustrate the absorption characterization. The scanning images show that the sample could act as a perfect absorber at specific resonance frequencies while a perfect reflector at off resonance frequencies. To illustrate the physical mechanism behind these spectral responses, the distribution of the power loss and surface current are also presented. The result shows that the incident wave is trapped and absorbed by the polyimide dielectric layer at different vicinities of the proposed asymmetric cross MPA for the two absorption peaks. Furthermore, the index sensing performance of the structure is also investigated, and the calculated sensitivity is 90GHz/RIU for f1 mode and 154.7GHz/RIU for f2 mode, indicating that the higher frequency resonance absorption peak has better potential applications in sensing and detection. The ultra-flexible, low cost, high intensity dual band terahertz absorbers may pave the way for designing various terahertz functional devices, such as ultrasensitive terahertz sensors, spatial light modulators and filters.

  12. Study of the automatic measuring technique and instrument for an automobile shock-absorber connecting rod

    Science.gov (United States)

    Chen, Chan-Yao; Dai, Shuguang; Zhang, R. J.; Mu, Ping-An

    1993-09-01

    The autinobile shock absorber connecting rod makes very strict tolerance requirements on the diameter size, roundness, straightness. Because it is a kind of thin and long workpiece, it is difficult to measure the errors of the roundness and axis straightness. Furthermore, it brings much difficulty to realize the highly efficient autinatic measurment as the connecting rod is mass produced. Therefore, there is not any kind of connecting rod automatic measuring instrument available in China. In this article, the authors put forword the methods and principles which can autiatically and efficiently measure the above-mentioned errors of the connecting rod and have designed a reliable and simple automatic measuring instrument, Furthermore, the designing requirements and methods of the software and the electrical system are also introduced. The problem of the automatic measurement of the automobile shock absorber connecting rod has been solved. and it not only guarantees the quality of the rod, but also provides the basis for technical analysis of the product.

  13. Perfect absorber metamaterial for real time detection and recognition of micro-poisons in aqueous solutions and atmosphere using millimeter wavelength spectroscopy

    Science.gov (United States)

    Abramovich, A.; Rotshild, D.; Ochana, M.; Rozban, D.

    2016-02-01

    Metamaterials are artificial materials not exist in the nature. They are also known as Left Handed Material (LHM) in which both the permeability and permittivity are negative. A perfect absorber metamaterial for millimeter wavelength can be artificially tailored and manufactured as two dimensional matrixes of metal shapes on a dielectric substrate. Those perfect absorbers metamaterial can be designed to be frequency selective with high Q property. In This study we present a new method that can provide real-time response by combining advanced spectroscopy methods in millimeter Wavelength (MMW) regime and perfect absorber metamaterial. This method is based on very inexpensive perfect absorber metamaterial, with a high Q factor. It was realized by printed metal shapes on FR4 substrate with ground plane on the bottom. The resonance frequency of the perfect absorber will be determined according to the geometrical metal shape dimensions and the dielectric constant of the substrate. The spectral measurements were carried out using high resolution coherence THz spectroscopy system. Due to the perfect absorber sensitivity and its high Q property, the perfect absorber metamaterial is very sensitive to environmental micro-poisons, which influence its resonance frequency. Using a high-resolution spectroscopy system it is possible to detect and quantify this influence. In this study we present very promising experimental results of Malathion detection using perfect absorber metamaterial. The manufacturing of such perfect absorber metamaterial was carried out using the well-known and very inexpensive PCB technology.

  14. Influence of Reaction Parameters on Water Absorbency of Starch Grafted Superabsorbents

    Institute of Scientific and Technical Information of China (English)

    LI Ming-da; ZHOU Yong-yuan

    2002-01-01

    Superabsorbents starch grafted sodium polyacrylate was synthesized by inverse suspension polymerization, using toluene as the continuous phase, potassium persulfate as the initiator. The effect of reaction parameters, such as starch pretreatment temperature, neutralization degree of monomer, reaction time and temperature,concentration of initiator, molar ratio of monomer and starch, on water absorbency of the starch grafted polymer was studied. The effects of the last two parameters were investigated by uniform design method,and the prediction equation was obtained.

  15. A Simple Laser-Based Device for Simultaneous Microbial Culture and Absorbance Measurement

    CERN Document Server

    Abrevaya, X C; Areso, O; Mauas, P J D

    2012-01-01

    In this work we present a device specifically designed to study microbial growth with several applications related to environmental microbiology and other areas of research as astrobiology. The Automated Measuring and Cultivation device (AMC-d) enables semi-continuous absorbance measurements directly during cultivation. It can measure simultaneously up to 16 samples. Growth curves using low and fast growing microorganism were plotted, including: Escherichia coli, and Haloferax volcanii, an halophilic archaeon.

  16. Literature search on Light Water Reactor (LWR) fuel and absorber rod fabrication, 1960--1976

    Energy Technology Data Exchange (ETDEWEB)

    Sample, C R [comp.

    1977-02-01

    A literature search was conducted to provide information supporting the design of a conceptual Light Water Reactor (LWR) Fuel Fabrication plant. Emphasis was placed on fuel processing and pin bundle fabrication, effects of fuel impurities and microstructure on performance and densification, quality assurance, absorber and poison rod fabrication, and fuel pin welding. All data have been taken from publicly available documents, journals, and books. This work was sponsored by the Finishing Processes-Mixed Oxide (MOX) Fuel Fabrication Studies program at HEDL.

  17. 980 nm High Power Semiconductor Laser Stacked Arrays with Non-absorbing Window

    Institute of Scientific and Technical Information of China (English)

    Xin GAO; Baoxue BO; Yi QU; Jing ZHANG; Hui LI

    2007-01-01

    980 nm InGaAs/GaAs separate confinement heterostructure (SCH) strained quantum well (QW) laser with non-absorbing facets was fabricated by using thermal treatment. Microchannel coolers with a five-layer thin oxygen-free copper plate structure were designed and fabricated through thermal bonding in hydrogen ambient.The highest CW (continuous wave) output power of 200 W for 5-bar arrays packaged by microchannel coolers was presented.

  18. Experimental Study of Optical Nonlinearities in a Broadband Semiconductor Saturable Absorber Mirror

    Institute of Scientific and Technical Information of China (English)

    XING Qi-Rong; MAO Fang-Lin; LANG Li-Ying; WANG Zhuan; WANG Kai; LI Shu-Xin; CHAI Lu; ZHANG Zhi-Gang; WANG Qing-Yue

    2005-01-01

    The negative nonlinear index of a semiconductor saturable absorber mirror (SESAM) was investigated by using the reflection Z-scan technique. This is an experimental demonstration, for the first time to our knowledge, thatthe SESAM possesses comparable negative nonlinear index n2 = -2.35 × 10-10 esu, which may have importantimplications in design and alignment of Kerr-lens mode-locking based on the self-focusing effect.

  19. A Simple Laser-Based Device for Simultaneous Microbial Culture and Absorbance Measurement

    OpenAIRE

    Abrevaya, X. C.; Cortón, E.; Areso, O.; Mauas, P. J. D

    2012-01-01

    In this work we present a device specifically designed to study microbial growth with several applications related to environmental microbiology and other areas of research as astrobiology. The Automated Measuring and Cultivation device (AMC-d) enables semi-continuous absorbance measurements directly during cultivation. It can measure simultaneously up to 16 samples. Growth curves using low and fast growing microorganism were plotted, including: Escherichia coli, and Haloferax volcanii, an ha...

  20. Literature search on Light Water Reactor (LWR) fuel and absorber rod fabrication, 1960--1976

    International Nuclear Information System (INIS)

    A literature search was conducted to provide information supporting the design of a conceptual Light Water Reactor (LWR) Fuel Fabrication plant. Emphasis was placed on fuel processing and pin bundle fabrication, effects of fuel impurities and microstructure on performance and densification, quality assurance, absorber and poison rod fabrication, and fuel pin welding. All data have been taken from publicly available documents, journals, and books. This work was sponsored by the Finishing Processes-Mixed Oxide (MOX) Fuel Fabrication Studies program at HEDL

  1. Broadband Tunability of Polarization-Insensitive Absorber Based on Frequency Selective Surface

    Science.gov (United States)

    Wang, Han; Kong, Peng; Cheng, Wentao; Bao, Wenzong; Yu, Xiaowei; Miao, Ling; Jiang, Jianjun

    2016-03-01

    An innovative tunable and polarization-insensitive 1.6–8 GHz frequency selective surface (FSS) absorber was investigated in this study. The proposed FSS, which is in 4-axial symmetrical form, includes a novel array of PIN diodes with biasing lines including inductors. A gradually reduced equivalent resistor of PIN diodes can be achieved with increasing DC voltage, which characterizes tunable, multi-resonance absorption peaks. Via this simplified design, small value resistor and equivalent capacitance of the gap between patterns can improve the absorber’s performance in low frequencies; an active tunable absorber can be realized in a broad frequency range by employing adjustable devices. Changing the working state of the PIN diode allows the user to obtain strong absorption within the desired frequency. We analyzed the performance of the proposed absorber and found that it indeed shows very favorable absorption performance in low frequency (‑10 dB in 1.6‑4.3 GHz) and wideband (‑8 dB in 4.3‑5.4 GHz and ‑10 dB in 5.4‑8.0 GHz) conditions. Calculation and simulation results also illustrated that the absorber is entirely polarization-insensitive.

  2. Enhancing Localized Evaporation through Separated Light Absorbing Centers and Scattering Centers

    Science.gov (United States)

    Zhao, Dengwu; Duan, Haoze; Yu, Shengtao; Zhang, Yao; He, Jiaqing; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2015-11-01

    This report investigates the enhancement of localized evaporation via separated light absorbing particles (plasmonic absorbers) and scattering particles (polystyrene nanoparticles). Evaporation has been considered as one of the most important phase-change processes in modern industries. To improve the efficiency of evaporation, one of the most feasible methods is to localize heat at the top water layer rather than heating the bulk water. In this work, the mixture of purely light absorptive plasmonic nanostructures such as gold nanoparticles and purely scattering particles (polystyrene nanoparticles) are employed to confine the incident light at the top of the solution and convert light to heat. Different concentrations of both the light absorbing centers and the light scattering centers were evaluated and the evaporation performance can be largely enhanced with the balance between absorbing centers and scattering centers. The findings in this study not only provide a new way to improve evaporation efficiency in plasmonic particle-based solution, but also shed lights on the design of new solar-driven localized evaporation systems.

  3. Experimental studies on active control of a dynamic system via a time-delayed absorber

    Science.gov (United States)

    Xu, Jian; Sun, Yixia

    2015-04-01

    The traditional passive absorber is fully effective within a narrow and certain frequency band. To solve this problem, a time-delayed acceleration feedback is introduced to convert a passive absorber into an active one. Both the inherent and the intentional time delays are included. The former mainly comes from signal acquiring and processing, computing, and applying the actuation force, and its value is fixed. The latter is introduced in the controller, and its value is actively adjustable. Firstly, the mechanical model is established and the frequency response equations are obtained. The regions of stability are delineated in the plane of control parameters. Secondly, the design scheme of control para- meters is performed to help select the values of the feedback gain and time delay. Thirdly, the experimental studies are conducted. Effects of both negative and positive feedback control are investigated. Experimental results show that the proper choices of control parameters may broaden the effective frequency band of vibration absorption. Moreover, the time-delayed absorber greatly suppresses the resonant response of the primary system when the passive absorber totally fails. The experimental results are in good agreement with the theoretical predictions and numerical simulations.

  4. Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xianjun, E-mail: xianjun.huang@manchester.ac.uk [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Hu, Zhirun [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Liu, Peiguo [College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2014-11-15

    This paper proposes a new type of graphene based tunable radar absorbing screen. The absorbing screen consists of Hilbert curve metal strip array and chemical vapour deposition (CVD) graphene sheet. The graphene based screen is not only tunable when the chemical potential of the graphene changes, but also has broadband effective absorption. The absorption bandwidth is from 8.9GHz to 18.1GHz, ie., relative bandwidth of more than 68%, at chemical potential of 0eV, which is significantly wider than that if the graphene sheet had not been employed. As the chemical potential varies from 0 to 0.4eV, the central frequency of the screen can be tuned from 13.5GHz to 19.0GHz. In the proposed structure, Hilbert curve metal strip array was designed to provide multiple narrow band resonances, whereas the graphene sheet directly underneath the metal strip array provides tunability and averagely required surface resistance so to significantly extend the screen operation bandwidth by providing broadband impedance matching and absorption. In addition, the thickness of the screen has been optimized to achieve nearly the minimum thickness limitation for a nonmagnetic absorber. The working principle of this absorbing screen is studied in details, and performance under various incident angles is presented. This work extends applications of graphene into tunable microwave radar cross section (RCS) reduction applications.

  5. Microwave absorbance properties of zirconium–manganese substituted cobalt nanoferrite as electromagnetic (EM) wave absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Kishwar, E-mail: kknano@hotmail.com; Rehman, Sarish

    2014-02-01

    Highlights: • Good candidates for EM materials with low reflectivity. • Good candidates for broad bandwidth at microwave frequency. • Microwave absorbing bandwidth was modulated simply by manipulating the Zr–Mn. • Higher the Zr–Mn content, the higher absorption rates for the electromagnetic radiation. • The predicted reflection loss shows that this can be used for thin ferrite absorber. - Abstract: Nanocrystalline Zr–Mn (x) substituted Co ferrite having chemical formula CoFe{sub 2−2x}Zr{sub x}Mn{sub x}O{sub 4} (x = 0.1–0.4) was prepared by co-precipitation technique. Combining properties such as structural, electrical, magnetic and reflection loss characteristics. Crystal structure and surface morphology of the calcined samples were characterized by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). By using two point probe homemade resistivity apparatus to find resistivity of the sample. Electromagnetic (EM) properties are measured through RF impedance/materials analyzer over 1 MHz–3 GHz. The room-temperature dielectric measurements show dispersion behavior with increasing frequency from 100 Hz to 3 MHz. Magnetic properties confirmed relatively strong dependence of saturation magnetization on Zr–Mn composition. Curie temperature is also found to decrease linearly with addition of Zr–Mn. Furthermore, comprehensive analysis of microwave reflection loss (RL) is carried out as a function of substitution, frequency, and thickness. Composition accompanying maximum microwave absorption is suggested.

  6. Investigation of a broadband refractory metal metamaterial absorber at terahertz frequencies.

    Science.gov (United States)

    Hu, Dan; Wang, Hongyan; Tang, Zhenjie; Zhang, Xiwei

    2016-07-01

    A broadband, polarization-independent, and wide-angle refractory metal metamaterial absorber is numerically investigated at terahertz frequencies, which consists of a periodic array of a chromium metallic loop and a chromium metallic film separated by a polyimide layer. Results show that a higher than 90% broadband absorption can be achieved for the range of frequencies from 1.00 through 2.43 THz, and the full absorption width at half-maximum can attain 110.80%, which is considerably larger than in previously reported results. Moreover, the greater than 90% broadband absorption response can still be maintained when the incidence angle increases to 45°. The physical origin of the proposed broadband absorber originates from localized surface plasmon resonances of the single metallic loop resonator. Furthermore, the designed concept also can be achieved in the visible and near-infrared region by rationally designing the dimensions of the absorber. This compact design has potential applications in stealth technology, energy harvesting, and thermal imaging. PMID:27409218

  7. Producing of Impedance Tube for Measurement of Acoustic Absorption Coefficient of Some Sound Absorber Materials

    Directory of Open Access Journals (Sweden)

    R. Golmohammadi

    2008-04-01

    Full Text Available Introduction & Objective: Noise is one of the most important harmful agents in work environment. In spit of industrial improvements, exposure with over permissible limit of noise is counted as one of the health complication of workers. In Iran, do not exact information of the absorption coefficient of acoustic materials. Iranian manufacturer have not laboratory for measured of sound absorbance of their products, therefore using of sound absorber is limited for noise control in industrial and non industrial constructions. The goal of this study was to design an impedance tube based on pressure method for measurement of the sound absorption coefficient of acoustic materials.Materials & Methods: In this study designing of measuring system and method of calculation of sound absorption based on a available equipment and relatively easy for measurement of the sound absorption coefficient related to ISO10534-1 was performed. Measuring system consist of heavy asbestos tube, a pure tone sound generator, calibrated sound level meter for measuring of some commonly of sound absorber materials was used. Results: In this study sound absorption coefficient of 23 types of available acoustic material in Iran was tested. Reliability of results by three repeat of measurement was tested. Results showed that the standard deviation of sound absorption coefficient of study materials was smaller than .Conclusion: The present study performed a necessary technology of designing and producing of impedance tube for determining of acoustical materials absorption coefficient in Iran.

  8. Thin-film absorber for a solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, W.G.

    1982-02-09

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  9. Interaction of inhalational anaesthetics with CO2 absorbents.

    Science.gov (United States)

    Baum, Jan A; Woehlck, Harvey J

    2003-03-01

    We review the currently available carbon dioxide absorbents: sodium hydroxide lime (=soda lime), barium hydroxide lime, potassium-hydroxide-free soda lime, calcium hydroxide lime and non-caustic lime. In general, all of these carbon dioxide absorbents are liable to react with inhalational anaesthetics. However, there is a decreasing reactivity of the different absorbents with inhalational anaesthetics: barium hydroxide lime > soda lime > potassium-hydroxide-free soda lime > calcium hydroxide lime and non-caustic lime. Gaseous compounds generated by the reaction of the anaesthetics with desiccated absorbents are those that threaten patients. All measures are comprehensively described to--as far as possible--prevent any accidental drying out of the absorbent. Whether or not compound A, a gaseous compound formed by the reaction of sevoflurane with normally hydrated absorbents, is still a matter of concern is discussed. Even after very high loading with this compound, during long-lasting low-flow sevoflurane anaesthesias, no clinical or laboratory signs of renal impairment were observed in any of the surgical patients. Finally, guidelines for the judicious use of different absorbents are given. PMID:12751549

  10. The optimisation of absorber thickness for neutron Soller slit collimators

    Energy Technology Data Exchange (ETDEWEB)

    Cussen, L.D. [Victoria Univ. of Technol., Melbourne (Australia). Sch. of Commun. and Inf.

    1998-08-11

    When constructing neutron Soller slit collimators an absorbing layer is applied to the blades. Choice of an optimum absorber thickness becomes more important as the collimator is made shorter or the neutron absorption becomes poorer as occurs for short wavelength neutrons. A quality factor for the performance of Soller slit collimators is proposed and used to determine the optimum thickness of the absorbing layer. The solution to this problem is non analytic but easily coded as a computer program. Sample calculations of optimum thickness are described. A simple formula for the approximate optimum thickness is given. (orig.) 3 refs.

  11. Solar absorber material stability under high solar flux

    Science.gov (United States)

    Ignatiev, A.; Zajac, G.; Smith, G. B.

    1982-04-01

    Solar absorbing Black Chrome coatings have been exposed to high temperatures (350-400 C) under high solar fluxes (0.4 to 2.0 MW/sq m) to test for their stability under actual operating conditions. Field tests at the White Sands Solar Furnace have shown higher stability than expected from oven tested samples. Laboratory studies utilizing spectrally selective concentrated solar simulated radiation have indicated that the cause of the higher stability under solar irradiation is photo-stimulated desorption of oxygen bearing species at the absorber surface and resultant reduced oxidation of the absorber.

  12. Absorbing CAD system geometries into GEANT

    International Nuclear Information System (INIS)

    The simulation community has for many years discussed the possibility of direct conversion of geometrical detector models from computer- aided design and engineering systems (CAD systems) to the simulation packages (which we shall assume means GEANT). This would allow fast and simultaneous optimization of the physics performance and structural integrity of detector designs. The benefit that this would offer is the avoidance of such problems as the late discovery of the rather thick cryostats in the D-Zero detector. Recent progress in the absorption of CAD geometries into GEANT models is reviewed, including descriptions of the additions to the I-DEAS solid modeller package developed for the EMPACT SSC proposal, the COGENT CAD-to-GEANT interpreter developed by Quantum Research Services, and the OCTAGON package for representing arbitrary shapes in GEANT. Likely future directions of development are described. 2 refs., 7 figs

  13. Millimeter Wave Absorber for Secure Identification

    CERN Document Server

    Skirlo, Scott A; Nasr, Magued; Heimbeck, Martin S; Joannopoulos, John D; Soljacic, Marin; Everitt, Henry O; Domash, Lawrence

    2016-01-01

    We demonstrate thin, flexible, metamaterial films with a strong, narrowband, polarization- and angle-insensitive absorption designed for wavelengths near one millimeter. These structures, fabricated by photolithography on a commercially available, copper-backed polyimide substrate, are nearly indistinguishable to the unaided human eye but can be easily observed by imaging at the resonance frequency of the film. We demonstrate that these patterns can be used to mark or barcode objects for secure identification with a terahertz imaging system.

  14. Effect of low-Z absorber's thickness on gamma-ray shielding parameters

    International Nuclear Information System (INIS)

    Gamma ray shielding behaviour of any material can be studied by various interaction parameters such as total mass attenuation coefficient (μm); half value layer (HVL); tenth value layer (TVL); effective atomic number (Zeff), electron density (Nel), effective atomic weight (Aeff) and buildup factor. For gamma rays, the accurate measurements of μm (cm2 g−1) theoretically require perfect narrow beam irradiation geometry. However, the practical geometries used for the experimental investigations deviate from perfect-narrowness thereby the multiple scattered photons cause systematic errors in the measured values of μm. Present investigation is an attempt to find the optimum value of absorber thickness (low-Z) for which these errors are insignificant and acceptable. Both experimental and theoretical calculations have been performed to investigate the effect of absorber's thickness on μm of six low-Z (10designed for theoretical evaluation of shielding parameters of any material. Good agreement of theoretical and measured values of μm was observed for all absorbers with thickness ≤0.5 mean free paths, thus considered it as optimum thickness for low-Z materials in the selected energy range. White cement was found to possess maximum shielding effectiveness for the selected gamma rays. - Highlights: • Optimum thickness value is 0.5 mfp for low-Z absorbers in energy range 662–1332 keV. • For accurate measurement of μm absorber's thickness should be ≤optimum thickness. • GRIC2-toolkit is useful for γ-ray shielding analysis of composite materials

  15. Radio-absorbing properties of nickel-containing schungite powder

    Science.gov (United States)

    Lyn'kov, L. M.; Borbot'ko, T. V.; Krishtopova, E. A.

    2009-05-01

    A nickel-containing shungite powder has been synthesized by means of chemical reduction from aqueous solutions. The chemical composition and radio-absorbing properties of this powder have been studied.

  16. Evaluation of electromagnetic absorbing capacity of materials in foundry industry

    Directory of Open Access Journals (Sweden)

    D. Nowak

    2010-01-01

    Full Text Available In the paper, a research on determining the standing wave ratio as a measure of electromagnetic absorbing capacity of moulding materials is presented. Preliminary tests performed using a microwave strip line showed that high-silica, chromite and magnesite moulding sands are characterised by low absorbing capacity of microwaves. It was demonstrated that microwave absorbing capacity is significantly affected by chemical compounds included in the examined substrates. It was found that use of a microwave strip line permits precise determining characteristic microwave absorbing capacities of various moulding materials and thus their suitability for microwave drying/hardening of moulds and cores or for other foundry processes. Such a microwave drier can be applied for identifying mass components and for determining e.g. base granularity by means of precisely determined reflection ratios |Γ| and positions of minimum signal values.

  17. Angular solar absorptance of absorbers used in solar thermal collectors.

    Science.gov (United States)

    Tesfamichael, T; Wäckelgård, E

    1999-07-01

    The optical characterization of solar absorbers for thermal solar collectors is usually performed by measurement of the spectral reflectance at near-normal angle of incidence and calculation of the solar absorptance from the measured reflectance. The solar absorptance is, however, a function of the angle of incidence of the light impinging on the absorber. The total reflectance of two types of commercial solar-selective absorbers, nickel-pigmented anodized aluminum, and sputtered nickel nickel oxide coated aluminum are measured at angles of incidence from 5 to 80 in the wavelength range 300-2500 nm by use of an integrating sphere. From these measurements the angular integrated solar absorptance is determined. Experimental data are compared with theoretical calculations, and it is found that optical thin-film interference effects can explain the significant difference in solar absorptance at higher angles for the two types of absorbers.

  18. New HI 21-cm absorbers at low and intermediate redshifts

    CERN Document Server

    Zwaan, M A; Péroux, C; Murphy, M T; Bouché, N; Curran, S J; Biggs, A D

    2015-01-01

    We present the results of a survey for intervening HI 21-cm absorbers at intermediate and low redshift (0180 K. A subset of our systems were also searched for OH absorption, but no detections were made.

  19. Development of highly effective neutron shields and neutron absorbing materials

    International Nuclear Information System (INIS)

    A wide range of materials, including polymers and hydrogen-occluded alloys that might be usable as the neutron shielding material were examined. And a wide range of materials, including aluminum alloys that might be usable as the neutron-absorbing material were examined. After screening, the candidate material was determined on the basis of evaluation regarding its adaptabilities as a high-performance neutron-shielding and neutron-absorbing material. This candidate material was manufactured for trial, after which material properties tests, neutron-shielding tests and neutron-absorbing tests were carried out on it. The specifications of this material were thus determined. This research has resulted in materials of good performance; a neutron-shielding material based on ethylene propylene rubber and titanium hydride, and a neutron-absorbing material based on aluminum and titanium hydride. (author)

  20. Integrated microcalorimeters using Ir TES and Sn mushroom absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Galeazzi, M. [Department of Physics, University of Miami, 1320 Campo Sano Dr., Coral Gables, FL 33146 (United States)]. E-mail: Galeazzi@physics.miami.edu; Bogorin, D. [Department of Physics, University of Miami, 1320 Campo Sano Dr., Coral Gables, FL 33146 (United States); Chen, C. [Department of Physics, University of Miami, 1320 Campo Sano Dr., Coral Gables, FL 33146 (United States)

    2006-04-15

    University of Miami has recently started a program to fabricate fully integrated microcalorimeter arrays using iridium thin films as Transition Edge Sensors (TES) and tin mushroom absorbers. We present our preliminary results in both areas.

  1. Experimental investigation of damping force of twin tube shock absorber

    Directory of Open Access Journals (Sweden)

    Sandip K. Kadu

    2014-09-01

    Full Text Available A shock absorber is a mechanical device to damp shock impulse and convert kinetic energy into thermal energy. The damping effect of shock absorber depends on damping force and damping force is affected by various process parameters. In this analysis three process parameters damping diameter(A, number of holes(B and suspension velocity(C were considered and their effect on damping force of shock absorber was studied and accordingly suitable orthogonal array was selected by taguchi method. Experiment conducted on servo hydraulic testing machine and after conducting experiments damping force was measured and with the help of S/N ratio, ANOVA, Regression analysis optimum parameter values can be obtained and confirmation experiments was carried out. Twin tube shock absorber was used to carry out experimentation.

  2. Distribution of Doppler Redshifts of Associated Absorbers of SDSS Quasars

    Indian Academy of Sciences (India)

    Cai-Juan Pan; Zhi-Fu Chen

    2013-12-01

    Doppler redshifts of a sample of Mg II associated absorbers of SDSS DR7 quasars are analysed. We find that there might be three Gaussian components in the distribution of the Doppler redshift. The first Gaussian component, with the peak being located at Dopp = -0.0074, probably arises from absorbers with outflow histories observed in the direction close to jets of quasars. The second Gaussian component, with the peak being located at Dopp = -0.0017, possibly arises from absorbers with outflow histories observed in the direction far away from jets of quasars. Whereas, the third Gaussian component, with the peak being located at Dopp = -0.0004, might arise from the random motion of absorbers with respect to quasars.

  3. [Study on absorbing volatile oil with mesoporous carbon].

    Science.gov (United States)

    Yan, Hong-mei; Jia, Xiao-bin; Zhang, Zhen-hai; Sun, E; Yang Nan

    2014-11-01

    Clove oil and turmeric oil were absorbed by mesoporous carbon. The absorption ratio of mesoporous carbon to volatile oil was optimized with the eugenol yield and curcumol yield as criteria Curing powder was characterized by scanning electron microscopy (SEM) and differential scanning calorietry (DSC). The effects of mesoporous carbon on dissolution in vitro and thermal stability of active components were studied. They reached high adsorption rate when the absorption ratio of mesoporous carbon to volatile oil was 1:1. When volatile oil was absorbed, dissolution rate of active components had a little improvement and their thermal stability improved after volatile oil was absorbed by the loss rate decreasing more than 50%. Absorbing herbal volatile oil with mesoporous carbon deserves further studying. PMID:25850263

  4. Perfect absorbers on curved surfaces and their potential applications.

    Science.gov (United States)

    Alaee, Rasoul; Menzel, Christoph; Rockstuhl, Carsten; Lederer, Falk

    2012-07-30

    Recently perfect metamaterial absorbers triggered some fascination since they permit the observation of an extreme interaction of light with a nanostructured thin film. For the first time we evaluate here the functionality of such perfect absorbers if they are applied on curved surfaces. We probe their optical response and discuss potential novel applications. Examples are the complete suppression of back-scattered light from the covered objects, rendering it cloaked in reflection, and their action as optical black holes. PMID:23038388

  5. Determination of neutron absorbed doses in lithium aluminates.

    Science.gov (United States)

    Delfín Loya, A; Carrera, L M; Ureña-Núñez, F; Palacios, O; Bosch, P

    2003-04-01

    Lithium-based ceramics have been proposed as tritium breeders for fusion reactors. The lithium aluminate (gamma phase) seems to be thermally and structurally stable, the damages produced by neutron irradiation depend on the absorbed dose. A method based on the measurement of neutron activation of foils through neutron capture has been developed to obtain the neutron absorbed dose in lithium aluminates irradiated in the thermal column facility and in the fixed irradiation system of a Triga Mark III Nuclear Reactor. PMID:12672632

  6. Calirimeter/absorber optimization for a RHIC dimuon experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aronson, S.H.; Murtagh, M.J.; Starks, M. [Brookhaven National Lab., Upton, NY (United States); Liu, X.T.; Petitt, G.A.; Zhang, Z. [Georgia State Univ., Atlanta (United States); Ewell, L.A.; Hill, J.C.; Wohn, F.K. [Iowa State Univ., Ames (United States); Costales, J.B.; Namboodiri, M.N., Sangster, T.C.; Thomas, J.H. [Lawrence Livermore National Lab., CA (United States); Gavron, A.; Waters, L. [Los Alamos National Lab., NM (United States); Kehoe, W.L.; Steadman, S.G. [Massachusetts Institute of Technology, Cambridge (United States); Awes, T.C.; Obenshain, F.E.; Saini, S.; Young, G.R. [Oak Ridge National Lab., TN (United States); Chang, J.; Fung, S.Y.; Kang, J.H. [Univ. of California, Riverside, CA (United States); Kreke, J.; He, Xiaochun, Sorensen, S.P. [Univ. of Tennessee, Knoxville (United States); Cornell, E.C.; Maguire, C.F. [Vanderbilt Univ., Nashville, TN (United States)

    1991-12-31

    The RD-10 R&D effort on calorimeter/absorber optimization for a RHIC experiment had an extended run in 1991 using the A2 test beam at the AGS. Measurements were made of the leakage of particles behind various model hadron calorimeters. Behavior of the calorimeter/absorber as a muon-identifier was studied. First comparisons of results from test measurements to calculated results using the GHEISHA code were made

  7. The Nature of Weak MgII Absorbing Structures

    OpenAIRE

    Milutinovic, Nikola; Rigby, Jane R.; Masiero, Joseph R.; Lynch, Ryan S.; Palma, Chris; Charlton, Jane C.

    2005-01-01

    We consider geometries and possible physical models for weak low ionization absorbers based on the relative incidence of low and high ionization absorption systems. We found a total of 16 metal-line systems, with low and/or high ionization absorption detected in our survey of weak low ionization absorption systems from the archive of HST/STIS data. The weak low ionization absorbers trace an abundant population of metal-enriched regions (close to solar metallicity). Generally, models show that...

  8. Research On Solar Energy Collector With Cell Polycarbonate Absorber

    OpenAIRE

    Putāns, Henriks; Zagorska, Viktorija; Ziemelis, Imants; Jesko, Zanis

    2015-01-01

    A flat plate solar collector with cell polycarbonate absorber and transparent cover has been made and its experimental investigation carried out. The collector consists of a wooden box, into which, a layer of heat insulation with a mirror film and 4 mm thick cell polycarbonate sheet, as the absorber, are placed. The coherence between collector’s efficiency, heat carrier and ambient air temperature, as well as intensity of the solar radiation and heat power in the experimental investigation ha...

  9. Shock absorber in combination with a nuclear reactor core structure

    International Nuclear Information System (INIS)

    This invention relates to the provision of shock absorbers for use in blind control rod passages of a nuclear reactor core structure which are not subject to degradation. The shock absorber elements are made of a porous brittle carbonaceous material, a porous brittle ceramic material, or a porous brittle refractory oxide and have a void volume of between 30% and 70% of the total volume of the element for energy absorption by fracturing due to impact loading by a control rod. (UK)

  10. Ceramic material which absorbs neutrons and its uses

    International Nuclear Information System (INIS)

    A ceramic material, which absorbs thermal and epithermal neutrons even at high temperatures, consists of a basic material absorbing neutrons and 5 to 50% by weight relative to the total weight of the material of at least one of the hydrides of zirconium, yttrium and/or at least one of the rare earth elements, and possibly a binder, and the usual fillers and auxiliaries. (orig.)

  11. Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal

    Science.gov (United States)

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-01-01

    Metamaterial absorbers can provide good solutions for radar-cross-section (RCS) reduction. In spite of their attractive features of thinness, lightness, and low cost, resonant metamaterial absorbers have a drawback of narrow bandwidth. For practical radar applications, wideband absorbers are necessary. In this paper, we propose a wideband-switchable metamaterial absorber using liquid metal. In order to reduce RCS both for X-band and C-band, the switchable Jerusalem cross (JC) resonator is introduced. The JC resonator consists of slotted circular rings, chip resistors, and microfluidic channels. The JC resonator is etched on a flexible printed circuit board (FPCB), and the microfluidic channels are laser-etched on a polydimethylsiloxane (PDMS) material. The proposed absorber can switch the absorption frequency band by injecting a liquid metal alloy into the channels. The performance of the absorber was demonstrated through full-wave simulation and through measurements employing prototypes. The experimental results showed absorption ratios of over 90% from 7.43 GHz to 14.34 GHz, and from 5.62 GHz to 7.3 GHz, with empty channels and liquid metal-filled channels, respectively. Therefore, the absorption band was successfully switched between the C-band (4–8 GHz) and the X-band (8–12 GHz) by injecting liquid metal eutectic gallium indium alloy (EGaIn) into the channels. PMID:27546310

  12. Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal.

    Science.gov (United States)

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-01-01

    Metamaterial absorbers can provide good solutions for radar-cross-section (RCS) reduction. In spite of their attractive features of thinness, lightness, and low cost, resonant metamaterial absorbers have a drawback of narrow bandwidth. For practical radar applications, wideband absorbers are necessary. In this paper, we propose a wideband-switchable metamaterial absorber using liquid metal. In order to reduce RCS both for X-band and C-band, the switchable Jerusalem cross (JC) resonator is introduced. The JC resonator consists of slotted circular rings, chip resistors, and microfluidic channels. The JC resonator is etched on a flexible printed circuit board (FPCB), and the microfluidic channels are laser-etched on a polydimethylsiloxane (PDMS) material. The proposed absorber can switch the absorption frequency band by injecting a liquid metal alloy into the channels. The performance of the absorber was demonstrated through full-wave simulation and through measurements employing prototypes. The experimental results showed absorption ratios of over 90% from 7.43 GHz to 14.34 GHz, and from 5.62 GHz to 7.3 GHz, with empty channels and liquid metal-filled channels, respectively. Therefore, the absorption band was successfully switched between the C-band (4-8 GHz) and the X-band (8-12 GHz) by injecting liquid metal eutectic gallium indium alloy (EGaIn) into the channels. PMID:27546310

  13. Investigations on laser transmission welding of absorber-free thermoplastics

    Science.gov (United States)

    Mamuschkin, Viktor; Olowinsky, Alexander; Britten, Simon W.; Engelmann, Christoph

    2014-03-01

    Within the plastic industry laser transmission welding ranks among the most important joining techniques and opens up new application areas continuously. So far, a big disadvantage of the process was the fact that the joining partners need different optical properties. Since thermoplastics are transparent for the radiation of conventional beam sources (800- 1100 nm) the absorbance of one of the joining partners has to be enhanced by adding an infrared absorber (IR-absorber). Until recently, welding of absorber-free parts has not been possible. New diode lasers provide a broad variety of wavelengths which allows exploiting intrinsic absorption bands of thermoplastics. The use of a proper wavelength in combination with special optics enables laser welding of two optically identical polymer parts without absorbers which can be utilized in a large number of applications primarily in the medical and food industry, where the use of absorbers usually entails costly and time-consuming authorization processes. In this paper some aspects of the process are considered as the influence of the focal position, which is crucial when both joining partners have equal optical properties. After a theoretical consideration, an evaluation is carried out based on welding trials with polycarbonate (PC). Further aspects such as gap bridging capability and the influence of thickness of the upper joining partner are investigated as well.

  14. Fabrication of metasurface-based infrared absorber structures using direct laser write lithography

    Science.gov (United States)

    Fanyaeu, Ihar; Mizeikis, Vygantas

    2016-03-01

    We report fabrication and optical properties of ultra-thin polarization-invariant electromagnetic absorber metasurface for infra-red spectral. The absorber structure, which uses three-dimensional architecture is based on single-turn metallic helices arranged into a periodic square lattice on a metallic substrate, is expected to exhibit total resonant absorption due to balanced coupling between resonances of the helices. The structure was designed using numerical simulations aiming to tune the total absorption resonance to infra-red wavelength range by appropriately downscaling the unit cell of the structure, and taking into account dielectric dispersion and losses of the metal. The designed structures were subsequently fabricated using femtosecond direct laser write technique in a dielectric photoresist, and subsequent metallisation by gold sputtering. In accordance with the expectations, the structure was found to exhibit resonant absorption centred near the wavelength of 6 - 9 µm, with peak absorption in excess of 82%. The absorber metasurface may be applied in various areas of science and technology, such as harvesting infra-red radiation in thermal detectors and energy converters.

  15. New Insight into the Angle Insensitivity of Ultrathin Planar Optical Absorbers for Broadband Solar Energy Harvesting

    Science.gov (United States)

    Liu, Dong; Yu, Haitong; Duan, Yuanyuan; Li, Qiang; Xuan, Yimin

    2016-09-01

    Two challenging problems still remain for optical absorbers consisting of an ultrathin planar semiconductor film on top of an opaque metallic substrate. One is the angle-insensitive mechanism and the other is the system design needed for broadband solar energy harvesting. Here, first we theoretically demonstrates that the high refractive index, instead of the ultrathin feature as reported in previous studies, is the physical origin of the angle insensitivity for ultrathin planar optical absorbers. They exhibit omnidirectional resonance for TE polarization due to the high complex refractive index difference between the semiconductor and the air, while for TM polarization the angle insensitivity persists up to an incident angle related to the semiconductor refractive index. These findings were validated by fabricating and characterizing an 18 nm Ge/Ag absorber sample (representative of small band gap semiconductors for photovoltaic applications) and a 22 nm hematite/Ag sample (representative of large band gap semiconductors for photoelectrochemical applications). Then, we took advantage of angle insensitivity and designed a spectrum splitting configuration for broadband solar energy harvesting. The cascaded solar cell and unassisted solar water splitting systems have photovoltaic and photoelectrochemical cells that are also spectrum splitters, so an external spectrum splitting element is not needed.

  16. New Insight into the Angle Insensitivity of Ultrathin Planar Optical Absorbers for Broadband Solar Energy Harvesting.

    Science.gov (United States)

    Liu, Dong; Yu, Haitong; Duan, Yuanyuan; Li, Qiang; Xuan, Yimin

    2016-01-01

    Two challenging problems still remain for optical absorbers consisting of an ultrathin planar semiconductor film on top of an opaque metallic substrate. One is the angle-insensitive mechanism and the other is the system design needed for broadband solar energy harvesting. Here, first we theoretically demonstrates that the high refractive index, instead of the ultrathin feature as reported in previous studies, is the physical origin of the angle insensitivity for ultrathin planar optical absorbers. They exhibit omnidirectional resonance for TE polarization due to the high complex refractive index difference between the semiconductor and the air, while for TM polarization the angle insensitivity persists up to an incident angle related to the semiconductor refractive index. These findings were validated by fabricating and characterizing an 18 nm Ge/Ag absorber sample (representative of small band gap semiconductors for photovoltaic applications) and a 22 nm hematite/Ag sample (representative of large band gap semiconductors for photoelectrochemical applications). Then, we took advantage of angle insensitivity and designed a spectrum splitting configuration for broadband solar energy harvesting. The cascaded solar cell and unassisted solar water splitting systems have photovoltaic and photoelectrochemical cells that are also spectrum splitters, so an external spectrum splitting element is not needed.

  17. Numerical Approach of the Influence of Geometric Properties on the Absorbing in Photonic Crystal

    Directory of Open Access Journals (Sweden)

    A. Merabti

    2016-10-01

    Full Text Available In the proposed study, an investigation has been carried out in order to find a material efficient structure, capable of harnessing maximum solar spectrum. A material efficient structure designed using a one dimensional photonic crystal (1D PC for amorphous silicon. Silicon material is used as it leads to environmental friendly design. The principal objective of this study is to maximize the photon absorption, keeping reflection to a minimum. The influence of geometric parameters on the absorption is studied by using the Finite element method (FEM. The results show that the absorption is affected by the geometry parameters. The optimum parameters of the proposed structure are period (a  480 nm, a filling factor (ff  50 % and depth (d  150 nm. The increase of absorption in the lower region where the wavelengths are around 480 nm, is explained by the reduction of the effective index resulting from the structure of the absorbent layer. For wavelengths between 480 nm and 600 nm, the absorption is directly related to existing Fabry-Perot modes within the absorbent layer. Creating additional absorption peaks at wavelengths above about 600 nm weakly absorbed normally comes from the coupling of the incident light with slow Bloch modes of PC located above the light line.

  18. New Insight into the Angle Insensitivity of Ultrathin Planar Optical Absorbers for Broadband Solar Energy Harvesting.

    Science.gov (United States)

    Liu, Dong; Yu, Haitong; Duan, Yuanyuan; Li, Qiang; Xuan, Yimin

    2016-01-01

    Two challenging problems still remain for optical absorbers consisting of an ultrathin planar semiconductor film on top of an opaque metallic substrate. One is the angle-insensitive mechanism and the other is the system design needed for broadband solar energy harvesting. Here, first we theoretically demonstrates that the high refractive index, instead of the ultrathin feature as reported in previous studies, is the physical origin of the angle insensitivity for ultrathin planar optical absorbers. They exhibit omnidirectional resonance for TE polarization due to the high complex refractive index difference between the semiconductor and the air, while for TM polarization the angle insensitivity persists up to an incident angle related to the semiconductor refractive index. These findings were validated by fabricating and characterizing an 18 nm Ge/Ag absorber sample (representative of small band gap semiconductors for photovoltaic applications) and a 22 nm hematite/Ag sample (representative of large band gap semiconductors for photoelectrochemical applications). Then, we took advantage of angle insensitivity and designed a spectrum splitting configuration for broadband solar energy harvesting. The cascaded solar cell and unassisted solar water splitting systems have photovoltaic and photoelectrochemical cells that are also spectrum splitters, so an external spectrum splitting element is not needed. PMID:27582317

  19. New Insight into the Angle Insensitivity of Ultrathin Planar Optical Absorbers for Broadband Solar Energy Harvesting

    Science.gov (United States)

    Liu, Dong; Yu, Haitong; Duan, Yuanyuan; Li, Qiang; Xuan, Yimin

    2016-01-01

    Two challenging problems still remain for optical absorbers consisting of an ultrathin planar semiconductor film on top of an opaque metallic substrate. One is the angle-insensitive mechanism and the other is the system design needed for broadband solar energy harvesting. Here, first we theoretically demonstrates that the high refractive index, instead of the ultrathin feature as reported in previous studies, is the physical origin of the angle insensitivity for ultrathin planar optical absorbers. They exhibit omnidirectional resonance for TE polarization due to the high complex refractive index difference between the semiconductor and the air, while for TM polarization the angle insensitivity persists up to an incident angle related to the semiconductor refractive index. These findings were validated by fabricating and characterizing an 18 nm Ge/Ag absorber sample (representative of small band gap semiconductors for photovoltaic applications) and a 22 nm hematite/Ag sample (representative of large band gap semiconductors for photoelectrochemical applications). Then, we took advantage of angle insensitivity and designed a spectrum splitting configuration for broadband solar energy harvesting. The cascaded solar cell and unassisted solar water splitting systems have photovoltaic and photoelectrochemical cells that are also spectrum splitters, so an external spectrum splitting element is not needed. PMID:27582317

  20. ECG movement artefacts can be greatly reduced with the aid of a movement absorbing device

    DEFF Research Database (Denmark)

    Harrison, Adrian Paul; Wandall, Kirsten; Thorball, Jørgen

    2007-01-01

    Accurate ECG signal analysis can be confounded by electric lead, and/or electrode movements varying in origin from, for example, hiccups, tremor or patient restlessness. ECG signals recorded using either a conventional electrode holder or with the aid of an electrode holder capable of absorbing...... movement artefacts, were measured on a healthy human subject. Results show a greatly improved stability of the ECG signal recorded using an electrode holder capable of absorbing movement artefacts during periods of lead disturbance, and highlight the movement artefacts that develop when the recording lead...... of a conventional ECG electrode holder is tugged or pulled during theperiod of monitoring. It is concluded that the new design of ECG electrode holder will not only enable clearer signal recordings for clinical assessment, but will reduce the ECG artefacts associated with the transportation of patients, and may...