WorldWideScience

Sample records for burn-up fbr mox

  1. Irradiation performance of PFBR MOX fuel after 112 GWd/t burn-up

    Energy Technology Data Exchange (ETDEWEB)

    Venkiteswaran, C.N., E-mail: cnv@igcar.gov.in; Jayaraj, V.V.; Ojha, B.K.; Anandaraj, V.; Padalakshmi, M.; Vinodkumar, S.; Karthik, V.; Vijaykumar, Ran; Vijayaraghavan, A.; Divakar, R.; Johny, T.; Joseph, Jojo; Thirunavakkarasu, S.; Saravanan, T.; Philip, John; Rao, B.P.C.; Kasiviswanathan, K.V.; Jayakumar, T.

    2014-06-01

    The 500 MWe Prototype Fast Breeder Reactor (PFBR) which is in advanced stage of construction at Kalpakkam, India, will use mixed oxide (MOX) fuel with a target burnup of 100 GWd/t. The fuel pellet is of annular design to enable operation at a peak linear power of 450 W/cm with the requirement of minimum duration of pre-conditioning. The performance of the MOX fuel and the D9 clad and wrapper material was assessed through Post Irradiation Examinations (PIE) after test irradiation of 37 fuel pin subassembly in Fast Breeder Test Reactor (FBTR) to a burn-up of 112 GWd/t. Fission product distribution, swelling and fuel–clad gap evolution, central hole diameter variation, restructuring, fission gas release and clad wastage due to fuel–clad chemical interaction were evaluated through non-destructive and destructive examinations. The examinations have indicated that the MOX fuel can safely attain the desired target burn-up in PFBR.

  2. The MOX fuel behaviour test IFA-597.4/.5. Temperature and pressure data to a burn-up of 15 MWd/kg MOX

    International Nuclear Information System (INIS)

    Takano, K.

    1999-04-01

    The behaviour of MOX fuel should be investigated in detail for more effective use in the future, especially concerning its thermal performance and fission gas release. IFA-597.4 and IFA-597.5, containing two MOX fuel rods each with a fuel centre thermocouple and a pressure transducer, have been irradiated in the Halden Reactor to study the temperature threshold of fission gas release for MOX fuel and to explore potential differences in the thermal and fission gas release behaviour between solid and hollow pellets. The two rods of MOX fuel with an initial Pu-fissile content of 6.07 percent have solid pellets and hollow pellets respectively, and with an active length of about 220 mm. The diameter of the pellets is 8.05 mm with 180μm of diametral gap to the cladding. For the purpose of the test, power ramp operation, in which estimated peak temperature of the MOX pellets increases and decreases above and below the threshold for fission gas release in UO 2 fuel, is planned every 10 MWd/kgMOX of burn-up. The first ramp operation has been successfully performed at 10 MWd/kgMOX. When the estimated peak temperature of the fuel gets close to but below the threshold of UO 2 , fission gas release was observed at around 28 kW/m of power. Densification of the MOX pellets could be estimated to about 1.2 percent for the solid pellets and about 2,3 percent for the hollow pellets from normalised internal rod pressure. After 13.5 MWd/kgMOX the average assembly power has been operated low enough to observe swelling rate of MOX fuel pellets and behaviour after significant fission gas release. The burn-up had reached 15.5 MWd/kgMOX as of the end of 1998. The target burn-up of this MOX test is 60 MWd/kgMOX (author) (ml)

  3. Burn-up credit applications for UO2 and MOX fuel assemblies in AREVA/COGEMA

    International Nuclear Information System (INIS)

    Toubon, H.; Riffard, C.; Batifol, M.; Pelletier, S.

    2003-01-01

    For the last seven years, AREVA/COGEMA has been implementing the second phase of its burn-up credit program (the incorporation of fission products). Since the early nineties, major actinides have been taken into account in criticality analyses first for reprocessing applications, then for transport and storage of fuel assemblies Next year (2004) COGEMA will take into account the six main fission products (Rh103, Cs133, Nd143, Sm149, Sm152 and Gd155) that make up 50% of the anti-reactivity of all fission products. The experimental program will soon be finished. The new burn-up credit methodology is in progress. After a brief overview of BUC R and D program and COGEMA's application of the BUC, this paper will focus on the new burn-up measurement for UO2 and MOX fuel assemblies. It details the measurement instrumentation and the measurement experiments on MOX fuels performed at La Hague in January 2003. (author)

  4. Full MOX high burn-up PWR

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Tsutomu; Kugo, Teruhiko; Shimada, Shoichiro; Araya, Fumimasa; Ochiai, Masaaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-12-01

    As a part of conceptual investigation on advanced light water reactors for the future, a light water reactor with the high burn-up of 100 GWd/t, the long cycle operation of 3 years and the full MOX core is being studied, aiming at the improvement on economical aspects, the reduction of the spent fuel production, the utilization of Plutonium and so forth. The present report summarizes investigation on PWR-type reactors. The core with the increased moderation of the moderator-to-fuel volume ratio of 2.6 {approx} 3.0 has been proposed be such a core that accomplishes requirements mentioned above. Through the neutronic and the thermo-hydrodynamic evaluation, the performances of the core have been evaluated. Also, the safety designing is underway considering the reactor system with the passive safety features. (author)

  5. The MOX Fuel Behaviour Test IFA-597.4: Temperature And Pressure Data To A Burn-Up Of 5.4 MWd/kg MOX

    International Nuclear Information System (INIS)

    McGrath, M. A.; Teshima, H.

    1998-02-01

    Characterising the behaviour of MOX fuel is becoming increasingly important as many commercial reactors are or will be operating with this type of fuel. With this as a driving force, a new joint programme experiment, IFA-597.4, has been loaded into the reactor at Halden for the purpose of establishing the fission gas release behaviour of MOX fuel. Both annular and solid pellet fuel is being utilised and the irradiation is being conducted such that the fuel is initially operated below the onset of fission gas release. The fuel will later be subjected to small power up ratings which will be held for short periods of time. These are designed to bring the fuel to just above the temperature threshold for fission gas release thus allowing the FGR behaviour of both solid and annular MOX fuel to be established. The rig contains two fuel rods of active length 220 mm and diameter 8.05 mm. Both fuel rods contain MOX fuel with an initial Pu-fissile content of 6.07% and both are instrumented with a fuel centre thermocouple and a pressure transducer. The test is being performed under HBWR conditions and at the time of the reactor shutdown at the end of 1997 a mean burn-up of 5.4 MWd/kg MOX had been achieved with the rods at an average rating of 30 kW/m. The rod pressure data show that no fission gas had been released up to the shutdown. The fuel centre temperatures of both rods exhibit an initial increase concurrent with a fall in the monitored rod internal pressures as a result of fuel densification. It was estimated that about 1-1.4% fuel densification by volume had occurred in the two rods by a burn-up of about 3 MWd/kg MOX. (author)

  6. Effect of high burn-up and MOX fuel on reprocessing, vitrification and disposal of PWR and BWR spent fuels based on accurate burn-up calculation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, T.; Iwasaki, T.; Wada, K. [Tohoku Univ., Graduate School of Engineering, Dept. of Quantum Science and Energy Engineering, Sendai 980-8579 (Japan); Suyama, K. [Japan Atomic Energy Agency, Shirakata-Shirane 2-4, Naka-gun, Ibaraki-ken 319-1195 (Japan)

    2006-07-01

    To examine the procedures of the reprocessing, the vitrification and the geologic disposal, precise burn-up calculation for high burn-up and MOX fuels has been performed for not only PWR but also BWR by using SWAT and SWAT2 codes which are the integrated bum-up calculation code systems combined with the bum-up calculation code, ORIGEN2, and the transport calculation code, SRAC (the collision probability method) or MVP (the continuous energy Monte Carlo method), respectively. The calculation results shows that all of the evaluated items (heat generation and concentrations of Mo and Pt) largely increase and those significantly effect to the current procedures of the vitrification and the geologic disposal. The calculation result by SWAT2 confirms that the bundle calculation is required for BWR to be discussed about those effects in details, especially for the MOX fuel. (authors)

  7. LWR high burn-up operation and MOX introduction. Fuel cycle performance from the viewpoint of waste management

    International Nuclear Information System (INIS)

    Inagaki, Yaohiro; Iwasaki, Tomohiko; Niibori, Yuichi; Sato, Seichi; Ohe, Toshiaki; Kato, Kazuyuki; Torikai, Seishi; Nagasaki, Shinya; Kitayama, Kazumi

    2009-01-01

    From the viewpoint of waste management, a quantitative evaluation of LWR nuclear fuel cycle system performance was carried out, considering both higher burn-up operation of UO 2 fuel coupled with the introduction of MOX fuel. A major parameter to quantify this performance is the number of high-level waste (HLW) glass units generated per GWd (gigawatt-day based on reactor thermal power generation before electrical conversion). This parameter was evaluated for each system up to a maximum burn-up of 70GWd/THM (gigawatt-day per ton of heavy metal) assuming current conventional reprocessing and vitrification conditions where the waste loading of glass is restricted by the heat generation rate, the MoO 3 content, or the noble metal content. The results showed that higher burn-up operation has no significant influence on the number of glass units generated per GWd for UO 2 fuel, though the number of glass units per THM increases linearly with burn-up and is restricted by the heat generation rate. On the other hand, the introduction of MOX fuel causes the number of glass units per GWd to double owing to the increase in the heat generation rate. An extended cooling period of the spent fuel prior to reprocessing effectively reduces the heat generation rate for UO 2 fuel, while a separation of minor actinides (Np, Am, and Cm) from the high-level waste provides additional reduction for MOX fuel. However, neither of these leads to a substantial reduction in the number of glass units, since the MoO 3 content or the noble metal content restricts the number of glass units rather than the heat generation rate. These results suggest that both the MoO 3 content and the noble metal content provide the key to reducing the amount of waste glass that is generated, leading to an overall improvement in fuel cycle system performance. (author)

  8. Simulation of the neutron-physical properties of the classical UO2 fuel and of MOX fuel during the burn-up by Transuranus

    International Nuclear Information System (INIS)

    Breza, J. jr.; Necas, V.; Daoeilek, P.

    2005-01-01

    The classical nuclear fuel UO 2 is well known for VVER reactors. Nevertheless, in the near future it will be possible to replace this fuel by novel, advanced kinds of fuel, for instance MOX, inert matrices fuel, etc., that will allow to increase the level of burn-up and minimize the amount of hazardous waste. The code Transuranus [2], designed at ITU Karlsruhe, is intended for thermal and mechanical analyses of fuel elements in nuclear reactors. We have utilized the code Transuranus to simulate the neutron-physical properties of the classical UO 2 fuel and of MOX fuel during the burn-up to a level of 40 MWd/kgHM. We compare obtained results of uranium and plutonium nuclides concentrations, their changes during burn-up, with results obtained by code HELIOS [3], which is well-validated code for this kind of applications. We performed calculations of fission gasses concentrations, namely xenon and krypton. (author)

  9. Overview of MOX fuel fabrication achievements

    International Nuclear Information System (INIS)

    Bairiot, H.; Vliet, J. van; Chiarelli, G.; Edwards, J.; Nagai, S.H.; Reshetnikov, F.

    2000-01-01

    Such overview having been adequately covered in an OECD/NEA publication providing the situation as of end 1994, this paper is mainly devoted to an update as of end 1998. The Belgian plant, Belgonucleaire/Dessel, is now dedicated exclusively to the fabrication of MOX fuel and has operated consistently around its nameplate capacity (35tHM/a) through the 1990s involving a large variety of PWR and BWR fuels. The two French plants have also achieved routine operation during the 1990s. CFCa, historically the largest FBR MOX fuel manufacturer, is utilizing the genuine COCA process for that type of fuel and the MIMAS process for LWR fuel: a nominal capacity (40 tHM/a) has been gradually approached. MELOX has operated at 100 tHM/a, as defined in the operating licence granted originally. The British plant, MDF/Sellafield with 8tHM/a nameplate capacity is devoted to fuel and has manufactured several small fabrication campaigns. In Japan, JNC operates three facilities located at Tokai: PFDF, devoted to basic research and fabrication of test fuels, PFFF/ATR line, for the fabrication of Fugen fuel and of corresponding fuel for the critical facility DCA, and PFPF for the fabrication of FBR fuel. In Russia, fabrication techniques have been developed to fuel four BN-800 FBRs contemplated to be constructed and be fuelled with the civilian Pu stockpile. Two demonstration facilities Paket (Mayak) and RIAR (Dimitrovgrad) fabricated respectively pellet and vipac type FBR MOX fuel for BR-5, BOR-60, BN-350 and BN-600. The paper includes a brief description of each of the fabrication routes mentioned, as well as the production of respectively LWR and FBR MOX fuel in each fabrication facility, since the start-up of the plant, since 1 January 1993 and since 1 January 1998 up to 31 December 1998. (author)

  10. Isotopic analyses and calculation by use of JENDL-3.2 for high burn-up UO2 and MOX spent fuels

    International Nuclear Information System (INIS)

    Sasahara, Akihiro; Matsumura, Tetsuo; Nicolaou, G.; Betti, M.; Walker, C.T.

    1997-01-01

    The post irradiation examinations (PIE) were carried out for high burn-up UO 2 spent fuel (3.8%U235, average burn-up:60GWd/t) and mixed oxide (MOX) spent fuel (5.07%Pu, average burn-up:45GWd/t). The PIE includes, a) isotopic analysis, b) electron probe microanalysis (EPMA) in pellet cross section and so on. The results of isotopic analyses and EPMA were compared with ORIGEN2/82 and VIM-BURN calculation results. In VIM-BURN calculation, the nuclear data of actinides were proceeded from new data file, JENDL-3.2. The sensitivities of power history and moderator density to nuclides composition were investigated by VIM-BURN calculation and consequently power history mainly effected on Am241 and Am242m and moderator density effected on fissile nuclides. From EPMA results of U and Pu distribution in pellet, VIM-BURN calculation showed reasonable distribution in pellet cross section. (author)

  11. Burning of MOX fuels in LWRs; fuel history effects on thermal properties of hull and end piece wastes and the repository performance

    International Nuclear Information System (INIS)

    Hirano, Fumio; Sato, Seichi; Kozaki, Tamotsu

    2012-01-01

    The thermal impacts of hull and end piece wastes from the reprocessing of MOX spent fuels burned in LWRs on repository performance were investigated. The heat generation rates in MOX spent fuels and the resulting heat generation rates in hull and end piece wastes change depending on the history of MOX fuels. This history includes the burn-up of UO 2 spent fuels from which the Pu is obtained, the cooling period before reprocessing, the storage period of fresh MOX fuels before being loaded into an LWR, as well as the burn-up of the MOX fuels. The heat generation rates in hull and end piece wastes from the reprocessing of MOX spent fuels with any of those histories are significantly larger than those from UO 2 spent fuels with burn-ups of 45 GWd/THM. If a temperature below 80degC is specified for cement-based materials used in waste packages after disposal, the allowable number of canisters containing compacted hull and end pieces in a package for 45 and 70 GWd-MOX needs to be limited to a value of 0.4-1.6, which is significantly lower than 4.0 for 45 GWd-UO 2 . (author)

  12. Isotopic analyses and calculation by use of JENDL-3.2 for high burn-up UO{sub 2} and MOX spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Sasahara, Akihiro; Matsumura, Tetsuo [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.; Nicolaou, G.; Betti, M.; Walker, C.T.

    1997-03-01

    The post irradiation examinations (PIE) were carried out for high burn-up UO{sub 2} spent fuel (3.8%U235, average burn-up:60GWd/t) and mixed oxide (MOX) spent fuel (5.07%Pu, average burn-up:45GWd/t). The PIE includes, (a) isotopic analysis, (b) electron probe microanalysis (EPMA) in pellet cross section and so on. The results of isotopic analyses and EPMA were compared with ORIGEN2/82 and VIM-BURN calculation results. In VIM-BURN calculation, the nuclear data of actinides were proceeded from new data file, JENDL-3.2. The sensitivities of power history and moderator density to nuclides composition were investigated by VIM-BURN calculation and consequently power history mainly effected on Am241 and Am242m and moderator density effected on fissile nuclides. From EPMA results of U and Pu distribution in pellet, VIM-BURN calculation showed reasonable distribution in pellet cross section. (author)

  13. Progress in researches on MOX fuel pellet producing technology in China

    International Nuclear Information System (INIS)

    Hu Xiaodan

    2010-01-01

    Being the key section of nuclear-fuel cycle, the producing technology of MOX(UO 2 -PuO 2 ) fuel had driven to maturity in France, England, Russia, Belgium, etc. MOX fuel had been applied in FBR and LWR successfully in those countries. With the rapidly developing of nuclear-generated power, the MOX fuel for FBR and LWR was active demanded in China. However, the producing technology of MOX fuel developed slowly. During the period of 'the seventh five year's project', MOX fuel pellet was produced by mechanically mixed method and oxalate deposited method, respectively. Parts of cool performance of MOX fuel pellet produced by oxalate deposited method reached the qualification of fuel for FBR. During the period of 'the ninth five year's project' and 'the tenth five year's project', the technical route of producing MOX fuel was determined, and the test line of producing MOX fuel was built preliminarily. In the same time, the producing technology and analyzing technology of MOX fuel pellet by mechanically mixed was studied roundly, and the representative analogue pellet(UO 2 -CeO 2 ) was produced. That settled the supporting technology for the commercial process and research of MOX fuel rod and MOX fuel module. (authors)

  14. MOX fuel fabrication: Technical and industrial developments

    International Nuclear Information System (INIS)

    Lebastard, G.; Bairiot, H.

    1990-01-01

    The plutonium available in the near future is generally estimated rather precisely on the basis of the reprocessing contracts and the performance of the reprocessing plants. A few years ago, decision makers were convinced that a significant share of this fissile material would be used as the feed material for fast breeder reactors (FBRs) or other advanced reactors. The facts today are that large reprocessing plants are coming into commercial operations: UP3 and soon UP2-800 and THORP, but that FBR deployment is delayed worldwide. As a consequence, large quantities of plutonium will be recycled in light water reactors as mixed oxide (MOX) fuels. MOX fuel technology has been properly demonstrated in the past 25 years. All specific problems have been addressed, efficient fabrication processes and engineering background have been implemented to a level of maturity which makes MOX fuel behaving as well as Uranium fuel. The paper concentrates on todays MOX fabrication expertise and presents the technical and industrial developments prepared by the MOX fuel fabrication industry for this last decade of the century

  15. LWR Spent Fuel Management for the Smooth Deployment of FBR

    International Nuclear Information System (INIS)

    Fukasawa, T.; Yamashita, J.; Hoshino, K.; Sasahira, A.; Inoue, T.; Minato, K.; Sato, S.

    2015-01-01

    Fast breeder reactors (FBR) and FBR fuel cycle are indispensable to prevent the global warming and to secure the long-term energy supply. Commercial FBR expects to be deployed from around 2050 until around 2110 in Japan by the replacement of light water reactors (LWR) after their 60 years life. The FBR deployment needs Pu (MOX) from the LWR-spent fuel (SF) reprocessing. As Japan can posses little excess Pu, its balance control is necessary between LWR-SF management (reprocessing) and FBR deployment. The fuel cycle systems were investigated for the smooth FBR deployment and the effectiveness of proposed flexible system was clarified in this work. (author)

  16. Advanced analysis technology for MOX fuel

    International Nuclear Information System (INIS)

    Hiyama, T.; Kamimura, K.

    1997-01-01

    PNC has developed MOX fuels for advanced thermal reactor (ATR) and fast breeder reactor (FBR). The MOX samples have been chemically analysed to characterize the MOX fuel for JOYO, MONJU, FUGEN and so on. The analysis of the MOX samples in glove box has required complicated and highly skilled operations. Therefore, for quality control analysis of the MOX fuel in a fabrication plant, simple, rapid and accurate analysis methods are necessary. To solve the above problems instrumental analysis and techniques were developed. This paper describes some of the recent developments in PNC. 2. Outline of recently developed analysis methods by PNC. 2.1 Determination of oxygen to metal atomic ratio (O/M) in MOX by non-dispersive infrared spectrophotometry after inert gas fusion. 7 refs, 9 figs, 4 tabs

  17. MOX fuel irradiation behavior in steady state (irradiation test in HBWR)

    Energy Technology Data Exchange (ETDEWEB)

    Kohno, S; Kamimura, K [Power Reactor and Nuclear Fuel Development Corp., Naka, Ibaraki (Japan)

    1997-08-01

    Two rigs of plutonium-uranium oxide (MOX) fuel rods have been irradiated in Halden boiling water reactor (HBWR) to investigate high burnup MOX fuel behavior for thermal reactor. The objective of irradiation tests is to investigate fuel behavior as influenced by pellet shape, pellet surface treatment, pellet-cladding gap size and MOX fuel powder preparations process. The two rigs have instrumentations for in-pile measurements of the fuel center-line temperature, plenum pressure, cladding elongation and fuel stack length change. The data, taken through in-operation instrumentation, have been analysed and compared with those from post-irradiation examination. The following observations are made: 1) PNC MOX fuels have achieved high burn-up as 59GWd/tMOX (67GWd/tM) at pellet peak without failure; 2) there was no significant difference in fission gas release fraction between PNC MOX fuels and UO{sub 2} fuels; 3) fission gas release from the co-converted fuel was lower than that from the mechanically blended fuel; 4) gap conductance was evaluated to decrease gradually with burn-up and to get stable in high burn-up region. 5) no evident difference of onset LHR for PCMI in experimental parameters (pellet shape and pellet-cladding gap size) was observed, but it decreased with burn-up. (author). 13 refs, 15 figs, 3 tabs.

  18. Development of MOX fuel database

    International Nuclear Information System (INIS)

    Ikusawa, Yoshihisa; Ozawa, Takayuki

    2007-03-01

    We developed MOX Fuel Database, which included valuable data from several irradiation tests in FUGEN and Halden reactor, for help of LWR MOX use. This database includes the data of fabrication and irradiation, and the results of post-irradiation examinations for seven fuel assemblies, i.e. P06, P2R, E03, E06, E07, E08 and E09, irradiated in FUGEN. The highest pellet peak burn-up reached ∼48GWd/t in MOX fuels, of which the maximum plutonium content was ∼6 wt%, irradiated in E09 fuel assembly without any failure. Also the data from the instrumented MOX fuels irradiated in HBWR to study the irradiation behavior of BWR MOX fuels under the steady state condition (IFA-514/565 and IFA-529), under the load-follow operation condition (IFA-554/555) and under the transit condition (IFA-591) are included in this database. The highest assembly burn-up reached ∼56 GWd/t in IFA-565 steady state irradiation test, and the maximum linear power of MOX fuel rods was 58.3-68.4 kW/m without any failure in IFA-591 ramp test. In addition, valuable instrument data, i.e. cladding elongation, fuel stack elongation, fuel center temperature and rod inner pressure were obtained from IFA-554/555 load-follow test. (author)

  19. Increased fuel burn-up and fuel cycle equilibrium

    International Nuclear Information System (INIS)

    Debes, M.

    2001-01-01

    Improvement of nuclear competitiveness will rely mainly on increased fuel performance, with higher burn-up, and reactors sustained life. Regarding spent fuel management, the EDF current policy relies on UO 2 fuel reprocessing (around 850 MTHM/year at La Hague) and MOX recycling to ensure plutonium flux adequacy (around 100 MTHM/year, with an electricity production equivalent to 30 TWh). This policy enables to reuse fuel material, while maintaining global kWh economy with existing facilities. It goes along with current perspective to increase fuel burn-up up to 57 GWday/t mean in 2010. The following presentation describes the consequences of higher fuel burn-up on fuel cycle and waste management and implementation of a long term and global equilibrium for decades in spent fuel management resulting from this strategy. (author)

  20. MOX recycling in GEN 3 + EPR Reactor homogeneous and stable full MOX core

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, M.; Villele, E. de; Gauthier, J.C.; Marincic, A. [AREVA - Tour AREVA, 1 Place Jean Millier, 92084 Paris La Defense (France)

    2013-07-01

    In the case of the EPR (European Pressurized Reactor) reactor, 100% MOX core management is possible with simple design adaptations which are not significantly costly. 100% MOX core management offers several highly attractive advantages. First, it is possible to have the same plutonium content in all the rods of a fuel assembly instead of having rods with 3 different plutonium contents, as in MOX assemblies in current PWRs. Secondly, the full MOX core is more homogeneous. Thirdly, the stability of the core is significantly increased due to a large reduction in the Xe effect. Fourthly, there is a potential for the performance of the MOX fuel to match that of new high performance UO{sub 2} fuel (enrichment up to 4.95 %) in terms of increased burn up and cycle length. Fifthly, since there is only one plutonium content, the manufacturing costs are reduced. Sixthly, there is an increase in the operating margins of the reactor, and in the safety margins in accident conditions. The use of 100% MOX core will improve both utilisation of natural uranium resources and reductions in high level radioactive waste inventory.

  1. MOX recycling in GEN 3 + EPR Reactor homogeneous and stable full MOX core

    International Nuclear Information System (INIS)

    Arslan, M.; Villele, E. de; Gauthier, J.C.; Marincic, A.

    2013-01-01

    In the case of the EPR (European Pressurized Reactor) reactor, 100% MOX core management is possible with simple design adaptations which are not significantly costly. 100% MOX core management offers several highly attractive advantages. First, it is possible to have the same plutonium content in all the rods of a fuel assembly instead of having rods with 3 different plutonium contents, as in MOX assemblies in current PWRs. Secondly, the full MOX core is more homogeneous. Thirdly, the stability of the core is significantly increased due to a large reduction in the Xe effect. Fourthly, there is a potential for the performance of the MOX fuel to match that of new high performance UO 2 fuel (enrichment up to 4.95 %) in terms of increased burn up and cycle length. Fifthly, since there is only one plutonium content, the manufacturing costs are reduced. Sixthly, there is an increase in the operating margins of the reactor, and in the safety margins in accident conditions. The use of 100% MOX core will improve both utilisation of natural uranium resources and reductions in high level radioactive waste inventory

  2. MOX and UOX PWR fuel performances EDF operating experience

    International Nuclear Information System (INIS)

    Provost, Jean-Luc; Debes, Michel

    2005-01-01

    Based on a large program of experimentations implemented during the 90s, the industrial achievement of new FAs designs with increased performances opens up new prospects. The currently UOX fuels used on the 58 EDF PWR units are now authorized up to a maximum FA burn-up of 52 GWd/t with a large experience from 45 to 50 GWd/t. Today, the new products, along with the progress made in the field of calculation methods, still enable to increase further the fuel performances with respect to the safety margins. Thus, the conditions are met to implement in the next years new fuel managements on each NPPs series of the EDF fleet with increased enrichment (up to 4.5%) and irradiation limits (up to 62 GWd/t). The recycling of plutonium is part of EDF's reprocessing/recycling strategy. Up to now, 20 PWR 900 MW reactors are managed in MOX hybrid management. The feedback experience of 18 years of PWR operation with MOX is satisfactory, without any specific problem regarding manoeuvrability or plant availability. EDF is now looking to introduce MOX fuels with a higher plutonium content (up to 8.6%) equivalent to natural uranium enriched to 3.7%. It is the goal of the MOX Parity core management which achieve balance of MOX and UOX fuel performance with a significant increase of the MOX average discharge burn-up (BU max: 52 GWd/t for MOX and UOX). The industrial maturity of new FAs designs, with increased performances, allows the implementation in the next years of new fuel managements on each NPPs series of the EDF fleet. The scheduling of the implementation of the new fuel managements on the PWRs fleet is a great challenge for EDF, with important stakes: the nuclear KWh cost decrease with the improvement of the plant operation performance. (author)

  3. The effect of dissolved hydrogen on the dissolution of 233U doped UO2(s) high burn-up spent fuel and MOX fuel

    International Nuclear Information System (INIS)

    Carbol, P.; Spahiu, K.

    2005-03-01

    In this report the results of the experimental work carried out in a large EU-research project (SFS, 2001-2004) on spent fuel stability in the presence of various amounts of near field hydrogen are presented. Studies of the dissolution of 233 U doped UO 2 (s) simulating 'old' spent fuel were carried out as static leaching tests, autoclave tests with various hydrogen concentrations and electrochemical tests. The results of the leaching behaviour of a high burn-up spent fuel pellet in 5 M NaCl solutions in the presence of 3.2 bar H 2 pressure and of MOX fuel in dilute synthetic groundwater under 53 bar H 2 pressure are also presented. In all the experimental studies carried out in this project, a considerable effect of hydrogen in the dissolution rates of radioactive materials was observed. The experimental results obtained in this project with a-doped UO 2 , high burn-up spent fuel and MOX fuel together with literature data give a reliable background to use fractional alteration/dissolution rates for spent fuel of the order of 10 -6 /yr - 10 -8 /yr with a recommended value of 4x10 -7 /yr for dissolved hydrogen concentrations above 10 -3 M and Fe(II) concentrations typical for European repository concepts. Finally, based on a review of the experimental data and available literature data, potential mechanisms of the hydrogen effect are also discussed. The work reported in this document was performed as part of the Project SFS of the European Commission 5th Framework Programme under contract no FIKW-CT-2001-20192 SFS. It represents the deliverable D10 of the experimental work package 'Key experiments using a-doped UO 2 and real spent fuel', coordinated by SKB with the participation of ITU, FZK-INE, ENRESA, CIEMAT, ARMINES-SUBATECH and SKB

  4. Study on material attractiveness aspect of spent nuclear fuel of LWR and FBR cycles based on isotopic plutonium production

    International Nuclear Information System (INIS)

    Permana, Sidik; Suzuki, Mitsutoshi; Saito, Masaki; Novitrian,; Waris, Abdul; Suud, Zaki

    2013-01-01

    Highlights: • The paper analyzes the plutonium production of recycling nuclear fuel option. • To evaluate material attractiveness based on intrinsic feature of material barrier. • Evaluation based on isotopic plutonium composition of spent fuel LWR and FBR. • Even mass number of plutonium gives a significant contribution to material barrier, in particular Pu-238 and Pu-240. • Doping MA in FBR blanket is effective to increase material barrier from weapon grade plutonium to more than MOX fuel grade. - Abstract: Recycling minor actinide (MA) as well as used uranium and plutonium can be considered to reduce nuclear waste production as well as to increase the intrinsic aspect of nuclear nonproliferation as doping material. Plutonium production as a significant aspect of recycling nuclear fuel option, gives some advantages and challenges, such as fissile material utilization of plutonium as well as production of some even mass number plutonium. The study intends to evaluate the material attractiveness based on the intrinsic feature of material barrier such as plutonium composition, decay heat and spontaneous fission neutron components from spent fuel (SF) light water reactor (LWR) and fast breeder reactor (FBR) cycles. A significant contribution has been shown by decay heat (DH) and spontaneous fission neutron (SFN) of even mass number of plutonium isotopes to the total DH and SFN of plutonium element, in particular from isotopic plutonium Pu-238 and Pu-240 contributions. Longer decay cooling time and higher burnup are effective to increase the material barrier (DH and SFN) level from reactor grade plutonium level to MOX grade plutonium level. Material barrier of plutonium element from spent fuel (SF) FBR in the core regions has similarity to the material barrier profile of SF LWR which can be categorized as MOX fuel grade plutonium. Plutonium compositions, DH and SFN components are categorized as weapon grade plutonium level for FBR blanket regions with no

  5. Development of a FBR fuel bundle-duct interaction analysis code-BAMBOO. Analysis model and verification by Phenix high burn-up fuel subassemblies

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Ito, Masahiro; Ukai, Shigeharu

    2005-01-01

    The bundle-duct interaction analysis code ''BAMBOO'' has been developed for the purpose of predicting deformation of a wire-wrapped fuel pin bundle of a fast breeder reactor (FBR). The BAMBOO code calculates helical bowing and oval-distortion of all the fuel pins in a fuel subassembly. We developed deformation models in order to precisely analyze the irradiation induced deformation by the code: a model to analyze fuel pin self-bowing induced by circumferential gradient of void swelling as well as thermal expansion, and a model to analyze dispersion of the orderly arrangement of a fuel pin bundle. We made deformation analyses of high burn-up fuel subassemblies in Phenix reactor and compared the calculated results with the post irradiation examination data of these subassemblies for the verification of these models. From the comparison we confirmed that the calculated values of the oval-distortion and bowing reasonably agreed with the PIE results if these models were used in the analysis of the code. (author)

  6. MOX in reactors: present and future

    International Nuclear Information System (INIS)

    Arslan, Marc; Gros, Jean Pierre; Niquille, Aurelie; Marincic, Alexis

    2010-01-01

    In Europe, MOX fuel has been supplied by AREVA for more than 30 years, to 36 reactors: 21 in France, 10 in Germany, 3 in Switzerland, 2 in Belgium. For the present and future, recycling is compulsory in the frame of sustainable development of nuclear energy. By 2030 the overall volume of used fuel will reach about 400 000 t worldwide. Their plutonium and uranium content represents a huge resource of energy to recycle. That is the reason why, the European Utilities issued an EUR (European Utilities Requirement) demanding new builds reactors to be able of using MOX Fuel Assemblies in up to 50 % of the core. AREVA GEN3+ reactors, like EPR TM or ATMEA TM designed with MHI partnership, are designed to answer any utility need of MOX recycling. The example of the EPR TM reactor operated with 100 % MOX core optimized for MOX recycling will be presented. A standard EPR TM can be operated with 100 % MOX core using an advanced homogeneous MOX (single Pu content) with highly improved performances (burn-up and Cycle length). The adaptations needed and the main operating and safety reactor features will be presented. AREVA offers the utilities throughout the world, fuel supply (UO 2 , ERU, MOX), and reactors designed with all the needed capability for recycling. For each country and each utility, an adapted global solution, competitive and non proliferant can be proposed. (authors)

  7. MOX use in PWRs. EDF operation experience

    International Nuclear Information System (INIS)

    Provost, Jean-Luc; Debes, Michel

    2011-01-01

    From the origin, EDF back-end fuel cycle strategy has focused on 'closing the fuel cycle', in other words integrating fuel reprocessing, with vitrification of high level waste concentrated within small volumes, and the recycling of valuable materials. The implementation of this policy was marked in 1987 by the first loading of sixteen MOX. By December 2010, 20 reactors have been loaded with 1750 tHM of MOX. EDF current strategy is to match the reprocessing program with MOX manufacturing capacity to limit the quantity of separated plutonium. This is routinely called the 'flow ad-equation' strategy. Currently, the MOX Parity core management achieves balance of MOX and UOX performance with a significant increase of the MOX discharge burn-up. Globally, the behavior under irradiation of MOX fuel assemblies has been satisfactory. So far, from the beginning of MOX use in EDF PWRs, only 6 MOX FAs with rod leakage have been identified, which gives a very satisfactory level of reliability. The industrial maturity of MOX fuel, with increased performances, allows the improvement of nuclear KWh competitiveness and of the plant operation performance, while maintaining in operation the same safety level, without significant impact on environment and radiological protection. (author)

  8. A study on adsorption onto TODGA resin after electrolytic reduction in ERIX process for reprocessing spent FBR-MOX fuel

    International Nuclear Information System (INIS)

    Hoshi, Harutaka; Arai, Tsuyoshi; Wei, Yuezhou; Kumagai, Mikio; Asakura, Toshihide; Morita, Yasuji

    2005-01-01

    For reprocessing spent FBR-MOX fuel, an advanced aqueous reprocessing process ''ERIX process'' has been developed. In this system, hydrazine is used as reduction holding reagent for the valance adjustment of U by electrolytic reduction in nitric acid solution. Therefore, hydrazine is contained in high level liquid waste after separation of U, Pu and Np. Effect of hydrazine on adsorption of FP onto TODGA resin was examined. When hydrazine concentration was less than 0.3 M, effect on the distribution coefficient was negligibly small. After electrolytic reduction, some elements exist as lower valence state. Ru and Tc are most difficult elements to control their behavior in aqueous process. The distribution coefficient of both Ru and Tc onto TODGA decreased after electrolytic reduction, because they are reduced to lower valence. Hence, it is difficult for Ru or Tc to diffuse to allover the process and separation of MA from Tc and Ru was enhanced by electrolytic reduction. (author)

  9. Experience from start-ups of the first ANITA Mox plants.

    Science.gov (United States)

    Christensson, M; Ekström, S; Andersson Chan, A; Le Vaillant, E; Lemaire, R

    2013-01-01

    ANITA™ Mox is a new one-stage deammonification Moving-Bed Biofilm Reactor (MBBR) developed for partial nitrification to nitrite and autotrophic N-removal from N-rich effluents. This deammonification process offers many advantages such as dramatically reduced oxygen requirements, no chemical oxygen demand requirement, lower sludge production, no pre-treatment or requirement of chemicals and thereby being an energy and cost efficient nitrogen removal process. An innovative seeding strategy, the 'BioFarm concept', has been developed in order to decrease the start-up time of new ANITA Mox installations. New ANITA Mox installations are started with typically 3-15% of the added carriers being from the 'BioFarm', with already established anammox biofilm, the rest being new carriers. The first ANITA Mox plant, started up in 2010 at Sjölunda wastewater treatment plant (WWTP) in Malmö, Sweden, proved this seeding concept, reaching an ammonium removal rate of 1.2 kgN/m³ d and approximately 90% ammonia removal within 4 months from start-up. This first ANITA Mox plant is also the BioFarm used for forthcoming installations. Typical features of this first installation were low energy consumption, 1.5 kW/NH4-N-removed, low N₂O emissions, started up at Sundets WWTP in Växjö, Sweden, reached full capacity with more than 90% ammonia removal within 2 months from start-up. By applying a nitrogen loading strategy to the reactor that matches the capacity of the seeding carriers, more than 80% nitrogen removal could be obtained throughout the start-up period.

  10. High burn-up structure in nuclear fuel: impact on fuel behavior - 4005

    International Nuclear Information System (INIS)

    Noirot, J.; Pontillon, Y.; Zacharie-Aubrun, I.; Hanifi, K.; Bienvenu, P.; Lamontagne, J.; Desgranges, L.

    2016-01-01

    When UO 2 and (U,Pu)O 2 fuels locally reach high burn-up, a major change in the microstructure takes place. The initial grains are replaced by thousands of much smaller grains, fission gases form micrometric bubbles and metallic fission products form precipitates. This occurs typically at the rim of the pellets and in heterogeneous MOX fuel Pu rich agglomerates. The high burn-up at the rim of the pellets is due to a high capture of epithermal neutrons by 238 U leading locally to a higher concentration of fissile Pu than in the rest of the pellet. In the heterogeneous MOX fuels, this rim effect is also active, but most of the high burn-up structure (HBS) formation is linked to the high local concentration of fissile Pu in the Pu agglomerates. This Pu distribution leads to sharp borders between HBS and non-HBS areas. It has been shown that the size of the new grains, of the bubbles and of the precipitates increase with the irradiation local temperatures. Other parameters have been shown to have an influence on the HBS initiation threshold, such as the irradiation density rate, the fuel composition with an effect of the Pu presence, but also of the Gd concentration in poisoned fuels, some of the studied additives, like Cr, and, maybe some of the impurities. It has been shown by indirect and direct approaches that HBS formation is not the main contributor to the increase of fission gas release at high burn-up and that the HBS areas are not the main source of the released gases. The impact of HBS on the fuel behavior during ramp on high burn-up fuels is still unclear. This short paper is followed by the slides of the presentation

  11. The effect of dissolved hydrogen on the dissolution of {sup 233}U doped UO{sub 2}(s) high burn-up spent fuel and MOX fuel

    Energy Technology Data Exchange (ETDEWEB)

    Carbol, P. [Inst. for Transuranium Elements, Karlsruhe (Germany); Spahiu, K. (ed.) [and others

    2005-03-01

    In this report the results of the experimental work carried out in a large EU-research project (SFS, 2001-2004) on spent fuel stability in the presence of various amounts of near field hydrogen are presented. Studies of the dissolution of {sup 233}U doped UO{sub 2}(s) simulating 'old' spent fuel were carried out as static leaching tests, autoclave tests with various hydrogen concentrations and electrochemical tests. The results of the leaching behaviour of a high burn-up spent fuel pellet in 5 M NaCl solutions in the presence of 3.2 bar H{sub 2} pressure and of MOX fuel in dilute synthetic groundwater under 53 bar H{sub 2} pressure are also presented. In all the experimental studies carried out in this project, a considerable effect of hydrogen in the dissolution rates of radioactive materials was observed. The experimental results obtained in this project with a-doped UO{sub 2}, high burn-up spent fuel and MOX fuel together with literature data give a reliable background to use fractional alteration/dissolution rates for spent fuel of the order of 10{sup -6}/yr - 10{sup -8}/yr with a recommended value of 4x10{sup -7}/yr for dissolved hydrogen concentrations above 10{sup -3} M and Fe(II) concentrations typical for European repository concepts. Finally, based on a review of the experimental data and available literature data, potential mechanisms of the hydrogen effect are also discussed. The work reported in this document was performed as part of the Project SFS of the European Commission 5th Framework Programme under contract no FIKW-CT-2001-20192 SFS. It represents the deliverable D10 of the experimental work package 'Key experiments using a-doped UO{sub 2} and real spent fuel', coordinated by SKB with the participation of ITU, FZK-INE, ENRESA, CIEMAT, ARMINES-SUBATECH and SKB.

  12. The effect of dissolved hydrogen on the dissolution of {sup 233}U doped UO{sub 2}(s) high burn-up spent fuel and MOX fuel

    Energy Technology Data Exchange (ETDEWEB)

    Carbol, P [Inst. for Transuranium Elements, Karlsruhe (Germany); Spahiu, K [and others

    2005-03-01

    In this report the results of the experimental work carried out in a large EU-research project (SFS, 2001-2004) on spent fuel stability in the presence of various amounts of near field hydrogen are presented. Studies of the dissolution of {sup 233}U doped UO{sub 2}(s) simulating 'old' spent fuel were carried out as static leaching tests, autoclave tests with various hydrogen concentrations and electrochemical tests. The results of the leaching behaviour of a high burn-up spent fuel pellet in 5 M NaCl solutions in the presence of 3.2 bar H{sub 2} pressure and of MOX fuel in dilute synthetic groundwater under 53 bar H{sub 2} pressure are also presented. In all the experimental studies carried out in this project, a considerable effect of hydrogen in the dissolution rates of radioactive materials was observed. The experimental results obtained in this project with a-doped UO{sub 2}, high burn-up spent fuel and MOX fuel together with literature data give a reliable background to use fractional alteration/dissolution rates for spent fuel of the order of 10{sup -6}/yr - 10{sup -8}/yr with a recommended value of 4x10{sup -7}/yr for dissolved hydrogen concentrations above 10{sup -3} M and Fe(II) concentrations typical for European repository concepts. Finally, based on a review of the experimental data and available literature data, potential mechanisms of the hydrogen effect are also discussed. The work reported in this document was performed as part of the Project SFS of the European Commission 5th Framework Programme under contract no FIKW-CT-2001-20192 SFS. It represents the deliverable D10 of the experimental work package 'Key experiments using a-doped UO{sub 2} and real spent fuel', coordinated by SKB with the participation of ITU, FZK-INE, ENRESA, CIEMAT, ARMINES-SUBATECH and SKB.

  13. Achieving High Burnup Targets With Mox Fuels: Techno Economic Implications

    International Nuclear Information System (INIS)

    Clement Ravi Chandar, S.; Sivayya, D.N.; Puthiyavinayagam, P.; Chellapandi, P.

    2013-01-01

    For a typical MOX fuelled SFR of power reactor size, Implications due to higher burnup have been quantified. Advantages: – Improvement in the economy is seen upto 200 GWd/ t; Disadvantages: – Design changes > 150 GWd/ t bu; – Need for 8/ 16 more fuel SA at 150/ 200 GWd/ t bu; – Higher enrichment of B 4 C in CSR/ DSR at higher bu; – Reduction in LHR may be required at higher bu; – Structural material changes beyond 150 GWd/ t bu; – Reprocessing point of view-Sp Activity & Decay heat increase. Need for R & D is a must before increasing burnup. bu- refers burnup. Efforts to increase MOX fuel burnup beyond 200 GWd/ t may not be highly lucrative; • MOX fuelled FBR would be restricted to two or four further reactors; • Imported MOX fuelled FBRs may be considered; • India looks towards launching metal fuel FBRs in the future. – Due to high Breeding Ratio; – High burnup capability

  14. Scenario study on the FBR deployment

    International Nuclear Information System (INIS)

    Ono, Kiyoshi; Kofuji, Hirohide; Otaki, Akira; Yonezawa, Shigeaki; Shinoda, Yoshihiko; Hirao, Kazunori; Ikegami, Tetsuo

    2000-12-01

    This study on success scenarios for the Fast Breeder Reactor (FBR) deployment was performed taking account of future situation of fossil, renewable and nuclear energies in Japan as well as the world from the viewpoints of the following four items; economics, environment, energy security and restriction of natural uranium resources. In the economics scenario, if carbon tax is added to generating cost of LNG, coal and oil and the economics of FBR cycle is competitive with LWR cycle in the future, FBR cycle will be expected to introduce as the middle and base load power plant. In the environment scenario, there is also any possibility that FBR cycle which can burn and transmute minor actinide and fission product elements will be introduced in order to reduce the burden of deposit facility and the toxicity of high-level waste. In the uranium resources restriction scenario, FBR cycle needs to be deployed at the latest in the middle of 21st century from the viewpoint of the restriction of natural uranium resources. This study was carried out in a part of JNC's feasibility study on commercialized FBR cycle system. (author)

  15. The role of grain boundary fission gases in high burn-up fuel under reactivity initiated accident conditions

    International Nuclear Information System (INIS)

    Lemoine, F.; Papin, J.; Frizonnet, J.M.; Cazalis, B.; Rigat, H.

    2002-01-01

    In the frame of reactivity-initiated accidents (RIA) studies, the CABRI REP-Na programme is currently performed, focused on high burn-up UO 2 and MOX fuel behaviour. From 1993 to 1998, seven tests were performed with UO 2 fuel and three with MOX fuel. In all these tests, particular attention has been devoted to the role of fission gases in transient fuel behaviour and in clad loading mechanisms. From the analysis of experimental results, some basic phenomena were identified and a better understanding of the transient fission gas behaviour was obtained in relation to the fuel and clad thermo-mechanical evolution in RIA, but also to the initial state of the fuel before the transient. A high burn-up effect linked to the increasing part of grain boundary gases is clearly evidenced in the final gas release, which would also significantly contribute to the clad loading mechanisms. (authors)

  16. Comparative analysis of LWR and FBR spent fuels for nuclear forensics evaluation

    International Nuclear Information System (INIS)

    Permana, Sidik; Suzuki, Mitsutoshi; Su'ud, Zaki

    2012-01-01

    Some interesting issues are attributed to nuclide compositions of spent fuels from thermal reactors as well as fast reactors such as a potential to reuse as recycled fuel, and a possible capability to be manage as a fuel for destructive devices. In addition, analysis on nuclear forensics which is related to spent fuel compositions becomes one of the interesting topics to evaluate the origin and the composition of spent fuels from the spent fuel foot-prints. Spent fuel compositions of different fuel types give some typical spent fuel foot prints and can be estimated the origin of source of those spent fuel compositions. Some technics or methods have been developing based on some science and technological capability including experimental and modeling or theoretical aspects of analyses. Some foot-print of nuclear forensics will identify the typical information of spent fuel compositions such as enrichment information, burnup or irradiation time, reactor types as well as the cooling time which is related to the age of spent fuels. This paper intends to evaluate the typical spent fuel compositions of light water (LWR) and fast breeder reactors (FBR) from the view point of some foot prints of nuclear forensics. An established depletion code of ORIGEN is adopted to analyze LWR spent fuel (SF) for several burnup constants and decay times. For analyzing some spent fuel compositions of FBR, some coupling codes such as SLAROM code, JOINT and CITATION codes including JFS-3-J-3.2R as nuclear data library have been adopted. Enriched U-235 fuel composition of oxide type is used for fresh fuel of LWR and a mixed oxide fuel (MOX) for FBR fresh fuel. Those MOX fuels of FBR come from the spent fuels of LWR. Some typical spent fuels from both LWR and FBR will be compared to distinguish some typical foot-prints of SF based on nuclear forensic analysis.

  17. Comparative analysis of LWR and FBR spent fuels for nuclear forensics evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Permana, Sidik; Suzuki, Mitsutoshi; Su' ud, Zaki [Department of Science and Technology for Nuclear Material Management (STNM), Japan Atomic Energy Agency (JAEA), 2-4 Shirane, Shirakata, Tokai Mura, Naka-gun, Ibaraki 319-1195 Nuclear Physics and Bio (Indonesia); Department of Science and Technology for Nuclear Material Management (STNM), Japan Atomic Energy Agency (JAEA), 2-4 Shirane, Shirakata, Tokai Mura, Naka-gun, Ibaraki 319-1195 (Japan); Nuclear Physics and Bio Physics Research Group, Department of Physics, Bandung Institute of Technology, Gedung Fisika, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2012-06-06

    Some interesting issues are attributed to nuclide compositions of spent fuels from thermal reactors as well as fast reactors such as a potential to reuse as recycled fuel, and a possible capability to be manage as a fuel for destructive devices. In addition, analysis on nuclear forensics which is related to spent fuel compositions becomes one of the interesting topics to evaluate the origin and the composition of spent fuels from the spent fuel foot-prints. Spent fuel compositions of different fuel types give some typical spent fuel foot prints and can be estimated the origin of source of those spent fuel compositions. Some technics or methods have been developing based on some science and technological capability including experimental and modeling or theoretical aspects of analyses. Some foot-print of nuclear forensics will identify the typical information of spent fuel compositions such as enrichment information, burnup or irradiation time, reactor types as well as the cooling time which is related to the age of spent fuels. This paper intends to evaluate the typical spent fuel compositions of light water (LWR) and fast breeder reactors (FBR) from the view point of some foot prints of nuclear forensics. An established depletion code of ORIGEN is adopted to analyze LWR spent fuel (SF) for several burnup constants and decay times. For analyzing some spent fuel compositions of FBR, some coupling codes such as SLAROM code, JOINT and CITATION codes including JFS-3-J-3.2R as nuclear data library have been adopted. Enriched U-235 fuel composition of oxide type is used for fresh fuel of LWR and a mixed oxide fuel (MOX) for FBR fresh fuel. Those MOX fuels of FBR come from the spent fuels of LWR. Some typical spent fuels from both LWR and FBR will be compared to distinguish some typical foot-prints of SF based on nuclear forensic analysis.

  18. MOX fuel use as a back-end option: Trends, main issues and impacts on fuel cycle management

    International Nuclear Information System (INIS)

    Fukuda, K.; Choi, J.-S.; Shani, R.; Durpel, L. van den; Bertel, E.; Sartori, E.

    2000-01-01

    In the past decades while the FBIULWR fuel cycle concept was zealously being developed, MOX-fuel use in thermal reactors was taken as an alternative back-end policy option. However, the plutonium recycling with LWRs has evolved to industrial level, gaining high maturity through the incubative period while FBR deployment was envisaged. Today, MOX-fuel use in LWRs makes integral part of the fuel cycle for those countries relying on the recycling policy. Developments to improve the fuel cycle performance, including the minimisation of remaining wastes, and the reactor engineering aspects owing to MOX-fuel use, are continued. This paper jointly presented by IAEA and OECD/NEA brings an integrated overview on MOX use as a back-end policy, covering MOX fuel utilisation, fuel performance and technology, economics, licensing, MOX fuel trends in the coming decades. (author)

  19. ZZ WPPR-FR-MOX/BNCMK, Benchmark on Pu Burner Fast Reactor

    International Nuclear Information System (INIS)

    Garnier, J.C.; Ikegami, T.

    1993-01-01

    Description of program or function: In order to intercompare the characteristics of the different reactors considered for Pu recycling, in terms of neutron economy, minor actinide production, uranium content versus Pu burning, the NSC Working Party on Physics of Plutonium Recycling (WPPR) is setting up several benchmark studies. They cover in particular the case of the evolution of the Pu quality and Pu fissile content for Pu recycling in PWRs; the void coefficient in PWRs partly fuelled with MOX versus Pu content; the physics characteristics of non-standard fast reactors with breeding ratios around 0.5. The following benchmarks are considered here: - Fast reactors: Pu Burner MOX fuel, Pu Burner metal fuel; - PWRs: MOX recycling (bad quality Pu), Multiple MOX recycling

  20. Fabrication of MOX fuel element clusters for irradiation in PWL, CIRUS

    International Nuclear Information System (INIS)

    Roy, P.R.; Purushotham, D.S.C.; Majumdar, S.

    1983-01-01

    Three clusters, each containing 6 zircaloy-2 clad short length fuel elements of either MOX or UO 2 fuel pellets were fabricated for irradiation in pressurized water loop of CIRUS. The major objectives of the programme were: (a) to optimize the various fabrication parameters for developing a flow sheet for MOX fuel element fabrication; (b) to study the performance of the MOX fuel elements at a peak heat flux of 110 W/cm 2 ; and (c) to study the effect of various fuel pellet design changes on the behaviour of the fuel element under irradiation. Two clusters, one each of UO 2 and MOX, have been successfully irradiated to the required burn-up level and are now awaiting post irradiation examinations. The third MOX cluster is still undergoing irradiation. Fabrication of these fuel elements involved considerable amount of developing work related to the fabrication of the MOX fuel pellets and the element welding technique and is reported in detail in this report. (author)

  1. Investigation on spent fuel characteristics of reduced-moderation water reactor (RMWR)

    International Nuclear Information System (INIS)

    Fukaya, Y.; Okubo, T.; Uchikawa, S.

    2008-01-01

    The spent fuel characteristics of the reduced-moderation water reactor (RMWR) have been investigated using the SWAT and ORIGEN codes. RMWR is an advanced LWR concept for plutonium recycling by using the MOX fuel. In the code calculation, the ORIGEN libraries such as one-group cross-section data prepared for RMWR were necessary. Since there were no open libraries for RMWR, they were produced in this study by using the SWAT code. New libraries based on the heterogeneous core modeling in the axial direction and with the variable actinide cross-section (VXSEC) option were produced and selected as the representative ORIGEN libraries for RMWR. In order to investigate the characteristics of the RMWR spent fuel, the decay heat, the radioactivity and the content of each nuclide were evaluated with ORIGEN using these libraries. In this study, the spent fuel characteristics of other types of reactors, such as PWR, BWR, high burn-up PWR, full-MOX-PWR, full-MOX-BWR and FBR, were also evaluated with ORIGEN. It has been found that about a half of the decay heat of the RMWR spent fuel comes from the actinides nuclides. It is the same with the radioactivity. The decay heat and the radioactivity of the RMWR spent fuel are lower than those of full-MOX-LWRs and FBR, and are the same level as those of the high burn-up PWR. The decay heat and the radioactivity from the fission products (FPs) in the spent fuel mainly depend on the burn-up and the burn-up time rather than the reactor type. Therefore, the decay heat and the radioactivity from FPs in the RMWR spent fuel are smaller, reflecting its relatively long burn-up time resulted from its core characteristics with the high conversion ratio. The radioactivity from the actinides in the spent fuel mainly depends on the 241 Pu content in the initial fuel, and the decay heat mainly depends on 238 Pu and 244 Cm. The contribution of 244 Cm is much smaller in RMWR than in MOX-LWRs because of the difference in the spectrum. In addition, from

  2. Investigation on spent fuel characteristics of reduced-moderation water reactor (RMWR)

    Energy Technology Data Exchange (ETDEWEB)

    Fukaya, Y. [Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency (JAEA), Oarai-machi, Ibaraki-ken 311-1393 (Japan)], E-mail: fukaya.yuji@jaea.go.jp; Okubo, T.; Uchikawa, S. [Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency (JAEA), Oarai-machi, Ibaraki-ken 311-1393 (Japan)

    2008-07-15

    The spent fuel characteristics of the reduced-moderation water reactor (RMWR) have been investigated using the SWAT and ORIGEN codes. RMWR is an advanced LWR concept for plutonium recycling by using the MOX fuel. In the code calculation, the ORIGEN libraries such as one-group cross-section data prepared for RMWR were necessary. Since there were no open libraries for RMWR, they were produced in this study by using the SWAT code. New libraries based on the heterogeneous core modeling in the axial direction and with the variable actinide cross-section (VXSEC) option were produced and selected as the representative ORIGEN libraries for RMWR. In order to investigate the characteristics of the RMWR spent fuel, the decay heat, the radioactivity and the content of each nuclide were evaluated with ORIGEN using these libraries. In this study, the spent fuel characteristics of other types of reactors, such as PWR, BWR, high burn-up PWR, full-MOX-PWR, full-MOX-BWR and FBR, were also evaluated with ORIGEN. It has been found that about a half of the decay heat of the RMWR spent fuel comes from the actinides nuclides. It is the same with the radioactivity. The decay heat and the radioactivity of the RMWR spent fuel are lower than those of full-MOX-LWRs and FBR, and are the same level as those of the high burn-up PWR. The decay heat and the radioactivity from the fission products (FPs) in the spent fuel mainly depend on the burn-up and the burn-up time rather than the reactor type. Therefore, the decay heat and the radioactivity from FPs in the RMWR spent fuel are smaller, reflecting its relatively long burn-up time resulted from its core characteristics with the high conversion ratio. The radioactivity from the actinides in the spent fuel mainly depends on the {sup 241}Pu content in the initial fuel, and the decay heat mainly depends on {sup 238}Pu and {sup 244}Cm. The contribution of {sup 244}Cm is much smaller in RMWR than in MOX-LWRs because of the difference in the spectrum

  3. Method of controlling power distribution in FBR type reactors

    International Nuclear Information System (INIS)

    Sawada, Shusaku; Kaneto, Kunikazu.

    1982-01-01

    Purpose: To attain the power distribution flattening with ease by obtaining a radial power distribution substantially in a constant configuration not depending on the burn-up cycle. Method: As the fuel burning proceeds, the radial power distribution is effected by the accumulation of fission products in the inner blancket fuel assemblies which varies the effect thereof as the neutron absorbing substances. Taking notice of the above fact, the power distribution is controlled in a heterogeneous FBR type reactor by varying the core residence period of the inner blancket assemblies in accordance with the charging density of the inner blancket assemblies in the reactor core. (Kawakami, Y.)

  4. MOX fuel reprocessing and recycling

    International Nuclear Information System (INIS)

    Guillet, J.L.

    1990-01-01

    This paper is devoted to the reprocessing of MOX fuel in UP2-800 plant at La Hague, and to the MOX successive reprocessing and recycling. 1. MOX fuel reprocessing. In a first step, the necessary modifications in UP2-800 to reprocess MOX fuel are set out. Early in the UP2-800 project, actions have been taken to reprocess MOX fuel without penalty. They consist in measures regarding: Dissolution; Radiological shieldings; Nuclear instrumentation; Criticality. 2. Mox successive reprocessing and recycling. The plutonium recycling in the LWR is now a reality and, as said before, the MOX fuel reprocessing is possible in UP2-800 plant at La Hague. The following actions in this field consist in verifying the MOX successive reprocessing and recycling possibilities. After irradiation, the fissile plutonium content of irradiated MOX fuel is decreased and, in this case, the re-use of plutonium in the LWR need an important increase of initial Pu enrichment inconsistent with the Safety reactor constraints. Cogema opted for reprocessing irradiated MOX fuel in dilution with the standard UO2 fuel in appropriate proportions (1 MOX for 4 UO2 fuel for instance) in order to save a fissile plutonium content compatible with MOX successive recycling (at least 3 recyclings) in LWR. (author). 2 figs

  5. MOX fuel irradiation behaviour: Results from X-ray microbeam analysis

    International Nuclear Information System (INIS)

    Walker, C.T.; Goll, W.; Matsumura, T.

    1997-01-01

    The behaviour of plutonium, xenon and caesium were investigated in two sections of irradiated MOX fuel produced by the OCOM process. In one fuel (OCOM30), the MOX agglomerates contained 18 wt% fissile plutonium, and had a low volume fraction of 0.17; in the other (OCOM15) the agglomerates contained 9 wt% fissile plutonium, and had a high volume fraction of 0.34. Both fuels had been irradiated under normal power reactor conditions to a burn-up of approximately 44 GWd/t. The main aim of the work was to establish whether the above differences in composition affected the percentage fission gas released by the fuels. Since U/Pu interdiffusion did not occurred during the irradiation, both fuels remained inhomogeneous on the microscopic scale. However, the concentration of plutonium in the MOX agglomerates decreases by about 50% as a result of fission, whereas the plutonium content of the UO 2 matrix increased by about a factor of four to approximately 2 wt% due to neutron capture by 238 U. The agglomerates in the OCOM15 fuel generally exhibited a finer structure due to the lower burn-up. More than 80% of the fission gas had been released from the oxide lattice of the MOX agglomerates in both fuels. However, a very high fraction of this gas precipitated and remained in the pore structure of the agglomerates. Consequently, puncturing revealed that for both fuels the percentage of gas released to the rod free volume increased from less than 0.5% at 10 GWd/t to a maximum of 3.5% at 45 GWd/t. The conclusion is that the percentage of gas released by MOX fuel is largely unaffected of the level of inhomogeneity of the fuel. In both fuels caesium showed near complete retention in both the MOX agglomerates and the UO 2 matrix. (author). 8 refs, 11 figs, 3 tabs

  6. Top-MOX fuel solution: strategies, challenges, opportunities

    International Nuclear Information System (INIS)

    Breitenstein, P.; Vo Van, V.

    2014-01-01

    TOP-MOX is a nuclear fuel solution and product developed by AREVA and successfully implemented in Europe. It allows utilities burning plutonium (instead of enriched uranium) even when this plutonium is not stemming from own reprocessed used fuel - that is third party plutonium. The important challenges for utilities along with TOP-MOX implementation are legal/patrimonial Pu-ownership issues and general economical aspects. Available sponsorship of such plutonium permits UO2 competitive market prices. For new MOX customers licensing and technical aspects come along. Further AREVA proposes a flexible solution which is called 'TOP-MOX pre-cycling'. This involves making available third party plutonium for fuel fabrication and reactor use pending the utilities' final strategic fuel cycle decision. The paper gives insight into and analyses the impacts of allowing customers the implementation of a TOP-MOX program with focus on Pu-ownership, economics, technical and legal aspects as well as the impact on used MOX management and final waste management. (authors)

  7. Proposal of a nuclear cycle research and development plan in Tokai works. The roadmap from LWR cycle to FBR cycle

    International Nuclear Information System (INIS)

    Nakamura, Hirofumi; Abe, Tomoyuki; Kashimura, Takuo; Nagai, Toshihisa; Maeda, Seichiro; Yamaguchi, Toshiya; Kuroki, Ryoichiro

    2003-07-01

    The Generation-II Project Task Force Team has investigated a research and development plan of a future nuclear fuel cycle in Tokai works for about three months from December 19, 2002. First we have discussed about the present condition of Japanese nuclear fuel cycle and have recognized it as the following. The relation of the technology between the LWR-cycle and the FBR-cycle is not clear. MOX Fuel Use in Light Water Reactors is important to establish technology of the FBR fuel cycle. Radioactive waste disposal issue is urgent. Next we have proposed the three basic policies on R and D plan of nuclear fuel cycle in consideration of the F.S. on FBR-cycle. Establishment and advancement of 'the tough nuclear fuel cycle'. Early establishment of the FBR cycle technology to be able to supply energy stably for long-term. Establishment of the radioactive waste treatment and disposal technology, and optimization of nuclear fuel cycle technology from the viewpoint of radioactive waste. And we have proposed the Japanese technical holder system to integrate all LWR and FBR cycle technology. (author)

  8. Instant release of fission products in leaching experiments with high burn-up nuclear fuels in the framework of the Euratom project FIRST- Nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Lemmens, K., E-mail: klemmens@sckcen.be [Waste and Disposal Expert Group, Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, 2400 Mol (Belgium); González-Robles, E.; Kienzler, B. [Karlsruhe Institute of Technology Institute for Nuclear Waste Disposal (KIT-INE), PO Box 3640, D-76021 Karlsruhe (Germany); Curti, E. [Laboratory for Waste Management, Nuclear Energy and Safety Dept., Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Serrano-Purroy, D. [European Commission, DG Joint Research Centre - JRC, Directorate G - Nuclear Safety & Security, Department G.III, PO Box 2340, D-76125 Karlsruhe (Germany); Sureda, R.; Martínez-Torrents, A. [CTM Centre Tecnològic, Plaça de la Ciència 2, 08243 Manresa (Spain); Roth, O. [Studsvik, Nuclear AB, 611 82 Nyköping (Sweden); Slonszki, E. [Magyar Tudományos Akadémia Energiatudományi Kutatóközpont (MTA EK), PO Box 49, H-1525 Budapest (Hungary); Mennecart, T. [Waste and Disposal Expert Group, Belgian Nuclear Research Centre (SCK-CEN), Boeretang 200, 2400 Mol (Belgium); Günther-Leopold, I. [Laboratory for Waste Management, Nuclear Energy and Safety Dept., Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Hózer, Z. [Magyar Tudományos Akadémia Energiatudományi Kutatóközpont (MTA EK), PO Box 49, H-1525 Budapest (Hungary)

    2017-02-15

    The instant release of fission products from high burn-up UO{sub 2} fuels and one MOX fuel was investigated by means of leach tests. The samples covered PWR and BWR fuels at average rod burn-up in the range of 45–63 GWd/t{sub HM} and included clad fuel segments, fuel segments with opened cladding, fuel fragments and fuel powder. The tests were performed with sodium chloride – bicarbonate solutions under oxidizing conditions and, for one test, in reducing Ar/H{sub 2} atmosphere. The iodine and cesium release could be partially explained by the differences in sample preparation, leading to different sizes and properties of the exposed surface areas. Iodine and cesium releases tend to correlate with FGR and linear power rating, but the scatter of the data is significant. Although the gap between the fuel and the cladding was closed in some high burn-up samples, fissures still provide possible preferential transport pathways. - Highlights: • Leach tests were performed to study the instant release of fission products from high burn-up UO{sub 2} fuels and one MOX fuel. • In these tests, the fission gas release given by the operator was a pessimistic estimator of the iodine and cesium release. • Iodine and cesium release is proportional to linear power rating beyond 200 W cm{sup −1}. • Closure of the fuel-cladding gap at high burn-up slows down the release. • The release rate decreases following an exponential equation.

  9. Burn of actinides in MOX fuel cells

    International Nuclear Information System (INIS)

    Martinez C, E.; Ramirez S, J. R.; Alonso V, G.

    2017-09-01

    The spent fuel from nuclear reactors is stored temporarily in dry repositories in many countries of the world. However, the main problem of spent fuel, which is its high radio-toxicity in the long term, is not solved. A new strategy is required to close the nuclear fuel cycle and for the sustain ability of nuclear power generation, this strategy could be the recycling of plutonium to obtain more energy and recycle the actinides generated during the irradiation of the fuel to transmute them in less radioactive radionuclides. In this work we evaluate the quantities of actinides generated in different fuels and the quantities of actinides that are generated after their recycling in a thermal reactor. First, we make a reference calculation with a regular enriched uranium fuel, and then is changed to a MOX fuel, varying the plutonium concentrations and determining the quantities of actinides generated. Finally, different amounts of actinides are introduced into a new fuel and the amount of actinides generated at the end of the fuel burn is calculated, in order to determine the reduction of minor actinides obtained. The results show that if the concentration of plutonium in the fuel is high, then the production of minor actinides is also high. The calculations were made using the cell code CASMO-4 and the results obtained are shown in section 6 of this work. (Author)

  10. Vver-1000 Mox core computational benchmark

    International Nuclear Information System (INIS)

    2006-01-01

    The NEA Nuclear Science Committee has established an Expert Group that deals with the status and trends of reactor physics, fuel performance and fuel cycle issues related to disposing of weapons-grade plutonium in mixed-oxide fuel. The objectives of the group are to provide NEA member countries with up-to-date information on, and to develop consensus regarding, core and fuel cycle issues associated with burning weapons-grade plutonium in thermal water reactors (PWR, BWR, VVER-1000, CANDU) and fast reactors (BN-600). These issues concern core physics, fuel performance and reliability, and the capability and flexibility of thermal water reactors and fast reactors to dispose of weapons-grade plutonium in standard fuel cycles. The activities of the NEA Expert Group on Reactor-based Plutonium Disposition are carried out in close co-operation (jointly, in most cases) with the NEA Working Party on Scientific Issues in Reactor Systems (WPRS). A prominent part of these activities include benchmark studies. At the time of preparation of this report, the following benchmarks were completed or in progress: VENUS-2 MOX Core Benchmarks: carried out jointly with the WPRS (formerly the WPPR) (completed); VVER-1000 LEU and MOX Benchmark (completed); KRITZ-2 Benchmarks: carried out jointly with the WPRS (formerly the WPPR) (completed); Hollow and Solid MOX Fuel Behaviour Benchmark (completed); PRIMO MOX Fuel Performance Benchmark (ongoing); VENUS-2 MOX-fuelled Reactor Dosimetry Calculation (ongoing); VVER-1000 In-core Self-powered Neutron Detector Calculational Benchmark (started); MOX Fuel Rod Behaviour in Fast Power Pulse Conditions (started); Benchmark on the VENUS Plutonium Recycling Experiments Configuration 7 (started). This report describes the detailed results of the benchmark investigating the physics of a whole VVER-1000 reactor core using two-thirds low-enriched uranium (LEU) and one-third MOX fuel. It contributes to the computer code certification process and to the

  11. Studies on the dissolution of mixed oxide spent fuel from FBR

    International Nuclear Information System (INIS)

    Nemoto, Shin-ichi; Shibata, Atsuhiro; Shioura, Takao; Okamoto, Fumitoshi; Tanaka, Yasumasa

    1995-01-01

    At the Chemical Processing Facility(CPF) in the Tokai Works of the Power Reactor and Nuclear Fuel Development Corporation(PNC), since 1982 Laboratory scale hot experiments have been carried out on the development of reprocessing technology for FBR mixed oxide fuel. The spent fuel pins which have been used in out experiments were irradiated in Experimental Fast Reactor 'Joyo' Phenix (France) and DFR(UK). Burn-up of the fuel pins were 4,400-100,000 MWd/t. This paper Summarizes a dissolution study that have been performed to define the Key parameters affecting dissolution rate such as concentration of nitric acid, burn-up, and temperature. And this paper also discusses about the character of releasing 85 Kr in chopping and dissolution process, and about the amount of insoluble residue. (author)

  12. Development of a standard data base for FBR core nuclear design. 9. Analysis of FCA XVII-1 experiments

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Ishikawa, Makoto; Oigawa, Hiroyuki; Iijima, Susumu

    1998-10-01

    Pnc had developed the adjusted nuclear cross-section library in which the results of the Jupiter experiments were reflected. Using this adjusted library, the distinct improvement of the accuracy in nuclear design of Fbr cores had been achieved. As a recent research, JNC develops a database of other integral data in addition to the JUPITER experiments, aiming at further improvement for accuracy and reliability. In this report, the authors describe the evaluation of the C/E values and the sensitivity analysis for FCA XVII-1 assembly. FCA XVII-1 is a representative mock-up of a MOX fuel sodium cooling FBR core. The criticality, reaction rate ratio, sodium void reactivity worth and 238 U Doppler reactivity worth of FCA XVII-1 were analyzed. The results of C/E values calculated by the standard analytical method for JUPITER experiments are similar to those calculated by the method of JAERI, except for the sodium void reactivity. So, further investigation for sodium void reactivity is necessary. Furthermore, sensitivity analysis shows the characteristics of FCA XVII-1 in comparison with ZPPR-9. (author)

  13. Thermal conductivity of heterogeneous LWR MOX fuels

    Science.gov (United States)

    Staicu, D.; Barker, M.

    2013-11-01

    was observed for hypostoichiometric fuels, that correspond to the condition used for irradiation. However, if these two formulas are evaluated for O/M = 2.000, the difference between the predictions is negligible (Fig. 1). The difference becomes significant for non-stoichiometric fuels, as shown for O/M = 1.975 in Fig. 1. The microstructure of the FBR fuel with 21.4 wt.% Pu was not described in the paper of Duriez. Taking into account the rigorous experimental methodology used by Duriez (characterisation of the stoichiometry), a possible explanation is an interaction between the plutonium distribution and the stoichiometry. Another parameter having a strong impact on the conductivity is the porosity correction used to obtain the values for 95% TD. This correction is small in the work of Duriez as the samples density is very close to 95% TD. This was also the case for the samples selected by Philipponneau in order to obtain his recommendation. An effect due to differences in the pores shape can also be excluded, as the results are identical for stoichiometric fuels (Fig. 1). Usually the apparent stoichiometry is obtained by heat treatments and checked before and after the measurements, either by XRD or thermogravimetry. However, for non-perfectly homogeneous samples, the gradients in the plutonium distribution induce a non-uniform oxygen distribution, which is difficult to characterise experimentally. It has been proposed by Baron that the deviation from stoichiometry is the main cause for the differences observed between fresh UO2 and MOX [14,15], this effect is quantified in the next section. In the first model ("Model 1"), the effect of Pu is neglected over the entire relevant Pu compositions range (up to 24 wt.% PuO2), and a correlation obtained for non-stoichiometric homogeneous (U,Pu)O2 is used. In the second model ("Model 2", the effect of Pu is supposed to be present at all compositions, with the stoichiometry effect. The thermal conductivity is described by

  14. Developments in MOX fuel pellet fabrication technology: Indian experience

    International Nuclear Information System (INIS)

    Kamath, H.S.; Majumdar, S.; Purusthotham, D.S.C.

    1998-01-01

    India is interested in mixed oxide (MOX) fuel technology for better utilisation of its nuclear fuel resources. In view of this, a programme involving MOX fuel design, fabrication and irradiation in research and power reactors has been taken up. A number of experimental irradiations in research reactors have been carried out and a few MOX assemblies of ''All Pu'' type have been loaded in our commercial BWRs at Tarapur. An island type of MOX fuel design is under study for use in PHWRs which can increase the burn-up of the fuel by more than 30% compared to natural UO 2 fuel. The MOX fuel pellet fabrication technology for the above purpose and R and D efforts in progress for achieving better fuel performance are described in the paper. The standard MOX fuel fabrication route involves mechanical mixing and milling of UO 2 and PuO 2 powders. After detailed investigations with several types of mixing and milling equipments, dry attritor milling has been found to be the most suitable for this operation. Neutron Coincident Counting (NCC) technique was found to be the most convenient and appropriate technique for quick analysis of Pu content in milled MOX powder and to know Pu mixing is homogenous or not. Both mechanical and hydraulic presses have been used for powder compaction for green pellet production although the latter has been preferred for better reproducibility. Low residue admixed lubricants have been used to facilitate easy compaction. The normal sintering temperature used in Nitrogen-Hydrogen atmosphere is between 1600 deg. C to 1700 deg. C. Low temperature sintering (LTS) using oxidative atmospheres such as carbon dioxide, Nitrogen and coarse vacuum have also been investigated on UO 2 and MOX on experimental scale and irradiation behaviour of such MOX pellets is under study. Ceramic fibre lined batch furnaces have been found to be the most suitable for MOX pellet production as they offer very good flexibility in sintering cycle, and ease of maintainability

  15. Design of full MOX core in ABWR

    International Nuclear Information System (INIS)

    Kinoshita, Y.; Hirose, T.; Sasagawa, M.; Sakuma, T

    1999-01-01

    A Full MOX-ABWR, loaded with mixed-oxide (MOX) fuels of up to 100% of the core, is planned. Increased MOX fuel utilization will result in greater savings of uranium. Studies on the fuel rod thermal-mechanical design, the core design and the safety evaluation have been made, and the results are summarized in this paper. To sum it all up, the safety of the Full MOX-ABWR has been confirmed through design evaluations adequately considering the MOX fuel and core characteristics. (author)

  16. Transport of fresh MOX fuel assemblies for the Monju initial core

    International Nuclear Information System (INIS)

    Kurakami, J.; Ouchi, Y.; Usami, M.

    1997-01-01

    Transport of fresh MOX fuel assemblies for the prototype FBR MONJU initial core started in July 1992 and ended in March 1994. As many as 205 fresh MOX fuel assemblies for an inner core, 91 assemblies for an outer core and 5 assemblies for testing) were transported in nine transport missions. The packaging for fuel assemblies, which has shielding and shock absorbing material inside, meets IAEA regulatory requirements for Type B(U) packaging including hypothetical accident conditions such as the 9 m drop test, fire test, etc. Moreover, this package design feature such advanced technologies as high performance neutron shielding material and an automatic hold-down mechanism for the fuel assemblies. Every effort was made to carry out safe transport in conjunction with the cooperation of every competent organisation. This effort includes establishment of the transport control centre, communication training, and accompanying of the radiation monitoring expert. No transport accident occurred during the transport and all the transport missions were successfully completed on schedule. (Author)

  17. Burn of actinides in MOX fuel cells; Quemado de actinidos en celdas de combustible MOX

    Energy Technology Data Exchange (ETDEWEB)

    Martinez C, E.; Ramirez S, J. R.; Alonso V, G., E-mail: eduardo.martinez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2017-09-15

    The spent fuel from nuclear reactors is stored temporarily in dry repositories in many countries of the world. However, the main problem of spent fuel, which is its high radio-toxicity in the long term, is not solved. A new strategy is required to close the nuclear fuel cycle and for the sustain ability of nuclear power generation, this strategy could be the recycling of plutonium to obtain more energy and recycle the actinides generated during the irradiation of the fuel to transmute them in less radioactive radionuclides. In this work we evaluate the quantities of actinides generated in different fuels and the quantities of actinides that are generated after their recycling in a thermal reactor. First, we make a reference calculation with a regular enriched uranium fuel, and then is changed to a MOX fuel, varying the plutonium concentrations and determining the quantities of actinides generated. Finally, different amounts of actinides are introduced into a new fuel and the amount of actinides generated at the end of the fuel burn is calculated, in order to determine the reduction of minor actinides obtained. The results show that if the concentration of plutonium in the fuel is high, then the production of minor actinides is also high. The calculations were made using the cell code CASMO-4 and the results obtained are shown in section 6 of this work. (Author)

  18. MOX fuel fabrication technology in J-MOX

    International Nuclear Information System (INIS)

    Osaka, Shuichi; Yoshida, Ryouichi; Yamazaki, Yukiko; Ikeda, Hiroyuki

    2014-01-01

    Japan Nuclear Fuel Ltd. (JNFL) has constructed JNFL MOX Fuel Fabrication Plant (J-MOX) since 2010. The MIMAS process has been introduced in the powder mixing process from AREVA NC considering a lot of MOX fuel fabrication experiences at MELOX plant in France. The feed material of Pu for J-MOX is MH-MOX powder from Rokkasho Reprocessing Plant (RRP) in Japan. The compatibility of the MH-MOX powder with the MIMAS process was positively evaluated and confirmed in our previous study. This paper describes the influences of the UO2 powder and the recycled scrap powder on the MOX pellet density. (author)

  19. Safeguards on MOX assemblies at LWRs

    International Nuclear Information System (INIS)

    Arenas Carrasco, J.; Koulikov, I.; Heinonen, O.J.; Arlt, R.; Grigoleit, K.; Clarke, R.; Swinhoe, M.

    2000-01-01

    sought to optimise inspection efforts. State of the art technology in containment and surveillance devices and systems, as well as ongoing developments in NDA techniques have proven feasible for implementing an integrated safeguards approach in these types of facilities. In an unattended mode of safeguards, it is proposed to survey the loading of unirradiated MOX assemblies in complex design facilities using gate monitors (radiation detectors) combined with digital surveillance. This decreases the probability of failure of containment and surveillance during refuelling periods and reduces the manpower effort of the inspectorate. If there is a loss of continuity of knowledge during loading of MOX assemblies, it is proposed that NDA techniques be implemented, based on gamma spectrometry and neutron yield measurements to differentiate irradiated MOX from irradiated LEU assemblies. One such technique which is under development employs a high resolution CdZnTe, SPD 3 10 Z 205 which uses the neutron emission relative to burn-up (Cs-137 signal) to differentiate between irradiated MOX and LEU assemblies. This assures that MOX loading has occurred and re-establishes the continuity of knowledge. (author)

  20. Analysis of LWR Full MOX Core Physics Experiments with Major Nuclear Data Libraries

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Toru [Japan Nuclear Energy Safety Organization, Tokyo (Japan)

    2007-07-01

    Nuclear Power Engineering Corporation (NUPEC) studied high moderation full MOX cores as a part of advanced LWR core concept studies from 1994 to 2003 supported by the Ministry of Economy, Trade and Industry. In order to obtain the major physics characteristics of such advanced MOX cores, NUPEC carried out core physics experimental programs called MISTRAL and BASALA from 1996 to 2002 in the EOLE critical facility of the Cadarache Center in collaboration with CEA. NUPEC also obtained a part of experimental data of the EPICURE program that CEA had conducted for 30 % Pu recycling in French PWRs. Japan Nuclear Energy Safety Organization(JNES) established in 2003 as an incorporated administrative agency took over the NUPEC's projects for nuclear regulation and has been implementing FUBILA program that is for high burn up BWR full MOX cores. This paper presents an outline of the programs and a summary of the analysis results of the criticality of those experimental cores with major nuclear data libraries.

  1. Accurate reactivity void coefficient calculation for the fast spectrum reactor FBR-IME

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Fabiano P.C.; Vellozo, Sergio de O.; Velozo, Marta J., E-mail: fabianopetruceli@outlook.com, E-mail: vellozo@cbpf.br, E-mail: martajann@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia Militar

    2017-07-01

    This paper aims to present an accurate calculation of the void reactivity coefficient for the FBR-IME, a fast spectrum reactor in development at the Engineering Military Institute (IME). The main design peculiarity lies in using mixed oxide [MOX - PuO{sub 2} + U(natural uranium)O{sub 2}] as fuel core. For this task, SCALE system was used to calculate the reactivity for several voids distributions generated by bubbles in the sodium beyond its boiling point. The results show that although the void reactivity coefficient is positive and location dependent, they are offset by other feedback effects, resulting in a negative overall coefficient. (author)

  2. VENUS-2 MOX Core Benchmark: Results of ORNL Calculations Using HELIOS-1.4

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, RJ

    2001-02-02

    The Task Force on Reactor-Based Plutonium Disposition, now an Expert Group, was set up through the Organization for Economic Cooperation and Development/Nuclear Energy Agency to facilitate technical assessments of burning weapons-grade plutonium mixed-oxide (MOX) fuel in U.S. pressurized-water reactors and Russian VVER nuclear reactors. More than ten countries participated to advance the work of the Task Force in a major initiative, which was a blind benchmark study to compare code benchmark calculations against experimental data for the VENUS-2 MOX core at SCK-CEN in Mol, Belgium. At the Oak Ridge National Laboratory, the HELIOS-1.4 code was used to perform a comprehensive study of pin-cell and core calculations for the VENUS-2 benchmark.

  3. A plan of reactor physics experiments for reduced-moderation water reactors with MOX fuel in TCA

    International Nuclear Information System (INIS)

    Shimada, Shoichiro; Akie, Hiroshi; Suzaki, Takenori; Okubo, Tutomu; Usui, Shuji; Shirakawa, Toshihisa; Iwamura, Takamiti; Kugo, Teruhiko; Ishikawa, Nobuyuki

    2000-06-01

    The Reduced-Moderation Water Reactor (RMWR) is one of the next generation water-cooled reactors which aim at effective utilization of uranium resource, high burn-up, long operation cycle, and plutonium multi-recycle. For verification of the feasibility, negative void reactivity coefficient and conversion ratio more than 1.0 must be confirmed. Critical Experiments performed so far in Eualope and Japan were reviewed, and no useful data are available for RMWR development. Critical experiments using TCA (Tank Type Critical Assembly) in JAERI are planned. MOX fuel rods should be prepared for the experiments and some modifications of the equipment are needed for use of MOX fuel rods. This report describes the preliminary plan of physics experiments. The number of MOX fuel rods used in the experiments are obtained by calculations and the modification of the equipment for the experiments are shown. (author)

  4. Analysis of a MOX-UO2 interface by the method of characteristics

    International Nuclear Information System (INIS)

    Chetaine, A.; Erradi, L.; Sanchez, R.; Zmijarevic, I.; Aniel-Buchheit, S.

    2005-01-01

    In the last few years many studies have been done to improve the ability of core reactors (PWR and BWR) to burn Plutonium fuel, either in mixed UO 2 /MOX pattern or full MOX pattern. The analysis of a MOX-UO 2 interface with the method of characteristics has been carried out. Comparisons with Monte Carlo and collision-probability calculations show that our results are in good agreement with those obtained by reference methods and qualify the method of characteristic as a reliable technique for such calculations. (authors)

  5. Development of a fresh MOX fuel transport package for disposition of weapons plutonium

    International Nuclear Information System (INIS)

    Ludwig, S.B.; Pope, R.B.; Shappert, L.B.; Michelhaugh, R.D.; Chae, S.M.

    1998-01-01

    The US Department of Energy announced its Record of Decision on January 14, 1997, to embark on a dual-track approach for disposition of surplus weapons-usable plutonium using immobilization in glass or ceramics and burning plutonium as mixed-oxide (MOX) fuel in reactors. In support of the MOX fuel alternative, Oak Ridge National Laboratory initiated development of conceptual designs for a new package for transporting fresh (unirradiated) MOX fuel assemblies between the MOX fabrication facility and existing commercial light-water reactors in the US. This paper summarizes progress made in development of new MOX transport package conceptual designs. The development effort has included documentation of programmatic and technical requirements for the new package and development and analysis of conceptual designs that satisfy these requirements

  6. Effect of Pu-rich agglomerate in MOX fuel on a lattice calculation

    International Nuclear Information System (INIS)

    Kawashima, Katsuyuki; Yamamoto, Toru; Namekawa, Masakazu

    2007-01-01

    The effect of Pu-rich agglomerates in U-Pu mixed oxide (MOX) fuel on a lattice calculation has been demonstrated. The Pu-rich agglomerate parameters are defined based on the measurement data of MIMAS-MOX and the focus is on the highly enriched MOX fuel in accordance with increased burnup resulting in a higher volume fraction of the Pu-rich agglomerates. The lattice calculations with a heterogeneous fuel model and a homogeneous fuel model are performed simulating the PWR 17x17 fuel assembly. The heterogeneous model individually treats the Pu-rich agglomerate and U-Pu matrix, whereas the homogeneous model homogenizes the compositions within the fuel pellet. A continuous-energy Monte Carlo burnup code, MVP-BURN, is used for burnup calculations up to 70 GWd/t. A statistical geometry model is applied in modeling a large number of Pu-rich agglomerates assuming that they are distributed randomly within the MOX fuel pellet. The calculated nuclear characteristics include k-inf, Pu isotopic compositions, power density and burnup of the Pu-rich agglomerates, as well as the pellet-averaged Pu compositions as a function of burnup. It is shown that the effect of Pu-rich agglomerates on the lattice calculation is negligibly small. (author)

  7. Study on high performance MOX fuel and core design in full MOX ABWR(1) by GNF-J

    International Nuclear Information System (INIS)

    Izutsu, Sadayuki; Goto, Daisuke; Saeki, Jun; Kokubun, Takehiro; Yokoya, Jun

    2003-01-01

    The concepts of high-performance MOX fuel using 10x10 lattices suitable for full-MOX ABWR are shown in this paper, in which average discharge exposure is extended up to 45 GWd/t with heavy-metal inventory increased over current MOX, reducing the number of refueling bundles, resulting in fuel cycle cost reduction and core performance satisfaction. Also, the increase of Pu inventory is taken into account from the viewpoint to extend the flexibility of MOX fuel utilization. (author)

  8. Studies of Flexible MOX/LEU Fuel Cycles

    International Nuclear Information System (INIS)

    Adams, M.L.; Alonso-Vargas, G.

    1999-01-01

    This project was a collaborative effort involving researchers from Oak Ridge National Laboratory and North Carolina State University as well as Texas A and M University. The background, briefly, is that the US is planning to use some of its excess weapons Plutonium (Pu) to make mixed-oxide (MOX) fuel for existing light-water reactors (LWRs). Considerable effort has already gone into designing fuel assemblies and core loading patterns for the transition from full-uranium cores to partial-MOX and full-MOX cores. However, these designs have assumed that any time a reactor needs MOX assemblies, these assemblies will be supplied. In reality there are many possible scenarios under which this supply could be disrupted. It therefore seems prudent to verify that a reactor-based Pu-disposition program could tolerate such interruptions in an acceptable manner. Such verification was the overall aim of this project. The task assigned to the Texas A and M team was to use the HELIOS code to develop libraries of two-group homogenized cross sections for the various assembly designs that might be used in a Westinghouse Pressurized Water Reactor (PWR) that is burning weapons-grade MOX fuel. The NCSU team used these cross sections to develop optimized loading patterns under several assumed scenarios. Their results are documented in a companion report

  9. Technical design considerations in the provision of a commercial MOX plant

    International Nuclear Information System (INIS)

    Elliott, M.F.

    1997-01-01

    The Sellafield MOX Plant (SMP) has a design production target of 120 t/year Heavy Metal of mixed uranium dioxide and plutonium dioxided (MOX) fuel. It will have the capability to produce fuel with fissile enrichments up to 10%. The feed materials are those arising from reprocessing operations on the Sellafield site, although the plant also has the capability to receive and process plutonium from overseas reprocessing plants. The ability to produce 10% enriched fuels, together with the requirement to use high burn-up feed has posed a number of design challenges to prevent excessive powder temperatures within the plant. As no stimulants are available to represent the heat generating nature of plutonium powders, it is difficult to prove equipment design by experiment. Extensive use has therefore been made of finite element analysis techniques. The requirement to process material of low burn-up (i.e. high fissile enrichment) has also impacted on equipment design in order to ensure that criticality limits are not exceeded. This has been achieved where possible by 'safe by geometry' design and, where appropriate, by high integrity protection systems. SMP has been designed with a high plant availability but at minimum cost. The requirement to minimize cost has meant that high availability must be obtained with the minimum of equipment. This had led to major challenges for equipment designers in terms of both the reliability and also the maintainability of equipment. Extensive use has been made of theoretical modelling techniques which have given confidence that plant throughput can be achieved. (author). 1 fig

  10. Plant overview of JNFL MOX fuel fabrication plant (J-MOX)

    International Nuclear Information System (INIS)

    Hiruta, Kazuhiko; Suzuki, Masataka; Shimizu, Junji; Suzuki, Kazumi; Yamamoto, Yutaka; Deguchi, Morimoto; Fujimaki, Kazunori

    2005-01-01

    In April 2005, JNFL submitted METI an application for the permission of MOX fuel fabrication business for JNFL MOX Fuel Fabrication Plant (J-MOX). Accordingly, safeguards formalities and discussion with the Agency have been also started for J-MOX as an official project. This report describes J-MOX plant overview and also presents outline of J-MOX by focusing on safeguards features and planned material accountancy method. (author)

  11. The need for integral critical experiments with low-moderated MOX fuels

    International Nuclear Information System (INIS)

    2004-01-01

    The use of MOX fuel in commercial reactors is a means of burning plutonium originating from either surplus weapons or reprocessed irradiated uranium fuel. This requires the fabrication of MOX assemblies on an industrial scale. The OECD/NEA Expert Group on Experimental Needs for Criticality Safety has highlighted MOX fuel manufacturing, as an area in which there is a specific need for additional experimental data for validation purposes. Indeed, integral experiments with low-moderated MOX fuel are either scarce or not sufficiently accurate to provide an appropriate degree of validation of nuclear data and computer codes. New and accurate experimental data would enable a better optimisation of the fabrication process by decreasing the uncertainties in the determination of multiplication factors of configurations such as the homogenization of MOX powders. In this context, the OECD/NEA Nuclear Science Committee organised a workshop to address the following topics: expression and justification of the need for critical or near-critical experiments employing low-moderated MOX fuels; proposals for experimental programmes to address these needs; prospects for an international co-operative programme. The workshop was held at OECD headquarters in Paris on 14-15 April 2004. (author)

  12. Technology developments for Japanese BWR MOX fuel utilization

    International Nuclear Information System (INIS)

    Oguma, M.; Mochida, T.; Nomata, T.; Asahi, K.

    1997-01-01

    The Long-Term Program for Research, Development and Utilization of Nuclear Energy established by the Atomic Energy Commission of Japan asserts that Japan will promote systematic utilization of MOX fuel in LWRs. Based on this Japanese nuclear energy policy, we have been pushing development of MOX fuel technology aimed at future full scale utilization of this fuel in BWRs. In this paper, the main R and D topics are described from three subject areas, MOX core and fuel design, MOX fuel irradiation behaviour, and MOX fuel fabrication technology. For the first area, we explain the compatibility of MOX fuel with UO 2 core, the feasibility of the full MOX core, and the adaptability of MOX design methods based on a mock-up criticality experiment. In the second, we outline the Tsuruga MOX irradiation program and the DOMO program, and suggest that MOX fuel behaviour is comparable to ordinary BWR UO 2 fuel behaviour. In the third, we examine the development of a fully automated MOX bundle assembling apparatus and its features. (author). 14 refs, 11 figs, 3 tabs

  13. The status of BNFL's MOX project

    International Nuclear Information System (INIS)

    Edwars, John; Cooch, Julian P.; Slater, Michel W.

    2002-01-01

    Full text: In the late 1980s BNFL decided to enter the MOX fuel fabrication business to support our reprocessing business and return the plutonium product to our customers in the useable form of MOX fuel. The first phase of the strategy was to gain some irradiation experience for MOX produced by our own Short Binderless Route (SBR) process. To achieve this the MOX Demonstration Facility (MDF) was built at Sellafield and 28 MOX fuel assemblies were produced up to 1998 that were loaded into PWRs in Europe. In 1994, BNFL started the construction of their large scale MOX production plant, SMP. The design and construction of the plant and supporting facilities was completed some years ago and the commissioning of the plant with uranium commenced around June 1999. In October 2001, the UK Government provided BNFL with the approval to operate SMP with plutonium. On 20 December 2001, the UK Regulators gave BNFL their approval to start plutonium operations. This paper summarises the approach used to commission SMP and describes some of the lessons learnt during the commissioning phase of the project and the start up of the plant with plutonium. An explanation of our experience obtaining a licence to operate the plant is provided together with a description of the changes we have made to ensure that the quality of the product from SMP can be guaranteed. Finally, the paper summarises the experience BNFL has gained during irradiating MOX fuel produced by the SBR process and explains how the data compares with that available for UO2 and supports the in reactor use of MOX fuel made in SMP. (author)

  14. Thorium utilization as a Pu-burner: proposal of Plutonium-Thorium Mixed Oxide (PT-MOX) Project

    International Nuclear Information System (INIS)

    Aizawa, Otohiko

    2000-01-01

    In this paper, a Pu-Th mixed oxide (PT-MOX) project is proposed for a thorium utilization and a plutonium burning. None of plutonium can be newly produced from PT-MOX fuel, and the plutonium mass of about 1 ton can be consumed with one reactor (total heavy metal assumed: 100 tons) for 1 year. In order to consume plutonium produced from usual Light Water Reactor, it should be better to operate one PT-MOX reactor for three to five Light Water Reactors. (author)

  15. Analysis of fuel pin behavior under slow-ramp type transient overpower condition by using the fuel performance evaluation code 'FEMAXI-FBR'

    International Nuclear Information System (INIS)

    Tsuboi, Yasushi; Ninokata, Hisashi; Endo, Hiroshi; Ishizu, Tomoko; Tatewaki, Isao; Saito, Hiroaki

    2012-01-01

    FEMAXI-FBR has been developed as the one module of the core disruptive accident analysis code 'ASTERIA-FBR' in order to evaluate the mixed oxide (MOX) fuel performance under steady, transient and accident conditions of fast reactors consistently. On the basis of light water reactor (LWR) fuel performance evaluation code 'FEMAXI-6', FEMAXI-FBR develops specific models for the fast reactor fuel performance, such as restructuring, material migration during steady state and transient, melting cavity formation and pressure during accident, so that it can evaluate the fuel failure during accident. The analysis of test pin with slow transient over power test of CABRI-2 program was conducted from steady to transient. The test pin was pre-irradiated and tested under transient overpower with several % P 0 /s (P 0 : steady state power) of the power rate. Analysis results of the gas release ratio, pin failure time, and fuel melt radius were compared to measured values. The analysis results of the steady and transient performances were also compared with the measured values. The compared performances are gas release ratio, fuel restructuring for steady state and linear power and melt radius at failure during transient. This analysis result reproduces the measured value. It was concluded that FEMAXI-FBR is effective to evaluate fast reactor fuel performances from steady state to accident conditions. (author)

  16. MONJU experimental data analysis and its feasibility evaluation to build up the standard data base for large FBR nuclear core design

    International Nuclear Information System (INIS)

    Sugino, K.; Iwai, T.

    2006-01-01

    MONJU experimental data analysis was performed by using the detailed calculation scheme for fast reactor cores developed in Japan. Subsequently, feasibility of the MONJU integral data was evaluated by the cross-section adjustment technique for the use of FBR nuclear core design. It is concluded that the MONJU integral data is quite valuable for building up the standard data base for large FBR nuclear core design. In addition, it is found that the application of the updated data base has a possibility to considerably improve the prediction accuracy of neutronic parameters for MONJU. (authors)

  17. Control of nuclear material hold-up: The key factors for design and operation of MOX fuel fabrication plants in Europe

    International Nuclear Information System (INIS)

    Beaman, M.; Beckers, J.; Boella, M.

    2001-01-01

    Full text: Some protagonists of the nuclear industry suggest that MOX fuel fabrication plants are awash with nuclear materials which cannot be adequately safeguarded and that materials 'stuck in the plant' could conceal clandestine diversion of plutonium. In Europe the real situation is quite different: nuclear operators have gone to considerable efforts to deploy effective systems for safety, security, quality and nuclear materials control and accountancy which provide detailed information. The safeguards authorities use this information as part of the safeguards measures enabling them to give safeguards assurances for MOX fuel fabrication plants. This paper focuses on the issue of hold-up: definition of the hold-up and of the so-called 'hidden inventory'; measures implemented by the plant operators, from design to day to day operations, for minimising hold-up and 'hidden inventory'; plant operators' actions to manage the hold-up during production activities but also at PIT/PIV time; monitoring and management of the 'hidden inventory'; measures implemented by the safeguards authorities and inspectorate for verification and control of both hold-up and 'hidden inventory'. The examples of the different plant specific experiences related in this paper reveal the extensive experience gained in european MOX fuel fabrication plants by the plant operators and the safeguards authorities for the minimising and the control of both hold-up and 'hidden inventory'. MOX fuel has been fabricated in Europe, with an actual combined capacity of 2501. HM/year subject, without any discrimination, to EURATOM Safeguards, for more than 30 years and the total output is, to date, some 1000 t.HM. (author)

  18. Application of seismic isolation technology to demonstration FBR

    International Nuclear Information System (INIS)

    Kato, Muneaki

    1994-01-01

    The Japanese demonstration FBR is loop type, the intermediate heat exchanger is installed between the reactor and the steam generator, and up to the intermediate heat exchanger is in the containment vessel, which is designed as a reinforced concrete vessel. In FBRs, the optimization in aseismatic design and high temperature structural design is important. The reactor building is buried in rock bed up to its center of gravity to minimize the amplifying earthquake response. If the seismic isolation structure for a reactor is realized, cost reduction can be expected by the rationalization of machinery and equipment and the standardization of buildings and facilities. The research on FBR seismic isolation design has been carried out by Central Research Institute of Electric Power Industry and Japan Atomic Power Co. The concept of FBR seismic isolation design, the basic condition for the design evaluation, the research on safety allowance and the conceptual design analysis are reported. (K.I.)

  19. Full Core Burn-up Calculation at JRR-3 with MVP-BURN

    International Nuclear Information System (INIS)

    Komeda, Masao; Yamamoto, Kazuyoshi; Kusunoki, Tsuyoshi

    2008-01-01

    Research reactors use a burnable poison to suppress an excess reactivity in the beginning of reactor lifetime. The JRR-3 (Japan Research Reactor No.3) has used cadmium wires of radius 0.02 cm as a burnable poison. This report describes burn-up calculations of plate fuel models and full core models with MVP-BURN, which is a burn-up calculation code using Monte Carlo method and has been developed in JAEA (Japan Atomic Energy Agency). As the results of calculations of plate models, between a model composed of one burn-up region along the radius direction and a model composed of a few burn-up regions along the radius direction, the effective absorption cross section of 113 Cd has had different tendency on reaching approximate 40. day (10000 MWd/t). And as results of calculations of full core model, it has been indicated that k eff is almost same till approximate 80. day (22000 MWd/t) between a model composed of one burn-up region along the vertical direction and a model composed of a few burn-up regions along the vertical direction. However difference of 113 Cd burn-up becomes pronounced and each k eff makes a difference after 80. day. (authors)

  20. MOX fuel design and development consideration

    International Nuclear Information System (INIS)

    Yamate, K.; Abeta, S.; Suzuki, K.; Doi, S.

    1997-01-01

    Pu thermal utilization in Japan will be realized in several plants in late 1990's, and will be expanded gradually. For this target, adequacy of methods for MOX fuel design, nuclear design, and safety analysis has been evaluated by the committee of competent authorities organized by government in advance of the licensing application. There is no big difference of physical properties and irradiation behaviors between MOX fuel and UO 2 fuel, because Pu content of MOX fuel for Pu thermal utilization is low. The fuel design code for UO 2 fuel will be applied with some modifications, taking into account of characteristic of MOX fuel. For nuclear design, new code system is to be applied to treat the heterogeneity in MOX fuel assembly and the neutron spectrum interaction with UO 2 fuel more accurately. For 1/3 MOX fueled core in three loop plant, it was confirmed that the fuel rod mechanical design could meet the design criteria, with slight reduction of initial back-fitting pressure, and with appropriate fuel loading patterns in the core to match power with UO 2 fuel. With the increase of MOX fuel fraction in the core, control rod worth and boron worth decrease. Compensating the decrease by adding control rod and utilizing enriched B-10 in safety injection system, 100% MOX fueled core could be possible. Up to 1/3 MOX fueled core in three loop plant, no such modifications of the plant is necessary. The fraction of MOX fuel in PWR is designed to less than 1/3 in the present program. In order to improve Pu thermal utilization in future, various R and D program on fuel design and nuclear design are being performed, such as the irradiation program of MOX fuel manufactured through new process to the extent of high burnup. (author). 8 refs, 9 figs, 2 tabs

  1. MOX fuel: a contribution to disarmament. U.S. utilities' response to DOE's plutonium disposition decision

    International Nuclear Information System (INIS)

    Wallace, M.

    1997-01-01

    The author is chairman of the Nuclear Energy Institute Plutonium Disposition Working Group, which includes 11 nuclear utilities, including Ontario Hydro, and all the European fabricators of mixed oxide (MOX) fuel. A feasibility study is going on, to see if Russian or other weapons grade plutonium made into MOX fuel can be used in US, Canadian, or other power reactors. The US nuclear power industry is going through a period of change, and its primary responsibility must be the safe, reliable and economic operation of its plants. There is no current US MOX capacity, but the Europeans have have manufactured and burned over 400 tons of MOX fuel since 1963. Canada may be involved, initially through a pilot-scale experiment in NRU reactor

  2. Fission gas release behaviour in MOX fuels

    International Nuclear Information System (INIS)

    Viswanathan, U.K.; Anantharaman, S.; Sahoo, K.C.

    2002-01-01

    As a part of plutonium recycling programme MOX (U,Pu)O 2 fuels will be used in Indian boiling water reactors (BWR) and pressurised heavy water reactors (PHWR). Based on successful test irradiation of MOX fuel in CIRUS reactor, 10 MOX fuel assemblies have been loaded in the BWR of Tarapur Atomic Power Station (TAPS). Some of these MOX fuel assemblies have successfully completed the initial target average burnup of ∼16,000 MWD/T. Enhancing the burnup target of the MOX fuels and increasing loading of MOX fuels in TAPS core will depend on the feedback information generated from the measurement of released fission gases. Fission gas release behaviour has been studied in the experimental MOX fuel elements (UO 2 - 4% PuO 2 ) irradiated in pressurised water loop (PWL) of CIRUS. Eight (8) MOX fuel elements irradiated to an average burnup of ∼16,000 MWD/T have been examined. Some of these fuel elements contained controlled porosity pellets and chamfered pellets. This paper presents the design details of the experimental set up for studying fission gas release behaviour including measurement of gas pressure, void volume and gas composition. The experimental data generated is compared with the prediction of fuel performance modeling codes of PROFESS and GAPCON THERMAL-3. (author)

  3. MOX fuel cycle technologies for medium and long term deployment. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    More than thirty years of reactor experience using MOX fuel as well as the fabrication of 2000 MOX assemblies with the use of 85 t of Pu separated from spent fuel from power reactors indicates that the recycling of plutonium as MOX fuel in LWRs has become a mature industry. The number of countries engaged in plutonium recycling could be increasing in the near future, aiming for the reduction of stockpiles of separated plutonium from earlier and existing reprocessing contracts. Economic and strategic considerations are the main factors on which to base such a decision to use MOX. Transport of MOX fuel assemblies is a vital element in these recycle programmes but could have the potential to be a weak link in the chain. To avoid problems, it is essential that sufficient numbers of transport flasks of the required types, licensed for the increasing Pu contents, be made available in a timely manner to keep pace with the planned increases in fabrication rates. Despite the excellent safety records for radioactive and MOX transports over many decades, continuous attention should be drawn to establishing the transport modalities, buffer stores, secure vehicles, and transport routes, at the same time accounting for public sensitivities on radioactive transports in general and MOX transport in particular. A large number of technical presentations updated and reconfirmed the good and almost defect-free performance of MOX fuel at increasingly high burn-up levels. MOX fuel is designed to meet the same operational and safety criteria as uranium fuels under equivalent conditions. This is also confirmed by the parallel development of design codes to accommodate the special characteristics of MOX. Integral and specific parameter testing of MOX fuel in normal and off-normal operation is under way in a number of countries with particular emphasis on high burnup behaviour. Here the important contributions of the OECD/NEA Halden BWR programme should be mentioned. The reactor

  4. MOX fuel cycle technologies for medium and long term deployment. Proceedings

    International Nuclear Information System (INIS)

    2000-01-01

    More than thirty years of reactor experience using MOX fuel as well as the fabrication of 2000 MOX assemblies with the use of 85 t of Pu separated from spent fuel from power reactors indicates that the recycling of plutonium as MOX fuel in LWRs has become a mature industry. The number of countries engaged in plutonium recycling could be increasing in the near future, aiming for the reduction of stockpiles of separated plutonium from earlier and existing reprocessing contracts. Economic and strategic considerations are the main factors on which to base such a decision to use MOX. Transport of MOX fuel assemblies is a vital element in these recycle programmes but could have the potential to be a weak link in the chain. To avoid problems, it is essential that sufficient numbers of transport flasks of the required types, licensed for the increasing Pu contents, be made available in a timely manner to keep pace with the planned increases in fabrication rates. Despite the excellent safety records for radioactive and MOX transports over many decades, continuous attention should be drawn to establishing the transport modalities, buffer stores, secure vehicles, and transport routes, at the same time accounting for public sensitivities on radioactive transports in general and MOX transport in particular. A large number of technical presentations updated and reconfirmed the good and almost defect-free performance of MOX fuel at increasingly high burn-up levels. MOX fuel is designed to meet the same operational and safety criteria as uranium fuels under equivalent conditions. This is also confirmed by the parallel development of design codes to accommodate the special characteristics of MOX. Integral and specific parameter testing of MOX fuel in normal and off-normal operation is under way in a number of countries with particular emphasis on high burnup behaviour. Here the important contributions of the OECD/NEA Halden BWR programme should be mentioned. The reactor

  5. Mox fuel experience: present status and future improvements

    International Nuclear Information System (INIS)

    Blanpain, P.; Chiarelli, G.

    2001-01-01

    Up to December 2000, more than 1700 MOX fuel assemblies have been delivered by Framatome ANP/Fragema to 20 French, 2 Belgian and 3 German PWRs. More than 1000 MOX fuel assemblies have been delivered by Framatome ANP GmbH (formerly Siemens) to 11 German PWRs and BWRs and to 3 Swiss PWRs. Operating MOX fuel up to discharge burnups of about 45,000 MWd/tM is done without any penalty on core operating conditions and fuel reliability. Performance data for fuel and materials have been obtained from an outstanding surveillance program. The examinations have concluded that there have been no significant differences in MOX fuel assembly characteristics relative to UO 2 fuel. The data from these examinations, combined with a comprehensive out-of-core and in-core analytical test program on the current fuel products, are being used to confirm and upgrade the design models necessary for the continuing improvement of the MOX product. As MOX fuel has reached a sufficient maturity level, the short term step is the achievement of the parity between UO 2 and MOX fuels in the EdF French reactors. This involves a single operating scheme for both fuels with an annual quarter core reload type and an assembly discharge burnup goal of 52,000 MWd/tM. That ''MOX parity'' product will use the AFA-3G assembly structure which will increase the fuel rod design margins with regards to the end-of-life internal pressure criteria. But the fuel development objective is not limited to the parity between the current MOX and UO 2 products: that parity must remain guaranteed and the MOX fuel managements must evolve in the same way as the UO 2 ones. The goal of the MOX product development program underway in France is the demonstration over the next ten years of a fuel capable of reaching assembly burnups of 70,000 MWd/tM. (author)

  6. Sodium fast reactor: an asset for a PWR UOX/MOX fleet - 5327

    International Nuclear Information System (INIS)

    Tiphine, M.; Coquelet-Pascal, C.; Girieud, R.; Eschbach, R.; Chabert, C.; Grosman, R.

    2015-01-01

    Due to its low fissile content, Pu from spent MOX fuels is sometimes regarded as not recyclable in LWR. Based on the existing French nuclear infrastructure (La Hague reprocessing plant and MELOX MOX manufacturing plant), AREVA and CEA have evaluated the conditions of Pu multi recycling in a 100% LWR fleet. As France is currently supporting a Fast Reactor prototype project, scenario studies have also been conducted to evaluate the contribution of a 600 MWe SFR in the LWR fleet. These scenario studies consider a nuclear fleet composed of 8 PWR 900 MWe, with or without the contribution of a SFR, and aim at evaluating the following points: -) the feasibility of Pu multi-recycling in PWR; -) the impact on the spent fuels storage; -) the reduction of the stored separated Pu; -) the impact on waste management and final disposal. The studies have been conducted with the COSI6 code, developed by CEA Nuclear Energy Direction since 1985, that simulates the evolution over time of a nuclear power plants fleet and of its associated fuel cycle facilities and provides material flux and isotopic compositions at each point of the scenario. To multi-recycle Pu into LWR MOX and to ensure flexibility, different reprocessing strategies were evaluated by adjusting the reprocessing order, the choice of used fuel assemblies according to their burn-up and the UOX/MOX proportions. The improvement of the Pu fissile quality and the kinetic of Pu multi-recycling in SFR depending on the initial Pu quality were also evaluated and led to a reintroduction of Pu in PWR MOX after a single irradiation in SFR, still in dilution with Pu from UOX to maintain a sufficient fissile quality. (authors)

  7. Linear thermal expansion, thermal diffusivity and melting temperature of Am-MOX and Np-MOX

    International Nuclear Information System (INIS)

    Prieur, D.; Belin, R.C.; Manara, D.; Staicu, D.; Richaud, J.-C.; Vigier, J.-F.; Scheinost, A.C.; Somers, J.; Martin, P.

    2015-01-01

    Highlights: • The thermal properties of Np- and Am-MOX solid solutions were investigated. • Np- and Am-MOX solid solutions exhibit the same linear thermal expansion. • The thermal conductivity of Am-MOX is about 10% higher than that of Np-MOX. • The melting temperatures of Np-MOX and Am-MOX are 3020 ± 30 K and 3005 ± 30 K, respectively. - Abstract: The thermal properties of Np- and Am-MOX solid solution materials were investigated. Their linear thermal expansion, determined using high temperature X-ray diffraction from room temperature to 1973 K showed no significant difference between the Np and the Am doped MOX. The thermal conductivity of the Am-MOX is about 10% higher than that of Np-MOX. The melting temperatures of Np-MOX and Am-MOX, measured using a laser heating self crucible arrangement were 3020 ± 30 K and 3005 ± 30 K, respectively

  8. Evaluation of thermal physical properties for fast reactor fuels. Melting point and thermal conductivities

    International Nuclear Information System (INIS)

    Kato, Masato; Morimoto, Kyoichi; Komeno, Akira; Nakamichi, Shinya; Kashimura, Motoaki; Abe, Tomoyuki; Uno, Hiroki; Ogasawara, Masahiro; Tamura, Tetsuya; Sugata, Hirotada; Sunaoshi, Takeo; Shibata, Kazuya

    2006-10-01

    Japan Atomic Energy Agency has developed a fast breeder reactor (FBR), and plutonium and uranium mixed oxide (MOX) having low density and 20-30%Pu content has used as a fuel of the FBR, Monju. In plutonium, Americium has been accumulated during long-term storage, and Am content will be increasing up to 2-3% in the MOX. It is essential to evaluate the influence of Am content on physical properties of MOX on the development of FBR in the future. In this study melting points and thermal conductivities which are important data on the fuel design were measured systematically in wide range of composition, and the effects of Am accumulated were evaluated. The solidus temperatures of MOX were measured as a function of Pu content, oxygen to metal ratio (O/M) and Am content using thermal arrest technique. The sample was sealed in a tungsten capsule in vacuum for measuring solidus temperature. In the measurements of MOX with Pu content of more than 30%, a rhenium inner capsule was used to prevent the reaction between MOX and tungsten. In the results, it was confirmed that the melting points of MOX decrease with as an increase of Pu content and increase slightly with a decrease of O/M ratio. The effect of Am content on the fuel design was negligible small in the range of Am content up to 3%. Thermal conductivities of MOX were evaluated from thermal diffusivity measured by laser flash method and heat capacity calculated by Neumann- Kopp's law. The thermal conductivity of MOX decreased slightly in the temperature of less than 1173K with increasing Am content. The effect of Am accumulated in long-term storage fuel was evaluated from melting points and thermal conductivities measured in this study. It is concluded that the increase of Am in the fuel barely affect the fuel design in the range of less than 3%Am content. (author)

  9. Development of continuous energy Monte Carlo burn-up calculation code MVP-BURN

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Nakagawa, Masayuki; Sasaki, Makoto

    2001-01-01

    Burn-up calculations based on the continuous energy Monte Carlo method became possible by development of MVP-BURN. To confirm the reliably of MVP-BURN, it was applied to the two numerical benchmark problems; cell burn-up calculations for High Conversion LWR lattice and BWR lattice with burnable poison rods. Major burn-up parameters have shown good agreements with the results obtained by a deterministic code (SRAC95). Furthermore, spent fuel composition calculated by MVP-BURN was compared with measured one. Atomic number densities of major actinides at 34 GWd/t could be predicted within 10% accuracy. (author)

  10. Highlights on R and D work related to the achievement of high burnup with MOX fuel in commercial reactors

    International Nuclear Information System (INIS)

    Lippens, M.; Maldague, Th.; Basselier, J.; Boulanger, D.; Mertens, L.

    2000-01-01

    Part of the R and D work made at BELGONUCLEAIRE in the field of high burnup achievement with MOX fuel in commercial LWRs is made through lnternational Programmes. Special attention is given to the evolution with burnup of fuel neutronic characteristics and of in-reactor rod thermal-mechanical behaviour. Pu burning in MOX is characterized essentially by a drop of Pu 239 content. The other Pu isotopes have an almost unchanged concentration, due to internal breeding. The reactivity drop of MOX versus burnup is consequently much less pronounced than in UO 2 fuel. Concentration of minor actinides Am and Cm becomes significant with burnup increase. These nuclides start to play a role on total reactivity and in the helium production. The thermal-mechanical behaviour of MOX fuel rod is very similar to that of UO 2 . Some specificities are noticed. The better PCI resistance recognized to MOX fuel has recently been confirmed. Three PWR MOX segments pm-irradiated up to 58 GWd/tM were ramped at 100 W/cm.min respectively to 430-450-500 W/cm followed by a hold time of 24 hours. No segment failed. MOX and UO 2 fuels have different reactivities and operate thus at different powers. Moreover, radial distribution of power in MOX pellet is less depressed at high burnup than in UO 2 , leading to higher fuel central temperature for a same rating. The thermal conductivity of MOX fuel decreases with Pu content, typically 4% for 10% Pu. The combination of these three elements (power level, power profile, and conductivity) lead to larger FGR at high burnup compared to UO 2 . Helium production remains low compared to fission gas production (ratio < 0.2). As faster diffusing element, the helium fractional release is much higher than that of fission gas, leading to rod pressure increase comparable to the one resulting from fission gas. (author)

  11. High burnup MOX fuel assembly

    International Nuclear Information System (INIS)

    Blanpain, P.; Brunel, L.

    1999-01-01

    From the outset, the MOX product was required to have the same performance as UO 2 in terms of burnup and operational flexibility. In fact during the first years the UO 2 managements could not be applied to MOX. The changeover to an AFA 2G type fuel allowed an improvement in NPP operational flexibility. The move to the AFA 3G design fuel will enable an increase in the burnup of the MOX assemblies to the level of the UO 2 ones ('MOX Parity' project). But the FRAMATOME fuel development objective does not stop at the obtaining of parity between the current MOX and UO 2 products: this parity must remain guaranteed and the MOX managements must evolve in the same way as the UO 2 managements. The goal of the MOX product development programmes underway with COGEMA and the CEA is the demonstration over the next 10 years of a fuel capable of reaching burnups of 70 GWD/T. The research programmes focus on the fission gas release aspect, with three issues explored: optimization of pellet microstructures and validation in experimental reactor ; build-up of experience feedback from fission gas release at elevated burnups in commercial reactors, both for current and experimental products; adaptation and qualification of the design models and tools, over the ranges and for the products concerned. The product arising from these development programmes should be offered on the market around 2010. While meeting safety requirements, it will cater for the needs of the utilities in terms of product reliability, personnel dosimetry and kWh output costs (increase in burnup, NPP maneuverability and availability, minimization of process waste). (authors)

  12. Power ramp tests of BWR-MOX fuels

    International Nuclear Information System (INIS)

    Asahi, K.; Oguma, M.; Higuchi, S.; Kamimua, K.; Shirai, Y.; Bodart, S.; Mertens, L.

    1996-01-01

    Power ramp test of BWR-MOX and UO 2 fuel rods base irradiated up to about 60 GWd/t in Dodewaard reactor have been conducted in BR2 reactor in the framework of the international DOMO programme. The MOX pellets were provided by BN (MIMAS process) and PNC (MH method). The MOX fuel rods with Zr-liner and non-liner cladding and the UO 2 fuel rods with Zr-liner cladding remained intact during the stepwise power ramp tests to about 600 W/cm, even at about 60 GWd/t

  13. Evaluation of the commercial FBR introduction date

    International Nuclear Information System (INIS)

    White, M.K.; Merrill, E.T.

    1981-09-01

    This report examines one criterion for introducing a commercial FBR: economic competitiveness with a Light Water Reactor (LWR). For this analysis, the commercial FBR is assumed to be the fifth-of-a kind replicate which represents an economically mature plant. This FBR is deemed economically competitive when its life-cycle energy cost is less than or equal to that of an LWR. Results of this analysis are used in a comparative analysis of alternative FBR development stategies. The strategies evaluated in these studies assume both 1000- and 1457-MWe FBRs. Since the capital costs per kilowatt, and therefore the energy costs, for these two FBR sizes are different, they will become economically competitive at different times. The probability density function for the 1457-MW(e) FBR has an expected value date or weighted average date of 2030, compared with 2033 for the probability density function for the 1000-MW(e) FBR

  14. Core burn-up calculation method of JRR-3

    International Nuclear Information System (INIS)

    Kato, Tomoaki; Yamashita, Kiyonobu

    2007-01-01

    SRAC code system is utilized for core burn-up calculation of JRR-3. SRAC code system includes calculation modules such as PIJ, PIJBURN, ANISN and CITATION for making effective cross section and calculation modules such as COREBN and HIST for core burn-up calculation. As for calculation method for JRR-3, PIJBURN (Cell burn-up calculation module) is used for making effective cross section of fuel region at each burn-up step. PIJ, ANISN and CITATION are used for making effective cross section of non-fuel region. COREBN and HIST is used for core burn-up calculation and fuel management. This paper presents details of NRR-3 core burn-up calculation. FNCA Participating countries are expected to carry out core burn-up calculation of domestic research reactor by SRAC code system by utilizing the information of this paper. (author)

  15. Analysis of high moderation full MOX BWR core physics experiments BASALA

    International Nuclear Information System (INIS)

    Ishii, Kazuya; Ando, Yoshihira; Takada, Naoyuki; Kan, Taro; Sasagawa, Masaru; Kikuchi, Tsukasa; Yamamoto, Toru; Kanda, Ryoji; Umano, Takuya

    2005-01-01

    Nuclear Power Engineering Corporation (NUPEC) has performed conceptual design studies of high moderation full MOX LWR cores that aim for increasing fissile Pu consumption rate and reducing residual Pu in discharged MOX fuel. As part of these studies, NUPEC, French Atomic Energy Commission (CEA) and their industrial partners implemented an experimental program BASALA following MISTRAL. They were devoted to measuring the core physics parameters of such advanced cores. The MISTRAL program consists of one reference UO 2 core, two homogeneous full MOX cores and one full MOX PWR mock-up core that have higher moderation ratio than the conventional lattice. As for MISTRAL, the analysis results have already been reported on April 2003. The BASALA program consists of two high moderation full MOX BWR mock-up cores for operating and cold stand-by conditions. NUPEC has analyzed the experimental results of BASALA with the diffusion and the transport calculations by the SRAC code system and the continuous energy Monte Carlo calculations by the MVP code with the common nuclear data file, JENDL-3.2. The calculation results well reproduce the experimental data approximately within the same range of the experimental uncertainty. The analysis results of MISTRAL and BASALA indicate that these applied analysis methods have the same accuracy for the UO 2 and MOX cores, for the different moderation MOX cores, and for the homogeneous and the mock-up MOX cores. (author)

  16. IFPE/CNEA-MOX-RAMP, CNEA Power Ramp Irradiations with (PHWR) MOX Fuels

    International Nuclear Information System (INIS)

    Marino, Armando Carlos; Turnbull, J.A.

    2000-01-01

    Description: The irradiation of the first MOX nuclear fuel rods fabricated in Argentina began in 1986. These experiences were made in the HFR-Petten reactor, Holland. The six rods were fabricated in the a Facility (GAID-CNEA-Argentina). The first rod has been used for destructive pre-irradiation characterization in the KFK (Kernforschungszentrum Karlsruhe), Germany. The second one was a pathfinder for calibrating HFR systems in Petten. Two other rods included pellets doped with iodine. The first contained mostly CsI whilst the second contained elemental iodine. The concentration of iodine was intended to simulate a burn-up of 15000 MWd/ton(M). The power histories were defined from calculations performed with the BACO code. A 15 day cycle was assumed with a power history that induced PCMI during power cycling. The last high power period was maintained until stress corrosion cracking (SCC) was induced. Two further un-doped rods were used in a sub-program named BU15. Here a burn-up of 15000 MWd/ton(M) was achieved at a low power followed by a final power ramp for one of the rods. The ramp was similar to that used for the Iodine test. The HFR irradiation was conducted satisfactorily. The objective was to attempt a correspondence in behaviour between the doped rods and BU15 rods. PIE detected the presence of micro-cracks inside the cladding of the iodine doped rods. Ramping of the BU15 rod was interrupted when an increase of coolant activity was detected. After discharge, a visual inspection of the rod showed the presence of a small circular hole in the cladding. Additional PIE showed that the hole was due to a SCC failure

  17. Countermeasures to cope with issues for the FBR cycle system and transitional core during FBR introductory period

    International Nuclear Information System (INIS)

    Fujimura, Koji; Sasahira, Akira; Yamashita, Junichi; Fukasawa, Tetsuo; Hoshino, Kuniyoshi

    2007-01-01

    The introduction of fast breeder reactors (FBRs) requires Pu be recovered from light water reactors (LWRs) spent fuel. The 'Flexible Fuel Cycle Initiative (FFCI)' can supply enough Pu and holds no surplus Pu, while responding flexibly to future technical and social uncertainties. In this paper, the potential of FFCI to increase economy of the fuel cycle system was investigated. On the other hand, during the FBR introductory period, Pu from LWR spent fuel is used for startup of FBRs. But the FBR core being loaded with Pu from LWR spent fuel has a larger burnup reactivity than the core being loaded with Pu from the FBR multi-recycling core. The increased burnup reactivity may reduce the cycle length of the FBR core. In this paper, an FBR transitional core concept to handle the issues of the FBR introductory period was investigated. The results obtained through this study are as follows. (1) The FFCI has a potential to flatten the reprocessing amount of LWR spent fuel and to increase economy of the next fuel cycle system. (2) Minor actinides - mixed FBR transitional core has a potential to maintain the operation cycle length even supposing use of Pu from LWR spent fuel. (author)

  18. MOX recycling-an industrial reality

    International Nuclear Information System (INIS)

    Shallo, G.D.F.

    1996-01-01

    Reprocessing and plutonium recycling have now attained industrial maturity in France and Europe. Specifically, mixed-oxide (MOX) fuel is fabricated and used in light water reactors (LWRs) in satisfactory operating conditions. The utilities and the fuel cycle industry experience no technical difficulties, and European recycling programs are growing steadily, from 18 reactors in operation today up to 50 expected around the year 2000, putting the system reprocessing-recycling in coherence: 25 t of plutonium will then be used each year to produce the electricity equivalence of 25 millions tons of oil. Plutonium recycling in MOX fuel in current LWRs proves to be technically safe and economically competitive and meets natural resource savings and environmental protection objectives. And recycling responds properly to the nonproliferation concerns. Such an industrial experience gives a unique reference for weapons plutonium disposition through MOX use in reactors

  19. AP1000 core design with 50% MOX loading

    International Nuclear Information System (INIS)

    Fetterman, Robert J.

    2009-01-01

    The European uility requirements (EUR) document states that the next generation European passive plant (EPP) reactor core design shall be optimized for UO 2 fuel assemblies, with provisions made to allow for up to 50% mixed-oxide (MOX) fuel assemblies. The use of MOX in the core design will have significant impacts on key physics parameters and safety analysis assumptions. Furthermore, the MOX fuel rod design must also consider fuel performance criterion important to maintaining the integrity of the fuel rod over its intended lifetime. The purpose of this paper is to demonstrate that the AP1000 is capable of complying with the EUR requirement for MOX utilization without significant changes to the design of the plant. The analyses documented within will compare a 100% UO 2 core design and a mixed MOX/UO 2 core design, discussing relevant results related to reactivity management, power margin and fuel rod performance

  20. AP1000 core design with 50% MOX loading

    International Nuclear Information System (INIS)

    Fetterman, Robert J.

    2008-01-01

    The European Utility Requirements (EUR) document states that the next generation European Passive Plant (EPP) reactor core design shall be optimized for UO 2 fuel assemblies, with provisions made to allow for up to 50% mixed-oxide (MOX) fuel assemblies. The use of MOX in the core design will have significant impacts on key physics parameters and safety analysis assumptions. Furthermore, the MOX fuel rod design must also consider fuel performance criterion important to maintaining the integrity of the fuel rod over its intended lifetime. The purpose of this paper is to demonstrate that the AP1000 is capable of complying with the EUR requirement for MOX utilization without significant changes to the design of the plant. The analyses documented within will compare a 100% UO 2 core and a mixed MOX / UO 2 core design, discussing relevant results related to reactivity management, power margin and fuel rod performance. (authors)

  1. Development of FBR technology in the FBR 'Joyo'

    International Nuclear Information System (INIS)

    Nara, Yoshihiko; Akiyama, Takao; Sato, Isao; Mizoo, Nobutatsu; Yoshimi, Hirotaka; Shimada, Takashi

    1986-01-01

    Power Reactor and Nuclear Fuel Development Corp. has advanced the construction of the prototype FBR ''Monju'', and the ground breaking ceremony was held on October 28, 1985. For the design and construction of Monju, the experience, achievement, and the results of development by the own effort and international cooperation gained by the experimental FBR ''Joyo'' have been reflected. It is important to develop the core management technology, operation-supporting system, the techniques of regular inspection, maintenance and repair, the reduction of radiation exposure and so on, to accumulate the experience, and to reflect those accurately to Monju. The operation history of the experimental FBR ''Joyo'', the international joint research on FBRs using the Joyo, the results regarding the characteristic technology of FBRs such as the reactor core, fuel and control rods, sodium technology, the construction of machinery and equipment, and the plant system the plan of developing the high grade technology of FBRs such as the development of fuel and materials, the improvement of reliability and the development of operation management techniques, the verifying test of new technology such as spent fuel storage, the new system for sodium purification and the techniques for analyzing earthquake response, and the international cooperation are reported. (Kako, I.)

  2. AP1000 core design with 50% MOX loading

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Robert J. [Westinghouse Electric Company, LLC, Pittsburgh, PA (United States)

    2008-07-01

    The European Utility Requirements (EUR) document states that the next generation European Passive Plant (EPP) reactor core design shall be optimized for UO{sub 2} fuel assemblies, with provisions made to allow for up to 50% mixed-oxide (MOX) fuel assemblies. The use of MOX in the core design will have significant impacts on key physics parameters and safety analysis assumptions. Furthermore, the MOX fuel rod design must also consider fuel performance criterion important to maintaining the integrity of the fuel rod over its intended lifetime. The purpose of this paper is to demonstrate that the AP1000 is capable of complying with the EUR requirement for MOX utilization without significant changes to the design of the plant. The analyses documented within will compare a 100% UO{sub 2} core and a mixed MOX / UO{sub 2} core design, discussing relevant results related to reactivity management, power margin and fuel rod performance. (authors)

  3. AP1000 core design with 50% MOX loading

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Robert J. [Westinghouse Electric Company, LLC, Pittsburgh, PA (United States)], E-mail: fetterrj@westinghouse.com

    2009-04-15

    The European uility requirements (EUR) document states that the next generation European passive plant (EPP) reactor core design shall be optimized for UO{sub 2} fuel assemblies, with provisions made to allow for up to 50% mixed-oxide (MOX) fuel assemblies. The use of MOX in the core design will have significant impacts on key physics parameters and safety analysis assumptions. Furthermore, the MOX fuel rod design must also consider fuel performance criterion important to maintaining the integrity of the fuel rod over its intended lifetime. The purpose of this paper is to demonstrate that the AP1000 is capable of complying with the EUR requirement for MOX utilization without significant changes to the design of the plant. The analyses documented within will compare a 100% UO{sub 2} core design and a mixed MOX/UO{sub 2} core design, discussing relevant results related to reactivity management, power margin and fuel rod performance.

  4. Coupling analysis of deformation and thermal-hydraulics in a FBR fuel pin bundle using BAMBOO and ASFRE-IV Codes

    International Nuclear Information System (INIS)

    Ito, Masahiro; Imai, Yasutomo; Uwaba, Tomoyuki; Ohshima, Hiroyuki

    2004-03-01

    The bundle-duct interaction may occur in sodium cooled wire-wrapped FBR fuel subassemblies in high burn-up conditions. JNC has been developing a bundle deformation analysis code BAMBOO (Behavior Analysis code for Mechanical interaction of fuel Bundle under On-power Operation), a thermal hydraulics analysis code ASFRE-IV (Analysis of Sodium Flow in Reactor Elements - ver. IV) and their coupling method as a simulation system for the evaluation on the integrity of deformed FBR fuel pin bundles. In this study, the simulation system was applied to a coupling analysis of deformation and thermal-hydraulics in the fuel pin-bundle under a steady-state condition just after startup for the purpose of the verification of the simulation system. The iterative calculations of deformation and thermal-hydraulics employed in the coupling analysis provided numerically unstable solutions. From the result, it was found that improvement of the coupling algorithm of BAMBOO and ASFRE-IV is necessary to reduce numerical fluctuations and to obtain better convergence by introducing such computational technique as the optimized under-relaxation method. (author)

  5. Nuclear fuel burn-up economy

    International Nuclear Information System (INIS)

    Matausek, M.

    1984-01-01

    In the period 1981-1985, for the needs of Utility Organization, Beograd, and with the support of the Scientific Council of SR Srbija, work has been performed on the study entitled 'Nuclear Fuel Burn-up Economy'. The forst [phase, completed during the year 1983 comprised: comparative analysis of commercial NPP from the standpoint of nuclear fuel requirements; development of methods for fuel burn-up analysis; specification of elements concerning the nuclear fuel for the tender documentation. The present paper gives the short description of the purpose, content and results achieved in the up-to-now work on the study. (author)

  6. TRIGA criticality experiment for testing burn-up calculations

    International Nuclear Information System (INIS)

    Persic, Andreja; Ravnik, Matjaz; Zagar, Tomaz

    1999-01-01

    A criticality experiment with partly burned TRIGA fuel is described. 20 wt % enriched standard TRIGA fuel elements initially containing 12 wt % U are used. Their average burn-up is 1.4 MWd. Fuel element burn-up is calculated in 2-D four group diffusion approximation using TRIGLAV code. The burn-up of several fuel elements is also measured by reactivity method. The excess reactivity of several critical and subcritical core configurations is measured. Two core configurations contain the same fuel elements in the same arrangement as were used in the fresh TRIGA fuel criticality experiment performed in 1991. The results of the experiment may be applied for testing the computer codes used for fuel burn-up calculations. (author)

  7. FBR Plant Engineering Center annual report 2012

    International Nuclear Information System (INIS)

    2013-12-01

    This annual report shows the last year's R and D activities of currently-reorganized FBR Plant Engineering Center, which was established on April 1, 2009. FBR Safety Technology Center was founded on April 1, 2013 by the consolidation of both the activities of 'former FBR Plant Engineering Center' and a portion of 'FBR Safety Evaluation Unit, Advanced Nuclear System Research and Development Directorate', especially concentrating on safety evaluations and analyses for severe accidents. As for FBR safety technology, it is necessary to continuously make an effort for compliance with new safety regulations in preparation for 'Monju' to restart, for safety enhancement evaluation and for safety technology upgrading. In this context, the new organization was founded in order to reinforce the safety evaluation capability, which will surely and steadily promote FBR safety-technology related activities. As a result, FBR Plant Engineering Center was abolished. This report summarizes the R and D activities at the former FBR Plant Engineering Center, aiming at contributing to the commercialization by using operation experiences and technology development results derived from the actual reactor 'Monju'. The activities are divided into five areas of operation-and-maintenance engineering, sodium engineering, reactor-core-and-fuel engineering, plant engineering, and safety engineering. This annual report is intended for a report of the activities of individual researcher in the center rather than that of the progress of the center as a whole. This will clarify the individual themes, progresses and problems of each researcher, which will, hopefully, facilitate communication with the outside researchers. (author)

  8. Safety and licensing of MOX versus UO2 for BWRs and PWRs: Aspects applicable for civilian and weapons grade Pu

    International Nuclear Information System (INIS)

    Goldstein, L.; Malone, J.

    2000-01-01

    This paper reviews the safety and licensing differences between MOX and UO 2 BWR and PWR cores. MOX produced from the normal recycle route and from weapons grade material are considered. Reload quantities of recycle MOX assemblies have been licensed and continue to operate safely in European LWRs. In general, the European MOX assemblies in a reload are 2 . These studies indicated that no important technical or safety related issues have evolved from these studies. The general specifications used by fuel vendors for recycled MOX fuel and core designs are as follows: MOX assemblies should be designed to minimize or eliminate local power peaking mismatches with co-resident and adjacently loaded UO 2 assemblies. Power peaking at the interfaces arises from different neutronic behavior between UO 2 and MOX assemblies. A MOX core (MOX and UO 2 or all-MOX assemblies) should provide cycle energy equivalent to that of an all-UO 2 core. This applies, in particular, to recycle MOX applications. An important consideration when burning weapons grade material is rapid disposition which may not necessarily allow for cycle energy equivalence. The reactivity coefficients, kinetics data, power peaking, and the worth of shutdown systems with MOX fuel and cores must be such to meet the design criteria and fulfill requirements for safe reactor operation. Both recycle and weapons grade plutonium are considered, and positive and negative impacts are given. The paper contrasts MOX versus UO 2 with respect to safety evaluations. The consequences of some transients/accidents are compared for both types of MOX and UO 2 fuel. (author)

  9. Characterization of candidate DOE sites for fabricating MOX fuel for lead assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Holdaway, R.F.; Miller, J.W.; Sease, J.D.; Moses, R.J.; O`Connor, D.G. [Oak Ridge National Lab., TN (United States); Carrell, R.D. [Technical Resources International, Inc., Richland, WA (United States); Jaeger, C.D. [Sandia National Labs., Albuquerque, NM (United States); Thompson, M.L.; Strasser, A.A. [Delta-21 Resources, Inc., Oak Ridge, TN (United States)

    1998-03-01

    The Office of Fissile Materials Disposition (MD) of the Department of Energy (DOE) is directing the program to disposition US surplus weapons-usable plutonium. For the reactor option for disposition of this surplus plutonium, MD is seeking to contract with a consortium, which would include a mixed-oxide (MOX) fuel fabricator and a commercial US reactor operator, to fabricate and burn MOX fuel in existing commercial nuclear reactors. This option would entail establishing a MOX fuel fabrication facility under the direction of the consortium on an existing DOE site. Because of the lead time required to establish a MOX fuel fabrication facility and the need to qualify the MOX fuel for use in a commercial reactor, MD is considering the early fabrication of lead assemblies (LAs) in existing DOE facilities under the technical direction of the consortium. The LA facility would be expected to produce a minimum of 1 metric ton heavy metal per year and must be operational by June 2003. DOE operations offices were asked to identify candidate sites and facilities to be evaluated for suitability to fabricate MOX fuel LAs. Savannah River Site, Argonne National Laboratory-West, Hanford, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory were identified as final candidates to host the LA project. A Site Evaluation Team (SET) worked with each site to develop viable plans for the LA project. SET then characterized the suitability of each of the five plans for fabricating MOX LAs using 28 attributes and documented the characterization to aid DOE and the consortium in selecting the site for the LA project. SET concluded that each option has relative advantages and disadvantages in comparison with other options; however, each could meet the requirements of the LA project as outlined by MD and SET.

  10. Characterization of candidate DOE sites for fabricating MOX fuel for lead assemblies

    International Nuclear Information System (INIS)

    Holdaway, R.F.; Miller, J.W.; Sease, J.D.; Moses, R.J.; O'Connor, D.G.; Carrell, R.D.; Jaeger, C.D.; Thompson, M.L.; Strasser, A.A.

    1998-03-01

    The Office of Fissile Materials Disposition (MD) of the Department of Energy (DOE) is directing the program to disposition US surplus weapons-usable plutonium. For the reactor option for disposition of this surplus plutonium, MD is seeking to contract with a consortium, which would include a mixed-oxide (MOX) fuel fabricator and a commercial US reactor operator, to fabricate and burn MOX fuel in existing commercial nuclear reactors. This option would entail establishing a MOX fuel fabrication facility under the direction of the consortium on an existing DOE site. Because of the lead time required to establish a MOX fuel fabrication facility and the need to qualify the MOX fuel for use in a commercial reactor, MD is considering the early fabrication of lead assemblies (LAs) in existing DOE facilities under the technical direction of the consortium. The LA facility would be expected to produce a minimum of 1 metric ton heavy metal per year and must be operational by June 2003. DOE operations offices were asked to identify candidate sites and facilities to be evaluated for suitability to fabricate MOX fuel LAs. Savannah River Site, Argonne National Laboratory-West, Hanford, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory were identified as final candidates to host the LA project. A Site Evaluation Team (SET) worked with each site to develop viable plans for the LA project. SET then characterized the suitability of each of the five plans for fabricating MOX LAs using 28 attributes and documented the characterization to aid DOE and the consortium in selecting the site for the LA project. SET concluded that each option has relative advantages and disadvantages in comparison with other options; however, each could meet the requirements of the LA project as outlined by MD and SET

  11. TRU composition changes and their influence on FBR core characteristics in the LWR-to-FBR transition period

    International Nuclear Information System (INIS)

    Maruyama, Shuhei; Ohki, Shigeo; Mizuno, Tomoyasu

    2009-01-01

    In the conceptual core and fuel design studies in Fast Reactor Cycle Technology Development Project (FaCT Project) in Japan, much interest has been taken in the fuel nuclide compositions for a transition period from light water reactor to fast breeder reactor (FBR). In this paper, the range of transuranic (TRU) nuclide composition to be provided to FBR is evaluated with extended recycling scenario calculations. The influence of TRU composition changes on FBR core characteristics are also discussed with explanations of major contributing factors. (author)

  12. Development of methods for burn-up calculations for LWR's

    International Nuclear Information System (INIS)

    Jaschik, W.

    1978-01-01

    This method is based on all burn-up depending data, namely particle densities and neutron spectra, being available in a burn-up library. This one is created by means of a small number of cell burn-up calculations which can easily be carried out and in which the heterogeneous cell structure and self-shielding effects can explicitly be accounted for. Then the cluster burn-up is simulated by adequate correlation of the burn-up data. The advantage of this method is given by - an exact determination of the real spectrum distribution in the individual fuel element clusters; - an exact determination of the burn-up related spectrum variations for each fuel rod and for each burn-up value obtained; - accounting for heterogeneity of the fuel rod cells and the self-shielding in the fuel; high accuracy of the results of a comparably low effort and - simple handling by largely automating the process of computation. Programed realization was achieved by establishing the RSYST modules ABRAJA, MITHOM, and SIMABB and their implementation within the code system. (orig./HP) [de

  13. FBR fuel cycle can be competitive

    International Nuclear Information System (INIS)

    Allardajs, R.; Kholl, R.; Pilling, R.

    1988-01-01

    The investigation results of comparative determination of averaged values for FBR and PWR reactor energy cost fuel components in England are described. Time periods till 2000 and 2020 yrs are considered. Dependence of the results obtained on changes of different initial factors is analysed. The FBR reactor fuel cost component is shown to be identically sensitive to the change is spent fuel cost. There is another condition for PWR reactors, where two factors are important: cost of source uranium ore concentrate and currency rate of exchange. The investigation carried out has shown that competitable fuel cost component of FBR reactors is reached even in first fast reactors, i.e. from the start of their large-scale construction. Thus, successive decrease of the capital component of energy cost is the key of success ful economical application of FBR reactors

  14. The MOX Demonstration Facility - the stepping stone to commercial MOX production

    International Nuclear Information System (INIS)

    Macdonald, A.G.

    1994-01-01

    The paper provides an insight into MOX fuel and the economic benefits of its use in pressurized water reactors (PWRs). BNFL and AEA are collaborating in the design, construction and operation of a thermal MOX Demonstration Facility (MDF) on the AEA Windscale site in Cumbria. The process flowsheet and equipment employed in MDF are discussed and the special precautions required to handle plutonium bearing materials are highlighted. The process flowsheet includes the short binderless route which has been specially developed for use in MDF and results in fuel pellets with an homogeneous structure. MDF is the forerunner to the design and construction of a larger scale Sellafield MOX Plant and hence is the stepping-stone to commercial MOX production. (author)

  15. Thermal property change of MOX and UO{sub 2} irradiated up to high burnup of 74 GWd/t

    Energy Technology Data Exchange (ETDEWEB)

    Nakae, Nobuo, E-mail: nakae-nobuo@jnes.go.jp [Japan Nuclear Energy Safety Organization (JNES), Toranomon Towers Office, 4-1-28, Toranomon, Minato-ku, Tokyo 105-0001 (Japan); Akiyama, Hidetoshi; Miura, Hiromichi; Baba, Toshikazu; Kamimura, Katsuichiro [Japan Nuclear Energy Safety Organization (JNES), Toranomon Towers Office, 4-1-28, Toranomon, Minato-ku, Tokyo 105-0001 (Japan); Kurematsu, Shigeru; Kosaka, Yuji [Nuclear Development Corporation (NDC), 622-12, Funaishikawa, Tokai-mura, Ibaraki 319-1111 (Japan); Yoshino, Aya; Kitagawa, Takaaki [Mitsubishi Nuclear Fuel Co., LTD. (MNF), 12-1, Yurakucho 1-Chome, Chiyoda-ku, Tokyo 100-0006 (Japan)

    2013-09-15

    Thermal property is important because it controls fuel behavior under irradiation. The thermal property change at high burnup of more than 70 GWd/t is examined. Two kinds of MOX fuel rods, which were fabricated by MIMAS and SBR methods, and one referenced UO{sub 2} fuel rod were used in the experiment. These rods were taken from the pre-irradiated rods (IFA 609/626, of which irradiation test were carried out by Japanese PWR group) and re-fabricated and re-irradiated in HBWR as IFA 702 by JNES. The specification of fuel corresponds to that of 17 × 17 PWR type fuel and the axially averaged linear heat rates (LHR) of MOX rods are 25 kW/m (BOL of IFA 702) and 20 kW/m (EOL of IFA 702). The axial peak burnups achieved are about 74 GWd/t for both of MOX and UO{sub 2}. Centerline temperature and plenum gas pressure were measured in situ during irradiation. The measured centerline temperature is plotted against LHR at the position where thermocouples are fixed. The slopes of MOX are corresponded to each other, but that of UO{sub 2} is higher than those of MOX. This implies that the thermal conductivity of MOX is higher than that of UO{sub 2} at high burnup under the condition that the pellet–cladding gap is closed during irradiation. Gap closure is confirmed by the metallography of the postirradiation examinations. It is understood that thermal conductivity of MOX is lower than that of UO{sub 2} before irradiation since phonon scattering with plutonium in MOX becomes remarkable. A phonon scattering with plutonium decreases in MOX when burnup proceeds. Thus, thermal conductivity of MOX becomes close to that of UO{sub 2}. A reverse phenomenon is observed at high burnup region. The phonon scattering with fission products such as Nd and Zr causes a degradation of thermal conductivity of burnt fuel. It might be speculated that this scattering effect causes the phenomenon and the mechanism is discussed here.

  16. Full MOX core design in ABWR

    International Nuclear Information System (INIS)

    Ihara, Toshiteru; Mochida, Takaaki; Izutsu, Sadayuki; Fujimaki, Shingo

    2003-01-01

    Electric Power Development Co., Ltd. (EPDC) has been investigating an ABWR plant for construction at Oma-machi in Aomori Prefecture. The reactor, termed FULL MOX-ABWR will have its reactor core eventually loaded entirely with mixed-oxide (MOX) fuel. Extended use of MOX fuel in the plant is expected to play important roles in the country's nuclear fuel recycling policy. MOX fuel bundles will initially be loaded only to less than one-third of the reactor, but will be increased to cover its entire core eventually. The number of MOX fuel bundles in the core thus varies anywhere from 0 to 264 for the initial cycle and, 0 to 872 for equilibrium cycles. The safety design of the FULL MOX-ABWR briefly stated next considers any probable MOX loading combinations out of such MOX bundle usage scheme, starting from full UO 2 to full MOX cores. (author)

  17. Fundamental burn-up mode in a pebble-bed type reactor

    International Nuclear Information System (INIS)

    Chen, Xue-Nong; Kiefhaber, Edgar; Maschek, Werner

    2008-01-01

    This paper deals with a pebble-bed type reactor, in which the fuel is loaded from one side (top) and discharged from the other side (bottom). A boundary value problem of a single group diffusion equation coupled with simplified burn-up equations is studied, where the natural radioactive decay processes are neglected in the burn-up modelling. An asymptotic burning wave solution is found analytically in the one-dimensional case, which is called as fundamental burn-up mode. Among this solution family there are two particular cases, namely, a classic fundamental solution with a zero burn-up and a partial solitary burn-up wave solution with a highest burn-up. An example of Th-U conversion is considered and the solutions are presented in order to show the mechanism of the burning wave. (author)

  18. The transportation of PuO2 and MOX fuel and management of irradiated MOX fuel

    International Nuclear Information System (INIS)

    Dyck, H.P.; Rawl, R.; Durpel, L. van den

    2000-01-01

    Information is given on the transportation of PuO 2 and mixed-oxide (MOX) fuel, the regulatory requirements for transportation, the packages used and the security provisions for transports. The experience with and management of irradiated MOX fuel and the reprocessing of MOX fuel are described. Information on the amount of MOX fuel irradiated is provided. (author)

  19. Study on design method for seismically isolated FBR plants

    International Nuclear Information System (INIS)

    Hirata, Kazuta; Yabana, Shuichi; Ohtori, Yasuki; Ishida, Katsuhiko; Sawada, Yoshihiro; Shiojiri; Hiroo; Mazda, Taiji

    1998-01-01

    CRIEPI conducted 'Demonstration test on FBR seismic isolation system' from 1987 to 1996 under contract with Ministry of International Trade and Industry, Japan. In the demonstration test, base isolation technologies are prepared and demonstrated to apply to FBR and the design guidelines are proposed. In this report overall contents of the design guidelines entitled Design guidelines for seismically base isolated FBR plants' are included. The design guidelines, as a rule, are limited to apply to FBR plants where entire reactor building is isolated in the horizontal direction using laminated rubber bearings as isolators. The design guidelines and its concepts, however, will be useful for the development of similar guidelines for other isolation systems using different type of isolation methods and other nuclear facilities. The design guidelines consist of three parts and appendices. The first part is 'Policy for Safety Design of Base Isolated FBR Plants' specifying the principles and the requirements in the planning and the design for the safety of base isolated FBR plants. The second part is Policy for Seismic Design of Base Isolated FBR' describing the principles and the requirements in the seismic design and the evaluation of safety for base isolated FBR plants. The third part is 'Design Methods for Seismic Isolated FBR Plants' detailing the methods, procedures and parameters to be used in the design and the evaluation of safety fro base isolated FBR plants. In appendices examples of design procedures for base isolated reactor building and laminated rubber bearings as well as various test data on laminated rubber bearings, etc. are shown. (author)

  20. Burn-up measurements coupling gamma spectrometry and neutron measurement

    Energy Technology Data Exchange (ETDEWEB)

    Toubon, H.; Pin, P. [AREVA/CANBERRA, 1 rue des Herons, 78182 St Quentin-en-Yvelines Cedex (France); Lebrun, A. [IAEA, Wagramer Strasse 5, PO Box 100, Vienna (Austria); Oriol, L.; Saurel, N. [CEA Cadarache, 13108 Saint Paul Lez Durance Cedex (France); Gain, T. [AREVA/COGEMA Reprocessing Business Unit, La Hague, 50444 Beaumont Hague Cedex (France)

    2006-07-01

    The need to apply for burn-up credit arises with the increase of the initial enrichment of nuclear fuel. When burn-up credit is used in criticality safety studies, it is often necessary to confirm it by measurement. For the last 10 years, CANBERRA has manufactured the PYTHON system for such measurements. However, the method used in the PYTHON itself uses certain reactor data to arrive at burn-up estimates. Based on R and D led by CEA and COGEMA in the framework of burn-up measurement for burn-up credit and safeguards applications, CANBERRA is developing the next generation of burn-up measurement device. This new product, named SMOPY, is able to measure burn-up of any kind of irradiated fuel assembly with a combination of gamma spectrometry and passive neutron measurements. The measurement data is used as input to the CESAR depletion code, which has been developed and qualified by CEA and COGEMA for burn-up credit determinations. In this paper, we explain the complementary nature of the gamma and neutron measurements. In addition, we draw on our previous experience from PYTHON system and from COGEMA La Hague to show what types of evaluations are required to qualify the SMOPY system, to estimate its uncertainties, and to detect discrepancies in the fuel data given by the reactor plant to characterize the irradiated fuel assembly. (authors)

  1. Burn-up measurements coupling gamma spectrometry and neutron measurement

    International Nuclear Information System (INIS)

    Toubon, H.; Pin, P.; Lebrun, A.; Oriol, L.; Saurel, N.; Gain, T.

    2006-01-01

    The need to apply for burn-up credit arises with the increase of the initial enrichment of nuclear fuel. When burn-up credit is used in criticality safety studies, it is often necessary to confirm it by measurement. For the last 10 years, CANBERRA has manufactured the PYTHON system for such measurements. However, the method used in the PYTHON itself uses certain reactor data to arrive at burn-up estimates. Based on R and D led by CEA and COGEMA in the framework of burn-up measurement for burn-up credit and safeguards applications, CANBERRA is developing the next generation of burn-up measurement device. This new product, named SMOPY, is able to measure burn-up of any kind of irradiated fuel assembly with a combination of gamma spectrometry and passive neutron measurements. The measurement data is used as input to the CESAR depletion code, which has been developed and qualified by CEA and COGEMA for burn-up credit determinations. In this paper, we explain the complementary nature of the gamma and neutron measurements. In addition, we draw on our previous experience from PYTHON system and from COGEMA La Hague to show what types of evaluations are required to qualify the SMOPY system, to estimate its uncertainties, and to detect discrepancies in the fuel data given by the reactor plant to characterize the irradiated fuel assembly. (authors)

  2. Mox fuels recycling

    International Nuclear Information System (INIS)

    Gay, A.

    1998-01-01

    This paper will firstly emphasis that the first recycling of plutonium is already an industrial reality in France thanks to the high degree of performance of La Hague and MELOX COGEMA's plants. Secondly, recycling of spent Mixed OXide fuel, as a complete MOX fuel cycle, will be demonstrated through the ability of the existing plants and services which have been designed to proceed with such fuels. Each step of the MOX fuel cycle concept will be presented: transportation, reception and storage at La Hague and steps of spent MOX fuel reprocessing. (author)

  3. MOX fuel fabrication and utilisation in LWRs worldwide

    International Nuclear Information System (INIS)

    Provost, J.-L.; Schrader, M.; Nomura, S.

    2000-01-01

    Early in the development of the nuclear programme, a large part of the countries using nuclear energy has studied the reprocessing and recycling option in order to develop a safe conditioning of fission products and to recycle fissile materials in reactors. In the sixties, the feasibility of recycling plutonium in LWRs has been successfully demonstrated by several experimentations of MOX rod irradiations in different countries. Based on the background of the MOX behaviour collected during the seventies and on the results of the important MOX experimentation program implemented during this period, a large part of the European utilities decided at the beginning of the eighties to use MOX fuel in LWRs on an industrial scale. The main goals of the utilities were to use as a fuel an available fissile material and to control the stockpile of separated plutonium. Today, the understanding of the behaviour of plutonium fuel has grown significantly since the launch of the first R and D programmes on LWR and FR MOX fuels. Plutonium oxide physical and neutron behaviour is well known, its modelling is now available as well as experimentally validated. Up to now, more than 750 tHM MOX fuel (more than 2000 FAs) have been loaded in 29 PWRs and in 2 BWRs in Europe, corresponding to the recycling of about 35 t of plutonium. Reprocessing/recycling technology has reached maturity in the main nuclear industry countries. Spent fuel reprocessing and recycling of the separated fissile materials remains the main option for the back-end cycle. Today, the operation of MOX-recycling LWRs is considered satisfactory. Experience feedback shows that, in global terms, MOX cores behaviour is equivalent to that of UO 2 cores in terms of operation and safety. (author)

  4. Burn-up measurement in the HTR-module-reactor

    International Nuclear Information System (INIS)

    Gerhards, E.

    1993-05-01

    The burn-up status of spherical HTR-fuel elements is determined by a γ-spectrometric analysis of Cs-137 activity. The γ-spectrum recorded by a semiconductor detector up to now is analyzed by complex mathematical and time-consuming methods. For the operation of the HTR-Module-Reactor, however, a fast evaluation of the burn-up status is necessary. It is shown that this can be ensured by a comparison between the measured spectra and simulation results. Using the computer-program HTROGEN and the program system SPECCALC especially developed for this problem the γ-spectra are evaluated as a function of the burn-up status. The method is applied to results available from the operation of the AVR-reactor. The burn-up status determined with different methods corresponds very well within the limits of accuracy. (orig.)

  5. MOX fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Shimada, Hidemitsu; Koyama, Jun-ichi; Aoyama, Motoo

    1998-01-01

    The MOX fuel assembly of the present invention is of a c-lattice type loaded to a BWR type reactor. 74 MOX fuel rods filled with mixed oxides of uranium and plutonium and two water rods disposed to a space equal to that for 7 MOX fuel rods are arranged in 9 x 9 matrix. MOX fuel rods having the lowest enrichment degree are disposed to four corners of the 9 x 9 matrix. The enrichment degree means a ratio of the weight of fission products based on the total weight of fuels. Two MOX fuel rods having the same enrichment degree are arranged in each direction so as to be continuous from the MOX fuel rods at four corners in the direction of the same row and different column and same column and the different row. In addition, among the outermost circumferential portion of the 9 x 9 matrix, MOX fuel rods having a lower enrichment degree next to the MOX fuel rods having the lowest enrichment degree are arranged, each by three to a portion where MOX fuel rods having the lowest enrichment degree are not disposed. (I.N.)

  6. Application of reactivity method to MTR fuel burn-up measurement

    International Nuclear Information System (INIS)

    Zuniga, A.; Ravnik, M.; Cuya, R.

    2001-01-01

    Fuel element burn-up has been measured for the first time by reactivity method in a MTR reactor. The measurement was performed in RP-10 reactor of Peruvian Institute for Nuclear Energy (IPEN) in Lima. It is a pool type 10MW material testing reactor using standard 20% enriched uranium plate type fuel elements. A fresh element and an element with well defined burn-up were selected as reference elements. Several elements in the core were selected for burn-up measurement. Each of them was replaced in its original position by both reference elements. Change in excess reactivity was measured using control rod calibration curve. The burn-up reactivity worth of fuel elements was plotted as a function of their calculated burnup. Corrected burn-up values of the measured fuel elements were calculated using the fitting function at experimental reactivity for all elements. Good agreement between measured and calculated burn-up values was observed indicating that the reactivity method can be successfully applied also to MTR fuel element burn-up determination.(author)

  7. Summary: analysis of alternative FBR development strategies

    International Nuclear Information System (INIS)

    Burnham, J.B.

    1981-12-01

    This report summarizes the comparative evaluation of alternative strategies for the development of the commercial fast breeder reactor (FBR) in the United States. For planning purposes, a range of possible FBR development paths called strategies were selected for evaluation. These strategies, designed to be technically and economically feasible, were expressed in terms of the timing and nature of facilities/research and development programs required to reach full power operation of the first commercial FBR. Four of the seven strategies resulted in a large (1457 MWe) FBR as an end point, the other three in a 1000-MWe plant. Probability distributions were calculated for total strategy costs and time to completion. For the seven strategies analyzed, the costs (discounted 1980 dollars) ranged from $1.8 billion to $4.9 billion; the completion times ranged from 24 to 55 years

  8. BWRs with MOx fuel

    International Nuclear Information System (INIS)

    Demaziere, C.

    1999-01-01

    Calculations has been performed for loading BWRs with pure MOx or UOx/MOx fuel. It seems to be possible to load MOx bundles in BWRs, since most of the core characteristics are comparable with the ones of a full UOx core. Nevertheless two main problems arise: The shutdown margin at BOC is lower than 1%, this requires to have a new design for the control rods in order to increase their efficiency - but the problem can also be solved by modifying the Pu quality. The cores with MOx fuel are slightly less stable, unfortunately the simple model applied does not allow giving an absolute value for the decay ratio but only allows comparing the stability with the full UOx core

  9. The MOX

    International Nuclear Information System (INIS)

    Legay, Christophe

    1997-06-01

    In this report, the author first proposes a presentation of plutonium with a brief history of its discovery and the discovery of other transuranic elements, a presentation of its main characteristics, and a description of its production ways. He also proposes an overview of data regarding world plutonium production and plutonium stock situation. The second part addresses the MOX fuel in relationship with the choice of non proliferation. The author describes the MOX fuel cycle (production, use in reactor, and reprocessing) and outlines the environmental and economic benefits of this fuel, and its interest within the frame of struggle against nuclear proliferation. The third part addresses the present situation and perspectives. He comments the American posture (principles and recent statements), discusses alternatives regarding nuclear wastes, and outlines MOX opportunities by evoking the French case and international perspectives, and the benefits in terms of matching irreversibility and safety

  10. Transport of MOX fuel

    International Nuclear Information System (INIS)

    Porter, I.R.; Carr, M.

    1997-01-01

    The regulatory framework which governs the transport of MOX fuel is set out, including packages, transport modes and security requirements. Technical requirements for the packages are reviewed and BNFL's experience in plutonium and MOX fuel transport is described. The safety of such operations and the public perception of safety are described and the question of gaining public acceptance for MOX fuel transport is addressed. The paper concludes by emphasising the need for proactive programmes to improve the public acceptance of these operations. (Author)

  11. Development of MOX manufacturing technology in BNFL

    International Nuclear Information System (INIS)

    Buchan, P.G.; Powell, D.J.; Edwards, J.

    1998-01-01

    BNFL is successfully operating a small scale MOX fuel fabrication facility at its Sellafield Site and is currently constructing an advanced, commercial scale MOX facility to complement its existing LWR UO 2 fabrication capability. BNFL's MOX fuel capability is fully supported by a comprehensive technology development programme aimed at providing a high quality product which is successfully competing in the market. Building on the experience gained over the last 30 years, is from the production of both thermal and fast reactor MOX fuels, BNFL's development team set a standard for its MOX product which is targeted at exceeding the performance of UO 2 fuel in reactor. In order to meet the stringent design requirements the product development team has introduced the Short Binderless Route (SBR) process that is now used routinely in BNFL's MOX Demonstration Facility (MDF) and which forms the basis for BNFL's large scale Sellafield MOX Plant. This plant not only uses the SBR process for MOX production but also incorporates the most advanced technology available anywhere in the world for nuclear fuel production. A detailed account of the technology developed by BNFL to support its MOX fuels business will be provided, together with an explanation of the processes and plants used for MOX fuel production by BNFL. The paper also looks at the future needs of the MOX business and how improvements in pellet design can assist the MOX fabrication production process to meet the user demand requirements of utilities around the world. (author)

  12. Two dimensional burn-up calculation of TRIGA core

    International Nuclear Information System (INIS)

    Persic, A.; Ravnik, M.; Slavic, S.

    1996-01-01

    TRIGLAV is a new computer program for burn-up calculation of mixed core of research reactors. The code is based on diffusion model in two dimensions and iterative procedure is applied for its solution. The material data used in the model are calculated with the transport program WIMS. In regard to fission density distribution and energy produced by the reactor the burn-up increment of fuel elements is determined. In this paper the calculation model of diffusion constants and burn-up calculation are described and some results of calculations for TRIGA MARK II reactor are presented. (author)

  13. MTR fuel element burn-up measurements by the reactivity method

    International Nuclear Information System (INIS)

    Zuniga, A.; Cuya, T.R.; Ravnik, M.

    2003-01-01

    Fuel element burn-up was measured by the reactivity method in the 10 MW Peruvian MTR reactor RP-10. The main purpose of the experiment was testing the reactivity method for an MTR reactor as the reactivity method was originally developed for TRIGA reactors. The reactivity worth of each measured fuel element was measured in its original core position in order to measure the burn-up of the fuel elements that were part of the experimental core. The burn-up of each measured fuel element was derived by interpolating its reactivity worth from the reactivity worth of two reference fuel elements of known burn-up, whose reactivity worth was measured in the position of the measured fuel element. The accuracy of the method was improved by separating the reactivity effect of burn-up from the effect of the position in the core. The results of the experiment showed that the modified reactivity method for fuel element burn-up determination could be applied also to MTR reactors. (orig.)

  14. Power ramp tests of MOX fuel rods. HBWR irradiation with the instrument rig, IFA-591

    International Nuclear Information System (INIS)

    Ozawa, Takayuki; Abe, Tomoyuki

    2006-03-01

    Plutonium-uranium mixed oxide (MOX) fuel rods of instrumental rig IFA-591 were ramped in HBWR to study the Advanced Thermal Reactor (ATR) MOX fuel behavior during transient operation and to determine a failure threshold of the MOX fuel rods. Eleven segments were base-irradiated in ATR 'FUGEN' up to 18.4 GWd/t. Zirconium liner claddings were adopted for four segments of them. As the results of non-destructive post irradiation examinations (PIEs) after the base-irradiation and before the ramp tests, no remarkable behavior affecting the integrity of fuel assembly and fuel rod was confirmed. All segments to be used for the ramp tests, which consisted of the multi-step ramp tests and the single-step ramp tests, had instrumentations for in-pile measurements of cladding elongation or plenum pressure, and heated up to the maximum linear power of 58.3-68.4 kW/m without failure. The major results of ramp tests are as follows: There is no difference in PCMI behaviors between two type rods of Zry-2 and Zirconium liner claddings from the in-pile measurements of cladding elongation and plenum pressure. The computations of cladding elongation and inner pressure gave slightly lower elongation and pressure than the in-pile measurements during the ramp-test. However, the cladding relaxation during the power hold was in good agreement, and the fission gas release behavior during cooling down could be evaluated by taking into account the relaxation of contact pressure between pellet and cladding. Although the final power during IFA-591 ramp tests reached the higher linear power than the failure threshold power of UO 2 fuel rods, no indication of fuel failure was observed during the ramp tests. The cladding relaxation due to the creep deformation of the MOX pellets at high temperature could be confirmed at the power steps during the multi-ramp test. The fission gas release due to the emancipation from PCMI stress was observed during the power decreasing. The burn-up dependence could be

  15. Comparison of seismic isolation concepts for FBR

    International Nuclear Information System (INIS)

    Shiojiri, H.; Mazda, T.; Kasai, H.; Kanda, J.N.; Kubo, T.; Madokoro, M.; Shimomura, T.; Nojima, O.

    1989-01-01

    This paper seeks to verify the reliability and effectiveness of seismic isolation for FBR. Some results of the preliminary study of the program are described. Seismic isolation concepts and corresponding seismic isolation devices were selected. Three kinds of seismically-isolated FBR plant concepts were developed by applying promising seismic isolation concepts to the non-isolated FBR plant, and by developing plant component layout plans and building structural designs. Each plant was subjected to seismic response analysis and reduction in the amount of material of components and buildings were estimated for each seismic isolation concepts. Research and development items were evaluated

  16. Creep fatigue design of FBR components

    International Nuclear Information System (INIS)

    Bhoje, S.B.; Chellapandi, P.

    1997-01-01

    This paper deals with the characteristic features of Fast Breeder Reactor (FBR) with reference to creep fatigue, current creep fatigue design approach in compliance with RCCMR (1987) design code, material data, effects of weldments and neutron irradiation, material constitutive models employed, structural analysis and further R and D required for achieving maturity in creep fatigue design of FBR components. For the analysis reported in this paper, material constitutive models developed based on ORNIb (Oak Ridge National Laboratory) and Chaboche viscoplastic theories are employed to demonstrate the potential of FBR components for higher plant temperatures and/or longer life. The results are presented for the studies carried out towards life prediction of Prototype Fast Breeder Reactor (PFBR) components. (author). 24 refs, 8 figs, 5 tabs

  17. Advanced high throughput MOX fuel fabrication technology and sustainable development

    International Nuclear Information System (INIS)

    Krellmann, Juergen

    2005-01-01

    The MELOX plant in the south of France together with the La Hague reprocessing plant, are part of the two industrial facilities in charge of closing the nuclear fuel cycle in France. Started up in 1995, MELOX has since accumulated a solid know-how in recycling plutonium recovered from spent uranium fuel into MOX: a fuel blend comprised of both uranium and plutonium oxides. Converting recovered Pu into a proliferation-resistant material that can readily be used to power a civil nuclear reactor, MOX fabrication offers a sustainable solution to safely take advantage of the plutonium's high energy content. Being the first large-capacity industrial facility dedicated to MOX fuel fabrication, MELOX distinguishes itself from the first generation MOX plants with high capacity (around 200 tHM versus around 40 tHM) and several unique operational features designed to improve productivity, reliability and flexibility while maintaining high safety standards. Providing an exemplary reference for high throughput MOX fabrication with 1,000 tHM produced since start-up, the unique process and technologies implemented at MELOX are currently inspiring other MOX plant construction projects (in Japan with the J-MOX plant, in the US and in Russia as part of the weapon-grade plutonium inventory reduction). Spurred by the growing international demand, MELOX has embarked upon an ambitious production development and diversification plan. Starting from an annual level of 100 tons of heavy metal (tHM), MELOX demonstrated production capacity is continuously increasing: MELOX is now aiming for a minimum of 140 tHM by the end of 2005, with the ultimate ambition of reaching the full capacity of the plant (around 200 tHM) in the near future. With regards to its activity, MELOX also remains deeply committed to sustainable development in a consolidated involvement within AREVA group. The French minister of Industry, on August 26th 2005, acknowledged the benefits of MOX fuel production at MELOX: 'In

  18. Status of irradiation testing and PIE of MOX (Pu-containing) fuel

    International Nuclear Information System (INIS)

    Dimayuga, F.C.; Zhou, Y.N.; Ryz, M.A.

    1995-01-01

    This paper describes AECL's mixed oxide (MOX) fuel-irradiation and post-irradiation examination (PIE) program. Post-irradiation examination results of two major irradiation experiments involving several (U, Pu)O 2 fuel bundles are highlighted. One experiment involved bundles irradiated to burnups ranging fro 400 to 1200 MWh/kgHe in the Nuclear Power Demonstration (NPD) reactor. The other experiment consisted of several (U, Pu)O 2 bundles irradiated to burnups of up to 500 Mwh/kgHe in the National Research Universal (NRU) reactor. Results of these experiments demonstrate the excellent performance of CANDU MOX fuel. This paper also outlines the status of current MOX fuel irradiation tests, including the irradiation of various (U, Pu)O 2 bundles. The strategic importance of MOX fuel to CANDU fuel-cycle flexibility is discussed. (author)

  19. Method of start-up of rotary plug sealing devices in FBR type reactors

    International Nuclear Information System (INIS)

    Sakuragi, Masanori; Akita, Haruo

    1980-01-01

    Purpose: To rapidly and safely start-up the rotary plug sealing device by controlling to eliminate the pressure difference in the pressures of gases exerting on the liquid surfaces in the inner and the outer cylinders of a sealing alloy vessel in the rotary plug of a FBR type reactor. Method: In a case where an abnormal state results in the pressure difference of gases exerted on the liquid surfaces in the inner and the outer cylinders of a vessel charged with sealing alloy in a rotary plug and the sealing valve for the back-up gas supply tube is rapidly closed to seal the sealing portion, the pressure in the gas supply tube is controlled so that the pressure difference in the gases exerted on the liquid surfaces in the inner and outer cylinders while closing the sealing valve. Then, after conforming that the pressure is controlled to a predetermined level at which the pressure difference can be regarded to be zero, the sealing valve is gradually opened while regulating the pressure in the gas supply tube so as to maintain the pressure difference to a predetermined level. This prevents the occurrence of external disturbances upon opening of the sealing valve and enables rapid and safety start-up for the rotary plug sealing device. (Moriyama, K.)

  20. The MOX fuel behaviour test IFA-597.4/.5/.6/.7; Summary of in-pile fuel temperature and gas release data

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Hisashi

    2003-11-15

    It is considered important to study the in-reactor behaviour of MOX fuel in order to enhance the database on such fuel. For this reason, IFA-597.4/.5/.6/.7 were included in the joint research programme of the Halden Project. The series of tests, containing two MIMAS-MOX fuel rods, both equipped with a fuel centre thermocouple and a pressure bellows transducer, has been irradiated in the Halden Reactor since July 1997 under HBWR conditions. The objectives of the test series were to study the thermal and fission gas release (FGR) behaviour of MOX fuel and to explore potential differences in behaviour between solid and hollow pellets. One of the rods had mainly solid pellets, while the other contained only hollow pellets. Both rods had an initial Pu-fissile enrichment of 6.07%. The cladding outside diameter was 9.50 mm, and the initial fuel-clad gap was 180 mum. In the course of the test, power upratings for FGR studies of the MOX fuel were planned at burnup intervals of about 10 MWd/kg MOX. The power uprating was successfully performed at approx10 MWd/kg MOX, where the estimated fuel peak temperature of the solid pellets exceeded the FGR threshold temperature for UO{sub 2} fuel, while that of the hollow pellets remained below the threshold. For the solid fuel, the temperature at onset of FGR was consistent with the empirical threshold temperature for UO{sub 2} fuel. For the hollow fuel, gas release was observed at temperatures below the threshold. FGRs at the end-of-life were approx17% for the solid pellet rod and approx14% for the hollow pellet rod, respectively. As a result of discussions in HPG meetings, IFA-597.7 was unloaded in January 2002. PIE was carried out to check in-pile pressure measurements and examine fuel structural characteristics. The discharge burn-up of the MOX fuel was 32 MWd/kg MOX as determined from in-pile power data. This report supersedes HWR-712 (June 2002) previously issued on in-pile data from IFA-597.4/5/6/7. (Author)

  1. Actinide-only and full burn-up credit in criticality assessment of RBMK-1500 spent nuclear fuel storage cask using axial burn-up profile

    Energy Technology Data Exchange (ETDEWEB)

    Barkauskas, V., E-mail: vytenis.barkauskas@ftmc.lt; Plukiene, R., E-mail: rita.plukiene@ftmc.lt; Plukis, A., E-mail: arturas.plukis@ftmc.lt

    2016-10-15

    Highlights: • RBMK-1500 fuel burn-up impact on k{sub eff} in the SNF cask was calculated using SCALE 6.1. • Positive end effect was noticed at certain burn-up for the RBMK-1500 spent nuclear fuel. • The non-uniform uranium depletion is responsible for the end effect in RBMK-1500 SNF. • k{sub eff} in the SNF cask does not exceed a value of 0.95 which is set in the safety requirements. - Abstract: Safe long-term storage of spent nuclear fuel (SNF) is one of the main issues in the field of nuclear safety. Burn-up credit application in criticality analysis of SNF reduces conservatism of usually used fresh fuel assumption and implies a positive economic impact for the SNF storage. Criticality calculations of spent nuclear fuel in the CONSTOR® RBMK-1500/M2 cask were performed using pre-generated ORIGEN-ARP spent nuclear fuel composition libraries, and the results of the RBMK-1500 burn-up credit impact on the effective neutron multiplication factor (k{sub eff}) have been obtained and are presented in the paper. SCALE 6.1 code package with the STARBUCKS burn-up credit evaluation tool was used for modeling. Pre-generated ARP (Automatic Rapid Processing) crosssection libraries based on ENDF/B-VII cross section library were used for fast burn-up inventory modeling. Different conditions in the SNF cask were modeled: 2.0% and 2.8% initial enrichment fuel of various burn-up and water density inside cavities of the SNF cask. The fuel composition for the criticality analysis was chosen taking into account main actinides and most important fission products used in burn-up calculations. A significant positive end effect is noticed from 15 GWd/tU burn-up for 2.8% enrichment fuel and from 9 GWd/tU for 2.0% enrichment fuel applying the actinide-only approach. The obtained results may be applied in further evaluations of the RBMK type reactor SNF storage as well as help to optimize the SNF storage volume inside the CONSTOR® RBMK-1500/M2 cask without compromising criticality

  2. Actinide-only and full burn-up credit in criticality assessment of RBMK-1500 spent nuclear fuel storage cask using axial burn-up profile

    International Nuclear Information System (INIS)

    Barkauskas, V.; Plukiene, R.; Plukis, A.

    2016-01-01

    Highlights: • RBMK-1500 fuel burn-up impact on k_e_f_f in the SNF cask was calculated using SCALE 6.1. • Positive end effect was noticed at certain burn-up for the RBMK-1500 spent nuclear fuel. • The non-uniform uranium depletion is responsible for the end effect in RBMK-1500 SNF. • k_e_f_f in the SNF cask does not exceed a value of 0.95 which is set in the safety requirements. - Abstract: Safe long-term storage of spent nuclear fuel (SNF) is one of the main issues in the field of nuclear safety. Burn-up credit application in criticality analysis of SNF reduces conservatism of usually used fresh fuel assumption and implies a positive economic impact for the SNF storage. Criticality calculations of spent nuclear fuel in the CONSTOR® RBMK-1500/M2 cask were performed using pre-generated ORIGEN-ARP spent nuclear fuel composition libraries, and the results of the RBMK-1500 burn-up credit impact on the effective neutron multiplication factor (k_e_f_f) have been obtained and are presented in the paper. SCALE 6.1 code package with the STARBUCKS burn-up credit evaluation tool was used for modeling. Pre-generated ARP (Automatic Rapid Processing) crosssection libraries based on ENDF/B-VII cross section library were used for fast burn-up inventory modeling. Different conditions in the SNF cask were modeled: 2.0% and 2.8% initial enrichment fuel of various burn-up and water density inside cavities of the SNF cask. The fuel composition for the criticality analysis was chosen taking into account main actinides and most important fission products used in burn-up calculations. A significant positive end effect is noticed from 15 GWd/tU burn-up for 2.8% enrichment fuel and from 9 GWd/tU for 2.0% enrichment fuel applying the actinide-only approach. The obtained results may be applied in further evaluations of the RBMK type reactor SNF storage as well as help to optimize the SNF storage volume inside the CONSTOR® RBMK-1500/M2 cask without compromising criticality safety.

  3. From Russian weapons grade plutonium to MOX fuel

    International Nuclear Information System (INIS)

    Braehler, G.; Kudriavtsev, E.G.; Seyve, C.

    1997-01-01

    The April 1996, G7 Moscow Summit on nuclear matters provided a political framework for one of the most current significant challenges: ensuring a consistent answer to the weapons grade fissile material disposition issue resulting from the disarmament effort engaged by both the USA and Russia. International technical assessments have showed that the transformation of Weapons grade Plutonium in MOX fuel is a very efficient, safe, non proliferant and economically effective solution. In this regard, COGEMA and SIEMENS, have set up a consistent technical program properly addressing incineration of weapons grade plutonium in MOX fuels. The leading point of this program would be the construction of a Weapons grade Plutonium dedicated MOX fabrication plant in Russia. Such a plant would be based on the COGEMA-SIEMENS industrial capabilities and experience. This facility would be operated by MINATOM which is the partner for COGEMA-SIEMENS. MINATOM is in charge of coordination of the activity of the Russian research and construction institutes. The project take in account international standards for non-proliferation, safety and waste management. France and Germany officials reasserted this position during their last bilateral summits held in Fribourg in February and in Dijon in June 1996. MINATOM and the whole Russian nuclear community have already expressed their interest to cooperate with COGEMA-SIEMENS in the MOX field. This follows governmental-level agreements signed in 1992 by French, German and Russian officials. For years, Russia has been dealing with research and development on MOX fabrication and utilization. So, the COGEMA-SIEMENS MOX proposal gives a realistic answer to the management of weapons grade plutonium with regard to the technical, industrial, cost and schedule factors. (author)

  4. MOX fuel transport: the French experience

    International Nuclear Information System (INIS)

    Sanchis, H.; Verdier, A.; Sanchis, H.

    1999-01-01

    In the back-end of the fuel cycle, several leading countries have chosen the Reprocessing, Conditioning, Recycling (RCR) option. Plutonium recycling in the form of MOX fuel is a mature industry, with successful operational experience and large-scale fabrication plants an several European countries. The COGEMA Group has developed the industrialized products to master the RCR operation including transport COGEMA subsidiary, TRANSNUCLEAIRE has been operating MOX fuel transports on an industrial scale for more than 10 years. In 1998, around 200 transports of Plutonium materials have been organised by TRANSNUCLEAIRE. These transports have been carried out by road between various facilities in Europe: reprocessing plants, manufacturing plants and power plants. The materials transported are either: PuO 2 and MOX powder; BWR and PWR MOX fuel rods; BWR and PWR MOX fuel assemblies. Because MOX fuel transport is subject to specific safety, security and fuel integrity requirements, the MOX fuel transport system implemented by TRANSNUCLEAIRE is fully dedicated. Packaging have been developed, licensed and manufactured for each kind of MOX material in compliance with relevant regulations. A fleet of vehicles qualified according to existing physical protection regulations is operated by TRANSNUCLEAIRE. TRANSNUCLEAIRE has gained a broad experience in MOX transport in 10 years. Technical and operational know-how has been developed and improved for each step: vehicles and packaging design and qualification; vehicle and packaging maintenance; transport operations. Further developments are underway to increase the payload of the packaging and to improve the transport conditions, safety and security remaining of course top priority. (authors)

  5. The MOX fuel in France

    International Nuclear Information System (INIS)

    2011-01-01

    This document briefly describes the MOX production cycle which is performed in the MELOX plant in Marcoule by AREVA. It briefly indicates the main risks occurring during the whole MOX production and use cycle. They are associated with MOX production (high neutron and gamma dose rates, contamination, criticality, heat release), transportation, its use in reactors, its storage in pools after irradiation. All these stages need radiation protection measures

  6. Benchmark calculations for VENUS-2 MOX -fueled reactor dosimetry

    International Nuclear Information System (INIS)

    Kim, Jong Kung; Kim, Hong Chul; Shin, Chang Ho; Han, Chi Young; Na, Byung Chan

    2004-01-01

    As a part of a Nuclear Energy Agency (NEA) Project, it was pursued the benchmark for dosimetry calculation of the VENUS-2 MOX-fueled reactor. In this benchmark, the goal is to test the current state-of-the-art computational methods of calculating neutron flux to reactor components against the measured data of the VENUS-2 MOX-fuelled critical experiments. The measured data to be used for this benchmark are the equivalent fission fluxes which are the reaction rates divided by the U 235 fission spectrum averaged cross-section of the corresponding dosimeter. The present benchmark is, therefore, defined to calculate reaction rates and corresponding equivalent fission fluxes measured on the core-mid plane at specific positions outside the core of the VENUS-2 MOX-fuelled reactor. This is a follow-up exercise to the previously completed UO 2 -fuelled VENUS-1 two-dimensional and VENUS-3 three-dimensional exercises. The use of MOX fuel in LWRs presents different neutron characteristics and this is the main interest of the current benchmark compared to the previous ones

  7. Cost-benefit analysis on FBR cycle R and D for the world

    International Nuclear Information System (INIS)

    Kawasaki, Hirotsugu

    2006-01-01

    This analysis was estimated on the assumption that the nuclear power generation will be changed by FBR and both LWR and FBR indicate same nuclear power generation cost and the environmental load. The cost-benefit analysis results on FBR cycle R and D in the world showed that increase of power generation cost with increase of uranium fuel cost will be avoided and decrease of power generation cost by introducing FBR. The cost-benefit analysis results on FBR cycle R and D in Japan showed that about 9 billions yen will be obtained by the above two economic effects. Cost-benefit effects by introducing FBR, economic estimation method of cost-benefit effect, range and contents of cost-benefit effect on FBR R and D, preconditions of evaluation, and evaluation results are explained. (S.Y.)

  8. Determination of burn-up of irradiated nuclear fuels using mass spectrometry

    International Nuclear Information System (INIS)

    Jagadish Kumar, S.; Telmore, V.M.; Shah, R.V.; Sasi Bhushan, K.; Paul, Sumana; Kumar, Pranaw; Rao, Radhika M.; Jaison, P.G.

    2017-01-01

    Burn-up defined as the atom percent fission, is a vital parameter used for assessing the performance of nuclear fuel during its irradiation in the reactor. Accurate data on the actinide isotopes are also essential for the reliable accountability of nuclear materials and for nuclear safeguards. Both destructive and non-destructive methods are employed in the post-irradiation analysis for the burn-up measurements. Though non-destructive methods are preferred from the point view of remote handling of irradiated fuels with high radioactivity, they do not provide the high accuracy as achieved by the chemical analysis methods. Thus destructive radiochemical and chemical analyses are still the established reference methods for accurate and reliable burn-up determination of irradiated nuclear fuels. In the destructive method, burn-up of irradiated nuclear fuel is determined by correlating the amount of a fission product formed during irradiation with that of heavy elements. Thus the destructive experimental determination of burn-up involves the dissolution of irradiated fuel samples followed by the separation and determination of heavy elements and fission product(s) to be used as burn-up monitor(s). Another approach for the experimental determination of burn-up is based on the changes in the abundances of the heavy element isotopes. A widely accepted method for burn-up determination is based on stable "1"4"8Nd and "1"3"9La as burn-up monitors. Several properties such as non-volatility, nearly same yields for thermal fissions of "2"3"5U and "2"3"9Pu etc justifies the selection of "1"4"8Nd as a burn-up monitor

  9. Transport of MOX fuel from Europe to Japan; Transport de combustible mox d' Europe vers le Japon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The MOX fuel transports from Europe to Japan represent a main part in the implementing of the Japan nuclear program. They complement the 160 transports of spent fuels realized from Japan to Europe and the vitrified residues return from France to Japan. In this framework the document presents the MOX fuel, the use of the MOX fuel in reactor, the proliferation risks, the MOX fuel transport to Japan, the public health, the transport regulations, the safety and the civil liability. (A.L.B.)

  10. Calculation of isotope burn-up and change in efficiency of absorbing elements of WWER-1000 control and protection system during burn-up

    International Nuclear Information System (INIS)

    Timofeeva, O.A.; Kurakin, K.U.

    2006-01-01

    The report deals with fast and thermal neutron flows distribution in structural elements of WWER-1000 fuel assembly and absorbing rods, determination of absorbing isotope burn-up and worth variation in WWER reactor control and protection system rods. Simulation of absorber rod burn-up is provided using code package SAPPHIRE 9 5 end RC W WER allowing detailed description of the core segment spatial model. Maximum burn-up of absorbing rods and respective worth variation of control and protection system rods is determined on the basis of a number of calculations considering known characteristics of fuel cycles (Authors)

  11. Mixed Reload Design Using MOX and UOX Fuel Assemblies

    International Nuclear Information System (INIS)

    Ramon, Ramirez Sanchez J.; Perry, R.T.

    2002-01-01

    As part of the studies involved in plutonium utilization assessment for a Boiling Water Reactor, a conceptual design of MOX fuel was developed, this design is mechanically the same design of 10 X 10 BWR fuel assemblies but different fissile material. Several plutonium and gadolinium concentrations were tested to match the 18 months cycle length which is the current cycle length of LVNPP, a reference UO 2 assembly was modeled to have a full cycle length to compare results, an effective value of 0.97 for the multiplication factor was set as target for 470 Effective Full Power days for both cycles, here the gadolinium concentration was a key to find an average fissile plutonium content of 6.55% in the assembly. A reload of 124 fuel assemblies was assumed to simulate the complete core, several load fractions of MOX fuel mixed with UO 2 fresh fuel were tested to verify the shutdown margin, the UO 2 fuel meets the shutdown margin when 124 fuel assemblies are loaded into the core, but it does not happen when those 124 assemblies are replaced with MOX fuel assemblies, so the fraction of MOX was reduced step by step up to find a mixed load that meets both length cycle and shutdown margin. Finally the conclusion is that control rods losses some of their worth in presence of plutonium due to a more hardened neutron spectrum in MOX fuel and this fact limits the load of MOX fuel assemblies in the core, this results are shown in this paper. (authors)

  12. Confirmation test of powder mixing process in J-MOX

    International Nuclear Information System (INIS)

    Ota, Hiroshi; Osaka, Shuichi; Kurita, Ichiro

    2009-01-01

    Japan Nuclear Fuel Ltd. (hereafter, JNFL) MOX Fuel Fabrication Plant (hereafter, J-MOX) is what fabricates MOX fuel for domestic light water power plants. Development of design concept of J-MOX was started mid 90's and the frame of J-MOX process was clarified around 2000 including adoption of MIMAS process as apart of J-MOX powder process. JNFL requires to take an answer to any technical question that has not been clarified ever before by world's MOX and/or Uranium fabricators before it commissions equipment procurement. J-MOX is to be constructed adjacent to the Rokkasho Reprocessing Plant (RRP) and to utilize MH-MOX powder recovered at RRP. The combination of the MIMAS process and the MH-MOX powder is what has never tried in the world. Therefore JNFL started a series of confirmation tests of which the most important is the powder test to confirm the applicability of MH-MOX powder to the MIMAS process. The MH-MOX powder, consisting of 50% plutonium oxide and 50% uranium oxide, originates JAEA development utilizing microwave heating (MH) technology. The powder test started with laboratory scale small equipment utilizing both uranium and the MOX powder in 2000, left a solution to tough problem such as powder adhesion onto equipment, and then was followed by a large scale equipment test again with uranium and the MOX powder. For the MOX test, actual size equipment within glovebox was manufactured and installed in JAEA plutonium fuel center in 2005, and based on results taken so far an understanding that the MIMAS equipment, with the MH-MOX powder, can present almost same quality MOX pellet as what is introduced as fabricated in Europe was developed. The test was finished at the end of Japanese fiscal year (JFY) 2007, and it was confirmed that the MOX pellets fabricated in this test were almost satisfied with the targeted specifications set for domestic LWR MOX fuels. (author)

  13. Program on MOX fuel utilization in light water reactors

    International Nuclear Information System (INIS)

    Kenda, Hirofumi

    2000-01-01

    MOX fuel utilization program by the Japanese electric power companies was released in February, 1997. Principal philosophy for MOX fuel design is that MOX fuel shall be compatible with Uranium fuel and behavior of core loaded with MOX fuel shall be similar to that of conventional core. MOX fuel is designed so that geometry and nuclear capability of MOX fuel are equivalent to Uranium fuel. (author)

  14. MOX Cross-Section Libraries for ORIGEN-ARP

    International Nuclear Information System (INIS)

    Gauld, I.C.

    2003-01-01

    The use of mixed-oxide (MOX) fuel in commercial nuclear power reactors operated in Europe has expanded rapidly over the past decade. The predicted characteristics of MOX fuel such as the nuclide inventories, thermal power from decay heat, and radiation sources are required for design and safety evaluations, and can provide valuable information for non-destructive safeguards verification activities. This report describes the development of computational methods and cross-section libraries suitable for the analysis of irradiated MOX fuel with the widely-used and recognized ORIGEN-ARP isotope generation and depletion code of the SCALE (Standardized Computer Analyses for Licensing Evaluation) code system. The MOX libraries are designed to be used with the Automatic Rapid Processing (ARP) module of SCALE that interpolates appropriate values of the cross sections from a database of parameterized cross-section libraries to create a problem-dependent library for the burnup analysis. The methods in ORIGEN-ARP, originally designed for uranium-based fuels only, have been significantly upgraded to handle the larger number of interpolation parameters associated with MOX fuels. The new methods have been incorporated in a new version of the ARP code that can generate libraries for low-enriched uranium (LEU) and MOX fuel types. The MOX data libraries and interpolation algorithms in ORIGEN-ARP have been verified using a database of declared isotopic concentrations for 1042 European MOX fuel assemblies. The methods and data are validated using a numerical MOX fuel benchmark established by the Organization for Economic Cooperation and Development (OECD) Working Group on burnup credit and nuclide assay measurements for irradiated MOX fuel performed as part of the Belgonucleaire ARIANE International Program

  15. Transport of MOX fuel from Europe to Japan; Transport de combustible mox d' Europe vers le Japon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The MOX fuel transports from Europe to Japan represent a main part in the implementing of the Japan nuclear program. They complement the 160 transports of spent fuels realized from Japan to Europe and the vitrified residues return from France to Japan. In this framework the document presents the MOX fuel, the use of the MOX fuel in reactor, the proliferation risks, the MOX fuel transport to Japan, the public health, the transport regulations, the safety and the civil liability. (A.L.B.)

  16. MOX fuel for Indian nuclear power programme

    International Nuclear Information System (INIS)

    Kamath, H.S.; Anantharaman, K.; Purushotham, D.S.C.

    2000-01-01

    A sound energy policy and a sound environmental policy calls for utilisation of plutonium (Pu) in nuclear power reactors. The paper discusses the use of Pu in the form of mixed oxide (MOX) fuel in two Indian boiling water reactors (BWRs) at Tarapur. An industrial scale MOX fuel fabrication plant is presently operational at Tarapur which is capable of manufacturing MOX fuels for BWRs and in future for PHWRs. The plant can also manufacture mixed oxide fuel for prototype fast breeder reactor (PFBR) and development work in this regard has already started. The paper describes the MOX fuel manufacturing technology and quality control techniques presently in use at the plant. The irradiation experience of the lead MOX assemblies in BWRs is also briefly discussed. The key areas of interest for future developments in MOX fuel fabrication technology and Pu utilisation are identified. (author)

  17. Success tree analysis on the technologies development for FBR commercialization

    International Nuclear Information System (INIS)

    An, Shigehiro; Taniyama, Hiroshi; Nagai, Hiroshi.

    1991-01-01

    In order to obtain a secure energy supply in future, it is important to establish a system for plutonium utilization via the FBR which is superior to the uranium utilization system with respect to both safety and good economics. In spite of this obvious need, the commercialization of the FBR is facing delays. Although several factors, for example, improvement of LWR technologies, stable supply of low cost uranium, opposition to nuclear power, etc. are contributors, the primary reason for the delay is the unfavorable economics of the FBR itself. In this paper the key technologies leading to reduced FBR costs are identified and their development strategies are discussed. (author)

  18. Flexible fuel cycle system for the transition from LWR to FBR

    International Nuclear Information System (INIS)

    Fukasawa, Tetsuo; Yamashita, Junichi; Hoshino, Kuniyoshi; Sasahira, Akira; Inoue, Tadashi; Minato, Kazuo; Sato, Seichi

    2009-01-01

    Japan will deploy commercial fast breeder reactor (FBR) from around 2050 under the suitable conditions for the replacement of light water reactor (LWR) with FBR. The transition scenario from LWR to FBR is investigated in detail and the flexible fuel cycle initiative (FFCI) system has been proposed as a optimum transition system. The FFCI removes ∼95% uranium from LWR spent fuel (SF) in LWR reprocessing and residual material named Recycle Material (RM), which is ∼1/10 volume of original SF and contains ∼50% U, ∼10% Pu and ∼40% other nuclides, is treated in FBR reprocessing to recover Pu and U. If the FBR deployment speed becomes lower, the RM will be stored until the higher speed again. The FFCI has some merits compared with ordinary system that consists of full reprocessing facilities for both LWR and FBR SF during the transition period. The economy is better for FFCI due to the smaller LWR reprocessing facility (no Pu/U recovery and fabrication). The FFCI can supply high Pu concentration RM, which has high proliferation resistance and flexibly respond to FBR introduction rate changes. Volume minimization of LWR SF is possible for FFCI by its conversion to RM. Several features of FFCI were quantitatively evaluated such as Pu mass balance, reprocessing capacities, LWR SF amounts, RM amounts, and proliferation resistance to compare the effectiveness of the FFCI system with other systems. The calculated Pu balance revealed that the FFCI could supply enough but no excess Pu to FBR. These evaluations demonstrated the applicability of FFCI system to the transition period from LWR to FBR cycles. (author)

  19. MOX fuel fabrication at AECL

    International Nuclear Information System (INIS)

    Dimayuga, F.C.; Jeffs, A.T.

    1995-01-01

    Atomic Energy of Canada Limited's mixed-oxide (MOX) fuel fabrication activities are conducted in the Recycle Fuel Fabrication Laboratories (RFFL) at the Chalk River Laboratories. The RFFL facility is designed to produce experimental quantities of CANDU MOX fuel for reactor physics tests or demonstration irradiations. From 1979 to 1987, several MOX fuel fabrication campaigns were run in the RFFL, producing various quantities of fuel with different compositions. About 150 bundles, containing over three tonnes of MOX, were fabricated in the RFFL before operations in the facility were suspended. In late 1987, the RFFL was placed in a state of active standby, a condition where no fuel fabrication activities are conducted, but the monitoring and ventilation systems in the facility are maintained. Currently, a project to rehabilitate the RFFL and resume MOX fuel fabrication is nearing completion. This project is funded by the CANDU Owners' Group (COG). The initial fabrication campaign will consist of the production of thirty-eight 37-element (U,Pu)O 2 bundles containing 0.2 wt% Pu in Heavy Element (H.E.) destined for physics tests in the zero-power ZED-2 reactor. An overview of the Rehabilitation Project will be given. (author)

  20. Observations on the CANDLE burn-up in various geometries

    International Nuclear Information System (INIS)

    Seifritz, W.

    2007-01-01

    We have looked at all geometrical conditions under which an auto catalytically propagating burnup wave (CANDLE burn-up) is possible. Thereby, the Sine Gordon equation finds a new place in the burn-up theory of nuclear fission reactors. For a practical reactor design the axially burning 'spaghetti' reactor and the azimuthally burning 'pancake' reactor, respectively, seem to be the most promising geometries for a practical reactor design. Radial and spherical burn-waves in cylindrical and spherical geometry, respectively, are principally impossible. Also, the possible applicability of such fission burn-waves on the OKLO-phenomenon and the GEOREACTOR in the center of Earth, postulated by Herndon, is discussed. A fast CANDLE-reactor can work with only depleted uranium. Therefore, uranium mining and uranium-enrichment are not necessary anymore. Furthermore, it is also possible to dispense with reprocessing because the uranium utilization factor is as high as about 40%. Thus, this completely new reactor type can open a new era of reactor technology

  1. Nondestructive, fast methods for burn-up study

    International Nuclear Information System (INIS)

    Schaechter, L.; Hacman, D.; Mot, O.

    1977-01-01

    Nondestructive methods, based on high resolution-spectrometry successfully applied at Institute for Atomic Physics are presented. These methods are preferred to destructive chemical methods; the latter being costly and lengthy and not suitable for statistical prediction of nuclear fuel behaviour. The following methods are developed: methods for determining the burn up of fuel elements and fuel assemblies; a method for determining the U 235 and Pu 239 contributions to the burn up and a code written in FORTRAN IV for numerical calculation of Pu 239 fission vs. burn up; a high precision method for burnup determination by adding burnable poison; a method for prediction of specific power distribution in the fuel elements of a research or power reactors; a method for determining the power output of the fuel element in an operating power reactor; a method for determining the content of Pu 239 of the fuel element irradiated in a reactor. The results which were obtained by these methods improved the fuel management at the VVR-S reactor at Institute for Atomic Physics, Bucharest and may be applied to other reactor types [fr

  2. A utility analysis of MOX recycling policy

    International Nuclear Information System (INIS)

    Pfaeffli, J.L.

    1990-01-01

    The author presents the advantages of recycling of plutonium and uranium from spent reactor fuel assemblies as follows: natural uranium and enrichment savings, mixed oxide fuel (MOX) fuel assembly cost, MOX compatibility with plant operation, high burnups, spent MOX reprocessing, and non-proliferation aspects.Disadvantages of the recycling effort are noted as well: plutonium degradation with time, plutonium availability, in-core fuel management, administrative authorizations by the licensings authorities, US prior consent, and MOX fuel fabrication capacity. Putting the advantages and disadvantages in perspective, it is concluded that the recycling of MOX in light water reactors represents, under the current circumstances, the most appropriate way of making use of the available plutonium

  3. Fuel production for LWRs - MOX fuel aspects

    International Nuclear Information System (INIS)

    Deramaix, P.

    2005-01-01

    Plutonium recycling in Light Water Reactors is today an industrial reality. It is recycled in the form of (U, Pu)O 2 fuel pellets (MOX), fabricated to a large extent according to UO 2 technology and pellet design. The similarity of physical, chemical, and neutron properties of both fuels also allows MOX fuel to be burnt in nuclear plants originally designed to burn UO 2 . The industrial processes presently in use or planned are all based on a mechanical blending of UO 2 and PuO 2 powders. To obtain finely dispersed plutonium and to prevent high local concentration of plutonium, the feed materials are micronised. In the BNFL process, the whole (UO 2 , PuO 2 ) blend is micronised by attrition milling. According to the MIMAS process, developed by BELGONUCLEAIRE, a primary blend made of UO 2 containing about 30% PuO 2 is micronised in a ball mill, afterwards this primary blend is mechanically diluted in UO 2 to obtain the specified Pu content. After mixing, the (U, Pu)O 2 powder is pressed and the pellets are sintered. The sintering cover gas contains moisture and 5 v/o H 2 . Moisture increases the sintering process and the U-Pu interdiffusion. After sintering and grinding, the pellets are submitted to severe controls to verify conformity with customer specifications (fissile content, Pu distribution, surface condition, chemical purity, density, microstructure). (author)

  4. Recycling of MOX fuel for LWRs

    International Nuclear Information System (INIS)

    Joo, Hyung Kook; Oh, Soo Youl

    1992-01-01

    The status and issues related to the thermal recycling of reprocessed nuclear fuels have been reviewed. It is focused on the use of reprecessed plutonium in the form of mixed oxide (MOX) for a light water reactor and the review on reprocessing and fabrication processes is beyond the scope. In spite of the difference in the nuclear characteristics between plutonium and uranium isotopes, the neutronics behavior in a core with MOX fuels is similar to that with normal uranium fuels. However, since the neutron spectrum is hardened in a core with MOX, the Doppler, viod, and moderator temperature coefficients become more negative and the control rod and boron worths are slightly reduced. Therefore, the safety will be evaluated carefully in addition to the core neutronics analysis. The MOX fuel rod behavior related to the rod performance such as the pellet to clad interaction and fission gas release is also similar to that of uranium rods, and no specific problem arises. Substituting MOX fuels for a portion of uranium fuels, it is estimated that the savings be about 25% in uranium ore and 10% in uranium enrichment service requirements. The use of MOX fuel in LWRs has been commercialized in European countries including Germany, France, Belgium, etc., and a demonstration program has been pursued in Japan for the commercial utilization in the late 1990s. Such a worldwide trend indicates that the utilization of MOX fuel in LWRs is a proven technology and meets economics criteria. (Author)

  5. MOX-fuel inherent proliferation-protection due to {sup 231}Pa admixture

    Energy Technology Data Exchange (ETDEWEB)

    Kryuchkov, E.F.; Glebov, V.B.; Apse, V.A.; Shmelev, A.N. [Moscow Engineering Physics Institute (State University), Moscow (Russian Federation)

    2003-07-01

    The proliferation protection levels of MOX-fuel containing small additions of protactinium are evaluated for equilibrium closed and open cycles of a light-water reactor (LWR).Analysis of the ways to the proliferation protection of MOX-fuel by small {sup 231}Pa addition and comparison of this way with another options for giving MOX-fuel the proliferation self-protection property enable us to make the 3 following conclusions: -1) Unique nature of protactinium as a small addition to MOX-fuel is determined by the following properties: - Protactinium is available in the nature (uranium ore) as a long-lived mono-isotope {sup 231}Pa, - under neutron irradiation, {sup 231}Pa is converted into {sup 232}U, which is a long-term source of high energy gamma-radiation and practically non-separable from main fuel mass, - essentially, {sup 231}Pa is a high-quality burnable neutron absorber. -2) From the proliferation self-protection point of view, nuclear fuel cycle closure with fuel recycle is a preferable option because, under this condition, introduction of protactinium into MOX-fuel allows to create the inherent radiation barrier which is in action during full cycle of fuel management at the level corresponding to the accepted today criterion of the Spent Fuel Standard (SFS). In particular, the considered example of multiple MOX-fuel recycle with small addition of {sup 231}Pa (0.2% HM) at each cycle demonstrates a possibility to reach the proliferation protection level of fresh MOX-fuel corresponding to once irradiated fuel with the same cooling time. In this case, the lethal dose (at 30 cm distance from fuel assembly) is received within the minute range. -3) Introduction of {sup 231}Pa into MOX-fuel composition in amount of 0.5% HM allows to prolong action of the SFS from 100 to 200 years. If {sup 231}Pa content is increased up to 5% HM, then MOX-fuel conserves the proliferation self-protection property in respect to short-term unauthorized actions for 200-year period of its

  6. Development of the adjusted nuclear cross-section library based on JENDL-3.2 for large FBR

    International Nuclear Information System (INIS)

    Yokoyama, Kenji; Ishikawa, Makoto; Numata, Kazuyuki

    1999-04-01

    JNC (and PNC) had developed the adjusted nuclear cross-section library in which the results of the JUPITER experiments were reflected. Using this adjusted library, the distinct improvement of the accuracy in nuclear design of FBR cores had been achieved. As a recent research, JNC develops a database of other integral data in addition to the JUPITER experiments, aiming at further improvement for accuracy and reliability. In 1991, the adjusted library based on JENDL-2, JFS-3-J2 (ADJ91R), was developed, and it has been used on the design research for FBR. As an evaluated nuclear library, however, JENDL-3.2 is recently used. Therefore, the authors developed an adjusted library based on JENDL-3.2 which is called JFS-3-J3.2(ADJ98). It is known that the adjusted library based on JENDL-2 overestimated the sodium void reactivity worth by 10-20%. It is expected that the adjusted library based on JENDL-3.2 solve the problem. The adjusted library JFS-3-J3.2(ADJ98) was produced with the same method as the adjusted library JFS-3-J2(ADJ91R) and used more integral parameters of JUPITER experiments than the adjusted library JFS-3-J2(ADJ91R). This report also describes the design accuracy estimation on a 600 MWe class FBR with the adjusted library JFS-3-J3.2(ADJ98). Its main nuclear design parameters (multiplication factor, burn-up reactivity loss, breeding ratio, etc.) except the sodium void reactivity worth which are calculated with the adjusted library JFS-3-J3.2(ADJ98) are almost the same as those predicted with JFS-3-J2(ADJ91R). As for the sodium void reactivity, the adjusted library JFS-3-J3.2(ADJ98) estimates about 4% smaller than the JFS-3-J2(ADJ91R) because of the change of the basic nuclear library from JENDL-2 to JENDL-3.2. (author)

  7. The transuranic mass balance during the introduction of metal fuel FBR cycle

    International Nuclear Information System (INIS)

    Yokoo, Takeshi; Inoue, Tadashi

    1999-01-01

    The mass flow of plutonium and minor actinides is calculated for a future light water reactor-fast breeder reactor (LWR-FBR) transition scenario, in which power generation by LWRs is continued on a certain scale for a long period before the replacement by FBRs begins. The burnup of the LWR spent fuel is considered to be higher than the current standard. It is assumed that all the plutonium and minor actinides recovered from LWRs are used to start up and feed metal fuel commercial FBRs, which replace those LWRs that have reached the end of their life. The results show that the accumulated plutonium and minor actinides from the LWRs can be consistently consumed without further accumulation, by gradually establishing the FBR power generation and its fuel cycle on the same scale. The optimum content of the minor actinides in the standard FBR fuel is about 2 weight percents. This result indicates that if FBRs are introduced in the future, extension of the LWR usage period will cause no significant problems in terms of the consumption of accumulated transuranic elements. (author)

  8. Study on the FBR cycle introduction scenario. 4. Evaluation of the FBR cycle introduction scenario from the viewpoints of the fuel cycle requirements

    International Nuclear Information System (INIS)

    Ono, Kiyoshi; Shiotani, Hiroki; Hirao, Kazunori

    2003-07-01

    This report is intended to explain the outline of the scenario studies on FBR (Fast Breeder Reactor) cycle introduction. Recently, people value the reduction of environmental impact in addition to the recycle of energy resources and the energy security in these scenario studies. This report summarizes the analysis about the necessity of plutonium recycling in LWR (Light water Reactor) from short-term view and about the necessity of FBR cycle introduction from a long-term view in Japan, by comparing 'FBR scenario' with 'LWR once-through scenario' and 'Pu recycle in LWR scenario', from the viewpoints of cumulative uranium demand, spent fuel storage, radioactive waste arising, etc. It becomes clear that the plutonium recycling in LWR has a good effect on the reduction of spent fuel storage and the cumulative natural uranium demand before FBR cycle introduction, from short-term view (20-30 years). On the other hand, this analysis also shows that there is much effect of FBR deployment not only on saving amount of uranium use and energy security but also on reduction of high-level radioactive waste (spent fuels and vitrified waste) and minor actinide arising, from long-term view (100-200 years). (author)

  9. High-burn-up fuels for fast reactors. Past experience and novel applications

    International Nuclear Information System (INIS)

    Weaver, Kevan D.; Gilleland, John; Whitmer, Charles; Zimmerman, George

    2009-01-01

    Fast reactors in the U.S. routinely achieved fuel burn-ups of 10%, with some fuel able to reach peak burn-ups of 20%, notably in the Experimental Breeder Reactor II and the Fast Flux Test Facility. Maximum burn-up has historically been constrained by chemical and mechanical interactions between the fuel and its cladding, and to some extent by radiation damage and thermal effects (e.g., radiation-induced creep, thermal creep, and radiation embrittlement) that cause the cladding to weaken. Although fast reactors have used several kinds of fuel - including oxide, metal alloy, carbide, and nitride - the vast majority of experience with fast reactors has been using oxide (including mixed oxide) and metal-alloy fuels based on uranium. Our understanding of high-burn-up operation is also limited by the fact that breeder reactor programs have historically assumed that their fuel would eventually undergo reprocessing; the programs thus have not made high burn-up a top priority. Recently a set of novel designs have emerged for fast reactors that require little initial enrichment and no reprocessing. These reactors exploit a concept known as a traveling wave (sometimes referred to as a breed-and-burn wave, fission wave, or nuclear-burning wave). By breeding and using its own fuel in place as it operates, a traveling-wave reactor can obtain burn-ups that approach 50%, well beyond the current base of knowledge and experience. Our computational work on the physics of traveling-wave reactors shows that they require metal-alloy fuel to provide the margins of reactivity necessary to sustain a breed-and-burn wave. This paper reviews operating experience with high-burn-up fuels and the technical feasibility of moving to a qualitatively new burn-up regime. We discuss our calculations on traveling-wave reactors, including those concerning the possible use of thorium. The challenges associated with high burn-up and fluence in fuels and materials are also discussed. (author)

  10. Comparison of measured and calculated burn-up of AVR-Fuel-Elements

    Energy Technology Data Exchange (ETDEWEB)

    Wagemann, R.

    1974-03-15

    Burn-up comparisons are made for small batches of three types of AVR fuel elements using a coupled EREBUS-MUPO neutronic analysis compared against test results from both nondestructive gamma-ray measurements of cesium-137 activity and destructive mass spectrometry measurements of the ratio of U-233 to U-235. The comparisons are relatively good for average burn-up and reasonably good for burn-up distributions.

  11. Development of hydrogen production technology using FBR

    International Nuclear Information System (INIS)

    Ono, Kiyoshi; Otaki, Akira; Chikazawa, Yoshitaka; Nakagiri, Toshio; Sato, Hiroyuki; Sekine, Takashi; Ooka, Makoto

    2004-06-01

    This report describes the features of technology, the schedule and the organization for the research and development regarding the hydrogen production technology using FBR thermal energy. Now, the hydrogen production system is proposed as one of new business models for FBR deployment. This system is the production of hydrogen either thermal energy at approximately from 500degC to 550degC or electricity produced by a sodium cooled FBR. Hydrogen is expected to be one of the future clean secondary energies without carbon-dioxide emission. Meanwhile the global energy demand will increase, especially in Asian countries, and the energy supply by fossil fuels is not the best choice considering the green house effect and the stability of energy supply. The development of the hydrogen technology using FBR that satisfies 'sustainable energy development' and 'utilization of energies free from environmental pollution' will be one of the promising options. Based on the above mentioned recognition, we propose the direction of the development, the issues to be solved, the time schedule, the budget, and the organization for R and D of three hydrogen production technologies, the thermochemical hybrid process, the low temperature steam reforming process, and the high temperature steam electrolysis process in JNC. (author)

  12. Evaluation of the characteristics of high burnup and high plutonium content mixed oxide (MOX) fuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    Two kinds of MOX fuel irradiation tests, i.e., MOX irradiation test up to high burnup and MOX having high plutonium content irradiation test, have been performed from JFY 2007 for five years in order to establish technical data concerning MOX fuel behavior during irradiation, which shall be needed in safety regulation of MOX fuel with high reliability. The high burnup MOX irradiation test consists of irradiation extension and post irradiation examination (PIE). The activities done in JFY 2011 are destructive post irradiation examination (D-PIE) such as EPMA and SIMS at CEA (Commissariat a l'Enegie Atomique) facility. Cadarache and PIE data analysis. In the frame of irradiation test of high plutonium content MOX fuel programme, MOX fuel rods with about 14wt % Pu content are being irradiated at BR-2 reactor and corresponding PIE is also being done at PIE facility (SCK/CEN: Studiecentrum voor Kernenergie/Centre d'Etude l'Energie Nucleaire) in Belgium. The activities done in JFY 2011 are non-destructive post irradiation examination (ND-PIE) and D-PIE and PIE data analysis. In this report the results of EPMA and SIMS with high burnup irradiation test and the result of gamma spectrometry measurement which can give FP gas release rate are reported. (author)

  13. Safety problems related to the use of MOX assemblies in PWRS

    International Nuclear Information System (INIS)

    Gouffon, A.; Merle, J.P.

    1989-12-01

    Curtailment of the LMFBR program along with the satisfactory performance of the La Hague reprocessing plant, with the consequent availability of large quantities of plutonium, provides Electricite de France (EDF) with the possibility of burning mixed uranium and plutonium oxide fuel (MOX fuel) in the core of certain PWR power plant reactors, hence reducing enriched uranium fuel requirements. Design provision has in fact been made for this possibility on sixteen 900 MWe plant units and is explicitly authorized in the relevant authorization decrees. In this paper, we have restricted our discussion to safety aspects pertaining to utilization of the fuel in the reactor. Generally speaking, the Safety Analysis Department has checked that the provisions made by EDF and/or the scheduled plant modifications enabled reactor unit operating safety to be maintained at the same level as for standard fuel management systems and that, in particular, the recycling of 30% MOX assemblies was compatible with observance, under accident conditions, of the same safety criteria as for all uranium cores

  14. Part 6. Internationalization and collocation of FBR fuel cycle facilities

    International Nuclear Information System (INIS)

    Stevenson, M.G.; Abramson, P.B.; LeSage, L.G.

    1980-01-01

    This report examines some of the non-proliferation, technical, and institutional aspects of internationalization and/or collocation of major facilities of the Fast Breeder Reactor (FBR) fuel cycle. The national incentives and disincentives for establishment of FBR Fuel Cycle Centers are enumerated. The technical, legal, and administrative considerations in determining the feasibility of FBR Fuel Cycle Centers are addressed by making comparisons with Light Water Reactor (LWR) centers which have been studied in detail by the IAEA and UNSRC

  15. Models for MOX fuel behaviour. A selective review

    International Nuclear Information System (INIS)

    Massih, Ali R.

    2006-01-01

    This report reviews the basic physical properties of light water reactor mixed-oxide (MOX) fuel comprising nuclear characteristics, thermal properties such as melting temperature, thermal conductivity, thermal expansion, and heat capacity, and compares these with properties of conventional UO 2 fuel. These properties are generally well understood for MOX fuel and are well described by appropriate models developed for engineering analysis. Moreover, certain modelling approaches of MOX fuel in-reactor behaviour, regarding densification, swelling, fission product gas release, helium release, fuel creep and grain growth, are evaluated and compared with the models for UO 2 . In MOX fuel the presence of plutonium rich agglomerates adds to the complexity of fuel behaviour on the micro scale. In addition, we survey the recent fuel performance experience and post irradiation examinations on several types of MOX fuel types. We discuss the data from these examinations, regarding densification, swelling, fission product gas release and the evolution of the microstructure during irradiation. The results of our review indicate that in general MOX fuel has a higher fission gas release and helium release than UO 2 fuel. Part of this increase is due to the higher operating temperatures of MOX fuel relative to UO 2 fuel due to the lower thermal conductivity of MOX material. But this effect by itself seems to be insufficient to make for the difference in the observed fission gas release of UO 2 vs. MOX fuel. Furthermore, the irradiation induced creep rate of MOX fuel is higher than that of UO 2 . This effect can reduce the pellet-clad interaction intensity in fuel rods. Finally, we suggest that certain physical based approaches discussed in the report are implemented in the fuel performance code to account for the behaviour of MOX fuel during irradiation

  16. Models for MOX fuel behaviour. A selective review

    Energy Technology Data Exchange (ETDEWEB)

    Massih, Ali R. [Quantum Technologies AB, Uppsala Science Park (Sweden)

    2006-12-15

    This report reviews the basic physical properties of light water reactor mixed-oxide (MOX) fuel comprising nuclear characteristics, thermal properties such as melting temperature, thermal conductivity, thermal expansion, and heat capacity, and compares these with properties of conventional UO{sub 2} fuel. These properties are generally well understood for MOX fuel and are well described by appropriate models developed for engineering analysis. Moreover, certain modelling approaches of MOX fuel in-reactor behaviour, regarding densification, swelling, fission product gas release, helium release, fuel creep and grain growth, are evaluated and compared with the models for UO{sub 2}. In MOX fuel the presence of plutonium rich agglomerates adds to the complexity of fuel behaviour on the micro scale. In addition, we survey the recent fuel performance experience and post irradiation examinations on several types of MOX fuel types. We discuss the data from these examinations, regarding densification, swelling, fission product gas release and the evolution of the microstructure during irradiation. The results of our review indicate that in general MOX fuel has a higher fission gas release and helium release than UO{sub 2} fuel. Part of this increase is due to the higher operating temperatures of MOX fuel relative to UO{sub 2} fuel due to the lower thermal conductivity of MOX material. But this effect by itself seems to be insufficient to make for the difference in the observed fission gas release of UO{sub 2} vs. MOX fuel. Furthermore, the irradiation induced creep rate of MOX fuel is higher than that of UO{sub 2}. This effect can reduce the pellet-clad interaction intensity in fuel rods. Finally, we suggest that certain physical based approaches discussed in the report are implemented in the fuel performance code to account for the behaviour of MOX fuel during irradiation.

  17. Effect of local burn-up variation on computed mean nuclide concentrations

    International Nuclear Information System (INIS)

    Moeller, W.

    1982-01-01

    Mean concentrations of U-235, U-236, U-238, Pu-239, Pu-240, Pu-241 and Pu-242 in some volume areas of WWER-440 fuel assemblies have been calculated from corresponding burn-up microdistribution data and compared with those calculated from burn-up mean values. Differences occurring were below 3% for the uranium nuclides but, at low burn-ups, considerable for Pu-241 and Pu-242. (author)

  18. Review of high burn-up RIA and LOCA database and criteria

    International Nuclear Information System (INIS)

    Vitanza, C.; Hrehor, M.

    2006-01-01

    This document is intended to provide regulators, their technical support organizations and industry with a concise review of existing fuel experimental data at RIA and LOCA conditions and considerations on how these data affect fuel safety criteria at increasing burn-up. It mostly addresses experimental results relevant to BWR and PWR fuel and it encompasses several contributions from the various experts that participated in the CSNI SEGFSM activities. It also covers the information presented at the joint CSNI/CNRA Topical Discussion on high burn-up fuel issues that took place on this subject in December 2004. The report is organized in the following way: the CABRI RIA database (14 tests), the NSRR database (26 tests) and other databases, RIA failure thresholds, comparison of failure thresholds for the HZP case, LOCA database ductility tests and quench tests, LOCA safety limit, provisional burn-up dependent criterion for Zr-4. The conclusions are as follows. On RIA, there is a well-established testing method and a significant and relatively consistent database from NSRR and Cabri tests, especially on high burn-up Zr-2 and Zr-4 cladding. It is encouraging that several correlations have been proposed for the RIA fuel failure threshold. Their predictions are compared and discussed in this paper for a representative PWR case. On LOCA, there are two different test methods, one based on ductility determinations and the other based on 'integral' quench tests. The LOCA database at high burn-up is limited to both testing methods. Ductility tests carried out with pre-hydrided non-irradiated cladding show a pronounced hydrogen effect. Data for actual high burn-up specimens are being gathered in various laboratories and will form the basis for a burn-up dependent LOCA limit. A provisional burn-up dependent criterion is discussed in the paper

  19. Progress of full MOX core design in ABWR

    International Nuclear Information System (INIS)

    Izutsu, S.; Sasagawa, M.; Aoyama, M.; Maruyama, H.; Suzuki, T.

    2000-01-01

    Full MOX ABWR core design has been made, based on the MOX design concept of 8x8 bundle configuration with a large central water rod, 40 GWd/t maximum bundle exposure, and the compatibility with 9x9 high-burnup UO 2 bundles. Core performance on shutdown margin and thermal margin of the MOX-loaded core is similar to that of UO 2 cores for the range from full UO 2 core to full MOX core. Safety analyses based on its safety parameters and MOX property have shown its conformity to the design criteria in Japan. In order to confirm the applicability of the nuclear design method to full MOX cores, Tank-type Critical Assembly (TCA) experiment data have been analyzed on criticality, power distribution and β eff /l measurements. (author)

  20. Effect of Core Configurations on Burn-Up Calculations For MTR Type Reactors

    International Nuclear Information System (INIS)

    Hussein, H.M.; Sakr, A.M.; Amin, E.H.

    2011-01-01

    Three-dimensional burn-up calculations of MTR-type research reactor were performed using different patterns of control rods , to examine their effect on power density and neutron flux distributions throughout the entire core and on the local burn-up distribution. Calculations were performed using the computer codes' package M TR P C system , using the cell calculation transport code WIMS-D4 and the core calculation diffusion code CITVAP. A depletion study was done and the effects on the reactor fuel were studied, then an empirical formula was generated for every fuel element type, to correlate irradiation to burn-up percentage. Keywords: Neutronic Calculations, Burn-Up, MTR-Type Research Reactors, MTR P C Package, Empirical Formula For Fuel Burn-Up.

  1. Effect of error propagation of nuclide number densities on Monte Carlo burn-up calculations

    International Nuclear Information System (INIS)

    Tohjoh, Masayuki; Endo, Tomohiro; Watanabe, Masato; Yamamoto, Akio

    2006-01-01

    As a result of improvements in computer technology, the continuous energy Monte Carlo burn-up calculation has received attention as a good candidate for an assembly calculation method. However, the results of Monte Carlo calculations contain the statistical errors. The results of Monte Carlo burn-up calculations, in particular, include propagated statistical errors through the variance of the nuclide number densities. Therefore, if statistical error alone is evaluated, the errors in Monte Carlo burn-up calculations may be underestimated. To make clear this effect of error propagation on Monte Carlo burn-up calculations, we here proposed an equation that can predict the variance of nuclide number densities after burn-up calculations, and we verified this equation using enormous numbers of the Monte Carlo burn-up calculations by changing only the initial random numbers. We also verified the effect of the number of burn-up calculation points on Monte Carlo burn-up calculations. From these verifications, we estimated the errors in Monte Carlo burn-up calculations including both statistical and propagated errors. Finally, we made clear the effects of error propagation on Monte Carlo burn-up calculations by comparing statistical errors alone versus both statistical and propagated errors. The results revealed that the effects of error propagation on the Monte Carlo burn-up calculations of 8 x 8 BWR fuel assembly are low up to 60 GWd/t

  2. Visualization test using piping group mock up specimen for evaluation of wastage phenomena in steam generator for FBR

    International Nuclear Information System (INIS)

    Kato, Keisuke; Yoshida, Atsuro; Arae, Kunihiko; Narabayashi, Tadashi; Ohshima, Hiroyuki; Kurihara, Akikazu

    2012-01-01

    There is a need for quantitative evaluation of wastage phenomena in steam generator for FBR. We focused attention on liquid droplet impingement erosion (LDIE) in wastage phenomena and performed basic study with piping group mock up specimen for quantitative evaluation of LDIE. First, we did visualization test of high pressure and high speed jet into the water. Test section mock up the crack of heat exchanger tube and neighboring heat exchanger tubes. We did the test under the following test conditions. Upstream pressure is 0.3MPa, vapor temperature is 300K, crack width is 0.1mm, and crack length is 40mm. (crack diameter is 0.2mm) Second, we did pressure and temperature measurement test in the same test conditions as before. We evaluated jet behavior at test section by those two tests. In addition, we did two phase flow analysis of the jet with TRAC code. (author)

  3. Experimental studies of spent fuel burn-up in WWR-SM reactor

    Energy Technology Data Exchange (ETDEWEB)

    Alikulov, Sh. A.; Baytelesov, S.A.; Boltaboev, A.F.; Kungurov, F.R. [Institute of Nuclear Physics, Ulughbek township, 100214, Tashkent (Uzbekistan); Menlove, H.O.; O’Connor, W. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Osmanov, B.S., E-mail: bari_osmanov@yahoo.com [Research Institute of Applied Physics, Vuzgorodok, 100174 Tashkent (Uzbekistan); Salikhbaev, U.S. [Institute of Nuclear Physics, Ulughbek township, 100214, Tashkent (Uzbekistan)

    2014-10-01

    Highlights: • Uranium burn-up measurement from {sup 137}Cs activity in spent reactor fuel. • Comparison to reference sample with known burn-up value (ratio method). • Cross-check of the approach with neutron-based measurement technique. - Abstract: The article reports the results of {sup 235}U burn-up measurements using {sup 137}Cs activity technique for 12 nuclear fuel assemblies of WWR-SM research reactor after 3-year cooling time. The discrepancy between the measured and the calculated burn-up values was about 3%. To increase the reliability of the data and for cross-check purposes, neutron measurement approach was also used. Average discrepancy between two methods was around 12%.

  4. Using Coupled Mesoscale Experiments and Simulations to Investigate High Burn-Up Oxide Fuel Thermal Conductivity

    Science.gov (United States)

    Teague, Melissa C.; Fromm, Bradley S.; Tonks, Michael R.; Field, David P.

    2014-12-01

    Nuclear energy is a mature technology with a small carbon footprint. However, work is needed to make current reactor technology more accident tolerant and to allow reactor fuel to be burned in a reactor for longer periods of time. Optimizing the reactor fuel performance is essentially a materials science problem. The current understanding of fuel microstructure have been limited by the difficulty in studying the structure and chemistry of irradiated fuel samples at the mesoscale. Here, we take advantage of recent advances in experimental capabilities to characterize the microstructure in 3D of irradiated mixed oxide (MOX) fuel taken from two radial positions in the fuel pellet. We also reconstruct these microstructures using Idaho National Laboratory's MARMOT code and calculate the impact of microstructure heterogeneities on the effective thermal conductivity using mesoscale heat conduction simulations. The thermal conductivities of both samples are higher than the bulk MOX thermal conductivity because of the formation of metallic precipitates and because we do not currently consider phonon scattering due to defects smaller than the experimental resolution. We also used the results to investigate the accuracy of simple thermal conductivity approximations and equations to convert 2D thermal conductivities to 3D. It was found that these approximations struggle to predict the complex thermal transport interactions between metal precipitates and voids.

  5. Technical development on burn-up credit for spent LWR fuels

    International Nuclear Information System (INIS)

    Nakahara, Yoshinori; Suyama, Kenya; Suzaki, Takenori

    2000-10-01

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled 'Technical Development on Criticality Safety Management for Spent LWR Fuels'. Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burn-up and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report. (author)

  6. Technical development on burn-up credit for spent LWR fuels

    Energy Technology Data Exchange (ETDEWEB)

    Nakahara, Yoshinori; Suyama, Kenya; Suzaki, Takenori [eds.] [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-10-01

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled 'Technical Development on Criticality Safety Management for Spent LWR Fuels'. Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burn-up and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report. (author)

  7. Description of JNC's analytical method and its performance for FBR cores

    International Nuclear Information System (INIS)

    Ishikawa, M.

    2000-01-01

    The description of JNC's analytical method and its performance for FBR cores includes: an outline of JNC's Analytical System Compared with ERANOS; a standard data base for FBR Nuclear Design in JNC; JUPITER Critical Experiment; details of Analytical Method and Its Effects on JUPITER; performance of JNC Analytical System (effective multiplication factor k eff , control rod worth, and sodium void reactivity); design accuracy of a 600 MWe-class FBR Core. JNC developed a consistent analytical system for FBR core evaluation, based on JENDL library, f-table method, and three dimensional diffusion/transport theory, which includes comprehensive sensitivity tools to improve the prediction accuracy of core parameters. JNC system was verified by analysis of JUPITER critical experiment, and other facilities. Its performance can be judged quite satisfactory for FBR-core design work, though there is room for further improvement, such as more detailed treatment of cross-section resonance regions

  8. The development of B.N.F.L.'S MOX fuel supply business

    International Nuclear Information System (INIS)

    Edwards, J.; Brown, C.; Marshall, S.J.; Connell, M.; Thompson, H.

    1998-01-01

    In 1990 BNFL developed a strategy to become one of the world leading MOX fuel suppliers. This strategy involved the design, construction and operation of a small scale demonstration plant known as the MOX Demonstration Facility (MDF) and a large scale facility known as the Sellafield MOX Plant (SMP). To support the development of these facilities, BNFL developed a new MOX fuel fabrication process known as the Short Binderless Route (SBR). Since the 1990 decision was made, the company has successfully built, commissioned and operated the MDF, and has designed, built and is in the process of commissioning the 120 t(HM)/year SMP. The scale of the business has thus developed significantly and the direction and prospects for the future of the business are clear and well understood, with the focus being on the use of BNFL technology to produce quality MOX fuel to meet customers' requirements. This paper reviews the development of BNFL's MOX business and describes the technology being used in the state of the art SMP. The paper also explains the approach taken to commission the plant and how key safety features have been incorporated into the design. Up to date information on the performance of Short Binderless Route fuel is provided, and the future development of the business is discussed. (author)

  9. UO2 fuel behaviour at rod burn-ups up to 105 MWd/kgHM. A review of 10 years of high burn-up examinations commissioned by AREVA NP

    International Nuclear Information System (INIS)

    Goll, W.; Hoffmann, P.B.; Hellwig, C.; Sauser, W.; Spino, J.; Walker, C.T.

    2007-01-01

    Irradiation experience gained on fuel rods with burn-ups greater than 60 MWd/kgHM irradiated in the Nuclear Power Plant Goesgen, Switzerland, is described. Emphasis is placed on the fuel behaviour, which has been analysed by hot cell examinations at the Institute for Transuranium Elements and the Paul-Scherrer-Institute. Above 60 MWd/kgHM, the so-called high burn-up structure (HBS) forms and the fission gas release increases with burn-up and rod power. Examinations performed in the outer region of the fuel revealed that most if not all of the fission gas created was retained in the HBS, even at 25% porosity. Furthermore, the HBS has a relatively low swelling rate, greatly increased plasticity, and its thermal conductivity is higher than expected from the porosity. The post-irradiation examinations showed that the HBS has no detrimental effects on the performance of stationary irradiated PWR fuel irradiated to the high burn-ups that can be achieved with 5 wt% U-235 enrichment. On the contrary, the HBS results in fuel performance that is generally better than it would have been if the HBS had not formed. (orig.)

  10. Public acceptance of MOX - fuel

    International Nuclear Information System (INIS)

    Huettmann, A.; Reddehase, C.G.

    1995-01-01

    In the Federal Republic of Germany 'Plutonium-Business' got fresh nutrient because of the carried out licensing of the use of Mixed Oxide (MOX)-fuel LWR and in connection with the negative attitude of the Hessian authorities, who are responsible for the licensing procedures of the production of MOX-fuel in the Siemens-factories at Hanau. The opponents of the peaceful use of nuclear energy try with the emotive expression 'Plutonium' (Pu) a frontal attack against the use of nuclear energy in Germany. They justify their actions with so-called safety deficits of the plants and increased danger of cancer in case of using MOX-fuel. (orig./HP)

  11. Study of the lattice parameter evolution of PWR irradiated MOX fuel by X-Ray diffraction

    International Nuclear Information System (INIS)

    Clavier, B.

    1995-01-01

    Fuel irradiation leads to a swelling resulting from the formation of gaseous (Kr, Xe) or solid fission products which are found either in solution or as solid inclusions in the matrix. This phenomena has to be evaluated to be taken into account in fuel cladding Interaction. Fuel swelling was studied as a function of burn up by measuring the corresponding cell constant evolution by X-Ray diffraction. This study was realized on Mixed Oxide Fuels (MOX) irradiated in a Pressurized Water Reactor (PWR) at different burn-up for 3 initial Pu contents. Lattice parameter evolutions were followed as a function of burn-up for the irradiated fuel with and without an annealing thermal treatment. These experimental evolutions are compared to the theoretical evolutions calculated from the hard sphere model, using the fission product concentrations determined by the APPOLO computer code. Contribution of varying parameters influencing the unit cell value is discussed. Thermal treatment effects were checked by metallography, X-Ray diffraction and microprobe analysis. After thermal treatment, no structural change was observed but a decrease of the lattice parameter was measured. This modification results essentially from self-irradiation defect annealing and not from stoichiometry variations. Microprobe analysis showed that about 15% of the formed Molybdenum is in solid solution In the oxide matrix. Micrographs showed the existence of Pu packs in the oxide matrix which induces a broadening of diffraction lines. The RIETVELD method used to analyze the X-Ray patterns did not allow to characterize independently the Pu packs and the oxide matrix lattice parameters. Nevertheless, with this method, the presence of micro-strains in the irradiated nuclear fuel could be confirmed. (author)

  12. Characterization of alternative FBR development strategies

    International Nuclear Information System (INIS)

    Boegel, A.J.; Clausen, M.J.

    1981-08-01

    Near-term decisions regarding the nature and place of the FBR development program must be made. This study is part of a larger program designed to provide the Department of Energy (DOE) with imformation that can be used to make strategic programmatic decisions. The focus of this report is the description of alternative approaches for developing the FBR and the quantification of the duration and cost of each alternative. The time frames of the alternative approaches are investigated in companion reports (White 1981 and Fraley 1981). The results of these analyses will be described in a summary report

  13. Present state of development of demonstration FBR and prospect of practical use

    International Nuclear Information System (INIS)

    Inagaki, Tatsutoshi

    1996-01-01

    As for the FBR development in Japan, the Atomic Energy Commission revised the long term plan on the research, development and utilization of atomic energy in June, 1994, and under the basic policy that through the considerable period of using LWRs together, FBRs will be adopted as the main nuclear power plants in future, it was decided to establish FBR technology system so that the practical use of FBRs becomes feasible by about 2030 through two demonstration FBRs following the experimental FBR 'Joyo' and the prototype FBR 'Monju'. The Monju started power generation and transmission in August, 1995, but secondary sodium leak accident occurred in December, 1995, and at present it is stopped. The demonstration FBR No. 1 is a top entry type loop reactor, and the power output is about 660 MWe. The start of construction is scheduled at the beginning of 2000s. The research on the whole plant design is carried out as the research on the optimization of demonstration FBR plant for three years from fiscal year 1994. The design of the demonstration FBR No. 1, the research and development for it, the prospect of the practical use and the research and development for the practical use are reported. (K.I.)

  14. Determination of nuclear fuel burn-up using mass spectrometric techniques

    International Nuclear Information System (INIS)

    Saha, B.; Bagyalakshmi, R.; Periaswami, G.; Kavimandan, V.D.; Chitambar, S.A.; Jain, H.C.; Mathews, C.K.

    1977-01-01

    Determination of burn-up using a stable fission product monitor such as 148 Nd and heavy elements, determined by isotope dilution mass spectrometry gives the most accurate data. This report describes the work carried out to standardise the conditions for burn-up determination. Some typical results are given. (author)

  15. Development of FBR cycle data base system (II)

    International Nuclear Information System (INIS)

    Kubota, Sadae; Ohtaki, Akira; Hirao, Kazuhiro

    2003-05-01

    In the 'Feasibility Study on Commercialized FBR Cycle Systems (F/S)', scenario evaluations, cost-benefit evaluations and system characteristic evaluations to show the significance of the FBR cycle system introduction concretely are performed while design studies for FBR plants, reprocessing systems and fabrication systems are conducted. In these evaluations, future society of various conditions and situation is assumed, and investigation and analysis about needs and social effects of FBR cycle are carried out. In this study, promising FBR cycle concepts are suggested by taking information such as domestic and foreign policies and bills, an economic prediction, a supply and demand prediction of resources, a project of technology development into consideration in addition to system design information. The development of the FBR Cycle Database which this report introduced started in 1999 fiscal year to enable managed unitarity and searched reference information to use for the above scenario evaluations, cost-benefit evaluations and system characteristic evaluations. In 2000 fiscal year, its prototype was made and used tentatively, and we extracted the problems in operation and functions from that, and, in 2001 fiscal year, the entry system and the search system using the Web page were made in order to solve problems of the prototype, and started use in our group. Moreover, in 2002 fiscal year, we expanded and improved the search system and promoted the efficiency of management work, and use in JNC through intranet of the database was started. In addition, as a result of having made the entry of about 350 data in 2002 fiscal year, the collected number of the database reaches about 7,250 by the end of March, 2003. We are to continue the entry of related information of various evaluations in F/S phase 2 from now on. In addition, we are to examine improvement of convenience of the search system and cooperation with the economy database. (author)

  16. Transport of MOX fuel from Europe to Japan

    International Nuclear Information System (INIS)

    2002-01-01

    The MOX fuel transports from Europe to Japan represent a main part in the implementing of the Japan nuclear program. They complement the 160 transports of spent fuels realized from Japan to Europe and the vitrified residues return from France to Japan. In this framework the document presents the MOX fuel, the use of the MOX fuel in reactor, the proliferation risks, the MOX fuel transport to Japan, the public health, the transport regulations, the safety and the civil liability. (A.L.B.)

  17. LTA Physics Design: Description of All MOX Pin LTA Design

    International Nuclear Information System (INIS)

    Pavlovichev, A.M.

    2001-01-01

    In this document issued according to Work Release 02.P.99-1b the results of neutronics studies of > MOX LTA design are presented. The parametric studies of infinite MOX-UOX grids, MOX-UOX core fragments and of VVER-1000 core with 3 MOX LTAs are performed. The neutronics parameters of MOX fueled core have been performed for the chosen design MOX LTA using the Russian 3D code BIPR-7A and 2D code PERMAK-A with the constants prepared by the cell spectrum code TVS-M

  18. Practicalization strategic research of FBR cycle

    International Nuclear Information System (INIS)

    2000-01-01

    Practicalization strategic research of FBR cycle consists of two phases such as phase I (FY 1999-2000) and phase II (to FY 2005). In every phase, research and development plants and results are checked and reviewed. The assessment indexes are five development objects such as safety, economical efficiency, resource effective utilization, environmental load decrease and nuclear non-proliferation and technical realization, too. Reactor core, FBR plant system and fuel cycle system are investigated. We selected the research subjects of cooling materials as sodium, heavy metals (lead and lead bismuth alloy), gas (carbon dioxide and helium) and water (boiling water, power water and supercritical pressure water) and fuel types as cladding tube fuel (oxide, nitride and metal) and coated fuel particle (oxide and nitride) for helium gas cooling reactor. In FY1999, the good reactor core and FBR plant system for every cooling materials are studied. Two reprocessing (a wet reprocessing using aqueous solution and a dry method) were selected. In FY 2000, we will investigate effects of throughput, plant concept and cost and evaluate achievement of development objects and then decide the development plan. (S.Y.)

  19. Validation of a continuous-energy Monte Carlo burn-up code MVP-BURN and its application to analysis of post irradiation experiment

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Mori, Takamasa; Nakagawa, Masayuki; Kaneko, Kunio

    2000-01-01

    In order to confirm the reliability of a continuous-energy Monte Carlo burn-up calculation code MVP-BURN, it was applied to the burn-up benchmark problems for a high conversion LWR lattice and a BWR lattice with burnable poison rods. The results of MVP-BURN have shown good agreements with those of a deterministic code SRAC95 for burn-up changes of infinite neutron multiplication factor, conversion ratio, power distribution, and number densities of major fuel nuclides. Serious propagation of statistical errors along burn-up was not observed even in a highly heterogeneous lattice. MVP-BURN was applied to the analysis of a post irradiation experiment for a sample fuel irradiated up to 34.1 GWd/t, together with SRAC95 and SWAT. It was confirmed that the effect of statistical errors of MVP-BURN on a burned fuel composition was sufficiently small, and it could give a reference solution for other codes. In the analysis, the results of the three codes with JENDL-3.2 agreed with measured values within an error of 10% for most nuclides. However, large underestimation by about 20% was observed for 238 Pu, 242m Am and 244 Cm. It is probable that these discrepancies are a common problem for most current nuclear data files. (author)

  20. A burn-up module coupling to an AMPX system

    International Nuclear Information System (INIS)

    Salvatore Duque, M.; Gomez, S.E.; Patino, N.E.; Abbate, M.J.; Sbaffoni, M.M.

    1990-01-01

    The Reactors and Neutrons Division of the Bariloche Atomic Center uses the AMPX system for the study of high conversion reactors (HCR). Such system allows to make neutronic calculations from the nuclear data library (ENDF/B-IV). The Nuclear Engineering career of the Balseiro Institute developed and implemented a burn-up module at a μ-cell level (BUM: Burn-up Module) which agrees with the requirement to be coupled to the AMPX system. (Author) [es

  1. Reactivity effect of spent fuel depending on burn-up history

    International Nuclear Information System (INIS)

    Hayashi, Takafumi; Suyama, Kenya; Nomura, Yasushi

    2001-06-01

    It is well known that a composition of spent fuel depends on various parameter changes throughout a burn-up period. In this study we aimed at the boron concentration and its change, the coolant temperature and its spatial distribution, the specific power, the operation mode, and the duration of inspection, because the effects due to these parameters have not been analyzed in detail. The composition changes of spent fuel were calculated by using the burn-up code SWAT, when the parameters mentioned above varied in the range of actual variations. Moreover, to estimate the reactivity effect caused by the composition changes, the criticality calculations for an infinite array of spent fuel were carried out with computer codes SRAC95 or MVP. In this report the reactivity effects were arranged from the viewpoint of what parameters gave more positive reactivity effect. The results obtained through this study are useful to choose the burn-up calculation model when we take account of the burn-up credit in the spent fuel management. (author)

  2. Criterion for burn-up conditions in gas-cooled cryogenic current leads

    International Nuclear Information System (INIS)

    Bejan, A.; Cluss, E.M. Jr.

    1976-01-01

    Superconducting magnets are energized through helium vapour-cooled cryogenic current leads operating at high ratios of current to mass flow. The high current operation where lead temperature, runaway, and eventual burn-up are likely to occur is investigated. A simple criterion for estimating the burn-up operation conditions (current, mass flow) for a given lead geometry (cross-sectional area, length, heat exchanger area) is presented. This article stresses the role played by the available heat exchanger area in avoiding burn-up at high ratios of current to mass flow. (author)

  3. Burn-up credit in criticality safety of PWR spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Rowayda F., E-mail: Rowayda_mahmoud@yahoo.com [Metallurgy Department, Nuclear Research Center, Atomic Energy Authority (Egypt); Shaat, Mohamed K. [Nuclear Engineering, Reactors Department, Nuclear Research Center, Atomic Energy Authority (Egypt); Nagy, M.E.; Agamy, S.A. [Professor of Nuclear Engineering, Nuclear and Radiation Department, Alexandria University (Egypt); Abdelrahman, Adel A. [Metallurgy Department, Nuclear Research Center, Atomic Energy Authority (Egypt)

    2014-12-15

    Highlights: • Designing spent fuel wet storage using WIMS-5D and MCNP-5 code. • Studying fresh and burned fuel with/out absorber like “B{sub 4}C and Ag–In–Cd” in racks. • Sub-criticality was confirmed for fresh and burned fuel under specific cases. • Studies for BU credit recommend increasing fuel burn-up to 60.0 GWD/MTU. • Those studies require new core structure materials, fuel composition and cladding. - Abstract: The criticality safety calculations were performed for a proposed design of a wet spent fuel storage pool. This pool will be used for the storage of spent fuel discharged from a typical pressurized water reactor (PWR). The mathematical model based on the international validated codes, WIMS-5 and MCNP-5 were used for calculating the effective multiplication factor, k{sub eff}, for the spent fuel stored in the pool. The data library for the multi-group neutron microscopic cross-sections was used for the cell calculations. The k{sub eff} was calculated for several changes in water density, water level, assembly pitch and burn-up with different initial fuel enrichment and new types and amounts of fixed absorbers. Also, k{sub eff} was calculated for the conservative fresh fuel case. The results of the calculations confirmed that the effective multiplication factor for the spent fuel storage is sub-critical for all normal and abnormal states. The future strategy for the burn-up credit recommends increasing the fuel burn-up to a value >60.0 GWD/MTU, which requires new fuel composition and new fuel cladding material with the assessment of the effects of negative reactivity build up.

  4. Study of the lattice parameter evolution of PWR irradiated MOX fuel by X-Ray diffraction; Etude de l'evolution du parametre cristallin des combustibles MOX irradies en rep par la methode de diffraction des rayons X

    Energy Technology Data Exchange (ETDEWEB)

    Clavier, B

    1995-07-01

    Fuel irradiation leads to a swelling resulting from the formation of gaseous (Kr, Xe) or solid fission products which are found either in solution or as solid inclusions in the matrix. This phenomena has to be evaluated to be taken into account in fuel cladding Interaction. Fuel swelling was studied as a function of burn up by measuring the corresponding cell constant evolution by X-Ray diffraction. This study was realized on Mixed Oxide Fuels (MOX) irradiated in a Pressurized Water Reactor (PWR) at different burn-up for 3 initial Pu contents. Lattice parameter evolutions were followed as a function of burn-up for the irradiated fuel with and without an annealing thermal treatment. These experimental evolutions are compared to the theoretical evolutions calculated from the hard sphere model, using the fission product concentrations determined by the APPOLO computer code. Contribution of varying parameters influencing the unit cell value is discussed. Thermal treatment effects were checked by metallography, X-Ray diffraction and microprobe analysis. After thermal treatment, no structural change was observed but a decrease of the lattice parameter was measured. This modification results essentially from self-irradiation defect annealing and not from stoichiometry variations. Microprobe analysis showed that about 15% of the formed Molybdenum is in solid solution In the oxide matrix. Micrographs showed the existence of Pu packs in the oxide matrix which induces a broadening of diffraction lines. The RIETVELD method used to analyze the X-Ray patterns did not allow to characterize independently the Pu packs and the oxide matrix lattice parameters. Nevertheless, with this method, the presence of micro-strains in the irradiated nuclear fuel could be confirmed. (author)

  5. MOX fuel fabrication, in reactor performance and improvement

    International Nuclear Information System (INIS)

    Vliet, J. van; Deramaix, P.; Nigon, J.L.; Fournier, W.

    1998-01-01

    In Europe, MOX fuel for light water reactors (LWRs) has first been manufactured in Belgium and Germany. Belgonucleaire (BN) loaded the first MOX assembly in the BR3 Pressurised Water Reactor (PWR) in 1963. In June 1998, more than 750 tHM LWR MOX fuel assemblies were manufactured on a industrial scale in Europe without any particular difficulty relating to fuel fabrication, reactor operation or fuel behaviour. So, today plutonium recycling through MOX fuel is a mature industry, with successful operational experience and large-scale fabrication plants. In this field, COGEMA and BELGONUCLEAIRE are the main actors by operating simultaneously three complete multidesign fuel production plants: MELOX plant (in Marcoule), CADARACHE plant and P0 plant (in Dessel, Belgium). Present MOX production capacity available to COGEMA and BN fits 175 tHM per year and is to be extended to reach about 325 tHM in the year 2000. This will represent 75% of the total MOX fabrication capacity in Europe. The industrial mastery and the high production level in MOX fabrication assured by high technology processes confer to these companies a large expertise for Pu recycling. This allows COGEMA and BN to be major actors in Pu-based fuels in the coming second nuclear era with advanced fuel cycles. (author)

  6. Safety highlights of UP2 reprocessing in La Hague

    International Nuclear Information System (INIS)

    Marc, A.; Dubois, G.

    1998-01-01

    The UP2-800 reprocessing plant basically implements the same proven process (PUREX) as UP3 plant. However, some evolutions and additions have been realised: - to reprocess high burn up and MOX fuel assemblies; - to dissolve scraps from reprocessing facilities or from the fabrication of MOX fuels such as UO 2 - PuO 2 powders; - to recover plutonium from ash resulting from alpha waste incineration prior to ash conditioning; - to reduce solid waste alpha activity below the regulatory limits for shallow land disposal. Safety considerations relating to these functions have been taken into account in each step of process design. Safety design rules have been implemented for the UP2-800 plant with the same goals as for the UP3 plant: - keeping the discharge of radioactive liquids and gas within the annual limits authorized under normal operating conditions; - reducing the personnel exposure to a minimum so that 'the number of operators whose integrated dose over a year exceeds 5 mSv be nil or practically nil under normal operating conditions'; - preventing the accidental situations and having at one's disposal the dysfunction monitoring and detection systems and the means to limit their consequences. Particular risks prevention related to the UP2-800 specific functions are described in this paper. (author)

  7. Nuclear fuel burn-up economy; Ekonomija izgaranja nuklearnog goriva

    Energy Technology Data Exchange (ETDEWEB)

    Matausek, M [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1984-07-01

    In the period 1981-1985, for the needs of Utility Organization, Beograd, and with the support of the Scientific Council of SR Srbija, work has been performed on the study entitled 'Nuclear Fuel Burn-up Economy'. The forst [phase, completed during the year 1983 comprised: comparative analysis of commercial NPP from the standpoint of nuclear fuel requirements; development of methods for fuel burn-up analysis; specification of elements concerning the nuclear fuel for the tender documentation. The present paper gives the short description of the purpose, content and results achieved in the up-to-now work on the study. (author)

  8. Operational reliability testing of FBR fuel in EBR-II

    International Nuclear Information System (INIS)

    Asaga, Takeo; Ukai, Shigeharu; Nomura, Shigeo; Shikakura, Sakae

    1991-01-01

    The operational reliability testing of FBR fuel has been conducting in EBR-II as a DOE/PNC collaboration program. This paper reviews the achieved summary of Phase-I test as well as outline of progressing Phase-II test. In Phase-I test, the reliability of FBR fuel pins including 'MONJU' fuel was demonstrated at the event of operational transient. Continued operation of the failed pins was also shown to be feasible without affecting the plant operation. The objectives of the Phase-II test is to extend the data base relating with the operational reliability for long life fuel, and to supply the highly quantitative evaluation. The valuable insight obtained in Phase-II test are considerably expected to be useful toward the achievement of commercial FBR. (author)

  9. Development of FBR cycle data base system

    International Nuclear Information System (INIS)

    Kubota, Sadae; Ohtaki, Akira; Hirao, Kazuhiro

    2002-06-01

    In the 'Feasibility Study on Commercialized Fast Reactor Cycle System (F/S)'. scenario evaluations, cost-benefit evaluations and system characteristic evaluations to show significance of the Fast Breeder Reactor (FBR) cycle system introduction concretely are performed in parallel with a design study for FBR plants, reprocessing systems and fabrication systems. In these evaluations, informations such as economic prospects, prospects for supply and demand of resources and a progress of engineering development are used in addition to design information. This report explains a FBR Cycle Database in order to carry out management and search of various design information and the relating information. The prototype system of the database was completed in the 2000 fiscal year, and the problem of the user number restriction of the prototype system has been improved by Web-ization in the 2001 fiscal year. About 7,000 data are stored in this data base (as of the end of March, 2002). The expansion of user etc., and the continuation of input work of various evaluation information will be carried out, in the phase 2 of F/S. (author)

  10. Modeling of WWER-440 Fuel Pin Behavior at Extended Burn-up

    International Nuclear Information System (INIS)

    El-Koliel, M.S.; Abou-Zaid, A.A.; El-Kafas, A.A.

    2004-01-01

    Currently, there is an ongoing effort to increase fuel discharge burn-up of all LWRs fuel including WWER's as much as possible in order to decrease power production cost. Therefore, burn-up is expected to be increased to 60 to 70 Mwd/kg U. The change in the fuel radial power distribution as a function of fuel burn up can affect the radial fuel temperature distribution as well as the fuel microstructure in the fuel pellet rim. In this paper, the radial burn-up and fissile products distributions of WWER-440 UO 2 fuel pin were evaluated using MCNP 4B and ORIGEN2 codes. The impact of the thermal conductivity on predicted fission gas release calculations is needed. For the analysis, a typical WWER-440 fuel pin and surrounding water moderator are considered in a hexagonal pin cell well. The thermal release and the athermal release from the pellet rim were modeled separately. The fraction of the rim structure and the excessive porosity in the rim structure in isothermal irradiation as a function of the fuel burn-up was predicted. a computer program; RIMSC-01, is developed to perform the required FGR calculations. Finally, the relevant phenomena and the corresponding models together with their validation are presented

  11. FBR/VHTR deployment scenarios in Japan

    International Nuclear Information System (INIS)

    Richards, Matt; Kunitomi, Kazuhiko

    2008-01-01

    Co-deployment of Fast Breeder Reactors (FBRs) and Very High Temperature Reactors (VHTRs) can be used as the nuclear technologies to meet a significant portion of Japan's future energy demands. The FBR provides the fissile fuel for energy security and sustainability, and can be used to provide a significant portion of the electricity demand. The VHTR can provide flexible energy outputs (electricity, hydrogen, and high-temperature heat) with high efficiency, can operate with a wide variety of fuel cycles, and can be sited at locations that have limited availability of cooling water. These features, combined with its passive safety and high degree of proliferation resistance, make the VHTR an ideal complement for co-deployment with the FBR in Japan and also a very low-risk technology of export to foreign countries. In addition to hydrogen production, the high-temperature thermal energy produced by the VHTR fleet can be used for a wide variety of process-heat applications, and the VHTR can play a key role for significantly reducing greenhouse-gas emissions. This paper describes assessments for deploying FBRs and VHTRs in Japan using a closed fuel cycle, with the FBRs supplying the fissile material to sustain the combined FBR/VHTR fleet. (author)

  12. MOx Depletion Calculation Benchmark

    International Nuclear Information System (INIS)

    San Felice, Laurence; Eschbach, Romain; Dewi Syarifah, Ratna; Maryam, Seif-Eddine; Hesketh, Kevin

    2016-01-01

    Under the auspices of the NEA Nuclear Science Committee (NSC), the Working Party on Scientific Issues of Reactor Systems (WPRS) has been established to study the reactor physics, fuel performance, radiation transport and shielding, and the uncertainties associated with modelling of these phenomena in present and future nuclear power systems. The WPRS has different expert groups to cover a wide range of scientific issues in these fields. The Expert Group on Reactor Physics and Advanced Nuclear Systems (EGRPANS) was created in 2011 to perform specific tasks associated with reactor physics aspects of present and future nuclear power systems. EGRPANS provides expert advice to the WPRS and the nuclear community on the development needs (data and methods, validation experiments, scenario studies) for different reactor systems and also provides specific technical information regarding: core reactivity characteristics, including fuel depletion effects; core power/flux distributions; Core dynamics and reactivity control. In 2013 EGRPANS published a report that investigated fuel depletion effects in a Pressurised Water Reactor (PWR). This was entitled 'International Comparison of a Depletion Calculation Benchmark on Fuel Cycle Issues' NEA/NSC/DOC(2013) that documented a benchmark exercise for UO 2 fuel rods. This report documents a complementary benchmark exercise that focused on PuO 2 /UO 2 Mixed Oxide (MOX) fuel rods. The results are especially relevant to the back-end of the fuel cycle, including irradiated fuel transport, reprocessing, interim storage and waste repository. Saint-Laurent B1 (SLB1) was the first French reactor to use MOx assemblies. SLB1 is a 900 MWe PWR, with 30% MOx fuel loading. The standard MOx assemblies, used in Saint-Laurent B1 reactor, include three zones with different plutonium enrichments, high Pu content (5.64%) in the center zone, medium Pu content (4.42%) in the intermediate zone and low Pu content (2.91%) in the peripheral zone

  13. Analysis on burn-up behaviors for accelerator-driven sub-critical facility

    International Nuclear Information System (INIS)

    Liu Guisheng; Zhao Zhixiang; Zhang Baocheng; Shen Qinbiao; Ding Dazhao

    2000-01-01

    An analysis is performed on burn-up behaviors for accelerator-driven sub-critical reactor by means of the code PASC-1 for neutronics calculation, the code CBURN for burn-up calculation and 44 group constants is processed by CENDL-2 and ENDF/B-6 using NJOY-91.91

  14. The build-up and characterization of nuclear burn-up wave in a fast ...

    Indian Academy of Sciences (India)

    K V Anoop

    2018-02-07

    Feb 7, 2018 ... evaluating the quality of the wave by the researchers working in the field of nuclear burn-up wave build-up and propagation. Keywords. ... However, there are concerns relating to the nuclear safety, ... Simulation studies have.

  15. MOX - equilibrium core design and trial irradiation in KAPS - 1

    International Nuclear Information System (INIS)

    Pradhan, A.S.; Ray, Sherly; Kumar, A.N.; Parikh, M.V.

    2006-01-01

    Option of usage of MOX fuel bundles in the equilibrium core of Indian 220 MWe PHWRs on a regular basis has been studied. The design of the MOX bundle considered is MOX -7 with inner 7 elements with uranium and plutonium oxide MOX fuel and outer 12 elements with natural uranium fuel. The composition of the plutonium isotopes corresponds to that at about 6500 MWD/TeU burnup. Burnup optimization has been done such that operation at design rated power is possible while achieving the maximum average discharge burnup. Operation with the optimized burnup pattern will result in substantial saving of natural uranium bundles. To obtain feedback on the performance of MOX bundles prior to its large scale use about 50 MOX-7 bundles have been loaded in KAPS - 1 equilibrium core. Locations have been selected such that reactor should be operating at rated power without violating any constraints on channel bundle powers and also meeting the safety requirements. Burnup of interest also should be achieved in minimum period of time. The fissile plutonium content in the 50 MOX fuel bundles loaded is about 75.6 wt % . About 38 bundles out of the 50 bundles loaded have been already discharged and remaining bundles are still in the core. The maximum discharge burnup of the MOX bundles is about 12000 MWD/TeU. The performance of the MOX bundles were excellent and as per prediction. No MOX bundle is reported to be failed. (author)

  16. Fuel cycles with high fuel burn-up: analysis of reactivity coefficients

    International Nuclear Information System (INIS)

    Kryuchkov, E.F.; Shmelev, A.N.; Ternovykh, M.J.; Tikhomirov, G.V.; Jinhong, L.; Saito, M.

    2003-01-01

    Fuel cycles of light-water reactors (LWR) with high fuel burn-up (above 100 MWd/kg), as a rule, involve large amounts of fissionable materials. It leads to forming the neutron spectrum harder than that in traditional LWR. Change of neutron spectrum and significant amount of non-traditional isotopes (for example, 237 Np, 238 Pu, 231 Pa, 232 U) in such fuel compositions can alter substantially reactivity coefficients as compared with traditional uranium-based fuel. The present work addresses the fuel cycles with high fuel burn-up which are based on Th-Pa-U and U-Np-Pu fuel compositions. Numerical analyses are carried out to determine effective neutron multiplication factor and void reactivity coefficient (VRC) for different values of fuel burn-up and different lattice parameters. The algorithm is proposed for analysis of isotopes contribution to these coefficients. Various ways are considered to upgrade safety of nuclear fuel cycles with high fuel burn-up. So, the results obtained in this study have demonstrated that: -1) Non-traditional fuel compositions developed for achievement of high fuel burn-up in LWR can possess positive values of reactivity coefficients that is unacceptable from the reactor operation safety point of view; -2) The lattice pitch of traditional LWR is not optimal for non-traditional fuel compositions, the increased value of the lattice pitch leads to larger value of initial reactivity margin and provides negative VRC within sufficiently broad range of coolant density; -3) Fuel burn-up has an insignificant effect on VRC dependence on coolant density, so, the measures undertaken to suppress positive VRC of fresh fuel will be effective for partially burnt-up fuel compositions also and; -4) Increase of LWR core height and introduction of additional moderators into the fuel lattice can be used as the ways to reach negative VRC values for full range of possible coolant density variations

  17. Preliminary analysis of a large 1600 MWe PWR core loaded with 30% MOX fuel

    International Nuclear Information System (INIS)

    Polidoro, Franco; Corsetti, Edoardo; Vimercati, Giuliano

    2011-01-01

    The paper presents a full-core 3-D analysis of the performances of a large 1600 MWe PWR core, loaded with 30% MOX fuel, in accordance with the European Utility Requirements (EUR). These requirements state that the European next generation power plants have to be designed capable to use MOX (UO 2 - PuO 2 ) fuel assemblies up to 50% of the core, together with UO 2 fuel assemblies. The use of MOX assemblies has a significant impact on key physic parameters and on safety. A lot of studies have been carried out in the past to explore the feasibility of plutonium recycling strategies by loading LWR reactors with MOX fuel. Many of these works were based on lattice codes, in order to perform detailed analyses of the neutronic characteristics of MOX assemblies. With the aim to take into account their interaction with surrounding UO 2 fuel elements, and the global effects on the core at operational conditions, an integrated approach making use of a 3-D core simulation is required. In this light, the present study adopts the state-of-art numerical models CASMO-5 and SIMULATE-3 to analyze the behavior of the core fueled with 30% MOX and to compare it with that of a large PWR reference core, fueled with UO 2 . (author)

  18. Full MOX core for PWRs

    International Nuclear Information System (INIS)

    Puill, A.; Aniel-Buchheit, S.

    1997-01-01

    Plutonium management is a major problem of the back end of the fuel cycle. Fabrication costs must be reduced and plant operation simplified. The design of a full MOX PWR core would enable the number of reactors devoted to plutonium recycling to be reduced and fuel zoning to be eliminated. This paper is a contribution to the feasibility studies for achieving such a core without fundamental modification of the current design. In view of the differences observed between uranium and plutonium characteristics it seems necessary to reconsider the safety of a MOX-fuelled PWR. Reduction of the control worth and modification of the moderator density coefficient are the main consequences of using MOX fuel in a PWR. The core reactivity change during a draining or a cooling is thus of prime interest. The study of core global draining leads to the following conclusion: only plutonium fuels of very poor quality (i.e. with low fissile content) cannot be used in a 900 MWe PWR because of a positive global voiding reactivity effect. During a cooling accident, like an spurious opening of a secondary-side valve, the hypothetical return to criticality of a 100% MOX core controlled by means of 57 control rod clusters (made of hafnium-clad B 4 C rods with a 90% 10 B content) depends on the isotopic plutonium composition. But safety criteria can be complied with for all isotopic compositions provided the 10 B content of the soluble boron is increased to a value of 40%. Core global draining and cooling accidents do not present any major obstacle to the feasibility of a 100% MOX PWR, only minor hardware modifications will be required. (author)

  19. gamma-ray spectra measurements for long cooled MOX spent fuels

    International Nuclear Information System (INIS)

    Murakami, Kiyonobu; Kobayashi, Iwao

    1993-09-01

    Gamma-ray spectra of spent fuels have important informations in the estimation of burnup rate, concentration of fission products, cooling time and etc. which are required in the fuel loading control of reactors and special nuclear materials accountancy from the view point of safe guard. Although, some available data are given about uranium dioxide fuels, few data are given about uranium and plutonium dioxide mixtures (MOX fuels). Especially, there is few data about MOX fuels which are irradiated in thermal reactors and cooled more than ten years. Gamma-ray spectra are measured for PuO 2 -UO 2 fuel rods (IFA-159, IFA-160) which are irradiated at HBWR in Norway up to 9,420 and 5,340MWd/t respectively. Gamma-ray spectra had been measured about the two fuels ten years ago at the spent fuel pond of Japan Demonstration Reactor (JPDR). The objectives of this measurement is to know how decayed the gamma-ray spectra in these ten years and some fission products are there which are effective to estimate burnup rate of spent MOX fuels. (author)

  20. Buildup of radioxenon isotopes in MOX-assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Gniffke, Thomas; Kirchner, Gerald [Carl Friedrich von Weizsaecker-Centre for Science and Peace Research, Hamburg (Germany)

    2015-07-01

    Radioxenon is the main tracer for detection of nuclear tests conducted underground under the verification regime of the Comprehensive Nuclear Test Ban Treaty (CTBT). Since radioxenon is emitted by civilian sources too, like commercial nuclear reactors, source discrimination is still an important issue. Inventory calculations are necessary to predict which xenon isotopic ratios are built up in a reactor and how they differ from those generated by a nuclear explosion. The screening line actually used by the CTBT Organization for source discrimination is based on calculations for uranium fuel of various enrichments used in pressurized water reactors (PWRs). The usage of different fuel, especially mixed U/Pu oxide (MOX) assemblies with reprocessed plutonium, may alter the radioxenon signature of civilian reactors. In this talk, calculations of the radioxenon buildup in a MOX-assembly used in a commercial PWR are presented. Implications for the CTBT verification regimes are discussed and open questions are addressed.

  1. Criticality safety philosophy for the Sellafield MOX plant

    International Nuclear Information System (INIS)

    Edge, Jane; Gulliford, Jim

    2003-01-01

    The Sellafield MOX Plant (SMP) has been operational since 2001, blending plutonium dioxide from THORP reprocessing operations, with uranium dioxide to produce Mixed Oxide (MOX) fuel elements. In handling the quantities of fuel associated with a commercial fuel fabrication plant, it is necessary to impose criticality controls. Plutonium dioxide (PuO 2 ), uranium dioxide (UO 2 ) and recycled MOX are mixed together in batches. An Engineered Protection System (EPS) prevents the production of MOX powder in excess of 20w/o Pu(fissile)/(Pu+U), achieved through the combination of a weight-based' system and a diverse 'neutron monitoring' radiometric system. The 'neutron monitoring' component of the EPS determines the fissile enrichment of the batch of MOX powder, based on pessimistic isotopic requirements of the PuO 2 feedstock powder. Guaranteeing the maximum MOX enrichment of 20w/o Pu(fissile)/(Pu + U) at an early stage of the fuel manufacturing process enables the criticality safety assessor to demonstrate that normal operations are deterministically safe. This paper describes in detail the EPS at the front end of plant and the engineered and operational protection in downstream areas. In addition plant operational experience in producing the first fuel assemblies is discussed. (author)

  2. Issues in the use of Weapons-Grade MOX Fuel in VVER-1000 Nuclear Reactors: Comparison of UO2 and MOX Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Carbajo, J.J.

    2005-05-27

    The purpose of this report is to quantify the differences between mixed oxide (MOX) and low-enriched uranium (LEU) fuels and to assess in reasonable detail the potential impacts of MOX fuel use in VVER-1000 nuclear power plants in Russia. This report is a generic tool to assist in the identification of plant modifications that may be required to accommodate receiving, storing, handling, irradiating, and disposing of MOX fuel in VVER-1000 reactors. The report is based on information from work performed by Russian and U.S. institutions. The report quantifies each issue, and the differences between LEU and MOX fuels are described as accurately as possible, given the current sources of data.

  3. Pt/MOx/SiO2, Pt/MOx/TiO2, and Pt/MOx/Al2O3 Catalysts for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Hongmei Qin

    2015-04-01

    Full Text Available Conventional supported Pt catalysts have often been prepared by loading Pt onto commercial supports, such as SiO2, TiO2, Al2O3, and carbon. These catalysts usually have simple metal-support (i.e., Pt-SiO2 interfaces. To tune the catalytic performance of supported Pt catalysts, it is desirable to modify the metal-support interfaces by incorporating an oxide additive into the catalyst formula. Here we prepared three series of metal oxide-modified Pt catalysts (i.e., Pt/MOx/SiO2, Pt/MOx/TiO2, and Pt/MOx/Al2O3, where M = Al, Fe, Co, Cu, Zn, Ba, La for CO oxidation. Among them, Pt/CoOx/SiO2, Pt/CoOx/TiO2, and Pt/CoOx/Al2O3 showed the highest catalytic activities. Relevant samples were characterized by N2 adsorption-desorption, X-ray diffraction (XRD, transmission electron microscopy (TEM, H2 temperature-programmed reduction (H2-TPR, X-ray photoelectron spectroscopy (XPS, CO temperature-programmed desorption (CO-TPD, O2 temperature-programmed desorption (O2-TPD, and CO2 temperature-programmed desorption (CO2-TPD.

  4. Material attractiveness of plutonium composition on doping minor actinide of large FBR

    International Nuclear Information System (INIS)

    Permana, Sidik; Suzuki, Mitsutoshi; Kuno, Yusuke

    2011-01-01

    Material attractiveness analysis on isotopic plutonium compositions of fast breeder reactors (FBR) has been investigated based on figure of merit (FOM) formulas as key parameters as well as decay heat (DH) and spontaneous fission neutron (SFN) compositions. Increasing minor actinide (MA) doping gives the significant effect to increase Pu-238 composition. However, the compositions of Pu-240 and Pu-242 become less with increasing MA doping. DH and SFN compositions in the core regions similar to the DH and SFN compositions of MOX-grade. Material attractiveness based on FOM1 formula shows all isotopic plutonium compositions in the blanket regions as well as in the core regions are categorized as high attractive material. Adopted FOM2 formula can distinguishes the material attractiveness levels which show the plutonium compositions in blanket regions as high attractiveness level and its composition in the core regions as low level of material attractiveness. MA doping is effective to reduce the material attractiveness level of blanket regions from high to medium and it requires much more MA doping rate to achieve low level of attractiveness (FOM<1) based on adopted FOM1 formula. Low material attractiveness level can be obtained by 4 % or more doping MA based on adopted FOM2 formula which considers not only DH composition effect, but also SFN composition effect that gives relatively higher contribution to material barrier of plutonium isotopes. (author)

  5. New Digital Metal-Oxide (MOx Sensor Platform

    Directory of Open Access Journals (Sweden)

    Daniel Rüffer

    2018-03-01

    Full Text Available The application of metal oxide gas sensors in Internet of Things (IoT devices and mobile platforms like wearables and mobile phones offers new opportunities for sensing applications. Metal-oxide (MOx sensors are promising candidates for such applications, thanks to the scientific progresses achieved in recent years. For the widespread application of MOx sensors, viable commercial offerings are required. In this publication, the authors show that with the new Sensirion Gas Platform (SGP a milestone in the commercial application of MOx technology has been reached. The architecture of the new platform and its performance in selected applications are presented.

  6. Pyro-electrochemical reprocessing of irradiated MOX fast reactor fuel, testing of the reprocessing process with direct MOX fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Kormilitzyn, M.V.; Vavilov, S.K.; Bychkov, A.V.; Skiba, O.V.; Chistyakov, V.M.; Tselichshev, I.V

    2000-07-01

    One of the advanced technologies for fast reactor fuel recycle is pyro-electrochemical molten salt technology. In 1998 we began to study the next phase of the irradiated oxide fuel reprocessing new process MOX {yields} MOX. This process involves the following steps: - Dissolution of irradiated fuel in molten alkaline metal chlorides, - Purification of melt from fission products that are co-deposited with uranium and plutonium oxides, - Electrochemical co-deposition of uranium and plutonium oxides under the controlled cathode potential, - Production of granulated MOX (crushing,salt separation and sizing), and - Purification of melt from fission products by phosphate precipitation. In 1998 a series of experiments were prepared and carried out in order to validate this process. It was shown that the proposed reprocessing flowsheet of irradiated MOX fuel verified the feasibility of its decontamination from most of its fission products (rare earths, cesium) and minor-actinides (americium, curium)

  7. Pyro-electrochemical reprocessing of irradiated MOX fast reactor fuel, testing of the reprocessing process with direct MOX fuel production

    International Nuclear Information System (INIS)

    Kormilitzyn, M.V.; Vavilov, S.K.; Bychkov, A.V.; Skiba, O.V.; Chistyakov, V.M.; Tselichshev, I.V.

    2000-01-01

    One of the advanced technologies for fast reactor fuel recycle is pyro-electrochemical molten salt technology. In 1998 we began to study the next phase of the irradiated oxide fuel reprocessing new process MOXMOX. This process involves the following steps: - Dissolution of irradiated fuel in molten alkaline metal chlorides, - Purification of melt from fission products that are co-deposited with uranium and plutonium oxides, - Electrochemical co-deposition of uranium and plutonium oxides under the controlled cathode potential, - Production of granulated MOX (crushing,salt separation and sizing), and - Purification of melt from fission products by phosphate precipitation. In 1998 a series of experiments were prepared and carried out in order to validate this process. It was shown that the proposed reprocessing flowsheet of irradiated MOX fuel verified the feasibility of its decontamination from most of its fission products (rare earths, cesium) and minor-actinides (americium, curium)

  8. Fuel cycles with high fuel burn-up: analysis of reactivity coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Kryuchkov, E.F.; Shmelev, A.N.; Ternovykh, M.J.; Tikhomirov, G.V.; Jinhong, L. [Moscow Engineering Physics Institute (State University) (Russian Federation); Saito, M. [Tokyo Institute of Technology (Japan)

    2003-07-01

    Fuel cycles of light-water reactors (LWR) with high fuel burn-up (above 100 MWd/kg), as a rule, involve large amounts of fissionable materials. It leads to forming the neutron spectrum harder than that in traditional LWR. Change of neutron spectrum and significant amount of non-traditional isotopes (for example, {sup 237}Np, {sup 238}Pu, {sup 231}Pa, {sup 232}U) in such fuel compositions can alter substantially reactivity coefficients as compared with traditional uranium-based fuel. The present work addresses the fuel cycles with high fuel burn-up which are based on Th-Pa-U and U-Np-Pu fuel compositions. Numerical analyses are carried out to determine effective neutron multiplication factor and void reactivity coefficient (VRC) for different values of fuel burn-up and different lattice parameters. The algorithm is proposed for analysis of isotopes contribution to these coefficients. Various ways are considered to upgrade safety of nuclear fuel cycles with high fuel burn-up. So, the results obtained in this study have demonstrated that: -1) Non-traditional fuel compositions developed for achievement of high fuel burn-up in LWR can possess positive values of reactivity coefficients that is unacceptable from the reactor operation safety point of view; -2) The lattice pitch of traditional LWR is not optimal for non-traditional fuel compositions, the increased value of the lattice pitch leads to larger value of initial reactivity margin and provides negative VRC within sufficiently broad range of coolant density; -3) Fuel burn-up has an insignificant effect on VRC dependence on coolant density, so, the measures undertaken to suppress positive VRC of fresh fuel will be effective for partially burnt-up fuel compositions also and; -4) Increase of LWR core height and introduction of additional moderators into the fuel lattice can be used as the ways to reach negative VRC values for full range of possible coolant density variations.

  9. Technical Development on Burn-up Credit for Spent LWR Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gauld, I.C.

    2001-12-26

    Technical development on burn-up credit for spent LWR fuels had been performed at JAERI since 1990 under the contract with Science and Technology Agency of Japan entitled ''Technical Development on Criticality Safety Management for Spent LWR Fuels.'' Main purposes of this work are to obtain the experimental data on criticality properties and isotopic compositions of spent LWR fuels and to verify burnup and criticality calculation codes. In this work three major experiments of exponential experiments for spent fuel assemblies to obtain criticality data, non-destructive gamma-ray measurement of spent fuel rods for evaluating axial burn-up profiles, and destructive analyses of spent fuel samples for determining precise burn-up and isotopic compositions were carried out. The measured data obtained were used for validating calculation codes as well as an examination of criticality safety analyses. Details of the work are described in this report.

  10. Experimental microstructures MOX fuels elaboration

    International Nuclear Information System (INIS)

    Gotta, M.J.; Dubois, S.; Lechelle, J.; Sornay, P.

    2000-01-01

    In order to propose a new MOX fuel, owning higher combustion rate, studies are realized at the CEA in collaboration with Cogema, EDF and Framatome. New microstructures of MOX are looked for around two approaches: the grains size and the plutonium distribution. These approaches are presented and discussed in this paper. The first one develops big grains microstructures obtained, either with anionic (sulfur), or cationic (Cr 2 O 3 ) additives. The second one concerns the CER-CER type composite microstructures. (A.L.B.)

  11. Dissolution behavior of PFBR MOX fuel in nitric acid

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Kapoor, Y.S.; Singh, Mamta; Meena, D.L.; Pandey, Ashish; Bhatt, R.B.; Behere, P.G.

    2017-01-01

    Present paper describes the dissolution characteristics of PFBR MOX fuel (U,Pu)O 2 in nitric acid. An overview of batch dissolution experiments, studying the percentage dissolution of uranium and plutonium in (U, Pu)O 2 MOX sintered pellets with different percentage of PuO 2 with reference to time and nitric acid concentration are described. 90% of uranium and plutonium of PFBR MOX gets dissolves in 2 hrs and amount of residue increases with the decrease in nitric acid concentration. Overall variation in percentage residue in PFBR MOX fuel after dissolution test also described. (author)

  12. Technological study report on synthetic evaluation for FBR cycle. The report of the feasibility studies on commercialized FBR cycle system. Phase 1

    International Nuclear Information System (INIS)

    Shinoda, Yoshihiko; Ohtaki, Akira; Kofuji, Hirohide; Ono, Kiyoshi; Hirao, Kazunori

    2001-03-01

    This report is intended to explain the outline of the characteristic evaluation work on various FR cycle system concepts, following the design work, in the 1st phase of the JNC's 'Feasibility Study on Commercialized Fast Reactor Cycle System (the F/S)' (from 1999 to March 2001). The purpose of this characteristic evaluation is to reveal the performance of candidate FR cycle systems. For this synthetic estimation, six viewpoints, such as Economics, Effective utilization of uranium resource, Reduction of environmental impact, Safety, Proliferation resistance, and Technological feasibility, are selected. In addition, aiming at the practical use in phase 2, we examined an application to FBR research and development of cost benefit analysis method used for the policy evaluation. Furthermore, long-term nuclear material mass flow was analyzed and the scenario of 'FBR application for the hydrogen production' is proposed, considering how FBR would be utilized for the 21st century. And, a database including the various documents and data used for evaluation was constructed. (author)

  13. Research and development of FBR fuel reprocessing in PNC

    International Nuclear Information System (INIS)

    Hoshino, T.

    1976-05-01

    The research program of the PNC for FBR fuel reprocessing in Japan is discussed. The general characteristics of FBR fuel reprocessing are pointed out and a comparison with LWR fuel is made. The R and D program is based on reprocessing using the aqueous Purex process. So far, some preliminary steps of the research program have been carried out, these include solvent extraction test, off-gas treatment test, voloxidation process study, solidification test of high-level liquid waste, and study of the dissolution behaviour of irradiated mixed oxide fuel. By the end of the 1980s, a pilot plant for FBR fuel reprocessing will be completed. For the design of the pilot plant, further research will be carried out in the following fields: head-end techniques; voloxidation process; dissolution and extraction techniques; waste treatment techniques. A time schedule for the different steps of the program is included

  14. Effect of burn-up on the thermal conductivity of uranium dioxide up to 100.000 MWd t-1

    International Nuclear Information System (INIS)

    Ronchi, C.; Sheindlin, M.; Staicu, D.; Kinoshita, M.

    2004-01-01

    The thermal diffusivity and specific heat of reactor-irradiated UO 2 fuel have been measured. Starting from end-of-life conditions at various burn-ups, measurements under thermal annealing cycles were performed in order to investigate the recovery of the thermal conductivity as a function of temperature. The separate effects of soluble fission products, of fission gas frozen in dynamical solution and of radiation damage were determined. In this context, particular emphasis was given to the behaviour of samples displaying the high burn-up rim structure. Recovery stages could be thoroughly investigated in samples that were irradiated at low burn-ups and/or at high irradiation temperatures. Other samples, in particular those exhibiting the characteristic rim structure, disintegrated at temperatures slightly higher than the irradiation temperature. Finally, from a database of several thousand measurements, an accurate formula for the in-pile thermal conductivity of UO 2 up to 100 GWd t -1 was developed, taking into account all the relevant effects and structural changes induced by reactor burn-up

  15. Study of advanced LWR cores for effective use of plutonium and MOX physics experiments

    International Nuclear Information System (INIS)

    Yamamoto, T.; Matsu-Ura, H.; Ueji, M.; Ota, H.; Kanagawa, T.; Sakurada, K.; Maruyama, H.

    1999-01-01

    Advanced technologies of full MOX cores have been studied to obtain higher Pu consumption based on the advanced light water reactors (APWRs and ABWRs). For this aim, basic core designs of high moderation lattice (H/HM ∼5) have been studied with reduced fuel diameters in fuel assemblies for APWRs and those of high moderation lattice (H/HM ∼6) with addition of extra water rods in fuel assemblies for ABWRs. The analysis of equilibrium cores shows that nuclear and thermal hydraulic parameters satisfy the design criteria and the Pu consumption rate increases about 20 %. An experimental program has been carried out to obtain the core parameters of high moderation MOX cores in the EOLE critical facility at the Cadarache Centre as a joint study of NUPEC, CEA and CEA's industrial partners. The experiments include a uranium homogeneous core, two MOX homogeneous cores of different moderation and a PWR assembly mock up core of MOX fuel with high moderation. The program was started from 1996 and will be completed in 2000. (author)

  16. Design of a reactor core in the Oma Full MOX-ABWR

    International Nuclear Information System (INIS)

    Hama, Teruo

    1999-01-01

    The Electric Power Development Co., Ltd. has progressed a construction plan on an improved boiling-water reactor aiming at loading of MOX fuel in all reactor cores (full MOX-ABWR) at Oma-cho, Aomori prefecture, which is a last stage on application of approval on establishment at present. Here were described on outlines of reactor core in the full MOX-ABWR and its safety evaluation. For the full MOX-ABWR loading MOX fuel assembly into all reactor core, thermal and mechanical design analysis of fuel bars and core design analysis were conducted. As a result, it was confirmed that judgement standards in mixed core of MOX fuel and uranium fuel were also applicable as well as that in uranium fuel. (G.K.)

  17. Evaluation of the characteristics of uranium and plutonium Mixed Oxide (MOX) fuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    MOX fuel irradiation test up to high burnup has been performed for five years. Irradiation test of MOX fuel having high plutonium content has also been performed from JFY 2007 and it still continues. A lot of irradiation data have been obtained through these tests. The activities done in JFY 2012 are mainly focused on Post Irradiation Examination (PIE) data analysis concerning thermal property change and fission gas release. In the former work thermal conductivity degradation due to burnup is examined and in the latter work the dependence of fission gas release mechanism on fuel pellet microstructure is examined. This report mainly covers the result of analysis. It is found that thermal conductivity degradation of MOX fuel due to burnup is less than that of UO{sub 2} fuel and that fission gas release mechanism of high enriched fissile zone (so called Pu spot) is much different from that of low enriched fissile zone (so called Matrix). (author)

  18. Pediatric superficial scald burns--reassessment of our follow-up protocol.

    Science.gov (United States)

    Egro, Francesco M; O'Neill, Jennifer K; Briard, Robert; Cubison, Tania C S; Kay, Alan R; Estela, Catalina M; Burge, Timothy S

    2010-01-01

    The most common pediatric burn injury is a superficial scald. The current follow-up protocol for such burns includes review of the patient at 2 weeks postinjury and then 2 months later. The authors decided to review the protocol to assess the need for this second follow-up. A retrospective study reviewed the case notes of patients younger than 16 years at the time of their injury presenting with a scald over 5% TBSA. The progress of healing and scar development up to 5 years follow-up was assessed. This study showed that scalds healing within 2 weeks following injury rarely became hypertrophic. A prospective study was performed over a 10-month period. All children who suffered a superficial partial-thickness scald injury were included. At the 2-week appointment, the need for further follow-up was predicted. The accuracy of this prediction was assessed 2 months later. This study showed that an experienced member of the burns team could reliably predict at 2-week appointment those children who could be safely discharged with no subsequent need for scar management. This study suggests that it will be safe to modify the follow-up protocol, reducing the number of clinic attendances.

  19. Development of MOX facilities and the impact on the nuclear fuel markets

    International Nuclear Information System (INIS)

    Patterson, J.

    1990-01-01

    Mixed-oxide (MOX) fuel is nearing maturity as a fuel supply option. This paper briefly reviews the history and current status of the MOX fuel market, including the projected increase in demand for MOX fuel as more plutonium becomes available from the operation of commercial irradiated fuel reprocessing plants in Europe. The uncertainties of such projected demand are discussed, together with the anticipated requirements from the next generation of MOX fabrication plants. The impact of the growing demand for MOX fuel is assessed in the traditional sectors of the uranium fuel cycle. Finally, the author turns to a generalized treatment of the economic aspects of MOX fuel utilization, showing the financially attractive regimes of MOX use which will benefit nuclear power utilities and continue to ensure that MOX fuel can consolidate its position as a mature fuel supply option in those countries that have opted to recycle their spent fuel

  20. Three dimensional Burn-up program parallelization using socket programming

    International Nuclear Information System (INIS)

    Haliyati R, Evi; Su'ud, Zaki

    2002-01-01

    A computer parallelization process was built with a purpose to decrease execution time of a physics program. In this case, a multi computer system was built to be used to analyze burn-up process of a nuclear reactor. This multi computer system was design need using a protocol communication among sockets, i.e. TCP/IP. This system consists of computer as a server and the rest as clients. The server has a main control to all its clients. The server also divides the reactor core geometrically to in parts in accordance with the number of clients, each computer including the server has a task to conduct burn-up analysis of 1/n part of the total reactor core measure. This burn-up analysis was conducted simultaneously and in a parallel way by all computers, so a faster program execution time was achieved close to 1/n times that of one computer. Then an analysis was carried out and states that in order to calculate the density of atoms in a reactor of 91 cm x 91 cm x 116 cm, the usage of a parallel system of 2 computers has the highest efficiency

  1. Numerical solution of matrix exponential in burn-up equation using mini-max polynomial approximation

    International Nuclear Information System (INIS)

    Kawamoto, Yosuke; Chiba, Go; Tsuji, Masashi; Narabayashi, Tadashi

    2015-01-01

    Highlights: • We propose a new numerical solution of matrix exponential in burn-up depletion calculations. • The depletion calculation with extremely short half-lived nuclides can be done numerically stable with this method. • The computational time is shorter than the other conventional methods. - Abstract: Nuclear fuel burn-up depletion calculations are essential to compute the nuclear fuel composition transition. In the burn-up calculations, the matrix exponential method has been widely used. In the present paper, we propose a new numerical solution of the matrix exponential, a Mini-Max Polynomial Approximation (MMPA) method. This method is numerically stable for burn-up matrices with extremely short half-lived nuclides as the Chebyshev Rational Approximation Method (CRAM), and it has several advantages over CRAM. We also propose a multi-step calculation, a computational time reduction scheme of the MMPA method, which can perform simultaneously burn-up calculations with several time periods. The applicability of these methods has been theoretically and numerically proved for general burn-up matrices. The numerical verification has been performed, and it has been shown that these methods have high precision equivalent to CRAM

  2. Some results on development, irradiation and post-irradiation examinations of fuels for fast reactor-actinide burner (MOX and inert matrix fuel)

    International Nuclear Information System (INIS)

    Poplavsky, V.; Zabudko, L.; Moseev, L.; Rogozkin, B.; Kurina, I.

    1996-01-01

    Studies performed have shown principal feasibility of the BN-600 and BN-800 cores to achieve high efficiency of Pu burning when MOX fuel with Pu content up to 45% is used. Valuable experience on irradiation behaviour of oxide fuel with high Pu content (100%) was gained as a result of operation of two BR-10 core loadings where the maximum burnup 14 at.% was reached. Post-irradiation examination (PIE) allowed to reveal some specific features of the fuel with high plutonium content. Principal irradiation and PIE results are presented in the paper. Use of new fuel without U-238 provides the maximum burning capability as in this case the conversion ratio is reduced to zero. Technological investigations of inert matrix fuels have been continued now. Zirconium carbide, zirconium nitride, magnesium oxide and other matrix materials are under consideration. Inert matrices selection criteria are discussed in the paper. Results of technological study, of irradiation in the BOR-60 reactor and PIE results of some inert matrix fuels are summarized in this report. (author). 2 refs, 1 fig., 3 tabs

  3. Sintered-to-size FBR fuel

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Schaus, P.S.

    1984-04-01

    Fabrication of sintered-to-size PuO 2 -UO 2 fuel pellets was completed for testing of proposed FBR product specifications. Approximately 6000 pellets were fabricated to two nominal diameters and two densities by cold pressing and sintering to size. Process control and correlation between test and production batches are discussed

  4. Development of flaw assesment methodology for elevated temperature components of FBR plants

    International Nuclear Information System (INIS)

    Shimakawa, Takashi; Takahashi, Yukio; Miura, Naoki; Nakayama, Yasunari; Sawai, Tatsuaki; Tooya, Yuuji

    1999-01-01

    Fracture mechanics is applicable for the safety assessment of FBR component if a crack is assumed to exist. Inelastic response should be taken into account due to high temperature operation of FBR components. However, methodology for the application of inelastic fracture mechanics has not been established sufficiently. CRIEPI has been conducted research projects to develop a flaw assessment guideline for FBR components. This guideline consists of evaluation methods for creep-fatigue crack propagation, ductile fracture and sodium leak rate. The summary of evaluation methods on creep-fatigue crack and ductile fracture is presented in this paper. (author)

  5. Preliminary nuclear design for test MOX Fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Kook; Kim, Taek Kyum; Jeong, Hyung Guk; Noh, Jae Man; Cho, Jin Young; Kim, Young Il; Kim, Young Jin; Sohn, Dong Seong

    1997-10-01

    As a part of activity for future fuel development project, test MOX fuel rods are going to be loaded and irradiated in Halden reactor core as a KAERI`s joint international program with Paul Scherrer Institute (PSI). PSI will fabricate test MOX rods with attrition mill device which was developed by KAERI. The test fuel assembly rig contains three MOX rods and three inert matrix rods. One of three MOX rods will be fabricated by BNFL, the other two MOX fuel rods will be manufacturing jointly by KAERI and PSI. Three inert matrix fuel rods will be fabricated with Zr-Y-Er-Pu oxide. Neutronic evaluation was preliminarily performed for test fuel assembly suggested by PSI. The power distribution of test fuel rod in test fuel assembly was analyzed for various fuel rods position in assembly and the depletion characteristic curve for test fuel was also determined. The fuel rods position in test fuel assembly does not effect the rod power distribution, and the proposal for test fuel rods suggested by PSI is proved to be feasible. (author). 2 refs., 13 tabs., 16 figs.

  6. Image analysis: a tool characterising and modelling the microstructure of the MOX fuel

    International Nuclear Information System (INIS)

    Charollais, F.

    1997-01-01

    The MOX nuclear fuel, made up of about 3 to 10 % of plutonium oxide mixed with uranium oxide, is elaborated by an original manufacturing method (MIMAS process). The MOX pellets feature a singular and complex microstructure, including enriched plutonium zones dispersed in a low plutonium content matrix. Their properties as well as their performances levels are strongly linked with this microstructure. Tools, found in the literature, allowing to quantify with relevant parameters the microstructural images from different analytical equipment (optical microscopy, electron probe micro-analyser and autoradiography) have been adapted and used in order to characterize these nuclear fuels. Taking into account the heterogeneity of the MOX microstructure, we turn our's attention, at the beginning of this study, to the analysis conditions: choice of the magnification, sampling and statistical analysis of the measurements. An improvement of the ceramographic preparation of the samples, required for an automatic image analysis (of the granular structure), has been realised by thermal etching under oxidizing gas. This method enables the strong content plutonium zones to be revealed distinctly. The first part of the study concerns the characterization of the three-dimensional structure of uranium oxide and MOX fuels by average variables using the principles of mathematical morphology and stereology. The second part introduces probabilistic models, in particular the Boolean scheme, in order to improve and complete the three-dimensional characterization of the MOX fuel and more specifically the enriched plutonium islands dispersion in the pellet. [fr

  7. Energy profit ratio on LWR by uranium recycles

    International Nuclear Information System (INIS)

    Amano, Osamu; Uno, Takeki; Matsushima, Jun

    2009-01-01

    Energy profit ratio is defined as the ratio of output energy/input system total energy. In case of electric power generation, input energy is a total for fuel such as uranium mining and enrichment, fuel transportation, build nuclear power plant, M and O and for disposal waste and decommission of reactor vessel. Output energy is the total electricity on LWR during the plant life. EPR on both PWR and BWR is high value using gas centrifuge enrichment compared other type of electric power generation such as a thermal power, a hydraulic power, a wind power and a photovoltaic power. How is the EPR on LWR by MOX? We need understanding the energy of reprocessing spent fuel, MOX fuel fabrication, low level waste disposal and high level radioactive glass disposal. As we show the material balance for two cases, the first is the case of long term storage and reprocessing before FBR, the second is the MOX fuel cycle on LWR plant. The MOX fuel recycle is better EPR value rather than the case of long term storage and reprocessing before FBR (LTSRBF). At the gaseous diffusion enrichment case, MOX fuel recycle has 15 to 18% higher EPR value than LTSRBF. At the gas centrifuge enrichment case the MOX fuel recycle has 17 to 18 higher EPR value than LTSRBF. MOX fuel recycle decreases the uranium mining and refine mass, enrichment separative work and the spent fuel interim storage. It tells us the MOX fuel recycle is good way from view of EPR. (author)

  8. Reactivity management and burn-up management on JRR-3 silicide-fuel-core

    International Nuclear Information System (INIS)

    Kato, Tomoaki; Araki, Masaaki; Izumo, Hironobu; Kinase, Masami; Torii, Yoshiya; Murayama, Yoji

    2007-08-01

    On the conversion from uranium-aluminum-dispersion-type fuel (aluminide fuel) to uranium-silicon-aluminum-dispersion-type fuel (silicide fuel), uranium density was increased from 2.2 to 4.8 g/cm 3 with keeping uranium-235 enrichment of 20%. So, burnable absorbers (cadmium wire) were introduced for decreasing excess reactivity caused by the increasing of uranium density. The burnable absorbers influence reactivity during reactor operation. So, the burning of the burnable absorbers was studied and the influence on reactor operation was made cleared. Furthermore, necessary excess reactivity on beginning of operation cycle and the time limit for restart after unplanned reactor shutdown was calculated. On the conversion, limit of fuel burn-up was increased from 50% to 60%. And the fuel exchange procedure was changed from the six-batch dispersion procedure to the fuel burn-up management procedure. The previous estimation of fuel burn-up was required for the planning of fuel exchange, so that the estimation was carried out by means of past operation data. Finally, a new fuel exchange procedure was proposed for effective use of fuel elements. On the procedure, burn-up of spent fuel was defined for each loading position. The average length of fuel's staying in the core can be increased by two percent on the procedure. (author)

  9. Development of advanced methodology for defect assessment in FBR power plants

    International Nuclear Information System (INIS)

    Meshii, Toshiyuki; Asayama, Tai

    2001-03-01

    As a preparation for developing a code for FBR post construction code, (a) JSME Code NA1-2000 was reviewed on the standpoint of applying it to FBR power plants and the necessary methodologies for defect assessment for FBR plants were pointed out (b) large capacity-high speed fatigue crack propagation (FCP) testing system was developed and some data were acquired to evaluate the FCP characteristics under thermal stresses. Results showed that the extended research on the following items are necessary for developing FBR post construction code. (1) Development of assessment for multiple defects due to creep damage. Multiple defects due to creep damage are not considered in the existing code, which is established for nuclear power plants in service under negligible-creep temperature. Therefore method to assess the integrity of these multiple defects due to creep damage is necessary. (2) FCP resistance for small load. Since components of FBR power plants are designed to minimize thermal stresses, the accuracy of FCP resistance for small load is important to estimate the crack propagation under thermal stresses accurately. However, there is not a sufficient necessary FCP data for small loads, maybe because the data is time consuming. Therefore we developed a large capacity-high speed FCP testing system, made a guideline for accelerated test and acquired some data to meet the needs. Continuous efforts to accumulate small load FCP data for various materials are necessary. (author)

  10. Disposition of excess plutonium using ''off-spec'' MOX pellets as a sintered ceramic waste form

    International Nuclear Information System (INIS)

    Armantrout, G.A.; Jardine, L.J.

    1996-02-01

    The authors describe a potential strategy for the disposition of excess weapons plutonium in a way that minimizes (1) technological risks, (2) implementation costs and completion schedules, and (3) requirements for constructing and operating new or duplicative Pu disposition facilities. This is accomplished by an optimized combination of (1) using existing nuclear power reactors to ''burn'' relatively pure excess Pu inventories as mixed oxide (MOX) fuel and (2) using the same MOX fuel fabrication facilities to fabricate contaminated or impure excess Pu inventories into an ''off-spec'' MOX solid ceramic waste form for geologic disposition. Diversion protection for the SCWF to meet the ''spent fuel standard'' introduced by the National Academy of Sciences can be achieved in at least three ways. (1) One can utilize the radiation field from defense high-level nuclear waste by first packaging the SCWF pellets in 2- to 4-L cans that are subsequently encapsulated in radioactive glass in the Defense Waste Processing Facility (DWPF) glass canisters (a ''can-in-canister'' approach). (2) One can add 137 Cs (recovered from defense wastes at Hanford and currently stored as CsCl in capsules) to an encapsulating matrix such as cement for the SCWF pellets in a small hot-cell facility and thus fabricate large monolithic forms. (3) The SCWF can be fabricated into reactor fuel-like pellets and placed in tubes similar to fuel assemblies, which can then be mixed in sealed repository containers with irradiated spent nuclear fuel for geologic disposition

  11. Establishing a PWR burn-up library

    International Nuclear Information System (INIS)

    Lutz, D.C.

    1981-01-01

    Starting out from data file ENDF/B IV /1/, a cross-section library has been established for the calculation of operating conditions in pressurized water reactors of the type used in BIBLIS B. The library includes macroscopic, homogenized 2-group cross-sections for all types of fuel elements used in this reactor, including those equipped with boron glass rods. For their calculation the previous irradiation of the fuel has been taken into consideration by approximation. Information on fuel consumption from cell burn-up calculations has been stored in a separate data file. It was designed as a base for the determination of cross sections to be used in the calculation of the incident ''main-steam pipe fracture''. For this library the description of cross sections as a function of the moderator status chose the water densities at 300 0 C/155 bar, 190 0 C/140 bar and 100 0 C/100 bar as fixed values. The burn-up library has been tested by a three-dimensional calculation for the 1sup(st) cycle of the BIBLIS B-reactor using program QUABOX /2/. This showed variances with the anticipated course concerning critically, which can be explained almost quantitatively by known deficiencies of the ENDF/b-IV library. (orig.) [de

  12. Isotopic Details of the Spent Catawba-1 MOX Fuel Rods at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Ronald James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-01

    The United States Department of Energy funded Shaw/AREVA MOX Services LLC to fabricate four MOX Lead Test Assemblies (LTA) from weapons-grade plutonium. A total of four MOX LTAs (including MX03) were irradiated in the Catawba Nuclear Station (Unit 1) Catawba-1 PWR which operated at a total thermal power of 3411 MWt and had a core with 193 total fuel assemblies. The MOX LTAs were irradiated along with Duke Energy s irradiation of eight Westinghouse Next Generation Fuel (NGF) LEU LTAs (ref.1) and the remaining 181 LEU fuel assemblies. The MX03 LTA was irradiated in the Catawba-1 PWR core (refs.2,3) during cycles C-16 and C-17. C-16 began on June 5, 2005, and ended on November 11, 2006, after 499 effective full power days (EFPDs). C-17 started on December 29, 2006, (after a shutdown of 48 days) and continued for 485 EFPDs. The MX03 and three other MOX LTAs (and other fuel assemblies) were discharged at the end of C-17 on May 3, 2008. The design of the MOX LTAs was based on the (Framatome ANP, Inc.) Mark-BW/MOX1 17 17 fuel assembly design (refs. 4,5,6) for use in Westinghouse PWRs, but with MOX fuel rods with three Pu loading ranges: the nominal Pu loadings are 4.94 wt%, 3.30 wt%, and 2.40 wt%, respectively, for high, medium, and low Pu content. The Mark-BW/MOX1 (MOX LTA) fuel assembly design is the same as the Advanced Mark-BW fuel assembly design but with the LEU fuel rods replaced by MOX fuel rods (ref. 5). The fabrication of the fuel pellets and fuel rods for the MOX LTAs was performed at the Cadarache facility in France, with the fabrication of the LTAs performed at the MELOX facility, also in France.

  13. Total surface area change of Uranium dioxide fuel in function of burn-up and its impact on fission gas release during neutron irradiation for small, intermediate and high burn-up

    International Nuclear Information System (INIS)

    Szuta, M.

    2011-01-01

    In the early published papers it was observed that the fractional fission gas release from the specimen have a tendency to increase with the total surface area of the specimen - a fairy linear relationship was indicated. Moreover it was observed that the increase of total surface area during irradiation occurs in the result of connection the closed porosity with the open porosity what in turn causes the increase of fission gas release. These observations let us surmise that the process of knock-out release is the most significant process of fission gas release since its quantity is proportional to the total surface area. Review of the experiments related to the increase of total surface area in function of burn-up is presented in the paper. For very high burn-up the process of grain sub-division (polygonization) occurs under condition that the temperature of irradiated fuel lies below the temperature of grain re-crystallization. Simultaneously with the process of polygonization, the increase in local porosity and the decrease in local density in function of burn-up occurs, which leads to the increase of total surface area. It is suggested that the same processes take place in the transformed fuel as in the original fuel, with the difference that the total surface area is so big that the whole fuel can be treated as that affected by the knock-out process. This leads to explanation of the experimental data that for very high burn-up (>120 MWd/kgU) the concentration of xenon is constant. An explanation of the grain subdivision process in function of burn-up in the 'athermal' rim region in terms of total surface area, initial grain size and knock-out release is undertaken. Correlation of the threshold burn-up, the local fission gas concentration, local total surface area, initial and local grain size and burn-up in the rim region is expected. (author)

  14. Ultrasonic measurement of high burn-up fuel elastic properties

    International Nuclear Information System (INIS)

    Laux, D.; Despaux, G.; Augereau, F.; Attal, J.; Gatt, J.; Basini, V.

    2006-01-01

    The ultrasonic method developed for the evaluation of high burn-up fuel elastic properties is presented hereafter. The objective of the method is to provide data for fuel thermo-mechanical calculation codes in order to improve industrial nuclear fuel and materials or to design new reactor components. The need for data is especially crucial for high burn-up fuel modelling for which the fuel mechanical properties are essential and for which a wide range of experiments in MTR reactors and high burn-up commercial reactor fuel examinations have been included in programmes worldwide. To contribute to the acquisition of this knowledge the LAIN activity is developing in two directions. First one is development of an ultrasonic focused technique adapted to active materials study. This technique was used few years ago in the EdF laboratory in Chinon to assess the ageing of materials under irradiation. It is now used in a hot cell at ITU Karlsruhe to determine the elastic moduli of high burnup fuels from 0 to 110 GWd/tU. Some of this work is presented here. The second on going programme is related to the qualification of acoustic sensors in nuclear environments, which is of a great interest for all the methods, which work, in a hostile nuclear environment

  15. BNFL assessment of methods of attaining high burnup MOX fuel

    International Nuclear Information System (INIS)

    Brown, C.; Hesketh, K.W.; Palmer, I.D.

    1998-01-01

    It is clear that in order to maintain competitiveness with UO 2 fuel, the burnups achievable in MOX fuel must be enhanced beyond the levels attainable today. There are two aspects which require attention when studying methods of increased burnups - cladding integrity and fuel performance. Current irradiation experience indicates that one of the main performance issues for MOX fuel is fission gas retention. MOX, with its lower thermal conductivity, runs at higher temperatures than UO 2 fuel; this can result in enhanced fission gas release. This paper explores methods of effectively reducing gas release and thereby improving MOX burnup potential. (author)

  16. Development of ORIGEN libraries for mixed oxide (MOX) fuel assembly designs

    International Nuclear Information System (INIS)

    Mertyurek, Ugur; Gauld, Ian C.

    2016-01-01

    Highlights: • ORIGEN MOX library generation process is described. • SCALE burnup calculations are validated against measured MOX fuel samples from the MALIBU program. • ORIGEN MOX libraries are verified using the OECD Phase IV-B benchmark. • There is good agreement for calculated-to-measured isotopic distributions. - Abstract: ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.0 evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup. The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 × 15 pressurized water reactor assembly and a 9 × 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. The nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data.

  17. Validation of MOX fuel through recent BELGONUCLEAIRE international programmes

    International Nuclear Information System (INIS)

    Basselier, J.; Maldague, T.; Lippens, M.

    1997-01-01

    The paper reviews the present experience of BELGONUCLEAIRE in promoting and managing international programmes dedicated to improvement and updating of MOX fuel data bases on what concerns core physics and rod behaviour with a view of assist all MOX fuel designers and users in their validation and modelization work. All these programmes were completed or will be completed with the support of numerous international organizations deeply concerned by MOX recycling strategies. (author). 9 figs, 2 tabs

  18. Foundations for the definition of MOX fuel quality requirements

    International Nuclear Information System (INIS)

    Bairiot, H.; Deramaix, P.; Vanderborck, Y.

    1991-01-01

    The quality of uranium-plutonium mixed oxide (MOX) fuel, as of any nuclear fuel, depends on the design optimization and on the fabrication process stability. The design optimization is essentially based on feed-back from irradiation experience through engineering assessment of the results; the stability of the process is necessary to justify minimal uncertainty margins in the fuel design. Since MOX fuel is quite similar to UO 2 fuel, the lessons learned from UO 2 fuels can complement the MOX experimental data base. MOX is however different from UO 2 fuel in some respects, among others: the industrial fabrication scale is a factor 10 lower than for UO 2 fuel, the fuel enrichment process takes place in the manufacturing plant, the radioactivity of Pu imposes handling constraints, Pu ages quite rapidly, altering its isotopic composition during storage, the incorporation of Pu alters the material physics and neutronic characteristics of the fuel. In this perspective, the paper outlines some quality attributes for which MOX fuel may or even must depart form UO 2 fuel. (orig.)

  19. Burn-Up Determination by High Resolution Gamma Spectrometry: Fission Product Migration Studies

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, R S; Blackadder, W H; Ronqvist, N

    1967-04-15

    The migration of solid fission products, in particular caesium and ruthenium, in high temperature oxide fuel can create a severe problem during the application of non-destructive burn-up methods employing gamma spectrometry, since caesium-137 is otherwise the most convenient long-lived burn-up monitor and ruthenium-106 can be used to distinguish between fissions in U-235 and Pu-239. As part of an experimental programme to develop burn-up methods, gamma scanning experiments have been performed on slices of irradiated UO{sub 2} pellets using a lithium-drifted germanium detector. The usefulness of the technique for migration studies has been demonstrated by comparing the fission product distribution curves across the specimen diameters with the microstructure of the specimens after polishing and etching.

  20. Continuous Ethanol Production Using Immobilized-Cell/Enzyme Biocatalysts in Fluidized-Bed Bioreactor (FBR)

    Energy Technology Data Exchange (ETDEWEB)

    Nghiem, NP

    2003-11-16

    The immobilized-cell fluidized-bed bioreactor (FBR) was developed at Oak Ridge National Laboratory (ORNL). Previous studies at ORNL using immobilized Zymomonas mobilis in FBR at both laboratory and demonstration scale (4-in-ID by 20-ft-tall) have shown that the system was more than 50 times as productive as industrial benchmarks (batch and fed-batch free cell fermentations for ethanol production from glucose). Economic analysis showed that a continuous process employing the FBR technology to produce ethanol from corn-derived glucose would offer savings of three to six cents per gallon of ethanol compared to a typical batch process. The application of the FBR technology for ethanol production was extended to investigate more complex feedstocks, which included starch and lignocellulosic-derived mixed sugars. Economic analysis and mathematical modeling of the reactor were included in the investigation. This report summarizes the results of these extensive studies.

  1. The French post irradiation examination database for the validation of depletion calculation tools

    International Nuclear Information System (INIS)

    Roque, Benedicte; Marimbeau, Pierre; Bioux, Philippe; Toubon, Herve; Daudin, Lucien

    2003-01-01

    This paper presents the experimental programmes conducted in France by the Commissariat a l'Energie Atomique (CEA) in order to validate spent fuel inventory calculations for core studies as well as fuel cycle studies. This large experimental programme was obtained in collaboration with our French partners, Electricite de France (EDF), FRAMATOME-ANP and COGEMA. The experimental data are based on chemical analysis measurements from fuel rod cuts irradiated in French reactors for PWR-UOx and MOx fuels, then dissolved in CEA laboratories, and from full assembly dissolutions at the COGEMA/La Hague reprocessing plants for UOx fuels. This enables us to cover a large range of UOx fuels with various enrichments in 235 U, 3.1% to 4.5%, associated with burnups from 10 GWd/t to 60 GWd/t. Recently, MOx fuels have also been investigated, with an initial Pu amount in the central zone of 5.6% and a maximum burnup of 45 GWd/t. Uranium, Plutonium, Americium, Curium isotopes and some fission products were analysed. Furthermore, Fission Products involved in Burn up Credit studies were measured. The experimental database contains also data for Boiling Water Reactor (BWR) with irradiated samples of BWR 9x9 and full BWR assemblies dissolutions. Furthermore some data exist for Fast Breeder Reactor (FBR) with small samples irradiated in the PHENIX reactor. An overview of ongoing programmes is also presented. (author)

  2. Study of nuclear fuel burn-up

    International Nuclear Information System (INIS)

    Pavelescu, M.; Borza, M.

    1975-01-01

    The authors approach theoretical treatment of isotopic composition changement for nuclear fuel in nuclear reactors. They show the difficulty of exhaustive treatment of burn-up problems and introduce the principal simplifying principles. Due to these principles they write and solve analytically the evolution equations of the concentration for the principal nuclides both in the case of fast and thermal reactors. Finally, they expose and comment the results obtained in the case of a power fast reactor. (author)

  3. Deuterides of light elements: low-temperature thermonuclear burn-up and applications to thermonuclear fusion problems

    International Nuclear Information System (INIS)

    Frolov, A.M.; Smith, V.H.; Smith, G.T.

    2002-01-01

    Thermonuclear burn-up and thermonuclear applications are discussed for a number of deuterides and DT hydrides of light elements. These deuterides and corresponding DT hydrides are often used as thermonuclear fuels or components of such fuels. In fact, only for these substances thermonuclear energy gain exceeds (at some densities and temperatures) the bremsstrahlung loss and other high-temperature losses, i.e., thermonuclear burn-up is possible. Herein, thermonuclear burn-up in these deuterides and DT hydrides is considered in detail. In particular, a simple method is proposed to determine the critical values of the burn-up parameter x c for these substances and their mixtures at different temperatures and densities. The results for equimolar DT mixtures coincide quite well with the results of previous calculations. Also, the natural or Z limit is determined for low-temperature thermonuclear burn-up in the deuterides of light elements. (author)

  4. On-line extraction of the variance caused by burn-up in in-core three-dimensional power distribution

    International Nuclear Information System (INIS)

    Wang Yaqi; Luo Zhengpei; Li Fu; Liu Wenfeng

    2001-01-01

    In most of PWRs, the ex-core ion-chambers are the sole real-time sensors to respond to in-core power and its axial offset. However, the calibration coefficient of the ion-chambers depends on the (3D) power distribution and varies with the burn-up. People expect to know the variance in distribution caused by burn-up directly from the signals of ion-chambers. This expectation is not realized as yet, because an ion-chamber almost only responds to its nearest fuel assemblies. The authors then developed a two-step method for burn-up characteristic extraction: the harmonics synthesis method and harmonics' burn-up grouping. Using the extracted burn-up characteristics, the relationship between the readings of the ex-core ion-chambers and the in-core 3D power distribution is set up. Through the simulation on the heating reactor, the method of burn-up characteristic extraction is verified under engineering conditions. It is possible to on-line extract the variance caused by burn-up in 3D power distribution

  5. Burn-up TRIGA Mark II benchmark experiment

    International Nuclear Information System (INIS)

    Persic, A.; Ravnik, M.; Zagar, T.

    1998-01-01

    Different reactor codes are used for calculations of reactor parameters. The accuracy of the programs is tested through comparison of the calculated values with the experimental results. Well-defined and accurately measured benchmarks are required. The experimental results of reactivity measurements, fuel element reactivity worth distribution and fuel-up measurements are presented in this paper. The experiments were performed with partly burnt reactor core. The experimental conditions were well defined, so that the results can be used as a burn-up benchmark test case for a TRIGA Mark II reactor calculations.(author)

  6. Study on hydrogen production using the fast breeder reactors (FBR)

    International Nuclear Information System (INIS)

    Kani, Yoshio

    2003-01-01

    As the fast breeder reactor (FBR) can effectively convert uranium-238 difficult to carry out nuclear fission at thermal neutron reactors to nuclear fissionable plutonium-239 to use it remarkable upgrading of application on uranium can be performed, to be expected for sustainable energy source. And, by reuse minor actinides of long half-life nuclides in reprocessed high level wasted solutions for fuels of nuclear reactors, reduction of radioactive poison based on high level radioactive wastes was enabled. As high temperature of about 800 centigrade was required on conventional hydrogen production, by new hydrogen production technique even at operation temperature of sodium-cooled FBR it can be enabled. Here were described for new hydrogen production methods applicable to FBR on palladium membrane hydrogen separation method carrying out natural gas/steam modification at reaction temperature of about 500 centigrade, low temperature thermo-chemical method expectable simultaneous simplification of production process, and electrolysis method expected on power load balancing. (G.K.)

  7. Build-up and management of transuranium

    International Nuclear Information System (INIS)

    Uematsu, Kunihiko

    1984-01-01

    About 17,000,000 kW is generated by nuclear power station at present and this figure correspond to 20 % of total power generation in Japan, and is expected to increase year after year. Following the increase of power generation, build-up of Transuraium from nuclear power station will increase as a matter of course. In 2,000 AD; the build-up of Pu and TPu is expected to reach up to 200 T(TPu = 24 T). Effective management of TPu build-up is now an urgent problem Recycling of Pu and TPu including LWR-Pu recycling, ATR-Pu recycling and FBR-Pu recycling were investigated. In LWR-Pu recycling, recycling quantities of Pu and TPu, and generation of power increase following the repetition of recycling. In ATR-Pu recycling, the increase of TPu following recycling is more remakable than that of LWR-Pu recycling. On the contrary, in FBR-Pu recycling, TPu decreases following the repetition of recycling. The decrease of TPu is thought to be caused by extinction effect in FBR. All of these recycling are suitable for the utilization of Pu, but FBR-Pu recycling is most effective for utilization of Pu and decrease of TPu. Accordingly, when LWR or ATR recycling is applied, Pu shall be transferred to FBR after 1 - 2 recycling. For long-term management of TPu, recycling is not sufficient and some positive method such as oxtinction by strong neutron source like proton linear accelerator is necessary. Fundamental researches on nuclear fuel cycle, nuclide separation method and extinction process of TPu must be carried out. (Ishimitsu, A.)

  8. An overview of economic and technical issues related to LWR MOX fuel usage

    International Nuclear Information System (INIS)

    Malone, J.P.; Varley, G.; Goldstein, L.

    1999-01-01

    This paper will present comparisons of the economics of MOX versus UO 2 fuels. In addition to the economics of the front end, the scope of the comparison will include the back end of the fuel cycle. Management of spent MOX fuel assemblies presents utilities with some technical issues that can complicate spent fuel pool operation. Alternative spent fuel management methods, such as dry storage of spent MOX fuel assemblies, will also be discussed. Differences in decay heat loads versus time for spent MOX and UO 2 fuel assemblies will be presented. This difference is one of the main problems confronting spent fuel managers relative to MOX. The difference in decay heat loads will serve as the basis for a performance overview of the various spent fuel technologies available today. The economics of the front end of MOX will be presented relative to UO 2 fuel. Availability of MOX manufacturing capability will also be discussed, along with a discussion of its impact on future MOX fabrication prices. The in-core performance of MOX will be compared to that of UO 2 fuel with similar performance characteristics. The information will include highlights of nuclear design and related operational considerations such as: Reactivity reduction with burnup is slower for MOX fuel than for UO 2 fuel; Spectral hardening resulting in lower control rod worths and a lower soluble boron worth; and more negative moderator, void and fuel temperature coefficients. A comparison of Westinghouse and ABB-CE core designs for use on disposition of weapons MOX in 12- and 18-month cycles will be presented. (author)

  9. Calculation of heat rating and burn-up for test fuel pins irradiated in DR 3

    International Nuclear Information System (INIS)

    Bagger, C.; Carlsen, H.; Hansen, K.

    1980-01-01

    A summary of the DR 3 reactor and HP1 rig design is given followed by a detailed description of the calculation procedure for obtaining linear heat rating and burn-up values of fuel pins irradiated in HP1 rigs. The calculations are carried out rather detailed, especially regarding features like end pellet contribution to power as a function of burn-up, gamma heat contributions, and evaluation of local values of heat rating and burn-up. Included in the report is also a description of the fast flux- and cladding temperature calculation techniques currently used. A good agreement between measured and calculated local burn-up values is found. This gives confidence to the detailed treatment of the data. (author)

  10. The burn-up credit physics and the 40. Minerve anniversary; La physique du credit Burn-Up et le 40. anniversaire de Minerve

    Energy Technology Data Exchange (ETDEWEB)

    Santamarina, A [CEA/Cadarache, Departement d' Etudes des Reacteurs, DER/SPRC, 13 - Saint-Paul-lez-Durance (France); Toubon, H [Cogema, 78 - Velizy Villacoublay (France); Trakas, C [FRAMATOME, 92 - Paris La Defense (France); and others

    2000-03-21

    The technical meeting organized by the SFEN on the burn-up credit (CBU) physics, took place the 23 november 1999 at Cadarache. the first presentation dealt with the economic interest and the neutronic problems of the CBU. Then two papers presented how taking into account the CBU in the industry in matter of transport, storage in pool, reprocessing and criticality calculation (MCNP4/Apollo2-F benchmark). An experimental method for the reactivity measurement through oscillations in the Minerve reactor, has been presented with an analysis of the possible errors. The future research program OSMOSE, taking into account the minor actinides in the CBU, was also developed. The last paper presented the national and international research programs in the CBU domain, in particular experiments realized in CEA/Valduc and the OECD Burn-up Criticality Benchmark Group activities. (A.L.B.)

  11. Summary of the Minor Actinide-bearing MOX AFC-2C and -2D Irradiations

    International Nuclear Information System (INIS)

    McClellan, Kenneth; Chichester, Heather; Hayes, Steve; Voit, Stewart

    2013-01-01

    Summary of AFC-2C and AFC-2D tests: • AFC-2C and 2D, 1st MOX experiments in FCRD, were irradiated in ATR; • Initial results indicate performance of experimental MA-MOX fuels are similar to standard FR MOX fuels; • Cd-shrouded ATR experiment assembly and 235 U enrichment produce prototypic fast reactor power and temperature profiles leading to classic MOX zone restructuring; • Baseline postirradiation examinations have been completed for AFC-2C MOX and MA-MOX fuels; • Future work includes: – PIE of AFC-2D; – compare results to prototypic MOX fuel performance; – electron microscopy for microstructure and constituent distribution; – advanced NDE on saved pins

  12. A basic research on the transient behavior for a metallic fuel FBR

    International Nuclear Information System (INIS)

    Baba, Mamoru; Hirano, Go; Kawada, Ken-ichi; Niwa, Hajime

    1999-03-01

    A metallic fuel with novel design has received great deal of interest recently as an option of advanced fuel to be substituted MOX fuel, however, the behavior at the transient has not been studied in many aspects. Therefore, for the purpose to show the basic tendency of the behavior and released energy at CDA (core disruptive accident) for a metallic fuel FBR and to prepare the basic knowledge for consideration of the adoption of the advanced fuel, Tohoku university and Power Reactor and Nuclear Fuel Development Corporation have made a joint research entitled 'A basic research on the transient behavior for a metallic fuel FBR'. The results are the following. (1) Target and Results of analysis: The accident initiator considered is a LOF accident without scram. The LOF analysis was performed for a metallic fuel 600 MWe homogeneous two region core at the beginning of cycle, both for an ordinary metallic fuel core and for a metallic fuel core with ZrH pins. It was necessary mainly to change the constants of input parameters to apply the code for the analysis of a metallic fueled reactor. These changes were made by assuming appropriate models. Basic LOF cases and all blackout case that assumed using electromagnetic pumps were analyzed. The results show that the basic LOF cases for a metallic fuel core and all the cases for a metallic fuel core with ZrH pins could be avoided to become prompt-critical, and mildly transfer to the transition phase. It is shown that the moderator is quite elective to mitigate the accident at the initiation phase. However, it is necessary to analyze the transition phase to know if the re-criticality is totally avoided after the initiation phase. (2) Improvement of CDA initiation phase analysis code: At present, it is difficult for the code to adapt to the large scale material movement in the core at the transient. Therefore, the nuclear calculation model in the code was improved by using the adiabatic space dependent kinetics, and examined

  13. Determination of nuclear fuel burn-up

    International Nuclear Information System (INIS)

    Kristak, J.; Vobecky, M.

    1973-01-01

    Samples containing a known content of 235 U were irradiated with several different neutron doses and activities were determined of radionuclides including 125 Sb, 144 Ce, 134 Cs, 154 Eu, 103 Ru, 95 Zr. The values thus obtained were divided by the 137 Cs activity value. The resulting neutron dose-dependent value is plotted into a calibration graph. The degree of nuclear fuel burn-up is obtained from the graph using an experimentally determined ratio of the activities of the above radionuclides. (B.S.)

  14. Calculational prediction of fuel burn-up for the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Nguyen Phuoc Lan; Do Quang Binh

    2016-01-01

    In this paper, the method of expanding operators and functions in the neutron diffusion equations as chains of time variable is used for calculation of fuel burn-up of the Dalat nuclear reactors. A computer code, named BURREF, programmed in language Fortran-77 running on IBM PC-AT, has been developed based on this method to predict the fuel burn-up of the Dalat reactor. Some results will be presented here. (author)

  15. Challenges in the application of burn-up credit to the criticality safety of the THORP reprocessing plant

    International Nuclear Information System (INIS)

    Mayson, R.T.H.; Gunston, K.J.

    1999-01-01

    Since 1991 BNFL has made a significant investment in the development of the burn-up credit method and the application to its operations. It has recently demonstrated that using this method for the THORP dissolvers, it is possible to justify operating safety with reduced neutron poison concentrations and this has now been submitted to the regulators. The continued challenges the criticality safety community is facing are to show that we are not reducing safety levels because we are using burn-up credit. The burn-up credit method that has been developed can be summarized as follows. It consists of performing reactivity calculations for irradiated fuel using compositions generated by and inventory prediction code, generally in order to determine the limiting burn-up required for that fuel in a particular environment. In addition, it has always been envisaged that a confirmatory measurement of burn-up would be required to be made prior to certain operations such as the sharing of fuel into a dissolver. The burn-up credit method therefore relies upon three key components of inventory prediction, reactivity calculation code and the quantification and verification of burn-up. (J.P.N.)

  16. Memento. Maritime transport of MOX fuels from Europe to Japan

    International Nuclear Information System (INIS)

    1999-07-01

    The maritime transport of MOX fuels from Europe to Japan represents the last of the 3 steps of transport of the nuclear fuel reprocessing-recycling program settled between ORC (Japan), BNFL (UK) and Cogema (France). This document summarizes the different aspects of this program: the companies concerned, the physical protection measures, the US-Japan agreements (accompanying warship), the in-depth safety, the handling of MOX fuels (containers and ships), and the Japan MOX fuel needs. (J.S.)

  17. Influence of plutonium contents in MOX fuel on destructive forces at fuel failure in the NSRR experiment

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Jinichi; Sugiyama, Tomoyuki; Nakamura, Takehiko; Kanazawa, Toru; Sasajima, Hideo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    In order to confirm safety margins of the Mixed Oxide (MOX) fuel use in LWRs, pulse irradiation tests are planned in the Nuclear Safety Research Reactor (NSRR) with the MOX fuel with plutonium content up to 12.8%. Impacts of the higher plutonium contents on safety of the reactivity-initiated-accident (RIA) tests are examined in terms of generation of destructive forces to threat the integrity of test capsules. Pressure pulses would be generated at fuel rod failure by releases of high pressure gases. The strength of the pressure pulses, therefore, depends on rod internal - external pressure difference, which is independent to plutonium content of the fuel. The other destructive forces, water hammer, would be generated by thermal interaction between fuel fragments and coolant water. Heat flux from the fragments to the water was calculated taking account of changes in thermal properties of MOX fuels at higher plutonium contents. The results showed that the heat transfer from the MOX fuel would be slightly smaller than that from UO{sub 2} fuel fragments at similar size in a short period to cause the water hammer. Therefore, the destructive forces were not expected to increase in the new tests with higher plutonium content MOX fuels. (author)

  18. Validation study of core analysis methods for full MOX BWR

    International Nuclear Information System (INIS)

    2013-01-01

    JNES has been developing a technical database used in reviewing validation of core analysis methods of LWRs in the coming occasions: (1) confirming the core safety parameters of the initial core (one-third MOX core) through a full MOX core in Oma Nuclear Power Plant, which is under the construction, (2) licensing high-burnup MOX cores in the future and (3) reviewing topical reports on core analysis codes for safety design and evaluation. Based on the technical database, JNES will issue a guide of reviewing the core analysis methods used for safety design and evaluation of LWRs. The database will be also used for validation and improving of core analysis codes developed by JNES. JNES has progressed with the projects: (1) improving a Doppler reactivity analysis model in a Monte Carlo calculation code MVP, (2) sensitivity study of nuclear cross section date on reactivity calculation of experimental cores composed of UO 2 and MOX fuel rods, (3) analysis of isotopic composition data for UO 2 and MOX fuels and (4) the guide of reviewing the core analysis codes and others. (author)

  19. Validation study of core analysis methods for full MOX BWR

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    JNES has been developing a technical database used in reviewing validation of core analysis methods of LWRs in the coming occasions: (1) confirming the core safety parameters of the initial core (one-third MOX core) through a full MOX core in Oma Nuclear Power Plant, which is under the construction, (2) licensing high-burnup MOX cores in the future and (3) reviewing topical reports on core analysis codes for safety design and evaluation. Based on the technical database, JNES will issue a guide of reviewing the core analysis methods used for safety design and evaluation of LWRs. The database will be also used for validation and improving of core analysis codes developed by JNES. JNES has progressed with the projects: (1) improving a Doppler reactivity analysis model in a Monte Carlo calculation code MVP, (2) sensitivity study of nuclear cross section date on reactivity calculation of experimental cores composed of UO{sub 2} and MOX fuel rods, (3) analysis of isotopic composition data for UO{sub 2} and MOX fuels and (4) the guide of reviewing the core analysis codes and others. (author)

  20. Status of feasibility study for various technical options of FBR systems

    International Nuclear Information System (INIS)

    Kani, Yoshio

    2000-01-01

    JNC (Japan Nuclear Cycle Development Institute) has started a new research project of feasibility studies (F/S) for a wide variety option of fast breeder reactor (FBR) and related fuel cycle in order to develop an economically competitive FBR cycle system fro commercialization. JNC and the electric untilities in Japan have established a new organization in JNC to perform the F/S since July 1, 1999. The organization has undertaken feasibility studies (F/S) in order to determine promising FBR cycle concepts and define necessary RandD tasks. The long-term targets of commercialized FBR cycle system are set as ensuring safety, economic competitiveness relative to future LWRs, efficient utilization of resources, reduction in environmental burden, and enhancement of nuclear non-proliferation. This paper describes the progress of design studies for a wide variety of technical options of FBR plants in the framework of the F/S. We make efforts towards considering all key issues so as not to fail to notice the best concept in a commercialized stage. In the study of technical options, the identified coolant types are sodium, heavy metal (lead and lead-bismuth), gas (carbon dioxide and helium ) and water (boiling water, pressurized water and supercritical water). The classified types of fuel are mixed oxide, nitride and metal. Design studies of small size modular plant concepts are also performed. We study many reactor concepts in combination with a coolant type and a fuel type, understand characteristics of each reactor concept based on our experience and an extensive survey of literature, and make a draft design of each reactor concept for rough estimation of construction costs. We also check how far the concept accomplishes each index (safety, economy, resource utilization, etc.) of design requirements, and will select several promising reactor concepts. (author)

  1. Basic evaluation on nuclear characteristics of BWR high burnup MOX fuel and core

    International Nuclear Information System (INIS)

    Nagano, M.; Sakurai, S.; Yamaguchi, H.

    1997-01-01

    MOX fuel will be used in existing commercial BWR cores as a part of reload fuels with equivalent operability, safety and economy to UO 2 fuel in Japan. The design concept should be compatible with UO 2 fuel design. High burnup UO 2 fuels are being developed and commercialized step by step. The MOX fuel planned to be introduced in around year 2000 will use the same hardware as UO 2 8 x 8 array fuel developed for a second step of UO 2 high burnup fuel. The target discharge exposure of this MOX fuel is about 33 GWd/t. And the loading fraction of MOX fuel is approximately one-third in an equilibrium core. On the other hand, it becomes necessary to minimize a number of MOX fuels and plants utilizing MOX fuel, mainly due to the fuel economy, handling cost and inspection cost in site. For the above reasons, it needed to developed a high burnup MOX fuel containing much Pu and a core with a large amount of MOX fuels. The purpose of this study is to evaluate basic nuclear fuel and core characteristics of BWR high burnup MOX fuel with batch average exposure of about 39.5 GWd/t using 9 x 9 array fuel. The loading fraction of MOX fuel in the core is within a range of about 50% to 100%. Also the influence of Pu isotopic composition fluctuations and Pu-241 decay upon nuclear characteristics are studied. (author). 3 refs, 5 figs, 3 tabs

  2. Long-term logistic analysis of FBR introduction strategy: avoiding both uranium and plutonium shortage

    International Nuclear Information System (INIS)

    Suzuki, T.

    1995-01-01

    Despite comfortable predictions on short to mid-term uranium resources, there is still a concern about long-term availability of competitive uranium resources. In order to achieve substantial uranium saving, early introduction of Fast Breeder Reactor (FBR) is desirable. But it is also known that rapid introduction of FBR could result in plutonium storage. Will there be enough plutonium on a global scale to sustain fast FBR growth? is there any other way to save uranium resource? This paper concludes that multi-option strategies to achieve flexible long-term strategy to avoid both uranium and plutonium storage are desirable. (authors)

  3. Optimalisation Of Oxide Burn-Up Enhanced For RSG-Gas Core

    International Nuclear Information System (INIS)

    Tukiran; Sembiring, Tagor Malem

    2000-01-01

    Strategy of fuel management of the RSG-Gas core has been changed from 6/1 to 5/1 pattern so the evaluation of fuel management is necessary to be done. The aim of evaluation is to look for the optimal fuel management so that the fuel can be stayed longer in the core and finally can save cost of operation. Using Batan-EQUIL-2D code did the evaluation of fuel management with 5/1 pattern. The result of evaluation is used to choose which one is more advantage without break the safety margin which is available in the Safety Analysis Report (SAR) firstly, the fuel management was calculated with core excess reactivity of 9,2% criteria. Secondly, fuel burn-up maximum of 56% criteria and the last, fuel burn-up maximum of 64% criteria. From the result of fuel management calculation of the RSG-Gas equilibrium core can be concluded that the optimal RSG-Gas equilibrium core with 5/1 pattern is if the fuel burn-up maximum 64% and the energy in a cycle of operation is 715 MWD. The fuel can be added one more step in the core without break any safety margin. It means that the RSG-Gas equilibrium core can save fuel and cost reduction

  4. Results of Am isotopic ratio analysis in irradiated MOX fuels

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Shin-ichi; Osaka, Masahiko; Mitsugashira, Toshiaki; Konno, Koichi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center; Kajitani, Mikio

    1997-04-01

    For analysis of a small quantity of americium, it is necessary to separate from curium which has similar chemical property. As a chemical separation method for americium and curium, the oxidation of americium with pentavalent bismuth and subsequent co-precipitation of trivalent curium with BIP O{sub 4} were applied to analyze americium in irradiated MOX fuels which contained about 30wt% plutonium and 0.9wt% {sup 241}Am before irradiation and were irradiated up to 26.2GWd/t in the experimental fast reactor Joyo. The purpose of this study is to measure isotopic ratio of americium and to evaluate the change of isotopic ratio with irradiation. Following results are obtained in this study. (1) The isotopic ratio of americium ({sup 241}Am, {sup 242m}Am and {sup 243}Am) can be analyzed in the MOX fuels by isolating americium. The isotopic ratio of {sup 242m}Am and {sup 243}Am increases up to 0.62at% and 0.82at% at maximum burnup, respectively, (2) The results of isotopic analysis indicates that the contents of {sup 241}Am decreases, whereas {sup 242m}Am, {sup 243}Am increase linearly with increasing burnup. (author)

  5. Recycling schemes of Americium targets in PWR/MOX cores

    International Nuclear Information System (INIS)

    Maldague, Th.; Pilate, S.; Renard, A.; Harislur, A.; Mouney, H.; Rome, M.

    1999-01-01

    From the orientation studies performed so far, both ways to recycle Am in PWR/MOX cores, homogeneous in MOX or heterogeneous in target pins, appear feasible, provided that enriched UO 2 is used as support of the MOX fuel. Multiple recycling can then proceed and stabilize Pu and Am quantities. With respect to the Pu multiple recycling strategy, recycling Am in addition needs 1/3 more 235 U, and creates 3 times more Curium. Thus, although feasible, such a fuel cycle is complicated and brings about a significant cost penalty, not quantified yet. The advantage of the heterogeneous option is to allow to manage in different ways the Pu in MOX fuel and the Am in target pins. For example, should Am remain combined to Cm after reprocessing, the recycling of a mix of Am+Cm could be deferred to let Cm transform into Pu before irradiation. The Am+Cm targets could also stay longer in the reactor, so as to avoid further reprocessing if possible. (author)

  6. Characteristics of MOX dissolution with silver mediated electrolytic oxidation method

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, Miki; Nakazaki, Masato; Kida, Takashi; Sato, Kenji; Kato, Tadahito; Kihara, Takehiro; Sugikawa, Susumu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    MOX dissolution with silver mediated electrolytic oxidation method is to be applied to the preparation of plutonium nitrate solution to be used for criticality safety experiments at Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF). Silver mediated electrolytic oxidation method uses the strong oxidisation ability of Ag(II) ion. This method is though to be effective for the dissolution of MOX, which is difficult to be dissolved with nitric acid. In this paper, the results of experiments on dissolution with 100 g of MOX are described. It was confirmed from the results that the MOX powder to be used at NUCEF was completely dissolved by silver mediated electrolytic oxidation method and that Pu(VI) ion in the obtained solution was reduced to tetravalent by means of NO{sub 2} purging. (author)

  7. Design Studies of ''Island'' Type MOX Lead Test Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovitchev, A.M.

    2000-03-31

    In this document the results of neutronics studies of <> type MOX LTA design are presented. The characteristics both for infinite MOX grids and for VVER-1000 core with 3 MOX LTAs are calculated. the neutronics parameters of MOX fueled core have been performed using the Russian 3D code BIPR-7A and 2D code PERMAK-A with the constants prepared by the cell spectrum code TVS-M.

  8. Burn-up Credit Criticality Safety Benchmark Phase III-C. Nuclide Composition and Neutron Multiplication Factor of a Boiling Water Reactor Spent Fuel Assembly for Burn-up Credit and Criticality Control of Damaged Nuclear Fuel

    International Nuclear Information System (INIS)

    Suyama, K.; Uchida, Y.; Kashima, T.; Ito, T.; Miyaji, T.

    2016-01-01

    Criticality control of damaged nuclear fuel is one of the key issues in the decommissioning operation of the Fukushima Daiichi Nuclear Power Station accident. The average isotopic composition of spent nuclear fuel as a function of burn-up is required in order to evaluate criticality parameters of the mixture of damaged nuclear fuel with other materials. The NEA Expert Group on Burn-up Credit Criticality (EGBUC) has organised several international benchmarks to assess the accuracy of burn-up calculation methodologies. For BWR fuel, the Phase III-B benchmark, published in 2002, was a remarkable landmark that provided general information on the burn-up properties of BWR spent fuel based on the 8x8 type fuel assembly. Since the publication of the Phase III-B benchmark, all major nuclear data libraries have been revised; in Japan from JENDL-3.2 to JENDL-4, in Europe from JEF-2.2 to JEFF-3.1 and in the US from ENDF/B-VI to ENDF/B-VII.1. Burn-up calculation methodologies have been improved by adopting continuous-energy Monte Carlo codes and modern neutronics calculation methods. Considering the importance of the criticality control of damaged fuel in the Fukushima Daiichi Nuclear Power Station accident, a new international burn-up calculation benchmark for the 9 x 9 STEP-3 BWR fuel assemblies was organised to carry out the inter-comparison of the averaged isotopic composition in the interest of the burnup credit criticality safety community. Benchmark specifications were proposed and approved at the EGBUC meeting in September 2012 and distributed in October 2012. The deadline for submitting results was set at the end of February 2013. The basic model for the benchmark problem is an infinite two-dimensional array of BWR fuel assemblies consisting of a 9 x 9 fuel rod array with a water channel in the centre. The initial uranium enrichment of fuel rods without gadolinium is 4.9, 4.4, 3.9, 3.4 and 2.1 wt% and 3.4 wt% for the rods using gadolinium. The burn-up conditions are

  9. Advanced hybrid process with solvent extraction and pyro-chemical process of spent fuel reprocessing for LWR to FBR

    International Nuclear Information System (INIS)

    Fujita, Reiko; Mizuguchi, Koji; Fuse, Kouki; Saso, Michitaka; Utsunomiya, Kazuhiro; Arie, Kazuo

    2008-01-01

    Toshiba has been proposing a new fuel cycle concept of a transition from LWR to FBR. The new fuel cycle concept has better economical process of the LWR spent fuel reprocessing than the present Purex Process and the proliferation resistance for FBR cycle of plutonium with minor actinides after 2040. Toshiba has been developing a new Advanced Hybrid Process with Solvent Extraction and Pyrochemical process of spent fuel reprocessing for LWR to FBR. The Advanced Hybrid Process combines the solvent extraction process of the LWR spent fuel in nitric acid with the recovery of high pure uranium for LWR fuel and the pyro-chemical process in molten salts of impure plutonium recovery with minor actinides for metallic FBR fuel, which is the FBR spent fuel recycle system after FBR age based on the electrorefining process in molten salts since 1988. The new Advanced Hybrid Process enables the decrease of the high-level waste and the secondary waste from the spent fuel reprocessing plants. The R and D costs in the new Advanced Hybrid Process might be reduced because of the mutual Pyro-chemical process in molten salts. This paper describes the new fuel cycle concept of a transition from LWR to FBR and the feasibility of the new Advanced Hybrid Process by fundamental experiments. (author)

  10. Evaluation of full MOX core capability for a 900 MWe PWR

    International Nuclear Information System (INIS)

    Joo, Hyung-Kook; Kim, Young-Jin; Jung, Hyung-Guk; Kim, Young-Il; Sohn, Dong-Seong

    1996-01-01

    Full MOX capability of a PWR core with 900 MWe capacity has been evaluated in view of plutonium consumption and design feasibility as an effective means for spent fuel management. Three full MOX cores have been conceptually designed; for annual cycle, for 18-month cycle, and for 18-month cycle with high moderation lattice. Fissile and total plutonium quantities at discharge are significantly reduced to 60% and 70% respectively of initial value for standard full MOX cores. It is estimated that one full MOX core demands about 1 tonne of plutonium per year to be reloaded, which is equivalent to reprocessing of spent nuclear fuels discharged from five nuclear reactors operating with uranium fuels. With low-leakage loading scheme, a full MOX core with either annual or 18-month cycle can be designed satisfactorily by installing additional rod cluster control system and modifying soluble boron system. Overall high moderation lattice case promises better core nuclear characteristics. (author)

  11. Toward commercialization of FBR cycle (1). Promotion of R and D on technologies maintaining sustainable society

    International Nuclear Information System (INIS)

    Nagaoki, Yoshihiro; Nagura, Fuminori; Sakaguchi, Tomoyoshi; Kawasaki, Hirotsugu; Kikuchi, Shin

    2008-01-01

    The FBR cycle is a key technology maintaining a sustainable society through efficient utilization of limited uranium resources and conformance to global environmental protection. The domestic and overseas R and D of the FBR cycle entered on a new phase aiming at its commercialization and JAEA started the Fast Reactor Cycle Technology Development (FaCT) project. The FaCT project targeted at international standardization of the FBR fuel cycle and promoting the advanced R and D on the innovative technologies to increase cost-efficiency and reliability for the commercialization under international competition and cooperation. The combination of a sodium cooled FBR and advanced fuel cycle system with advanced aqueous reprocessing and simplified pelletizing fuel fabrication was selected a major concept. (T. Tanaka)

  12. Effect of mixing state on criticality safety evaluation in MOX powder and additive

    International Nuclear Information System (INIS)

    Yamamoto, Toshihiro; Miyoshi, Yoshinori

    2005-01-01

    Criticality safety analyses are discussed in which MOX powder and additive (e.g. zinc-stearate) are mixed in a powder treatment process of MOX fuel fabrication. The multiplication factor k eff is largely affected by how they are mixed, i.e., how the density and volume change with the mixing. In general, k eff increases when MOX powder is mixed with zinc-stearate. However, plutonium content and density of MOX powder make a difference in the k eff 's changes. Especially, MOX powder with a higher plutonium content and a higher density is not always unsafe in terms of criticality if it is mixed with zinc-stearate. (author)

  13. FBR Italian position. The PEC reactor and its control rods system

    International Nuclear Information System (INIS)

    Artioli, C.

    1984-01-01

    The greatest effort in Italy concerning Fast Breeder Reactors is concentrated on the PEC project. This project represents in fact the sole Italian work on the FBR option. Up to now the state of progress of the PEC project is as follows: - Design work on reactor components and related systems: 80% - Civil engineering work: 45% - Components construction: 18%. It has recently been stated that construction of the plant must be finished by 1987. The progressive design of the PEC control system and the supporting research and development programmes are described in this paper

  14. Fuel supply demand balances for future FBR commercialization: impacts on plutonium pricing and reactor design

    International Nuclear Information System (INIS)

    Braun, C.; Zebroski, E.L.

    1985-01-01

    Plutonium supply and demand balances for fast breeder reactor (FBR) commercialization post-2000 were computed to determine: (a) the maximum supportable number of FBRs that could be installed based on plutonium availability considerations and (b) the feasibility of a reasonable FBR capacity growth case assuming slow introduction post-2010 and rapid capacity growth post-2035. The purpose of the analysis was to determine the outer limitation on the maximum future FBR introduction, or the bounds of a possible plutonium-limited introduction rate, and to estimate the reasonableness of a more limited capacity growth case

  15. The MELOX MOX fabrication facility: history of an industrial success and future prospects

    International Nuclear Information System (INIS)

    Arslan, M.; Jacquet, R.; Krellmann, J.

    2005-01-01

    Along with the La Hague reprocessing plant, MELOX is part of the two industrial facilities that ensure the closure of the nuclear fuel cycle in France. Since started up in 1995, MELOX has specialized into recycling separated plutonium recovered from reprocessing operations performed at La Hague on spent UO 2 fuel. Capitalizing on the unique know-how acquired through thirty years of plutonium-based fuel fabrication at the Cadarache plant, this subsidiary of AREVA group has quickly become a worldwide expert in the industrial process of fabricating MOX: a fuel blend comprised of both uranium and plutonium oxides that allows at safely exploiting the energetic potential of plutonium. In order to address the various factors responsible for this industrial breakthrough, we will first present an overview of MELOX's history in regards of the emergence of a global MOX market. The added-value provided through treatment and recycling operations on spent fuel will be further described in terms of waste volume and radiotoxicity reduction. The emphasis will then be put on the total quality management policy that is at the core of MELOX's corporate strategy. Because MELOX has succeeded in meeting both productivity requirements and stringent quality constraints, it has won confidence from its European and Japanese clients. With increased production capacity of diversified MOX designs, MELOX is demonstrating the industrial efficiency of a new concept of MOX plants that is inspiring large construction projects in Japan, the US, and Russia. (authors)

  16. Correlations among FBR core characteristics for various fuel compositions

    International Nuclear Information System (INIS)

    Maruyama, Shuhei; Ohki, Shigeo; Okubo, Tsutomu; Kawashima, Katsuyuki; Mizuno, Tomoyasu

    2012-01-01

    In the design of a fast breeder reactor (FBR) core for the light water reactor (LWR) to FBR transition stage, it is indispensable to grasp the effect of a wide range of fuel composition variations on the core characteristics. This study finds good correlations between burnup reactivity and safety parameters, such as the sodium void reactivity and Doppler coefficient, for various fuel compositions and determines the mechanisms behind these correlations with the aid of sensitivity analyses. It is clarified that the Doppler coefficient is actually correlated with the other core characteristics by considering the constraint imposed by the requirement of sustaining criticality on the fuel composition variations. These correlations make it easy to specify the various properties ranges for core reactivity control and core safety, which are important for core design in determining the core specifications and performance. They provide significant information for FBR core design for the transition stage. Moreover, as an application of the above-mentioned correlations, a simplified burnup reactivity index is developed for rapid and rational estimation of the core characteristic variations. With the use of this index and these correlations, the core characteristic variations can be estimated for various fuel compositions without repeating the core calculations. (author)

  17. FBR and RBR particle bed space reactors

    International Nuclear Information System (INIS)

    Powell, J.R.; Botts, T.E.

    1983-01-01

    Compact, high-performance nuclear reactor designs based on High-Temperature Gas Reactors (HTGRs) particulate fuel are investigated. The large surface area available with the small-diameter (approx. 500 microns) particulate fuel allows very high power densities (MW's/liter), small temperature differences between fuel and coolant (approx. 10 0 K), high coolant-outlet temperatures (1500 to 3000 0 K, depending on design), and fast reactor startup (approx. 2 to 3 seconds). Two reactor concepts are developed - the Fixed Bed Reactor (FBR), where the fuel particles are packed into a thin annular bed between two porous cylindrical drums, and the Rotating Bed Reactor (RBR), where the fuel particles are held inside a cold rotating (typically approx. 500 rpm) porous cylindrical drum. The FBR can operate steady-state in the closed-cycle He-cooled mode or in the open-cycle H 2 -cooled mode. The RBR will operate only in the open-cycle H 2 -cooled mode

  18. KAERI results for BN600 full MOX benchmark (Phase 4)

    International Nuclear Information System (INIS)

    Lee, Kibog Lee

    2003-01-01

    The purpose of this document is to report the results of KAERI's calculation for the Phase-4 of BN-600 full MOX fueled core benchmark analyses according to the RCM report of IAEA CRP Action on U pdated Codes and Methods to Reduce the Calculational Uncertainties of the LMFR Reactivity Effects. T he BN-600 full MOX core model is based on the specification in the document, F ull MOX Model (Phase4. doc ) . This document addresses the calculational methods employed in the benchmark analyses and benchmark results carried out by KAERI

  19. Overall models and experimental database for UO2 and MOX fuel increasing performance

    International Nuclear Information System (INIS)

    Bernard, L.C.; Blanpain, P.

    2001-01-01

    Framatome steady-state fission gas release database includes more than 290 fuel rods irradiated in commercial and experimental reactors with rod average burnups up to 67 GWd/tM. The transient database includes close to 60 fuel rods with burnups up to 62 GWd//tM. The hold time for these rods ranged from several minutes to many hours and the linear heat generation rates ranged from 30 kW/m to 50 kW/m. The quality of the fission gas release model is state-of-the-art as the uncertainty of the model is comparable to other code models. Framatome is also greatly concerned with the MOX fuel performance and modeling given that, since 1997, more than 1500 MOX fuel assemblies have been delivered to French and foreign PWRs. The paper focuses on the significant data acquired through surveillance and analytical programs used for the validation and the improvement of the MOX fuel modeling. (author)

  20. Outline of the seismic design guideline of an FBR - a tentative draft

    International Nuclear Information System (INIS)

    Akiyama, Hiroshi; Ohtsubo, Hideomi; Nakamura, Hideharu; Matsuura, Shinichi; Hagiwara, Yutaka; Yuhara, Tetsuo; Hirayama, Hiroshi; Kokubo, Kunio; Ooka, Yuji.

    1993-01-01

    Central Research Institute of Electric Power Industry (Japan) is carrying out the Demonstration Test and Research Program of Buckling of FBR (FY 1987-FY 1993). The first half of the research program was finished after establishing a seismic buckling design guideline (a tentative draft). The purpose of this paper is to describe the dynamic buckling characteristics of FBR main vessels and the outline of the rationalized buckling design guideline for seismic loadings. (orig.)

  1. Current developments of fuel fabrication technologies at the plutonium fuel production facility, PFPF

    International Nuclear Information System (INIS)

    Asakura, K.; Aono, S.; Yamaguchi, T.; Deguchi, M.

    2000-01-01

    The Japan Nuclear Cycle Development Institute, JNC, designed, constructed and has operated the Plutonium Fuel Production Facility, PFPF, at the JNC Tokai Works to supply MOX fuels to the proto-type Fast Breeder Reactor, FBR, 'MONJU' and the experimental FBR 'JOYO' with 5 tonMOX/year of fabrication capability. Reduction of personal radiation exposure to a large amount of plutonium is one of the most important subjects in the development of MOX fabrication facility on a large scale. As the solution of this issue, the PFPF has introduced automated and/or remote controlled equipment in conjunction with computer controlled operation scheme. The PFPF started its operation in 1988 with JOYO reload fuel fabrication and has demonstrated MOX fuel fabrication on a large scale through JOYO and MONJU fuel fabrication for this decade. Through these operations, it has become obvious that several numbers of equipment initially installed in the PFPF need improvements in their performance and maintenance for commercial utilization of plutonium in the future. Furthermore, fuel fabrication of low density MOX pellets adopted in the MONJU fuel required a complete inspection because of difficulties in pellet fabrication compared with high density pellet for JOYO. This paper describes new pressing equipment with a powder recovery system, and pellet finishing and inspection equipment which has multiple functions, such as grinding measurements of outer diameter and density, and inspection of appearance to improve efficiency in the pellet finishing and inspection steps. Another development of technology concerning an annular pellet and an innovative process for MOX fuel fabrication are also described in this paper. (author)

  2. Design of the MOX fuel fabrication facility

    International Nuclear Information System (INIS)

    Johnson, J.V.; Brabazon, E.J.

    2001-01-01

    A consortium of Duke Engineering and Services, Inc., COGEMA, Inc. and Stone and Webster (DCS) are designing a mixed oxide fuel fabrication facility (MFFF) for the U.S. Department of Energy (DOE) to convert surplus plutonium to mixed oxide (MOX) fuel to be irradiated in commercial nuclear power plants based on the proven European technology of COGEMA and BELGONUCLEAIRE. This paper describes the MFFF processes, and how the proven MOX fuel fabrication technology is being adapted as required to comply with U.S. requirements. (author)

  3. Design of the MOX fuel fabrication facility

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.V. [MFFF Technical Manager, U.S. dept. of Energy, Washington, DC (United States); Brabazon, E.J. [MFFF Engineering Manager, Duke Cogema Stone and Webster, Charlotte, NC (United States)

    2001-07-01

    A consortium of Duke Engineering and Services, Inc., COGEMA, Inc. and Stone and Webster (DCS) are designing a mixed oxide fuel fabrication facility (MFFF) for the U.S. Department of Energy (DOE) to convert surplus plutonium to mixed oxide (MOX) fuel to be irradiated in commercial nuclear power plants based on the proven European technology of COGEMA and BELGONUCLEAIRE. This paper describes the MFFF processes, and how the proven MOX fuel fabrication technology is being adapted as required to comply with U.S. requirements. (author)

  4. Fission gas release from UO2 pellet fuel at high burn-up

    International Nuclear Information System (INIS)

    Vitanza, C.; Kolstad, E.; Graziani, U.

    1979-01-01

    Analysis of in-reactor measurements of fuel center temperature and rod internal pressure at the OECD Halden Reactor Project has led to the development of an empirical fission gas release model, which is described. The model originally derived from data obtained in the low and intermediate burn-up range, appears to give good predictions for rods irradiated to high exposures as well. PIE puncturing data from seven fuel rods, operated at relatively constant powers and peak center temperatures between 1900 and 2000 0 C up to approx. 40,000 MWd/t UO 2 , did not exhibit any burn-up enhancement on the fission gas release rate

  5. Probability of Criticality for MOX SNF

    International Nuclear Information System (INIS)

    P. Gottlieb

    1999-01-01

    The purpose of this calculation is to provide a conservative (upper bound) estimate of the probability of criticality for mixed oxide (MOX) spent nuclear fuel (SNF) of the Westinghouse pressurized water reactor (PWR) design that has been proposed for use. with the Plutonium Disposition Program (Ref. 1, p. 2). This calculation uses a Monte Carlo technique similar to that used for ordinary commercial SNF (Ref. 2, Sections 2 and 5.2). Several scenarios, covering a range of parameters, are evaluated for criticality. Parameters specifying the loss of fission products and iron oxide from the waste package are particularly important. This calculation is associated with disposal of MOX SNF

  6. FBR type reactor

    International Nuclear Information System (INIS)

    Kimura, Kimitaka; Fukuie, Ken; Iijima, Tooru; Shimpo, Masakazu.

    1994-01-01

    In an FBR type reactor for exchanging fuels by pulling up reactor core upper mechanisms, a connection mechanism is disposed for connecting the top of the reactor core and the lower end of the reactor core upper mechanisms. In addition, a cylindrical body is disposed surrounding the reactor core upper mechanisms, and a support member is disposed to the cylindrical body for supporting an intermediate portion of the reactor core upper mechanisms. Then, the lower end of the reactor core upper mechanisms is connected to the top of the reactor core. Same displacements are caused to both of them upon occurrence of earthquakes and, as a result, it is possible to eliminate mutual horizontal displacement between a control rod guide hole of the reactor core upper mechanisms and a control rod insertion hole of the reactor core. In addition, since the intermediate portion of the reactor core upper mechanisms is supported by the support member disposed to the cylindrical body surrounding the reactor core upper mechanisms, deformation caused to the lower end of the reactor core upper mechanisms is reduced, so that the mutual horizontal displacement with respect to the control rod insertion hole of the reactor core can be reduced. As a result, performance of control rod insertion upon occurrence of the earthquakes is improved, so that reactor shutdown is conducted more reliably to improve reactor safety. (N.H.)

  7. Preliminary study on flexible core design of super FBR with multi-axial fuel shuffling

    International Nuclear Information System (INIS)

    Sukarman; Yamaji, Akifumi; Someya, Takayuki; Noda, Shogo

    2017-01-01

    Preliminary study has been conducted on developing a new flexible core design concept for the Supercritical water-cooled Fast Breeder Reactor (Super FBR) with multi-axial fuel shuffling. The proposed new concept focuses on the characteristic large axial coolant density change in supercritical water cooled reactors (SCWRs) when the coolant inlet temperature is below the pseudocritical point and large coolant enthalpy rise is taken in the core for achieving high thermal efficiency. The aim of the concept is to attain both the high breeding performance and good thermal-hydraulic performance at the same time. That is, short Compound System Doubling Time (CSDT) for high breeding, large coolant enthalpy rise for high thermal efficiency, and large core power. The proposed core concept consists of horizontal layers of mixed oxide (MOX) fuels and depleted uranium (DU) blanket layers at different elevation levels. Furthermore, the upper core and the lower core are separated and independent fuel shuffling schemes in these two core regions are considered. The number of fuel batches and fuel shuffling scheme of the upper core were changed to investigate influence of multi-axial fuel shuffling on the core characteristics. The core characteristics are evaluated with-three-dimensional diffusion calculations, which are fully-coupled with thermal-hydraulics calculations based on single channel analysis model. The results indicate that the proposed multi-axial fuel shuffling scheme does have a large influence on CSDT. Further investigations are necessary to develop the core concept. (author)

  8. Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations

    International Nuclear Information System (INIS)

    Garcia-Herranz, Nuria; Cabellos, Oscar; Sanz, Javier; Juan, Jesus; Kuijper, Jim C.

    2008-01-01

    Two methodologies to propagate the uncertainties on the nuclide inventory in combined Monte Carlo-spectrum and burn-up calculations are presented, based on sensitivity/uncertainty and random sampling techniques (uncertainty Monte Carlo method). Both enable the assessment of the impact of uncertainties in the nuclear data as well as uncertainties due to the statistical nature of the Monte Carlo neutron transport calculation. The methodologies are implemented in our MCNP-ACAB system, which combines the neutron transport code MCNP-4C and the inventory code ACAB. A high burn-up benchmark problem is used to test the MCNP-ACAB performance in inventory predictions, with no uncertainties. A good agreement is found with the results of other participants. This benchmark problem is also used to assess the impact of nuclear data uncertainties and statistical flux errors in high burn-up applications. A detailed calculation is performed to evaluate the effect of cross-section uncertainties in the inventory prediction, taking into account the temporal evolution of the neutron flux level and spectrum. Very large uncertainties are found at the unusually high burn-up of this exercise (800 MWd/kgHM). To compare the impact of the statistical errors in the calculated flux with respect to the cross uncertainties, a simplified problem is considered, taking a constant neutron flux level and spectrum. It is shown that, provided that the flux statistical deviations in the Monte Carlo transport calculation do not exceed a given value, the effect of the flux errors in the calculated isotopic inventory are negligible (even at very high burn-up) compared to the effect of the large cross-section uncertainties available at present in the data files

  9. Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Herranz, Nuria [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, UPM (Spain)], E-mail: nuria@din.upm.es; Cabellos, Oscar [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, UPM (Spain); Sanz, Javier [Departamento de Ingenieria Energetica, Universidad Nacional de Educacion a Distancia, UNED (Spain); Juan, Jesus [Laboratorio de Estadistica, Universidad Politecnica de Madrid, UPM (Spain); Kuijper, Jim C. [NRG - Fuels, Actinides and Isotopes Group, Petten (Netherlands)

    2008-04-15

    Two methodologies to propagate the uncertainties on the nuclide inventory in combined Monte Carlo-spectrum and burn-up calculations are presented, based on sensitivity/uncertainty and random sampling techniques (uncertainty Monte Carlo method). Both enable the assessment of the impact of uncertainties in the nuclear data as well as uncertainties due to the statistical nature of the Monte Carlo neutron transport calculation. The methodologies are implemented in our MCNP-ACAB system, which combines the neutron transport code MCNP-4C and the inventory code ACAB. A high burn-up benchmark problem is used to test the MCNP-ACAB performance in inventory predictions, with no uncertainties. A good agreement is found with the results of other participants. This benchmark problem is also used to assess the impact of nuclear data uncertainties and statistical flux errors in high burn-up applications. A detailed calculation is performed to evaluate the effect of cross-section uncertainties in the inventory prediction, taking into account the temporal evolution of the neutron flux level and spectrum. Very large uncertainties are found at the unusually high burn-up of this exercise (800 MWd/kgHM). To compare the impact of the statistical errors in the calculated flux with respect to the cross uncertainties, a simplified problem is considered, taking a constant neutron flux level and spectrum. It is shown that, provided that the flux statistical deviations in the Monte Carlo transport calculation do not exceed a given value, the effect of the flux errors in the calculated isotopic inventory are negligible (even at very high burn-up) compared to the effect of the large cross-section uncertainties available at present in the data files.

  10. A risk-informed evaluation of MOX fuel loading in PWRS

    International Nuclear Information System (INIS)

    Lyman, E.S.

    2001-01-01

    The full text follows: The U.S. Department of Energy (DOE) has signed a contract with Duke Cogema Stone and Webster (DCS) for fabrication of mixed-oxide (MOX) fuel and irradiation of the MOX fuel at the Catawba and McGuire pressurized-water reactors (PWRs), operated by Duke Power. The first load of MOX fuel is scheduled for 2007. In order to use MOX in these plants, Duke Power will have to apply to the Nuclear Regulatory Commission (NRC) for amendments to their operating licenses. Until recently, there have been no numerical guidelines for determining the acceptability of license amendment requests. However, such guidelines are now at hand with the adoption in 1998 of NRC Regulatory Guide 1.174, which defines a maximum value for the permissible increase in risk to the public resulting from a proposed change to a nuclear plant's licensing basis (LB). The substitution of MOX fuel for low-enriched uranium (LEU) fuel in LWRs will have an impact on risk to the public that will require regulatory evaluation. One of the major differences is that use of MOX will increase the inventories of plutonium and minor actinides in the reactor core, thereby increasing the source term for certain severe accidents, such as a core melt with early containment failure or a spent fuel pool drain-down. The goal of this paper is to quantitatively evaluate the increase in risk associated with the greater actinide source term in MOX-fueled reactors, and to compare this increase with RG 1.174 guidelines. Standard computer programs (SCALE and MACCS2) are used to estimate the increase in severe accident risk to the public associated with the DCS plan to use 40% cores of weapons-grade MOX fuel. These values are then compared to the RG 1.174 acceptance criteria, using publicly available risk information. Since RG 1.174 guidelines are based on the assumption that severe accident source terms are not affected by LB changes, the RG 1.174 formalism must be modified for this case. A similar

  11. Plutonium - out of the stockpile and into the MOX market

    International Nuclear Information System (INIS)

    Edwards, J.; Hexter, B.C.; Powell, D.J.

    1993-01-01

    Reducing the risks associated with growing stocks of plutonium is just one of the factors behind the manufacture of mixed oxide (MOX) fuel. A United Kingdom collaboration, described here, has recently taken the first steps into the market place for MOX. (Author)

  12. Sodium Exposure Tests on Limestone Concrete Used as Sacrificial Protection Layer in FBR

    International Nuclear Information System (INIS)

    Parida, F.C.; Das, S.K.; Sharma, A.K.; Rao, P.M.; Ramesh, S.S.; Somayajulu, P.A.; Malarvizhi, B.; Kasinathan, N.

    2006-01-01

    Hot sodium coming in contact with structural concrete in case of sodium leak in FBR system cause damage as a result of thermo-chemical attack by burning sodium. In addition, release of free and bound water from concrete leads to generation of hydrogen gas, which is explosive in nature. Hence limestone concrete, as sacrificial layer on the structural concrete in FBR, needs to be qualified. Four concrete blocks of dimension 600 mm x 600 mm x 300 mm with 300 mm x 300 mm x 150 mm cavity were cast and subjected to controlled sodium exposure tests. They have composition of ordinary portland cement, water, fine and coarse aggregate of limestone in the ratio of 1: 0.58: 2.547: 3.817. These blocks were subjected to preliminary inspection by ultrasonic pulse velocity technique and rebound hammer tests. Each block was exposed for 30 minutes to about 12 kg of liquid sodium (∼ 120 mm liquid column) at 550 deg. C in open air, after which sodium was sucked back from the cavity of the concrete block into a sodium tank. On-line temperature monitoring was carried out at strategic locations of sodium pool and concrete block. After removing sodium from the cavity and cleaning the surfaces, rebound hammer testing was carried out on each concrete block at the same locations where data were taken earlier at pre-exposed stage. The statistical analysis of rebound hammer data revealed that one of the concrete block alone has undergone damage to the extent of 16%. The loss of mass occurred for all the four blocks varied from 0.6 to 2.4% due to release of water during the test duration. Chemical analysis of sodium in concrete samples collected from cavity floor of each block helped in generation of depth profiles of sodium monoxide concentration for each block. From this it is concluded that a bulk penetration of sodium up to 30 mm depth has taken place. However it was also observed that at few local spots, sodium penetrated into concrete up to 50 mm. Cylindrical core samples of 50 mm x 150

  13. Burn-Up Calculation of the Fuel Element in RSG-GAS Reactor using Program Package BATAN-FUEL

    International Nuclear Information System (INIS)

    Mochamad Imron; Ariyawan Sunardi

    2012-01-01

    Calculation of burn lip distribution of 2.96 gr U/cc Silicide fuel element at the 78 th reactor cycle using computer code program of BATAN-FUEL has been done. This calculation uses inputs such as generated power, operation time and a core assumption model of 5/1. Using this calculation model burn up for the entire fuel elements at the reactor core are able to be calculated. From the calculation it is obtained that the minimum burn up of 6.82% is RI-50 at the position of A-9, while the maximum burn up of 57.57% is RI 467 at the position of 8-7. Based on the safety criteria as specified in the Safety Analysis Report (SAR) RSG-GAS reactor, the maximum fuel burn up allowed is 59.59%. It then can be concluded that pattern that elements placement at the reactor core are properly and optimally done. (author)

  14. Method for selecting FBR development strategies in the presence of uncertainty

    International Nuclear Information System (INIS)

    Fraley, D.W.; Burnham, J.B.

    1981-12-01

    This report describes the methods used to probabilistically analyze data related to the uranium supply the FBR's competitive dates, development strategies' time and costs, and economic benefits. It also describes the econometric methods used to calculate the economic risks of mistiming the development. Seven strategies for developing the FBR are analyzed. The various measures of a strategy's performance - timing, costs, benefits, and risks - are combined into several criteria which are used to evaluate the seven strategies. Methods are described for selecting a strategy based on a number of alternative criteria

  15. Development of wire wrapping technology for FBR fuel pin

    International Nuclear Information System (INIS)

    Nogami, Tetsuya; Seki, Nobuo; Sawayama, Takeo; Ishibashi, Takashi

    1991-01-01

    For the FBR fuel assembly, the spacer wire is adopted to maintain the space between fuel pins. The developments have been carried out to achieve automatically wire wrapping with high precision. Based on the fundamental technology developed through the mock-up test operation, Joyo 'MK-I', fuel pin fabrication was started using partially mechanized wire wrapping machine in 1973. In 1978, an automated wire wrapping machine for Joyo 'MK-II' was developed by the adoption of some improvements for the wire inserting system to end plug hole and the precision of wire pitch. On the bases of these experiences, fully automated wire wrapping machine for 'Monju' fuel pin was installed at Plutonium Fuel Production Facility (PFPF) in 1987. (author)

  16. Estimation of the impact of manufacturing tolerances on burn-up calculations using Monte Carlo techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bock, M.; Wagner, M. [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH, Garching (Germany). Forschungszentrum

    2012-11-01

    In recent years, the availability of computing resources has increased enormously. There are two ways to take advantage of this increase in analyses in the field of the nuclear fuel cycle, such as burn-up calculations or criticality safety calculations. The first possible way is to improve the accuracy of the models that are analyzed. For burn-up calculations this means, that the goal to model and to calculate the burn-up of a full reactor core is getting more and more into reach. The second way to utilize the resources is to run state-of-the-art programs with simplified models several times, but with varied input parameters. This second way opens the applicability of the assessment of uncertainties and sensitivities based on the Monte Carlo method for fields of research that rely heavily on either high CPU usage or high memory consumption. In the context of the nuclear fuel cycle, applications that belong to these types of demanding analyses are again burn-up and criticality safety calculations. The assessment of uncertainties in burn-up analyses can complement traditional analysis techniques such as best estimate or bounding case analyses and can support the safety analysis in future design decisions, e.g. by analyzing the uncertainty of the decay heat power of the nuclear inventory stored in the spent fuel pool of a nuclear power plant. This contribution concentrates on the uncertainty analysis in burn-up calculations of PWR fuel assemblies. The uncertainties in the results arise from the variation of the input parameters. In this case, the focus is on the one hand on the variation of manufacturing tolerances that are present in the different production stages of the fuel assemblies. On the other hand, uncertainties that describe the conditions during the reactor operation are taken into account. They also affect the results of burn-up calculations. In order to perform uncertainty analyses in burn-up calculations, GRS has improved the capabilities of its general

  17. Treatment of PAHs in waters using the GAC-FBR process

    International Nuclear Information System (INIS)

    Hickey, R.F.; Sunday, A.; Wagner, D.; Groshko, V.; Rajan, R.V.; Leuschner, A.; Hayes, T.D.

    1995-01-01

    Pilot studies were conducted to determine the utility of the granular activated carbon fluidized-bed reactor (GAC-FBR) process to treat groundwater from manufactured gas plant (MGP) sites containing polycyclic aromatic hydrocarbons (PAHs) and a process effluent water from a deep subsurface dense, nonaqueous-phase liquid (DNAPL) removal process at an MGP site. Removal of naphthalene exceeded 99.9%, and overall PAH removals of 99+% were observed at organic loading rates (OLRs) exceeding 4-kg chemical oxygen demand (COD)/m 3 -d and a hydraulic retention time (HRT) of about 6 min. Analysis of PAHs accumulated on GAC and oxygen consumption clearly demonstrated that removal of 2- to 4-ring PAHs was due primarily to biological oxidation and not to adsorption. Analysis of influent and effluent samples using Microtox reg-sign indicated removal of toxicity. Full-scale application of the GAC-FBR process has begun at a Superfund site in Pennsylvania. The GAC-FBR is being used to treat a 15-gal per min (gpm) process effluent flow from a subsurface DNAPL removal process. Initial results confirm the ability of the process to treat PAHs at high OLRs and short HRTs

  18. The manual of a computer software 'FBR Plant Planning Design Prototype System'

    International Nuclear Information System (INIS)

    2003-10-01

    This is a manual of a computer software 'FBR Plant Planning Design Prototype System', which enables users to conduct case studies of deviated FBR design concepts based on 'MONJU'. The calculations simply proceed as the user clicks displayed buttons, therefore step-by-step explanation is supposed not be necessary. The following pages introduce only particular features of this software, i.e, each interactive screens, functions of buttons and consequences after clicks, and the quitting procedure. (author)

  19. Analysis of void reactivity measurements in full MOX BWR physics experiments

    International Nuclear Information System (INIS)

    Ando, Yoshihira; Yamamoto, Toru; Umano, Takuya

    2008-01-01

    In the full MOX BWR physics experiments, FUBILA, four 9x9 test assemblies simulating BWR full MOX assemblies were located in the center of the core. Changing the in-channel moderator condition of the four assemblies from 0% void to 40% and 70% void mock-up, void reactivity was measured using Amplified Source Method (ASM) technique in the subcritical cores, in which three fission chambers were located. ASM correction factors necessary to express the consistency of the detector efficiency between measured core configurations were calculated using collision probability cell calculation and 3D-transport core calculation with the nuclear data library, JENDL-3.3. Measured reactivity worth with ASM correction factor was compared with the calculated results obtained through a diffusion, transport and continuous energy Monte Carlo calculation respectively. It was confirmed that the measured void reactivity worth was reproduced well by calculations. (author)

  20. Pu-rich MOX agglomerate-by-agglomerate model for fuel pellet burnup analysis

    International Nuclear Information System (INIS)

    Chang, G.S.

    2004-01-01

    In support of potential licensing of the mixed oxide (MOX) fuel made from weapons-grade (WG) plutonium and depleted uranium for use in United States reactors, an experiment containing WG-MOX fuel is being irradiated in the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). The WG-MOX comprises five percent PuO 2 and 95% depleted UO 2 . Based on the Post Irradiation Examination (PIE) observation, the volume fraction (VF) of MOX agglomerates in the fuel pellet is about 16.67%, and PuO 2 concentration of 30.0 = (5 / 16.67 x 100) wt% in the agglomerate. A pressurized water reactor (PWR) unit WG-MOX lattice with Agglomerate-by-Agglomerate Fuel (AbAF) modeling has been developed. The effect of the irregular agglomerate distribution can be addressed through the use of the Monte Carlo AbAF model. The AbAF-calculated cumulative ratio of Agglomerate burnup to U-MAtrix burnup (AG/MA) is 9.17 at the beginning of life, and decreases to 2.88 at 50 GWd/t. The MCNP-AbAF-calculated results can be used to adjust the parameters in the MOX fuel fission gas release modeling. (author)

  1. Treatment and follow-up results of children with electrical burn who observed in burn intensive care unit

    Directory of Open Access Journals (Sweden)

    Çiğdem Aliosmanoğlu

    2011-06-01

    Full Text Available Electrical burns are infrequent relative to other injuries, but they are associated with high morbidity and mortality. The aim of this study was to assess management and follow-up results of pediatric patients’ who observed in intensive care unit and also review the precautions for preventing electrical burns.Materials and methods: Totally 22 patients aged under 17 years who were observed in the burn intensive care unit of Şanlıurfa Education and Research Hospital during the period between July 2009-October 2010. Cases were investigated retrospectively. The patients’ age, gender, total burn surface area, length of stay in hospital, musculo-skeletal system complication, cardiovascular system complication, kidney damage and attempts were recorded.Results: Of the 22 cases, 19 (86.3% were male and 3 (13.7% were female. The mean age of the patients was 11.5 years. In 10 (45.4% children burns were occurred in workplace and working area and 12 (54.6% were occurred in the home environment. Depth of burns were third degree in 10 (45.4% children and second degree in 12 (54.6%. The mean percentage of burn surface area was 25.9%. The mean length of stay in hospital was 17 days. Debridement and grafting were performed to 12 (54.6% cases and 10 (45.4% children were treated with dressings. No patient had increased creatinine kinase levels, oliguria, myoglobuinuria and arrhythmia. The mean hospitalization time was 17 days.Conclusion: Nearly half of patients underwent debridement plus grafting. None of our patients developed renal failure other severe system dysfunction.

  2. Thorium Fuel Options for Sustained Transuranic Burning in Pressurized Water Reactors - 12381

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Fariz Abdul; Lee, John C. [University of Michigan, Ann Arbor, MI (United States); Franceschini, Fausto; Wenner, Michael [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)

    2012-07-01

    burn TRU in a thermal spectrum, while satisfying top-level operational and safety constraints. Various assembly designs have been proposed to assess the TRU burning potential of Th-based fuel in PWRs. In addition to typical homogeneous loading patterns, heterogeneous configurations exploiting the breeding potential of thorium to enable multiple cycles of TRU irradiation and burning have been devised. The homogeneous assembly design, with all pins featuring TRU in Th, has the benefit of a simple loading pattern and the highest rate of TRU transmutation, but it can be used only for a few cycles due to the rapid rise in the TRU content of the recycled fuel, which challenges reactivity control, safety coefficients and fuel handling. Due to its simple loading pattern, such assembly design can be used as the first step of Th implementation, achieving up to 3 times larger TRU transmutation rate than conventional U-MOX, assuming same fraction of MOX assemblies in the core. As the next step in thorium implementation, heterogeneous assemblies featuring a mixed array of Th-U and Th-U-TRU pins, where the U is in-bred from Th, have been proposed. These designs have the potential to enable burning an external supply of TRU through multiple cycles of irradiation, recovery (via reprocessing) and recycling of the residual actinides at the end of each irradiation cycle. This is achieved thanks to a larger breeding of U from Th in the heterogeneous assemblies, which reduces the TRU supply and thus mitigates the increase in the TRU core inventory for the multi-recycled fuel. While on an individual cycle basis the amount of TRU burned in the heterogeneous assembly is reduced with respect to the homogeneous design, TRU burning rates higher than single-pass U-MOX fuel can still be achieved, with the additional benefits of a multi-cycle transmutation campaign recycling all TRU isotopes. Nitride fuel, due its higher density and U breeding potential, together with its better thermal properties

  3. Development of simulation code for MOX dissolution using silver-mediated electrochemical method (Contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Kida, Takashi; Umeda, Miki; Sugikawa, Susumu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    MOX dissolution using silver-mediated electrochemical method will be employed for the preparation of plutonium nitrate solution in the criticality safety experiments in the Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF). A simulation code for the MOX dissolution has been developed for the operating support. The present report describes the outline of the simulation code, a comparison with the experimental data and a parameter study on the MOX dissolution. The principle of this code is based on the Zundelevich's model for PuO{sub 2} dissolution using Ag(II). The influence of nitrous acid on the material balance of Ag(II) is taken into consideration and the surface area of MOX powder is evaluated by particle size distribution in this model. The comparison with experimental data was carried out to confirm the validity of this model. It was confirmed that the behavior of MOX dissolution could adequately be simulated using an appropriate MOX dissolution rate constant. It was found from the result of parameter studies that MOX particle size was major governing factor on the dissolution rate. (author)

  4. Safety-related investigations on power distribution in MOX fuel elements in LWR cores

    International Nuclear Information System (INIS)

    Kramer, E.; Langenbuch, S.

    1991-01-01

    For the concept of thermal recycling various fuel assembly designs have been developped during the last years. An overview is given describing the present status of MOX-fuel assembly design for PWR and BWR. The local power distribution within the MOX-fuel assembly and influences between neighbouring MOX- and Uranium fuel assemblies have been analyzed by own calculations. These investigations are limited to specific aspects of the spatial power distribution, which are related to the use of MOX-fuel assemblies within the reactor core of LWR. (orig.) [de

  5. Defect analysis of BaSrFBr:Eu irradiated by X-ray

    International Nuclear Information System (INIS)

    Lee, C. Y.; Jeong, J. M.; Kim, J. H.

    2010-01-01

    The mechanical property of the BaSrFBr:Eu phosphor layer of X-ray image plates was investigated by using image quality (IQ), resolution (LP/mm), and coincidence Doppler broadening (CDB) positron annihilation. The screen samples of BaSrFBr:Eu phosphors were irradiated with hospital X-rays in the course of diagnostic radiography at an average rate of 20,000 times per year and were used for various periods of time. The LP/mm values of the irradiated BaSrFBr:Eu image plates varied between 2.4 and 2.0 for three years while the IQ values varied between 35 and 11 over the same period. CDB positron annihilation spectroscopy was used to analyze the defect structures in the phosphor layer. The S parameter values increased in correlation with increased exposure time, which indicated that more defects were generated. There was a positive relationship between the IQ and S parameters. Measurements of the defects indicate that most of the defects were likely to have been generated by the X-ray radiation.

  6. Burn-up function of fuel management code for aqueous homogeneous reactors and its validation

    International Nuclear Information System (INIS)

    Wang Liangzi; Yao Dong; Wang Kan

    2011-01-01

    Fuel Management Code for Aqueous Homogeneous Reactors (FMCAHR) is developed based on the Monte Carlo transport method, to analyze the physics characteristics of aqueous homogeneous reactors. FMCAHR has the ability of doing resonance treatment, searching for critical rod heights, thermal hydraulic parameters calculation, radiolytic-gas bubbles' calculation and bum-up calculation. This paper introduces the theory model and scheme of its burn-up function, and then compares its calculation results with benchmarks and with DRAGON's burn-up results, which confirms its bum-up computing precision and its applicability in the bum-up calculation and analysis for aqueous solution reactors. (authors)

  7. Melting temperature of uranium - plutonium mixed oxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Tetsuya; Hirosawa, Takashi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-08-01

    Fuel melting temperature is one of the major thermodynamical properties that is used for determining the design criteria on fuel temperature during irradiation in FBR. In general, it is necessary to evaluate the correlation of fuel melting temperature to confirm that the fuel temperature must be kept below the fuel melting temperature during irradiation at any conditions. The correlations of the melting temperature of uranium-plutonium mixed oxide (MOX) fuel, typical FBR fuel, used to be estimated and formulized based on the measured values reported in 1960`s and has been applied to the design. At present, some experiments have been accumulated with improved experimental techniques. And it reveals that the recent measured melting temperatures does not agree well to the data reported in 1960`s and that some of the 1960`s data should be modified by taking into account of the recent measurements. In this study, the experience of melting temperature up to now are summarized and evaluated in order to make the fuel pin design more reliable. The effect of plutonium content, oxygen to metal ratio and burnup on MOX fuel melting was examined based on the recent data under the UO{sub 2} - PuO{sub 2} - PuO{sub 1.61} ideal solution model, and then formulized. (J.P.N.)

  8. Melting temperature of uranium - plutonium mixed oxide fuel

    International Nuclear Information System (INIS)

    Ishii, Tetsuya; Hirosawa, Takashi

    1997-08-01

    Fuel melting temperature is one of the major thermodynamical properties that is used for determining the design criteria on fuel temperature during irradiation in FBR. In general, it is necessary to evaluate the correlation of fuel melting temperature to confirm that the fuel temperature must be kept below the fuel melting temperature during irradiation at any conditions. The correlations of the melting temperature of uranium-plutonium mixed oxide (MOX) fuel, typical FBR fuel, used to be estimated and formulized based on the measured values reported in 1960's and has been applied to the design. At present, some experiments have been accumulated with improved experimental techniques. And it reveals that the recent measured melting temperatures does not agree well to the data reported in 1960's and that some of the 1960's data should be modified by taking into account of the recent measurements. In this study, the experience of melting temperature up to now are summarized and evaluated in order to make the fuel pin design more reliable. The effect of plutonium content, oxygen to metal ratio and burnup on MOX fuel melting was examined based on the recent data under the UO 2 - PuO 2 - PuO 1.61 ideal solution model, and then formulized. (J.P.N.)

  9. The burn-up credit physics and the 40. Minerve anniversary

    International Nuclear Information System (INIS)

    Santamarina, A.; Toubon, H.; Trakas, C.

    2000-01-01

    The technical meeting organized by the SFEN on the burn-up credit (CBU) physics, took place the 23 november 1999 at Cadarache. the first presentation dealt with the economic interest and the neutronic problems of the CBU. Then two papers presented how taking into account the CBU in the industry in matter of transport, storage in pool, reprocessing and criticality calculation (MCNP4/Apollo2-F benchmark). An experimental method for the reactivity measurement through oscillations in the Minerve reactor, has been presented with an analysis of the possible errors. The future research program OSMOSE, taking into account the minor actinides in the CBU, was also developed. The last paper presented the national and international research programs in the CBU domain, in particular experiments realized in CEA/Valduc and the OECD Burn-up Criticality Benchmark Group activities. (A.L.B.)

  10. Effects of applying three-dimensional seismic isolation system on the seismic design of FBR

    International Nuclear Information System (INIS)

    Hirata, Kazuta; Yabana, Shuichi; Kanazawa, Kenji; Matsuda, Akihiro

    1997-01-01

    In this study conceptional three-dimensional seismic isolation system for fast breeder reactor (FBR) is proposed. Effects of applying three-dimensional seismic isolation system on the seismic design for the FBR equipment are evaluated quantitatively. From the evaluation, it is concluded following effects are expected by applying the three-dimensional seismic isolation system to the FBR and the effects are evaluated quantitatively. (1) Reduction of membrane thickness of the reactor vessel (2) Suppression of uplift of fuels by reducing vertical seismic response of the core (3) Reduction of the supports for the piping system (4) Three-dimensional base isolation system for the whole reactor building is advantageous to the combined isolation system of horizontal base isolation for the reactor building and vertical isolation for the equipment. (author)

  11. Novel technique for manipulating MOX fuel particles using radiation pressure of a laser light

    International Nuclear Information System (INIS)

    Omori, R.

    2000-01-01

    We have continued theoretical and experimental studies on laser manipulation of nuclear fuel particles, such as UO 2 , PuO 2 and ThO 2 , In this paper, we investigate the applicability of the collection of MOX particles floating in air using radiation pressure of a laser light; some preliminary results are shown. This technique will be useful for removal and confinement of MOX particles being transported by air current or dispersed in a cell box. First, we propose two types of principles for collecting MOX particles. Second, we show some experimental results, Third, we show numerical results of radiation pressure exerted on submicrometer-sized UO 2 particles using Generalized Lorentz-Mie theory. Because optical constants of UO 2 are similar to those of MOX fuel particles, it seems that calculation results obtained hold for MOX fuel particles. 2. Principles of collecting MOX fuel particles using radiation pressure (authors)

  12. Control rod drives for FBR type reactor

    International Nuclear Information System (INIS)

    Ikakura, Hiroaki.

    1990-01-01

    The control rod drives for an FBR type reactor of the present invention eliminate obstacles deposited on attracting surfaces between an electromagnet and an armature which connect control rods to recover their retaining power. That is, a sealed chamber capable of controlling its inner pressure by an operation from the outside of a reactor is disposed in an extension pipe, and a nozzle connected to the sealed chamber and facing at the lower end thereof to the attracting surface is disposed. Liquid sodium sucked by evacuating the sealed chamber is jetted out from the nozzle by pressurizing the chamber to simultaneously eliminate obstacles deposited to the attracting surfaces of the electromagnet and the control rod. Alternatively, a nozzle protruding from and retracting to the lower surface of the electromagnet is disposed opposing to each of the attracting surfaces of the electromagnet and the control rod. Similar effect can also be obtained if gases are jetted out in this state. As a result, control rod drives of high reliability for a FBR type reactor can be obtained. (I.S.)

  13. Determination of the burn-up of TRIGA fuel elements by calculation with new TRIGLAV program

    International Nuclear Information System (INIS)

    Zagar, T.; Ravnik, M.

    1996-01-01

    The results of fuel element burn-up calculations with new TRIGLAV program are presented. TRIGLAV program uses two dimensional model. Results of calculation are compared to results calculated with program, which uses one dimensional model. The results of fuel element burn-up measurements with reactivity method are presented and compared with the calculated results. (author)

  14. Plutonium and minor actinide transmutation by long irradiation in LWR

    International Nuclear Information System (INIS)

    Facchini, A.; Sanjust, V.

    1993-01-01

    An investigation was made on the conceptual possibility of burning in a thermal reactor MOX fuel together with special pins containing plutonium, minor actinides and long lived fission products, recovered from the reprocessing of previously irradiated MOX fuel and mixed with an inter matrix. Preliminary calculations showed that the long term radiotoxicity of the above special pins is reduced to reasonable levels when they are irradiated up to 20 divided-by 30 years, and cooled for some centuries. In particular, during the whole life such a reactor should be able to burn a considerable fraction of plutonium, minor actinides and long lived fission products recovered from the MOX fuel irradiated along the same period of time

  15. A programmatic approach for implementing MOX fuel operation in advanced and existing boiling water reactors

    International Nuclear Information System (INIS)

    Ehrlich, E.H.; Knecht, P.D.; Shirley, N.C.; Wadekamper, D.C.

    1996-01-01

    This paper describes a programmatic overview of the elements and issues associated with MOX fuel utilization. Many of the dominant considerations and integrated relationships inherent in initiating MOX fuel utilization in BWRs or the ABWR with partial or full MOX core designs are discussed. The most significant considerations in carrying out a MOX implementation program, while achieving commercially desirable fuel cycles and commercially manageable MOX fuel fabrication, testing, qualification, and licensing support activities, are described. The impact of politics and public influences and the necessary role of industry and government contributions are also discussed. (J.P.N.)

  16. ORIGEN-2 libraries based on JENDL-3.2 for PWR-MOX fuel

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Hideki; Onoue, Masaaki; Tahara, Yoshihisa [Mitsubishi Heavy Industries Ltd., Tokyo (Japan)

    2001-08-01

    A set of ORIGEN-2 libraries for PWR MOX fuel was developed based on JENDL-3.2 in the Working Group on Evaluation of Nuclide Production, Japanese Nuclear Data Committee. The calculational model generating ORIGEN-2 libraries of PWR MOX is explained here in detail. The ORIGEN-2 calculation with the new ORIGEN-2 MOX library can predict the nuclides contents within 10% for U and Pu isotopes and 20% for both minor actinides and main FPs. (author)

  17. Fuel rod design by statistical methods for MOX fuel

    International Nuclear Information System (INIS)

    Heins, L.; Landskron, H.

    2000-01-01

    Statistical methods in fuel rod design have received more and more attention during the last years. One of different possible ways to use statistical methods in fuel rod design can be described as follows: Monte Carlo calculations are performed using the fuel rod code CARO. For each run with CARO, the set of input data is modified: parameters describing the design of the fuel rod (geometrical data, density etc.) and modeling parameters are randomly selected according to their individual distributions. Power histories are varied systematically in a way that each power history of the relevant core management calculation is represented in the Monte Carlo calculations with equal frequency. The frequency distributions of the results as rod internal pressure and cladding strain which are generated by the Monte Carlo calculation are evaluated and compared with the design criteria. Up to now, this methodology has been applied to licensing calculations for PWRs and BWRs, UO 2 and MOX fuel, in 3 countries. Especially for the insertion of MOX fuel resulting in power histories with relatively high linear heat generation rates at higher burnup, the statistical methodology is an appropriate approach to demonstrate the compliance of licensing requirements. (author)

  18. Analysis of Core Physics Experiments on Irradiated BWR MOX Fuel in REBUS Program

    International Nuclear Information System (INIS)

    Yamamoto, Toru; Ando, Yoshihira; Hayashi, Yamato

    2008-01-01

    As part of analyses of experimental data of a critical core containing a irradiated BWR MOX test bundle in the REBUS program, depletion calculations was performed for the BWR MOX fuel assemblies from that the MOX test rods were selected by using a general purpose neutronics code system SRAC. The core analyses were carried out using SRAC and a continuous energy Monte Carlo code MVP. The calculated k eff s were compared with those of the core containing a fresh MOX fuel bundle in the program. The SRAC-diffusion calculation underestimates k eff s of the both cores by 1.0 to 1.3 %dk and the k eff s of MVP are 1.001. The difference in k eff between the irradiated BWR MOX test bundle core and the fresh MOX one is 0.4 %dk in the SRAC-diffusion calculation and 0.0 %dk in the MVP calculation. The calculated fission rate distributions are in good agreement with the measurement in the SRAC-diffusion and MVP calculations. The calculated neutron flux distributions are also in good agreement with the measurement. The calculated burnup reactivity in the both calculations well reproduce the measurements. (authors)

  19. A Study for Burn-up Calculation applied on 400MWth PBMR Core

    International Nuclear Information System (INIS)

    Luu, Nam Hai; Kim, Hong Chul; Kim, Soon Young; Kim, Jong Kyung; Noh, Jae Man

    2007-01-01

    The 400MWth Pebble-bed Modular Reactor (PBMR) is an advanced high temperature gas cooled-reactor (HTGR). It possesses a very high efficiency and attractive economics without compromising the high levels of passive safety expected of advanced nuclear designs. With this reason, PBMR is a target which researchers especially in nuclear engineering field study carefully and therefore it is regarded as the leader in the power generation field. There are many research results about benchmark problems but results of the burn-up process are still poor. Hence, in this study a burn-up calculation was performed with PBMR using MONTEBURNS code in which MCNP modeling linked a depletion systems is used

  20. Technique for sensitivity analysis of space- and energy-dependent burn-up calculations

    International Nuclear Information System (INIS)

    Williams, M.L.; White, J.R.

    1979-01-01

    A practical method is presented for sensitivity analysis of the very complex, space-energy dependent burn-up equations, in which the neutron and nuclide fields are coupled nonlinearly. The adjoint burn-up equations that are given are in a form which can be directly implemented into multi-dimensional depletion codes, such as VENTURE/BURNER. The data sensitivity coefficients can be used to determine the effect of data uncertainties on time-dependent depletion responses. Initial condition sensitivity coefficients provide a very effective method for computing the change in end of cycle parameters (such as k/sub eff/, fissile inventory, etc.) due to changes in nuclide concentrations at beginning of cycle

  1. FBR type reactors

    International Nuclear Information System (INIS)

    Kawashima, Katsuyuki; Azekura, Kazuo; Inoue, Kotaro.

    1981-01-01

    Purpose: To decrease power fluctuations due to burning of blanket fuel element clusters by partially replacing the fertile materials in the blanket fuel element clusters with fissile materials. Constitution: Fertile materials in the radial blanket fuel element clusters disposed to the outside or inside of the reactor core are partially replaced with fissile materials. Since the power density of the fissile materials is at the maximum in the initial burning stage and decreases as the burning proceeds, the power density of the materials which is smaller in the initial burning stage and becomes greater with the burning by the neutron-accumulated plutonium is offset. Accordingly, the power fluctuations in the blanket fuel element clusters due to the burning made smaller thereby enable to form a reactor core with less power fluctuations due to burning under the constant coolant flow rate depending on the power in the final burning stage where the blanket power is maximum. (Moriyama, K.)

  2. JOYO modification program for demonstration tests of FBR innovative technology development

    International Nuclear Information System (INIS)

    Yoshimi, H.; Hachiya, Y.

    1990-01-01

    A plan is under way at PNC to modify the experimental fast reactor JOYO. The project is called MARK-III (MK-III) program. The purpose of MK-III is to expand the function of JOYO, and to make it possible to receive demonstration tests of new or high level technologies for FBR development. The MK-III program consists of two main modifications: conversion to a highly efficient irradiation facility; and a modification for demonstration testing of new technologies and concepts that have a high potential to reduce FBR plant construction cost, to evaluate plant reliability and to improve plant safety. These modifications are scheduled to start in 1991

  3. Development of a reference scheme for MOX lattice physics calculations

    International Nuclear Information System (INIS)

    Finck, P.J.; Stenberg, C.G.; Roy, R.

    1998-01-01

    The US program to dispose of weapons-grade Pu could involve the irradiation of mixed-oxide (MOX) fuel assemblies in commercial light water reactors. This will require licensing acceptance because of the modifications to the core safety characteristics. In particular, core neutronics will be significantly modified, thus making it necessary to validate the standard suites of neutronics codes for that particular application. Validation criteria are still unclear, but it seems reasonable to expect that the same level of accuracy will be expected for MOX as that which has been achieved for UO 2 . Commercial lattice physics codes are invariably claimed to be accurate for MOX analysis but often lack independent confirmation of their performance on a representative experimental database. Argonne National Laboratory (ANL) has started implementing a public domain suite of codes to provide for a capability to perform independent assessments of MOX core analyses. The DRAGON lattice code was chosen, and fine group ENDF/B-VI.04 and JEF-2.2 libraries have been developed. The objective of this work is to validate the DRAGON algorithms with respect to continuous-energy Monte Carlo for a suite of realistic UO 2 -MOX benchmark cases, with the aim of establishing a reference DRAGON scheme with a demonstrated high level of accuracy and no computing resource constraints. Using this scheme as a reference, future work will be devoted to obtaining simpler and less costly schemes that preserve accuracy as much as possible

  4. Evaluation of Isotopic Measurements and Burn-up Value of Sample GU3 of ARIANE Project

    Energy Technology Data Exchange (ETDEWEB)

    Tore, C.; Rodriguez Rivada, A.

    2014-07-01

    Estimation of the burn-up value of irradiated fuel and its isotopic composition are important for criticality analysis, spent fuel management and source term estimation. The practical way to estimate the irradiated fuel composition and burn.up value is calculation with validated code and nuclear data. Such validation of the neutronic codes and nuclear data requires the benchmarking with measured values. (Author)

  5. Development of database system on MOX fuel for water reactors (I)

    International Nuclear Information System (INIS)

    Kikuchi, Keiichi; Nakazawa, Hiroaki; Abe, Tomoyuki; Shirai, Takao

    2000-04-01

    JNC has been conducted a great number of irradiation tests to develop MOX fuels for Advanced Thermal Reactor and Light Water Reactors. In order to manage irradiation data consistently and to effectively utilize valuable data obtained from the irradiation tests, we commenced construction of database system on MOX fuel for water reactors in 1998 JFY. Collection and selection of irradiation data and relevant fuel fabrication data, design of the database system and preparation of assisting programs have been finished and data registration onto the system is under way according to priority at present. The database system can be operated through the menu screen on PC. About 94,000 records of data on 11 fuel assemblies in total have been registered onto the database up to the present. By conducting registration of the remaining data and some modification of the system, if necessary, the database system is expected to complete in 2000 JFY. The completed database system is to be distributed to relevant sections in JNC by means of CD-R as a media. This report is an interim report covering 1998 and 1999 JFY, which gives the structure explanation and users manual concerning to the prepared database up to the present. (author)

  6. Pilot and pilot-commercial plants for reprocessing spent fuels of FBR type reactors

    International Nuclear Information System (INIS)

    Shaldaev, V.S.; Sokolova, I.D.

    1988-01-01

    A review of modern state of investigations on the FBR mixed oxide uranium-plutonium fuel reprocessing abroad is given. Great Britain and France occupy the leading place in this field, operating pilot plants of 5 tons a year capacity. Technology of spent fuel reprocessing and specific features of certain stages of the technological process are considered. Projects of pilot and pilot-commercial plants of Great Britain, France, Japan, USA are described. Economic problems of the FBR fuel reprocessing are touched upon

  7. The current status of research and development concerning steam generator acoustic leak detection for the demonstration FBR plant

    International Nuclear Information System (INIS)

    Higuchi, Masahisa

    1990-01-01

    The Japan Atomic Power Co. (JAPC) started the research and development into Acoustic Leak Detection for the Demonstration FBR (D-FBR) plant in 1989. Acoustic Leak Detection is expected as a water leak detection system in the Steam Generator for the first D-FBR plant. JAPC is presently analyzing data on Acoustic Leak Detection in order to form some basic concepts and basic specifications about leak detection. Both low frequency types and high frequency types are selected as candidates for Acoustic Leak Detection. After a review of both types, either one will be selected for the D-FBT plant. A detailed Research and Development plan on Acoustic Leak Detection, which should be carried out prior to starting the construction of the D-FBR plant, is under review. (author). 3 figs, 2 tabs

  8. Burn-up determination of irradiated thoria samples by isotope dilution-thermal ionisation mass spectrometry

    International Nuclear Information System (INIS)

    Aggarwal, S.K.; Jaison, P.G.; Telmore, V.M.; Shah, R.V.; Sant, V.L.; Sasibhushan, K.; Parab, A.R.; Alamelu, D.

    2010-03-01

    Burn-up was determined experimentally using thermal ionization mass spectrometry for two samples from ThO 2 bundles irradiated in KAPS-2. This involved quantitative dissolution of the irradiated fuel samples followed by separation and determination of Th, U and a stable fission product burn-up monitor in the dissolved fuel solution. Stable fission product 148 Nd was used as a burn-up monitor for determining the number of fissions. Isotope Dilution-Thermal Ionisation Mass Spectrometry (ID-TIMS) using natural U, 229 Th and enriched 142 Nd as spikes was employed for the determination of U, Th and Nd, respectively. Atom % fission values of 1.25 ± 0.03 were obtained for both the samples. 232 U content in 233 U determined by alpha spectrometry was about 500 ppm and this was higher by a factor of 5 compared to the theoretically predicted value by ORIGEN-2 code. (author)

  9. Basic nuclear data for FBR fuel cycle. Balance and forecasting

    International Nuclear Information System (INIS)

    Costa, L.; Granget, G.; Josso, F.

    1982-01-01

    A balance is made of nuclear data needed for studying FBR fuel cycle. From the accuracy of the obtained data, sensitivity calculations have enabled the future experimental measurements to be established [fr

  10. Programmatic and technical requirements for the FMDP fresh MOX fuel transport package

    International Nuclear Information System (INIS)

    Ludwig, S.B.; Michelhaugh, R.D.; Pope, R.B.

    1997-12-01

    This document is intended to guide the designers of the package to all pertinent regulatory and other design requirements to help ensure the safe and efficient transport of the weapons-grade (WG) fresh MOX fuel under the Fissile Materials Disposition Program. To accomplish the disposition mission using MOX fuel, the unirradiated MOX fuel must be transported from the MOX fabrication facility to one or more commercial reactors. Because the unirradiated fuel contains large quantities of plutonium and is not sufficient radioactive to create a self-protecting barrier to deter the material from theft, DOE intends to use its fleet of safe secure trailers (SSTs) to provide the necessary safeguards and security for the material in transit. In addition to these requirements, transport of radioactive materials must comply with regulations of the Department of Transportation and the Nuclear Regulatory Commission (NRC). In particular, NRC requires that the packages must meet strict performance requirements. The requirements for shipment of MOX fuel (i.e., radioactive fissile materials) specify that the package design is certified by NRC to ensure the materials contained in the packages are not released and remain subcritical after undergoing a series of hypothetical accident condition tests. Packages that pass these tests are certified by NRC as a Type B fissile (BF) package. This document specifies the programmatic and technical design requirements a package must satisfy to transport the fresh MOX fuel assemblies

  11. Joint Feasibility study on the Instruction of a commercial FBR power plant to Korea between Korea and France

    International Nuclear Information System (INIS)

    Lee, Chang Kun; Cho, Mann; Juhn, Poong Eil; Nam, Jang Soo; Roh, Eun Rae; Yang, Chang Kook; Choi, Young Sang; Shin, Jae In; Chang, Young Nam; Kim, Hoa Gy; Lee, Hong Moon

    1985-03-01

    The objective of this joint feasibility study is to prepare for the implementation plan of the establishment of technological capability prior to the introduction of a commercial FBR power plant to Korea. The scope and contents of the second year project are as follows: Determined are the implementation activities in the two alternative FBR introduction scenarios i.e., a turnkey scenario and a gradual localization scenario with regard to the proportion of domestic participation. And FBR center is modeled as the construction of 4 units of 1,500 MWe LMFBR and related fuel cycle facilities such as reprocessing and fabrication plants at one site. In turnkey scenario, domestic implementation project is selected and the means to develop technical capability are classified into OJT/OJP, R and D, and technology transfer and the floating time schedule is made with reference to the first FBR operation year. In a gradual localization scenario Korean party's plan of means to develop technical capability is prepared. For the analysis of turnkey base introduction scenario project activities were extracted and analyzed referring to IAEA TR. 200 ''Manpower Development for Nuclear power Plant'', Guidebook (1980). And floating time schedule was prepared for the means to develop technical capability and project schedule. For the analysis of gradual localization scenario, project activities were derived under the assumption that entire facilities of FBR center should be localized. PWR's and FBR's fuel reprocessing facilities were incorporated in the reprocessing facility. (Author)

  12. Calculation of pellet radial power distributions with a Monte Carlo burnup code

    International Nuclear Information System (INIS)

    Suzuki, Motomu; Yamamoto, Toru; Nakata, Tetsuo

    2010-01-01

    The Japan Nuclear Energy Safety Organization (JNES) has been working on an irradiation test program of high-burnup MOX fuel at Halden Boiling Water Reactor (HBWR). MOX and UO 2 fuel rods had been irradiated up to about 64 GWd/t (rod avg.) as a Japanese utilities research program (1st phase), and using those fuel rods, in-situ measurement of fuel pellet centerline temperature was done during the 2nd phase of irradiation as the JNES test program. As part of analysis of the temperature data, power distributions in a pellet radial direction were analyzed by using a Monte Carlo burnup code MVP-BURN. In addition, the calculated results of deterministic burnup codes SRAC and PLUTON for the same problem were compared with those of MVP-BURN to evaluate their accuracy. Burnup calculations with an assembly model were performed by using MVP-BURN and those with a pin cell model by using SRAC and PLUTON. The cell pitch and, therefore, fuel to moderator ratio in the pin cell calculation was determined from the comparison of neutron energy spectra with those of MVP-BURN. The fuel pellet radial distributions of burnup and fission reaction rates at the end of the 1st phase irradiation were compared between the three codes. The MVP-BURN calculation results show a large peaking in the burnup and fission rates in the pellet outer region for the UO 2 and MOX pellets. The SRAC calculations give very close results to those of the MVP-BURN. On the other hand, the PLUTON calculations show larger burnup for the UO 2 and lower burnup for the MOX pellets in the pellet outer region than those of MVP-BURN, which lead to larger fission rates for the UO 2 and lower fission rates for the MOX pellets, respectively. (author)

  13. FBR structural material test facility in flowing sodium environment

    International Nuclear Information System (INIS)

    Shanmugasundaram, M.; Kumar, Hemant; Ravi, S.

    2016-01-01

    In Fast Breeder Reactor (FBR), components such as Control and Safety Rod Drive Mechanism (CSRDM), Diverse Safety Rod Drive Mechanism (DSRDM), Transfer arm and primary sodium pumps etc., are experiencing friction and wear between the moving parts in contact with liquid sodium at high temperature. Hence, it is essential to evaluate the friction and wear behaviour to validate the design of components. In addition, the above core structural reactor components such as core cover plate, control plugs etc., undergoes thermal striping which is random thermal cycling induced by flow stream resulting from the mixing of non isothermal jets near that component. This leads to development of surface cracks and assist in crack growth which in turn may lead to failure of the structural component. Further, high temperature components are often subjected to low cycle fatigue due to temperature gradient induced cyclic thermal stresses caused by start-ups, shutdowns and transients. Also steady state operation at elevated temperature introduces creep and the combination of creep and fatigue leads to creep-fatigue interactions. Therefore, resistance to low cycle fatigue, creep and creep-fatigue are important considerations in the design of FBR components. Liquid sodium is used as coolant and hence the study of the above properties in dynamic sodium are equally important. In view of the above, facility for materials testing in sodium (INSOT) has been constructed and in operation for conducting the experiments such as tribology, thermal stripping, low cycle fatigue, creep and creep-fatigue interaction etc. The salient features of the operation and maintenance of creep and fatigue loops of INSOT facility are discussed in detail. (author)

  14. Utilization of cross-section covariance data in FBR core nuclear design and cross-section adjustment

    International Nuclear Information System (INIS)

    Ishikawa, Makoto

    1994-01-01

    In the core design of large fast breeder reactors (FBRs), it is essentially important to improve the prediction accuracy of nuclear characteristics from the viewpoint of both reducing cost and insuring reliability of the plant. The cross-section errors, that is, covariance data are one of the most dominant sources for the prediction uncertainty of the core parameters, therefore, quantitative evaluation of covariance data is indispensable for FBR core design. The first objective of the present paper is to introduce how the cross-section covariance data are utilized in the FBR core nuclear design works. The second is to delineate the cross-section adjustment study and its application to an FBR design, because this improved design method markedly enhances the needs and importance of the cross-section covariance data. (author)

  15. Key points for the design of Mox facilities

    International Nuclear Information System (INIS)

    Ducroux, R.; Gaiffe, L.; Dumond, S.; Cret, L.

    1998-01-01

    The design of a MOX fuel fabrication facility involves specific technical difficulties: - Process aspects: for example, its is necessary to meet the stringent requirements on the end products, while handling large quantities of powders and pellets; - Safety aspects: for example, containment of radioactive materials requires to use gloveboxes, to design process equipment so as to limit dispersion to the gloveboxes and to use systems for dust collection. - Technological aspects: for example, it is necessary to take into account maintenance early in the design, in order to lower the operation costs and lower the dose to the personnel. - Quality control and information systems: for example, it is necessary to be able to trace all the different products (powder lots, pellets, rods, assemblies). The design methods and organization set-up by COGEMA enables to master these technical difficulties during the different design steps and to obtain a MOX fabrication facility at the best performance versus cost compromise. These design methods rely mainly on: - taking into account all the different above mentioned constraints from the very beginning of the design process (by using the know-how resulting from experience feed-back, and also specific design tools developed by COGEMA and SGN); - launching a technical development and testing program at the beginning of the project and incorporating its results in the course of the design. (author)

  16. Study on small long-life LBE cooled fast reactor with CANDLE burn-up. Part 1. Steady state research

    International Nuclear Information System (INIS)

    Yan, Mingyu; Sekimoto, Hiroshi

    2008-01-01

    Small long-life reactor is required for some local areas. CANDLE small long-life fast reactor which does not require control rods, mining, enrichment and reprocessing plants can satisfy this demand. In a CANDLE reactor, the shapes of neutron flux, nuclide number densities and power density distributions remain constant and only shift in axial direction. The core with 1.0 m radius, 2.0 m length can realize CANDLE burn-up with nitride (enriched N-15) natural uranium as fresh fuel. Lead-Bismuth is used as coolant. From steady state analysis, we obtained the burn-up velocity, output power distribution, core temperature distribution, etc. The burn-up velocity is less than 1.0 cm/year that enables a long-life design easily. The core averaged discharged fuel burn-up is about 40%. (author)

  17. Radial power density distribution of MOX fuel rods in the HBWR

    International Nuclear Information System (INIS)

    Koo, Yang Hyun; Joo, Hyung Kook; Lee, Byung Ho; Sohn, Dong Seong

    1999-07-01

    Two MOX fuel rods, which ar being fabricated in the Paul Scherrer Institute (PSI), Switzerland in cooperation with the Korea Atomic Energy Research Institute (KAERI), are going to be irradiated in the HBWR (Halden Boiling Water Reactor) from the beginning of 2000 in the framework of OECD Halden Reactor Programme (HRP) together with a reference MOX fuel rod supplied by the BNFL. Since fuel temperature, which is influenced by radial power distribution, is a basic property in analyzing fuel behavior, it is required to consider radial power distribution in the HBWR. A subroutine FACTOR H BWR that calculates radial power density distribution for three MOX fuel rods have been developed subroutine FACTOR H BWR gives good agreement with the physics calculation except slight underprediction in the central part and a little overprediction at the outer part of the pellet. The subroutine will be incorporated into a computer code COSMOS and used to analyze the in-reactor behavior of the three MOX fuel rods during the Halden irradiation test. (author). 5 refs., 3 tabs., 24 figs

  18. Thermal conductivity degradation analyses of LWR MOX fuel by the quasi-two phase material model

    International Nuclear Information System (INIS)

    Kosaka, Yuji; Kurematsu, Shigeru; Kitagawa, Takaaki; Suzuki, Akihiro; Terai, Takayuki

    2012-01-01

    The temperature measurements of mixed oxide (MOX) and UO 2 fuels during irradiation suggested that the thermal conductivity degradation rate of the MOX fuel with burnup should be slower than that of the UO 2 fuel. In order to explain the difference of the degradation rates, the quasi-two phase material model is proposed to assess the thermal conductivity degradation of the MIMAS MOX fuel, which takes into account the Pu agglomerate distributions in the MOX fuel matrix as fabricated. As a result, the quasi-two phase model calculation shows the gradual increase of the difference with burnup and may expect more than 10% higher thermal conductivity values around 75 GWd/t. While these results are not fully suitable for thermal conductivity degradation models implemented by some industrial fuel manufacturers, they are consistent with the results from the irradiation tests and indicate that the inhomogeneity of Pu content in the MOX fuel can be one of the major reasons for the moderation of the thermal conductivity degradation of the MOX fuel. (author)

  19. Calculation of triton confinement and burn-up in tokamaks

    International Nuclear Information System (INIS)

    Anderson, D.; Battistoni, P.

    1987-01-01

    An analytical investigation is made of the confinement and subsequent burn-up of fusion produced tritons in a deuterium Tokamak plasma. Explicit approximations are obtained for the triton confinement factor, clearly displaying the scaling with physical parameters. The importance of pitch angle scattering losses during the triton slowing down is also estimated. A comparison with experiments and numerical calculations on the FT Tokamak slows good qualitative agreement. (authors)

  20. FBR pellet fabrication - density and dimensional control

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Schaus, P.S.

    1982-01-01

    The fuel pellet fabricating experience described in this paper involved pellet processing tests using mixed oxide (PuO 2 -UO 2 ) powders to produce fast breeder reactor (FBR) fuel pellets. Objectives of the pellet processing tests were to establish processing parameters for sintered-to-size fuel pellets to be used in an irradiation test in the Fast Flux Test Facility and to establish baseline fabrication control information. 26 figures, 7 tables

  1. Current Status of J-MOX Safeguards Design and Future Prospects

    International Nuclear Information System (INIS)

    Sampei, T.; Hiruta, K.; Shimizu, J.; Ikegame, K.

    2015-01-01

    The construction of JNFL MOX Fuel Fabrication Plant (J-MOX) is proceeding toward active test using uranium and MOX in July 2017, and completion of construction in October 2017. Although the construction schedule is largely impacted by progress of licencing, according to domestic law, JNFL is making every effort to get necessary permission of business licence and authorization of design and construction method as soon as possible. On the other hand, it is desirable that integrated safeguards approach is effective, efficient and consistent with J-MOX facility features. Discussion about the approach is going on among IAEA, Japan Safeguards Office (JSGO) and JNFL, and IAEA is planning to introduce the measures into the approach such as application of Near Real-Time Accountancy with frequent declaration from operator, Containment/Surveillance measures to storages, internal flow verification with 100%, random interim inspection (RII) and so on. RII scheme is intended to increase efficiency without compromising effectiveness and makes interruption of facility operation minimum. Also newly developed and improved safeguards equipment will be employed and it is possible to realize to increase credibility and efficiency of inspection by introduction of unattended/automatic safeguards equipment. Especially IAEA and JSGO share the development of non-destructive assay systems which meet the requirements from both parties. These systems will be jointly utilized at the flow verification, RII and PIV. JNFL will continue to provide enough design information in a timely manner toward early establishment of safeguards approach for J-MOX. Also JNFL will implement the coordination of installation and commissioning of safeguards equipment, and Design Information Verification activities for completion of construction in October 2017

  2. MOX manufacturing perspectives in a fast growing future and the MELOX plant

    International Nuclear Information System (INIS)

    Bekiarian, A.; Le Bastard, G.

    1991-01-01

    The potential MOX fuel market will grow regularly in the nineties. In view of satisfying the needs of the market, mixed-oxide fuel manufacturers have a strong incentive to increase the capacity of existing facilities and to build new ones. The Belgonucleaire plant at Dessel has been in operation since 1973. It has been backfitted up to a capacity of 35 t/y of LWR fuel which is now fully available. To satisfy the need of MOX fuel it was equally decided to adapt facilities in Cadarache where a production line, with a capacity of 15 t/y, is now delivering its production. But planned production up to the end of the century implies further increases in manufacturing capacities : MELOX, a plant for 120 t/y is under construction on the COGEMA site of Marcoule as well as a further expansion of Belgonucleaire plant at Dessel (P1) is studied to reach 70 t/y on this site. Similar developments are also planned by SIEMENS for a new manufacturing capability at Hanau (Germany). MELOX as well as all the new facilities have to get high levels of safety concerning environment and personnel. This leads to largely automated operations, and a particular care for waste treatment. (author)

  3. Micro-Reactor Physics of MOX-Fueled Core

    International Nuclear Information System (INIS)

    Takeda, T.

    2001-01-01

    Recently, fuel assemblies of light water reactors have become complicated because of the extension of fuel burnup and the use of high-enriched Gd and mixed-oxide (MOX) fuel, etc. In conventional assembly calculations, the detailed flux distribution, spectrum distribution, and space dependence of self-shielding within a fuel pellet are not directly taken into account. The experimental and theoretical study of investigating these microscopic properties is named micro-reactor physics. The purpose of this work is to show the importance of micro-reactor physics in the analysis of MOX fuel assemblies. Several authors have done related studies; however, their studies are limited to fuel pin cells, and they are never mentioned with regard to burnup effect, which is important for actual core design

  4. Approach to customer qualification of the BNFL Sellafield Mox Plant

    International Nuclear Information System (INIS)

    Sullivan, P.

    2003-01-01

    BNFL started plutonium commissioning of its Sellafield MOX Plant (SMP) in December 2001, with the first MOX pellets being produced in May 2002. SMP was designed to manufacture a range of both PWR and BWR fuel types for a number of different customers. During commissioning and early MOX fuel manufacturing BNFL has been demonstrating its ability to both automatically manufacture and inspect MOX fuel to meet the requirements of different customers' specifications and fuel types. The qualification project consisted of common and project specific qualification. Common qualification was carried out to demonstrate BNFL could meet several customers' requirements during the same qualification test. Project specific qualification was carried out for one customer only as the fabrication or inspection equipment was specific to their fuel type. An example is the fuel assembly process. The reasons for BNFL carrying out common qualification were: - Develop a common qualified process to meet different customer specifications. - Minimise future qualifications prior to starting future fuel campaigns. - Ensure BNFL understands and effectively manages different customer requirements in SMP. BNFL has approached qualification of SMP systematically. Firstly the inspection system was qualified, and once completed the inspection system was then used in the qualification of the manufacturing process. (orig.)

  5. General purpose nonlinear analysis program FINAS for elevated temperature design of FBR components

    International Nuclear Information System (INIS)

    Iwata, K.; Atsumo, H.; Kano, T.; Takeda, H.

    1982-01-01

    This paper presents currently available capabilities of a general purpose finite element nonlinear analysis program FINAS (FBR Inelastic Structural Analysis System) which has been developed at Power Reactor and Nuclear Fuel Development Corporation (PNC) since 1976 to support structural design of fast breeder reactor (FBR) components in Japan. This program is capable of treating inelastic responses of arbitrary complex structures subjected to static and dynamic load histories. Various types of finite element covering rods, beams, pipes, axisymmetric, two and three dimensional solids, plates and shells, are implemented in the program. The thermal elastic-plastic creep analysis is possible for each element type, with primary emphasis on the application to FBR components subjected to sustained or cyclic loads at elevated temperature. The program permits large deformation, buckling, fracture mechanics, and dynamic analyses for some of the element types and provides a number of options for automatic mesh generation and computer graphics. Some examples including elevated temperature effects are shown to demonstrate the accuracy and the efficiency of the program

  6. LWR mox fuel experience in Belgium and France with special emphasis on results obtained in BR3

    International Nuclear Information System (INIS)

    Bairiot, H.; Haas, D.; Lippens, M.; Motte, F.; Lebastard, G.; Marin, J.F.

    1986-09-01

    The course of the paper reflects two main topics: LWR MOX fuel experience in Belgium and France, summarizing the fabrication techniques, the references, the underlying MOX fuel technology and the current R and D programs for expanding the data base; behaviour of MOX fuel rods irradiated under steady state and transient operating conditions, focusing on MOX fuel technology features acquired through the irradiations performed in the BR3 PWR, supplemented by tests in the BR2 MTR. This paper focuses on the thermomechanical behaviour of LWR MOX fuel rods, which is intimately related to the fabrication technique and vice-versa. 22 refs

  7. Study of photo-stimulated luminescence in Ba0.95M0.05FBr:Eu2+ (M = Sr, Ca) powder

    International Nuclear Information System (INIS)

    Zhou Yingxue; Wang Dongsheng; Zhang Xinyi

    2001-01-01

    The luminescence centered at about 390 nm due to 4f 6 5d→4f 7 transition of Eu 2+ can be observed without X-ray or UV-light pre-irradiation for BaFBr:Eu 2+ , Ba 0.95 Sr 0.05 FBr:Eu 2+ and Ba 0.95 Ca 0.05 FBr:Eu 2+ powder samples which can be excited by light with wave length longer than 400 nm. It could be attributed to F centers which are formed in the preparation of samples. There are two broad bands in the photo-stimulated spectra. One peaked at 535 nm results from the excitation of electrons at F(F - ) center, and the other at 708 nm might be originated from the electron excitation of F(Br - ) center or F(Br - ) accumulators. If the Ba 2+ (ion's radius equals to 0.135 nm) in the samples were replaced by about 50% mol. of Sr 2+ (ion's radius equals to 0.113 nm) or Ca 2+ (ion's radius equals to 0.099 nm), the intensities of 535 nm and 708 nm bands decrease with the decreasing of ion radius. On the other hand, the shoulders at 580 nm and 650 nm or 575 nm and 645 nm can appear. In absorption spectra of 50-400 nm range, one can observe the red-shift of 79 nm, 83 nm peaks and new absorption peaks. It means that the new color centers: F(F - , Sr 2+ ), F(br - , Sr 2+ ) or F(F - , Ca 2+ ), F(br - , Ca 2+ ) are formed, when Ba 2+ were replaced with Sr 2+ or Ca 2+ in samples. It corresponds to the shoulders in photo-stimulated spectra

  8. Sensitivity change of rhodium self -powered detectors with burn-up

    International Nuclear Information System (INIS)

    Girgis, R.; Akimov, I.S.; Hamouda, I.

    1976-01-01

    The scope of the present paper is to obtain the calculation formulae to evaluate the rate of sensitivity change of the neutron self-powered detectors with burn-up. A code written in FORTRAN 4 was developed to be operational on the IBM-1130 computer. It has been established in the case of rhodium detectors that neglecting the β-particle absorption in the calculations leads to the underestimation of the detector sensitivity decrease up to 40%. The derived formulae can be used for other self-powered detectors. (author)

  9. Performance evaluation of WDXRF as a process control technique for MOX fuel fabrication

    International Nuclear Information System (INIS)

    Pandey, A.; Khan, F.A.; Das, D.K.; Behere, P.G.; Afzal, Mohd

    2015-01-01

    This paper presents studies on Wavelength Dispersive X-Ray Fluorescence (WDXRF), as a powerful non destructive technique (NDT) for the compositional analysis of various types of MOX fuels. The sample has come after mixing and milling of UO 2 and PuO 2 powder for the estimation of plutonium, as a process control step of fabrication of (U, Pu)O 2 mixed oxide (MOX) fuel. For the characterization for heavy metal in various MOX fuel, a WDXRF method was established as a process control technique. The attractiveness of our system is that it can analyze the samples in solid form as well as in liquid form. The system is adapted in a glove box for handling of plutonium based fuels. The glove box adapted system was optimized with Uranium and Thorium based MOX sample before introduction of Pu. Uranium oxide and thorium oxide have been estimated in uranium thorium MOX samples. Standard deviation for the analysis of U 3 O 8 and ThO 2 were found to be 0.14 and 0.15 respectively. The results are validated against the conventional wet chemical methods of analysis. (author)

  10. Stocking up on Fish Mox: a Systematic Analysis of Cultural Narratives about Self-medicating in Online Forums

    Directory of Open Access Journals (Sweden)

    Rebecca Howes-Mischel

    2017-09-01

    Full Text Available This study is a systematic review of cultural narratives that drive American belief in the value and efficacy of stocking up on fish antibiotics for human consumption. Popularized by “doomsday prepper” forums and survivalist medical professionals’ online videos, this narrative suggests that in some scenarios humans may benefit from such treatments—even as they note its contraindication to mainstream public health advice. Discussions in crowd-sourcing forums however, reveal that in practice Americans are using them as a form of home remedy to treat routine infections without missing work or to make up for gaps in insurance coverage. This article argues for greater attention to what makes it plausible and reasonable to treat human conditions with animal medications. It suggests that public health initiatives should address such decisions as emerging from a rational analysis of social and economic conditions rather than dismissing such practices as dangerous to population and individual health outcomes. As social scientists of medicine have long argued, collective narratives about health and medicine illustrate deeply the broader contexts in which communities understand and experience bodily state and shape how communities interact with public health institutions and respond to medical expertise. This study surveys online discussions about “fish mox” to show how participants contest medical expertise and promote a more distributed form of populist expertise. As such, consuming fish mox is both panacea for health inequality and a critique of health institutions for perpetrating such stratification.

  11. Behaviour of fission gas in the rim region of high burn-up UO2 fuel pellets with particular reference to results from an XRF investigation

    International Nuclear Information System (INIS)

    Mogensen, M.; Walker, C.T.

    1999-01-01

    XRF and EPMA results for retained xenon from Battelle's high burn-up effects program are re-evaluated. The data reviewed are from commercial low enriched BWR fuel with burn-ups of 44.8-54.9 GWd/tU and high enriched PWR fuel with burn-ups from 62.5 to 83.1 GWd/tU. It is found that the high burn-up structure penetrated much deeper than initially reported. The local burn-up threshold for the formation of the high burn-up structure in those fuels with grain sizes in the normal range lay between 60 and 75 GWd/tU. The high burn-up structure was not detected by EPMA in a fuel that had a grain size of 78 μm although the local burn-up at the pellet rim had exceeded 80 GWd/tU. It is concluded that fission gas had been released from the high burn-up structure in three PWR fuel sections with burn-ups of 70.4, 72.2 and 83.1 GWd/tU. In the rim region of the last two sections at the locations where XRF indicated gas release the local burn-up was higher than 75 GWd/tU. (orig.)

  12. Non-instrumented capsule design of HANARO irradiation test for the high burn-up large grain UO2 pellets

    International Nuclear Information System (INIS)

    Kim, D. H.; Lee, C. B.; Oh, D. S.

    2001-01-01

    Non-instrumented capsule was designed to irradiate the large grain UO 2 pellet developed for the high burn-up LWR fuel in the HANARO in-pile capsule. UO 2 pelletes will be irradiated up to the burn-up higher than 70 MWD/kgU in HANARO. To irradiate the UO 2 pellets up to the burn-up 70 MWD/kgU, need the time about 60 months and ensure the integrity of non-instrumented capsule for 30 months until replace the new capsule. In addition, to satisfy the safety criteria of HANARO such as prevention of ONB(Onset of Nucleate Boiling), fuel melting and wear damage of the capsule during the long term irradiation, design of the non-instrumented capsule was optimized

  13. Neutronics benchmark of a MOX assembly with near-weapons-grade plutonium

    International Nuclear Information System (INIS)

    Difilippo, F.C.; Fisher, S.E.

    1998-01-01

    One of the proposed ways to dispose of surplus weapons-grade plutonium (Pu) is to irradiate the high-fissile material in light-water reactors in order to reduce the Pu enrichment to the level of spent fuels from commercial reactors. Considerable experience has been accumulated about the behavior of mixed-oxide (MOX) uranium and plutonium fuels for plutonium recycling in commercial reactors, but the experience is related to Pu enrichments typical of spent fuels quite below the values of weapons-grade plutonium. Important decisions related to the kind of reactors to be used for the disposition of the plutonium are going to be based on calculations, so the validation of computational algorithms related to all aspects of the fuel cycle (power distributions, isotopics as function of the burnup, etc.), for weapons-grade isotopics is very important. Analysis of public domain data reveals that the cycle-2 irradiation in the Quad cities boiling-water reactor (BWR) is the most recent US destructive examination. This effort involved the irradiation of five MOX assemblies using 80 and 90% fissile plutonium. These benchmark data were gathered by General Electric under the sponsorship of the Electric Power Research Institute. It is emphasized, however, that global parameters are not the focus of this benchmark, since the five bundles containing MOX fuels did not significantly affect the overall core performance. However, since the primary objective of this work is to compare against measured post-irradiation assembly data, the term benchmark is applied here. One important reason for performing the benchmark on Quad Cities irradiation is that the fissile blends (up to 90%) are higher than reactor-grade and, quite close to, weapons-grade isotopics

  14. On the thermal conductivity of UO2 nuclear fuel at a high burn-up of around 100 MWd/kgHM

    International Nuclear Information System (INIS)

    Walker, C.T.; Staicu, D.; Sheindlin, M.; Papaioannou, D.; Goll, W.; Sontheimer, F.

    2006-01-01

    A study of the thermal conductivity of a commercial PWR fuel with an average pellet burn-up of 102 MWd/kgHM is described. The thermal conductivity data reported were derived from the thermal diffusivity measured by the laser flash method. The factors determining the fuel thermal conductivity at high burn-up were elucidated by investigating the recovery that occurred during thermal annealing. It was found that the thermal conductivity in the outer region of the fuel was much higher than it would have been if the high burn-up structure were not present. The increase in thermal conductivity is a consequence of the removal of fission products and radiation defects from the fuel lattice during recrystallisation of the fuel grains (an integral part of the formation process of the high burn-up structure). The gas porosity in the high burn-up structure lowers the increase in thermal conductivity caused by recrystallisation

  15. Experimental methods for burn-up determination in nuclear fuels, 1

    International Nuclear Information System (INIS)

    Taddei, J.F. de A.C.; Rodrigues, C.

    1977-01-01

    A method is presented that allows the calculation of the total percentage of atoms having undergone fission ('burn up') in nuclear fuels, from the measurement of absolute amounts of fission product neodymium-148 and of uranium and plutoniun present in the spent fuel, the fission yield of neodymium-148 being known. These measurements are performed through the mass spectrometry- isotope dilution technique [pt

  16. Risks for skin and other cancers up to 25 years after burn injuries

    DEFF Research Database (Denmark)

    Mellemkjaer, Lene; Hölmich, Lisbet R; Gridley, Gloria

    2006-01-01

    BACKGROUND: Malignant degeneration of chronic ulcers such as nonhealed burn wounds has been described in the literature, but this phenomenon has never been quantified in an epidemiologic study. We investigated the risks for skin and other cancers among patients with a prior burn. METHODS: We...... with that in the general population of Denmark. RESULTS: Patients with burn had 139 skin cancers, with 189 expected, yielding a standardized incidence ratio of 0.7 (95% confidence interval = 0.6-0.9). This reduced risk was due mainly to deficits of basal cell carcinoma and malignant melanoma, whereas the number...... of squamous cell carcinomas observed was close to expected. We saw no consistent increases in risk for skin cancer in the subgroups of patients with the most severe injuries or with the longest periods of follow up. CONCLUSIONS: The tendency to malignant degeneration of burn scars, described in previous...

  17. Development of high performance liquid chromatography for rapid determination of burn-up of nuclear fuels

    International Nuclear Information System (INIS)

    Joseph, M.; Karunasagar, D.; Saha, B.

    1996-01-01

    Burn-up an important parameter during evaluation of the performance of any nuclear fuel. Among the various techniques available, the preferred one for its determination is based on accurate measurement of a suitable fission product monitor and the residual heavy elements. Since isotopes of rare earth elements are generally used as burn-up monitors, conditions were standardized for rapid separation (within 15 minutes) of light rare earths using high performance liquid chromatography based on either anion exchange (Partisil 10 SAX) in methanol-nitric acid medium or by cation exchange on a reverse phase column (Spherisorb 5-ODS-2 or Supelcosil LC-18) dynamically modified with 1-octane sulfonate or camphor-10-sulfonic acid (β). Both these methods were assessed for separation of individual fission product rare earths from their mixtures. A new approach has been examined in detail for rapid assay of neodymium, which appears promising for faster and accurate measurement of burn-up. (author)

  18. Burn up determination of IEAR-1 fuel elements by non destructive gamma ray spectrometry method

    International Nuclear Information System (INIS)

    Soares, A.J.

    1977-01-01

    Measurement of nuclear fuel burn up by non destructive gamma ray spectrometry is discussed, and results of such measurements, made at the Instituto de Energia Atomica (IEA), are given. Specifically, the burn up of an MTR (Material Testing Reactor) fuel element removed from the IEAR-1 swimming pool reactor in 1958 is evaluated from the measured Cs-137 activity, which gives a single 661,6 keV gamma ray. Due to the long decay time of the test element, no other fission decay product activity could be detected. Analysis of measurements, made with a 3'' x 3'' NaI(Tl) detector at 330 distinct points of the element, showed the total burn up to 3.3 +- -+ 0.8 mg. This is in agreement with a calculated value. As the maximum temperature of IEAR-1 fuel elements is of the order of 40 0 C, migration effects of Cs-137 was not considered, this being significant only at fuel temperature in excess of 1000 0 C [pt

  19. Method of operating FBR type reactors

    International Nuclear Information System (INIS)

    Arie, Kazuo.

    1984-01-01

    Purpose: To secure the controlling performance and the safety of FBR type reactors by decreasing the amount of deformation due to the difference in the heat expansion of a control rod guide tube. Method: The reactor is operated while disposing reactor core fuel assemblies of a same power at point-to-point symmetrical positions relative to the axial center for the control rod assembly. This can eliminate the temperature difference between opposing surfaces of the control rod guide tube and eliminate the difference in the thermal expansion. (Yoshino, Y.)

  20. Safety evaluation on MOX new fuel at marine transport

    International Nuclear Information System (INIS)

    Tsumune, Daisuke; Ito, Chihiro; Saegusa, Toshiari; Maruyama, Koki

    2000-01-01

    In the Central Research Institute of Electric Power Industry, in order to confirm effects of MOX new fuel on the public are as small as possible even when its marine transport goes down, some exposed radiation dose has previously conducted on imaginary shipwreck of marine transport on used nuclear fuel, plutonium dioxide, and high level return glass solid. Under a base of such informations, some investigations on safety on marine transport of the MOX new fuel was conducted. On September, 1999, five transport vessels of the MOX new fuel was at first transported on marine. The value of five times of estimated exposed radiation dose (max. 8.1 x 10 -8 mSv/y) corresponds to an evaluation result assumed by shipwreck in marine transport this time. As a result, it was found that the exposed radiation dose estimated on this case would be sufficiently less than an effective dose equivalent limit (1 mSv/y) of public exposure according to the recommendation of ICRP in both coastal and oceanic areas. (G.K.)

  1. Optimization of MOX fuel cycles in pebble bed HTGR

    International Nuclear Information System (INIS)

    Wei Jinfeng; Li Fu; Sun Yuliang

    2013-01-01

    Compared with light water reactor (LWR), the pebble bed high temperature gas-cooled reactor (HTGR) is able to operate in a full mixed oxide (MOX) fuelled core without significant change to core structure design. Based on a reference design of 250 MW pebble bed HTGR, four MOX fuel cycles were designed and evaluated by VSOP program package, including the mixed Pu-U fuel pebbles and mixed loading of separate Pu-pebbles and U-pebbles. Some important physics features were investigated and compared for these four cycles, such as the effective multiplication factor of initial core, the pebble residence time, discharge burnup, and temperature coefficients. Preliminary results show that the overall performance of one case is superior to other equivalent MOX fuel cycles on condition that uranium fuel elements and plutonium fuel elements are separated as the different fuel pebbles and that the uranium fuel elements are irradiated longer in the core than the plutonium fuel elements, and the average discharge burnup of this case is also higher than others. (authors)

  2. Transportation and packaging issues involving the disposition of surplus plutonium as MOX fuel in commercial LWRs

    International Nuclear Information System (INIS)

    Ludwig, S.B.; Welch, D.E.; Best, R.E.; Schmid, S.P.

    1997-08-01

    This report provides a view of anticipated transportation, packaging, and facility handling operations that are expected to occur at mixed-oxide (MOX) fuel fabrication and commercial reactor facilities. This information is intended for use by prospective contractors to the U.S. Department of Energy (DOE) who plan to submit proposals to DOE to manufacture and irradiate MOX fuel assemblies in domestic commercial light-water reactors. The report provides data to prospective consortia regarding packaging and pickup of MOX nuclear fuel assemblies at a MOX fuel manufacturing plant and transport and delivery of the MOX assemblies to nuclear power plants. The report also identifies areas where data are incomplete either because of the status of development or lack of sufficient information and specificity regarding the nuclear power plant(s) where deliveries will take place

  3. Long-term scenarios of power reactors and fuel cycle development and the role of reduced moderation water reactors

    International Nuclear Information System (INIS)

    Sato, Osamu; Tatematsu, Kenji; Tanaka, Yoji

    2000-01-01

    Reduced moderation spectrum reactor is one of water cooled type reactors in future, which is based on the advanced technology of conventional nuclear power plants. The reduced moderation water reactor (RMWR) has various advantages, such as effective utilization of uranium resources, high conversion ratio, high burn-up, long-term cycle operation, and multiple recycle of plutonium. The RMWR is expected to be a substitute of fast breeder reactor (FBR) of which the development encounters with some technical and financial difficulties, and discontinues in many countries. The role of the RMWR on long-term scenarios of power reactor and fuel cycle development in Japan is investigated from the point of view of uranium resource needed. The consumption of natural uranium needed up to the year 2200 is calculated on various assumptions for the following three cases: (1) no breeder reactor; plutonium-thermal cycle in conventional light water reactor, (2) introduction of the FBR, and (3) introduction of the RMWR. The amounts of natural uranium consumption depends largely on the conversion ratio and plutonium quantity needed of a reactor type. The RMWR has a possibility as a substitute technology of the FBR with the improvement of conversion ratio and high burn-up. (Suetake, M.)

  4. Long-term scenarios of power reactors and fuel cycle development and the role of reduced moderation water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Osamu; Tatematsu, Kenji; Tanaka, Yoji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-06-01

    Reduced moderation spectrum reactor is one of water cooled type reactors in future, which is based on the advanced technology of conventional nuclear power plants. The reduced moderation water reactor (RMWR) has various advantages, such as effective utilization of uranium resources, high conversion ratio, high burn-up, long-term cycle operation, and multiple recycle of plutonium. The RMWR is expected to be a substitute of fast breeder reactor (FBR) of which the development encounters with some technical and financial difficulties, and discontinues in many countries. The role of the RMWR on long-term scenarios of power reactor and fuel cycle development in Japan is investigated from the point of view of uranium resource needed. The consumption of natural uranium needed up to the year 2200 is calculated on various assumptions for the following three cases: (1) no breeder reactor; plutonium-thermal cycle in conventional light water reactor, (2) introduction of the FBR, and (3) introduction of the RMWR. The amounts of natural uranium consumption depends largely on the conversion ratio and plutonium quantity needed of a reactor type. The RMWR has a possibility as a substitute technology of the FBR with the improvement of conversion ratio and high burn-up. (Suetake, M.)

  5. FUEL BURN-UP CALCULATION FOR WORKING CORE OF THE RSG-GAS RESEARCH REACTOR AT BATAN SERPONG

    Directory of Open Access Journals (Sweden)

    Tukiran Surbakti

    2017-12-01

    Full Text Available The neutronic parameters are required in the safety analysis of the RSG-GAS research reactor. The RSG-GAS research reactor, MTR (Material Testing Reactor type is used for research and also in radioisotope production. RSG-GAS has been operating for 30 years without experiencing significant obstacles. It is managed under strict requirements, especially fuel management and fuel burn-up calculations. The reactor is operated under the supervision of the Regulatory Body (BAPETEN and the IAEA (International Atomic Energy Agency. In this paper, the experience of managing RSG-GAS core fuels will be discussed, there are hundred possibilities of fuel placements on the reactor core and the strategy used to operate the reactor will be crucial. However, based on strict calculation and supervision, there is no incorrect placement of the fuels in the core. The calculations were performed on working core by using the WIMSD-5B computer code with ENDFVII.0 data file to generate the macroscopic cross-section of fuel and BATAN-FUEL code were used to obtain the neutronic parameter value such as fuel burn-up fractions. The calculation of the neutronic core parameters of the RSG-GAS research reactor was carried out for U3Si2-Al fuel, 250 grams of mass, with an equilibrium core strategy. The calculations show that on the last three operating cores (T90, T91, T92, all fuels meet the safety criteria and the fuel burn-up does not exceed the maximum discharge burn-up of 59%. Maximum fuel burn-up always exists in the fuel which is close to the position of control rod.

  6. Present condition of survey research on actualization strategy of fast breeding reactor (FBR) cycling. General outlines on the research

    International Nuclear Information System (INIS)

    Hara, Hideaki

    2001-01-01

    The Japan Nuclear Cycle Development Institute (JNC) started the survey research on actualization strategy of FBR cycling under cooperation of related organizations such as electric business company and so on, on July, 1999. The research aims at preparation of technical system to establish the FBR cycling for a future main energy supply source by extracting an actualization picture maximum activated advantages originally haven by the FBR cycling and by proposing a developmental strategy flexibly responsible to diverse needs in future society. Here was reported on effort state of its phase 1 (two years between 1999 and 2000 fiscal years). In the phase 1, it was planned to perform research and development shown as follows: 1) Extraction of actualization candidate concept on the FBR cycling under a premise of safety security and a viewpoint of evaluation on economics, resource effective usage, environmental loading reduction, and nuclear dispersion resistance by conducting investigation and evaluation of wide technical choices adopting innovative techniques, and 2) Embodiment of a research and development program of phase 2 (from 2001 to 2005 fiscal years) by investigating some technical subjects important for selection of research and development program aiming at actualization and its candidate concept on the FBR cycling. (G.K.)

  7. Radial power density distribution of MOX fuel rods in the IFA-651

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Ho; Koo, Yang Hyun; Joo, Hyung Kook; Cheon, Jin Sik; Oh, Je Yong; Sohn, Dong Seong [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    Two MOX fuel rods, which were fabricated in the Paul Scherrer Institute (PSI), Switzerland in cooperation with Korea Atomic Energy Research Institute, have been irradiated in the HBWR from June, 2000 in the framework of OECD-HRP together with a reference MOX fuel rod supplied by the BNFL. Since fuel temperature, which is influenced by radial power distribution, is basic in analyzing fuel behavior, it is required to consider radial power distribution in the HBWR. A subroutine FACTOR{sub H}BWR that calculates radial power density distribution for three MOX fuel rods has been developed based on neutron physics results and DEPRESS program. The developed subroutine FACTOR{sub H}BWR gives good agreement with the physics calculation except slight under-prediction at the outer part of the pellet above the burnup of 20 MWd/kgHM. The subroutine will be incorporated into a computer code COSMOS and used to analyze the in-reactor behavior of the three MOX fuel rods during the Halden irradiation test. 24 figs., 4 tabs. (Author)

  8. Late effects following inhalation of mixed oxide (U,PuO{sub 2}) mox aerosol in the rat; Effets tardifs de l'inhalation d'aerosols de Mox 2,5% ou 7,1% Pu chez le rat

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, N.; Van Der Meeren, A.; Fritsch, P.; Maximilien, R

    2008-07-01

    pathologies (90% of exposed rats) including fibrosis (70%) and malignant lung tumours (46%). At higher ILD (4-20 kBq) survival time was reduced (N=103; p<0.05) and was often associated with important fibrotic areas and emphysema. Multiple lung pathologies and metastases were observed in 17% and 13% of rats respectively. The incidence of malignant tumours (adenocarcinoma, squamous, adeno-squamous cell carcinoma) increased in a linear manner with dose (up to 60 Gy) with a risk of 1-1.6% Gy{sup -1} for MOX that are similar to reported data for industrial PuO{sub 2} alone (1.9 % Gy{sup -1}) but less than neptunium (6% / Gy). The appearance and risk of tumour development was independent of the different Pu levels used in this study. Immuno-labelling with anti-Surfactant Protein C and anti-Thyroid Transcription Factor indicated differential staining of various tumour types (squamous cell and adenocarcinomas) that proved a useful adjunct for tumour diagnosis. In conclusion, late effects following MOX inhalation result in similar risk for development of lung tumours as compared with industrial PuO{sub 2}. At high doses deterministic effects prevail, resulting in lung fibrosis and decreased life-span. (authors)

  9. ORIGEN2 libraries based on JENDL-3.2 for LWR-MOX fuels

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya; Katakura, Jun-ichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Onoue, Masaaki; Matsumoto, Hideki [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Sasahara, Akihiro [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2000-11-01

    A set of ORIGEN2 libraries for LWR MOX fuels was developed based on JENDL-3.2. The libraries were compiled with SWAT using the specification of MOX fuels that will be used in nuclear power reactors in Japan. The verification of the libraries were performed by the analyses of post irradiation examinations for the fuels from European PWR. By the analysis of PIE data from PWR in United States, the comparison was made between calculation and experimental results in the case of that parameters for making the libraries are different from irradiation conditions. These new libraries for LWR MOX fuels are packaged in ORLIBJ32, the libraries released in 1999. (author)

  10. Burn-up measurements of spent fuel using gamma spectrometry technique

    International Nuclear Information System (INIS)

    Pereda, C.; Henriquez, C.; Klein, J.; Medel, J.

    2005-01-01

    Burn-up results obtained for HEU (45% of 235 U) fuel assemblies of the RECH-1 Research Reactor using gamma spectrometry technique are presented. The spectra were got from an in-pool facility built in the reactor to be mainly used to measure the burnup of irradiated fuel assemblies with short cooling time, where 95 Zr is being evaluated as possible fission monitor. A program to measure all spent fuel assemblies of the RECH-1 reactor was initiated in the frame of the Regional Project RLA/4/018: 'Management of Spent Fuel from Research Reactors'. The results presented here were obtained from HEU spent fuel assemblies with cooling time greater than 100 days and 137 Cs was used as fission monitor. The efficiency of the in-pool system was determined using a slightly burnt experimental fuel assembly, which has one fuel plate (one of the outer plates) and the rest are dummy plates. An average burn-up of 2.8% of 235 U was previously measured for the experimental fuel assembly utilizing a facility installed in a hot cell and 137 Cs was used as monitor. (author)

  11. Mixed-oxide (MOX) fuel performance benchmark. Summary of the results for the PRIMO MOX rod BD8

    International Nuclear Information System (INIS)

    Ott, L.J.; Sartori, E.; Costa, A.; ); Sobolev, V.; Lee, B-H.; Alekseev, P.N.; Shestopalov, A.A.; Mikityuk, K.O.; Fomichenko, P.A.; Shatrova, L.P.; Medvedev, A.V.; Bogatyr, S.M.; Khvostov, G.A.; Kuznetsov, V.I.; Stoenescu, R.; Chatwin, C.P.

    2009-01-01

    The OECD/NEA Nuclear Science Committee has established an Expert Group that deals with the status and trends of reactor physics, nuclear fuel performance, and fuel cycle issues related to the disposition of weapons-grade plutonium as MOX fuel. The activities of the NEA Expert Group on Reactor-based Plutonium Disposition are carried out in close cooperation with the NEA Working Party on Scientific Issues in Reactor Systems (WPRS). A major part of these activities includes benchmark studies. This report describes the results of the PRIMO rod BD8 benchmark exercise, the second benchmark by the TFRPD relative to MOX fuel behaviour. The corresponding PRIMO experimental data have been released, compiled and reviewed for the International Fuel Performance Experiments (IFPE) database. The observed ranges (as noted in the text) in the predicted thermal and FGR responses are reasonable given the variety and combination of thermal conductivity and FGR models employed by the benchmark participants with their respective fuel performance codes

  12. Assessment of the linear power level in fuel rods irradiated in the CALLISTO loop in the high flux materials testing reactor BR2

    International Nuclear Information System (INIS)

    Malambu, E.; Raedt, Ch. de; Weber, M.

    1999-01-01

    The pressurized light-water-cooled testing facility CALLISTO was designed to test the behaviour of advanced fuel rods (UO 2 or MOX, possibly with burnable poisons) under conditions representative of actual LWRs up to high burn-up rates. The accurate determination of the fission powers in each of the nine rods, and hence of the burn-up values, is carried out according to a rather elaborate procedure. (author)

  13. On the thermal evolution of Pu-rich agglomerates in MOX

    International Nuclear Information System (INIS)

    Verwerft, M.; Leenaers, A.; Lippens, M.; Mertens, L.

    1999-01-01

    From the experience accumulated so far on irradiated MOX fuel, its overall behaviour under irradiation is generally well predicted by existing fuel models. It appears however that additional data are still welcome to properly benchmark fission gas release models, mainly at elevated burnup. To this aim, an international research project, FIGARO, was initiated. Its goal was to provide thermal and fission gas release data og MOX at high burnup. Two MOX fuel rods irradiated to high burnup (50 GWd/tM peak pellet) but at lower power (less than 200 W/cm) were selected for segmentation and instrumentation with central thermocouple and pressure gauge. The instrumented segments were subjected to irradiations at variable linear power in the HALDEN MTR. Both temperature and internal pressure were online monitored during the ramp test. Afterwards, the rod segments were transported and extensively investigated. The paper focuses on the investigation of the evolution of the microstructure of Pu-rich agglomerates as a function of temperature

  14. Development of knowledge-based operator support system for steam generator water leak events in FBR plants

    International Nuclear Information System (INIS)

    Arikawa, Hiroshi; Ida, Toshio; Matsumoto, Hiroyuki; Kishida, Masako

    1991-01-01

    A knowledge engineering approach to operation support system would be useful in maintaining safe and steady operation in nuclear plants. This paper describes a knowledge-based operation support system which assists the operators during steam generator water leak events in FBR plants. We have developed a real-time expert system. The expert system adopts hierarchical knowledge representation corresponding to the 'plant abnormality model'. A technique of signal validation which uses knowledge of symptom propagation are applied to diagnosis. In order to verify the knowledge base concerning steam generator water leak events in FBR plants, a simulator is linked to the expert system. It is revealed that diagnosis based on 'plant abnormality model' and signal validation using knowledge of symptom propagation could work successfully. Also, it is suggested that the expert system could be useful in supporting FBR plants operations. (author)

  15. Novel technique for manipulating MOX fuel particles using radiation pressure of a laser light

    International Nuclear Information System (INIS)

    Omori, R.; Suzuki, A.

    2001-01-01

    We proposed two principles based on the laser manipulation technique for collecting MOX fuel particles floating in air. While Principle A was based on the acceleration of the MOX particles due to the radiation pressure of a visible laser light, Principle B was based on the gradient forces exerted on the particles when an infrared laser light was incident. Principle A was experimentally verified using MnO 2 particles. Numerical results also showed the possibility of collecting MOX fuel particles based on both the principles. (authors)

  16. A MOX fuel attribute monitor

    International Nuclear Information System (INIS)

    Bliss, Mary; Jordan, David V.; Barnett, Debra S.; Redding, Rebecca L.; Pearce, Stephen K.

    2007-01-01

    Euratom performs safeguards monitoring of Fresh MOX fuel for domestic power production in the European Union. Video cameras monitor the reactor storage ponds. If video surveillance is lost for a certain amount of time a measurement is required to verify that no fuel was diverted. The attribute measurement to verify the continued presence of MOX fuel is neutron emission. Ideally this measurement would be made without moving or handling the fuel rod assembly. A prototype attribute measurement system was made using scintillating neutron sensitive glass waveguides developed by Pacific Northwest National Laboratory. Short lengths (5-20 cm) of the neutron sensitive fiber were mechanically spliced to 15 m lengths of commercial high numerical aperture fiber optic cable (Ceramoptec Optran Ultra 0.44). The light detector is a Hamamatsu R7400P photomultiplier tube. An electronics package was built to use the sensors with a GBS Elektronik MCA-166 multichannel analyzer and user interface. The MCA-166 is the system most commonly used by Euratom inspectors. It can also be run from a laptop computer using Maestro (Ortec) or other software. A MCNP model was made to compare to measurements made with several neutron sources including NIST traceable 252 Cf

  17. Fuel burn-up distribution and transuranic nuclide contents produced at the first cycle operation of AP1000

    International Nuclear Information System (INIS)

    Jati Susilo; Jupiter Sitorus Pane

    2016-01-01

    AP1000 reactor core was designed with nominal power of 1154 MWe (3415 MWth), operated within life time of 60 years and cycle length of 18 months. For the first cycle, the AP1000 core uses three kinds of UO 2 enrichment, they are 2.35 w/o, 3.40 w/o and 4.45 w/o. Absorber materials such as ZrB 2 , Pyrex and Boron solution are used to compensate the excess reactivity at the beginning of cycle. In the core, U-235 fuels are burned by fission reaction and produce energy, fission products and new neutron. Because of the U-238 neutron absorption reaction, the high level radioactive waste of heavy nuclide transuranic such as Pu, Am, Cm and Np are also generated. They have a very long half life. The purpose of this study is to evaluate the result of fuel burn-up distribution and heavy nuclide transuranic contents produced by AP1000 at the end of first cycle operation (EOFC). Calculation of ¼ part of the AP1000 core in the 2 dimensional model has been done using SRAC2006 code with the module of COREBN/HIST. The input data called the table of macroscopic cross section, is calculated using module of PIJ. The result shows that the maximum fuel assembly (FA) burn-up is 27.04 GWD/MTU, that is still lower than allowed maximum burn-up of 62 GWD/MTU. Fuel loading position at the center/middle of the core will produce bigger burn-up and transuranic nuclide than one at the edges the of the core. The use of IFBA fuel just give a small effect to lessen the fuel burn-up and transuranic nuclide production. (author)

  18. Two-year follow-up of outcomes related to scarring and distress in children with severe burns.

    Science.gov (United States)

    Wurzer, Paul; Forbes, Abigail A; Hundeshagen, Gabriel; Andersen, Clark R; Epperson, Kathryn M; Meyer, Walter J; Kamolz, Lars P; Branski, Ludwik K; Suman, Oscar E; Herndon, David N; Finnerty, Celeste C

    2017-08-01

    We assessed the perception of scarring and distress by pediatric burn survivors with burns covering more than one-third of total body surface area (TBSA) for up to 2 years post-burn. Children with severe burns were admitted to our hospital between 2004 and 2012, and consented to this IRB-approved-study. Subjects completed at least one Scars Problems and/or Distress questionnaire between discharge and 24 months post burn. Outcomes were modeled with generalized estimating equations or using mixed linear models. Significance was accepted at p body areas over time (p self-conscious with respect to their body image even 2 years after burn injury. Implications for Rehabilitation According to self-assessment questionnaires, severely burned children perceive significant improvements in scarring and distress during the first 2 years post burn. Significant improvements were seen in reduction of pain, itching, sleeping disturbances, tightness, range of motion, and strength (p body areas. The rehabilitation team should provide access to wigs or other aids to pediatric burn survivors to address these needs.

  19. Determination of fissile fraction in MOX (mixed U + Pu oxides) fuels for different burnup values

    International Nuclear Information System (INIS)

    Ozdemir, Levent; Acar, Banu Bulut; Zabunoglu, Okan H.

    2011-01-01

    When spent Light Water Reactor fuels are processed by the standard Purex method of reprocessing, plutonium (Pu) and uranium (U) in spent fuel are obtained as pure and separate streams. The recovered Pu has a fissile content (consisting of 239 Pu and 241 Pu) greater than 60% typically (although it mainly depends on discharge burnup of spent fuel). The recovered Pu can be recycled as mixed-oxide (MOX) fuel after being blended with a fertile U makeup in a MOX fabrication plant. The burnup that can be obtained from MOX fuel depends on: (1) isotopic composition of Pu, which is closely related to the discharge burnup of spent fuel from which Pu is recovered; (2) the type of fertile U makeup material used (depleted U, natural U, or recovered U); and (3) fraction of makeup material in the mix (blending ratio), which in turn determines the total fissile fraction of MOX. Using the Non-linear Reactivity Model and the code MONTEBURNS, a step-by-step procedure for computing the total fissile content of MOX is introduced. As was intended, the resulting expression is simple enough for quick/hand calculations of total fissile content of MOX required to reach a desired burnup for a given discharge burnup of spent fuel and for a specified fertile U makeup. In any case, due to non-fissile (parasitic) content of recovered Pu, a greater fissile fraction in MOX than that in fresh U is required to obtain the same burnup as can be obtained by the fresh U fuel.

  20. Study on the sensitivity of Self-Powered Neutron Detectors (SPND) and its change due to burn-up

    International Nuclear Information System (INIS)

    Cho, Gyuseong; Lee, Wanno; Yoon, Jeong-Hyoun.

    1996-01-01

    Self-Powered Neutron Detectors (SPND) are currently used to estimate the power generation distribution and fuel burn-up in several nuclear power reactors in Korea. While they have several advantages such as small size, low cost, and relatively simple electronics required in conjunction with its usage, it has some intrinsic problems of the low level of output current, a slow response time, the rapid change of sensitivity which makes it difficult to use for a long term. In this paper, Monte Carlo simulation was accomplished to calculate the escape probability as a function of the birth position for the typical geometry of rhodium-based SPNDs. Using the simulation result, the burn-up profile of rhodium number density and the neutron sensitivity is calculated as a function of burn-up time in the reactor. The sensitivity of the SPND decreases non-linearly due to the high absorption cross-section and the non-uniform burn-up of rhodium in the emitter rod. The method used here can be applied to the analysis of other types of SPNDs and will be useful in the optimum design of new SPNDs for long-term usage. (author)

  1. Thermal conductivity evaluation of high burnup mixed-oxide (MOX) fuel pellet

    International Nuclear Information System (INIS)

    Amaya, Masaki; Nakamura, Jinichi; Nagase, Fumihisa; Fuketa, Toyoshi

    2011-01-01

    The thermal conductivity formula of fuel pellet which contains the effects of burnup and plutonium (Pu) addition was proposed based on the Klemens' theory and reported thermal conductivities of unirradiated (U, Pu) O 2 and irradiated UO 2 pellets. The thermal conductivity of high burnup MOX pellet was formulated by applying a summation rule between phonon scattering parameters which show the effects of plutonium addition and burnup. Temperature of high burnup MOX fuel was evaluated based on the thermal conductivity integral which was calculated from the above-mentioned thermal conductivity formula. Calculated fuel temperatures were plotted against the linear heat rates of the fuel rods, and were compared with the fuel temperatures measured in a test reactor. Since both values agreed well, it was confirmed that the proposed thermal conductivity formula of MOX pellets is adequate.

  2. Toward full MOX core design

    International Nuclear Information System (INIS)

    Rouviere, G.; Guillet, J.L.; Bruna, G.B.; Pelet, J.

    1999-01-01

    This paper presents a selection of the main preliminary results of a study program sponsored by COGEMA and currently carried out by FRAMATOME. The objective of this study is to investigate the feasibility of full MOX core loading in a French 1300 MWe PWR, a recent and widespread standard nuclear power plant. The investigation includes core nuclear design, thermal hydraulic and systems aspects. (authors)

  3. Mox pellet reference material

    International Nuclear Information System (INIS)

    Perolat, J.P.

    1991-01-01

    A first batch of MOX pellets certified in plutonium and uranium has been prepared and characterised in France to meet the needs of laboratories which are engaged upon destructive analysis for safeguards purposes especially in fuel fabrication plants. The pellets sintering has been obtained in a special fabrication to achieve an homogeneity better than 0.1%. The plutonium and uranium characterisation by chemical analysis has been carried out by two laboratories using at least two different methods. 1 fig., 5 refs

  4. Fuel assembly for FBR type reactor and reactor core thereof

    International Nuclear Information System (INIS)

    Kobayashi, Kaoru.

    1998-01-01

    The present invention provides a fuel assembly to be loaded to a reactor core of a large sized FBR type reactor, in which a coolant density coefficient can be reduced without causing power peaking in the peripheral region of neutron moderators loaded in the reactor core. Namely, the fuel assembly for the FBR type reactor comprises a plurality of fission product-loaded fuel rods and a plurality of fertile material-loaded fuel rods and one or more rods loading neutron moderators. In this case, the plurality of fertile material-loaded fuel rods are disposed to the peripheral region of the neutron moderator-loaded rods. The plurality of fission product-loaded fuel rods are disposed surrounding the peripheral region of the plurality of fertile material-loaded fuel rods. The neutron moderator comprises zirconium hydride, yttrium hydride and calcium hydride. The fission products are mixed oxide fuels. The fertile material comprises depleted uranium or natural uranium. (I.S.)

  5. Development of destructive methods of burn-up determination and their application on WWER type nuclear fuels

    International Nuclear Information System (INIS)

    Hermann, A.; Stephan, H.; Nebel, D.

    1984-03-01

    Results are described of a cooperation between the Central Institute of Nuclear Research Rossendorf and the Radium Institute 'V.G. Chlopin' Leningrad in the field of destructive burn-up determination. Laboratory methods of burn-up determination using the classical monitors 137 Cs, 106 Ru, 148 Nd and isotopes of heavy metals (U, Pu) as well as the usefulness of 90 Sr, stable isotopes of Ru and Mo as monitors are dealt with. The analysis of the fuel components uranium (spectrophotometry, potentiometric titration, mass-spectrometric isotope dilution) and plutonium (spectrophotometry, coulometric titration, mass- and alpha-spectrometric isotope dilution) is fully described. Possibilities of increasing the reproducibility (automatic adjusting of measurement conditions) and the sensibility (ion impuls counting) of mass-spectrometric measurements are proposed and applied to a precise determination of Am and Cm isotopic composition. The methods have been used for burn-up analysis of spent WWER (especially WWER-440) fuel. (author)

  6. Development of moderated neutron calibration fields simulating workplaces of MOX fuel facilities

    International Nuclear Information System (INIS)

    Tsujimura, Norio; Yoshida, Tadayoshi; Takada, Chie

    2005-01-01

    It is important for the MOX fuel facilities to control neutrons produced by the spontaneous fission of plutonium isotopes and those from (α,n) reactions between 18 O and α particles emitted by 238 Pu. Neutron dose meters should be calibrated for measuring these neutrons. We have developed moderated-neutron calibration fields employing a 252 Cf neutron source and moderators mainly for the characteristics evaluation and the calibration of neutron detectors used in MOX fuel facilities. Neutron energy spectrum can be adjusted by changing the position of the 252 Cf neutron source and combining different moderators to simulate the neutron field of the MOX fuel facility. This performance is realized owing to using an existing neutron irradiation room. (K. Yoshida)

  7. VENUS-2 MOX Core Benchmark: Results of ORNL Calculations Using HELIOS-1.4 - Revised Report

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, RJ

    2001-06-01

    The Task Force on Reactor-Based Plutonium Disposition (TFRPD) was formed by the Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA) to study reactor physics, fuel performance, and fuel cycle issues related to the disposition of weapons-grade (WG) plutonium as mixed-oxide (MOX) reactor fuel. To advance the goals of the TFRPD, 10 countries and 12 institutions participated in a major TFRPD activity: a blind benchmark study to compare code calculations to experimental data for the VENUS-2 MOX core at SCK-CEN in Mol, Belgium. At Oak Ridge National Laboratory, the HELIOS-1.4 code system was used to perform the comprehensive study of pin-cell and MOX core calculations for the VENUS-2 MOX core benchmark study.

  8. Thorium utilization in a small long-life HTR. Part I: Th/U MOX fuel blocks

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ming, E-mail: dingm2005@gmail.com [Delft University of Technology, Reactor Institute Delft, Mekelweg 15, 2629 JB, Delft (Netherlands); Harbin Engineering University, Nantong Street 145, 150001 Harbin (China); Kloosterman, Jan Leen, E-mail: j.l.kloosterman@tudelft.nl [Delft University of Technology, Reactor Institute Delft, Mekelweg 15, 2629 JB, Delft (Netherlands)

    2014-02-15

    Highlights: • We propose thorium MOX (TMOX) fuel blocks for a small block-type HTR. • The TMOX fuel blocks with low-enriched uranium are recommended. • More thorium decreases the reactivity swing of the TMOX fuel blocks. • Thorium reduces the negative temperature coefficient of the TMOX fuel blocks. • Thorium increases the conversion ratio of the TMOX fuel blocks. - Abstract: The U-Battery is a small, long-life and transportable high temperature gas-cooled reactor (HTR). The neutronic features of a typical fuel block with uranium and thorium have been investigated for a application of the U-Battery, by parametrically analyzing the composition and geometric parameters. The type of fuel block is defined as Th/U MOX fuel block because uranium and thorium are assumed to be mixed in each fuel kernel as a form of (Th,U)O{sub 2}. If the initially loaded mass of U-235 is mostly consumed in the early period of the lifetime of Th/U MOX fuel block, low-enriched uranium (LEU) as ignited fuel will not largely reduce the neutronic performance of the Th/U MOX fuel block, compared with high-enriched uranium. The radii of fuel kernels and fuel compacts and packing fraction of TRISO particles determine the atomic ratio of the carbon to heavy metal. When the ratio is smaller than 400, the difference among them due to double heterogeneous effects can be neglected for the Th/U MOX fuel block. In the range between 200 and 400, the reactivity swing of the Th/U MOX fuel block during 10 years is sufficiently small. The magnitude of the negative reactivity temperature coefficients of the Th/U MOX fuel block decreases by 20–45%, which is positive to reduce temperature defect of the Th/U MOX fuel block. The conversion ratio (CR) of the fuel increases from 0.48 (typical CR of the LEU-fueled U-Battery) to 0.78. The larger conversion ratio of the Th/U MOX fuel block reduces the reactivity swing during 10 years for the U-Battery.

  9. MOXE: An X-ray all-sky monitor for Soviet Spectrum-X-Gamma Mission

    Science.gov (United States)

    Priedhorsky, W.; Fenimore, E. E.; Moss, C. E.; Kelley, R. L.; Holt, S. S.

    1989-01-01

    A Monitoring Monitoring X-Ray Equipment (MOXE) is being developed for the Soviet Spectrum-X-Gamma Mission. MOXE is an X-ray all-sky monitor based on array of pinhole cameras, to be provided via a collaboration between Goddard Space Flight Center and Los Alamos National Laboratory. The objectives are to alert other observers on Spectrum-X-Gamma and other platforms of interesting transient activity, and to synoptically monitor the X-ray sky and study long-term changes in X-ray binaries. MOXE will be sensitive to sources as faint as 2 milliCrab (5 sigma) in 1 day, and cover the 2 to 20 KeV band.

  10. Hot vacuum outgassing to ensure low hydrogen content in MOX fuel pellets for thermal reactors

    International Nuclear Information System (INIS)

    Majumdar, S.; Nair, M.R.; Kumar, Arun

    1983-01-01

    Hot vacuum outgassing treatment to ensure low hydrogen content in Mixed Oxide Fuel (MOX) pellets for thermal reactors has been described. Hypostoichiometric sintered MOX pellets retain more hydrogen than UO 2 pellets. The hydrogen content further increases with the addition of admixed lubricant and pore formers. However, low hydrogen content in the MOX pellets can be ensured by a hot vacuum outgassing treatment at a temperature between 773K to 823K for 2 hrs. (author)

  11. Burn-up calculation of fusion-fission hybrid reactor using thorium cycle

    International Nuclear Information System (INIS)

    Shido, S.; Matsunaka, M.; Kondo, K.; Murata, I.; Yamamoto, Y.

    2006-01-01

    A burn-up calculation system has been developed to estimate performance of blanket in a fusion-fission hybrid reactor which is a fusion reactor with a blanket region containing nuclear fuel. In this system, neutron flux is calculated by MCNP4B and then burn-up calculation is performed by ORIGEN2. The cross-section library for ORIGEN2 is made from the calculated neutron flux and evaluated nuclear data. The 3-dimensional ITER model was used as a base fusion reactor. The nuclear fuel (reprocessed plutonium as the fission materials mixed with thorium as the fertile materials), transmutation materials (minor actinides and long-lived fission products) and tritium breeder were loaded into the blanket. Performances of gas-cooled and water-cooled blankets were compared with each other. As a result, the proposed reactor can meet the requirement for TBP and power density. As far as nuclear waste incineration is concerned, the gas-cooled blanket has advantages. On the other hand, the water cooled-blanket is suited to energy production. (author)

  12. Lining facility for FBR type reactor

    International Nuclear Information System (INIS)

    Shimano, Kunio.

    1991-01-01

    In a lining facility for protecting structural material concretes for concrete buildings in an FBR type power plant, sodium-resistant and heat-resistant first and second coating layers are lined at the surface of concretes, and steam releasing materials are disposed between the first and the second coating layers for releasing water contents evaporated from the concretes to the outside. With such a constitution, since there is no structures for welding steel plates to each other as in the prior art, the fabrication is made easy. Further, since cracks of coating materials can be suppressed, reactor safety is improved. (T.M.)

  13. CRISTAL V1: Criticality package for burn up credit calculations

    International Nuclear Information System (INIS)

    Gomit, Jean-Michel; Cousinou, Patrick; Gantenbein, Francoise; Diop, Cheikh; Fernandez de Grado, Guy; Mijuin, Dominique; Grouiller, Jean-Paul; Marc, Andre; Toubon, Herve

    2003-01-01

    The first version of the CRISTAL package, created and validated as part of a joint project between IRSN, COGEMA and CEA, was delivered to users in November 1999. This fruitful cooperation between IRSN, COGEMA and CEA has been pursued until 2003 with the development and the validation of the package CRISTAL V1, whose main objectives are to improve the criticality safety studies including the Burn up Credit effect. (author)

  14. Validation of the Nuclear Design Method for MOX Fuel Loaded LWR Cores

    International Nuclear Information System (INIS)

    Saji, E.; Inoue, Y.; Mori, M.; Ushio, T.

    2001-01-01

    The actual batch loading of mixed-oxide (MOX) fuel in light water reactors (LWRs) is now ready to start in Japan. One of the efforts that have been devoted to realizing this batch loading has been validation of the nuclear design methods calculating the MOX-fuel-loaded LWR core characteristics. This paper summarizes the validation work for the applicability of the CASMO-4/SIMULATE-3 in-core fuel management code system to MOX-fuel-loaded LWR cores. This code system is widely used by a number of electric power companies for the core management of their commercial LWRs. The validation work was performed for both boiling water reactor (BWR) and pressurized water reactor (PWR) applications. Each validation consists of two parts: analyses of critical experiments and core tracking calculations of operating plants. For the critical experiments, we have chosen a series of experiments known as the VENUS International Program (VIP), which was performed at the SCK/CEN MOL laboratory in Belgium. VIP consists of both BWR and PWR fuel assembly configurations. As for the core tracking calculations, the operating data of MOX-fuel-loaded BWR and PWR cores in Europe have been utilized

  15. LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    International Nuclear Information System (INIS)

    O'Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program's preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO 2 and UO 2 ), typically containing 95% or more UO 2 . DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO 2 powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO 2 powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required

  16. International symposium on MOX fuel cycle technologies for medium and long-term deployment. Book of extended synopses

    International Nuclear Information System (INIS)

    1999-05-01

    The purpose of the Symposium was to provide a forum to exchange information on MOX fuel cycle technologies with focus on how past experience is being or can be used to progress further, either for facing more demanding fabrication and utilization conditions or for extending into new processing or utilization domains. Presented papers covered the following topics: Current status and prospects concerning plutonium management and MOX fuel utilization; MOX fuel fabrication technology and quality control; Fuel design, performance and testing; In-core fuel management and advanced fuel cycle options; Safety analysis, licensing and safeguards; Transportation and management of irradiated MOX fuel

  17. The Swiss contribution to the FBR development

    Energy Technology Data Exchange (ETDEWEB)

    Hudina, M [Institut Federal de Recherches en Matiere de Reacteurs, Wuerenlingen (Switzerland); and others

    1981-05-01

    The program of fast breeder reactors development in Switzerland is considered from two points of view: energy self-sufficiency and optimization of fuel cycle. Research and development program covers: safety features of LMFBRs, development of mixed carbide fuel elements, study of steam generators transient behaviour, influence of various cooling concepts on thermal efficiency, techniques for detecting cover gas bubbles in the primary sodium circuit. This paper includes cost od the research and development activities as well as description of the future aims of the FBR projects.

  18. The Swiss contribution to the FBR development

    International Nuclear Information System (INIS)

    Hudina, M.

    1981-01-01

    The program of fast breeder reactors development in Switzerland is considered from two points of view: energy self-sufficiency and optimization of fuel cycle. Research and development program covers: safety features of LMFBRs, development of mixed carbide fuel elements, study of steam generators transient behaviour, influence of various cooling concepts on thermal efficiency, techniques for detecting cover gas bubbles in the primary sodium circuit. This paper includes cost od the research and development activities as well as description of the future aims of the FBR projects

  19. Parametric study on co-precipitation of U/Th in MOX fuel of AHWR

    International Nuclear Information System (INIS)

    Tiwari, S.K.; Swaroopa Lakshmi, Y.; Nath, Baidurjya; Setty, D.S.; Kalyana Krishnan, G.; Saibaba, N.

    2015-01-01

    During manufacturing of Mixed Oxide Fuel (MOX) pellets for Advance Heavy Water Reactor (AHWR-LEU), around 30% rejected MOX pellets are generated in every cycle. These rejected MOX pellets are dissolved in nitric acid for recovery of U/Th. The recovered U/Th is recycled for production of MOX pellets. MOX pellets of varying compositions are used in AHWR fuel. Dissolution of MOX pellets in nitric acid is a challenging task because of its low surface area and longer dissolution times. High normal nitric acid is used in order to increase rate of dissolution, which in turn results in generation of high free acidity solution which influences the precipitation characteristics of Uranium (VI) by oxalic acid. Oxalic acid precipitation helps in generation of nitric acid which can be used for dissolution there by effectively facilitating nil effluent generation. Precipitation by oxalic acid unlike ammonia has advantage of zero liquid effluent discharge by complete recycle of oxalate filtrate to dissolution section. In the present work, the effect of various parameters like free acidity, residence time, concentration of oxalic acid, initial concentration of uranium and thorium etc. on the precipitation of U(VI) and Th(IV) in nitrate media by oxalic acid was carried out. The precipitated powder was subjected to various morphological evaluations like particle size etc. Study of various parameters on the co-precipitation of uranium and thorium by oxalic acid was carried out. It was observed that complete precipitation (> 99.9%) of thorium as oxalate does not depend on free acidity range (1- 6 N). Excess oxalic acid is not required for complete precipitation of thorium oxalate. The precipitation of uranyl oxalate varies with initial free acidity of solution. Uranyl oxalate precipitation does not take place at and above 5 N of free acidity

  20. Pu recycling in a full Th-MOX PWR core. Part I: Steady state analysis

    International Nuclear Information System (INIS)

    Fridman, E.; Kliem, S.

    2011-01-01

    Research highlights: → Detailed 3D 100% Th-MOX PWR core design is developed. → Pu incineration increased by a factor of 2 as compared to a full MOX PWR core. → The core controllability under steady state conditions is demonstrated. - Abstract: Current practice of Pu recycling in existing Light Water Reactors (LWRs) in the form of U-Pu mixed oxide fuel (MOX) is not efficient due to continuous Pu production from U-238. The use of Th-Pu mixed oxide (TOX) fuel will considerably improve Pu consumption rates because virtually no new Pu is generated from thorium. In this study, the feasibility of Pu recycling in a typical pressurized water reactor (PWR) fully loaded with TOX fuel is investigated. Detailed 3-dimensional 100% TOX and 100% MOX PWR core designs are developed. The full MOX core is considered for comparison purposes. The design stages included determination of Pu loading required to achieve 18-month fuel cycle assuming three-batch fuel management scheme, selection of poison materials, development of the core loading pattern, optimization of burnable poison loadings, evaluation of critical boron concentration requirements, estimation of reactivity coefficients, core kinetic parameters, and shutdown margin. The performance of the MOX and TOX cores under steady-state condition and during selected reactivity initiated accidents (RIAs) is compared with that of the actual uranium oxide (UOX) PWR core. Part I of this paper describes the full TOX and MOX PWR core designs and reports the results of steady state analysis. The TOX core requires a slightly higher initial Pu loading than the MOX core to achieve the target fuel cycle length. However, the TOX core exhibits superior Pu incineration capabilities. The significantly degraded worth of control materials in Pu cores is partially addressed by the use of enriched soluble boron and B 4 C as a control rod absorbing material. Wet annular burnable absorber (WABA) rods are used to flatten radial power distribution

  1. A comparison study of the 1MeV triton burn-up in JET using the HECTOR and SOCRATE codes

    International Nuclear Information System (INIS)

    Gorini, G.; Kovanen, M.A.

    1988-01-01

    The burn-up of the 1MeV tritons in deuterium plasmas has been measured in JET for various plasma conditions. To interpret these measurements the containment, slowing down and burn-up of fast tritons needs to be modelled with a reasonable accuracy. The numerical code SOCRATE has been written for this specific purpose and a second code, HECTOR, has been adapted to study the triton burn-up problem. In this paper we compare the results from the two codes in order to exclude possible errors in the numerical models, to assess their accuracy and to study the sensitivity of the calculation to various physical effects. (author)

  2. Principles of MONJU maintenance. Characteristic of MONJU maintenance and reflection of LWR maintenance experience to FBR

    International Nuclear Information System (INIS)

    Nakai, Satoru; Nishio, Ryuichi; Uchihashi, Masaya; Kaneko, Yoshihisa; Yamashita, Hironobu; Yamaguchi, Atsunori; Aoki, Takayuki

    2014-01-01

    A sodium cooled fast breeder reactor (FBR) has unique systems and components and different degradation mechanism from light water reactor (LWR) so that need to establish maintenance technology in accordance with its features. The examination of the FBR maintenance technology is carried out in the special committee for considering the maintenance for Monju established in the Japan Society of Maintenology (JSM). As a result of the study such as extraction of Monju maintenance feature, maintenance technology benchmark between Monju and LWR components and survey of LWR maintenance experience, it is clear that principles of maintenance are same as LWR, necessity of LWR maintenance experience reflection and points to be considered in Monju maintenance. The road map to establish a FBR maintenance technology in the technical aspect became clear and it is vital to acquire operation and maintenance experience of the plant to implement this road map, and to establish a fast reactor maintenance. (author)

  3. Calculation of burn-up data for spent LWR-fuels with respect to the design of spent fuel reprocessing plants

    International Nuclear Information System (INIS)

    Gasteiger, R.

    1976-11-01

    The design of spent fuel reprocessing plants makes necessary a detailed knowledge of the composition of the incoming fuels as a function of burn-up. This report gives a broad review on the composition of radionuclides in fuels (fission products, actinides) and structural materials for different burn-up data. (orig.) [de

  4. Making of a burn unit: SOA burn center

    Directory of Open Access Journals (Sweden)

    Jayant Kumar Dash

    2016-01-01

    Full Text Available Each year in India, burn injuries account for more than 6 million hospital emergency department visits; of which many require hospitalization and are referred to specialized burn centers. There are few burn surgeons and very few burn centers in India. In our state, Odisha, there are only two burn centers to cater to more than 5000 burn victims per year. This article is an attempt to share the knowledge that I acquired while setting up a new burn unit in a private medical college of Odisha.

  5. FBR type reactors

    International Nuclear Information System (INIS)

    Suzuoki, Akira; Yamakawa, Masanori.

    1985-01-01

    Purpose: To enable safety and reliable after-heat removal from a reactor core. Constitution: During ordinary operation of a FBR type reactor, sodium coolants heated to a high temperature in a reactor core are exhausted therefrom, collide against the reactor core upper mechanisms to radially change the flowing direction and then enter between each of the guide vanes. In the case if a main recycling pump is failed and stopped during reactor operation and the recycling force is eliminated, the swirling stream of sodium that has been resulted by the flow guide mechanism during normal reactor operation is continuously maintained within a plenum at a high temperature. Accordingly, the sodium recycling force in the coolant flow channels within the reactor vessel can surely be maintained for a long period of time due to the centrifugal force of the sodium swirling stream. In this way, since the reactor core recycling flow rate can be secured even after the stopping of the main recycling pump, after-heat from the reactor core can safely and surely be removed. (Seki, T.)

  6. FBR type reactor

    International Nuclear Information System (INIS)

    Hayase, Tamotsu.

    1991-01-01

    The present invention concerns an FBR type reactor in which transuranium elements are eliminated by nuclear conversion. There are loaded reactor core fuels being charged with mixed oxides of plutonium and uranium, and blanket fuels mainly comprising depleted uranium. Further, liquid sodium is used as coolants. As transuranium elements, isotope elements of neptunium, americium and curium contained in wastes taken out from light water reactors or the composition thereof are used. The reactor core comprises a region with a greater mixing ratio and a region with a less mixing ratio of the transuranium elements. The mixing ratio of the transuranium elements is made greater for the fuels in the reactor core region at the boundary with the blanket of great neutron leakage. With such a constitution, since the positive reactivity value at the reactor core central portion is small in the Na void reactivity distribution in the reactor core, the positive reactivity is small upon Na boiling in the reactor core central region upon occurrence of imaginable accident, to attain reactor safety. (I.N.)

  7. Discrimination of irradiated MOX fuel from UOX fuel by multivariate statistical analysis of simulated activities of gamma-emitting isotopes

    Science.gov (United States)

    Åberg Lindell, M.; Andersson, P.; Grape, S.; Hellesen, C.; Håkansson, A.; Thulin, M.

    2018-03-01

    This paper investigates how concentrations of certain fission products and their related gamma-ray emissions can be used to discriminate between uranium oxide (UOX) and mixed oxide (MOX) type fuel. Discrimination of irradiated MOX fuel from irradiated UOX fuel is important in nuclear facilities and for transport of nuclear fuel, for purposes of both criticality safety and nuclear safeguards. Although facility operators keep records on the identity and properties of each fuel, tools for nuclear safeguards inspectors that enable independent verification of the fuel are critical in the recovery of continuity of knowledge, should it be lost. A discrimination methodology for classification of UOX and MOX fuel, based on passive gamma-ray spectroscopy data and multivariate analysis methods, is presented. Nuclear fuels and their gamma-ray emissions were simulated in the Monte Carlo code Serpent, and the resulting data was used as input to train seven different multivariate classification techniques. The trained classifiers were subsequently implemented and evaluated with respect to their capabilities to correctly predict the classes of unknown fuel items. The best results concerning successful discrimination of UOX and MOX-fuel were acquired when using non-linear classification techniques, such as the k nearest neighbors method and the Gaussian kernel support vector machine. For fuel with cooling times up to 20 years, when it is considered that gamma-rays from the isotope 134Cs can still be efficiently measured, success rates of 100% were obtained. A sensitivity analysis indicated that these methods were also robust.

  8. LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required.

  9. Burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1

    Directory of Open Access Journals (Sweden)

    Muhammad Atta

    2011-01-01

    Full Text Available The burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1, reference operating core, has been carried out utilizing standard computer codes WIMS/D4, CITATION, and RELAP5/MOD3.4. Reactor codes WIMS/D4 and CITATION have been used for the calculations of neutronic parameters including peaking factors and power profiles at different burn-up considering a xenon free core and also the equilibrium xenon values. RELAP5/MOD3.4 code was utilized for the determination of peak fuel centerline, clad and coolant temperatures to ensure the safety of the reactor throughout the cycle. The calculations reveal that the reactor is safe and no nucleate boiling will commence at any part of the core throughout the cycle and that the safety margin increases with burnup as peaking factors decrease.

  10. Direct measurement of burn up monitor by Pulsed Laser Deposition (PLD) followed by Isotopic Dilution Mass Spectrometry

    International Nuclear Information System (INIS)

    Sajimol, R.; Manoravi, P.; NaIini, S.; Balasubramanian, R.; Joseph, M.

    2012-01-01

    Burn-up measurement is an important aspect in the assessment of fuel performance especially for experimental nuclear fuels. Conventional mass spectrometric technique offer the best accuracy for determination of burn-up but they suffer from the labour intensive and time consuming chemical separation procedures followed by mass spectrometric analysis. Our laboratory has reported a potential laser mass spectrometric technique with advantages of (i) direct and fast measurement of ion intensities of selected rare earth element and residual heavy element atoms to deduce burn up and (ii) adaptability to remote handling of radioactive samples. Direct quantification of burn up monitor element in fuel in the form of pellet as well as liquid was probed by pulsed laser deposition followed by Isotopic Dilution Mass Spectrometric technique (IDMS). The procedure involving laser ablation of heavy element (namely U and Pu) and fission product (Nd, La etc) from a simulated spent fuel matrix followed by isotopic dilution mass spectrometry using thermal ionization mass spectrometry (TIMS) has been presently attempted to arrive at the rare earth element to heavy element ratio to deduce burn up using the methodology described in our earlier work. The details of IDMS technique has been reviewed by Heumann et al. Accurately weighed amounts of major rare earth fission products such as Nd, La, Ce and Sm in solution form were mixed with known quantity of uranium solution (all the weights are corresponding to their fission yields and the residual heavy element atoms after a given burn up) and mixed together to attain uniformity. The solution is then dried and resulting powder was pelletized and sintered. Subsequently, the pellet was ablated with pulsed laser (8 ns, 532 nm, Nd-YAG) and the plume was deposited on a glass plate. This deposit was dissolved in minimum amount of nitric acid. A known volume of the solution was mixed with spike (for e.g., 150 Nd/ 142 Nd, 233 U/ 238 U in this study

  11. Simulation of Fungal-Mediated Cell Death by Fumonisin B1 and Selection of Fumonisin B1–Resistant (fbr) Arabidopsis Mutants

    Science.gov (United States)

    Stone, Julie M.; Heard, Jacqueline E.; Asai, Tsuneaki; Ausubel, Frederick M.

    2000-01-01

    Fumonisin B1 (FB1), a programmed cell death–eliciting toxin produced by the necrotrophic fungal plant pathogen Fusarium moniliforme, was used to simulate pathogen infection in Arabidopsis. Plants infiltrated with 10 μM FB1 and seedlings transferred to agar media containing 1 μM FB1 develop lesions reminiscent of the hypersensitive response, including generation of reactive oxygen intermediates, deposition of phenolic compounds and callose, accumulation of phytoalexin, and expression of pathogenesis-related (PR) genes. Arabidopsis FB1-resistant (fbr) mutants were selected directly by sowing seeds on agar containing 1 μM FB1, on which wild-type seedlings fail to develop. Two mutants chosen for further analyses, fbr1 and fbr2, had altered PR gene expression in response to FB1. fbr1 and fbr2 do not exhibit differential resistance to the avirulent bacterial pathogen Pseudomonas syringae pv maculicola (ES4326) expressing the avirulence gene avrRpt2 but do display enhanced resistance to a virulent isogenic strain that lacks the avirulence gene. Our results demonstrate the utility of FB1 for high-throughput isolation of Arabidopsis defense-related mutants and suggest that pathogen-elicited programmed cell death of host cells may be an important feature of compatible plant–pathogen interactions. PMID:11041878

  12. Follow-up care of children suffered from burns

    Directory of Open Access Journals (Sweden)

    Konstantin Aleksandrovich Afonichev

    2015-03-01

    Full Text Available Outcomes of III-VI AB degree burns in children,regardless of the nature of treatment in the acute andrecovery period, are the development of scar contractures and deformities of the joints. However, thecorrect organization of follow-up care and rehabilitation treatment can significantly reduce the severity and facilitates the full recovery of the affected segment. Based on the analysis of their own material, the author defines the early stage of rehabilitation in these patients before full maturation of scar tissue or before the formation of functionally significant joint contractures, and later period, when there are indications for surgical rehabilitation. In the early period, follow-up care is recommended in 1 month after discharge and then on a quarterly basis, and with the appearance of deformities - at least once in 2 months. At the2nd stage of rehabilitation, older children and children of secondary school age are subject to follow-up care at least 1 time per year of primary school age - atleast once in 6 months, preschool children - every3 months. The proposed assessment of scar tissuehelps to determine the terms of follow-up care. Usingthis scheme of follow-up care and appropriate treatment allowed the author to obtain excellent and goodresults in 87-90 % of cases at the stages of rehabilitaion.

  13. Burn-up determinations and dimensional measurements of TRIGA-HEU fuel elements from the 14 MW steady-state core

    International Nuclear Information System (INIS)

    Toma, C.; Alexa, Al.; Craciunescu, T.; Pirvan, M.; Dobrin, R.

    2008-01-01

    In this paper there are presented the results of nondestructive examination in Post Irradiation Examination Laboratory for twenty five fuel rods selected from 14 MW steady state core. Gamma scanning and dimensional measurements were carried out in order to determine burn-up and diametric deflection of the fuel rods. Also, some comparisons with SSR Safety Report estimations for the maximum burn-up pin were made. (authors)

  14. Cellular automata approach to investigation of high burn-up structures in nuclear reactor fuel

    International Nuclear Information System (INIS)

    Akishina, E.P.; Ivanov, V.V.; Kostenko, B.F.

    2005-01-01

    Micrographs of uranium dioxide (UO 2 ) corresponding to exposure times in reactor during 323, 953, 971, 1266 and 1642 full power days were investigated. The micrographs were converted into digital files isomorphous to cellular automata (CA) checkerboards. Such a representation of the fuel structure provides efficient tools for its dynamics simulation in terms of primary 'entities' imprinted in the micrographs. Besides, it also ensures a possibility of very effective micrograph processing by CA means. Interconnection between the description of fuel burn-up development and some exactly soluble models is ascertained. Evidences for existence of self-organization in the fuel at high burn-ups were established. The fractal dimension of microstructures is found to be an important characteristic describing the degree of radiation destructions

  15. PAPIRUS - a computer code for FBR fuel performance analysis

    International Nuclear Information System (INIS)

    Kobayashi, Y.; Tsuboi, Y.; Sogame, M.

    1991-01-01

    The FBR fuel performance analysis code PAPIRUS has been developed to design fuels for demonstration and future commercial reactors. A pellet structural model was developed to describe the generation, depletion and transport of vacancies and atomic elements in unified fashion. PAPIRUS results in comparison with the power - to - melt test data from HEDL showed validity of the code at the initial reactor startup. (author)

  16. EBSD and TEM Characterization of High Burn-up Mixed Oxide Fuel

    International Nuclear Information System (INIS)

    Teague, Melissa C; Gorman, Brian P.; Miller, Brandon D; King, Jeffrey

    2014-01-01

    Understanding and studying the irradiation behavior of high burn-up oxide fuel is critical to licensing of future fast breeder reactors. Advancements in experimental techniques and equipment are allowing for new insights into previously irradiated samples. In this work dual column focused ion beam (FIB)/scanning electron microscope (SEM) was utilized to prepared transmission electron microscope samples from mixed oxide fuel with a burn-up of 6.7% FIMA. Utilizing the FIB/SEM for preparation resulted in samples with a dose rate of <0.5 mRem/h compared to approximately 1.1 R/h for a traditionally prepared TEM sample. The TEM analysis showed that the sample taken from the cooler rim region of the fuel pellet had approximately 2.5x higher dislocation density than that of the sample taken from the mid-radius due to the lower irradiation temperature of the rim. The dual column FIB/SEM was additionally used to prepared and serially slice approximately 25 um cubes. High quality electron back scatter diffraction (EBSD) were collected from the face at each step, showing, for the first time, the ability to obtain EBSD data from high activity irradiated fuel

  17. Oxygen stoichiometry shift of irradiated LWR-fuels at high burn-ups: Review of data and alternative interpretation of recently published results

    International Nuclear Information System (INIS)

    Spino, J.; Peerani, P.

    2008-01-01

    The available oxygen potential data of LWR-fuels by the EFM-method have been reviewed and compared with thermodynamic data of equivalent simulated fuels and mixed oxide systems, combined with the analysis of lattice parameter data. Up to burn-ups of 70-80 GWd/tM the comparison confirmed traditional predictions anticipating the fuels to remain quasi stoichiometric along irradiation. However, recent predictions of a fuel with average burn-up around 100 GWd/tM becoming definitely hypostoichiometric were not confirmed. At average burn-ups around 80 GWd/tM and above, it is shown that the fuels tend to acquire progressively slightly hyperstoichiometric O/M ratios. The maximum derived O/M ratio for an average burn-up of 100 GWd/tM lies around 2.001 and 2.002. Though slight, the stoichiometry shift may have a measurable accelerating impact on fission gas diffusion and release

  18. Establishing the fuel burn-up measuring system for 106 irradiated assemblies of Dalat reactor by using gamma spectrometer method

    International Nuclear Information System (INIS)

    Nguyen Minh Tuan; Pham Quang Huy; Tran Tri Vien; Trang Cao Su; Tran Quoc Duong; Dang Tran Thai Nguyen

    2013-01-01

    The fuel burn-up is an important parameter needed to be monitored and determined during a reactor operation and fuel management. The fuel burn-up can be calculated using computer codes and experimentally measured. This work presents the theory and experimental method applied to determine the burn-up of the irradiated and 36% enriched VVR-M2 fuel type assemblies of Dalat reactor. The method is based on measurement of Cs-137 absolute specific activity using gamma spectrometer. Designed measuring system consists of a collimator tube, high purity Germanium detector (HPGe) and associated electronics modules and online computer data acquisition system. The obtained results of measurement are comparable with theoretically calculated results. (author)

  19. Design of a mixed recharge with MOX assemblies of greater relation of moderation for a BWR reactor; Diseno de una recarga mixta con ensambles MOX de mayor relacion de moderacion para un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J.R.; Alonso V, G.; Palacios H, J. [ININ, Carretera Mexico-Toluca Km. 36.5, 52045 Estado de Mexico (Mexico)]. e-mail: jrrs@nuclear.inin.mx

    2004-07-01

    The study of the fuel of mixed oxides of uranium and plutonium (MOX) it has been topic of investigation in many countries of the world and those are even discussed in many places the benefits of reprocessing the spent fuel to extract the plutonium created during the irradiation of the fuel in the nuclear power reactors. At the moment those reactors that have been loaded partially with MOX fuel, are mainly of the type PWR where a mature technology has been achieved in some countries like they are France, Belgium and England, however the experience with reactors of the type BWR is more limited and it is continued studying the best way to introduce this type of fuel in BWRs, one of the main problems to introduce MOX in reactors BWR is the neutronic design of the same one, existing different concepts to introduce the plutonium in the assemblies of fuel and one of them is the one of increasing the relationship of moderation of the assemble. In this work a MOX fuel assemble design is presented and the obtained results so far in the ININ. These results indicate that the investigated concept has some exploitable advantages in the use of the MOX fuel. (Author)

  20. LWR FA burn up: A challenge to optimize the entire fuel cycle to assure the envisaged benefit

    Energy Technology Data Exchange (ETDEWEB)

    Peehs, M [Siemens AG Unternehmensbereich KWU, Erlangen (Germany)

    1997-12-01

    Commercial LWR fuel will be limited to a maximum of U-235 content of 5% since the front end of the fuel cycle is licensed and prepared for that maximal enrichment. BWR- and PWR-reloads can be designed achieving batch average burn up over 60 GWd/tHM. In Germany the batch average burn up will presumably increase to this level, since the reload market is requesting further reductions in the fuel cycle inventories. However, it must be noted that the envisaged benefit can only be assured if the entire fuel cycle is optimized. Not all steps in the fuel cycle will bring a positive contribution bu the balance of all individual contributions must realize the envisaged integral benefit. In order to increase the burn up of the nuclear fuel beneficially further R and D both in the front end as well as in the back end of the fuel cycle is needed. An underestimation of the front end/back end interfaces may consume all benefits gained from isolated front optimizations. Back end R and D must be at once concentrated to avoid conservative enveloping licensing for the subsequent steps in the back end of the fuel cycle. Increasing burn up in the front end means making more and more use of the structural materials reserves.

  1. LWR FA burn up: A challenge to optimize the entire fuel cycle to assure the envisaged benefit

    International Nuclear Information System (INIS)

    Peehs, M.

    1997-01-01

    Commercial LWR fuel will be limited to a maximum of U-235 content of 5% since the front end of the fuel cycle is licensed and prepared for that maximal enrichment. BWR- and PWR-reloads can be designed achieving batch average burn up over 60 GWd/tHM. In Germany the batch average burn up will presumably increase to this level, since the reload market is requesting further reductions in the fuel cycle inventories. However, it must be noted that the envisaged benefit can only be assured if the entire fuel cycle is optimized. Not all steps in the fuel cycle will bring a positive contribution bu the balance of all individual contributions must realize the envisaged integral benefit. In order to increase the burn up of the nuclear fuel beneficially further R and D both in the front end as well as in the back end of the fuel cycle is needed. An underestimation of the front end/back end interfaces may consume all benefits gained from isolated front optimizations. Back end R and D must be at once concentrated to avoid conservative enveloping licensing for the subsequent steps in the back end of the fuel cycle. Increasing burn up in the front end means making more and more use of the structural materials reserves

  2. Decommissioning the Belgonucleaire Dessel MOX plant: presentation of the project and situation end august 2013

    Energy Technology Data Exchange (ETDEWEB)

    Cuchet, J.M. [TRACTEBEL ENGINEERING, Avenue Ariane, 7, B1200 Brussels (Belgium); Libon, H.; Verheyen, C. [BELGONUCLEAIRE S.A. / N.V. Europalaan, 20, B2480 Dessel (Belgium); Bily, J. [STUDSVIK GmbH, Karlsruher Strasse, 20, D75179 Pforzheim,(Germany); Boden, S. [SCK-CEN, Boeretang, 200, B2400 Mol (Belgium); Joffroy, F. [TECNUBEL N.V., Zandbergen, 1, B2480 Dessel (Belgium); Walthery, R. [BELGOPROCESS, Gravenstraat, 73, B2480 Dessel (Belgium)

    2013-07-01

    Belgonucleaire has been operating the Dessel MOX plant at an industrial scale between 1986 and 2006. During this period, 40 metric tons of plutonium (HM) have been processed into 90 reloads of MOX fuel for commercial light water reactors. The decision to stop the production in 2006 and to decommission the MOX plant was the result of the shrinkage of the MOX fuel market due to political and commercial factors. As a significant part of the decommissioning project of the Dessel MOX plant, about 170 medium-sized glove-boxes and about 1.200 metric tons of structure and equipment outside the glove-boxes are planned for dismantling. The license for the dismantling of the MOX plant was granted by Royal Decree in 2008 and the dismantling started in March 2009. The dismantling works are carried out by an integrated organization under leadership and responsibility of Belgonucleaire; this organization includes 3 main contractors, namely Tecnubel N.V., the THV ('Tijdelijke HandelsVereniging') Belgoprocess / SCK-CEN and Studsvik GmbH and Tractebel Engineering as project manager. In this paper, after having described the main characteristics of the project, the authors review the different organizational and technical options considered for the decommissioning of the glove-boxes; thereafter the main decision criteria (qualification of personnel and of processes, confinement, cutting techniques and radiation protection, safety aspects, alpha-bearing waste management) are analyzed as well. Finally the progress, the feedback and the lessons learned at the end of August 2013 are presented, giving the principal's and contractors point of view. (authors)

  3. Generation of multigroup cross-sections from micro-group ones in code system SUHAM-U used for VVER-1000 reactor core calculations with MOX loading

    Energy Technology Data Exchange (ETDEWEB)

    Boyarinov, V.F.; Davidenko, V.D.; Polismakov, A.A.; Tsybulsky, V.F. [RRC Kurchatov Institute, Moscow (Russian Federation)

    2005-07-01

    At the present time, the new code system SUHAM-U for calculation of the neutron-physical processes in nuclear reactor core with triangular and square lattices based both on the modern micro-group (about 7000 groups) cross-sections library of code system UNK and on solving the multigroup (up to 89 groups) neutron transport equation by Surface Harmonics Method is elaborated. In this paper the procedure for generation of multigroup cross-sections from micro-group ones for calculation of VVER-1000 reactor core with MOX loading is described. The validation has consisted in computing VVER-1000 fuel assemblies with uranium and MOX fuel and has shown enough high accuracy under corresponding selection of the number and boundaries of the energy groups. This work has been fulfilled in the frame of ISTC project 'System Analyses of Nuclear Safety for VVER Reactors with MOX Fuels'.

  4. Fission Gas Release in LWR Fuel Rods Exhibiting Very High Burn-Up

    DEFF Research Database (Denmark)

    Carlsen, H.

    1980-01-01

    Two UO2Zr BWR type test fuel rods were irradiated to a burn-up of about 38000 MWd/tUO2. After non-destructive characterization, the fission gas released to the internal free volume was extracted and analysed. The irradiation was simulated by means of the Danish fuel performance code WAFER-2, which...

  5. Estimation of Emissions from Sugarcane Field Burning in Thailand Using Bottom-Up Country-Specific Activity Data

    Directory of Open Access Journals (Sweden)

    Wilaiwan Sornpoon

    2014-09-01

    Full Text Available Open burning in sugarcane fields is recognized as a major source of air pollution. However, the assessment of its emission intensity in many regions of the world still lacks information, especially regarding country-specific activity data including biomass fuel load and combustion factor. A site survey was conducted covering 13 sugarcane plantations subject to different farm management practices and climatic conditions. The results showed that pre-harvest and post-harvest burnings are the two main practices followed in Thailand. In 2012, the total production of sugarcane biomass fuel, i.e., dead, dry and fresh leaves, amounted to 10.15 million tonnes, which is equivalent to a fuel density of 0.79 kg∙m−2. The average combustion factor for the pre-harvest and post-harvest burning systems was determined to be 0.64 and 0.83, respectively. Emissions from sugarcane field burning were estimated using the bottom-up country-specific values from the site survey of this study and the results compared with those obtained using default values from the 2006 IPCC Guidelines. The comparison showed that the use of default values lead to underestimating the overall emissions by up to 30% as emissions from post-harvest burning are not accounted for, but it is the second most common practice followed in Thailand.

  6. Experience and trends at the Belgonucleaire plant

    International Nuclear Information System (INIS)

    Deramaix, P.; Eeckhout, F.; Pay, A.; Pelckmans, E.

    2000-01-01

    The BN Dessel plant started operation in 1973. During the initial period (up to 1984), the plant was equipped to fabricate FBR as well as LWR fuel (5 tHM/year) within the framework of LWR demonstration and FBR programmes. The first ten years of operation have laid down the basis for all modifications or improvements in the fields of fuel fabrication and control processes, waste management, safety and safeguards, which were implemented in the 1984-1985 refurbishment. On this occasion, the MIMAS fabrication process has been introduced to make MOX fuel reprocessable in the operating conditions of the modern reprocessing plants (COGEMA in La Hague and BNFL in Sellafield) and the capacity of the plant has been upgraded to the current nominal capacity of 35 tHM per year (with a maximum licensed of 40 tHM per year). The nominal fabrication capacity was achieved in 1989, maintained consistently since then at least at that level, approaching even the license limit. The process has proved its high flexibility, in particular in terms of the large variety of MOX manufactured for both PWRs (14 x 14, 15 x 15, 16 x 16, 17 x 17, types) and BWRs (8 x 8, 9 x 9, 10 x 10 types), of the size of the campaign (from less than 4 tHM to 28 tHM), of the origin of the PuO 2 (from COGEMA and BNFL reprocessing plants, Pu from second generation), of the Pu content (up to 8.6 w/o in HM). From 1986 up to the end of March 1999, more than 21 t Pu as PuO 2 have been processed into more than 388 tHM of MIMAS fuel, delivered or to be delivered for use in 796 PWR assemblies and 184 BWR assemblies for 21 large power reactors (17 PWRs and 4 BWRs) in 5 countries (France, Germany, Switzerland, Japan, Belgium). The MOX fuel produced has been demonstrated to reach at least the same performance as the UO 2 fuel used simultaneously in the same reactors. An increasing number of the MOX assemblies are discharged at a burnup of at least 45 GWd/tHM assembly average. One assembly reached 51 GWd/tHM assembly average

  7. Characterization of un-irradiated MIMAS MOX fuel by Raman spectroscopy and EPMA

    Science.gov (United States)

    Talip, Zeynep; Peuget, Sylvain; Magnin, Magali; Tribet, Magaly; Valot, Christophe; Vauchy, Romain; Jégou, Christophe

    2018-02-01

    In this study, Raman spectroscopy technique was implemented to characterize un-irradiated MIMAS (MIcronized - MASter blend) MOX fuel samples with average 7 wt.% Pu content and different damage levels, 13 years after fabrication, one year after thermal recovery and soon after annealing, respectively. The impacts of local Pu content, deviation from stoichiometry and self-radiation damage on Raman spectrum of the studied MIMAS MOX samples were assessed. MIMAS MOX fuel has three different phases Pu-rich agglomerate, coating phase and uranium matrix. In order to distinguish these phases, Raman results were associated with Pu content measurements performed by Electron Microprobe Analysis. Raman results show that T2g frequency significantly shifts from 445 to 453 cm-1 for Pu contents increasing from 0.2 to 25 wt.%. These data are satisfactorily consistent with the calculations obtained with Gruneisen parameters. It was concluded that the position of the T2g band is mainly controlled by Pu content and self-radiation damage. Deviation from stoichiometry does not have a significant influence on T2g band position. Self-radiation damage leads to a shift of T2g band towards lower frequency (∼1-2 cm-1 for the UO2 matrix of damaged sample). However, this shift is difficult to quantify for the coating phase and Pu agglomerates given the dispersion of high Pu concentrations. In addition, 525 cm-1 band, which was attributed to sub-stoichiometric structural defects, is presented for the first time for the self-radiation damaged MOX sample. Thanks to the different oxidation resistance of each phase, it was shown that laser induced oxidation could be alternatively used to identify the phases. It is demonstrated that micro-Raman spectroscopy is an efficient technique for the characterization of heterogeneous MOX samples, due to its low spatial resolution.

  8. A validated methodology for evaluating burn-up credit in spent fuel casks

    International Nuclear Information System (INIS)

    Brady, M.C.; Sanders, T.L.

    1992-01-01

    The concept of allowing reactivity credit for the transmuted state of spent fuel offers both economic and risk incentives. This paper presents a general overview of the technical work being performed in support of the US Department of Energy (USDOE) programme to resolve issues related to the implementation of burn-up credit in spent fuel cask design. An analysis methodology is presented along with information representing the validation of the method against available experimental data. The experimental data that are applicable to burn-up credit include chemical assay data for the validation of the isotopic prediction models, fresh fuel critical experiments for the validation of criticality calculations for various cask geometries, and reactor re-start critical data to validate criticality calculations with spent fuel. The methodology has been specifically developed to be simple and generally applicable, therefore giving rise to uncertainties or sensitivities which are identified and quantified in terms of a percent bias effective multiplication (k eff ). Implementation issues affecting licensing requirements and operational procedures are discussed briefly. (Author)

  9. A comparative study of fission gas behaviour in UO2 and MOX fuels using the meteor fuel performance code

    International Nuclear Information System (INIS)

    Struzik, C.; Garcia, Ph.; Noirot, L.

    2002-01-01

    The paper reviews some of the fission-gas-related differences observed between MOX MIMAS AUC fuels and homogeneous UO 2 fuels. Under steady-state conditions, the apparently higher fractional release in MOX fuels is interpreted with the METEOR fuel performance code as a consequence of their lower thermal conductivity and the higher linear heat rates to which MOX fuel rods are subjected. Although more fundamental diffusion properties are needed, the apparently greater swelling of MOX fuel rods at higher linear heat rates can be ascribed to enhanced diffusion properties. (authors)

  10. Fuel cycle and waste management. 2. Design of a BWR Core with Over-moderated MOX Fuel Assemblies

    International Nuclear Information System (INIS)

    Francois, J.L.; Del Campo, C. Martin

    2001-01-01

    The use of uranium-plutonium mixed-oxide (MOX) fuel in light water reactors is a current practice in several countries. Generally one-third of the reactor core is loaded with MOX fuel assemblies, and the other two-thirds is loaded with uranium assemblies. Nevertheless, the plutonium utilization could be more effective if the full core could be loaded with MOX fuel. In this work, the design of a boiling water reactor (BWR) core fully loaded with over-moderated MOX fuel designs was investigated. In previous work, the design of over-moderated BWR MOX fuel assemblies based on a 10 x 10 lattice was presented; these designs improve the neutron spectrum and the plutonium consumption rate, compared with standard MOX assemblies. To increase the moderator-to-fuel ratio (MFR), two approaches were followed. In the first approach, 8 or 12 fuel rods were replaced by water rods in the 10x10 assembly, which increased the MFR from 1.9 to 2.2 and 2.4, respectively. These designs are called MOX-8WR and MOX-12WR, respectively, in this paper. In the second approach, an 11 x 11 lattice with 24 water rods (11 x 11-24WR) was designed, which is a design with a number of active fuel rods (88) very close to the standard MOX assembly (91). The fuel rod diameter is smaller to preserve the assembly dimensions, and in this last case, the MFR is 2.4. The calculations were performed with the CM-PRESTO three-dimensional steady-state simulator. The nuclear data banks were generated with the HELIOS system, and they were processed by TABGEN to produce tables of nuclear cross sections depending on burnup, void, and exposure weighted void (void history), which are used by CM-PRESTO. One base reload pattern was designed for a BWR/5 rated at 1931 MW(thermal), to be used with the different over-moderated assembly designs. The reload pattern has 112 fresh fuel assemblies (FFAs) out of a total of 444 fuel assemblies and was simulated during 20 cycles with the Haling strategy, until an equilibrium cycle of

  11. Reactor structure for FBR

    International Nuclear Information System (INIS)

    Yamazaki, Tsukasa.

    1986-01-01

    Purpose: To prevent deformation of equipment for FBR structure by inhibiting free convection generated at the roof slab through device. Constitution: The labyrinth is placed between the lower part of the roof slab and the lower one of the positioning flange, and then, convection-preventive wrinkle is provided for the side wall for the positioning flange against the roof slab side wall. The upper part of the positioning flange is fixed to the upper surface of the roof slab, the through-device flange is connected to the lower flange, and prevent generation of thermal stress. Thus, free convection at the through-device is prevented, and it has become possible to miniaturize the seal section of the intermediate heat exchanger and prevent galling of the circulating pump. The joint position of the positioning flange with the through-device flange can be shifted to the same height level of the roof slab, and the length under the hook of the overhead crance can be reduced. (Horiuchi, T.)

  12. A fission gas release model for MOX fuel and its verification

    International Nuclear Information System (INIS)

    Koo, Y.H.; Sohn, D.S.; Strijov, P.

    2000-01-01

    A fission gas release model for MOX fuel has been developed based on a model for UO 2 fuel. Using the concept of equivalent cell, the model considers the uneven distribution of Pu within the fuel matrix and a number of Pu-rich particles that could lead to a non-uniform fission rate and fission gas distribution across the fuel pellet. The model has been incorporated into a code, COSMOS, and some parametric studies were made to analyze the effect of the size and Pu content of Pu-rich agglomerates. The model was then applied to the experimental data obtained from the FIGARO program, which consisted of the base irradiation of MOX fuels in the BEZNAU-1 PWR and the subsequent irradiation of four refabricated fuel segments in the Halden reactor. The calculated gas releases show good agreement with the measured ones. In addition, the present analysis indicates that the microstructure of the MOX fuel used in the FIGARO program is such that it has produced little difference in terms of gas release compared with UO 2 fuel. (author)

  13. Simulation of triton burn-up in JET plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Loughlin, M J; Balet, B; Jarvis, O N; Stubberfield, P M [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    This paper presents the first triton burn-up calculations for JET plasmas using the transport code TRANSP. Four hot ion H-mode deuterium plasmas are studied. For these discharges, the 2.5 MeV emission rises rapidly and then collapses abruptly. This phenomenon is not fully understood but in each case the collapse phase is associated with a large impurity influx known as the ``carbon bloom``. The peak 14 MeV emission occurs at this time, somewhat later than that of the 2.5 MeV neutron peak. The present results give a clear indication that there are no significant departures from classical slowing down and spatial diffusion for tritons in JET plasmas. (authors). 7 refs., 3 figs., 1 tab.

  14. Behavior of irradiated ATR/MOX fuel under reactivity initiated accident conditions (Joint research)

    International Nuclear Information System (INIS)

    Sasajima, Hideo; Fuketa, Toyoshi; Nakamura, Takehiko; Nakamura, Jinichi; Uetsuka, Hiroshi

    2000-03-01

    Pulse irradiation experiments with irradiated ATR/MOX fuel rods of 20 MWd/kgHM were conducted at the NSRR in JAERI to study the transient behavior of MOX fuel rod under reactivity initiated accident conditions. Four pulse irradiation experiments were performed with peak fuel enthalpy ranging from 335 J/g to 586 J/g, resulted in no failure of fuel rods. Deformation of the fuel rods due to PCMI occurred in the experiments with peak fuel enthalpy above 500 J/g. Significant fission gas release up to 20% was measured by rod puncture measurement. The generation of fine radial cracks in pellet periphery, micro-cracks and boundary separation over the entire region of pellet were observed. These microstructure changes might contribute to the swelling of fuel pellets during the pulse irradiation. This could cause the large radial deformation of fuel rod and high fission gas release when the pulse irradiation conducted at relatively high peak fuel enthalpy. In addition, fine grain structures around the plutonium spot and cauliflower structure in cavity of the plutonium spot were observed in the outer region of the fuel pellet. (author)

  15. Interrelationship betwen material strength and component design under elevated temperature for FBR

    International Nuclear Information System (INIS)

    Nakagawa, Y.

    Structural design under elevated temperature for fast breeder reactor plant is very troublesome compared to that of for lower temperature. This difficulty can be mainly discussed from two different stand points. One is design and design code, another is material strength. Components in FBR are operated under creep regime and time dependent creep behaviour should be elevated properly. This means the number and combinations of design code and material strength are significantly large and makes these systems very complicated. Material selection is, in no words, not an easy job. This should be done by not only material development but also component design stand point. With valuable experience of construction and research on FBR, a lot of information on component design and material behaviour is available. And it is a time to choose the ''best material'' from the entire stand points of component construction. (author)

  16. Simulation for Supporting Scale-Up of a Fluidized Bed Reactor for Advanced Water Oxidation

    Directory of Open Access Journals (Sweden)

    Farhana Tisa

    2014-01-01

    Full Text Available Simulation of fluidized bed reactor (FBR was accomplished for treating wastewater using Fenton reaction, which is an advanced oxidation process (AOP. The simulation was performed to determine characteristics of FBR performance, concentration profile of the contaminants, and various prominent hydrodynamic properties (e.g., Reynolds number, velocity, and pressure in the reactor. Simulation was implemented for 2.8 L working volume using hydrodynamic correlations, continuous equation, and simplified kinetic information for phenols degradation as a model. The simulation shows that, by using Fe3+ and Fe2+ mixtures as catalyst, TOC degradation up to 45% was achieved for contaminant range of 40–90 mg/L within 60 min. The concentration profiles and hydrodynamic characteristics were also generated. A subsequent scale-up study was also conducted using similitude method. The analysis shows that up to 10 L working volume, the models developed are applicable. The study proves that, using appropriate modeling and simulation, data can be predicted for designing and operating FBR for wastewater treatment.

  17. FBR metallic materials test manual (English version)

    International Nuclear Information System (INIS)

    Odaka, Susumu; Kato, Shoichi; Yoshida, Eiichi

    2003-06-01

    For the development of the fast breeder reactor, this manual describes the method of in-air and in-sodium material tests and the method of organization the data. This previous manual has revised in accordance with the revision of Japanese Industrial Standard (JIS) and the conversion to the international unit. The test methods of domestic committees such as the VAMAS (Versailles Project on Advanced Materials and Standards) workshop were also refereed. The material test technologies accumulated in this group until now were also incorporated. This English version was prepared in order to provide more engineers with the FBR metallic materials test manual. (author)

  18. Base technology development of new materials for FBR performance innovations

    International Nuclear Information System (INIS)

    Kano, Shigeki; Koyama, Masahiro; Nomura, Shigeo; Morikawa, Satoru; Ueno, Fumiyoshi

    1989-01-01

    This paper describes the base technology development of new materials for FBR performance innovations at the Power Reactor and Nuclear Fuel Development Corporation. The contents are as follows: (1) development of sodium and radiation resistant new materials, (2) development of high performance shielding material, (3) development of high performance control material, (4) development of new functional materials for reactor instrumentation. (author)

  19. Preliminary analysis of in-reactor behavior of three MOX fuel rods in the halden reactor

    International Nuclear Information System (INIS)

    Koo, Yang Hyun; Lee, Byung Ho; Sohn, Dong Seong; Joo, Hyung Kook

    1999-09-01

    Preliminary analysis of in-reactor thermal performance for three MOX fuel rods that are going to be irradiated in the Halden reactor from the first quarter of the year 2000 have been conducted by using the computer code COSMOS. Using the assumption that microstructure of MOX fuel fabricated by SBR and dry milling method is the same, parametric studies have been carried out considering four kinds of uncertainties, which are thermal conductivity, linear power, manufacturing parameters, and model constant, to investigate the effect of each of uncertainty on in-reactor behavior. It is found that the uncertainty of model constants for FGR has a greatest impact of the all because the amount of gas released to the gap is one of the parameters that dominantly affects the gap conductance. The parametric analysis shows that, tn the case of MOX-1, calculational results vary widely depending on the choice of model constants for FGR. Therefore, the model constants for FGR for the present test need to be established through the measured fuel centerline temperature, rod internal pressure, stack length if any, and finally thermal conductivity derived from measured data during irradiation. On the other hand, the difference in thermal performance of MOX-3 resulting from the choice of FGR model constants is not so large as that for MOX-1. This might arise, since the temperature of the MOX-3 is high, the capacity of grain boundaries to retain gas atoms is not sufficient enough to accommodate the large amount of gas atoms reaching the grain boundaries through diffusion. (Author). 20 refs., 7 tabs., 47 figs

  20. Preliminary analysis of in-reactor behavior of three MOX fuel rods in the halden reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Yang Hyun; Lee, Byung Ho; Sohn, Dong Seong; Joo, Hyung Kook

    1999-09-01

    Preliminary analysis of in-reactor thermal performance for three MOX fuel rods that are going to be irradiated in the Halden reactor from the first quarter of the year 2000 have been conducted by using the computer code COSMOS. Using the assumption that microstructure of MOX fuel fabricated by SBR and dry milling method is the same, parametric studies have been carried out considering four kinds of uncertainties, which are thermal conductivity, linear power, manufacturing parameters, and model constant, to investigate the effect of each of uncertainty on in-reactor behavior. It is found that the uncertainty of model constants for FGR has a greatest impact of the all because the amount of gas released to the gap is one of the parameters that dominantlyaffects the gap conductance. The parametric analysis shows that, tn the case of MOX-1, calculational results vary widely depending on the choice of model constants for FGR. Therefore, the model constants for FGR for the present test need to be established through the measured fuel centerline temperature, rod internal pressure, stack length if any, and finally thermal conductivity derived from measured data during irradiation. On the other hand, the difference in thermal performance of MOX-3 resulting from the choice of FGR model constants is not so large as that for MOX-1. This might arise, since the temperature of the MOX-3 is high, the capacity of grain boundaries to retain gas atoms is not sufficient enough to accommodate the large amount of gas atoms reaching the grain boundaries through diffusion. (Author). 20 refs., 7 tabs., 47 figs.

  1. Simulation of facility operations and materials accounting for a combined reprocessing/MOX fuel fabrication facility

    International Nuclear Information System (INIS)

    Coulter, C.A.; Whiteson, R.; Zardecki, A.

    1991-01-01

    We are developing a computer model of facility operations and nuclear materials accounting for a facility that reprocesses spent fuel and fabricates mixed oxide (MOX) fuel rods and assemblies from the recovered uranium and plutonium. The model will be used to determine the effectiveness of various materials measurement strategies for the facility and, ultimately, of other facility safeguards functions as well. This portion of the facility consists of a spent fuel storage pond, fuel shear, dissolver, clarifier, three solvent-extraction stages with uranium-plutonium separation after the first stage, and product concentrators. In this facility area mixed oxide is formed into pellets, the pellets are loaded into fuel rods, and the fuel rods are fabricated into fuel assemblies. These two facility sections are connected by a MOX conversion line in which the uranium and plutonium solutions from reprocessing are converted to mixed oxide. The model of the intermediate MOX conversion line used in the model is based on a design provided by Mike Ehinger of Oak Ridge National Laboratory (private communication). An initial version of the simulation model has been developed for the entire MOX conversion and fuel fabrication sections of the reprocessing/MOX fuel fabrication facility, and this model has been used to obtain inventory difference variance estimates for those sections of the facility. A significant fraction of the data files for the fuel reprocessing section have been developed, but these data files are not yet complete enough to permit simulation of reprocessing operations in the facility. Accordingly, the discussion in the following sections is restricted to the MOX conversion and fuel fabrication lines. 3 tabs

  2. FBR type reactors

    International Nuclear Information System (INIS)

    Nakamura, Tsugio.

    1986-01-01

    Purpose: To ensure the thermal integrity of a reactor vessel in FBR type reactors by preventing sodium vapors or the likes from intruding into a shielding chamber and avoiding spontaneous convection thereof. Constitution: There are provided a shielding plug for shielding the upper opening of a reactor container, an annular thermal member disposed to the circumferential side in the container, a shielding member for shielding upper end of the shielding chamber and a plurality of convection preventive plates suspended from the thermal member into the shielding chamber, and the shielding chamber is communicated by way of the relatively low temperature portion of the container with a gas communication pipe. That is, by closing the upper end of the shielding chamber with the shielding member, coolant vapors, etc. can be prevented from intruding into the shielding chamber. Further, the convection preventive plates prevent the occurrence of spontaneous convection in the shielding chamber. Further, the gas communication pipe absorbs the expansion and contraction of gases in the shielding chamber to effectively prevent the deformation or the like for each of the structural materials. In this way, the thermal integrity of the reactor container can surely be maintained. (Horiuchi, T.)

  3. Fabrication, inspection, and test plan for the Advanced Test Reactor (ATR) Mixed-Oxide (MOX) fuel irradiation project

    International Nuclear Information System (INIS)

    Wachs, G.W.

    1997-11-01

    The Department of Energy (DOE) Fissile Materials Disposition Materials Disposition Program (FMDP) has announced that reactor irradiation of MOX fuel is one of the preferred alternatives for disposal of surplus weapons-usable plutonium (Pu). MOX fuel has been utilized domestically in test reactors and on an experimental basis in a number of Commercial Light Water Reactors (CLWRs). Most of this experience has been with Pu derived from spent low enriched uranium (LEU) fuel, known as reactor grade (RG) Pu. The MOX fuel test will be irradiated in the ATR to provide preliminary data to demonstrate that the unique properties of surplus weapons-derived or weapons-grade (WG) plutonium (Pu) do not compromise the applicability of this MOX experience base. In addition, the test will contribute experience with irradiation of gallium-containing fuel to the data base required for resolution of generic CLWR fuel design issues (ORNL/MD/LTR-76). This Fabrication, Inspection, and Test Plan (FITP) is a level 2 document as defined in the FMDP LWR MOX Fuel Irradiation Test Project Plan (ORNL/MD/LTR-78)

  4. Survey of evaluation methods for thermal striping in FBR structures

    International Nuclear Information System (INIS)

    Miura, Naoki; Nitta, Akito; Take, Kohji

    1988-01-01

    In the upper core structures or the sodium mixing tee of Fast Breeder Reactors, sodium mixing streams which are at different temperatures produce rapid temperature fluctuations, namely 'thermal striping', upon component surfaces, and it is apprehended that the high-cycle thermal fatigue causes the crack initiation and propagation. The thermal striping is one of the factors which is considered in FBR component design, however, the standard evaluation method has not built up yet because of the intricacy of that mechanism, the difficulty of an actual proof, the lack of data, and so on. In this report, it is intended to survey of the datails and the present situation of the evaluation method of crack initiation and propagation due to thermal striping, and study the appropriate method which will be made use of the rationalization of design. So it is ascertained that the method which use a quantitative prediction of crack propagation is optimum to evaluate the thermal striping phenomenon. (author)

  5. Test of calorimetry for high burn-up plutonium

    International Nuclear Information System (INIS)

    Beets, C.; Carchon, R.; Fettweis, P.

    1984-01-01

    In recent times, the interest of applying calorimetry for safeguards purpose is steadily increasing. Calorimetric measurements have been performed on a set of high burn-up (25000 MWd/t) Pu samples, ranging in mass between 60 g and 2.5 kg Pu, distributed as PuO 2 powder embedded in stainless steel containers. The powers produced by these containers ranged between 0.8 W and 36 W. The calorimeter used was the Mound 150 type, and the isotopics and the Am content have been determined earlier by mass spectroscopy, completed with α and γ counting, and were later verified by the same methods. Watts/gram measurements were made on twelve 60 g samples of the same plutonium lot to demonstrate the Pu elemental and isotopic homogeneity, and hence, its suitability for subsequent NDA experiments. These samples were also measured in a stacked way to fill up the mass and wattage gaps between 60 g (0.8W) and 1 kg (14W). Calorimetric assay values, obtained with both isotopic measurements are discussed

  6. Current applications of actinide-only burn-up credit within the Cogema group and R and D programme to take fission products into account

    International Nuclear Information System (INIS)

    Toubon, H.; Guillou, E.; Cousinou, P.; Barbry, F.; Grouiller, J.P.; Bignan, G.

    2001-01-01

    Burn-up credit can be defined as making allowance for absorbent radioactive isotopes in criticality studies, in order to optimise safety margins and avoid over-engineering of nuclear facilities. As far as the COGEMA Group is concerned, the three fields in which burn-up credit proves to be an advantage are the transport of spent fuel assemblies, their interim storage in spent fuel pools and reprocessing. In the case of transport, burn-up credit means that cask size do not need to be altered, despite an increase in the initial enrichment of the fuel assemblies. Burn-up credit also makes it possible to offer new cask designs with higher capacity. Burn-up credit means that fuel assemblies with a higher initial enrichment can be put into interim storage in existing facilities and opens the way to the possibility of more compact ones. As far as reprocessing is concerned, burn-up credit makes it possible to keep up current production rates, despite an increase in the initial enrichment of the fuel assemblies being reprocessed. In collaboration with the French Atomic Energy Commission and the Institute for Nuclear Safety and Protection, the COGEMA Group is participating in an extensive experimental programme and working to qualify criticality and fuel depletion computer codes. The research programme currently underway should mean that by 2003, allowance will be made for fission products in criticality safety analysis

  7. Current applications of actinide-only burn-up credit within the Cogema group and R and D programme to take fission products into account

    Energy Technology Data Exchange (ETDEWEB)

    Toubon, H. [Cogema, 78 - Saint Quentin en Yvelines (France); Guillou, E. [Cogema Etablissement de la Hague, D/SQ/SMT, 50 - Beaumont Hague (France); Cousinou, P. [CEA Fontenay aux Roses, Inst. de Protection et de Surete Nucleaire, 92 (France); Barbry, F. [CEA Valduc, Inst. de Protection et de Surete Nucleaire, 21 - Is sur Tille (France); Grouiller, J.P.; Bignan, G. [CEA Cadarache, 13 - Saint Paul lez Durance (France)

    2001-07-01

    Burn-up credit can be defined as making allowance for absorbent radioactive isotopes in criticality studies, in order to optimise safety margins and avoid over-engineering of nuclear facilities. As far as the COGEMA Group is concerned, the three fields in which burn-up credit proves to be an advantage are the transport of spent fuel assemblies, their interim storage in spent fuel pools and reprocessing. In the case of transport, burn-up credit means that cask size do not need to be altered, despite an increase in the initial enrichment of the fuel assemblies. Burn-up credit also makes it possible to offer new cask designs with higher capacity. Burn-up credit means that fuel assemblies with a higher initial enrichment can be put into interim storage in existing facilities and opens the way to the possibility of more compact ones. As far as reprocessing is concerned, burn-up credit makes it possible to keep up current production rates, despite an increase in the initial enrichment of the fuel assemblies being reprocessed. In collaboration with the French Atomic Energy Commission and the Institute for Nuclear Safety and Protection, the COGEMA Group is participating in an extensive experimental programme and working to qualify criticality and fuel depletion computer codes. The research programme currently underway should mean that by 2003, allowance will be made for fission products in criticality safety analysis.

  8. A PCI failure in an experimental MOX fuel rod and its sensitivity analysis

    International Nuclear Information System (INIS)

    Marino, A.C.

    2000-01-01

    Within our interest in studying MOX fuel performance, the irradiation of the first Argentine prototypes of PHWR MOX fuels began in 1986 with six rods fabricated at the α Facility (CNEA, Argentina). These experiences were made in the HFR-Petten reactor, Holland. The goal of this experience was to study the fuel behaviour with respect to PMCI-SCC. An experiment for extended burnup was performed with the last two MOX rods. During the experiment the final test ramp was interrupted due to a failure in the rod. The post-irradiation examinations indicated that PCI-SCC was a mechanism likely to produce the failure. At the Argentine Atomic Energy Commission (CNEA) the BACO code was developed for the simulation of a fuel rod thermo-mechanical behaviour under stationary and transient power situations. BACO includes a probability analysis within its structure. In BACO the criterion for safe operation of the fuel is based on the maximum hoop stress being below a critical value at the cladding inner surface; this is related to susceptibility to stress corrosion cracking (SCC). The parameters of the MOX irradiation, the preparation of the experiments and post-irradiation analysis were sustained by the BACO code predictions. We present in this paper an overview of the different experiences performed with the MOX fuel rods and the main findings of the post-irradiation examinations. A BACO code description, a wide set of examples which sustain the BACO code validation, and a special calculation for BU15 experiment attained using the BACO code, including a probabilistic analysis of the influence of rod parameters on performance, are included. (author)

  9. Estimate of the Sources of Plutonium-Containing Wastes Generated from MOX Fuel Production in Russia

    International Nuclear Information System (INIS)

    Kudinov, K. G.; Tretyakov, A. A.; Sorokin, Yu. P.; Bondin, V. V.; Manakova, L. F.; Jardine, L. J.

    2002-01-01

    In Russia, mixed oxide (MOX) fuel is produced in a pilot facility ''Paket'' at ''MAYAK'' Production Association. The Mining-Chemical Combine (MCC) has developed plans to design and build a dedicated industrial-scale plant to produce MOX fuel and fuel assemblies (FA) for VVER-1000 water reactors and the BN-600 fast-breeder reactor, which is pending an official Russian Federation (RF) site-selection decision. The design output of the plant is based on a production capacity of 2.75 tons of weapons plutonium per year to produce the resulting fuel assemblies: 1.25 tons for the BN-600 reactor FAs and the remaining 1.5 tons for VVER-1000 FAs. It is likely the quantity of BN-600 FAs will be reduced in actual practice. The process of nuclear disarmament frees a significant amount of weapons plutonium for other uses, which, if unutilized, represents a constant general threat. In France, Great Britain, Belgium, Russia, and Japan, reactor-grade plutonium is used in MOX-fuel production. Making MOX-fuel for CANDU (Canada) and pressurized water reactors (PWR) (Europe) is under consideration in Russia. If this latter production is added, as many as 5 tons of Pu per year might be processed into new FAs in Russia. Many years of work and experience are represented in the estimates of MOX fuel production wastes derived in this report. Prior engineering studies and sludge treatment investigations and comparisons have determined how best to treat Pu sludges and MOX fuel wastes. Based upon analyses of the production processes established by these efforts, we can estimate that there will be approximately 1200 kg of residual wastes subject to immobilization per MT of plutonium processed, of which approximately 6 to 7 kg is Pu in the residuals per MT of Pu processed. The wastes are various and complicated in composition. Because organic wastes constitute both the major portion of total waste and of the Pu to be immobilized, the recommended treatment of MOX-fuel production waste is

  10. Estimate of the Sources of Plutonium-Containing Wastes Generated from MOX Fuel Production in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Kudinov, K. G.; Tretyakov, A. A.; Sorokin, Yu. P.; Bondin, V. V.; Manakova, L. F.; Jardine, L. J.

    2002-02-26

    In Russia, mixed oxide (MOX) fuel is produced in a pilot facility ''Paket'' at ''MAYAK'' Production Association. The Mining-Chemical Combine (MCC) has developed plans to design and build a dedicated industrial-scale plant to produce MOX fuel and fuel assemblies (FA) for VVER-1000 water reactors and the BN-600 fast-breeder reactor, which is pending an official Russian Federation (RF) site-selection decision. The design output of the plant is based on a production capacity of 2.75 tons of weapons plutonium per year to produce the resulting fuel assemblies: 1.25 tons for the BN-600 reactor FAs and the remaining 1.5 tons for VVER-1000 FAs. It is likely the quantity of BN-600 FAs will be reduced in actual practice. The process of nuclear disarmament frees a significant amount of weapons plutonium for other uses, which, if unutilized, represents a constant general threat. In France, Great Britain, Belgium, Russia, and Japan, reactor-grade plutonium is used in MOX-fuel production. Making MOX-fuel for CANDU (Canada) and pressurized water reactors (PWR) (Europe) is under consideration in Russia. If this latter production is added, as many as 5 tons of Pu per year might be processed into new FAs in Russia. Many years of work and experience are represented in the estimates of MOX fuel production wastes derived in this report. Prior engineering studies and sludge treatment investigations and comparisons have determined how best to treat Pu sludges and MOX fuel wastes. Based upon analyses of the production processes established by these efforts, we can estimate that there will be approximately 1200 kg of residual wastes subject to immobilization per MT of plutonium processed, of which approximately 6 to 7 kg is Pu in the residuals per MT of Pu processed. The wastes are various and complicated in composition. Because organic wastes constitute both the major portion of total waste and of the Pu to be immobilized, the recommended treatment

  11. Implement of MOX fuel assemblies in the design of the fuel reload for a BWR; Implemento de ensambles de combustible MOX en el diseno de la recarga de combustible para un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Enriquez C, P.; Ramirez S, J. R.; Alonso V, G.; Palacios H, J. C., E-mail: pastor.enriquez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    At the present time the use of mixed oxides as nuclear fuel is a technology that has been implemented in mixed reloads of fuel for light water reactors. Due to the plutonium production in power reactors, is necessary to realize a study that presents the plutonium use like nuclear fuel. In this work a study is presented that has been carried out on the design of a fuel assembly with MOX to be proposed in the supply of a fuel reload. The fissile relationship of uranium to plutonium is presented for the design of the MOX assembly starting from plutonium recovered in the reprocessing of spent fuel and the comparison of the behavior of the infinite multiplication factor is presented and of the local power peak factor, parameters of great importance in the fuel assemblies design. The study object is a fuel assembly 10 x 10 GNF2 type for a boiling water reactor. The design of the fuel reload pattern giving fuel assemblies with MOX, so the comparison of the behavior of the stop margin for a fuel reload with UO{sub 2} and a mixed reload, implementing 12 and 16 fuel assemblies with MOX are presented. The results show that the implement of fuel assemblies with MOX in a BWR is possible, but this type of fuels creates new problems that are necessary to study with more detail. In the development of this work the calculus tools were the codes: INTREPIN-3, CASMO-4, CMSLINK and SIMULATE-3. (Author)

  12. Recent prospects of MOX fuel and strategy about nuclear fuel cycle

    International Nuclear Information System (INIS)

    Liu Dingqin

    1991-04-01

    It is clearly described what is the preliminary adequate strategic concern for different nuclear power countries under different nuclear power development conditions. It is also stressed on the basic situation of the design technology, manufacture technology, operation experiences and quantitative economic analysis for MOX fuel application since fast breed reactor commercialization has been delayed. The author specially proposed that in a short term China should adopt an intermediate storage strategy matched with the construction of a pilot reprocessing plant to prepare the technical basis for commercialized reprocessing plant later on and to follow the development of MOX fuel technology

  13. Revised conceptual designs for the FMDP MOX fresh fuel transport package

    International Nuclear Information System (INIS)

    Ludwig, S.B.; Michelhaugh, R.D.; Shappert, L.B.; Chae, S.M.; Tang, J.S.

    1998-03-01

    The revised conceptual designs described in this document provide a foundation for the development and certification of final transport package designs that will be needed to support the disposition of surplus weapons-grade plutonium as mixed-oxide (MOX) fuel in commercial light-water reactors in the US. This document is intended to describe the revised package design concepts and summarize the results of preliminary analyses and assessments of two new concepts for fresh MOX fuel transport packages that have been developed by Oak Ridge National Laboratory during the past year in support of the Department of Energy/Office of Fissile Materials Disposition

  14. Fast reactor core design studies to cope with TRU fuel composition changes in the LWR-to-FBR transition period

    International Nuclear Information System (INIS)

    Kawashima, Katsuyuki; Maruyama, Shuhei; Ohki, Shigeo; Mizuno, Tomoyasu

    2009-01-01

    As part of the Fast Reactor Cycle Technology Development Project (FaCT Project), sodium-cooled fast reactor core design efforts have been made to cope with the TRU fuel composition changes expected during LWR-to-FBR transition period, in which a various kind of TRU fuel compositions are available depending on the characteristics of the LWR spent fuels and a way of recycling them. A 750 MWe mixed-oxide fuel core is firstly defined as a FaCT medium-size reference core and its neutronics characteristics are determined. The core is a high internal conversion type and has an average burnup of 150 GWD/T. The reference TRU fuel composition is assumed to come from the FBR equilibrium state. Compared to the LWR-to-FBR transition period, the TRU fuels in the FBR equilibrium period are multi-recycled through fast reactors and have a different composition. An available TRU fuel composition is determined by fast reactor spent fuel multi-recycling scenarios. Then the FaCT core corresponding to the TRU fuel with different compositions is set according to the TRU fuel composition changes in LWR-to-FBR transition period, and the key core neutronics characteristics are assessed. It is shown that among the core neutronics characteristics, the burnup reactivity and the safety parameters such as sodium void reactivity and Doppler coefficient are significantly influenced by the TRU fuel composition changes. As a result, a general characteristic in the FaCT core design to cope with TRU fuel composition changes is grasped and the design envelopes are identified in terms of the burnup reactivity and the safety parameters. (author)

  15. Application of Integral Ex-Core and Differential In-Core Neutron Measurements for Adjustment of Fuel Burn-Up Distributions in VVER-1000

    Science.gov (United States)

    Borodkin, Pavel G.; Borodkin, Gennady I.; Khrennikov, Nikolay N.

    2010-10-01

    The paper deals with calculational and semi-analytical evaluations of VVER-1000 reactor core neutron source distributions and their influence on measurements and calculations of the integral through-vessel neutron leakage. Time-integrated neutron source distributions used for DORT calculations were prepared by two different approaches based on a) calculated fuel burn-up (standard routine procedure) and b) in-core measurements by means of SPD & TC (new approach). Taking into account that fuel burn-up distributions in operating VVER may be evaluated now by analytical methods (calculations) only it is needed to develop new approaches for testing and correction of calculational evaluations. Results presented in this paper allow to consider a reverse task of alternative estimation of fuel burn-up distributions. The approach proposed is based on adjustment (fitting) of time-integrated neutron source distributions, and hence fuel burn-up patterns in some part of reactor core, on the base of ex-core neutron leakage measurement, neutron-physical calculation and in-core SPD & TC measurement data.

  16. Continuous process of powder production for MOX fuel fabrication according to ''granat'' technology

    International Nuclear Information System (INIS)

    Morkovnikov, V.E.; Raginskiy, L.S.; Pavlinov, A.P.; Chernov, V.A.; Revyakin, V.V.; Varykhanov, V.S.; Revnov, V.N.

    2000-01-01

    During last years the problem of commercial MOX fuel fabrication for nuclear reactors in Russia was solved in a number of directions. The paper deals with the solution of the problem of creating a continuous pilot plant for the production of MOX fuel powders on the basis of the home technology 'Granat', that was tested before on a small-scale pilot-commercial batch-operated plant of the same name and confirmed good results. (authors)

  17. Electronic manual of the nuclear characteristics analysis code-set for FBR

    International Nuclear Information System (INIS)

    Makino, Tohru

    2001-03-01

    Reactor Physics Gr., System Engineering Technology Division, O-arai Engineering Center has consolidated the nuclear design database to improve analytical methods and prediction accuracy for large fast breeder cores such as demonstration or commercial FBRs from the previous research. The up-to-date information about usage of the nuclear characteristics analysis code-set was compiled as a part of the improvement of basic design data base for FBR core. The outlines of the electronic manual are as follows; (1) The electronic manual includes explanations of following codes: JOINT : Code Interface Program. SLAROM, CASUP : Effective Cross Section Calculation Code. CITATION-FBR : Diffusion Analysis Code. PERKY : Perturbative Diffusion Analysis Code. SNPERT, SNPERT-3D : Perturbative Transport Analysis Code. SAGEP, SAGEP-3D : Sensitivity Coefficient Calculation Code. NSHEX : Transport Analysis Code using Nodal Method. ABLE : Cross Section Adjustment Calculation Code. ACCEPT : Predicting Accuracy Evaluation Code. (2) The electronic manual is described using HTML file format and PDF file for easy maintenance, updating and for easy referring through JNC Intranet. User can refer manual pages by usual Web browser software without any special setup. (3) Many of manual pages include link-tags to jump to related pages. String search is available in both HTML and PDF documents. (4) User can download source code, sample input data and shell script files to carry out each analysis from download page of each code (JNC inside only). (5) Usage of the electronic manual and maintenance/updating process are described in this report and it makes possible to enroll new code or new information in the electronic manual. Since the information has been taken into account about modifications and error fixings, added to each code after the last consolidation in 1994, the electronic manual would cover most recent status of the nuclear characteristics analysis code-set. One of other advantages of use

  18. The basic research on the CDA initiation phase for a metallic fuel FBR

    International Nuclear Information System (INIS)

    Hirano, Go; Hirakawa, Naohiro; Kawada, Ken-ichi; Niwa, Hazime

    1998-03-01

    A metallic fuel with novel design has received great deal of interest recently as an option of advanced fuel to be substituted MOX fuel, however, the behavior at the transient has not been studied in many aspects. Therefore, for the purpose to show the basic tendency of the behavior and released energy at CDA (core disruptive accident) for a metallic fuel FBR and to prepare the basic knowledge for consideration of the adoption of the advanced fuel, Tohoku University and Power Reactor and Nuclear Fuel Development Corporation have made a joint research entitled. (1) Target and Results of analysis: The accident initiator considered is a LOF accident with ATWS. The LOF analysis was performed for a metallic fuel 600 MWe homogeneous two region core at the beginning of cycle, both for an ordinary metallic fuel core and for a metallic fuel core with ZrH pins. It was necessary mainly to change the constants of input parameters to apply the code for the analysis of a metallic fueled reactor. These changes were made by assuming appropriate models. Basic LOF cases and all blackout case that assumed using electromagnetic pumps were analyzed. The results show that the basic LOF cases for a metallic fuel core and all the cases for a metallic fuel core with ZrH pins could be avoided to become prompt-critical, and mildly transfer to the transient phase. (2) Improvement of CDA initiation phase analysis code: At present, it is difficult for the code to adapt to the large material movement to in the core at the transient. Therefore, the nuclear calculation model in the code was improved by using the adiabatic space dependent kinetics. The results of a sample case, that is a metallic fueled core at the beginning of cycle, show this improvement is appropriate. (3) Conclusion: The behavior at CDA of a metallic fueled core of a fast reactor was analyzed using the CDA initiation phase analysis code and the knowledge of the important characteristics at the CDA initiation phase was obtained

  19. A study on the design method of the laminated rubber bearing for FBR

    International Nuclear Information System (INIS)

    Mazda, T.; Ishida, K.; Ikeuchi, K.; Yashiro, T.

    1994-01-01

    The Central Research Institute of Electric Power Industry (Japan) has been carrying out the Demonstration Test and Research Program of the Seismic Isolation System for the Fast Breeder Reactor (FBR) under contract with the Ministry of International Trade and Industry (FY1987--FY1993). In this research program, development of the seismic isolation element, reliability evaluation of the seismic isolation system, and examination of a design-based earthquake have been conducted in order to develop and propose design guidelines of seismic isolation system for FBR plant. The purpose of this paper is to describe the test results concerned with structural design of the laminated rubber bearing, and to explain the construction of the design method for the laminated rubber bearing, which is one of the most important factors in the design guidelines of the seismic isolation system

  20. Environment-based pin-power reconstruction method for homogeneous core calculations

    International Nuclear Information System (INIS)

    Leroyer, H.; Brosselard, C.; Girardi, E.

    2012-01-01

    Core calculation schemes are usually based on a classical two-step approach associated with assembly and core calculations. During the first step, infinite lattice assemblies calculations relying on a fundamental mode approach are used to generate cross-sections libraries for PWRs core calculations. This fundamental mode hypothesis may be questioned when dealing with loading patterns involving several types of assemblies (UOX, MOX), burnable poisons, control rods and burn-up gradients. This paper proposes a calculation method able to take into account the heterogeneous environment of the assemblies when using homogeneous core calculations and an appropriate pin-power reconstruction. This methodology is applied to MOX assemblies, computed within an environment of UOX assemblies. The new environment-based pin-power reconstruction is then used on various clusters of 3x3 assemblies showing burn-up gradients and UOX/MOX interfaces, and compared to reference calculations performed with APOLLO-2. The results show that UOX/MOX interfaces are much better calculated with the environment-based calculation scheme when compared to the usual pin-power reconstruction method. The power peak is always better located and calculated with the environment-based pin-power reconstruction method on every cluster configuration studied. This study shows that taking into account the environment in transport calculations can significantly improve the pin-power reconstruction so far as it is consistent with the core loading pattern. (authors)

  1. MODRIB - a zero dimensional code for criticality and burn-up of LWR's

    International Nuclear Information System (INIS)

    Gaafar, M.A.; El-Cherif, A.I.

    1980-01-01

    The computer program MODRIB is a zero-dimensional code for calculating criticality and burn-up of light water reactors (LWR's). It is a version of an Italian code RIBOT-2 with an updated cross-section data library. The nuclear constants of MODRIB-code are calculated with a two group scheme (fast and thermal), where the fast group is an average of three fast groups. The code requires as input data essential extensive reactor parameters such as fuel rod radius, clad thickness, fuel enrichment, lattice pitch, water density and temperature etc. A summary of the physical model description and the input-output procedures are given in this report. Selected results of two sample problems are also given for the purpose of checking the validity and reliability of the code. The first is BWR and the second is PWR. The calculation time for a criticality problem with burn-up is about 8 seconds for the first time step and about 3 seconds for each subsequent time step on the ICL-1906 computer facility. The requirements on the memory size is less than 32 K-word. (author)

  2. Sensitivity analysis of fuel pin failure performance under slow-ramp type transient overpower condition by using a fuel performance analysis code FEMAXI-FBR

    International Nuclear Information System (INIS)

    Tsuboi, Yasushi; Ninokata, Hisashi; Endo, Hiroshi; Ishizu, Tomoko; Tatewaki, Isao; Saito, Hiroaki

    2012-01-01

    The FEMAXI-FBR is a fuel performance analysis code and has been developed as one module of core disruptive evaluation system, the ASTERIA-FBR. The FEMAXI-FBR has reproduced the failure pin behavior during slow transient overpower. The axial location of pin failure affects the power and reactivity behavior during core disruptive accident, and failure model of which pin failure occurs at upper part of pin is used by reflecting the results of the CABRI-2 test. By using the FEMAXI-FBR, sensitivity analysis of uncertainty of design parameters such as irradiation conditions and fuel fabrication tolerances was performed to clarify the effect on axial location of pin failure during slow transient overpower. The sensitivity analysis showed that the uncertainty of design parameters does not affect the failure location. It suggests that the failure model with which locations of failure occur at upper part of pin can be adopted for core disruptive calculation by taking into consideration of design uncertainties. (author)

  3. FBR type reactor

    International Nuclear Information System (INIS)

    Yamaoka, Mitsuaki

    1988-01-01

    Purpose: To enable to increase the burning period by enabling to decrease the reduction of burning reactivity and unifying the irradiation amount of fast neutrons. Constitution: A cylindrical reactor core made of fissile material-enriched fuel is constituted so as to form a plurality of layer-like enriched regions in which the enrichment degree of the fissile material is increased from the center to the radial and axial directions. Then, the ratio between the average enrichment degree for all of the enrichment regions other than the region at the reactor core center with the lowest enrichment degree and the enrichment degree of the enriched region formed at the center of the reactor core is made greater by 5 % or 20 % than the ratio at the initial burning stage where the power distribution of the reactor core is most flattened. (Kawakami, Y.)

  4. Reactivity loss validation of high burn-up PWR fuels with pile-oscillation experiments in MINERVE

    Energy Technology Data Exchange (ETDEWEB)

    Leconte, P.; Vaglio-Gaudard, C.; Eschbach, R.; Di-Salvo, J.; Antony, M.; Pepino, A. [CEA, DEN, DER, Cadarache, F-13108 Saint-Paul-Lez-Durance (France)

    2012-07-01

    The ALIX experimental program relies on the experimental validation of the spent fuel inventory, by chemical analysis of samples irradiated in a PWR between 5 and 7 cycles, and also on the experimental validation of the spent fuel reactivity loss with bum-up, obtained by pile-oscillation measurements in the MINERVE reactor. These latter experiments provide an overall validation of both the fuel inventory and of the nuclear data responsible for the reactivity loss. This program offers also unique experimental data for fuels with a burn-up reaching 85 GWd/t, as spent fuels in French PWRs never exceeds 70 GWd/t up to now. The analysis of these experiments is done in two steps with the APOLLO2/SHEM-MOC/CEA2005v4 package. In the first one, the fuel inventory of each sample is obtained by assembly calculations. The calculation route consists in the self-shielding of cross sections on the 281 energy group SHEM mesh, followed by the flux calculation by the Method Of Characteristics in a 2D-exact heterogeneous geometry of the assembly, and finally a depletion calculation by an iterative resolution of the Bateman equations. In the second step, the fuel inventory is used in the analysis of pile-oscillation experiments in which the reactivity of the ALIX spent fuel samples is compared to the reactivity of fresh fuel samples. The comparison between Experiment and Calculation shows satisfactory results with the JEFF3.1.1 library which predicts the reactivity loss within 2% for burn-up of {approx}75 GWd/t and within 4% for burn-up of {approx}85 GWd/t. (authors)

  5. Nonuniform transformation field analysis of multiphase elasto viscoplastic materials: application to MOX fuels

    International Nuclear Information System (INIS)

    Roussette, S.

    2005-05-01

    The description of the overall behavior of nonlinear materials with nonlinear dissipative phases requires an infinity of internal variables. An approximate model involving only a finite number of internal variables, Nonuniform Transformation Field Analysis, is obtained by considering a decomposition of these variables on a finite set of nonuniform transformation fields, called plastic modes. The method is initially developed for incompressible elasto viscoplastic materials. Karhunen-Loeve expansion is proposed to optimize the plastic modes. Then the method is extended to porous elasto viscoplastic materials. Finally the transformation field analysis, developed by Dvorak, is applied to nuclear fuels MOX. This method enables to make sensitivity studies to determine the role of some microstructural parameters on the fuel behaviour. Moreover the adequacy of the nonuniform method for fuels MOX is shown, the final objective being to be able to apply the model to the MOX in 3D. (author)

  6. Study on transport safety of refresh MOX fuel. Radiation dose from package hypothetically submerged into sea

    International Nuclear Information System (INIS)

    Tsumune, Daisuke; Suzuki; Hiroshi; Saegusa, Toshiari; Maruyama, Koki; Ito, Chihiro; Watabe, Naoto

    1999-01-01

    The sea transport of fresh MOX fuel from Europe to Japan is under planning. For the structure and equipment of transport ships for fresh MOX fuels, there is a special safety standard called the INF Code of IMO (International Maritime Organization). For transport of radioactive materials, there is a safety standard stipulated in Regulations for the Safe Transport of Radioactive Material issued by IAEA (International Atomic Energy Agency). Under those code and standard, fresh MOX fuel will be transported safely on the sea. However, a dose assessment has been made by assuming that a fresh MOX fuel package might be sunk into the sea by unexpected reasons. In the both cases for a package sunk at the coastal region and for that sunk at the ocean, the evaluated result of the dose equivalent by radiation exposure to the public are far below the dose equivalent limit of the ICRP recommendation (1 mSv/year). (author)

  7. Overview of safeguards aspects related to MOX fuel

    International Nuclear Information System (INIS)

    Heinonen, O.J.; Murakami, K.; Shea, T.

    2000-01-01

    Recent developments in the light of the IAEA verification requirements for MOX fuel at reactors and bulk handling facilities are discussed. Impact of the Additional Protocol and Integrated Safeguards System is briefly addressed. Agency's work undertaken with regard to the nuclear arms control and reduction is presented. (author)

  8. Estimate of the Sources of Plutonium-Containing Wastes Generated from MOX Fuel Production in Russia

    International Nuclear Information System (INIS)

    Kudinov, K.G.; Tretyakov, A.A.; Sorokin, Y.P.; Bondin, V.V.; Manakova, L.F.; Jardine, L.J.

    2001-01-01

    In Russia, mixed oxide (MOX) fuel is produced in a pilot facility ''Paket'' at ''MAYAK'' Production Association. The Mining-Chemical Combine (MCC) has developed plans to design and build a dedicated industrial-scale plant to produce MOX fuel and fuel assemblies (FA) for VVER-1000 water reactors and the BN-600 fast-breeder reactor, which is pending an official Russian Federation (RF) site-selection decision. The design output of the plant is based on production capacity of 2.75 tons of weapons plutonium per year to produce the resulting fuel assemblies: 1.25 tons for the BN-600 reactor FAs and the remaining 1.5 tons for VVER-1000 FAs. It is likely the quantity of BN-600 FAs will be reduced in actual practice. The process of nuclear disarmament frees a significant amount of weapons plutonium for other uses, which, if unutilized, represents a constant general threat. In France, Great Britain, Belgium, Russia, and Japan, reactor-grade plutonium is used in MOX-fuel production. Making MOX-fuel for CANDU (Canada) and pressurized water reactors (PWR) (Europe) is under consideration Russia. If this latter production is added, as many as 5 tons of Pu per year might be processed into new FAs in Russia. Many years of work and experience are represented in the estimates of MOX fuel production wastes derived in this report. Prior engineering studies and sludge treatment investigations and comparisons have determined how best to treat Pu sludges and MOX fuel wastes. Based upon analyses of the production processes established by these efforts, we can estimate that there will be approximately 1200 kg of residual wastes subject to immobilization per MT of plutonium processed, of which approximately 6 to 7 kg is Pu in the residuals per MT of Pu processed. The wastes are various and complicated in composition. Because organic wastes constitute both the major portion of total waste and of the Pu to be immobilized, the recommended treatment of MOX-fuel production waste is incineration

  9. Fresh MOX fuel transport in Germany: experience for using the MX6

    Energy Technology Data Exchange (ETDEWEB)

    Lallemant, T. [COGEMA Logistics (AREVA Group), Bagnols/sur Ceze (France); Marien, L. [FBFC-I (AREVA Group), Dessel (Belgium); Wagner, R. [RWE, Gundremmingen (Germany); Jahreiss, W. [FRAMATOME ANP GmbH (AREVA Group), Erlangen (Germany); Tschiesche, H. [NCS, Hanau (Germany)

    2004-07-01

    The MX6 packaging developed by COGEMA LOGISTICS replaces the BWR SIEMENS packaging and SIEMENS III packaging for the transport of either BWR or PWR fresh MOX assemblies. It is licensed in France, Germany and Belgium according to TS-R-1 requirements (IAEA 1996). The associated security transport system was developed in co-operation with NCS (Nuclear Cargo + Service GmbH). The MX6 packaging is based on innovative solutions implemented at each step of the design. In 2004, RWE GUNDREMMINGEN Nuclear Power Plant (NPP) will be the first NPP delivered with the MX6 system and MOX assemblies manufactured by BELGONUCLEAIRE and FBFC in Belgium. Before this first transport, successful cold tests were performed for qualification of the whole system with the participation of all parties involved: NPP, carrier, fuel supplier and local Authorities. These tests were conducted by the NPP's operators in FBFC and GUNDREMMINGEN facilities and lead to the validation of the operating manual. Specific conditions for the return of the empty MX6 were also agreed between all parties. Similar operation will be conducted in each NPP before the first use of the MX 6. The large payload of the MX6: - 16 BWR MOX assemblies in one packaging instead of 2 - 6 PWR MOX assemblies in one packaging instead of 3 contributes to the optimisation of the dose uptake during unloading in the NPP. In this paper, the main contributors to the first MOX transport to Germany with the MX6 will present their involvement and feedback at each step of the transport of this new type of packaging, including loading and unloading operations. The use of the MX6 will be extended to other German NPP's from the next year. After FBFC in Belgium, MELOX in France will load the MX6 as well as the current MX8 packaging for the delivery to the French NPP's.

  10. Fresh MOX fuel transport in Germany: experience for using the MX6

    International Nuclear Information System (INIS)

    Lallemant, T.; Marien, L.; Wagner, R.; Jahreiss, W.; Tschiesche, H.

    2004-01-01

    The MX6 packaging developed by COGEMA LOGISTICS replaces the BWR SIEMENS packaging and SIEMENS III packaging for the transport of either BWR or PWR fresh MOX assemblies. It is licensed in France, Germany and Belgium according to TS-R-1 requirements (IAEA 1996). The associated security transport system was developed in co-operation with NCS (Nuclear Cargo + Service GmbH). The MX6 packaging is based on innovative solutions implemented at each step of the design. In 2004, RWE GUNDREMMINGEN Nuclear Power Plant (NPP) will be the first NPP delivered with the MX6 system and MOX assemblies manufactured by BELGONUCLEAIRE and FBFC in Belgium. Before this first transport, successful cold tests were performed for qualification of the whole system with the participation of all parties involved: NPP, carrier, fuel supplier and local Authorities. These tests were conducted by the NPP's operators in FBFC and GUNDREMMINGEN facilities and lead to the validation of the operating manual. Specific conditions for the return of the empty MX6 were also agreed between all parties. Similar operation will be conducted in each NPP before the first use of the MX 6. The large payload of the MX6: - 16 BWR MOX assemblies in one packaging instead of 2 - 6 PWR MOX assemblies in one packaging instead of 3 contributes to the optimisation of the dose uptake during unloading in the NPP. In this paper, the main contributors to the first MOX transport to Germany with the MX6 will present their involvement and feedback at each step of the transport of this new type of packaging, including loading and unloading operations. The use of the MX6 will be extended to other German NPP's from the next year. After FBFC in Belgium, MELOX in France will load the MX6 as well as the current MX8 packaging for the delivery to the French NPP's

  11. JOYO MK-III performance test. Criticality test, excess reactivity measurement and burn-up coefficient measurement

    International Nuclear Information System (INIS)

    Maeda, Shigetaka; Sekine, Takashi; Kitano, Akihiro; Nagasaki, Hideaki

    2005-03-01

    The MK-III performance test began in June 2003 to fully characterize the upgraded core and heat transfer system of the experimental fast reactor JOYO. This paper describes the results of the approach to criticality, the excess reactivity evaluation and the burn-up coefficient measurement. In the approach to criticality test, the MK-III core achieved initial criticality at the control rod bank position of 412.8 mm on 14:03 July 2nd, 2003. Because the replacement of the outer two rows of reflector subassemblies with shielding subassemblies reduced the source range monitor signals by a factor of 3 at the same reactor power compared with those in the MK-II core, we measured the change of the monitor's response and determined the count rate 2x10 4 cps.' as an appropriate value judging the zero power criticality. In the excess reactivity evaluation, the zero power excess reactivity at 250degC was 2.99±0.10%Δk/kk' based on the measured critical rod bank position and the measured control rod worths. The predicted value by the JOYO core management code system HESTIA was 3.13±0.16%Δk/kk', showing good agreement with the measured value. The measured excess reactivity was within the safety requirement limit. In the burn-up coefficient measurement, the excess reactivity change versus the reactor burn-up was evaluated. The measurement method adopted was to measure the control rod positions during the rated power operation. A value of -2.12x10 -4 Δk/kk'/MWd was obtained as a measured burn-up coefficient. The value calculated by HESTIA was -2.12x10 -4 Δk/kk'/MWd, and it agreed well with the measured value. All technical safety requirements for MK-III core were satisfied and the calculation accuracy of the core management code system HESTIA was confirmed. (author)

  12. Evaluation and Parameter Analysis of Burn up Calculations for the Assessment of Radioactive Waste - 13187

    Energy Technology Data Exchange (ETDEWEB)

    Fast, Ivan; Aksyutina, Yuliya; Tietze-Jaensch, Holger [Product Quality Control Office for Radioactive Waste (PKS) at the Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety Research, IEK-6, Forschungszentrum Juelich (Germany)

    2013-07-01

    Burn up calculations facilitate a determination of the composition and nuclear inventory of spent nuclear fuel, if operational history is known. In case this information is not available, the total nuclear inventory can be determined by means of destructive or, even on industrial scale, nondestructive measurement methods. For non-destructive measurements however only a few easy-to-measure, so-called key nuclides, are determined due to their characteristic gamma lines or neutron emission. From these measured activities the fuel burn up and cooling time are derived to facilitate the numerical inventory determination of spent fuel elements. Most regulatory bodies require an independent assessment of nuclear waste properties and their documentation. Prominent part of this assessment is a consistency check of inventory declaration. The waste packages often contain wastes from different types of spent fuels of different history and information about the secondary reactor parameters may not be available. In this case the so-called characteristic fuel burn up and cooling time are determined. These values are obtained from a correlations involving key-nuclides with a certain bandwidth, thus with upper and lower limits. The bandwidth is strongly dependent on secondary reactor parameter such as initial enrichment, temperature and density of the fuel and moderator, hence the reactor type, fuel element geometry and plant operation history. The purpose of our investigation is to look into the scaling and correlation limitations, to define and verify the range of validity and to scrutinize the dependencies and propagation of uncertainties that affect the waste inventory declarations and their independent verification. This is accomplished by numerical assessment and simulation of waste production using well accepted codes SCALE 6.0 and 6.1 to simulate the cooling time and burn up of a spent fuel element. The simulations are benchmarked against spent fuel from the real reactor

  13. Performance of the MTR core with MOX fuel using the MCNP4C2 code

    International Nuclear Information System (INIS)

    Shaaban, Ismail; Albarhoum, Mohamad

    2016-01-01

    The MCNP4C2 code was used to simulate the MTR-22 MW research reactor and perform the neutronic analysis for a new fuel namely: a MOX (U 3 O 8 &PuO 2 ) fuel dispersed in an Al matrix for One Neutronic Trap (ONT) and Three Neutronic Traps (TNTs) in its core. Its new characteristics were compared to its original characteristics based on the U 3 O 8 -Al fuel. Experimental data for the neutronic parameters including criticality relative to the MTR-22 MW reactor for the original U 3 O 8 -Al fuel at nominal power were used to validate the calculated values and were found acceptable. The achieved results seem to confirm that the use of MOX fuel in the MTR-22 MW will not degrade the safe operational conditions of the reactor. In addition, the use of MOX fuel in the MTR-22 MW core leads to reduce the uranium fuel enrichment with 235 U and the amount of loaded 235 U in the core by about 34.84% and 15.21% for the ONT and TNTs cases, respectively. - Highlights: • Re-cycling of the ETRR-2 reactor by MOX fuel. • Increase the number of the neutronic traps from one neutronic trap to three neutronic trap. • Calculation of the criticality safety and neutronic parameters of the ETRR-2 reactor for the U 3 O 8 -Al original fuel and the MOX fuel.

  14. The relevance of axial burn-up profiles for the criticality safety analysis of spent nuclear fuel in a final repository

    International Nuclear Information System (INIS)

    Kilger, R.; Gmal, B.; Moser, E.F.

    2008-01-01

    Due to inhomogeneous neutron flux and moderator density distributions in the reactor core, the burn-up of a nuclear fuel assembly is not homogeneous but shows an axial distribution, typically with lower partial burn-up and thus higher remaining reactivity at the fuel ends in particular at the assembly top end. Beyond a burn-up of about 15 to 20 GWd/tHM, the multiplication factor K of the whole assembly is dominated by this lower-burnt end regions, and is usually higher than for assuming a homogeneous uniform distribution of the averaged burn-up. This behaviour commonly referred to as positive ''end effect'' is well known in burn-up credit considerations for transportation and storage casks and is being investigated also in the context of criticality analyses for final disposition of spent nuclear fuel. Sign and value of the end effect depend on several parameters. Based on a generic model one may not conclude that criticality in a final repository is a likely or expected event, but nevertheless it draws the attention to the fact that criticality is not excluded per se but has to be considered in the analysis and probably has to be encountered by certain appropriate measures, maybe e.g. by limitation of the amount of fissile material inside one single cask, or a rigorous prove for prevention of water ingress. The authors also conclude that the higher partial reactivity of the fuel ends has to be accounted for carefully in more realistic analyses of post-closure scenarios with respect to criticality safety.

  15. On the Burning of Plutonium Originating from Light Water Reactor Use in a Fast Molten Salt Reactor—A Neutron Physical Study

    Directory of Open Access Journals (Sweden)

    Bruno Merk

    2015-11-01

    Full Text Available An efficient burning of the plutonium produced during light water reactor (LWR operation has the potential to significantly improve the sustainability indices of LWR operations. The work offers a comparison of the efficiency of Pu burning in different reactor configurations—a molten salt fast reactor, a LWR with mixed oxide (MOX fuel, and a sodium cooled fast reactor. The calculations are performed using the HELIOS 2 code. All results are evaluated against the plutonium burning efficiency determined in the Consommation Accrue de Plutonium dans les Réacteurs à Neutrons RApides (CAPRA project. The results are discussed with special view on the increased sustainability of LWR use in the case of successful avoidance of an accumulation of Pu which otherwise would have to be forwarded to a final disposal. A strategic discussion is given about the unavoidable plutonium production, the possibility to burn the plutonium to avoid a burden for the future generations which would have to be controlled.

  16. Structural dynamics in FBR

    International Nuclear Information System (INIS)

    Bhoje, S.B.

    2003-01-01

    In view of thin walled large diameter shell structures with associated fluid effects, structural dynamics problems are very critical in a fast breeder reactor. Structural characteristics and consequent structural dynamics problems in typical pool type Fast Breeder Reactor are highlighted. A few important structural dynamics problems are pump induced as well as flow induced vibrations, seismic excitations, pressure transients in the intermediate heat exchangers and pipings due to a large sodium water reaction in the steam generator, and core disruptive accident loadings. The vibration problems which call for identification of excitation forces, formulation of special governing equations and detailed analysis with fluid structure interaction and sloshing effects, particularly for the components such as PSP, inner vessel, CP, CSRDM and TB are elaborated. Seismic design issues are presented in a comprehensive way. Other transient loadings which are specific to FBR, resulting from sodium-water reaction and core disruptive accident are highlighted. A few important results of theoretical as well as experimental works carried out for 500 MWe Prototype Fast Breeder Reactor (PFBR), in the domain of structural dynamics are presented. (author)

  17. Development and validation of the ENIGMA code for MOX fuel performance modelling

    International Nuclear Information System (INIS)

    Palmer, I.; Rossiter, G.; White, R.J.

    2000-01-01

    The ENIGMA fuel performance code has been under development in the UK since the mid-1980s with contributions made by both the fuel vendor (BNFL) and the utility (British Energy). In recent years it has become the principal code for UO 2 fuel licensing for both PWR and AGR reactor systems in the UK and has also been used by BNFL in support of overseas UO 2 and MOX fuel business. A significant new programme of work has recently been initiated by BNFL to further develop the code specifically for MOX fuel application. Model development is proceeding hand in hand with a major programme of MOX fuel testing and PIE studies, with the objective of producing a fuel modelling code suitable for mechanistic analysis, as well as for licensing applications. This paper gives an overview of the model developments being undertaken and of the experimental data being used to underpin and to validate the code. The paper provides a summary of the code development programme together with specific examples of new models produced. (author)

  18. Present status of reactor physics in the United States and Japan-IV. 2. Micro-Reactor Physics of MOX-Fueled Core

    International Nuclear Information System (INIS)

    Takeda, Toshikazu

    2001-01-01

    Recently, fuel assemblies of light water reactors have become complicated because of the extension of fuel burnup and the use of high-enriched Gd and mixed-oxide (MOX) fuel, etc. In conventional assembly calculations, the detailed flux distribution, spectrum distribution, and space dependence of self-shielding within a fuel pellet are not directly taken into account. The experimental and theoretical study of investigating these microscopic properties is named micro-reactor physics. The purpose of this work is to show the importance of micro-reactor physics in the analysis of MOX fuel assemblies. Several authors have done related studies; however, their studies are limited to fuel pin cells, and they are never mentioned with regard to burnup effect, which is important for actual core design. We used the subgroup method to treat the space dependence of the self-shielding effect of heavy nuclides, and we used the characteristics method to treat the angular dependence of neutron flux in a fuel pellet. Figure 1 compares the power distributions in MOX and UO 2 fuel cells at the beginning of burnup. The power is calculated with and without considering the space dependence of the self-shielding effect of the cross sections. For the MOX cell, the power distribution has a peak at the cell edge because of large Pu absorption especially when considering the spatial self-shielding effect. When a MOX rod is adjacent to UO 2 fuel rods, the flux distribution has an azimuthal dependence in addition to the radial dependence within a rod. For example, consider a 2x2 fuel assembly composed of three UO 2 rods and one MOX rod, with the mirror reflection boundary condition. A burnup calculation was done with the condition; the radius of the MOX pellet is divided into two regions, and the azimuthal angle is divided into eight. The number density of 239 Pu at 44 000 MWd/t for the MOX rod shows azimuthal dependence by 20%. The maximum burnup occurs in the direction of the UO 2 rods. This is

  19. Performance of cladding on MOX fuel with low 240Pu/239Pu ratio

    International Nuclear Information System (INIS)

    McCoy, K.; Blanpain, P.; Morris, R.

    2015-01-01

    The U.S. Department of Energy has decided to dispose of a portion of its surplus plutonium by reconstituting it into mixed oxide (MOX) fuel and irradiating it in commercial power reactors. As part of fuel qualification, four lead assemblies were manufactured and irradiated to a maximum fuel rod average burnup of 47.3 MWd/kg heavy metal. This was the world's first commercial irradiation of MOX fuel with a 240 Pu/ 239 Pu ratio less than 0.10. Five fuel rods with varying burnups and plutonium contents were selected from one of the assemblies and shipped to Oak Ridge National Laboratory for hot cell examination. This paper discusses the results of those examinations with emphasis on cladding performance. Exams relevant to the cladding included visual and eddy current exams, profilometry, microscopy, hydrogen analysis, gallium analysis, and mechanical testing. There was no discernible effect of the type of MOX fuel on the performance of the cladding. (authors)

  20. Some difference of concepts between design guideline for FBR base isolation system and aseismic design guideline of LWR in Japan

    International Nuclear Information System (INIS)

    Shibata, Heki

    1992-01-01

    This paper deals with the concept and the relation of 'the Base Isolation System and FBR' to the Safety Criteria and the Guideline of the Aseismic Design of LWR in Japan. The Central Research Institute of Electric Power Industries have been working for FBR last several years. The author has been contribute to their works, and this is one of the subjects. He described his own idea obtained through the cooperative work with CRIEPI. (author)